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Detecting highly entangled states with a joint qubit readout
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A single-channel joint readout is used to analyze highly entangled two-qubit states in a circuit quantum
electrodynamics architecture. The measurement model for the readout is fully characterized, demonstrating a
large sensitivity to two-qubit correlations. We quantify the high degree of entanglement by measuring a violation
of the Clauser-Horne-Shimony-Holt inequality with a value of 2.61± 0.04, without optimizing the preparation
of the two-qubit state. In its present form, this joint readout can resolve improvements to the fidelity of two-qubit
operations and be extended to three or four qubits.
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I. INTRODUCTION

Measuring entanglement, nonclassical correlations, be-
tween qubits is critical for experimental progress in quantum
information science. In any experiment one obtains informa-
tion about the quantum system only through observing the
output of a detector, whose imperfections can introduce bias
and noise. Therefore, to make precise statements about the
entanglement, or other intrinsic properties of quantum states,
it is necessary to have a full understanding of the measurement
process.
In more developed quantum information processing archi-

tectures, such as those employing photons or trapped ions,
the relationship between a quantum state and the quantities
observed has been well established. In addition, the fidelity
of single-shot measurements can be very high (∼99.99%
for ions [1]). Consequently, the difficulties of calibration are
minimized and the paradigm for correlation measurements
[2,3] is to record coincidences between individual detector
“clicks” and build statistics through repetition. However, in the
context of solid-state systems, the details of the measurement
process itself are not fully understood and are an area of
active research and recent progress. Single-shot individual
qubit measurements have been technically challenging, and
the readout fidelity is not yet as high as the fidelity of qubit
operations (∼98%–99% for single-qubit gates [4,5]). Each
individual readout channel can provide an additional path for
decoherence and must also be calibrated. An example of the
need for calibration is measurement cross-talk, which can be
significant in circuit-based architectures [6] but has now been
suppressed to the 0.5% level using an on-chip cavity as a filter
[7]. Recently, the single-shot fidelity of independent readouts
of superconducting qubits has also been improved [7,8] to
∼95% and violation of a Bell inequality has been achieved [7].
In this work, we pursue an alternative approach by employ-

ing a single joint, or quadratic, readout [9–12] realized as the
microwave resonator of a circuit quantum electrodynamics
architecture [13], where the measurement operator itself
includes multiqubit correlations. We first characterize the
form of the measurement operator for this joint readout.
Taking advantage of good state initialization [14] and high-
fidelity single-qubit gates [5], we can place bounds of 2% on
systematic deviations from the ideal jointmeasurement. This is

similar to determining the systematic errors, such as cross-talk
[15], in individual readouts. The high relative sensitivity
to two-qubit correlations in the measurement operator, or
jointness, makes the joint readout as efficient for measuring
qubit correlations as for single-qubit polarizations. Since
the correlation is performed before averaging, the classical
amplifier noise that limits the single-shot readout fidelity enters
only as a statistical error, and it can be largely eliminated with
sufficient repetition. Using this readout, we then demonstrate a
high degree of entanglement by measuring a large violation of
a Clauser-Horne-Shimony-Holt (CHSH) inequality [16], with
a value of 2.61± 0.04, without optimizing for the target state.

II. JOINT READOUT

A. Model

Our device consists of two transmon qubits [17,18] located
at opposite ends of a superconducting transmission-line
resonator (The experimental setup and transmon parameters
are given in Appendices A and B). Arbitrary single-qubit x-
and y-rotations [5] are performed by employing a derivative
pulse-shaping technique [19,20], resulting in single-qubit error
rates of <1%. Local flux-bias lines tune the qubit transition
frequencies, allowing nanosecond control of a two-qubitZLZR

interaction that implements [21] conditional-phase (c-Phase)
gates [withZL(R) = σ L(R)z being the single-qubit Pauli z opera-
tor on the left (right) qubit]. Combining single-qubit rotations
with the c-Phase gates, we produce entangled states with
high fidelity to the Bell states, |�±〉 = (|0,0〉 ± |1,1〉)/√2 and
|�±〉 = (|1,0〉 ± |0,1〉)/√2, where |l,r〉 denotes excitation
level l(r) of the left (right) qubit [21].
To accurately and precisely detect this two-qubit entangle-

ment, we seek a complete physical model and calibration of
the joint readout. The physical mechanism enabling the joint
readout is a qubit-state-dependent dispersive cavity shift that
is large relative to the cavity linewidth κ/2π = 1 MHz. In this
strong dispersive regime [22,23], the system is described by a
dispersive Jaynes-Cummings Hamiltonian (h̄ = 1)

HJC = (ωC + χLZI + χRIZ)a†a − ωL

2
ZI − ωR

2
IZ, (1)
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FIG. 1. (Color online) Time average of a pulsed cavity transmis-
sion versus drive frequency having prepared the four computational
basis states |0,0〉 (circles), |0,1〉 (squares), |1,0〉 (triangles), |1,1〉
(diamonds), demonstrating the four dispersive cavity peaks. Inset:
Measured pulse transients of VH at the transmission frequency
corresponding to |0,0〉 (indicated by black arrow) for the same four
prepared states. Measurement is pulsed on at 0 μs for a duration
of 3 μs.

where ωC is the bare resonator frequency, ωL(R) is the ground
to first excited state transition frequency for the left (right)
qubit, and χL(R) is the left (right) qubit-state-dependent cavity
shift. To determine the qubit-dependent shifts we prepare each
of the four computational basis states (|0,0〉, |0,1〉, |1,0〉,
|1,1〉) using single-qubit gates, andwemeasure the transmitted
voltage. Figure 1 shows the time-averaged homodyne voltage
V̄H = 〈∫ 	t

0 VHdt〉/	t , where 	t = 0.5 μs. As expected, we
find four peaks corresponding to the four computational states
and estimate from their separation χL(R)/2π = 13(4) MHz.
When the shifts are many linewidths (χL,χR � κ) and

qubit relaxation during measurement is negligible (	t � T1),
driving with a tone at the cavity frequency corresponding
to |0,0〉 would query the joint property that both qubits are
in the ground state: Transmission is high when the state
is projected onto |0,0〉 and zero otherwise. In this ideal
scenario, V̄H = Tr(ρM), where ρ is the two-qubit density
matrix and M ∝ |0,0〉〈0,0| = (I + ZI + IZ + ZZ)/4 is the
measurement operator. However, qubit relaxation during the
measurement and partial overlap of the dispersive peaks,
evident in the inset of Fig. 1, make the measurement operator
take the more general form

M = βII II + βZIZI + βIZIZ + βZZZZ, (2)

where {βLR} are constants that must be calibrated.
This same technique can be extended to a circuit QED

system with three or four transmon qubits by putting two at
each end of the cavity [24]. In principle, this can be extended
to a larger number, although that has yet to be investigated.

B. Verification of the model

A comprehensive test of this measurement model is
performed with a sequence of Rabi-flopping experiments.
Figures 2(a) and 2(b) show V̄H as a function of the duration
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FIG. 2. (Color online) Rabi oscillations on (a) the left qubit,
(b) the right qubit, and (c) simultaneously on both. Solid lines are
fits to the model in Eq. (3). (d) Fourier transform (FT) of the three
Rabi experiments (circles) and of best fits (lines).While the red (blue)
traces show one main peak at the Rabi frequency �L(R), the purple
traces reveal peaks at�L,�R,�L + �R, and�L − �R, demonstrating
the mixing property that makes the joint measurement sensitive to
qubit-qubit correlations.

of an applied drive at ωL and ωR, respectively. In each case
the drive induces a Rabi oscillation of the addressed qubit
around the y axis of its Bloch sphere. By varying the strength
of the drive at either frequency, we can have different Rabi
frequencies on each qubit. We fit these oscillations using the
most general two-qubit measurement operator

M =
∑

L,R∈{I,X,Y,Z}
βLRLR, (3)

with theoretical expressions for 〈Z〉 and 〈X〉 assuming inde-
pendently driven qubits (see Appendix C). The best fits place
bounds on deviations from Eq. (2) due to undesired terms such
as 〈XI 〉 (〈IX〉) and 〈XZ〉 (〈ZX〉) to <∼2% of the full range of
V̄H each.
A third experiment, shown in Fig. 2(c), measures V̄H in

response to simultaneous driving of both qubits. There are
frequency components at the individual qubit Rabi frequen-
cies, �L and �R, but also at the sum and difference due to
the ZZ term in Eq. (2). This is clearly revealed in the Fourier
transformof the oscillations shown in Fig. 2(d). Fittingwith the
measurement model of Eq. (3), we find deviations from Eq. (2)
due to the undesired correlation 〈XX〉 term to be less than
2% of the peak-to-peak excursion of 〈V̄H〉 (see Appendix C).
These Rabi experiments thus corroborate Eq. (2) and give the
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calibration (βII ,βIZ,βZI ,βZZ) = (800, 380, 380, 200) μV.
The jointness, which we define as βZZ/βIZ(ZI ), is 0.6,
indicating the high sensitivity to two-qubit correlations.

III. STATE TOMOGRAPHY OF HIGHLY
ENTANGLED STATES

Having characterized the joint readout, we can now perform
quantum state tomography of separable and entangled two-
qubit states. We extend Ref. [12], where two-qubit state
tomography with a joint readout was first demonstrated, by
obtaining an overcomplete set of 30 measurements through
applying different pairs of simultaneous single-qubit rotations
prior to detection (see Appendix D). Using linear least-
squares estimation, we then extract the Pauli set 
P , whose
16 elements are the expectation values of the two-qubit Pauli
operators, 〈LR〉, where L,R ∈ {I,X,Y,Z}. The two-qubit
density matrix is linearly related to the elements of 
P by
ρ = ∑

L,R LR〈LR〉/4.
An advantage of examining the set 
P is that it is a simple

visual tool to distinguish separable from entangled states. In
Fig. 3, we show two separable and two entangled states. For
these states, 
P ideally contains three nonzero bars, all of unit
magnitude. 
P can be divided into three sections: the single-
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FIG. 3. (Color online) Experimental Pauli set (with trivial 〈II 〉 =
1 not shown), for separable states (a) |1,0〉 and (b) (|0,0〉 − |0,1〉 +
|1,0〉 − |1,1〉)/2 and entangled states (c) |�+〉 and (d) (|0,0〉 +
|0,1〉 − |1,0〉 + |1,1〉)/2. Upward-angling (downward-angling) bars
correspond to left (right) single-qubit Pauli operators. Crossed bars
are the qubit-qubit correlations. The fidelities to the four targeted
states are F = 98.2%± 0.4%, 96.8% ± 0.4%, 90.0% ± 0.6%, and
92.5%± 0.7%. The real part of the density matrix obtained using
the constrained maximum-likelihood estimation on the same raw
measurements is shown in the plot to the right of each Pauli set.

qubit polarization vectors, 
P L = {XI,Y I,ZI } (red) and 
P R =
{IX,IY,IZ} (blue), and the vector of two-qubit correlations

Q = {〈XY 〉, . . . ,〈ZZ〉} (purple). For the separable states, we
observe near-unity components in each of the three sections. In
contrast, for the entangled states, only 
Q has components with
near-unity magnitude. The presence of strong correlations and
vanishing qubit polarization is a signature of a high degree of
entanglement.

IV. ENTANGLEMENT WITNESSES

Finally, we use the calibrated joint readout to measure the
fidelity to targeted states and characterize the entanglement
via entanglement witnesses including CHSH operators. The
fidelity F = 〈�|ρ|�〉 to a targeted state |�〉 quantifies the
control over two-qubit states, and it is given by F = ( 
P ·

Ptarget)/4. We define two experiments, involving a rotation θ

of the left qubit about its y axis having prepared the separable
state |0,0〉 [experiment I, Fig. 4(a)] and the entangled state
(|0,0〉 + |0,1〉 − |1,0〉 + |1,1〉)/2 [experiment II, Fig. 4(b)].
For experiments I and II, we find F = 98.8% ± 1.0%
and 93.4% ± 1.5% (averaged over θ ), respectively. We
find excellent agreement between experiment and simulation,
demonstrating the accuracy of both the state preparation and
the measurement.
Measures beyond fidelity are necessary to quantify the

degree of two-qubit entanglement. Often, entanglement mono-
tones such as concurrence C [25] are obtained using nonlinear
estimators. It is standard to first perform maximum-likelihood
estimation [26] to generate a positive ρ despite statistical or
systematic errors in the measurements, and to then calculate
these metrics from the eigenvalue spectrum of related ma-
trices [25]. This nonlinear process greatly complicates the
propagation of any statistical and systematic errors in the
measurements. It can also bias the estimation of metrics such
as C when the purity of the two-qubit state is high compared
to the readout fidelity [27,28] (see Appendix F), as is typically
the case with superconducting qubits.
To make quantitative statements about entanglement while

using only linear operations on measurements, we make use of
entanglement witnesses [25,29]. An entanglement witnessW
is a unity-trace observable with a positive expectation value
for all separable states, such that Tr(ρW) < 0 guarantees
entanglement. Furthermore, B = −2Tr(ρW) gives a lower
bound [29] on C. The optimal witnesses (strictest lower bound)
for the Bell states are

W�± = 1
4 (II ∓ XX ± YY − ZZ),

W�± = 1
4 (II ∓ XX ∓ YY + ZZ).

The measured bounds for experiments I and II are shown
in Figs. 4(c) and 4(d). In experiment I, the four bounds are
nonpositive for all θ to within measurement error, indicating
that entanglement is not witnessed. This is expected, since
single-qubit rotations should not produce any entanglement.
In Fig. 4(d), in contrast, bounds B�+ and B�− extend into the
positive region, reaching 85.9%± 1.5% and 88.1% ± 1.5% at
θ = −90◦ and 90◦, respectively. There is at least one positive
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FIG. 4. (Color online) Pulse sequences for a collection of (a) separable and (b) entangled states, showing experimental lower bounds Bi

(orange) on concurrence given by the optimal witnesses for Bell statesW�+ (circles),W�− (squares),W�+ (triangles), andW�− (crosses),
and fidelity F to the ideal state (black circles) for (c) experiment I and (d) experiment II. In (d), a maximum lower bound is reached by B�−
(B�+) at θ = −90◦(+90)◦. Shown are four measured CHSH operators, 〈CZXXZ〉 (squares), 〈CZXZX〉 (triangles), 〈CZZXX〉 (circles), and〈CXXZZ〉
(crosses), for a collection of (e) separable and (f) entangled states. Experiment I in (e) involves only a single qubit rotation and all 〈C〉 values
stay within the separable state bounds ±√

2 up to measurement noise. For experiment II in (f), there are three single-qubit rotations and a
c-Phase, and we find max |〈C〉| = 2.61± 0.04. Solid curves are the results of master equation simulations.

bound for most θ (excluding ±180◦ and 0◦), indicating that
the two qubits are entangled. Agreement with the master
equation simulation (solid lines) in Figs. 4(c) and 4(d) shows
the accuracy of the entanglement witnesses and the small
residuals (∼2%) demonstrate the precision of measurement
by joint readout.
Although the CHSH operator is often used to test quantum

mechanics against local-hidden variable (LHV) theories, here
we can also employ it as an entanglement witness [29]. A
CHSH operator [16] is defined as

CL,R,L′,R′ = LR + LR′ + L′R − L′R′, (4)

with {L,L′} and {R,R′} being pairs of single-qubit Pauli
operators along any two axes of the left and right qubits,
respectively.With a general choice of axes, for separable states,
|〈C〉| � 2, coinciding with the LHV bound. For the specific
choice L ⊥ L′ and R ⊥ R′, the separable bound is tighter,
|〈C〉| �

√
2.

From a subset of the measured 
P for states generated in
experiments I and II, we obtain expectation values of four
CHSH operators with L,L′ ∈ {XL,ZL} and R,R′ ∈ {XR,ZR}.
For experiment I, shown in Fig. 4(c), we find to within
statistical error (standard deviation of 0.04) that 〈CZXXZ〉 =
〈XX〉 − 〈XZ〉 + 〈ZX〉 + 〈ZZ〉 (squares) and 〈CZXZX〉 =
〈XX〉 + 〈XZ〉 − 〈ZX〉 + 〈ZZ〉 (triangles) remain within one
standard deviation of the separable bound for all θ . Conversely,
for the entangled states prepared in experiment II, shown
in Fig. 4(d), 〈C〉 clearly oscillates well past the separable
bounds. At θ = ±45◦, a maximum value |〈C〉| = 2.61± 0.04

is reached. The agreement with theory and proximity of this
maximum |〈C〉| to the 2√2 upper bound [30] at angles
very close to the expected ±45◦ further demonstrate the
highly entangled states produced and the ability of the
joint measurement to determine the degree of entanglement
precisely. Here, |〈C〉| exceeds the separable state bound of√2
by ∼30 standard deviations. Furthermore, it also violates a
Bell inequality by exceeding the classical bound of 2 by ∼15
standard deviations. Locality and detection loopholes present
in our system preclude a fundamental test disproving LHV. For
Josephson phase qubits, the detection loophole has recently
been closed using independent single-shot readouts [7]. We
emphasize that we calibrate the measurement and the gates
but we do not specifically optimize for a maximum 〈C〉 value.

V. CONCLUSION

In summary, we have demonstrated a joint readout of
superconducting qubits using a microwave cavity as a single
measurement channel that gives direct access to qubit cor-
relations. This readout is advantageous because it introduces
the minimal number of channels for qubit decoherence and
is easy to model and calibrate accurately. The joint readout
represents a different strategy from that of individual qubit
readouts, but it is shown to be a viable approach for precisely
characterizing entangled states. Applying this readout to
analyze highly entangled states, we report a large violation
of CHSH inequalities in a solid-state system. These results
represent an advance in the ability to quantify the entanglement
between qubits. In its present form, this joint readout has the
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resolution to detect future improvements in two-qubit gates and
has already been extended to a circuit QED system with up to
four qubits [24], where it has been used to detect three-qubit
entangled states such as the Greenberger-Horne-Zeilinger
state. Furthermore, the possibility of measuring multiqubit
parity operators in three- to four-qubit systems could be useful
for performing quantum error correction protocols [31], gen-
erating entanglement by postselection [32,33], or performing
fundamental tests of quantum contextuality [34,35].
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APPENDIX A: SAMPLE FABRICATION

The device is fabricated on a 430-μm-thick sapphire
substrate. The superconducting transmission-line cavity and
flux-bias lines are defined via optical lithography and fluorine-
based reactive ion etching of a dcsputtered niobium film
(180 nm thick). The two transmons are patterned using
electron-beam lithography with split junctions, grown using
double-angle deposition of aluminium, with bottom and top
layer thicknesses of 20 and 80 nm, respectively. The sample is
cooled in a dilution refrigerator to 13 mK. A basic schematic
is shown here in Fig. 5. Full details of the setup are presented
in a previous publication [21].

APPENDIX B: EXPERIMENTAL DEVICE PARAMETERS

From a set of transmission measurements obtained when
tuning each qubit into near resonance with the cavity, we
determine the qubit-cavity coupling strengths gL(R)/2π =
199 (183) MHz. Fitting a multilevel Jaynes-Cummings Hami-
tonian to spectroscopy measurements of the two lowest
transitions of each qubit, we extract maximum Josephson
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FIG. 5. Circuit diagram of experimental setup, showing the cavity
as a lumped LC resonator. Microwave drive tones that address the
cavity, ωRF, and qubits, ω

L(R)
d , are applied via the cavity input line.

The left (right) qubit, with Josephson energy E
L(R)
J and charging

energy E
L(R)
C , is tunable via a local flux �L(R) set by a voltage V L(R).

The joint qubit state information is transmitted out a single readout
line, amplified through a high electron mobility transistor (HEMT)
amplifier at 4 K and mixed down at room temperature for digital
processing.

energies Emax
J,L(R)/h = 28.48 (42.34) GHz and electrostatic

charging energies EC,L(R)/h = 317 (297) MHz. Sliding π -
pulse and Ramsey fringe experiments give qubit relaxation
times T

L(R)
1 = 1.2 (0.9) μs and dephasing times T

L(R)
2 =

1.5 (1.1) μs.

APPENDIX C: MEASUREMENT MODEL VALIDATION

Asmentioned in themain text, wefit the threeRabi-flopping
experiments of Fig. 2 to place bounds on deviations from the
measurement model of Eq. (2). Because in these tests each
qubit is driven around the y axis of its Bloch sphere, all terms
involving Y L and Y R in Eq. (3) would not contribute to V̄H.
The presence of such terms can be tested by rotating each
or both qubits around their x axis instead. We do not find
any significant differences in such experiments from the ones
presented in the text, and the results here can be generalized
for both quadratures.
In our experiment the detuning of ∼1.5 GHz between the

two qubits is large compared to the Rabi-flopping rates, and
we can assume a simple model of independent qubit driving.
For a qubit driven at a rate � around its y axis starting from
the ground state, the theoretical time evolution of 〈Z〉 and 〈X〉
is given by

〈Z〉(t) = γ1γ2

γ1γ2 + �2
+ e−t/τR�2

γ1γ2 + �2

(
cos(�̃t)+ sin(�̃t)

τR�̃

)
,

〈X〉(t) = γ1�

γ1γ2 + �2
− e−t/τR�

γ1γ2 + �2

×
(

γ1 cos(�̃t)− [2�2 + γ1(γ2 − γ1)] sin(�̃t)

2�̃

)
.

Here, �̃ =
√

�2 − (1/τR)2 is an effective oscillation rate, γ1 =
1/T1 is the relaxation rate, γ2 = γ1/2+ γφ is the dephasing
rate, and τR = 2/(γ1 + γ2) is the Rabi decay time.
Using these expressions in the fullmodel, Eq. (3), and fitting

to the three experimental curves, we estimate the coefficients
βLR . For single-qubit driving [Fig. 2(a)], the right qubit is
always in the ground state, and only terms 〈ZI 〉, 〈XI 〉, 〈XZ〉,
and 〈ZZ〉 contribute to the V̄H oscillation. Similarly, for
Fig. 2(b), with the left qubit in the ground state, only terms
〈IZ〉, 〈IX〉, 〈ZX〉, and 〈ZZ〉 contribute. Using the functions

V̄ a
H = W0 + W1〈ZI 〉 + W2〈XI 〉,

V̄ b
H = W0 + W1〈IZ〉 + W2〈IX〉,

with free parameters W0, W1, W2, �L(R), γ
L(R)
1 , and γ

L(R)
2 ,

gives an excellent best fit. In both cases, the best-fit W2,
corresponding to βXI (IX) + βXZ(ZX), is less than 2% of the
full range of V̄H, ∼2βIZ + 2βZI . For the doubly-driven case
[Fig. 2(c)], the fit function used is

V̄ c
H = βII + βXI 〈XI 〉 + βZI 〈ZI 〉 + βIX〈IX〉 + βIZ〈IZ〉

+βXX〈XX〉 + βXZ〈XZ〉 + βZX〈ZX〉 + βZZ〈ZZ〉,
with βij , �L, �R, γ Lj , and γ Rj as fit parameters. The best-fit
coefficients captured in Eq. (2) are (βII ,βIZ,βZI ,βZZ) =
(800, 380, 380, 200) μV. Best-fit values of the remaining
coefficients are each less than 2% of the full range of V̄H.
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TABLE I. The 30 raw measurements.

Prerotation Measurement operator

M01 I ⊗ I +βZIZI + βIZIZ + βZZZZ

M02 Rπ
x ⊗ I −βZIZI + βIZIZ − βZZZZ

M03 I ⊗ Rπ
x +βZIZI − βIZIZ − βZZZZ

M04 Rπ/2
x ⊗ I +βZIY I + βIZIZ + βZZYZ

M05 Rπ/2
x ⊗ Rπ/2

x +βZIY I + βIZIY + βZZYY

M06 Rπ/2
x ⊗ Rπ/2

y +βZIY I − βIZIX − βZZYX

M07 Rπ/2
x ⊗ Rπ

x +βZIY I − βIZIZ − βZZYZ

M08 Rπ/2
y ⊗ I −βZIXI + βIZIZ − βZZXZ

M09 Rπ/2
y ⊗ Rπ/2

x −βZIXI + βIZIY − βZZXY

M10 Rπ/2
y ⊗ Rπ/2

y −βZIXI − βIZIX + βZZXX

M11 Rπ/2
y ⊗ Rπ

x −βZIXI − βIZIZ + βZZXZ

M12 I ⊗ Rπ/2
x +βZIZI + βIZIY + βZZZY

M13 Rπ
x ⊗ Rπ/2

x −βZIZI + βIZIY − βZZZY

M14 I ⊗ Rπ/2
y +βZIZI − βIZIX − βZZZX

M15 Rπ
x ⊗ Rπ/2

y −βZIZI − βIZIX + βZZZX

N01 I ⊗ I +βZIZI + βIZIZ + βZZZZ

N02 R−π
x ⊗ I −βZIZI + βIZIZ − βZZZZ

N03 I ⊗ R−π
x +βZIZI − βIZIZ − βZZZZ

N04 R−π/2
x ⊗ I −βZIY I + βIZIZ − βZZYZ

N05 R−π/2
x ⊗ R−π/2

x −βZIY I − βIZIY + βZZYY

N06 R−π/2
x ⊗ R−π/2

y −βZIY I + βIZIX − βZZYX

N07 R−π/2
x ⊗ R−π

x −βZIY I − βIZIZ + βZZYZ

N08 R−π/2
y ⊗ I +βZIXI + βIZIZ + βZZXZ

N09 R−π/2
y ⊗ R−π/2

x +βZIXI − βIZIY − βZZXY

N10 R−π/2
y ⊗ R−π/2

x +βZIXI + βIZIX + βZZXX

N11 R−π/2
y ⊗ R−π

x +βZIXI − βIZIZ − βZZXZ

N12 I ⊗ R−π/2
x +βZIZI − βIZIY − βZZZY

N13 R−π
x ⊗ R−π/2

x −βZIZI − βIZIY + βZZZY

N14 I ⊗ R−π/2
y +βZIZI + βIZIX + βZZZX

N15 R−π
x ⊗ R−π/2

y −βZIZI + βIZIX − βZZZX

APPENDIX D: TWO-QUBIT STATE TOMOGRAPHY

Full tomography of the two-qubit state is performed simi-
larly to what was done in Ref. [12], but using an overcomplete
set of 30 raw measurements. These measurements involve
applying different simultaneous rotations on the qubits, as
listed in Table I. The 15 measurements labeled Mi involve
positive rotations chosen from {I,R+π

x ,R
+π/2
x ,R

+π/2
y }. The re-

maining 15, labeledNi , involve negative rotations chosen from
{I,R−π

x ,R
−π/2
x ,R

−π/2
y }. Ensemble averages of Mi and Ni are

obtained by repeating state preparation, analysis rotation, and
measurement 600,000 times. A linear least-squares estimator
is then used to extract the Pauli set 
P discussed in the text.
Although just 15 linearly independent measurements (such as
either all Mi or all Ni) are sufficient for state tomography,
using all of these rotations and least-squares estimation
reduces the statistical and systematic error in the extraction
of 
P .

APPENDIX E: SYSTEMATIC ERRORS

To test for systematic errors we measure 
P for a collection
of states that differ only by a single-qubit rotation prior to
measurement. These errors in detection could appear as offsets
or amplitudes that exceed the ±1 range of the elements of
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FIG. 6. (Color online) Evolution of the Pauli set 
P for experi-
ments I and II given in themain text. (a) For experiment I, the left qubit
polarization rotates along the x-z plane, while the right qubit remains
fully polarized along z. (b) For experiment II, both qubit polarizations
vanish, with the only nonzero and oscillating Pauli operators being
qubit-qubit correlators (purple bars).


P . We can investigate each of the individual components of

P for experiment I [Fig. 4(a)] and experiment II [Fig. 4(b)]
described in the main text. In experiment I, 〈XI 〉, 〈ZI 〉, 〈XZ〉,
and 〈ZZ〉 oscillate with an average visibility of 97.6± 0.3%
[Fig. 6(a)].Moreover, themeasured amplitude of all the ideally
zero bars is less than 0.1. In experiment II, the dominant
oscillating components are all in 
Q [Fig. 6(b)], indicating
that the state remains entangled throughout. In this case, we
find a visibility of 91.5%± 0.3%, in good agreement with
a master equation simulation incorporating qubit relaxation
and dephasing. An oscillation amplitude of ∼0.1 is observed
in 〈XI 〉 and 〈ZI 〉, a factor ∼2 larger than expected from
theory.
There are a variety of higher order and systematic effects

that can affect the accuracy of the entanglement detection at
the few-percent level and explain the discrepancies in some
of the terms of Fig. 6(b). One possible effect is a systematic
under-rotation of both qubits by 1%. There are also higher
order couplings that are relevant at this level. The first is the
finite strength of the two-qubit ZZ entangling interaction [21]
even in the off state (ζ/2π ∼ 1.2 MHz). This residual coupling
leads to errors in some of the two-qubit correlation terms on the
order of ζ/�L(R) ∼ 2%. A second is the presence of a residual
qubit-qubit interaction [11] (J/2π ∼ 60 MHz), which can
lead to errors of order J/(ωL − ωR) ∼ 4%. Another effect
is the qubit-state-dependent filtering of the drive applied to a
qubit, which is expected to be on the order of χR(L)/(ωL(R) −
ωC) ∼ 2%. The effect of these couplings can be mitigated by
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FIG. 7. (Color online) Biasing of entanglement bounds by
maximum-likelihood estimation, showing comparison of the lower
bound Bψ− on concurrence C computed from simulated noisy raw
data with and without use of MLEs. The bound computed using
MLEs systematically underestimates the true bound (in this case,
always equal to the true concurrence C, red line), while the bound
computed directly from the simulated raw data remains faithful even
as the Werner state approaches the Bell state |�−〉 (i.e., as λ → 1).
For |�−〉, the MLE-computed bound underestimates the true bound
by 4%.

implementing appropriate composite pulse schemes [36] and
will be explored in the future.

APPENDIX F: BIASING OF METRICS
BY MAXIMUM-LIKELIHOOD ESTIMATION

Maximum-likelihood estimators (MLEs) can become bi-
ased if the true mean lies close to a boundary of the
allowed parameter space [37]. In order to quantify the
importance of this effect on the estimation of lower bounds
on concurrence C given by entanglement witnesses, we have
performed Monte Carlo simulations for nearly pure Werner
states [25],

ρW (λ) = λ|ψ−〉〈ψ−| + (1− λ)I/4,

with Werner parameter λ ∈ [0.8,1].
We have created 100 sets of simulated raw measuremens

ftor each λ by assuming Gaussian amplifier noise consistent
with the experiment. Figure 7 shows the concurrence bound
Bψ− as a function of the true C of the Werner state, obtained
with and without MLE processing of the simulated noisy data.
We find that while the mean of Bψ− estimated directly from
the raw data is unbiased, the mean of the concurrence bound
obtained with MLEs becomes increasingly biased the more
pure the Werner state becomes (i.e., the closer λ is to unity).
MLEs underestimate the bound by 1% at C = 0.85 and by 4%
at C = 1.
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