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We theoretically study single and two-qubit dynamics in the circuit QED architecture. We focus on the
current experimental design �Wallraff et al., Nature �London� 431, 162 �2004�; Schuster et al., ibid. 445, 515
�2007�� in which superconducting charge qubits are capacitively coupled to a single high-Q superconducting
coplanar resonator. In this system, logical gates are realized by driving the resonator with microwave fields.
Advantages of this architecture are that it allows for multiqubit gates between non-nearest qubits and for the
realization of gates in parallel, opening the possibility of fault-tolerant quantum computation with supercon-
duting circuits. In this paper, we focus on one- and two-qubit gates that do not require moving away from the
charge-degeneracy “sweet spot.” This is advantageous as it helps to increase the qubit dephasing time and does
not require modification of the original circuit QED. However, these gates can, in some cases, be slower than
those that do not use this constraint. Five types of two-qubit gates are discussed, these include gates based on
virtual photons, real excitation of the resonator, and a gate based on the geometric phase. We also point out the
importance of selection rules when working at the charge degeneracy point.
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I. INTRODUCTION

Superconducting circuits based on Josephson junctions
�1,2� are currently the most experimentally advanced solid-
state qubits. The quantum behavior of these circuits has been
experimentally tested at the level of a single qubit �3–7� and
of a pair of qubits �8–12�. The first quantitative experimental
study of entanglement in a pair of coupled superconducting
qubits was recently reported �13�.

In this paper, we theoretically study quantum-information
processing for superconducting charge qubits in circuit QED
�3,14–18�, focusing on two-qubit gates. In this system qubits
are coupled to a high-Q transmission line resonator which
acts as a quantum bus. Coupling of superconducting qubits
through a quantum bus has already been studied by several
authors and in different settings. In particular, coupling using
a lumped LC oscillator �19–26�, an extended one-
dimensional �1D� or 3D resonator �27–32�, a current-biased
Josephson junction acting as an anharmonic oscillator
�33–37�, or using a mechanical oscillator �38–40� were stud-
ied. Here, we focus on circuit QED with charge qubits �14�
and consider the constraints of the current experimental de-
sign �3,15–17�. As we will show, while this architecture is
simple, it allows for many different types of qubit-qubit in-
teractions. These gates have the advantage that they can be
realized between non-nearest qubits, possibly spatially sepa-
rated by several millimeters. In addition to being interesting
from a fundamental point of view, this is highly advanta-
geous in reducing the complexity of multiqubit algorithms
�41�. Moreover, it also helps in reducing the error threshold
required for reaching fault-tolerant quantum computation
�42�. Furthermore, some of the gates that will be presented
allow for parallel operations �i.e., multiple one and two-qubit
gates acting simultaneously on different pairs of qubits�. This
feature is in fact a requirement for a fault-tolerance threshold

to exist �43�, and this puts circuit QED on the path for scal-
able quantum computation.

Another aspect addressed in this paper is the “quality” of
realistic implementations of these gates. To quantify this
quality, several measures, like the fidelity, have been pro-
posed �44�. A fair evaluation and comparison of these mea-
sures for the different gates however requires extensive nu-
merical calculations including realistic sources of
imperfections and optimization of the gate parameters. In
this work, we will rather present estimates for the quality
factor �5� of the gates as obtained from analytical calcula-
tions. Initial numerical calculations have showed that, in
most situations, better results than predicted by the analytical
estimates can be obtained by optimization. The quality fac-
tors presented here should thus be viewed as lower bounds
on what can be achieved in practice.

Five types of two-qubit gates will be presented. First, we
discuss in Sec. IV gates that are based on tuning the transi-
tion frequency of the qubits in and out of resonance with the
resonator by using dc charge or flux bias. As will be dis-
cussed, this approach is advantageous because it yields the
fastest gates, whose rate is given by the resonator-qubit cou-
pling frequency. A problem with this simple approach is that
it takes the qubits out of their charge-degeneracy “sweet
spot,” which can lead to a substantial increase of their
dephasing rates �5�. Moreover, changing the qubit transition
frequency over a wide range of frequencies can be problem-
atic if the frequency sweep crosses environmental resonances
�45�.

To address these problems, we will focus in this paper on
gates that do not require dc excursions away from the sweet
spot. Requiring that there is no dc bias is a stringent con-
straint and the gates that are obtained will typically be
slower. However, the resulting gate quality factor can be
larger because of the important gain in dephasing time. The
first of these types of gates rely on virtual excitation of the
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resonator �Sec. V�. This type of approach was also discussed
in Refs. �14,29� and here we will present various mecha-
nisms to tune this type of interaction. The dispersive regime
that is the basis of the schemes relying on virtual excitations
of the resonator can also be used to create probabilistic en-
tanglement due to measurement. This is discussed in Sec. VI.
Next, we consider gates that are based on real photon popu-
lation of the resonator �Sec. VII�. For these gates, selection
rules will set some constraints on the transitions that can be
used. Finally, we discuss a gate based on the geometric phase
which was first introduced in the context of ion trap quantum
computation �46,47�.

Before moving to two-qubit gates, we begin in Sec. II
with a brief review of circuit QED and, in Sec. III, with a
discussion of single-qubit gates. A table summarizing the ex-
pected rates and quality factors for the different gates is pre-
sented in the concluding section.

II. CIRCUIT QED

A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. �14� and experimentally stud-
ied in Refs. �3,15–17�. Measurement-induced dephasing was
theoretically studied in Ref. �18�. As shown in Fig. 1, this
system consists of a superconducting charge qubit �1,48,49�
strongly coupled to a transmission line resonator �50�. Near
its resonance frequency �r, the transmission line resonator
can be modeled as a simple harmonic oscillator composed of
the parallel combination of an inductor L and a capacitor C.
Introducing the annihilation �creation� operator a�†�, the reso-
nator can then be described by the Hamiltonian

Hr = �ra
†a , �2.1�

with �r=1/�LC and where we have taken �=1. Using this
simple model, the voltage across the LC circuit �or, equiva-
lently, on the center conductor of the resonator� can be writ-
ten as VLC=Vrms

0 �a†+a�, where Vrms
0 =���r /2C is the rms

value of the voltage in the ground state. An important advan-
tage of this architecture is the extremely small separation b
�5 �m between the center conductor of the resonator and
its ground planes. This leads to a large rms value of the
electric field Erms

0 =Vrms
0 /b�0.2 V/m for typical realizations

�3,15–17�.

Multiple superconducting charge qubits can be fabricated
in the space between the center conductor and the ground
planes of the resonator. As shown in Fig. 1, we will consider
the case of two qubits fabricated at the two ends of the reso-
nator. These qubits are sufficiently far apart that the direct
qubit-qubit capacitance is negligible. Direct capacitive cou-
pling of qubits fabricated inside a resonator was discussed in
Ref. �29�. An advantage of placing the qubits at the ends of
the resonator is the finite capacitive coupling between each
qubit and the input or output port of the resonator. This can
be used to independently dc bias the qubits at their charge
degeneracy point. The size of the direct capacitance must be
chosen in such a way as to limit energy relaxation and
dephasing due to noise at the input-output ports. Some of the
noise is however still filtered by the high-Q resonator �14�.
We note, that recent design advances have also raised the
possibility of eliminating the need for dc bias altogether �17�.

In the two-state approximation, the Hamiltonian of the jth
qubit takes the form

Hqj
= −

Eelj

2
�xj

−
EJj

2
�zj

, �2.2�

where Eelj
=4ECj

�1−2ngj
� is the electrostatic energy and EJj

=EJj

maxcos��	 j /	0� is the Josephson coupling energy. Here,
ECj

=e2 /2C
j
is the charging energy with C
j

the total box
capacitance. ngj

=Cgj
Vgj

/2e is the dimensionless gate charge
with Cgj

the gate capacitance and Vgj
the gate voltage. EJj

max is
the maximum Josephson energy and 	 j the externally ap-
plied flux with 	0 the flux quantum. Throughout this paper,
the j subscript will be used to distinguish the different qubits
and their parameters.

With both qubits fabricated close to the ends of the reso-
nator �antinodes of the voltage�, the coupling to the resonator
is maximized for both qubits. This coupling is capacitive and
determined by the gate voltage Vgj

=Vgj

dc+VLC, which con-
tains both the dc contribution Vgj

dc �coming from a dc bias
applied to the input port of the resonator� and a quantum part
VLC. Following Ref. �14�, the Hamiltonian of the circuit of
Fig. 1 in the basis of the eigenstates of Hqj

takes the form

H = �ra
†a + �

j=1,2

�aj

2
�zj

− �
j=1,2

gj�� j − cj�zj
+ sj�xj

��a† + a� ,

�2.3�

where �aj
=�EJj

2 + �4ECj
�1−2ng,j��2 is the transition fre-

quency of qubit j and gj =e�Cg,j /C
,j�Vrms
0 /� is the coupling

strength of the resonator to qubit j. For simplicity of nota-
tion, we have also defined � j =1−2ng,j, cj =cos � j and sj
=sin � j, where � j =arctan�EJj

/ECj
�1−2ng,j�� is the mixing

angle �14�.
When working at the charge degeneracy point ng,j

dc =1/2,
where dephasing is minimized �5�, and neglecting fast oscil-
lating terms using the rotating-wave approximation �RWA�,
the above resonator plus qubit Hamiltonian takes the usual
Jaynes-Cummings form �77�

FIG. 1. �Color online� Layout and lumped element version of
circuit QED. Two superconducting charge qubits �green� are fabri-
cated inside the superconducting 1D transmission line resonator
�blue�.
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HJC = �ra
†a + �

j=1,2

�aj

2
�zj

− �
j=1,2

gj�a†�−j
+ �+j

a� .

�2.4�

This coherent coupling between a single qubit and the reso-
nator was investigated experimentally in Refs. �3,15–17�. In
particular, in Ref. �3� high fidelity single qubit rotations were
demonstrated.

B. Damping

Coupling to additional uncontrollable degrees of freedom
leads to energy relaxation and dephasing in the system. In
the Born-Markov approximation, this can be characterized
by a photon leakage rate � for the resonator, an energy re-
laxation rate 1,j and a pure dephasing rate �,j for each
qubit. In the presence of these processes, the state of the
qubit plus cavity system is described by a mixed state ��t�
whose evolution follows the master equation �51�

�̇ = − i�H,�� + �D�a�� + �
j=1,2

1,jD��−j
�� + �

j=1,2

�,j

2
D��zj

�� ,

�2.5�

where D�L̂��= �2L�L†−L†L�−�L†L� /2 describes the effect
of the baths on the system.

C. Typical system parameters

In this section, we give realistic system parameters. The
resonator frequency �r /2� will be assumed to be between 5
and 10 GHz. The qubit transition frequencies can be chosen
anywhere between about 5 to 15 GHz, and are tunable by
applying a flux though the qubit loop. In the schematic cir-
cuit of Fig. 1, both qubits are affected by the externally ap-
plied field, but the effect on each qubit will depend on the
qubit’s loop area. Coupling strengths g /2� between 5.8 and
100 MHz have been realized experimentally �15,17� and
couplings up to 200 MHz should be feasible.

Rabi frequencies of 50 MHz where obtained with a
sample of moderate coupling strength g /2�=17 MHz �3�
and an improvement by at least a factor of 2 is realistic.

The cavity damping rate � is chosen at fabrication time by
tuning the coupling capacitance between the resonator center
line and it’s input and output ports. Quality factors up to Q
�106 have been reported for undercoupled resonators
�50,52�, corresponding to a low damping rate � /2�
=�r /2�Q�5 KHz for a �r /2�=5 GHz resonator. This re-
sults in a long photon lifetime 1/� of 31 �s. To allow for
fast measurement, the coupled quality factor can also be re-
duced by two or more orders of magnitude.

Relaxation and dephasing of a qubit in one realization of
this system were measured in Ref. �3�. There, T1=7.3 �s and
T2=500 ns were reported. These translate to 1 /2�
=0.02 MHz and � /2�= �2−1 /2� /2�=0.31 MHz.

III. 1-QUBIT GATES

Single qubit gates are realized by pulses of microwaves
on the input port of the resonator. Depending on the fre-

quency, phase, and amplitude of the drive, different logical
operations can be realized. External driving of the resonator
can be described by the Hamiltonian

HD = �
k

��k�t�a†e−i�dk
t + �k

*�t�ae+i�dk
t� , �3.1�

where �k�t� is the amplitude and �dk
the frequency of the kth

external drive. Throughout this paper, the k subscript will be
used to distinguish between the different drives and the
drive-dependent parameters.

For simplicity of notation, we first consider the situation
where there is a single qubit and drive present. We will also
assume that the qubit is biased at its optimal point and use
the RWA. The Hamiltonian describing this situation is H
=HJC+HD with j=k=1.

Logical gates are realized with microwaves pulses that are
substantially detuned from the resonator frequency. With a
high-Q resonator, this means that a large fraction of the pho-
tons will be reflected at the input port. To get useful gate
rates, we thus work with large amplitude driving fields. In
this situation, quantum fluctuations in the drive are very
small with respect to the drive amplitude and the drive can
be considered, for all practical purposes, as a classical field.
In this case, it is convenient to displace the field operators
using the time-dependent displacement operator �53�

D��� = exp��a† − �*a� . �3.2�

Under this transformation, the field a goes to a+� where �
is a c number representing the classical part of the field.

The displaced Hamiltonian reads

H̃ = D†���HD��� − iD†���Ḋ���

= �ra
†a +

�a

2
�z − g�a†�− + �+a�

− g��*�− + ��+� , �3.3�

where we have chosen ��t� to satisfy

�̇ = − i�r� − i��t�e−i�dt. �3.4�

This choice of � is made so as to eliminate the direct drive
on the resonator Eq. �3.1� from the effective Hamiltonian.

In the case where the drive amplitude � is independent of
time, and by moving to a frame rotating at the frequency �d
for both the qubit and the field operators, we get

H̃ = �ra
†a +

�a

2
�z − g�a†�− + �+a� +

�R

2
�x, �3.5�

where we have dropped any transient in ��t�. In the above
expression, we have defined �r=�r−�d which is the detun-
ing of the cavity from the drive, �a=�a−�d the detuning of
the qubit transition frequency from the drive and �R is the
Rabi frequency:

�R = 2
�g

�r
. �3.6�

In the limit where �r is large compared with the resonator
half-width � /2, the average photon number in the resonator
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can be written as n̄	�� /�r�2. In this case, the Rabi fre-
quency takes the simple form �R	2g�n̄ expected from the
Jaynes-Cummings model.

We note that the effect of damping can be taken into ac-
count by performing the transformation �3.2� on the master
equation �2.5� rather than on Schrödinger’s equation. For
completeness, this is done in Appendix A. Since in this paper
we are interested in the qubit dynamics under coherent con-
trol rather than measurement, we will be working in the re-
gime where �r�� and as such can safely ignore the effect of
� on �R. For a detailed discussion of measurement in this
system, see Ref. �18�.

A. On-resonance: Bit-flip gate

For quantum information processing, it is more advanta-
geous to work in the dispersive regime where �=�a−�r is
much bigger than the coupling g. One advantage of this re-
gime is that the pulses aimed at controlling the qubit are far
detuned from the resonator frequency and are thus not lim-
ited in speed by its high quality factor. Another advantage is
that the high quality resonator filters noise at the far detuned
qubit transition frequency and effectively enhances the qubit
lifetime �14�.

To take into account that we are working in this dispersive
regime, we eliminate the direct qubit-resonator coupling by
using the transformation

U = exp
 g

�
�a†�− − a�+�� . �3.7�

Using the Hausdorff expansion to second order in the small
parameter �=g /�

e−�XHe�X = H + ��H,X� +
�2

2!
��H,X�,X� + ¯ , �3.8�

with X= �a†�−−a�+�, yields �14�

Hx 	 �ra
†a +

1

2
��a + 2�
a†a +

1

2
��z +

�R

2
�x

	 �ra
†a +

�̃a

2
�z +

�R

2
�x, �3.9�

where we have defined �=g2 /� and �̃a= �̃a−�d with �̃a
=�a+�. Since the resonator is driven far from the frequency
band �r±� where cavity population can be large, we have
that �a†a��0 �this is because we are working in a displaced
frame with respect to the resonator field�. As a result, we
have therefore dropped the ac-Stark shift in the second line
of the above expression. We also drop a term of the form
�a†+a��z �see Appendix B�.

By choosing �̃a=0, the above Hamiltonian generates ro-
tations around the x axis at a rate �R. These Rabi oscillations
have already been observed experimentally in circuit QED

with close to unit visibility �3�. Changing �̃a, �R and the
phase of the drive can be used to rotate the qubit around any
axis on the Bloch sphere �54�.

In the situation where many qubits are fabricated in the
resonator and have different transition frequencies, the qubits

can be individually addressed by tuning the frequency of the
drive accordingly. It should therefore be possible to individu-
ally control several qubits in the circuit QED architecture.

B. Off-resonance: Phase gate

It is useful to consider the situation where the drive is
sufficiently detuned from the qubit that it cannot induce tran-
sitions, but is of large enough amplitude to significantly ac-
Stark shift the qubit transition frequency due to virtual tran-
sitions. To obtain an effective Hamiltonian describing this
situation, we start by adiabatically eliminating the effect of
direct transitions of the qubit due to the drive. This is done
by using on Eq. �3.5� the transformation

U = exp��*�+ − ��−� �3.10�

to second order in the small parameter �=�R /2�a. In a sec-
ond step, we again take into account the fact that the qubit is
only dispersively coupled to the resonator by using the trans-
formation of Eq. �3.7� to second order. These two sequential
transformation yield

Hz 	 �ra
†a +

1

2
��̃a +

1

2

�R
2

�a
�z. �3.11�

The last term in the parenthesis is an off-resonant ac-Stark
shift caused by virtual transitions of the qubit. This shift can
be used to realize controlled rotation of the qubit about the z
axis. The rate of this gate can be written in terms of the
average photon number n̄ inside the resonator as �2g�n̄
� ��R /2�a�. To get fast rotations, one must therefore choose
large values of the coupling constant g and large n̄ while
keeping the ratio �R /2�a small to prevent real transitions.

Finally, it is important to point out that in the situation
where multiple qubits are present inside the resonator, each
qubit will suffer a frequency shift when other qubits are
driven. These frequency shifts will have to be taken into
account or canceled by additional drives.

C. Coherent control vs measurement

As mentioned above, in the dispersive regime, driving the
cavity close to its resonance frequency leads to a measure-
ment of the qubits. As discussed in Refs. �14,18�, this is due
to entanglement of the qubit with the resonator field gener-
ated by the term �a†a�z of Eq. �3.9�. Indeed, because of this
term, the resonator frequency is pulled to �r±� depending
on the state of the qubit. The possible resonator transmis-
sions, corresponding to the qubit in the ground �blue� or
excited �red� state, are shown �dashed lines� along with the
corresponding phase shifts �full lines� in Fig. 2.

As is seen from this figure, only around �r±� is there
significant phase shift and/or resonator transmission change
for the information rate about the qubit’s state to be large at
the resonator output �18�. In other words, only around these
frequencies is entanglement between the resonator and the
qubit significant. However, when coherently controlling the
qubit using the flip and phase gates discussed above, the
resonator is irradiated far from �r±�. As shown in Fig. 2,
since we are working in the dispersive regime where
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�� � �g, there is no significant phase difference in the reso-
nator output between the two states of the qubit at these very
detuned frequencies. As a result, there is no significant un-
wanted entanglement with the resonator when coherently
controlling the qubit.

An additional benefit of working at these largely detuned
irradiation frequencies is that the resonator is only virtually
populated and the speed of the gates is not limited by the
high Q of the resonator. These two aspects lead to high qual-
ity single qubit gates �3�.

The above discussion can be made more quantitative by
introducing the rate �m of dephasing induced by the control
drive �corresponding to measurement-induced dephasing�
�18�:

�m =
��2�n̄+ + n̄−�

��/2�2 + �r
2 + �2 , �3.12�

where

n̄± =
�2

��/2�2 + ��r ± ���2
, �3.13�

is the steady-state average photon number inside the resona-
tor for a qubit in the ground �−� or excited �+� state. In
practice, this rate will always be much smaller than the in-
trinsic dephasing rate 1 /T2 of the qubit. For example, for the
bit-flip gate, a Rabi rate of �R /2�=100 MHz with g /2�
=100 MHz and g /�=0.1 yields a measurement-induced
dephasing time 1/�m of the order of a few milliseconds.
Clearly, this is not a limitation in practice. This is illustrated
for the phase gate in Fig. 3 where the quality factor

Q� =
�R

2/2�a

2��
�3.14�

is plotted as a function of the detuning of the drive with
respect to the qubit transition frequency. In this figure, the
full blue line is the quality factor �Qm� calculated using the
measurement-induced dephasing rate �m and the dashed red
line the quality factor �QT� using the total rate �T=2+�m

assuming a dephasing time 1/2 of 500 ns.

For the phase gate, a dephasing time of 1/2=500 ns with
a rate of �R

2 /4��a=40 MHz at a detuning ��a−�d� /2�
=2000 MHz yields a quality factor of �60. For the bit-flip
gate, a Rabi rate of 100 MHz yields a quality factor of �157.

D. ac-dither: Phase gate

Another approach to produce a single-qubit phase gate is
to take advantage of the quadratic dependence of the qubit
transition frequency on the gate voltage �or flux� to shift the
qubit transition frequency. This can be done by modulation
of these control parameters at a frequency that is adiabatic
with respect to the qubit transition frequency.

Focusing on the single qubit Hamiltonian �2.2�, we take
ng�t�=ng

dc+nd�t�, where nd�t�=ng
acsin��act� is a modulation of

the gate voltage that is slow compared to the qubit transition
frequency. In this situation, it is useful to move to the adia-
batic basis. The relation between the original �� j� and adia-
batic ��̃ j� basis Pauli operators is given by

�z = cos ��t��̃z − sin ��t��̃x,

�x = sin ��t��̃z + cos ��t��̃x, �3.15�

where ��t�=arctan�Eel�t� /Ej�. In this basis, the qubit Hamil-
tonian reads

H̄ = −
�a

ad�t�
2

�̃z, �3.16�

with �a
ad�t�=�EJ

2+ �4EC�1−2ng
dc−2nd�t���2 the instantaneous

splitting. Because of the quadratic dependence with gate
charge, the average part of the qubit splitting is larger than its
bare value. For example, setting ng=1/2 and assuming small
dither amplitude, we obtain

ωωr - χ ωr + χ

T
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FIG. 2. �Color online� Resonator transmission �dashed lines�
and corresponding phase shifts �full lines� for the two qubit states
�blue: ground; red: excited�. The numbers are calculated using
g /2��100 MHz and g /��0.1. At the far detuned frequencies re-
quired for single qubit gates, the phase shift of the resonator field
does not depend on the qubit state. In this case, there is negligible
entanglement between the resonator and the qubit.
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FIG. 3. �Color online� Quality factor of the phase gate, with
respect to the measurement-induced dephasing rate �m �blue, full
line� and with respect to 2+�m �red, dashed line� where 1/2

=500 ns. This is plotted vs the detuning between the control drive
and the qubit transition frequency. The amplitude � of the drive is
chosen such that �R /2�a=0.1 for all values of the detuning. The
other parameters are g /2�=100 MHz, g /�=0.1, and � /2�
=0.5 MHz. The discontinuity in �m around ��a−�� /2�=�
=1000 MHz is due to the fact that, at frequency, the drive is on
resonance with the resonator and therefore corresponds to a mea-
surement. This is not a region where a phase gate would be
operated.
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�a
ad 	 EJ + 16

EC
2

EJ
�ng

ac�2 �3.17�

which should be compared to the bare value EJ. Here, we
have dropped terms rotating at 2�ac and higher order in the
dither amplitude. Voltage ac-dither can therefore be used to
blueshift the qubit transition frequency �flux dither around
the flux sweet would cause a redshift�. As will be discussed
below, this can also be used to couple qubits when the dither
frequency is larger than the coupling strength �but still slow
with respect to the qubit transition frequency�.

Because ac-dither acts as a continuous spin echo �55�, it
can be realized with minimal dephasing of the qubit. It there-
fore appears to be more advantageous than dc bias of the
control parameters. For example, if the qubit is dc-biased
�ng away from the charge degeneracy point, ng

dc=1/2+�ng,
noise �ng�t� in the bias will cause dephasing due to fluctua-
tions ���a /�ng��ng�t� in the qubit transition frequency. As
illustrated in Fig. 4, if the dc-offset �ng is small compared to
the dither amplitude ng

ac, then under dither both signs of
��a /�ng will be probed leading to �partial� cancellation of
the unwanted fluctuating phase.

This cancellation can be seen more explicitly by assuming
small excursions away from the charge degeneracy point
such that ��t�	−���ng+ng

acsin�act�, where we have defined
��8EC /EJ. Assuming that the qubit is not too deep in the
charge regime such that �ng

ac is small, we expand to first
order in �ng and ng

ac to obtain

H̄ 	 −
�a

ad�t�
2

�̃z + 4EC�ng�t��− ��ngJ0��ng
ac�

− 2J1��ng
ac�sin �act��̃z + 4EC�ng�t��J0��ng

ac�

− 2��ngJ1��ng
ac�sin �act��̃x, �3.18�

where the Jn�z� are Bessel functions of the first kind. In this
expression, we have dropped higher order Bessel functions
and have added the gate charge noise �ng�t� to ng�t�.

The second term in Eq. �3.18�, proportional to �̃z, leads to
pure dephasing T� while the last term leads to mixing of the
qubit. Focusing on pure dephasing, we obtain from the
golden rule

1

T�
	

1

2
�64EC

2

EJ
2

���ng
2S�ng

�0� +
�ng

ac�2

4
�S�ng

�− �ac� + S�ng
�+ �ac��� ,

�3.19�

where S�ng
��ac� is the spectral density of the charge noise.

For both the dc and ac bias, the dephasing rate 1 /T� in-
creases linearly with the amplitude of the shift of the transi-
tion. However, blueshifting of the qubit using ac-dither ng

ac

produces less dephasing than using the static bias �ng pro-
vided that the dither frequency is much higher than the char-
acteristic frequency of the noise so that

S�ng
�±�ac� � S�ng

�0� . �3.20�

This approach should therefore efficiently protect the qubit
from low frequency �i.e., 1 / f� noise. Assuming �ng=0 and
using Eq. �3.17�, the quality factor of this gate can be esti-
mated as Q��EJ /64EC

2 �2 / �S�ng
�−�ac�+S�ng

�+�ac��. This
type of stabilization of logical gate by ac-fields was also
studied in Ref. �56�.

IV. DIRECT COUPLING BY VARIABLE DETUNING

In the layout of Fig. 1, qubit-qubit interaction must be
mediated by the resonator. It is therefore reasonable to expect
that the limiting rate on two-qubit gates be the coupling
strength g. Gates at this rate can be implemented by taking
the qubits in and out of resonance with the resonator fre-
quency. When a qubit is far off resonance, it only disper-
sively couples to the resonator through the coupling �a†a�z,
where �=g2 /�. This interaction can be made small by work-
ing at large detunings �. In this situation there is no signifi-
cant qubit-resonator interaction. The interaction is turned on
by tuning the qubit transition frequency back in resonance
with the resonator. In this case, vacuum Rabi flopping at the
frequency 2g will entangle the qubit and the resonator. It is
know from ion-trap quantum computing �57,58�, and is fur-
ther discussed in Sec. VII D, how to use this type of interac-
tion to mediate qubit-qubit entanglement.

Tuning of the qubit transition frequency could be realized
by applying flux pulses through the individual qubit loop.
This would require adding flux lines in proximity to the qu-
bits. Voltage bias using individual bias lines could also be
used, but this likely introduce more noise than flux bias.
Moreover, in both cases, this will take the qubits away from
their sweet spot, possibly increasing their dephasing rates
�5�. Alternatively, Wallquist et al. have suggested that a simi-
lar tuning of � can be realized by fabricating a resonator
whose frequency is itself tunable �27�. While this is a prom-
ising idea, one drawback is that any noise in the parameter
controlling the resonator frequency will lead to dephasing of
photon superpositions, lowering the expected gate quality.

0
gate voltage, ng
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FIG. 4. �Color online� Refocusing due to ac-dither. The qubit
energy splitting is shown as a function of gate charge. ac-dither acts
as refocusing by sampling the positive and negative dependence of
�a

ad�t� with ng.
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In addition to dc-bias, it is possible to use any of the rf
approaches discussed in the previous section to tune the qu-
bit transition frequency. Moreover, the FLICFORQ protocol
�59�, discussed in the next section and in Appendix C could
also be used. As shown in Appendix C, this would yield
qubit-resonator coupling at the rate g /2. However, for these
approaches to be useful here, very large rf amplitudes would
be required to cover the large range of frequency needed to
turn on and off the qubit-resonator interaction. This is espe-
cially true in the presence of many qubits fabricated in the
same resonator. A FLICFORQ-type protocol �59� was also
suggested for flux qubits coupled to a LC oscillator in Ref.
�19�. In this case, the authors considered quantum computa-
tion in the basis of the qubit dressed by a rf-drive directly
applied directly to the flux qubit.

In summary, this type of gate relying on tuning of the
qubit or resonator frequency is advantageous because it op-
erates at the optimal rate g. However, it requires either addi-
tional bias lines and extra dephasing or large amplitude rf-
pulses. In the next sections, we will focus on gates that do
not require additional tuning but only rely on rf-drive of the
resonator of more moderate amplitudes. While these gates
will be typically slower than the gates discussed here, they
can be implemented without modification of the original cir-
cuit QED design and do not suffer from the above problems.
Gates relying on direct tuning of the qubit transition fre-
quency will be further discussed elsewhere.

V. 2-QUBIT GATES: VIRTUAL QUBIT-QUBIT
INTERACTION

In this section, we expand the discussions of Ref. �14� on
two-qubit gates using virtual excitations of the resonator. To
minimize dephasing, we will work with both qubits at charge
degeneracy ��ng=0�. In the rotating wave approximation,
the starting point is therefore Eq. �2.4�. To avoid excitation of
the resonator, we assume that both qubits are strongly de-
tuned from the resonator �� j � = ��aj

−�r � �gj. In this situa-
tion, we adiabatically eliminate the resonant Jaynes-
Cummings interaction using the transformation

U = exp
 g1

�1
�a†�−1

− a�+1
� +

g2

�2
�a†�−2

− a�+2
�� .

�5.1�

To second order in the small parameters gj /� j, this yields
�14,60–62�

H2q 	 �ra
†a + �

j=1,2

�̃aj

2
�zj

+
g1g2��1 + �2�

2�1�2

���+1
�−2

+ �−1
�+2

� , �5.2�

where, as in Sec. III A, we have assumed that the cavity is in
the vacuum state and have taken �̃aj

=�aj
+� j. It is simple to

generalize the above expression for an arbitrary number of
qubits coupled to the same mode of the resonator. The last
term in the above Hamiltonian describes swap of the qubit
states through virtual interaction with the resonator. Evolu-

tion under this Hamiltonian for a time t=��1�2 /2g1g2��1

+�2� will generate a �iSWAP gate �14�. This gate, along
with the single qubit gates discussed in Sec. III, form a uni-
versal set for quantum computation �63�.

In the situation where the qubits are strongly detuned
from each other, energy conservation suppresses this flip-flop
interaction. This is most easily seen by going to a frame
rotating at �̃aj

for each qubit. In this frame, when the qubits
are strongly detuned, the interaction term is oscillating rap-
idly and averages out. In this situation, the effective qubit-
qubit interaction is for all practical purposes turned off. On
the other hand, for �̃a1

= �̃a2
, the interaction term does not

average and the interaction is effective.
To turn on and off this virtual interaction, it is necessary

to change the detuning between the qubits. There are several
ways to do this in the circuit QED architecture. One possible
approach is to directly change the transition frequency of the
qubits using, as described in Sec. II, using flux or voltage as
control parameters. However, as can be seen from Eq. �3.19�,
moving the gate charge away from the sweet spot will rap-
idly increase the dephasing rate �5,64�.

A. Off-resonant ac-Stark shift

The off-resonant ac-Stark shift discussed in Sec. III B
provides another way to tune the qubits in and out of reso-
nance. In this situation, one must generalize the Hamiltonian
of Eq. �5.2� to include off-resonant microwave fields. This is
done in Appendix B in the presence of three independent
fields and two qubits. Two of the fields, of amplitudes �1 and
�2, are used to coherently control the state of the qubits while
the third, of amplitude �3, is used to readout the state of the
qubits.

In this section, it is sufficient to take into account a single
drive �1, assumed to be strongly detuned from any reso-
nances. The resulting effective Hamiltonian �fifth term of Eq.
�B10�� contains the swap term already obtained in the ab-
sence of coherent drive in Eq. �5.2�. The effect of the drive is
to shift the qubit transition to

�aj
� = �aj

+
�Rj

2

2�aj

+ 2
gj

2

� j�
��a†a� +

1

2
 , �5.3�

where � j�=�aj
+�Rj

2 /2�aj
−�r is the shifted detuning also en-

tering in the renormalized swap rate.
The strategy is then to chose �a1

��a2
such that the swap

gate is effectively turned off in the idle state. The interaction
is turned on by choosing a drive amplitude and frequency
such that �a1

� =�a2
� . This condition can be satisfied with a

single drive provided that g1�g2. A master equation simula-
tion of this off-resonant ac-Stark tuning is illustrated in
Fig. 5.

B. ac-dither

In the same way as the off-resonant ac-Stark shift, ac-
dither discussed in Sec. III D can be used to effectively tune
on resonance a pair of qubits �ac-dither being a low fre-
quency version of the off-resonant ac-Stark shift�. In this
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situation, the dither frequency must be faster than the swap
rate between the qubit but still adiabatic with respect to the
qubit transition frequencies. Moreover, similarly to the off-
resonant ac-Stark shift, both qubits will be blueshifted by the
ac-dither. The qubits can nevertheless be tuned in resonance
by taking advantage of their different direct capacitance to
the input or output ports �as discussed in Sec. II A� and by
using different EC /EJ ratios.

C. FLICFORQ

Another approach to tune off-resonant qubits is to use the
so-called FLICFORQ protocol �fixed linear couplings be-
tween fixed off-resonant qubits� �59�. In this protocol, one is
interested in tuning the effective interaction between a pair
of qubits that are interacting through a fixed linear coupling.
The coupling is assumed to be off-diagonal in the computa-
tional basis such that when the qubits are detuned, the cou-
pling is only a small perturbation and can be safely ne-
glected. The interaction is effectively turned on by irradiating
each qubit at its respective transition frequency and choosing
the amplitude of the drives such that one of the Rabi side-
bands for one qubit is resonant with a Rabi sideband of the
other qubit. In this situation, the effective coupling becomes
first order in the bare coupling.

In circuit QED, FLICFORQ can be used in the dispersive
regime to couple a qubit to the resonator or to couple a pair
of qubits together. As shown in Appendix C, the resonance
condition for the first case is �=−�R and this leads to the
effective qubit-resonator coupling �g /2��a†�−+a�+�, at the
charge degeneracy point and in the RWA. The interaction is
first order in the coupling g, but of reduced strength.

Similarly, two qubits that are dispersively coupled to the
resonator and detuned from each other can be coupled using
FLICFORQ. For simplicity, we again work at the charge
degeneracy point for both qubits and use the rotating wave
approximation on the qubit-resonator couplings. To turn on
the interaction, two coherent drives of frequency �dj

	�aj
are used. Since the qubits are irradiated at their transition
frequency, the results of Appendix B cannot be used directly.
The corresponding effective Hamiltonian is derived in Ap-
pendix D. At one of the possible sideband matching condi-
tions and in a quadruply rotating frame �see Appendix D�,
the resulting effective Hamiltonian is

HFF 	 �ra
†a +

g1g2��1� + �2��
16�1��2�

��y1
�y2

+ �z1
�z2

� , �5.4�

where � j�=�aj
� −�r with

�a1�2�
� = �a1�2�

+ 2
�R12�21�

2

�a12�21�

. �5.5�

the shifted qubit frequency. In this expression, we have in-
troduced �Rjk

=2gj�k / ��r−�dk
�, the Rabi frequency of qubit

j with respect to drive k and �ajk
=�aj

−�dk
. This effective

qubit-qubit coupling is sufficient, along with single qubit
gates, for universal quantum computation. Moreover, as ex-
pected from Ref. �59�, in the FLICFORQ protocol, the qubit-
qubit coupling strength is reduced by a factor of 8 with re-
spect to the bare coupling strength.

D. Fast entanglement at small detunings

The rates for the two-qubit gates described above are pro-
portional to g� �g /��, where g /� must be small for the
dispersive approximation to be valid. An advantage of the
dispersive regime is that the resonator is only virtually popu-
lated and therefore photon loss is not a limiting factor. The
drawback is that unless g is large, dispersive gates can be
slow.

It is interesting to see whether this rate can be increased
by working at smaller detunings. In this situation, residual
entanglement with the resonator can lead to reduced fideli-
ties. As an example, we take for simplicity g1=g2=g and
�a1

=�a2
=�a. Choosing

� =
2�2g

�4m2 − 1
, �5.6�

where m�1 is an integer, one can easily verify that starting
from �ge0� or �eg0� at t=0, the qubits are in a maximally
entangled state and the resonator in the state �0� after a time

T =
�

�
. �5.7�

Two-qubit entanglement can therefore be realized in a time
�1/g and with a small detuning ��g, without suffering
from spurious resonator entanglement when starting from
�ge0� or �eg0�.

It is also simple to verify that �gg0� only picks up a phase
factor after time T. However, starting from �ee0� leads to
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FIG. 5. �Color online� Master equation simulation of the excited
state population of qubit one �blue, starting at the bottom� and qubit
two �red, starting at the top� as a function of time. Full lines: No
relaxation and dephasing. Dashed lines: Finite relaxation and
dephasing. The qubits are initially detuned from each other with no
drive applied. A drive, bringing the shifted qubit transition frequen-
cies in resonance, is applied at the time indicated by the vertical
dashed line. At this time, the two-qubit state start to swap. The
parameters are g1 /2�=80 MHz, g2 /2�=120 MHz, �r /2�
=5 GHz, �a1

/2�=7.1 GHz, �a2
/2�=7.0 GHz, and �d1

/2�
=5200.14 MHz. For the dashed lines, cavity decay was taken as
� /2�=0.22 MHz and the qubit decay rates were taken to be iden-
tical and equal to 1 /2�=0.02 MHz and � /2�=0.31 MHz.
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leakage to �gg2� at time T and therefore to unwanted en-
tanglement with the resonator. As a result, while the simple
procedure described here is not an universal 2-qubit primi-
tive for quantum computation, it can nevertheless lead to
qubit-qubit entanglement at a rate which is close to the cav-
ity coupling rate g. We will describe in Sec. VII D an ap-
proach based on Ref. �58� to prevent this type of spurious
resonator-qubit entanglement.

Since the cavity is populated by real rather than virtual
photons during this procedure, it is important to estimate
photon loss. Starting from �ge0� or �eg0�, the maximum pho-
ton number in the cavity is given by nmax= �4m2−1� /8m2.
The worst case scenario for the rate of photon loss is then
�=nmax�. The gate quality factor, considering only photon
loss, is therefore Q�2�T−1 /�=32�2gm2 / ���4m2−1�3/2�.
For g /2�=200 MHz, � /2�=1 MHz, and m=1, this yields a
large quality factor of Q�1700.

E. Summary

The gates discussed in this section �apart from Sec. V D�
rely on virtual population of the resonator. A disadvantage of
these gates is that they will typically be slow. All of them
roughly go as g� �g /�� where g /� is a small parameter.
Taking g /��0.1 and g /2�=200 MHz, we see that the rates
of these gates will realistically not exceed 20 MHz. Although
not very large, this rate nevertheless exceeds substantially
the typical decay rates 1, �, and � of circuit QED �3,15,16�
and should be sufficiently large for the experimental realiza-
tion of these ideas. An advantage of these virtual gates is
however that, since the resonator field is only virtually popu-
lated, the gates do not suffer from photon loss. As a result,
these gates could still be realized with a resonator of moder-
ate Q factor �which is advantageous for fast measurement
�3��.

It is also interesting to point out that, in the situation
where there are more than two qubits fabricated in the reso-
nator, the same approach can be used to entangle simulta-
neously two or more pairs of qubits. This is done, for ex-
ample, by taking �a1

=�a2
��a3

=�a4
while still in the

dispersive regime. It is simple to verify that this corresponds
to two entangling gates acting in parallel on the two pairs of
qubits. This type of classical parallelism is an important re-
quirement for a fault-tolerant threshold to exist �43�.

Finally, we point out that the dispersive coupling can also
be used to couple n�2 qubits simultaneously. This is done
by tuning the n qubits in resonance with each other but all
still in the dispersive regime. This leads to multiqubit en-
tanglement in a single step.

VI. CONDITIONAL ENTANGLEMENT
BY MEASUREMENT

As discussed in Sec. III C and in more detail in Refs.
�3,14–16,18�, measurement can be realized in this system by
taking advantage of the qubit-state dependent resonator fre-
quency pull. In the presence of a single qubit, the resonator
pull is ��z and becomes � j

n� j�zj
in the n-qubit case. If the

pulls � j are different for all j’s and large enough with respect

to the resonator linewidth �, each of the different n-qubit
states ��ggg . . .g� , �egg . . .g� , �gegg . . .g� , . . . , �eee . . .e�� pulls
the cavity frequency by a different amount. In this situation,
it should be possible to realize single shot QND measure-
ments of the n-qubit state. In a test of Bell inequalities, this
multiqubit readout capability would offer a powerful advan-
tage over separate measurement of each qubit. Indeed, in the
latter case the effective readout fidelity would be the product
of the individual readout fidelities.

The situation is also interesting in the case where the pulls
� are equal. For example, in the two qubit case, when �1
=�2=� �and taking �a1

=�a2
=�a for simplicity�, the disper-

sive Hamiltonian of Eq. �5.2� can be written as

H2q 	 ��r + ���z1
+ �z2

��a†a

+ �
j=1,2

1

2
��a + ���zj

+ ���+1
�−2

+ �−1
�+2

� . �6.1�

While this Hamiltonian is not QND for measurement of �zj
,

it is QND for measurement of ��z1
+�z2

� since ���z1
+�z2

� ,H2q�=0.
More interestingly, in this situation, the states ��ge� , �eg��

while they may have different Lamb shifts have the same
cavity pull. This implies that they cannot be distinguished by
this measurement. The consequence of this observation can
be made more explicit by rewriting Eq. �6.1� as

H2q = �ra
†a + ����+��+�− ��−���−��

+
1

2

�a + 2��a†a +

1

2
���ee��ee�− �gg��gg�� ,

�6.2�

where ��±�= ��ge�± �eg�� /�2 are Bell states. As a result, the
projection operators corresponding to measurement of the
cavity pull are �g= �gg��gg�, �e= �ee��ee� and �Bell

= ��+���+ � + ��−���−�, with �k=g,e,Bell�k=1.
An initial state ��i� will thus, with probability

��i ��Bell ��i�, collapse to a state of the form �� f�=c+ ��+�
+c− ��−�. Since the Bell states ��±� are eigenstates of H2q,
further evolution will keep the projected state in this sub-
space. For certain unentangled initial states �e.g., ��g�+ �e��
� ��g�+ �e�� /2, which is created by � /2 pulses on each qu-
bit�, the state after measurement will be a maximally en-
tangled state. As a result, conditioned on the measurement of
zero cavity pull, Bell states can be prepared. This type of
entanglement by measurement for solid-state qubits was also
discussed by Ruskov and Korotkov �65�. We also point out
that entanglement by measurement and feedback was studied
in Ref. �66�.

VII. 2-QUBIT GATES: QUBIT-QUBIT INTERACTION
MEDIATED BY RESONATOR EXCITATIONS

In this section, we consider gates that actively use the
resonator as a means to transfer information between the
qubits and to entangle them. More precisely, we will take
advantage of the so-called red and blue sideband transitions.
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We first start by a very brief overview of ion-trap quantum
computing to show the similarities and differences with cir-
cuit QED and then present various protocols adapted to cir-
cuit QED. We discuss the realization of quantum gates based
on these sideband transitions in Sec. VII D.

A. Ion-trap quantum computation

Sideband transitions are used very successfully in ion-trap
quantum computation �67,68�. This approach to ion-trap
quantum computing was first discussed by Cirac and Zoller
�57� and, more recently, was adapted to two-level atoms by
Childs and Chuang �58�. Following closely Ref. �58� the
Hamiltonian describing a trapped ion is

H = �ra
†a +

�a

2
�z − � cos� �a† + a� − �t��x, �7.1�

where �r is the frequency of the relevant mode of oscillation
of the ion in the trap, � is the laser frequency,  
=�k2 /2Nm�r is the Lamb-Dicke parameter, and � is the am-
plitude of the magnetic field produced by the driving laser
�58�. Assuming  �1 and choosing the laser frequency �
=�a+n�r, the only part of the interaction term that is not
rapidly oscillating and thus does not average out is

Hn-blue 	
� n

2n!
�a†n�+ + an�−� . �7.2�

For �=�a−n�r, we get

Hn-red 	
� n

2n!
�a†n�− + an�+� . �7.3�

These correspond to blue and red n-phonon sideband transi-
tions, respectively. It is known that these transitions, along
with single qubit gates, are universal for quantum computa-
tion on a chain of ions �58�.

We first note that the rate of the sideband transitions
scales with � which itself depends on the �variable� laser
amplitude. In circuit QED, we will see that the �fixed� qubit-
resonator coupling g takes the role of the parameter �. More-
over, while the Hamiltonian �7.1� allows for all orders of
sideband transitions, we will see that when working at the
charge degeneracy point, the symmetry of the circuit QED
Hamiltonian only allows sideband transitions of even orders.
Finally, it is interesting to point out that the Hamiltonian
�7.1� also describes a superconducting qubit magnetically
coupled to a resonator. In that situation, the qubit would be
fabricated at an antinode of current in the resonator. The
zero-point fluctuations of the current generate a field that
couples to the qubit loop. For example, a superconducting
charge qubit magnetically coupled to the transmission line
resonator would have in its Hamiltonian a term of the form

� cos� �a†+a�+ �̄��x, where �=EJ and  =�MIrms
0 /	0 with

M the mutual inductance between the center line of the trans-
mission line, Irms

0 the rms value of the vacuum fluctuation
current on the center line in the ground state �28,69�, 	0 the

superconducting flux quantum, and �̄ controlled by the dc
flux bias.

An important difference between trapped ions and the su-
perconducting flux qubit analog is that in the first case �
scales with the laser amplitude while, in the second case, it is
equal to the Josephson energy. The latter can only be so large
in practice and is difficult to tune rapidly. Finally, we point
out that solid-state qubits, in contrast to ions, have a natural
spread in transition frequencies. This allows us to address the
qubits individually with global pulses, without requiring in-
dividual bias lines to tune them.

B. Sideband transitions in circuit QED

Our starting point to study sideband transitions in circuit
QED is the two-qubit Hamiltonian of Eq. �2.3�. Here, we
keep the gate charge dependence and do not initially make
the rotating wave approximation. The effective Hamiltonian
describing the sideband transitions in circuit QED is ob-
tained in Appendix B. As discussed above, in Appendix B we
consider the presence of two qubits and three coherent
drives. Two of these drives, of frequency �d1,2

and amplitude
�1,2, are used to drive the sideband transitions. The third
drive, of frequency �d3

and amplitude �3, is used to measure
the state of the system. For simplicity of notation, in this
section we focus on a single qubit coupled to the resonator
and drop the j index.

The red and blue sideband transitions, illustrated in Fig. 6,
are given by the last two lines of Eq. �B10�. These corre-
spond to single and two-photon sideband transitions, respec-
tively. Higher order transitions are neglected due to their
small amplitudes. We rewrite these terms here in a more
explicit form. This is done by going to a frame rotating at �r
for the resonator and at the shifted frequency �aj

� for the
qubit, where

�a� = �a +
�R1

2

2�a1

+
�R2

2

2�a2

+ 2
g2

��
��a†a� +

1

2
 . �7.4�

Here we keep the contribution of �a†a� to the frequency shift
in order to take into account the presence of the measurement
drive �3. When evaluating �a†a�, it is important to remember
that, a�†� is in the displaced frame defined in Appendix B.
Setting �dk��� =�a�+�r the only term that does not average to

zero due to rapid oscillations is the third line of Eq. �B10�
which gives

0

1 0

1

eg

ωd1

ωd2=ωa+δ

ωd2=ωa-δδ

...

...

‘’

‘’ωd1

δ0

1 0

1

eg

ω r

...

...

ωa‘’

a) b)

FIG. 6. �Color online� Red and blue sideband transitions. �a�
One-photon transitions. �b� Two-photon transitions.
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Hr1 = − cg
�Rk

�ak

��+a + �−a†� , �7.5�

where k=1 or 2. Following the notation introduced in Sec.
II A, we use c=cos � and s=sin � with � the mixing angle.
The above Hamiltonian corresponds to the one-photon red
sideband transition. Alternatively, taking �dk��� =�a�−�r, we

obtain the one-photon blue sideband transition

Hb1 = − cg
�Rk

�ak

��+a† + �−a� . �7.6�

On the other hand, the last line of Eq. �B10� will not
average to zero if the drive frequencies are chosen such that

�dk
± �dk�

= �a� + �r �7.7�

or

2�dk��� = �a� + �r. �7.8�

With these choices of drive frequencies, we obtain

Hr2 = sg
�R1

2�a1

�R2

2�a2

��+a + �−a†� ,

Hb2 = sg
�R1

2�a1

�R2

2�a2

��+a† + �−a� . �7.9�

corresponding to two-photon red and blue sideband transi-
tions, respectively. These two-photon transitions are illus-
trated in Fig. 6�b�.

Because of the dependence of Eqs. �7.5� and �7.6� on the
cosine of the mixing angle �, the first order red and blue
sideband transitions are forbidden at the charge degeneracy
point. As discussed in Appendix E, this can be linked to the
symmetry of the Jaynes-Cummings Hamiltonian. Since it is
more advantageous to work at the sweet spot to minimize
dephasing, these first order transitions therefore appear to be
of limited interest for coherent control in circuit QED. A
similar selection rule, for flux qubits coupled to a LC oscil-
lator, was noted in Ref. �20�. There, it was suggested to work
with single-photon sidebands by biasing the flux qubit close
to degeneracy, but not exactly at the sweet spot. Moreover,
selection rules for a flux qubit irradiated with classical mi-
crowave signal were also studied in Ref. �70�. We also point
out that, since the frequencies corresponding to these first
order transitions ��aj

� ±�r� are in practice very detuned from
the resonator frequency �r, signals at these frequencies
would be mostly reflected at the input port of the resonator.
Very large input powers would therefore be required to com-
pensate the attenuation.

On the other hand, because of their sin � dependence, the
two-photon transitions have maximal amplitude at the sweet
spot. Moreover, since in this case we require the sum or the
difference of the drive frequencies to match the sideband
conditions, these frequencies can be chosen such that there is
minimal attenuation �while still avoiding measurement-
induced dephasing �14,16,18��. However, the rate for these

two-photon transitions is of order g� ��R /2�a�2, which is
g times the square of a small parameter. As is discussed in
Sec. V E, obtaining large rates will require large coupling
strength g.

To realize logical gates based on the red and blue side-
bands, these transitions must be coherently driven. The cor-
responding simulated coherent oscillations are illustrated in
Fig. 7 for the two-photon �a� red and �b� blue sideband tran-
sitions. In these numerical calculations, the drive frequency
�d1

is chosen �400 MHz away from the resonator frequency
to avoid measurement-induced dephasing of the qubit. In a
first step, the second drive frequency �d2

is then chosen us-
ing the condition of Eq. �7.7�. Using simulated annealing
�71�, the drive frequencies and the corresponding drive am-
plitudes �1�2� are then varied to optimize the fidelity of the
sideband transitions. The best �but not necessarily optimal�
values obtained are given in the caption of Fig. 7. Using
these parameters, we obtain a population transfer of 0.83 for
the red sideband and of 0.86 for the blue sideband �without
damping, we obtain near perfect population transfer of 1.0 in
both cases�. This relatively low population transfer is essen-
tially due to the small dephasing time 1/2=500 ns used
here with respect to the slow rate �5 MHz of the red and
blue sideband transitions. It is interesting to point out that
this value of the rate is about four times bigger than expected
from the perturbative estimates of Eq. �7.9�. These estimates
should be taken as lower bounds which can be improved by
numerical optimization.

C. One-photon sidebands at the sweet spot using ac-dither

In the preceding section, we saw that the symmetry of the
circuit QED Hamiltonian does not allow for first order red
and blue sideband transitions at the charge degeneracy point.
However, with ac-dither discussed in Sec. III D, it is possible
to take advantage of the small gate charge excursions away

Time [μs]

-1.0

-0.5

0

0.5

1.0

P
|e
1
-
P
|g
0

b)

Time [μs]

-1.0

-0.5

0

0.5

1.0

P
|e
0
-
P
|g
1

0 0.2 0.4 0.6 0.8

a)

0 0.2 0.4 0.6 0.8

FIG. 7. �Color online� �a� Red and �b� blue coherent sideband
oscillations. The system parameters are �a /2�=7 GHz, �r /2�
=5 GHz, and g /2�=100 MHz. For the color curves, the damping is
� /2�=0.22 MHz, 1 /2�=0.02 MHz, and � /2�=0.31 MHz.
These last two values are taken from the measured value reported in
Ref. �3�. For the gray curves, damping was set to zero. The value of
the drive frequencies and amplitudes are �a� �d1

/2�
=4593.59 MHz, �d2

/2�=6650.605 MHz, �1 /2�=841.91 MHz,
and �2 /2�=843.417 MHz and �b� �d1

/2�=4598.39 MHz,
�d2

/2�=7476.47 MHz, �1 /2�=1241.51 MHz, and �2 /2�
=1252.56 MHz.
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from the sweet spot to obtain a one-photon transition while
staying, on average, at the sweet spot. This can be seen as a
low frequency version of the two-photon transitions.

To analyze this situation, we focus on a single qubit
coupled to the resonator and in the presence of a single co-
herent drive of amplitude � and frequency �d. At the charge
degeneracy point �ng

dc=1/2� and with ac-dither on the volt-
age port, we get for the Hamiltonian:

H = �ra
†a +

EJ

2
�z +

A

2
cos��act��x + g�2ng

accos��act� + �x�

��a† + a� + ��a†e−i�dt + ae+i�dt� , �7.10�

where we have defined A=8ECng
ac and have taken the ac-gate

bias to be ng
accos��act�. Assuming that the dither frequency is

small with respect to the qubit transition frequency but large
compared to the coupling strength, g��ac��a, we move
to the adiabatic basis to obtain

H = �ra
†a +

�a
ad�t�

2
�̃z + ��a†e−i�dt + ae+i�dt�

+ g�2ng
accos��act� + sin ��t��̃z + cos ��t��̃x��a† + a� ,

�7.11�

where �a
ad�t�= �EJ

2+A2cos2��act��1/2 is the instantaneous qubit
transition frequency.

Comparing with Eq. �2.3�, we have the following map-
ping

� � − 2ng
accos��act�, c � sin ��t�, s � − cos ��t�

�7.12�

and it is possible to use directly all of the results obtained in
the previous section. The important point is that we now get
a �̃z component even at the charge degeneracy point, which
means that the red and blue sidebands will be allowed to first
order. This is due do the small excursions away from degen-
eracy provided by the ac-dither.

Assuming that the dither amplitude is small with respect
to the bare qubit transition frequency EJ, we take ��t�
	A cos��act� /EJ which will yield simple Bessel function
modulation sidebands for the qubit transition. Following Sec.
III D and using the results of the previous section, we get the
blue sideband transition for �d=�a�+�r±�ac

Hb1ac
= g� �R

2�a
J1�8ECng

ac

EJ
�a†�̃+ + a�̃−� , �7.13�

and for �d=�a�−�r±�ac the red blue sideband transition

Hr1ac
= g� �R

2�a
J1�8ECng

ac

EJ
�a�̃+ + a†�̃−� . �7.14�

Here we have focused on the first dither sideband J1�z� only.
With respect to the two-photon transitions of Eq. �7.9�, we
have simply replaced a factor of �R /2�a by the ac-sideband
modulation J1�8ECng

ac /EJ�. Both of these quantities are
smaller than unity, so whether this is advantageous depends
on the parameters of the system. As an example, taking EC

�5 GHz, EJ�6 GHz �16�, and a 10% of 2e excursion for
the dither, ng

ac=0.1, we have J1�8ECng
ac /EJ��3/10.

D. Controlled-NOT from sideband transitions

In this section, we show how to obtain nontrivial two-
qubit gates from red and blue sideband transitions. This is
included for completeness, with most of the results already
known from Cirac and Zoller �57� for three level atoms and
from Childs and Chuang �58� for two level atoms. Here, we
follow closely the results and notation of Ref. �58�.

Following Ref. �58�, we introduce the unitary operators
�78�

R j
+��,�� = exp
− i

�

2
�e−i�a†�+j

+ e+i�a�−j
�� , �7.15�

R j
−��,�� = exp
− i

�

2
�e−i�a†�−j

+ e+i�a�+j
�� . �7.16�

R j
+�� ,�� corresponds to a pulse on the blue-sideband for

qubit j and R j
−�� ,�� the red sideband. Here, � is the phase of

the driving field.
In addition to the above resonator-qubit operations, we

introduce the single-qubit unitary operators corresponding to
the effective Hamiltonians discussed in Sec. III. We denote
the single qubit flip �x� and phase �z� operators acting on
qubit j as

R j
x��� = exp
− i

�

2
�xj
�, R j

z��� = exp
− i
�

2
�zj
� .

�7.17�

Another useful single qubit unitary is the Hadamard transfor-
mation �in the basis ��e� , �g���

H j =
1
�2

�1 1

1 − 1
 , �7.18�

which can be obtained by a rotation at an angle between the
x and z axis or, equivalently, by a sequence of one-qubit
gates

H j = exp
− i
�

2
��xj

+ �zj

�2
� = R j

x��/2�R j
z��/2�R j

x��/2� .

�7.19�

Before building a universal two-qubit gate from these el-
ementary operations, we first discuss a simpler protocol to
create conditional entanglement. This protocol is based on
Ref. �33� and relies on entangling one qubit to the resonator
and then transferring the entanglement to qubit-qubit corre-
lations. This is realized by the sequence

R1
−��,��R2

−��/2,��R1
−��,�� , �7.20�

where the phase � is arbitrary. It is simple to verify that this
sequence will leave �gg0� unchanged but will create maxi-
mally entangled states when starting from �ge0� or �eg0�.
However, the state �ee0� will irreversibly leak out of the
��0� , �1�� photon subspace and the qubits will get entangled
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with the resonator at the end of the pulse sequence. Hence,
while Eq. �7.20� is not an universal two-qubit primitive, it
can nevertheless be used to generate conditional entangle-
ment. This sequence can also be realized with all blue side-
band pulses. In this case, �ee0� is left unchanged, while start-
ing with �gg0� will create spurious entanglement with the
resonator.

In the above sequence, the spurious entanglement occurs
in the second step where the initial state �ee0� picks up a
contribution from the two-photon state �gg2�. For this state,
the evolution is “faster” by a factor of �2 from evolution in
the one-photon subspace. Because of this, the last step in the
sequence cannot completely undo the qubit-resonator en-
tanglement and leaves them partially entangled. To solve this
problem, Childs and Chuang �58� introduced the qubit-
resonator gate

P j = R j
+�− �/2,0�R j

+���2,− �/2�R j
+�− �/2,0� .

�7.21�

In the basis ��e0� , �e1� , �g0� , �g1��, P j takes the form P j

=diag�1,e−i�/�2 ,ei�/�2 ,−1�. This gate entangles the qubit
with the resonator �because of the minus sign in the last
element� but it does not lead to leakage into higher photon
states. Using this gate, Childs and Chuang �58� proposed a
sequence of red, blue, and single-qubit operations that gen-
erates a controlled-NOT �CNOT� gate.

Here, building on Eq. �7.20�, we note a simpler entangling
two-qubit gate �in the basis ��ee� , �eg� , �ge� , �gg���

U� = R1
+��,��P2R1

+��,�� = diag�1,ei�/�2,− e−i�/�2,1� .

�7.22�

Using this gate, it is possible to obtain a CNOT gate which
relies only on single qubit unitaries and blue-sideband tran-
sitions:

CNOT = R1
z��1 + �2���H2U�R2

z�− �/�2�H2. �7.23�

Because it relies on P j, this gate does not lead to unwanted
qubit-resonator entanglement.

E. Summary

The gates presented in this section rely on real excitations
of the resonator to mediate entanglement between the qubits.
These gates are based on perturbation theory and are there-
fore relatively slow. For example, for the red and blue side-
band oscillations studied in Sec. VII B, we have found after
numerical optimization rates of �5 MHz. With a dephasing
time of 500 ns, this corresponds to a quality factor of about
9, larger than what was expected from perturbation theory.
While this quality factor is not large enough for large scale
quantum computation, it is certainly enough to demonstrate
the concept experimentally.

Finally, a disadvantage of the gates based on real excita-
tion of the resonator is that they are susceptible to photon
loss and therefore require relatively large Q resonators. This
conflicts with the requirement of fast readout.

VIII. GEOMETRIC PHASE GATE

The gates discussed in the previous sections were based
on real or virtual transitions. In the present section, we dis-
cuss a different approach, based on the geometric phase. This
was already discussed in the context of ion-trap quantum
computing �46,47�. This gate is based on the fourth term of
the Hamiltonian �B10�:

H̃ = − �
j=1,2

gjBj�zj
�a† + a� , �8.1�

where Bj is given by Eq. �B9�. Here, we work at the charge
degeneracy point where c1,2=0. Although the Hamiltonian
�8.1� does not couple the qubits directly, it couples both qu-
bits to the resonator field a. By using a time dependent drive
on the resonator, and hence displacing the field a in a con-
trolled manner, it is possible to induce indirect qubit-qubit
coupling without residual entanglement with the field.

To see this explicitly, we first rederive the effective
Hamiltonian �8.1� in the presence of a single drive of fre-
quency � and of amplitude ��t�. Here, we allow the ampli-
tude to be time-dependent and complex. Moreover, we will
assume that the qubits are detuned from each other ��a1

�
��a2

� � such that the flip-flop interaction can be neglected and
that both qubits are dispersively coupled to the resonator. In
a frame rotating at the resonator frequency �r, we obtain

H̃�t� 	
1

2 �
j=1,2

��aj
� �t� + 2f j�t�a† + 2f j

*�t�a��zj
, �8.2�

where

f j�t� = gj
2e−i�jt�

0

t �
0

t�
dt�dt�ei��j+i�/2�t�ei��r−i�/2�t���t�� .

�8.3�

Because of the time dependent drive, the shifted qubit tran-
sition frequencies �aj

� �t� are now time-dependent. Note that,
following the procedure of Appendix A, we have added the
effect of cavity damping � to Eq. �8.3�.

Since

�H̃�t1�,H̃�t2�� = 2i„Im�f1
*�t1�f2�t2�� + Im�f2

*�t1�f1�t2��…�z1
�z2

� 2iF�t1,t2��z1
�z2

�8.4�

commutes with H̃�t� for all times, evolution under the effec-
tive Hamiltonian �8.2� is given by

U�T,0� = e−i�0
Tdt H̃�t�e−�1/2��0

T�0
t dt dt��H̃�t�,H̃�t���. �8.5�

To avoid unwanted entanglement of the qubits with the reso-
nator at the final gate time T, we choose the time-dependent
drive amplitude ��t� such that �46,47�

�
0

T

dtf j�t� = 0. �8.6�

With this choice of ��t�, evolution under H̃�t� corresponds
to the application of a local phase shift
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� j�T� = �
0

T

dt �aj
� �t� �8.7�

to each qubit and of a conditional phase shift
exp�−i	12�t��z1

�z2
/2� where

	12�T� = 2�
0

T �
0

t

dt dt�F�t,t�� . �8.8�

For 	12�T�= ±� /2, this two-qubit operation is known to be
equivalent to the CNOT gate, up to one qubit gates.

Our goal is therefore to choose the drive ��t� such that the
qubits accumulate a phase 	12�T�= ±� /2 in the smallest
time T possible. This minimization has to take into account
several constraints. In addition to Eq. �8.6�, we take the drive
to be off at the start and at the end of the gate:

��0� = ��T� = 0. �8.9�

The assumption that the drive is initially turned off is already
built into our expression for f j�t� in Eq. �8.3�. To prevent
further phase accumulation after the gate time T, we also
require that

��T� = 0, �8.10�

�̇�T� = 0, �8.11�

where ��t� is the amplitude of the classical field inside the
resonator and is given by Eq. �3.4� �or Eq. �A5� in the pres-
ence of cavity damping�. From Eq. �3.4�, we have that
�̇�T�=0 will be automatically satisfied if Eqs. �8.9� and
�8.10� are satisfied.

While satisfying the above constraints, the external field
��t� must also be chosen such that the approximation that led
to Eqs. �8.2� and �8.3� are valid. There are two approxima-
tions. The first one, as in Sec. III B, is that we adiabatically
eliminated transitions in the qubit caused by the external
drive. This requires the drive to be either of small amplitude
or sufficiently detuned from the qubits. The second approxi-
mation is the dispersive transformation, which here only has
the effect of renormalizing the qubit transition frequency �aj

� .
This approximation breaks down on a scale given by the
critical photon number ncrit=�

2 /4g2 �14,18�. We must there-
fore choose the drive amplitude and frequency such that the
resonator never gets populated by more than ncrit photons.
Beyond this number, additional mixing between the qubits
and resonator states is possible and would likely lead to un-
wanted qubit-resonator entanglement �79�.

Finally, we also require that the measurement-induced
dephasing time of the qubits due to the control drive, the
gate-induced dephasing time, be smaller than the “intrinsic”
dephasing time T2. An expression for the measurement-
induced dephasing rate is given in Eq. �3.12�. Here, we will
use Eq. �5.16� of Ref. �18� that is more appropriate for a
time-dependent drive. As was discussed in Sec. III C and in
Ref. �18�, by working at sufficiently large detuning �r, gate-
induced dephasing can be made negligible while still main-
taining a large rate for the gates.

It is useful to take into account these constraints by de-
veloping the pulse envelope ��t� in Fourier components

��t� = �
n=−!

!

cne+i�nt. �8.12�

Using this expression, we rewrite f j�t� as

f j�t� = gj
2 �

n=−!

!

cn� − ei��r+�n�t

�� j + �r + �n���r + �n − i�/2�

+
e−�t/2

�� j + i�/2���r + �n − i�/2�

+
− e−i�jt

�� j + �r + �n��� j + i�/2��
	 − � j �

n=−!

!

cn
ei��r+�n�t − e−�t/2

��r + �n − i�/2�
, �8.13�

where we have assumed the resonator-qubit detuning � j is
large, such that � j� ��r+�n ,� /2�, and have dropped the
small and fast oscillating last term in the second expression.
This approximate expression will be useful in obtaining ana-
lytical estimates for the expected gate time T.

Using the approximate expression for f j�t�, we can now
recast the above constraints in more simple forms. Using Eq.
�8.13�, the no-effect on the resonator constraint of Eq. �8.6�
can be written as

�
0

T

dt f j�t� 	 − � j �
n=−!

!

cn�
0

T

dt
ei��r+�n�t − e−�t/2

��r + �n − i�/2�

� � j �
n=−!

!

cnAn = 0. �8.14�

Without the approximation for f j�t�, the coefficient An de-
pends on the qubit index j which means that there would be
one extra constraint to satisfy.

Moreover, to satisfy Eq. �8.9�, we take �n=2�n /T which
implies that

��0� = ��T� = �
n=−!

!

cn = 0. �8.15�

To satisfy Eq. �8.10�, we have

��T� = �
n=−!

!

cn
ei��r+�n�T − e−�T/2

��r + �n − i�/2�
� �

n=−!

!

cnBn = 0.

�8.16�

Casting, in a simple form, the constraints that there is no
qubit transition and that the dispersive approximation holds
is more difficult. For the former case, we require that

�f j�t�e−i�rt/gj� � �gj��t�
� j�r

� �8.17�

be smaller than about 1/10 for all time. In terms of the drive
amplitude we thus require
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���t�� " �� j�r

10gj
� . �8.18�

Finally, for the dispersive approximation to hold, we require
that the average photon number populating the resonator be
no larger than the critical photon number:

n̄ 	
�2

�r
2 �

� j
2

4gj
2 �8.19�

or, equivalently,

���t�� " �� j�r

2gj
� . �8.20�

In practice, we therefore only have to deal with Eq. �8.18�
and only with the qubit for which �� j /gj� is smallest. In the
dispersive regime and in the �=0 approximation, we thus
require ���t� �"�r which means that there is no gate effect at
�r→0.

Of all the constraints, the last one is the most difficult to
deal with because it must hold at all intermediate times t and
because it involves the absolute value of the complex drive
amplitude ��t�. It is nevertheless possible to find an analyti-
cal expression for the gate time T by developing on four
Fourier components �c−1 ,c0 ,c1 ,c2�. In this situation, all con-
straints can be solved for analytically and it is possible to
find an expression for the gate time. This expression is how-
ever unsightly and we only give here relevant limits. In the
situation where �r is large, we find that

T �
���r�
�1�2

. �8.21�

In the dispersive approximation, this is roughly given by T
�100� ��r � /g2. In the small �r limit we rather find that T
#1/ ��r�. As explained above, this behavior is expected from
Eq. �8.18� which is saying that the field amplitude goes to
zero at zero detuning in the �=0 limit. The full expression
for T as a function of detuning �r is plotted in Fig. 8�a�
�dashed green line�. The system parameters used here are
g1 /2�=g2 /2�=100 MHz, �1 /2�=1 GHz, and �2 /2�
=1.1 GHz. The approximate expression for T at large �r is
of a form similar to that already obtained for gates based on
the dispersive approximation: A rate equal approximately to
the square of the coupling g over a detuning. Here however
the detuning is �r and not the qubit-resonator detuning �. In
the dispersive approximation, the former can however be
made much smaller than the latter and this gate could in
principle be faster than the dispersive based gates discussed
in the previous sections.

Going beyond the assumptions made to obtain the ap-
proximate expression for f j�t� in Eq. �8.13�, we solved nu-
merically the optimization problem. Without this approxima-
tion there are now five constraints to optimize over �the
constraint Eq. �8.14� now has to be satisfied independently
for both qubits� and thus a minimum of five Fourier coeffi-
cients have to be used. The full blue line in Fig. 8�a� shows
the numerically found gate time as a function of detuning
and using the same system parameters as given above. As
can be seen from this figure, going beyond the approxima-

tions used to get an analytical estimate and increasing the
number of Fourier components improved significantly the
gate time. In this situation, we get an optimal gate time of
T�50 ns. Further optimization can be made by increasing
the coupling strength, and could likely be made by increas-
ing the number of Fourier components.

Figure 8�a� also shows the gate-induced dephasing time
�dotted red line� associated with the pulse required to imple-
ment the geometric phase gate. This dephasing time is ob-
tained from Eq. �5.16� of Ref. �18� and assuming a resonator
damping rate of � /2�=0.1 MHz. At detunings larger than
about �r /2��25 MHz, the measurement-induced dephas-
ing time is significantly larger than the “intrinsic” T2 of
500 ns already measured in circuit QED �3� and can thus be
ignored. However, this induced dephasing time goes down
rapidly with detuning such that there is a detuning ��r /2�
�10 MHz with the chosen parameters� below which it is
smaller than the gate time, meaning that the geometric phase
gate cannot be used.

Figure 8�b� shows the quality factor, as defined by Eq.
�3.14� and where the dephasing rate was taken to be the sum
of the gate-induced dephasing rate and of the “intrinsic”
dephasing rate 1 /T2. For the red dashed line, we have taken
T2=500 ns, while T2 was set to infinity for the full blue line.
For T2=500 ns and the present system parameters, the qual-
ity factor is maximum for detunings of about 30 MHz. How-
ever, as is clear from the full blue line, gate-induced dephas-
ing time is not a limitation in practice and the quality factor
could be significantly better once T2 is improved in this sys-
tem and by working at larger detunings. Moreover, the actual
magnitude of the quality factor could likely be improved by
increasing the number of Fourier components. We also point
out that the present results have been obtained within the
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FIG. 8. �Color online� �a� Gate time �full blue and green dashed
lines� and gate-induced dephasing �red dotted line� as a function of
detuning �r. The green dashed line is obtained analytically by de-
composing the pulse ��t� over four Fourier coefficients and using
the constraints derived from the approximate expression in Eq.
�8.13�. The full blue line is obtained numerically by using the con-
straints derived from the exact expression in Eq. �8.13� and decom-
posing over five Fourier coefficients. The dotted red line is the
gate-induced dephasing time as calculated from Ref. �18� and pre-
sented on a log scale. The system parameters used are given in the
text. �b� Quality factor of the geometric phase gate as a function of
detuning. The red dashed line takes into account gate-induced
dephasing and an additional T2 of 500 ns. For the full blue line, we
have taken 1/T2=0. Clearly, gate-induced dephasing is not a limi-
tation in practice.
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approximations used to derive the effective Hamiltonian of
Eq. �8.2�. Significant improvements could be made by nu-
merically optimizing the full system’s master equation. In
this case, the results would not be limited by the dispersive
approximation used here and we expect a much better quality
factor.

Finally, it is important to realize that whenever two qubits
are present in the resonator and the system is being driven,
this geometric gate is in action. This could lead to unwanted
qubit-qubit entanglement and, since Eq. �8.6� might not be
satisfied, qubit-resonator entanglement if the drive amplitude
and frequency are not chosen appropriately.

IX. CONCLUSION

We have explored the realization of single and two-qubit
gates in circuit QED, using realistic systems parameters. We
have shown how all single-qubit rotations can be realized
with minimal measurement-induced dephasing of the qubit.
In this context, two approaches to change the qubit transition
frequency without dc bias away from the sweet spot were
discussed. Both rely on off-resonant irradiation of the qubit.
Interestingly, the ac-dither approach could help in reducing
dephasing by protecting the qubit from low-frequency noise.

Five types of two-qubit gates were discussed. The fastest
gate discussed in this paper is based on direct coupling of
qubits with the resonator. In this paper however, we have
focused on gates requiring no dc-bias away from the sweet
spot or additional control lines not present in the current
circuit QED architecture. These gates can in practice be
slower but could be implemented in the current circuit QED
design, without additional design elements. Moreover, these
gates have the important advantage that they do not cause
extra dephasing of the qubits by moving away from the
sweet spot.

The rates and quality factors for these gates, as obtained
from perturbation theory, are summarized in Table I. These
are given for g /2�=100 MHz and � /2�=0.1 MHz �“cur-
rent”� and g /2�=200 MHz and � /2�=0.01 MHz �“better”�.
All other parameters are equal and discussed in the table
caption. These parameters correspond to already realized val-
ues and to realistic values that could be obtained in future
realizations of circuit QED, respectively. The quality factors

are calculated in the same way as in Eq. �3.14�: The rates
divided by 2T2

−1 �the full width at half maximum of the qubit
spectral line�. However, for the direct coupling and the side-
bands, the loss of a single photon has a large impact and the
quality factors are therefore given by the rates divided by the
mean of the two contributing decay channels: ��+2T2

−1� /2.
For the geometric phase gate, the “current” quality factor,
and the corresponding rate, are taken from the inset of Fig. 8.
The “better” results are obtained from a similar calculation.

Moreover, we note that the same values of T2 and � were
used for the direct coupling gate requiring dc excursions
away from the sweet spot and the other gates that do not
require such excursions. As discussed before, it is likely that
T2 or � would be reduced due to the dc-bias. The rates and
quality factors given on the first line of the table can there-
fore be taken as upper bounds.

It is also important to realize that, apart from the first line
of the table, these results have been obtained by perturbation
theory and are thus lower bounds on the rates and quality
factors that can be obtained in practice. Better results can be
obtained from numerical optimization. This was already
shown in Fig. 7 for the red and the blue sideband and also in
Sec. VIII for the geometric phase. Therefore, there is good
hope that all of the gates discussed in this paper could be
realized experimentally, admittedly with different degrees of
usefulness for quantum-information processing. Moreover,
all the quality factors quoted in Table I are limited by the
system’s decoherence time T2 and not by measurement-
induced dephasing rate from the application of the gate. As a
result, increasing T2 in this system will lead to significantly
better quality factors.

The key to improving the gate’s quality factor is to im-
prove the coupling g, the resonator and qubit relaxation and
dephasing times. Since the first circuit QED experiment �15�,
g has been improved by almost a factor of 20 and further
improvements can be realized without technical challenges.
Resonators with long photon lifetimes, in the tens of micro-
seconds, have already been fabricated �50� and first steps in
the design and realization of a new charge-type qubit which
is largely insensitive to charge noise have been taken �17�.
Circuit QED therefore seems like a promising system with
which to study quantum mechanics at the large scales and
quantum-information processing.

TABLE I. Rates and quality factors of the various gates. For the direct coupling gate, the values presented are upper bounds. For the
sidebands and geometric phase gates the results presented are only lower bounds. The system parameters are taken as g /�=0.1=�R /2�a

=0.1 for the approximations used to derive the rates to be valid. For the “current” results, we have taken g /2�=100 MHz and � /2�
=0.1 MHz. For the “better” results, we have taken g /2�=200 MHz and � /2�=0.01 MHz. The dephasing time was taken as T2=500 ns, as
measured in Ref. �3� in this system. For the geometric phase, we took �=�r to satisfy both Eq. �8.18� and the dispersive approximation. For
the “current” results, we have taken �r /2�=32 MHz and for the “better” results �r /2�=70 MHz.

Rates Rates �current� Q �current� Rates �better� Q �better�

Sec. IV: Direct coupling g "100 "272 "200 "619

Sec. V: Virtual interaction g2 /� �10 �16 �20 �31

Sec. VII B: Red/Blue sideband g��R1
/2�a1

���R2
/2�a2

� �1 �3 �2 �6

Sec. VII C: Red/Blue sideband �ac-dither� g��R /2�a�J1�8ECng
ac/EJ� �3 �8 �6 �19

Sec. VIII: Geometric phase �g2 /200�r �3 �4 �6 �9
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APPENDIX A: FIELD DISPLACEMENT
ON THE MASTER EQUATION

In this appendix, we apply the field displacement proce-
dure of Sec. III on the master equation �2.5� rather than on
the pure state evolution. Since the displacement is on the
resonator field, we only consider the contribution to damping
due to �. The master equation thus reads

�̇ = − i�H,�� +
�

2
�2a�a† − a†a� − �a†a� , �A1�

where

H = �ra
†a +

�a

2
�z − g�a†�− + �+a�

+ �
k

��k�t�a†e−i�dk
t + �k

*�t�ae+i�dk
t� . �A2�

For simplicity of notation, in this appendix we only consider
a single qubit and drop the j index. Going to the displaced
frame, the master equation for the displaced density matrix
�̃=D†����D��� reads

�̇̃ = − i�D†���HD���, �̃� − D†���Ḋ����̃ − �̃Ḋ†���D���

+
�

2
D†����2a�a† − a†a� − �a†a�D���

= − i�H̃, �̃� +
�

2
�2a�̃a† − a†a�̃ − �̃a†a� , �A3�

where

H̃ = �ra
†a +

�a

2
�z − g�a†�− + �+a� − g��*�− + ��+�

�A4�

and the parameter � is chosen to satisfy

�̇ = − i�r� − i�
k

�ke
−i�dk

t −
�

2
� . �A5�

As an example, we consider the simple case of the bit-flip
gate discussed in Sec. III A. In this situation, a single time-
independent and real drive � is needed. With ��0�=0 and

dropping the transient term, we recover the Hamiltonian
�3.5� where the Rabi rate now reads

�R = 2
g�

�r − i�/2
. �A6�

As it should, this rate does not diverge at �r=0. Since we
always work in the regime where �r is large, we neglect this
� correction in most sections of this paper.

APPENDIX B: DERIVATION OF THE
EFFECTIVE HAMILTONIAN

In this appendix we derive an effective Hamiltonian for
two qubits dispersively coupled to a single resonator and
taking into account the presence of three independent drives.
Two of these drives �k=1,2� are used to coherently control
the qubits while the third drive �k=3� plays the role of mea-
surement beam. Our starting point is Hamiltonian �2.3� tak-
ing into account the gate charge dependence. While working
away from charge degeneracy is not useful in practice, this
will make selection rules appear clearly.

The derivation follows the same steps as those presented
in Sec. III. For simplicity, we take the drive amplitudes �k to
be time-independent. This assumption is relaxed in the con-
text of the geometric phase gate in Sec. VIII. As in Sec. III,
we start by displacing the resonator field a by using the
displacement operator D���. Since �3 plays the role of mea-
surement, its frequency will be close to the resonator fre-
quency �r. It is therefore more convenient to displace the
field only with respect to the first two drives. In the lab
frame, the result of this transformation is

H�1� = �ra
†a +

�a1

2
�z1

+
�a2

2
�z2

+ �3�a†e−i�d3
t + H.c.�

− �
j=1,2

gj�� j − cj�zj
+ sj�xj

��a† + a�

+ �
j,k=1,2

�Rjk
�cj�zj

− sj�xj
�cos��dk

t� , �B1�

where �Rjk
=2gj�k / ��r−�dk

� is the Rabi frequency of qubit j
with respect to drive k.

In the next step, we make the rotating wave approxima-
tion on the drive terms acting on the qubits �last term of Eq.
�B1��:

�
j,k=1,2

�Rkj
�c�zj

− s�xj
�cos��dk

t�

	 �
j,k=1,2

sj

�Rkj

2
��+j

e−i�dk
t + �−j

e+i�dk
t� . �B2�

Not doing this approximation would only lead to small
Bloch-Siegert shifts in the qubit transition frequency �72�.

In this appendix, we are not interested in direct transitions
of the qubits �i.e., single-qubit Rabi flopping�, these transi-
tions are therefore eliminated using the transformation of Eq.
�3.10� on each qubit:
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Uj = exp�� j
*�+j

− � j�−j
� . �B3�

Since �U1 ,U2�=0, these two transformations can be applied
sequentially:

H�2� = �U1U2�H�1��U1U2�† − i �
j=1,2

UjU̇j
−1. �B4�

We expand the first term to second order in the small param-
eter � j using the Hausdorff formula Eq. �3.8�. For the second
term of Eq. �B4�, we obtain to second order

UjU̇j
−1 	

1

2
�� j

*�̇ j − � j�̇ j
*��zj

+ ��̇ j�−j
− �̇ j

*�+j
� . �B5�

Choosing

� j�t� =
1

2 �
k=1,2

�Rjk

�ajk

e+i�dk
t �B6�

with �ajk
=�aj

−�dk
and neglecting fast oscillating terms, we

finally obtain

H�2� 	 �ra
†a + �

j=1,2

�aj
�

2
�zj

+ �3�a†e−i�3t + H.c.�

− �
j=1,2

gj�� j + sj�xj
��a† + a�

− �
j=1,2

gjAj�� j
*�+j

+ � j�−j
��a† + a�

− �
j=1,2

gjBj�zj
�a† + a� , �B7�

where the shifted qubit transition frequency is

�aj
� = �aj

+ �
k=1,2

�Rjk

2

2�ajk

+
�Rj1

�Rj2
��aj1

+ �aj2
�

2�aj1
�aj2

cos��d1
− �d2

�t

�B8�

and

Aj = 2cj − sj�� j
* + � j� ,

Bj = 2cj��� j�2 −
1

2
 + sj�� j

* + � j� . �B9�

In the presence of a single off-resonant drive, we recover Eq.
�3.11�.

Finally, the qubits are assumed to be strongly detuned
from the resonator. We therefore adiabatically eliminate the
direct Jaynes-Cummings qubit-resonator interaction. This is
done using the dispersive transformation of Eq. �5.1�. Since
the rotating wave approximation was not performed on the
qubit-resonator interaction, this choice of transformation will
not cancel completely the interaction. Complete cancelation
could be obtained by choosing a slightly different transfor-
mation. However, for the transitions of interest here, the re-
maining terms will be oscillating rapidly and will simply be
dropped. Taking into account these terms would, again, only
add a small frequency shift �72� that can safely be ignored
here.

Applying the dispersive transformation Eq. �5.1�, expand-
ing to second order in the small parameter gj /� j� and neglect-
ing fast oscillating terms, we obtain the main result of this
appendix

H�3� 	 �ra
†a + �

j=1,2

�aj
�

2
�zj

+ �3�a†e−i�d3
t + ae+i�d3

t� − �
j=1,2

�3

2
�gjsj

� j�
2

�a†e−i�d3
t + ae+i�d3

t��zj
− �

j=1,2
gjBj�zj

�a† + a�

+ s1s2
g1g2��1� + �2��

2�1��2�
��+1

�−2
+ �−1

�+2
�− �

j,k=1,2
cjgj

�Rjk

�ajk

��+j
e−i�dk

t + �−j
e+i�dk

t��a† + a�

+ �
j,k,k�=1,2

sjgj

�Rjk

2�ajk

�Rjk�

2�ajk�

��e+i��dk
−�dk�

�t + e−i��dk
+�dk�

�t��+j
+ �e−i��dk

−�dk�
�t + e+i��dk

+�dk�
�t��−j��a† + a� , �B10�

where the shifted qubit transition frequency is

�aj
� = �aj

� + 2sj
2 gj

2

� j�
�a†a +

1

2
 �B11�

and we have defined

� j� = �aj
� − �r. �B12�

This effective Hamiltonian contains all the physics needed to
realize each of the different gates that are studied in this

paper. More particularly, the fifth term of in the second line
of Eq. �B10� can be used to generate a geometric two-qubit
phase gate �46,47� and is studied in more detail in Sec. VIII.
The sixth term of Eq. �B10� is the flip-flop interaction due to
virtual interaction with the resonator and is discussed in Sec.
V. We note that higher order flip-flop terms induced by the
external drives have been dropped. Finally, as discussed in
Sec. VII B, the last two terms describe one and two photon
blue and red sideband transitions.

Higher order terms in the perturbative expansions used to
obtain Eq. �B10� will lead to additional nonlinear terms.
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These corrections will be negligible as long as the param-
eters � j and gj /� j are chosen to be small. This can be safely
done in the context of the quantum gates studied here. The
situation where these terms can no longer be neglected will
be discussed elsewhere.

APPENDIX C: RED AND BLUE SIDEBANDS
USING FLICFORQ

Here we consider a single qubit coupled to the resonator
and in the presence of a single drive of frequency �a and
amplitude �. For simplicity, we work at charge degeneracy
and in the rotating wave approximation:

H = �ra
†a +

�a

2
�z − g�a†�− + �+a� + ��a†e−i�at + aei�at� .

�C1�

We again assume that the qubit is far detuned from the reso-
nator frequency. However, we choose not to adiabatically
eliminate the qubit-resonator interaction and look at a non-
perturbative result for large drive amplitude. To find the ef-
fective qubit-resonator Hamiltonian in this case, we move to
a frame where a nonvanishing interaction remains, but only
when a resonance condition to be determined is satisfied.

We first move to a frame rotating at the qubit transition
frequency �a for both the qubit and the resonator:

H�1� = − �a†a − g�a†�− + �+a� + ��a† + a� , �C2�

with �=�a−�r. We then displace the resonator field using
the displacement operator D��� to obtain

H�2� = − �a†a − g�a†�− + �+a� −
�R

2
�x. �C3�

For convenience, we now change �x to −�z using a rotation
along the y axis of angle −� /2. After that rotation, the sys-
tem looks like a qubit of frequency �R coupled to a resonator
of frequency �:

H�3� = − �a†a +
�R

2
�z +

g

2
�a† + a��z + i

g

2
�a† − a��y .

�C4�

Going to a frame rotating at both the new effective qubit and
cavity frequencies, we obtain a single nonoscillating term
when �=−�R

Hr
�4� 	 −

g

2
�a†�− + �+a� �C5�

and for �=�R we obtain

Hb
�4� 	

g

2
�a†�+ + �−a� . �C6�

These correspond, in the rotating frame, to red and blue side-
band transitions at a rate g /2. The factor of 1 /2 is due to the
fact that only one of the Rabi sidebands for the ground and
excited states of the qubit are in resonance at �= ±�R. This

type of qubit-cavity resonance was also discussed in Refs.
�73,74� and for flux qubits in a dressed basis in Ref. �19�.

APPENDIX D: FLICFORQ WITH TWO QUBITS

To obtain the effective Hamiltonian for the two-qubit
FLICFORQ, we follow the results of Appendix B and of Ref.
�59�. The starting point is the Hamiltonian �B1� taken in the
rotating wave approximation and at charge degeneracy for
both qubits �sj =1,cj =0�. Moreover, we omit the measure-
ment drive and consider only two coherent drives �k=1,2�.
To get maximal splitting of the Rabi sidebands, the fre-
quency of these drive are chosen such that �dj

is close to �aj
.

To derive the effective Hamiltonian, we follow the same
steps as in Appendix B. The main difference is that in the
second step, because of our choice of drive frequencies, we
do not adiabatically eliminate both drives from both qubits.
We adiabatically eliminate only the effect of �d1

on the sec-
ond qubit and the effect of �d2

on the first qubit. The result-
ing effective Hamiltonian is

H 	 �ra
†a + �

j=1,2

�aj
�

2
�zj

+ �
j=1,2

�Rj

2
��+j

e−i�dj
t + �−j

e+i�dj
t�

+
g1g2��1� + �2��

2�1��2�
��+1

�−2
+ �−1

�+2
� , �D1�

where � j�=�aj
� −�r and

�a1�2�
� = �a1�2�

+ 2
�R12�21�

2

�a12�21�

. �D2�

Assuming for simplicity that �dj
=�aj

� , we first go to a
frame rotating at �dj

for qubit j. Following Ref. �59�, we
then go to a frame rotating along the x axis and at a fre-
quency �Rj

/2 for qubit j. This yields

H 	 �ra
†a +

g1g2��1� + �2��
8�1��2�

����x1
− i sin��R1

t��z1
+ i cos��R1

t��y1
�

� ��x2
− i sin��R2

t��z2
− i cos��R2

t��y2
�e+i��d1

−�d2
�t

+ H.c.� . �D3�

We now look for terms that do not average to zero. These
will correspond to resonance in the coupled driven system.
There are several choices of resonances here and, as an ex-
ample, we choose �d2

−�d1
=�R1

+�R2
. Using this condition,

all terms but a single term are oscillating rapidly and average
out to zero. The resulting effective Hamiltonian in the qua-
druply rotating frame is

HFF 	 �ra
†a +

g1g2��1� + �2��
16�1��2�

��y1
�y2

+ �z1
�z2

� . �D4�

Other choices of resonances lead to different symmetry for
the effective Hamiltonian. These other possible coupling
Hamiltonians will be discussed elsewhere.
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APPENDIX E: SYMMETRY AND SELECTION RULES

At the charge degeneracy point, the Hamiltonian �2.3� is
even in the number of creation and annihilation operators. As
a result, C�a†a+�z /2 commutes with the Hamiltonian and
the total excitation number is a conserved quantity. On the
other hand, away from charge degeneracy, in addition to the
regular Jaynes-Cummings term, we get extra terms of the
form g��+c�z��a†+a� which are of odd parity in the number
of creation and annihilation operators. Clearly, C is not a
conserved quantity in this case.

These symmetry considerations will impose selection
rules on the transitions that are possible. To see this more
explicitly, we introduce the parity operator P=e−i�a†a�z
which is the natural unitary extension of C �75,76�. By writ-
ing the parity operator in the form P=�n=0

! �−1�n �n��n ��z, it
is simple to verify that P anticommutes with the drive
Hamiltonian �3.1� in a frame rotating at the drive frequency.
Labeling states as being of even �odd� parity if they are
eigenstates of P with +1 �−1� eigenvalue, it is then clear that
the drive �a†+a� can only cause transitions between states of
different parities.

To see which transitions are allowed at the sweet spot, we
first give the parity of the eigenstates of the Jaynes-
Cummings Hamiltonian:

P�g0� = − �g0�, P�±,n� = �− 1�n�±,n� , �E1�

where �14�

�+ ,n� = cos �n�↓,n� + sin �n�↑,n + 1� , �E2�

�− ,n� = − sin �n�↓,n� + cos �n�↑,n + 1� , �E3�

and

�n =
1

2
tan−1�2g�n + 1

�
 . �E4�

The red sideband transition illustrated in Fig. 6�a� corre-
sponds to a transition between �+,0� and �−,0�; it is therefore
forbidden to first order. This is the result already obtained in
Eq. �7.5�. In the same way, the blue sideband corresponds to
a transition between �g0� and �−,1�. It is also forbidden at
charge degeneracy. Single-photon Rabi flopping discussed in
Sec. III A connects �g0� and �−,0�, and it is obviously al-
lowed at charge degeneracy. In the case of two photon tran-
sitions, the drive Hamiltonian is effectively acting twice and
the previous selection rules are therefore simply reversed.
Finally, away from the charge degeneracy point, the Hamil-
tonian has no definite parity and these considerations do not
apply. All sideband transitions are therefore allowed. Similar
selection rules for flux qubits coupled to a LC oscillator were
studied in Ref. �20�. In Ref. �70�, these selection rules were
investigated for a flux qubit irradiated with classical micro-
wave signal.
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