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The four-legged cat code is a quantum error-correcting code designed to address the predominant
error in bosonic modes: single-photon loss. It was the first such code to surpass the break-even
point, thereby demonstrating the practical utility of quantum error correction. In this work, we
propose a planar fault-tolerant architecture for this code by concatenating it with the X ZZX code
via fusion-based error-correction. To the best of our knowledge, this is the first 2D nearest-neighbor
architecture for fault-tolerant fusion-based error-correction. We demonstrate how all the required
operations, namely resource state preparation and Bell measurements, can be carried out using
standard circuit-QED techniques, such as intercavity beam-splitter coupling, cavity displacements,
cavity-transmon dispersive coupling, and transmon drives. We show analytically and numerically
that all dominant hardware errors in the bosonic modes and control ancillae are corrected, to first-
order, at the hardware level. Consequently, the outer XZZX code only needs to address smaller
residual errors, which are quadratically suppressed, effectively doubling the architecture’s fault-
distance. Moreover, the performance of our architecture is not limited by unwanted nonlinearities
such as cavity self-Kerr, and it avoids demanding coupling techniques like x-matching or high-order
coupling. Overall, our architecture substantially reduces the hardware complexity needed to achieve

fault tolerance with the four-legged cat code.

I. INTRODUCTION

To enable practical quantum computation, it is essen-
tial to protect quantum information from decoherence.
Quantum error correction (QEC) realizes this by redun-
dantly encoding a logical qubit(s) in a higher-dimensional
Hilbert space [1, 2]. The four-legged cat (4C) encodes a
single logical qubit in the Hilbert space of a harmonic os-
cillator (also known as a bosonic mode) [3, 4]. This code
is particularly well suited to correct single-photon loss,
the predominant error in bosonic systems [3, 4]. It stands
as a landmark in the field as the basis for the first exper-
iment to demonstrate “break-even” QEC, where the log-
ical qubit’s lifetime exceeds that of the best unprotected
component [5]. Since then, advances in quantum hard-
ware and control techniques have driven further progress,
with other oscillator codes [6-8] and a qubit-based code
[9, 10] achieving similar breakthroughs.

Although achieving break-even QEC for memory is a piv-
otal milestone, it is merely the first step toward realizing
practical quantum computation. To enable indefinitely
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long quantum computations, QEC codes must support
arbitrarily low logical error probabilities across a univer-
sal set of operations [1, 11-16]. While qubit-based codes,
such as the surface code [17-20], guarantee this error sup-
pression, bosonic codes do not. However, bosonic codes
offer a key advantage: they suppress errors directly at the
hardware level. By concatenating a bosonic code with a
qubit-based code, it is possible to harness the strengths of
both approaches, resulting in a hardware-efficient fault-
tolerant (FT) architecture [21-29]. Crucially, the opera-
tions used for concatenation must be carefully designed
to preserve the intrinsic error suppressing properties of
the bosonic code. This ensures that the outer qubit-
based code only addresses smaller residual errors, poten-
tially reducing the overall hardware overhead required for
fault tolerance.

In this work, we concatenate the 4C code with a fusion-
based [30] version of the XZZX code [31, 32] to achieve
full fault-tolerance. =~ We design a novel planar lay-
out to implement fusion-based error correction (FBEC)
[30, 32, 33]. Our approach for concatenation relies on
two key operations: (1) error-detected preparation of 6-
body resource states and (2) destructive FT Bell mea-
surements, also known as fusions. These operations are
mediated by dedicated three-level ancillae coupled to
each bosonic mode and beamsplitter couplers across the
bosonic modes. We tailor these operations to retain the
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logical Z-(X-) states are illustrated by the Wigner-function cartoons at the poles (equators) of the Bloch sphere. (b) The cat
states can be encoded within electromagnetic modes of 3D microwave stub cavities. Neighboring stub cavities are coupled via
beamsplitter couplers (blue). Each stub cavity is dispersively coupled to a transmon ancilla (green) with a dedicated readout
resonator (gray). (c) The stub-cavities (®) are tiled on a planar layout with nearest-neighbor connectivity (—), to implement
the fusion-based X ZZ X code. Here we show the most qubit-efficient layout, with degree-3, degree-4, and degree-5 connections.
Other layouts which tradeoff qubit count for simpler connectivity are given in App. G.

cat code’s resilience to single-photon loss while ensuring
first-order FT against other dominant hardware errors.
These errors include decay, dephasing, and readout er-
rors in the ancillae, as well as unwanted nonlinearities
in the bosonic mode, such as self-Kerr [34-36]. Address-
ing these ancilla errors and unwanted nonlinearities has
been a prevailing challenge for bosonic qubits [5-7, 37].
We highlight that this is a core advantage of our scheme.
Overall, the outer code only needs to address rarer er-
rors such as double-photon loss, cavity dephasing, the
occurrence of more than one dominant error in the an-
cilla, and ancilla heating. With each operation provid-
ing quadratic suppression of the dominant physical error
rates, the concatenation is expected to effectively dou-
ble the fault distance of the XZZX code to all major
hardware errors.

Furthermore, our architecture also overcomes two core
challenges faced by linear-optical FBEC, the platform
where FBEC was first proposed [30, 32, 38]. First, un-
like linear optics, our protocol recycles measured qubits,
reducing the qubit count to be independent of algo-
rithm length. To the best of our knowledge, this is the
first 2D nearest-neighbor architecture for fault-tolerant
measurement-based quantum computing. Second, in the
absence of errors, all operations in our protocol proceed
deterministically. Failures are only caused by single hard-
ware errors during resource state preparation, which oc-
cur with probability ~ 1% for realistic hardware coher-
ences. Fusion measurements are even more robust, as
they remain unaffected by single hardware errors. This
contrasts sharply with linear optics, where all operations
are probabilistic. In particular, the intrinsic success rate
of resource state preparation is only ~ 1.5% [39], and

X X measurement outcomes are recovered by bare fu-
sions only 50% of the time [32]. A large qubit overhead
is needed to improve upon these success rates [38].

We propose to encode the 4C within an electromagnetic
mode of a superconducting microwave resonator, such as
a 3D stub cavity. These cavities demonstrate lifetimes
comparable to, and often exceeding, those of Josephson-
junction-based qubits [5-7, 40-46]. Notably, recent ex-
periments have achieved single-photon lifetimes beyond
30 ms [45, 47]. Furthermore, these cavities feature in-
trinsically low dephasing and heating rates, making pho-
ton loss the primary physical error mechanism [45, 46].
Neighboring cavities are coupled via beamsplitter inter-
actions [48-54], with each cavity controlled by a disper-
sively coupled transmon qutrit [42, 43, 55].

Previous proposals for scaling bosonic codes have relied
on multi-photon dissipation and drives [4, 56-60], or intri-
cate coupling schemes like y-matching [37, 42, 43]; both
of which have proven experimentally challenging. These
approaches were required to stabilize the 4C code against
no-jump evolution and to implement entangling opera-
tions. In contrast, our fusion-based scheme inherently
suppresses no-jump evolution by repeatedly teleporting
the logical 4C state. Furthermore, our entangling opera-
tions rely solely on well-established techniques in circuit
quantum electrodynamics (cQED) [36, 61-63].

We numerically evaluate the infidelity in the fusion mea-
surements and resource state preparation circuits due
to hardware errors. We show that the infidelities of
preparing the resource states and of the ZZ fusion scale
quadratically with hardware coherence times, confirming



first-order fault tolerance against all dominant hardware
errors in both the bosonic mode and the ancillae. With
the coherence levels of the currently feasible cQED hard-
ware, we anticipate resource state preparation infidelity
below 0.01% with a failure probability of 1%. During fu-
sion measurements, we estimate a 1% (0.1%) likelihood of
an incorrect ZZ (X X) measurement outcome. This bias
in the measurement infidelity motivates our choice of the
XZZX code, which is known to have higher thresholds
under biased noise [31]. Overall, we expect all errors to
be below the threshold of the XZZX code [31], suggest-
ing that the 4C-FBEC architecture may be a favorable
candidate for subthreshold FT QEC. However, more rig-
orous simulations are needed to confirm this.

This article is organized as follows. We start by reviewing
the preliminary concepts needed for our protocol (Sec.
IT). This section gives an overview of the 4C code er-
ror correction and the relevant operations in the cQED
platform. Our contribution, the FT protocol for concate-
nating the 4C code with the X ZZ X code, is presented in
Sec. III. Here, we introduce a novel planar architecture
for the FBEC implementation and FT protocols for all
components required to perform universal quantum com-
puting with 4C-FBEC: (1) resource state preparation, (2)
fusions, and (3) non-Clifford operations. We evaluate the
errors in (1) and (2) numerically in Sec. IITE and confirm
the first-order fault-tolerance of most FBEC operations
to dominant hardware errors. Finally, in Sec. IV, we dis-
cuss further opportunities for optimization and compare
to previous architectures for scaling up the 4C code.

II. PRELIMINARIES

In this section, we cover the background information
needed to understand our protocol. We begin by describ-
ing the 4C code and its QEC properties [3, 4]. Next, we
present an overview of the relevant operations within the
cQED [36] platform. In particular, we discuss standard
techniques to control single and pairs of bosonic modes,
as well as the effect of common hardware errors during
these operations.

A. The four-legged cat code

The 4C states {|CZ)|n = 0,1,2,3} are defined as an
equal superposition of four coherent states {|i"™
0,1,2,3}, each displaced to a vertex of a square centered
at the origin in the oscillator’s phase space, as illustrated

a) fm =

in Fig. 2 [3]. The relative phases of these superpositions
are chosen such that these states have disjoint support
over the Fock states modulo four,

IC5) o< ) + lie) + [—a) + [—ia) = Zak [4k),  (la)
ICY) o |a) —iia) — |—a) +i|—ia) = Zbk|4k+1 (1b)
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The prefactors {ag, b, ¢k, dr} depend on the “size of the
cat” |a| (see App. A1) [64]. Without loss of generality,
we assume that « is real, such that the four coherent
states are aligned horizontally or vertically in the oscil-
lator’s phase space.
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FIG. 2. Left: Bloch sphere representing the codespace of the
four-legged cat (4C) code, spanned by even-parity states |C§')
and |CS). Right: Bloch sphere for the error space, spanned
by odd-parity states |CS') and |CT'). The error-space is formed
by the action of single-photon loss a (solid arrows) on the
codewords. A second photon loss (dashed arrows) returns the
system to the codespace with an uncorrectable bit flip. The
even and odd 4C states sit on the poles of these Bloch spheres,
illustrated by cartoons of their respective Wigner functions.

As indicated in Eq. 1, two of the 4C states have support
on even Fock states, whereas the other are supported on
odd Fock states. As shown in Fig. 2, we may form a
logical qubit by spanning the two even states (herein re-
ferred to as the “codespace”): |04¢c) = |C§) , |1ac) = |CS)
[3-5]. Under this convention, the two odd states span
the “error-space”, i.e. the subspace formed by the action
of the single-photon loss on the codespace: |04cp) =
ICSY o al|C§), | lac,e) = |Cf) x a|CS), where & is the
bosonic mode’s annihilation operator.

Notably, adopting the opposite convention, where the
codespace is defined by odd parity and the error space by
even parity, yields a set of logical states with equivalent
QEC capabilities. In fact, our preferred state prepara-
tion scheme randomly prepares any one of the 4C states



(see App. D1) [5]. Therefore, we must ensure that each
operation is agnostic to the prepared 4C state.

Since the 4C codewords have well-defined parity, a single-
photon loss can be detected by measuring the photon-
number parity, I = exp(—imﬂ&), of the mode. Thus,
the parity must be measured frequently enough to make
sure that double-photon loss is rare, as it is an unde-
tectable error that leaves the parity unchanged. The
photon loss rate is proportional to the number of pho-
tons stored in the mode 7 ~ |«|?, implying that parity
must be measured more frequently for larger cats. Upon
detecting a change in the parity, we correct for photon
loss by updating our knowledge of the code basis in soft-
ware [5]. This approach is readily implemented in cQED
systems [5, 42, 65, 66] (see Sec. IIC). Thus, each of
our proposed operations must work independently of the
basis. Alternatively, photon loss can be corrected us-
In this
approach the basis remains fixed, and the entropy ac-
cumulated in the bosonic mode (due to photon loss) is

ing measurement-free or autonomous QEC [4].

transferred to an auxiliary system. Then, this auxiliary
system is reset to evacuate the entropy, restoring the sys-
tem to the codespace [3]. We do not consider autonomous
QEC as it demands for the challenging high-order cou-
pling techniques that we seek to circumvent.

A subsequent photon loss (or two simultaneous photon
losses) results in an uncorrectable bit-flip in both the
code and error spaces, i.e. |0sc) = |C§) = |lac) = |CS)
and [04cg) = |C§) = |lac,p) = |C}). Likewise, a pho-
ton gain (heating) is also an uncorrectable error; since
it may be incorrectly decoded as a photon-loss. How-
ever, the probability of two simultaneous photon losses is
quadratically suppressed [67, 68], and heating errors are
typically about two orders of magnitude less likely than
a single-photon loss [46].

In the absence of photon losses, the bosonic mode under-
goes no-jump evolution, p(t) = Ko(t)p(0)K{(t), where
Ko(t) = exp(—1iktata), p(t) is the density matrix at
time ¢, and x is the photon-loss rate [67, 68]. Unfor-
tunately, Ky commutes with II rendering the no-jump
evolution undetectable by the parity checks. In or-
der to preserve logical information, Ky must not dis-
tinguish between the logical-Z states. More precisely,
(010l KE(O)Ro(t) [010) = (Lacl K{ () Ko(#) [Lac). This is
achieved when tan |a|? = tanh |a|?, such that the logical-
Z states have equal average photon number (see App.
A 3) [64]. Even when this condition is satisfied, the no-
jump evolution causes the size of the 4C states to shrink
exponentially, |a(t)] = e~ 2%*|a(0)]. Our FBEC archi-
tecture naturally counteracts this damping by frequently
teleporting the 4C states into freshly initialized bosonic

modes via fusions (see Sec. IITA).

Another factor in choosing |a| concerns the logical-X
eigenstates. These states are approximately described
as superpositions of two coherent states aligned horizon-
tally (for |[+4¢)) or vertically (for |—4¢)), known as “two-
legged cat (2C) states” [3] and shown in Fig. 2. While the
approximation improves exponentially as |a| increases,
there are specific small values of |«| where the 2C states
exactly correspond to the logical-X eigenstates (see App.
A 2). For our numerical simulations, we use |a| = v/8, as
it closely satisfies both conditions (see App. A4). This
corresponds to an average of n ~ 8 photons in the bosonic
mode, well within experimental feasibility [6, 65].

The 4C code can also correct for a continuous set of phase
rotations with an angle smaller than w/4 [3-5, 37].
fact, the 4C code was numerically shown to have opti-
mum performance for certain bosonic channels with both
photon-loss and dephasing errors [69].
of the operations we propose explicitly detect or cor-
rect for dephasing errors. This choice is motivated by
two reasons. First, correcting these errors in practice re-
quires complex homodyne measurements of the bosonic
mode, which are not readily implemented in cQED. Sec-
ond, such dephasing errors are relatively rare and can
be addressed by the outer XZZX code. In particular,
the microwave resonators (used to host the 4C) exhibit
an inherent noise bias, with dephasing rates that are at
least an order of magnitude smaller than decay rates [42—
46, 70]. While other codes [59, 69, 71] may be optimal
under a pure photon-loss channel, however we prefer the
4C code for its practical scalability and its resilience to
ancilla-induced errors (see Sec. III).

However, none

The logical-Z operator in the 4C basis, defined as Zac =
exp (—z ata ) captures the mode’s photon-number mod-
ulo 4. In contrast, the logical-X operator X4C, deter-
mines whether a 2C state is oriented vertically or hori-
zontally in the mode’s phase space.

Fusion operations, requlred for FBEC, entail measurlng
the joint logical operators Zac @ Zsc and Xac @ Xac on
two 4C states, each within a bosonic mode with operators
a and b respectively. The logical-ZZ operator, Zac ®
Za4c = exp {—zg(aTa + I;TIA))}, measures the joint photon-
number of both modes modulo 4, whereas the logical-X X
operator identifies if a pair of 2C states are aligned or
anti-aligned. As we shall see in Sec. III C, these fusions
can be implemented by decoupling the joint information
and encoding them in the local photon-number basis of
the individual modes.



B. The cQED platform

We leverage the remarkable experimental advancements
in superconducting couplers [48-54| to connect neighbor-
ing bosonic modes. These couplers effectively admit a
programmable interaction between modes, given by (set-
ting i =1)

Hpg = % gt)atb+g*(t)abt| + A(t)ata,  (2)
where G and b are the annihilation operators of the two
modes, g is the interaction strength of the beamsplitter
interaction, and A is an effective detuning between the
two modes. In general, the beamsplitter parameters, g
and A are time-dependent and can be controlled by mi-
crowave drives.

To create useful non-classical superpositions, each
bosonic mode needs a source of nonlinearity. As illus-
trated in Fig. 1(b), our proposal couples each bosonic
mode to a dedicated auxiliary transmon [72]. The re-
sulting Hamiltonian for each pair of bosonic modes and
their respective ancillae combines the inter-mode beam-
splitter coupling with an always-on dispersive interac-
tion. In the rotating frame, this Hamiltonian is given by

36, 55, 61, 62],
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where |e); and [f); are the first and second excited states

3)

of the three-level ancilla coupled to the j*" mode. The
ground state of these ancillae is denoted |g); (not shown).
Xi,; represents the strength of the dispersive interaction
between the it" level of the ancilla and its corresponding
mode, j. For simplicity, we enforce that the second an-
cilla is always in its ground state |g), during all two-mode
operations and ignore the second line of Eq. 3.

In the previous section, we discussed the effect of photon
loss (within the bosonic modes) on the 4C states. In
addition to this, we must also consider the effect of the
dominant errors in the ancilla: decay and dephasing of
the |f) and |e) states. In fact, the coherence time of
the ancilla is typically two orders of magnitude shorter
compared to the bosonic mode [40-46]. Therefore, to
retain the advantages of bosonic QEC, it is crucial to
prevent ancilla errors from propagating to the bosonic
modes [37, 42].

Decay in the transmon ancilla can be modeled as cas-
caded transitions: first from |f) to |e), and then from
le) to |g), with respective lifetimes 77 and T¢9. Since
neither decay commutes with the dispersive interaction

(Eq. 3), they dephase the bosonic mode. To protect the
bosonic mode from this loss channel, we can operate the
ancilla exclusively in its g-f subspace, and reserve the |e)
state as a flag to detect single decay events [42, 43, 55].
If the ancilla is measured in |e), a failure is declared and
the gate is retried. Errors in these gates are detected
with a probability pe.; that scales linearly with the de-
cay rate 1/T/°. Therefore, the infidelity of a gate that
passes the check, €pags, is suppressed quadratically since
it takes two decay events to cause an undetected error:
Epass 0 1/(T{* T57) o (1/T1*)? [46, 55

We use this error-detection scheme only during resource
state preparation. This enables us to retry the prepa-
ration until success, without disrupting the other parts
of the computation, a technique known as preselection
[10]. Preselection substantially reduces the hardware re-
quirements for subthreshold QEC, as epass can be orders
of magnitude smaller than pg.; for realistic hardware co-
herences (see Sec. IIIE). On the other hand, the fusion
operations are designed to be fully FT to this error. This
means that the dephasing induced on the bosonic mode
has does not have any impact on the logical information,
without any preselection (see Sec. IITC).

Ancilla dephasing is modeled by the jump operators |e){e]
and [f)(f|, with coherence times T3¢ and Tj;f , respec-
tively. Unlike decay, dephasing commutes with the static
Hamiltonian (Eq. 3). However, as we shall soon see,
gates and measurements on the bosonic mode are imple-
mented by driving the ancilla. In this case, a dephas-
ing event may result in an incorrect operation. To en-
able preselection, we design gates to detect single de-
phasing events. This results in a quadratically sup-
pressed gate infidelity epass o< (1/T5%)% o (l/Tgf)Q, at
the expense of a failure probability that scales linearly
Prait X (1/T§°) o (1/Td’:f) [65]. For fusion operations, re-
peated measurements are employed to achieve a compa-
rable quadratic suppression of the measurement infidelity
due to ancilla dephasing.

Lastly, we mneed to consider how our scheme per-
forms against undesired non-linearities introduced by
the dispersive coupling. These effects include self-
Kerr $Ka'?a?, corrections to the dispersive interaction
x.at2a? |e><e|—|—x’f€fr 242 | f)(f], and other photon-number-
conserving non-linearities [34-36]. If no photons are
lost, these non-linearities induce a deterministic, photon-
number-dependent phase. This phase can be corrected
using SNAP gates [73] and other control techniques (see
Appendix F). However, if a photon is lost during a gate,
the mode accrues different phases before and after the
gate. Since we cannot predict when a photon will be lost,
the overall evolution becomes stochastic. To address this,



our state-preparation circuits include single-photon-loss
detection to enable preselection, while the fusion oper-
ations are engineered so that their nonlinearities have
negligible impact on the logical information.

With the static coupling between the ancilla and bosonic
mode established, let us now explore how to make the
ancilla-mediated operations on one or two modes fault-
tolerant.

C. Single-mode primitives

Unselective operations: To prepare the 4C states,
we need to displace a bosonic mode or rotate an ancilla
qutrit, independent of one another. A strong linear drive
on the bosonic mode, of magnitude Qg > x., Xy, can
displace the bosonic mode approximately independent of
the ancilla’s state. Likewise, a strong drive on the ancilla
at the frequency wg. realizes a mode-independent rota-
tion Rf(ﬁ), about an arbitrary axis cos(¢)G9¢+sin(¢)59¢
on the equator of the Bloch sphere for the g-e subspace.
Here, 67° = |g)e| + [e)(g| and 6§ = i|g)e| —ie)g]| are
the X and Y Pauli matrices in this subspace. Rotations
in the ancilla’s g- f subspace Rif (6), can be implemented
similarly.

While ancilla decay can be flagged by the |e) state, the
unselective operations are not F'T against ancilla dephas-
ing and photon-loss in the bosonic mode. However, these
operations can be performed several orders of magnitude
faster than any coherence time in the system [61, 62]. As
a result, errors occurring during these operations negli-
gibly impact the protocol.

Bosonic-mode reset (Q-switch): Since bosonic
modes are linear and long-lived, it is challenging to ini-
tialize or reset the system to a known state. In the
proposed cQED setup (Fig. 1), this can be addressed
by leveraging the fast decay rate of the readout mode.
Specifically, the coupled transmon can be driven to para-
metrically induce a swap interaction between the readout
resonator and the storage cavity [74]. This interaction
effectively enhances the decay rate of the bosonic mode,
rapidly cooling it to its ground state. Notably, this oper-
ation is robust to ancilla decay and dephasing errors, as
the ancilla only acts as a coupler. Additionally, single-
photon loss assists this parametric reset.

Photon-number measurements (PNMs): PNMs
are binary-outcome measurements of the photon num-
ber in the bosonic mode, such as parity, II or the 4C
Z-logical operator Zyc = V/II. These measurements are

crucial during state preparation as well as fusions.

To implement PNMs, we first note that the dispersive
interaction (see Eq. 3) can be interpreted as a shift of each
ancilla’s transition frequency dependent on the number of
photons in its corresponding bosonic mode. This effect is
particularly perceptible in the number-split regime, where
the shift in the ancilla’s frequency per photon, x;; is
larger than the linewidths of both the ancilla and the
bosonic mode [63, 75, 76].

In this regime a weak drive on the ancilla at the frequency
wge + nxe selectively induces Rabi oscillations in the
ancilla’s g-e manifold, conditioned on n photons in the
bosonic mode [76]. In contrast to the unselective ancilla
pulses, it is important that this Rabi drive is weak (Rabi
frequency €. < x.) such that the neighboring transi-
tions [at wge + (n £ 1)x.] are not triggered. Thus, the
pulse duration T', for a full w-rotation must be longer than
1/Xe. Similarly, a weak drive at frequency wgy +nx s se-
lectively rotates the ancilla within the g-f subspace. We
denote these photon-number selective ancilla rotations as
RIL9T(0) = n)n| @ BRI (0) + (Lbm — [n)n]) @ Tanc,
where Rgf/ af (#) is an unselective rotation in the ancilla’s
g-e or g-f subspace, and Iy, (Laye) is the identity oper-
ator for the bosonic mode (ancilla).

Such selective ancilla rotations may be superposed by
driving the ancilla at multiple frequencies. If the respec-
tive drive strengths are all weaker than x; ;, the drives
minimally interfere with one another and selectively drive
the ancilla for an arbitrary set of Fock states. [77]. PNMs
are implemented by initializing the ancilla in |g), selec-
tively excite it to |e) for a set of Fock states A/, and
then measure it. Importantly, these are quantum non-
demolition (QND) measurements [36, 43, 78], allowing
successive PNMs to extract multiple bits of information.

As mentioned previously, these measurements can be
made robust to a single ancilla decay by encoding the
information within the g- f manifold. On the other hand,
ancilla dephasing results in a faulty rotation. Conse-
quently, the photon-number information may be incor-
rectly mapped onto the ancilla, leading to a measurement
error upon readout. This can be mitigated by repeating
the PNMs to verify the result and suppress measurement
infidelity. Note that ancilla dephasing commutes with the
dispersive interaction and therefore does not propagate
onto the bosonic mode.

In Sec. IIIB we describe how to realize error-detected
parity measurements 119/ , by exciting the ancilla from
lg) to | f) selectively for odd Fock states (up to some rea-
sonable photon-number cutoff dependent on the size of
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. N usions ‘
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neEN n¢N Fusions
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Gli)zr:;ate parity check flagged by |f)
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- ” Non-Clifford
where S(¢) = ZeZ ™ [n)n| Z1c(0) reset & retry reset & retry
n
Beamsplitter (BS) gates GHZ state parity check 1o effect 1o effect parity check
0 i i prep. (both ancillae | (both ancillae ’
BS(0) = exp |:§(a ) a):| Fusions ﬂ in |g)) in |g)) ﬂ
if no photons
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— flagged by |e) | flagged by |f) ) .
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cZZsc =1Q® |9)(gl, +ZZsc®|f),(f; Non-Clifford (L(Lns else, reset &
see Sec. oset & . . retry
ZZsc(0) 1C) reset & retry reset & retry retry

TABLE I. Summary of dominant hardware errors affecting primitive operations for a single bosonic mode (PNM, SNAP) and
a pair of modes (BS, ancilla-controlled logical gates). These operations are natively implemented in cQED using a dispersively-
coupled non-linear ancilla (e.g., transmon) and beamsplitter couplers. The primary errors in such a platform include photon
loss in the bosonic mode, ancilla decay and dephasing, as well as non-linearities inherited by the bosonic mode (e.g., self-Kerr).
Operations can: inherently correct a single error (green), detect errors (blue), or fail undetectably (red), causing uncorrectable
errors on the 4C code. For errors that can be detected or corrected, we detail the detection process (before the arrow) and the
corresponding response (after the arrow). Errors during unselective operations and bosonic-mode resets are excluded, as these
operations are faster than any physical coherence time and they minimally impact the protocol.

the cat). In Sec. III C we explore a more optimized mea-
surement scheme where all three levels of the ancilla are
used to encode different information. The |e) state asks
whether the bosonic mode is in the vacuum state and the
|f) state encodes the photon-number parity or photon-
number modulo 4 information. As we shall see, we can
exploit the end-of-the-line nature of fusions to make these

Selective Number-dependent Arbitrary
(SNAP) gates: SNAP imparts an arbitrary phase
on each Fock state in the bosonic mode, S(¢) =
>, €t In)n| [43, 73]. SNAP has been experimentally

optimized measurements robust to ancilla decay and de-
phasing.

Phase

demonstrated for several photon-number preserving ap-



plications [73]. In this work, we use SNAP to undo the
parasitic evolution due to the bosonic mode’s self-Kerr
effect (Sec. IIIB) [73] and to implement Z,c(f) gates
(Sec. IIID) [43].

We can apply a geometric phase, ¢ on any sin-
gle Fock state via two consecutive photon-number se-
lective rotations on the ancilla, along different axes,
Ri’fn(—ﬂ')Rg{;(ﬂ') [73]. As before, these photon-number
selective operations can be chained together, allowing
each Fock state |n) in the bosonic mode to acquire a
distinct phase ¢,,.

As with PNMs, we operate within the g-f manifold and
reserve the |e) state to detect single ancilla decay events
[43]. Since the ancilla ideally returns to the |g) state
at the end of the operation, the |f) state can be used
as a flag for a single dephasing event. If the ancilla
is measured in |f), the bosonic mode is not disturbed
and the gate may be retried [43]. This fact may not be
immediately obvious; therefore, we point the reader to
detailed derivation in Ref. [43]. In summary, the gate-
infidelity for this error-detected construction of SNAP
scales quadratically with both ancilla decoherence times,
Epass X (1/T1\€><f|)2 7 (1/Tq‘5f><f‘)2'

D. Two-mode primitives

Beamsplitter (BS) unitary: The BS is an indispens-
able tool for coupling bosonic modes, and has been ex-
perimentally realized to high-fidelity [48-50, 52-54]. In
our protocol, the BS is used during both resource state
preparation and fusions.

It can be realized by initializing both ancillae in their
ground states such that the bilinear interaction I:IBS re-
mains the only active term in Eq. H2. This Hamiltonian
facilitates the implementation of any beamsplitter uni-
tary, BS(6), as given by Table I [51]. This operation is
not affected by the dominant ancilla decay and dephas-
ing errors since neither ancilla is excited out of its ground
state. As for single-photon loss in the bosonic mode, we
employ a different correction strategies for resource-state
preparation and fusions.

Ancilla-controlled logical gates: Lastly, we con-
sider logical-ZZ gates between two 4C states. To re-
alize these, we first reinterpret the dispersive interac-
tion as an ancilla-state-dependent beamsplitter detun-
ing A" = A — xs.alf),(fl, [55]. This implies that the
two modes evolve conditioned on the ancilla’s state. The
evolutions can be designed so that the bosonic modes re-

turn to their initial states at the end of the operation,
but with different geometric phases that are kicked back
onto the ancilla. In particular, choosing g = /15,2 Xf.as
A = —xy,/2, and a gate time T = 7/xy,, we can imple-
ment an ancilla-controlled ZZ,c on the bosonic modes,
¢ZZsc = Tom @ Tom ® 19)o(9la tZac®Zac®|f) (fl, [55]-

Coupled with unselective ancilla rotations figf (9), the
cZ Z4c operation can be exponentiated to form a family
of parametrized entangling gates on the bosonic modes,
155,

A 71' ~ R ﬂ'
22i0(0) = BY (-2 220 R 0) - 2200 BT ().
(4)

Similar to the error-detected SNAP gate, a successful
ZZyc(0) gate returns the ancilla to |g),, while the |e),
state flags a single ancilla decay event [42, 43] and |f),
flags a single dephasing event [55]. These errors are
only detectable, as an unknown unitary is applied to the
bosonic modes in the presence of an error.

Lastly, single-photon loss during the operation can be de-
tected by measuring the stabilizers of the 4C code (i.e.
local photon number parity) after the gate. However,
single-photon loss is no longer correctable since such an
event dephases the ancilla resulting in an unknown over-
all unitary [55].

III. FBEC WITH THE FOUR-LEGGED CAT
CODE

In this section, we present our novel protocol to con-
catenate the four-legged cat code with the fusion-based
version of the XZZX code [31, 32]. First, we review
FBEC and introduce a novel fully-planar architecture for
its implementation. To the best of our knowledge, this is
the first 2D nearest-neighbor architecture for FT FBEC
[31, 79-82]. Next, we examine how to implement the two
key FBEC operations, entangled resource state prepara-
tion and fusion measurements, using the 4C code. Im-
portantly, these operations are first-order FT, ensuring
that no single dominant hardware error can propagate
from the 4C to the XZZX code. We support our anal-
ysis through numerical simulations. Lastly, we explain
the implementation of a non-Clifford operation, Z4c(6),
that is essential for universal quantum computation.
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FIG. 3. (a) In conventional implementations, the X ZZX code in FBEC uses a 3D grid of resource states [31, 32]. Here we show,
six data qubits (in the bulk of the code) that are repeatedly teleported while two stabilizers (purple and orange plaquettes)
are simultaneously measured. This is achieved by alternating layers of blue and red 6-ring resource states and fusing them
together with Bell measurements (gray ovals). (b) Our initial planar architecture (Planar FBEC v1) simplifies the 3D design
by retaining one layer of blue and red resource states, each. However, overlapping fusions prevent a fully planar configuration.
(¢) The optimized design (Planar FBEC v2) achieves a truly planar layout with 25% fewer qubits. Here, some qubits are
dynamically repurposed between blue and red resource states depending on the time step. Consequently, connections between
qubits behave as either links between resource states or fusions, depending on the time step. (d, e) The four-step sequence for
Planar FBEC v1 and v2, shows how the logical information (yellow highlights) is teleported back-and-forth between the blue
and red qubits. v2 is obtained from v1 by noting that some qubits (light-red and light-blue) do not actively participate in every

time-step, and can thus be repurposed.

A. Planar FBEC

Fusion-based quantum computing [30, 32, 33] is a quan-
tum computing paradigm tailored for systems that lack
a universal set of deterministic unitary gates. In this
approach, computation relies on two fundamental opera-
tions: generating few-body entangled resource states and
performing destructive Bell measurements (X ® X and
Z ® Z), known as fusions.

In this work, we focus on the recently proposed FBEC
protocol [31, 32] based on the XZZX code [83]. This
protocol achieves QEC by sequentially teleporting an en-
coded planar X ZZ X state, from existing resource states
to newly prepared ones [79-82] [see Fig. 3(a)]. Both
the teleportation and stabilizer measurements are per-
formed through fusions. We choose the XZZ X version
of FBEC for two key reasons. Firstly, the XZZX is no-
table for achieving higher thresholds than the standard
surface code in the presence of biased noise [31, 32, 83].



Our fusion measurements manifest this bias, as hardware
errors primarily affect the ZZ outcomes rather than the
X X ones. Second, the preparation of resource states re-
quired for the XZZ X-FBEC protocol is simpler for the
4C code.

The resource states needed for FBEC are composed of
four “X-type” (depicted by e) and two “Z-type” (depicted
by 0) qubits [31, 32, 84]. Conventionally, this distinc-
tion is based on the basis in which the qubits are initial-
ized [31, 32, 84]. However, our protocol often initializes
bosonic modes outside the 4C codespace (see Sec. IIIB).
Therefore, we categorize X- and Z- type qubits by the
type of three-body stabilizer centered on each qubit. For
an X-type qubit, the stabilizer is Z ® X ® X, with the
X-type qubit placed to the left and the Z-type qubit to
the right. For a Z-type qubit, the stabilizer is Z ® Z ® Z
with X-type qubits on each side.

By reusing previously measured qubits, FBEC can im-
plement an arbitrarily long computation using a limited
number of qubits [84]. This is accomplished by repeat-
edly teleporting the logical state back and forth between
two planes of resource states. These two planes, repre-
sented in red and blue in Fig. 3, can be organized into a
2D layout as shown in Fig. 3(b). While this layout only
features nearest-neighbor connections, some of these con-
nections overlap, breaking planarity. To address this, we
present an optimized layout in Fig. 3(c) that eliminates
overlapping connections and further reduces the qubit
footprint. Before discussing this optimization in detail,
let us first how a single round of stabilizer measurements
is implemented in the initial architecture.

The four-step stabilizer schedule, shown in Fig. 3(d)
works as follows. Let us assume that the XZZX code is
initially encoded in the red resource states, and the logi-
cal information (yellow highlights) resides in the top half
of each red 6-ring (yellow highlights), which were carried
over from the previous cycle. The bottom halves (light
red) and all blue qubits have been measured previously.
This cycle begins by reinitializing the blue qubits as fresh
6-ring resource states (step 1). Next, the blue 6-rings are
fused (gray ovals) with the carried-over red states (step
2), completely measuring the red qubits and teleporting
the XZZX code to the blue sublattice. Now, the infor-
mation (yellow highlights) resides in the top half of each
blue 6-ring. The red qubits are then reinitialized as fresh
6-rings (step 3), and the code is teleported back to the
red sublattice via further fusions (step 4). This leaves
the information encoded in the top half of each red 6-
ring, ready for the next stabilizer cycle. The XZZX
stabilizers are reconstructed by multiplying the fusion
measurement outcomes [31, 32]. This layout can be fur-
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ther optimized (Fig. 3(c)), reducing the qubit count by
25%. The light red and light blue qubits, which are mea-
sured but not immediately reinitialized, are recolored and
reused, ensuring that each qubit actively participates in
every cycle.

Our proposed implementations of these steps with the
4C code ensure that no single dominant hardware error
can propagate to the XZZX code. The resource state
preparation scheme can detect and discard states with a
single hardware error. This quadratically suppresses the
infidelity of the prepared states, as two hardware errors
are needed to bypass error detection. Furthermore, the
fusions are inherently first-order F'T. Now, let us look at
how to implement these operations.

B. Preparing the resource states

As shown in Fig. 4(a), the 6-ring resource states are
constructed in two steps. First, we prepare two copies of
the 3-body GHZ state, %(|+4C>®3 + |—4c)®?). Then,
these GHZ states are entangled using CZ gates, to form
the 6-ring state.

We emphasize that, in the absence of errors, these re-
source states can be prepared deterministically. A single
dominant hardware error leads to a detectable failure,
which occurs with a probability of about 1% for practi-
cal coherence times (see Sec. IIIE). This contrasts with
conventional linear-optical FBEC, which requires an in-
creasing number of qubits to reduce the failure rate below
25% [38].

To prepare the GHZ state, the first mode is initialized in
‘CO 3a>, while others are set to vacuum. The cat state is
initialized with three times the usual energy, because the
circuit, in Fig. 4(b), distributes the energy evenly across
the three modes through beamsplitters. The first beam-
splitter transfers two-thirds of the energy to the second
mode, and the second transfers half of this to the third.

This energy transfer can be understood by looking at
the action of a beamsplitter on a generic coherent state
|8) and vacuum: BS(0)[[8) @ [0)] = |cos(§)8) ®
|—sin(g)ﬁ>. By tuning the beamsplitter interaction
time, we can set 0 to 0* = 2arccos(%) and transfer

two-thirds of the energy to the second mode. Thus, the
first beamsplitter acts on the 4C code as,

BS(6%) Hcﬁﬁ ® \o>} = ) ® |[-v2a) + |—a) ® [vV2a)



+ i) ® |—iv2a) + |—ia) ® |iv2a).

(5)

Note that we have temporarily disregarded the third
mode as it remains unentangled and inactive.

@ Error-detected
CZ gates
X—17Z

@ Prepare 3-body GHZ states

Check: p, = p;

X Py

—
i

CZ gates between

{pmde

FIG. 4. (a) The 6-ring FBEC resource states are fault-
tolerantly constructed in two steps. First, two 3-body GHZ
states are prepared. Then, these GHZ states are entangled
using CZ gates. We show all three stabilizers that define each
GHZ state and some stabilizers that define the 6-ring state.
(b) To form a GHZ state in the 4C code, the first mode in

each set is initialized in the C(}/go‘ state (three times the

usual energy of |04c)), with all other modes in vacuum, |0).
These modes are entangled using beamsplitters, BS(6), and
mid-circuit photon-number parity measurements, f[, to form
%(H—w)@g + |—4c)®?). Photon loss is detected via parity
checks (marked in red), where p; € 0,1 are parity results
summed modulo 2. If any check fails, the state is discarded
and the circuit is retried. As a result the infidelity of the re-
sulting state is suppressed quadratically.

Next, we measure photon-number parity on both modes.
This measurement is represented by the projector My, o
1 + (=1)PIL;, where p; € {0,1} is the result of the par-
ity measurement on the i*"

outcomes result in a Bell state in the 4C basis, albeit

mode. Both measurement
with opposing parity. Since the parity of the input states
is even and the beamsplitter conserves joint parity, the
parity measurement outcomes must match, p; = ps. A
mismatch signals a measurement error or photon loss,
prompting a restart.

As an example, let us consider the post-measurement
state when both parity outcomes are even, i.e. p =p; =
p2 = 0. This yields,

[Mr{l ® MHQ}BS(o*) Hcoﬁa> ® |0>]

o {|0¢> + |—a>} ® [|\f2a> + \—\/ioz)}
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+ [Jia) + |=ia)] @ [ iv2a) + |=iv3a)]  (6a)

~ |+ac) ® |[+ac) + |—4c) ® |—40) - (6b)

In the last line, we have used the fact that the logical-
X eigenstates of the four-legged cat code are exponen-
tially well approximated by the two-legged cat states
(see Sec. ITA and App. A2). Importantly, note that
the odd parity outcome p = p; = po = 1, is equally
probable. For this outcome, the post-measurement state
is an equally valid Bell pair of odd 4C states, given by
|+40,8) ® |H+ac,E) — |—ac,E) ® |[—ac,E). In either case,
parity can simply be tracked in software.

After entangling the first two modes, we continue by en-
tangling the third mode. As before, we do so with a
beamsplitter followed by a pair of parity measurements,
this time between the second and third modes. Unlike
the previous step, a beamsplitter angle of 7 is used,
transferring half of the energy from the second mode to
the third. In this step, the joint-parity checks can be
cross-referenced with earlier parity measurements to de-
tect single-photon loss. Specifically, p3 + ps = p, where
p3 and p4 are the parity outcomes for the second and
third modes, obtained during the second round of mea-
surements (see Appendix D for a complete derivation).

The parity measurements in this circuit are imple-
mented by selectively exciting the ancilla from |g)
to |f) for odd states in the bosonic mode, i.e.,
PNMgf(l,...,2n+1,...). As discussed in Sec. IIC,
these measurements inherently detect a single ancilla de-
cay. By repeating the measurements twice, we can also
detect a single dephasing event or SPAM error. Together,
error-detected PNMs and joint-parity checks ensure that
all single-jump errors are flagged. The circuit is retried
until all checks are successfully passed. Notably, the
probability of failure for these checks scales linearly with
hardware error rates, meaning the infidelity of the pre-
pared GHZ state is primarily limited by rare double-jump
errors. This approach ensures a quadratic suppression of
infidelity, albeit with the tradeoff of occasional circuit re-
tries. Crucially, retrying the resource state preparation
should not interrupt the other parts of the ongoing com-
putation.

With the three-body GHZ states prepared, we couple two
copies of these states using CZ gates to form the desired
6-ring resource state. This gate can be implemented with
the ancilla-controlled ZZsc (3) (see Eq. 4), which is
equivalent to CZ up to single-qubit Z-rotations. Like the
GHZ state circuit, the CZ gates are designed to detect
single decay or dephasing errors in the ancilla (see Sec.
IID). Additionally, parity measurements performed after
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FIG. 5. (a) Fusions measure Xic ® Xac and Zuc ® Zac for a
pair of qubits. In the 4C code, these correspond to measuring
the relative phase and joint photon number between modes.
A 50:50 beamsplitter, BS(%), transforms this non-local Bell-
state information into properties of the local photon number
7, which are then measured via PNMs. The Xuc ® Xac infor-
mation (green) is encoded in whether the local photon number
is zero (A = 0). The Zsc ® Zac information (blue) is encoded
in the photon number modulo 4 (7 mod 4 = 0,1,2,3). (b)
The X40® X4c information is extracted by selectively exciting
the ancilla from |g) to |f) if the bosonic mode has zero pho-
tons. The 4-parity is determined in two steps: first, a parity
measurement ﬁ; then, the 4-parity is obtained using v/II or
\/ﬁ/, depending on the outcome of the parity measurement.

the gate detect single-photon losses, keeping the infidelity
of the CZ gates quadratically suppressed [55].

Furthermore, the 6-ring preparation protocol can be
made robust to parasitic nonlinearities, such as self-
Kerr.  Since single-photon losses are detected and
discarded, successful attempts ideally proceed without
photon loss. In these cases, the Kerr evolution re-
mains unitary and can be effectively reversed using the

SNAP gate, S([O 0 Kt ... {(n> —n)Kt }T) =

1 peat2a2,\ T
e‘Z%K“T2“2t> [73]. Since the SNAP gate can detect
single hardware errors, it is consistent with the error-

detection capabilities within the rest of the 6-ring circuit
[43]. t

C. Fault-tolerant fusions

The key to our protocol relies on the ability to use de-
structive fusions in FBEC. Hence, the bosonic modes are
not required to remain in the 4C codespace, provided
the measurement outcomes are accurately recovered. As
shown in Fig. 5(a), this is achieved by evolving the 4C
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states through a 50:50 beamsplitter, BS(%). The crucial
insight is that the beamsplitter encodes the Bell-state in-
formation in the photon number of each mode [85-87].
This encoded information can then be extracted by mea-
suring the photon numbers individually using PNMs. We
highlight that our fusions are deterministic, unlike linear
optical FBEC, where the X X outcome is lost 50% of the

time.

Table II illustrates how the beamsplitter transforms Bell
states within the 4C basis [85-87]. These states are char-
acterized by the eigenvalues A\, and A, of the operators
X4c ® Xyc and Zyc ® Zyc, respectively. We abbreviate
these measurements X X and ZZ respectively.

We begin by describing the XX measurement. For
Azz = —+1 states, interference through the beamsplit-
ter produces a superposition where one mode is in the
vacuum state, while the other contains a cat state with
twice the original number of photons. Conversely, the
Azz = —1 states result in a superposition where both
modes contain cat states. Thus, the beamsplitter maps
the XX information to whether one of the modes has
zero photons or not (see column 4 of Table II). This can
be determined using PNMSs on each mode, conditioned on
detecting the vacuum state. This is represented by the
unitary V' = PNM9/({0}) followed by an ancilla mea-
surement.

Even with perfect measurements, an unavoidable error
can arise in the XX measurement. Since the cat state
IC§) has a small but non-zero overlap with the vac-
uum, the |A\zz = —1,\,, = +1) state has an exponen-
tially small probability, proportional to e_|a|2, of being
misidentified as the |A;, = +1,\,, = +1) state. Our nu-
merical simulations (see Sec. IIIE) suggest that this er-
ror dominates over the hardware errors. Minimizing the
error requires a larger |a|?, which competes with the pho-
ton loss rate, |a|?/T1°%, that can make other measure-
ments worse.

Once A, is determined, we can proceed to the ZZ mea-
surement. Importantly, this measurement depends on
Azz- 1f one mode is found to be in the vacuum state
(Azz = +1), A, can be deduced by measuring the pho-
ton number modulo four (4-parity) in the other mode
(see column 4 of Table II). This is accomplished with
a straightforward binary search. First, photon-number
parity is measured using a PNM conditioned on an odd
number of photons, IT = PNMY({1,3,...,2n + 1}).
Depending on whether this initial measurement indi-
cates even or odd parity, the subsequent measurement
uses either VI = PNMY¢({2,6,...,4n + 2}) or VII' =
PNMY¢({1,5,...,4n+1}). Alternatively, if neither mode
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TABLE II. Bell measurements in the 4C codespace. The four Bell states (column 3) are labeled by their eigenvalues Az, and
Az: (columns 1 and 2), corresponding to the operators Xsc ® Xuc and Zsc ® Zac, respectively. Our protocol encodes Bell-state
information into local photon-number properties using a 50:50 beamsplitter, BS(%) [85-87]. Column 4 shows the resulting states

after the beamsplitter, up to an exponentially small error O(e

—Q\aIZ)

. These states can be distinguished by two photon-number

properties: (A = 0) and (A mod 4 = 0, 1,2, or 3), where 7 is the photon-number operator of either mode. Columns 5 and 6

present the states after a single photon is lost from the first (@) or secon

(b) mode. Each half of the superposition in columns

3, 4, and 5 is distinct from one another. Therefore, we may use the same measurements to reliably recover the A;; and A,
eigenvalues even after a photon has been lost. Normalization constants and global phases have been ignored for all states. See
Appendix C for an exact expression of the Bell-states after the beamsplitter.

is in the vacuum state (A, = —1), the states can be
directly distinguished by measuring the photon-number
parity.

Remarkably, these entangling measurements preserve the
code’s resilience against single-photon loss, regardless of
whether the loss occurs before, during, or after the beam-
splitter. If the photon is lost after the beamsplitter, the
resulting states correspond to those shown in columns 5
and 6 of Table II. These states can be distinguished from
each other and from the lossless states (column 4) using
the same local PNMs: V, II, V/II, and \/ﬁl. Instead, if a
photon is lost before or during the beamsplitter, the re-
sulting state becomes a weighted superposition of a pho-
ton loss occurring after the beamsplitter in one mode or
the other. The PNMs then collapse this superposition
into the states in either column 5 or 6.

Having addressed photon jumps, we now turn to the ef-
fect of no-jump evolution. As discussed in Sec. IT A, no-
jump evolution simply reduces the size of the cat state
without altering the photon number parity or 4-parity.
Consequently, no-jump evolution after the beamsplitter
preserves the Bell-state information that we aim to ex-
tract. However, unlike photon jumps, the fusions are not
FT to no-jump evolution immediately before or during
the beamsplitter. Fortunately, the beamsplitter is a fast
operation [52, 53|, and errors during this brief window
are several orders of magnitude less likely, contributing
negligibly to the overall error budget.

After the beamsplitter, the fusion measurements are fully

FT to dephasing and to evolution due to non-linearities
in the bosonic modes, as these commute with the photon
number. During the preparation of the 6-ring states, a
SNAP gate was required to correct for the phase evolu-
tion caused by non-linearities, such as self-Kerr and x’.
However, no such correction is needed during fusions, as
these measurements occur at the end of the protocol,
where any accumulated spurious phase does not affect
the fusion outcomes. This robustness is a key advantage
of encoding the Bell-state information into the photon
number of each mode. As with no-jump evolution, such
errors could in principle affect fusions if they occur be-
fore or during the beamsplitter; however, these events are
comparatively rare.

We know from Sec. II C that errors in the ancilla during
a PNM may propagate to the bosonic mode as random
dephasing. Following the discussion above, dephasing in
the bosonic mode may seem benign for the Bell measure-
ment. However, these ancilla errors, including 77, Ty,
SPAM errors, and control pulse errors, can result in an in-
correct measurement outcome. Nevertheless, these errors
can be suppressed by realizing that fusions are end-of-
the-line measurements and that the PNMs are quantum
non-demolishing (QND) measurements on the photon-
number space. Thus, we may reset the ancilla and repeat
the PNMs to confirm the results. Appendix C provides
complete details of the complete adaptive measurement
scheme that uses a three-level ancilla to recover the cor-
rect Bell measurement result despite a single photon-loss
or ancilla error.



Fig. 6 shows an illustrative example of this
adaptive measurement sequence for the input state
Moz = +1,Aez = —1) = F(1440)* = |-40)®?). Tn the
ideal case, no errors occur and repeated measurements
yield consistent results. Only one more measurement is
needed to confirm the first result. In the example shown
in Fig. 6, a photon is lost from the first mode before the
beamsplitter, putting it in an odd-parity state. A set of
measurement errors result in disagreements between re-
peated measurements. Note that incorrect measurement
outcomes may lead to incorrect choices for future mea-
surements. However, our complete measurement scheme
addresses these errors.

Legend
Input state: |+40) %% + |—4c) ®2 9 .
T~ F=() ->}f>)
— |Amod2=1>le
(a) No errors o 2B
R X
Declare X L /7"_>m
Azz = +1 \/H = [amod2=1>|¢)
e outcome \‘f/) “_Q /\zz =1 else > |g)
BS 2 2 =0 m-»m
(X (X (X (X A L=
4/H — [Amod 2=1->e)
H \/ﬁ v H H else —>lg)
outcome |g) le) le) l9) ; — measurement
v v v v - error
L,% — single photon
(b) With errors loss
o A / _ correct
Declare outcome
Aee = +1 incorrect
X outcome

Az,z =-1

% 77\ | outcome \f) lg) 1)
BS| 5 Yl <7

FIG. 6. Examples of adaptive measurement sequences for the
input state | Az = +1,A:, = —1) = %(ch)@2 — |—4c>®2).
(a) In the ideal case, where no errors occur and repeated mea-
surements yield consistent results. (b) Measurement errors
and photon-loss cause disagreements between repeated mea-
surements, which can be resolved through additional measure-
ments. See App. C for a complete flowchart of the adaptive

measurement sequence.

D. Non-Clifford resource states

While the cluster state natively supports Clifford opera-
tions via lattice surgery, non-Clifford operations are es-
sential for universal quantum computation [1, 18, 88].
Typically, logical non-Clifford operations can be imple-
mented through magic state distillation and gate tele-
portation [18, 89-92]. These schemes requires preparing
a physical qubit in a non-Clifford state to distill a logical
counterpart. In our protocol, this state is constructed by
preparing a single bosonic mode in the |+4¢) state, via
displacements and parity measurements (see Appendix
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D), followed by a Z4c(f) using SNAP,

Zic(0) = €% [4n)dn| + e~ [dn + 2)(4n + 2| (7a)

=s([50-%0..]). (7b)

The ZZ4c(0) gate (see Sec. IID and Ref. [55]) can com-
bined with the approach in Ref. [92] to further improve
the efficiency of magic state distillation.

All operations used for preparing magic states are
equipped with single-error detection, enabling attempts
with flagged hardware errors to be discarded. Selecting
only instances with no error flags ensures that the over-
all infidelity of the prepared magic states is quadratically
suppressed, thereby reducing the overhead of the distil-
lation protocol [91-93].

E. Numerical Simulations

We numerically simulate the Lindblad master equation in
QuTiP [94, 95| to verify the FT properties of the six-ring
preparation circuit and fusion measurements. Unfortu-
nately, entirely simulating the preparation of the six-ring
state is computationally infeasible as it involves a large
Hilbert space, with multiple bosonic modes each with
a three-level ancilla. Therefore, we separately simulate
the PNMs and the ZZyc(%) gate involved in the cir-
cuit. Then, we add the infidelities and failure probabil-
ities associated with each operation to obtain estimates
of these metrics for the complete circuit. For fusion mea-
surements, we simulate the full adaptive measurement
sequence with feed-forward. The simulations account for
ancilla decay, ancilla dephasing, and photon loss in the
bosonic modes (details in Appendix H). As shown in Fig.
7, we independently enable each error at a time, to ver-
ify first-order F'T with each error source independently.
These simulations also mimic experimental control pulses
with a non-zero coherent pulse error, demonstrating first-
order robustness these errors as well.

For the resource state preparation, we evaluate the av-
erage gate failure probability, ps.;1, and the average infi-
delity of successful gates, epass. As explained in Sec.IID,
this circuit incorporates checks that detect all first-order
jumps from each error channel, preventing any single er-
ror from propagating to the outer code. This is confirmed
by the linear dependence of pg,;; on coherence times. Con-
sequently, only second-order jump errors contribute to
the infidelity of error-detected gates. These errors man-
ifest as rare Pauli-X errors, which are handled by the



outer code. Our numerical simulations of the ZZ-gate
confirm this first-order insensitivity, showing that epaes
scales quadratically with each coherence time.

We combine the simulations of the ZZ-gate with the par-
ity measurements (implemented using PNM9/ ) to bound
the fidelity and failure probability of preparing the 6-ring
resource states. This is shown in the top row of Fig. 7.
With realistic coherence times, we can achieve pe.j ~ 1%
and epass below 0.01%. The state preparation infidelity
plateaus at ~ 1 x 10~% which corresponds to the square
of the pulse infidelities. Importantly, this highlights that
the fusion measurements are first-order insensitive to con-
trol errors as well.

We simulate the complete adaptive measurement scheme
to implement FT fusion measurements, where PNMs are
repeated to resolve conflicting outcomes. We classify the
measurement infidelity into the probabilities of misiden-
tifying the A, outcome (p,.), the X,, outcome (p..),
or both outcomes (py,). While p,, is fundamentally lim-
ited by the overlap of coherent states with vacuum e"a‘z,
both p,, and p,, demonstrate quadratic (or better) scal-
ing with coherence times. Just as before, the probability
of error plateaus at approximately 1 x 10°, correspond-
ing to the square of the PNM pulse infidelity. The fusion
measurement sequence may lead to an inconclusive re-
sult, with probability pf.;. This can be treated by the
outer QEC code as an erasure of the measurement out-
come.

We simulate all operations on 4C states of size |a| =
V/8 ~ 2.83, and, where needed, also consider states with
sizes v2a and v/3a. Note that unlike previous pro-
posals [37, 42, 43], our protocol achieves fault-tolerance
without matching x. to xy. We explicitly show this
by implementing an exaggerated difference in x values,
Xge/2m = —2 MHz and x,5/2m = —1 MHz. This re-
sults in a beamsplitter rate of approximately 2 MHz for
the ZZ4c (%) gate. All simulations are implemented with
realistic time-dependent pulses, with the error channels
enabled in succession (details in Appendix H).

IV. DISCUSSION AND CONCLUSION

While single-mode bosonic codes have demonstrated im-
pressive improvements in quantum memory lifetime, im-
plementing error-corrected operations and achieving full
fault tolerance with bosonic qubits has remained a per-
sistent challenge. Our work addresses this challenge by
introducing a novel framework for FT quantum com-
puting by concatenating the 4C code with the XZZX
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surface code through a fusion-based architecture. Cru-
cially, all operations required for this concatenation are
implemented using standard tools from the circuit-QED
toolbox. Our numerical simulations demonstrate that
the errors in these operations scale quadratically with
the dominant hardware coherence times. This ensures
that the concatenation retains the 4C code’s capability
to suppress the most prevalent errors at the hardware
level, leaving the X ZZ X code responsible for addressing
the rarer residual errors. Furthermore, we propose a new
planar FBEC architecture that is fully compatible with
superconducting circuits.

We simultaneously solve three key challenges which have
plagued previous efforts to concatenate bosonic codes
with circuit-based qubit codes: implementing FT en-
tangling operations, correcting errors introduced by cou-
pled ancillae, and mitigating state distortions caused by
no-jump evolution and parasitic nonlinearities such as
self-Kerr.
plex techniques such as dissipation engineering [4, 58|,

Previous architectures have relied on com-

multi-photon pumps and many-wave mixing couplers
[4, 56, 57, 60], or intricate coupling methods such as x-
matching [37, 42, 43] to preserve the intrinsic error sup-
pression of the bosonic codes. In contrast, our approach
avoids these experimentally demanding techniques and
instead employs conventional cQED tools: dispersively
coupled transmons and beamsplitters.

We opt for a fusion-based architecture for two reasons.
First, fusion measurements can be easily implemented us-
ing conventional cQED tools. Second, FBEC naturally
mitigates the no-jump evolution by repeatedly teleport-
ing the logical 4C information, thereby circumventing the
need for complex nonlinear interactions to stabilize the
cat-code manifold. Taken together, our protocol sub-
stantially relaxes the hardware requirements for achiev-
ing fully FT QEC with the 4C code. The fusion-based
protocol relies on two key steps: preparation of 6-ring
resource states and the fusion of these states together
using Bell measurements. Using current cQED hardware
coherences, we project 6-ring preparation infidelities be-
low 0.01% with a 1% probability of failure. Meanwhile,
fusion measurements are expected to have a 1% chance of
an incorrect ZZ outcomes and a 0.1% chance of incorrect
X X outcome.

Furthermore, our protocol addresses the limitations of
conventional linear-optical FBEC. First, linear-optical
FBEC requires a number of qubits that scales quadrati-
cally with the code distance and linearly with the length
of the algorithm. In contrast, we propose a novel planar
implementation of FBEC. This architecture efficiently
reuses previously measured qubits and reduces the qubit
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FIG. 7. Numerical simulations (dots) and fits (dashed lines) of each step of our protocol, under three hardware error channels:
ancilla dephasing, decay, and resonator photon loss. (Top) The failure probability pran (red) and gate infidelity €pass (black) for
the six-ring resource state preparation circuit. These values are to be interpreted only as an estimate, as they are computed
by separately simulating the PNMs and ZZac(w/2) gates, followed by adding the corresponding infidelities and probabilities.
Notably, gate failure probability pr.i scales linearly with coherence times, while gate infidelity €pass scales quadratically. (Bot-

tom) Infidelities of the complete adaptive measurement sequence for a fusion measurement. The error in the fusion can be

categorized into probabilities of misidentifying the Az, outcome (pzs, green), the .. outcome (p.., blue), or both outcomes

Dyy, yellow). pu. is dominated by a fundamental error in the measurement, e~ In contrast, p.. and p,, scale quadraticall
vy Y Y Yy y

(or better) with the coherence times. However, p.. eventually saturates to around 1072, which is the square of the infidelity

of the PNM pulses. The measurement sometimes yields an inconclusive result (i.e. an erased measurement), with probability

prail (red). This figure only provides a qualitative description of the fitted probabilities, in
the execution time T'. See App. H for the complete fitted expressions.

overhead to only a quadratic dependence on code dis- In general, we expect

terms of the decoherence times and

that all operations can be per-

tance. Second, in linear optics, resource state prepara- formed below the threshold for FBEC [31, 32]. The
tion and fusions succeed only probabilistically. This ne- XZ7ZX code is expected to use this noise bias to improve

cessitates multiplexing and a prohibitively large number overall logical performance.

of additional qubits to boost the success probability for
preparing resource state above ~ 1.5% and for recovering
X X fusion outcomes above 50%. In contrast, all steps in
our protocol are deterministic, limited only by rare hard-
ware errors. Even with such errors, resource state prepa-
ration results in flagged failures just ~ 1% of the time,
for realistic hardware coherences. Fusion measurements
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Appendix A: The four-legged cat code

1. The four-legged cat states

For a displacement «, the orthonormal four-legged cat (4C) states {|CZ)|n = 0,1,2,3} are defined as an equal
superposition of four coherent states displaced along the g and p quadratures of a bosonic mode {|i"™«) |m = 0,1, 2, 3}.
As given in Eq. Al, the relative phases of these superpositions are chosen such that these states have disjoint support
over the Fock states modulo four.

) + i) + [—a) + [—iy)
Cy) = Ala
%) 2+/2e=1o1% (cosh |a|2 + cos | ) cosh|al? +COS|Ol|2 Z V (4k)! (Ala)
o |la) —ifio) — |—a) +1|—ic) ath
oF) = S . ; > 14k +1) (A1b)
2y/2e~12? (sinh |2 +sm|a|2) sinh |a| +sm|a| V(4K +
oy _ o) = i) +[—a) — |—ia) atht?
IC3) = 5 5 el = 5 Z +2) (Alc)
2/2e=1o1% (cosh |a|? — cos |2 ) cos |Of‘ cos |al V (4k +2)!
o |a) +ifio) —|—0) — i |—ic) ath s
|cs) = — . o 22 (Ald)
2y/2e~1e? (sinh [a|2 — sin |a|2) sinh |0<| sin |a| V/ (4k +3)!
In this paper we form a qubit by spanning the codespace with the two even states: |04c) = |C§) , [1ac) = |CS). Thus
the two odd states span the single-photon loss error-space: |04c, g) = |C$) ~ a|C§), |lac, B) = |CY) ~ a|C§). An
undetected two-photon loss event results in an uncorrectable logical bit-flip, i.e. |04c) = |C§) = |lac) = |CS) and

04, B) = [C§) = |lac, B) = |CT).

2. Logical-X basis

We may notice that the symmetric superposition of the logical states results in a constructive interference of the
|ta) states and a destructive interference of the |+ic) states. In general, these constructive/destructive interferences
are imperfect, since the two logical states differ in their normalization factors. Regardless, it is helpful to define the
two-legged cat states as in Eq. A2. These are the famous Schrédinger cat states with disjoint support over even or
odd Fock states respectively. Note that the states |C§‘:> are aligned along the ¢ quadrature for purely real o and along
the p quadrature for purely imaginary «.

o) +-a) _ _ oy
2y/e~1o cosh a2 /cosh[af?> = \/(2k)!

2k+1

e2) (A2)
o) = [—a) 1 o

- 2k + 1 A2b
2y/e-1oPsinh a2 \/sinh|af? 4 \/(2k+1)!| > (A2b)

lc2) =

We can express the logical-X basis states of the 4C code in terms of the two-legged cat states, as in Eq. A3.
ICq") £ IC5)
V2
1 cosh |a|? " cosh |a|? o) + 1 cosh |a|? . cosh |a|? cie
2 cosh |a|? + cos |a|? cosh |a|? — cos |a|? 2 cosh |a|? + cos |a|? cosh |a]? — cos|a|?
(A3)

|:|:4c> =

Evidently, when cos |a|? = 0 (or |a| = 1/ (n + 1) « for non-negative integers n) the X-logical states |+r,) exactly align

with ‘Cj’;> and !C}f‘> respectively. For these values of || the |C$> and |Cia> are perfectly orthogonal. Fig. 8(a) shows
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the exact overlap error between the |+1,) state and the ’C$> two-legged cat state; we may observe that this error is
—2|al?

always bounded by e

Likewise, the X-basis of the error states are approximately the two-legged cats states |C§> and |Ci°‘>, albeit with odd
parity.

Cs) £ |Cy
|i4C7E> = | 3>\/§ 1>

_1 . sinh |04|.2 . sinh |oz\.2 |Cf> n i . sinh \oz|.2 . sinh |a|.2 )
2 sinh |a|? — sin |«|? sinh |a|? + sin |2 2 sinh |a|? — sin |«|? sinh |a|? + sin |«|?

(A4)

The error states in the X-basis |+g) exactly align with [C®) and |C**) when sin|a|> = 0 (or |a| = /a7 for non-
negative integers n). These are also the values of |a| for which [C*) and |C'®) are perfectly orthogonal. Fig. 8(b)
shows the exact overlap between the |[+g) state and the |Cf> two-legged cat state; again we observe that this error is

—2af?

always bounded by e

1-|{ce]+1)] 1-|{ce| +p)|
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FIG. 8. The infidelity in defining the two-legged cat states as the X-basis states in the (a) logical and (b) error subspaces. This
infidelity is defined as one minus the overlap between the corresponding X-basis states with the (a) even or (b) odd two-legged

cat state. The exact infidelity (solid blue) is bounded by e=2lel? (dashed orange). The dashed vertical gray lines indicate the
values of || for which the X-basis states exactly equal the two-legged cat states. These values are given by (a) |a| = y/(n + 3)7

or (b) |a| = /nm, respectively, for non-negative integers n.

3. Mean photon number

Eq. A5 gives the mean number of photons in each of the 4C states, as a function their “size”, |a/.

sinh || — sin |a|?

n = (Ccylatalcy) = |of? A5
’I’Lo(a) < 0|G, al 0> |Oé| COSh|CM|2+COS|OZ|2 ( a)
2 2
~ _ e At ey (o2 cosh |a|? + cos || Ash
ni(a) = (C'|a'a|CT) = |af sinh |a|2 + sin |o|2 ( )
_ it inh || + sin |or|?
= (C T coN = 2 S A5
n2(a) < 2 |(I CL| 2> |Oé| COSh|Oé|2 —cos|a|2 ( C)
sh 2 _ . 2
rala) = (€511 |c5) = |af? SRlal —coslal (A5d)

sinh |2 — sin |a?
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In the limit of large |a|, the mean photon number for all four cat states scales as |a|?. Fig. 9 shows the mean photon
number for the (a) logical (i.e. even) and (b) error (i.e. odd) basis states, normalized by |a|?. This figure shows that
the mean photon numbers exponentially approach each other with increasing |«/.

= = 2 = = 2
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FIG. 9. The mean photon number for the (a) logical (i.e. even) and (b) error (i.e. odd) basis states, normalized by |a|?.
Observe that for large ||, the mean photon number for all the states quickly approach |a|2. The vertical dashed gray lines
indicate the values of |a| for which the (a) logical and (b) error basis states have exactly equal mean photon number. These
values are numerical solutions to the transcendental equations in Eqn.A6a and A6b respectively.

In the presence of photon loss, the infidelity due to the no-jump evolution is minimized when the logical (error) states
have an equal mean photon number. The values of |«| for which these are exactly equal is given by the following
transcendental equations,

= tan |a|? + tanh o> = 0 (Ab6a)
= tan |a|? — tanh o> =0 (A6D)

4. Choosing a cat size

For our numerical simulations, we a = v/2.57 =~ 2.802. Since cos(|a|2) = 0, the logical-X states are exactly the
two-legged cat states, |+1) = |C$). Furthermore, as we shall see in Appendix B, cos(|a|?) = 0 also implies that the
true beamsplitter output is exactly the expected output in Table II.

The equal-mean photon number condition is approximately satisfied at this value of |a|. Specifically, 7ip ~ 7.848 and
o ~ 7.860, such that no — ng =~ 0.012.

Appendix B: Evolving the 4C states through a beamsplitter

Recall that the state preparation scheme probabilistically prepares any of the four 4C states. In the main text, we
addressed fusions between two even 4C states. Sec. B1 elaborates on this case by providing the exact expressions
for the corresponding output states. In Sec. B2, we consider the case where the input states are odd 4C states.
In both cases, we may distinguish between the Bell states by measuring properties of the photon number (i = 0)?
and (7 mod 4 = 0,1,2, or 3)7 on each resonator individually. To derive the expressions below, we use the simple
fact that a symmetrized beamsplitter acting on a pair of coherent states results in a common and differential output:

BS(§) [y @ 1) = | 5la - ))& | (a+an).
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1. Exact expressions for an even-even input

Observe that choosing a cat size such that cos(|a|2) = 0 implies that the true beamsplitter output is exactly the
expected output, shown in Table II.

V2 cosh(2]a|?) — cos(2|a|?) V2

+cos(|a|2)[ 5 )|ed) c)let) }

C)[C8) + 1C5) [C5) ms. VIcosh(|of?) y/cosh(Zlal®) T cos@lal) (0> e™) + e a>'°>>

V2 cos(|a|?) — cosh(|a|?) * cos(|a|?) + cosh(|a|?)
_ (I0> ]cf“>;§\cf“>|o>) e colaf?) (\c€> \c(?}%]cﬁ ]c§>) ro ()
(Bla)
Ics) 1 168) oo o) |ey? “>;§!C¥§ )0 (B1b)
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V2 cosh(2|a]?) — cos(2|a|?) V2
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V2 /cosh(2[a[?) = cos(2]af?) V2
o lenel)+led) fed)
+sin(|al?) L 7 S
(LD vy (U)o
(B1d)

2. Exact expressions for an odd-odd input

Evolving two odd cat states through a beamsplitter results in approximate states shown in Table III. The exact
output states are given by Eq. B2. Similar to the X-basis condition for a single odd-cat, the exact beamsplitter
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output coincides with expected output (Table III) when sin(|a|?) = 0.

XX\ZZ Bell-states After 50:50 B.S. After 50:50 B.S. + & | After 50:50 B.S. + b

+1 |+ lesyles) +lepyler) |lo) [ex®) — ey ) 0)|  |ex®) 10) 0) [

+1{ -1 1c5) le?) + lesy [cs) |10y |ey®) -

o sies -y e ) - e e ekt -y e ) - e e
et les) - led) led) lesy et ~[es) le?) ler) ed) - led) [ew)

TABLE III. Bell measurements on the error (odd) cat states, [Og) = |CS),|1g) = |CT'). The output states are approximately

) [o) cy®) o) 0} [ey®)

-1 =1jles)ler) —eryIes)

equal to the ideal output states, up to O (ei|°“2). Just as before, we may distinguish betweeen the Bell states by measuring

properties of the photon number (7 = 0)? and (7 mod 4 = 0,1,2, or 3)? on each resonator individually.
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Appendix C: Adaptive sequence for fusion measurements

Fusion measurements on the 4C code involve evolving two 4C states through a beamsplitter, followed by a sequence
of PNMs. Each PNM is performed by dispersively coupling a bosonic mode to a three-level ancilla, measuring the
ancilla in the computational basis, and inferring the parity or photon number modulo four (4-parity) of the bosonic
mode. Figure 10 illustrates the adaptive sequences used to identify whether each bosonic mode contains a 4C state
or the vacuum. Since the sequences are identical for both modes, only the sequence for one of the modes is shown.
These sequences consist of parity (II) and 4-parity (\/ﬁ) measurements, where each step depends on prior results.
Measurements are repeated for consistency, with two approaches for handling disagreements: a tie-breaking third
measurement or reporting disagreements as erasures.

a) Fusion measurement sequence (full measurement)

1 it p1="7 > I1 if P1=p2 }(report 4C state based on prev. round)

if Pl?’ép2 “f”

majority

vote on
(p1:p27p3)

majority & report
vote on result from
(a1, G2,93) 1st or 2nd

majority
vote on
(q47 qs, q6)

round

b) Fusion measurement sequence (short measurement)

1 it pr="1 » I1 it P1=p> }(report 4C state based on prev. round)

( Legend )
X
ifg [n=0 >|f)
X ——>» Aimod 4 = 2->|e)
X X Py > else ->lg)
= |Amod 2 =1->e) T
else > |g) =0 >7
> Amod 4 —1>e)
L ife |ese ->lg) )

FIG. 10. Flowchart of the adaptive sequence for fusion measurement. The sequence starts with a parity measurement ﬂ,
followed by a 4-parity measurement AT1. These measurements are repeated, and results are only reported if two measurements
agree with each other. (a) shows the complete sequence where a third measurement is performed to break ties between
disagreeing measurements, while (b) shows a shorter sequence where disagreeing measurements are reported as erasures.
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Appendix D: Circuits to prepare resource states

In this section we look at circuits (shown in Figure 11) to prepare entangled 4C states, that are not covered in the
main text. Each subsection derives these circuits in detail.

ZX = (|c Yo+ [ci)?) |[Pac)
B ‘ ‘ 1 ®2 .
ZX%—Q(\+1(> +|—1L> ) |+4C>
(c)
* ) Zic (v/2) Zac [(=1)" ()] | ('*4“ # el

p

10)—@—{ Zic [(-1)"7(=/2)] -

+|—a0) ® |14c>>

H—4C>

FIG. 11. Circuits for Bell-state preparation and resource state construction. (a) Circuit to approximately prepare a canonical
Bell state, stabilized by Z ® Z and X ® Z. This circuit, like all others in this figure, can detect single-photon loss through
the parity check p1 = p2. (b) CNOT gadget where the control is always initialized in |[4+4c) and the target is an arbitrary 4C
state. (c) Circuit to prepare a Hadamard-deformed Bell state, stabilized by X ® Z and Z ® X. (d-e) Examples of circuits that
combine the gadgets described above, to form four-body GHZ states. The respective stabilizers for both states are also shown.

1. Preparing cat states

The cat state preparation begins with displacing the bosonic mode to a coherent state, |«). Next, we measure the parity
operator, II = exp(—ira'a), using a PNM conditioned on the odd photon numbers, i.e., PNMY ({1,3,...,2n 4+ 1})

[5]. Let the parity measurement result be p € {0,1}. The post-measurement state becomes:
Tpm + (—1)P1I Lpm + (—1)P e~ima'a
2 o) = 2

@) o o) + (=1)7 |[=a) = [CE) ~ [+ac) OR |+acp) (D1)

This forms an even or odd cat state [C) based on p, which approximates the [+4¢) (codeword) or [+4¢,k) (error-word)
in the 4C code. Similarly, C;‘)‘> states can be prepared by initially displacing the bosonic mode to |ic).

Next, we form the 4C states by measuring the 4-parity operator, vII = exp( i5 7rcfr ) [5], the measurement is
conditioned on the prior parity result. For even (p = 0) or odd (p = 1) outcomes, the respective measurement uses
VII = PNM%({2,6,...,4n+2}) or VI = PNM9({1,5,...,4n+1}). Let the 4-parity result be ¢ € {0, 1}. Assuming
both measurements yield even results (p = 0,¢ = 0), the post-measurement state is:

Do ¥V ) 4 gy = Lo O ) 4 ] o o) + i) + [0 + i)  65) = [0sc)  (D2)
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Other measurement outcomes correspond to different cat states, |C5, +p>. In this section, the entangled 4C states are
prepared using even cat states as inputs, but similar results hold for odd inputs, as the parity can be tracked and
adjusted in software [5].

To ensure 1st-order FT, we repeat the measurement sequence twice, i.e., I — VII - II - VIL. To proceed, we require
the parity and 4-parity measurements to agree; otherwise, the bosonic mode is reset, and the process is retried. This
protocol mitigates ancilla errors and photon loss, ensuring 1st-order FT, similar to the GHZ state preparation circuit
(see III B).

2. Bell-state preparation

Fig. 11(a) illustrates the circuit used to approximately prepare the canonical Bell state, % (|—|—4(3>®2 + |—4c>®2).
While this state is not directly used in our protocol, the circuit demonstrates three key principles underlying our
approach.

Firstly, we apply a symmetrized beamsplitter acting on a pair of coherent states.

™

BS (g) [\a) |O/>} = exp [—i4 (&Tl; + IA)T&)} {|a> |a'>] o ‘%(a - ia')> )—i%(a + ia’)> ) (D3)

Note that we have used a beamsplitter Hamiltonian with a different phase compared to the definition in the main
text. However, this phase can easily be adjusted in hardware [52, 53].

Second, parity measurements on coherent states form 2C states, as shown in App. D 1. For simplicity, we assume even
parity measurement outcomes (p; = pa = 0), as odd outcomes result in odd-parity states that can be tracked and
adjusted in software. Finally, as discussed in Sec. III B, the beamsplitter conserves the joint-photon number parity.
This enables the check p; = po, which can detect a single-photon loss. If this check is violated, the modes are reset,
and the circuit is retried.

5y le) o [1a) + -0} | [l +1-a) ] (D4a)
25 [ L1 -a) | 1 -Da) + |- F(1 - da) |- L1 i)a)

+ ‘—1%(1 —i)a) ’1%(1 —i)a) + ’i%(l —i)a) ’4%(1 —i)a) (D4b)
=18)18) + =8} |=B) +1iB) |-i6) + |~iB) |i6) (Dic)
revmess (154 1-8)) "+ (1i8)+ 1-i8) ) (D4d)

Here we have defined 5 = %(1 + 1)a, and ignored constant prefactors. To complete the derivation, we recall that

resulting 2C states (’Cj‘r‘> and ’Cfﬁ‘>) are approximately equal to the logical-X eigenstates (|24¢) respectively), up to
2

an exponentially small error e oc e~ I",

The Bell state can also be prepared using the CNOT gadget discussed in the next subsection.

3. CNOT gadget

This section discusses the CNOT gadget shown in Fig. 11(b). This gadget implements a CNOT gate with a control
qubit initialized in the |4+4¢) state and a target qubit in an arbitrary 4C code state, |14c). The input |h4c) must
be initialized with twice the desired energy (i.e. with a cat size v/2a) since the beamsplitter evenly distributes the
energy between the two modes.
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In this circuit, we revert to the beamsplitter phase convention used in the main text, where BS(%)[|O¢> red >} =
‘%(a—a')> ‘%(a+a')>.

To see how this gadget works, let us consider the input |¢4c) = [04¢c).

%) 10) o [[V2a) + [iv3a) + |-v2a) + |-iv2a) ] 0) (D5)

B Ja) o) + [ia) [ia) + [—a) |—a) + |—ia) |—ia) (D6)
Parity meas - ®2 . . ®2
Zememetty Ly + (<17 [-a) | + [ lia) + (=17 |=ia) |, (D7)

where p denotes the parity measurement result. The output is approximately equal to % (|—|—40>®2 + |—4c>®2),
providing an alternate way of creating a Bell state.

We can similarly analyze the input |4c) = |lac):

32} 10) o [[V2a) - [iv3a) + |-v2a) - |-iv2a) ] 0) (D8)

B Ja) fa) — Jia) [ia) + [—a) |—a) — |—ia) |—ia) (DY)
Parity meas - ®2 . . ®2
Zemmety Ly + (<17 [-a) | = [ lia) + (=17 |=ia) | . (D10)

This approximately corresponds to the output % (|+4c>®2 — |—4C>®2). Together, these results confirm the imple-

mentation of the desired CNOT operation, with the control qubit set to |+4¢). Just as before. this gadget enables a
single photon loss to be detected, by confirming p; = ps =: p. As shown in Fig. 11(b), we record the measurement p
next to the CNOT symbol because it could be used in future operations.

In Sec. III B, this gadget is utilized to generate GHZ states. As discussed, the beamsplitting angle can be modified
to unequally divide the energy between the modes while preserving the logical operation on the 4C code.

4. Hadamard-deformed Bell-state preparation

As illustrated in Fig. 11(c), the CNOT gadget can be used to prepare a deformed Bell state. This state differs from
the canonical Bell state by the application of a Hadamard gate on one of the qubits, resulting in a state stabilized by
the operators X ® Z and Z ® X.

The circuit can be understood as the CNOT gadget conjugated by Syc gates. In the 4C code, the Syc gate, defined
as Zyc(—7%), is implemented using SNAP gates, as detailed in Sec. IIID. A key feature of the CNOT gadget is that
the output parity is random; however, since the parity measurement result, p, is known, the subsequent SNAP gates
can be adjusted accordingly. Finally, note that the approximation in Fig. 11(c) arises from the fact that the 2C states
are approximately equal to the X-logical states in the 4C code.

As discussed in Sec. IIC, IIIB, and IIID, SNAP gates can detect first-order hardware errors, ensuring consistency
with the capabilities of other gadgets in the circuit.

5. Preparing four-body GHZ states

Figs. 11(d) and (e) depict circuits that use Bell-state preparation and CNOT gadgets to create four-body GHZ states.
These examples highlight the importance of carefully managing the energy distribution among modes to ensure the
final states have the desired size. While it is natural to conceptualize state preparation as logical operations on the
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4C code, adjustments to the beamsplitting angles and initial state sizes are crucial for achieving the correct photon
distribution.

The circuit in Fig. 11(d) generates the four-body GHZ state, % <|+4C>®4 + |—4c)®4>. The initial Bell state can be

prepared using the method shown in either Fig. 11(a) or (b), provided the state constitutes cat states of double the
required size, v/2a. Symmetrized beamsplitters in the subsequent CNOT gadgets ensure equal photon distribution
across all modes in the output state.

Fig. 11(e) presents a circuit to prepare the state % (|[Hac) [Hac) |+4c) |04ac) + |—4c) |—1c) |—ac) |1ac)). In this case,
the initial Bell state is prepared with an asymmetric beamsplitter to allocate three times as many photons to the
second mode as the first. These photons are subsequently distributed evenly among the bottom three modes via

CNOT gadgets. Specifically, the beamsplitting angles are configured as follows: the initial Bell state uses an angle of

2?“, the first CNOT gadget uses an angle of 2 arccos(%), and the second CNOT employs a symmetric beamsplitter

with an angle of 7.

6. Resource states for 4-star FBEC

In the main text, we examined FBEC using 6-ring resource states. An alternative approach involves utilizing four-
body resource states, commonly referred to as 4-star FBEC [30, 32]. The 4-star protocol is conventionally less favored
compared to the 6-ring protocol for two interconnected reasons. First, implementing the same code distance with
4-star requires more physical qubits. Second, it demands a greater number of fusions per unit cell compared to the
6-ring approach [30, 32]. These factors have led previous studies to report a lower QEC threshold for the 4-star
protocol, albeit under different noise modes [30, 32].

Nonetheless, we propose a method to construct the 4-star resource states, for the sake of completeness. One of these
states is exactly the GHZ state depicted in Fig. 11(d). The other can be generated by fusing the states shown in Fig.
11(c) and (e), as illustrated by Fig. 12. It is worth noting that constructing this resource state requires 8 physical
qubits, further emphasizing the qubit inefficiency of this approach.

FIG. 12. Construction of one of the 4-star resource states using known resource states and fusions (gray ovals).

Appendix E: Accounting for the no-jump evolution

As discussed in Sec. ITA, the no-jump evolution of a lossy bosonic mode shrinks the size of the 4C states: |a(t)| =
e’%ﬁ’“ao, where k is the single-photon loss rate in the bosonic mode and «g is the initial size. Although this effect
contributes only a small correction to the overall error budget, it can be further suppressed by appropriately adjusting
the beamsplitter angles during resource state preparation.

To see how this works, consider the action of a beamsplitter on two coherent states: BS(G){|0¢> |B>} =

|cos(g)a — Sin(%)6> ‘sin(g)a + cos(g)ﬁ>. This is consistent with the phase convention used in the main text.
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In our resource state preparation, we typically interfere a larger cat state (e.g., ‘CO ‘3”‘>) in one mode with vacuum

in the other. To compensate for amplitude decay over a short timescale xt < ln(\/i), we can tune the beamsplitter
angle to § = 2 arccos (e"”"t / \/i), ensuring that one of the output modes retains amplitude «, while the other is slightly
reduced to approximately (1 — 2xt)a.

This approach enables the construction of a 6-ring resource state using three “shrunk” cat states and three with
full amplitude. Conveniently, the shrunk states can be fused with leftover cat states from the previous round of
preparation, which will also have shrunk due to no-jump decay. As a result, the amplitudes of both states involved
in the fusion are closely matched, improving the fidelity of the fusion step.

Meanwhile, the other half of the resource state (the cats with full amplitude) continue to evolve and shrink slightly
before the next round. In the subsequent round they are fused with the newly prepared shrunk cats, maintaining the
same cadence.

Assuming the bosonic modes have similar loss rates, this strategy produces a steady rhythm during which the beam-
splitter angles remain largely fixed, minimizing the need for dynamic recalibration.

/

Appendix F: Accounting for x

The dispersive coupling between a bosonic mode and an ancilla, such as a transmon, induces several undesired non-
linearities. These include the self-Kerr %K at2a? as well as a second-order correction to the dispersive shift, y’at?a2.
The self-Kerr term is a photon-number dependant phase shift, which is addressed in the main text. In this section,
we address the y’ term, which is a photon-number dependant correction to the dispersive shift.

Recall that the PNMs were implemented as weak drives on the ancilla at a set of frequencies {wge +nxc|n € N'}, where
wge is the ancilla’s g-e frequency and N is a set of photon-numbers. These drives conditionally flip the ancilla’s state,
depending on the number of photons in the resonator. The . term additionally shifts the ancilla’s g-e frequency by
an amount proportional to the square of the photon-number. This shift can be accounted for by driving the ancilla
at {wge +nxe +xen(n +1)|n € N} instead. Similarly, the drives on the g-f manifold can be shifted by x/;n(n + 1).
Since the PNMs a projective measurements on the mode’s photon number, the photon-number dependant phase-shift
induced by Y’ is irrelevant.

SNAP gates, being two consecutive photon-number-selective rotations, are similarly modified. The additional photon-
number-dependent phase shift is absorbed into the phases, ¢ imparted the SNAP gate.

Similar to self-Kerr, the beamsplitter operation BS(F) is not FT to x’. However, the beamsplitter is a relatively fast
operation [52, 53], thus these non-linearities negligible contributes to the overall error. In contrast, we suspect that
X' during the slower ZZ,c(6) gate may result in a meaningfully undetectable error. A thorough analysis of this error
is left for future work.

Appendix G: Planar FBEC

In this Appendix, we outline a foliation scheme to construct an FBEC protocol from a 2D stabilizer code. While the
final architecture is not inherently planar, it can often be adapted to achieve planarity. As an illustrative example,
we focus on the XZZ X code, which is relevant to the main text.
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1. Teleportation chain

To introduce the foliation of a QEC code, we first examine the four qubit teleportation chain. As shown in Fig. 13, a
single-qubit state is teleported back-and-forth between red and blue Bell states via Bell measurements (fusions). This
setup is a symmetrized version of the textbook 3-qubit teleportation circuit [1]. Instead of tracking the quantum state,
we analyze the stabilizers (black) and logical Pauli-X and Z operators (orange) of the 4-qubit system, demonstrating
that the state is indeed teleported, up to with Pauli corrections dependent on the measurement outcomes.

The suboptimal four qubit version of teleportation is pedagogically convenient, when understanding the foliation
protocol in the next subsection. However, as shown in App. G3, the number of qubits in the resulting FBEC
architecture can be optimized, analogously to how this teleportation can be optimized from four to three qubits.

@ Prepare blue ) Fusion msmt. ©) Prepare red (@) Fusion msmt.
Bell-state (results:m ., & m.,) Bell-state (results:m/,, & m',,)
I1X IZ Mge X T My Z T X1 71 Mg T X my 1 7
IX 12 GV G e it X1 Z1 D)™ 7 (D)L

FIG. 13. A four-qubit teleportation chain can be understood by tracking the logical Pauli operators, X1, and Zi, (orange), and
stabilizers (black) across four physical qubits. Initially, a single-qubit state |¢) (orange glow) is encoded in a red qubit, with
the blue qubits initialized in a Bell state. A fusion measurement between a red and blue qubit teleports [¢)) to the remaining
blue qubit. Then both red qubits are reinitialized in a Bell state. This enables another fusion measurement to teleport |¢)
back to a red qubit, completing one cycle. These steps can be repeated to teleport |1)) back-and-forth between the red and blue
qubits. Note that, at each step, one qubit (faded) remains inactive, hinting that the scheme could be optimized (see App.G 3).

2. Quasi-planar foliation of the XZZX code

Foliation is a well-established method for creating cluster states from stabilizer codes [9, 10, 81, 82]. Following
foliation, each qubit in the resulting lattice may be “split” into two, as described in [11, 30, 32|, to form the fusion-
based implementation of the cluster state. Here, we review the traditional foliation approach and introduce an
optimized procedure. As an example, in Fig. 14, we show how both procedures are implemented on the X ZZ X code.

The standard foliation procedure constructs the Raussendorf-Harrington-Goyal (RHG) cluster state 79, 81, 82| from
the CSS surface code. The RHG cluster state is defined by initializing all qubits in the |+) state, entangling them with
CZ gates. The foliation process specifies the placement of CZ gates, which determines the cluster state’s connectivity.
Following Brown and Roberts [9], the RHG cluster state can be derived from the CSS surface code in two steps: (1)
replacing each data qubit with a 1D teleportation chain, and (2) coupling these chains to repeatedly measure the
stabilizers during teleportation. Once the cluster state is formed, the qubits are measured out in the X-basis, which
enacts the computation.

However, Brown and Roberts’ procedure disrupts the noise bias critical to the XZZ X code [31]. Furthermore, when
applied to the XZZX code, their procedure results in a non-nearest-neighbor cluster state. Claes et al. [31] addressed
these issues by proposing a bias-preserving cluster state for the X ZZ X code. This cluster state is defined by qubits
that are initialized in either |+) (denoted “X-type” and depicted by e) or |0) (denoted “X-type” and depicted by o).
These qubits are entangled using CZ gates (between X-types) or CX gates (between X- and Z-types, with the X-type
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FIG. 14. Two methods for foliating the X ZZX code into a fusion-based architecture: (top row) the standard procedure 31, 32],
and (bottom row) our quasi-planar procedure. In the top row, the circuit-based X ZZX surface code is depicted as a shadow
(on the left) of the cluster state, with data qubits on vertices and stabilizers on plaquettes. The standard foliation replaces
each data qubit with a teleportation chain (steps 1 and 2), coupling these chains to measure stabilizers. The resulting cluster
state is transformed into a fusion-based implementation by splitting each qubit into two (step 3) [11, 30, 32]. In contrast, our
procedure directly constructs a fusion-based architecture. The bottom row shows the circuit-based X ZZ X surface code in the
plane. First, each data qubit is replaced with a four-qubit teleportation chain (step 1). The Bell states in the each chain are
coupled to measure plaquette stabilizers (step 3). This directly produces the 6-ring FBEC implementation.

as the target). Measurements are performed in the X- or Z-basis, respectively. As shown in the top row of Fig. 14, this
similarly results in a cluster state with 1D teleportation chains for each data qubit, which are subsequently coupled
to enact stabilizer measurements. Note that adjacent stabilizer measurements are staggered in a checkerboard-like
pattern to avoid conflicts.

The FBEC equivalent of these cluster states is obtained by splitting each qubit into two [11, 30, 32]. Each X-type
(Z-type) qubit is represented by a pair of qubits, fused via joint Z ® Z (X ® X) measurements to create an effective
degree of freedom. The effective qubits are then measured with a joint X ® X (Z ® Z) measurement, enacting a
measurement on the effective cluster state. Together these two measurements complete the fusion. This splitting
partitions the lattice into individual six-qubit states, corresponding to the hexagonal 6-ring resource states required
for FBEC (30, 32].

Our approach builds directly on these concepts but avoids an intermediate cluster state. Instead, we construct an
FBEC implementation from the outset, as shown in the bottom row of Fig. 14. We begin by replacing each data
qubit with a 4-qubit teleportation chain (see App. G1). Next, we introduce a pair of ancilla qubits to measure
each stabilizers. One of these qubits is coupled to the top half of the data qubits involved in the stabilizer, and the
other is coupled to bottom half. This results in a quasi-planar architecture for 6-ring FBEC, exactly as depicted in
Fig. 3(b). However, the cross-link connections within the teleportation chain prevent full planarity, leading us to term
this approach “quasi-planar foliation”. The next subsection resolves these issues to achieve a fully planar architecture.

3. Optimizing the number of qubits

As explained in Sec. IITA, certain qubits sometimes remain idle during the stabilizer cycle. These qubits neither
store logical information nor participate in imminent operations for logical teleportation. Instead, they these qubits
have recently been measured and are awaiting reinitialization.
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FIG. 15. Optimizing the planar FBEC layouts. (a) Quasi-planar layout derived from the quasi-planar foliation of the XZZX
code. This layout is inefficient since some qubits (denoted as pairs {A1, A2} and so on), are never active simultaneously. (b)
Planar FBEC v1.5 layout, achieved by merging A; with A; and B; with Bg, resulting in a fully planar configuration with
primarily degree-3 and some degree-4 connectivity. (c) Planar FBEC v2.0 layout, the most efficient design, obtained by further
merging C; with Cs at the cost of introducing degree-5 connections.

Fig. 15 illustrates how these idle qubits can be repurposed to reduce the total qubit count. Fig. 15(a) shows the quasi-
planar layout derived the previous subsection. Notably, qubits labeled A; and As never participate simultaneously.
Therefore, they can be replaced by a single qubit that assumes the role of Ay or As as required. Similarly, By and Bo
can be merged into one qubit. These mergers result in the layout depicted in Fig. 15(b), referred to as “Planar FBEC
v1.5”. This layout is fully planar with no cross-links, featuring primarily degree-3 connectivity and some degree-4
connections. Overall this v2 reduces the qubit count by 16.7%, compared to v1.

We may further optimize the layout at the cost of introducing degree-5 connections. As shown Fig 15(c), qubits C;
and Cy can be merged into a single qubit as well. This yields the “Planar FBEC v2.0”. This is the most efficient
configuration, with 25% fewer qubits compared to the original.

Appendix H: Simulation details
1. Photon-Number Measurements (PNM)

We model PNMs using a single mode coupled to a three-level ancilla, given by the Hamiltonian Hi(t ( ) = ﬁx + I:Id(t).
Here, H describes static dispersive coupling between the bosonic mode and the ancilla, while Hd( ) represents a
time-dependent drive on the ancilla. These are given by,

Hy = —xealale)e| — xsalalf)f], (H1)
Ha(t) = Qe(t)(lg)el + leXgl ) + Q0 ()X S|+ 1)), (H2)

Here, |g), |e), and |f) denote the ground, first-excited, and second-excited states of the ancilla, respectively, and & is
the bosonic annihilation operator. As defined in the main text, x. (x) is the strength of the dispersive interaction
o le) (|f)) state, and Q.(¢) [27(¢)] is a time-dependant drive that triggers the |g) <> |e) (lg) <> |f)) transition. Note
that we have written this Hamiltonian in a frame rotating at the qubit’s transition frequency.

To implement a PNM, the ancilla is initialized in |g), photon-number information (e.g., Il or V) is encoded into the
ancilla, and the ancilla state is measured. As explained in the main text, we encode any binary information about
the bosonic mode’s photon-number into the |e) state by selectively exciting the ancilla for any photon number within
a set Ne. This is done with a pulse, Qc(t) = A(t) [X,.c N, cos(nyct)]. This pulse predominantly contains frequency
components at the shifted transition frequencies nx.. However, the envelope A(t) broadens the spectral components
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around the desired frequencies. To minimize the infidelity caused by this spectral leakage, we chose A(t) to be a Kaiser
window [14]. The Kaiser window is known to maximize the spectral content around a frequency while simulatenously
minimizing the overall pulse length [14, 15]. This window is computed using the scientific computing package scipy
[15]. Similarly, Q2 (¢) can be tailored to selectively trigger the |g) <+ |f) conditioned on the bosonic mode having a
photon number within a disjoint set Ny.

We use a total pulse duration of 2, us with a Kaiser shape parameter 8 = 4 [14, 15]. The coupling strengths are
set to Xe/2m = —2 MHz and x;/2m = —1 MHz, demonstrating that our scheme does not require x-matching. The
complete time-dependent Hamiltonian is simulated using QuTiP [94, 95]. Table IV presents the measurement fidelities
of PNMs relevant to our scheme for select states. Although these measurements exhibit non-negligible error, even in
the absence of decoherence in the ancilla or bosonic mode, this error is rendered insignificant as it is quadratically
suppressed by our 4C-FBEC protocol.

Measured Measurement probabilities for each input state
Measurement ancilla state | ey | ey cs)y | cs) | Vacuum, [0) |

I = PNM“({2n + 1}) P(g) 0.998 2.15 x 1073 0.99998 211 x 1073 2.43 x 107*
and P(e) 2.20 x 1077 0.998 1.87 x 1077 0.998 1.33 x 1075

V = PNM?/ ({0}) P(f) 1.56 x 1073 4.09 x 107° 1.12 x 107° 2.40 x 107° 0.9997
VII = PNM9¢({4n + 2}) P(g) 0.998 0.9997 4.73 x 107* 0.9998 1.49 x 1075
and P(e) 411 x107° 1.50 x 1074 0.9995 1.53 x 1074 1.66 x 1077

V = PNM?/ ({0}) P(f) 1.56 x 1073 7.35 x 107° 2.76 x 107° 5.10 x 107° 0.99998
VIT = PNM% ({4n+1}) P(g) 0.998 9.22 x 107* 0.9998 0.99996 1.50 x 1074
and P(e) 1.50 x 1074 0.9991 1.53 x 107* | 3.55 x 107° 1.40 x 1075

V = PNM?¢/ ({0}) P(f) 1.56 x 1073 2.49 x 107° 1.09 x 107° 4.74 x 107° 0.9998

TABLE IV. Simulated measurement probabilities for the parity measurement IT and the 4-parity measurements v/II and \/ﬁl
for the 4C states and the vacuum state. In addition to encoding the corresponding parity (or 4-parity) information into the
le), these measurements selectively excite the ancilla to |f) if the bosonic mode is in the vacuum state. The ancilla qutrit is
measured at the end of the pulse. All of these measurements are 2us long.

As highlighted in the main text, we use PNMs for both resource state generation and fusions. When simulating
PNMs in those contexts, we include decoherence in the bosonic mode and the ancillae. This is done by simulating
the Lindblad master equation in QuTiP [94, 95]:

1
5

dp _
de

. 1 )
Dlalp + WD[ﬂp—i— Di'i]p,
1

miy s
il |+ o= (H3)

where D[L]p = LpLt— %ﬁ*ﬁpf%pfﬁﬁ is the usual Lindblad dissipator and t = |g), (e|;+v/2 |e), (f], is the annihilation
operator for the three-level ancilla. T7°% is the bosonic mode’s lifetime, 77 = 27T} 7 is the ancilla’s characteristic
lifetime, and T3e = 4qu; 7 is the ancilla’s characteristic dephasing time.

2. Beamsplitter

The beamsplitter is described by the following Hamiltonian,

A 1 A
flps = 5 [g(t)fﬁ b+ g*(t)dbq + Aata (H4)
The BS(0) gate requires A = 0, g = —i|g|, and T = 0/|g|. Unlike the ¢ZZ,c, imposes no strict constraints on

the amplitude |g|. In experiment, high-fidelity beamsplitters have been implemented with high-fidelity and operating
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much faster than any coherence time in the system [52, 53]. Therefore, we may assume that the BS(6) are implemented
instantaneously.

The complete Hamiltonian also includes the static dispersive interaction between each mode and its corresponding
ancilla, as described in Eq. H2. We set x./2m = —2 MHz and x /27 = —1 MHz. The dispersive coupling to the
second-mode’s ancilla can be ignored, as this ancilla remains in its ground state during both BS(f) and ZZ;c (%)
operations. However, the dispersive interaction with the first mode’s ancilla is critical for implementing the ZZ,¢
gate.

To realize the ancilla-controlled ZZ,c, we apply the Hamiltonian H = ﬂx,l + fIBs for a time T = «/ Xf,1, with
9=+V15/2x51, A = —xy1/2 [55]. As described in Sec. IID, this operation is used to implement the ZZ,c(f) gate.

We simulate a similar Lindblad master equation to Eq. H3, but now include loss in both modes.

dp _
dt

- 1 1 “ 1 1 -
—‘H,} —_Dla]p + ——Dlb|p + —=DJf D[iti]p, H5
il ¢) + Dl + g Dllo + 7o Dlilo+ 7Dl (15)
Note that we have implicitly neglected the no-jump evolution by imposing equal decay rates for both bosonic modes.
When the decay rates are not equal, the entangled states gradually become biased toward the longer-lived cavity
[55]. To mitigate this effect, periodic SWAP operations can be performed between the two bosonic modes, effectively
echoing out the no-jump evolution [19].

3. ZZic(%) gate

From Eq. 4 (in the main text), we observe that the beamsplitter and transmon pulses do not overlap, allowing
us to assume a piecewise evolution. The entire ZZ,c(5) gate is simulated as a composition of quantum channels,
ps = [Cr, oCrs, o Cr, 0 Crs, o Cr,] (pi). Here, Cr, and Cgs; denote the ancilla rotations and beamsplitter-mediated
cZ Zyc gates respectively. Since these rotations are unselective and significantly faster than the beamsplitter, they
negligibly contribute to the overall error budget and can be approximated as ideal unitary evolutions. Only the ancilla-
controlled ¢Z Z,¢ gates are simulated. During these gate, the beamsplitter amplitude modeled as a rectangular pulse
with a cosine ramp, an amplitude of g/27 = v/15(x,1/27)/2 ~ 1.93 MHz, and a duration of T = 7/xs1 = 0.5us.
The beamsplitter detuning is fixed to A/27m = —(xy,1/27)/2 = 0.5 MHz.

We aim to compute the postselected fidelity of the ZZsc(%) gate. To achieve this, we define the measurement
operators M, and My, which correspond to detecting no error and detecting an error, respectively [19]. If the
system state before measurement is p, the post-measurement state, conditioned on detecting no errors, is given by

p = M/p]\}[j /P, (p), where P,(p) = tr {pM}M/] the probability of not detecting an error.

Recall that measuring the transmon in the state |g) indicates no detected errors, while measuring |e) or |f) signals
a bit-flip or a phase-flip error, respectively. However, the gate may still fail due to other undetected mechanisms,
such as two ancilla errors. Additionally, the 4C code can detect a single-photon loss in the bosonic modes via parity
measurements on each mode, at the end of the sequence. Thus, the measurement operator corresponding to no errors

is:
A~ . ,\T,\ A . ATA
. 1+ eima'a 1+ efzwb b
A@<2>®<fz>®mdm, (16)

Here we have written the ideal projector onto the even photon number space, % (]1 + e‘”‘ﬁ‘i) However, in our

simulations, the parity measurements are simulated explicitly (as explained in App. H1). Therefore, our simulation
includes coherent and incoherent errors during the parity operation into M, .

While normalizing by P, (p) ensures that the density matrix p/ has unit trace, this nonlinear mapping complicates
the use of standard fidelity metrics [19], which are designed for linear quantum channels [19-22]. To address this, we
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temporarily ignore the normalization and treat the process as a linear map producing a subnormalized state. We can
then use Nielsen’s formula for the entanglement fidelity for a gate U [19, 20].

oy S0 )

- (H7)

where ey is the noisy quantum channel (before the error-detecting measurements) derived from simulating the Lindblad
master equation (Eq. H5) in QuTiP [94, 95]. d is the dimension of the Hilbert space (here, d = 4) and the
{V;};&, are an orthonormal basis of operators on the space of two 4C states (i.e. V; = Vd|m,n)p,q|, where

m,n,p,q € {04c,1lac}). Since these Vj’s are not pure density matrices, we can decompose them as |m,n)p,q| =
|+ X+ [Fa)+i] = 5 (1+1) { [m, n)(m, n|+Ip, a)p, | |, where |+) = —5(|Im,n) +|p, ¢)) and [+4) = —5(|Im,n) +ip, q))

[19, 23]. We can simulate these pure density matrices under the noisy quantum channel, and compute sU{Vj} by
linearity [19-22].

Following Ref. [19], we divide F,(U) by the average success probability, Py = doitr {EU{V]}} /(2d* — d) to obtain the

average postselected entanglement fidelity, F.(U) = FE(U) /Py. The average postselected gate fidelity F(U) is then
given by the standard formula

_dF,(U)+1

R (1)

4. Fusion measurements

As outlined in Appendix C, fusion measurements are implemented through an adaptive sequence of local PNMs.
Simulating this sequence concurrently for both modes is computationally expensive but unnecessary since the sequence
is identical for each mode. Instead, we simulate the adaptive sequence for a representative set of input states in one

mode, specifically the states emerging from the beamsplitter: ¥ = {|O) , |CJ“> , ‘C,;/io‘> |j7 k=0,1,2, 3}.

As shown in Table II, there is a set of acceptable product states [¢1)|1)2) for each 4C Bell state,
where [11),|¢2) € U For instance, the |Azpz =41,\,; =+1) Bell state corresponds to &, =
{\cg> cg) ey |Cs) . [0) ‘com> coﬂa> 10Y,|0) ‘cgﬂa> cg?a> |o>}. If the adaptive measurement identifies any of
these states, we declare [A;; = +1,\,, = +1). Analogous sets ®1 are constructed for the other Bell states.

However, PNM infidelity and decoherence may lead to measurement errors. To estimate Bell measurement infidelity,
we compute the probability P(Ry A Ra|I; A Iz) of reporting |Ry) |Rg) for a given input |I1) |I2), where |I;),|R;) € .
We can use the standard Bayes identity and the independence of the measurements on each mode to decompose this
probability.

P[(RiAR)A(I1AL)] PRy AL) P(RaAI)

P(Ri A Rylh N Io) = B, A ) =T P P(Ri|L1) - P(Rz|I2) (H9)

This simiplification lets us construct P(¢out|din), the probability of measuring Bell state |¢out) given input Bell state
|¢in>:

P(foutldim) = Y Y lennl? P(Ri|L) P(Ro|Dy), (H10)
|R1)|R2)EPout [11),]12)
where i) = > cno ) |12), (H11)
[11),|12)

and @, is the set of acceptable states for |¢ous), and |¢in /Out> are the Bell states after the beamsplitter. Averaging
these probabilities over the four Bell state inputs yields the measurement infidelities pya, pyy, and p.., shown in Fig. 7.
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Fig. 7 also plots the probability of inconclusive measurements. These occur if either mode’s sequence fails to provide
a definitive result:

P(inconclusive|¢, ) = Z ler,,1,|° [P(inconclusive|I;) + P(inconclusive|I5)]. (H12)
‘Il>7‘12>

Fig. 16 shows the measurement error probabilities for the shorter measurement sequence discussed in App. C.
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FIG. 16. Numerical simulation of the shorter fusion measurement sequence.

5. Fits to the numerical simulations

The numerical results can be fit to low order polynomials, as shown by the dashed lines in Fig.7 and 16. These
resulting fits are shown in Table V.
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