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Bosonic codes offer a hardware-efficient strategy for quantum error correction by redundantly
encoding quantum information in the large Hilbert space of a harmonic oscillator. However, exper-
imental realizations of these codes are often limited by ancilla errors propagating to the encoded
logical qubit during syndrome measurements. The Kerr-cat qubit has been proposed as an ancilla
for these codes due to its theoretically-exponential noise bias, which would enable fault-tolerant
error syndrome measurements, but the coupling required to perform these syndrome measurements
has not yet been demonstrated. In this work, we experimentally realize driven parametric coupling
of a Kerr-cat qubit to a high-quality-factor microwave cavity and demonstrate a gate set enabling
universal quantum control of the cavity. We measure the decoherence of the cavity in the presence
of the Kerr-cat and discover excess dephasing due to heating of the Kerr-cat to excited states. By
engineering frequency-selective dissipation to counteract this heating, we are able to eliminate this
dephasing, thereby demonstrating a high on-off ratio of control. Our results pave the way toward
using the Kerr-cat to fault-tolerantly measure error syndromes of bosonic codes.

A major obstacle to scaling up quantum computers is
noise, which causes logical errors and prevents the reli-
able execution of quantum algorithms. Quantum error
correction (QEC) provides a path toward fault-tolerance
[1–4], but this typically comes at the cost of significant
resource overhead, often requiring hundreds of physi-
cal qubits per logical qubit [5–9]. Bosonic codes of-
fer a hardware-efficient alternative to multi-qubit QEC
codes by redundantly encoding quantum information in
the large Hilbert space of a harmonic oscillator [10–15].
These codes have been employed to achieve landmark ex-
perimental demonstrations, including beyond break-even
QEC of quantum memories [16–18] and fully-autonomous
QEC protocols [19–21]. However, these experiments rely
on an ancilla qubit to control the oscillator and perform
quantum error correction, such that errors on the ancilla
can propagate to the logical qubit, limiting its lifetime.

In circuit quantum electrodynamics [22, 23] these real-
izations of bosonic codes typically use a microwave cavity
as the oscillator and a transmon as the ancilla. The two
are coupled dispersively, and since this dispersive inter-
action is transparent to transmon phase-flip errors, these
QEC protocols are usually only sensitive to transmon bit-
flip errors. Although fault-tolerant error syndrome mea-
surements have been experimentally demonstrated using
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a transmon ancilla [24], another approach to achieving
fault-tolerance is to use a biased-noise qubit as an ancilla
for bosonic codes [25]. Ideally, the error channel of such
an ancilla should be dominated by phase flips, with a
negligible rate of bit flips compared to other rates in the
system.
The Kerr-cat qubit (KCQ) has the potential to be ex-

actly such an ancilla due to its promise of an exponential
noise bias [26]. Recent experimental realizations of KCQs
have reached a strong noise bias of about 1000 [27, 28]
(corresponding to a bit-flip lifetime of ∼ 1 ms and phase-
flip lifetime of ∼ 1 µs), and although this is not exponen-
tially large there are many possible methods for further
improvement [29–33]. With a strong noise bias and fast
single-qubit gates [28, 34], the only remaining ingredient
for using the KCQ as an ancilla for bosonic codes is an
entangling operation between the KCQ and an oscillator
that enables the measurement of error syndromes.
In this work, we experimentally demonstrate a coher-

ent parametrically-driven conditional displacement (CD)
gate between a KCQ and a high-quality-factor microwave
cavity, where the cavity is displaced in one of two direc-
tions depending on the state of the KCQ. Combined with
single-qubit gates on the KCQ, this CD gate enables uni-
versal quantum control of the cavity [35]. We use this CD
gate to measure the decoherence of the cavity in the pres-
ence of the KCQ and discover excess cavity dephasing due
to heating of the KCQ into excited states, an effect that
was not previously predicted. However, by engineering
frequency-selective dissipation to counteract this heating
[29], we are able to eliminate this dephasing up to the
precision of our measurements. This lack of dephasing
indicates that the two systems do not entangle unless
we are actively driving their interaction, demonstrating
a high on-off ratio of control. Our results pave the way
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toward using the Kerr-cat as an ancilla for fault-tolerant
syndrome measurements of bosonic codes [25], in particu-
lar the Gottesman-Kitaev-Preskill code [11] whose error
syndromes can be mapped to an ancilla via CD gates
[36–38].

The KCQ consists of the degenerate ground state man-
ifold of the Hamiltonian

HKCQ/ℏ = −Ka†2a2 + ϵ2a
†2 + ϵ∗2a

2, (1)

where a is the annihilation operator of the Kerr-oscillator
mode, K is the Kerr nonlinearity of the mode, and ϵ2 is
the strength of the squeezing drive. This computational
subspace is spanned by the orthornormal even- and odd-
parity cat states |C±

α ⟩ = N±
α (| + α⟩ ± | − α⟩) (with nor-

malization N±
α = 1/

√
2
(
1± e−2α2

)
) [26], where α =

√
ϵ2/K is assumed to be real without loss of generality.

This gives rise to the Bloch sphere depicted in Fig. 1 (a).
These cat states |C±

α ⟩ form the X basis of the KCQ, while
the parity-less cats |C±i

α ⟩ = N±
α (|+α⟩± i|−α⟩) form the

Y basis. The Z basis consists of the even and odd su-
perpositions of |C±

α ⟩, which are approximately equal to
the coherent states | ± α⟩ for large α. The noise bias
of the KCQ comes from the metapotential associated
with HKCQ [25, 39]: it has a double-well structure with
two global minima (corresponding to the coherent states)
separated by a potential barrier [34]. Dephasing of the
Kerr-oscillator causes tunneling events between the wells,
corresponding to bit-flip errors, which are exponentially
suppressed by a factor 2α2 exp(−2α2) due to the height
of the potential barrier [31]. On the other hand, photon-
loss events in the Kerr-oscillator cause the cat states to
change parity, corresponding to phase-flip errors, which
are linearly amplified by a factor 2α2 due to the average
number of photons in the coherent states [13, 26, 27, 34].

Following previous demonstrations [27, 28, 31, 34],
we experimentally realize the KCQ by squeezing a
capacitively-shunted Superconducting Nonlinear Asym-
metric Inductive eLement (SNAIL) [40–42]. The SNAIL
is a flux-tunable circuit described by the Hamilto-
nian HSNAIL/ℏ = ωa(Φext)a

†a + g3(Φext)(a + a†)3 +
g4(Φext)(a+a†)4, where g3 and g4 are the third and fourth
order nonlinearities of the SNAIL, and Φext is the exter-
nal flux threading the SNAIL. The KCQ Hamiltonian
in Eq. 1 is obtained as the static effective Hamiltonian
of the system when we apply a squeezing drive to the
SNAIL at frequency ωs = 2ωa. A continuous σz(θ) rota-
tion of the KCQ is realized by driving the SNAIL at its
resonant frequency ωs/2 = ωa, while a discrete σx(π/2)
rotation is realized by turning off the squeezing drive and
allowing the SNAIL mode to evolve under its bare Kerr-
nonlinear Hamiltonian for time TK = π/K [34, 43]. To-
gether, these rotations enable universal single-qubit gates
on the KCQ. To read out the logical information stored
in this qubit, we use a process called cat-qubit read-
out (CQR) [34], which involves parametrically driving a
beam-splitter interaction between the SNAIL circuit and
a readout cavity (frequency ωr and mode operator r) at

(b) Storage

Readout &
CD Buffer

CQR buffer

Squeezing buffer

SNAIL

b

a

r

(a)

FIG. 1. (a) Bloch sphere of the Kerr-cat qubit (KCQ). (b)
Schematic of the experimental setup for coupling a KCQ (re-
alized in a SNAIL mode, pink) to a high-Q storage cavity.
The active modes of the system are the storage mode, the
readout mode and the SNAIL (Superconducting Nonlinear
Asymmetric Inductive eLement) [40–42] mode, whereas the
buffer modes are used to facilitate parametric drives to the
SNAIL, in particular the CQR (cat qubit readout) drive, the
CD (conditional displacement) drive and the squeezing drive.

the difference frequency ωr − ωs/2 while stabilizing the
KCQ. After projecting the Hamiltonian of this interac-
tion onto the computational basis of the KCQ, it takes
the form of a conditional displacement of the readout
cavity HCQR = gCQR(r + r†)σz [34], such that measur-
ing the phase of the radiation leaking out of the readout
cavity constitutes a readout of the KCQ along its Z axis.
The same conditional displacement interaction can be

activated between the KCQ and a high-Q storage cav-
ity (frequency ωb and mode operator b) by driving the
SNAIL at the difference frequency ωb−ωs/2. For clarity,
we reserve the acronym CD for the conditional displace-
ment interaction between the KCQ and the high-Q cav-
ity. While driving this beamsplitter interaction at a rate
gBS, the static effective Hamiltonian of the system in the
rotating frame of the SNAIL and the storage cavity takes
the form [34]

H/ℏ = HKCQ/ℏ− χaba
†ab†b+ gBSa

†b+ g∗BSab
†, (2)

where χaba
†ab†b is the parasitic cross-Kerr interaction

and gBSa
†b+ g∗BSab

† is the beamsplitter interaction. As-
suming that the KCQ remains in its degenerate ground
state manifold, we project onto the cat-qubit subspace
with the projector PC = |C+

α ⟩⟨C+
α |+ |C−

α ⟩⟨C−
α | and obtain

[44]

Hint/ℏ =gBSα
((

b† + b
)
σz + ie−2α2 (

b† − b
)
σy

)

− χabα
2b†b

(
1− 2e−2α2

σx

)
.

(3)

In general, the cross-Kerr interaction will lead to de-
phasing of the storage cavity due to photon shot noise
in the SNAIL. As we increase α, however, the entan-
gling term proportional to b†bσx becomes exponentially
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suppressed such that the cross-Kerr interaction simplifies
into a Stark shift, thereby preventing KCQ-cavity entan-
glement during idling time. This feature is crucial for
engineering an ancilla with a large on-off ratio of cavity
control, where the interaction between the ancilla and the
cavity is only activated via a driven parametric process.

In the limit of α ≫ 1, Eq. 3 simplifies to a conditional
displacement interaction and a Stark shift given by

Hint/ℏ ≈ gBSα
(
b† + b

)
σz − χabα

2b†b. (4)

By tracking this Stark shift and evolving for time t =
β/(2gBSα), we realize the conditional displacement uni-
tary CD(β) = D(−β/2)| −α⟩⟨−α|+D(+β/2)|+α⟩⟨+α|,
where D(β) = exp(βb† − β∗b) is the displacement opera-
tor and the conditional displacement rate gCD = 2gBSα is
enhanced by having more photons in the KCQ. Together
with the single qubit gates on the KCQ, this conditional
displacement gate enables universal control of the system
[35].

A schematic of our experimental setup is shown in
Fig. 1(b). It consists of a sapphire chip sandwiched be-
tween two 3D superconducting microwave post cavities
machined out of high-purity aluminum [45]. On the sap-
phire substrate we fabricated tantalum-based supercon-
ducting circuits [46, 47], which capacitively couple to the
3D cavities via waveguide tunnels. The active modes of
our system are the on-chip SNAIL mode (ωa = 2π×4.00
GHz), the fundamental mode of the 3D storage cavity
(ωb = 2π × 7.02 GHz), and the first harmonic of the
3D readout cavity (ωr = 2π × 9.36 GHz). The remain-
ing modes in our system are buffers for delivering para-
metric drives to the SNAIL; they are essentially Purcell
filters, designed to be detuned from the desired drive fre-
quency by about 50 MHz [48]. These buffer modes are
the on-chip stripline resonators for delivering the CQR
drive (ωCQR = ωr − ωs/2 = 2π × 5.36 GHz), the on-
chip stripline resonator for delivering the squeezing drive
(ωsq = 2ωa = 2π × 8.00 GHz), and the fundamental fre-
quency of the 3D readout cavity used for delivering the
CD drive (ωCD = ωb−ωs/2 = 2π×3.02 GHz). Magnetic
flux is delivered to the SNAIL with a solenoid (consist-
ing of a copper coil wound with superconducting NbTi
wire) and an on-chip superconducting flux transformer
[48]. For all of our experiments we operate the SNAIL at
a flux-bias point of Φext = 0.32Φ0, where the SNAIL cir-
cuit has appreciable g3 and g4 values, and the frequency
conditions of the various parametric processes are reason-
ably close to their buffer modes. See the supplementary
material [44] for more detail on the experimental appa-
ratus and the fabrication process.

With this experimental setup, we have reproduced pre-
viously demonstrated KCQ gates and readout, as well
as characterized both the bare SNAIL lifetimes and the
KCQ lifetimes. In particular, the SNAIL has an energy
relaxation lifetime T1,a = 16.0±0.4 µs and a Ramsey co-
herence lifetime T2,a = 7.2±0.1 µs. For our standard cat
size of α2 = 4 that is used throughout this manuscript,
the KCQ has a coherent state lifetime TZ = 147 ± 4

(b)

(a)

Squeezing

CQR

SNAIL

CD

Storage

Kerr-cat

Storage

FIG. 2. (a) Gate sequence (upper) and pulse sequence (lower)
for performing characteristic function tomography of a coher-
ent state of amplitude 1 in the storage cavity with the KCQ.
The pulse lengths are not to scale. (b) Experimental (up-
per) and theoretical (lower) characteristic function tomogra-
phy of a coherent state with amplitude 1 in the storage cavity,
demonstrating the coherence of the conditional displacement
interaction. Combined with single-qubit KCQ gates, the CD
gate enables universal quantum control of the cavity [35].

µs and a cat state lifetime TX,Y = 2.32 ± 0.04 µs. The
σx(π/2) rotation, realized by free evolution of the SNAIL
under its Kerr nonlinearity, takes TK = 272 ns corre-
sponding to K/2π = 0.93± 0.03 MHz. Additional infor-
mation on our system characterization can be found in
[44].
To demonstrate a coherent conditional displacement

interaction between the storage cavity and the KCQ, we
perform characteristic function (CF) tomography on the
storage cavity using the KCQ [35, 37, 38]. The character-
istic function is defined as C(β) = ⟨D(β)⟩, and it can be
measured by initializing the KCQ in the |C±i

α ⟩ state, per-
forming CD(β), and measuring the KCQ along its X and
Y axes. The principle of this measurement is that when
implementing a conditional displacement CD(β) between
the KCQ and the storage cavity, the KCQ rotates about
its z-axis by an amount that encodes the phase of the dis-
placement operator, such that ⟨D(β)⟩ = ±⟨σy⟩ ∓ i⟨σx⟩,
where the signs are determined by the choice of initial
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state.

To perform CF tomography, we follow the pulse se-
quence depicted in Fig. 2(a). First, we prepare a coher-
ent state of amplitude 1 in the storage cavity by driving
the cavity resonantly with a Gaussian pulse (duration
480 ns). At the same time, we prepare a parity-less cat
state |C±i

α ⟩ in the KCQ by ramping up the squeezing drive
(duration 2 µs), projecting into a coherent state with a
CQR measurement (duration 2.5 µs), and performing a
σx(π/2) gate (duration 272 ns). Next, we implement a
conditional displacement gate CD(β) with varying am-
plitude and phase of β (duration 348 ns, correspond-
ing to the rate gCD/2π = 6.18 ± 0.06 MHz). Finally,
we repeat the experiment multiple times, measuring the
KCQ along the X and Y axes to determine the real and
imaginary parts of the characteristic function; to measure
along the Y axis we perform a σx(π/2) gate followed by
a CQR measurement (duration 2.5 µs), whereas to mea-
sure along the X axis we prepend this sequence with a
σz(π/2) gate (duration 80 ns). The results of this mea-
surement are shown in Fig. 2(b), where the contrast of
the CF tomography is limited by photon-loss errors in the
SNAIL during the σx(π/2) rotation. Aside from reduced
contrast, we find excellent agreement between our exper-
imental results and theoretical predictions. Furthermore,
the fact that we are able to imprint the phase associated
with the displacement operator onto the equator of the
KCQ demonstrates the coherence of the CD gate, which
we are able to observe due to the CD rate gCD being
faster than all decoherence rates in our system. Com-
bined with single-qubit gates on the KCQ, this CD gate
enables universal quantum control of the cavity [35].

In order to use this platform for bosonic quantum error
correction, we need to demonstrate the ability to main-
tain storage coherence while establishing a KCQ in the
SNAIL. From Eq. 3 and Eq. 5, we expect the storage de-
phasing due to SNAIL photon shot noise to be suppressed
as we increase α2, which we can verify experimentally
by measuring the energy relaxation rate and dephasing
rate of the storage cavity in the presence of a KCQ with
varying size α. As a first step, we develop a method of
measuring the storage coherences that is amenable to our
experimental setup.

Similar to other approaches [17, 35, 37, 38, 49], we
measure T1 and T2 of the storage cavity by restricting the
cavity to its Fock-qubit subspace (spanned by |0⟩ and |1⟩,
with Pauli operators X, Y , and Z), preparing the state

| + Y ⟩ = (|0⟩ + i|1⟩)/
√
2, and measuring ⟨X(t)⟩, ⟨Y (t)⟩

and ⟨Z(t)⟩ while the cavity state decays. Our control
sequence for this measurement is shown in Fig. 3(a). To
prepare the |+Y ⟩ state in the storage we first excite the

SNAIL to the (|g⟩ + i|e⟩)/
√
2 state with a square pulse

of duration 1.1 µs, after which we drive a beamsplitter
interaction at ωb−ωa for 1.5 µs to swap the SNAIL state
into the storage cavity. The square pulse of duration 1.1
µs is designed such that its frequency distribution is a sinc
function with a notch at the anharmonicity of the SNAIL,
thereby minimizing leakage of the SNAIL to its |f⟩ state.

(a)

(c)

(b)

Squeezing

CQR

SNAIL

CD

t
State prep Wait CF tomography

SWAP

FIG. 3. (a) Pulse sequence for storage lifetime measurements.
We prepare a (|0⟩+ i|1⟩)/

√
2 state in the storage, wait a vari-

able time t, and perform characteristic function tomography
at specific values of β to reconstruct the expectation values
of the Pauli operators of the storage Fock qubit (spanned by
the |0⟩ and |1⟩ states). (b) Measured (upper) and predicted
(lower) characteristic function (CF) of the (|0⟩+i|1⟩)/

√
2 state

prepared in the storage cavity. The four points in the plot are
the values of β at which we sample the CF in order to measure
the Pauli expectation values of the Fock qubit in the storage
cavity. (c) Evolution of the expectation values ⟨X⟩, ⟨Y ⟩ and
⟨Z⟩ of the storage fock qubit as a function of time, from which
we can determine T1 = 204± 9 µs and T2 = 381± 8 µs.

To measure ⟨X(t)⟩, ⟨Y (t)⟩ and ⟨Z(t)⟩ we use a method
adapted from [49]: assuming we remain in the Fock-qubit
subspace of the storage cavity, these Pauli expectation
values can be determined by measuring the characteristic
function C(β) at the four points β = 0,

√
2,
√
2i,−

√
2i

[44].
The experimentally measured ⟨X(t)⟩, ⟨Y (t)⟩ and

⟨Z(t)⟩ are shown in Fig. 3(c), where the decay of ⟨Z(t)⟩
tells us T1 = 204±9 µs and the ring-downs of ⟨X(t)⟩ and
⟨Y (t)⟩ tell us T2 = 381 ± 8 µs, corresponding to a pure
dephasing rate Γϕ = (5.7 ± 2.8 ms)−1. Bare microwave
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(a)

(b)

(c)

(d)

Squeezing

CQR

SNAIL

CD

tState prep
Wait

CF tomography

SWAP

FIG. 4. (a) Pulse sequence measuring storage T1 and T2 in the presence of a KCQ. (b) Measurement results for storage cavity
dephasing in the presence of a KCQ with varying size α. The blue circles are measured without cooling the KCQ, and the orange
squares are measured with active cooling via frequency-selective dissipation (FSD). The purple line is from a master equation
simulation that serves as a guide to the eye for our results [44]. The green region is our confidence interval of the storage
2T1 we obtain from these measurements, taken over a one month period. (c) Schematic representation of the metapotential
and the lowest-lying energy levels of a KCQ with ncat = 4. We dissipate the excited state population of the KCQ into the
readout cavity via a three-wave mixing process. (d) CQR I/Q signal histograms (upper panel) and their marginals along the I
quadrature (lower panel) of the KCQ with artificially-induced heating [44] before (left) and after (right) FSD.

cavities have minimal intrinsic dephasing [24, 47, 50–52],
so we expect this dephasing to be dominated by heat-
ing in the SNAIL coupling to the storage cavity via the
cross-Kerr interaction, which we verify experimentally by
measuring the thermal population of the SNAIL. Ow-
ing to the low contrast of SNAIL dispersive readout,
we cannot carry out this measurement directly [44]. To
get around this limitation, we map the thermal popu-
lation of the SNAIL into the storage by swapping their
states (via a beam-splitter interaction [44]) after the sys-
tem reaches thermal equilibrium, and then perform CF
tomography on the storage. The width σth of the re-
sulting Gaussian is related to the thermal population in
the storage according to σth = 1/

√
2nth + 1. We find

nth = 2.8±0.5%, corresponding to an induced dephasing
rate [53] of Γϕ = (8.0 ± 1.6 ms)−1, which agrees with
our direct measurement of the storage dephasing rate.
It is important to note that this method assumes that
the storage cavity at 7 GHz has a much lower thermal
population than the SNAIL at 4 GHz, but the fact that
these two independent measurements of the storage de-
phasing rate agree with one another is consistent with
this assumption.

With this technique for characterizing the storage life-
times, we can investigate the effect of the second term of

Eq. 3,

Hχ/ℏ = −χabα
2b†b

(
1− 2e−2α2

σx

)
, (5)

which arises from the cross-Kerr interaction between the
SNAIL and the storage cavity with χab/2π = 2.91± 0.03
kHz [44]. The first term is a Stark shift of the stor-
age due to photons in the KCQ, which can be tracked
in software. The second term corresponds to a residual
cross-Kerr interaction between the KCQ and the storage,
where the strength of the interaction peaks at α2 = 1/2
and is then exponentially suppressed with the number
of photons α2 in the KCQ. Under this interaction, par-
ity flips in the KCQ (due to photon shot noise in the
SNAIL) induce dephasing in the storage, just as SNAIL
heating gave rise to storage dephasing in the previous
measurement. When we increase the size of the KCQ,
this dephasing is exponentially suppressed, keeping the
KCQ disentangled from the storage and preserving the
coherence of the storage cavity. To examine this effect
experimentally, we modify our previous measurement by
stabilizing a KCQ with varying size α while we idle the
storage cavity (pulse sequence depicted in Fig. 4(a)).
Then we measure ⟨X(t)⟩, ⟨Y (t)⟩ and ⟨Z(t)⟩ of the stor-
age cavity using the method discussed above and shown
in Fig. 3. The result of this measurement is shown in Fig.
4(b). As α increases from zero, the cavity experiences
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more dephasing, causing T2 to decrease. Upon reaching
half a photon in the KCQ, we observe maximum storage
dephasing and a subsequent revival of storage T2 as α
increases, indicating suppression of photon shot noise as
predicted in Eq. 5. However, the revival does not con-
tinue all the way to T2 = 2T1, which corresponds to the
region colored in light green in Fig. 4(b). This addi-
tional channel of dephasing in the storage cavity is due
to heating in the KCQ, as we will demonstrate.

To illustrate the physics of the storage dephasing,
we consider a KCQ with α = 2, the potential energy
and eigenstates of which are shown in Fig. 4(c). The
states at the minima are the degenerate ground states of
the metapotential, forming the computational subspace
of the KCQ, whereas the first excited states are non-
degenerate excited states outside of the wells. These ex-
cited states have different average photon number than
the ground states, and therefore cause different Stark-
shifts of the storage cavity [44]. Without heating, the
KCQ would populate in the degenerate ground states and
remain disentangled from the storage cavity. With heat-
ing, indicated by the dotted red arrows, the KCQ would
transition from the ground states to the excited states,
dephasing the storage cavity.

One way to mitigate this dephasing is through a
frequency-selective dissipation (FSD) of the excited state
population of the KCQ [29]. The idea is to dissipate
excited state population through a lossy mode without
affecting the ground state manifold. Whereas Ref. [29]
proposed using filter modes that are on resonance with
the energy gap of the KCQ, here we use the three-wave
mixing capability of our SNAIL to hybridize the first ex-
cited state manifold of the KCQ with the readout cav-
ity. This method is convenient to perform in our setup,
as the beamsplitter interaction required by this process
is our built-in CQR interaction with a detuning, giving
us ωFSD = ωr − ωs/2 + ωgap. We calibrate the energy
gap ωgap/2π = 12.5 MHz at α = 2 by performing spec-
troscopy on the excited states of the KCQ [44]. To cal-
ibrate the amplitude of the FSD drive, we need a way
to measure the population of the excited state manifold.
Due to the fact that the CQR drive does not displace
the readout cavity when the KCQ is in an excited state
outside of the wells, the center blob in the I/Q plane of
the CQR signal correlates with the total excited state
population. We set the FSD amplitude to the value that
minimizes this signal, as is shown in Fig. 4(d).

With the FSD, we can experimentally verify that the
storage dephasing is due to KCQ heating. To do so, we
repeat the previous measurement shown in Fig. 3 at α2 =
2.0, 2.7, 3.4 and 4.1, except now we apply the FSD drive
to the KCQ during the storage idling time. As shown
in Fig. 4(b), the active cooling on the KCQ improves
T2 of the storage cavity to a level consistent with zero
dephasing, up to the precision of our measurement, while
T1 of the storage cavity is unaffected. In addition to
verifying the origin of the storage dephasing, this result
validates the interaction Hamiltonian (Eq. 3) between

the storage and the KCQ: for sufficiently large cats, the
storage and the KCQ do not entangle, provided that the
KCQ stays in its computational manifold. Furthermore,
the fact that the two systems do not entangle unless we
are actively driving their interaction demonstrates a high
on-off ratio of control.

In summary, we have experimentally realized a co-
herent parametrically-driven CD gate between a KCQ
and a high-quality-factor storage cavity that, combined
with single-qubit KCQ gates, enables universal quantum
control of the cavity [35]. By actively cooling the
KCQ we were able to prevent the two systems from
entangling during idling time, thereby demonstrating
a high on-off ratio of control. The operations we have
demonstrated constitute all the necessary ingredients
for stabilizing Gottesman-Kitaev-Preskill codewords in
the storage cavity [11, 36, 37], paving the way towards
fault-tolerant quantum error correction of this code [25].
To achieve this, we need to implement a higher quality
σx(π/2) Kerr-cat rotation, for instance by improving
the coherence of the SNAIL or by using alternative
strategies for realizing this rotation [26, 28, 54]. In
addition to performing fault-tolerant syndrome mea-
surements of bosonic codes, the experimental platform
we developed for coupling a Kerr-cat to a cavity could
be useful for realizing error-transparent gates in hybrid
discrete/continuous variable systems [55]. Finally, our
understanding of the Kerr-cat-induced cavity dephasing
and its mitigation with active cooling will be important
for other experiments in which Kerr-cats are coherently
coupled to other systems [56, 57].
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SYSTEM HAMILTONIAN

Encoding a qubit in a Kerr-cat

In this section, we define the Bloch sphere of the KCQ [1], which is used throughout this work. The degenerate
ground state manifold of the KCQ Hamiltonian HKCQ = −Ka†2a2 + ϵ2a

†2 + ϵ∗2a
2 is spanned by the orthornormal cat

states |C±
α ⟩ = N±

α (|+α⟩ ± | −α⟩), where a is the lowering operator of the SNAIL mode, α = ϵ2/K is the cat size and

N±
α = 1/

√
2
(
1± e−2α2

)
is the normalization coefficient. Without loss of generality, we take alpha to be real, α ∈ R.

In the limit where |α|2 ≫ 1, N±
α → 1/

√
2. We define the logical Pauli operators as

σx = |C+
α ⟩⟨C+

α | − |C−
α ⟩⟨C−

α |
σy = i|C+

α ⟩⟨C−
α | − i|C−

α ⟩⟨C+
α |

σz = |C+
α ⟩⟨C−

α |+ |C−
α ⟩⟨C+

α |
(1)

We can then define the projector PC = |C+
α ⟩⟨C+

α |+ |C−
α ⟩⟨C−

α | to project the bosonic operators of the SNAIL a, a† onto
the KCQ subspace.

Coupling a KCQ to a cavity

In this section we derive the static effective Hamiltonian of our setup consisting of a KCQ coupled to a storage
cavity. Our calculation follows the method in [2, 3] where we use Feynman-like diagrams to systematically compute
the static terms describing different cascaded nonlinear processes in our setup.

The Hamiltonian of the system consisting of a SNAIL coupled to a cavity is given by

Hfull = HSNAIL +Hcavity +Hc +Hd (2)

where HSNAIL = ω′
aa

′†a′ +
∑

n>2 gn(a
′ + a′†)n is the SNAIL Hamiltonian, Hcavity = ω′

bb
′†b′ is the Hamilto-

nian of the microwave cavity, Hc = g(a′ + a′†)(b′ + b′†) is the capacitive coupling between the two modes,
Hd = 2Re(eiωst)(ϵsa

′† + ϵ∗sa
′) + 2Re(eiωdt)(ϵda

′† + ϵ∗da
′) is the drive Hamiltonian, ϵs is the strength of the squeezing

drive on the SNAIL, and ϵd is the resonant drive on the SNAIL. In these expressions, a′ and b′ are the bare modes
of the SNAIL and the cavity, with bare frequencies ω′

a and ω′
b, respectively. The capacitive coupling hybridizes the

modes and shifts their frequencies. Therefore, we reserve the notations a and b for the hybridized modes that we can
measure experimentally.

We truncate the SNAIL nonlinearity to the fourth order to compute the static effective Hamiltonian of our system,

H = ∆sa
†a−Ka†2a2 + ϵ2a

†2 + ϵ2a
2 −Kbb

†2b2 − χaba
†ab†b (3)

where we have, to the leading order of (g/∆)2 or the leading non-negligible terms,

∆s =

(
24g4
9g23

− 9

ωa

)
ϵ22

K = −6g4 +
30g23
ωa

Kb = −6g4

( g

∆

)4

+ 9g23

( g

∆

)2
(

1

2ωa − ωb
− 1

2ωa + ωb
− 4

ωb

)

χab = −24g4

( g

∆

)2

+ 36g23

( g

∆

)2
(

1

2ωa − ωb
+

1

2ωa + ωb
+

2

ωa

)
.

(4)

Plugging in the parameters from Table. I, we calculate (g/∆)2 = 0.5%, so we can safely ignore higher order terms
in the expansion of ∆s, K, and χab. In the case of Kb the leading order of the expansion is already of order (g/∆)4.
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(a)

(b)

(c)

FIG. S 1. Spectrum of a KCQ coupled to a cavity as a function of cat size α, obtained from numerical diagonalization of the
system Hamiltonian in Eq. 3.

Given that Ka/2π = 0.93 MHz, the inherited self-Kerr of the storage from the SNAIL is negligible, which makes this
setup suitable for encodings such as GKP states [4] that are susceptible to Kerr effects.

To gain intuition for the dispersive coupling between a KCQ and a storage, it is useful to consider the projection
of the SNAIL number operator a†a onto the KCQ subspace

PCa
†aPC = α2r2|C+

α ⟩⟨C+
α |+ α2r−2|C−

α ⟩⟨C−
α |

= α2
(
I− 2e−2α2

σx

)
.

(5)

After projection, the number operator of the SNAIL mode gets turned into an identity and a σx rotation. Of
particular interest to us is the scaling factor in front of the σx rotation term. As we increase the squeezing amplitude,
this rotation gets exponentially suppressed.

KCQ induced cavity dephasing

To better understand the interaction between a KCQ and a storage cavity, we diagonalize the Hamiltonian in Eq. 3
using our experimental parameters in Table I. The spectrum we obtain from the diagonalization as a function of |α|2
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,

Storage

SNAIL

b

a

FIG. S 2. Energy level diagram of a system with a KCQ coupled to a storage cavity.

is shown in Fig. S 1. At an energy scale comparable with K in Fig. S 1(a), the spectrum agrees with the result from
[5], where the excited states of the KCQ become degenerate as we increase |α|2. The gaps between different lines,
such as Egap and Egap,P are determined by the drive strength and K of the KCQ, where the subscript P indicates
that the states have definite photon number parity. When we zoom in on the lines at different cat sizes in Fig.1(b)
and (c), we see the spectrum of the KCQ split into different harmonic sectors due to coupling with Fock states in
the storage cavity. The frequency of each harmonic sector is a function of the average photon number of the KCQ state.

As an example, in the case of Fig. S 1(b) where |α|2 = 4, only the degenerate ground states of the KCQ, spanned
by |C±

α ⟩ are inside the double well potential. The storage photons split the ground states evenly by χabn̄cat, where
n̄cat = |α|2. This indicates that the storage photons are not able to distinguish between the different cat states
in the KCQ ground state manifold, the storage is simply Stark-shifted by χabn̄cat. Therefore, the storage cavity
and the KCQ will not entangle with each other during idling time when the KCQ stays in its ground state. The
first excited states are parity states right above the wells. Though the storage photons still split each level evenly,
different levels in the KCQ Stark-shift the storage cavity by different amounts due to their different average photon
numbers n̄P− ̸= n̄P+ ̸= n̄cat. As a result, the storage cavity is capable of distinguishing between different levels in the
KCQ, since it rotates at slightly different frequencies depending on whether the KCQ is in its ground or excited states.

This understanding can be extended to the case of larger KCQs with more than one level inside the wells, as in
Fig. S 1(c) with |α|2 = 8.2. In this case, the spectral lines of the first excited states are merging while the second
excited states are still outside of the wells. In this case, the Stark shift of the storage cavity when the KCQ is in its

first excited state is still distinct from that of the ground state of the KCQ, as we have n̄
(1)
cat ≈ n̄cat + 1. In the limit

of large α, we have two distinct regions: states inside the well and states outside the well. Fig. S 2 shows the energy
level diagram in this asymptotic limit.

In the absence of KCQ heating, the cavity coherence is protected from dephasing at large α because the cross-Kerr
interaction simplifies into a Stark-shift of the storage cavity, which can be tracked in software. When the KCQ is in
an excited state, however, the storage cavity is Stark-shifted by a different amount. Thus, when the KCQ heats to
an excited state for an unknown amount of time, the storage accumulates an unknown amount of phase, leading to
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dephasing. This dephasing is what we have measured in Fig. 3(c) of the main text.

To model the cavity coherence in the absence of KCQ heating, as well as the suppression of cavity dephasing at
small ϵ2, we perform a master equation simulation using Eq. 3 in the previous section as our model of the system
and photon loss as the only dissipation. We manage to achieve good agreement between data and simulation for the
regime |α|2 < 1 only by setting T1,a = 100 µs for the SNAIL, which is significantly different from our characterized
SNAIL coherence in Table I. This is due to a lack of understanding of the heating mechanism of the KCQ [5–7].
As a strongly driven nonlinear quantum system, the environment seen by the KCQ is not Markovian, rendering our
master equation simulation only a preliminary attempt at understanding the dynamics of the system. As a result,
we did not push the limit of the simulation to match our data by adding in dephasing or SNAIL heating. This is
also because we are using the simulation result as a “guide-to-the-eye” for our data on cavity coherence under active
cooling on the KCQ, showcasing that in the absence of KCQ heating, the cavity dephasing will be suppressed when
we increase the squeezing amplitude.

SYSTEM SETUP

Device fabrication

Following the recipe in [8], the on-chip superconducting circuits used in our experiment were fabricated on a
c-plane sapphire substrate grown using the heat-exchange method (HEM). The substrate wafer was cleaned using a
piranha solution (2:1 H2SO4 : H2O2) for 20-25 minutes and rinsed under running deionized (DI) water before being
annealed in a FirstNano EasyTube 6000 furnace. The annealing step has been shown to improve substrate surface
and bulk loss [8]. During the annealing process, the furnace was preheated to 200◦C with constant oxygen flow before
loading the sample. It was then heated up to 1200◦C at a ramp rate of 400◦C per hour. Afterwards, the furnace was
held at 1200◦C for 1 hour before cooled down gradually to room temperature over 6 hours with constantly flowing
gas mixture (4:1 N2 : O2).

The tantalum layer was uniformly sputtered on the substrate using the Kurt J. Lesker CMS 18 DC magnetron
sputtering system. The substrate was loaded into the sputtering chamber with a niobium thermalization disc in the
back for better heating uniformity. Afterward, the substrate was heated to 400◦C and was held for 15 minutes for
dehydration bakeout. The substrate was then heated to the deposition temperature at 800◦C and idled for 10 minutes
for temperature uniformity. The tantalum was sputtered at 300 W with 6 mTorr of Ar gas at a rate of 2.5Å/s for
10 minutes. The system then idled again for 10 minutes at 800◦C for the post-deposition bake. Subsequently, the
system was cooled down at a controlled rate of 10◦C per minute down to 500◦C. This was to release the stress in the
tantalum film into the substrate adiabatically to avoid material damage at the metal-substrate interface. Afterward,
the substrate was cooled down to room temperature at a faster rate. It took 3-5 hours to reach room temperature
before the substrate was unloaded.

Before optical lithography, the substrate surface was primed with HMDS vapor for better resist adhesion and
uniformity. During the process, the substrate was loaded into a TA Series Yield Engineering System (YES) oven
right after the annealing process. The oven chamber was then purged with HMDS vapor three times before baking
out the wafer at 150◦C for 25 minutes. At the end of the process, the chamber was re-purged with HMDS vapor
three times before the substrate was removed.

The sapphire substrate was then coated with SC1805 photoresist using Laurell spin coater WS-400 at 500 rpm for
10 seconds before ramping up to 4000 rpm for 1 minute and 30 seconds for film uniformity. The resist was baked at
115◦C for 1 minute. The edge beads were removed using acetone before the wafer was loaded into the Heidelberg
Maskless Aligner 150 direct laser writer for exposure with a calibrated dose of 92 mJ/mm2. Then the resist was
developed with Microposit MF319 developer for 1 minute and then treated with oxygen plasma using the AutoGlow
200 plasma system for 1 minute and 30 seconds at 150 W and 300 mTorr of oxygen.

The tantalum layer was etched using the dry etch recipe from [8] with an Oxford 80 reactive ion etch system.
Before the sample was loaded, the chamber was prepped using the standard cleaning recipe, which consists of two
main steps. We ran the recipe with an empty chamber before the actual etching. The first step is 10 minutes
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of cleaning with a mixture of O2 and SF6 at flow rates 50 sccm and 10 sccm, respectively. The power was at
100 W and the pressure was maintained at 50 mTorr. The second step is another 10 minutes of cleaning with
a mixture of O2 and Ar at 50 sccm and 10 sccm, respectively. The power was kept at 50 W and the pressure
was 50 mTorr. These two steps conditioned the chamber to have more reproducible results. The tantalum etch
recipe required us to flow SF6 at a rate of 20 sccm at a pressure of 10 mTorr for 3 minutes to etch through 150
nm of tantalum. After etching, the substrate was cleaned with 3 minutes of sonication in N-Methylpyrrolidone
(NMP), acetone and isopropyl alcohol (IPA) sequentially to get rid of the photoresist and was blown dry with nitrogen.

We thoroughly cleaned the wafer before electron beam (E-beam) lithography to reduce surface loss. The substrate
was cleaned with a piranha solution (2:1 H2SO4 : H2O2) for 20-25 minutes to get rid of organic contaminants. Then
it was rinsed under DI water for 5-10 minutes before being transferred in Transene 10:1 buffered oxide etch (BOE)
for 20 minutes to etch away most of the tantalum oxides [9]. The DI water rinse prior to BOE is crucial because a
mixture of piranha and BOE solutions can attack tantalum, a phenomenon we learned through trial and error. The
BOE step was followed by a 20-25 minute rinse in DI water.

The SNAIL loops and the Josephson junctions were patterned using electron-beam lithography. After a dehydration
bake at 180◦C for 5 minutes, the substrate was spin-coated with 800 nm of MMA (8.5) MAA EL13 and 200 nm of
950K PMMA A4, with a 5-minute bake at 180◦C after each layer was spun. Then, a 15 nm aluminum anticharging
layer was deposited on top of the bilayer to avoid charging effects. The bridge-free junctions were then written using
a Raith EBPG 5200+ at a base dose of 290 µC/cm2. Afterwards, the anticharging layer was removed using MF312
developer for 2 minutes. The Ebeam patterns were developed in 3:1 IPA:H2O for 2 minutes at 6◦C and the wafer
was blown dry with nitrogen.

The Josephson junctions were deposited using a Plassys UMS300 electron-beam evaporator. After being loaded
in the load lock and pumped to base pressure, the sample was etched with an Ar ion beam at 400 V and 22
mA at ±45◦ angles for 34 seconds each. This step removed the oxide on the tantalum sidewalls and cleaned the
substrate regions where aluminum was to be deposited. Subsequently, the aluminum was evaporated at angles
of ±20◦ in the evaporation chamber with an oxidation step in the middle using an 85:15 Ar:O2 mixture at 15
Torr for 15 minutes. After the depositions, the surface of the devices was capped with a layer of aluminum oxide
grown at 50 Torr for 5 minutes with the same gas mixture in the oxidation chamber before the substrate was unloaded.

The liftoff was performed by submerging the substrate in NMP at 75◦C for 4 hours. Then it was cleaned by being
sonicated in RT NMP, acetone, and IPA for 1 minute each. Then the wafer was blown dry with nitrogen. A layer
of SC1827 photoresist was coated on the wafer before it was diced with an ADT ProVectus 7100 dicer. The chips
were cleaned by being sonicated in NMP, acetone, and IPA for 2 minutes each and were tested by probing at room
temperature before being loaded into our experimental package.

Package processing

The main 3D aluminum package was mechanically machined out of high-purity (5N5) aluminum. It was then
cleaned by sonicating in NMP, acetone and IPA for 5 minutes each. Afterward, it went through a chemical etching
treatment using Transene Aluminum Etchant Type A to get rid of contaminants from the machining process [10].
During the etching process, the package was mounted on a custom-designed PTFE cage and submerged in 1L of the
etchant solution that was heated to 50◦C for about 2 hours in total. During the etching process, the etchant bath
needs to be periodically changed to avoid secondary reaction product redepositing on the surface of the package.
Also, the bath was stirred at 600 RPM. Afterwards, the package was rinsed thoroughly with DI water for 10 minutes,
before blown dry with nitrogen gas. The auxiliary parts, including the chip clamps, the copper brackets and the
screws were cleaned by sonication in NMP, acetone and IPA for 3 minutes each.



8

Cryoperm
shield

MITEQ

4K 4K plate

Still plate1K

0.1K

20mK

300K

20 dB

K&L
Filter

20 dB 20 dB 20 dB

10 dB 10 dB

K&L
Filter

40 dB
-20dB

30 dB 3 dB

K&L
Filter

HEMT

Isolator

Isolator

SPA

SNAIL LO Readout LO SPA pump LOStorage LO

I Q

I Q

I Q I Q

I Q

ZVA

ZVA

ZVA

ZVA ZVA

ZVA

ZVA

R
ea

d
ou

t

SP
A
 P

u
m

p

O
u
tp

u
t

S
to

ra
g
e

S
N

A
IL

S
q
u
ee

zi
n
g
 d

ri
ve

C
D

I Q

C
Q

R

ZVA

Doubler

Cu shield with
Berkeley black lining

To ADC

I I

2 31 4 5 6 7 8 9 10

Eccosorb filter
(low pass)

Circulator

Mixer

50

Bandpass filter Low pass filter

DC block

Directional coupler

20 dB Attenuator

RF amplifier

RF switch

Cold plate

Mixing chamber

FIG. S 3. The wiring diagram of our setup.
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Wiring diagram

Our experimental device is clamped to the mixing chamber of a dilution refrigerator, as depicted in Fig. S3, and sur-
rounded with two layers of shielding. The outermost shield is a cryoperm µ-metal magnetic shield, and the innermost
shield is made of copper and coated with Berkeley black [11] to absorb stray infrared radiation. To characterize and
control our experimental device inside the dilution refrigerator, we built a set of microwave lines shown in the wiring
diagram in Fig. S. 3. There are 10 lines in total, and each line is numbered next to its respective label on the diagram.

Lines 1, 3, and 6 provide the microwave signals for resonantly driving the storage cavity, SNAIL mode, and readout
cavity, respectively. On these lines a signal generator supplies a local oscillator (LO) tone to an IQ mixer, which
up- or down-converts the LO tone via the inputs to its in-phase (I) and quadrature (Q) ports. These IQ pairs are
sourced from an FPGA-based digital-to-analog converter (DAC) with custom software [12], providing us full control
of the amplitude and phase of our drives with 2 ns sampling resolution.

Lines 2, 4, and 5 provide the microwave signals for parametrically driving the conditional displacement (CD),
squeezing, and cat-qubit readout (CQR) processes, respectively. On line 2 we mix together the SNAIL LO and
storage LO (using), filter the output to isolate the desired difference frequency, and amplify this tone (with a
Mini-Circuits ZVA-183-S+ amplifier) so it can provide sufficient power to the LO input of an IQ mixer. This tone
is then mixed with an IQ DAC pair from our FPGA to give us full control of the amplitude and phase of our CD
drive, and then amplified to achieve sufficient power to drive this parametric process. Line 4 is designed in the same
way, except we are mixing the SNAIL LO with itself (using a Marki MLD-0416LSM frequency doubler) to generate
a tone at twice the frequency of this signal. Line 5 is designed in the same way, except we are mixing together the
SNAIL LO with the readout LO (using a Marki M2H-0220HP mixer) to generate a tone at the difference frequency
between these signals.

After conditioning all of these drive signals, they are combined in different ways and sent into the dilution
refrigerator. The signal on line 1 is delivered to the storage pin (see Fig. S4(a) for our nomenclature regarding
the pins). After entering the fridge it is attenuated (nominally to thermalize noise in the transmission line to
the temperature of the mixing chamber) and filtered (with a K&L 6L250-12000/T26000-O/O tubular low-pass
filter and an eccosorb filter) before arriving at the storage pin. The eccosorb filter is used to attenuate infrared
Cooper-pair-breaking radiation. The signals on lines 2 and 6 are combined and delivered to the readout pin. After
entering the fridge this combined signal is similarly attenuated and filtered before arriving at the readout pin, but
in this case it also passes through a cryogenic circulator (Quinstar OXE89). The signals on lines 3, 4, and 5 are
combined and delivered to the SNAIL pin. After entering the fridge this combined signal is similarly attenuated and
filtered before arriving at the SNAIL pin, but in this case we use a 20 dB directional coupler instead of an attenuator
at the mixing chamber. This syphons off 1% of the signal and sends the remaining 99% back up the fridge to the 4K
plate to be dissipated as heat. In this way we are able to decouple the process of attenuation from heat generation; if
we were to use a 20 dB attenuator instead, the fridge would heat up due to the high power needed for the parametric
drives being delivered to the SNAIL pin.

Line 7 is our output line. Photons in the readout cavity that leak out through the readout pin are first amplified
by our quantum-limited SNAIL parametric amplifier (SPA) [13], then a cryogenic HEMT amplifier, and finally a
room-temperature amplifier (MITEQ AMF-5F-04001200). The resulting signal is then mixed together with the
readout LO tone (using a Marki IRW-0618LXW-2 image reject mixer), resulting in 50 MHz signal that is digitially
acquired using the analog-to-digital (ADC) of our FPGA.

Lines 8 and 9 are used for operating our SPA. Line 8 simply provides a pump tone to the SPA, while line 9 delivers
a DC current that threads flux through the SPA to tune its operating point. This DC current is carried by a twisted
pair of superconducting NbTi wires from the 4K plate down to the mixing chamber of our dilution refrigerator. To
tune the SPA we only need to drive a current of a few hundred µA, so we are able to modularize this DC line using
normal-metal connectors at both the 4K plate and the mixing chamber.

Line 10 delivers a DC current that threads flux through our on-chip SNAIL, enabling us to tune its operating point.
The DC current is again carried by a twisted pair of superconducting NbTi wires from the 4K plate down to the
mixing chamber, but in this case we need to drive about 100 mA of current to tune the SNAIL to its operating flux
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FIG. S 4. The setup and basic spectroscopy result. (a) A cartoon of our experimental setup modeled from above. The
sapphire chip (colored in blue) with the superconducting circuits (colored in silver) sits in between two 3D aluminum post
cavities (colored in silver) with coupling pins (colored in brown) for delivering microwave control lines. The SNAIL has its
drive pin perpendicular to the chip at the bottom end of the chip tunnel. Above the chip, there is a copper coil (colored
brown) wound with Nb-Ti wires for threading magnetic flux into our SNAIL loops. On the right side of (a), we have the optical
micrograph of our SNAIL circuit, where the SNAIL loops with the Josephson junctions are made of aluminum, and the rest of
the structures are made out of tantalum. (b) The two-tone spectroscopy result, where we drive the coupling pin to the SNAIL
with a CW spectroscopy tone while measuring the reflection coefficient of the readout cavity. Whenever photons are absorbed
by a mode the readout is Stark-shifted, which manifests as a change in the phase of the reflection coefficient S11. The green
curve is our best fit for the SNAIL frequency as a function of flux. The light green curve is the difference between the CQR
buffer mode frequency and the fitted SNAIL frequency, corresponding to the CQR parametric process. The light blue curve is
twice the fitted SNAIL frequency, corresponding to the squeezing parametric processes.

bias point of 0.32Φ0. If we were to use normal-metal connectors anywhere below the 4K plate, the heat generated
would overwhelm the cooling power of the fridge. To get around this, we use a continuous NbTi twisted pair running
from 4K to the mixing chamber, following the method introduced in [14].

SYSTEM DESIGN AND CHARACTERIZATION

Design and simulation

Our experimental package consists of a sapphire chip (50 mm × 5.6 mm) sandwiched between two 3D aluminum
post cavities, as is depicted in Fig. S 4(a). Superconducting circuits are fabricated on the chip out of tantalum and
aluminum, as described above. The package was designed using electromagnetic finite element solver HFSS. The
SNAIL circuit is at the center of the chip, highlighted in the orange boxes. The SNAIL consists of two superconducting
loops to lower its anharmonicity [13, 15]. As the SNAIL circuit is a flux-tunable device, we need to deliver external
magnetic flux to our device inside our experimental setup. To do this, we follow the experimental setup developed
in [14, 16], using a copper coil nested inside the aluminum package as well as an on-chip flux transformer. When we
run DC current in the twisted pair, the current will turn the copper coil into an electromagnet, which then threads
flux into the flux transformer loop on the sapphire chip underneath. The flux generates current in the loop that
travels down the chip close to the SNAIL loops, where its electromagnetic field threads flux into the SNAIL circuit,
providing it with the external DC flux bias. In our design process, we optimized the geometry of the pick-up loop of
the flux transformer so that its eigenmodes do not crowd into frequencies of interest in the package. The common
mode of the flux transformer is at ωc/2π = 9.26 GHz, and its differential mode is at 9.76 GHz. The common mode
has a cross-Kerr χac/2π = 2.31 ± 0.1 KHz to the SNAIL mode with a total linewidth of κc/2π = 131.4 ± 0.4 kHz.
Compared with the readout mode, it enjoys a much larger χ/κ ratio and is therefore more suitable for dispersive
readout. As a result, in our basic system characterization experiments, we use the common mode of the flux trans-
former as our readout mode to perform two-tone spectroscopy, which is discussed in more detail in the next subsection.
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The SNAIL circuit hosts the KCQ, and it is driven with microwave signals delivered via the SNAIL pin shown at
the bottom end of the chip tunnel in Fig. S 4. The SNAIL pin is coupled to the SNAIL at a rate of (150 µs)−1, which
corresponds to the Purcell limit of this mode. Inspired by the design in [14], we design two on-chip meandering res-
onators serving as buffer modes for the squeezing drive (on the left at 7.760 GHz with a linewidth of 1.35±0.02 MHz)
and the CQR drive (on the right at 5.308 GHz with a linewidth of 1.24±0.01 MHz). The squeezing drive at 7.996 GHz
is detuned from the squeezing buffer by 240 MHz, and the CQR drive at 5.362 GHz is detuned from its buffer mode
by 56 MHz. Both parametric drives are very far away from their designed buffer modes in frequency. Nevertheless,
we can still efficiently drive these parametric processes without using excessively noisy amplifiers (see the wiring
diagram in Fig. S 3): we use Minicircuits ZVAs instead of ZVEs, as were used in [2, 5, 17]. The capacitor pads of the
SNAIL circuit have a slight asymmetry to avoid coupling the two post cavities directly via the common mode of the
circuit. The post cavity on the right (7.025 GHz) is our high-Q storage cavity. The post cavity on the left serves two
purposes. Its fundamental mode (3.133 GHz, with a linewidth of 0.28± 0.01 MHz in total) is the buffer mode for the
CD parametric drive, and its first harmonic (9.362 GHz) is the readout cavity for the SNAIL/KCQ. The CD drive at
3.027 GHz is detuned from its buffer by 106 MHz, but we can still drive gCD/2π = 3.1 MHz (see CD calibration below).

System characterization with two-tone spectroscopy

To experimentally validate the microwave design of our package, as well as extract the SNAIL parameters, we
perform a two-tone spectroscopy experiment as a function of the SNAIL’s flux bias. In this experiment, we drive the
SNAIL pin with a CW spectroscopy tone swept from 2-10 GHz at -50 dBm while measuring the reflection coefficient
of the cavity via the readout + CD pin. Whenever photons are absorbed by a mode, the readout is Stark-shifted,
which manifests as a change in the phase of the reflection coefficient S11. In the results shown in Fig. S 4(b), we
identify the resonance feature tuning with flux from 3.5 - 4.5 GHz as our SNAIL mode, the feature tuning from
4.9-5.9 GHz as our CQR parametric process, and the feature tuning from 6.9-8.9 GHz as our squeezing parametric
process. We extract the SNAIL parameters listed in the top section of Table I by fitting the measured SNAIL
frequencies using the model HSNAIL = ω′

aa
′†a′ +

∑
n>2 gn(a

′ + a′†)n up to n = 4. We also identify other prominent
features in the two-tone spectroscopy result, such as the CQR parametric process and the squeezing process. We
subtract the fitted SNAIL frequencies from the CQR buffer frequency and the squeezing buffer frequency to obtain
the lines in light green and light blue. They serve as guide-to-the-eye for the measured CQR and squeezing processes.
The readout mode and the CD buffer mode are barely visible as they are not as strongly coupled to the SNAIL drive
pin by design.

KCQ CALIBRATION AND CHARACTERIZATION

Calibrating CQR

We perform logical readout on the KCQ following the same pulse sequence that was first experimentally demon-
strated in [17]. The basic principle of the readout process is that we perform a conditional displacement on the readout
cavity conditioned on whether the KCQ is in the state | + α⟩ or | − α⟩. When we drive at ωr − ωa, we obtain the
interaction Hamiltonian

HCQR = gCQR

(
r† + r

)
σz (6)

where r is the readout mode and gCQR is linearly proportional to the size of the Kerr-cat α [5, 17]. The intuition of
the physical process is that we are driving a beamsplitter between the readout cavity and the stabilized KCQ. This
process converts photons in the KCQ to photons in the readout cavity, which exit through the readout pin and then
travel up the amplification chain to the ADC of the readout FPGA card. The phase of the signal carries ”which-
well” information about the KCQ. More detailed treatments of the CQR process can be found in [5, 17]. For all the
CQR measurements included in both the main text and the supplement, we drive the beamsplitter for 600 ns and
simultaneously integrate the signal coming from the readout cavity for 2.5µs. Fig. S 5 shows the pulse sequence and
the result of a readout QNDness measurement, where we perform two consecutive CQRs on the KCQ and post-select
the result of the second measurement on the outcomes |±α⟩ of the first measurement [17]. We measure the QNDness
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Parameter Value Measurement or estimate method
SNAIL charging energy EC/h 62 MHz Two-tone spectroscopy and SNAIL fit
Number of SNAILs 2 Design
SNAIL asymmetry αSNAIL 0.11 Two-tone spectroscopy and SNAIL fit
SNAIL 1 large junction inductance 0.6 nH Two-tone spectroscopy and SNAIL fit
SNAIL 1 small junction inductance 5.5 nH Two-tone spectroscopy and SNAIL fit
SNAIL linear stray inductance Llin 1.5 nH Two-tone spectroscopy and SNAIL fit
SNAIL frequency at Φ/Φ0 = 0 4.46 GHz Two-tone spectroscopy
SNAIL frequency at Φ/Φ0 = 0.5 3.46 GHz Two-tone spectroscopy
SNAIL operating bias point Φop/Φ0 0.32 Design
SNAIL operating frequency ωa/2π 3.998 GHz Two-tone spectroscopy
SNAIL cubic nonlinearity g3/2π 6 MHz Two-tone spectroscopy and SNAIL fit
SNAIL self-Kerr nonlinearity K/2π 0.93 ± 0.03 MHz Kerr refocusing msmt.
SNAIL single-photon decay time T1,a 16.0 ± 0.4 µs Coherence msmt.
SNAIL Ramsey decay time T2,a 7.2 ± 0.1 µs Coherence msmt.
SNAIL Hahn echo decay time T2E,a 9.5 ± 0.1 µs Coherence msmt.
Storage cavity frequency ωb/2π 7.025 GHz Two-tone spectroscopy
Storage cavity frequency tuning range with external flux 1.2 MHz Two-tone spectroscopy
Storage cavity single-photon decay time T1 204 ± 9 µs Coherence msmt.
Storage cavity Ramsey decay time T2 381 ± 8 µs Coherence msmt.
Storage cavity to SNAIL cross-Kerr χab/2π 2.91 ± 0.03 kHz Coherence msmt.
Storage cavity self-Kerr nonlinearity Kb/2π < 1 Hz Simulation
Readout cavity frequency ωr/2π 9.362 GHz Direct RF reflection msmt.
Readout cavity total linewidth κr/2π 0.396 MHz Direct RF reflection msmt.
Readout cavity internal linewidth 0.04 MHz Direct RF reflection msmt.
Readout cavity to SNAIL cross-Kerr χar/2π 1.51 ± 0.01 kHz Direct RF reflection msmt.
CQR buffer mode frequency 5.308 GHz Two-tone spectroscopy
CQR buffer mode linewidth 1.24 ± 0.01 MHz Two-tone spectroscopy
Squeezing buffer mode frequency 7.760 GHz Two-tone spectroscopy
Squeezing buffer mode linewidth 1.35 ± 0.02 MHz Two-tone spectroscopy
CD buffer mode frequency 3.133 GHz Two-tone spectroscopy
CD buffer mode linewidth 0.28 ± 0.01 MHz Two-tone spectroscopy

Supplementary Table I. Summary of device parameters. The design simulations are carried out with Ansys HFSS and the
black-box quantization method [15, 18, 19].

to be Q = (p(+α| + α) + p(−α| − α))/2 = 91%, where p(±α| ± α) is the probability that the second measurement
agrees with the first [17, 20].

Calibrating KCQ gates

As discussed in the main text, we need two gates on the KCQ to realize universal control: the σz(θ) rotation and
the σx(π/2) rotation (i.e., the Kerr gate). Both gates were first experimentally demonstrated in [17]. In this section,
we describe our process for tuning up these gates.

The Kerr-refocusing phenomenon, first demonstrated in [21], is the foundation of the discrete σx(π/2) rotation.
Under the Kerr-nonlinear Hamiltonian of the SNAIL mode in its rotating frame H = −Ka†a†aa, the coherent
state | + α⟩ in the SNAIL evolves into the parity-less cat state |C−i

α ⟩ at t = π/K, and then refocuses into | − α⟩ at
t = 2π/K. We can calibrate this refocusing effect using the measurement sequence shown in Fig. S 6(a). We first
prepare a coherent state | ± α⟩ in the SNAIL via adiabatic squeezing of the SNAIL at ωS = 2ωa and a projective
CQR measurement. Then, we abruptly switch off the squeezing drive and let the system evolve under Kerr for
different duration t, before abruptly switching on the squeezing drive to “catch” the cat state with the right phase.
Lastly, we perform a CQR measurement to determine whether the KCQ has refocused to its initial state. As shown
in Fig. S 6(b), we observe this refocusing peak at 544 ns, corresponding to a Kerr gate duration of 272 ns. From this
experiment, we extract the Kerr nonlinearity of the SNAIL to be K/2π = 0.93 MHz. A detailed discussion of the
Kerr gate is included in the supplement material of [5].

Our Kerr gate quality is limited by T1 errors on the SNAIL. We perform a master equation simulation where the
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FIG. S 5. Calibrating the CQR. (a). The pulse sequence for measure the QNDness of the CQR. (b). A highly-averaged
CQR signal obtained from performing the experiment in (a). (c). The corresponding histogram of the CQR signal in (b), where
we perform two consecutive readouts and then postselect the result of the second one based on that of the first one | ±α⟩. The
yellow (green) circles are measured data postselected on measuring | ± α⟩, where the solid lines are the Gaussian fits.

only dissipation on the system is the single photon loss on the SNAIL. We plot the result of the simulation on top
of the experimental data in Fig. S 6(b), and we find excellent agreement between simulation and data, indicating
that our Kerr gate fidelity is limited by T1,a of the SNAIL. To further validate our understanding, we increase the
duration of the Kerr evolution to include five coherent state refocusing events in Fig. S 6(c) and we still obtain
excellent agreement between our simulation and data.

With this Kerr gate, we can now validate the presence of a KCQ in our SNAIL. We replicate the experiment first
performed in [17], where we prepare the KCQ in state |C±i

α ⟩ and then apply a single-photon drive on the KCQ at
ωS/2. When the single photon drive is in phase with the squeezing drive, it breaks the symmetry of the system and
thus lifts the degeneracy between the states | + α⟩ and | − α⟩, leading to a Rabi rotation of σz(θ) around the KCQ
Bloch sphere at a rate

Ωz = Re(4ϵzα) (7)

to the first order in perturbation theory [5]. Note that the ”Rabi” terminology comes from the different convention
used in [17] for the Bloch sphere orientation. When the single-photon drive is out of phase with the squeezing
drive, the degeneracy of the potential is restored and the rotation of the system disappears. We demonstrate this
phase-dependent rotation rate with a pulse sequence shown in Fig. S 6(d). We prepare a parity-less cat state |C±i

α ⟩
in the SNAIL via a projective CQR measurement and a Kerr gate. Then we drive the SNAIL at ωS/2 at different
phases relative to the squeezing drive for time t. Afterward, we read out the KCQ along the σy quadrature by
performing a Kerr gate and a CQR. In the experimental result in Fig. S 6(e), we see the dependence of the Rabi rate
Ωz on the phase of the single photon drive ϵz, proving that we are generating a bona fide KCQ.
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FIG. S 6. KCQ gate calibration (a). Pulse sequence for characterizing the Kerr-refocusing in our SNAIL. We prepare a
coherent state |±α⟩ in the SNAIL through a CQR measurement, and then switch off the squeezing drive to let the state evolve
under Kerr of the SNAIL. We take “snapshots” of the evolution by switching on the squeezing drive after time t and reading
out the state with CQR. (b). The readout signal for the Kerr refocusing measurement. The blue circles are measured data
and the red solid line is obtained from a master equation simulation. (c). Longer Kerr refocusing data, obtained by increasing
the wait time t. The solid line is found using the same master equation simulation as in (b). (d). The control sequence for
calibrating a σz(θ) rotation on the KCQ. The gaps in the squeezing drive pulse train are the Kerr gates. (e). Rabi oscillations
between different cats with different parities |C±

α ⟩ as a function of single photon drive phase and duration. (f). Calibrating the
amplitude ϵz,π for a σz(π) rotation, which enables arbitrary σz(θ) rotations. (g). KCQ Rabi rate as a function of the square
root of the amplitude of our digital control on the squeezing drive. (h). n̄cat in the KCQ as a function of the amplitude of our
digital control on the squeezing drive.

Following this demonstration, we use the same pulse sequence to calibrate the σz(π) and σz(π/2) rotation pulses.
We use Gaussian pulses (σ=80 ns, total duration 320 ns) generated by our digital control for this Rabi drive. In the
experiment, we calibrate the amplitude of the Gaussian pulses by keeping the single photon drive in phase with the
squeezing drive while varying its amplitude ϵz, before reading out the KCQ along the σy axis. An example of such a
calibration result is shown in Fig. S 6(f). We fit the result to a cosine function to calibrate the pulse amplitude ϵz,π
corresponding to a σz(π) rotation. We realize arbitrary σz(θ) rotations by varying this amplitude. Combined with
the σx(π/2) rotation, this gives us universal control on the KCQ.

Calibrating the size of the cat α

As indicated in Eq. 7, the Rabi rate of the KCQ is also a function of the size of the cat α, which we utilize to
calibrate the strength of the squeezing drive [5, 17]. α scales linearly with the digital control amplitude of ϵ2. If we
increase ϵ2 while holding ϵz constant, we can calibrate the scaling factor by fitting for the slope of the measured KCQ
Rabi rates as a function of digital control amplitude. However, this calibration requires an independent measurement
of ϵz beforehand, which is done by measuring the Rabi rate of the SNAIL under the drive ϵza

† + ϵ∗za with ϵ2 = 0.
This gives us ϵz/2π = 0.4 MHz. With this, we can calibrate ϵ2 as described. The results are shown in Fig. S 6(g)
where there is a clear linear dependence of the Rabi rate Ωz on the square root of ϵ2 at large drive amplitudes. The
slope of this line enables us to calibrate n̄cat = |α|2 as a function of ϵ2 as is shown in Fig. S 6.
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FIG. S 7. KCQ spectroscopy (a). The pulse sequence for KCQ spectroscopy. After preparing a | ± α⟩ state in the KCQ via
CQR, we probe the spectrum of the KCQ with a tone that is detuned from ωa for time t. When the probe is on resonance
with a transition, it will transfer some population to the other well state, which can be resolved using CQR at the end of the
measurement sequence. (b). The result of our KCQ spectroscopy experiment. The purple lines are the measured spectroscopy
data and the green dashed lines are from diagonalizing the Hamiltonian with parameters independently characterized in other
experiments.

In this section, we perform KCQ spectroscopy following the method introduced in [5]. This result is useful for
performing frequency-selective dissipation (FSD) on the KCQ in later sections. To perform the spectroscopy, we use
the pulse sequence shown in Fig. S 7(a). We first prepare | ± α⟩ in the KCQ by ramping up the squeezing drive
and performing a projective CQR measurement. Then, we send in an 800 ns spectroscopy probe tone with variable
frequency ωspec, near half of the squeezing frequency. If the tone is on resonance with one of the transitions to the
excited states, some of the population will be transferred to the other well state | ∓ α⟩ via the excited state, which
leads to a reduced CQR signal.

The spectrum of our KCQ is in Fig. S 7(b). The spectral lines for the first two excited states are performed
at a smaller probe tone power than the one used for resolving the second pair of excited states. We stitch the
datasets from these separate measurements together as part of the data post-processing. This is the same method
used by the authors of [5] for their KCQ spectroscopy measurements. It agrees well with our theoretical expectation
(in dashed lines). As we increase the squeezing drive amplitude, the spectral lines merge as the states fall inside
the wells and become degenerate [5]. Fig. S 7(b) tells us that there is more than one level inside the wells when |α|2 ≳ 5.

COHERENCE CHARACTERIZATION

SNAIL coherence characterization

Owing to the small cross-Kerr χab/2π = 2.91 kHz between the SNAIL and the readout cavity compared with the
total linewidth of the readout cavity κr/2π = 0.396 MHz (Table I), our dispersive readout of the SNAIL does not
have enough SNR for most of our experiments [22]. Therefore, we are not able to use the standard dispersive readout
methods [23, 24] for characterizing the SNAIL coherence. Instead, we adopt a method where we prepare states in the
SNAIL, adiabatically ramp up the squeezing drive to map these states to the KCQ Bloch sphere [17], and perform
logical readout via CQR. Between the state preparation and the logical readout, the state inside the SNAIL evolves
under the dissipation seen by the bare SNAIL, which we use to exact its coherence.

To measure the single-photon decay time T1 of the SNAIL, we prepare the excited state |e⟩ in the SNAIL using a
square pulse of duration 1.08µs, such that the frequency distribution of the pulse is a sinc function with a notch at
the anharmonicity of the SNAIL. This pulse shaping minimizes leakage to the |f⟩ state of the SNAIL. Then, we idle
the SNAIL for time t, before adiabatically ramping up the squeezing drive for 2 µs. We pulse-shape the ramp with a
tanh function to minimize leakage. This process maps the YZ plane of the SNAIL qubit Bloch sphere onto the XY
plane of the KCQ Bloch sphere so that energy relaxation of the SNAIL from |e⟩ to |g⟩ is mapped to a parity flip of
the KCQ (e.g., |C+

α ⟩ to |C−
α ⟩). To read out the parity of the KCQ, we perform a σz(π/2) rotation and a Kerr gate,
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followed up with CQR. Then we fit the parity as a function of t to extract the energy relaxation rate of the SNAIL
T1,a = 16.0± 0.4 µs (see Fig. S 8(a)).

To measure the Ramsey decay time of the SNAIL, we prepare a coherent state in the KCQ via a projective CQR
measurement. Then we adiabatically map the coherent state | ± α⟩ of the KCQ to the |±⟩ state of the SNAIL. We
then idle the SNAIL for time t before mapping it back onto the KCQ for logical readout. To measure the Hahn echo
decay time, we perform the same measurement, but we apply a π pulse halfway through the idling time to echo out
low-frequency noise. We obtain T2R = 7.2 ± 0.1µs and T2E = 9.5 ± 0.1µs, from the measurements shown in Fig. S
8(b) and (c), respectively. In these examples, we use a software detuning to artificially rotate our measurement axis
at 1 MHz for better fits.

(a)

(b)

(c) (f)

(e)

(d)

FIG. S 8. Coherence characterizations of the SNAIL and the KCQ at Φ/Φ0 = 0.32. (a), (b) and (c): Measurements of
the SNAIL T1,a, T2,a and T2E,a, realized by adiabatically mapping the SNAIL states to the KCQ states and performing CQR.
(d) and (e): Measurements of the KCQ lifetimes TZ and TX,Y , corresponding to the coherent states | ± α⟩ and cat states |C±

α ⟩
respectively, using the method in [5]. (f). TZ and TX,Y as functions of |α|2, reproducing the results from [5].

KCQ coherence characterization

To characterize the KCQ coherence at our operating point Φ/Φ0 = 0.32, we use the same method in [5]. We
measure the lifetime TZ of the coherent states | ± α⟩ by first preparing a coherent state in the KCQ via a projective
CQR measurement. Then we idle the KCQ with a constant squeezing drive for duration t and perform CQR. We
measure the lifetime of the cat states TX,Y by performing a Kerr gate on the | ± α⟩ state after the first CQR
measurement to prepare |C±i

α ⟩ states in the KCQ. After idling for time t with a constant squeezing drive, we perform
another Kerr gate to rotate the KCQ so that we are reading it out along the Y axis of the KCQ Bloch sphere. By
fitting the population decay shown in Fig. S 8 (d) and (e), we obtain TZ = 147.4± 3.8µs and TX,Y = 2.32± 0.04µs,
respectively.



17

We also investigate TX,Y,Z as a function of the squeezing drive strength to replicate a central result of [5].
Essentially, we repeat the measurements described in the previous paragraph on the KCQ at different squeezing drive
amplitudes. However, there are two complications with implementing this directly: the Kerr gate fidelity degrades
as we increase |α|2 [5], and the CQR needs to be recalibrated for each value of |α|2. To avoid such complications,
we perform all the KCQ state preparation and CQR processes at |α|2 = 4. We then change the squeezing drive
amplitude for the various idling times required for coherence characterization. Our result in Fig. S 8(f) qualitatively
agrees with the one in Fig.3(c) of [5].

CONDITIONAL DISPLACEMENT AND CAVITY DISPLACEMENT CALIBRATIONS

CD calibration

(a)

(b)

(c)

(d)

FIG. S 9. Conditional displacement and cavity displacement calibrations (a) CD calibration result, where we take a
cut of the vacuum CF tomography along Re[β]. The blue circles are measured data and the red solid line is the Gaussian fit.
(b) Displacement calibration. After calibrating the CD, we displace the storage cavity and take cuts along Re[β] and Im[β] of
the real and imaginary parts of the CF tomography. (c) and (d) Theory predictions and measured data for displacements of 1,
1.5, and 3 (left to right) inside the storage cavity. For each figure, the upper panel is the real part of the CF, while the lower
panel is the imaginary part.

As a first step towards understanding the coupling between a KCQ and a storage cavity, we need to calibrate the
strength of the CD operation. Compared with other cQED implementations where a transmon is dispersively coupled
to a high-Q cavity, as in [20, 25, 26], our CD is fundamentally different. As derived earlier, the Hamiltonian of our
system, when we are parametrically driving the CD interaction with a time-dependent pulse while stabilizing the
KCQ, is given by

H = −Ka†2a2 + ϵ2a
†2 + ϵ∗2a

2 − χaba
†ab†b+ gBS(t)a

†b+ g∗BS(t)ab
†, (8)
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in the regime where gBS(t) ≪ 4ϵ2. We project this Hamiltonian onto the KCQ subspace by using the projector
PC = |C+

α ⟩⟨C+
α |+ |C−

α ⟩⟨C−
α | and obtain

H =
(
gCD(t)b

† + g∗CD(t)b
)
σz − χabα

2b†b, (9)

where gCD = αgBS in the large cat limit where α ≫ 1, as discussed in the main text. The second part of Eq. 9 is a
Stark shift of the storage cavity due to photons in the KCQ. This Stark shift can be used to characterize χab between
the two modes, but for now we focus our attention on the first part of Eq. 9,

HCD =
(
gCD(t)b

† + g∗CD(t)b
)
σz. (10)

We see that the CD operation in our setup is parametrically activated by driving a beamsplitter between the SNAIL
and the storage, which is fundamentally different than other cQED implementations [25, 26]. The solution to the
time-dependent Schrödinger equation iℏ∂tU = HCDU is given by

U(t) = exp

(
− i

ℏ

(∫ t

0

dτgCD(τ)a
† +

∫ t

0

dτg∗CD(τ)a

)
σz

)
, (11)

which is the CD unitary UCD = D(−β/2)| − α⟩⟨−α|+D(+β/2)|+ α⟩⟨+α| where β = 2
∫ t

0
dτgCD(τ).

We calibrate the strength of our CD operation by measuring the characteristic function (CF) [27] of the vacuum
state C(β) = exp

(
−1/2|β|2

)
[25]. Experimentally, we measure the CF of the ground state of the storage cavity

along Re(β) with the KCQ and fit the results to a Gaussian distribution to extract the calibration scaling factor
(Fig. S 9(a)). With |α|2 = 4 and a 348 ns pulse (including a 24 ns tanh ramp at both the beginning and end), we
obtain gCD/2π = 6.2 MHz. This method relies on the assumption that the storage cavity has a negligible thermal
population. Excessive storage thermal population would decrease the width of the Gaussian distribution, leading to
a larger scaling factor and thus introducing systematic errors for subsequent calibrations.

Displacement calibration

Having calibrated the amplitude of our CD drive, we can now calibrate the amplitude of our unconditional
displacement drive on the storage cavity. To do so, we prepare a coherent state of unknown amplitude in the storage
cavity by displacing it from vacuum, perform CF tomography using the KCQ, and fit the result to its theoretical form
given by C(β) = exp

(
−|β|2/2

)
exp(βη∗ − ηβ∗). The best fit for η tells us the unknown amplitude of the displacement.

In our experiment, rather than performing a full tomography on the displaced state, we sample two cuts along the
Re[β] and Im[β] axis, which suffices to determine η robustly.

After calibrating both the CD and displacement drives, we validate our calibration by preparing coherent states
|η = 1⟩, |η = 1.5⟩, and |η = 3⟩, and performing full CF tomography. We find excellent agreement between theory and
experiment, shown in Fig. S 9(c) and (d).

CD rate as a function of cat size

As described earlier, when we drive a beamsplitter between the KCQ and the storage cavity with strength gBS, we
obtain the conditional displacement Hamiltonian

HCD =
(
gCD(t)b

† + g∗CD(t)b
)
σz, (12)

where gCD = αgBS. To validate that gCD is proportional to cat size α, we characterize the CD strength using the
method described above at different cat sizes α. The measurement result in Fig. S 10 displays the predicted linear
relationship between gCD and α, with a slope of gBS = 1.8 MHz.

There are two important things to note about this measurement. First, we fix TCD = 348 ns so that one unit of CD
can be performed with a reasonably small fraction of the digital control amplitude range. This is necessary for our
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FIG. S 10. The rate of CD as a function of cat size α.

tomography experiments, as we need to use large CDs to perform full CF tomography. If we were to use TCD = 100
ns, we would expect to obtain gCD/2π ≈ 20 MHz for |α|2 = 4. Second, there is a trade-off when going to large αs to
achieve a faster CD. As can be seen from the measurement results in Fig. S 8(f), when we increase α, TX,Y decreases.
This leads to a reduction in the SNR of CF tomography since the coherence of the KCQ becomes comparable to the
duration of the measurement (∼ 1µs).

Squeezing

CQR

SNAIL

CD
SWAP

(a) (b)

t

FIG. S 11. Calibrating photon swap between a SNAIL and a storage cavity (a). The control sequence for calibrating
the swap. We first prepare the SNAIL in its excited state and then drive a beamsplitter interaction between the SNAIL and
the storage at frequency ωb − ωa + ∆ for time t. We then map the SNAIL state to the KCQ and perform a logical readout
along the X axis of the KCQ Bloch sphere. (b). The population in the SNAIL as a function of swap frequency and duration.

FOCK STATE PREPARATION IN THE STORAGE CAVITY

Swapping a photon between a SNAIL and a storage cavity

As discussed in the main text, to characterize the storage coherence we must prepare cardinal states of the storage
Fock qubit spanned by the |0⟩ and |1⟩ states. To do so, we prepare the corresponding state in the SNAIL, and then
drive a beamsplitter (BS) interaction between the SNAIL and the storage to swap the single-photon state into the
storage cavity. To calibrate this swap, we use the measurement pulse sequence in Fig. S 11(a). First, we excite the
SNAIL from |g⟩ to |e⟩ with the square pulse for t = 1088 ns. Then we drive the beamsplitter interaction with varying
frequency and duration. Next, we adiabatically ramp up the squeezing drive to map the YZ plane of the SNAIL
qubit Bloch sphere onto the XY plane of the KCQ Bloch sphere. Finally, we read out the KCQ along the X axis via
a σz(π/2) rotation and a Kerr gate. The dataset in Fig. S 12(b) displays the standard chevron-like pattern. We fit
the cut at the center of the pattern to a damped sine wave and extract the duration tSWAP = 1.1µs and detuning
∆ = 0.17 MHz.
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(a)

(b)

FIG. S 12. Storage Fock qubit tomography. (a) and (b) Theoretical prediction and experimental data of the CF of the
cardinal states on the Bloch sphere of the storage Fock qubit. For each figure, the upper panels are the real part of the CF and
the lower panels are the imaginary part. From left to right, the states are |0⟩, |0⟩+ |1⟩, |0⟩+ i|1⟩, |0⟩ − |1⟩, |0⟩ − i|1⟩ and |1⟩.
Note that the contrast of (b) is much lower than that in (a). This is mostly due to the faulty Kerr gate on the KCQ.

Storage Fock qubit cardinal state tomography

With a full swap pulse calibrated, we can now prepare all the cardinal states of the storage Fock qubit and validate
this preparation via CF tomography. This is the first characterization of a non-Gaussian state with a KCQ. Fig. S
12(a) shows the theoretical CFs for all the cardinal states and Fig. S 12(b) shows our experimental results. These
tomography experiments are performed using the same pulse sequence included in Fig. 2 of the main text. Though
the contrast is limited by our Kerr gate fidelity, we find excellent agreement between theory and experiment.

Storage Fock qubit logical Pauli measurement

To measure the coherence of the storage cavity, we measure the decay of the expectation values of the Pauli
operators of the storage Fock qubit ⟨X(t)⟩, ⟨Y (t)⟩ and ⟨Z(t)⟩. We use a method adapted from [28] where we project
the displacement operator onto the |0⟩, |1⟩ subspace in order to express these expectation values in terms of the
characteristic function.

The single-mode CF for a bosonic mode is defined as

C(β) = Tr (ρD(β)) (13)

where D(β) = exp
(
βa† − β∗a

)
is the displacement operator for the storage cavity and ρ is the density matrix of

the storage cavity. The CF is measured using our CD operation [25–27] as described in the main text. The logical
codewords of the storage Fock qubit are given by | + Z⟩ = |0⟩ and | − Z⟩ = |1⟩. We define the Fock qubit subspace
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projector as P = |0⟩⟨0|+ |1⟩⟨1|, and we project D(β) as

PD(β)P =

[
⟨0|D(β)|0⟩ ⟨0|D(β)|1⟩
⟨1|D(β)|0⟩ ⟨1|D(β)|1⟩

]
= e−

|β|2
2

[
1 β
β∗ 1− |β|2

]
(14)

where we use

|β⟩ = e−
|β|2
2

∞∑

n=0

βn

√
n!
|n⟩ (15)

and

⟨1|D(β)|1⟩ = e−
|β|2
2

(
1− |β|2

)
. (16)

We then equate Eq. 14 to the four Pauli matrices, X, Y , Z and I and solve for the different βs. We make the ansatz
that X and Z take the form

X = aPD(β1)P + bPD(β2)P = ae−
|β1|2

2

[
a aβ1

aβ∗
1 a− a|β1|2

]
+ e−

|β2|2
2

[
b bβ2

bβ∗
2 b− b|β2|2

]
=

[
0 1
1 0

]
, (17)

Z = cPD(β1)P + dPD(β2)P = e−
|β1|2

2

[
c cβ1

cβ∗
1 c− c|β1|2

]
+ e−

|β2|2
2

[
d dβ2

dβ∗
2 d− d|β2|2

]
=

[
1 0
0 −1

]
. (18)

To solve this, we make an additional ansatz that α = −β, a = −b, and c = d, from which we obtain the solutions

β1 =
√
2i,

β2 = −
√
2i,

a = −b = e/2
√
2i,

c = d = e/2,

(19)

where e is Euler’s number. To measure I, we only need to measure the CF at β0 = 0, as can be observed from Eq.
14. For Y , we need to make a slightly more complicated ansatz involving three displacements

Y = fPD(β1)P + hPD(β2)P + jPD(β3)P

= e−
|β1|2

2

[
f fβ1

fβ∗
1 f − f |β1|2

]
+ e−

|β2|2
2

[
h hβ2

hβ∗
2 h− h|β2|2

]
+ e−

|β3|2
2

[
j jβ3

jβ∗
3 j − j|β3|2

]
=

[
0 −i
i 0

]
(20)

to cancel out the real part of the off-diagonal terms while preserving the imaginary part. Here we obtain the solutions

β3 =
√
2,

f = h = −ei/2
√
2,

j = ei/
√
2,

(21)

where e is again Euler’s constant.

All together, we have

I = D(0),

X =
e

2
√
2i

[
D(

√
2i)−D(−

√
2i)

]
,

Y =
ie√
2

[
D(

√
2)−D(

√
2i)−D(−

√
2i)

]
,

Z =
e

2

[
D(

√
2i) +D(−

√
2i)

]
.

(22)

These equations tell us that we should measure the CF at these four points, β = 0,
√
2,
√
2i,−

√
2i, in order to

reconstruct the density matrix of the Fock qubit in the storage cavity. This method can also be used for characterizing
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cavity coherences for transmon-cavity systems in the weak dispersive regime.

Data analysis for Fig. 4(b) in the main text Monitoring the expectation value of the identity I in Eq.
22 is crucial in our experiments, since it gives us information about changes in the system calibrations and
characterization. In the experiment described in Fig. 4 in the main text, we notice that ⟨I(t)⟩ increases as a
function of time when we are performing the FSD. Through further investigation, we found that the quality of
the KCQ σx(π/2) rotation improves as we increase the idling time in the presence of FSD. For good measure,
we performed separate measurements to confirm that the storage cavity thermal population stays the same
while applying FSD on the KCQ. Critically, this affects the contrast of the CF tomography, and thereby skews
the coherence of the storage cavity extracted from this tomography data. To get rid of this effect, we divide the
measured Pauli operator expectation values by the measured identity operator expectation values in our data analysis.

SNAIL-CAVITY CROSS-KERR CHARACTERIZATION

(a) (b)

FIG. S 13. Cavity Stark shift as a function of |α|2. (a) and (b) The Stark shifts of the storage and readout cavities as
functions of |α|2, respectively. From the linear fits, we can extract χab/2π = 2.91± 0.03 kHz and χar/2π = 1.51± 0.01 kHz.

We calibrate the cross-Kerr between the SNAIL and a cavity mode by measuring the Stark shift of the cavity at
a function of the cat size α in the KCQ. The Stark shift is given by the second term in Eq. 9, where the frequency
shift of the cavity is linearly proportional to α, with the cross-Kerr as the proportionality constant.

Specifically, for calibrating χab between the storage cavity and the SNAIL, we measure the rate at which the
storage cavity rotates at different values of α. To do this, we repeat the experiment in Fig.3 of the main text, where
we prepare a single photon state in the storage at a certain α and monitor how fast it is rotating by reconstructing
its density matrix as a function of time. We plot the rotation frequency of the storage cavity as a function of |α|2
in Fig. S 13(a), where the slope gives us χab/2π = 2.91 ± 0.03 kHz. After obtaining χab, we can add in a software
detuning at χab|α|2 at different |α|2 for the main experiment in Fig.3 of the main text to cancel out the effects of the
deterministic Stark shift for better fit results and better consistency of experimental settings.

We also use this method to measure χar, the cross-Kerr between the SNAIL and the readout. In this case,
we measure the oscillation frequency of the ringdown of the readout cavity at different values of |α|2. For better
measurement results, we detune the readout local oscillator by 2MHz for the measurements. The results in Fig. S
13(b) also display a linear relationship between the readout Stark shift and |α|2 with a slope of χar/2π = 1.51± 0.01
kHz.

SNAIL THERMAL POPULATION MEASUREMENT

As is discussed in Fig.2 of the main text, we measure the pure dephasing rate of the storage cavity to be Γϕ =
(5.69 ± 2.84ms)−1 in the presence of the SNAIL (at α = 0). To confirm the hypothesis that this dephasing is due



23

(a)

(b)

Squeezing

CQR

SNAIL

CD

State prep Tomography

SWAP

FIG. S 14. SNAIL thermal population measurement via a swap test. (a) The pulse sequence for measuring the thermal
population in the SNAIL. We swap the states between the SNAIL and the storage cavity after the system reaches thermal
equilibrium and we then perform a CF tomography of the storage along the Re[β] axis. (b). The measurement results of the
CF tomography without the swap (upper) and with the swap (lower). The relative change in the width of the Gaussian gives
us the thermal population in the SNAIL.

to SNAIL heating, we design an experiment to measure the thermal population inside the SNAIL where we take
advantage of the existing calibrations and methods. This measurement consists of swapping the states in the SNAIL
and the storage after reaching thermal equilibrium, and then performing CF tomography with the KCQ. The width
of the Gaussian distribution of the thermal state tells us the thermal population of the SNAIL. The CF of a thermal
state is given by

C(β) = exp

(
−(nth +

1

2
)|β|2

)
, (23)

where the width of the Gaussian is given by σth = 1/
√
2nth + 1. More thermal population results in a narrower

Gaussian distribution.

The pulse sequence of this measurement is shown in Fig. S 14. It is almost identical to the experiment shown in
Fig.2(a) of the main text, with the distinction that we do not excite the SNAIL before the swap pulse. The results
in Fig. S 14(b) show the cut of the storage CF along the Re[β] axis without the swap (upper) and with the swap
(lower). From these Gaussian fits, we find that the CF after the swap has a standard deviation that is 0.027± 0.004
lower than that of the CF without the swap. Assuming negligible thermal population in the storage cavity, we obtain
nth = 0.028± 0.005 in the SNAIL, giving an effective temperature of 54 mK. Using the equation from [29]

Γth
ϕ =

nthκ1aχ
2
ab

κ2
1a + χ2

ab

(24)

derived in the limit of nth ≪ 1 from [30], where κ1a = 1/T1a. Plugging in our value for nth we obtain
Γϕ = (7.96 ± 1.59ms)−1, within the errorbar of our independent measurement of the pure dephasing rate in the
main text. The errorbar of this result is a lot smaller than the one from the previous method, because this data is
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much better averaged. This shows that the dephasing of our storage cavity at |α|2 = 0 is dominated by SNAIL heating.

SYSTEM STABILITY MEASUREMENT

FIG. S 15. System stability measurement. We monitor the coherence of the system over 5 days to test the stability of our
coherences. Most of the coherences are fluctuating within 10%, while the coherence of the storage cavity is fluctuating within
16%.

The main dataset in Fig.3 of the main text took more than three weeks to complete. We routinely recalibrated
the system once a week during this time. This necessitated us to test the long-term stability of our setup. To this
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end, we ran a one-week-long stability measurement of the system where we monitored the coherences of the bare
SNAIL, the KCQ, and the storage cavity over 110 hours. Each set of coherence measurements takes ∼2 hours to
complete and we did not recalibrate the system in the middle of the test. The measurement result is in Fig. S
15. Each data point for the storage T1 and T2 is averaged over the same number of shots as the data in Fig.3(b)
of the main text. The coherences of the bare SNAIL (T1a and T2a) and the KCQ (TX and TZ) were fluctuat-
ing within 10% of their mean values, whereas the storage T1 and T2 were fluctuating within 12% and 16%, respectively.

FREQUENCY-SELECTIVE DISSIPATION ON KCQ

Basic calibration of the FSD

Squeezing

CQR

(a)

(c)

(b)

Cooling

FIG. S 16. Calibrating FSD on the KCQ. (a). The control sequence of the calibration experiment. After preparing a |C+
α ⟩

state in the KCQ with α = 2, we perform two successive Kerr gates to induce heating in the KCQ. Then we drive the FSD
process with different frequencies and amplitudes before we measure the excited state population via CQR. (b). An example of
a readout signal of a heated KCQ. The readout blob in the middle, marked by the dashed circle, is the population in the excited
states above the wells. (c). KCQ excited state population as a function of cooling amplitude and frequency. The parameters
of the point with the lowest population are adopted for our calibrated FSD pulse.

In this section, we discuss the calibration of the frequency-selective dissipation (FSD) on the KCQ introduced in
the main text. Here, we calibrate the amplitude and frequency of the pulse used to implement the FSD operation.
To perform this calibration, we artificially introduce heating to the KCQ, apply the FSD with variable amplitude
and detuning, and then perform CQR. We perform this measurement with |α|2 = 4 for which the first excited state
manifold is outside of the well (see Fig. 3 of the main text), such that our CQR has a third blob in the center of the
I/Q plane correlated with the excited state population. The goal is to find the FSD parameters that minimize the
excited state population.
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The experimental pulse sequence is shown in Fig. S 16(a). At first, we prepare an even parity cat |C+
α ⟩ in the KCQ

by adiabatically ramping up the KCQ from the |g⟩ state of the SNAIL [17]. Then, we artificially heat the SNAIL
by performing two consecutive Kerr gates on the KCQ. As our Kerr gate is mostly limited by single-photon loss on
the SNAIL, there is a significant excited state population after the Kerr gates. Subsequently, we perform an FSD by
turning on the CQR drive for 5 µs with variable detuning ∆ and digital control amplitude. We then wait for 400 ns
for the readout cavity to empty itself before our CQR measurement. An example histogram of the measurement is
shown in Fig. S 16(b), where we indicated the region corresponding to the excited state population. Our measured
excited state population as a function of detuning and amplitude is shown in Fig. S 16(c). We find it is minimized
at ∆ = 12.5 MHz, which agrees with the gap energy independently measured in KCQ spectroscopy in Fig. S 7,
confirming that we are indeed dissipating population from the first pair of excited states of the KCQ.

FSD on a large Kerr-cat

(a)

(b)

(c)

FIG. S 17. FSD on a larger cat. (a). Coherence of the storage in the presence of a |α|2 = 7 KCQ with T2 = 226± 8µs. (b).
Coherence of the storage cavity when dissipating on the first excited state in the KCQ with T2 = 433± 12µs. (c). Coherence
of the storage cavity when dissipating on the second excited state in the KCQ with T2 = 334 ± 9 µs. The frequencies of the
oscillation are different due to the different Stark shifts on the storage cavity from the FSD pulse.

We next use the FSD to investigate whether KCQ-induced storage dephasing is due to heating outside of the well
or due to heating to the first excited state. To this end, we use a larger Kerr-cat with |α|2 = 7 where the first pair of
excited states is inside the wells and the second pair is outside. We then apply the FSD separately on these levels
to see the effects on storage dephasing. To do so, we make use of the KCQ spectroscopy experiment, which tells us
that for |α|2 = 7 the first pair of excited states is detuned from the ground state by 20 MHz while the second pair of
excited states is detuned by 38 MHz. By setting our FSD pulses at these detunings, we are able to target these levels
separately. Finally, we use these FSD pulses during the idling time of our storage dephasing measurement (described
in Fig.3 of the main text ).

The results of these measurements are shown in Fig. S 17. In the top panel (a), we apply no FSD on the KCQ,
and we obtain T2 = 226 ± 8 µs. In the middle panel (b), we apply FSD to the first pair of excited states inside the
wells, and we obtain T2 = 433± 12 µs. This is in excellent agreement with 2T1 = 432± 17 µs, showing that we have
eliminated dephasing to within the precision of our measurement. In the bottom panel (c), we apply FSD on the
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second pair of excited states just outside of the wells, and we obtain T2 = 334±9 µs. This indicates that even heating
inside the wells to the first excited state manifold causes storage dephasing, even though these states are degenerate.
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