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Universal computation of a quantum system consisting of superpositions of well-separated coherent states
ofmultiple harmonic oscillators can be achieved by three families of adiabatic holonomic gates. The first gate
consists of moving a coherent state around a closed path in phase space, resulting in a relative Berry phase
between that state and the other states. The second gate consists of “colliding” two coherent states of the same
oscillator, resulting in coherent population transfer between them. The third gate is an effective controlled-
phase gate on coherent states of two different oscillators. Such gates should be realizable via reservoir
engineering of systems that support tunable nonlinearities, such as trapped ions and circuit QED.
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Reservoir engineering schemes continue to reveal prom-
ising new directions in the search for potentially robust and
readily realizable quantum memory platforms. Such
schemes are often described by Lindbladians [1] possessing
decoherence-free subspaces (DFSs) [2] or (more generally)
noiseless subsystems [3]—multidimensional spaces
immune to the nonunitary effects of the Lindbladian
and, potentially, to other error channels [4,5]. On the other
hand, holonomic quantum computation (HQC) [6] is a
promising framework for achieving noise-resistant quan-
tum computation [7]. In HQC, states undergo adiabatic
closed-loop parallel transport in parameter space, acquiring
Berry phases or matrices (also called non-Abelian holon-
omies or Wilson loops [8]) that can be combined to achieve
universal computation.
It is natural to consider combining the above two

concepts. After the initial proposals [9,10], the idea of
HQC on a DFS gained traction in Ref. [11,12] and
numerous investigations into HQC on DFSs [13] and
noiseless subsystems [14–16] followed. However, previous
proposals perform HQC on DFS states constructed out of a
finite-dimensional basis of atomic or spin states. There has
been little investigation [17] of HQC on DFSs consisting of
nontrivial oscillator states (e.g., coherent states [18,19]).
While this is likely due to a historically higher degree of
control of spin systems, recent experimental progress in the
control of microwave cavities [20–22], trapped ions [23],
and Rydberg atoms [24] suggests that oscillator-type
systems are also within reach. In this Letter, we propose
an oscillator HQC-on-DFS scheme using cat codes
[Fig. 1(a)].
Cat codes are quantum memories for coherent-state

quantum information processing [25], storing information

in superpositions of well-separated coherent states that are
evenly distributed around the origin of phase space. Cat-
code quantum information can be protected from cavity
dephasing via passive quantum error correction [26] using
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FIG. 1. In the d ¼ 2 cat code, quantum information is encoded
in the coherent states jα0ð0Þi≡ jαi and jα1ð0Þi≡ j− αi.
(a) Wigner function sketch of the state before (top) and after
(bottom) a loop gate acting on j− αi, depicting the path of j− αi
during the gate (blue) and a shift in the fringes between j� αi.
(b) Phase space diagram for the loop gate; X ¼ 1

2
hâþ â†i and

P ¼ −ði=2Þhâ − â†i. The parameter α1ðtÞ is varied along a
closed path (blue) of area A, after which the state j− αi gains
a phase θ ¼ 2A relative to jαi. (c) Effective Bloch sphere of the
j� αi qubit depicting the rotation caused by the d ¼ 2 loop gate.
The black arrow depicts the initial state while the red arrow is the
state after application of the gate. The dotted blue arrow does not
represent the path traveled since the states leave the logical space
j� αi during the gate. (d)–(f) Analogous descriptions of the
collision gate, which consists of reducing α to 0, driving back to
α expðiϕÞ, and rotating back to α.
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Lindbladian-based reservoir engineering [5]. In addition,
such information can be actively protected from photon
loss events [5,27–29]. While there exist plenty of methods
to create and manipulate the necessary states [5,27,30–32]
and while the gates can also be implemented using
Hamiltonian control, we consider reservoir engineering
due to its protective features. Cat codes differ from the well-
known Gottesman-Kitaev-Preskill (GKP) encoding scheme
[33] in both state structure and protection. GKP codes
consist of superpositions of highly squeezed states and
focus on protecting against small shifts in oscillator
position and momentum. In contrast, cat codes protect
against damping and dephasing errors, the dominant loss
mechanisms for most cavity systems. While realistic GKP
realization schemes remain scarce [34], cat codes benefit
from greater near-term experimental feasibility [22].
For simplicity, let us introduce our framework using a

single oscillator (or mode). Consider the Lindbladian

_ρ ¼ FρF† −
1

2
fF†F; ρg with F ¼ ffiffiffi

κ
p Yd−1

ν¼0

ðâ − ανÞ;

ð1Þ
½â; â†� ¼ 1, n̂≡ â†â, κ ∈ R, dimensionless αν ∈ C, and ρ a
density matrix. The d ¼ 1 case [F ¼ ffiffiffi

κ
p ðâ − α0Þ] reduces

to the well-known driven damped harmonic oscillator (see
Ref. [35], Sec. 9.1) whose unique steady state is the
coherent state jα0i (with âjα0i ¼ α0jα0i). Variants of the
d ¼ 2 case are manifest in driven two-photon absorption
(see Ref. [36], Sec. 13.2.2), the degenerate parametric
oscillator [see Ref. [37], Eq. (12.10)], and a laser-driven
trapped ion [see Ref. [38], Fig. 2(d); see also Ref. [39]]. A
motivation for this work has been the recent realization of
the F ¼ ffiffiffi

κ
p ðâ2 − α20Þ process in circuit QED [21], follow-

ing an earlier proposal to realize F ¼ ffiffiffi
κ

p ðâd − αd0Þ with
d ¼ 2, 4 [5]. For arbitrary d and certain αν, a qudit steady-
state space is spanned by the d well-separated coherent
states jανi that are annihilated by F. The main conclusion of
this work is that universal control of this qudit can be done
via two simple gate families, loop gates and collision gates,
that rely on adiabatic variation of the parameters ανðtÞ.
Universal computation on multiple modes can then be
achieved with the help of an entangling two-oscillator
infinity gate. We first sketch the d ¼ 2 case and extend to
arbitrary dwith jανi arranged in a circle in phase space. The
straightforward generalization to arbitrary arrangements of
jανi is presented in the Supplemental Material [40]. We
then discuss gate errors and integration with cat-code error
correction schemes [5,29], concluding with a discussion of
experimental implementation.
Single-qubit gates.—Let d ¼ 2 and let α0, α1 depend on

time in Eq. (1), so the steady-state space holds a qubit worth
of information. The positions of the qubit’s two states
jανðtÞi in phase space are each controlled by a tunable
parameter. We let α0ð0Þ ¼ −α1ð0Þ≡ α (with α real unless

stated otherwise). This system’s steady states j� αi are the
starting point of parameter space evolution for this section
and the qubit defined by them (for large enough α) is shown
in Fig. 1(a).
The loop gate involves an adiabatic variation of α1ðtÞ

through a closed path in phase space [see Fig. 1(b)]. The
state jα1ðtÞi will follow the path and, as long as the path is
well separated from jα0ðtÞi ¼ jαi, will pick up a phase
θ ¼ 2A with A being the area enclosed by the path [53]. It
should be clear that initializing the qubit in j− αi will
produce only an irrelevant overall phase upon application
of the gate (similar to the d ¼ 1 case). However, once the
qubit is initialized in a superposition of the two coherent
states with coefficients c�, the gate will impart a relative
phase:

cþjαi þ c−j − αi → cþjαi þ c−eiθj − αi: ð2Þ

Hence, if we pick jαi to be the x axis of the j � αi qubit
Bloch sphere, this gate can be thought of as a rotation
around that axis [depicted blue in Fig. 1(c)]. Similarly,
adiabatically traversing a closed and isolated path with the
other state parameter jα0ðtÞi will induce a phase on jαi.
We now introduce the remaining Bloch sphere compo-

nents of the cat-code qubit. For α ¼ 0, the d ¼ 2 case
retains its qubit steady-state space, which now consists of
Fock states jμi, μ ¼ 0, 1 (since F ¼ ffiffiffi

κ
p

â2 annihilates
both). One may have noticed that both states j � αi go to
j0i in the α → 0 limit and do not reproduce the α ¼ 0
steady-state basis. This issue is resolved by introducing the
cat-state basis [54]

jμαi≡ e−
1
2
α2

N μ

X∞
n¼0

α2nþμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ μÞ!p j2nþ μi

∼α→∞ 1ffiffiffi
2

p ðjαi þ ð−Þμj − αiÞ ð3Þ

with normalization N μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
½1þ ð−Þμ expð−2α2Þ�

q
. As

α → 0, jμαi ∼ jμi while for α → ∞, the cat states (expo-
nentially) quickly become “macroscopic” superpositions of
j� αi. This problem thus has only two distinct parameter
regimes: one in which coherent states come together
(α≪1) and one in which they are well separated (α≫1,
or more practically α≳ 2 for d ¼ 2). Equation (3) shows
that (for large enough α) cat states and coherent states
become conjugate z and x bases, respectively, forming a
qubit. We note that μ ¼ 0, 1 labels the respective �1
eigenspace of the parity operator expðiπn̂Þ; this photon
parity is preserved during the collision gate.
We utilize the α ≪ 1 regime to perform rotations around

the Bloch sphere z axis [Fig. 1(f)], which effectively induce
a collision and population transfer between jαi and j− αi.
The procedure hinges on the following observation: apply-
ing a bosonic rotation Rϕ ≡ expðiϕn̂Þ to well-separated
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coherent or cat-state superpositions does not induce state-
dependent phases, while applying Rϕ to Fock state super-
positions does. Only one tunable parameter α0ðtÞ ¼ −α1ðtÞ
is necessary here, so F¼ ffiffiffi

κ
p ½â2−α0ðtÞ2� with jα0ð0Þj ¼ α.

The collision gate consists of reducing α to 0, driving back
to α expðiϕÞ, and rotating back to α [Fig. 1(e)]. The full
gate is thus represented by R†

ϕSϕS
†
0, with Sϕ [55] denoting

the nonunitary driving from 0 to α expðiϕÞ. Since

R†
ϕSϕS

†
0 ¼ R†

ϕðRϕS0R
†
ϕÞS†0 ¼ S0R

†
ϕS

†
0; ð4Þ

the collision gate is equivalent to reducing α, applying R†
ϕ

on the steady-state basis jμi, and driving back to α. The net
result is thus a relative phase between the states jμαi:

c0j0αi þ c1j1αi → c0j0αi þ c1e−iϕj1αi: ð5Þ

In the coherent state basis, this translates to a coherent
population transfer between j� αi.
Two-qubit gates.—Now let us add a second mode b̂ and

introduce the entangling infinity gate for the two-photon
case. We now use two jump operators for Eq. (1),

FI ¼ ðâ − αÞðâþ δαÞ
FII ¼ ðâ b̂−α2Þðâ b̂þδα2Þ: ð6Þ

We keep α > 0 constant and vary δðtÞ in a figure-eight or
“∞” pattern (Fig. 2), starting and ending with δ ¼ 1. For
δ ¼ 1, the four DFS basis elements fj� αig ⊗ fj� αig are
annihilated by both FI and FII. For δ ≠ 1 and for suffi-
ciently large α, the basis elements become jα; αi, jα;−δαi,
j−δα; αi, and j− δα;−δ−1αi. Notice that the δ−1 makes sure
that FIIj− δα;−δ−1αi ¼ 0. This δ−1 allows the fourth state
to gain a Berry phase distinct from the other three states.
Since Berry phases of different modes add, we analyze the
â=b̂-mode contributions individually. For any state that
contains the j− δαi component (in either mode), the Berry
phase gained for each of the two circles is proportional to
their areas. Since the oppositely oriented circles have the
same area [Fig. 2(a)], these phases will cancel. The Berry
phase of the fourth state, which contains the component
j− δ−1αi, will be proportional to the total area enclosed by
the path made by δ−1. Inversion maps circles to circles,
but the two inverted circles will now have different areas

[Fig. 2(b)]. Summing the Berry phases ψ i gained upon
traversal of the two circles i ∈ f1; 2g yields an effective
phase gate:

j−α;−αi þ jresti → eiðψ1þψ2Þj−α;−αi þ jresti; ð7Þ
where jresti is the unaffected superposition of the remain-
ing components fjα; αi; jα;−αi; j−α; αig.
Single-qudit gates.—We now outline the system and its

single-mode gates for arbitrary d. Here, we let ανð0Þ≡ αeν
with real non-negative α, eν ≡ exp½ið2π=dÞν�, and ν ¼
0; 1;…; d − 1 [see Fig. 3(a) for d ¼ 3]. This choice of the
initial qudit configuration makes Eq. (1) invariant under the
discrete rotation exp½ið2π=dÞn̂� and is a bosonic analogue
of a particle on a discrete ring [56]. Therefore, n̂modd is a
good quantum number and we can distinguish eigenspaces
of exp½ið2π=dÞn̂� by projections [57]

Πμ ¼
X∞
n¼0

jdnþ μihdnþ μj ¼ 1

d

Xd−1
ν¼0

exp

�
i
2π

d
ðn̂ − μÞν

�

ð8Þ
with μ ¼ 0; 1;…; d − 1. The corresponding cat-state basis
generalizes Eq. (3) to

jμαi≡ ΠμjαiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihαjΠμjαi
p

∼

( jμi α → 0; ð9aÞ
1ffiffi
d

p
P

d−1
ν¼0 e

−i2πd μνjαeνi α → ∞: ð9bÞ ð9Þ

Since the overlap between coherent states decays exponen-
tially with α, the quantum Fourier transform between
coherent states jαeνi and cat states jμαi in Eq. (9b) is
valid in the well-separated regime, i.e., when
2α sinðπ=dÞ ≫ 1 (satisfied when jhαjαe1ij2 ≪ 1). It should
be clear that the more coherent states there are (larger d),
the more one has to drive to resolve them (larger α).
Also, note the proper convergence to Fock states jμi as
α → 0 in Eq. (9a).

(a) (b)

FIG. 2. Sketch of the adiabatic paths of the components
(a) j− δαi and (b) j− δ−1αi during the infinity gate.

(b)(a)

FIG. 3. (a) Threefold symmetric configuration of the steady
states jανi of Eq. (1) with d ¼ 3 and depiction of a loop gate (θ)
acting on jα2i and a collision gate ðϕÞ between all states.
(b) Arbitrary configuration of steady states for d ¼ 7, depicting
jα0i undergoing a loop gate and jα1i; jα2i undergoing a displaced
collision gate (see the Supplemental Material [40]).
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Both gates generalize straightforwardly [see Fig. 3(a) for
d ¼ 3]. The loop gate consists of the adiabatic evolution of
a specific ανðtÞ around a closed path isolated from all other
αν0 ð0Þ. There are d such possible evolutions, each imparting
a phase on its respective jαeνi. The collision gate is
performed as follows: starting with the jαeνi configuration
for large enough α, tune α to zero (or close to zero), pump
back to a different phase α expðiϕÞ, and rotate back to the
initial configuration. Each jμαi will gain a phase propor-
tional to its mean photon number, which behaves in the two
parameter regimes as follows:

hμαjn̂jμαi ¼
�
μþOðα2dÞ α → 0; ð10aÞ
α2 þOðα2e−cα2Þ α → ∞; ð10bÞ

ð10Þ

where c ¼ 1 − cos 2π=d. Since a rotation imparts only a
μ-independent (i.e., overall) phase in the well-separated
regime [Eq. (10b)], the only μ-dependent (i.e., nontrivial)
contribution of the symmetric collision gate path to the
Berry matrix is at α ¼ 0. This gate therefore effectively
applies the Berry matrix expð−iϕχ̂Þ to the qudit, where
χ̂ ≡P

d−1
μ¼0 μjμαihμαj is the discrete position operator of a

particle on a discrete ring [56]. More generally, one does
not have to tune α all the way to zero to achieve similar
gates—e.g., being in the regime with 2α sinðπ=dÞ ≈ 1 is
sufficient. The two-mode infinity gate can likewise be
extended to the d-photon case and it is a simple exercise to
prove universality [40].
Gate errors.—In the Lindbladian-dominated adiabatic

limit [40], the role of the excitation gap is played by the
dissipation gap—the eigenvalue of the Lindblad operator
whose real part is closest (but not equal) to zero. Since our
Lindbladians are infinite dimensional, it is possible for the
dissipation gap to approach zero for sufficiently large jανj
(i.e., in the limit of an infinite-dimensional space). For the
symmetric d-photon case however, this is not the case and
the gap actually increases with α (verified numerically for
d ≤ 10). The gap can also be seen to increase by analyzing
the excitation gap of the Hamiltonian F†F (see Ref. [15],
Sec. VIII.C). Having numerically verified the infinity gate,
we also see that the gap increases with α in the two-mode
system (6). Here, we discuss the scaling of leading-order
nonadiabatic errors, focusing on the single-mode gates for
d ¼ 2, 3.
Nonadiabatic corrections in Lindbladians are in general

nonunitary, so their effect is manifest in the impurity of the
final state (assuming a pure initial state). Extensive numeri-
cal simulations [58] show that the impurity can be fit to

ϵ≡ 1 − TrfρðTÞ2g ∝
1

κTαp
ð11Þ

as α; T → ∞, where ρðTÞ is the state after completion of the
gate, α≡ jανð0Þj is the initial distance of all jανi from the

origin, p > 0 is gate dependent, and κ is the overall rate of
Eq. (1). One can see that ϵ ≈OðT−1Þ, as expected for a
nearly adiabatic process. Additionally, we report that
p ≈ 1.8 for d ¼ 2 and p ≈ 3.9 for d ¼ 3 loop gates,
respectively. For the d ¼ 2, 3 collision gates, we observe
that p ≈ 0.
Photon loss errors.—We have determined that the above

gates can be made compatible with a (photon number)
parity-based scheme protecting against photon loss [5,29].
In such a scheme, one encodes quantum information in a
logical space spanned by even parity states (e.g., jανi þ
j− ανi with ν ¼ 0; 1;…; d − 1, generalizing Sec. II.D.3 of
Ref. [26]). Photon loss events can be detected by quantum
nondemolition measurements of the parity operator ð−1Þn̂.
In the case of fixed-parity cat codes, errors due to photon
loss events can be corrected immediately [29] or tracked in
parallel with the computation [5]. By doubling the size d of
the DFS of Lindbladian (1) to accommodate both even and
odd parity logical spaces, we have determined a set of
holonomic gates that are parity conserving and are uni-
versal on each parity subspace [40]. This scheme allows for
parity detection to be performed before or after HQC.
Implementation and conclusion.—We show how to

achieve universal computation of an arbitrary configuration
of multimode well-separated coherent states jανi by the
adiabatic closed-loop variation of ανðtÞ. We construct
Lindbladians that admit a decoherence-free subspace con-
sisting of such states and whose jump operators consist of
lowering operators of the modes. One can obtain the
desired jump operators by nonlinearly coupling the multi-
mode system to auxiliary modes (ĉ; d̂;…), which act as
effective thermal reservoirs for the active modes. For the
case of one active mode â, if one assumes a coupling of the
form âĉ† þ H:c: and no thermal fluctuations in ĉ, one will
obtain (in the Born-Markov approximation) a Lindbladian
with jump operator â. Therefore, a generalization of the
coupling to Fĉ† þ H:c: will result in the desired single-
mode Lindbladian (1) with jump operator F. Since the F
are polynomials in the lowering operators of the active
modes, quartic and higher mode interactions need to be
engineered. Such terms can be obtained by driving an atom
in a harmonic trap with multiple lasers [38] or by coupling
between a Josephson junction and a microwave cavity
[5,21]. We thus describe arguably the first approach to
achieve holonomic quantum control of realistic continuous
variable systems.
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