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Universal control of an oscillator with dispersive coupling to a qubit
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We investigate quantum control of an oscillator mode off-resonantly coupled to an ancillary qubit. In the strong
dispersive regime, we may drive the qubit conditioned on the number states of the oscillator, which, together with
displacement operations, can achieve universal control of the oscillator. Based on our proof of universal control,
we provide a straightforward recipe to perform arbitrary unitary operations on the oscillator. With the capability
of universal control, we can significantly reduce the number of operations to prepare the number state |n) from
O(n) to O(4/n). This universal control scheme of the oscillator enables us to efficiently manipulate the quantum

information stored in the oscillator, which can be implemented using superconducting circuits.
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As an important model for quantum information process-
ing, the coupled qubit-oscillator system has been actively
investigated in various platforms, including trapped ions [1],
nanophotonics [2], cavity QED [3], and circuit QED [4]. Due to
its convenient control, the physical qubit is usually the primary
resource for quantum information processing. Meanwhile, the
oscillator serves as an auxiliary system for quantum state
transfer and detection [5]. In fact, the oscillator, associated
with a phononic or photonic mode, may have long coherence
times [1,6,7], and the large Hilbert space associated with
the oscillator can be used for quantum encoding [8—10] and
autonomous error correction with engineered dissipation [11].
These crucial features call for deeper investigations into
quantum control theory of the oscillator.

The seminal work of Law and Eberly [12] has triggered
many theoretical and experimental investigations to prepare
the quantum states of the oscillator assisted by an ancillary
qubit with Jaynes-Cummings (JC) coupling [1,13-15]. How-
ever, the more complex problem of implementing arbitrary
unitary operations remains an outstanding challenge. Even
with recent advances, protocols for universal control require
either a large number of control operations [16], slow adiabatic
transitions [17], or a more complicated model with an
ancillary three-level system [ 18]. Meanwhile, the development
of superconducting circuits acting in the strong dispersive
regime opens new possibilities for universal control of the
oscillator [19].

In this Rapid Communication, we provide a scheme for
universal control of the oscillator assisted by an ancillary
qubit. The scheme utilizes the dispersive Hamiltonian [19]
along with two types of drives associated with the qubit and
the oscillator, respectively. The key is the capability to drive
the qubit [9,10,19-22] and impart arbitrary phases conditioned
on the number state of the oscillator. An experimental imple-
mentation of the proposed scheme, confirming the feasibility
of the protocol, is presented in Ref. [23].

The Hamiltonian of the qubit-oscillator system is

H=Hy+ H, + A, (1)
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with a dispersively coupled qubit and oscillator [19]
Hy = wgle) (| + o — xle) (el 2
time-dependent drive of the oscillator,
Hi = et)e'a’ + He., 3)
and time-dependent drive of the qubit,
H, = Q(1)e'"'|e) (g| + H.c. )

Above, w, is the qubit transition frequency between |g) and |e),
w, 1s the oscillator frequency, a'(a) are the raising (lowering)
operators, /i = d'a is the number operator of the oscillator,
x 1s the dispersive coupling, and €2(¢) and €(¢) are the time-
dependent drives of the qubit and the oscillator, respectively.
The eigenstates of H, are |g,n) and |e,n) with an oscillator
excitation number n = 0,1, ..., as illustrated in Fig. 1.

Our control scheme requires the following three constraints:
(1) The oscillator and qubit are never driven simultaneously
[i.e., €(r)2(t) = O for all 7]; (2) the qubit is in the ground state
|g) whenever the oscillator drive is on [i.e., when €(z) # 0];
and (3) the qubit drive is weak compared with the dispersive
coupling, i.e., |Q2(?)] K x.

With the above constraints, we have two types of operations.
Operations of type @ [based on Eq. (3) under constraint
No. 2] are displacements,

Type @ : D() = exp(aa’ — a*a), (5)

with o =i [ &(t)dt, which can coherently pump or remove
energy from the oscillator. Operations of type @ [based on
Eq. (4) under constraint No. 3] are qubit rotations conditional
on the number states [19-22,24], which can impart number-
dependent Berry phases. As illustrated in Fig. 1, there is a
series of transition frequencies of the qubit, {w, — xn} _,,
depending on the excitation number of the oscillator. We
can achieve unitary rotations between the selected levels
{lg.,n),le,n)} with a negligible effect on the rest of the
system, if we drive the qubit with Q(t) = ©,(t)e~"*' and
[2,] < x [19-22]. Hence, we can impart a Berry phase to a
selected number state: |g,n) — e'%|g,n), with §, proportional
to the solid angle subtended by the path in the Bloch sphere
associated with {|g,n),|e,n)} (as illustrated in Fig. 1). Since
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FIG. 1. (Color online) Energy-level diagram of the qubit-
oscillator system. In the rotating frame of the oscillator, the states
{|g,n)}, have the same energy. After each operation, the population
(orange circles) remains in the subspace associated with [g). A
weak displacement operation (red dashed arrows) couples the states
lg.n — 1) and |g,n) with strength /ne for all n. The SNAP gate
(blue solid arrows) can simultaneously accumulate different Berry
phases {6, } to states {|g,n)}. The Berry phase 6, is proportional to the
enclosed shaded area in the corresponding Bloch sphere, achieved by
resonant microwave pulses with frequency w, — n x (blue oscillatory
fields).

the qubit remains in |g) after the operation, we can effectively
obtain a selective number-dependent arbitrary phase (SNAP)
operation

8,(6,) = e®Imnl (©6)

which imparts phase 6, to the number state |n). Since the
excitation number is preserved during the SNAP operation (due
to constraint No. 1), we may drive the qubit with multiple
frequency components, Q(7) = Y, Q,(t)e'@=*"" These will
simultaneously accumulate different phases 6, for different
number states and implement the general SNAP gate,

o0 oo

Type @ : 86) = [ [ 8.6 =D ™ Im)ynl. (D)

n=0 n=0

where 6 = {6, 102 o is the list of phases. Since 6, can be an
arbitrary function of n, the SNAP gate can simulate arbitrary
nonlinear effects that conserve the excitation number. For
example, if we choose 6, ox n?, the SNAP gate effectively
induces a Kerr nonlinearity of the oscillator. With SNAP
gates, we just need to consider real displacement, because
any complex displacement o = re'? can be decomposed as
a real displacement conjugated by a SNAP gate, D(a) =
S(Q)D(r)S( 9) with 6, = n¢(mod 27).

Proof of universality. To show that the operations D(«) and
S (9) are sufficient for universal control of the oscillator, we
first 1dent1fy p=—i@ —a)asa generator of D(oz) for real
o, and {Qn = Zn —o In")(n'[}, as generators of S(G) Their
commutator is

Jo = i[p,0nl = Vn + 1(In)(n + 1| + |n + 1) (n]),

which can selectively couple n and n — 1. This gives the group
commutator

D(€)R,(€)D(—€)R,(—€) = expliJ,e* + O(¥)], (8)
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FIG. 2. Plot of infidelity of the unitary Vv, [Eq. (10)] constructed
by our protocol with respect to the desired target unitary \A/,,,mget
[Eq. (9)] vs n. The target unitaries are 7 rotations on the {|n),[n + 1)}
subspace. In the limit of |€2,|/x — 0, the simple implementation
of Eq. (10) can already achieve fidelities F = %|Tr(‘7nT \A/,,,ta,get)| of
better than 0.998. In the calculation of the fidelity we use the 2 x 2
submatrices of interest (acting on the {|n),|n 4 1)} subspace).

for small real € and for the SNAP gate,

R,(6) = €2 = 8({e,...€,0,...))

n (o)
=Y |+ > In)n'l.
n'=0 n'=n+1
For any integer N > 0, (J, } -0 and{ Qn} 0 are sufficient to

generate the Lie algebra u(/N) over the truncated number space
spanned by {|n)|n < N}, which implies universal control of
the oscillator [25-27].

Explicit construction of target unitary. Let us first consider
the elementary target unitary operation

Vi arger = cos 0(In)(n| + |n + 1)(n + 1))
+ sinf(jn){n + 1| — |n + 1){(n]) 9

that performs a rotation of angle 6 in the {|n),|n + 1)}
subspace, with an efficient approximate implementation

V. = D(e”)Ry(m)D (03" Ru(m)D (). (10)

where R,(m) = = Y0 _o In')(n/| + Y o, In')(n'| is a SNAP
gate with a  phase shift for number states with no more
than n excitations. It is important to impose the constraint
o] + ar + a3 = 0 to minimize the undesired effects to the
subspace associated with |n') # |n) or |n + 1). Numerically,
we optimize the fidelity, F = A |Tr(V V,Z starget)|, Where N,
is the cutoff dimension (i.e., the size of the matrices used
to represent the operators) [28,29]. The numerical optimum
is attained with (aq,00,03) = (o, —2,0) (naturally, the value
of o will depend on n and the angle of rotation). Figure 2
shows the infidelities we obtain using this protocol for the
implementation of a 7 rotation on {|n),|n + 1)}.

To construct an arbitrary target unitary llarget in the
{10y, ...,|n — 1)} subspace, we start by taking its inverse,

~ W, 0
Uta:iget = (F*—IAE>’

where W, is the nontrivial block and 7, is the n’ x n’ identity
matrix. We first apply a SNAP gate such that the last column
of the W, block now contains only non-negative coefficients.
We then apply n — 1 consecutive SO(2) rotations eliminating
the off-diagonal elements in the last column of W,, such that
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the column becomes (0, ... ,0, 1);. Since all rows of a unitary
matrix are orthonormal, the last row of the W,, block must be
transformed to (0, . ..,0,1),. Hence, the result is

o Wai0 | 0
VOV, ol =1 0 L [0 |
00 |[Iv-n

where §( is a SNAP gate necessary for any complex phases
unobtainable with the SO(2) operations. The n — 1SO(2)
rotations,

0 = Dlof”) Rur)D(~2a(") Re(m)D e,

can be individually optimized, before being chained together
for a second round of optimization over n — 1 displacement

parameters {ak )} r—o- The cost function to be minimized for
the second round of optimization is the sum of absolute values
of off-diagonal terms (excluding the W,_, block). We iterate
the procedure until we obtain

A S

Uconstruct Ut;rget I, (1 1)
with Uconstruee = [ [y (V2 yo) Vn(,”_’)2 e V()(",)S(”')),as illustrated
in Figs. 3(a) and 3(b) for a speciﬁc Utarger [30].

Using the above decomposition, we need n(n — 1)/2 SO(2)
rotations (each containing three displacements and two SNAP
gates). We can combine consecutive displacements, lowering
the number of displacements to two per SO(2) rotation. We
also need one SNAP gate at each iteration of the Wn — Wn,l
step, with a total of n additional SNAP gates. For various ﬁtarget,
as illustrated in Figs. 3(c) and 3(d), we find that the stepwise
optimization procedure can yield a good final fidelity F =

|Tr( Conmuct Umget)l > 0.99, which can be further improved
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FIG. 3. (Color online) (a) An example target unitary opera-
tion, Ulargel (a permutatron) (b) The product is close to identity,
Uvconstruct larget ~ [, with small nonzero off- diagonal elements. (c),
(d) Comparison of fidelities F = ITr(UCTOnslrucl Utarger)| after colum-
nwise optimization (black) and ﬁdehtres with additional optimization
over all displacement parameters (red) for (c) Fourier (triangles) and
permutation (squares) operations and (d) randomly generated target
unitary operations (hexagons).
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to F > 0.999 with a third round of simultaneous optimizations

over all n(n — 1)/2 displacement parameters {oz(" )} k<n'<n

Our scheme can be applied to the general Hamiltonian
with dispersive coupling, — > xale,n)(e,n|, as long as the
number-dependent qubit frequency shift can be resolved
[xn — Xweal > |122(1)],y,k, for all relevant n and n’, where y
and « are the qubit and cavity decoherence rates, respectively].
Furthermore, we can also extend the arbitrary unitary control
to the subspaces spanned by {|g,n’),|e,n’)}" _0, so that we can
control the entire 2n-dimensional quantum system [31].

Sublinear scheme to prepare the number state. The prepa-
ration of an arbitrary target state starting from the vacuum is
a special case of the above protocol where we constrain only
the first column of the target matrix. To prepare a state in
the {|0), ... |n)} subspace, such an operation will require only
O(n) operations instead of the O(n?) operations discussed
above. However, certain states with a narrow distribution
of photon numbers can be prepared even more efficiently
by taking advantage of the fast, experimentally available
displacement operations. For example, the preparation of the
number state |n) requires O (n) sequential SO(2) rotations from
|0) using the generic scheme. In contrast, if we start from the
coherent state D()|0) = |o) with o = \/n, whose population
distribution is centered around |n) with a spread of O(y/n),
we need only O(/n) rounds of SO(2) rotations to “fold” the
coherent state |«) to the number state |n). Figure 4 compares
the number of SNAP gates needed between the generic linear
scheme [with O(n) operations] and the specialized sublinear
schemes [with O(4/n) operations] designed for the preparation
of |n) from |0), with various target fidelities. For n = 8, it
becomes advantageous to use the specialized sublinear scheme
instead of the generic scheme.

Imperfections. In the limiting case of |€2,/x| — O, the
SNAP gate can achieve the ideal unitary evolution as shown
Eq. (7). In practice, however, |2,/ x| is finite and introduces
deviations from the SNAP gate (e.g., undesired ac Stark shift).
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FIG. 4. (Color online) The number of SNAP gates for the prepa-
ration of |n) from |0) (with a fixed lower bound of fidelity) for a
generic linear scheme (black diamond line) and specialized sublinear
schemes with different target fidelities (colored lines). The specialized
schemes operate on D(4/n)|0) by folding all population from the
subspace {|n — An), ...,|n 4+ An)} to the number state |n).
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FIG. 5. (Color online) Reprise of Fig. 2 with finite values for Q2
(represented in units of y). The lower panel zooms in on smaller
values for Q. It is possible to achieve fidelities better than 0.99 for
practical values of & = 0.05y.

To calibrate such deviations, we simulate the full evolution
of the gate from Eq. (10) based on a numerical integration
of the original time-dependent Hamiltonian [Eq. (1)], and
calculate the infidelity with respect to the target unitary
[32], as illustrated in Fig. 5. We use realistic parameters
from the experiment that implements the SNAP gate [23]
(x = 8.3 MHz, w; = 7.6 GHz, w. = 8.2 GHz). We find that
the SNAP gate is robust against such small imperfections, which
scale as O(|€2,/x |?) for square pulses. In principle, the unitary
deviation due to finite [€2,/x| can be compensated using
shaped or composite pulses [33]. In practice, with numerical
optimization, it is possible to compensate both ac Stark shift
and all higher-order corrections, which enables even faster
operation with Q(¢) ~ x [21,22,34].

Discussions. We now compare our SNAP-gate-based quan-
tum control scheme with previous protocols. The scheme
proposed by Law and Eberly [12] is based on the JC model,
Hjc o< ale)(g| + H.c., which enables preparation of arbitrary
superpositions of number states. The scheme by Mischuck
and Molmer [16] further extended the JC model from state
preparation to arbitrary unitary operation, but it is rather
complicated because any JC control pulse necessarily couples
the states |g,n) and |e,n — 1) (for all n) simultaneously
and with varying strength g./n. In contrast, our scheme is
based on the dispersive qubit-oscillator coupling, Hyispersive =
—xle){elii, which preserves the oscillator number states,
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enables the SNAP gate to directly access the two selected
sublevels |g,n) and |e,n) with negligible effects on the rest
of the levels, and ultimately leads to efficient universal control
of the oscillator. Another protocol for the JC Hamiltonian is
presented by Strauch in Ref. [17], however, it requires a slow
adiabatic transition between coupled and uncoupled cavity
states. The proposal by Santos [18] introduces a different
model with a three-level A-type ancillary system to achieve
universal control, but it is experimentally more challenging
than the simple two-level ancilla considered in our scheme.
With dispersive qubit-oscillator coupling, there are other
control protocols available. For example, in the presence of the
oscillator drive €, we may “block” the processes |n' £ 1) —
|n’) by driving the qubit resonantly to the transition |g,n’) <>
le,n’), with Q, > ex/n’ [35]. Similarly, by resonantly driving
transitions |g,n’) <> |e,n’) for n’ <n and n' >n+ 1, we
block all number changing transitions, except for the transition
between {|n),|n + 1)} that can be used for SO(2) unitary
rotations. This blockade scheme is relatively slow and each

elementary operation takes time T ~ (e4/n) ' > Q1> x !
due to the blockade requirements, while the SNAP-gate-based
scheme can be much faster with t ~ x 1.

In conclusion, the SNAP-gate-based scheme provides uni-
versal control of the oscillator mode with strong dispersive
coupling to a qubit. Based on the proof of universal control, we
show explicit constructions for arbitrary state preparation and
arbitrary unitary operation of the oscillator. We also present
an efficient procedure to prepare the number state |n) using
only O(4/n) operations. We note that deterministic SNAP-gate-
based preparation of the |n = 1) photon number state has been
demonstrated using superconducting circuits [23]. The tech-
niques introduced here are not restricted to oscillator modes
such as mechanical motions [1] and optical or microwave
cavities [2—4] and can be extended to multilevel systems such
as Rydberg atoms with large angular momentum [35], as long
as the dispersive coupling between the qubit and oscillator or
multilevel system is strong.

We thank Michel H. Devoret, Luigi Frunzio, Steven M.
Girvin, Zaki Leghtas, Mazyar Mirrahimi, Andrei Petrenko,
and Matthew Reagor for helpful discussions. The work was
supported by ARO, AFOSR MURI, DARPA Quiness program,
NBRPC 973 program, the Alfred P. Sloan Foundation, and the
Packard Foundation. V.V.A. acknowledges support from NSF
GRFP (DGE-1122492). We thank the Yale High Performance
Computing Center for use of their resources.

[1] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod.
Phys. 75, 281 (2003).

[2] T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V.
Vuletic, and M. D. Lukin, Nature (London) 508, 241 (2014).

[3] A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, Nature (London)
508, 237 (2014).

[4] M. H. Devoret and R. J. Schoelkopf, Science 339, 1169 (2013).

[5] R. J. Schoelkopf and S. M. Girvin, Nature (London) 451, 664
(2008).

[6] T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds,
and K. W. Lehnert, (London) 495, 210
(2013).

[71 M. Reagor, H. Paik, G. Catelani, L. Y. Sun, C. Axline, E.
Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H.
Devoret, L. Glazman, and R. J. Schoelkopf, Appl. Phys. Lett.
102, 192604 (2013).

[8] D. Gottesman, A. Kitaev, and J. Preskill, Phys. Rev. A 64,
012310 (2001).

Nature

040303-4



UNIVERSAL CONTROL OF AN OSCILLATOR WITH ...

[9] Z. Leghtas, G. Kirchmair, B. Vlastakis, M. H. Devoret, R. J.
Schoelkopf, and M. Mirrahimi, Phys. Rev. A 87, 042315
(2013).

[10] Z. Leghtas, G. Kirchmair, B. Vlastakis, R. J. Schoelkopf, M. J.
Devoret, and M. Mirrahimi, Phys. Rev. Lett. 111, 120501
(2013).

[11] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R.
Schoelkopf, L. Jiang, and M. Devoret, New J. Phys. 16, 045014
(2014).

[12] C. K. Law and J. H. Eberly, Phys. Rev. Lett. 76, 1055
(1996).

[13] S. Brattke, B. T. H. Varcoe, and H. Walther, Phys. Rev. Lett. 86,
3534 (2001).

[14] A. A. Houck, D. I. Schuster, J. M. Gambetta, J. A. Schreier,
B. R.Johnson, J. M. Chow, L. Frunzio, J. Majer, M. H. Devoret,
S. M. Girvin, and R. J. Schoelkopf, Nature (London) 449, 328
(2007).

[15] M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero,
M. Neeley, A. D. O’Connell, D. Sank, J. Wenner, J. M. Martinis,
and A. N. Cleland, Nature (London) 459, 546 (2009).

[16] B. Mischuck and K. Molmer, Phys. Rev. A 87, 022341 (2013).

[17] F. W. Strauch, Phys. Rev. Lett. 109, 210501 (2012).

[18] M. F. Santos, Phys. Rev. Lett. 95, 010504 (2005).

[19] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M.
Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. H.
Devoret, S. M. Girvin, and R. J. Schoelkopf, Nature (London)
445, 515 (2007).

[20] B. R. Johnson, M. D. Reed, A. A. Houck, D. I. Schuster, L. S.
Bishop, E. Ginossar, J. M. Gambetta, L. DiCarlo, L. Frunzio, S.
M. Girvin, and R. J. Schoelkopf, Nat. Phys. 6, 663 (2010).

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 92, 040303(R) (2015)

[21] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S.
M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf,
Science 342, 607 (2013).

[22] S. E. Nigg, Phys. Rev. A 89, 022340 (2014).

[23] R. W. Heeres, B. Vlastakis, E. Holland, S. Krastanov, V. V.
Albert, L. Frunzio, L. Jiang, and R. J. Schoelkopf, Phys. Rev.
Lett. 115, 137002 (2015).

[24] S. E. Nigg and S. M. Girvin, Phys. Rev. Lett. 110, 243604
(2013).

[25] S. Lloyd and S. L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999).

[26] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513
(2005).

[27] K. Jacobs, Phys. Rev. Lett. 99, 117203 (2007).

[28] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbruggen, and
S. J. Glaser, J. Magn. Reson. 172, 296 (2005).

[29] This definition of fidelity is slightly faster to calculate than the
definition with uniform norm, but, more importantly, it permits
analytic expressions for the gradient of the cost function, greatly
speeding up the optimization algorithm.

[30] The scIPY routines were used for numerical optimizations.

[31] S. Krastanov (unpublished).

[32] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.92.040303 for details on the numerical
approach used for verification.

[33] L. M. K. Vandersypen and I. L. Chuang, Rev. Mod. Phys. 76,
1037 (2005).

[34] R. W. Heeres (unpublished).

[35] A. Signoles, A. Facon, D. Grosso, I. Dotsenko, S. Haroche,
J.-M. Raimond, M. Brune, and S. Gleyzes, Nat. Phys. 10, 715
(2014).

040303-5



