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Quantum states can be stabilized in the presence of intrinsic and environmental losses by either applying
an active feedback condition on an ancillary system or through reservoir engineering. Reservoir
engineering maintains a desired quantum state through a combination of drives and designed entropy
evacuation. We propose and implement a quantum-reservoir engineering protocol that stabilizes Fock states
in a microwave cavity. This protocol is realized with a circuit quantum electrodynamics platform where a
Josephson junction provides direct, nonlinear coupling between two superconducting waveguide cavities.
The nonlinear coupling results in a single-photon-resolved cross-Kerr effect between the two cavities
enabling a photon-number-dependent coupling to a lossy environment. The quantum state of the
microwave cavity is discussed in terms of a net polarization and is analyzed by a measurement of its
steady state Wigner function.
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Decoherence is an unavoidable adversary in quantum
information science. A large-scale quantum computer must
implement error correction protocols to protect quantum
states from decoherence [1]. A first step toward fault
tolerant quantum error correction is the stabilization of a
particular quantum state in the presence of decoherence [2].
One such implementation uses gate-based architectures
with measurement and feedback [3–14] for the correction
of quantum errors. An alternative approach to active
quantum systems is quantum-reservoir engineering
(QRE) [15–18], which harnesses persistent, intentional
coupling to the environment as a resource. Both cases
require entropy removal, yet only QRE employs environ-
mental losses as a crucial part of their protocols. QRE does
not require an external feedback with calculation since the
Hamiltonian interactions are designed a priori to determine
the final state avoiding uncertainty induced by the quan-
tum-classical interface. In addition, QRE is less susceptible
to experimental noise [19] and in some cases thrives in a
noisy environment [20].
QRE has been demonstrated in macroscopic atomic

ensembles [21], trapped atomic systems [22–24], and
superconducting circuits [25–27]. Circuit quantum electro-
dynamics (CQED) systems are an attractive platform for
QRE due to the experimental freedom to design strong
interactions between superconducting qubits and micro-
wave cavities [28]. Interactions between a superconducting
transmon qubit and a microwave cavity have demonstrated
qubit-photon entanglement [28] and the creation of quan-
tum oscillator states [29,30]. Investigations using three

dimensional waveguide cavities resulted in increased
coherence times [31,32] in CQED structures allowing
the observation of novel cavity quantum phenomena
[33,34], yet no demonstration of a cavity photon-number
state QRE protocol exists.
In this Letter, we demonstrate a new regime of CQED:

the single-photon-resolved cross-Kerr effect [35] between
two superconducting microwave cavities. This nonlinear
coupling causes an excitation in one cavity to change the
resonance frequency of the other cavity by more than their
combined linewidth. While the state dependent shift
between a qubit and a cavity has been previously shown
[36,37], we present results for the first observation of a state
dependent shift directly between two microwave cavities
via a cross-Kerr effect [38]. In this Letter, a transmon is
used to introduce nonlinearities to the cavities and for
tomography. This new regime of CQED enables the first
demonstration of a CQED QRE protocol that stabilizes
quantum states of a microwave cavity. With this QRE
protocol, we stabilize a primarily one-photon Fock state
and show that its steady state Wigner function has neg-
ativity for all times. Furthermore, since the cavity is
restricted to its first two energy levels, the stabilization
can be described as a population inversion and as an
effective negative temperature. This protocol could be
extended to higher photon states of the microwave cavity
by including more cw drives. The single-photon-resolved
cross-Kerr interaction is necessary for a QRE protocol that
stabilizes cat states of an oscillator [39] and may be used as
a cavity-cavity entangling operation.
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Within a CQED framework, we model our system as two
harmonic oscillators coupled to a nonlinear oscillator. The
most nonlinear oscillator in our circuit is the transmon
whose nonlinearity originates from the Josephson junction
with an inductance that is nonlinear with respect to the flux
across it. This system is well described by the following
Hamiltonian [40]:

H=ℏ ¼ ωqa†aþ ωsb†bþ ωcc†c −
Aq

2
a†2a2 −

As

2
b†2b2

−
Ac

2
c†2c2 − χqsa†ab†b − χqca†ac†c−χscb†bc†c:

ð1Þ
The subscripts used in the Hamiltonian are “q” for the

transmon qubit, “s” for the storage cavity, and “c” for the
cooling cavity. On the first line, ωi denotes dressed angular
frequencies. The second line contains self-interaction Kerr
type terms of the modes, called anharmonicities, denoted
by Ai. On the final line are the state dependent shifts χij
between modes. The state dependent shift to fourth order in
junction flux is proportional to the geometric mean of the
anharmonicities of the modes χij ≈ 2

ffiffiffiffiffiffiffiffiffiffi
AiAj

p
[40], a strong,

dispersive interaction between modes requires an appreci-
able anharmonicity for each mode [41].
To measure the storage cavity anharmonicity, we use a

single cw drive to perform spectroscopy measuring the
storage cavity frequency by looking at the transmitted signal
through the low power peak of the cooling cavity [42],
Fig. 1(a). Because of the large cross-Kerr interaction between
the storage and cooling cavity, a tone on resonance with the
storage cavity will change the frequency of the cooling cavity
by more than a linewidth preventing transmission through
the low power peak of the cooling cavity. Using a large
amplitude drive, that power broadens the fs;0→1

(fi ¼ ωi=2π) transition, we observe the two-photon tran-
sition with frequency fs;0→2=2. The detuning corresponds to
half the anharmonicity, As, of the storage cavity and we infer
an inherited cavity anharmonicity As=2π ¼ 4.0 MHz.
Following the same method, we measure the cooling cavity
anharmonicity as Ac2π ¼ 300 kHz when the cooling cavity
linewidth is narrow (33 kHz). For the Fock state stabilization
measurement, the cooling cavity linewidth is increased to
1.7 MHz and we measure its anharmonicity by having a
calibrated drive corresponding to on average a single photon
in the cooling cavity. By increasing the drive power applied
to the cooling cavity and tracking the frequency shift we
extract the same value for its anharmonicity.
To measure the state dependent shift between the two

cavities, we first perform a 5 ns square pules which
displaces the storage cavity state then perform a weak
spectroscopic drive on the low power peak of the cooling
cavity exciting the cooling cavity and finally apply a large
amplitude drive at the high-power peak of the cooling
cavity for the Jaynes-Cummings readout which relies on
the inherited cooling cavity anharmonicity for discrimina-
tion in the readout signal [43]. Shown in Fig. 1(b) is a

spectroscopy measurement of the cooling cavity for a
storage cavity displacement corresponding to n̄ ≈ 1.5 of
the storage cavity. Discrete spectral peaks for up to three
photons in the storage cavity are visible. From this, we infer
a state dependent shift χsc=2π ¼ 2.59� 0:06 MHz and
observe the first single-photon-resolved cavity-cavity
cross-Kerr interaction [44].
The measured Hamiltonian parameters lend themselves

well to a CQEDQRE protocol that stabilizes Fock states in a
microwave cavity. The first requirement for the protocol
shown in Fig. 2 is that the cavity in which Fock states will be
stabilized is more anharmonic than its natural linewidth,
As > κs, so that individual transitions may be selectively
driven [Fig. 2(a), left]. A second requirement is a state
dependent shift between the two cavities that is larger than
both of their linewidths, χsc > κs; κc [Fig. 2(a), right]. In
Fig. 1, we see that these requirements are met. However, this
protocol is most successful when the lifetimes of the storage
cavity and the cooling cavity are quite different κc ≫ κs. In
Fig. 1(b), the decay rates of the cavities are comparable,
ðκc=κs ≈ 4Þ. We alter the ratio of lifetimes between the two
cavities to a factor of 25 by increasing the cooling cavity
coupling strength to the external environment.
Shown in Fig. 2(b) is a QRE protocol that stabilizes a

one-photon Fock state in the storage cavity. This protocol is
conceptually similar to the protocol used in Ref. [26],
which stabilized the ground state of a qubit tensor product
with a coherent state of a cavity. Although we stabilize the
ground state of the storage cavity, we also use this protocol
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FIG. 1 (color online). Storage and cooling cavity spectra.
(a) Spectroscopy is performed on the storage cavity with a single
cw drive. With a large amplitude drive, we observe the two-
photon transition fs;0→2=2. From this measurement we infer the
location of the fs;1→2 transition (solid black line) and determine
its detuning from the fs;0→1 transition as 4.0 MHz, which we
define as the anharmonicity of the storage cavity. (b) A 5 ns
square pulse, which displaces the storage cavity state and whose
amplitude gives n̄ ≈ 1.5 in the storage cavity, enables the
observation of a single-photon-resolved cross-Kerr interaction
between the two cavities, χsc=2π ¼ 2.59� 0.06 MHz.
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to stabilize a primarily one-photon Fock state. Because of
the anharmonicity of the storage cavity, a cw drive (ΩS) can
be applied to the fs;0→1 transition. This drive is an induced
Rabi rate on the storage cavity between vacuum and a one-
photon Fock state. Concurrently with ΩS, a drive with
strength ΩC is applied detuned by one cross-Kerr inter-
action from the cooling cavity. This drive is resonant
provided that there is exactly one photon in the storage
cavity. Once resonant, the conditional drive displaces
the cooling cavity to a coherent state determined by the
amplitude of the drive. When a photon decays from the
storage cavity ΩC, is no longer resonant and the cooling
cavity quickly decays to vacuum. Once back to the ground
state, the storage cavity is resonant with the drive ΩS. This
protocol reaches its steady state solution in a time governed
by the decay rate of the cooling cavity. The steady state
population in the one-photon Fock state of the storage
cavity will be determined by its decay rate κs and the
stabilization rate κ↑. The stabilization rate is defined as the
rate at which the system is returned to the target state when

a photon decays from the storage cavity. Using a simple
four state model, we expect that to achieve a 99% one-
photon Fock state in the storage cavity, a minimum ratio of
lifetimes between the two cavities of 300 is required [45].
The Fock state stabilization protocol requires both the

frequencies of the two microwave drives and their ampli-
tudes be chosen appropriately. From a full simulation of the
Linblad master equation as well as our experimental
observations, we find optimal performance when
ΩS ≈ κc. We determine the drive power applied to the
cooling cavity through a power dependent dephasing
measurement of the transmon qubit applied roughly at
one cross-Kerr interaction detuned from the cooling cavity.
The experimental implementation begins with cw drives

applied simultaneously to the storage and cooling cavity for
a duration of 200κ−1c , which is twenty times longer than the
time necessary to reach steady state [26] and roughly eight
times longer than κs. To measure the photon population in
the storage cavity, we stop the drives, wait for photons to
decay from the cooling cavity, and apply conditional qubit
π pulses to determine the photon number in the storage
cavity [33,46].
We plot the steady state polarization p ¼ ½Pð0Þ −

Pð1Þ=Pð0Þ þ Pð1Þ� of the storage cavity after running
the protocol in Fig. 3(b). PðnÞ corresponds to the proba-
bility of having exactly n photons in the storage cavity.
Because of the selectivity of the driveΩS, the storage cavity
is limited to its first two Fock states. We confirm this by
measuring populations for the two- and three-photon Fock
states and measure no statistically significant populations in
these states. When ΩC is driven at the zero-photon peak of
the cooling cavity we observe p ¼ 0.95 demonstrating that
storage cavity is overwhelming in the zero-photon Fock
state despite the induced Rabi drive on the storage cavity.
However, as the drive power and frequency applied to the
cooling cavity are varied, steady state stabilization of a
polarization inversion occurs corresponding to a predomi-
nantly one-photon Fock state in the storage cavity. This
population inversion is a purely quantum effect and can be
described as an effective negative temperature according to

T ¼ hfs;0→1

2kBtanh−1ðpÞ
: ð2Þ

In Eq. (2), h is Planck’s constant and kB is Boltzmann’s
constant. From Eq. (2), when stabilizing a predominately
N ¼ 1 Fock state, the effective negative temperature of our
quantum system is −0.77� 0.06 K.
In Fig. 3(d), plotted on top of the data is a full simulation

of our driven dissipative system [47] where we find
excellent agreement in our time dynamics. From the four
state model, we would expect a polarization of p ¼ −0.47.
This value is within a factor of 2 of both what is measured
experimentally and extracted from a full simulation of the
Linblad equation. Through simulation of the full Linblad
master equation we find that the limitation in polarization
inversion is due to the finite ratio of lifetimes.

(a)

(b)

FIG. 2 (color online). Ideal cavity spectrum and Fock state
stabilization protocol. (a) Left: sketch of idealized storage cavity
spectrum. The storage cavity must have unequal energy levels
spacing (ℏAs), inherited from the coupled qubit, to selectively
drive storage cavity transitions. On the right is the idealized
cooling cavity spectrum. The frequency shift of the cooling cavity
due to photons in the storage cavity, the cross-Kerr effect (χsc),
must be larger than either cavity linewidth to selectively drive this
transition. (b) Energy level diagram for the coupled cavity-cavity
system tracing over the qubit state. Excitations ascending
vertically in the storage cavity while excitations ascend horizon-
tally in the cooling cavity. A microwave driveΩS is applied on the
storage cavity so that population only oscillates between vacuum
and the first Fock state of the storage cavity. Simultaneously, a
drive, ΩC, is applied on the cooling cavity such that it is resonant
provided there is exactly one excitation in the storage cavity.
Once resonant, the cooling cavity is pumped to a mean photon-
number set by the strength of the drive. Cavity decays, decaying
arrows, close the autonomous loop of this protocol returning the
population to j0; 0i allowing the preparation to be repeated.
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Although much of the discussion of the Fock state
stabilization results has framed the storage cavity in the
language of spin systems, it is still an oscillator. To
demonstrate the oscillator nature of the storage cavity in
Fig. 4, we perform cavity tomography measuring general-
ized Husimi Q functions, QNðαÞ ¼ π−1jhNjD−αjΨij2 [33],
up to N ¼ 3 Fock state of the storage cavity, D−α is the
displacement operator, and Ψ is the final state. We infer
the Wigner function by adding and subtracting the even
and odd measuredQ functions. We compare these results to
the Wigner function of a simulation of the steady state
solution to the Fock state stabilization protocol [Figs. 4(b)
and 4(c)]. Our results are explained in terms of a harmonic
oscillator picture with the steady state of the storage
cavity in a statistical mixture of Pð0Þ ¼ 0.37� 0.03,

Pð1Þ ¼ 0.63� 0.02, and Pð2Þ, Pð3Þ containing no sta-
tistically significant populations. In Fig. 4(c), negativity in
the Wigner function is demonstrated for all times.
In conclusion, we present the first single-photon-

resolved cross-Kerr effect between two cavities. We used
the new regime of CQED to implement a CQED QRE
protocol that stabilizes Fock states in a superconducting
microwave cavity. We demonstrate one such instance,
stabilizing a primarily N ¼ 1 Fock state, quantified by
the measured Wigner function of the storage cavity. This
protocol can be extended to higher photon numbers of the
storage cavity by including more selective microwave
drives at the different transitions of the storage cavity.
Our steady state polarization inversion corresponds to
p ¼ −0.26� 0.04, which we map to the storage cavity
being in equilibrium with a bath of T ¼ −0.77� 0.06 K.
Our protocol is limited by induced spontaneous emission to
the environment. Future implementations would benefit
from a Purcell filter and increased nonlinearity in the
CQED system.

This research was supported by the NSF under Grant
No. PHY-1309996, the NSA through ARO Grants
No. W911NF-09-1-514 and No. W911NF-14-1-0011, and
the IARPA under ARO Contract No. W911NF-09-1-0369.
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FIG. 3 (color online). Storage cavity polarization. (a) The Fock
state stabilization protocol described in Fig. 2(b) is applied for a
duration Ts, followed by a 300 ns wait to evacuate excitations
from the cooling cavity, a photon selective π pulse is then
performed on the qubit determining the probability of each
photon state of the storage cavity up to three photons. (b) Storage
cavity state polarization as a function of drive amplitude and
frequency. The frequency of the cooling cavity drive is plotted as
Δ ¼ ω0

c − ωdc, and normalized by the cross-Kerr effect χsc. As
the frequency of the drive applied to the cooling cavity is brought
in resonance with the first photon peak of the storage cavity
Δ=χsc ≈ 1 the protocol stabilizes the first Fock state of the storage
cavity. In simulation, we determine maximum polarization
inversion corresponds to roughly four photons on average in
the cooling cavity which explains why maximal stabilization
occurs further detuned. The inset is a simulation plot with the
same axis and color scale as the experimental result. (c) Line cuts
for a weak drive power and a drive power resulting in a
polarization inversion. (d) As the duration of the stabilization
protocol is varied the polarization of the storage cavity alters and
for infinite time reaches its steady state solution.
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FIG. 4 (color online). Wigner tomography of stabilized steady
state of the storage cavity. (a) The previously described stabili-
zation protocol is used to reach the desired steady state. Then
Wigner tomography is performed on the state of the storage
cavity. (b) Left: Measured Wigner function for the steady state of
the storage cavity which is a statistical mixture of an N ¼ 1 and
N ¼ 0 Fock state. Right: Simulated steady state of the protocol.
(c) Line cuts along ImðαÞ and ReðαÞ for the measured Wigner
function and the simulated steady state Wigner function.
Although not a pure N ¼ 1 Fock state of the storage cavity
our steady state solution does have negativity in the Wigner
function indicative of a quantum state.
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