examined here, there is a clear distinction be-
tween the short time or length scale of the micro-
scopic theory and the long time or length scale
of observables. As we show in (15), sloppiness
in physics can be precisely traced to the ratio of
these two scales—an important small variable.
In the broad class of models in which such dis-
tinction of scales cannot be made, our explana-
tion for sloppiness (27) is not yet unified with
the RG and continuum methods of physics.
Nonetheless, the striking similarity of their sloppy
sensitivities lends perspective to the surprising
power of mathematical modeling despite micro-
scopic uncertainty.
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Deterministically Encoding Quantum
Information Using 100-Photon
Schridinger Cat States
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S. M. Girvin,* Mazyar Mirrahimi,> M. H. Devoret,* R. J. Schoelkopf*

In contrast to a single quantum bit, an oscillator can store multiple excitations and coherences
provided one has the ability to generate and manipulate complex multiphoton states. We
demonstrate multiphoton control by using a superconducting transmon qubit coupled to a
waveguide cavity resonator with a highly ideal off-resonant coupling. This dispersive interaction
is much greater than decoherence rates and higher-order nonlinearities to allow simultaneous
manipulation of hundreds of photons. With a tool set of conditional qubit-photon logic, we mapped
an arbitrary qubit state to a superposition of coherent states, known as a “cat state.” We created
cat states as large as 111 photons and extended this protocol to create superpositions of up to
four coherent states. This control creates a powerful interface between discrete and continuous
variable quantum computation and could enable applications in metrology and quantum

information processing.

avity quantum electrodynamics is a test-
bed system for quantum optics, allowing
the observation of strong interactions
between photons and (artificial) atoms (7-3).
Techniques using these systems allow the pro-
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duction of nonclassical states of light, which
have important uses for quantum communica-
tion, quantum computation, and investigations
of fundamental quantum theory. For supercon-
ducting quantum circuits, cavity resonators have
proven a valuable resource serving several roles:
a quantum bus to generate entanglement between
qubits (4), a quantum nondemolition probe al-
lowing efficient quantum measurements (5, 6), a
generator of single microwave photons (7, 8),
and a quantum memory to store and shuttle in-
formation (9, 10). With its large Hilbert space,
a cavity resonator also has the potential to store
multiple quantum bits or redundantly encode in-
formation as necessary for quantum error cor-
rection. With the proper controls, a single cavity

www.sciencemag.org/content/342/6158/604/suppl/DCL
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could be made equivalent to a multiqubit reg-
ister, allowing for simplifications of hardware
design (71, 12). Although there have been some
investigations of complex, multiphoton super-
positions in superconducting cavity resonators,
most techniques developed so far require fast
qubit frequency tunability and are based on con-
trolling individual photons one by one (13, 14).
These implementations become increasingly bur-
densome for complex states or large photon num-
bers, making it desirable to develop a more natural
method for controlling the large cavity Hilbert
space.

We demonstrated a set of multiphoton opera-
tions by using a fixed-frequency superconducting
transmon qubit coupled to a waveguide cavity
resonator. We realized a highly ideal strong-
dispersive coupling, where the strengths of the
off-resonant qubit-cavity interactions were sev-
eral orders of magnitude greater than the cavity
decay rate and higher-order nonlinearities. This
created a set of qubit-cavity entangling operations,
allowing for control over the large cavity phase
space. We implemented two of these operations:
the qubit-state conditional cavity phase shift (/5)
and the photon-number conditional qubit rota-
tion (/4, 16). We combined these with uncondi-
tional qubit and cavity operations to perform direct
measurements of the cavity Wigner function (/7)
and to efficiently generate large superposition states.
By using these tools, we realized a recently pro-
posed protocol (/8) to deterministically encode
quantum information in a cat state by creating an
arbitrary superposition of quasi-orthogonal co-
herent states conditioned on an initial qubit state.
We concatenated these entangling operations to
encode quantum information into multiple phases
of the cavity state, thereby creating multicom-
ponent cat states and producing example states
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proposed for high-precision measurements sur-
passing the quantum-noise limit (19, 20). Unlike
previous demonstrations of cat states (16, 21, 22),
the procedures realized here allow for the deter-
ministic generation of superimposed coherent
states with arbitrary phase and amplitude. The
set of operations demonstrated provides an ef-
ficient method to manipulate coherent states
and could enable a variety of powerful methods
for using cavity states in quantum information
processing.

‘We realized qubit-photon quantum logic by
using a strong off-resonant coupling of a qubit
and cavity that can be described by the disper-
sive Hamiltonian (omitting higher-order nonlinear
terms)

H/h= (nq|e)<e[ +owaa - quafa|e>(e|

where |e) is the excited state of the qubit, d'(a)are
the raising (lowering) ladder operators of the cav-
ity resonator, mg are qubit and cavity transition
frequencies, and ¥ is the dispersive interaction
between these modes. This interaction produces
a state-dependent shift in either the qubit or cav-
ity transition frequency. We exploited this condi-
tional frequency shift to produce qubit-photon
entanglement with two operations: conditional
cavity phase shifts and conditional qubit rota-
tions. The conditional cavity phase shift can be
described as

Gy = ei‘Da’a\e)(e\
=1 [g)Xel + ™ ® leXel  (2)

where |g) is the ground state of the qubit and @ is
the conditional phase shift induced on the cavity
state. This conditional phase appears from the free
evolution of the dispersive Hamiltonian for a time
T where @ =y ,t. For example, acting a conditional
cavity phase shift on a coherent state while the
qubit is in a superposition state produces an en-
tangled qubit/cavity state, Co{|0)) ® (|g)+[e))} =
|ong) + |oe'®, e) (disregarding normalization) (15).

Fig. 1. Experimental device and protocol. (A) A cross section shows
the device, machined from two halves of aluminum alloy, which contains

= cavity 1

= transmon qubit
I’?ﬁ,v

= cavity 2 | ]

= cavity coupler

Because a coherent state [o) = e = Yo \/» |n)
is a superposition of Fock states |n) represented
by a complex value o, this operation enables us
to encode the qubit state information into the
cavity phase and entangle the qubit with many
photons simultaneously. For a special case, Cgp—yp,
the cavity state attains a conditional 7 shift per
photon. This, in turn, causes the qubit state to ac-
quire a phase shift conditional on there being ex-
actly an odd number of photons in the cavity,
resulting in a mapping of the cavity photon num-
ber parity to the qubit state. By using Ramsey
interferometry, we used this gate to measure the
cavity photon parity and ultimately the cavity
Wigner function (17, 23, 24). The Wigner function
is a representation of a quantum state in a con-
tinuous variable basis and can be expressed as
W(a) = 2Tr[D}pDuP], where Dy = = e ~a g
the cavity displacement operator, P = ¢/™'d g
the photon number parity operator, and p is the
cavity state density matrix. A direct Wigner mea-
surement is produced by measuring the mean pho-
ton parity (P) at many points in the cavity phase
space, which we used to completely determine the
quantum state of the cavity.

The second operation, the conditional qubit
rotation, is a rotation on the qubit state condi-
tional on the photon number of the cavity state.
Because the qubit transition frequency is strongly
photon number dependent, we can drive a par-
ticular transition selective on a cavity Fock state
(14, 16). A rotation on the qubit state conditioned
on the mth photon Fock state can ideally be
described as

R, = |m¥m| ® R, + ¥ |mn| @ 1 (3)
n#Em

where R,  is a qubit rotation about a vector 7 with
rotation angle 0. In practice, this operation will
result in residual photon-dependent phase shifts
because of the ac Stark effect, which we corrected
for the purposes of this experiment (24). In order
to realize these two entangling operations, we had
to achieve dispersive shifts much greater than the
qubit and cavity decoherence rates, Xgs > YoMmaxKss

cavity 1

qubit

where v is the qubit decay rate, K is the storage
cavity decay rate, and 7,y is the maximum oc-
cupied photon number. This dispersive approxi-
mation (Eq. 1) is valid in a low photon number
regime where the dispersive interaction xqsa“a leXe|
is much greater than higher-order nonlinear terms,
such as the cavity self-Kerr Ksa™a?, and the non-
linearity of the dispersive shift Xga'?a?|e)e]|
(25). Combined with unconditional qubit and
cavity manipulations, these two entangling opera-
tions give us a powerful tool set for controlling
the joint qubit-cavity system (12, 18, 24).

Our experiment consists of two waveguide
cavity resonators (/6, 26) coupled to a transmon
qubit (Fig. 1A). Cavity 1 was used for photon-
state manipulation, preparation, and storage with
transition frequency 5% = 8.18 GHz and decay
nate 52 = 7.2 kHz = 3—b+— 1 (imited by internal
losses). Cavity 2 was used for qubit-state detec-
tion with transition frequency 5* = 9.36 GHz and
decay rate 5t = 330 kHz = 5—t— (limited by
output coupling for increased readout fidelity).
Both cavities were coupled to a “vertical” transmon
qubit (16, 24) with transition frequency 3; =
7.46 GHz and decay rate 5~ = 36 kHz = m
(limited by internal losses). This system creates
a dispersive interaction between the qubit and stor-
age cavity mode, resulting in a state-dependent
frequency shift % = 2.4 MHz. We independent-
ly measured (24) higher-order nonlinear terms K
and Xgs, allowing us to put a limit on the maxi-
mum accessible photon number for this experi-
ment: 1 << Ny = min[yg, /Xgs = 560, g/ Ks =
650, g/ Ks = 330]. By combining a conditional
cavity phase shift with a conditional qubit rotation,
we sequentially entangled then disentangled the
qubit and cavity to map a qubit state to a super-
position of quasi-orthogonal coherent states (18).
Following the sequence outlined in Fig. 1B, we
started with an unentangled qubit-cavity state
[vo) = IB) ® (Ig)+ |e)) (disregarding normal-
ization), where |B) is a coherent state. Performing
a conditional cavity m phase shift on the
initialized state created an entangled qubit-cavity
state [w) = Cr|wo) = [B,g) + |~B.e). This state,
where the qubit state is entangled with the phases
of the superimposed coherent states, is often referred

cavity 2 | 1l

| R | S

steps: qubit-state preparation (red) using a single qubit rotation R o;
qubit to cavity-state mapping (blue) using conditional operations C,

two cavity resonators and holds a sapphire chip with a lithographically —and R0 with cavity displacements Dg; and cavity-state Wigner tomog-

patterned transmon qubit. (B) The protocol for mapping and measuring a

qubit state into a superposition of coherent states is performed in three  tations Ry,z.

raphy (green) using Ramsey interferometry with unconditional qubit ro-
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to as a Schrodinger cat, which has been studied in
other quantum systems (15, 27). We can uncon-
ditionally displace this state to obtain |y,) =
Dgly) = |2B,) + |0,e). At this point, we can
apply a qubit & rotation conditional on the cavity
vacuum state |0), which produces the unentangled
cat state |ys) = R,Q,,[‘\\’z) = (2B +10) ® [g).
Because of the nonorthogonality of coherent states,
this operation will leave some remaining entan-
glement, which rapidly decreases with cat state size
and can be neglected compared with other ex-
perimental imperfections. An additional displace-
ment results in the final state [y,) =D gly;) =
(IBY+|-B)) ® |g)- As an example, we created
the target cavity state |y,) = N(|B) + |-B)),
where N = Lz with || = /7, resulting in a fi-
delity F = (Yiurglp|Wiare) = 0.81, which we con-
firmed by direct Wigner tomography (Fig. 2A).
This procedure can be generalized to any arbi-
trary qubit state and cavity phase that maps as

|0)® {cos (g) |g) + sin (g) eley} —
foos () 1B+ sin($)e B} ® o) (4)

where 6 and ¢ are parameters of the initial qubit
state and when the superimposed coherent states
are sufficiently orthogonal [(B|B'®)|* < 1. Figure
2B shows the creation of cat states conditioned by
qubit states prepared at the six cardinal points of
the Bloch sphere.

Two special forms of cat states result in
complete destructive interference of either odd
or even Fock state amplitudes. Known as the
even (or odd) cat states |B) + |-B), these states

produce superpositions of only even (or odd) pho-
ton numbers. This interference can be showcased
in the dispersive regime by performing qubit spec-
troscopy afer the creation of one of these cavity
states. Because of the strong-dispersive interac-
tion, each spectral peak reveals a photon number
probability of the prepared cavity state (28). For
a coherent state |B), the qubit spectrum will rep-
resent a Poissonian photon number distribution
P(18) = |(n|B)* = 2B An even and odd
cat state of equivalent amplitude follows this same
envelope but with destructive interference for the
odd and even photon number States, respectively,
Pul(B) £ -B) = (1 £ ™)< B We perform
spectroscopy on the qubit with three prepared
states: B, ), {IB) +[-B)} ® Ig), and {|B) —|-B)} ®
lg) for |B| =2.3, illustrating the discreteness of the
electromagnetic signals in the cavity and reveal-
ing the nonclassical nature of the generated cat
states (Fig. 3A).

Unlike building photon superpositions one by
one (13, 14), this mapping protocol can scale to
cavity states with larger quantum superpositions
by merely increasing the displacement amplitude.
The size of a quantum superposition in a cat state
S=B— Bz\z is determined by its square distance
in phase space between the two superimposed
coherent states, |B;) and |B,) (27). To character-
ize S without performing full state tomography,
we measured cuts of the Wigner function along
the axis perpendicular to its quantum interfer-
ence, W [Re(a) = 0, Im(a)]. The interference
fringes in these cuts appear as J¥[0,Im(a)] =
Ae2M@F ¢os[21/S Im(a) + 8], where 4 and &
are the fringe amplitude and phase (29). By using
this method, we created and confirmed cat states

REPORTS

with sizes from 18 to 111 photons (Fig. 3B). The
increased oscillation rate of these fringes with
S shows the increased sensitivity to small displace-
ments in cavity field because of larger quantum
superpositions [see (24) for proof-of-principle
Heisenberg-limited phase estimation]. Reduced
fringe visibility with larger sizes is due to the in-
creased sensitivity to cavity decay. Other factors also
contribute, namely, infidelity in Wigner tomog-
raphy and qubit decoherence during preparation.

Because the methods outlined here are deter-
ministic, entangling operations can be combined
to create complex nonclassical cavity states. By
using a conditional cavity phase shift for various
phases @, we can encode quantum information
to a particular phase of a coherent state. With this
operation, we can create superpositions of mul-
tiple coherent states, multicomponent cat states.
We used gates C,y/3 and Cyy to create three- and
four-component cat states (Fig. 4, A to C) with
fidelity F = 0.60, Fiz = 0.58, and F = 0.52 (24).
The skewing of these states is caused by the in-
herited cavity self-Kerr. Additional factors contrib-
uting to infidelity include photon decay during
preparation and measurement as well as tomog-
raphy pulse errors. The state in Fig. 4C, also known
as the compass state, contains overlapping inter-
ference fringes revealing increased sensitivity to
cavity displacements in both quadratures simul-
taneously (79).

We have demonstrated the efficient genera-
tion and detection of coherent state superpositions
using off-resonant interactions inherent in the cav-
ity QED architecture. The tools and techniques
described here require only a fixed-frequency,
strong-dispersive interaction and realize an inter-

A B
Re() Re() Im(c)
4»4 2 0 2 4 o 0 4 3 0»2 0 2
,g 1 1 1 L3 L] pd = i z n I—
£ ! Y o5} E Y os5hk 4
- L X 1 p X D
1 0.0 Ao (P) 0.0 (P)
o : 4+ i 05F 1 A os5fF WY -
. 1 Aok, ' d1o0 ] S R
. { L0 (U N B
- Y - 1 405 b4 L 405
X 1 X
(P)0.0 o--i..--_-_-___..__ d € ] 0.0 0.0
= L ' dos L 405
1 1
1 1.0F 4-1.0
0.6 1 z : Z A
' 2 1 A L 4 Y ; Y o5k G
1 X ' XOO 'AmﬁA
1 f vgv
1 z 05k ' -
1 Q
@ 108k 1 4 1.0 1.0k 1 4 1.0
1 1 1 L L
-4 06 00 -06 Z L ' filos Zy L ' Jos
06m@=0 1T T (P) 1 : :
X X
04 . o 0.0 0.0
/
02} . L, dos L J-05
0.0 L 1 1 1 1.0 1 1.0

Fig. 2. Wigner tomography of coherent state superpositions. (A)
Wigner tomography of the cavity state [y) = A/(|B) + |-B)) with [B| = /7 and
N = iz using an 81-by-81 grid of tomography displacements showcases the
interference fringes characteristic of a quantum superposition. Cuts along the
real and imaginary axes reveal the relative population and quantum inter-

www.sciencemag.org SCIENCE VOL 342

ference of the superimposed coherent states. The visibility of these inter-
ference fringes is reduced because of cavity decay during preparation and
measurement (a perfect superposition would achieve unity mean photon
parity). (B) By using qubit states initially prepared in the six cardinal points of
the Bloch sphere, we mapped populations and phases in a resulting cat state.
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face between discrete and continuous variable
quantum computation (30). This can lead to sim-
plified methods for individual storage and re-

A Spectroscopy frequency (GHz)

7.435 7.445 7.455

[15)

Normalized spectroscopy signal

109 87 6 543210
Photon number

trieval of multiqubit states in a cavity resonator
and creates ways to perform multiqubit stabilizer
measurements (37) or to redundantly encode infor-

Fig. 3. Qubit spectroscopy and scaling to large photon superpositions. (A) Photon number
splitting is observed when performing spectroscopy of a qubit dispersively coupled to the storage
cavity with three different prepared states: a coherent state IB), even cat state IB) + |-f3), and odd cat
state IB) — |-B) with amplitude IBl = 2.3. Each spectral peak corresponds to the probability for a
photon number state following a Poissonian distribution. Dashed bar plots show the expected
photon probabilities for each of these states. Notice that even and odd cat states show destructive
interference for the odd and even photon numbers. These spectra are acquired by deconvolving the
measured signal with the Fourier spectrum of the finite-width spectroscopy pulse. (B) Cuts along
the imaginary axis of the measured Wigner function for each prepared cat state reveal quantum
superpositions with up to 111 photons in size. Cat state size S is determined by these measured
interference fringes following the relation Ae=2"™ " cos[2\/S Im(c) + 8], where S, 4, and 5 are fit

parameters.

Fig. 4. Multicomponent cat Re(a) Re(a)
states. By using conditional 4 2 o 2 4 4-4 2 0 2 4
cavity phase shifts G5 and ‘e 1 I B ' T T
we created superpositions of 5 Y 5 >
three and four coherent states. F = 1 T = 7
Shown here is Wigner tomog- = = \\:? {f‘
ra}!.)hy g}‘[[gavity'itateﬁﬁ 1By + EOr |" w1 of \ "/ G
e™|Be”™) + €*2|Be'"™>, where - [ AL
IBl = /7, A1 = 0.6m, and X, = o4 2F a 1 2F - 1
—0.3m; (B) 0) + " |-iB) + e**
IBe™) + e |pe™), where B -4 e -4 e
= \/7, Wy = 0.5m, pp = —0.4m, (0.0 4
and p3 = -0.2r; and () IB) + G g A Ty
eViiB) + I-B) + €"“2—iB), where I - il 1
Bl = V7, vi=m and v, = 04 2 :/, —\T s l\'
—0.2m. (D) A closer inspection of ok ‘ 4 ok R ]
the quantum interference in (C) £ . Fr
reveals increased sensitivity to N Wit
cavity displacements in both quad- 2SS O R ,IIF 7
ratures simultaneously. . . 4 . \. g i
-4 2
4 2 0 2 4 2 0o 1 2

mation for quantum error correction (/2) using
minimal hardware. Additional applications include
Heisenberg-limited measurement (19, 20, 24) and
quantum information storage in thermally excited
resonator states (32).
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