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Realization of three-qubit quantum error correction
with superconducting circuits
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Quantum computers could be used to solve certain problems
exponentially faster than classical computers, but are challen-
ging to build because of their increased susceptibility to errors.
However, it is possible to detect and correct errors without destroy-
ing coherence, by using quantum error correcting codes'. The
simplest of these are three-quantum-bit (three-qubit) codes, which
map a one-qubit state to an entangled three-qubit state; they can
correct any single phase-flip or bit-flip error on one of the three
qubits, depending on the code used®. Here we demonstrate such
phase- and bit-flip error correcting codes in a superconducting
circuit. We encode a quantum state®*, induce errors on the qubits
and decode the error syndrome—a quantum state indicating which
error has occurred—by reversing the encoding process. This
syndrome is then used as the input to a three-qubit gate that
corrects the primary qubit if it was flipped. As the code can recover
from a single error on any qubit, the fidelity of this process should
decrease only quadratically with error probability. We imple-
ment the correcting three-qubit gate (known as a conditional-
conditional NOT, or Toffoli, gate) in 63 nanoseconds, using an
interaction with the third excited state of a single qubit. We find
85 = 1 per cent fidelity to the expected classical action of this gate,
and 78 = 1 per cent fidelity to the ideal quantum process matrix.
Using this gate, we perform a single pass of both quantum bit- and
phase-flip error correction and demonstrate the predicted first-
order insensitivity to errors. Concatenation of these two codes in
a nine-qubit device would correct arbitrary single-qubit errors. In
combination with recent advances in superconducting qubit
coherence times™*, this could lead to scalable quantum technology.

Quantum error correction relies on detecting the presence of errors
without gaining knowledge of the encoded quantum state. In the three-
qubit error-correcting code, the subspace of the two additional ‘ancilla’
qubits uniquely encodes which of the four possible single-qubit errors
has occurred, including the possibility of no flip. Crucially, errors
consisting of finite rotations can also be corrected using these schemes
because the error syndromes are allowed to be in superpositions of the
possible outcomes, flipped and not flipped®. Previous works imple-
menting error correcting codes in liquid-"" and solid-state' NMR
and with trapped ions'"'* have demonstrated two possible strategies
for using the error syndromes. The first is to measure the ancillas
(thereby projecting the syndrome) and use a classical logic operation
to correct the detected error. This ‘feed-forward’ capability is challen-
ging in superconducting circuits as it requires a fast and high-fidelity
quantum non-demolition measurement, but is probably a necessary
component to achieve scalable fault tolerance>". The second strategy,
as recently demonstrated with trapped ions' and used here, is to
replace the classical logic with a quantum controlled-controlled
NOT (CCNOT) gate that performs the correction coherently, leaving
the entropy associated with the error in the ancilla qubits, which can
then be reset'* if the code is to be repeated. The CCNOT gate performs
exactly the action that would follow the measurement in the first
scheme: flipping the primary qubit if and only if the ancillas encode
the associated error syndrome.

The CCNOT gate is also vital for a wide variety of applications such
as Shor’s factoring algorithm'® and has attracted substantial experi-
mental interest, with recent implementations in linear optics',
trapped ions'” and superconducting circuits'*'”. Here we use the
circuit quantum electrodynamics architecture® to couple four super-
conducting transmon qubits®' to a single microwave cavity bus®,
where each qubit transition frequency can be controlled on nano-
second timescales with individual flux bias lines** and collectively
measured by interrogating transmission through the cavity**. (The
details of the device can be found in Methods Summary and in
ref. 3.) The frequencies of the qubits, labelled Q,;-Qy, are tuned
respectively to 6, 7, 7.85 and ~13 GHz, with Q, unused. In this
Letter, we first demonstrate the three-qubit interaction used in the
gate, which is an extension of interactions used in previous two-qubit
gates™?*, and show how this interaction can be used to create the
desired CCNOT gate. We then verify its action and use it to demon-
strate error correction for an error on a single qubit with the bit-flip
code and then for simultaneous errors on all three qubits with the
phase-flip code. We find a quadratic dependence of process fidelity
on error probability, indicating that the algorithm is correcting errors
as predicted.

Our three-qubit gate uses an interaction with the third excited state
of one transmon. Specifically, it relies on the unique capability among
computational states (eigenstates of the Pauli operator Z) of |111) to
interact with the non-computational state |003) (the notation |abc)
refers to the excitation levels of Q;-Qs, respectively). As the direct
interaction of these states is prohibited to first order, we first transfer
the quantum amplitude of | 111) to the intermediate state |102), which
itself couples strongly to |003). Calculated energy levels and time-
domain data showing interaction between |011) and [002) (which is
identical to that between |111) and |102) except for a 6-GHz offset) as a
function of the flux bias on Q, are shown in Fig. 1a. Once the ampli-
tude of |111) has been transferred to |102) with a sudden swap inter-
action, a three-qubit phase is acquired by moving Q; up in frequency
adiabatically, near the avoided crossing with |003). Figure 1b shows the
avoided crossing between these states as a function of the flux bias on
Q. This crossing shifts the frequency of |102) relative to the sum of the
frequencies of [100) and |002) to yield the three-qubit phase. The
detailed procedure of the gate is shown in Fig. 2a, and is implemented
in 63 ns. Further details can be found in Supplementary Information.

We demonstrate the gate by first measuring its classical action. The
controlled-controlled phase (CCPhase) gate, which maps [111) to
—|111), has no effect on pure computational states so we implement
a CCNOT gate by concatenating pre- and post-gate rotations on Q,, as
indicated in the unshaded regions of Fig. 2a. Such a gate ideally swaps
[101) and |111) and does nothing to the remaining states. To verify
this, we prepare the eight computational states, implement the gate and
measure its output using three-qubit state tomography’ to generate
the classical truth table. The intended state is reached with 85 * 1%
fidelity on average. This measurement is sensitive only to classical
action, however, so we complete our verification by performing full
quantum process tomography on the CCPhase gate, which can detect
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Figure 1 | Calculated energy spectra and time-domain measurements of the
interactions used in the three-qubit gate. a, The energy spectrum of doubly
excited states demonstrating the avoided crossing between |011) and |002)
(identical to that between |111) and |102) except for a 6-GHz offset) is shown
with both a numerical diagonalization of the system Hamiltonian (top) and a
time-domain measurement as a function of the applied magnetic flux on Q,
(bottom). Top: the frequencies for the involved eigenstates are blue and the
non-interacting eigenstates of similar energy are grey. The notation |abc) ® |d)
indicates the excitation level of each qubit and the cavity photon number,
respectively. When the second ket is omitted, d = 0. Bottom: the state |011) is
prepared and a square flux pulse of duration t and amplitude V, is applied.
Coherent oscillations produce a ‘chevron’ pattern, with darker colours
corresponding to population left in |002). i, Planck’s constant. b, The spectrum
of triply excited states showing the avoided crossing between | 102) and |003) as
a function of the flux bias on Q; is characterized in the same way as above. The
state | 102) is prepared by first making |111) and then performing the swap as
described in Fig. 2. Many additional eigenstates are close in energy but are
irrelevant because they do not interact with the populated states. The large
avoided crossing between the relevant eigenstates that is used to produce an
adiabatic three-qubit interaction happens near 28 m®, (where @ is the
magnetic flux quantum). Extra lines near 31 m®, and 29 m®, are due to
higher-order interactions predicted by the Hamiltonian (|102) with |030) and
|003) with |111)), as is the larger first-order interaction at 25 md®, (| 102) with a
hybridization of |021) and |111)), but their effect on the protocol in Fig. 2 is
negligible.

the evolution of quantum superpositions of computational states. This
is done by preparing 64 input states that span the computational
Hilbert space and by performing state tomography on the result of
the gate’s action on each state. As detailed in Supplementary Informa-
tion, we find a fidelity of 78 = 1% to a process in which the spurious
two-qubit phase between Q; and Qs is set to the independently
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Figure 2 | Pulse sequence and classical action of the three-qubit gate. a, The
frequencies of the three qubits and the locations of applied rotations during the
three-qubit gate as functions of time. Shaded region: to produce the CCPhase
interaction, Q, is first moved suddenly into resonance with the avoided
crossing shown in Fig, 1a, which coherently transfers the population of | 111) to
[102) (and also that of |011) to |002)) in 7 ns. Fine adjustments in the first point
of the pulse compensate for finite pulse rise time and temporal precision. The
frequency of Q, is then abruptly increased to where its two-qubit phase with Qs
is cancelled during the gate by accumulating a multiple of 2r. The frequency of
Q, is then increased adiabatically to initiate the interaction between |102) and
|003). The duration and amplitude of this excursion is tuned to acquire a three-
qubit phase of 7. The population in 102} is then transferred back to [111) by
reversing the swap procedure. Finally, the two-qubit phase between Q; and Q,
is cancelled with an additional adiabatic interaction, which is sped up with a
n-pulse on Q, at 37 ns (all rotations here are done about the x axis). The two-
qubit phase between Q, and Qs is uncontrolled and there is an overall
T-rotation of Q,, making this a 1-CC-¢'Z gate, taking a total of 63 ns.
Unshaded region: pre- and post-gate rotations on Q, appended to the CCPhase
gate turn its action into that of a CCNOT gate, as described in Supplementary
Information. b, The classical action of the CCNOT gate is measured by
preparing the eight computational basis states, |,), and performing state
tomography on the resulting state, |/, after applying the gate, O, to them.
The projection of these measurements to the computational basis states is taken
to generate the displayed truth table. The fidelity to the expected action, where
only the states |101) and | 111) are swapped, is 85 = 1%. Full quantum process
tomography of the gate is shown in Supplementary Information.

measured value of 57° (see Supplementary Information for an explana-
tion of why this phase is irrelevant here). Owing to this extraneous
phase, ¢, the gate is most accurately described as a CC-¢'’Z gate. The
loss of fidelity is consistent with the expected energy relaxation of the
three qubits during the 85-ns tomography procedure, which includes
preparation and analysis pulses in addition to the gate, with some
remaining error due to qubit transition frequency drift during the
90 min it takes to collect the full data set.

With our CCPhase gate in hand, we now demonstrate three-qubit
error correction. We first examine the bit-flip code, which, as shown in
Fig. 3a, starts by encoding the quantum state to be protected in a three-
qubit entangled state® through the use of conditional phase (CPhase)
gates. The state «|0) + f8|1) is encoded as «|000) + f$|111), which has
the property that the value of any two-qubit ZZ product is + 1 regardless
of the values of o and f. (For quantum states on the equator of the
Bloch sphere, |a|=|f|=1/ \/5q and the encoding is a maximally
entangled three-qubit Greenberger-Horne-Zeilinger state®**° that
we independently measure to have a state fidelity of 89 * 1%.) If any
single qubit is flipped, one or more of the ZZ products will flip sign as
well. For example, if Q; were flipped, the Z,Z, product would become
—1 whereas the Z,Z; product would remain + 1, uniquely indicating
that Q; needs to be corrected. Indeed, the four possible combinations
of Z,Z, and Z,Z; exactly encode the possible single bit flips, including
the possibility of no flip. In a fault-tolerant code, these products would
be stored in separate qubits for later measurement’, but here we instead
reverse the encoding so that the ancillas Q; and Q; can no longer
witness bit-flip errors and instead store the values of the two ZZ pro-
ducts. These ancillas are then used as the control bits for the CCNOT
gate described above, so that Q, will be flipped back if and only if both
ancillas are excited, which indicates that Q, was flipped. The detailed
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evolution of the qubits during the error correction procedure can be
found in Supplementary Information.

Whereas errors on classical bits are discrete, quantum error correc-
tion must be able to correct arbitrary rotations as well as complete
flips because superpositions of states are allowed. Remarkably,
the code described above already satisfies this criterion. If an error
causes a rotation 0 on Q,, the quantum state after decoding will
be /T—p(«/0)+p|1))®]00) +/p(f|0) + /1)) ®[11), where p=
sin’(0/2) is the effective probability of a full flip and where we have
listed first the state of Q, followed by those of Q; and Q; for notational
simplicity. That is, the state will be a superposition of Q, in the correct
state with the ancillas indicating no error plus Q, flipped with the
ancillas indicating as such. The application of the CCNOT gate to
this state will successfully correct it because it acts only on the
subspace where both ancillas are excited, making the state

(/0) + B|1))® (v/T—p|00) +/p|11)). (Alternatively, if the ancilla
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Figure 3 | Bit-flip error correction demonstrating recovery from a single
arbitrary rotation. a, The error correction protocol starts by encoding the
quantum state to be protected in a three-qubit state by entangling the two ancilla
qubits, Q; and Qs,with Q, through the use of two CPhase gates (vertical lines
terminating in solid circles) and m/2-rotations (R7, is a single-qubit rotation,
where 71 indicates the rotation axis and « is the rotation angle). The number
adjacent to each CPhase gate indicates which state receives a phase shift of m. A
single y-rotation error of a known angle is then performed on a single qubit (as
explained in Supplementary Information, this is compiled together with other
rotations when acting on the ancillas). The state is then decoded, leaving the
ancillas in a product state indicating which single-qubit error occurred. For finite
rotations, the ancillas will be in a superposition of states in which the error did
and, respectively, did not occur, with each tensor multiplied with the associated
single-qubit state of Q,. If an error occurred on Q,, the CCNOT gate
implemented with our CCPhase gate (represented by three solid circles linked by
avertical line) at the end of the code will correct it. We then perform three-qubit
state tomography to verify the result. b, State fidelity to the created state

[}y = | +X) after causing an error on one of the qubits, with and without error
correction. Ideally, the error-corrected curves would be horizontal lines at unit
fidelity. Finite excited-state lifetimes cause oscillations and lower fidelity because
errors change the excitation level of the system. ¢, Two-qubit density matrices (p)
of the ancillas after each of the four possible full bit-flip errors has occurred. The
fidelities of these states to the ideal error syndromes, |OO), | 01), | 10) and | 11), are
respectively 81.3%, 69.7%, 73.1% and 61.2%.
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qubits were measured, they would project the state onto one of those
possibilities, essentially forcing the computer to ‘decide’ whether a full
flip had occurred.) We demonstrate this with the procedure shown in
Fig. 3a for the state |i)) = |+X) (the positive eigenstate of the Pauli
operator X), performing single deterministic rotations of a known
angle on each of the three qubits to simulate errors. As shown in
Fig. 3b, we compare this with the case of uncorrected errors on Q..
Ideally, the error-corrected curves would have unit fidelity and be
independent of 0, but they are slightly lower in fidelity and oscillate
in 0 owing to finite coherence. They are, however, substantially
improved relative to the uncorrected case, demonstrating that the
errors are in fact being ameliorated. As shown in Fig. 3c, we also
measure the two-qubit density matrix of the ancilla qubits after each
of the four possible full bit-flip errors, showing that they end up in a
computational product state correctly indicating the induced error.
In real physical systems, errors occur at approximately the same rate
on all constituent qubits rather than on one at a time. The correction
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Figure 4 | Demonstration of first-order insensitivity to simultaneous phase-
flip errors. a, The phase-flip error correction protocol differs from the bit-flip
protocol described in Fig. 3a only by single-qubit gates. Those gates effectively
rotate the coordinate system, mapping phase flips to bit flips, and vice versa, so
the remainder of the procedure is exactly the same as in the bit-flip case>. We
perform errors on all three qubits simultaneously with z gates of known rotation
angle, which is equivalent to phase-flip errors with probability p = sin®(0/2). As
with the bit-flip code, if a single error has occurred on the primary qubit, the
CCNOT gate at the end of the code will undo it. b, Fidelity of the process matrix
of the protected qubit to the identity operation plotted as a function of p. As the
code corrects only single errors, it will fail on the three-qubit subspace where
more than one has occurred, which happens with a probability 3p> — 2p°. The
coefficients here are reduced for processes with finite fidelity. The process
fidelity is fitted with f = (0.760 = 0.005) — (1.46 = 0.03)p> + (0.72 = 0.03)p”. If
a linear term is allowed, its best-fit coefficient is 0.03 = 0.06. We compare this
with the case of no error correction to simulate the improvement made when
the decoherence of Q, is normalized away (blue symbols). We also plot the
simulated fidelity of a perfect but non-corrected system (black dashed line),
which indicates that for our gate fidelities we do not show a net improvement for
artificial errors. Insets: the constituent state fidelities of the four basis states used
to produce the process fidelity data in the case with error correction (right) and
in the case with no correction (left). The x axes of the plots are the same as the
main panel, and they share the same y axis. The state | +Y) (the positive
eigenstate of the Pauli operator Y) is immune to errors because its encoded state
is an eigenstate of single, double and triple qubit phase flips.
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scheme will only succeed, therefore, on the three-qubit subspace with
zero or one errors. The probability of more than one error occurring is
3p® — 2p°, where p is the single-qubit error rate?, so the fidelity of error
correction should be 1 — 3p* + 2p°. For a scheme with gate fidelity
limited by decoherence, the coefficients of the quadratic and cubic
terms will be smaller but, crucially, any linear dependence on p will
be strongly suppressed. If the error rates for each qubit were different,
these coefficients would again be modified but any linear dependence
would still be abated. For the sake of completeness, here we use the
phase-flip code, which differs from the previously discussed bit-flip
code by only single-qubit rotations, as shown in Fig, 4a. This difference
can be viewed as a rotation of the coordinate system, converting phase
flips to bit flips and vice versa, so the remainder of the code is exactly
the same as the previous case>'>””. Phase errors of known rotation
angle are applied by rotating the frame of reference of subsequent x
and y rotations. As shown in Fig. 4b, we measure the process fidelity of
the error correction scheme as a function of p and compare this with
the case of no error correction in which identical single-qubit rotations
are applied to Q, but the ancillas are not involved (this comparison is
without gates, but with appropriate delays to have the same total
procedure duration, to indicate the lack of fidelity due to the decoher-
ence of Q,). Whereas without error correction we find a purely linear
dependence on p, with the correction applied the data are extremely
well modelled by only quadratic and cubic terms, demonstrating the
desired first-order insensitivity to errors. We have therefore realized a
successful implementation of quantum error correction, although
improvement of the fidelity of a real physical process will require
considerable advances in both gate fidelity and device complexity.

We have realized both bit- and phase-flip error correction in a
superconducting circuit. In doing so, we have tested both main
conceptual components of the nine-qubit Shor code', which can
defend against arbitrary single-qubit errors by concatenating the bit-
and phase-flip codes. The implementation relies on our efficient three-
qubit gate, which uses non-computational states in the third excitation
manifold of our system, demonstrating that the simple Hamiltonian of
the system accurately predicts the dynamics even at these high excita-
tion levels. The gate takes approximately half the time of an equivalent
construction with one- and two-qubit gates. We expect it to work
between any three nearest-neighbour qubits in frequency regardless
of the number of qubits sharing the bus, as interactions involving other
qubits will be first-order prohibited.

METHODS

Arbitrary qubit rotations around the x and y axes of the Bloch sphere are per-
formed with pulse-shaped resonant microwave tones. Rotations around the z axis
are made by rotating the reference phase of subsequent x and y pulses. One-qubit
dynamical phases resulting from flux excursions are measured with modified
Ramsey experiments comparing the phase acquired by an unmodified prepared
state with the phase acquired by that same state after a flux pulse, and are cancelled
with z rotations. Two- and three-qubit phases are measured with a similar Ramsey
experiment comparing the phase acquired when a control qubit is in its ground
state with the phase acquired when it is in an excited state. For example, the two-
qubit phase between Q, and Q; is measured by preparing Qs along the y axis and
Q, either in its ground or excited state and then performing the flux pulse in both
cases. The single-qubit phase of Q; is the same for both states, so the two-qubit
phase is directly measurable as the difference in phase between them. All phases
are initially tuned to within 1°, limited by the resolution of control equipment and
drifts of system parameters such as the qubit transition frequencies.
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