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Analog information processing at the quantum
limit with a Josephson ring modulator

N. Bergeal', R. Vijay?, V. E. Manucharyan', I. Siddiqi?, R. J. Schoelkopf', S. M. Girvin'
and M. H. Devoret'*

Amplifiers are crucial in every experiment carrying out a very sensitive measurement. However, they always degrade the
information by adding noise. Quantum mechanics puts a limit on how small this degradation can be. Theoretically, the minimum
noise energy added by a phase-preserving amplifier to the signal it processes amounts at least to half a photon at the signal
frequency. Here we propose a practical microwave device that can fulfil the minimal requirements to reach the quantum limit.
The availability of such a device is of importance for the readout of solid-state qubits, and more generally for the measurement
of very weak signals in various areas of science. We discuss how this device can be the basic building block for a variety of
practical applications, such as amplification, noiseless frequency conversion, dynamic cooling and production of entangled

signal pairs.

in the 1950s with the development of the first maser

amplifiers®. Later, following the work of Haus and Mullen?,
Caves® reviewed the subject and introduced a general formalism,
which includes all linear amplifiers (that is, an amplifier whose
output signal is linearly related to its input signal). His analysis led
to a fundamental theorem: a phase-preserving amplifier has to add
a minimum amount of noise to the signal it processes. The limit
is commonly expressed in terms of the minimal temperature of the
noise added (T3'¥?) by an amplifier to the signal

| he concept of quantum-limited amplification was introduced
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where ws is the angular frequency of the signal and kg is the
Boltzmann constant. This corresponds to half a photon added to
each signal mode at the input of the amplifier. On the other hand,
a phase-sensitive amplifier, in which one quadrature is amplified
and the other is de-amplified, is subjected to only a lower limit
on the product of the noise added to the two quadratures and
can squeeze the quantum noise on one quadrature at the expense
of extra noise on the other one. Although such amplifiers can
look rather appealing because of their ability to operate potentially
below the quantum limit equation (1), they are awkward to use in a
wide range of applications, where both the phase and amplitude of
the signal carry the information. On the other hand, the so-called
non-degenerate parametric amplifier, that is, an amplifier in which
anonlinear system™®® with two resonant frequencies is pumped with
an oscillatory source, has repeatedly been suggested to be a good
candidate as a phase-preserving amplifier reaching the quantum
limit®’. It operates with two spatially distinct modes, conventionally
called the ‘signal’ at frequency ws and the ‘idler’ (also known as
the ‘image’) at frequency w;. These two modes are coupled in
the nonlinear system through the ‘pump’ at frequency 2. The
device operates as an amplifier with photon-number gain when
2 =ws+ w; or as a frequency converter without photon-number
gain when 2 = |ws — wy| (refs 4, 5).

In this article, we shall focus on the phase-preserving case and
show that a practical, non-degenerate parametric amplifier operat-
ing in the microwave domain can be realized with a simple circuit
involving Josephson tunnel junctions. Because it is minimal in the
number of active modes, it should reach the quantum limit. Unlike
microwave superconducting quantum interference devices, which
are powered by a d.c. bias and operate with incoherent Josephson
radiation®®, Josephson parametric amplifiers involve a coherent
microwave source. Josephson-tunnel-junction parametric ampli-
fiers have so far mainly focused on degenerate amplifiers (ws = wy),
which operate as phase-sensitive amplifiers'®"2, and very little work
has been devoted to phase-preserving amplifiers. The difficulty of
building a practical device matching the theoretical proposals as well
as the lack of applications requiring quantum-limited performances
have contributed to put this field on hold. However, recent progress
in quantum information processing using microwave interrogation
of solid-state qubits'*'® gave rise to a growing need for low-noise
amplifiers that are sensitive enough to measure the extremely weak
signals involved in these new devices and renewed the interest
in parametric amplifiers'”?°. Also, amplifiers operating near the
quantum limit are essential in quantum feedback for sustaining the
coherent oscillation of a qubit?"?2,

The Josephson ring modulator

Even at zero temperature, internal dissipation in a device inevitably
adds noise to the output signals. Thus, it is important to build a
completely dissipationless circuit using only dispersive elements.
The amplifier that we describe here is based on a particularly
interesting unusual nonlinear device, which we call the Josephson
ring modulator, by analogy with the ring modulator using Schottky
diodes®. The device consists of four nominally identical Josephson
junctions forming a ring threaded by a magnetic flux &. This
magnetic flux induces a fixed, circulating current around the ring.
When operated with a bias current lower than their critical current
Iy, Josephson junctions behave as pure nonlinear inductors with
inductance Lj = ¢,/(Iycosé), where § is the gauge-invariant phase
of the junction and ¢, = f/2e is the reduced flux quantum. They
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are the only known nonlinear and non-dissipative circuit elements
working at microwave frequencies. The ring has three orthogonal
electrical modes coupled to the junctions: two differential ones, X
and Y, and a common one, Z (Fig. 1a). They provide the minimum
number of modes for three-wave mixing.

We introduce the node flux &,_; 4 defined by
d @i=l 4
Vie =—
1,..., 4 dt

where V., 4 are the potentials at ring nodes 1, 2, 3 and
4, and where d/dt is the time derivative. The amplitudes of
the three modes X, Y and Z can be chosen as the following
combination of node fluxes:
=P —D; Sy=P—b5; =+

In the case of large-area junctions, the charging energy owing to
the intrinsic capacitance of the junctions can be ignored. Hence, the
Hamiltonian of the ring is given only by the sum of the Josephson
Hamiltonian of each junction Hj = —E; €088,y .4, Where E; = I,
(ref. 24). By rewriting the sum of the Josephson energies as a
function of the variables &y, ¢y and &,

Hyny = —4E |:cos & cos ﬁ cos & cos ﬂ
200 200 200 4@
+ sin&sinﬁsinﬁsin i] (2)
200 200 290 4go

In Fig. 1b we plot the energy of local equilibrium states of the
Josephson ring modulator as a function of the magnetic flux ¢
when no external currents are applied to the ring. There are four
stable states satisfying the quantization of the flux through the loop.
Although each state is 4 $,-periodic as a function of the flux, the
envelope of the lowest-energy state remains &,-periodic as required
by gauge invariance (@, = 2ng,).

Let us now consider the degenerate ground state at & = §,/2
labelled a in Fig. 1b. For mode intensities ®x, ¢y and ¢, much
smaller than @, we can ignore terms of order higher than three and
equation (2) reduces to

Hring:A@X¢Y¢Z+/’L[QSXZ+¢Y2+ dSZZ] (3)

with A = —2/27°E;/ @,° and . = /27°E;/ §,> at & = &, /2. Apart
from the sought-after pure nonlinear coupling term &x @y Py,
the Hamiltonian contains a contamination term, which is only
quadratic in the fluxes and which therefore renormalizes only the
mode frequencies. This powerful result shows that the Josephson
ring modulator can carry out the operation of mixing three orthog-
onal field modes while producing a minimal number of spurious
nonlinear effects. The Wheatstone-bridge type of symmetry elimi-
nates most of the unwanted terms in the Hamiltonian, in particular
those of the form &x>®,, &v2 P, Px* Dy, Pv> Px, which would
induce other, unwanted types of mixing (see below). Note that,
although & = $,/2 is optimal for maximizing A while keeping the
working point stable, it is not a stringent condition. In the following,
the differential modes X and Y are used to carry the signal and the
idler with symmetric roles and the Z mode is used as the pump.

The Josephson parametric converter

We now feed the X and Y modes of the Josephson ring
modulator through two superconducting resonators. A lumped-
element representation of the circuit that we have named the
Josephson parametric converter (JPC) is shown in Fig. 2a,b. The
device contains only purely dispersive elements: superconducting
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Figure 1| Electrical modes and energy states of the Josephson ring
modulator. a, The Josephson ring modulator consists of four nominally
identical Josephson junctions (a, b, c and d) and has four orthogonal
electrical modes. The two differential modes X, Y and the common mode Z
are coupled to the junctions, whereas the fourth mode W remains
uncoupled. b, Energy states of the ring modulator. There are four stable
states satisfying the relation 8, 4 8p + 8¢ + 34 mod 2t = 2n P/ Pg, where §;
is the gauge-invariant phase of junction i and where & is the flux quantum.
Each state is 4 g periodic as a function of the flux @ through the loop, but
the envelope (blue line) of the lowest energy remains @q-periodic. Other
energy extremum states are not represented here. At point a, the device
can produce a pure nonlinear coupling term &x &y &7, whose
contamination is only of the type ®x2+ ®y2 + $,2. Point a actually
corresponds to two degenerate states separated by an energy barrier
whose height is 2(+/2 —1)E,. At point b, there is no contamination and the
nonlinearity is of the purest form, but it would be very difficult to stabilize
the device in an excited state.

resonators and Josephson junctions. As it has no internal
dissipation, all the noise appearing at the output ports originates
from the coupling of the JPC to the external circuits connected at its
different ports. There are in fact two possible variations of the circuit
depending on whether the ring modulator junctions are in parallel
with the voltage of the resonators (Fig. 2a) or in series with the
current of the resonators (Fig. 2b). For simplicity and conciseness
we treat here only the first case. The second case can be treated by a
simple extension of the formalism we present. The Hamiltonian of

the two resonators is given by**%
Pl QP DY QY
Hiey=—+ + + 4+ Hyomm
2L, | 2C, | 2L, ' 2c, e
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Figure 2 | Description of the Josephson parametric converter. a, Lumped-element schematic of the parallel JPC. The device is based on a ring modulator
coupled to two parallel LC resonators corresponding to the two differential modes X and Y. The common mode Z is driven by a current source [P. Both
resonators are coupled to external drives. b, Lumped-element schematic of the series JPC. ¢, Scattering representation of the JPC in the case of
amplification operation. Here the white arrows denote the conjugation operation because the non-diagonal terms of the scattering matrix couple a®"! to
a*". d, Scattering representation of the JPC in the case of the pure conversion operation.

where the ¢ and the Q are the conjugated fluxes and charges in the
inductive and capacitive parts of the circuit, respectively, and where
the L and the C are the associated inductances and capacitances.
The damping term Hg,p, arising from the coupling to the external
source resistors R, and R;, could be expressed using the Caldeira—
Leggett model®®, which treats dissipation in a quantum circuit, but
this detailed description is not of interest here. In addition, each
resonator is submitted to a weak, time-dependent external drive,
which models the incoming signal (idler). This contribution can be
taken into account by introducing the Hamiltonian of the drives*

U U.
Harive = —@R—lcos(wlt +¢1)— @R—Zcos<wzr+¢z> (4)

a b
where U , are the amplitudes of the external voltage sources with
internal resistors R, , (see Fig. 1), , , are their angular frequencies
and ¢, , their phases. The pump mode is assumed to be so stiffly
driven that @, can be regarded as an imposed oscillating classical
field, which does not suffer back-action from its coupling to the
other modes.
Therefore, the total Hamiltonian of the JPC is given by

H]PC = Hres + Hring +Hdrive

298

In the following, we consider the case where the pump is driven
with two tones at frequencies {2, = w, + w, and {2 = w, — w,
(we assume w; > w,) and corresponding current amplitudes IP
and I}. Using the Hamilton equations Qx = —0Hjpc /0 Px and
Qy = —3Hjpc/0 Py, we can derive the equations of motion for the
two modes X and Y

by + 1, Px + w? ¢X+2¢Y|:%cos(ﬁat+%)

a

+ gcosmat +¢5)] =2¢;cos(wit +¢y)

a

@Y-l-lcbsﬁy—i-a)ﬁ@y+2¢X|:é—acos(()at+<po)
b

+ gcos(ﬁgt +(,%)i| =2¢,cos(w,t +¢,)
b

where x, = I?/(4¢,) and x; = I} /(4¢,). The symbols ¢, and
@s denote the initial phases of the pump drives. The coefficients
Kab) = (Ragwy) Cay) ! are the usual damping factors in RLC circuits,
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Wav) = ~/Law) +Lj/LiLyy)Cyvy are the resonance frequencies of
resonators renormalized by the quadratic terms in equation (3) and
€12) = Uj)kan)- Note that the presence of higher-order spurious
terms would make the resonance frequencies dependent on pump
power and induce instabilities. Our circuit has a direct mechanical
analogue consisting of two coupled harmonic oscillators whose
mutual coupling is parametrically driven. Following the usual
treatment of a parametric amplifier, we impose the resonant
tuning @; = w, and w, = w, and look for solutions of the form
Py =xe +c.c. and Py = ye' +c.c. where c.c. is the conjugated
complex. Keeping only the terms oscillating at w; and w,, we
obtain the phasors

—Z.Kba)zél —_ é—igg =+ X—Jéz

[
x= T (5)
KaKpW1 ) — _CaaCb + Cfcb
; > o zv 4 Xz
—IK, 1€y — ael + ?“;El
y= R (6)
KaKp 10y — ¢ & + XS

where ¥s = x5, %o = Xo €' and &, =€, &, = ¢€,e2,

From the point of view of microwave circuits, rather than the
local fluxes @« and @y and voltages U, and Uy, it is more convenient
to introduce the normalized amplitudes of the incoming and
outgoing modes ajj,, and afs at ports 1 and 2. This transformation
is described in detail in the Methods section. As a result, we can
express equations (5) and (6) in a very concise way by introducing
the scattering matrix Sypc of the JPC.

a,*"[w] n 0 & s a;"[w]
ar* " [—w] {0 s | | e
a,*" ;] h s nrn 0 a;" [w;]
" [~ ;] st 0 1 a""[—w,]

where the coefficients are given, at the resonant tuning, by
n=r=r=(1=|ps]*+10:1")/(1+|ps|*—lps "), L = t;; =t =2ip;/
(L+1ps|* = |ps1?) and s, = 51 = s = —2ip, /(1 + |ps|* — o)
and where we have introduced the reduced pump currents
05 = X5/~ CaCrkakpwiws and p, = X /+/ CaCokakyw@,. The three
coefficients r,t and s satisfy the relation |r|> + |t]* — |s]* = 1.
The form of this scattering matrix is in fact rather remarkable.
As we show in the Methods section, Sjpc has the exact minimal
form required to carry out phase-preserving amplification with
minimum added noise and noiseless frequency conversion. This is
the consequence of (1) the dispersive nature of the operation of the
device and (2) the number of modes having been kept minimal. The
same matrix form is obtained with the series circuit of Fig. 2b, albeit
with different expressions for the p.

The case p; = 0 corresponds to the optimal amplification
operation described in Fig. 2c. The coefficients |r| and [s| can
then be written as |r| = v/G = (1 + |ps]2)/(1 — |ps]*) and
Is|=+/G—1=2|p,|/(1—|ps|*). Amplification (G > 1) is obtained
when the reduced pump current p, approaches unity from below.
The diagonal term r can be seen as a photon ‘cis-gain’ characteristic
of one-port reflection amplifier operation. From the point of view
of each port separately, the device behaves as a sort of ideal negative
resistance: the incoming wave at either port is reflected with a power
gain G and its phase is preserved, when the signal at the other port
is zero. A circulator is needed to separate the outgoing wave from
the incoming one. The non-diagonal term s can be seen as a photon
‘trans-gain’ between different ports. As it couples conjugated-mode
amplitudes a5 and (), the device behaves as a phase-conjugating
frequency converter with power gain G—1 (ref. 6). In particular, this
operation can be used to mix down a signal from high frequency w,
to low frequency w,. The remarkable feature here is the presence
of photon gain. Superconductor—insulator—superconductor mixers
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using the quasiparticle branch of a tunnel junction are so far the
only known practical examples of mixers with gain, and they can
operate fairly close to the quantum limit¥.

The case p, =0 corresponds to a conversion mode where an
incoming mode at one port is partially reflected and partially
converted into the second mode (Fig.2d). This operation is
analogous to that carried out by a beam splitter but with the
peculiarity that the frequency of the transmitted signal is converted
when modes 1 and 2 have different frequencies w;, and w,.
The device conserves the total number of incoming photons
(Ir]* 4 1t|* = 1), whereas the energy is conserved only if @, = w,.
Pure frequency conversion with unit gain can be obtained when
|ps| = 1. Although both modes of operation make frequency
conversion possible, there are some fundamental differences
between the two processes. The pure converter case enables us to
convert frequency with no added noise and without any reflection.
On the other hand, the phase-conjugating conversion of the
amplification mode has the advantage of enabling photon gain.

Noise of the JPC

Let us now analyse the noise properties of the JPC for the two
different cases of operation. Assuming thermal equilibrium with
temperature T < hw/kg, each port is fed at its input with half a
photon of noise arising from vacuum fluctuations. Therefore, the
total output noise power emitted by each port in units of photon
number per mode is

1 1 1 1
N = E|f|2+5|f|2+5|5|2 = 5(2(|f|2+|f|2)— 1)

In the case of amplification (+ = 0) with large gain (|r| >> 1), the
noise referred back to the input is

-1
2|r|?

Although each port is fed at its input with only half a photon
of noise, after amplification the total output noise at each port
is equivalent to one photon at the input (N.g™ — 1). This is an
illustration of Caves’ theorem®: the noise added by the amplification
process to the vacuum noise already present at the input port is
equivalent to half a photon (N,4™ — 1/2).

In the pure converter case (|s| = |r| =0, |t|] = 1), the noise
referred back to the input is

NIB= N/ |r (= N |sP) = 14 1

) 21tP—-1 1
Neffm=N0ut/|t|2= 2|t|2 =E
In this case, the output noise is identical to the input noise (half
a photon) and no noise is added during the process (Naq™ = 0).
The photon-number gain is unity, despite the fact that it is
possible to have power gain when the frequency is up-converted.
A more general treatment of the noise is presented in the
Supplementary Information.

The general case of arbitrary detuning
Detuning the signal frequencies from the resonance frequencies of
the resonators (w; # w, and w, # w;,) complicates the expression of
Sjpc but retains the phase-preserving quantum limited operation to
be reached when ps =0 or p, =0. Note that when signals are applied
at both ports the phase preservation property is lost.
In the amplification mode of operation (ps = 0), the coefficients
of Sjpc are given by
(D21 4+1) (912 +1) —|p, |°
Ny = — - - and
' (P2 +)(2—1) — oo
_Zipa
S12 =

. (D + 1) (D, —1) — [os]?
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Figure 3 | Gain of the JPC. The figure shows in colour scale the gain ry in
the amplification mode as a function of the normalized input frequency
w1 /w, for different values of | pg | (from 0.6 to 0.99). In this example,

., =50 and the damping factors are taken to be identical for the two
resonators (w,/Qa = wp/Qp).

where ¢, = (07 — ©?)Q,/w,@, and ¥, = (w2 — w})Qp/w,w,. Here
we have introduced the quality factor of the resonators Q, = w,/«,
and Q, = wy /Ky Figure 3 shows a typical example of gain curves for
different values of | o, |. In the large-gain limit the expression of r; ,
reduces to a Lorentzian form

VG
\/1 + G(S—: + &)z(wm —wa,b)2

Wy

[r1a] >

The —3 dB bandwidth of the amplifier is thus

2 (Q Q)
b= (o) 7

We arrive here at an important result: the bandwidth of the
amplifier is inversely proportional to the amplitude gain /G. This
feature is a general property of parametric amplifiers. At this point,
we would like to stress that the ‘tuning bandwidth’ of the amplifier,
that is, the range of frequencies over which the centre frequency
of the signal bandwidth (equation (7)) can be varied, remains
equal to the resonator bandwidth «, ;. Here, detuning the pump
frequency (2, away from the resonance condition 2, = w, + w,
displaces the centres of the signal and idler bandwidth inside
the larger bandwidth of the resonators. The case of an arbitrary
detuning for the conversion mode of operation is treated in the
Methods section.

Practical issues: Gain, bandwidth, dynamic range and stability
We now analyse some practical issues and show that we can
build a practical device that would be useful for many different
applications. The questions of power gain and bandwidth are
central and are intimately related. Ideally, the amplified noise
should be much larger than the noise of the following amplifier in
the measurement chain. For a quantum-limited amplifier working
at gigahertz frequencies and assuming the best state-of-the-art
commercial device as a following amplifier (a noise temperature
of a few Kelvin is typical), the power gain has to be at least
20 dB, although of course a smaller power gain can still lead to an
improvement in the overall system noise temperature. To optimize
the ability of the amplifier to follow fast signals, a bandwidth around
the carrier frequency that is as large as possible is sought. How-
ever, as shown by relation equation (7), the parametric coupling
imposes that the signal bandwidth decreases with the amplitude
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Figure 4 | Main constraint on the gain x bandwidth product of the JPC.
The figure shows in colour scale the pump current in the junction,
normalized by the Z-mode critical current, as a function of the relative
bandwidth B/w, ,, and the gain G. The corresponding brown area is not
accessible for the JPC, because in this region the pump current in the
junction always exceeds the critical current. The different contours
correspond to the various limitations obtained for different participation
ratios p, and pp.

gain. Although the gain of the JPC should in principle reach
any arbitrarily large value when |p, | approaches unity sufficiently
closely, two limitations can occur. The first limitation is that
when |p,| — 17 the fraction of the pump current feeding the
junctions should remain well below the Z-mode critical current
I;=Iycos P /4p, =1,/ /2 for the parametric amplification to remain
stable (higher-order nonlinear terms invade the behaviour of the
device as the critical current is reached). It is useful to rewrite the
expression of |p,| as

p

1 I
lpo| = 1V Q.Qupapr—

Iy

in which we introduce the participation ratios of the in-
ductance of the Josephson ring modulator to the resonators’
inductance p,, = L,p/(Lj+L,p) in the parallel case and
Par = L;j/(L;+L,y) in the series case. As each junction receives
a quarter of the total pump current, the first limitation thus
translates into

vV Qapran >1 (8)

Figure 4 shows the constraints on the JPC bandwidth and gain G
imposed by this limitation. This figure illustrates the impossibility
of obtaining at the same time a high gain value and a large
bandwidth with a parametric amplifier. Although this figure would
seem to suggest that the participation ratios p, and p;, should be as
high as possible, in practice dynamic range considerations limit this
possibility (see below). The second limitation arises from the fact
that the sum of the resonator energies, each being weighted by its
participation ratio, cannot exceed the Josephson energy. We write
this new condition as

Eapa +Ebpb < E]

In particular, the amplified zero-point quantum noise cannot
exceed the Josephson energy

Gh(pawa+pyay)/2 < Ej )
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Taking p, = p, = p to simplify the algebra, we can rewrite
equation (9) as
Zq
G K 0,-2
<> p

C

(10)

where Zg = @2 /h =h/(2e)* ~ 1kQ is the quantum of impedance
and Z. = w,+wy//C,Cow,wp, is an impedance characterizing
the resonators. Using a conventional microwave technology, this
impedance would be of the order of 50 2. The exponents 0 and —2
refer to the parallel and series cases respectively.

The power-gain x bandwidth product is an important charac-
teristic, which determines the total flow of information that can
be processed by the amplifier. Equations (7), (8) and (10) can be
combined to obtain an important bound on this product

GxB=2G" <w ép“’o
Q Z

C

where we have taken w, = w, = w and Q, = Q,, = Q to simplify the
algebra. As p < 1, the final upper bound on the gain x bandwidth
product is thus G x B < w/Zg/Z.. Thus, both parallel and series
circuits have the same limitation on the power-gain x bandwidth
product. However, in the case of the parallel circuit the maximum
gain is strongly constrained by relation (10). Therefore, the series
case seems more favourable in most practical cases. Another
important characteristic of an amplifier is its dynamic range, that
is, for a given gain, the maximum input power P,,,, that the device
can amplify before it starts to saturate. The same considerations
involving the maximum power produced by the device, as
developed in relation (9), can be used to obtain the dynamic range.

Pmax h
2Gp<— + —w> <E

B 2
Therefore
B/ E
Poax < — = b
2\ Gp

However, when the input power becomes too large, our small-
amplitude approximation is no longer valid and higher nonlinear
terms in equation (2) start to play a part. Therefore, experimentally,
the amplifier may saturate before reaching the theoretical value.

We now turn to the question of stability. The point p, =1
corresponds to the onset of spontaneous self-oscillations of the
system. Therefore, the JPC should be operated at a distance from
this critical point that is safe with regard to fluctuations in pump
drive power. However, the situation is better controlled here than
in previous studies, where optimization of gain would conflict
with increased noise caused by proximity to a poorly identified
instability®*°, whose influence might be difficult to avoid.

Production of entangled signal pairs and dynamic cooling
The gain of the JPC is high enough to potentially raise the level
of quantum fluctuations much higher than the level of the noise
of the second amplifier in the chain. An interesting experiment
consists of turning on the pump without feeding in any signals
at the input ports of the JPC. Quantum mechanically, the pump
can still produce output signals, which can be seen as arising from
the amplification of zero-point motion fluctuations. Moreover, as
the scattering matrix conserves the volume of the phase space,
the amplified noise appearing at the two ports must be entirely
correlated. The function that is carried out is two-mode squeezing®'.
As the output signals can have many real microwave photons, such
a device could be used for analog quantum encryption™.

Another interesting feature of the pure frequency-converter
mode of operation is that, unlike the amplifier mode, it has no added
noise at the output. The JPC device operating in this case with a
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unit-photon-number ‘trans-gain’ can swap the photons at the two
ports and be used as a refrigerator. Suppose that the frequency at
port 2 is much smaller than the frequency at port 1, which sees an
environment cold in the sense fiw; 3> kg T} . Initially port 2 is seeing
an environment that is hot in the sense fiw, < kg T,. When the JPC
is operated, the photons at port 2 are shuttled to port 1, where they
are evacuated, whereas zero-point photons from port 1 go in the
other direction to replace the photons at port 2, imposing vanishing
temperature. The cooling rate being § = kg >k, the refrigeration
power is only of the order of 1 pW at 4K and for a bandwidth of
1GHz, but it can be very useful for a high-Q resonator isolated
from the thermal bath.

Conclusion

The Josephson parametric converter would fill a niche that has up
to now been unavailable in the landscape of microwave processing
devices, that of three-wave mixing for non-degenerate parametric
amplification operating at the quantum limit. Moreover, we would
like to stress that the present level of control in the dynamics of
tunnel junctions in resonant circuits, as demonstrated by recent
several successful operations'>'>****, ensures that its realization is
entirely within reach. This development would bring the subject
of analog radio-frequency quantum signal processing (should we
nickname it quantum radioelectricity?) to a qualitatively new level.

Methods

Transformation of local fluxes and voltages to travelling waves. In the circuit
of Fig. 2a, the local fluxes and voltages can be expressed as a function of the
amplitudes of the incoming and outgoing modes A™ and A" at ports 1 and 2 using
the following relations:

A A = i—V, _ iwlx; Ay AN = ViV _ iwz}’;
kY% Ra kY% Ra kY% Rb hY Rb
m_ Ui w_ U
YT aVR T 2J/R,

A" and A°" are expressed in the square root of watts. We can now define
the normalized amplitude a™ and a°" expressed in the square root of photon
number per unit time.

in in out out
in Al in A" out Al out Ay
a, = ;o 4y = 5 = ;A =
hw, hw, Vhw, Vhw,

At this point, the normalized amplitudes are still classical variables. The
passage to the creation and annihilation operators is carried out by the simple
replacement a — d and a* — df.

Minimal scattering matrix for quantum information processing. To carry out
information processing at the quantum limit, a device must fulfil requirements that
impose a constraint on its scattering matrix S. In this section we derive the minimal
form of S that achieves phase-preserving amplification with minimal added noise
and noiseless frequency conversion in the case of a device involving only two
modes. Following a route similar but not identical to that pioneered by Caves, we
introduce the generalized scattering matrix S of a linear microwave device, which
relates input and output modes at its different ports.

ACut = S. Ain

Here we have introduced the mode-amplitude input and output vectors

a" a out
a,in qa, *out
. . "
AN = : LA =
in out
a, ay
a,,*in a, *out

where the symbol * denotes complex conjugation. The a, are normalized mode
amplitudes expressed in the square root of photon number per unit time. Although
they are at first treated as classical scalar fields, they can, in a later quantum
mechanical treatment, be formally replaced by annihilation (a, — d,) and creation
(a,* — a}) operators. Both a and a* have to be present in the input and output
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vectors because of possible phase-conjugating processes coupling an a® to an
a*in, In the case of a device with two ports, the most general matrix has only eight
independent complex coefficients.

rnoou 8§

Kk gk
rl Sl t]
t S5 1 1753

”

Our requirement of information processing at the quantum limit implies that
the scattering matrix must describe a canonical transformation that preserves the
commutation relations of the bosonic fields [4°™, 4f°"'] = [4I", 47" ]. Mathematically,
this is translated by the property of symplecticity of the S matrix®

TSIS=J
where 0O 1 0 O
-1 0 0 O
J= 0O 0 0 1
0 0 -1 0

To carry out phase-preserving amplification, we need to impose that the reflection
at each port separately preserves the phase of the signal (that is, a phase shift of
the incoming wave results in an identical phase shift of the outgoing wave). That
implies that u; = u} = u, = u = 0. Finally, for simplicity and because it corresponds
to the case of the JPC, we impose the modulus of the reflection coefficients to

be identical at each port (|r;| = |r2| =|r|). However, the general case would not
introduce new meaningful features and could be treated by a simple extension of
the present treatment. It follows that S has the minimal form

|r]e™ 0 |t]e? |s|e

S— 0 [rle= Isle=™  |t|e=
_|t|et(m+otz—ﬂ\) |S|e!(a:—m+yl) |r|ei 0

|5|e—i(mz—u|+y1) _|t|e—i(m+uz—ﬂ|) 0 |r|e_i”2

where the coefficients are linked by the relation |r|*+|t|* —|s|* =1.

The case s =0 corresponds to a conversion operation where an incoming
mode at one port is partially reflected and partially converted into the second
mode. As |r|* +|t|* = 1, the total number of photons is conserved during the
process. The case t =0 corresponds to an amplification operation because the total
number of photons is no longer conserved (|r|* 4 |s|* # 1). Therefore, |r| can take
any value larger than one, the phase of the signal being preserved. This matrix has
the simplest form for carrying out phase-preserving amplification and frequency
conversion at the quantum limit.

Case of arbitrary detuning for the conversion mode of operation. In the
conversion mode of operation (p, = 0)
(021 — D) (D2 +1) — s
f,=-— - - -~ and
(772,1 - 1)(791,2 —1)—|psl
_ —2ip;
(172,1 - Z')(171,2 —1)—|ps|?

to

where ¥ = (0] — ©,2)Q,/w,@, and ¥, = (03 — 0}) Qy /W ®>.
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