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Abstract

The last two decades have seen tremendous advances in our ability to generate and manipulate
quantum coherence in mesoscopic superconducting circuits. These advances have opened up
the study of quantum optics of microwave photons in superconducting circuits as well as
providing important hardware for the manipulation of quantum information. Focusing
primarily on charge-based qubits, we provide a brief overview of these developments and
discuss the present state of the art. We also survey the remarkable progress that has been made
in realizing circuit quantum electrodynamics (QED) in which superconducting artificial atoms

are strongly coupled to individual microwave photons.

PACS numbers: 03.67.—a, 03.67.Lx, 74.78 Na

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

The remarkable recent progress in creating superconducting
quantum bits and manipulating their states has been
summarized in several reviews [1-9]. Nearly, 30 years ago
Leggett discussed the fundamental issues concerning the
collective degrees of freedom in superconducting electrical
circuits and the fact that they themselves can behave quantum
mechanically [10]. The essential collective variable in a
Josephson junction [11] is the phase difference of the
superconducting order parameter across the junction. The first
experimental observation of the quantization of the energy
levels of the phase ‘particle’ was made by Martinis, Devoret
and Clarke in 1985 [12, 13].

Caldeira and Leggett [ 14] also pointed out the crucial role
that quantum fluctuations of the dissipative electromagnetic
environment play in the quantum coherence and dynamics
of Josephson junctions. These ideas were tested in early
experiments on macroscopic quantum tunneling (MQT)
[15, 16]. In a novel experiment, Turlot ef al [17] used a sliding
absorber to mechanically vary the electromagnetic impedance
seen by the Josephson junction and hence modulate the
rate of MQT. It was subsequently realized that the quantum
fluctuations of the environment can play an important role
even in transport through normal metal junctions [18, 19].
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This physics of the environment is related to that of
the Purcell effect [20], first observed for a superconducting
qubit by Houck et al [21]. Here a qubit placed inside a
cavity can have its decay rate suppressed if it is far detuned
from the cavity resonance or enhanced if the qubit transition
frequency is close to the cavity resonance. The former is
useful for protecting quantum superpositions. The latter is
useful for providing rapid qubit reset to the ground state. It
has also been successfully used to generate single microwave
photons on demand and enhance the fidelity of coherent
quantum information transfer from a superconducting qubit to
a ‘flying’ photon qubit [22]. One can view the Purcell effect
as the resonator performing an impedance transformation on
the external dissipation presented by the environment to the
qubit [21]. Neeley et al [23] have used a tunable transformer
coupling to quantitatively explore the role of environmental
coupling in a phase qubit circuit over a wide range of coupling
strengths.

2. Circuit QED

Quantum electrodynamics (QED) is the study of the
interaction of atoms with the quantized electromagnetic field.
In cavity QED one modifies the electromagnetic environment
by placing the atoms inside a high finesse Fabry—Pérot
resonator. This not only simplifies the physics by making

© 2009 The Royal Swedish Academy of Sciences Printed in the UK
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the spectrum of electromagnetic modes discrete, it also gives
the experimentalist control over both the damping of the
resonances and their detuning from the atomic transition
frequency. Furthermore, because the photons bounce between
the mirrors many times, their coupling to the atoms can be
greatly enhanced. In the simplest approximation (including
the rotating wave approximation), the system is described by
the Jaynes—Cummings Hamiltonian
oo o’+hg {ac* +aTa_}+Hdrive+Hdamping,
ey
where the single cavity mode is described as a simple
harmonic oscillator of angular frequency «,, the two-level
atom is represented as a simple spin-1/2 with excitation
frequency wy;, and the ‘vacuum Rabi coupling’, g, represents
the dipole matrix element for the process in which the atom
absorbs or emits a photon. The external driving and damping
terms, not written explicitly here, which help control the
electromagnetic state of the cavity, are treated using the
input—output formalism of quantum optics [24]. The extension
of this Hamiltonian to the case of multiple qubits is known as
the Tavis—Cummings [25] model.

There is a long history of cavity QED studies in the AMO
community for both alkali atoms in optical cavities [26-30]
and Rydberg atoms in microwave cavities [31-36]. In the
optical case one typically monitors the effect of the atoms on
the photons transmitted through the cavity. It is not possible to
measure the state of the atoms after they have fallen through
the cavity because the spontaneous emission lifetime is on the
order of nanoseconds at optical frequencies. In the microwave
experiments pioneered by the Paris group it is difficult to
directly measure the microwave photons but relatively easy
to measure the state of the Rydberg atoms with very high
fidelity after they exit the cavity since they have a lifetime of
approximately 30 ms and can be probed with state-selective
ionization.

‘Circuit QED’ uses superconducting qubits as artificial
atoms coupled to microwave resonators [6, 37-40] as
illustrated schematically in figure 1. Measuring the amplitude
and phase of microwaves transmitted through the resonator
realizes the equivalent of optical cavity QED at microwave
frequencies. In recent years there were many theoretical
proposals for coupling qubits to either three-dimensional
cavities or lumped element resonators [41-49] and there
has been a flurry of experiments [21, 22, 38, 39, 50-75]
and further theoretical proposals too numerous to list. The
beauty of coplanar waveguide resonators is that they are
quasi-one-dimensional Fabry—Pérot cavities with orders of
magnitude smaller mode volume than can be achieved with
ordinary three-dimensional resonators. Because the mode
volume of these quasi-one-dimensional resonators can be as
small as 107° cubic wavelengths, and because the artificial
atoms have transition dipoles much larger than even Rydberg
atoms, the coupling strength g between the atom and a single
photon in the resonator is enormously enhanced and becomes
orders of magnitude larger than can be ordinarily achieved.
In fact, the dimensionless ratio of the coupling strength to
the transition frequency approaches the limit set by the fine
structure constant « [6]
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Figure 1. Circuit QED: schematic illustration (not to scale) of a
transmon qubit embedded in a coplanar waveguide resonator. Panel
(a) shows the lumped element circuit equivalent to the distributed
circuit shown in panel (b). From [76].

where € is the dielectric constant of the medium surrounding
the qubit. (Strictly speaking this limit is obtained assuming
that the quantum charge fluctuations are only of order one
Cooper pair. In actuality, they increase slowly as (Ej/E.)'/*
so this limit can be exceeded.) For the lumped element
equivalent circuit shown in figure 1 the vacuum Rabi coupling

is given by
g G (o
2\ GG

where wq is the qubit frequency, w; is the resonator frequency
and Cy = Cg +2Cj is the capacitance across the Josephson
junction. The values of the lumped circuit elements are
determined by the capacitance matrix of the actual distributed
circuit elements [76].

There exists a dual geometry in which the Josephson
junction qubit is placed in line with the center pin of the
resonator and couples directly to the microwave currents
flowing in the resonator [40, 77]. In this dual geometry the fine
structure constant is replaced by its inverse and the problem is
engineering the circuit to reduce the coupling to manageable
levels.

The coupling g is most readily measured by tuning
the qubit transition frequency wgy, to match the cavity
frequency .. The resulting degeneracy is lifted by the
dipole coupling term leading to the so-called vacuum Rabi
splitting 2g [28-30, 35, 38, 53]. The two lowest lying excited
states are coherent superpositions (‘bonding—anti-bonding’
combinations) of photon excitation and qubit excitation. The
coupling available in circuit QED is now so strong that
splittings of ~ 300 line widths are easily achieved [64, 72].
The higher lying excited states form a strongly anharmonic
ladder which can be explored by either strong driving or use
of two excitation tones [63, 64, 72].

In the so-called dispersive regime where the qubit is far
detuned from the cavity (Jwo; — w¢| > g), diagonalization of
the Hamiltonian to lowest order in g leads to a second-order
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dispersive coupling which is QND with respect to both the
photon number and the qubit energy

vons [ f 1] :
=h—|a'a+=|0o%, “)
A 2

where A = wy; — . is the detuning of the qubit from the
cavity. The dispersive coupling can be interpreted either as
a shift in the cavity frequency which depends on the state of
the qubit, or as the ‘ac-Stark’ or ‘light’ shift (plus the Lamb
shift [37, 50, 68]) of the qubit frequency proportional to the
number of photons in the cavity. The qubit-state-dependent
shift of the cavity frequency leads to changes in the amplitude
and phase of photons reflected from or transmitted through the
cavity and is the basis of the QND readout of the qubit state
in circuit QED [37, 38]. The mean value of the light shift can
be used to rapidly tune qubit transition frequencies [50, 52,
60, 78]. The fluctuating part of the light shift can be viewed
as the quantum back action [24] of the qubit measurement. As
required by the principles of quantum measurement [24], the
photon shot noise [79] in the cavity gradually dephases the
qubit superposition as information is gained about o*. This
back action effect leads to a broadening of the spectroscopic
line width of the qubit [50, 52, 80-83]. In the so-called
‘strong-dispersive’ regime [56], the coupling is so large that
the light shift per photon exceeds both the cavity line width «
and the atom line width y: (g2/A) > «, y. In this regime the
qubit spectrum breaks up into a series of separately resolved
peaks representing the distribution of photon numbers within
the driven cavity [56]. This ‘photon number’ detector was
used to distinguish thermal and coherent states in the cavity
and could be used to measure number-squeezed states and
other non-classical states [56]. This strong-coupling physics
has been beautifully observed in the time domain by the Paris
group [31-34].

The rate of progress in observing novel strong-coupling
nonlinear quantum optics effects in superconducting electrical
circuits is quite remarkable. As noted above, Houck et al [21]
used the Purcell effect to generate non-classical photon states
in a cavity [22]. The states were a superposition of n =
0 and 1 Fock states with controlled amplitude and phase.
‘Fluorescence tomography’ was performed on these states
using square law detection to determine the probability of
having a photon. In addition, homodyne measurements were
performed to determine the two quadratures of the electric
field which are controlled by the off-diagonal coherence
between the n =0 and 1 Fock states. In particular, they
showed that the mean electric field of the one-photon Fock
state was zero.

Higher Fock states up to n = 6 were synthesized by the
UCSB group [65] who also observed that the decay rate scaled
linearly with n as expected [66]. This same effect was seen
qualitatively in the frequency domain in the experiment of
Schuster et al [56]. The qubit spectrum showed up to six
resolved peaks displaying the distribution of photon numbers
within the driven cavity and the line width of the peaks
increased with 7. In a 2009 tour-de-force, Hofheinz et al [74]
demonstrated a remarkable method for synthesizing arbitrary
photon states (including Fock and various cat states) in a
cavity and measuring their Wigner distributions. This level

of control now exceeds what has been possible to date with
atomic physics methods.

Because microwave photons have 10*-10° times less
energy than visible photons, they are much more difficult
to detect. The work of Houck et al [22] and Schuster
et al [56] showed that individual photons could be detected
with low efficiency and the recent work of Hofheinz
et al [74] demonstrated very high-efficiency detection of
individual photons in a cavity. However a general purpose
high bandwidth ‘photomultiplier’ does not yet exist in
the microwave regime. There have been some theoretical
proposals for single photon detection [84, 85] but this remains
an important open experimental problem.

Another novel new direction is construction of single
artificial atom ‘lasers’ [61, 86, 87] as well as Sisyphus cooling
and amplification [69] of an oscillator. The extreme strong
coupling available should permit observation of ‘photon
blockade’ effects [88], and parametric down-conversion
by three-wave mixing [89, 90]. The advances in our
understanding and fabrication of Josephson junction circuits
motivated by the quest for a quantum computer have led
to dramatic advances in the ability to do four-wave mixing,
parametric amplification near the quantum limit, as well as
strong squeezing of the vacuum [91, 92]. These advances will
not only permit much better dispersive readout of qubits, they
also open up the possibility of continuous variable quantum
information processing [93, 94] since two-mode squeezed
states are an entanglement resource.

3. Charge-based qubits and variations thereof

Artificial atoms can be constructed from electrical circuit
elements [2, 11]. Clearly we want to avoid explicit resistors,
which can be in the form of dielectric losses in the
tunnel junctions and substrate [95] as well as the ‘radiation
resistance’ represented by coupling to transmission lines.
The simplest (ideally) purely reactive circuit elements are
inductors and capacitors, but these can only be used to
construct a harmonic oscillator whose evenly spaced energy
levels are not suitable for making qubits. We must incorporate
a nonlinear circuit element. The only known nonlinear
circuit element which is also non-dissipative is the Josephson
junction [11]. A number of different qubit designs have
been developed around the Josephson junction including
the Cooper pair box (CPB) [67, 76, 96-101] based on
charge, the flux qubit [102-104] and the phase qubit [105,
106]. The Cooper pair box is topologically distinct from
the other two designs in that it has no wire closing the
loop around the junction. Hence the number of Cooper pairs
transferred through the junction is a well-defined integer. The
integer charge implies the conjugate phase is compact; that
is, in the phase representation, the system obeys periodic
boundary conditions. As we will see below, this implies that
charge-based qubits are sensitive to stray electric field noise,
but this can be overcome.

3.1. The CPB

The CPB Hamiltonian is given by

H =4E.[A—ny]|" — Eycosd, )
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Figure 2. The CPB Hamiltonian in the phase representation is
equivalent to that of a quantum rotor. The offset charge ng is
equivalent to an Aharonov—Bohm flux which produces a Berry
phase proportional to the winding number of the rotor trajectory.
Unlike other qubit circuit topologies, the rotor wave function obeys
periodic boundary conditions. From [76].

where 7 is the integer-valued Cooper pair number operator
and ng is a continuous valued offset charge (or ‘gate charge’)
representing dc bias intentionally applied to the qubit,
low-frequency stray electric fields in the system (‘charge
noise’) as well as high-frequency electric fields from photons
in the cavity in which the qubit is placed. 4E, is the charging
energy for a Cooper pair and Ej is the Josephson tunneling
energy. In the phase representation # —> —id/d¢ and the
wave function obeys W(p+2m) = W(p). As illustrated in
figure 2, this corresponds to the Hamiltonian of a quantum
rotor with moment of inertia controlled by the charging energy
and gravitational potential controlled by the Josephson energy.
n plays the role of the integer valued angular momentum of
the rotor and the torque associated with the cosine potential
changes the angular momentum up and down by one unit. The
offset charge n, appears as a vector potential that induces an
Aharonov—-Bohm phase proportional to the winding number
of the rotor’s trajectory. Numerical diagonalization is more
readily done in the charge basis where the Josephson term is
tri-diagonal: (n & 1| cos ¢|n) = % Clearly, the qubit spectrum
is periodic in n, with unit period as can be seen in figure 3.

The first evidence that Josephson tunneling causes the
CPB to exhibit coherent superpositions of different charge
states was obtained by Bouchiat et al [99]. This was followed
in 1999 by the pioneering experiment of the NEC group [100]
demonstrating time-domain control of the quantum state of
the CPB using very rapid control pulses to modulate the offset
charge.

For generic values of the gate charge, the ground state W
and excited state W; differ in their respective static electric
‘dipole moments’

pj ~ 2ed (W;|A|W;), (©)

where d is (approximately) the distance between the two
islands of the qubit. (More precisely, the effective value of d
depends in a complex way on the details of the cavity and
qubit geometry and the resulting capacitance matrix [76].)
Nakamura et al [100] used the dependence of a certain
quasi-particle tunneling rate on p; to read out the state
of the qubit. Aassime et al [107] and Lehnert ef al [108]
developed an RF single electron transistor readout scheme for
charge-based qubits.

(b) Es/Ec =50
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Figure 3. Energy spectrum of the CPB as a function of offset
charge for different values of the dimensionless ratio of Josephson
energy to charging energy. The exponential decrease in the charge
dispersion is clearly seen. From [76].

Unfortunately in the regime where charge-based readout
works, a stray electric field £ causes a first-order perturbation
theory shift of the qubit excitation frequency by an amount

1
dwo = Eg(Pl — Po)- @)

This leads to very rapid dephasing of quantum superpositions
at rate [109]

L 1(p—po\’
—_ == — S s 8
7, 2< 5 ) e 8

where Sgg is the electric field spectral density at low
frequencies. The total decoherence rate is then given by

1 1 1

— =t 9
;2T T, ©

3.2. The quantronium qubit

The next great advance was the first Ramsey fringe
experiment in an electrical circuit performed at Saclay [101]
using a charge qubit dubbed the quantronium. This group
recognized that there is a sweet spot in offset charge at n, = %
for which the ground and excited states have no difference
in dipole moment: p; = po. At this bias point, the energy
splitting is an extremum with respect to offset charge. Hence
the transition frequency depends on stray electric fields only

in second order:
( 1>+182w01 ( 1)2
Ng — — - Ng — —
ng=1/2 2 2 ané ng=1/2 2

- (10)

dwoi

860()1 =

on,

By analogy with the effects of stray magnetic fields
on atomic transitions and the optimal working point used
in atomic clocks, the charge noise sweet spot is sometimes
called the ‘clock point’. Working at this point, the Saclay
group managed to extend 75" approximately three orders of
magnitude to ~ 500ns. Subsequently at Yale, the Devoret
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group [62] was able to perform very rapid sequences of
Ramsey fringe experiments and show that the measured
decoherence rate was consistent with the second-order effects
of the curvature of the transition frequency in the vicinity of
the extremum, given typical values for the offset charge noise.

We now arrive at an interesting quandary. By tuning
the qubit to the sweet spot, the environment is no longer
able to detect which state the qubit is in, based on coupling
to its electric dipole moment. This is why the coherence
time is so dramatically enhanced. But, if the environment
cannot measure the state of the qubit by looking at the
dipole moment, neither can we! The Saclay group recognized
this and developed the concept of reading out the qubit
by measuring the state-dependent susceptibility (inductance).
Rather than going into the details of this, it is easier in
the context of the present discussion to instead explain the
closely related state-dependent susceptibility method based on
capacitance developed by the Yale group [37, 38]. Because the
offset charge is essentially equivalent to an applied voltage,
and the potential energy of a capacitor is %C V2, the second
derivative of the transition energy with respect to ng in
(10) is essentially the difference in quantum capacitance
[96, 110-114] presented to an external probing field when
the qubit is in the ground and excited states. Essentially this
effect was used by the Yale group in developing the dispersive
readout [37, 38] based on (4). Working with a low-frequency
probe, precisely this effect was measured in [113, 114]. The
difference is that the high-frequency dispersive probe depends
on the matrix elements related to the quantum capacitance, but
as is clear from (4), it also depends on the detuning of the qubit
and resonator frequencies. The importance of this difference
will become clear below.

3.3. Transmon qubits

The most recent evolution of the charge qubit has been
the ‘transmon’ qubit developed by the Yale group [22, 67,
76, 115] and schematically illustrated in figure 1. This
is nothing more than a CPB operated in the regime of
large Ej/E.. Figure 4 shows both the anharmonicity of
the CPB spectrum, defined as the difference of the first
two transition frequencies o = wi, — wy;, and the relative
anharmonicity, defined as o, = o/wy;. The anharmonicity is
important because it sets the limit 7, on how short qubit
control pulses can be to avoid mixing in higher energy levels
outside the logical subspace [51, 73, 116, 117]. For Ej/E. <9
the CPB spectrum has anharmonicity which is positive. Near
Ej/E. =9 the first two transition frequencies are too close
together for the CPB to be used as a qubit. Beyond Ej/E. =
9 the CPB has negative anharmonicity whose asymptotic
value approaches the charging energy o — —E./%. Because
the transition frequency approaches the Josephson plasma
frequency Qp = «/8EjE,, the relative anharmonicity a, ~
—/E./8Ey asymptotically approaches zero as the system
comes closer and closer to being a simple harmonic oscillator.
Nevertheless, the charging energy is easily controlled using
the experimental geometry and can be conveniently set in
the range of a few hundred MHz, large enough so that all
but the very shortest control pulses do not excite the system
out of the subspace of the two lowest states. Remarkably,

10
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20 ! 40
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Figure 4. (a) Relative anharmonicity, «,, of the CPB as a function
of the dimensionless ratio of the Josephson and charging energies;
(b) absolute anharmonicity, o, which asymptotically approaches the
negative of the charging energy E.; (c) (left axis) phase coherence
time 7> given by the inverse of the charge dispersion, and (right
axis) the minimum control pulse duration T, set by the absolute
anharmonicity. The anharmonicity passes through zero at

Ej/Ec =9 and in this vicinity the CPB cannot be used as a
two-level qubit since 7, diverges. From [76].

the ‘charge dispersion’ € (overall amplitude of the periodic
variation in transition frequency with offset charge) becomes
exponentially small at large Ej/E. [67, 76, 96, 115]

€ ~e VEB/E (11)
so that for Ej/E. greater than roughly 50, dephasing due to
charge noise is negligible. Instead of a single charge sweet
spot, the levels are essential flat independent of offset charge
and every spot is sweet. Coherence times without spin echo
as large as T, ~ 3 us with T, > 35 ps have been observed for
the transmon [115].

We now arrive at our next major quandary. If the energy
eigenvalues are essentially independent of the offset charge
then neither we nor the environment can read the state of
the qubit using either the dipole moment or the susceptibility
(quantum capacitance) since neither is dependent on the
quantum state. While this explains the even longer coherence
times of the transmon, we are left to wonder how is it
that the dispersive readout still works even though quantum
capacitance is zero in both states. Recall that if the qubits
were actually a perfect harmonic oscillator, the transition
frequencies would not respond at all to changes in offset
charge (displacement of the origin of the oscillator). It is
obvious from classical considerations that the susceptibility
would be a constant (given by the inverse of the spring
constant) independent of the state. The oscillator is highly
polarizable and responds strongly to slow variations in offset
charge by being displaced, but this displacement to a new
equilibrium position has no effect on the excitation spectrum.
As noted above, the transmon comes exponentially close
to this ideal behavior and yet, the dispersive readout still
works. This is because, while the charge dispersion falls off
exponentially, the transmon retains its anharmonicity. As can
be seen from (4), the cavity pull due to the virtual polarization
of the qubit is strongly dependent on the detuning between
the qubit and cavity. For the case of the multi-level transmon,
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the expression for the cavity pull has to be rederived, but the
essential point is that the detuning for the 0 — 1 transition is
not the same as that for the 1 — 2 transition and so the cavity
pull is state dependent, provided that the cavity frequency is
reasonably close to the qubit. For a very low-frequency cavity,
we are back in the regime measuring the quantum capacitance
where the effect is small.

We now face one final quandary associated with the
relatively weak (o, ~ 5—10%) anharmonicity of the transmon.
In the limit of large detuning from the cavity (A > E. > T}),
the difference in cavity pulls between the qubit excited state
and ground state is well approximated by [76]

2

X1—Xo~Ra—

Az 12)

Detecting the qubit state is equivalent to detecting the cavity
pull within time 7). A crude figure of merit for our ability to
do this is the phase accumulation

¢ =[x1 — xolTh. (13)
The qubit decay rate due to the Purcell effect is
2
Yie ¥ K NE (14)

Assuming that there is no intrinsic (non-Purcell) relaxation
(i.e. that the decay is Purcell dominated), then 7} ~ 1/y, and

we have
oa E;
p~—~=
K K

(15)

which, remarkably, is independent of g and A. The problem
is that moving the qubit closer to the cavity to enhance
the homodyne signal shortens the lifetime of the qubit and
reduces the allowable power in the readout beam so that the
signal-to-noise ratio (SNR) does not improve.

While ¢ can in principle be made large, we want E.
to remain small to minimize the dephasing due to charge
dispersion and we want k to be large so that the readout is
fast compared to the intrinsic (non-Purcell) relaxation (which
has been neglected in the above). Hence it would be better to
have a larger anharmonicity. The fluxonium qubit described
below will prove useful in this regard.

A more sophisticated version of the above argument that
takes into account the fact that phase resolution improves with
drive power is as follows. The signal-to-noise power ratio for
the readout to lowest order in yx is given for a (single-sided)
cavity by [24]

2
SNR ~ 4 [u] Tyiik, (16)

K

where 71 is the mean photon number in the readout cavity.
Assuming the photon number is kept at the critical value
beyond which the lowest order dispersive approximation
becomes invalid [78] (7 ~ A?/4g?) we see that

a?  E?
SNRNFNK_;’ 17

independent of g and A (for g/A small).

The large islands of the transmon qubit make them
susceptible to quasiparticle poisoning, but the very small
charge dispersion means that this is almost certainly not
a significant source of dephasing, though in principle
quasiparticle tunneling can contribute to relaxation [67,
118-121]. The contribution to the relaxation rate by
spontaneous photon emission via the Purcell effect for
charge qubits is now well understood both theoretically and
experimentally [21], but residual sources of relaxation due to
dielectric losses [21, 95] in the substrate or the Josephson
junction oxide remain less well understood. Small-junction
charge qubits made with minimal fabrication methods seem to
suffer less [67] from material problems such as the presence
of two-level glassy fluctuators [122-127].

3.4. Fluxonium qubits

A new qubit design [128] dubbed the ‘fluxonium’ has the
closed-loop topology of the flux qubit, but the loop contains
a Josephson junction series array which gives an inductance
much larger than the simple geometric inductance. This
loop shorts out stray low-frequency electric fields, but at
the qubit frequency has such a large reactance that it is
effectively an open-circuit reminiscent of the charge qubit.
Initial results suggest that this qubit design is indeed robust
and stable against charge noise and exhibits very long phase
coherence times reaching several microseconds. It also has the
advantage that the anharmonicity can be large. Interestingly,
the state-dependent polarizability and the excitation spectrum
of this design are such that the qubit state can be measured
even when the qubit transition frequency is driven down to
very low values of order 0.5 GHz.

4. Recent progress and future directions

Progress in the field of superconducting qubits continues at
an amazing pace both in terms of fundamental nonlinear
quantum optics and in terms of quantum information
processing. Since the first experiments 10 years ago, phase
coherence times have risen approximately exponentially from
immeasurably small (1ns or less) to several microseconds.
This has been achieved through a great deal of hard work
and clever quantum engineering of artificial atoms and
circuits by many groups. Building on this progress, DiCarlo
et al [75] recently demonstrated the first quantum algorithms
on a two-qubit superconducting quantum processor. Future
improved qubit designs, microwave circuit designs and
materials improvements should allow this trend to continue
unabated. One interesting possibility to extend the coherence
time of quantum circuits would be to use high Q resonators as
quantum memories or to form cavity-stabilized qubits [129,
130]. Another potentially important future direction will be
hybrid systems using superconducting resonators and trapped
atoms, molecules or ions [131, 132].

A diverse and remarkable set of methods for reading out
charge qubits has been developed, beginning with the charge
state (dipole moment) [100, 107] and moving on to dispersive
readout of the inductive [101] and capacitive [37, 38]
susceptibilities and the low-frequency readout of the quantum
capacitance [113, 114]. Protocols for optimal readout using
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linear dispersive detection in the presence of a finite energy
relaxation rate for the qubit have been developed [133]. A
novel fast latching dispersive readout using the bifurcation of
a driven nonlinear oscillator has proved very effective [54, 55,
62, 134] and fidelities as high as 70% have been achieved.
The Saclay group [134] has recently reported fidelities greater
than 90% using a cavity bifurcation amplifier. Thus, fidelities
for the (approximately) QND readout [55, 135] of charge
qubits are now approaching those obtained for flux qubits and
for the destructive readout of phase qubits. The measurement
back action (dephasing) required [24] by the Heisenberg
uncertainty principle is now understood to arise from quantum
fluctuations of the light shift [50, 52, 80, 81] and has been
observed. The fact that this back action can be partially
destructive and not simply dephasing has been understood
in terms of the dressed dephasing model [82, 83], although
further quantitative experimental studies of this mechanism
still need to be performed. The Santa Barbara group has
observed the non-unitary measurement back action in a
‘partial collapse’ experiment [136] in a phase qubit. All these
results demonstrate that fundamental aspects of quantum
measurement theory are now accessible to condensed matter
experiment for the first time. An important future goal for
QND measurements is to see quantum jumps of a qubit and
observe the Zeno effect induced by continuous observation of
the qubit [137].

It should be noted that while single-shot high fidelity
readouts are extremely useful, they are in principle not
essential for the exponential speed-up promised by quantum
computation. It is possible to design a sequence of quantum
algorithms in which one reads out only a single bit of the
N-bit answer with each run. Hence, even if one only has the
capability to read out a single qubit and that only with low
fidelity F, the extra computational cost (~ N/ F') is only linear.
(Of course in practice this may be a huge factor, but it is not
exponential.) High fidelity multi-qubit readout with minimal
cross talk is however essential for Bell inequality tests [138]
that close the detector loophole. Using a co-planar waveguide
resonator rather than capacitive coupling, the Santa Barbara
group has recently greatly reduced the cross talk of their
readout scheme for phase qubits and closed the measurement
loophole for the Bell violation [139].

An important idea in circuit QED is the understanding
that dispersive coupling to the cavity can be used to perform a
simultaneous joint readout of multiple qubits [37, 140]. This
joint readout was used for two-qubit state tomography by
Majer et al [60]. In its most basic form, the idea is simply that
with two qubits, there are four possible quantum states and
four different dispersive frequency pulls of the cavity. If one is
in the strong dispersive coupling regime and all four frequency
pulls can be reliably distinguished in a single shot, then one
has two bits of classical information and a complete projective
measurement of both qubits. Of course in the presence of
qubit decay and amplifier noise, the detector tomography can
be complex [140]. A more sophisticated understanding of the
situation of imperfect resolution of the four peaks has been
developed recently and Filipp et al [141] demonstrated that
it is possible to still reliably measure two-qubit correlations
even in the presence of readout noise.

A simplified version of the theory for joint readout of two
qubits is the following. While the cavity pull is linear in the
qubit polarizations

(18)

Swe = X107 + X203,
the corresponding homodyne (transmission) amplitude is not

K/2 }

- 1
A —Sw.+ixk /2 (19)

A(of,0f) =Re {ei‘ﬂ
Here, A is the detuning of the readout tone from the bare
cavity resonance, k is the cavity line width and ¢ is the local
oscillator phase. Because this can take on only four distinct
values (corresponding to two classical bits of information) this
expression can always be recast in the form
A(of, 05) = Bo+ Piof + pros + Braofo;. (20)
The joint coefficient B, is in general nonzero (as long as A #
0) and typically on the same scale as the other coefficients.
By using pre-rotations (by angle zero or ) of each of the two
qubits prior to making the measurement, it is straightforward
to obtain any one- or two-qubit correlator in the z basis.
Ensemble averaging many such measurements will reduce the
statistical uncertainty to arbitrarily low values. For example,

- 1 . - .
(0f05) = — (A(0f. 05) — A(—07. 03)

4B

—A(of, —03) + Ao}, 03)). 1)
Any other arbitrary correlators (e.g. (¢ 05 )) can be achieved
by pre-pending rotations through appropriate arbitrary angles.
The Yale group has recently used this to measure values
of the CHSH entanglement witness well above the classical
bound [142].

High-fidelity single qubit gates [51, 117] have been
developed allowing observation of the Berry phase for
spin-4 [59] using a charge qubit and higher spins [143]
simulated using the multilevel structure of a phase qubit.
This is a first step towards larger-scale quantum simulators.
State and process tomography for one- and two-qubit
operations [60, 138, 144] and randomized benchmarking [73]
are now routine. A number of methods for two-qubit gates
have been suggested [47, 58, 145-149] involving fixed
capacitive couplings [106, 150—152], inductive coupling [153]
and virtual photon exchange via a cavity bus [58, 60].
Controlled phase gates have been proposed [154, 155] and
realized using virtual states outside the logical basis [75]. A
key problem for the future is to further increase the on—off
ratio of controllable qubit couplings. One possible resource
for this would be tunable cavities [70, 156, 157] or tunable
couplings via an active element [158, 159]. It seems clear
however that simply tuning a coupling element off resonance
will not produce an adequately large on-off ratio. One may be
able to do better by using a tunable interference between two
coherent coupling channels to actually null out the coupling
at a special operating point [160].

Given the current rate of progress, it will not be
long before other two-qubit algorithms [161] and quantum
information processing with more than two superconducting
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Figure 5. Circuit QED: schematic illustration of a possible
architecture for an eight-qubit processor. Four transmon qubits are
embedded in each quantum bus (a coplanar waveguide resonator).
The two resonators in turn are connected by an ‘express bus’
consisting of a tunable resonator whose resonance frequency can be
rapidly moved.

qubits will be realized. Key short-term goals will be to
create multi-qubit entangled states such as the GHZ and W
states [140, 162-164], and begin to execute simple error
correction protocols [165, 166].

Another exciting direction involves using multiple
physical qubits to realize individual logical qubits to
overcome the difficulties of maintaining stable transition
frequencies. In particular, the possibility of topological
protection [167-171] is beginning to be explored in
superconducting qubits [172]. The central idea is that qubits
are constructed in which the ground and excited states
are degenerate and this degeneracy is robust against local
variations in Hamiltonian parameters. Even if the energy
levels are not exactly degenerate, it would be very useful
to have a qubit with a ‘Lambda’ energy level scheme, that
is, two nearly degenerate levels that can be coupled via
stimulated Raman pulses through a third level. This would
be advantageous both as a robust qubit and for purposes
of fundamental quantum optics studies. It seems reasonably
certain that this cannot be achieved without applied magnetic
flux to frustrate the Josephson couplings (as in a flux qubit or
in the fluxonium qubit). Indeed, the fluxonium qubit may turn
out to be quite useful as a Lambda system.

To scale up to more qubits in the circuit QED scheme, it
will be necessary to move to two cavities [173] and ultimately
to cavity grids [174]. A possible architecture for an eight-qubit
processor is shown in figure 5.

The case of large cavity arrays will be interesting not
only as a quantum computation architecture but also for
fundamental quantum optics purposes. An array of resonators
each containing a qubit that induces a Kerr nonlinearity
will be a realization of the boson Hubbard model [175]
which exhibits both superfluid and Mott insulator phases.
There is now a burgeoning interest in seeing ‘quantum phase
transitions of light’ [176-195]. Since the transmon qubit is
itself an anharmonic oscillator, one might imagine it would be
easier to simply use a lattice of coupled transmons to realize

the boson Hubbard model (with negative Kerr coefficient).
The advantage of using a lattice of resonators is that their
resonance frequencies can be closely matched to a single
fixed value. The Kerr coefficient induced by coupling each
resonator to an off-resonant qubit will have some variation due
to variations in qubit transition frequencies, but this disorder
in the Hubbard U will be more tolerable than disorder in the
photon ‘site energies.” Just as cold atom systems are now
used to simulate condensed matter models, so we may be
able to use photons as interacting strongly correlated bosons,
which can be probed, measured and controlled in ways that
are impossible in ordinary condensed matter.

In summary, the future of circuit QED looks bright indeed
for both practical applications (such as quantum-limited
amplifiers) and fundamental new physics with artificial atoms
and microwave photons. Circuit QED is much more than
atomic physics with wires. We have a set of modular elements
that are readily connected together (spatial mode matching
is easy with wires!). Hence, we have the opportunity to
assemble large-scale structures from these quantum building
blocks and do some real quantum engineering. While our
cold atom colleagues are busy trying to emulate condensed
matter systems, we may be able to use topological quantum
computation and quantum error correction schemes to realize
non-abelian gauge theories of particle physics.
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