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Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting
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We theoretically study measurement-induced dephasing of a superconducting qubit in the circuit QED
architecture and compare the results to those obtained experimentally by Schuster er al. [Phys. Rev. Lett. 94,
123602 (2005)]. Strong coupling of the qubit to the resonator leads to a significant ac Stark shift of the qubit
transition frequency. As a result, quantum fluctuations in the photon number populating the resonator cause
dephasing of the qubit. We find good agreement between the predicted line shape of the qubit spectrum and the
experimental results. Furthermore, in the strongly dispersive limit, where the Stark shift per photon is large
compared to the cavity decay rate and the qubit linewidth, we predict that the qubit spectrum will be split into
multiple peaks, with each peak corresponding to a different number of photons in the cavity.
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I. INTRODUCTION

Superconducting qubits are promising building blocks for
the realization of a quantum computer [1]. Several experi-
ments have shown coherent control of a single qubit [2-6]
and two-qubit experiments have been realized [7-11]. Re-
cently, it was suggested that superconducting qubits can be
strongly coupled to distributed or discrete LC circuits in a
way that opens the possibility of studying quantum-optics-
related phenomena in solid-state devices [12—16]. This con-
cept has been successfully demonstrated experimentally
[2,17-20] and effects associated with the quantum nature of
the microwave electromagnetic field have now been seen in
the form of vacuum Rabi splitting [17] and measurement-
induced dephasing via photon shot noise [19]. In this paper
we present a detailed analysis of the quantum fluctuations of
the photon number in the cavity and its effect on the qubit
spectrum. We also show that access to the extreme limit of
strongly dispersive coupling should allow direct observation
of the photon number distribution in the cavity.

An advantage of some of these circuit QED analogs of
cavity QED is that the cavity presents a well-defined electro-
magnetic environment to the qubit which can lead to en-
hanced coherence times of the qubit [13]. This well-defined
environment makes quantitative predictions for supercon-
ducting qubits more tractable. This was shown in Ref. [2]
where we studied Rabi oscillations in a superconducting qu-
bit strongly coupled to a superconducting transmission line
resonator. Due to the detailed understanding of the measure-
ment process, we were able to make quantitative predictions
about the measured populations in the Rabi oscillations and
observe high-visibility fringes [2]. Moreover, as we showed
in Ref. [19], populating the strongly coupled resonator with a
coherent microwave field can lead to a significant ac Stark
shift of the qubit, even in the situation where detuning be-
tween the cavity and qubit frequencies is large. Due to the
shot noise in the number of photons populating the resonator,
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this ac Stark shift leads to measurement-induced dephasing
of the qubit. This is similar in spirit to the experiment on
Rydberg atoms in a three-dimensional (3D) cavity reported
in Refs. [21-24]. In those time-domain experiments, the vis-
ibility of Ramsey fringes was shown to decay with an in-
crease of the strength of dispersive coupling to the cavity.

In this paper, we will expand on the theoretical model
presented in our experimental paper [19] (hereafter referred
to as the Letter) where we observed the ac Stark shift and
measurement-induced dephasing in a circuit QED device.
We will start in Sec. II with a brief review of the important
features of circuit QED. In Sec. III the experimental results
reported in the Letter will be reviewed. We then present in
Sec. V two theoretical models describing measurement-
induced dephasing. We first start with a simple model which
assumes Gaussian fluctuations of the qubit’s phase. This is
the model that was briefly presented in the Letter to explain
the experimental results. We then present a more general
approach based on the positive-P representation [25] which
does not require the Gaussian assumption. For the experi-
mental parameters reported in the Letter, these two ap-
proaches give identical results. However, in the limit of
strong coupling and very high-Q resonators, the second ap-
proach shows that qubit spectrum will exhibit structure at
several distinct frequencies due to the underlying discrete
energy levels of the cavity. That is, we predict that the qubit
spectrum will split into multiple peaks, with each peak cor-
responding to a different number of photons in the cavity. We
will refer to this as number splitting of the qubit spectrum.
Experimental observation of this effect would be a direct
demonstration of number quantization in the dispersive re-
gime. We also discuss how, by using irradiation which is off
resonant from both the cavity and the qubit, one can obtain
substantial ac Stark shifts without significant dephasing and
how this could be used as the basis of a phase gate for quan-
tum computation.
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FIG. 1.
version of the circuit QED implementation. A superconducting
charge qubit (green) is fabricated inside a superconducting 1D
transmission line resonator (blue).

(Color online) Schematic layout and lumped element

II. CAVITY QED WITH SUPERCONDUCTING CIRCUITS
A. Jaynes-Cummings interaction

In this section, we briefly review the circuit QED archi-
tecture first introduced in Ref. [13] and experimentally stud-
ied in Refs. [2,17,19]. As shown in Fig. 1, the system con-
sists of a superconducting charge qubit [1,12,26] strongly
coupled to a transmission line resonator [27]. Near its reso-
nance frequency w,, the transmission line resonator can be
modeled as a simple harmonic oscillator composed of the
parallel combination of an inductor L and a capacitor C.
Introducing the annihilation (creation) operator d*), the reso-
nator can be described by the Hamiltonian

H,=hw,d'a, (2.1)
with w,=1/ JLC. Using this simple model, one finds that the
voltage across the LC circuit (or, equivalently, on the center
conductor of the resonator) is V,-=V° (a"+d), where V°
=\hw,/2C is the rms value of the Voltage in the ground
state. An important advantage of this architecture is the ex-
tremely small separation b~5 wm between the center con-
ductor of the resonator and its ground planes This leads to a
large rms value of the electric field EY =V° /b~0.2 V/m
for typical realizations [2,17,19]. As illustrated in Fig. 1, by
placing the qubit at an antinode of the voltage, it will
strongly interact with the resonator through the large electric
field EY .

In the two-state approximation, the Hamiltonian of the
qubit takes the form

(2.2)

where Ey=4Eq(1-2n,) is the electrostatic energy and E,
=FE] max cos(mP/®y) the Josephson energy. Here, E.
=¢?/2Cs is the charging energy with Cs the total box capaci-
tance and n,=C,V,/2e the dimensionless gate charge with
C, the gate capacitance and V, the gate voltage. Ej ,, is the
maximum Josephson energy and @ the externally applied
flux, with @ the flux quantum.

Due to capacitive coupling with the center conductor, the
gate voltage V,= Vd +V; ¢ has a dc contribution Vgc (coming
from a dc bias apphed to the input port of the resonator) and
a quantum part V; . When working at the charge degeneracy

point ngczl/ 2 where dephasing is minimized [4] and ne-
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glecting fast-oscillating terms, the resonator plus qubit
Hamiltonian takes the Jaynes-Cummings form [13]

Hyc=ho,d'a+ %&Z —hg(a'6_+ 6,4), (2.3)
where w,=E;/f is the qubit transition frequency and g
=e(C,/ CE)V?mS/h is the coupling strength.

As shown in Ref. [13], the qubit can be measured and
coherently controlled by applying microwaves, of frequency
o, and o, respectively, to the input port of the resonator.
This can be described by the additional Hamiltonian

Hp= X hef)(@le + aerer),
Jj=s.rf

(2.4)

where & j(t) is the amplitude of the external drives at rf and
spectroscopy frequencies.

B. Dispersive regime

In the situation where the qubit is strongly detuned from
the cavity, |A|=|w,—w,|> g, the total Hamiltonian H,c+Hp
can be approximately diagonalized to second order in g/A to
yield the following quantized version of the dynamical Stark
shift Hamiltonian [13]

/\"’/\ h ~ A'l—/\ A
H.y=tho,d"'a+ E(wa +2xd'a)o,

+ E he. (t)(Al —zwt +1wl)

Jj=s.rf

hge(t ) .
+ E 8 l()(é_+e—lmjt+ A +1wjt).

2.5
= 7A Ge (2.5)

Here @,=w,+ x is the Lamb-shifted qubit frequency and we
have defined y=g?/A. The term proportional to G'dé, can be
interpreted as a shift of the qubit transition frequency de-
pending on the photon number in the resonator (ac Stark
shift) or as a pull on the resonator frequency by the qubit. As
will be shown later, quantum noise in the photon number &'
leads to dephasing of the qubit.

Dephasing due to coupling to the cavity field was also
studied using Rydberg atoms coupled to a 3D microwave
cavity [21-23]. In this experiment, atoms were sent one at a
time through the cavity and interacted for a finite time with
the field. The state of the atoms was finally read out by
ionization [28]. Visibility of the Ramsey fringes was mea-
sured as a function of the detuning from the cavity and hence
as a function of y. Dephasing was shown to increase with the
strength of dispersive coupling x to the cavity [22]. In this
paper, we will instead consider dephasing of the qubit due to
the resonator field by looking at the qubit spectrum as mea-
sured by transmission of the cavity field.

We note that, in practice, w, is chosen to be close to @,
and the last term of Eq. (2.5) with w, causes Rabi flopping of
the qubit. Moreover, as further discussed below, we choose
wy=w,—A, to measure the state of the qubit, where A, is the
detuning of the measurement probe from the bare cavity fre-
quency. In this situation, the last term of Eq. (2.5) with w, is
largely detuned from the qubit and does not lead to qubit
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transitions. As first noted in the original proposal by Brune ef
al. [29,30] this measurement Hamiltonian is therefore highly
quantum nondemolition (QND) [31] with respect to mea-
surement of the qubit state. Conversely, if the dispersive cou-
pling term is dominant in the Hamiltonian, then QND mea-
surement of photon number is also possible. Physical
implementation of QND readout for superconducting qubits
has been achieved in the microwave regime [2,17-19], but
values of the coupling y large enough to allow QND readout
in the dispersive regime for the photon number have not yet
been achieved in any system. However, remarkable experi-
ments on Rydberg atoms have achieved photon number read-
out in a nondispersive (i.e., degenerate) regime [21,32].

C. Damping

Coupling to additional uncontrolled bath degrees of free-
dom leads to energy relaxation and dephasing in the system.
Integrating out these degrees of freedom leaves the qubit
plus cavity system in a mixed state p(r) whose evolution can
be described by the master equation [31]

. i . . Yorr
p=Lp==Hpl+«Dlalp+ Dl Jp+ E@D[Uz]p7
(2.6)

where D[L]p=(2LpL ~L'Lp-pLiL)/2 describes the effect
of the baths on the system in the Markov approximation. The
last three terms of Eq. (2.6) correspond to loss of photons at
rate «, energy relaxation in the qubit at rate 7y;, and pure
dephasing of the qubit at rate 7y,

In the dispersive regime, the operators describing energy
relaxation and dephasing should be transformed in the same
way as was done in Eq. (2.5). This leads to small corrections,
of order (g/A)?, to the master equation that are omitted here.

III. EXPERIMENTAL RESULTS

In this section, we briefly review some of the experimen-
tal results already presented in the Letter. Only the results
that are directly discussed in the present paper will be pre-
sented and the details of the experiment can be found in
Refs. [2,17,19,27]. In the Letter, we reported spectroscopic
measurements of the qubit as a function of measurement
power. The qubit spectroscopic line is shown in Fig. 2 for
two average photon numbers 72 in the resonator, correspond-
ing to two input measurement powers. The relevant experi-
mental parameters are A/27=105 MHz, g/2m7=5.8 MHz,
A,/27=0, and k/27=0.57 MHz and a dephasing time (in
the absence of power broadening) of 7, >200 ns. These val-
ues correspond to a relatively small cavity pull of x/2m
~(.32 MHz, or x/k=0.56 in units of the cavity linewidth.
It is important to note that at these relatively low detunings
A, there can be a qubit contribution to the cavity linewidth.

As discussed in the Letter, at low measurement power, the
line shape of the qubit spectrum is Lorentzian but as the
measurement power increases, the line shape approaches a
Gaussian. As shown in Fig. 3, this is also seen in the depen-
dence of the half width at half maximum Oovgwpy of the
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FIG. 2. (Color online) Measured spectroscopic lines (blue lines)
at (a) intraresonator photon number 7= 1 with fit to Lorentzian line
shape (solid line) and at (b) 7=~40 with fit to Gaussian line shape
(solid line). Dashed lines are best fits to (a) Gaussian or (b) Lorent-
zian line shapes, respectively. The qubit transition frequency @, at
low measurement power, the half width at half maximum Svgwv,
and the ac Stark shift w,. of the lines are indicated.

qubit line shape on 77 which goes from 7 to Ocv% as mea-
surement power increases. This figure also shows theoretical
results that will be discussed below.

In the Letter, we have already provided a theoretical ex-
planation for this behavior. In Sec. V, we review and expand
on this model. We then explain how in the limit of very large
cavity pull, the results can be significantly different.

IV. ac STARK SHIFT

In the lowest-order dispersive approximation [Eq. (2.5)]
the predicted ac Stark shift w,.=2y7 will be a linear function
of the mean photon number n. However, this approximation

12

Line width, 8v gy [MHzZ]
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FIG. 3. (Color online) Full red curve: Measurement-broadened
qubit linewidth Svgwyy as a function of the input measurement
power or average photon number as predicted by the lowest-order
dispersive approximation. Green dotted curve: Same as red but tak-
ing into account the nonlinear reduction in the cavity pull and plot-
ted as a function of input power. The symbols are the experimental
results. Symbols and color scheme are described in the text. The
vertical line indicates the critical photon number 7. The param-
eters are those given in Sec. III. The blue dashed line is the calcu-
lated HWHM for A,/27=32 MHz. It clearly shows that
measurement-induced dephasing is small at large A, where infor-
mation about the state of the qubit in the transmitted signal is also
small. This can thus be used as the basis of a phase gate.
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FIG. 4. (Color online) (a) Full red curve: ac Stark shift as a
function of the average intracavity photon number using the lowest-
order dispersive approximation. Dashed blue curve: ac Stark shift as
a function of photon number calculated from the exact eigenvalues
of the Jaynes-Cummings Hamiltonian. (b) Blue dots: experimen-
tally measured ac Stark shift as a function of external microwave
input power. Full red curve: Predicted ac Stark shift within the
lowest-order dispersive approximation. The conversion factor from
photon number to external microwave drive power was determined
by fitting the red curve to the linear portion of the data at low
power. Green dotted curve: Same as red but taking into account the
nonlinear reduction in the cavity pull [see (c)] and the nonlinear
increase in the average photon number [see (d)] with microwave
drive power. For the particular experimental parameters these two
effects almost cancel each other out and result in the green dotted
line being nearly linear out to much greater input powers than ex-
pected. (c) Cavity pull as a function of average photon number 7.
The red solid line is the result of the dispersive approximation (xy)
while the dashed blue curve is obtained from the exact eigenvalues
of the Jaynes-Cummings model. (d) Average photon number as a
function of input power. The full red line is the result of the lowest-
order dispersive dispersive approximation Eq. (4.1) fit to the data in
(b) at low power. The dotted green line is the nonlinear model with
x replaced by x(77) in Eq. (4.1) The vertical line in all plots indi-
cates the critical photon number n;,=A?/4g>, which indicates the
scale at which the lowest order dispersive approximation breaks
down. For the experimental parameters (given in Sec. III) n
~82 which corresponds (within the lowest-order dispersive ap-
proximation) to P~ 110 uW.

holds only at low photon numbers and breaks down on a
scale given by the critical photon number n;=A?/4g> [13].
This is illustrated in Fig. 4(a) where the ac Stark shift, cal-
culated from the lowest-order dispersive approximation (red
solid line) and the exact eigenvalues (blue dashed line) of the
Jaynes-Cummings model [13] are plotted for the experimen-
tal parameters. Also shown in this figure is n;, (vertical blue
line) which for the experimental parameters is about 82 pho-
tons. Here we see that as 7 increases, the exact Stark shift
begins to fall below the lowest-order dispersive approxima-
tion even before 7 reaches ;.

In Fig. 4(b) the experimental results (solid blue points) are
plotted as a function of probe power P, (extending up to
powers larger than those presented in the Letter). To convert
between 7 and P, we assume that P=MNiwp where p is
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the photon flux at the resonator and \ is a scaling factor that
takes into account the large attenuation that is placed be-
tween the probe generator and the resonator (to eliminate
blackbody radiation). From the lowest order dispersive ap-
proximation, the average photon number when driving the
cavity at A,=0 is

pK/2

= (4.1)

S|

By using the lowest-order dispersive approximation for the
ac Stark shift and the line of best fit to the experimental
points (in the linear regime at low power) N\ can be deter-
mined. Doing this gives the red solid line in Figs. 4(b) and
4(d). The calibration shows that ng; occurs at =110 uW.
The experimental results clearly show the breakdown of the
lowest-order dispersive approximation. The data points fall
below the linear prediction but not nearly as much as the
blue dashed curve in Fig. 4(a) predicts. In fact, the data
points follow fairly closely the linear in 7z dependence of the
lowest-order dispersive approximation in Eq. (2.5) for larger
powers than expected (up to and well above n;).

It is possible to understand why the experiment agrees
with the simple dispersive approximation for larger probe
powers than expected by considering the following simple
model. We assume that, at these large powers, the ac Stark
shift is still given by the dispersive approximation 2y, but
we now take into account the nonlinear cavity pull (which is
x at low 7). From the eigenvalues of the Jaynes-Cummings
Hamiltonian the cavity pull can be calculated as a function of
7. This is shown in Fig. 4(c). From this figure, we see that
the cavity pull reduces as the number of photons in the reso-
nator is increased. We thus replace x by x(7). The second
aspect of our simple model is the nonlinear dependence of
the average photon number 7 on input power P due to the
power dependence of the cavity frequency. To account for
this we simply replace y in Eq. (4.1) with y(7) and 7 be-
comes a nonlinear function of input power. This nonlinear
dependence of the photon number on the input power is il-
lustrated in Fig. 4(d) as the green dotted line. This is a pre-
cursor to bistability in this system [31]. Using these two
expressions, we have for our simple model of the nonlinear
ac Stark shift 2y(P)n(P). This expression is plotted in Fig.
4(b) (green dotted line) with a new scaling factor \’
~(0.905\ calculated by the best fit for the experimental data
(here we use the complete data set). This simple model pro-
duces a result that is linear for a larger range of powers and
is closely consistent with the experimental results. It happens
that for the particular experimental parameters, the two non-
linear effects almost cancel each other out and result in the
green dotted line being more linear than expected.

We emphasize that in the Letter, only the low-power (be-
low ng;) part of the ac Stark shift was studied and was fitted
only with the linear dispersive model. Comparison with the
results of the nonlinear model shown here in Fig. 4(d) shows
that the calibration of the cavity photon number in terms of
the drive power is low by approximately 50% at the highest
power shown in Fig. 5 of the Letter. We also emphasize that
our treatment here of the nonlinearities is only approximate.
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V. MEASUREMENT-INDUCED DEPHASING

By monitoring the transmission of the cavity using het-
erodyne detection, one has access to the average of the cavity
field (a(r)). As shown in Ref. [13], the phase ¢(r)
=arg{{a(r))} is directly related to the population of the qubit
(6,(¢)). As a result, by recording the phase ¢(¢) as a function
of the excitation frequency w,, one has access to the absorp-
tion spectrum of the qubit [25]

S(w) = %T f dt €(6_(1)6,(0)),, (5.1)

where the subscript s implies that the expectation value is
taken in the steady state. The dephasing rate can be deter-
mined through the half width at half maximum of S(w) [33].

Using the quantum regression formula [25], the correla-
tion function {&_(¢),(0)), can be evaluated as

T 6_e“6,p], t>0,

5.2
Tié,e“p,6_], t<0, (5:2)

(6_(1)6.,(0)), = {

where p; is the steady-state density matrix. This allows us to
rewrite the spectrum as

S(w) = %TRe(fw dt e"“”<&_(t)&+(0)>s). (5.3)

0

We start by calculating this spectrum by assuming Gauss-
ian statistics for the qubit’s phase noise. This approximation
is sufficient for the experimental parameters considered
above but breaks down in the situation where the cavity pull
is large, x> k. Moreover, this simple approach has the ad-
vantage of presenting the essential physics in a transparent
way. We then show how to go beyond the Gaussian approxi-
mation by using the positive-P-function approach [25].

A. Gaussian approximation for the phase

As mentioned above, quantum fluctuations dn in the pho-
ton number around its average value 7 will lead to accumu-
lation of a random relative phase between the amplitudes of
the two basis states of the qubit and hence to dephasing. We
first consider the situation where the qubit is prepared in a
superposition |(0))=(|g)+|e))/\2 of its basis states and that
the cavity is populated by a coherent state with average pho-
ton number 7. As it evolves under the dispersive Hamiltonian
Eq. (2.5), the qubit superposition picks up a relative phase
factor

1

o(t) = @, + ZXJ dt'n(t"),
0

(5.4)

where @,=w,+x is the Lamb-shifted qubit transition fre-
quency. It is convenient to express the second term as its
mean value plus fluctuations about the mean,
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t

o(t) = o+ S¢(t) = @,t + 2 )0t + 2Xf dt'on(t’), (5.5)
0

with 7 the average photon number in the cavity leading to the
ac Stark shift (see Fig. 4) and n(r) the random excursions
about this mean.

In a frame rotating at the Lamb- and ac-Stark-shifted qu-
bit transition frequency, we obtain for the correlation func-
tion (r>0)

(6.(106.,(0)),=Ti[6_¢"6.p,]
=Ti[6_e"(le)(g)]= e ("), (5.6)

where y,=7v,/2+v,. This is the off-diagonal component of
the reduced qubit density matrix. Assuming Gaussian statis-
tics for the phase d¢(z), the cumulant expansion is exact and
we obtain [34]

(6_(16,(0)), = o282

=e—72’exp<— 2X2ff dtldt2<5n(t1)5n(fz)>)-
0

(5.7)

This expression involves the photon-photon time cor-
relator which for a two-sided symmetrically damped driven
cavity takes the form [13]

(Sn(t))n(ty)y = e W21l (5.8)

leading to
<0A'_(I)OA'+(O)>‘Y —e ! exp{— 41749%[% -1+ exp(— %) :| } R
(5.9)

where fy=tan™! 2y/k~2x/k is the magnitude of the accu-
mulated phase shift for the transmitted photons due to the
coupling with the qubit in the small-pull approximation (y
<k) and at w=w,.

We now consider two simple limits of the above result.
First, in the situation where the mean cavity photon number
n is small, fluctuations of the photon number will only
weakly contribute to dephasing. In this situation phase decay
occurs on a long time scale with respect to 1/ . In this limit,
exp(—«|t|/2) =0 and Eq. (5.9) reduces to

(6.(1)6,(0)), = exp[— (v, + 2k G)|t]].  (5.10)

In this situation, the measurement-induced dephasing only
adds to the intrinsic dephasing rate vy,. This is because, in
this long-time limit, the phase undergoes a random walk pro-
cess leading to an exponential decay of the coherence. The
Fourier transform of this expression leads to a Lorentzian

spectrum with half width at half maximum 72+f m> Where

[,,=2ki 03 is the measurement-induced dephasing rate in the
small-pull limit (see the next section).

On the other hand, in the large-77 limit, phase decay can
occur on a time scale much shorter than the cavity lifetime,
t< k' Indeed, since 7 is large, a small fraction of 77 leaking
out of the cavity in a time 1< x~! conveys enough informa-
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tion to infer the state of the qubit and hence to dephase it
completely [35]. In this situation, expanding exp(—«]¢|/2) in
Eq. (5.9), we obtain
(6.(1)6.(0), = exp(= ylt| = 27ix*?).  (5.11)

The large-n limit does not lead to an exponential decay and
the spectrum will be a convolution of a Lorentzian and a
Gaussian. This corresponds to inhomogeneous broadening of
the qubit due to the Poisson statistics of the coherent state
populating the cavity. In this sitgation, the half width at half
maximum therefore scales as V7.

Using the full expression Eq. (5.9) and moving back to
the laboratory frame, we obtain for the spectrum of the qubit
in the Gaussian approximation for the phase,

_ 1 « (2T, /k)y .2
S(w) = _2 r ! — P
27 (0- @, -27x)* + ([;/2)?

(5.12)

where fj:Z(y2+fm)+ jk. The spectroscopic line shape is

given by a sum of Lorentzians, all centered on the ac-Stark-

shifted qubit transition but of different widths and weights.
As expected from the above discussion, we see from Eq.

(5.12) that if the measurement rate fm is much smaller than
the cavity decay rate /2, then only a few terms in the sum
contribute and the spectrum is Lorentzian. On the other hand,
when the measurement rate is fast compared to the cavity
damping, the spectrum will be a sum of many Lorentzians,
resulting in a Gaussian profile. In this situation, dephasing
occurs before the cavity has had time to significantly change
its state, leading to inhomogeneous broadening as discussed
above.

The expression Eq. (5.12) for the spectrum can be
summed analytically but yields an unsightly result which is
not reproduced here. To compare with the experimental re-
sults, we evaluate numerically the half width at half maxi-
mum from S(w). The results are plotted as a function of
probe power in Fig. 3 (full red line). The agreement with the
experimental results (symbols) is good, especially given that
there are no adjustable parameters apart from ,, which only
sets the value of the dephasing at 7=0. In this figure we have
included more experimental points, for higher powers, than
presented in Fig. 5 of the Letter. The experimental points
presented here are obtained by fitting a Lorentzian (blue
squares) and a Gaussian (red triangles) to the experimentally
measured spectroscopic line (see Fig. 2). We then keep the fit
that has the smallest variance or both points if the variances
are approximately the same (purple squares and triangles).
The error bars are the standard errors on the half width at
half maximum obtained from the fit. This approach to ex-
tracting the error bar is different from what was presented in
Fig. 5 of the Letter. In that case, the error bars represented
the systematic difference between the Lorentzian and Gauss-
ian fits and the points were the average value. From Fig. 3
(this paper) we see that the first seven points fit best to a
Lorentzian while the later points fit best to a Gaussian, ex-
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cept for the higher powers where the error in the fit is ap-
proximately the same. The predicted crossover from Lorent-
zian to Gaussian is clearly seen.

There are several potential sources of discrepancy be-
tween the experimental and the theoretical results. One of
them is the breakdown of the lowest-order dispersive ap-
proximation. Using the same simple nonlinear model as in
Sec. IV, we plot in Fig. 3 the half width at half maximum as
a function of input power (green dashed line). The effect of
this correction is to reduce the width of the spectroscopy
peaks.

The breakdown of the dispersive approximation can be
seen by the dispersive result (red full line) overestimating the
width at high powers. However, while the simple nonlinear
model used here does correctly show saturation of the width
at high powers, it is not a full treatment of the Jaynes-
Cummings Hamiltonian and should not be considered too
seriously. A complete investigation of the behavior of the
system at very large photon numbers will require numerical
investigation which is beyond the scope of this paper.

A further possible source of discrepancy comes from the
fact that a constant spectroscopy power was used. Since the
effective coupling strength y is not constant with probe
power, the effect of the spectroscopy power on the qubit will
change with measurement probe power. As a result, spectro-
scopic power broadening [19] will also depend on measure-
ment probe power. This effect has been taken into account in
the green dashed curve of Fig. 3 but only to the accuracy of
our simple model. Finally, environmental noise due to two-
level systems activated at large photon number could be an
additional cause of discrepancy.

B. Beyond the Gaussian approximation

To go beyond the Gaussian approximation made in the
last section, we solve the master equation Eq. (2.6) using the
positive-P-function method [31]. Following Ref. [36], we
first write the qubit-cavity density matrix as

, (5.13)

P = Pecle)el + PyglgXgl + PegleXg] + Peclg)e

where p;; acts only in the cavity Hilbert space. As shown in
Appendix A, this leads to four coupled differential equations
for the operators f;;. In the absence of qubit mixing (7' pro-
cesses), solving these coupled equations yields the time-
evolved full density matrix

p(1) = co(0)]e)e| ® |a,(1)Xa,(1)]
+C45(0)[g)g] ® [a (D)X a(t)] + co()]e)g] ® |a, (1))

X{a_(1)] + ¢z (D)]g)e| ® |a_ ()X ay(t)]. (5.14)
where
o) = — 2D (5.15)

(a_(n)|a, (1)

describes the decay of the qubit phase coherence. In the
above expression, we have
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aeg(t) = aeg(o)exp[_ l((’;)a - l72)t]

Xexp(— i2)(ft a+(z')ai(r’)dt'> (5.16)

0
and age(t)=a;g(t) with

(1) = &, + expl (/2 + ix + I8, )], (0) - @3],
(5.17)

where of=—ig/(k/2+ix+iA,). Moreover, we have

a_(t)=a’ +exp[— (k2 —ix+iA)t][a_(0) - o],
(5.18)

with @’ =—ie/(k/2—ix+iA,). In these expressions, a; rep-
resents the steady-state value of the field (@) given that the
qubit is in either its ground (—) or excited (+) state. Recall
that A, is the detuning of the measurement beam from the
bare cavity frequency.

In the limit x#>1 discussed previously, the decay of
a,,(t) is given by

Aeg(t) ~ a,g(0)exp[— (v, + )], (5.19)
where
o (A )y
I,=-2xIm(ala’)= K2/4+—X2+A% (5.20)

is the generalized measurement-induced dephasing rate. In
this expression,

2
2 _ Eif

=5 5.21
K4+ (A, + x)? (5:21)

n,= |a’;|

is the stationary average number of photons in the cavity
when the qubit is in the excited (+) or ground (—) state. At
small pulls, as is the case for the experimental parameters
quoted in Sec. III, the measurement-induced dephasing rate
is largest at A,=0 (see Fig. 5, blue dashed line). At large
pulls, cavity transmission decreases at A,=0 and, as illus-
trated in Fig. 5 (red solid line), the maximum dephasing rate
then occurs at A,=++\x’—«>/4. As we increase Y, the infor-
mation about the state of the qubit is conveyed more by the
amplitude than the phase of the transmitted beam.

From the above, we see explicitly that by introducing a
probe (&,;) we cause the coherence terms a,,() to exponen-
tially decay at a rate I',, thereby leaving the system in a
mixed state with perfect correlation between the eigenstates
of &, and the pointer states |a,) and |a_). As a result, if the
pointer states are well separated in phase space, we can re-
gard the cavity as a meter which performs a von Neumann
projective measurement of the qubit observable &,.

A measure of the distinguishability of the cavity states is
D=|a,—a_|> [31]. If this is large such that [(a_|a,)|
=exp(=D) is small, then the two pointer states are well sepa-
rated and easily distinguishable. In the steady state, D is
given by
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2/2m=0.34 MHz

%/2n =5.00 MHz

Dephasing, Tm/27 &2 [uS]
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Detuning, A;/2n  [MHZz]

FIG. 5. (Color online) Measurement-induced dephasing rate I,
as a function of the detuning A, between the bare resonator fre-
quency w, and the measurement drive frequency w,. The dephasing
rate is divided by the measurement power eff since it only changes
the overall scale and not the structure of I';,,. The blue (dashed) line
corresponds to the experimental parameters given in Sec. III. The
red (full) line has the same parameters but a larger cavity pull
x/2m7=5 MHz.

27, + 1) x*
=St .22
K14+ x°+ A7
which is related to I',, in the following way:
D,
Iy= SK (5.23)

That is, as the measurement becomes more projective in the
0, basis, the qubit dephases faster. This is a clear example of
measurement induced dephasing and of the fundamental
limit which exists between acquiring information about a
quantum system and dephasing of that system [35]. Note
that, as shown in Appendix B, D, can also be related to the
measurement time. The present system is a factor of 4 away
from the quantum limit. One factor of 2 comes from the fact
that we are using a symmetric resonator and only looking at
the transmission. Half of the information is lost in the un-
measured reflected signal [13]. The other factor of 2 comes
from the use of heterodyne rather than homodyne detection.
As a result and as shown in Appendix B, the quantum limit
can be reached by using asymmetric resonators and homo-
dyne detection of the transmitted field.

1. The qubit absorption spectrum

To evaluate the qubit’s spectrum, we first need to calcu-
late the correlation function {(&_(1)G,(0)),. Note that (as dis-
cussed in Appendix A) in calculating this particular correla-
tion function we do not need to assume that 7 is infinite.
This is because it depends only on the off-diagonal coher-
ences and these are not mixed by a 7, process. Using Eq.
(5.2) and the above results, the correlator can be shown to be
(r>0)
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(6(1)6,(0)); = a.,(1), (5.24)

with the initial condition a,(0)=a_(0)=c’. Using Eq. (5.16)
with the above initial condition yields

<&—(t)&+(0)>3 = eXP[— (72 + Fm)t - i(aa + B)t]
X exp(— Ae—(K/2+iX+iA,)t)eXp(A) ,

(5.25)
where
o —a)a’ 12 —ix—iA,
Amo iy BT W2iX iAo
KI2+ix+IiA, KI2+ix+IA,
B=2xRe(ala’) = x(it, + i) — xD,. (5.27)

From the above expression, we see that the time dependence
of the correlation function is given by three terms. The first
one involves I';, and is simply the Lorentzian part of the
measurement-induced dephasing spectrum we have seen be-
fore. The second is a frequency shift B that contains a nega-
tive term —yD, which gives rise to negative frequency con-
tributions in the spectrum. The last relevant term goes as
Aexp{[k/2+i(x+A,)]t} and gives rise to non-Lorentizian
spectra.

From the expression for the correlation function, it is
simple to obtain the spectrum:

(- Ayet

I‘j/2—i(w—wj)>’ (5-28)

=13 Lref
mizoJ!
where I';=2(y,+I',)+jk and w;=&,+B+j(x+4,). The
spectrum, as in the Gaussian approximation, can be written
as a sum over different photon numbers j. In the limit of
(A,+x) much different from /2, the spectrum is a sum of
Lorentzians with decay rate I';/2. However, unlike Eq.
(5.12) where each Lorentzian is centered at the ac-Stark-
shifted frequency, here each peak has its own frequency shift
w;. As a result, the full theory predicts that the spectrum need
not be symmetric whereas in the Gaussian theory only sym-
metric spectra are possible. Furthermore, in the limit that y is
much larger than x, A— D, and the spectral weights become
Poisson distributed with mean D,. The peaks are separated
by (x+A4,) and the first one is at the frequency @,+B. That
is, the average frequency, which is the ac Stark shift, occurs
at
w,=B+(x+A,)D,=2xn_. (5.29)
Taking this limit further with y much larger than the widths
I}, the individual peaks will become distinguishable. This is
discussed further below.

It is interesting to point out that in the limit of large 72_ (or
7,) the results obtained here and those obtained in the Gauss-
ian approximation agree. This can be seen by expanding the
exponent A exp{[k/2+i(x+A,)]#} in Eq. (5.25) to order :
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(6(1)6,(0));
~ exp(— (y, + i@, + i2x7_)t - %[K2/4 + (A, + )()2]|t|2>.
(5.30)

For A,=0, n_=n,=n and we recover Eq. (5.11) in the labo-
ratory frame. As a result, in the large-72 limit, both the Gauss-
ian approximation and the above theory converge to give the
same Gaussian spectrum. It is only when 7 is small that the
theories have different predictions. This will be discussed
further in Sec. V B 3.

The half width at half maximum of the spectrum obtained
from the full expression Eq. (5.28) is plotted at A,=0 as a
function of 7 in Fig. 3 using the experimental parameters
given in Sec. III. Since the experiment was done in the limit
x < k/2, the results obtained from Eq. (5.28) cannot be dis-
tinguished from those obtained from the Gaussian approxi-
mation Eq. (5.12). This is because in the small-cavity-pull

limit I',,— fm and therefore A — 2fm/ K, B—2ny. That is, to
see the breakdown of the Gaussian approximation at small 7z
requires a larger cavity pull.

2. Phase gate

As discussed above and in Appendix B, measurement
causes dephasing of the qubit. This is a clear illustration of
the Heisenberg-type relation between rate of information
gain and dephasing I',, [35]. However, irradiation at the rf
frequency does not have to induce dephasing of the qubit.
Indeed, the qubit pulls the resonator frequency up or down
causing a state-dependent phase shift for photons near the
cavity frequency. But, in the low-y limit, photons off reso-
nant from the resonator have phase shifts nearly independent
of the qubit state. These photons do not become entangled
with the qubit, and hence do not cause dephasing.

This can be understood more quantitatively in Fig. 5,
where it can be seen that the dephasing rate is significant
only on a frequency range « around the pulled resonator
frequency. In this figure, we have fixed the input power and
scanned A,. In Fig. 6, we rather keep the number of photons
in the cavity fixed (7_=2) and scan A,. We see that at large
detunings, the dephasing rate scales as A;z. As a result, off-
resonant irradiation can produce large ac Stark shifts (w,)
with minimal dephasing of the qubit. This can be used as a
single-bit phase gate for quantum computation.

The observed asymmetry in the large-y case (red solid
line of Fig. 6) is a result of the fact I",, depends on 7_ and 7,.
By writing 77, as

— K2/4 + (Ar - X)2

_ s 5.31
"4y (A, +x)? (5:31)

n, =

we see that at fixed 72_, 71, can be large for negative A,. Thus
the overall measurement induced dephasing will be large in
that region.

The quality factor for this single-qubit gate, Q, can be
defined as the coherent phase rotation that can be realized in
the total dephasing time (75'+T,,)~" [4]. That is,
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FIG. 6. (Color online) Dephasing rate I, as a function of the
detuning A, between the bare resonator frequency w, and the mea-
surement drive frequency w, for fixed 7_=2. (a) Experimental pa-
rameters given in Sec. IIl. (b) Same as (a) but with a larger cavity
pull x/27=5 MHz.
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0= (5.32)
in the large-pull limit and in the ideal situation where
dephasing is limited by photon shot noise. Moreover, simi-
larly to Rabi oscillations that have been demonstrated experi-
mentally [2], this phase gate could be realized on a time scale
which is much faster than 1/« since for off-resonant irradia-
tion, the cavity is only virtually populated.

To show that the dephasing is minimal during the phase
gate, we have calculated using Eq. (5.28) the linewidth of the
qubit spectrum as a function of input power for the experi-
mental parameters and a large positive detuning A,/27r
=32 MHz (well away from the peak shown in Fig. 6). This is
shown in Fig. 3 as a blue dashed line. Here we see that in the
dispersive model, there is no additional dephasing due to the
off-resonant irradiation. That is, the predicted linewidth stays
constant at 7y, for the input powers plotted. At the critical
photon number, n ;=A>/4g> the quality factor for the above
experimental parameters is 17.3. This quality factor can,
however, be easily increased by optimizing the system pa-
rameters [37]. For example at g/27=100 MHz and A/2
=1000 MHz a quality factor of 157 can be reached. (This
value is entirely limited by the current value of 7, ~ 500 ns
and not by the direct infidelity of the phase gate.) An advan-
tage of this rf approach over a dc pulse of the flux or gate
charge is that the logical operation can be realized while
biased at the sweet spot.

3. Number splitting

As explained in the previous sections, the Gaussian model
and the P-function approach agree in the small-pull limit y
< k/2. In the large-pull case, the predicted behavior is, how-
ever, substantially different. Indeed, when the Lorentzians in
Eq. (5.28) are separated in frequency by more than their
width, the spectrum S(w) will be split into many peaks with
each peak corresponding to a different photon number in the
cavity. Number splitting was also predicted by Dykman and
Krivoglaz for a different situation, namely, an undriven cav-
ity coupled to a thermal bath [38]. The number splitting for

PHYSICAL REVIEW A 74, 042318 (2006)

200 |

150

100

)]
o

) S— A
-50 100 150
Frequency, (0-0g-%)/2r [MHz]

Detuning, Af/K

n
o

-100 [

-150 |

200 t )
-50 0 50 100 150 200

Frequency, (o—wg—x)/21 [MHz]

FIG. 7. (Color online) Spectrum S(w) as a function of detuning
A,/ at fixed cavity pull y/xk=100. The dephasing rate was set to
the conservative value of y,=7.6«k. The average photon number in
the cavity was fixed to 7_=2 in (a) (A,=0) and we choose 77, =2 in
(b) (A,=<0). This implies that the measurement beam power
changes with detuning. Inset: Spectrum at A,=y=100«. At this de-
tuning, the peaks are split by 2. More generally, they are split by
x+A. Large detuning yields large splitting but, as shown in Fig. 5,
this can be at the expense of a small measurable phase shift in the
transmitted field.

our case (driven cavity at zero temperature) is illustrated in
Figs. 7 and 8. In Fig. 7, the spectrum is shown as a function
of frequency and of the detuning A, for a fixed x/x=100. In
Fig. 7(a) (A,>0), nn_ is fixed and equal to 2 whereas in Fig.
7(b) (A,<0), ,=2. The choice of fixing either n, or n_ was
made so that there is always a small number of photons in
the cavity independent of the state of the qubit. For example,
for n_ fixed, the number of photons in the cavity when the
qubit is excited, n,, would be small for A, >0, equal to n_ at
A,=0, and very large at A,=—y. The inset shows a cross
section at A,/k=100 (A,=x). For this value of A,/«k, the
peaks are very well separated and the integrated area under
each peak obeys Poisson statistics. It is interesting to stress
that only at A,=y does the spectrum have a simple Poisson
distribution corresponding to a coherent state with average
photon number 7_=2. At A, <y there are more peaks than
expected for a coherent state of this amplitude. Furthermore,
at A,=—y the spectrum is single peaked.

In Fig. 8, the spectrum is shown as a function of the
cavity pull y/« for a detuning of A,=y, such that the cavity
is always driven at the pulled frequency w,— x corresponding
to the qubit in the ground state. In these plots, we have taken
v,=7.6k. Assuming an experimentally realistic value of
k/2a~ 100 kHz [27], this corresponds to a conservative T,
=200 ns [2]. As seen in Fig. 8, for these parameter values,
the peaks should be resolvable experimentally starting
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FIG. 8. (Color online) Spectrum S(w) as a function of the cavity
pull x/«. The detuning is A,=y such that the cavity is always
driven at the dressed frequency w,—y. Other parameter values are
the same as in Fig. 7. Inset: Spectrum at y/x=20. At this experi-
mentally realistic value of the cavity pull, the number splitting
should be resolvable.

around x/k~ 20 (inset in Fig. 8). Achieving y/«~20 in the
dispersive limit (g/A=<0.1) requires g/2m~20 MHz. This
value of g was already realized experimentally [2] and there-
fore the experimental observation of number splitting seems
feasible.

The behavior described above can be understood simply
as ringing of a high-Q resonator when its resonance fre-
quency is suddenly changed when the qubit changes state.
Equivalently we can think of this as a Raman process in
which drive photons in the cavity at the time of the transition
are lifted up to the final cavity frequency. As discussed pre-
viously, the calculation of the spectrum assumes that the qu-
bit is initially in the ground state with the measurement beam
turned on at a frequency w, detuned by A, from the bare
resonator frequency w,. In the calculation of the correlation
function (&_(¢) 3,(0)),, the qubit is flipped to the excited state
at time =0 and the overlap with the ground state is calcu-
lated at time #. When the qubit is flipped, the dressed reso-
nator frequency is suddenly changed from w,—x to w,+y.
Depending on the frequency of the measurement drive and
the quality factor of the cavity, this sudden change will cause
ringing in the cavity. This is illustrated in Fig. 9 where the
distance D(f)=|a,(t)— a_(¢)|* is plotted as a function of time
for two values of x/ «. For the moderate value of x/«x=35 (red
full line), the distance is seen to undergo large oscillations
before settling to the steady-state value D,. For the low x/«
ratio of 0.1 (blue dashed line) there is no ringing due to the
abrupt change of dressed cavity frequency, and the distance
simply rises to D.

The ringing is also shown in the inset of Fig. 9 where the
real and imaginary parts of the cavity field «,(r) are plotted
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FIG. 9. (Color online) Distance D(t)=|e,(f) - a_(t)|* as a func-
tion of time for A=y and e=2«. The red (full) line corresponds to
x/ k=5 and the blue (dashed) line to x/x=0.1. Other parameter
values are the same as in Fig. 7. Inset: Real and imaginary parts of
the cavity field a,(7) as a function of time. The arrows indicate
direction of time.

as a function of time, again for y/«=0.1 and 5. In the low-Q
case, as the qubit flips, the cavity field settles to its new
steady-state value without large excursions in the field am-
plitude, and therefore large changes in photon number. Only
a few different photon numbers contribute and the corre-
sponding spectrum is single peaked as expected. In the high-
Q case, the field amplitudes performs many cycles before
settling to the steady-state value. The cavity therefore probes
a large range of photon numbers and the spectrum shows
multiple peaks. In the time domain we can see that the qubit
correlator, Eq. (5.25), has period recurrences provided y
> k. It is these recurrences in time which give peaks in the
spectrum. These time domain recurrences were observed in
the resonant regime (A=A,=0) with Rydberg atoms in Ref.
[24].

In the case where A,.=—y (w;=w,+ ), the cavity is driven
at the dressed cavity frequency corresponding to the qubit in
the excited state. In this situation, flipping the qubit does not
produce any inelastic Raman scattering (ringing) since the
photons are already at the final cavity frequency. This is seen
in Fig. 7 at A,/ k=—-100 where the spectrum is single peaked.

Remarkably, when the detuning is such that A, <y, and as
can be seen in Fig. 7, the spectrum has peaks at negative
frequencies (i.e., below @,) as well as more peaks than ex-
pected. In particular, in the limit that x> « and at A,=0, the
frequencies start at @w,—27_yx with peak separation y and the
spectral weights have a Poisson distribution with mean 47
and not 7. To understand the presence of these peaks, we
move the dispersive Hamiltonian Eq. (2.5) to the frame de-
fined by the unitary operator

A

U=11,D[a,]+11_D[a_]. (5.33)

Here D[ ] is the displacement operator for the cavity defined
by
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FIG. 10. (Color online) Pictorial representation of the dispersive
Hamiltonian in a frame defined by Eq. (5.33) at A,=0. When cal-
culating the correlator (6_(¢)3,(0)), the qubit is flipped at time ¢
=0. In the displaced frame, this corresponds to both flipping the
qubit and displacing the oscillator from the vacuum state to a co-
herent state with mean photon number 4. This distribution is
shown on top of the harmonic oscillator corresponding to the qubit
in its excited state. This simple picture explains the observed peaks
in the qubit power spectrum and the presence of negative shifts.

Dla]= exp(ad’ — a’d), (5.34)
and f[i are the projectors for the excited and ground state of
the qubit. That is, we move to a frame that takes both the
pointer states out of the picture. In this frame, Eq. (2.5) be-
comes

H=

(@, - 2xi1)6, + hxa'ae.. (5.35)

N | ™

Here we have considered the situation where A,=0 and ne-
glected the last term of Eq. (2.5) which only leads to a small
shift of the qubit transition frequency in the present situation.
This Hamiltonian is pictorially represented in Fig. 10. We
immediately see that, in this frame, the qubit transition fre-
quency is reduced by 27 from the Lamb-shifted frequency
@,. Moreover, when the qubit is in the ground state, the
Hamiltonian corresponds to a shifted and inverted harmonic
oscillator [left-hand side (LHS) of Fig. 10]. On the other
hand, when the qubit is in the excited state, the harmonic
oscillator is shifted but not inverted [right-hand side (RHS)
of Fig. 10]. Starting with the qubit initially in the ground
state and the field in a coherent state of amplitude «_ corre-
sponds, in the frame defined by Eq. (5.33), to a qubit in the
ground state and the vacuum state of the oscillator. In this
frame, flipping the qubit at time =0 corresponds to applying
the operator (for A,=0)

06,0« 6. D[a_-a,]=6.D[2\7].  (5.36)

PHYSICAL REVIEW A 74, 042318 (2006)

The result is both to flip the qubit and to displace the oscil-
lator to a coherent state of mean photon number 47. This is
exactly the observed structure in the qubit power spectrum
and each of the observed peaks corresponds to one of the
possible transitions between these two oscillators. We note
that the above is similar to the Mollow triplet, where transi-
tions both above and below the atomic transition frequency
are possible due to dressing of the atomic levels by the pres-
ence of a strong pump drive [39].

Observation of number splitting would constitute a simple
test of number quantization of the field inside the resonator
in the dispersive regime. In the resonant regime (A=A,=0),
number quantization has been verified in cavity QED using
Rydberg atoms [21]. This was done by looking at the Fourier
components in the probability of finding the atom in the
excited state as a function of time. In the dispersive regime
(A>g, ) the recurrence time for the cavity field was too
long to be observable [22]. In the circuit QED system it
should be possible to reach the strong-dispersive limit y
>k, 1/T, where it is possible to probe number quantization.
In the dispersive regime the qubit spectrum acts as a probe of
the cavity field. When the rate at which information about
the cavity state is passed to the qubit faster than the rate at
which the cavity state changes significantly due to damping
and qubit dephasing, it is possible to learn about the statistics
of the field from the qubit spectrum. Note the above predic-
tions are valid only in the limit where y?>/A < k. When this is
not the case the higher-order effects in the Jaynes-Cummings
Hamiltonian [Eq. (2.3)] will become important and will lead
to non-Poissonian statistics of the resonator field. This will
be discussed further elsewhere. Finally, we note an interest-
ing proposal by Brune er al. [29,30] and a recent experiment
[32] to prepare a Fock state of the cavity field (number
squeezing) containing a single photon by monitoring the
state of a continuous beam of atoms sent through the cavity.

VI. CONCLUSION

We have found that, due to the ac Stark shift, quantum
noise in the photon number populating the resonator leads to
well-characterized measurement-induced dephasing. A
simple model based on a Gaussian approximation for the
phase noise was presented, as well as a more general model
based on the positive-P function. For the experimental pa-
rameters given in the Letter, both models yield the same
quantitative results which are in very good agreement with
the experiment. We emphasize that the only adjustable pa-
rameter in the theory is the intrinsic qubit dephasing rate
whose only effect is to give a constant offset to the predicted
linewidth.

In the strong dispersive regime, where the cavity pull y is
much bigger than the cavity field decay rate «/2, the
P-function approach predicts a splitting of the qubit spec-
trum due to the discrete quantum nature of the field populat-
ing the cavity. Observation of this prediction would be a
confirmation of the quantized nature of the resonator field.
This strong-dispersive-coupling regime should be readily
achievable with realistic circuit QED parameters.
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APPENDIX A: POSITIVE-P REPRESENTATION

In this appendix, we show how to solve the master equa-
tion Eq. (2.6) in the presence of a measurement drive but
take the spectroscopy drive &,=0. Substituting Eq. (5.13)
into Eq. (2.6) yields the following four coupled differential
equations:

ﬁee = KD[aA]ﬁee - ylﬁee - isrf[d + aAT’ ﬁee]

- iX[aATéi’ﬁee] - iAr[dTaA’ﬁee:L (Al)
ﬁgg = KD[aA]ﬁgg + 71[33@ - isrf[d + aAT,ﬁgg]

Iaeg = KD[aA]ﬁeg - YZﬁeg - isrf[aA + dia ﬁeg]

- ZX{dTaA7 ﬁeg} - iAr[aATévﬁeg] - iaaﬁeg’ (A3)

ﬁge = KD[d]ﬁge - YZﬁge - isrf[aA + d#, ﬁge]
b i@ P~ IALEd P + iy (AD)

Solving these four differential equations would yield a com-
plete solution. However, because of the coupling introduced
by v, this is not possible analytically for all possible observ-
ables. However, for the particular case of computing the
dephasing rate, we can (without error) set y;=0 in the equa-
tions for p,, and p,, while keeping the contribution of relax-
ation to dephasing in the equations for the off-diagonal com-
ponents.

To solve Egs. (A1)—(A4) we express the density matrix
under the positive-P representation [31]:

. la)(B]
Pij = J dzaf dzﬂmpij(aaﬁ)- (A5)
Using this expression in Eqs. (A1)-(A4) and the identities
ala) = a|a), (A6)
a'lay = (9, + a'12)| ), (A7)
(Bla"= BBl (A8)
(B'la=(ag+ BB, (A9)

gives four coupled differential equations for the “probability
densities” P;;:
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P, =d,[(ies+ixa+ila+ kal2)P,,]

+dgl (- ig—ixB—iA,B+kB2)P,], (Al0)

Py =0d,[(ieg—ixa+iA,a+ kal2)P,,]

+ (= ieq+ixB—iA B+ kBI2)Py], (A1)

Peg = aa[(isrf*' l)(a + iAra + Ka/Z)Peg]
+ gl (= i+ iXB—iA B+ KPI2)P,y]

— DX QPP oy = YrPog — (P, (A12)
Pge =d,[(igy— ixa+id,a+ ka/2)P,,]

+ dg[ (= ieg— ixB—iA,B+ kPI2)P,,]

+I2XPP g — VoPge + 10 Py, (A13)

To obtain these expressions, we have assumed that

P;{(,%)=0 as is usual [25].
These equations can be solved simply by making the An-
satze

Pee = 6(2)[[1_ 0[+(l‘)](§<2)[,3— aj—“)]?
Py = Pa—a(0]8P[B- a (0],
Peg = aeg(t) 52)[a - a+(t)]5(2)[ﬁ - a'i(t)]’

Py =a,(087[a—a (0]8V[B-a (0]  (Al4)

and substitute these into each equation. This results in

@, =—ies—i(A, + x - ikl2)a,, (A15)
a.=—ies—i(A,— x—ixkl2)a_, (A16)
(o == i(By— 172)Apg — 12X, 0.0, (A17)
Ago = i(By + iY2)ag, + i2x0_0t,ay,. (A18)

Solving these simple differential equations completely solves
the master equation Eq. (2.6) in the absence of mixing due to
T, effects. The solution is given in Egs. (5.14)—(5.18).

APPENDIX B: MEASUREMENT TIME

In this appendix we show how one can calculate the mea-
surement time for this system and show how it relates to the
quantum limit [35]. To do this we need to describe how we
are measuring the pointer states (i.e., how the information is
processed). In this experiment, this is done by using hetero-
dyne detection of the signal that is transmitted from the cav-
ity. In other words, the full quantum trajectory for the system
is [40,41]

dp,(t) =dt Lp,(t) +dt H{[J (t) - kn{@")]a}p,(t), (B1)

where H{[J (t)—«{a")]a}p,(t) is the superoperator repre-
senting the nonlinear effects of the continuous monitoring
and is defined by
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H[Alp=Ap+pAT—(A+A")p. (B2)

The measurement record (heterodyne signal) is given by

J(t) = renfd) + Vel (1),

where () is a complex Gaussian white noise term, which is
formally defined as

E[{(n{(t")]=E[L(n] =0,

(B3)

(B4)

E[{0E ()] = &le~1"),

where E denotes an ensemble average and »=1/[2(N+1)] is
the inefficiency of the measurement. Here N is the dark noise
and the extra factor of 1/2 is due to the fact that information
leaks out of the cavity in both directions and we only moni-
tor transmission [13].

From this quantum trajectory the rate at which informa-
tion is obtained about (@) is k7. To convert this to a rate of
information gain about (4,) we define the measurement ob-
servable for a time 7 as

(B5)

I(7) = %JTRe[J(t)e_i‘ﬁ]dt, (B6)
0

where ¢ determines the quadrature in which the information
about the qubit is encoded. This can be determined by

(B7)

For example, if A,=0 and ¢=0, the information about the
qubit is encoded only into the real part of (G@). From this
observable, the mean and variance are

I(7) = kp Re({@)e™™?), (B8)
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Ali(a)] = (i) - TPy = 37

That is, if we were to measure the system for a time 7 many
times we are confident that to one standard deviation the

value of I is kyRe({@)e '®)+\kny/27.
If 7 is much shorter than 1/7y then we can approximate

(B9)

I(7) with fi(r)zane(wf_,e‘i"s), where the * subscript refers
to the state of the qubit. To be able to distinguish between
(6.)==1, we require A(d,)=<1 and thus

T 7 f~
Al < Be= kD,
2 2

(B10)

The equality defines the measurement time f,,.,,. Using the
above, this can be rewritten as

1
”

That is, even for perfect detection efficiency #=1, this ap-
proach is a factor of 2 away from the quantum limit
Fmeasl m=1/2 [35]. This is because even though we are se-
lecting the correct quadrature in which the information about
the qubit is stored [using the classical processing defined in
Eq. (B7)], we are still measuring the other quadrature as we
are performing heterodyne detection. It is well known that
heterodyne detection measures both the ¢ and ¢+7/2
quadrature with 1/2 efficiency [42,43]. Thus if we change
the detection scheme to homodyne detection of the ¢ quadra-
ture we can reach the quantum limit. That is, to reach the
quantum limit we require =1 which means we need asym-
metric cavities and no dark noise as well as a detection
scheme that extracts only information about &,. Note that if
we did not perform any classical processing on the hetero-
dyne signal J(7) then we would be a factor of 4 away from
the quantum limit.

tmeasrm = (Bl 1)
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