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Measurements of the thermal properties of nanoscale electron systems have ignored the effect of
electrical noise radiated between the electron gas and the environment, through the electrical leads.
Here we calculate the effect of this photon-mediated process, and show that the low-temperature
thermal conductance is equal to the quantum of thermal conductance, GQ � �2k2BT=3h, times a
coupling coefficient. We find that, at very low temperatures, the photon conductance is the dominant
route for thermal equilibration, while at moderate temperatures this relaxation mode adds one quantum
of thermal conductance to that due to phonon transport.
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A striking effect in one-dimensional systems is that the
linear transport coefficients become quantized, in multi-
ples of combinations of the fundamental constants: The
specific material properties fade into the background. The
observation of quantized charge conductance in quantum
point contacts is the archetypal manifestation of this
effect [1]. The concept of quantization has been extended
to the thermal conductance of both electrons and phonons
in confined geometries [2–9], with theoretical treatments
verified by experiments. Here we discuss the impact of the
related but quite distinct quantization of the photon-
mediated thermal conductance, between an electron gas
and its electromagnetic environment. The thermal con-
ductance for photons yields a quantization condition quite
similar to that for electrons and phonons, but due to the
weakness of the electron-phonon coupling at low tem-
perature this electromagnetic channel is the dominant
thermal relaxation mode for an electron gas as T ! 0.
Furthermore, in the limit where the electron gas can be
treated as a single lumped electrical element, there is only
one quantum of conductance associated with the electro-
magnetic environment, regardless of the number of sepa-
rate electrical connections.

We introduce a device representative of structures used
for measurements of thermal properties as well as for
bolometric detectors. In Fig. 1(a), a submicron scale
normal-metal thin-film element is placed on a nanofabri-
cated suspended dielectric paddle. Superconducting leads
provide electrical contact, and effectively eliminate the
thermal conductivity due to electron diffusion [10]. The
metal film is represented as a lumped resistive element,
connected to the electromagnetic environment through a
transmission line, in Fig. 1(b). We distinguish the elec-
trical environment, comprising the transmission line and
electrical circuit connected to it, from the radiative envi-
ronment, to which the electron gas is coupled only via
free-space (blackbody) radiation. Our current under-
standing of the thermal relaxation of this system is the
result of an active theoretical and experimental effort,

summarized in Fig. 1(c). Over short time scales, electrons
in a diffusive metal equilibrate with one another through
electron-electron scattering (see, e.g., [11] and references
therein). The electron gas, at temperature Te, then equi-
librates over longer times with the local phonon environ-
ment at Tph via electron-phonon interactions [9,12–16].
The thermal link between the electrons and phonons
becomes very weak at low temperatures [12,13]. For a
metal with volume V, the power flow Pe-ph from the
electrons to the phonons is

Pe-ph � �V�Tn
e � Tn

ph�; (1)

where the power n � 5 depends upon details of the Fermi
surface and phonon dispersion, and � is a material-
dependent parameter [17]. For small temperature differ-
ences jTe � Tphj � Tph, the effective electron-phonon
thermal conductance is Ge-ph � dPe-ph=dT � 5�VT4.
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FIG. 1. (a) Representative device: a normal metal film on a
suspended dielectric structure, connected with superconduct-
ing leads. (b) Electrical schematic: The normal metal film is
shown as a resistor, Re, connected to the electromagnetic
environment with impedance Z�, via a transmission line with
impedance Z0. (c) Parallel thermal pathways: Diffusive elec-
tron gas at temperature Te equilibrates through electron-
phonon coupling with the local phonons at Tph, which in turn
equilibrate with the global phonons at T0 through a mechanical
constriction. The electrons are also coupled to the electro-
magnetic environment at temperature T� via photon radiation.
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Interest in the thermal physics of nanostructures can be
traced back to investigations of the fundamental bounds
on information processing and transfer [18,19]. In this
context, Pendry [2] calculated that the thermal conduc-
tance associated with single mode, phase-coherent trans-
port of degenerate fermions and of massless bosons is
GQ � �2k2BT=3h, where GQ 	 1 pW=K at 1 K. For elec-
trons in a degenerate Fermi gas, the thermal conductivity
is Ge � TNGQ for N channels each with transmission
coefficient T [3,4]. The phonon thermal conductance
through a doubly clamped beam, such as in Fig. 1(a),
occurs via four independent transmission modes at low T,
each with transmission T ; therefore Gph � 4TGQ [5–9].

The present understanding of the thermal relaxation is
that the electrons in the metal equilibrate with the pho-
nons in the dielectric paddle, which then equilibrate with
the bulk through the quantized phonon conductance.
There is, however, a significant photon contribution to
this equilibration, in parallel with that due to phonons,
and at low temperatures the photonic contribution domi-
nates. This is due to transport of thermal photons through
the electrical leads [20–22], and dominates when the
object is smaller than the thermal photon wavelength
[2]. Present experimental efforts are already in the size
and temperature range for which this contribution
can dominate, with implications for measurements of
thermal relaxation, and applications in calorimetry and
bolometry.

Below T � 1 K, thermal photons have frequencies
�th � kBT=h, with wavelengths �th � c=�th > 1 cm. A
diffusive electron gas, with dimensions less than
1 mm � �th, can be represented by an electrical imped-
ance Ze���. In thermal equilibrium, the electron tempera-
ture Te is directly related to the noise emitted by this
impedance. In practice, the electron gas is connected via
measurement leads to an electrical circuit, which presents
an environmental impedance Z���� to the electron gas.
The noise associated with this impedance is, in many
cases, represented by a temperature T�, with T� 	 T0 the
cryostat temperature. The electron and environmental
noise sources cause the exchange of energy between the
two systems, and is an example of one-dimensional
blackbody radiation [21,22]; for an electron gas with a
sufficiently small surface area, this dominates over the
free-space radiation described by the Stefan-Boltzmann
T4 law.

In the simplest situation, the electron and environmen-
tal impedances Ze and Z� may be represented by two
resistors, Re and R�, with noise temperatures Te and T�.
The electromagnetic noise power radiated from these
resistors is quantified by the fluctuation-dissipation theo-
rem [23]. The voltage noise density for a resistance R at
temperature T is SV��� � 2h�R coth��=2�th�, where � 

0. At low frequencies � � �th, this is the usual Nyquist
result SV � 4kBTR, while for high frequencies SV !

2h�R, the ‘‘quantum noise’’ limit. We can easily rewrite
the voltage noise density in terms of the Bose-Einstein
distribution n��� � �exp��=kBT� � 1��1 of the photons
emitted by the resistor,

SV��� � 4h�R� n�h�� 
 1
2 �: (2)

The electrons, with R � Re, emit this voltage noise,
generating a current noise through both the electron and
the environmental impedances, SI � SV=�Re 
 R��2, so
that the noise power Se � R�SI absorbed by the environ-
ment, ignoring the zero-point term, is

Se��� �
R�

�Re 
 R��2
4h�Rene�h��; (3)

where ne�h�� evaluated at T � Te. There is a similar
expression for the noise power S� emitted by the environ-
ment and absorbed by the electrons, with the subscripts e
and � exchanged in (3).

The net electromagnetic (photon) power flowing from
the electrons to the environment is given by

P� �
Z 1

0
�Se��� � S����� d�

� r
Z 1

0
h��ne�h�� � n��h���d�; (4)

where we define the coupling coefficient r �
4ReR�=�Re 
 R��2. This coupling coefficient is closely
related to the transmission coefficient T appearing in the
formulas for Ge and Gp, the thermal conductance of
electrons and phonons. Here the transmission line is
assumed to have unit transmissivity, but the coupling to
and from the transmission line is embedded in the coef-
ficient r; in the case of the electron and phonon single-
channel formulas, the coefficient T includes both the
coupling and the transmissivity of a channel. The power
flow is positive if Te is greater than T�. In Fig. 2, we show
the spectral power densities Se, S�, and their difference,
in dimensionless units S=rh�th, as a function of dimen-
sionless frequency �=�th � kBT��=h. The net noise
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FIG. 2. Noise power densities Se, S�, and their difference,
plotted as a function of dimensionless frequency �=�th, for
Te � 1:5T�, and �th evaluated at T�. The inset shows equivalent
circuit.
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power extends from � � 0 to �� 5�th, a frequency range
of about 10 GHz at T � 100 mK.

The power flow can be characterized by an effective
photon thermal conductance G� � dP�=dT, with

G� � r
Z 1

0
h�

d
dT

1

exp�h�=kBT� � 1
d� � rGQ: (5)

For matched resistances Re � R�, the coupling coeffi-
cient r � 1, and the thermal conductance G� is equal to
the quantum of thermal conductance GQ. Mismatched
resistances reduce the thermal conductance from this
value by the temperature-independent scale factor r < 1.

The thermal conductance G� associated with the elec-
tromagnetic coupling is therefore proportional to the
quantum of thermal conductance. Any measurement of
the total thermal conductance G of an electron gas to its
environment will include this contribution. In the absence
of direct electron transport-mediated pathways, the other
primary thermal path is due to electron-phonon coupling
Ge-ph, with subsequent phonon transport to the global
phonon environment Gph, yielding an effective phonon-
mediated conductance �1=Ge-ph 
 1=Gph��1. At very low
temperatures, the electron-phonon coupling becomes
very weak, scaling as T4, and will become negligible in
comparison with the photonic contribution: The total
electron thermal conductance G therefore approaches
G� as T ! 0. For matched resistances Re � R�, the cross-
over occurs at the temperature Tcr � ��2k2B=15h�V�1=3 ’
50 mK=�V=�m3�1=3. Typical nanoscale electron volumes
of 0:001–0:1 �m3 thus yield crossover temperatures of
500–100 mK: This is clearly a significant correction for
small electron volumes at temperatures easily reached
with 3He cryostats, 3He:4He dilution refrigerators, or
adiabatic demagnetization refrigerators.

Figure 3 shows the temperature dependence of the total
thermal conductance G from an electron gas to its envi-
ronment, including both photon and phonon contribu-

tions. We set Re � R�, so G� � GQ, and use the phonon
conductance due to a single insulating beam, with Gph �
4GQ. At very low temperatures, Ge ! GQ, due to photon
conductance. At higher temperatures, G ! 5GQ, due to
the sum of contributions from phonon- and photon-
mediated transport. More generally, the transition from
single-mode conductance to the higher temperature limit
of N 
 1 conducting phonon modes occurs over the range
from Tcr to �N 
 1�1=3Tcr.

Measurements of thermal conductance at low tempera-
tures in nanostructures must take this photon-mediated
cooling into account. Such measurements can make sig-
nificant errors in two ways: The thermal power P can be
significantly different from the power Pe applied by the
experimenter to the electron gas, and the thermometer
can report a temperature substantially different from the
actual temperature. These corrections should be included
in analyses of electron and phonon thermal conductances;
in those to date [7,9,14,15], the electron volumes were
sufficiently large, and the electron resistances sufficiently
mismatched to the environmental impedance, so this
correction is likely to be small.

We have assumed that the electrical connection be-
tween the electron gas and environmental resistances Re
and R� could be treated as frequency independent and
lossless. The electromagnetic environment will more gen-
erally present a complex impedance Z����, changing the
associated thermal conductance in (5) to

G� � k2BT
h

Z 1

0
~r�x�th� x2ex

�ex � 1�2 dx; (6)

with the coupling coefficient ~r��� given by ~r��� �
4Re Re�Z�����=jRe 
 Z����j2, and x � �=�th. This al-
lows the environment to include reactive as well as dis-
sipative elements. Here we extend our model calculation
to one particular impedance model, one in which the
physical separation L between the two resistors Re and
R� is nonzero. If L is of the order of, or longer than, the
characteristic thermal wavelength �th � c�=�th �
hc�=kBT, for a transmitting network with signal velocity
c�, the finite signal velocity must be included. For an
environment at T� � 100 mK, this would be appropriate
for resistors separated by a distance larger than about L ’
1 cm. We include this by modeling the leads as a lossless
transmission line terminated by R�, with characteristic
impedance Z0 and electrical delay �t � L=c�. This
changes the effective environmental impedance to

Z���� �
R� 
 iZ0 tan�2���t�
Z0 
 iR� tan�2���t�Z0: (7)

The form of the integrand in (6) then depends strongly on
the relation between R� and the transmission line imped-
ance Z0: For R� � Z0 (the case for a properly terminated
transmission line), then Z���� � R� and the integrand in
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FIG. 3. Thermal conductance G=GQ as a function of T=Tcr

for an electron gas relaxing via phonons and photons. The solid
line is the total thermal conductance; the dashed lines are the
high T limit of parallel phonon- and photon-mediated con-
ductance, and the low T limit of purely photon-mediated
conductance.
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(6) is independent of frequency, yielding the same result
as in (5). For R� � Z0, the effective impedance Z����
varies periodically in frequency between the limiting
values R� and Z2

0=R�, with a period �� � c�=2L �
1=2�t. The integral in (6) smoothes out these oscillations.

In Fig. 4(a), we display the integrand in (6), for a
model thermometer and environment in which the two
resistors are equal, Re � R� � 10 �, and are connected
by an ideal transmission line with Z0 � 100 � and a
delay �t � 5 ps. These values are realistic ones for an
actual experimental implementation. The oscillations in
frequency apparent in Fig. 4(a) become more rapid as the
temperature increases, and are bound on either side by the
low and high impedance limits of Z� � R� and Z� �
Z2
0=R�. In Fig. 4(b), we show the resulting thermal con-

ductance G� for the same model, which at the lowest
temperatures reaches the value GQ, as then Z���� � R�

for the relevant frequencies, yielding ~r � 1. At higher
temperatures, the conductance approaches the limit r0GQ

with the smaller resistance factor r0 � 4Re�Z2
0=R��=

�Re 
 Z2
0=R��2 ’ 0:04. It does not quite reach this value

because the oscillations give a frequency-averaged resis-
tance ratio above this lower limit.

In conclusion, we have shown that the thermal con-
ductance G� due to electromagnetic coupling provides a
very important relaxation process for a nanoscale elec-

tron system at low temperatures. Power deposited in the
electron gas can be reradiated as low frequency photons
rather than phonons. This additional pathway for thermal
relaxation can have important implications for the design
of low-temperature bolometers, significantly affecting
their response time and sensitivity.
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