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Quantum control of a linear oscillator using a static dispersive coupling to a nonlinear ancilla
underpins a wide variety of experiments in circuit QED. Extending this control to more than one
oscillator while minimizing the required connectivity to the ancilla would enable hardware-efficient
multi-mode entanglement and measurements. We show that the spectrum of an ancilla statically
coupled to a single mode can be made to depend on the joint photon number in two modes by
applying a strong parametric beamsplitter coupling between them. This ‘joint-photon number-
splitting’ regime extends single-oscillator techniques to two-oscillator control, which we use to realize
a hardware-efficient erasure check for a dual-rail qubit encoded in two superconducting cavities. By
leveraging the beamsplitter coupling already required for single-qubit gates, this scheme permits
minimal connectivity between circuit elements. Furthermore, the flexibility to choose the pulse
shape allows us to limit the susceptibility to different error channels. We use this scheme to detect
leakage errors with a missed erasure fraction of (9.0 ± 0.5) × 10−4, while incurring an erasure rate of
2.92 ± 0.01% and a Pauli error rate of 0.31 ± 0.01%, both of which are dominated by cavity errors.

INTRODUCTION

Controlling the state of an oscillator is a powerful re-
source, enabling the implementation of hardware efficient
error-correcting codes for quantum computing [1–7], sim-
ulations of bosonic systems [8–12] and the generation of
metrologically useful states for quantum-enhanced sens-
ing [13–15]. In circuit quantum electrodynamics (cQED)
[16, 17], where these oscillators take the form of standing
modes in microwave resonators, most of the techniques
developed for single-oscillator control [18–25] rely on a
static dispersive coupling between the oscillator and a
nonlinear ancilla qubit [26].

Moving beyond control of a single linear mode affords
new capabilities, including the generation of multi-mode
entanglement [27–29] and measurements of joint proper-
ties of multiple modes [30–33]. In the context of quantum
error correction, it both enables gates between qubits en-
coded in individual modes [34, 35], as well as implementa-
tions of natively multi-mode error correcting codes, such
as the pair-cat [36], Chuang-Leung-Yamamoto (CLY)
[37], or dual-rail codes [38]. This may be done by comple-
menting the dispersive control with tunable beamsplitter
interactions [39], which swap states between oscillators,
allowing the nonlinear ancilla to interact with each oscil-
lator in turn.

Recent progress in generating stronger tunable beam-
splitter interactions between high-Q cavities without
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compromising their long coherence times or introduc-
ing unwanted nonlinearity [40, 41] provides access to a
regime where the inter-oscillator coupling strength ex-
ceeds the typical coupling strength to the nonlinear an-
cilla. This presents the opportunity to treat the coupled
oscillators collectively. Thus a single ancilla, statically
coupled to only one of the modes, can be used to mea-
sure either joint or individual properties of the combined
system. Such operations include the recently proposed
joint-parity measurement or erasure check of a dual-rail
cavity qubit [42, 43].

In this article, we observe a new regime that emerges in
the presence of an increasingly strong beamsplitter drive
between two bosonic modes, which is an analog of dis-
persive number splitting [26], but for the total excitation
number, N , shared between two modes. In this regime
the spectra of the combined multi-mode system are well
predicted by treating the parametrically coupled oscilla-
tors as a single spin with S = N/2 that has a dispersive
coupling to the ancilla. This provides an intuitive picture
for arbitrary N . We find a range of operating points that
are now accessible where we can measure the total pho-
ton number in the coupled oscillators, without measuring
the photon number in either cavity.

An important example of an operation enabled in this
regime is a mid-circuit erasure check [33, 44], an essen-
tial ingredient for a dual-rail qubit [38] spanned by the
single excitation manifold |0, 1⟩ and |1, 0⟩ of two super-
conducting cavity modes. Erasure qubits [33, 43–51] rely
on detecting dominant leakage errors and resetting these
states back into the codespace. Since the time and loca-
tion of these (erasure) errors are known, erasure qubits
yield high thresholds when embedded in a higher-level
error-correcting code [48, 52, 53]. The dual-rail cavity
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qubit is a prototypical example of this as its errors are
dominated by detectable leakage to |0, 0⟩, with Pauli er-
rors within the codespace much less likely [43].

We implement a minimally-invasive erasure check by
only exciting the less-coherent ancilla transmon when the
dual-rail qubit has already leaked from the codespace.
This limits the probability of declaring an erasure due to
errors in the measurement itself to 2.92±0.01% per check,
of which only 0.51±0.02% are false positives due to trans-
mon errors. With a missed-erasure probability of only
(9.0 ± 0.5) × 10−4, dual-rail logical states are also well-
preserved, with a Pauli error rate of 0.31±0.01%, of which
only 0.12 ± 0.01% is induced by transmon decoherence.
As in the previous demonstration of mid-circuit erasure
detection for a dual-rail cavity qubit by Koottandavida
et al. [33] this scheme engineers an ancilla spectrum that
distinguishes between computational states and the joint
vacuum state, |0, 0⟩. However, it does so by making use of
the tunable beamsplitter already required for single- and
two-qubit gates and minimizes the connectivity between
circuit elements. Realizing such a high-performance and
minimally-invasive mid-circuit erasure check is a crucial
capability for improving error correction [48] via erasure
conversion.

In the following sections, we begin by describing
the emergence of parametrically-activated joint-photon
number-splitting, before showing its application in a
dual-rail erasure check. An extension of this technique
to a two-qubit gate is described in Appendix A.

RESULTS

Spectroscopic observation of joint-photon
number-splitting

Combining two common elements of oscillator control,
a tunable beamsplitter interaction between two oscilla-
tors and a fixed dispersive interaction between a single os-
cillator and an ancillary qubit, enables measurements and
control conditioned on the total photon number of the
system, via an extension of the strong dispersive regime
of circuit QED [26]. The Hamiltonian of this system in
the interaction picture is

Ĥ
ℏ

= gbs(t)
2

(
eiφâb̂† + e−iφâ†b̂

)
−∆b̂†b̂+χb̂†b̂ |e⟩ ⟨e| , (1)

where the oscillator Alice and Bob modes are represented
by lowering operators â and b̂, and |e⟩ is the excited state
of the ancillary qubit (see Fig. 1a). The ancilla is cou-
pled to only one of the modes with a dispersive interac-
tion strength χ that is fixed, whereas the amplitude gbs,
phase φ and frequency detuning ∆ of the beamsplitter
drive are all controllable in time. The dispersive term
(activated by intentionally exciting the ancilla out of its
ground state) and the beamsplitter term are often used
alternately: either narrow-bandwidth pulses on the an-
cilla enact photon-number-selective operations on a sin-

gle mode or a beamsplitter routes states between modes
[28]. However, when both terms are activated simulta-
neously and gbs ∼ χ, the number-split spectrum of the
ancilla is modified to depend on the joint photon number
in both oscillators.

The Hamiltonian in Eq. 1 is realized with a pair of
superconducting microwave stub cavities as the oscilla-
tors [54] and a fixed-frequency transmon as the ancilla.
The use of a SNAIL coupler [40, 55–57] situated be-
tween the cavities allows us to engineer a microwave-
activated beamsplitter interaction with amplitude up to
|gbs|/2π = 2.05 MHz, in excess of the dispersive coupling
|χ|/2π = 1.07 MHz, while preserving the coherence and
linearity of the cavity modes.

The emergence of joint-photon number-splitting is re-
vealed by probing the transmon spectrum in the presence
of a variable-amplitude beamsplitter drive, as illustrated
in Fig. 1b. Importantly, the beamsplitter drive is applied
with a ‘symmetric’ frequency detuning, ∆ = χ/2 — since
Bob’s frequency shifts by χ when the transmon is in |e⟩,
this condition ensures the beamsplitter drive is equally
detuned from resonance when the transmon is in |g⟩ or
in |e⟩. Because the Hamiltonian conserves the total os-
cillator photon number N and the average cavity T1 is
much longer than the pulse duration Tp, the dynamics
may be considered separately for different values of N .
Fig. 1c shows the resulting spectra for different initial
states with N = 0, 1 and 2.

In the absence of a coupling between the cavities
(gbs = 0) the transmon spectrum displays the familiar
photon number-splitting regime, with transitions sepa-
rated in frequency by χ per photon in the Bob mode but
independent of the photon number in the uncoupled Al-
ice mode. This can be seen from the linecuts at gbs = 0
(in the left panels of Fig. 1c) when initializing the cav-
ities in different two-oscillator Fock states. However, in
the presence of a strong beamsplitter drive (|gbs| ∼ |χ|)
we enter the joint-photon number-splitting regime. Here,
the transmon spectrum exhibits 2N + 1 prominent tran-
sition lines, with the central transition at a frequency de-
tuning δω = Nχ/2 becoming the dominant one at large
values of gbs.

We can compare these features to analytical predic-
tions obtained using Schwinger’s angular momentum op-
erator formalism [42, 58], which considers the two cavities
containing N total photons as a single spin with S = N/2
(see Fig. 1a). This formalism provides a way to map os-
cillator operators onto spin operators:

Ŝx ≡ â†b̂+ b̂†â

2 ,

Ŝz ≡ â†â− b̂†b̂

2 ,

Ŝy ≡ â†b̂− b̂†â

2i ,

N

2 Î ≡ â†â+ b̂†b̂

2 .

(2)

For a symmetrically-detuned beamsplitter drive (∆ =
χ/2) this gives a spin Hamiltonian for this system:

Ĥ
ℏ

= gbsŜx + χ

2 Ŝzσ̂z − Nχ

4 σ̂z, (3)
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FIG. 1. Ancilla spectroscopy in the presence of a beamsplitter drive. (a) System schematic showing two oscillators
coupled by a tunable beamsplitter interaction and an ancilla qubit statically coupled to one oscillator via a fixed dispersive
interaction. Two coupled oscillators with total photon number N are equivalent to a spin with S = N/2. (b) Pulse sequence
used for spectroscopy experiment. (c) Transmon spectra in the presence of increasing beamsplitter drive amplitude for input
oscillator states with fixed total photon number N . Colorplots show initial states |0, 0⟩ (N = 0), |0,1⟩+|1,0⟩√

2 (N = 1) and
|0,2⟩+

√
2|1,1⟩+|2,0⟩

2 (N = 2). Predicted transitions (dashed white lines) are labeled by the change in the magnetic quantum
number δm in the oscillator-spin model (see Fig. 2). Left (right) panels show spectra for all initial two-oscillator Fock states
in each N -photon manifold at the lowest (highest) value of |gbs/χ| shown in the colorplots. The yellow square (triangle) in the
middle (right) panel indicates operating point for the erasure check (CPHASE gate described in Appendix A).

where σ̂z = |g⟩ ⟨g| − |e⟩ ⟨e| is the Pauli-Z operator for
the ancilla and the beamsplitter drive phase is chosen
to be φ = 0. When the amplitude of the spectroscopy
drive on the qubit is small relative to max(|gbs|, |χ|), its
effect in the Hamiltonian may be treated as a perturba-
tion. Ĥ is then block-diagonal with respect to the ancilla
subspace, allowing us to separately consider Hamiltoni-
ans conditioned on the ancilla state, Ĥg ≡ ⟨g| Ĥ |g⟩ and
Ĥe ≡ ⟨e| Ĥ |e⟩:

Ĥ = Ĥg |g⟩ ⟨g| + Ĥe |e⟩ ⟨e| . (4)

Diagonalizing Ĥg and Ĥe gives spin eigenstates (repre-
senting the state of the coupled oscillators) before and af-
ter the ancilla transition from |g⟩ to |e⟩, with each Hamil-
tonian defining a spin quantization axis along which these
eigenstates are aligned.

In this spin picture, the application of the beamsplitter
drive is analogous to a transverse magnetic field. As the
beamsplitter strength increases, the energy eigenstates

are no longer oscillator Fock states (Ŝz eigenstates) but
more closely resemble symmetric and antisymmetric su-
perpositions of these Fock states (Ŝx eigenstates). Mean-
while the eigenenergies, shown for total photon number
N = 1 in Fig. 2a, display a zero-field splitting by χ/2 and
a high-field Zeeman-like splitting that approaches gbs as
the transverse field is increased (i.e. by increasing the
beamsplitter strength). The eigenstates are labelled by
their projection along the quantization axis:

Ĥg |mg⟩ =
(

−Nχ

4 +mgℏΩ
)

|mg⟩ , (5)

Ĥe |me⟩ =
(

+Nχ

4 +meℏΩ
)

|me⟩ , (6)

where the magnetic quantum numbers can take the val-
ues,

mg/e = −S, . . . , S = −N

2 , . . . ,
N

2 ,



4

|e〉|me = +1/2〉

0.0 0.5 1.0 1.5
|gbs / χ|

  T
ra

ns
iti

on
 M

at
rix

 E
le

m
en

t
(n

or
m

al
iz

ed
)

0.0

0.5

1.0

0

E 
/ h

 

χ / 2 gbs

δm = ±1

(a)

(b)

N = 1

|g〉|mg = +1/2〉

|g〉|mg = -1/2〉

|e〉|me = -1/2〉

δm = 0

|χ| / 2

|χ|

-|χ| / 2

-|χ|

FIG. 2. Ancilla transition matrix elements in the pres-
ence of beamsplitter. (a) Energy level diagram for the
ancilla-oscillator system with N = 1 photon shared between
the two oscillators. States are labeled by their transmon state
(|g⟩ or |e⟩) and oscillator-spin state (magnetic quantum num-
ber mg/e = ±1/2). Arrow thicknesses illustrate the strength
of transition matrix elements at low and high beamsplitter
amplitudes. (b) Measured transition matrix elements along
central (δm = 0, pink) and lower (δm = −1, orange) tran-
sitions of N = 1 spectrum, obtained from ancilla Rabi os-
cillation rates. Dashed lines show predictions for normalized
transition matrix elements obtained from the spin model.

and Ω can be interpreted as a Larmor frequency:

Ω =
√
g2

bs +
(χ

2

)2
. (7)

The energy difference between each possible pair of
Ĥg and Ĥe eigenstates allows us to accurately predict
the 2N + 1 unique transition frequencies observed in the
spectra:

ωδm = Nχ

2 +δmΩ, δm ≡ me −mg = −N, . . . , N. (8)

These frequencies are shown as white dashed lines in
Fig. 1c, and show good agreement with the observed
spectra [59]. Faint features corresponding to transitions
in the N − 1 photon manifold can also be seen due to
photon loss during the spectroscopy pulse. The symmet-
ric beamsplitter detuning condition ∆ = χ/2 provides a
unique operating point where each transition frequency
has a degeneracy (N + 1) − |δm|. (In Appendix D, we
show how shifting away from this point breaks the de-
generacies between these transitions, yielding (N + 1)2

unique frequencies.)
Furthermore, the strength of each transition is pro-

portional to the overlap between the initial (Ĥg) and fi-
nal (Ĥe) eigenstates. As gbs is increased, both sets of
eigenstates start to align along the x-axis, with increas-
ing overlap between states where mg = me. As a result,
off-central transitions with δm , 0 become suppressed
in favor of transitions with δm = 0, as can be seen from
their changing brightness in Fig. 1c. We verify this quan-
titatively for transitions in the N = 1 manifold by mea-
suring the rate of ancilla Rabi oscillations across a range
of |gbs/χ| values (described in Appendix C). The mea-
sured rates for the δm = 0 and δm = ±1 transitions (pro-
portional to the transition matrix element) are shown in
Fig. 2b and agree well with the model predictions.

The predictions from this spin model explain the emer-
gence of a joint-photon number-splitting regime when
gbs > χ, where the qubit spectrum depends on the total
number of photons in both oscillators. This is most clear
in linecuts of the spectra at the largest values of gbs/χ
in Fig. 1c, where the central δm = 0 transition line dom-
inates. Independent of which state we initialize in the
oscillators, we see a single dominant transition frequency
at ω0 = Nχ/2 for each value of N . This can be inter-
preted as the indistinguishability of photons in Alice and
Bob from the perspective of the qubit when the beam-
splitter interaction is stronger than the dispersive shift.
The extent to which the qubit can still distinguish the
two oscillators can be seen in the much smaller satellite
δm = ±1 peaks, at a detuning of ±gbs, which would be
further suppressed at higher beamsplitter amplitudes.

In the following section we show how understanding
these joint-photon number-split spectra provides a way
to extend established single-oscillator control techniques
to operations on multiple oscillators.

Mid-circuit erasure check of a dual-rail qubit

We use the |gbs| ≳ |χ| regime to construct a mid-circuit
erasure check for a dual-rail qubit encoded in two super-
conducting cavities. The basis states for this encoding
are |0L⟩ ≡ |1, 0⟩ and |1L⟩ ≡ |0, 1⟩ and their dominant
error channel is photon loss to the common |0, 0⟩ leakage
state, which we hope to detect (see Fig. 3a). Detecting
these leakage errors (in order to convert them to era-
sures) while preserving logical information in states that
have not suffered such an error is an essential task in this
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FIG. 3. Characterizing a dual-rail mid-circuit erasure check. (a) Logical code space of a dual-rail encoded qubit
indicating decay to the leakage state |0, 0⟩, which we seek to detect and convert to erasure errors. Black arrows show the ideal
mapping processes shown while gray arrows indicate misassignment processes that lead to false negative (FN) errors and erasure
errors respectively. We measure a false negative error rate of pFN = 3.7(2)% per erasure check and a total erasure error rate
of perasure = 2.92(1)% per erasure check. Green (red) flag indicates erasure check reporting “no erasure” (“erasure detected”).
(b) Pulse sequence used to implement the erasure check, consisting of simultaneous flat-top pulses on both the transmon and
the beamsplitter drive, followed by transmon readout. (c) Measured transmon trajectories during the erasure check for logical
and leakage states. (d) Pulse sequence used to measure state fidelity after n repeated erasure checks (or n periods of idling for
the duration of an erasure check) on the encoded dual-rail qubit. A single echo pulse (a cavity SWAP operation) is performed
halfway through the sequence in order to suppress the effect of no-jump backaction resulting from different cavity decay rates.
(e) Success probability for passing n consecutive checks (purple), and probability of remaining in logical subspace (1−p00) after
n checks, unconditioned on erasure check results, with (gray) and without (pink) the beamsplitter pump applied. (f) Total
Pauli error rate when performing erasure checks (purple) or idling (gray). Lines show linear fits.

architecture.
A key requirement of the erasure check is that it

does not introduce additional errors. Firstly, since the
check may be performed multiple times per round of
syndrome measurements, erasure errors during the check
must be minimized for the code to operate below the
error-correction threshold of the higher-level code, such
as the surface code [60–62]. Secondly, Pauli errors must
remain much less likely than erasure errors to preserve
the bias that enables a high threshold [48]. Both of these
criteria require a way of limiting errors induced by the
less-coherent ancilla transmon.

A powerful and established technique for measuring
bosonic modes while preventing the ancilla from pollut-
ing the logical state is to use a three-level ancilla and
to apply a microwave drive to ensure that the dispersive
shift is unchanged when the ancilla is in |e⟩ or in |f⟩
(often known as χ-matching) [23]. This erasure check,
however, bypasses the need for χ-matching drives since
it only needs to catch events when the logical information
has already been lost.

The modification of the transmon spectrum in the
presence of a beamsplitter drive allows us to perform an
erasure check with low susceptibility to transmon errors.

In the number-splitting regime for a single oscillator, a
narrow-bandwidth pulse on the ancilla enables a π-pulse
conditioned on zero photons in the oscillator. Likewise,
the joint-photon number-splitting regime allows us to ex-
cite the transmon if and only if there are zero total pho-
tons in two oscillators (i.e. when the dual-rail qubit has
leaked to |0, 0⟩).

For transmon pulses selective on N = 0, we do not re-
quire gbs ≫ χ but only that the N = 0 transition is suf-
ficiently detuned from all other transitions we would like
to avoid. In the context of the dual-rail encoding, these
are the transitions in the N = 1 manifold (corresponding
to the logical subspace), for which the detuning saturates
at χ/2 for |gbs/χ| ≥

√
3/2 (see Fig. 1c). This establishes

a wide range of values for |gbs/χ| that can enact an era-
sure check and allows for a more flexible implementation
than the erasure check proposed in [42, 43], based on
measuring the joint photon number parity, where |gbs/χ|
is fixed (see Appendix J for a detailed comparison of the
two approaches).

Furthermore, a variety of pulse shapes on the trans-
mon drive may be used to perform the erasure check
while trading off susceptibility to different error sources.
For example, a long, highly frequency-selective Gaussian
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pulse will limit transmon excitation when in the N = 1
manifold, at the expense of more idling errors during the
check. To minimize the combined rate of transmon er-
rors and idling errors, we use a shorter square pulse with
a duration Tp = 1.820 µs while applying a beamsplitter
drive with amplitude |gbs/χ| = 1.04 (as indicated by the
square symbol in Fig. 1c). These values of gbs and Tp
are calibrated to ensure that when starting in the dual-
rail logical subspace, both the transmon and oscillators
return to their initial states at the end of the sequence
despite the finite selectivity of the transmon pulse (see
Fig. 3b,c; for detailed calibration procedures, see Ap-
pendix E). While this scheme places no special require-
ment on the adiabaticity of the beamsplitter drive ramp,
we use a 120 ns cosine-shaped ramp to stay well within
the bandwidth limit imposed by the on-chip Purcell fil-
ter through which the beamsplitter drive is applied. We
align the center of this ramp in time with the center of
the 24 ns cosine ramp on the transmon pulse, which we
find from simulation ensures optimal performance.

The trajectories of the transmon state for different in-
put oscillator states in Fig. 3c showcase the operation of
the erasure check: while the transmon ends in |e⟩ when
the oscillators are in |0, 0⟩ (thus flagging an erasure), it
returns to |g⟩ for input states |0, 1⟩ and |1, 0⟩. The rel-
atively small area under the |0, 1⟩ and |1, 0⟩ curves in-
dicates that the transmon is less likely to be excited in
these cases and so transmon decay and dephasing errors
are less likely to induce false positives or logical Pauli er-
rors. Meanwhile the relatively small difference between
the |0, 1⟩ and |1, 0⟩ curves indicates the limited extent to
which transmon dephasing errors allow the environment
to distinguish between different logical states, thereby
inducing Pauli errors when they occur [63].

We test the fraction of leakage errors caught by
the check by preparing |0, 0⟩ and performing a sin-
gle mid-circuit erasure check followed by destructive
photon-number-selective measurements of each cavity
[44]. When post-selecting on the final state remaining in
|0, 0⟩, we find a false negative rate pFN = 3.7±0.2%, con-
sistent with results of master equation simulations using
the physical transmon error rates in our system. While
the false negative rate is sensitive to transmon errors, in
the operation of an error-correcting code the actual prob-
ability of missing an erasure (pmiss = perasure × pFN ∼
10−3) is also multiplied by the small probability that
an erasure has been suffered since the previous check.
We find that this rate of false negatives is still admissi-
ble for high fault-tolerant thresholds in the surface code.
In fact, when performing erasure checks after every two
qubit gate, the surface code threshold (per step consist-
ing of a gate plus an erasure check) with such a level
of false negatives is pth = 3.71 ± 0.02%, which is well in
excess of the 1% Pauli noise threshold. As a point of com-
parison, if the false negative rate were 0, our threshold
would be pth = 3.79 ± 0.02%, signifying that the thresh-
old is minimally affected by the rate of false negatives.
In both cases, we have assumed that 90% of errors are

erasures. For more details on these simulations, refer to
Appendix F. As such, false negatives, which have a very
small impact on pth, are less costly than false positives,
which contribute to the overall physical error rate that
should be kept small with respect to pth. This informs
the design of the erasure check where the transmon is
excited only if N = 0.

A single experiment is used to evaluate the perfor-
mance of the mid-circuit erasure check when acting on
the code space, in terms of both the erasure error rate and
the Pauli error rate induced by the check. This tomogra-
phy sequence, shown in Fig. 3d, consists of preparing the
six dual-rail cardinal states |±X⟩ , |±Y ⟩, and |±Z⟩, re-
peating the erasure check n times and then measuring the
logical operators X̂L, ŶL and ẐL using photon-number-
selective readout of each cavity (see Appendix G). To
separate the contribution from idling errors, we perform
the same sequence but replacing each erasure check with
a delay of the same duration. Beamsplitter pulses are
used to enact single-qubit gates on the dual-rail qubit,
allowing us to prepare states on the equator of the Bloch
sphere and perform logical measurements. An echo pulse
is added to remove the effect of no-jump back-action at
long times. When the decay rate in each cavity is differ-
ent (as is especially the case here, with T1,a = 347 µs and
T1,b = 109 µs), post-selecting on no photon loss leads
to a deterministic polarization towards one pole of the
Bloch sphere and results in an approximately-Gaussian
envelope on both the idling and erasure check data on a
timescale set by the difference in the T1 times [43]. In-
troducing the echo therefore allows us to better resolve
errors induced by the check itself.

The erasure rate is extracted by looking at the success
probability (i.e. the likelihood of passing n successive
checks) as a function of n, averaged over all input states
(see Fig. 3e). The slope of the exponential decay shows
a total erasure rate per check perasure = 2.92±0.01%. To
determine what fraction of these flagged events are ‘in-
trinsic’ erasures due to photon loss to |0, 0⟩, as opposed
to false positive events predominantly due to transmon
errors, we may instead ignore the results of the mid-
circuit checks and only ask how often the end-of-line
measurement yields |0, 0⟩. This gives a photon loss rate
of 2.41 ± 0.02% per check, consistent with the value ob-
tained when idling for the same duration, 2.43 ± 0.02%,
indicating that the erasure check does not induce ad-
ditional photon loss in the cavities. This value is the
‘intrinsic’ erasure rate, from which we infer that the re-
maining 0.51±0.02% of erasures are false positive errors.
That the majority of detected erasures are due to photon
loss in the high-Q cavities, rather than transmon errors,
shows the ability of the scheme to tolerate decoherence
in the transmon ancilla. Furthermore, the flexibility to
choose different transmon pulse shapes allows us to trade
off between ‘intrinsic erasures’ (suppressed with a shorter
pulse) and false positives (suppressed with a longer, more
selective pulse), which can therefore be tailored to the
relative decoherence rates in the system. This flexibility,
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not present in the joint-parity-based approach [42], also
allows us to trade off false positives (pFP = 0.51%) for
less-costly false negatives (pFN = 3.7%).

To verify that this mid-circuit erasure check preserves
the logical qubit state, we probe the fidelity of all 6
dual-rail cardinal states conditioned on passing n suc-
cessive erasure checks. Fitting the slope of the post-
selected Pauli error probabilities (obtained from the av-
erage state fidelity; see Appendix H) as a function of
measurement rounds n allows us to precisely resolve the
error rate for a single round (Fig. 3f). We find that the
logical information is well-preserved during the course of
the measurement, with an overall Pauli error per check
pPauli = 0.31 ± 0.01%, compared to 0.20 ± 0.01% when
idling. This indicates that background cavity errors dom-
inate, with transmon-induced Pauli errors contributing
at most the remaining 0.12 ± 0.01%, highlighting the ro-
bustness of the scheme against transmon decoherence.
We note that while the echo pulse used to mitigate
against no-jump backaction will also reduce the effect
of low-frequency dephasing noise on the intrinsic error
rate, errors induced by transmon decoherence should not
be affected.

Taken together, these results demonstrate the efficacy
of a flexible hardware-efficient mid-circuit erasure check,
making use of only the beamsplitter interaction (used for
gates) and dispersive transmon coupling to a single mode
(used for state preparation). This check preserves a large
ratio of the erasure error rate to the Pauli error rate, with
both quantities remaining dominated by ‘intrinsic’ er-
rors associated with the hardware. With improvement of
the mode coherences closer to state-of-the-art values [64–
66], we expect this scheme to yield significantly below-
threshold performance. Indeed, with the same χ, gbs
and readout duration τRO but with a transmon T1 and
Tϕ of 200 µs and an average cavity T1 of 1000 µs, we
predict from master equation simulations a total erasure
rate perasure = 0.49% and a transmon-induced Pauli error
rate of 0.035%, at which point shot-noise dephasing from
photons in the readout resonator starts playing a larger
role (see Appendix K). Increasing χ and reducing τRO to
reduce the check duration provides another way to im-
prove performance. Separately, increasing gbs would help
reduce Pauli errors from transmon dephasing by making
the dual-rail logical states more indistinguishable during
the check [63] (see Appendix I).

DISCUSSION

These results show that a strong beamsplitter drive,
when paired with dispersive coupling to a single mode,
offers a versatile means of measuring and controlling
multiple oscillators. The tunable beamsplitter allows
for switching between single-cavity operations (accessi-
ble when gbs = 0) and their equivalent multi-cavity op-
erations on the total photon number (accessible when
gbs ≳ χ). As an important example of this, we have

demonstrated how photon-number selective measure-
ments can be extended to joint-photon-number selective
measurements to enable a mid-circuit erasure check for
dual-rail qubits. Further examples of this principle in-
clude the extension of the “selective number arbitrary
phase” (SNAP) gate to a joint-SNAP-like gate selective
on the photon number in two cavities, enabling a tun-
able CPHASE(θ) gate for two dual-rail qubits (see Ap-
pendix A).

The mid-circuit erasure check for dual-rail qubits en-
abled by joint-photon-number selective measurements
represents a new, hardware-efficient way of perform-
ing the essential ingredient for an error-correcting sur-
face code with dual-rail cavity qubits. The design of
this check, which asks whether the joint photon num-
ber is zero (as opposed to a joint-parity check which asks
whether it is even), leverages two important features of
erasure errors: that they are rare, and that the state
need not be preserved once an erasure is detected. There-
fore by only minimally exciting the ancilla when in the
dual-rail code space, it ensures that the contribution of
transmon-induced erasures and Pauli errors is subdom-
inant, at the cost of more false negatives, to which the
code is more tolerant. One caveat is that this check does
not catch rare but damaging heating events, although
this could be mitigated with the addition of a selective
pulse acting on the two-photon manifold.

Improvement of the mode coherences to state-of-the-
art values should enable performance substantially be-
low the erasure threshold for the surface code. With
high-fidelity state preparation, logical erasure-detected
measurements, single-qubit gates and hardware-efficient
mid-circuit erasure checks demonstrated, key next steps
will include a fully error-detectable two-qubit gate, as
well as fast qubit reset to turn leakage detection into
erasure conversion.

METHODS

Device

The device used for this experiment was previously
used in Chapman et al. [40] and includes two super-
conducting λ/4 post cavities machined from 99.999%-
purity Aluminum as the two oscillators. Into each of
these cavities we insert an EFG sapphire chip supporting
a transmon qubit, a readout resonator and a Purcell fil-
ter. These are used to prepare and readout states in the
two oscillators. The transmon coupled to Bob’s cavity is
used to determine the spectrum in Fig. 1 and to perform
the erasure check in Fig. 3. Detailed characterization of
system parameters are shown in Table II and discussed
in Appendix M.

To provide the beamsplitter interaction between these
cavities, we add a capacitively-shunted superconducting
nonlinear asymmetric inductive element (SNAIL) [56],
a superconducting loop with three nominally-identical
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Josephson junctions (each with Josephson energy EJ/h =
90.0 ± 0.3 GHz) in series on one arm of the loop and a
single junction (with Josephson energy α = 0.147±0.001
times smaller) on the other. The capacitive shunt is im-
plemented by adding leads to the two ends of the SNAIL
connecting to large capacitor pads. This gives the SNAIL
a charging energy EC/h = 177 ± 2 MHz, while the leads
also contribute a series linear inductance with energy
EL/h = 64 ± 2 GHz. This circuit is patterned onto a
sapphire chip which is inserted into a tunnel that in-
tersects both cavities, thereby generating a linear cou-
pling between the SNAIL mode and each of the oscillator
modes. Passing a DC magnetic flux through the SNAIL
loop (delivered via a superconducting flux transformer)
modifies the potential of the SNAIL, allowing us to gen-
erate a third-order nonlinearity. By applying a single
microwave drive that couples to the charge operator of
the SNAIL mode, at a frequency equal to the difference
between the two cavity frequencies, we can generate the
beamsplitter interaction via a three-wave-mixing process.
The frequency detuning from this resonance condition is
the detuning ∆ indicated in Eq. 1, and the amplitude
and phase of the drive determine gbs and φ.

Any magnetic flux bias Φext besides a half integer mul-
tiple of Φ0 gives the SNAIL a third-order nonlinearity and
at low drive powers, the magnitude of this nonlinearity
determines the ratio between the applied drive amplitude
and gbs. However, as was seen previously [40], at larger
drive powers, this linear relationship breaks down and
there exists a maximum value of gbs at each Φext. The
flux bias used in this experiment (Φext = 0.334Φ0) was
chosen to give the highest maximum value of gbs while
avoiding any unwanted resonances at any value of gbs as
it is increased to this maximum value. This therefore
provides access to the widest range of values for |gbs/χ|.
Appendix B provides details on how we measure and cal-
ibrate the value of gbs.

The aluminum package is mounted to the mixing
chamber plate of a Bluefors XLD400sl dilution refrigera-
tor, at a temperature of 8 mK.

Oscillator-spin model

As in Tsunoda et al. [42], we can express the system
Hamiltonian in Eq. 1 in terms of the Schwinger angular
momentum operators [58] (defined in Eq. 2):

Ĥ
ℏ

= gbs cosφŜx − gbs sinφŜy −

(∆ − χ |e⟩ ⟨e|)
(
N̂

2 − Ŝz

)
. (9)

As indicated in Eq. 4, Ĥ is block-diagonal in the ancilla
subspace, allowing us to separately consider the ancilla-
state-dependent Hamiltonians Ĥg and Ĥe.

This Hamiltonian also conserves total photon number
N̂ and so if we restrict ourselves to the N -photon man-

ifold, we may make the replacement N̂ → N . In the
N -photon manifold, the Schwinger angular momentum
operators defined above are the standard spin-N/2 oper-
ators, with eigenvalues running from −N/2 to N/2. We
may combine these spin operators into a single spin op-
erator ŜΩ̂ pointing along a quantization axis Ω̂ such that
the Hamiltonian is diagonal. Writing the Hamiltonian
separately when the qubit is in |g⟩ and in |e⟩ gives:

Ĥg

ℏ
= −N∆

2 + |Ω⃗g|ŜΩ̂g
, (10)

Ĥe

ℏ
= N (χ− ∆)

2 + |Ω⃗e|ŜΩ̂e
, (11)

where

Ω⃗g =

 gbs cosφ
−gbs sinφ

∆

 , (12)

Ω⃗e =

 gbs cosφ
−gbs sinφ

∆ − χ

 . (13)

Transition frequencies

Since the Hamiltonian is diagonal in each case, we may
simply read off the eigenenergies as{

Eg

ℏ

}
=
{

−N∆
2 +mg

√
g2

bs + ∆2
}
, (14){

Ee

ℏ

}
=
{
N (χ− ∆)

2 +me

√
g2

bs + (∆ − χ)2
}
, (15)

where mg,me = −N/2, ..., N/2. If we take all the differ-
ences between these energies, we obtain (N + 1)2 transi-
tion frequencies,

{ω} =
{
Nχ

2 +me

√
g2

bs + (∆ − χ)2

−mg

√
g2

bs + ∆2
}
. (16)

The case where ∆ = χ/2, the condition required to
observe joint-photon number-splitting, is special as many
of the transition frequencies become degenerate, leaving
2N + 1 unique transitions:

{ω}∆=χ/2 =
{
Nχ

2 + δm

√
g2

bs +
(χ

2

)2
}

(17)

where δm ≡ me −mg = −N, ..., N .

Transition matrix elements

From the eigenstates of Hg and He, which we denote
as |mg⟩ and |me⟩, we may also find the matrix elements
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for each transition:

|M |mg→me
=
∣∣∣∣⟨mg| ⟨g|

(
ϵ

2 |g⟩ ⟨e| + ϵ∗

2 |e⟩ ⟨g|
)

|e⟩ |me⟩
∣∣∣∣

= |ϵ|
2 |⟨mg|me⟩| (18)

The overlap between the initial and final oscillator states
therefore tells us the strength of each transition. The
overlap between a spin-N/2 eigenstate with magnetic
quantum number mg along one axis and another eigen-
state with magnetic quantum number me along another
axis at an angle δθ from the first is given by the Wigner
(small) d-matrix [67]:

|⟨mg|me⟩| =
∣∣∣dN/2

mg,me
(δθ)

∣∣∣ . (19)

In our case, the angle between the spin axes Ω̂g and Ω̂e

is

δθ = arctan
(

∆
gbs

)
− arctan

(
∆ − χ

gbs

)
. (20)

For the specific case shown in Fig. 2b, where N =
1 and ∆ = χ/2, the angle difference becomes δθ =
2 arctan (χ/2gbs). The matrix element for the central
transition is therefore

|Mδm=0| ∝
∣∣∣d 1

2
1
2 , 1

2
(δθ)

∣∣∣ =
∣∣∣d 1

2
− 1

2 ,− 1
2
(δθ)

∣∣∣ (21)

= cos
(
δθ

2

)
(22)

= cos
(

arctan
(

χ

2gbs

))
(23)

= gbs√
g2

bs +
(

χ
2
)2
. (24)

Likewise for the off-central transitions,

|Mδm=±1| ∝
∣∣∣d 1

2
1
2 ,− 1

2
(δθ)

∣∣∣ =
∣∣∣d 1

2
− 1

2 , 1
2
(δθ)

∣∣∣ (25)

= sin
(
δθ

2

)
(26)

=
(

χ
2
)√

g2
bs +

(
χ
2
)2
. (27)
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Appendix A: Constructing a tunable CPHASE(θ)
gate using joint-photon number-splitting

Just as the joint-photon-number-splitting regime en-
ables joint-photon-number selective measurements, it can
also be used to extend the established selective-number-
arbitrary-phase (SNAP) gate for a single oscillator [18]
to a multi-oscillator ‘joint-SNAP’ (with some caveats).
SNAP relies on the number-splitting regime to perform
two consecutive photon-number-selective π-pulses with
different phases, such that they enclose a geometric phase
on the Bloch sphere of the transmon, thereby applying
photon-number selective phases to the oscillator state.

Similarly, the application of a strong beamsplitter drive
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FIG. 4. CPHASE(θ) gate. (a) Illustration of two adjacent dual-rail cavity qubits, with beamsplitter couplings enabled
by SNAILs. The orange and blue annuli represent lambda/4 post cavities viewed from above. The setup in this experiment
(within the dashed lines) can be used to operate a gate between these two hypothetical encoded dual-rail qubits. (b) Pulse
sequence to obtain transmon trajectories during joint-SNAP CPHASE(θ) gate. (c) Bloch sphere trajectories of the transmon
state conditioned on starting in every valid state for two oscillators shared between two dual-rail qubits. (d) Ramsey sequence
used to probe the phase acquired by Bob’s oscillator, conditioned on the state in Alice. (e) Results of Ramsey experiment to
probe the phase acquired by Bob’s oscillator during CPHASE(θ) gate with θ = π/2 (red) and θ = π (blue, CZ), when Alice
oscillator state is |0⟩ (connected squares) and |1⟩ (solid lines).

during the same SNAP sequence makes the constituent
transmon π-pulses selective on the joint photon number
in two oscillators, thereby allowing one to apply an ar-
bitrary phase to each joint-photon-number component of
the two-oscillator state:

ÛJoint-SNAP =
Nmax∑
N=0

eiϕN P̂N , (A1)

where P̂N is the projector onto two-oscillator states with
total photon number N and Nmax is the highest total
photon number state we wish to address. However, as is
described in App. L, for Nmax > 1, an increasingly large
ratio |gbs/χ| is required to ensure that different states
with the same N evolve together. This construction is
therefore most useful for applying a phase conditioned on
N = 0 total photons.

The application of an N = 0 - selective phase imple-
ments a tunable CPHASE(θ) gate on two Fock-encoded
qubits or equivalently, if the two oscillators are each part
of a different dual-rail qubit (as in Fig. 4a), a logical
CPHASE(θ) gate on dual-rail qubits. This gate is a max-
imally entangling gate between qubits, a key ingredient
for the dual-rail architecture, and consists of applying
a tunable phase only to the |1L⟩ |1L⟩ two-qubit dual-
rail state while leaving other dual-rail states untouched.

Since the logical information for a single dual-rail qubit
is redundantly encoded in two oscillators, we can effect
this by applying a phase to the |0, 0⟩ Fock state of the
two addressed oscillators. The application of a geomet-
ric phase to the joint-vacuum state of two oscillators has
previously been shown in the context of Schrodinger cat
qubits using a transmon with a static dispersive coupling
to both modes [35] but is here achieved with a transmon
statically coupled to one mode and a strong beamsplit-
ter interaction that temporarily activates the coupling to
the other. (In principle, applying the phase to any one of
|0, 0⟩, |0, 0⟩, |0, 0⟩ or |0, 0⟩, combined with local rotations
on the cavities, can effect a CPHASE gate.)

The constraints on the value of |gbs/χ| are slightly dif-
ferent in the case of the CPHASE(θ) gate than for the
erasure check. Whereas previously we only needed to
avoid transitions in the N = 1 total photon number man-
ifold, the |1, 1⟩ Fock state (with N = 2) is a valid initial
state for two oscillators belonging to two different dual-
rail qubits. As such, the need to drive an N = 0 tran-
sition while avoiding both N = 1 and N = 2 transitions
leads us to choose a value of |gbs/χ| ≈ 1.6 (see triangle
Fig. 1c). Further increasing |gbs/χ| would increase the
separation to unwanted transitions at the potential cost
of additional decoherence as we approach the maximum
value accessible in this device.
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The simulated Bloch sphere trajectories of the
transmon state for all valid input oscillator states
(shown in Fig. 4c) show the principle of this oper-
ation for CPHASE(π) = CZ. As shown in Fig. 4b,
|0, 0⟩ , |0, 1⟩ , |1, 0⟩ and |1, 1⟩ are prepared, before perform-
ing back-to-back selective π-pulses with a phase differ-
ence that is chosen to ensure that θ = π. Whereas for
initial states |0, 1⟩ , |1, 0⟩ and |1, 1⟩ the transmon trajec-
tories stay near the ground state and return to |g⟩, the
|0, 0⟩ trajectory passes through |e⟩ and encloses a large
geometric phase before returning to |g⟩.

To verify that this protocol performs a CPHASE(θ)
gate on two Fock-encoded qubits, we can perform the
Ramsey sequence shown in Fig. 4d. This starts by
preparing either |0⟩ |+⟩ or |1⟩ |+⟩ in the oscillators, where
|+⟩ = (|0⟩ + |1⟩)/

√
2. The superposition states are

loaded into the oscillator by preparing (|g⟩ + |e⟩)/
√

2
in the transmon and performing an ‘encoding’ optimal
control pulse (OCP) which maps |ψ⟩qubit |0⟩oscillator →
|g⟩qubit |ψ⟩oscillator. We then enact the CPHASE(θ) gate
for variable θ, including a transmon readout to catch er-
rors that leave it out of the ground state, before map-
ping the oscillator state onto the transmon with a ‘decod-
ing’ OCP (which performs the inverse of the ‘encoding’
OCP) and measuring the phase of the transmon using
a variable-phase π/2-pulse. In this way, the transmon
measurement allows us to probe the phase acquired by
the Bob oscillator state during the gate.

The results for θ = π/2 and θ = π, shown in Fig. 4e,
show that a tunable phase can be imparted on Bob’s su-
perposition state dependent on the state in Alice’s cavity.
The measured transmon population oscillations encode
the phase of Bob’s cavity superposition. When Alice is
initialized in |1⟩ (connected dots) these oscillations lie
on top of one another, indicating that the two-oscillator
states |1, 0⟩ and |1, 1⟩ have the same relative phase re-
gardless of the choice of θ. Meanwhile the relative po-
sition of the oscillations when Alice is initialized in |0⟩
(squares), can be tuned depending on the enclosed phase,
such that we are free to choose the relative phase between
the two-oscillator states |0, 0⟩ and |0, 1⟩. Together with
arbitrary rotations on either cavity, which can be per-
formed virtually, this provides the necessary control for
a CPHASE(θ) gate. The loss in contrast of the oscil-
lations is dominated by SPAM errors during the OCT
encode and decode pulses, as well as cavity photon loss.
Full characterization of the dual-rail CPHASE gate per-
formance would require process tomography and would
ideally be performed on a system with four modes com-
prising two dual-rails (as shown in Fig. 4a). This would
allow for both high-fidelity SPAM and the detection of
photon loss during the gate.

This gate construction has some, but not all of the de-
sired features for a multi-cavity encoding scheme such as
the dual-rail. By appending the CPHASE(θ) operation
with a transmon readout, some, but not all, transmon
errors can be caught and converted to erasures. Fig. 5
shows the simulated erasure rate and post-selected state

(a) (b) (c)

(d) (e) (f)

FIG. 5. Projected dual-rail CPHASE performance.
Simulated erasure rate (red) and post-selected infidelity (blue)
for the dual-rail CPHASE(π) gate, with chopped Gaussian
transmon pulse of total duration 3.194 µs (a-c) and ‘shaped-
square’ transmon pulse shape of total duration 1.994 µs (d-f).
In each column, either the transmon dephasing rate T |e⟩⟨e|

ϕ ,
transmon decay rate T |g⟩⟨e|

1 or cavity photon loss rates T loss
1

are varied with no other loss channels included. All simula-
tion results are averaged over all 36 two-qubit states formed
from every combination of the 6 dual-rail cardinal states in
either qubit. For all simulations, we use a dispersive shift of
χ/2π = 1 MHz, and an infinite-bandwidth square beamsplit-
ter pulse whose amplitude is optimized to minimize coherent
errors while restricting it to obey gbs/2π < 2 MHz. Impact
of Stark shifts due to the beamsplitter drive is neglected.

infidelity, which depend linearly on the underlying phys-
ical error rates but with different offsets. (The plateau
at long coherence times is due to residual coherent errors
that could be removed by using a pulse shape with more
degrees of freedom than a simple square pulse.) Whereas
the post-selected infidelity due to transmon decay errors
is distinguishably lower than the corresponding erasure
rate, indicating that most transmon decay errors can be
caught by the check, for transmon dephasing errors they
are comparable.

This construction therefore does not achieve the full
error-detecting and fault-tolerant properties of the ZZ(θ)
gate for dual-rail qubits proposed by Tsunoda et al.
[42]. Adapting this CPHASE(θ) gate to be fully error-
detectable to transmon errors would require the use of
three transmon energy levels (to protect against trans-
mon relaxation) and simultaneous transmon drives on all
joint-photon-number-selective peaks (to protect against
transmon dephasing) [22].
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Appendix B: Calibrating beamsplitter strength and
Stark shifts

The beamsplitter amplitude gbs and resonance fre-
quency ω∆=0 (i.e. the drive frequency required to achieve
a detuning ∆ = 0) are measured by initializing the state
|0, 1⟩⊗|g⟩, turning on the beamsplitter drive and measur-
ing the photon number in Bob’s cavity after some time t.
By varying the frequency and duration of the beamsplit-
ter drive, we observe the chevron pattern seen in Fig. 6a,
which we can fit to:

P1(ω, t) = A

[
cos2

(
Ωt
2 + ϕ

)
+
(
ω − ω∆=0

Ω

)2
sin2

(
Ωt
2 + ϕ

)]
+ c,

(B1)

where the detuned oscillation rate is given by

Ω =
√
g2

bs + (ω − ω∆=0)2
, (B2)

ϕ captures the phase accumulation while the beamsplit-
ter drive is ramping up, and A and c capture the contrast
and offset due to SPAM.

Fig. 6b shows the fitted values of gbs over the range of
microwave drive amplitudes used in this experiment. As
described in previous work [40], the measured beamsplit-
ter amplitude is linearly proportional to drive amplitude
at low amplitudes but deviates at high amplitudes. In
order to interpolate between the amplitudes used for the
calibration experiment, we fit the gbs curve to a degree-
5 polynomial (with the intercept forced to pass through
the origin).

The fits to the chevrons also provide an estimate of
the beamsplitter resonance frequency, which at low pump
powers is equal to the difference in the undriven cavity
frequencies, ω0

b − ω0
a. This in turn allows us to estimate

the frequency ω∆=χ/2 at which to drive the beamsplitter
to achieve a ‘symmetric’ detuning ∆ = χ/2. This fre-
quency shifts downwards due to Stark shifts of the cav-
ity frequencies induced by the beamsplitter drive, with
Bob’s cavity frequency shifting downward by more than
Alice’s:

ω∆=χ/2 = ω∆=0 + χ/2
=
(
ω0

b + δStark
b

)
−
(
ω0

a + δStark
a

)
+ χ/2

=
(
ω0

b − ω0
a + χ/2

)
+(

δStark
b − δStark

a

)
. (B3)

We perform a finer calibration of this frequency by
measuring the oscillations of the cavities’ photon number
induced by the beamsplitter drive when the transmon
is in |g⟩ or in |e⟩. The point at which the frequencies
of these oscillations are matched marks the symmetric
∆ = χ/2 point for which the data in Fig. 1 is taken.
These values, relative to ω0

b − ω0
a, are plotted in Fig. 6c.

(a)

𝘱𝘣

(b)

(c)

FIG. 6. Beamsplitter amplitude and resonance fre-
quency. (a) Measured oscillations in the population of Bob’s
cavity, pb, as a function of applied beamsplitter drive fre-
quency. The data is shown for a DAC amplitude of 0.25 for
the beamsplitter drive. Contours show the fit to Eq. B1, from
which gbs and a first estimate for the resonance frequency are
obtained. (b) Fitted beamsplitter amplitude gbs as a function
of DAC amplitude. (c) Beamsplitter drive frequency required
to ensure a symmetric detuning ∆ = χ/2 as a function of
DAC amplitude, relative to the bare resonance frequency.

Appendix C: Measuring transition matrix elements

To measure the transition matrix elements in Fig. 2b,
we perform a power-Rabi experiment which determines
the amplitude of the spectroscopy tone required to per-
form a π-pulse on the ancilla. This quantity is inversely
proportional to the transition matrix element. We run
this sequence at each value of |gbs/χ| for both the cen-
tral δm = 0 transition and the lower δm = −1 transition.
The δm = −1 transition is chosen over the δm = +1
transition, owing to its distance from other transitions,
allowing for a cleaner measurement, but both δm = ±1
transitions are expected to share the same matrix ele-
ment.

This measurement requires us to ensure that the fre-
quency of the spectroscopy tone is on resonance with the
transition. If the spectroscopy tone has some detuning,
the rate of Rabi oscillations would be overestimated. To
mitigate this, we precisely find the ancilla resonance fre-
quency for each value of |gbs/χ| by taking a vertical slice
of the N = 1 colorplot in Fig. 1c in the vicinity of the
desired transition, fitting it to a Gaussian and extracting
the fitted center frequency.

The power-Rabi sequence consists of initializing the
oscillators in the state (|0, 1⟩ + i |1, 0⟩)/

√
2, playing a

Gaussian-shaped pulse of total duration 14.8 µs with
varying amplitude and measuring the state of the trans-
mon at the end. The rate of the oscillations (see Fig. 7 for
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(a)
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𝛿𝑚 = 0
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FIG. 7. Power Rabi oscillations used to extract matrix
elements. Measured probability of finding the ancilla in |e⟩
after a selective ancilla pulse of variable amplitude for the
δm = 0 (a) and δm = −1 (b) transitions in the N = 1
photon manifold of Fig. 1c. A symmetric beamsplitter drive
is applied during the pulse, in this case with an amplitude
gbs ≈ |χ|. The ancilla pulse amplitude is normalized to the
value required for a π-pulse in the absence of a beamsplitter
drive. The frequency of these oscillations is used to extract
the transition matrix elements in Fig. 2.

an example) is inversely proportional to the amplitude
required for a single π-pulse, and so is proportional to
the transition matrix element. We avoid the need to pre-
cisely calibrate the drive power delivered to the package
by normalizing all the power-Rabi oscillation frequencies
to the value at gbs = 0 for δm = −1. Importantly, this
technique is not sensitive to infidelity in state preparation
and measurement, as this just affects the amplitude of the
oscillations, not their rate. The experimental δm = 0
curve in Fig. 2b does not extend to gbs/χ = 0. The
reason for this is that as the transition matrix element
decreases, the transmon drive amplitude |ϵ| required to
perform a π-pulse increases. As |ϵ| becomes compara-
ble to max(gbs, χ), the assumption that the transmon
drive can be treated as a perturbation in the Hamilto-
nian breaks down. Specifically, we find that there is no
longer a single degenerate δm = 0 transition at δω = 0.

Appendix D: Degeneracy breaking for
non-symmetric beamsplitter detuning

In the main text, we primarily consider the case where
a beamsplitter drive is applied with a symmetric detun-
ing, ∆ = χ/2, so-called because it lies exactly halfway be-
tween the beamsplitter resonance when the ancilla qubit
is in |g⟩ and the resonance when the ancilla is in |e⟩. In
this case, many of the transition frequencies are degen-
erate. However, as can be seen in Eq. 16, we expect this

|gbs / χ|

δω
 / 
|χ
|

-2

1

0

-1

1
0

0.4

0.5 1.5

pe

N = 1
Δ = χ 

FIG. 8. Driven transmon spectrum with non-
symmetric beamsplitter detuning. Measured probabil-
ity of exciting the transmon when initializing the cavities in
|ψ⟩ = (|0, 1⟩ + i |1, 0⟩)/

√
2 and applying a selective transmon

pulse in the presence of a beamsplitter drive with amplitude
gbs and detuning ∆ = χ. The white dashed lines show pre-
dicted transition frequencies from spin-oscillator model.

degeneracy to break when we move to a non-symmetric
beamsplitter detuning, ∆ , χ/2. For example, in the
case that the total photon number N = 1, we expect
four (rather than three) separate transition frequencies.

We can verify this by measuring the transmon spec-
trum when the cavities are initialized in |ψ⟩ = (|0, 1⟩ +
i |1, 0⟩)/

√
2 and we apply a beamsplitter drive with de-

tuning ∆ = χ, shown in Fig. 8. The white dashed lines
show the theory predictions which agree well with the
measured spectrum, with the exception of a slight shift
downwards in frequency of the experimental curves with
respect to theory at large beamsplitter amplitudes. This
is at least in part due to a slight negative Stark shift of
the transmon frequency when a strong beamsplitter drive
is applied.

Appendix E: Tune-up of joint-photon
number-selective pulses

In general, a variety of transmon pulse shapes may
be chosen for the joint-photon number-selective pulse.
The choice of pulse shape provides a way to trade off
between idling and false negative errors (reduced with a
shorter, less frequency selective pulse) and false positive
and induced Pauli errors (reduced with a longer, more
frequency selective pulse). In the erasure check demon-
strated in this work, we considered a cosine-ramped
square pulse. Later in this section we also provide a
method for tuning up a longer chopped Gaussian pulse,
as used for the CPHASE gate in Appendix A.



16

Erasure check with square pulse

We first consider cosine-ramped square transmon
pulses of the form

Ĥtransmon

ℏ
= f(t) σ̂x, (E1)

with

f(t) =


A
2

(
1 − cos

(
πt
tr

))
, 0 < t < tr

A, tr ≤ t ≤ Tp − tr
A
2

(
1 + cos

(
π(t−tr+Tp)

tr

))
, Tp − tr < t < Tp.

(E2)
where A is the pulse amplitude, Tp is the pulse duration
and tr is the duration of the cosine ramp. The ramp time
tr should be kept sufficiently long to prevent coherent
errors from the |f⟩ level of the transmon.

When using a square transmon pulse, there are discrete
operating points that ensure that dual-rail and ancilla
states both return to where they began. As mentioned
in the main text, we find from simulation that aligning
the center (in time) of the cosine ramps of the transmon
pulse with those of the beamsplitter drive ensures optimal
performance.

The tune-up procedure consists of:

1. Calibrate the following quantities as a function of
DAC amplitude:

• beamsplitter amplitude gbs,
• beamsplitter detuning ω∆=χ/2,
• ancilla resonance frequency ωancilla.

As described in Appendix B, the frequencies may
shift as the drive amplitude is increased.

2. Identify the maximum beamsplitter amplitude
gmax

bs that can be accessed without introducing sig-
nificantly more errors than when idling. Above cer-
tain drive amplitudes, one may see enhanced pho-
ton loss, dephasing or heating.

3. Find an initial starting point for the operating pa-
rameters: Tp, gbs, A, the beamsplitter drive fre-
quency ω, and the detuning of the ancilla drive
from its undriven resonance frequency δω. For
infinite bandwidth pulses (tr = 0) and no Stark
shifts, the following analytical expressions approx-
imate the ideal values:

Tp = 2π
√

3
|χ|

gbs = |χ|
√
m2

3 − 1
4 (E3)

A = |χ|
4

√
3

ω = ωb − ωa + χ/2, (E4)

with δω = 0 and where the integer m > 1 can
be varied in order to operate at different values of

gbs. We choose values close to m = 2 to ensure
gbs < gmax

bs .
A more precise starting point can be obtained
by performing a Schrödinger equation simulation
which includes the ramp times as well as Stark
shifts (i.e. how the ancilla resonance frequency and
ω∆=χ/2 change with pump amplitude) and running
gradient descent optimization using the infidelity of
the state transfers

|0, 0, g⟩ → |0, 0, e⟩ , (E5)
|0, 1, g⟩ → |0, 1, g⟩ , (E6)
|1, 0, g⟩ → |1, 0, g⟩ (E7)

as a cost function.

4. Starting with the parameters found above, fine-
tune the ancilla drive amplitude A and detuning δω
experimentally by initializing the cavities in |0, 0⟩
and performing the ancilla pulse with the beam-
splitter drive applied. Choose the parameters that
maximize the probability of exciting the transmon,
thereby minimizing false negatives. Since the |0, 0⟩
state is unaffected by the beamsplitter drive, this
calibration depends very weakly on changes in gbs
in the following step.

5. With Tp and A fixed, perform the following exper-
iment while sweeping the values of gbs and ω:

• Initialize the system in |0, 1, g⟩ or |1, 0, g⟩,
• Perform N successive erasure checks,
• Perform an erasure-detected logical measure-

ment.

From this single experiment, we obtain three key
metrics to maximize:

• Probability of passing N checks when initial-
izing in |0, 1, g⟩,

• Probability of passing N checks when initial-
izing in |1, 0, g⟩,

• Probability of returning to |0, 1, g⟩ when ini-
tializing in |0, 1, g⟩.

With the optimal choice of Tp, there should be a
point in (gbs, ω) space that maximizes all three,
thereby minimizing both false positives and coher-
ent Pauli errors.

6. If there is not optimal choice for gbs and ω, Tp can
be adjusted. If the operating points that optimized
for false positives lie at a lower gbs than is required
to ensure the dual-rail cavity states return to where
they began, the pulse duration Tp can be increased
(and vice-versa). The previous step can then be
repeated.
We can probe whether the pulse duration is set cor-
rectly via a spectroscopy experiment. This involves
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FIG. 9. Square Pulse Spectroscopy. Probability of era-
sure check reading out |e⟩ as a function of transmon pulse de-
tuning during the check when initializing the dual-rail qubit
in |0, 0⟩ (black), |0, 1⟩ (blue) or |1, 0⟩ (orange) state. The
results are post-selected on the total photon number in the
oscillators remaining the same after the check.

preparing the cavities in |0, 0⟩, |0, 1⟩ and |1, 0⟩, and
performing a single erasure check with a variable
detuning δω on the ancilla pulse. We also post-
select on the total photon number in the two cavi-
ties remaining the same after the check to remove
the effect of photon loss or gain. Fig. 9 shows the
result for the parameters optimized in this exper-
iment, with the maximum of the |0, 0⟩ peak lin-
ing up with the minimum of the |0, 1⟩ and |1, 0⟩
traces. The frequency at which they line up (indi-
cated with the dashed vertical line) is the ancilla
frequency detuning used for the check. The slight
gap between the peaks of the |0, 1⟩ and |1, 0⟩ curves
is expected, even at ∆ = χ/2, and is due to the an-
cilla drive amplitude no longer being much smaller
than gbs. If the extrema are not aligned at zero
detuning, increasing (decreasing) the duration of
the square pulse allows us to narrow (widen) the
spectrum of the curves such that they align. Doing
so will then require re-optimizing gbs and ω in this
iterative tune-up scheme.

7. Finally, double-check the calibration of A and δω
now that gbs and ω have been adjusted.

Erasure Check with Gaussian pulse

Alternatively, one can consider (amongst other narrow
bandwidth pulse shapes) chopped-Gaussian pulses of the
form:

f(t) = A

[
exp

(
− (t− nchopσ)2

2σ2

)
− exp

(
−
n2

chop

2

)]
,

(E8)
where σ is the RMS width of the Gaussian and the pulse
duration is Tp = 2nchopσ.

1-2. Same as for the square pulse sequence.

3. Set the beamsplitter amplitude to a value in the
range

√
3|χ|/2 < gbs < gmax

bs . Larger values within
this range will suppress the impact of ancilla de-
coherence on dual-rail Pauli errors. Set the beam-
splitter frequency to ω∆=χ/2. Tune up a π-pulse
on the ancilla with the cavities in |0, 0⟩ for these
beamsplitter parameters.

4. Prepare |0, 1⟩ and |1, 0⟩ in the cavities and sweep
the selectivity (given by σ) of the ancilla pulse while
keeping the product of A and σ fixed. By observ-
ing the probability of exciting the ancilla, we can
determine a minimum selectivity in order to ensure
we do not flag |0, 1⟩ and |1, 0⟩ as erasures. Set σ to
a value above this threshold.

5. Finally, we must ensure that the cavity states re-
turn to their initial states at the end of the sequence
(to avoid coherent Pauli errors). Prepare |1, 0⟩ and
|0, 1⟩, perform the erasure check with a variable
beamsplitter amplitude, and measure the dual-rail
state at the end. Depending on how close we are
to performing a full revolution, there are a few op-
tions:

• If the beamsplitter amplitude can be increased
to perform an integer number of revolutions
without exceeding gmax

bs , do this. This ensures
the pulse is as short as it can be.

• If not, increase σ until an integer number of
revolutions is performed (at the same gbs).

6. Having made this adjustment, other parameters
may need to be changed:

• If gbs has been adjusted, also adjust the beam-
splitter detuning (to ensure ∆ = χ/2), and the
transmon detuning (if it is Stark shifted by the
drive).

• If σ has been adjusted, fine-tune the ampli-
tude of the transmon pulse such that a com-
plete π-pulse is performed.

7. Return to Step 5 to verify whether the dual-rail
computational states return to their initial states.
If not, iterate over Steps 5 and 6 until this is true.

Adapting tune-up procedure for CPHASE(θ)

When performing the CPHASE(θ) gate in Appendix A
we also care about the input two-cavity state |1, 1⟩. In
this experiment we adapt the Gaussian pulse tune-up
procedure by (a) ensuring the starting value of gbs is suf-
ficiently large to avoid driving transitions in the N = 2
manifold, and (b) adding the state |1, 1⟩ to the σ and gbs
calibration sequences in steps 4 and 5.

The square pulse tune-up procedure may also be
adapted for use with CPHASE(θ) but more degrees of
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freedom in the pulse shape will be required to fully avoid
driving both the N = 1 and N = 2 peaks in the transmon
spectrum.

Appendix F: Fault-tolerant threshold simulations

We find fault-tolerant thresholds of the CSS surface
code, assuming noisy two-qubit gates and mid-circuit
erasure checks applied to every qubit after each gate.
These noisy two-qubit gates have error probability p
in which its qubits experience an erasure or Pauli er-
ror. We define a parameter called the erasure fraction,
Re = peras/(peras + pPauli). Although we anticipate an
erasure fraction of Re = 0.9, extracted from the erasure
check demonstrated in this work, we do not expect Re
to change significantly for two-qubit gates. Namely, the
beamsplitter and dispersive interactions required for the
erasure checks are also utilized in proposals for entangling
gates [42, 43].

With probability p(1−Re), both qubits involved in the
gate experience a Pauli error uniformly drawn from the
set {I,X, Y, Z}⊗2. Furthermore, with probability pRe,
one qubit from the two-qubit gate leaves the computa-
tional space. To describe what happens to other unleaked
qubits, we assume that a leaked qubit induces computa-
tional Pauli errors on any qubit it interacts with [70–74].
Thus, the unleaked qubit in the gate undergoes a Pauli
error that is dependent on which two-qubit gate is ap-
plied [74]. Specifically, in a CZ gate, the unleaked qubit
experiences an I or Z error with equal probability. If the
control (target) qubit is leaked in a CX gate, then the
unleaked target (control) qubit experiences an I or X (I
or Z) error. The proposed method for two-qubit gates in
the dual-rail cavity architecture, the ZZ(θ) gate, follows
the specific model of leakage-induced Pauli errors studied
here [42, 43]. For this gate proposal, one can show that a
leaked qubit induces rotational errors on the other qubit
along one Pauli axis.

We model false negatives of erasure checks as the fol-
lowing. When erasure occurs during a two-qubit gate,
the erasure check after this gate returns no flag with the
false-negative probability 3.7%. Given a false negative,
we assume the detectable leakage will be detected during
the next round of mid-circuit erasure checks. We there-
fore ignore the effect of doubly-missed erasures, which are
expected to occur with a probability on the order of 10−5.
These events, while damaging in the context of error-
correction and a subject for future work, are rare relative
to leakage rates in state-of-the-art transmon-based archi-
tectures (on the order of 10−3) [75]. As before, the leaked
qubit is assumed to induce computational errors on any
qubit it interacts with before it is detected. To account
for these correlated errors, we use a modified, weighted
union-find decoder. For details on this decoder, we refer
to [76].

Appendix G: Erasure-detected end-of-line logical
measurement

Logical X, Y and Z measurements at the end of the se-
quence in Fig. 3d consist of a 50:50 beamsplitter pulse
that rotates the dual-rail state onto the desired mea-
surement axis, followed by an erasure-detected end-of-
line (EOL) measurement, illustrated in Fig. 10a [51]. In
this section, we describe the measurement sequence we
use and show that the post-selection probability does not
depend on the number of preceding successful mid-circuit
checks.

The logical measurement starts with a transmon reset
sequence that conditionally resets both transmons and
double checks that they are indeed in |g⟩ after the reset.
Resetting the transmons to |g⟩ is crucial because starting
the EOL measurement with one or more transmon in |e⟩
could lead to an error in state assignment.

Subsequently, cavity-photon-number-selective π pulses
excite the measurement transmons conditioned on 1 pho-
ton in the adjacent cavity. We record this result and
conditionally reset the transmons to |g⟩ before swapping
the cavity states with two consecutive 50 : 50 beamsplit-
ter pulses. We then perform a second photon-number-
selective measurement. This echoed sequence, where the
state of each cavity is measured twice (once with each
measurement transmon), removes bias due to any differ-
ences between the measurement fidelities of the trans-
mons or between the coherences of the cavities. We only
keep results in which (a) these two rounds of measure-
ment are consistent and (b) they indicate a total of 1 pho-
ton in both cavities (i.e. |g⟩A |e⟩B followed by |e⟩A |g⟩B ,
or |e⟩A |g⟩B followed by |g⟩A |e⟩B).

Fig. 10b shows the probability of passing the EOL
measurement, conditioned on passing all previous mid-
circuit erasure checks, for the data presented in Fig. 3f.
This probability is consistent regardless of the number
of mid-circuit checks performed thus confirming that the
EOL measurement does not introduce any bias in our
measurements. This ‘strict’ EOL measurement sequence
discards a relatively large fraction of the data, with an
average success probability of 79.4 ± 0.4%, but in doing
so, ensures a faithful measurement of the final dual-rail
states.

Appendix H: Dual-rail state fidelity after repeated
erasure checks

To characterize the Pauli error rate per erasure check
(post-selected on passing every check), we perform the
sequence shown in Fig. 3d, in which we prepare all six
dual-rail cardinal states, perform n successive erasure
checks (with an echo pulse inserted halfway) and then
perform a logical measurement along the axis in which
the initial state was prepared. Ideally the erasure check
should leave the initial state alone, and this measure-
ment sequence allows us to obtain the state fidelity for
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FIG. 10. Erasure-detected end-of-line (EOL) logical measurement. (a) Pulse sequence for the erasure detected EOL
check comprises transmon reset and erasure-detected EOL measurement.(b) Probability of passing the EOL measurement
plotted against the number of preceding mid-circuit erasure checks before the EOL measurement. Gray horizontal line shows
average probability.

each cardinal state. This fidelity is post-selected on pass-
ing all the erasure checks, and on the end-of-line logical
measurement not finding the cavities in |0, 0⟩.

The state fidelities for initial states |±X⟩L, |±Y ⟩L and
|±Z⟩L are shown in purple in Fig. 11. The grey lines show
the same fidelities when we instead idle for the duration
of the beamsplitter and transmon pulses. Whereas the
idling dual-rail state is strongly biased against having bit-
flip errors (indicated by the high ± |Z⟩L state fidelity),
the errors induced on the state during the erasure check
are closer to a depolarizing channel. Just as with single-
qubit gates, this removal of the bias is an inevitable con-
sequence of applying the beamsplitter drive.

From the average state infidelities per erasure check,
we extract the post-selected Pauli error rate via [77]

pPauli = px + py + pz = 3
2
(
1 − F̄

)
. (H1)

The factor of 3/2 comes from the fact that only two out
of the three types of errors (X, Y or Z) will flip any of
the cardinal states (e.g. the |+Z⟩ state is unaffected by
Z-type errors).

We also measure the expectation values of the logi-
cal operators perpendicular to the axis along which the
initial state was prepared (Fig. 12). Ideally these val-
ues should be zero. In Fig. 12, the logical measurement
results display small biases for both performing erasure
check (top row) and when idling (bottom row). These
biases are largest for XL and YL measurements but they
do not grow or noticeably oscillate in time. We specu-
late that this indicates that the sequence is not perfectly
symmetric about the echo pulse.
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FIG. 11. Dual-rail state fidelities after repeated era-
sure checks. (a-c) Purple markers show state fidelity of logi-
cal plus (|+X⟩, |+Y ⟩ or |+Z⟩) (dots) or logical minus (|−X⟩,
|−Y ⟩ or |−Z⟩)(triangles) states after passing n erasure checks.
Gray markers show same fidelities when replacing each era-
sure check with a delay of the same duration. Lines show
linear fits.

Appendix I: Error scaling for erasure check

To help decide which parameters to use for the erasure
check, we would like to determine how the erasure and
Pauli error rates scale as we vary the decoherence rates
of the system, the duration of the transmon pulse and
the ratio of the beamsplitter amplitude to the dispersive
shift. Here we do so with the aid of QuTiP [78] master
equation simulations.

The key takeaways are that (a) increasing the pulse
duration and commensurately reducing the transmon
pulse amplitude reduces the probability of suffering
transmon-induced erasure and Pauli errors, (b) increas-
ing the beamsplitter amplitude reduces the probability
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FIG. 12. Logical measurement results breakdown. (a-c)
Residual X, Y and Z logical measurement results for different
initial states after passing n mid-circuit erasure checks. (d-
e) Same data when we instead idle for the duration of the
beamsplitter and transmon pulses.

of suffering transmon-induced Pauli errors, and (c) the
likelihood of transmon-induced erasures and transmon-
induced Pauli errors scale differently for transmon de-
phasing and transmon relaxation.

We can show this using a family of square transmon
pulses that has consistent ideal performance in the ab-
sence of collapse operators while giving us the freedom
to sweep the pulse duration. As a starting point, we cen-
ter the pulse on the N = 0 transition frequency, with a
duration Tp chosen to put a notch in the spectrum at the
central N = 1 transition

Tp = 2π
|χ|
√

4n2 − 1, (I1)

where the integer n indicates the number of detuned Rabi
oscillations the transmon undergoes when the cavities are
in |0, 1⟩ or |1, 0⟩. Meanwhile we can also choose the beam-
splitter amplitude to ensure that the oscillator states ap-
proximately return to their starting positions at the end
of Tp:

gbs = |χ|
√

m2

4n2 − 1 − 1
4 , (I2)

where the integer m denotes the number of detuned
beamsplitter oscillations the oscillator states undergo
during the pulse duration. We then locally optimize the

(a) (b)

(c) (d)

FIG. 13. Scaling of erasures arising from transmon
errors. (a) Simulated average Pauli error rate during erasure
check as a function of the normalized transmon dephasing
rate. Data is shown for a pulse duration Tp = 1.7 × 2π/|χ|
and a beamsplitter rate gbs = 2.8|χ| with the dashed line
indicating a quadratic fit. (b) Linear component extracted
from these quadratic fits (i.e. sensitivity of the erasure rate
to changes in the normalized transmon dephasing rate) for
pulses of varying duration. Black dashed line shows 1/x fit to
last three points. The green point corresponds to the specific
choice of pulse duration shown in the left column. (c)-(d)
Same analysis for transmon relaxation-induced errors, where
the fit in (d) is now to a 1/x3 curve.

beamsplitter amplitude and pulse duration to suppress
coherent errors from the above approximations. The
pulses found are very close to these guessed parameters
with negligible coherent errors.

Erasures due to transmon errors

We would like to know how often (due to transmon
errors) the transmon will end up in |e⟩ given that the
state was initialized in |ψ⟩L ⊗|g⟩, averaged over dual-rail
logical cardinal states |ψ⟩L. These are the false positives
we see due to transmon dephasing and relaxation.

We choose to set m = 5n, corresponding to |gbs/χ| ≈
2.5, and sweep the value of n from 1 to 5. For each
choice of the pulse duration, we can sweep the transmon
dephasing (relaxation) rate Γϕ,t (Γ1,t) and simulate how
the erasure rate varies. We fit the resulting curve to a
quadratic (see an example in Fig. 13a,c) and extract the
linear component. The resulting slopes are then plotted
as a function of pulse duration in Fig. 13b,d.

For transmon dephasing we find that

ϵerasure ∝ Γϕ,t

χ
(Tpχ)−1

, (I3)
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(a) (b) (c)

(d) (e) (f )

FIG. 14. Scaling of Pauli errors during erasure check
arising from transmon errors. (a) Simulated average
Pauli error rate during erasure check as a function of trans-
mon dephasing rate. Data is shown for a pulse duration
Tp = 1.7 × 2π/|χ| and a beamsplitter rate gbs = 1.6|χ| with
dashed line indicating a quadratic fit. (b) Linear slope ex-
tracted from quadratic fits for pulses of varying |gbs/χ| and
pulse duration (indicated by the colors). Within each pulse
duration, the curves are fit to A× (gbs/χ)−4 where the offset
A is the free parameter. (c) Fitted offsets A as a function of
pulse duration. Dashed black line shows a cubic fit. (d)-(f)
Same analysis for transmon relaxation errors. The fit in (e)
is now to A× (gbs/χ)−2 and the fit in (f) is a linear fit.

whereas for transmon relaxation errors we find good
agreement to

ϵerasure ∝ Γ1,t

χ
(Tpχ)−3

. (I4)

Provided that gbs ≳ |χ|, we find that the beamsplitter
rate has a negligible impact on the erasure rate. However,
it will have a significant impact on the Pauli error rates.

Logical Pauli errors due to transmon errors

We can perform the same analysis for Pauli errors,
averaging the induced Pauli error rate over all dual-
rail cardinal state as we sweep the transmon error rates
(Fig 14a,d). To highlight the effect of the beamsplitter
rate, we sweep both the pulse duration (via n) and gbs
(by using three different values set by m = 3n, 4n, 5n).
Fig. 14b,e show the slope of Pauli errors versus transmon
error rate (obtained from the left panels) as a function of
|gbs/χ|.

Increasing the beamsplitter amplitude quickly sup-
presses Pauli errors, with fits showing excellent agree-
ment to a quartic suppression with |gbs/χ| for transmon
dephasing, and a quadratic suppression for transmon de-
cay.

The colored bands indicate pulses with the same pulse
duration. Increasing the pulse duration also clearly has a
beneficial impact on transmon-induced Pauli errors. To
look at this scaling, we plot the offset of the previous
polynomial fits versus |gbs/χ| and see how they vary as
a function of Tpχ. These offsets are shown in Fig. 14c,f.
The dashed lines show fits of the last three points to a
cubic (transmon dephasing) or linear (transmon relax-
ation). While there is slight deviation from the fit at
short pulse durations, we find that to good approxima-
tion:

ϵPauli ∝ Γϕ,t

χ

(
gbs

χ

)−4
(Tpχ)−3 ∝ Γϕ,t

g4
bsT

3
p
, (I5)

in the case of transmon dephasing, and

ϵPauli ∝ Γ1,t

χ

(
gbs

χ

)−2
(Tpχ)−1 ∝ Γ1,t

g2
bsTp

, (I6)

in the case of transmon relaxation.

Appendix J: Comparison to joint-parity-based
erasure check proposal

The erasure check presented in this work differs from
approach initially proposed in [42, 43], which relies on
measuring the parity of the combined photon number
in the two oscillators. Here we will show how to inter-
pret this joint-parity scheme in the context of the driven
spectroscopy shown in this paper, and compare the ex-
pected performance of this scheme to the erasure check
presented here.

Spectroscopic interpretation of joint-parity measurement

The joint-parity measurement consists of two π/2
pulses on the qubit, separated by a beamsplitter drive
with amplitude |gbs/χ| =

√
3/2 applied for a duration of

2π/χ, followed by a transmon readout. This scheme is
analogous to the parity-map protocol for a single oscilla-
tor, where the addition of the beamsplitter drive allows
the measurement qubit to accumulate an equal phase
from photons in either oscillator.

When the beamsplitter amplitude is set to |gbs/χ| =√
3/2, the expression for the transition frequencies in

Eq. 8 simplifies considerably:

ωδm|gbs/χ=
√

3/2 =
(
N

2 + δm

)
χ, δm = −N, . . . , N.

(J1)
From this, we can see that for odd (even) N , all the
transition frequencies lie at odd (even) integer multiples
of χ/2. This is higlighted in Fig. 15.

If we assume that the π/2-pulses are instantaneous,
then the qubit pulse takes the form

f(t) ∝ δ

(
t+ π

χ

)
+ δ

(
t− π

χ

)
, (J2)
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FIG. 15. Spectroscopic interpretation of joint-parity
measurement. The ancilla transition frequencies for a ‘sym-
metric’ beamsplitter detuning ∆ = χ/2 and total photon
number in the two coupled oscillators of N = 0 (black),
N = 1 (green), N = 2 (beige, dashed) or N = 3 (olive).
The vertical red line highlights the beamsplitter amplitude
|gbs/χ| =

√
3/2, which is used for the joint parity measure-

ment. At this value, all of the even N transitions lie at a
detuning equal to an even integer multiple of χ/2 (dashed
circles) and all of the odd N transitions lie at odd integer mul-
tiples of χ/2 (solid circles). The ancilla pulse ideally consists
of two delta functions separated by 2π/χ, whose frequency
spectrum has nodes at the solid circles and antinodes at the
dashed circles.

which has the Fourier transform:

F (t) ∝ cos
(
πω

χ

)
. (J3)

The frequency spectrum of the transmon pulse there-
fore has antinodes (nodes) at all of the transition frequen-
cies with even (odd) joint-photon-number-parity. This
provides an alternative interpretation of why the pre-
viously proposed scheme indeed maps the joint-photon-
number parity of the two oscillators onto the transmon
ancilla state.

Performance comparison

The joint-parity measurement may be used with a
two-level (|g⟩ − |e⟩) or three-level (|g⟩ − |f⟩) qubit. In
both cases, transmon dephasing errors are fully error-
detectable and do not contribute to the post-selected
Pauli error rate. In the |g⟩ − |f⟩ case, the |e⟩ level is
reserved as a flag state, allowing error detection of trans-
mon relaxation errors as well. However, these flagged
transmon errors do contribute to the overall erasure rate.

To compare the performance of the joint-parity scheme
with the photon-number-selective scheme demonstrated
in this work, we use master equation simulations consid-
ering only transmon relaxation and dephasing errors. In
both cases we assume no limitation on pulse bandwidth,

Joint-photon-number Joint-parity
|g⟩ − |e⟩ |g⟩ − |f⟩ |g⟩ − |e⟩ |g⟩ − |f⟩

perasure 0.61% 2.92% 1.40% 5.43%
pPauli 0.16% 0.10% 0.23% 0.0048%

TABLE I. Simulated error rates during erasure check
due to transmon relaxation and dephasing only.
The transmon-induced erasure probability perasure and the
transmon-induced Pauli error probability pPauli (post-selected
on not detecting an erasure) obtained from master equation
simulations of the joint-photon-number measurement scheme
demonstrated in this work, and the previously proposed joint-
photon-number-parity measurement [42]. Both schemes are
simulated using a |g⟩-|e⟩ ancilla and with a |g⟩-|f⟩ ancilla
where the |e⟩ level is reserved as a flag state.

and use the system parameters in Table II, assuming
T fe

1 = T eg
1 /2 and that T gf

ϕ = T ge
ϕ /4 (as would be the case

for a harmonic oscillator). While typically χgf ≈ 2χge,
this larger χ can only be accessed by commensurately in-
creasing gbs. Supposing that χ can be optimized based
on the available gbs, we assume these values to be equal in
each case. For the joint-photon-number-selective scheme
we use a square pulse shape with gbs = 1.04 MHz and
Tp = 1.699 µs.

The results shown in Table I show that when using a
|g⟩−|e⟩ transmon, the joint-photon-number measurement
demonstrates fewer transmon-induced false positive era-
sures and fewer transmon-induced Pauli errors than the
joint-parity measurement.

The benefit of using a |g⟩ − |f⟩ transmon to suppress
Pauli errors due to transmon decoherence is substantially
more pronounced for the joint-parity measurement since
the scheme already protects against transmon dephasing
errors. This results in a very low transmon-induced Pauli
error rate. However it does so at the expense of a large
additional erasure rate.

As discussed in [42], in reality the finite bandwidth of
the beamsplitter pulse during the joint-parity sequence
would necessitate the use of optimal control pulses to
ensure that the pulse completes within 2π/|χ|. Alter-
natively, without pulse shaping, delays can be added
to make the total pulse duration 4π/|χ|. However this
comes at the cost of twice as many transmon-induced
errors and more idling errors.

When the error rates are dominated by transmon de-
coherence (as opposed to intrinsic errors), the greater
suppression of Pauli errors offered by the joint-parity
scheme ensures a greater bias towards erasure errors
during the check. This could therefore enable a higher
error-correcting threshold (closer to 7% than the approx-
imately 4% in this work). However, this improvement
comes with a very large increase in the overall error rate.
Since the performance of an erasure code depends on the
ratio of the error rate to the threshold, the joint-photon-
number-selective scheme is preferred.

One caveat is that the joint-photon-number-parity
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measurement also catches heating to dual-rail states with
N = 2, unlike the version of the check presented in
this work. These uncaught events are rare but are espe-
cially damaging for error correction. However, one could
adapt the photon-number-selective scheme by adding a
2-photon-selective transmon pulse to prevent this.

Appendix K: Predicting erasure check performance
with longer coherences

We simulate the estimated the performance improve-
ment with longer transmon coherences (T1 = Tϕ =
200 µs) and cavity lifetimes (T1,A = T1,B = 1000 µs).
We use the same dispersive shift χ and readout duration
τRO used in this experiment. We choose a square pulse
shape (without ramps) with pulse duration Tp = 1.699 µs
and beamsplitter rate gbs/2π = 1.038 MHz, the closest
ideal pulse parameters to the experimentally optimized
parameters we use.

For each dual-rail input state, we initialize the state,
wait τRO (to capture the effect of photon loss during
readout), and then perform the pulse. From this final
state we extract the probability of the cavities being
in |0, 0⟩ (the intrinsic erasure rate, pintrinsic

erasure = 0.334%)
and the probability of suffering a Pauli error given that
the transmon was in |g⟩ (the induced Pauli error rate,
pinduced

Pauli = 0.035%). To obtain the false positive rate,
we run the same simulation without the cavity collapse
operators, and measure the probability of the transmon
ending in |e⟩ (pFP = 0.164%).

An effect not included in these simulations that will
start to become important is measurement-induced de-
phasing on the dual-rail qubit due to photons in the read-
out resonator. This dephasing rate is given by

Γϕ = n̄κχ2

κ2 + χ2 , (K1)

where n̄ is the average photon number in the readout
resonator, κ = 2π × 1.77 MHz is its linewidth, and χ
is the dispersive shift between the resonator and Bob’s
cavity [79]. We estimate χ from the anharmonicity of
Bob’s transmon α = −2π× 185 MHz, its dispersive shift
on Bob’s cavity χct = −2π×1.066 MHz and its dispersive
shift on Bob’s readout resonator χtr = −2π × 0.86 MHz,
as

χ ≈ χtrχct

α
≈ 2.5 kHz. (K2)

We then take n̄ ≈ 10 photons for 1 µs during the
readout. Putting these values into Eq. K1, and using
pPauli = Γϕt/2, we obtain an approximate Pauli error
rate per erasure check due to measurement-induced de-
phasing of pPauli ≈ 0.01%.

Appendix L: Requirements on |gbs/χ| at larger
photon numbers

As discussed in the Methods, the state of the two cou-
pled oscillators with N photons between them is anal-
ogous to the state of a single spin with S = N/2. In
this picture, we saw that the matrix element for a tran-
sition from the eigenstate of Ĥg (the Hamiltonian when
the qubit is in |g⟩) with magnetic quantum number mg to
the me eigenstate of Ĥe (the Hamiltonian when the qubit
is in |e⟩) can be expressed in terms of the small Wigner
d-matrix, |dN/2

mg,me(δθ)|. Furthermore, we saw that for the
choice of beamsplitter detuning ∆ = χ/2, all the transi-
tion frequencies for the same total photon number N and
change in magnetic quantum number δm ≡ me −mg be-
come degenerate, allowing us to see joint-photon number-
splitting.

However, by looking at the elements of the Wigner
d-matrix, we find that these transitions with the same
frequency do not always have the same transition matrix
element. The transition matrix elements for N = 1 and
N = 2 are shown in Fig. 16. Since the d-matrix obeys the
symmetry |δN/2

i,j (β)| = |δN/2
j,i (β)|, we find that |M 1

2 → 1
2
| =

|M− 1
2 →− 1

2
| and so all the degenerate transitions for N =

1 also have the same matrix element. By contrast, in
the 2-photon manifold we find that the transition matrix
element from mg = 0 to me = 0 is given by∣∣∣M (N=2)

0→0

∣∣∣ = |ϵ|
2
∣∣d1

0,0 (δθ)
∣∣ = |ϵ|

2 |cos (δθ)| , (L1)

whereas the matrix element from mg = ±1 to me = ±1
is ∣∣∣M (N=2)

±1→±1

∣∣∣ = |ϵ|
2
∣∣d1

±1,±1 (δθ)
∣∣ = |ϵ|

2
|1 + cos δθ|

2 , (L2)

where δθ = 2 arctan(χ/2gbs).
The implication is that joint-photon-number-selective

qubit pulses for N ≥ 2 will proceed at different rates
for different oscillator states within the N -photon man-
ifold, thereby introducing coherent errors. However, at
large beamsplitter rates, the difference in rates becomes
suppressed as (χ/gbs)2.

Appendix M: System parameters

Table II lists the coherences and thermal populations
of the modes in the system, as well as the dispersive cou-
pling strength between each cavity and its ancilla trans-
mon.

The SNAIL parameters are measured at the external
flux bias used to obtain the data (Φext = 0.334Φ0). Its
low T2R is due to low-frequency flux noise away from its
flux sweet spot, but introducing an echo increases its T2E

coherence substantially.
As mentioned in the Methods, this device was previ-

ously used in Chapman et al. [40]. One change that
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Parameter Unit Alice SNAIL Bob
Transmon Cavity Cavity Transmon

ω GHz 4.783 720(1) 2.973 421(1) 5.192 429(1) 6.926 368(2) 5.402 311(3)
T1 µs 123.4 ± 0.9 347 ± 2 69 ± 2 108.5 ± 0.6 42.4 ± 0.4
T2R µs 31.6 ± 0.9 441 ± 23 3.0 ± 0.2 165 ± 7 33.1 ± 0.9
T2E µs 40.5 ± 0.7 - 14.4 ± 0.6 - 63.2 ± 0.8
nth % 0.23 ± 0.06 3.82 ± 0.10 4.1 ± 0.6 0.53 ± 0.03 0.52 ± 0.07
χ MHz 0.7773(4) 1.0660(9)

TABLE II. Measured system parameters.

FIG. 16. Theoretical transition matrix elements. Pre-
dicted transition matrix elements (normalized for the ampli-
tude of the spectroscopy tone) for a) N = 1 and b) N = 2
total photons in the two oscillators, when the beamsplitter
detuning is symmetric (∆ = χ/2). Colors distinguish transi-
tions that are degenerate in frequency with δm = 0 (pink),
δm = ±1 (orange) and δm = ±2 (turquoise). For N = 2 and
δm = 0, the matrix element for the transition 0 → 0 (solid)
differs from those for ±1 → ±1 (dashed).

was made to the device was an increase the coupling to

Bob’s readout resonator, increasing its linewidth from
κ = 2π× (0.89 ± .05) MHz to κ = 2π× (1.77 ± .04) MHz.
This allowed us to reduce the duration of the readout
and therefore reduce idling errors.

As discussed in Chapman et al. [40], the oscillator
coherence times in this system are lower than is typical
for λ/4 superconducting stub cavities. The bare cavi-
ties, without any chips inserted, were measured to have
lifetimes of 2.3 ms and 460 µs, respectively. These life-
times therefore do not explain the measured coherences.
Meanwhile, finite element simulations including Purcell
loss out of the system ports and conductor loss due to
the magnetic coil suggest that these effects should not
limit the oscillator lifetimes to less than 2.66 ms and
810 µs. We often find large cooldown-to-cooldown vari-
ations in T1 when changes are made inside the package
(e.g. changing a coupling pin length, or re-inserting a
chip), even when these changes are not expected to be
related. For example, the slight increase in Bob’s read-
out pin length described earlier coincided with a decrease
in Alice’s cavity T1 from 485±14 µs to 347±2 µs. Mean-
while, on another cooldown with all of the chips inserted,
Bob’s cavity T1 was measured to be 265 ± 27 µs. This
difficult-to-predict behavior could point to unexpected
package modes as the culprit.


