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Bosonic quantum error correction has proven to be a successful approach for extending the coherence
of quantum memories, but to execute deep quantum circuits, high-fidelity gates between encoded qubits
are needed. To that end, we present a family of error-detectable two-qubit gates for a variety of bosonic
encodings. From a new geometric framework based on a “Bloch sphere” of bosonic operators, we con-
struct ZZ; (0) and exponential-SWAP(6) gates for the binomial, four-legged cat, dual-rail, and several other
bosonic codes. The gate Hamiltonian is simple to engineer, requiring only a programmable beam splitter
between two bosonic qubits and an ancilla dispersively coupled to one qubit. This Hamiltonian can be
realized in circuit QED hardware with ancilla transmons and microwave cavities. The proposed theoret-
ical framework was developed for circuit QED but is generalizable to any platform that can effectively
generate this Hamiltonian. Crucially, one can also detect first-order errors in the ancilla and the bosonic
qubits during the gates. We show that this allows one to reach error-detected gate fidelities at the 0.01%

level with today’s hardware, limited only by second-order hardware errors.
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I. INTRODUCTION

High-fidelity two-qubit entangling gates are crucial
for implementing useful quantum circuits. For the most
part, efforts to enhance two-qubit gate performance have
focused on hardware-level improvements that increase
qubit coherence lifetimes [1-4], Tcon, and decrease gate
duration Ty, while also minimizing unwanted crosstalk
[5-10]. The success in engineering ever-lower physi-
cal gate errors, pphys X Tgate/ Tcon, has enabled two-qubit
gate fidelities in excess of 99% in many-qubit processors
using trapped ions and superconducting qubits [11-16].
But beyond these hardware-level improvements, are there
other resources we can exploit?

Here we explore gates that have error-detection built
in at the hardware level. In systems with both high-
fidelity readout and more than two energy levels [17],
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we may boost the gate fidelity by engineering a scheme
in which extra levels in an ancilla act as flag states for
dominant errors [18—21]. Errors are detected in these gates
with probability pgi o pphys. However, for gates where
no errors are detected, the gate infidelity, e, Scales
in proportion to pphys® by requiring two hardware errors
during the gate to avoid detection. This quadratic scal-
ing—rather than linear scaling—amplifies the benefits of
further decreasing ppnys.

As shown in Fig. 1, detecting errors is useful in sev-
eral important contexts, even when we do not imme-
diately correct them at the gate level. For example, in
any stabilizer code, such as the surface code, a detected
error can be treated as an erasure error on a particular
qubit [19-21]. For circuits in which erasures dominate
over Pauli errors, the fault-tolerance threshold is substan-
tially higher, thereby reducing the hardware requirements.
Meanwhile, in noisy intermediate-scale quantum algo-
rithms with shallow-depth circuits, simply postselecting
shots in which no errors were detected is a viable strategy
[22].

In this paper, we show how a circuit QED (cQED)
system [23,24] can implement any excitation-preserving
logical two-qubit gate for a wide range of bosonic encod-
ings, including binomial codes [25], cat codes [26,27],
rotationally symmetric codes [28], and the dual-rail code
[29,30], while detecting the dominant ancilla decay and
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FIG. 1. Overview of how error-detected gates are useful for

quantum computing tasks. (a) Unlike conventional gates, error-
detected gates can be characterized by prj, the probability an
error is detected during the gate, and &y, the average gate
error when no errors are detected. By carefully constructing the
Hamiltonians that realize the gates, we can detect the dominant
hardware errors, such as relaxation and dephasing events to first
order (approximately ppnys), While two or more hardware errors
are undetectable and contribute to gpas ~ pshys. When gates are
coherence limited, e, can be orders of magnitude smaller than
Pril- In contrast, conventional gates without error detection have
Epass = Pphys, and ppii = 0. (b) Noisy intermediate-scale quan-
tum uses for error-detected gates. By postselecting short depth
circuits for experiment runs where no gate errors are detected,
we can effectively reach gate fidelities limited by pghys rather
than just pphys. The overall success probability exponentially
decreases with circuit depth, limiting our total number of gates
Ngaies to roughly 1/pgi. (c) With real-time feedback and fast
qubit reset, detected gate errors can be converted into erasure
errors on data qubits in a fully-error-correcting code. For any sta-
bilizer code [35], we can effectively double the code distance, d,
by using error-detected gates. Here we use the surface code as
an example, where we see pf™" and pF™!i, the two contribu-
tions to the total logical error rate due to erasure and Pauli errors
respectively, both scale as (pphys)? rather than (pynys)?/?. Error-
detected gates also make it easier to reach below-threshold gate
errors since we should compare p™** ~ p _with the Pauli error

threshold, pf™", and p°™™ ~ ppp ¢ with the erasure threshold,
persuewhich is around a factor of 5 larger than p;™! for the

surface code [18].

dephasing errors. Surprisingly, this can be realized with
only a programmable beam splitter interaction between
two bosonic modes plus a single three-level ancilla dis-
persively coupled to one of these modes [31]. We develop
a powerful geometric framework to represent the oscilla-
tor dynamics under this Hamiltonian on a Bloch sphere,
enabling the straightforward design of two-qubit gates on
bosonic modes, while also providing a natural means for
incorporating ancilla error detection. Building on previous
work on fault-tolerant single-qubit gates for bosonic codes
[32,33], we use the |e) and |f) levels of the three-level
ancilla as flag states for all first-order ancilla errors during
two-qubit gates, such as single phase flip errors or decay
erTors.

To demonstrate the power of this protocol, we simulate
the performance of logical two-qubit gates on binomial and
dual-rail encoded qubits. With typical hardware parame-
ters and error rates, we find an expected gate infidelity
below 0.01% and verify gpags plfhys. This offers a 2 orders
of magnitude improvement over current state-of-the-art
gate infidelities in non-error-detected bosonic two-qubit
gates. As expected, we also find pg; ~ 1%.

II. OVERVIEW OF BOSONIC TWO-QUBIT GATE
DESIGN

All proposed entangling gates are based on a simple
Hamiltonian, from which we can design an entire fam-
ily of logical entangling gates for a variety of bosonic
encodings. This Hamiltonian combines a beam splitter
interaction between bosonic modes with a dispersive inter-
action between an ancilla and one of the modes, as shown
in Fig. 2(a). It is written as

ﬁst = ﬁx + ﬁBS, (1)
where
=~ X A atn
H,/h= —Eaza a, )
/. R A
Has/h = f’% (e"ﬂmeﬁb + e*wabf) +AMmEta, (3)

and 6, = |g) (g| — |f) (/| is the Pauli Z operator in the
two-level subspace defined by the |g) and |f) levels of
the ancilla. A three-level ancilla is used solely because it
allows us to reserve the |e) level for detection of a sin-
gle ancilla decay event [33,34]. The annihilation operators
& and b act on the two bosonic modes, g is the strength
of the beam splitter interaction, A is an effective detuning
between two modes, and x is the strength of the disper-
sive interaction between the ancilla (in the g-f manifold)
and mode a. We have written this Hamiltonian in a frame
where the dispersive interaction is symmetric, shifting the
frequency of a by £ x /2 dependent on the ancilla state.
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FIG. 2. Operator Bloch sphere framework for designing entangling gates for bosonic qubits. (a) Physical system and Hamiltonian
'H s used to generate the gates. Two bosonic modes are coupled by a programmable beam splitter interaction (gray). Simultaneously,
one of the modes is dispersively coupled (purple) to an ancilla, which may be a transmon. We operate the transmon in the g-f* manifold,
reserving the |e) state for error detection of a single ancilla decay event. (b) Application of the beam splitter interaction causes the
bosonic operators to evolve in time in the Heisenberg picture. The new modes are linear combinations of the original mode operators
4 and b, and this time evolution can be represented geometrically by the trajectories shown in blue. Trajectories orbit the precession
vector 7, which is fully determined by Hamiltonian parameters: g and A set the polar angle, 6, whereas ¢ sets the azimuthal angle.
(c) When an ancilla is dispersively coupled to one of the bosonic modes, the precession vector # becomes dependent on the ancilla
state, yielding distinct vectors 7, and 7, . Furthermore, if the ancilla is in a superposition of |g) and |f'), the bosonic modes will be in
a superposition of the two trajectories shown in the figure. The b(1) trajectories are antipodal to the a(f) trajectories and are not shown
on this Bloch sphere.

Figure 1 shows how this error-detection capability is a use-
ful resource both in the short term (where it can boost
fidelities via postselection) and in the long term (where

Such a Hamiltonian, ﬁx, is routinely engineered in
cQED systems [23,36,37], where superconducting cavities
serve as bosonic storage modes and a transmon is used as

an ancilla. The dispersive interaction was commonly used
as the source of nonlinearity in previous implementations
of two-qubit entangling gates with bosonic qubits in circuit
QED [31,38,39] and limits gate speeds to approximately
1/x, typically 1 us. Gate fidelities were also limited by
transmon decoherence (Tcon ~ 10—100 ws), which sets
pphys ~ 1-10%.

The gates we introduce also rely on the dispersive inter-
action and similar coherence times, giving comparable
gate speeds and ppnys. However, by designing our gates
to be error-detectable, we can in principle reduce remain-
ing gate infidelity by 2 orders of magnitude with today’s
coherence times at the cost of gate failure probability pg,j.

we can treat detected errors as erasure errors to improve
performance of error-correcting codes).

The second term, Hgs, represents the beam splitter
interaction between two cavities that can be generated by
a driven nonlinear coupling element, such as a transmon
[31,40], superconducting nonlinear asymmetric inductive
element [41,42], or superconducting quantum interference
device [43,44]. Since this parametric interaction may be
actuated by one or more microwave drive signals, many
of the parameters in the Hamiltonian, such as the coupling
strength g, its phase ¢, and its detuning A, can be rapidly
and easily varied via standard microwave techniques.
Thus, we can exploit the full time-dependent control of
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g, ¢, and A to engineer new operations, even though the
strength of the dispersive interaction x is usually fixed. We
assume that actuating the beam splitter Hamiltonian does
not introduce any new significant sources of error into our
system [41,43].

Although an ancilla couples to only one of the bosonic
modes, in the presence of a beam splitter interaction both
modes interact with the ancilla, thereby enabling various
nontrivial two-mode operations. The large size of the joint
Hilbert space, however, can make the dynamics of this
Hamiltonian difficult to interpret. In general, this Hamilto-
nian can drive logical states out of the codespace. A simple
example is the Hong-Ou-Mandel effect, which can take
two qubits encoded in the “Fock 0-1” encoding (|0.) =
[0),|1.) = |1)) to superpositions of |0) and |2) when we
start in the state |1,1,). This is different from typical
implementations for two-level qubits [5,6,45], where logi-
cal states remain in the two-qubit subspace throughout the
gate.

We show that this complexity can be handled by map-
ping the dynamics to an “operator Bloch sphere” in
Sec. III. In Sec. IV we identify useful unitaries gener-
ated by HXBs—namely, the ancilla-controlled ZZ;, czz;,
and ancilla-controlled SWAP, cSWAP, unitaries. In Sec. V,
we interleave the ancilla-controlled unitaries with ancilla
rotations to turn these into parameterized ZZ;(0) and
exponential-SWAP(6) [eSWAP(0)] logical gates. Combining
these with existing Z;(0) gates allows us to realize any
excitation-preserving two-qubit logical gate (see Appendix
F). In Sec. VI we describe how these gate constructions
also allow us to detect errors in the ancilla and preserve
the error-detection properties of the bosonic encodings.
Finally, in Sec. VII we show in simulations that we can
achieve error-detected two-qubit gate infidelities epaq5 O
pghys ~ 0.01% with reasonable hardware coherence times
and a failure rate pgii X pphys ~ 1%.

II1. OPERATOR BLOCH SPHERE FRAMEWORK
FOR BEAM SPLITTER INTERACTIONS

We introduce the “operator Bloch sphere” to visualize
the dynamics generated by H, gs and port existing intuition
for single-qubit control on the Bloch sphere to the design of
two-qubit gates for bosonic qubits. Working in the Heisen-
berg picture allows us to avoid tracking the evolution of
every two-mode state. To begin, we con51der evolution
under HBS, then generalize to the full H yBs Hamiltonian.

Inspired by Schwinger’s angular momentum formal-
ism of bosonic operators [46], we rewrite Hpg with the
angular momentum operators L; = j@'a+ b'h), Ly =
—(aTb +aby, Ty =1)2i@'h — abT) and Ly =
bTb) which allows us to rewrite HBS as

_(gfrg, —

Hps(g, ¢, A)/h = gcos gLy — gsingLy + ALy + AL,

For the case where the parameters g, ¢, and A are constant,
the Heisenberg representation of the mode operators can
be obtained by transforming the mode operators via the
unitary operator U = exp (—iHpst/h),

() () - ().
where R;(Q2¢) = (cos Qt/2] — isin Qt/2n - ¢) is a matrix
in SU(2), which can be interpreted as a rotation around
a precession vector 7 = [siné cos ¢, — sin @ sin @, cos ] at
rate Q = /g2 + A? [47]. The polar angle of the precession
vector is determined by the ratio of the coupling strength g
and the detuning A such that cos§ = A /\/g*> + A? and

sinf = g//g> + A%. Analogously to state evolution on
a qubit Bloch sphere, we plot the mode transformations
at each point in time to form trajectories on the operator
Bloch sphere, as shown in Fig. 2(b). Here the north pole
represents the initial mode operator a and the solid arrow
represents the trajectory of the transformed mode operator
a(t). Similarly, the south pole represents the initial mode
operator b and the dashed arrow represents the trajectory
of the transformed mode operator b(f). The trajectory can
be fully controlled by modulating the complex amplitude
of the beam splitter interaction, which is routinely done
in the cQED systems [31,41,43]. The trajectories from the
north pole and the south pole are antipodal to one another
and therefore we show only the transformation of a going
forward. The endpoints of the trajectories indicate the final
mode transformations of the original 4, b operators.

The effect of the ancilla’s interaction, H,, appears as
an ancilla-state-dependent detuning A = A’ £ x /2, where
A’ now represents the detuning of the beam splitter drives
from resonance. We can now write the dispersive beam
splitter Hamiltonian as

o~

Hyns = Hos (8. 0.8' = 2) @ lg) (¢l

+Ts (g.0.8 +2) 1) (1 )

Since the total detuning of the beam splitter becomes
dependent on the ancilla state, there now exist two different
“conditional” precession vectors with different z compo-
nents, allowing us to construct ancilla-controlled mode
trajectories. This is illustrated in Fig. 2(c).

All possible dynamics generated by the detuned beam
splitter Hamiltonian can be represented on the operator
Bloch sphere. The three degrees of freedom in the dis-
persive beam splitter Hamiltonian g, ¢, and A determine
the axis and rate of precession. This holds true even when
these parameters have time dependence, which leads to
time-varying precession axes and precession rates. We
emphasize that the operator Bloch sphere picture is nec-
essary to visualize the time dynamics generated by a
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TABLEI. Pump conditions for primitive operations. The beam
splitter rate g, pump detuning A, and pulse duration required to
perform key primitive operations (up to ancilla-state-dependent
local rotations).

czz; for
Hamiltonian czz, for Fock binomial or
parameter 0-1 ordualrail  four-legged cat CSWAP
g V3/2x V1572 x/3
A 0 0 x/2
T 2/ x m/x V3m/x

continuous beam splitter interaction, over which we have
fine control of the Hamiltonian parameters. This differs
from the discrete beam splitter transformations found in
linear optics [48].

IV. ANCILLA-CONTROLLED LOGICAL
UNITARIES

The operator Bloch sphere picture is a powerful tool
for finding new and interesting ancilla-controlled unitaries
generated by H,gs. Specifically, we show a way to real-
ize both ¢zz; and cSWAP unitaries in our simple proposed
hardware layout.

We define ancilla-controlled unitaries as unitaries where
we perform identity on the bosonic modes if the ancilla is
in |g) and a unitary gate on the bosonic modes if the ancilla
isin |[f'). At the end of the unitary, the bosonic states must
return to the logical codespace. This constraint restricts us
to trajectories that start and end at the poles of the opera-
tor Bloch sphere, corresponding to either SWAP or identity
operations. However, there is a crucial feature: the solid
angle enclosed by these trajectories determines the geo-
metric phase imparted to the bosonic modes, and is used
as a resource to enact logical operations (see Appendix C).
We later use this effect to engineer the czz; and cSWAP uni-
taries, as shown in Fig. 3. Moreover, by combining these
unitaries with arbitrary ancilla rotations, we can construct
a family of excitation-preserving gates, such as ZZ;(0),
imaginary-SWAP(0) [iISWAP(0)], and fSIM(6;,6,) gates, on
the logical subspace (see Appendix F).

Designing trajectories that enclose a specific geomet-
ric phase can be used to build useful unitaries. The
geometric phase is set by the term e~'4/* in Eq. (4).
Completely enclosing a solid angle ¢ corresponds to per-
forming the unitary R, = ei/2@"a+b"h) on the bosonic
modes. For many bosonic encodings, eim/mata Z; for
ne7Z, and hence ZZ; = /"@'a+b'h) This is true for
both the binomial code and the four-legged cat code as
defined in Appendix B where n = 2. Therefore, by vary-
ing the relative strengths of the microwave-controlled
Hamiltonian parameters, we can choose the enclosed geo-
metric phase to match the ZZ; operator for a particular

SWAP

FIG. 3. c¢zz and cSWAP operations on the operator Bloch
sphere realized with the Hamiltonian parameters and durations
listed in Table I. (a) Trajectories for the czz; operation. After
an amount of time 7, the trajectories complete a full orbit at the
end of the gate and enclose area +¢. By our choosing Hamil-
tonian parameters such that ¢ = m , these ancilla-dependent
mode transformations are equivalent to performing a czz uni-
tary for the Fock 0-1 and dual-rail codes. When ¢ = m/2, this
is a c¢zz unitary for the binomial and four-legged cat codes
(see Appendix D). (b) Trajectories for the cSWAP operation. The
a(1)g) trajectory returns to the north pole, indicating that we per-
form identity on the two bosonic modes up to a geometric phase.
The a(t) s trajectory ends at the south pole, which corresponds to
a complete swapping of the two modes up to a geometric phase.

bosonic code. Moreover, the ability to map the system
dynamics to trajectories on a Bloch sphere also allows us to
import noise mitigation and gate optimization techniques
developed for qubits that utilize geometric phase control
[49-51].

Trajectories that depend on the two ancilla states gen-
erate three types of ancilla-controlled unitaries that return
to the codespace: (a) both trajectories may return to the
starting pole, (b) one trajectory returns to the starting pole,
while the other returns to the opposite pole, or (c) both tra-
jectories may return to the opposite pole. Although these
trajectories are a small subset of all possible trajectories
we could engineer, each case represents a different, useful
ancilla-controlled logical operation.

First, we consider evolution where the two trajectories
conditioned on the ancilla state return to their starting poles
[Fig. 3(a)]. The geometric phase accumulation means we
perform the ancilla-controlled unitary

ip/2(a" a+bTh —i¢/2(a a+bTh
et @ |g) (g| 4 T HEIED @ If) (1. (6)
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We can use this geometric phase accumulation to perform
logical operations on the bosonic modes. For many bosonic
encodings, Z; takes the form ™/ na'a for a code with n-fold
rotational symmetry [28], and hence ZZ; = ¢/*/n@'a+b'),

When ¢ = w/nor ¢ = 2n(1 — 1/2n), this is equivalent
to the ¢zZz; unitary

T®Ig) (gl +2Z.®|f) {f| (7

up to the rotation operator e~7/27@'a+b'8) yhich is easily
tracked in software. The required Hamiltonian parameters
are found from the general formula for the solid angle, ¢.
For orbits about a fixed precession vector, this is given
by ¢ =27(1 —cosO) = 2x(1 — x/2€2). The parameters
for the czz; gate are shown in Table I for bosonic codes
where Z; = ¢7@'@ or 7, = ¢7/%4_ Since the interaction
strengths g /27 and x /27w may both be several megahertz
[41,43], all these gates on multiphoton encoded qubits may
be performed in times of approximately 1 us, 3 orders
of magnitude faster than typical microwave cavity decay
rates (1 ms) [24], and 2 orders of magnitude faster than
the transmon decoherence rate (100 ws), which yields
the coherence-limited infidelity at the level of pypys o
Tgate/ Teon ~ 1-10%, a similar scaling as for previously
implemented bosonic entangling gate [31].

With another set of Hamiltonian parameters, we can
create the cSWAP operation [Fig. 3(b)] defined as

T®Ig) (gl +swAP® |f) (f|. (8)

In this case, we need the trajectory conditioned on [f') to
end at the opposite pole, while the trajectory conditioned
on |g) completes an orbit about a different precession vec-
tor to return to the initial pole. For the parameters presented
in Table I, this implements the unitary

(1B atarith o
1- Ty _ Tath]
em( £ )(a a+b'h) o lg) (g| + e/ a5

SWAP® |f) (f |- &)

By adding appropriate delays in the gate sequence (see
Appendix D), one can null unwanted geometric phase
accumulations to realize the cSWAP unitary. This operation
was experimentally realized in the work reported in Ref.
[41].

Finally, when both trajectories end at the opposite pole,
we perform a SWAP operation between the bosonic modes
that is independent of the ancilla state (up to geomet-
ric phase accumulation), which we call an “unconditional
SWAP (USWAP) operation”. Without use of our framework,
this operation is hard to realize when the ancilla is in a
superposition of states, due to the static nature of the dis-
persive interaction. Unconditional SWAP operations allow
us to extend our ancilla-controlled unitaries that act on
more than two bosonic modes (see Appendix D) .

rrepresents error
|¢“> flag state

[4n) illg

P P
o TH—6—X)—om- 7"

l9)v

FIG. 4. Error-detected circuits for bosonic entangling gates.
We interleave ancilla-controlled unitaries (in blue) with ancilla
rotations in the g-f* manifold (in green) to construct entangling
gates. Provided P2 =1, we implement the general gate P@®) =
exp (—if /2P). By using the czz; operation introduced earlier, we
execute this circuit with P = ZZ; to perform the entangling gate
ZZ;,(0) on our bosonic qubits. Similarly, with the cSWAP opera-
tion we can perform an eSWAP(#) entangling gate. These gates
are easily parameterized via the middle Xj ancilla rotation. Cru-
cially, we can detect ancilla errors during the gate by measuring
the state of the ancilla at the end of the circuit. Measuring the
ancilla in |e) or |f') flags that an error has occurred. We accept
the gate when we measure the ancilla in |g).

V. A FAMILY OF LOGICAL TWO-QUBIT GATES

Importantly, with just the two primitives czz; and
CSWAP, we can use arbitrary rotations on the ancilla to now
perform a continuous family of entangling gates on the
bosonic logical subspace.

Inspired by gate teleportation techniques [52-55],
ancilla-controlled unitary gates on the logical subspace can
be ‘exponentiated’ by a circuit shown in Fig. 4 [56]. The
CcSWAP and czz; primitives by themselves are capable of
generating entanglement only between the ancilla and the
bosonic modes. However, with this circuit we are able to
perform an entangling gate that acts only on the bosonic
modes, leaving the ancilla disentangled at the end of the
circuit. The ancilla should start and end in its initial state,
lg). A key advantage of this approach is that by checking
that the ancilla returns to |g), we can detect whether ancilla
errors have occurred during the gate.

The exponentiation circuit we present is very general
and allows one to realize the unitary

P®) = P = cos ST — isin 0P (10)
= eXp 12 = COS ) 1SIn )

from the ancilla-controlled unitary cP, where P is any
“Pauli-like” operator acting on the two-qubit logical sub-
space that satisfies P2 = 1 (in other words P is Hermi-
tian and unitary). The full unitary implemented on the
qubit-ancilla system by this circuit is

PO)®g) (gl +P(—0) @ |f) (f]. (11)

The exponentiation circuit gives us an elegant way to
control multiple logical qubits and has desirable error
detection properties. One needs only to vary the angle
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of the middle ancilla rotation to implement a continu-
ous set of parameterized entangling gates, P(f) on the
logical qubits—the rest of the gate construction remains
unchanged, making logical gates easy to calibrate for many
different values of 6. The setup in Fig. 4 inherently detects
a single ancilla dephasing error (see Appendix ) but not
ancilla decay events, which necessitates the use of a three-
level ancilla to detect these errors. Use of both error
detection strategies permits us to use an ancilla that is
considerably noisier than the logical qubits, since the prop-
agation of ancilla errors to the qubits is error-detectable to
first order. We explain this feature in more detail in Sec. VI.

Setting P = SWAP with the cSWAP unitary yields a con-
struction for the eSWAP gate [31,57]. Similarly, with the
cZ7; unitary we construct the ZZ; (6) gate, which has not
yet been realized for bosonic qubits. An advantage of these
constructions is the ease of varying the angle ¢, which is
controlled simply by varying the angle of the intermediate
ancilla rotation in Fig. 4. For all values of 6 except 0 and
integer multiples of 7, these gates can generate entangle-
ment from separable input states. The gates are maximally
entangling for 6 = 7 /2, and ZZ; (7r/2) is equivalent to a
controlled NOT gate up to single-qubit gates.

By combining eSWAP() and ZZ; (¢) gates with single-
qubit Z;(0) gates, we can implement any excitation-
preserving logical two-qubit gate on the two bosonic
qubits (see Appendix F). The Z;(0) gate can be imple-
mented either by use of the same construction with ancilla-
controlled rotations of a single bosonic mode (which
naturally arises from the dispersive interaction) or by use
of a fault-tolerant selective number-dependent arbitrary
phase (SNAP) gate [33,58].

The gate construction can also be used on Gottesman-
Kitaev-Preskill codewords [59]. With conditional displace-
ment Hamiltonians [60,61], one can engineer the ancilla-
controlled unitaries cZ;, czz;, cX;, cXX;, etc., which, in
turn, allows us to implement the gates Z;(0), ZZ.(0),
X (0), and XX, (0). In other words, we can use the con-
struction to realize parameterized entangling gates and
arbitrary single-qubit rotations in the Gottesman-Kitaev-
Preskill code, while being able to detect ancilla errors
during the gate. This construction resembles some of the
circuits found in echoed conditional displacement con-
trol [62,63]. cQED allows the direct implementation of
the required ancilla-controlled unitaries by the stringing
together of conditional displacements that act on differ-
ent bosonic modes coupled to the same ancilla to construct
joint conditional displacements.

Another powerful application of the ancilla-controlled
logical gates is to perform a quantum non-demolition
(QND) logical measurement of the operator P. This is
done by preparing the ancilla in |[+),, = (|g) + I N/V2,
applying cP, and then measuring the ancilla in the |+£),,
basis. For the cSWAP operation, this amounts to a SWAP
test [41]. Similarly czz; can be turned into a QND logical

measurement of the ZZ; operator. This operation finds
use in measurement-based alternatives to entangling gates
[64], and can form part of a Bell measurement. Unlike the
gate construction, in principle these measurements can cor-
rect single ancilla decay errors and all orders of ancilla
dephasing. This is explored further in Appendix H.

VI. HARDWARE EFFICIENT ERROR-DETECTED
GATES

Perhaps the most exciting aspect of these gates is the
ability to detect hardware errors at any time during (or
before) the gates in both the ancilla and the bosonic
modes. Crucially, a successful gate should always return
the ancilla to |g). If we measure the ancilla to be in any
state other than |g) at the end of the gate, we flag the gate as
having experienced an error. Bosonic errors such as pho-
ton loss remain detectable after the gate (e.g., via photon
number parity measurements). In the usual case where the
ancilla has worse coherence than the bosonic modes, it is
essential to prevent ancilla errors from propagating onto
the bosonic modes. Otherwise, we lose the advantages of
using a bosonic code in the first place.

Here we describe the critical error detection properties
of the protocol for ancilla decay, ancilla dephasing, and
photon loss in the bosonic modes. An in-depth discussion
can be found in Appendix G 1. First, we analyze errors
that occur during the ancilla-controlled unitaries, which
have the longest duration in our gate sequences. The gate
constructions are naturally robust with regard to ancilla
dephasing but not ancilla decay. As previously mentioned,
we circumvent this problem by operating the ancilla in
the manifold spanned by |g) and |f'), reserving the |e)
level to detect if a single ancilla decay has occurred. This
is roughly equivalent to realizing a simple noise-biased
ancilla and is generalizable to ancillae in other platforms.
Alternatively, two levels in a truly noise-biased ancilla [65]
also suffice for implementing these circuits, provided we
can prepare and measure the ancilla in the X basis and can
perform bias-preserving X (6) rotations.

Ancilla dephasing can be described by the jump operator
6. Since this operator commutes with H, s, the ancilla-
controlled unitaries are error-transparent [34] to dephasing.
In other words, dephasing during the unitary evolution
is the same as performing the ancilla-controlled unitary
correctly, and then applying the operator &, afterwards.

For the logical gate construction, we use two ancilla-
controlled unitaries, and while each of these is error-
transparent to dephasing, the overall circuit is not due to
the ancilla rotation by angle 6 in the middle. Regardless,
if a dephasing jump occurs at some time during the cir-
cuit, we always read out |f') at the end. With no dephasing
jumps, we always read out |g). If the jump occurs dur-
ing the last ancilla-controlled unitary, the correct ZZ; (6)
gate is performed on the bosonic modes. However, if the
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jump occurs during the first control unitary, we perform
a ZZ; (—0) operation instead. Since we cannot distinguish
between the two cases, the correction unitary is unknown,
and so we can only detect these errors rather than correct
them.

We are also robust with regard to dephasing and decay
errors that happen during the much shorter ancilla rota-
tions. One can show that the correct gate is still performed
when we measure the ancilla to be in |g) (see Appendix
G 1). This means the error-detected gate fidelity could,
in principle, exceed coherence-limited single-qubit gate
fidelities found in transmon-based qubit architectures.

H, s preserves the total photon number, and therefore
photon loss during the gate remains detectable after the
gate when an appropriate bosonic code is used; for exam-
ple, via parity measurements [66]. Photon loss during the
ancilla-controlled unitaries also dephases the ancilla, and
hence only this error is detectable, just as for isolated
ancilla dephasing errors.

VII. NUMERICAL SIMULATIONS of ZZ; (% /2)
GATES

We solve the Lindblad master equation in QuTiP [68] to
calculate several performance metrics for the ZZ(0 = 7 /2)
gate in two bosonic codes: the lowest-order binomial code
[25] and the dual-rail encoding [29]. During the simula-
tion, the system experiences ancilla decay, ancilla dephas-
ing, or photon loss in the bosonic modes (see Appendix J
for the simulation parameters).

Our gate constructions are unable to detect intrinsic
dephasing of the bosonic mode. Fortunately, in cQED,
the intrinsic dephasing of a microwave cavity can be
extremely small (much greater than 10 ms [34,69]), and
is not modeled in our simulations. In experiment, cavity
dephasing is largely caused by transmon ancilla decay at
unknown times, which is error-detectable to first order and
is accounted for in our simulations.

From these simulations, we obtain the average gate fail-
ure probability, pri, and the average error-detected gate
infidelity, epass. To highlight how these metrics scale with
hardware errors, we enable one error channel at a time, as
shown in Fig. 5. Our proposed gates have the ability to
detect all first-order jump errors associated with each error
channel, and therefore only second-order jump errors limit
the error-detected gate infidelity.

The numerical simulations verify this property, as
shown by the quadratic scaling of e, with coherence
time. Values of ep. well below 0.01% are achieved
with feasible coherence times, which would outperform
any previously demonstrated two-qubit gates (errors of
approximately 0.1%) in superconducting qubits [10,70]
and trapped ions [4]. We also find pgy ~ 1%, which scales
linearly with hardware coherence rates.

For these simulations we choose x,r /2w = —1 MHz,
and therefore the required beam splitter rates needed for
the ZZ;(w/2) gates are approximately 1 MHz. Hard-
ware with the required system parameters has already
been implemented [31,71], with more recent experiments
demonstrating high-fidelity beam splitters with rates of up
to 5 MHz [43].

We simulate the ZZ; (7w /2) gate using the circuit in
Fig. 4, with the Hamiltonian parameters listed for the czz;
operation in Table I for the binomial and dual-rail encoding
(see Appendix A). We simplify the dynamics by choosing
constant pulse profiles for the beam splitter amplitude g
and for the ancilla rotation pulses, allowing us to focus on
the incoherent error and ignore any coherent error asso-
ciated with imperfect pulse shaping, which is thought to
be negligible (see Appendix M). This also reveals that the
gates are robust with regard to errors during the ancilla
rotations themselves (duration 50 ns), meaning &, can
surpass typical transmon 7 -pulse coherence-limited fideli-
ties (see Appendix I).

More realistic simulations can include higher-order non-
linearities in the Hamiltonian, which are sources of coher-
ent errors in the gates. Nonetheless, these errors are
expected to scale quadratically with gate duration. We con-
sider the effects of self-Kerr in each cavity, cross Kerr
between the cavities, and the x’ correction to the disper-
sive coupling in Appendix K, and show that they introduce
infidelity at the 0.01% level for realistic parameters.

VIII. CONCLUSION

We introduce error-detectable two-qubit entangling
gates for a wide range of bosonic qubits, including the
dual-rail, binomial, and four-legged cat encodings. Our
gates are based on a tunable beam splitter interaction
between two bosonic modes and an ancilla dispersively
coupled to just one of the modes. The time evolution
during the gates can be visualized in a new geometric
framework, which we call the “operator Bloch sphere”.
In this picture, we can easily derive the Hamiltonian
parameters needed to perform ancilla-controlled unitaries
czz; and cSWAP. With these building blocks, we show
how to construct new, fast gate implementations for the
Z7Z;(0) and eSWAP(H) gates that could be readily real-
ized on current hardware. By using a three-level transmon
as our ancilla, we are able to flag the dominant hard-
ware errors, transmon decay, and dephasing, and prevent
them from significantly impacting the gate fidelities. As a
result of this strategy, we also expect quadratic improve-
ment of the error-detected gate infidelity as we increase
the hardware lifetime and the gate speed. With today’s
c¢QED hardware coherences, we expect to reach error-
detected gate infidelities below 0.01% with 1% gate failure
probability. We verify the quadratic scaling of these fideli-
ties with hardware coherence times in simulations. This
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FIG. 5. Quadratic scaling of ZZ; (7 /2) gate infidelity with hardware coherence times, reaching error-detected infidelities below
0.01%. Numerical simulation of error-detected ZZ; (7 /2) gate on two logical qubits in both the binomial encoding (top row) and the
dual-rail encoding (bottom row) under three separate error channels—ancilla decay, ancilla dephasing, and photon loss in the bosonic
modes. Here we plot the average gate failure probability and average error-detected gate infidelity versus coherence time. Average gate
failure probability, or pr; (red circles), refers to the fraction of gate attempts where we measure the ancilla to be in |e) or |f') at the end
(left and middle columns), or when we detect photon loss in the bosonic modes via idealized syndrome measurements (right column).
Average error-detected gate infidelity, or ey, (blue circles), is the state transfer fidelity of the evolution of the 36 cardinal two-qubit
logical states (which can be shown to be equivalent to the average fidelity over the joint two-qubit space [67]) after postselection
on |g), assuming no measurement error. We additionally calculate this infidelity in the presence of 1% (blue squares) and 5%(blue
triangle) ancilla readout errors (see Appendix J). Gate failure results from a single jump error (a first-order error) happening during
the gate, and therefore this probability scales linearly with coherence time. Since we can detect these errors, the error-detected gate
infidelity is limited only by double-jump errors (second-order errors) and hence scales quadratically, allowing us to reach extremely
low error-detected gate infidelities with typical coherence times. Numerical fits to illustrate these scalings are shown by the dashed
blue and red lines (see Appendix L).

implies that an increase in coherence time by a factor  brute-force hardware improvement and broadens design
of 10 yields a gate infidelity that decreases by a factor  considerations in developing novel quantum gates.
of 100.
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APPENDIX A: DUAL-RAIL QUBITS

We discuss here how to apply the measurement and
gate constructions to dual-rail qubits (Fig. 6). Dual-rail
qubits differ from the other bosonic codewords we dis-
cuss because a logical qubit occupies two bosonic modes
(a1,by) with codewords |0), = [01) and |1), = |10),
Nonetheless, we can perform single-qubit logical Z gates
by physically interacting with one of the bosonic modes in
the dual-rail qubit. Explicitly, we can perform a Z gate via
7, = LTICI: equivalently via Z; = ¢™b1P1 This means
that even though two dual-rail qubits comprise four phys-
ical modes, only two of them need to interact to perform
two-qubit logical gates and measurements. If we define
(ay, 32) as the modes in a second dual-rail qubit, we can

(a) Dual-Rail

qubit 1 Transmon ancilla

Beam splitter Dispersive
X coupling . coupling
bl b2
(b) Dual-Rail Z\Z(ﬂ) Gate Construction
Qubit 1{
— | Joint Joint
{ parity parity
l9)v’
o-{H Xy HH |l P

FIG. 6. Error-detected gates for dual-rail bosonic qubits. (a)
Required hardware layout. Modes (aj, 131) comprise qubit 1 and
modes (42, by) comprise qubit 2. An ancilla operated in the g-
f manifold is dispersively coupled to a,, and we need a beam
splitter interaction only between modes a; and a,. (b) Gate
construction for a ZZ;(0) gate for dual-rail qubits. We need
to engineer the ancilla-controlled joint parity unitary acting on

T aa aTa
~ N .. . . in|\aya;+a,a
modes @, and a,, where the joint parity operator is e ( 14174 2).

perform a logical ZZ; (¢) gate by using an ancilla coupled
to mode &, and setting P = oim @i +iban)

Another distinction with the dual-rail code is the fact
that all logical gates conserve the total number of exci-
tations in the system. Arbitrary single-qubit rotations in
dual-rail qubits can be realized with the beam splitter inter-
action between the modes a; and lA)i. When combined with
the ZZ;(0) gate, this forms a universal gate set. In con-
trast, any bosonic code that uses only one bosonic mode
per logical qubit by necessity requires gates that do not
conserve the total number of excitations. For example an
X gate in the Fock 0-1 code is Xpoex = [0) (1] + |1) (O],
which involves transitions between states with different
photon numbers, whereas KXival rail = |01) (10] + [10) (01|
does not.

For our gate and measurement constructions to be
applied to the Fock 0-1 or dual-rail code, the modes must
still be bosonic, with the ability to support up to two exci-
tations in each mode. This is because constructions rely
on Hong-Ou-Mandel-like interference when we start in the
state [11),, ,,- The dual-rail code also has the ability to
detect photon loss errors after the gate or measurement.
One or both of the dual-rail qubits may end in the state
100),,.,

APPENDIX B: DEFINITIONS OF THE BINOMIAL
AND FOUR-LEGGED CAT CODES

The lowest-order binomial and four-legged cat codes
are examples of bosonic encodings with twofold rotational
symmetry. In other words, Z; = ™/ 2&*&9 enabling us to
perform ZZ; (0) gates with our proposed gate construction.

The logical codewords are defined for the lowest-order

binomial code as follows:

[0) + |4)
V2

1) = 12).

|OL) = 5 (Bl)

(B2)

The (even-photon-number) four-legged cat code is based
on superpositions of coherent states and is defined as

loe) + i) + |—a) + |—ic)
VN ’
o) — i) + |—a) — |—icx)

VN ’

where Ny and N; are normalization factors. Both encod-
ings share a similar photon number structure, with the |0),
and |1), states containing the same average number of pho-
tons in the large-« limit. Codewords contain only an even
number of photons, allowing photon loss to be detected
via photon number parity measurements after our proposed
gates.

[07) =

(B3)

12) = (B4)
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APPENDIX C: INTERPRETATION OF
GEOMETRIC PHASES ENCLOSED ON THE
OPERATOR BLOCH SPHERE

A powerful resource we use is the geometric phase
enclosed by trajectories on the operator Bloch sphere. For
a qubit Bloch sphere, this phase is often just an irrele-
vant global phase, but in the operator Bloch sphere, this
phase corresponds to performing a unitary of the form
Ry = €?/2@a+b'h) \hich acts on both bosonic modes.
The mathematical reason behind this is because the effec-
tive angular momentum operator is given by Z; = 1 (a'a +
lA)Tl;), whereas for a qubit Bloch sphere, it takes the form
L = %(|O> O]+ {ap = %60 = 1. Enclosing phase ¢
on a “Bloch sphere” corresponds to performing the uni-
tary Ry = e#"1 . This is a trivial global phase for the qubit
Bloch sphere but a nontrivial unitary, I% on the bosonic
modes.

The value of ¢ is given geometrically by the solid angle
enclosed by the trajectory, and physically corresponds to
ecach mode & and b rotating by angle ¢ /2 as described by
the R, unitary.

APPENDIX D: DERIVING USEFUL
ANCILLA-CONTROLLED UNITARIES FROM
THE DISPERSIVE BEAM SPLITTER
HAMILTONIAN

The dispersive beam splitter Hamiltonian [Eq. (3)]
allows a wide variety of ancilla-controlled unitaries to
be constructed for different settings of the Hamiltonian
parameters g, A, and ¢. Even when these settings are fixed
for the duration of the gate, we can realize several useful
operations as listed in Table II and derived below.

1. Controlled SWAP operation

For the ancilla-controlled SWAP unitary, we wish to
realize

CSWAP = |g) (g| L + |f') (f | SWAP. (D)

TABLE II.

If the ancilla is in |f'), we exchange the states in modes a
and b. If the ancilla is in |g), the states should be unaffected
at the end of the operation. In the Heisenberg picture, one
can write the desired mode transformations as

0-6) 6)-6)
bg bg)’ by ar
Setting A = +|x|/2 ensures that 7, lies on the equa-
tor and that after time 7 = x/g the mode transforma-
tions (a; — —il;f,l;f — —iay) will have been performed,
which is a SWAP operation up to 90° cavity rotations.

We are still free to choose the parameter g. The goal is
to find g such that the state precesses around vector 7y =

(2,0, x)/v/g* + x? and such that a(¢) returns to the pole

after time 7' = 27 /\/g% + x2.

Setting these times to be equal and solving for g,

(D2)

A (D3)

N

givesg = x/ /3 and duration ~/37/x. The resulting mode
transformations are

A i (1-+/3/2) A A 2
0 (50) ()= ().
bg em’(lf«/g/Z)z‘)g bf —lay

which is almost the desired cSWAP operation. To fix the
unwanted phase accumulations, one can add delay times
before and after the unitary. The dispersive interaction act-
ing for time ¢ between mode a and the ancilla gives the
mode transformations

flg flg €lf e X t&f
()~ G) )= (57)
Adding a second delay after the ancilla-controlled unitary
effectively implements a dispersive interaction between by

(D5)

Hamiltonian parameters for useful ancilla-controlled unitaries. The beam splitter rate g, detuning A, and gate duration

are easily set by microwave drives in cQED hardware to match the conditions listed for useful operating points. The ancilla-state-
dependent precession vectors 7, and 7 for the operator Bloch sphere are also listed. Controlled joint 4-parity unitaries allow one
to implement logical ZZ; (6) gates for bosonic codewords with twofold rotational symmetry, such as the binomial and four-legged cat

codes.

Operation g A Duration Tljg) iy

50:50 beam splitter Any —x/2 w/2g (1,0,0)
Controlled SWAP 1/v31x] /2 V31 /Ixl (%,o, ﬁ/z) (1,0,0)
Controlled joint parity V3720 0 27 /|| (ﬁ /2,0, %) (ﬁ /2,0, — %)
Controlled joint 4-parity (slow) V/61x] 0 37 /|| (ﬁ /4,0,3 /4) (ﬁ /4,0,-3 /4)
Controlled joint 4-parity (fast) V15,21 0 7/lxl (m /4,0, 1 /4) (m /4,0, —1 /4)
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and the ancilla since the modes have swapped. When one
chooses T = 7/2|x|(3 — +/3), the overall mode transfor-
mations are

P /27 P ip/27,

e e’ dg ar e®"by
()= (aeir)- ()= (ongy). oo
where ¢ =21 (1 -3 /2). These are the desired mode

transformations for the cSWAP unitary up to the deter-

A is2(atarhti
ministic rotation Ry = ¢’ 2(dlari') (which can be easily
tracked in software). This trick can also be used to adjust

geometric phase accumulation on a single mode.

2. Controlled joint parity operation
i (atashth
The joint parity operator ¢ (a ath b) is the ZZ; operator
for many bosonic codes, such as the Fock 0-1, dual-
rail, and two-legged cat codes. The controlled joint parity
unitary can be written as

i (&“&Jriﬂ‘é)

cP=g)(gll+|f){fle (D7)

. —in/2(ata+b%h .
up to the rotation operator e wl (“ o ), We can write the

“symmetrized” controlled joint parity unitary

ein/z(&7'&+137'i>) 7in/2(&“&+137’13)

FI) (e
= lg) (g] €™M + |f) (f | e,

cIPy = |g) (gl
(D8)

with the desired mode transformations

ag iag ar —iay

()~ Gr) ()~ Ci)
We can obtain these mode transformations with preces-
sion vectors 7, and 7, that are antipodal to one another
by setting A = 0. This also means that the correspond-
ing trajectories have equal precession rates given by Q =
V&% + (x/2)? and return to the poles at the same time.
The final step is to set the magnitude of g such that a
solid angle ¢ is enclosed. For a precession vector with
polar angle 6, the general formula for the solid angle is
¢ = 2w (1 — cosO). Therefore, for these precession vec-
tors |¢p| = 2w (1 — x/2Q2) = &, which is solved by g =
V/3/2x intime T = 27/ x. The trajectory for this operating
point is that shown in Fig. 3(a).

(D9)

3. Controlled joint 4-parity operation
im/2(ata+bTh) .
The joint 4-parity operator, e 71/2( +h b), is the ZZ;
operator for bosonic codes with twofold rotational symme-
try such as the binomial and four-legged cat codes. There

exist different choices for symmetrized controlled joint
4-parity unitaries, each with their own operating point:
ata+b1) ata+bt)

(D10)

w1

ape = |g) (gl

or

i3 /4(atasbTh —i3m/4(ata+bth
e = |g) (g] T TEED) oy () (D)
(D11)

One choice results in a faster unitary than the other. Both
perform the controlled joint 4-parity unitary up to a rota-
tion IA€¢. In the slow case, a solid angle of /2 must be
enclosed, which is achieved for g = V7/6x intime 37/ .
In the fast case, a solid angle of 377/2 must be enclosed,
which is achieved with g = +/15/2 in time 7/x. The
operator Bloch sphere trajectories are shown in Figs. 7(a)
and 7(b).

4. Ancilla-controlled unitaries at smaller g/ x ratio

The ancilla-controlled unitaries we have considered thus
far all rely on the ability to tune the magnitude of the
beam splitter rate g to a specific value. In experiment,
there may be restrictions that prevent one from reaching
the required g/ x ratio. For each ancilla-controlled unitary,
one can find alternative sets of Hamiltonian parameters
that use a smaller g/x ratio to implement an equivalent
ancilla-controlled unitary but with a longer total dura-
tion. For example, to perform the czz operation one could
instead perform two cJPf‘IOW unitaries back-to-back, which
requires total gate duration 657/ x but approximately halves
the required g/ x ratio.

The same logic can be applied to the cSWAP unitary. The
trajectory for a(f) o) may complete many orbits in the time
it takes the a(f)s, trajectory to reach the south pole of the
operator Bloch sphere. The geometric phase accumulated
depends on the number of orbits completed. When A is
fixed to x /2, this condition may be written as

2mn
= — (D12)

v/
N

T=

forn=1,2,3....

5. Unconditional SWAP operation

A uSWAP operation refers to implementing the mode
transformations

g b, & by

()~ @) 6)-@)
in which the bosonic modes are swapped without regard
to the state in the ancilla. In the operator Bloch sphere it

(D13)
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FIG. 7.

S

Operator Bloch spheres showing the trajectories for a(¢) and precession vectors during (a) unconditional SWAP, (b) controlled

joint 4-parity (slow), and (c) controlled joint 4-parity (fast) operations. The trajectory in (a) is constructed piecewise from two different
ancilla-controlled unitaries, where we apply a 7 pulse on the ancilla at the halfway point to reverse the |g) and |f) states.

is straightforward to realize the related mode transforma-
tions:

a e?/2h as e 9%

(i)~ (o) (&) =~ (o) 19
With appropriate delays before and after the unitary, one
can again realize a “true” unconditional SWAP operation.

One way to realize the unitary described by Eq. (D14)
is to set g > x and A = 0. After some time T4, the tra-
jectories a(f)g) and a()sy should reach the equator of the
operator Bloch sphere simultaneously. At this time, one
disables the beams splitter interaction and applies a 7w pulse
on the ancilla to flip the |f') and |g) states. If the beam split-
ter interaction is re-enabled for time 7,4, both trajectories
will now travel toward the south pole and meet there. The
complete trajectories are illustrated in Fig. 7(a), with the
shaded area in between the trajectories equal to 2¢.

Performing an unconditional SWAP operation between
bosonic modes can enable an ancilla coupled to one mode
to interact with more than two different bosonic modes.
As an example, if uSWAP; and c¢Z; operations are avail-
able, one can measure 21222324 stabilizers directly on
four bosonic modes by first preparing the ancilla in |+),/,
implementing the unitary sequence cZ; — USWAP;; —
c¢Z; — USWAP|3 — ¢Z) — USWAP 4 — cZ;, and finally mea-
suring the ancilla in the [+£),, basis.

APPENDIX E: REALIZATION IN OTHER
EXPERIMENTAL PLATFORMS

The operator Bloch sphere is applicable to other hard-
ware platforms with access to a beam splitter interaction
and an ancilla-controlled operation on a two-bosonic-mode
system. In the main text, we considered Hamiltonian terms
can be easily engineered in cQED,

(atb + abt,ata, 6%atay, (E1)

where the dispersive interaction with an ancilla imparts
a state-dependent frequency shift on one of the bosonic
modes. This effectively produces an ancilla-dependent
detuning between two bosonic modes, which we leverage
in all proposed ancilla-controlled unitaries.

Alternatively, one can consider a gate set that includes a
conditional beam splitter interaction:

(62@'b + ab"h,atb + ab', a'a). (E2)

This gate set is realized in trapped-ion systems where
phononic modes serve as bosons and hyperfine states play
the role of the ancilla [73—75]. By setting the amplitude,
phase, and detuning of the unconditional beam splitter
drive, one can engineer ancilla-state-dependent precession
vectors and trajectories on the operator Bloch sphere.

APPENDIX F: CONSTRUCTING AN ARBITRARY,
EXCITATION-PRESERVING TWO-QUBIT GATE

With parameterized eSWAP(¢) and ZZ;(f) gates, one
can construct any two-qubit gate that conserves the total
number of excitations in the encoded subspace. A general
excitation-preserving two-qubit gate can be parameterized
by the following circuit:

— Z(01) | — —
ZZ(63)
[ Z(02) — - |

SWAP(6,)

With particular choices of 6, 9,, 65, and 64, one can gener-
ate useful gate families:
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ACE)) —
crrase (0)= Z2(0)
Z(-%) —
iswap  (0)= Z7(—0) SWAP(26)
foH  HF
FSIM (0, )= 77 (—e + 5) SWAP(26)
] I I

CZ = CPHASE(wr/2) is locally equivalent to a controlled
NOT gate, which is often used as the basic two-qubit
gate in general quantum circuits. On the other hand,
parameterized iSWAP(/) and fSIM(0, 6,) are useful for effi-
ciently compiling near-term algorithms, which leverages
the excitation-conserving nature of the gate to simulate
particular quantum chemistry problems whose electronic
structure involves number-conserving symmetry [76].

APPENDIX G: HAMILTONIAN ENGINEERING
FOR ERROR-CORRECTED OR
ERROR-DETECTED GATES

1. The error closure condition

What are the formal requirements for hardware errors
that occur during a gate to be detectable or correctable at
the end of the gate? Previous work on error-correctable
gates relied on error transparency[77], but in this work we
recognize that error transparency is a stronger condition
than necessary for a gate to be error-correctable. Here we
describe a new, less stringent condition that still guarantees
that a gate is error-correctable (or error-detectable), which
we call “error closure”. For brevity, we set i = 1 here.

We consider gate unitary U implemented by the time
evolution of the Hamiltonian 7, such _that U = e¢~/"oT,
First, we reiterate the requirements for H, to be transpar-
ent to a set of hardware errors {€ }haraware that may occur at
any time during the gate:

[Ho,€] =0, (G1)

Vé € {g }hardware' (Gz)
If one is able to correct for errors from {€}naraware affect-
ing idle qubits, error transparency ensures that one can
also correct these errors if they occur during the gate by
performing error correction after the gate.

This condition generalizes to detectable errors as well
as correctable errors. {€}nardware 15 error-detectable if one
can perform syndrome measurements that indicate whether
an error in the set occurred, but one cannot know (or can-
not implement) the correction unitary on the states. This
can occur when different errors yield the same error syn-
drome, or when the unknown time of a jump error means
that one cannot know what the appropriate correction uni-
tary should be. In the main text, we defined a gate to
be error-detectable if one can detect any one jump error
from {€}nardware OCcurring during the gate via syndrome
measurements after the gate.

There exist counterexamples (such as the ZZ, measure-
ment) that are error-correctable operations but that are not
error-transparent. The error closure formalism is used to
evaluate the effects of jump errors from {€}pudware. The
effects of no-jump backaction are not included in the error
closure formalism, and we consider them separately in our
gate and measurement constructions later, although their
effect is usually small and of second order.

We first define a larger set of errors {€}c that con-
tains all the errors one can correct for. We assume that
one has independent error correction operations (syndrome
measurement and recovery) for each error in {€ }hardware. It
follows that if €;,€; € {€}haraware, ONE Can correct superpo-
sitions of errors such as c;é; + ¢;€; and products of errors
such as €;¢; for i # j. The fact that {€}c,r encompasses a
larger set of errors than {€ }pardware is What allows us to relax
the error transparency condition and search for a less strict
condition for error correction.

We now define our error closure conditions for the
Hamiltonian H, and the error set {€}narqware- First we
generate a new set of errors {€}ext from every possible
commutator between Hj and the elements of {€ }nargware,

[ﬁ0a éhardware] = é\ext, (G3)

as well as linear combinations of these commutators. Error
closure is satisfied if

(1) ée){f € {é}corr-
(2) [HO> éext] € {é}ext-

These conditions state that the errors generated by Eq. (G3)
must form a closed set of correctable errors and ensure that
hardware errors during the gate remain correctable errors
after the gate. We now sketch the proof.

Jump evolution for a hardware error € occurring at time
T — t during the gate evolution can be written as

e*l'Hotgeleo(Tfl‘) — e*lHoté\elHotefl'HoT'

(G4)
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The condition for hardware errors to be correctable is

e_iﬁotéeiﬁot € {é}com (GS)
Vé € {g}hardwarea (G6)
vt € [0, T7]. (G7)

Our error closure conditions ensure this is satisfied. From
the Baker-Campbell-Hausdorff theorem, we may write

e Hotg oiHot (G8)
A s ~ o~ P
= € +i[Ho, €]t — [Ho, [Ho,é]]i
P
— i[Ho, [Ho, [Ho, €]l 55 + - - (GY)

3!

The error closure conditions ensure the nested commuta-
tion relations produce errors that are only in {€}cor, and
hence the entire Taylor series is also in {€}¢, since it is a
superposition of correctable errors. If 7’_2(01) and 7’_2(()2) both

satisfy error closure, then so does 7’_‘2(01) + 7:2(()2). Note that
satisfying the error transparency condition automatically
satisfies the error closure conditions. It also follows that if
a correctable error occurs before the gate, it will still be
correctable after the gate. We now give explicit examples
to show how this framework can be used.

2. Example A: Photon loss in beam splitter interactions

Suppose one wishes to perform a SWAP operation
between two bosonic modes by actuating the Hamilto-
nian Ho = g/2(@'h + ab") for time T = 7 /g. We choose
a bosonic encoding that allows us to correct single-photon
loss after the SWAP operation via photon number parity
measurements, such as the binomial code or the four-
legged cat code. The hardware errors we consider are
{€ hardware = {&,13}, and the errors one can correct on idle
qubits are {€}corr = {a, 13, &13, coa + 0113 + 02&3}. We show
how one can correct for photon loss errors at intermedi-
ate times, even when outside the logical codespace. From
Eq. (G3) one finds

[a'h + ab',a) = —b,
[a'5 + abt,a] = —a,

(G10)
(G11)

but when evaluating the commutator with error ab, one
finds

[cﬁz} + azBT,aB] = -, (G12)
which generates errors outside the set of correctable errors,
and so ab is not in {€}ey. After evaluating all the commu-
tators, one finds {€}ext = {coa + c1b} C {€}cor-

Thus, ﬁo and {€}naraware satisfy the error closure con-
ditions for the SWAP operations. This means that one can
correct for & and b errors during the gate without requiring
error transparency and despite evolving the states outside
the codespace.

3. Example B: Ancilla-controlled unitaries generated
by H xBS

The gate and measurement constructions have favor-
able error detection and error correction properties because
the Hamiltonians used to generate the ancilla-controlled
unitaries satisfy error closure—here we show why. We
consider hardware errors {€}nardware = {4, 3, 6;-’"} where
transmon ancilla decay is treated separately by use of the
le) level of the ancilla for error detection.

We set Hy=g/2(a'h+ab") + (A + x/26% )ata.
With an appropriate bosonic code, one can detect photon
loss via parity measurements and ancilla dephasing via the
flag state |f') (in the gate construction) or repeated mea-
surements (for the measurement construction in Fig. 8):

{€)eor = {0, 5,6% ,a6¥ ,b6¥ ,ab,ab6¥ ),  (G13)
where we now omit the linear combinations from {€}cor
for clarity. By writing out the commutation relations

Hoal=—5h— LEYAY

[Ho.a] = -5b (a+ 5 )a (G14)
—~ A —_gA
[Ho.b] = ~%a, (G15)
[Ho,69] =0, (G16)

we begin to find the elements in {ﬁ Jext. We calculate the
next order of commutators, [Hy, [Ho, €]], to arrive at the
closed error set

{€)ext = {a,0,6% ,a6¥ ,b65 ) C (E}eom.  (G17)
and so the error closure conditions are satisfied for each of
the ancilla-controlled unitaries U..

Hardware errors midway through U, can lead to compli-
cated errors. For example, photon loss at an unknown time

results in the operator (coa + ¢ ZA))e"“’&ng U, being applied to
the system, where the coefficients ¢y, c1, snd ¢ all depend
on the exact time of the photon loss. Despite one not know-
ing this time or these coefficients, the error can still be
corrected.

No-jump backaction associated with photon loss does
not form part of the error closure formalism but can be
evaluated by considering whether the photon number pop-
ulations depend on the ancilla states |g) and |f'). For czz,

020354-15



TAKAHIRO TSUNODA, JAMES D. TEOH et al.

PRX QUANTUM 4, 020354 (2023)

|1/1a> A
) 2

99— H ‘

B e
HH 7 |:)"

FIG. 8. Circuit for performing QND measurements of binary-
valued operator P from ancilla-controlled unitaries. If x match-
ing is satisfied, we can error-correct the dominant errors in the
ancilla and bosonic modes.

unitaries, the photon number distributions of the bosonic
modes are independent of the ancilla states. Visually, this
means that trajectories on the operator Bloch sphere have
the same latitude at all points in time, and hence no-
jump backaction due to photon loss or ancilla decay is
absent. This is not true for cSWAP operations, although it
is generally a small effect.

4. Suitable Hamiltonians for error closure

One can engineer many different Hamiltonian terms on
bosonic modes via processes such as four-wave mixing
with a transmon in cQED. When exploring exclusively
bosonic codes designed to correct discrete photon loss
errors, we find that only the lowest-order interactions are
suitable, as detailed in Table III.

APPENDIX H: ERROR-CORRECTED
MEASUREMENTS

Here we examine the measurements that can be con-
structed from ancilla-controlled unitaries and the errors
that can be corrected. The circuit used to perform this
measurement is shown in Fig. 8. If Pisa binary-valued

TABLE III. Error closure for candidate Hamiltonians for
bosonic codes designed to protect from single-photon loss. For
bosonic codes designed to correct against single-photon loss, we
can evaluate the commutator [Hy, a] to see if the Hamiltonian
could satisfy error closure. We find only the lowest-order Hamil-
tonians make good candidates for constructing gates. In the table,
if H, is a good candidate, so is Hy ® 6.

ﬁo [ﬁo, al 7"?0 and {a, b} satisfy error closure?
ata a v
a+ad 1 v
ab® +a'b b v
a’bt + ab bt X
cfr2 + d? 2at X
dla(b+b")  ab+b") X
(a +ahbth bh X
atab™d ab™h X

operator with eigenvalues %1, this circuit performs a QND
measurement of P.

The simpler structure of this circuit means that one can
both detect and correct errors from {a, b, 6% ,le) {f |} that
occur during the circuit. This measurement can be consid-
ered as the two-mode extension of the fault-tolerant parity
measurement presented in Ref. [34].

To correct ancilla decay |e) (f |, one must now also engi-
neer “x matching” (x = xge = Xgr) as in Refs. [33,34].
If |e) is measured at the end of the circuit, then decay
likely happened during U,. By contextuality, this means
the ancilla started in |f') at the beginning of U,. x matching
ensures that one knows with certainty which unitary has
been applied to the bosonic modes even though the precise
time of the decay is unknown. This unitary is the one gen-
erated by H; = gus/2(ath + ab") + (A + x/2)ata =H,
acting for the duration of U,. For measurements where
P = sWAP or ZZ;, this will be identity, SWAP, or a unitary
of the form eup(a*a%*é) all of which are straigh

, ghtforward
to correct for in cQED. Afterwards one can retry the mea-
surement. We now describe how to correct the remaining
errors in {€}nardware = 1@, Z), (.}zgf}

We first consider errors from this set occurring during
U,, the longest duration unitary in the measurement circuit.
As a sequence of successive unitaries applied from right to
left, the gate sequence reads

e—in/4i7g/' Ucein/4f’g/" (Hl)
Hardware errors during U, resultina sequence of unitaries
equivalent to
e*"”/‘rygf ¢ f]c em/4i/gf _ g/efm/zti/gf f]c e"”/”gf, (H2)
where €’ can be a superposition of errors from the set
{a,b,a6¢ ,b6&'}, which is also a set that satisfies the error
closure condition for +Bs. (Note that commuting through
7 /2 pulses changes 6 for 68 , meaning the measurement
outcomes |g) and |f*) can be flipped.) In words, this means
ancilla dephasing during U, does not affect the bosonic
modes but results in a high chance (50%) of observing |f)
instead of |g), and vice versa.

Photon loss errors during U, are equivalent to ancilla
dephasing during the measurement accompanied by pho-
ton loss occurring after the measurement, which can be
detected or tracked [66] via fault-tolerant parity measure-
ments [34] and then corrected.

For completeness, we also consider ancilla dephasing
during the short ancilla rotations, which is equivalent to
measuring or initializing the ancilla in the wrong basis.
Again, the |g) and |f') measurement outcomes may be
flipped, but a backaction of the form co1 + o P may also
be imparted on the bosonic modes for unknown ¢y and c;.
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Once again, this error can be corrected by repeating the
measurement until correctly projecting the states into an
eigenstate of P. Importantly, this backaction conserves the
P eigenvalue that makes this error-correctable. In general,
g or f measurement errors in the measurement construc-
tion are correctable by repeating the measurement and
taking a majority vote on the outcomes.

As an example, we describe how one might perform an
error-corrected ZZ; measurement on two qubits encoded
in the binomial code. First, one repeats ZZ; measurements
until one observes enough |g) or |f') outcomes to perform a
majority vote and obtain a ZZ; eigenvalue. Then one must
check that no photon loss occurred during the measure-
ments, which would invalidate the majority vote. This can
be done by performing parity measurements on individual
modes.

If both modes are of even parity, the measured ZZ;
eigenvalue will be reliable—the ZZ; measurements yield
useful information only if both bosonic modes are in even-
photon-number states. If any modes have an odd number
of photons, one must apply the error correction unitary
for photon loss in the binomial code and repeat the entire
measurement until the photon loss checks are satisfied.
Although the sequence involves many measurements to
majority vote on both the ZZ; measurements and the par-
ity measurements, the complete procedure fully corrects
errors in {E}hardware'

APPENDIX I: ERRORS IN THE
ERROR-DETECTED GATE CONSTRUCTION

Despite using the same U, building blocks as the mea-
surements, the gate construction can fundamentally only
detect errors in {€ }hardware NOt correct them. This is because
of the way ancilla dephasing errors commute through the
entire gate construction. Depending on whether they hap-
pen in the first or the second U, they have the same
flag state |f') but impart different unitaries on the bosonic
modes. Since we are designing a gate that detects only
ancilla errors, we do not need to engineer x matching.
Whenever the ancilla is observed to be in |e) at the end
of the gate, a decay error (which may have occurred at any
point during the gate construction) is indicated. No-jump
backaction associated with the |e) (f | decay can be mit-
igated by over-rotating the ancilla by slightly more than
7 /2 in the first ancilla rotation.

Upon detecting |e), we must reset the state in the
bosonic mode, which in general will have leaked out of the
codespace. This is because we will be at some unknown
point on the operator Bloch sphere (and only evolution
that brings us back to the poles can leave us back in the
codespace). To see why, we can consider ancilla decay
that occurs during the first czz; unitary. The quantum tra-
jectory can be described by our applying the Hamiltonian
H =g/2(a’b + ab") + xgra'a for some time fjump and

then the Hamiltonian H = g/2 (aTb + abT) + xgea'a for
the remaining time Tgae — fjump. SINCE fjump is unknown,
we end up at an unknown point on the operator Bloch
sphere.

An important consequence of this is that a fraction of
€pass Will be leakage errors, due to undetected double-decay
events in the ancilla. Depending on the choice of bosonic
encodings, this slow buildup of leakage errors may be easy
to detect and reset with additional operations. For instance,
in the dual-rail encoding, QND joint parity measurements
suffice to detect leakage.

The gate construction ideally performs the unitary

Ugate @) ® 1) (2] + Ugate () @ ) (f |, (I1)

where @gaw(e)) is the desired entangling gate on the
bosonic modes. This unitary can be performed by sequen-
tially applying the following sequences of unitaries to the
system, provided the ancilla is initialized in its ground state

e*i?‘[/4i/g/f ﬁcefiH/Z/%gf ﬁcein/ﬁli/g/f , (12)

We now investigate the effects of ancilla dephasing. Pho-
ton loss errors also dephase the ancilla, so analyzing this
error resolves the issue of error propagation resulting from
the hardware errors {a, b, 6£'}. Ancilla dephasing 6/ that
happens during the first U, results in the overall gate
unitary

ety T2y T 68 oin/ (13)
= o /4Ty [e 2y U 68 (14)
= Ugae (0)6 5)
= 6 Ugare(—0). 16)

In other words, the ancilla ends in /'), and the incorrect
unitary Ugge (—0) is applied to the bosonic modes.

Dephasing that occurs during the second U, results in
the overall gate unitary &Z/Ug{lte (6). The ancilla ends in |f'),
and the correct gate unitary Uy (@) is applied. From these
two scenarios, if the ancilla is observed to be in |f), it
i§ unknown whether the unitary ﬁgam(—e) or the unitary
Ugate (0) was applied, and only this error is detectable.

We also show that one can still detect ancilla dephas-
ing even if it occurs during any of the three short ancilla
rotations. This means that the error-detected gate fidelity
should not be limited by ancilla decoherence during the
rotations (i.e. transmon gate fidelities in cQED). If ancilla
dephasing happens during the final e~/4'¢ rotation, the
ancilla and the bosonic modes are disentangled by this
stage. One still performs ’Ugate (6) correctly but there is now
a probability that the ancilla is detected in |f'). Dephas-

ing during the first ¢™/4Y¢ rotation is equivalent to starting
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the ancilla in a random ¢ |g) + ¢ |[f) superposition. Thus,
when one measures the ancilla in |g), the correct gate uni-
tary will have also been performed. Dephasing during the

middle pulse e~/ 2% rotation results in applying the gate
ﬁgate (Brandom )> Where Opandom depends on the exact time of
the dephasing jump during the middle pulse. This error is
also flagged because the ancilla will also end in the |f)
state.

The gate construction is not robust with regard to
second-order ancilla dephasing. On roughly half of the
occasions where two &, jumps occur during the gate, they
will occur during different ancilla-controlled unitaries. The
net result is that the incorrect unitary {(—6) is applied to
the bosonic modes and the ancilla is measured in state |g)
at the end of the gate, so this error is not flagged. Logi-
cally, this error corresponds to a Pauli ZZ error affecting
both bosonic qubits.

Photon loss errors also cause dephasing on the ancilla
[34] and thus can be detected only at the end of the gate
construction (e.g. via parity measurements).

APPENDIX J: SIMULATION DETAILS

A ZZ;(9) gate is simulated by numerically solving
the Lindblad master equation under the static dispersive
Hamiltonian and the controls needed to realize the con-
stituent operations (specifically, beam splitters and trans-
mon pulses):

ﬁXBS = ﬁx + Hps(0) + Hr(2). (1
The static Hamiltonian describes the dispersive coupling

to the ancilla with a frequency shift for each ancilla basis
state:

H,/h=—i'a (% lg) (el

+ (& = %) le) el

Xr
~Z 1), (12)

where we choose x./2m = —0.5 MHz and x /27w =
—1 MHz. We have written this Hamiltonian in a frame
where the dispersive interaction for |g) and |f) is sym-
metric. We assume the time-dependent beam splitter and
transmon drives to be piecewise-constant throughout the
protocol and constant when realizing each unitary in the
gate construction. This allows us to ignore the effects of
any particular choice of pulse shape, since we wish to
highlight how the overall protocol fidelity scales with var-
ious error rates. Furthermore, because the beam splitter
and transmon pulses are never simultaneous, we can define
distinct time-independent Hamiltonians corresponding to

beam splitter operations and transmon operations:
Hus/h =5 (a'b+ab') + Ad'a,
Hr/h = e6¢ + €67, J3)

where €, and €, are the drive strengths of the two con-
trol quadratures coupled to the g-f manifold Pauli oper-
ators 67 = | ) (gl + Ig){f | and & = ilf )(g| — ilg){/ |
Because the ZZ; (0) gate uses the cZZL operation, we take
A = 0 throughout the gate sequence. During transmon
operations, we ignore the dispersive coupling, as this can
also be compensated for with appropriate pulse shaping.

We then use this Hamiltonian in the Lindblad master
equation:

d
% = —i[H.p] + T[D[p + T} DLi'Tlp + T{ Dlalp.

(J4)

where 7= |g)(e| + V2le) {(f| is the annihilation opera-
tor for the transmon mode, D[E],o L,oL‘ - —LTL,o -
%,oﬁi is the usual Lindblad dissipator, I'l = 1/T, ‘lg
Il =175, and 1€ = 1/70.

The Lindblad equation can also be expressed in terms of
a Liouvillian £ as

dp _

Lp =[H,p]+iT[D[ilp +iT}D[iTp +
iFICD[&] p. Because the transmon and beam splitter drives
are either enabled or disabled for each of the five steps
in a given protocol, we can express the final state density
matrix after the whole sequence described in Fig. 4 as

where

p/ Z/{T3Z/{B2UT2UB1UT1,0 , (J6)
where each Z:i =e 5! is the (generally non-unitary)
propagator under the time-independent Liouvillian corre-
sponding to a transmon pulse Uy or beam splitter pulse Us
in the presence of errors.

We then prepare the 36 cardinal states of the joint logical
space p as

(o' 1Y) ®16) V1), l¢) €
{102), 112),

1 1
i (102) + 111)), 7 (102) — 1)),
1 1
— (10.) +il1L)), —
2ot
and simulate the evolution of each one under the sequence
of Liouvillians for a given protocol, yielding a final density

02y =il A7)
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operator ,oi . We choose these states because the average
trace fidelity over these states yields the trace fidelity over
the entire joint logical subspace [67].

Next we simulate measurement of the ancilla. In a small
fraction of measurements, one will erroneously measure
an ancilla in the |e) state or the |f') state as being in |g).
Therefore, to simulate an imperfect ancilla measurement,
we first calculate the system density matrices that would
result from perfect ancilla measurements for the ancilla in
its three basis states. The traces of these density matrices
are the probabilities of observing the ancilla in a particular
state, and therefore we take the gate failure probability to

be 1 - Tr[l) (el o |

We then compute a weighted sum of these density
matrices to find the mixed logical state resulting from an
imperfect observation of |g), with weights given by the
probability of misassigning a particular state. The overall
model is expressed as

o= ueulV)Wlel )l (J8)

vegef

where 1,y is the probability of observing |g) when the
state was |). In cQED, most of the readout error comes
from decay of the transmon during the readout pulse itself;
therefore, we set g, = 1 — 10~* on the basis of the distin-
guishability of ancilla pointer states in a typical integrated
readout signal [78]. Given typical readout pulse lengths,
we compute the results for 7, = 0.01 and 0.05. In all
cases we assume that n, = née [17]. Tracing over the
ancilla states yields the resulting mixed density matrix
conditioned on an imperfect postselection measurement.

We then simulate the detection of errors in the bosonic
modes by using the appropriate syndrome measurements
for the dual-rail and binomial codes. For the dual-rail code
with basis states {|01) , |10)}, the occurrence of decays can
be detected by measuring joint photon-number parity on
each pair of dual-rail modes and observing an odd outcome
for both. We can therefore write

M = 10.)(0L] ® 10)(0x]
+10.)(0.] @ [12) (1]
+ (1) (1] @ [0£) (0,
+ 1) (12| @ [1) (1L, (J9)
where |0);, = |01) and [1); = |10). For the binomial code,
photon-number parity measurements are used for syn-

drome measurements, and therefore the corresponding
measurement operator is

i ﬂ+ein(&7'a) ]1_|_€m(iﬁi>) |
2 2

(J10)

After simulating idealized syndrome checks, we can write
the state of the modes conditioned on observing no error as
M _ propy

ot = Mo M J11)
Finally, we renormalize this density matrix to obtain ,553 M
and compute the overlap with the pure state obtained by
applying the perfect gate unitary U to the initial state. We
average the post-selected state transfer fidelities associated
with the gate over the 36 cardinal states to obtain

1 ~’M/\ l"\J.
5m=%;“@(%m' (I12)

APPENDIX K: IMPACT OF DEVICE
NONIDEALITIES

In cQED, the dispersive Hamiltonian is only an approx-
imation, with known higher-order corrections. The next-
highest-order terms are the self-Kerr of each bosonic
mode and cross-Kerr between bosonic modes, as well
as higher-order corrections to the dispersive interaction
itself. Although these are typically a factor of 100—1000
times weaker than x, they present a source of coherent
error unaccounted for in the proposed gate design. Here
we quantify their effects on gate performance for realistic
experimental parameters.

The higher-order corrections are modeled with the
Hamiltonian

Kaininn Kpoinins

Hwe/h = —TaTaTaa - TbbTbTbb (K1)
+atataa (3 1f) |+ xlle) el (K2)
+ xapa'ab'h, (K3)

where K, and K, are the self-Kerrs of each bosonic mode,
x.a and X/i are higher-order corrections to the dispersive
interaction, and ¥,y is the cross-Kerr between the bosonic
modes, which may result from both modes participating
in the nonlinear element used to actuate the beam splitter
coupling.

What is the expected error induced by these terms?
We can write the rates associated with these corrections
as K ~ (K., Kp, xf’- , Xab)- As a rough approximation, these
terms add a state-dependent detuning to the bosonic modes
of order approximately 7K, where 7 is the average photon
number in the modes. From our intuition for single-qubit
gates on a Bloch sphere, this detuning will cause the
state to miss its target by a small distance proportional to
approximately 7K, which includes the possibility of mov-
ing off the surface of the sphere due to distortion of the
logical state. Since fidelity is quadratic in the state overlap,
our ancilla-controlled unitaries should be only quadrati-
cally sensitive to this detuning, with an infidelity expected

to scale as ~ (ﬁi{tgate)z ~ (ﬁi(/Xf)z-
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When designing a device for experiment, we can con-
trol x, through the geometry of the device. Increasing the
value of this parameter causes Tga to decrease linearly but

K to increase quadratically. Therefore, reducing x, will

always reduce the gate error from ﬂNL. On the other hand,
reducing x, will always increase the errors due to deco-
herence by increasing 7g,. These competing effects mean
there is an optimal value of x, to engineer.

Additional simulations displayed in Fig. 9 highlight the
competition between nonlinearity and decoherence. From
typical values we measure in experiment [33], we assume
an initial operating point where Xf/ /2w =2kHz, x,/2m =
1.125 kHz, and K, /2w = K}, /2w = 2 kHz when x, /27 =
—1 MHz, and that these quantities would scale quadrat-
ically if we were to vary x,. We also assume y.»/2m =
100 Hz for all xs, chosen to reflect values attainable
in modern hardware [41]. For the transmon pulse, we
again ignore the dispersive interaction and its higher-order
corrections.

The rightmost column in Fig. 9 shows that in the absence
of decoherence, the error associated with nonlinearity
scales quadratically in yx, as expected. The leftmost and
center columns in Fig. 9 highlight that when decoherence
is introduced, the benefits of a weaker coupling to the non-
linear ancilla are overridden by the increased incoherent
error experienced by the slower gate. This leads to an opti-
mum that may be found for different bosonic codes and
decoherence rates. For the codes and parameters explored
here, we find the optimal x, to be approximately 1 MHz
and observe persistent error-detected gate infidelities on
the order of 0.01% or below.

APPENDIX L: ERROR SCALING PREFACTORS
FOR DIFFERENT ERROR CHANNELS AND
BOSONIC CODES

The simulation results shown in Fig. 5 show that gate
failure scales linearly and error-detected gate infidelity
scales quadratically with each hardware decoherence rate
considered. The fits take the form 4, (teate/Teon) - For a
given error channel, we find 4, is significantly smaller
than 4, (and often much smaller than 1), granting further
protection against second-order hardware errors; here we
explain this observation.

We begin with the case of photon loss. The probabil-
ity of single-photon loss occurring determines A4;. For the
binomial code, there are an average of two photons in
each bosonic mode, for a total of four photons. Hence,
Ay =~ 4 for the gate failure probability. Similarly, for the
dual-rail code, A; ~ 2. Double-photon loss in the bino-
mial code sets 4, for the error-detected gate infidelity. The

2 Teoh
factor of 1/2 comes from the fact that photon loss must
occur sequentially in a given time window. Half of the

i 2
probability of double-photon loss is & (nn;_m) , where the

time, double-photon loss results in the detectable error Gb.
Overall, this means that 4, = 1n?/4 ~ 1

For the gate failure probability resulting from ancilla
errors, A, ~ 1. A single ancilla error results in a failed gate.
The values of A, for ancilla errors require more detailed
analysis. For ancilla dephasing, if two o, errors occur
within the same ancilla-controlled unitary, they cancel
each other out. Only if they occur in different ancilla-
controlled unitaries do they cause a gate error, and hence
we pick up a factor of 1/2. When this error happens,
the applied gate is ZZ; (—m/2), which causes an error on
half of the cardinal states, yielding another factor of 1/2.
Overall, this makes 4, ~ 1/4 for ancilla dephasing.

Finally, 4, for ancilla decay is the most involved to
calculate. Double-decay errors require decay to |e), then
to |g). The |g) (e| decay rate is presumed to be half the
le) {f | decay rate, yielding an initial factor of 1/2. Decay
to |e) must happen before decay to |g) in the same time
window, giving the next factor of 1/2. Most of the time,
double decay to |g) will leave the system in a random
ancilla state in the g-f manifold due to the ancilla rotations
in the sequence, and hence double decays are detected as
|f) at the end of the sequence half of the time. Finally,
we assume that when double decay happens, the bosonic
modes may be outside the codespace but still have some
overlap with the target states. This quantity is difficult to
calculate. We define it as Ajeax < 1. Overall, this means
that 4] = Ajeak/8 < 1/8 for double ancilla decay errors. In
general, these combinatoric factors help further suppress
the effects of second-order ancilla errors.

APPENDIX M: PULSE SHAPING FOR ZZ(6)
GATES

Here we show by an example how pulse shaping can
be used for future experimental realizations of the ZZ; (0)
gate, which addresses the practical constraint of finite
pulse bandwidth. We find pulse shaping can fix two
unwanted effects that arise from finite pulse bandwidth:
unwanted dynamics during the gradual ramping up of our
beam splitter amplitude, g, and unwanted dynamics during
the short-duration but finite-duration transmon rotations.
These unwanted dynamics are due to the “always-on”
nature of the dispersive interaction between the transmon
and the cavity mode in the cQED systems we consider.
Crucially, we show that simple pulse shaping solutions do
not dramatically increase the duration or complexity of
the gate. The full pulse sequence example is illustrated in
Fig. 10.

To engineer our example pulse, we split the ZZ; (6) gate
into five parts that are individually optimized: three ancilla
rotations and two identical czz; unitaries. For simplicity,
we examine the ZZ; (r/2) gate in the Fock 0-1 encoding.
We use optimal control pulses found with gradient ascent
pulse engineering (GRAPE) and simple pulse detunings to
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FIG. 9. Impact of undesired nonlinearities due to ancilla coupling. Average gate failure probability (red circles) and average error-

detected gate infidelity (blue circles) for three sets of coherence parameters as functions of xr. The resulting infidelities and error
probabilities scale quadratically with x,, as shown with fits to the simulation data (dashed blue and red lines). Reducing x, allows
one to reduce the strengths of cavity self-Kerr and higher-order corrections to the dispersive interaction, but increases the impact of
decoherence and cross-Kerr, leading to the emergence of an optimal operating point. Having 99% measurement error (blue squares)
or 95% measurement error has a small but sometimes noticeable impact on the resulting logical infidelity.

compose our example pulse sequence. By analyzing the
subsequent dynamics with QuTiP master equation simu-
lations, we verify we can perform the gate with coherent
errors of approximately 0.01% and with expected error-
detected gate infidelities of approximately 0.01%, showing
how we can overcome finite-bandwidth effects without
compromising the key benefits of our gate.

Transmon rotations within the |g)-|f) manifold are
expected to take 50—100 ns with current hardware, since
we must be careful to avoid unwanted leakage to the
le) level (although this error is also detectable). We use
GRAPE to find pulse €4(7) = €,(?) + i€, (¢) with the Hamil-
tonian

H=-ei)|f)(gl+e€;(0)1g) (]
+§(|g> (el —1f) i Da'a,

working in the frame where A = x/2 and the con-
straint that the transmon reaches the equator state (|g) +
[ ))/+/2 = |+)4 after 100 ns, regardless of whether there
is one photon or there are zero photons in cavity mode a

(see Fig. 2 for reference). Future work should also explic-
itly model the transmon’s anharmonicity in the Hamilto-
nian to minimize leakage to |e) in the pulse. Here we
assume our transmon drive can directly drive transitions
between the |g) level and the |f') level.

We find our numerically optimized pulses closely
resemble Gaussian 37 /2 pulses (rather than 7 /2 pulses)
to reach |+) of - A similar pulse is also found for the final
transmon rotation, which takes |+),, to |g). For the inter-
mediate transmon rotation, we use a detuned Gaussian
pulse of duration 40 ns, also with an amplitude close to
what would be required for a 377/2 pulse. We chose the
detuning and phase such that the transmon state stays as
close as possible to the equator plane of the |g)-|f') Bloch
sphere.

To preserve error detection with regard to transmon
dephasing errors, we should adhere to what we call the
“equal latitude condition” as closely as possible through-
out the gate. That is, the latitude of the transmon on its
lg)-|f} Bloch sphere should remain independent of the
state in the cavities at all times during the gate. We can
see in Fig. 10(c) that this is mostly the case for our
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FIG. 10. Example of pulse shaping for a ZZ(r/2) gate in the
Fock 0-1 encoding. We work in the frame A = x /2 for all drives.
(a) GRAPE pulse for the beam splitter drive. The dashed line
indicates the beam splitter strength required if we were to use
rectangular (instantaneous ramp-up) pulses. (b) Pulse shaping for
the three ancilla rotations during the ZZ(x/2) gate. All pulses
closely resemble Gaussian 37/2 pulses. The first and last pulses
are found with GRAPE. The middle pulse is a simple detuned
Gaussian 37/2 pulse that parameterizes the gate angle, 6. (c)
Latitude of the transmon on its |g)-|f') Bloch sphere, showing
that the dynamics respect the “equal latitude condition” for the
four different possible cavity states.

numerically optimized pulse, except for the intermediate
transmon rotation, where there is a slight deviation. While
we can no longer error-detect 100% of transmon dephasing

events during this rotation, as far as we can tell, this does
not noticeably limit our error-detected gate fidelity in this
particular pulse. Future pulse optimization efforts should
take this equal latitude condition into account in the cost
function, which seems to be a more general requirement
for being able to detect ancilla dephasing errors.

Pulses for the czz; unitary are found from the Hamilto-
nian

H =3 (g(a'b+g"ab") + Za'allg) (¢l = 1) I D

N —

with the constraint g(0) = g(27/x) = 0. The solutions
we find generally require gnax to be slightly larger than
V3/2x.

The total gate duration for x /27 =2 MHz is 1240 ns,
which is close to the 477 /x = 1000 ns limit for the fastest
gate time possible with our construction. The actual uni-
tary we implement is ZZ(rr/2)Z,(6;), where the additional
single-qubit Z rotation is an artifact of the static dispersive
interaction. For this particular pulse, 8; = 0.03, an almost
negligible effect. In the absence of decoherence, we obtain
an average gate infidelity of 0.015% and an average failure
probability of 0.039% (both due to coherent control errors).

We expect the average gate infidelity to be only quadrat-
ically sensitive to pulse shaping errors. When we model the
pulse amplitude error by increasing all pulse amplitudes by
0.5%, we obtain an average gate infidelity of 0.030% and
an average failure probability of 0.065%. Similarly, when
we detune all pulses by +10 kHz, we obtain an average
gate infidelity of 0.030% and an average failure probability
of 1.8%, mainly from detuned ancilla pulses.

When we set ﬁlgM =100 us, T(‘;)(el =100 us, and
T = 0o, we find an average gate failure probability
of 2.4% and an average error-detected gate infidelity of
0.019%, demonstrating that we maintain low error rates.
(Including photon loss, we estimate an additional 0.2%
failure probability if we were to use this pulse sequence
for the dual-rail encoding with 7° = 1 ms per cavity.)
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