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Superconducting cavities coupled to transmon ancillae are a promising platform for

fault-tolerant quantum computation. This pairing produces universal control over a

long-lived bosonic mode, in whose many levels we encode a logical qubit or physical

quantum system, such as the vibrational modes of a molecule. However, unwanted

static interactions and spurious couplings to the environment limit the accuracy of

computations. In this dissertation, we tackle each of these error sources in turn. Our

solutions exploit the ability of the transmon to perform high-fidelity measurements

of the cavity mode without disturbing its stored information. First, we present our

efforts to reduce the residual cavity non-linearity, which causes dephasing in many

quantum codes. We discuss multiple methods to measure the non-linearity and show

that our mitigation technique can fully cancel cavity self-Kerr. Next, we construct a

new photon-number resolving measurement that extracts multiple bits of information

from the cavity in a single shot using multiple transmon measurements. The errors

that occur in this measurement have a predictable form and can be inverted to reduce

ensemble error by an order of magnitude. Finally, we develop and demonstrate a gate

that detects errors in real time. The resources required for fault-tolerance are high,

but can be relaxed if the goal is only to detect, but not correct errors. Our error-

detected gate reaches a fidelity of 0.9995 driven by improvements in numerical gate

optimization and transmon three level control.
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Chapter 1

Introduction

1.1 Prologue

The history of the development of quantum mechanics is at this point quite well

known. The solutions to the ultraviolet catastrophe and photoelectric effect intro-

duced the notion of quantization: that the allowable configurations of many systems

often come in countable sets. The development of quantum mechanics accelerated

from there, and within a few decades offered accurate models for atomic spectra,

perhaps most famously the hydrogen atom. Quantum field theory and the Stan-

dard Model followed, whose demonstrated accuracy so far has only been limited by

experimental precision.

Einstein, ever the opponent of quantum non-determinism, reconciled the success

of quantum mechanics at these predictions by rejecting the wavefunction as anything

more than a probability distribution of outcomes over many systems:

The attempt to conceive the quantum-theoretical description as the com-

plete description of the individual systems leads to unnatural theoretical

interpretations, which become immediately unnecessary if one accepts the

interpretation that the description refers to ensembles of systems and not

6



to individual systems.

—Albert Einstein [Schilpp, 1991]

Measurements of atomic spectra and scattering cross-sections performed at the time

mostly probed the ability of quantum mechanics to predict the coupling between

different states of an atom and excitations of a field. However, quantum mechanics

predicts a much stranger world of superposition and entanglement than can be ob-

served via the ensemble measurement of matrix elements alone. The exploration of

this side of quantum mechanics had to wait until the 1990’s when a series of technical

breakthroughs created platforms that allow the measurement and manipulation of

individual quantum systems.

In the meantime, physicists such as Paul Benioff and Richard Feynman proposed

in 1980 that one could utilize entanglement among these individual quantum systems

to perform computations [Benioff, 1980], and that there may even exist problems at

which this “quantum computer” can always outperform a classical one, such as the sim-

ulation of other quantum systems in physics and chemistry [Feynman, 1982]. These

proposals ignited interest in “quantum computing,” and over the next two decades,

physicists and computer scientists discovered algorithms for communication [Ekert,

1991,Bennett and Brassard, 2014,Deutsch and Penrose, 1997] and computation [Shor,

1994,Grover, 1996]. The crown jewel of this collection is Shor’s algorithm [Shor, 1994],

which provides an astonishing exponential speedup in factoring numbers over known

classical methods. This discovery established a long-term target for the nascent field

of quantum computing and drew the interest of the national security apparatus, whose

funding has fueled the field for decades, including this dissertation.

At this point, theoretical advances had far outstripped experimental ones. Indeed,

even 30 years later, Shor’s algorithm still remains decades away from practical realiza-

tion. The missing ingredient was the ability to prepare and measure single quantum

systems. In the 1950’s, Paul invented the radio frequency ion trap [Paul, 1990,Paul
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and Steinwedel, 1953] which uses oscillating electric fields to suspend single atoms in

a vacuum chamber for individual measurement. Thermal vibrations of the ions in the

trap limited the quality of measurements until laser cooling enabled the preparation

of ions in their vibrational ground states [Wineland et al., 1978]. The laser trapping

and cooling of neutral atoms followed approximately a decade later [Migdall et al.,

1985,Lett et al., 1988].

Now that physicists could prepare and measure single quantum systems, the rate

of progress increased and the first quantum gate was performed between two qubits

[Monroe et al., 1995]. In addition to gates, physicists discovered a novel type of

measurement that minimizes the backaction on the quantum system being measured

[Braginsky et al., 1980,Brune et al., 1992,Brune et al., 1996]. These accomplishments

demonstrated that the fundamental ingredients of a quantum computer are feasible:

state preparation, quantum gates, and state measurement. However, they also showed

that the rate at which quantum computers experience information-corrupting errors

precludes the immediate implementation of the exciting algorithms developed by Shor

and Grover. To execute these algorithms, an additional ingredient is needed: quantum

error correction. These successes and the challenges ahead began what some have

called the “second quantum revolution.”

1.2 The second quantum revolution

In 1995, Intel released the Pentium I P54CS with 3.3 million transistors each with

a feature size of 350 nanometers. Gordon Moore, one of Intel’s founders, claimed in

1975 that the number of transistors (and thus the computational power) in micro-

processors would double every two years. Remarkably, the semiconductor industry

has upheld this prediction for nearly 50 years now, despite repeated predictions that

advancements would slow. The raw computational power of 50 years of exponential
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growth is the driving force behind recent advancements in artificial intelligence, such

as GPT-4. It is not known exactly how many NVidia A100 GPUs were used to train

GPT-4, but many suspect approximately 20,000 were used. At 54 billion transis-

tors per A100, approximately one quadrillion (1015) transistors fabricated with a 4

nanometer process participated in its training.

The power of the transistor can likely take us only so far though. There are no

known efficient classical algorithms for factoring numbers into their prime compo-

nents. Quantum chemistry simulations essential for material and drug design remain

difficult even with sophisticated approximations that reduce complexity. New gen-

erations of large language models require training even larger neural networks than

GPT-4. Quantum computers provide a proven exponential speedup at factoring with

Shor’s algorithm [Shor, 1994], can access larger Hilbert spaces for quantum chemistry,

and may even offer speedups for machine learning [Biamonte et al., 2017].

So why hasn’t a quantum computer been built yet? The short answer is that the

error rates of quantum bits, qubits, far exceed that of classical bits, transistors. There

are also difficulties in scaling the number of any type of qubit from tens to hundreds to

millions. Qubits are very sensitive quantum systems susceptible to tiny fluctuations

in their surrounding environment. Minimizing the sources of these fluctuations and

their effects on qubits is a primary research goal in the field.

Since the beginning of the second quantum revolution, new types of quantum bits

have emerged as candidates for a quantum computer. One very promising platform

is based on the superconducting transmon qubit [Koch et al., 2007], which developed

from earlier work on Josephson junction-based qubits [Devoret et al., 1984,Devoret

et al., 1985,Martinis et al., 1985,Esteve et al., 1986,Martinis et al., 1987,Nakamura

et al., 1999]. Transmons are often referred to as “artificial atoms,” since they attempt

to replicate the behavior of the atoms (and ions) used in the first experiments on

quantum systems, but with the convenience of more accessible energy scales and
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tunable properties at the time of manufacture. Since then, transmon lifetimes and

on-chip densities have increased to hundreds of microseconds [Ganjam et al., 2023]

and 127 transmons per chip [Kim et al., 2023] (although not necessarily both at the

same time). Here at Yale, we have successfully used transmons coupled to long-lived

superconducting cavities [Reagor et al., 2016] that form the basis of our platforms for

error correction.

To overcome the high error rate of qubits, Peter Shor recognized that many phys-

ical qubits would need to be combined into a single “logical” qubit [Shor, 1995]. This

started the field of quantum error correction, which has proposed many different ap-

proaches to achieve a high fidelity qubit ranging from utilizing continuous variable

hardware [Gottesman et al., 2001] to the popular surface code [Kitaev, 1997] that

tiles many physical qubits into a single logical one. At Yale, our goal is to develop

high-fidelity qubits utilizing bosonic modes that contain more than two levels, allow-

ing us to add redundancy at the hardware level before arraying many of these qubits

into a surface code, for example.

There are two approaches to quantum error correction (QEC): “feedback” ap-

proaches that require measurements of the quantum system followed by actions de-

termined by those measurement results, and “autonomous” schemes, where one en-

gineers the quantum system in such a way that it naturally tends to counter-act

the effect of errors. The transmon-cavity architecture provides a unique amount of

flexibility in performing the measurements required for feedback error correction and

engineering the interactions necessary for “autonomous” error correction. Examples

of implementations of the feedback scheme include cat code error correction [Ofek

et al., 2016], GKP stabilization [Campagne-Ibarcq et al., 2020, Sivak et al., 2023],

binomial code error correction [Ni et al., 2023] while autonomous implementations

include cat codes [Gertler et al., 2021,Leghtas et al., 2015,Leghtas et al., 2013,Hol-

land et al., 2015] and Kerr-cat variants [Puri et al., 2020, Puri et al., 2017, Grimm
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et al., 2020,Frattini et al., 2022,Venkatraman et al., 2023]. These same measurements

and interactions have applications in quantum simulation as well, with exciting ap-

plications to chemistry [Wang et al., 2020,Wang et al., 2023].

Arraying large numbers of the qubits mentioned above into a surface code (it-

self a feedback-based error-correcting code) to make a high-quality logical qubit is

a major and ongoing challenge [Acharya et al., 2023]. The main task in the sur-

face code is the measurement of quantities known as stabilizers. These stabilizers

determine if an error has occurred in a small neighborhood of qubits, without reveal-

ing and spoiling the quantum information encoded in the non-local correlations. To

minimize the resources needed to construct one of these logical qubits, the physical

qubits and measurements of them must be of as high quality as possible. Addition-

ally, recent proposals have shown that the ability to detect errors during qubit gates

and stabilizer measurements significantly reduces hardware requirements [Teoh et al.,

2023, Wu et al., 2022]. Whether error detection is used or not, reliable measure-

ments of the quantities that indicate errors is one of the most essential ingredients

to feedback-based QEC. Demonstrating the implementation, and advantage of error-

detected gates on logical qubits is the primary aim of this dissertation.

1.3 Dissertation structure

Each of the advancements discussed above in the study of quantum systems (and

QEC) is a result of breakthroughs in quantum control and measurement. This disser-

tation will present some new techniques that add to both our control and measurement

toolboxes. The chapters are ordered with respect to the complexity and novelty of the

measurement technique utilized, building up to a demonstration of an error-detected

gate.

As we are focused on quantum control and measurement, we begin in Chapter 2
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with a brief review of the current state-of-the-art, including concepts on which we seek

to improve. The main building block for bosonic error correction and simulation at

Yale is the transmon-cavity pairing. The cavity excels at maintaining the coherence of

quantum states, but does not possess enough inherent non-linearity needed for control.

On the other hand, the transmon is highly non-linear, rendering it easy to control,

but its coherence times are much shorter. When we couple these devices together, the

resulting hybridization enables the control of both modes. This dissertation will not

provide an in-depth introduction to the physics of the transmon or cQED; excellent

synopses can be found in other Yale theses [Schuster, 2007,Chou, 2018,Gao, 2018].

Our review focuses on the Hamiltonian model that describes the composite system,

and how we use it to design new controls and measurements. In particular, we review

optimal control [Reinhold, 2019,Heeres et al., 2017] and a variety of ways to compute

the fidelity of a quantum gate.

The simplest measurement employed in cQED is one that occurs at the end of

an experiment. Generally, these end-of-line measurements extract a single bit of

information from our transmon qubit (remember that qubit refers to “quantum bit").

In chapter 3, we use end-of-line measurements to characterize the cavity’s residual

Kerr non-linearity by constructing its Wigner function via single bit measurements.

While inherently small, cavity Kerr distorts quantum states and can even produce

uncorrectable errors in logical qubits [Campagne-Ibarcq et al., 2020]. We discuss a

new technique derived in [Zhang et al., 2022] that tunes Kerr with a simple drive

on the transmon. We show that this drive does not spoil system coherences and

successfully cancels (or amplifies) Kerr.

There are cases where one may want to measure a quantity that has more than

two outcomes. This is especially true in quantum simulation problems, where we

use our bosonic cavity to simulate other bosonic modes. Measurements of infinite-

dimensional bosonic modes can in principal have infinitely many outcomes. In our

12



previous work simulating Franck-Condon factors [Wang et al., 2020], we needed to

measure in a single shot the number of photons in a cavity. Chapter 4 describes a

measurement that extracts multiple bits of information by concatenating four binary

QND measurements [Curtis et al., 2021] that measure the bitwise representation of

the photon number. We show that the error syndromes of this measurement are

predictable and small. Once we calibrate a hidden Markov model describing these

errors, we can invert their effect on ensemble measurements. Our error mitigation

technique reduces the average error by an order of magnitude.

A large fraction of the infidelity in the bitwise measurement comes from transmon

decoherence. The error mitigation technique in Chapter 4 reduces errors in ensembles

of measurements, but it cannot detect errors as they occur in real-time. Until recently,

we focused on constructing fault-tolerant gates on logical qubits [Rosenblum et al.,

2018, Reinhold et al., 2020], which means that a failure in the quantum hardware

does not erase any stored quantum information. But in the last year, it was shown

that merely detecting the error, a much easier task, provides a substantial benefit for

qubits used in surface codes [Wu et al., 2022,Teoh et al., 2023,Kubica et al., 2022].

In Chapter 5 we define an error-detected gate and derive the factor of improvement

that error detection can provide. This improvement is limited by the fidelity and

QNDness of our measurements, provided that we can construct our gates to fail in a

detectable way. In Chapter 6, we discuss what is needed to detect transmon decay and

dephasing errors, and introduce the notion of path independence that motivates a new

approach to optimal control which optimizes gate fidelity conditional on a transmon

measurement after the gate. We optimize this cost function in the presence of up

to one dephasing jump, aiming to achieve error detection against a single dephasing

event. We focus on a specific gate, a logical Z rotation, as a test case for error

detection.

The next two chapters focus on the physical implementation and characterization
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of an error-detected logical Z rotation on the binomial code. In Chapter 7, we expand

our transmon qubit to a qutrit. If we form a qubit out of the first and third states of

the qutrit, any measurements of the qutrit in the second state indicates that a decay

(or heating) error occurred [Rosenblum et al., 2018,Reinhold et al., 2020,Elder et al.,

2020]. We describe a way to control the g − f qubit and use leakage randomized

benchmarking to measure the fidelity of g − f qubit gates. To demonstrate the

improvement from error-detected gates, we measure the average logical Z gate fidelity

with character randomized benchmarking in Chapter 8. This measurement shows that

error detection reduces the infidelity across many different error rates, up to a factor

of 22 producing a peak fidelity of 0.9995.

We conclude the dissertation in chapter 9 and discuss some remaining questions

and interesting new directions.
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Chapter 2

Background and definitions

In this chapter, we review a number of concepts that appear in each of the following

chapters. Our goal here is to set the stage for new techniques that we will introduce

later that build upon these basics. The topics covered in this chapter include:

• The cQED Hamiltonian

• Simple interactions produced by driving the transmon

• Derivative removal by adiabatic gate (DRAG) for improved transmon gates

• How to compute the fidelity of a gate, and then how to design that gate with

optimal control

2.1 cQED background

The fundamental building block of cQED systems at Yale are transmon qubits coupled

to 3D superconducting cavities made from high-purity aluminum. When cooled below

the critical temperature Tc of aluminum, the bosonic modes of these cavities support

long photon lifetimes. This makes them ideal for storing quantum information. In

this section, we review the capabilities relevant to this dissertation that transmon-
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cavity systems enable. A more exhaustive introduction to the cQED platform can be

found in [Blais et al., 2004,Blais et al., 2021,Koch et al., 2007] and many other Yale

dissertations [Gao, 2018,Chou, 2018,Schuster, 2007].

2.1.1 Transmon Hamiltonian

The transmon is an anharmonic oscillator whose first two levels are often used as

a qubit. Transmons are built from Josephson junctions in which an insulator is

sandwiched between two superconductors. The Hamiltonian of a Josephson junction

in parallel with a capacitor is

H = 4EC(n̂− ng)
2 − EJ cos φ̂, (2.1)

where n̂ is the number of Cooper pairs and φ̂ is the phase difference across the

superconductors and EJ ≫ EC [Koch et al., 2007]. This Hamiltonian is diagonalized

up to O (φ̂2) in terms of creation and annhilation operators a†, a

φ̂ =

(
2EC
EJ

)1/4 (
a+ a†

)
= φ0

(
a+ a†

)
(2.2)

n̂ =
i

2

(
EJ
2EC

)1/4 (
a† − a

)
(2.3)

leaving terms of O(φ4
0) as a perturbative correction in the small parameter φ0. This

produces the Hamiltonian

H/ℏ = ωaa
†a− EJ

ℏ

(
cos(φ0(a+ a†))− φ2

0(a+ a†)2

2

)
. (2.4)

where ωa/ℏ =
√
8EJEC − EC is the resonant frequency of the anharmonic transmon

oscillator [Blais et al., 2021]. From now one, we set ℏ = 1.
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2.1.2 Coupling cavities and transmons

Fabricated on small sapphire chips, these devices can be capacitively coupled to both

2D and 3D resonators. For a cavity mode c and a qubit mode a this adds a linear

coupling term

H =ωaa
†a+ ωcc

†c− EJ

(
cos
(
φ0(a+ a†)

)
− φ2

0(a+ a†)2

2

)

︸ ︷︷ ︸
Transmon potential

+ g
(
c†a+ ca†

)
︸ ︷︷ ︸

JC coupling

. (2.5)

This linear Jaynes-Cummings (JC) coupling terms “dresses” the qubit and cavity

modes, meaning that the eigenstates of Eq. 2.5 contain contributions from both

modes. We choose to diagonalize this portion of the Hamiltonian and treat the

non-linear transmon potential as a perturbation following the procedure in [Blais

et al., 2021]. The order of diagonalization is reversed in [Zhang et al., 2022] which is

discussed in Chapter 3. The unitary transformation

UΛ = exp
(
Λ
(
ca† − c†a

))
(2.6)

exactly diagonalizes the coupling and hybridizes the eigenstates of each mode resulting

in new operators A,C whose excitations participate in both bare modes. After this

Bogoliubov transformation, the old mode operators can be expressed in terms of the

new ones via

UΛcU
†
Λ = cos (Λ)C + sin (Λ)A = ξAC − ξCA (2.7)

∼ C − g

∆
A (2.8)

UΛaU
†
Λ = cos (Λ)A− sin (Λ)C = ξAA+ ξCC (2.9)

∼ A+
g

∆
C (2.10)
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where Λ = 1
2
arctan

(
g
∆

)
is the strength of the mode hybridization in terms of the

coupling g and detuning ∆ = ωa − ωc. Likewise, we can express the new mode

operators in terms of the old:

U †
ΛCUΛ = cos (Λ) c− sin (Λ) a (2.11)

U †
ΛAUΛ = cos (Λ) a+ sin (Λ) c. (2.12)

Notice that for small Λ, the new dressed modes A,C approach the bare modes a, c.

These bare modes aren’t generally experimentally accessible; as soon as we in-

troduce a coupling between any two elements, the mode structures deform into the

dressed basis as electric fields leak into adjacent mode volumes. This means that we

can’t design a transmon and cavity in isolation and then bolt them together with pre-

dictable outcomes. When both components are designed together, we use tools such

as black box quantization [Nigg et al., 2012] and energy participation ratios [Minev

et al., 2021] to predict the Hamiltonian parameters based on the electric field modes

of the composite package.

Before changing bases, there are two approximations that we make. First, we

expand the non-linear transmon potential in φ≪ 1. We generally keep terms

EJ

(
cos(φ0(a+ a†)− φ2

0(a+ a†)2

2

)
∼ −EJφ

4
0

24
(a+ a†)4 +

EJφ
6
0

720
(a+ a†)6 (2.13)

to O(φ4
0), but sometimes higher order terms O(φ6

0) need to be included. For the

moment, we neglect the sixth order terms, which are handled in the same way as the

fourth order terms. Second, when expanding the O(φ4
0), we normal-order and per-

form a rotating-wave approximation (RWA) that neglects terms that don’t conserve
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excitation number

−EJφ
4
0

24
(a+ a†)4 ∼ −EC

2
a†a†aa. (2.14)

This approximation produces a Hamiltonian

H =ωaa
†a+ ωcc

†c− EC
2
a†a†aa+ g

(
c†a+ ca†

)
. (2.15)

that still captures all of the relevant dynamics in this dissertation, although there

may be scenarios where one needs to perform the RWA at a later stage.

Let’s now switch bases in Eq. 2.15 from the bare mode operators a, c to the dressed

operators A,C and retain only

H̃ = UΛHU
†
Λ = ωAA

†A+ ωCC
†C − EC

2
(ξAA

† + ξCC
†)2(ξAA+ ξCC)

2 (2.16)

with new mode frequencies [Blais et al., 2021]

ωA =
1

2

(
ωa + ωc +

√
∆2 + 4g2

)
(2.17)

ωC =
1

2

(
ωa + ωc −

√
∆2 + 4g2

)
. (2.18)

Expanding the powers in Eq. 2.16 produces every combination wxyz where w, x ∈

{ξAA†, ξCC†} and y, z ∈ {ξAA, ξCC}. In the absence of drives, we continue to neglect

the counter-rotating terms that don’t conserve energy (equivalent to terms that don’t

conserve the excitation number in each mode). This produces the standard cQED

Hamiltonian

HcQED =ωAA
†A+ ωCC

†C − α

2
A†A†AA

︸ ︷︷ ︸
Transmon anharmonicity

− KC

2
C†C†CC

︸ ︷︷ ︸
Cavity Kerr

− χA†AC†C︸ ︷︷ ︸
Dispersive shift

(2.19)
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where KA ∼ ECξ
4
C , α ∼ ECξ

4
A, and χ ∼ √

2αKC [Chou, 2018]. The ∼ in these expres-

sions emphasizes that these expressions are to leading order in φ0. Fully diagonalizing

the cosine potential incorporates all orders of φ0 and rotating-wave approximation ef-

fects [Koch et al., 2007,Sank et al., 2016].

One higher order effect that commonly appears in experiments is that the dis-

persive shift is generally not linear in A†A. Here, we rewrite the dispersive shift

as

∑

k

kχk|k⟩⟨k|C†C (2.20)

since often the measured value of χf differs substantially from χe (see Table 7.1 for

an example).

2.2 Designing control pulses for gates

Of course, we are interested in performing gates on the transmon and cavity, not just

observing the idle evolution of HcQED. We stimulate new interactions by again capac-

itively coupling the qubit and cavity to microwave cables that connect to arbitrary

waveform generators. This coupling gTA
(
T †A+ TA†) and gTC

(
T †C + TC†) takes

the same form as the Jaynes-Cummings coupling, but we can model the transmission

line mode T as a large bath of photons that isn’t impacted by exchange of a single

photon and demote T to a complex number describing the phase and strength of the

bath. In this “stiff pump” approximation [Kamal et al., 2009], the microwave control

pulses couple to the qubit and cavity via

ϵ∗1(t)A+ ϵ1(t)A
† + ϵ∗2(t)C + ϵ2(t)C

† (2.21)

where ϵ1(t), ϵ2(t) are microwave signals produced by an arbitrary waveform generator.
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We implement specific interactions by choosing the frequency and envelope of

ϵ1(t). There are two main approaches to designing control pulses: time-independent

design and optimal control. In time-independent design, we manually choose pulse fre-

quencies and perform rotating frame transformations to produce a time-independent

Hamiltonian generator of a specific unitary gate, such as squeezing [Wang et al.,

2020, Grimm et al., 2020], beamsplitters [Wang et al., 2020, Gao et al., 2018, Gao

et al., 2019,Chapman et al., 2023,Lu et al., 2023], single-photon addition [Rosenblum

et al., 2018], and chi-matching [Rosenblum et al., 2018,Reinhold et al., 2020]. The

other approach, optimal control, uses the Hamiltonian model to compute waveforms

ϵ(t) that implement any desired unitary [Heeres et al., 2017,Reinhold, 2019].

2.2.1 Time-independent design

Cavity operations

In the presence of microwave drives (often called pumps, in a nod to quantum optics),

the Hamiltonian in Eq. 2.16 can implement a variety of operations on the cavity

that are otherwise negligibly weak. Notice that we do not start deriving the driven

Hamiltonian from HcQED in Eq. 2.19 because a number of RWA’s have been made

that are no longer valid with drives. Under up to two pumps on the transmon mode

A, the driven Hamiltonian is

Hd = H̃ + ϵ∗1(t)A+ ϵ1(t)A
† + ϵ∗2(t)A+ ϵ2(t)A

† (2.22)

where ϵ1(t), ϵ2(t) are control functions. Due to the presence of the transmon non-

linearity α
2
A†A†AA, A + A† does not result in a displacement, as it does in a linear

mode. To find the effect of these pumps, we diagonalize the time-dependent ϵ1(t)
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pump terms (without loss of generality) with the unitary transformation

U(t) = exp
(
−ε1(t)A† + ε∗1(t)A

)
. (2.23)

The transformation

H ′
d = U(t)HdU

†(t) + iU̇(t)U †(t) (2.24)

implements the basis change A→ A+ ε1(t) where ε1(t) has frequency space solution

ε1[ω] =
−iϵ1[ω]

κ/2 + i(ω + ωA)
(2.25)

where κ = 1/T2 is the linewidth of the transmon. For a monochromatic drive ϵ1(t) =

e−iω1tϵ1, the time domain solution is

ε1(t) =
−iϵ1e−iω1t

κ/2 + i(ωA − ω1)
= ε1e

−iω1t. (2.26)

We often prefer to work with monochromatic drives when deriving the frequency

conditions for pumped operations as it makes the frequency content explicit. First,

make the substitution A→ A+ ε1e
−iω1t + ε2e

−iω2t in Eq. 2.22 to enter the displaced

frame H ′
d

H ′
d = ωAA

†A+ ωCC
†C − EC

2

∑

w,x∈S†
y,z∈S

wxyz (2.27)

where S = {ξAA, ξCC, ξAe−iω1tε1, ξAe
−iω2tε2} and S† is the element-wise Hermitian

conjugate of S. Cavity Kerr −KC

2
C†C†CC is still a component of H ′

d, but the drives

provide photons (energy) to overcome previously prohibited interactions.

The choice of drive frequency ω1, ω2 determines the terms in H ′
d that survive
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the rotating wave approximation while expanding Eq. 2.27. We can implement the

Gaussian squeezing and beamsplitter operations by setting the frequencies of the two

drives to make those interactions resonant. For squeezing, drive frequencies satisfying

2ωC = ω1 + ω2 bring the squeezing interaction

−2αξ2Cε1ε2
ξ2A

e−i(ω1+ω2)tC2 + h.c. (2.28)

into resonance along with some Stark shifts to produce

H ′
d = HcQED − 2α(|ε1|2 + |ε2|2)A†A− 2α

ξ2C
ξ2A

(|ε1|2 + |ε2|2)C†C − 2αξ2Cε1ε2
ξ2A

e−i(ω1+ω2)tC2 + h.c..

(2.29)

When A is coupled to two cavities C,D, both modes participate in the transmon and

Eq. 2.7 generalizes to

UΛaU
†
Λ = ξAA+ ξCC + ξDD, (2.30)

resulting in a driven Hamiltonian

H ′
d = ωAA

†A+ ωCC
†C + ωDD

†D − α

2

∑

w,x∈S′†
y,z∈S′

wxyz (2.31)

where S ′ = S∪{ξDD}. When the drives are tuned to the (assumed to be large) differ-

ence between the cavities, ω1 − ω2 = ωC − ωD, we bring the beamsplitter interaction

into resonance

H ′
d =HcQED − 2α(|ε1|2 + |ε2|2)A†A− 2α

ξ2C
ξ2A

(|ε1|2 + |ε2|2)C†C −−2α
ξ2D
ξ2A

(|ε1|2 + |ε2|2)D†D

(2.32)

− 2αξCξ
∗
Dε

∗
1ε2

ξ2A
ei(ωC−ωD)tCD† + h.c.,
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along with similar Stark shifts as in Eq. 2.29.

In general, pumping the non-linearity of the Josephson junction is a powerful

resource that enables a wide range of capabilities including Gaussian operations dis-

cussed above [Wang et al., 2020,Gao et al., 2019,Gao et al., 2018], teleported gates

[Chou et al., 2018], and communication and entanglement between modes [Burkhart,

2020,Narla et al., 2016,Pfaff et al., 2017,Kurpiers et al., 2019].

Qubit operations

In the previous section, we used the transmon as a device to engineer unitary gener-

ators on the cavity mode. But the transmon itself also has a Hilbert space we would

like to control. In fact, many of the major industry efforts use the transmon as their

primary physical qubit. Our section on optimal control will utilize drives on both

the transmon and the cavity simultaneously, so it’s valuable to review the driven

transmon.

In the absence of coupling to a cavity, but in the presence of a drive, Eq. 2.19

becomes

H =ωAA
†A− α

2
A†A†AA+ ϵ∗(t)eiωAtA+ ϵ(t)e−iωAtA† (2.33)

where we have explicitly separated the carrier oscillating at ωA from the pulse envelope

ϵ(t). Let’s first eliminate the carrier frequency by performing a unitary transformation

with U(t) = exp
(
iωdtA

†A
)

and enter a frame rotating with the transmon’s energy

levels. This produces

H ′ = U(t)HU †(t)− ωdA
†A = (ωA − ωd)︸ ︷︷ ︸

∆

A†A− α

2
A†A†AA+ ϵ∗(t)A+ ϵ(t)A† (2.34)

where the only explicit time dependence is in the envelope. At this point, it’s con-

venient to truncate the transmon’s Hilbert space to three levels and proceed with
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the Gell-Mann matrices, which are a set of operators on a three level system that

generalize the commutation relations of Pauli matrices. The qutrit Hamiltonian is

H = ∆|e⟩⟨e|+ (2∆− α)|f⟩⟨f |+ ϵ∗(t)
(
|g⟩⟨e|+

√
2|e⟩⟨f |

)
+ h.c. (2.35)

= ∆|e⟩⟨e|+ (2∆− α)|f⟩⟨f |+ I(t)(σxge +
√
2σxef ) +Q(t)(σyge +

√
2σyef ) (2.36)

where ϵ(t) = I(t) + iQ(t). When ∆ = 0 and α → ∞, σxge, σyge are the strongest terms

in H, and we can simplify H to a simple driven qubit.

H = I(t)σxge +Q(t)σyge. (2.37)

A drive with Q(t) = 0 generates rotations about the x axis

RX(θ) = exp

(
−iσx

∫
Iθ(t)dt

)
= exp (−iσxθ/2) (2.38)

and likewise I(t) = 0 generates rotations about y.

However, there are residual effects from the presence of the third level |f⟩ with

finite α. To see this effect, again consider an x rotation where Q(t) = 0 and perform

a unitary transformation

U = exp(iI(t)(σyge +
√
2σyef )/α) (2.39)

following the DRAG technique [Motzoi et al., 2009] to find an effective Hamiltonian

to first order in I(t)/α

HDRAG =I(t)σxge −
I(t)2√
2α
σxgf +

(
2∆− α− 4I(t)2

α

)
|f⟩ ⟨f | (2.40)

+

(
∆− 2I(t)2

α

)
|e⟩ ⟨e|+

(
Q− İ(t)

α

)
(σyge +

√
2σyef ).
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Figure 2.1: Qubit control waveforms with DRAG correction. Our default control pulse
I(t) is a Gaussian of the form Eq. 2.45 with σ = 4 ns and unit DAC amplitude. The
waveform of I(t) is the solid line in the top panel. We compute Q(t) = İ(t)/α ≈ 1.19İ(t)
for α

2π = 134 MHz and plot it with dotted lines in the top panel. The bottom panel is the
magnitude of the Fourier transform of the complex waveform I(t) + iQ(t). Our choice of α
is motivated by the actual transmon qubit used in Chapters 4, 7, and 8. We do not include
the ∆(t) chirp correction here because in practice a static detuning is usually calibrated.
Note the notch that appears in the spectrum at −134 MHz, suppressing the σyef coupling as
desired.

The three terms in HDRAG correspond to the rotation we want to implement, a two

photon gf coupling off-resonant by α, and an unwanted Stark shift and ef coupling.

We can completely cancel the unwanted term by changing our detuning (by chirping

the control pulse) ∆(t) = 2I2(t)/α and choosing Q(t) = İ(t)/α. See Fig. 2.1 for

an example DRAG-corrected qubit control pulse. This technique and higher order

corrections have been shown to increase the fidelity of qubit gates on the g, e states

[Motzoi and Wilhelm, 2013,Motzoi et al., 2009,Gambetta et al., 2011]. In Chapter

7, we utilize Eq. 2.40 to perform qubit gates on the g, f states.

It’s also worth reviewing a simple example of driving the qubit in the presence of
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the cavity. Neglecting the cavity Kerr in Eq. 2.19 produces a Hamiltonian

H =ωAA
†A− α

2
A†A†AA− χA†AC†C + ϵ∗(t)eiωAtA+ ϵ(t)e−iωAtA† (2.41)

with an energy splitting that enables qubit gates conditioned on cavity photon number

[Schuster et al., 2007,Krastanov et al., 2015,Reinhold et al., 2020]. Let’s quickly see

how this arises. First, repeat the rotating frame change that produced Eq. 2.34 with

ωd = ωA and truncate to the first two levels (for simplicity) to arrive at

H ′ =− χ|e⟩⟨e|C†C + ϵ∗(t)|g⟩⟨e|+ ϵ(t)|e⟩⟨g|. (2.42)

Notice how this Hamiltonian is block diagonal in the number of photons in the cav-

ity! Now let’s enter a frame rotating with the dispersive interaction via the unitary

transformation

U(t) = exp
(
−itχ|e⟩⟨e|C†C

)
(2.43)

to get a Hamiltonian in the frame of the dispersive interaction:

Hχ = ϵ∗(t) exp
(
itχC†C

)
|g⟩⟨e|+ ϵ(t) exp

(
−itχC†C

)
|e⟩⟨g|. (2.44)

Now consider the case when the drive is a Gaussian centered at DC with width σt

and total length 4σ. Properly normalized to
∫ 4σ

0
ϵ(t)dt = π

2
gives

ϵ(t) =
1

erf(1/
√
2)

√
1

8π
e−(t−2σ)2/2σ2

. (2.45)
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With this waveform, the Hamiltonian

Hχ =
∑

n

ϵ(t) cos(χnt)|n⟩⟨n| ⊗ σx + ϵ(t) sin(χnt)|n⟩⟨n| ⊗ σy (2.46)

implements what we call a selective π-pulse qubit rotation that rotates the qubit

conditioned on there being zero photons in the cavity, the only photon number where

the oscillations in Hχ vanish. The selectiveness of the π-pulse is determined by χ and

the length of the pulse. In Fig. 2.2, we explore the dependence of selectivity on the

pulse duration for χ/(2π) = 1 MHz. This procedure can be generalized to rotate the

qubit conditioned on any set of Fock states by constructing a frequency comb with

components at −nχ. This technique can be used to measure cavity parity, or any

parity generalization.

2.2.2 Optimal control

In the preceding section, we manually engineered Hamiltonians H that generate a

desired unitary U = T e−i
∫
H(t)dt where T is the time-ordering operator. But there

are many other gates for which these manual constructions are not obvious. For

example, how does one choose a ϵ(t) that produces a unitary that creates a photon

from the vacuum state U |g⟩⊗|0⟩ = |g⟩⊗|1⟩? These situations require a new approach:

optimal control [Khaneja et al., 2005,de Fouquieres et al., 2011].

Optimal control is a set of techniques for finding system controls that achieve a

desired outcome. If a system, whether it be quantum [Heeres et al., 2017] or classical,

has an accurate model, we can optimize controls against a cost function that defines a

distance between the control effects and the desired outcome. In quantum computing,

our controls are microwave pulses generated by AWGs and our response model is the
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Figure 2.2: Selective π-pulse fidelity. Let’s explore the effect of our choice of σ for ϵ(t)
as defined in Eq. 2.45. Consider an experiment where we want to check if the cavity is in
vacuum at the end, such as a cavity T1 measurement. We map the answer to “does the cavity
have zero photons?” onto the state of the qubit via Hχ defined in Eq. 2.46. If there are zero
photons, the qubit is excited to |e⟩, whereas it remains in |g⟩ if there is one photon in the
cavity. The above figure shows the probability of measuring the qubit in g, e when there is
one photon in the cavity. Here, χ/(2π) = 1 MHz and the pulse is 4σt in total duration. For
σt > 300 ns, the probability of an erroneous excitation is low, but as σt decreases and the
bandwidth σf = 1/(2πσt) exceeds 600 kHz, the probability of a false positive exceeds 10%.
As the pulse bandwidth (duration) further increases (decreases), the qubit pulse becomes
unselective, rotating into |e⟩ regardless of the cavity state.
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driven cQED Hamiltonian Eq. 2.19

H = −α
2
A†A†AA− KC

2
C†C†CC − χA†AC†C + ϵ∗A(t)A+ ϵA(t)A

† + ϵ∗C(t)C + ϵC(t)C
†

(2.47)

where we have now entered a frame rotating at ωA with A and ωC with C. Note

that we have included drives on each mode and entered the co-rotating frame for

convenience.

The waveforms ϵA/C(t) that reach the qubit and cavity are reconstructed at sam-

pling rate fs from a finite set of samples ϵkA/C spaced in time by 1/fs. We place

lowpass filters on the outputs of our AWGs to limit signal bandwidth. This means

that as long as bandwidth of ϵA/C(t) is below fs/2, the sampled pulse contains as

much information as the continuous pulse via the Nyquist-Shannon sampling theo-

rem. This also means that we can choose to optimize the sampled amplitudes rather

than some continuous function basis. Our goal is then to find the samples ϵkA/C that

produce our desired unitary U . We model the evolution of the gate as a series of “step

propagators” Ui

|ψinitial⟩ U1 U2 · · · UN |ψtarget⟩

defined as

Uk = e−iHkdt (2.48)

treating the Hamiltonian’s time dependence as piecewise-constant

Hk = −α
2
A†A†AA− KC

2
C†C†CC − χA†AC†C + (ϵkA)

∗A+ ϵkAA
† + (ϵkC)

∗C + ϵkCC
†.

(2.49)

In practice, we can choose to optimize the amplitudes ϵkA/C or the frequency com-
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ponents ζkA/C to add native bandwidth limits beyond fs/2 by setting the Fourier

components that exceed our cutoff to zero. ϵkA/C is then the inverse discrete Fourier

transform

ϵkA/C =
1

N

N−1∑

k=0

ζkA/C exp

(
2πi

N
kn

)
(2.50)

using the electric engineering convention for the Fourier transform. Other approaches

directly optimize the samples ϵkA/C and add bandwidth restrictions via cost functions

[Heeres et al., 2017].

Our decision to optimize in frequency space comes with one drawback: ϵkA/C , ϵ
N−1
A/C ,

the first and last samples, are not guaranteed to be zero. In fact, it is not possible

for a waveform to be fully time and bandwidth limited; one range must extend to

infinity. Discrete prolate spheroidal sequences (commonly called Slepians) are a basis

of functions that are maximally time and band-limited [Frey et al., 2017,Norris et al.,

2018], but these are overkill for our situation. We instead add a Tukey window (also

known as a cosine window) with an adjustable risetime to ensure that our pulses start

and end at zero amplitude. This broadens the pulse’s bandwidth beyond our original

window, but only minimally. See Fig. 2.3 for an example.

Now that we have defined the step propagators Uk, we can write the total unitary

generated

U = UN . . . U2U1. (2.51)

Our next task is to develop a cost function that evaluates how well our circuit with

waveform samples ϵkA/C approximates a target unitary Utarget.

Unitary cost functions

The most general definition of fidelity between a target unitary Utarget and the quan-

tum channel E implementing it is the average gate fidelity [Nielsen, 2002, Bowdrey
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Figure 2.3: Optimal control pulses and frequency content. Shown here are two different
pulses optimized to implement a logical Z rotation on a binomial/kitten qubit. Top row:
waveforms of pulses 1200 ns long restricted to 25 MHz of bandwidth. The pulse on the left
is multiplied by a Tukey window with ramp 20 ns while the pulse on the right has no ramp.
Solid circles in the bottom row plots are the magnitude of frequency component of the
real part of the pulse, while stars correspond to the imaginary part. Since the right pulse
is optimized in frequency space, without a ramp there is a brick wall filter at 25 MHz and
the frequency content immediately falls by seven orders of magnitude. Unfortunately, this
pulse does not start and end at zero amplitude, as shown in the top panel (solid line is real
part, dotted imaginary), but the pulse with the Tukey window does.

et al., 2002]

F̄g(Utarget, E) =
∫
dψ ⟨ψ|U †

targetE(|ψ⟩⟨ψ|)Utarget |ψ⟩ . (2.52)

F̄g is the most complete cost function for optimizing the controls to approximate

Utarget, but it is simpler and often sufficient to consider only the unitary evolution. In

the case that E is unitary, with E(ρ) = UρU † the average gate fidelity is

F̄g(Utarget, E) =

∣∣∣Tr
(
U †

targetU
)∣∣∣

2

+ d

d2 + d
, (2.53)

where d is the dimension of the Hilbert space on which we want to implement

Utarget [Nielsen, 2002, Bowdrey et al., 2002, Emerson et al., 2005]. This means that

maximizing F̄g is equivalent to maximizing the trace that appears in the numerator.

Let’s now call the trace in the numerator of Eq. 2.53 the trace fidelity [Schulte-
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Herbrüggen et al., 2011,Ball et al., 2021]

F(Utarget, U) =

∣∣∣∣
1

Tr (P )
Tr
(
PU †

targetU
)∣∣∣∣

2

. (2.54)

This quantity is maximized and unity when U = Utarget where P is a projector into

some computational subspace C = Image(Utarget). We include P since we generally

need optimize in a Hilbert space with larger dimension than Utarget. An advantage of

defining Utarget on a subspace C is that it provides the optimizer with the freedom to

choose the effect of U on the non-computational subspace H \ C (often random, yet

still unitary), often enabling faster convergence and higher fidelities. This allows us

to define unitaries on one-dimensional subspaces to prepare Fock states from a qubit

in its ground state Utarget |0, g⟩ = |n, g⟩ and P = |0, g⟩ ⟨0, g| + |n, g⟩ |n, g⟩ without

specifying behavior on the rest of H.

When we rewrite the trace in F as a sum over a set of orthonormal initial states

{|ψk⟩}k that span C with target states {|ψtarget
k ⟩ = Utarget |ψk⟩}k (note that |ψtarget

k ⟩

may carry a phase factor, it is essential to keep this phase, else this is no longer

identical to the trace in 2.54), calculating the trace fidelity is reduced to computing

N state overlaps

F =

∣∣∣∣∣
1

Tr (P )

∑

k

⟨ψtarget
k |U |ψk⟩

∣∣∣∣∣

2

. (2.55)

Note that the summands in F are complex numbers whose phases are equal, but not

necessarily zero, when F is maximized. This means that U applies a global phase,

but preserves relative phases in a superposition under U . One can instead force the

phase of the matrix elements to zero by replacing | . . . |2 in F by simply taking the

real part instead [Schulte-Herbrüggen et al., 2011]

FR = ℜ
(

1

Tr (P )
Tr
(
PU †

targetU
))

. (2.56)
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However, there exist situations where preserving relative phases between superpo-

sitions of states is not required. For example, the photon number-resolved measure-

ment we will discuss in Chapter 4 projects the cavity into a Fock state by measuring

a series of binary observables whose outcomes do not depend on the superposition

phases. In these cases, we can use an “incoherent” cost function that ignores the

relative phases imparted by U :

F incoherent
j =

1

N

∑

k

∣∣⟨ψtarget
k |U |ψk⟩

∣∣2 . (2.57)

This provides the optimizer with an additional degree of flexibility that can aid con-

vergence.

Non-unitary cost functions

The case when E is not unitary is important as well, especially for characterizing gate

fidelities in simulation, or optimizing in the presence of decoherence. Thankfully,

there is a way to decompose Eq. 2.52 into an average over state transfers as well. The

first step replaces the integral over states with a sum over a basis of unitaries Bj

F̄g(Utarget, E) =
∑

j Tr
(
UtargetB

†
jU

†
targetE(Bj)

)
+ d2

d2(d+ 1)
(2.58)

where Tr(Bj) = d [Nielsen, 2002,Bowdrey et al., 2002]. The minimum value of this

fidelity 1/(d + 1) is nonzero because quantum channels E are defined to be trace-

preserving, which places a lower bound on how much they can scramble a state.

Elements of this basis are not pure states, but we can express the Bj in terms of pure
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states [Nielsen, 2002]. The following basis states span all Bj

ρj = |j⟩⟨j| (2.59)

ρ±jk =
1

2
(|j⟩⟨j|+ |k⟩⟨k| ± |k⟩⟨j| ± |j⟩⟨k|) (2.60)

allowing us to rewrite the fidelity of a qubit gate d = 2 as an average of these d2

states

F̄g(Utarget, E) =
1

4

∑

ρ∈{|+⟩⟨+|,|−⟩⟨−|,|0⟩⟨0|,|1⟩⟨1|}
Tr
(
Utargetρ

†U †
targetE(ρ)

)
. (2.61)

We utilize this result from [Nielsen, 2002, Bowdrey et al., 2002] in Chapter 5. The

case for d > 2 requires expressing each Bj in the basis of ρj, ρ±jk, but we can estimate

the fidelity by simply averaging over this basis

F̄g(Utarget, E) =
1

d2

∑

ρ∈{ρj}∪{ρ+jk}∪{ρ
−
jk}

Tr
(
Utargetρ

†U †
targetE(ρ)

)
. (2.62)

We end by noting that the trace computed above can be re-written as the probability

of measuring a pure state ρtarget = Utargetρ
†Utarget after evolution of ρ under the

channel E . We recognize that ρtarget = |ψtarget⟩⟨ψtarget| which is a projector into a

pure state |ψtarget⟩ equal to the measurement effect E|ψtarget⟩. That is, F̄g(Utarget, E) is

the average probability

F̄g(Utarget, E) =
1

d2

∑

ρ∈{ρj}∪{ρ+jk}∪{ρ
−
jk}

Tr
(
E|ψtarget⟩E(ρ†)

)
. (2.63)

that the channel E produces the correct output for any input state.
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Optimization

Now that we have a cost function to evaluate the accuracy of a particular choice of

samples ϵkA/C (or Fourier components), we optimize our choice via gradient descent.

We need to numerically or analytically calculate the gradient ∇ϵk
A/C

F and pass it to an

optimizer such as L-BFGS [Liu and Nocedal, 1989] or Adam [Kingma and Ba, 2017].

Previously, this gradient was computed analytically [Reinhold, 2019, Heeres et al.,

2017], but since then autodifferentiation (AD) has become popular [Abdelhafez et al.,

2019, Eickbusch et al., 2022, Song et al., 2022, Leung et al., 2017]. AD operates by

storing the intermediate value of all computations, which is used to compute partial

derivatives via the chain rule during back-propagation. This technique is efficient in

time, but less efficient in memory. Crucially, it allows us to optimize cost functions

whose analytic gradients are hard to compute, which is especially useful if we use

Monte-Carlo methods [Abdelhafez et al., 2019] to compute expectation values like

Tr
(
Utargetρ

†U †
targetE(ρ†)

)
.
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Chapter 3

Kerr engineering

End-of-line measurements are probably the most common form of measurement in

quantum information. For many platforms, they are the only form of measurement,

such as photonics, where single photon detectors (SPDs) convert photons into a classi-

cally measurable electric current. At the end, there is no photon left, so the quantum

system has been destroyed during the measurement.

In cQED, end-of-line measurements decode the results of quantum circuits, mea-

sure photon number occupation, and characterize and calibrate each aspect of our

systems. This section discusses using end-of-line measurements to characterize Kerr,

the static cavity non-linearity induced by the coupling to the transmon. We discuss

several methods to extract KC and then introduce a method to tune its value via a

drive on the transmon.

The static non-linearity of the cavity KC in Eq. 2.19 induces error in the Gaussian

operations discussed in Section 2.2.1 and in any idle time in our experiment. In the

binomial code, which has codewords

|0L⟩ =
1√
2
(|0⟩+ |4⟩) (3.1)

|1L⟩ = |2⟩ (3.2)
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Figure 3.1: Top row: Wigner functions W (α) of the effect of K = 3 kHz on three
different ideal states. Bottom row: measured Wigner fucntions. For the coherent state
on the left, the measured Wigner function shows the effect of 10 µs of idle evolution in the
presence of Kerr. In the middle, the measured squeezed state experiences Kerr during the
squeezing drives C2 +

(
C†)2 that distorts the state resulting in a “spiral galaxy” effect. The

bottom figure in the right cat state column is a simulation of 20 µs of idle evolution in the
presence of Kerr. No measurements of this state were taken.

Kerr manifests as leakage from |0L⟩ → 1√
2
(|0⟩ − |4⟩). It also limits the fidelity of

beamsplitters [Wang et al., 2020] and GKP state stabilization [Campagne-Ibarcq

et al., 2020, Sivak et al., 2023]. Fig. 3.1 shows some examples of how Kerr distorts

idling states or the creation of Gaussian states. For these reasons, it is important to

calibrate Kerr, and in some cases employ measures to mitigate its effect.

We also note that Kerr does not have to be the enemy! In fact, one can use

Kerr and squeezing together to stabilize cat states [Puri et al., 2017, Grimm et al.,

2020, Frattini et al., 2022, Venkatraman et al., 2023]. These efforts are beyond the

scope of this dissertation, and we will focus on characterization and mitigation here.
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3.1 Characterizing Kerr with Ramsey-like experiments

Ramsey-style measurements are common for cases in which we need to learn about

phase coherence and detuning. For a qubit, this circuit is:

|g⟩ X
(
π
2

)
U(t) X

(
−π

2

)

where U(t) is some time evolution that includes decoherence and noise, which affect

state superpositions. By sweeping t, we extract quantities such as T2 and qubit

detuning.

We can perform these measurements on cavity states as well, but recall that the

linearity of microwave cavity oscillators makes it difficult to address just two states,

as in a qubit. Preparing superpositions of Fock states in the cavity for Ramsey

experiments generally requires using an optimal control pulse. But, optimizing these

pulses requires knowledge of the static Hamiltonian, which includes Kerr. In this

section, we discuss a Ramsey-like experiment that utilizes coherent states instead of

Fock states to get an estimate of Kerr that can be improved with a subsequent re-run

with Fock states.

3.1.1 Coherent states

The microwave cavities used in this dissertation have high intrinsic dephasing times

Tϕ > 10 ms [Rosenblum et al., 2018] and single-photon lifetimes T1 > 1 ms [Reagor

et al., 2016]. Recent works have further optimized the cavity design and achieved

single-photon lifetimes T1 > 25 ms with staggeringly high pure dephasing rates Tϕ >

0.5 s [Milul et al., 2023]. These long coherences allow us to approximate the evolution

U(t) in a cavity for t≪ 1 ms as a unitary U(t) generated by

HKerr = δC†C − KC

2
C†C†CC (3.3)
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with some possible residual detuning δ. The easiest state to prepare in the cavity

with high fidelity is a displaced state

D(α) = exp(αC† − α∗C) (3.4)

D(α) |0⟩ = e−|α|2/2
∞∑

k=0

αk

k!
|k⟩ (3.5)

generated simply with drives ϵ∗C(t)C+ ϵC(t)C
† on the cavity. Displaced states |α⟩ are

not eigenstates of HKerr, but HKerr does preserve photon number, so we expect the

evolution U(t) = e−iHKerrt to rotate and smear out the coherent state in some way,

especially at short times. Let’s check this intuition by finding the overlap of U(t) |α⟩

with some other coherent state |αe−iθ⟩ remembering that ⟨m|n⟩ = δm,n

⟨αe−iθ|U(t)|α⟩ = e−|α|2
( ∞∑

m=0

(
α∗eiθ

)m

m!
⟨m|
)( ∞∑

n=0

αn

n!
e−i(δn−

KC
2

(n2−n))t |n⟩
)

(3.6)

= 1 + e−|α|2
∞∑

k=1

∞∑

n=0

|α|2n
n!k!

(
in

(
θ −

(
δ +

KC

2

)
t

)
+
iKC

2
n2t

)k
(3.7)

∼ 1 + i|α|2
(
θ − δt+

KC

2
|α|2t

)
. (3.8)

The fidelity | ⟨αe−iθ|U(t)|α⟩ |2 is maximized to first order when θ(t) =
(
δ − KC

2
|α|2
)
t

for K
2
|α|2 ≪ 1. This means that U(t) |α⟩ largely remains a coherent state, but with a

time-dependent phase |αe−i
(
δ−KC

2
|α|2

)
t⟩. A displacement of D

(
−αe−iθ(t)

)
(although

we won’t know θ(t) a priori in an experiment) will bring this state back to vacuum |0⟩,

which we can check with the selective pulses described in Section 2.2.1 and Fig. 2.2.

Our Ramsey Kerr measurement is then

|0⟩ D(α) UKerr(t) D (−α) •

|g⟩ X(π| |0⟩)
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Figure 3.2: To estimate KC , we first measure P (|0⟩) for a range of α and N = 101 times
t ∈ [0, tmax = 5.2µs] with interval dt = max

N = 52ns. For each α, we fit e2|α|2(cos(ωt)−1) shown
in the right plot and extract ω. To find KC and δ, we fit ω = δ − KC

2 |α|2 in the left plot
as a function of |α|2. This fit yields KC/2π = 2.64 ± 0.15 kHz and δ/2π = 961.54 ± 0.32
kHz. Note that a small difference in oscillation frequency is only apparent after multiple
periods. The rate and duration at which we sample allows distinguishing frequencies f
between

(
1

2Ndt = 95kHz
)
< f <

(
1
2dt = 9.6MHz

)
. This motivates our choice of δ, which

is implemented via a “digital detuning” that changes the local oscillator frequency of our
AWGs.

where X(π| |0⟩) indicates a π-pulse selective on zero photons in the cavity. The

probability of measuring the cavity in |0⟩

P (|0⟩) = | ⟨0|D(−α)U(t)D(α)|0⟩ (3.9)

∼ | ⟨α|αe−i
(
δ−KC

2
|α|2

)
t⟩ |2 (3.10)

= e
2|α|2

(
cos

((
δ−KC

2
|α|2

)
t
)
−1

)
(3.11)

oscillates as a function of both t and α. To extract KC and δ, we scan both t and α

and perform two fits as shown in Fig. 3.2.

3.1.2 Fock states

Once we have an estimate of KC via the coherent state Ramsey-like experiment, we

can create OCT pulses to initialize Fock states and refine KC via a similar Ramsey-
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like experiment. We generally do this in two steps, first calibrating δ via a typical

cavity T2 experiment

|0⟩ X01

(
π
2

)
UKerr(t) X01

(−π
2

)
•

|g⟩ X(π| |0⟩)

with rotations

X01(θ) = cos(θ/2)|0⟩⟨0|+ cos(θ/2)|1⟩⟨1| − i sin(θ/2)|0⟩⟨1| − i sin(θ/2)|1⟩⟨0| (3.12)

defined on the 0, 1 photon number space. In this subspace, the Kerr term −KC

2
C†C†CC

vanishes and the frequency we extract in the P (0) oscillations corresponds exactly to

δ.

Typically to extract Kerr, we optimize X02(θ) on the 0-2 photon number subspace

and extract KC from the oscillations in P (0). Other subspaces, such as 0-4 can be

used as well. In Fig. 3.3, we use the |0L⟩ = 1√
2
(|0⟩+ |4⟩) logical codeword of the

binomial code to better measure KC . In this case, the measurement circuit is

|2⟩
|0L⟩ UKerr(t) XL (π) •

|g⟩ X(π)

where the XL(π) maps |0L⟩ → |1L⟩ = |2⟩ which we can easily measure with a selective

π-pulse conditioned on two photons in the cavity. Another option is to optimize a

unitary that maps |g⟩ ⊗ |0L⟩ → |g⟩ ⊗ |0L⟩ and |g⟩ ⊗ |1L⟩ → |e⟩ ⊗ |1L⟩. This approach

is not appreciably simpler because it still requires drives on both the transmon and

cavity. Furthermore, it’s difficult to estimate the fidelity of such a map, whereas

we can characterize the logical rotation XL(π) with randomized benchmarking and
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Figure 3.3: Left: cavity Ramsey experiment utilizing a superposition of zero and one
photon states with fitted T2 = 1.11 ± 0.03 ms. Right: a lifetime measurement of the
binomial codeword |0L⟩ = 1√

2
(|0⟩+ |4⟩). Since |0L⟩ is a superposition of Fock states, it can

also be used for Ramsey experiments. There is no added detuning here; the oscillations in
⟨ZL⟩ are a result of Kerr KC = 507 Hz. The envelope decay is due to cavity T1. To find
Kerr, we first rescale the measured expectation value ⟨ZL⟩ to account for logical measurement
infidelity. The fitted preparation and measurement contrast is 0.68, limited by the logical
RY (π) rotation used in both state preparation and measurement. We then fit the rescaled
data to a master equation simulation which includes cavity photon loss. For states |ψ⟩
outside of the codespace, ⟨ψ|ZL|ψ⟩ = 0. This prevents contamination of the measurement
by leakage. The master equation simulation captures errors within the codespace and the
eventual convergence to zero photons at long delays. The best version of this measurement
would shorten the duration to a window where cavity decay is unlikely and add an additional
detuning.

the contrast of the selective π-pulse on vacuum. This technique is also amenable

to an approach discussed in Section 8.3 that uses a three-level transmon to improve

measurement contrast. Finally, note that we can exploit normal-ordering and extend

this technique to measure the strength of any non-linearity (C†)nCn by successively

preparing and performing Ramsey experiments with superpositions |0⟩+ |n⟩.
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3.2 Characterizing Kerr with Wigner functions and

density operators

In the previous section we designed interference experiments that measure frequency

components corresponding to non-linearities in the cavity. Another, more brute force

approach, is to reconstruct the complete quantum state ρ at the end of some evolution

ρ = U(t)ρ0. (3.13)

With access to the final state ρ, we can optimize the fidelity of ρ to some test state

ρ(λ⃗) = Uλ⃗(t)ρ0, (3.14)

where the evolution Uλ⃗(t) = T e
∫
L
λ⃗
dt is generated by the quantum Liouville superop-

erator

Lλ⃗[ρ] = i[ρ,H(λ⃗)] +
∑

l

κl

(
JlρJ

†
l −

1

2
{J†

l Jl, ρ}
)

(3.15)

for decoherence operators Jl with rate κl. That is, if we have a measurement of ρ and

a model of our system’s evolution Lλ⃗, we can optimize the state fidelity [Nielsen and

Chuang, 2011]

F(ρ, ρ(λ⃗)) =

(
Tr

(√√
ρρ(λ⃗)

√
ρ

))2

(3.16)

over λ⃗ to find Hamiltonian parameters and loss rates κl.

But first, we need to find ρ. There are multiple approaches to quantum state

tomography. See [Haroche and Raimond, 2006] for a collection of methods. Here, we

will just explore one of these techniques. For the simple case of a qubit, the density
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matrix can be expanded in terms of Pauli matrices

ρ =
1

2
(I + ⟨X⟩σX + ⟨Y ⟩σY + ⟨Z⟩σZ) (3.17)

but no similar formula exists for bosonic cavity modes. Fortunately, there exists an

invertible map between a measurable quantity and any density matrix, the Wigner

function (or Wigner distribution). The Wigner function

W (α) =
2

π
Tr (PD(−α)ρD(α)) (3.18)

is often called a “quasi-probability distribution” because it takes on real, but some-

times negative numbers [Haroche and Raimond, 2006]. It is a representation of the

operator ρ in quantum phase space α ∈ C. Any operator on a Hilbert space can be

mapped to a phase space representation via the Wigner-Weyl transform.

The operator P appearing in the definition of W (α) is the parity operator

P = eiπC
†C (3.19)

with eigenvalue 1 for even Fock states and −1 for odd Fock states. We measure parity

of a state |ψ⟩ =∑n cn |n⟩ using a Ramsey-like interference experiment

|ψ⟩ •
|g⟩ Y (π/2) Z(π|odd) Y (π/2)

where the controlled Z in the circuit is a result of free evolution in the presence of
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the dispersive interaction

e−iHcQEDt

(
1√
2
|ψ⟩ ⊗ (|g⟩+ |e⟩)

)
=
∑

n

cn |n⟩ ⊗
(
|g⟩+ einχtp |e⟩

)
(3.20)

=
∑

n

cn |n⟩ ⊗ (|g⟩+ (−1)n |e⟩) (3.21)

and maps even photon number states to |+X⟩ and odd to |−X⟩ for tp = π/χ. We

perform one final qubit rotation to measure in the X basis. From Eq. 3.18, we see

that the Wigner function is a parity measurement of the displaced density matrix.

We sample the Wigner function at each α

ρ D(−α) •

|g⟩ Y (π/2) Z(π|odd) Y (π/2)

to build up the full distribution W (α). The left panel of Fig. 3.4 shows a measured

Wigner function.

3.2.1 Finding ρ from W (α)

Now that we have W (α), how do we get ρ? Let’s revisit Eq. 3.18

W (α) =
2

π
Tr (PD(−α)ρD(α)) (3.22)

=
2

π

∑

mn

⟨m|D(α)PD(−α)|n⟩ ρnm (3.23)

=
∑

mn

Amn(α)ρnm (3.24)
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and rewrite Amn(α) and ρmn as vectors A⃗(α) and ρ⃗. The elements of A⃗(α) have a

hideous form that we put below for reference [Cahill and Glauber, 1969]

Anm(α) =
2

π
e−2|α|2

√
m!

n!
(−1)m−1(2α)n−mLn−mm (4|α|2). (3.25)

This “vectorization trick” simply reorganizes indices (the order doesn’t matter, as long

as it’s known and consistent) and will allow us to write a matrix equation relating

a Wigner function vector to the vectorized density operator ρ. Our experimentally

measured Wigner functions samples a discrete set of αj

W (αj) = A⃗(αj) · ρ⃗ (3.26)

where · is the vector dot product. This means that we can relate a vector of sampled

Wigner points (W⃗ )j = W (αj) to ρ⃗ via

W⃗ = Aρ⃗ (3.27)

with A promoted back to a matrix where Aij = A⃗j(αi).

The simplest approach to solving Eq. 3.27 is to multiply both sides by the inverse

A−1, should A be an invertible matrix. Unfortunately, A is generally ill-conditioned

with multiple singular values that make inversion unstable. This is usually solvable

using the Moore-Penrose inverse (A†A)−1A† instead of A−1. However, while A−1W⃗

may formally be a valid solution for ρ, it may not produce a positive semidefinite

Hermitian density operator that satisfies Tr(ρ) = 1.

To find the density operator ρ⃗ that satisfies these physical requirements, we op-

timize Aρ⃗ to be the vector closest to the measured W⃗ by minimizing the Euclidean
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norm

min
ρ⃗

|W⃗ − Aρ⃗|2 (3.28)

using the convex optimization software CVXPY [Agrawal et al., 2018,Diamond and

Boyd, 2016]. When performing this minimization, we must choose in advance the

dimension of the solution ρ. We generally choose this number to be as small as

possible to minimize any effects of ill-conditioning. The choice is made easy when

we have some advance knowledge of the structure of ρ, such as a maximum photon

number. In the case of Kerr characterization, ρ0 is a coherent state whose photon

number does not change. It is also important to normalize the measured Wigner

function so that
∫
W (α)d2α = 1. This condition corresponds to Tr(ρ) = 1, which we

are enforcing in the optimization. We show results of ρ reconstruction in Fig. 3.4.

It’s worth noting at this point that the density operator reconstruction method

finds the state closest to the measured Wigner function. If our Wigner function

measurement has systematic errors, these errors are propagated into the reconstructed

state ρ. For example, the X(π/2) qubit rotation in the parity measurement circuit on

page 45 is not purely unselective across all Fock states. The frequency content of the

pulse supports an unselective rotation only over a finite number of Fock states. As

the spread of Fock states comprising a state ρ increases, very high pulse bandwidths

are required to maintain unselectivity (see Fig. 2.2).

If we are able to characterize the parity operator P̃ that our measurement actually

implements, we can include its effect in the change-of-basis matrix A. Our new Ã is
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Figure 3.4: We prepared a coherent state |α = 1.5⟩ and allowed it to evolve for 10 µs
under the Hamiltonian defined in Eq. 3.3. (a) We then measured the Wigner function, and
reconstructed ρ using the optimization technique in Ch. 3.2.1. (b) For comparison, we
computed the Wigner function of the reconstructed state ρ and (c) plotted the residuals
(multiplied by a factor of 10).

defined as

W (α) =
2

π
Tr
(
P̃D(−α)ρD(α)

)
(3.29)

=
2

π

∑

mnjk

⟨m|D(α)|j⟩ P̃jk ⟨k|D(−α)|n⟩ ρnm (3.30)

=
∑

mn

Ãmn(α)ρnm (3.31)

(3.32)

where

⟨n|D(α)|m⟩ =





e−|α|2/2
√

m!
n!
(α)n−mLn−mm (|α|2) for n ≥ m

e−|α|2/2
√

n!
m!
(−α∗)m−nLm−n

n (|α|2) for n ≤ m.

(3.33)

as the sum over j, k is finite over the characterized dimension of P̃ . This allows

us to include the oft-observed contrast reduction in measurements of W (α) as |α|2

increases.
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3.2.2 Finding KC from fits of W (α) and ρ

Now that we have a reconstructed a density operator ρ, we can optimize the parametrized

state ρ(λ⃗) from Eq. 3.14. For the purposes of Kerr characterization, we generate ρ(λ⃗)

using

H(λ⃗) = δC†C − KC

2
C†C†CC +

β

6

(
C†)3C3 (3.34)

along with cavity photon loss C with rate κC = 1/(330µs) for the system used in this

chapter. We include a higher-order non-linearity as a diagnostic to monitor higher

order effects amplified by the drive added to the transmon in the next section. We

optimize over the three parameters λ⃗ = (δ,KC , β) in Eq. 3.34 using the cost function

Eq. 3.16. We generate ρ(λ⃗) with master equation simulations in Qutip [Johansson

et al., 2012,Johansson et al., 2013]. Results of this optimization are shown in Fig. 3.5.

We also perform a more direct optimization on the least-squares error between

measured and simulated Wigner functions. This method cuts out the reconstruction

step and is a good check that the reconstruction doesn’t produce an unphysical state.

The cost function for direct Wigner optimization is

FWigner =

∫
(W (λ⃗, α)−Wexp(α))

2d2α (3.35)

where Wexp(α) is our measured Wigner function and W (λ⃗, α) is the Wigner function

of ρ(λ⃗). Expanding the integral,

FWigner =

∫
(W 2(λ⃗, α) +W 2

exp(α)− 2W (λ⃗, α)Wexp(α))d
2α (3.36)

= Tr(ρ(λ⃗)2) + Tr(ρ2)− 2Tr(ρ(λ⃗)ρ) (3.37)

we find that this cost function optimizes the trace overlap of ρ and ρ(λ⃗). Results of

this fit are shown in Fig. 3.5 and closely match the fidelity optimization.
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Figure 3.5: Top left: Wigner function of ρ(λ⃗) optimized against the reconstructed
Wigner function shown in Fig. 3.4. The fidelity of the fit F(ρ, ρ(λ⃗)) = 0.911 is likely
limited by transmon errors during the parity measurement. Residuals are shown below the
Wigner function. The right column shows the same, but where ρ(λ⃗) was optimized using
the Wigner fidelity in Eq. 3.35. The fidelity between the optimized states is 0.9995. Fit
parameters λ⃗ are given in Table 3.1.
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Figure 3.6: Fit of the phases arg (⟨n|ρ|n− 1⟩) to (−δ +KC(n − 1) − β
2 (n − 1)(n − 2))t

to find λ⃗. The reconstructed ρ here used is the same as in Figs. 3.4 and 3.5. Note that the
fit becomes unreliable towards higher Fock states due to the initial state being a coherent
state |α = 1.5⟩ with average photon number n̄ = 2.25. There are no statistical error bars
available here. To perform error propagation through the density matrix reconstruction, we
either need to employ bootstrapping or use autodifferentiation for error propagation. The
fit results are in Table 3.1. Note that the value of the offset phase δt here is unreliable, since
it can wrap through 2π.

There is one final way we will extract the parameters λ⃗ from ρ. If we assume that

the idle evolution is purely unitary, then the Hamiltonian in Eq. 3.34 generates all of

the evolution and

ρ(λ⃗) = e−iH(λ⃗)tρ0e
iH(λ⃗)t. (3.38)

The phase of the off-diagonal elements evolves as

e−iH(λ⃗)t|n⟩⟨n− 1|eiH(λ⃗)t = ei(−δ+KC(n−1)−β
2
(n−1)(n−2))t|n⟩⟨n− 1| (3.39)

meaning that we can fit the phases of the reconstructed density matrix ⟨n|ρ|n− 1⟩

to extract λ⃗. This fit is performed in Fig. 3.6 with results in Table 3.1.
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Table 3.1: Kerr characterization fit results for Figs. 3.6 and 3.5.

Method δ KC β Fidelity F
Density matrix fidelity fit -84.65 kHz -13.66 kHz 1.03 kHz 0.911

Wigner function fit -84.28 kHz -13.58 kHz 1.09 kHz 0.910
Off-diagonal element fit N/A -12.8 kHz 1.01 kHz N/A

3.3 Kerr engineering

In general, the transmon-induced cavity Kerr in the bare Hamiltonian Eq. 2.19 is

fixed and depends on the anharmonicity and participation of the transmon in the

cavity mode. In this section, we describe and characterize a method for tuning cavity

Kerr with a single weak drive on the transmon. The most complete derivation of

this method can be found in [Zhang et al., 2022], but the method discussed there is

beyond both the scope and skill of this dissertation. We derive the Kerr engineering

method here using techniques more familiar to the experimentalist and then present

experimental evidence of the technique. We include some start-up steps for others

who may want to employ this technique.

3.3.1 Derivation and results

Consider a single pump on the transmon near the transmon frequency ωA. Expanding

Eq. 2.27 and neglecting terms rotating faster than ω1 (all terms that don’t preserve

cavity photon number) produces an interaction term and pump-induced Stark shifts:

H = HcQED − χ
(
eiω1tε∗1AC

†C + h.c.
)
− 2KA|ε1|2A†A− 2KC |ε1|2C†C (3.40)
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In a frame rotating at ω1, the full Hamiltonian becomes

H = (ωA − ω1)A
†A+ ωCC

†C − α

2
A†A†AA− KC

2
C†C†CC (3.41)

− χA†AC†C − 2α|ε1|2A†A− 2KC |ε1|2C†C − χ
(
ε∗1AC

†C + h.c.
)

︸ ︷︷ ︸
V

If χ|ϵ1| is small, we can treat the last term as a perturbation V . We are interested

in finding corrections to E|n,g⟩ for states |cavity, qubit = g⟩ as we want the transmon

to stay in its ground state to prevent the dispersive interaction from dephasing the

cavity. The first order correction from V is always zero

E
(1)
|n,m⟩ = ⟨n,m|V |n,m⟩ = 0 (3.42)

because A,A† link adjacent levels. The second order correction E(2)
|n,m⟩ is non-zero

E
(2)
|n,m⟩ =

∑

|ψ⟩≠|n,m⟩

| ⟨n,m|V |ψ⟩ |2
En,m − Eψ

(3.43)

=
| ⟨n,m|V |n,m+ 1⟩ |2

ω1 − ωA + nχ+mα− χ′n2/6
(3.44)

=
χ2|ε1|2n2(m+ 1)

ω1 − ωA + nχ+mα− χ′n2/6
(3.45)

=
χ2|ε1|2n2(m+ 1)

ω1 − ωA +mα

(
1− ζ(n) +O

(
ζ(n)2

))
(3.46)

for

ζ(n) =
nχ− χ′n2/6

ω1 − ωA +mα
(3.47)

which converges for Fock states n < nmax when ζ(nmax) < 1. This condition can

be satisfied on a chosen manifold of states by choosing a sufficiently large pump

detuning ω1−ωA (but not one so large that it activates other parametric processes!).

We identify these energy shifts as matrix elements of an effective operator for the
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Figure 3.7: Kerr measurements and theory predictions with δ = 20 MHz. “Exact diago-
nalization” refers to a numerical solution to Eq. 2.5 in the presence of a single pump. To
acquire each point, we prepare |α = 1.5⟩, wait 10 µs in the presence of a drive with δ = 20
and amplitude |ε1| = |ξ|. The blue dots are data taken with the Ramsey experiments de-
scribed in Section 3.1 and the two sets of crosses are produced via the Wigner fits described
in Section 3.2.2. The fit of β (as defined in Eq. 3.34) is limited by α = 1.5 which leaves
little probability of more than two photons, reducing the effect of β. Note the small drive
amplitude required to cancel Kerr in the cavity. The induced β at this point is also very
small.

perturbation V

Veff. =
χ2|ε1|2

ω1 − ωA +mα
C†C†C (m|m⟩⟨m|+ 1) (3.48)

to first order in 1/(ω1 − ωA +mα), which looks similar to the non-linear dispersive

interaction χ′. The O(1/(ω1 − ωA +mα)2) term in Eq. 3.46 modifies the distortion

arising from higher-order nonlinearities like sixth-order cosine term β
6

(
C†)3C3, but

is suppressed by an additional order of the pump detuning. That is why we added

this non-linearity to our fits in Ch. 3.2.1.

Since we are interested in the effect of this pump when the qubit is in the ground

state only, we construct an effective Hamiltonian for Eq. 3.41 to first order in 1/(ω1−
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ωA +mα) by replacing V → ⟨g|Veff.|g⟩:

Heff. =
(
ωA − ω1 − α|ε1|2

)
A†A+

(
ωC − χ2|ε1|2

ω1 − ωA
− 2KC |ε1|2

)
C†C (3.49)

− α

2
A†A†AA+

(
χ2|ε1|2
ω1 − ωA

− KC

2

)
C†C†CC. (3.50)

Note that the sign of the detuning ω1 −ωA determines the sign of the added effective

Kerr. Cavity Kerr is canceled when

χ2|ε1|2
ω1 − ωA

− KC

2
= 0 ⇒ |ε1|2 =

ω1 − ωA
4α

(3.51)

which generally only requires small pulse amplitudes. Second-order perturbation

theory only applies when V is small, requiring other methods to predict the effect

of the drive. Exact numerical diagonalizations provide the most accurate prediction,

and agree with experimental results for KC , β at different drive powers |ε1|2 = |ξ|2,

as shown in Fig. 3.7.

One concern when adding a drive to the transmon is that we may activate higher-

order processes that damage system coherences [Zhang et al., 2019]. We show in

Fig. 3.8 that the qubit and cavity lifetimes are only weakly dependent on the drive,

but that the transmon heating rate doubles at high amplitude. The deterministic

Stark shift caused by the pump can be accounted for by updating the phase of the

cavity local oscillator at the end or during the pump.

3.3.2 Tune-up procedure

Tuning up the Kerr-cancelling drive doesn’t generally require fully characterizing

drive strengths ϵ1 and higher-order nonlinearities β. Since the amplitude required to

cancel Kerr is generally small, we completely neglect β and recommend the following

tuneup procedure:
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Figure 3.8: Left: transmon excited state populations for different Kerr engineering pump
amplitudes applied for a scanned duration with δ = 20 MHz. The color scheme for both
panes corresponds to the drive amplitude, which can be matched to the x-axis in the right
pane. Each trace is fit to an exponential to find Γ↑ and Γ↓. The equilibrium excited state
populations are plateaus of each fit. Right: cavity T1s at three different drive amplitudes.
The other dots are transmon 1/Γ↓ and stars are transmon 1/Γ↑. Note that the results of
the smallest two amplitudes (0.1 and 0.18) have low excited state populations and are left
off of the right plot due to resulting high uncertainties in the fit. The amplitude required
to cancel KC is typically less than 0.1, where the transmon equilibrium population remains
below 3%.
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1. Choose a drive detuning first. We recommend using a blue-detuned drive so

that Stark shifts don’t push the qubit closer to the drive. 20-50 MHz blue

detuned from the transmon is generally a good starting point.

2. Verify that the drive doesn’t heat the qubit by applying the pump with the

transmon in the ground state and scanning over amplitude and duration. Use

the results to replicate Fig. 3.8 and learn a safe range of amplitudes. If you

are tuning up the Kerr cancelling pump to operate during another parametric

process (such as squeezing), detune the other drives from their resonance condi-

tions. All drives should be applied at this step to detect any unwanted heating

or parametric effects before we continue.

3. Measure Kerr without the Kerr cancelling pump (add off-resonant squeezing or

beamsplitter drives if applicable). We recommend using the Ramsey method

in Section 3.1 using coherent states for the initial Kerr tuneup, and Fock states

afterwards for higher accuracy.

4. Add the Kerr cancelling pump and sweep the amplitudes to find a zero crossing.

If tuning up with other parametric drives, tweak those frequencies to zero out

the Stark shift from all drives. If not tuning up with other drives, note the Stark

shift and update the local oscillator phase accordingly. This update should be

performed during the drive so as not to add an additional unpumped delay at

the end.
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Chapter 4

Bitwise measurement

In the previous chapter, we used end-of-line (EOL) measurements to characterize the

strength of cavity Kerr and tune its cancellation. This chapter combines EOL and

QND measurements to explore the bitwise measurement first utilized in a simulation

of Franck-Condon factors [Wang et al., 2020]. With the exception of Sec. 4.2, this

chapter is reprinted with permission from [Curtis et al., 2021], copyright 2021 by the

American Physical Society.

4.1 Introduction

EOL measurements in cQED extract one bit of information per transmon readout

corresponding to the current state of the transmon qubit. This type of single-bit mea-

surement is common in many quantum systems. For example, in photonic platforms,

the analog of transmon measurement is single photon detection. Single photon detec-

tors (SPDs) distinguish between zero and at least one photon, and are essential for

tasks such as measuring the output of a photonic register or heralding in probabilistic

quantum gates. Uses of SPDs include quantum key distribution [Lo et al., 2012,Yin

et al., 2016, Liao et al., 2017], linear optical quantum computing (LOQC) [Knill

et al., 2001, Kok et al., 2007], quantum communication [Duan et al., 2001, Ursin
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et al., 2007, Kimble, 2008, Northup and Blatt, 2014, Hu et al., 2016, Zhang et al.,

2017,Dou et al., 2018], and photonic quantum simulations [Spring et al., 2013,Till-

mann et al., 2013,Sparrow et al., 2018,Bentivegna et al., 2015]. Highly efficient SPDs

with low dark count rates based on avalanche photodiodes and, more recently, su-

perconducting nanowire single-photon detectors [Eisaman et al., 2011,Marsili et al.,

2013, Esmaeil Zadeh et al., 2017] have been developed and satisfy the demands of

these optical applications.

The information processing capacity of intrinsically bosonic optical modes, how-

ever, can be much greater by executing protocols that manipulate multiphoton states.

In these cases, SPDs are insufficient for distinguishing between multiple photons and

photon number-resolving (PNR) detectors are required instead. Proposals to enhance

quantum communication [Simon et al., 2007] and key distribution [Cattaneo et al.,

2018] protocols, perform teleported gates [Knill et al., 2001], and extend conventional

boson sampling [Spring et al., 2013,Huh et al., 2015,Hamilton et al., 2017,Clements

et al., 2018,Kruse et al., 2019] all require PNR detectors. Building an optical PNR

detector has proven to be a difficult task. There are a variety of promising approaches

relying on highly efficient SPDs in multiplexing or arraying schemes [Banaszek and

Walmsley, 2003,Fitch et al., 2003,Achilles et al., 2004,Divochiy et al., 2008,Mattioli

et al., 2016,Tao et al., 2019] and transition edge sensors [Kardynał et al., 2008,Ger-

rits et al., 2011, Calkins et al., 2013]. These recent advances have vastly improved

performance, but the limited fidelity and resolvable photon number of optical PNR

detectors hamper multiphoton experiments [Clements et al., 2018].

The detection of single microwave photons is less established and more challeng-

ing, due to their lower energy and higher thermal background levels. The disper-

sive interaction between a photon and an atom or qubit enables a wide range of

measurement capabilities not possible in the optical domain. In cavity QED, the

dispersive interaction with Rydberg atoms enabled the observation of single pho-
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ton jumps [Gleyzes et al., 2007]. In cQED systems, Josephson junctions coupled to

microwave cavities generate the dispersive interaction essential for measuring single

microwave photons [Schuster et al., 2007, Johnson et al., 2010]. Additionally, the

dispersive interaction has been used to create [Houck et al., 2007, Hofheinz et al.,

2008] and manipulate [Heeres et al., 2015,Heeres et al., 2017] these photons in a wide

variety of ways. cQED analogs of optical photodetectors such as the Josephson pho-

tomultiplier [Chen et al., 2011, Govia et al., 2014, Opremcak et al., 2018] have also

been developed.

Introducing high-performance PNR detectors to the microwave regime could greatly

enhance the prospects for performing boson sampling and other photonic quantum in-

formation processing techniques with cQED systems. Early quantum non-demolition

(QND), single-shot, number-resolving measurements of microwave photons used fly-

ing Rydberg atoms to iteratively update the experimentalists’ knowledge of the pho-

ton number distribution [Guerlin et al., 2007]. Previous efforts in cQED to develop

PNR measurements have fallen short of combining single-shot and QND capabili-

ties. Spectral density analysis [Hofheinz et al., 2008] and state interrogation meth-

ods [Schuster et al., 2007] are QND, but require many shots of the experiment to

build up time or spectroscopic traces. Parity measurements have been used to count

photon jumps [Sun et al., 2014], but, while single-shot, the full PNR measurement

is not QND. More recently, frequency multiplexing [Essig et al., 2021] and multiple

feedforward measurements [Dassonneville et al., 2020] have been used to make QND,

single-shot PNR measurements, but suffer from limited fidelity.

In this chapter, we describe a measurement protocol that implements a high-

fidelity, single-shot PNR detector of microwave photons. The single-shot nature of

this measurement is essential to sample from the exponentially large Hilbert space

inherent to experiments with multiple bosonic modes. We previously introduced this

protocol to efficiently sample from the probability distribution at the output of a
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multiphoton bosonic quantum simulator, reducing the required number of measure-

ments by a factor of 256, the size of the Hilbert space [Wang et al., 2020]. Errors in

the storage and ancilla modes caused non-trivial bias in the output, but these errors

are well understood and can be modeled with a simple hidden Markov model. We

calibrate and use this model to improve the fidelity of the measurement by an order

of magnitude using error mitigation methods, reducing the measurement infidelity to

a few percent.

This chapter is structured as follows. First, in Section 4.2, we discuss an applica-

tion for which we devised our new single-shot PNR measurement. Then in Section

4.3, we discuss QND measurements of multiple observables with a single prepared

state. We verify measurements of parity and its generalizations satisfy the conditions

required to be QND. Next, we show how to construct a PNR detector of microwave

photons from successive QND measurements of parity and its generalizations. This

is accomplished by representing the photon number in its binary decomposition. In

Section 4.5, we introduce the error syndromes of our system along with a hidden

Markov model (HMM) that parametrizes the errors. After calibrating the error rates,

we use the model to mitigate the errors on an ensemble of states using deconvolution

methods in Section 4.5.4. Finally, we show that our error deconvolution protocol is

scalable in the number of modes and maintains computational efficiency.

4.2 Motivation: Simulation of Franck-Condon Fac-

tors

Before detailing the implementation of our single-shot PNR detector, we provide an

example application as motivation [Wang et al., 2020]. As mentioned above, bosonic

systems offer an exciting platform for quantum simulation problems. One such prob-

lem that seems to have a computational advantage is Gaussian boson sampling [Kruse
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et al., 2019,Hamilton et al., 2017,Bentivegna et al., 2015,Lund et al., 2014] which has a

practical use in simulating Franck-Condon factors (FCFs) [Huh et al., 2015,Clements

et al., 2018,Huh et al., 2020].

One focus of quantum simulation so far has been predicting the electronic structure

of molecules [Whitfield et al., 2011,Kandala et al., 2017,Kandala et al., 2019,Kivlichan

et al., 2018]. Exact classical computations of molecular electronic structure are com-

putationally difficult, requiring a zoo of complicated approximations, algorithms, and

computational methods [Fales et al., 2020] 1 to extract quantities useful to chemists.

One such approximation, the adiabatic Born-Oppenheimer approximation, allows

separation of the molecular wavefunction into electronic and vibrational components.

The electronic component describes the occupation of molecular orbitals while the

vibrational component describes quantum behavior of the positions of atomic nuclei

comprising the molecule. The vibrational wavefunctions are determined by a Hamil-

tonian that is a function of the electronic state that determines the distribution of

electrical charge. When a change in the electronic state occurs, the Hamiltonian

of the vibrational wavefunction changes, producing changes in the vibrational state.

These transitions are called “vibronic” transitions, whose probability amplitudes can

be computed with Gaussian boson sampling.

When one expands the vibrational potential energies about their equilibrium

points, we can approximate the vibrational Hamiltonian as a collection of harmonic

oscillators, which have exactly the same structure as our superconducting cavity os-

cillators. The deformation of the potential energy that occurs during a vibronic

transition changes the equilibrium positions, energies, and hybridization of this col-

lection of harmonic oscillators. We express the deformation of the mode operators a⃗

1. Disclaimer: one of the co-authors on this publication is the author’s brother
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Figure 4.1: Example Franck-Condon factor simulations from [Wang et al., 2020]. The
vibrational modes of water can approximated with two harmonic oscillators. In this figure,
we plot transition probabilities from the ground vibrational state |ψ0⟩ = |n = 0,m = 0⟩ as
a function of final state |n′,m′⟩ wavenumber ν = n′ν1 +m′ν2. The single-bit measurement
is clearly more accurate, with the “bitwise” sampling measurement producing substantial
discrepancies at some wavenumbers, but less at others. The error patterns and how to
mitigate them are discussed in Section 4.5.

with the Duschinsky transformation [Duschinsky, 1937]

a⃗→ UDoka⃗U
†
Dok (4.1)

in its Doktorov decomposition [Doktorov et al., 1977] of Gaussian operators

UDok = D(α⃗)S†(ξ⃗′)R(U)S(ξ⃗) (4.2)

where D and S are the tensor product of single-mode displacement and squeezing

operators. R(U) is a N -mode rotation operator that can be decomposed into two

mode beamsplitters. cQED implementations of each of these Gaussian operations

exist via the Hamiltonian engineering methods discussed in Section 2.2.1. For more

details, see [Wang et al., 2020,Wang, 2022].
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The transition probabilities (FCFs) are

FCF|n⃗,n⃗′ = | ⟨n⃗′|UDok|n⃗⟩ |2 (4.3)

where |n⃗⟩ = |n1⟩⊗|n2⟩⊗ . . . |nN⟩ is a tensor product of Fock states with energy of |n⃗⟩

is
∑

k ωknk. We simulate the vibronic transition by preparing |n⃗⟩ and applying UDok.

Finding the probabilities FCF|n⃗,n⃗′ is then reduced to sampling this state to build up

a probability distribution as a function of |n⃗′⟩. There are two ways to go about this

sampling:

1. Extract a single bit of information per shot by answering the question “is the

quantum state |n⃗′⟩?” This type of measurement can be implemented with the

number-selective π-pulses discussed in 2.2.1 with each transmon in the N -mode

system checking if the cavity to which it’s coupled has n′
k photons. Suppose that

we want to measure up to Nmax photons per mode. Then the number of times

we have to ask the question “is the quantum state |n⃗′⟩?” is NN
max. Any scheme

that requires an exponential number of measurements is clearly not scalable,

so we need another approach. Even for N = 2 and Nmax = 16 simulations we

performed in [Wang et al., 2020], this requires 256 measuremments.

2. Extract the number of photons present in each cavity mode per shot. For up

to Nmax photons per mode, this requires measuring log2(Nmax) bits per mode.

To extract multiple bits of information in a single-shot of the experiment, we

need a special type of measurement that does not perturb the state, so that

more information can be extracted. We discuss the principle of operation of

this measurement and demonstrate its viability in this chapter. Crucially, this

measurement solves the exponential sampling problem as the total number of

measurements NmaxN is now linear in the number of modes. The number of

measurements per mode remains constant even as more modes are added. In
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Figure 4.2: Projective, binary-valued measurements. (a) Measuring a qubit in its energy
eigenbasis (the basis of σz eigenstates) projects the qubit into its ground state |g⟩ with prob-
ability |α|2 or its excited state |e⟩ with probability |β|2. The measurement operators M̂g and
M̂e commute with the Hamiltonian at all times. As a result, the shared eigenstates are not
perturbed by additional measurements or time evolution, making the measurement QND.
(b) Here, Fock states are represented with the first two bits (parity and super-parity) of their
binary decomposition |n⟩ = |b1(n)b0(n)⟩ for N < 4. An initial measurement of parity (black
arrows labeled by measurement outcome and corresponding measurement operator) projects
|ψ⟩ into the even or odd subspace, and renormalizes the remaining state probabilities. A
subsequent measurement of super-parity (red arrows), further projects the state fully into
a single Fock state |n⟩. The detected photon number is computed using a record of each
measurement.

Fig. 4.1, we show simulated FCFs for water using both the single-bit measure-

ment and the bitwise measurement. The single-bit measurement appears more

accurate than the bitwise measurement, whose errors have a more complicated

pattern that we address in Section 4.5.
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4.3 Background

Optical photon detectors such as photomultiplier tubes, avalanche photodiodes, and

superconducting nanowire SPDs function by converting incoming photons into elec-

trical charges which are then amplified to produce a detectable signal [Eisaman et al.,

2011]. This process is single-shot, but is inherently destructive as the incoming pho-

tons are consumed by the detector. Standard techniques in cQED for measuring single

photons are QND [Johnson et al., 2010,Sun et al., 2014], allowing for additional pro-

cessing of the state. Our protocol for PNR detection utilizes this ability to perform

multiple measurements that collectively form a number-resolving measurement. In

this section, we generalize the notions of QND and single-shot to a multi-level system

with multiple measurements.

4.3.1 Multi-level QND measurements

To realize a single-shot PNR detector, we need to extend the concept of QND mea-

surements to the case of a multi-level system and multiple measurements. Not all ob-

servables can be measured in a QND way; they must satisfy two conditions [Haroche

and Raimond, 2006]. The first QND condition is that the observable Â commutes

with the system Hamiltonian Ĥ to ensure that a repeated measurement of it yields

the same result at any subsequent time (in the absence of external perturbations,

such as photon loss). The second condition is that Â commutes with the measure-

ment Hamiltonian ĤM , which contains additional terms that couple to a meter. This

condition protects the state from additional evolution induced by the measurement

process. QND measurements implement measurement operators M̂λ for each outcome

λ, which project the system into the eigenstate labeled by its eigenvalue λ.

Let us first consider the usual case of QND measurements of a qubit or two-level

system initialized in an arbitrary state |ψ⟩ = α |g⟩ + β |e⟩. A measurement of the
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system in this basis, with measurement operators M̂g = |g⟩⟨g| and M̂e = |e⟩⟨e|,

projects |ψ⟩ into |g⟩ with probability |α|2 and |e⟩ with probability |β|2. The outcome

of this measurement tells us exactly the state of the qubit following the measurement.

If the measurement of the observable is QND, then repeated measurements at any

subsequent time will yield the same result, as seen in Fig. 4.2 (a).

How can we extend this concept to perform a QND measurement on a multilevel

system? For instance, consider a four-level subspace of a bosonic mode C with opera-

tors C,C†. Two bits of classical information must be obtained to determine the state

of this system. This can be accomplished with two QND measurements, whose com-

position projects the system into a single level. The first QND measurement halves

the Hilbert space, and projects the state into one of its two subspaces, extracting

one bit of classical information. A second measurement further halves this subspace,

extracting the second bit and projecting the state into a single level of s. This is only

possible if the two operators commute, else the second measurement would project

into a superposition of states from the two subspaces of the first measurement, spoil-

ing the first bit of information.

For example, the binary decomposition of the number of excitations in s contains

two bits identifying the state of the four level system discussed above. Parity P̂0

divides the space into even and odd subspaces with measurement operators B̂(0)
b0=0 =

|0⟩⟨0|+ |2⟩⟨2| and B̂(0)
b0=1 = |1⟩⟨1|+ |3⟩⟨3|. This measurement projects the system into

the state corresponding to measurement outcome b0, which is the least significant bit

in the binary decomposition of the excitation number of s. Measurements of super-

parity P̂1, which commutes with P̂0, measure the second-least-significant bit b1 with

measurement operators B̂(1)
b1=0 = |0⟩⟨0|+ |1⟩⟨1| and B̂(1)

b1=1 = |2⟩⟨2|+ |3⟩⟨3|. Measured

in succession, these two observables project the system into a single Fock state labeled

by its binary decomposition |b1b0⟩, as shown in Fig. 4.2 (b). These generalized parity

measurements form the basis of our approach to realize a QND, PNR detector of
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microwave photons in a cQED system.

4.3.2 Multi-level single-shot measurements

As we discuss in the previous section, measuring a two-level or multi-level system

requires extracting one or more bits of information. For these measurements to be

considered single-shot, they must accurately measure a significant majority of their

bits in a single shot. When measuring a qubit, this means that one gains close to one

bit of information about the state per measurement, per initial state subjected to that

measurement. With a correspondingly high measurement efficiency and a low dark

count rate, a qubit measurement then extracts enough of the available information

that we can measure it with precision close to the shot noise limit imposed by the

ensemble size.

We call a multi-level measurement single-shot if a significant fraction of the bits are

faithfully extracted per shot. For example, choosing 3/4 as this fraction corresponds

to extracting more than three bits of information per shot for a PNR detector with

N = 16 levels. To determine P (n) of a multi-level system, we must sample many

times from an ensemble of states. If the PNR measurement that acquires each sample

meets this threshold, the error in the sampled P (n) is limited by the shot noise of the

number of samples. This capability is particularly crucial to extract joint probability

distributions from M N -level systems without individually checking each of the NM

states. We discuss the single-shot character of our detector in Section 4.5.2.

4.4 The bitwise measurement

4.4.1 Measuring binary-valued cavity observables

Our PNR detector uses a qubit ancilla to measure binary-valued observables of a

bosonic storage mode via the dispersive interaction. These observables Ô divide the
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Hilbert space into exactly two subspaces with distinct eigenvalues λ1, λ2. We can

imagine a gate that entangles the two ancilla states with the eigenspaces Eλ1 , Eλ2 .

A readout of the ancilla would then project the storage mode into the corresponding

eigenspace. This two-step measurement is QND only if the QND conditions are

satisfied for all steps in the measurement. For a measurement of Ô to satisfy the first

QND condition, it must be diagonal in the energy eigenbasis.

We next verify that the second QND condition is satisfied. Our three-mode cQED

system consisting of a readout mode, a storage mode, and a transmon ancilla has

operators r̂, r̂†, Ĉ, Ĉ†, and σ̂z, respectively. The composite system Hamiltonian is

Ĥ/ℏ =
ωσ
2
σ̂z + ωsĈ

†Ĉ + ωrr̂
†r̂ − χCσ

2
Ĉ†Ĉσ̂z −

χrσ
2
r̂†r̂σ̂z. (4.4)

The device is the same as used in Refs. [Elder et al., 2020, Reinhold et al., 2020]

with similar parameters, unless otherwise noted. We first apply an ancilla-storage

entangling drive, which produces the mapping Hamiltonian Ĥmap/ℏ = Ĥ/ℏ+Ω(t)σ̂x.

For observables Ô, frequency-selective drives Ω(t) can implement the requisite entan-

gling operation by exciting the ancilla conditioned on a Fock state. The second step,

ancilla readout, also utilizes a dispersive interaction, realized with the Hamiltonian

Ĥreadout/ℏ = Ĥ/ℏ + ϵ(t)r̂ + ϵ∗(t)r̂†. This readout completes the measurement of Ô.

Both the mapping and readout Hamiltonians commute with the diagonal Ô, and sat-

isfy the second QND condition. These drives can induce dephasing [Reinhold et al.,

2020], but do not induce additional decay in the storage mode [Sun et al., 2014].

Measurements of Ô are thus QND, enabling the measurement of multiple generalized

parity operators that form the basis of our number-resolving measurement.
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Figure 4.3: Measurement circuit diagram and error syndromes. (a) The photon number of
a state |ψ⟩ =∑n cn |n⟩ in the storage cavity with decay rate κ is measured by sequentially
interrogating the least-significant to most-significant bit in the binary decomposition of the
photon number (i = 0, 1, 2, 3). Optimal control pulses excite the ancilla conditioned on the
value of bi in the storage cavity, followed by a dynamic reset of the ancilla to ensure that
it starts in its ground state for the subsequent bit measurement [Elder et al., 2020] (see
Appendix A.1 for reset statistics). The combined map-measurement process has associated
error rates ϵe(g) for mis-assigning the ancilla to be in the |g⟩ (|e⟩) state when it should be
|e⟩ (|g⟩). (b) Single ancilla (left panel) and decay (right panel) errors associated with the
different bits (0 – yellow, 1 – red, 2 – blue, and 3 – green) produce different, but partially
overlapping, error syndromes. Note that the syndromes for the decay errors depend on
the order in which the bits are measured, and that the entries are qualitative labels of the
measurement errors occurred and are not indicative of error magnitudes.

71



4.4.2 Generalized parity measurements

To implement the number-resolving measurement, we synthesize gates that map the

binary-valued generalized parity operators onto the ancilla qubit. Each gate enables

the measurement of one bit, so to resolve the first N states, we require B = log2N

gates. The generalized parity operators

(
P̂k
)
ij
=





0 for i ̸= j

1− 2
(⌊

i
2k

⌋
(mod 2)

)
for i = j

(4.5)

with eigenvalues λ = ±1 halve the Hilbert space into two eigenspacesE+1 = {n|bk(n) =

0} and E−1 = {n|bk(n) = 1}, where bk(n) is the kth bit in the binary decomposition of

n. The P̂k are diagonal in the energy eigenbasis and thus satisfy both conditions for

QND measurement. To perform this measurement, we use numerical optimal control

techniques (see Appendix A.3 for more details) to synthesize a CNOT-like unitary

operation

CP̂k =
∑

bk(n)=0

eiφn|g⟩⟨g| ⊗ |n⟩⟨n|

+
∑

bk(n)=1

eiφn|e⟩⟨g| ⊗ |n⟩⟨n|

+
∑

bk(n)=1

eiφ
′
n|g⟩⟨e| ⊗ |n⟩⟨n|. (4.6)

The gate imparts phases φn, φ′
n, but these do not affect the final measurement out-

come because the composite measurement projects into a single Fock state, rendering

the induced phase irrelevant. We can set these phases ourselves, but here allow the

optimizer flexibility to choose the phases. Applying this gate to an ancilla prepared

in |g⟩ coupled to a storage mode with state |ϕ⟩ =
∑

n cn |n⟩ entangles the odd and
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even subspaces with the state of the ancilla,

CP̂k(|g⟩ ⊗ |ϕ⟩) =
∑

bk(n)=0

cne
iφn |g⟩ ⊗ |n⟩

+
∑

bk(n)=1

cne
iφn |e⟩ ⊗ |n⟩ . (4.7)

QND measurements of the ancilla then project the storage state into either E+1 or

E−1 depending on the outcome, realizing the measurement operators

B̂
(k)
0(1) =

∑

bk(n)=0(1)

eiφn|n⟩⟨n|. (4.8)

The act of measuringB parity operators P̂B−1, . . . , P̂1, P̂0 with outcomes bB−1, . . . , b1, b0

in the subspace including only the first N states is equivalent to applying the mea-

surement operator

M̂n = B̂
(B−1)
bB−1

. . . B̂
(1)
b1
B̂

(0)
b0

= |n⟩⟨n| (4.9)

and renormalizing. This operator projects the system into the Fock state |n⟩ =

|bB−1(n) . . . b1(n)b0(n)⟩ completing the “bitwise” measurement. This approach re-

quires the minimal number of binary measurements of any scheme assuming no prior

knowledge of the state. This protocol implements a detector resolving up to 2B pho-

tons, where the number of generalized parity (bit) measurements we make is fully

programmable.

4.4.3 Experimental implementation

To resolve the storage mode photon number in a single shot, we sequentially measure

the generalized parity operators, whose outcomes form the binary decomposition of

the photon number. For each bit, we apply CP̂k, read out the ancilla, and dynamically

reset it using the same method as in Ref. [Elder et al., 2020]. More details of the reset
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protocol, including statistics on the number of attempts required, are in Appendix

A.1. This process is concatenated to measure all four bits, allowing us to resolve up

to 15 photons, as shown in Fig. 4.3 (a).

Another approach performs a series of parity-like measurements, feeding forward

the result of each bit measurement to determine the correct qubit rotation angle for

the next measurement [Dassonneville et al., 2020]. However, any errors that occur

during a single measurement are fed forward and corrupt any subsequent measure-

ments, resulting in correlated errors. Our method, which independently measures

each bit, is more suitable for error mitigation with post-processing techniques.

Each component of our measurement chain is susceptible to errors. The storage

mode suffers from stochastic photon loss at a rate κ. The ancilla is vulnerable to

dephasing and excitation decay during the mapping pulse CP̂N as well as decay

during the readout procedure. The probability of reading out the ancilla in the

ground (excited) state when the readout should have yielded e(g) is ϵe(g). The long

lifetimes of the storage mode T s1 ≈ 1ms and ancilla T σ1 ≈ 25µs relative to the 2.9µs

duration of each measurement ensure that these errors are small. The dynamic reset

protocol rarely leaves the ancilla in the excited state, and is not a significant source

of error.

Counter-intuitively, a single error in the entire sequence can produce a result

that differs from the correct value by up to eight photons. This happens because

a single error can flip multiple bits in the photon number’s binary decomposition.

For example, the loss of a single photon from |8⟩ = |1000⟩ after the measurement

of b0 = 0, b1 = 0, b2 = 0 results in b3(7) = 0. Thus, the effect of such an error is

to mistakenly read out |8⟩ = |1000⟩ as |0⟩ = |0000⟩. This error is illustrated by the

green square in the right panel of Fig. 4.3 (b), which also shows the measurement

outcomes when a single ancilla readout or storage decay error occurs.

74



4.5 Measurement Error Mitigation

Can we use our knowledge of the error mechanisms described above to improve the

fidelity of our measurements? To answer this question, we use an approach known

as error mitigation which relies on data post-processing to improve the quality of

an ensemble of calculations or measurements. Error mitigation has been proposed

[Temme et al., 2017,Li and Benjamin, 2017] and realized [Kandala et al., 2019] for use

with variational algorithms. Here, our error mitigation efforts focus on an ensemble

of measurements which sample from the population distribution of some quantum

state.

In this section, we introduce an error model based on the error syndromes de-

scribed in Section 4.4.3. This model is a function of several error rates, which must

be calibrated. We discuss our calibration technique and compare the model to ex-

perimental results. Finally, we introduce the deconvolution techniques that use the

calibrated model to mitigate the errors in the measurement and show an improvement

on two sets of states.

4.5.1 Error model

Our goal is to characterize the errors so that we can model measurement outcomes.

This is equivalent to finding the elements {Fi}0≤i≤Nmax of the positive operator-valued

measure (POVM) that describes our measurement [Nielsen and Chuang, 2011, Ma-

ciejewski et al., 2020]. For instance, the bitwise measurement is composed of B

individual bit measurements, each with a corresponding POVM {E(k)
bk=0, E

(k)
bk=1} where

E
(k)
bk

=
(
B̂

(k)
bk

)†
B̂

(k)
bk

. Each ideal Fi is then a product of POVM elements constituting

the bitwise measurement:

Fi=bB−1...b0 = E
(B−1)
bB−1

. . . E
(0)
b0
. (4.10)
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Figure 4.4: Measured error syndromes and hidden Markov model prediction. (a) Misas-
signment probabilities of prepared Fock states measured bitwise. (b) Misassignment prob-
abilities predicted by the HMM. The HMM models the error syndromes depicted in Fig. 2
using the known storage mode loss rate κ and the calibrated error rates ϵ(k)g , ϵ

(k)
e . The

HMM correctly predicts the structure of the errors (b) and agrees with the data down to the
percent level (c). The negative values along the diagonal indicate the correct assignment
probability deficit with each column summing to zero. The rows are the measured and
modeled {Fi − 1i}, respectively, where 1i is the matrix that is zero except for a one in its
ith diagonal entry. The residuals may arise from calibration errors or other error syndromes
that are not modeled by the HMM. The residuals provide a typical bound of less than 1%,
and no more than 4%, on the error syndromes not included in the HMM.

Note that the Fi and E
(k)
bk

are diagonal because the bit measurement operators B̂(k)
bk

are QND. Ideally, Fi = |i⟩⟨i|, but our implementations of the E(k)
bk

have errors, so

(Fi)j,j is the probability that the measurement detects i photons when there are j

photons in the mode P (outcome = i| |j⟩).

Our system can be described with a hidden Markov model (HMM) that has been

used for qubit readout [Dréau et al., 2013,Gammelmark et al., 2013,Ng and Tsang,

2014,Wölk et al., 2015,Martinez et al., 2020] and to improve the readout of qubits

encoded in oscillators [Hann et al., 2018,Elder et al., 2020]. A HMM parametrizes the

errors in the storage mode, known as transitions, and the fidelity of the measurements

of each bit, known as emissions. The probability of a transition in the storage mode
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during a time interval t from |i⟩ to |j⟩ is

Ti,j (κt) =

(
i

j

)(
eκt − 1

)i−j
e−iκt, (4.11)

where κ is the decay rate of the mode [Hann et al., 2018]. The ancilla can decay during

the controlled rotation CP̂k and the readout procedure, leading to an incorrect bit

measurement. Since the bit measurements are QND, only the diagonal entries E(k)
bk,i

are non-zero, even in the presence of errors. We modify the entries of these ideal

POVM elements

E
(k)
bk,i

=





⌊
i
2k

⌋
is even





1− ϵ
(k)
g for bk = 0

ϵ
(k)
g for bk = 1

⌊
i
2k

⌋
is odd





ϵ
(k)
e for bk = 0

1− ϵ
(k)
e for bk = 1

(4.12)

to introduce error rates ϵg(e) describing errors in the CP̂k mapping or ancilla readout.

We now integrate both error mechanisms into a single model describing the er-

rors in the measurement. The bitwise measurement algorithm described in Section

4.4.3 alternates between entangling pulses and ancilla reset. The cavity is subject to

spontaneous decay for the duration of the algorithm, punctuated by projective mea-

surements of the entangled ancilla. This duration, however, is not deterministic due

to the dynamic ancilla reset. Our HMM models the errors in the measurement by

constructing an alternating chain of transition and emission (measurement) events.

To calculate the {Fi}, we sum over all transition paths sk between storage state |j⟩

and measurement outcome i. Weighting these paths by the probability that the bit
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measurements yield the binary decomposition of i = b3b2b1b0 gives

(Fi)j,j =
∑

s1...sB

Tj,s1
(
κt(0)

)
E

(0)
b0,s1

Ts1,s2
(
κt(1) + b0κt

′)E(1)
b1,s2

. . . TsB−1,sB

(
κt(B−2) + bB−1κt

′)E(B−1)
bB−1,sB

.

(4.13)

Each transition matrix T and POVM element E(k)
i are parametrized by the respective

error rates κt(k) and ϵ
(k)
g , ϵ

(k)
e , which are not necessarily the same for each bit. Note

that the time between each bit measurement depends on each result, as a measurement

of bk = 1 requires an ancilla reset pulse followed by readout verification. We discuss

how the dynamic ancilla reset statistics inform our choice of κt′ in Appendix A.1.

Eq. 4.13 provides the desired parametrized POVM elements, which, once calibrated,

we use to mitigate errors in our measurement.

4.5.2 Model calibration and results

Now that we have a model for the errors, we must determine the values of the error

parameters κt(k) and ϵ
(k)
g , ϵ

(k)
g . The duration of each bit measurement is recorded

shot-by-shot; the microwave pulses have fixed durations and the dynamic ancilla

reset records the number of required attempts. Since measurements of the cavity’s

decay rate κ are straightforward, we only need to determine the ϵ(k)g , ϵ
(k)
g .

We calibrate the bit measurement errors by measuring a single bit on a basis

of states. This characterizes the {E(k)
i } from which we extract the ϵ(k)g , ϵ

(k)
g . This

procedure relies on the ability to prepare a basis of states with high fidelity, so that

preparation errors do not pollute the measurement errors. We prepare Fock states by

repeatedly converting two excitations in the ancilla into a single photon as detailed

in [Gasparinetti et al., 2016, Elder et al., 2020]. We check the photon number with

a series of selective pulses. If any fail to flip the ancilla, the storage mode is cooled

to vacuum and the preparation protocol tries again. This method prepares high-

fidelity Fock states, but does allow photon decay during the final check (see the
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Table 4.1: HMM error parameters. The error σ of ϵ(k)g , ϵ
(k)
e is calculated by propagating

error in Eq. A.2. 1/κ ≈ 1ms is the storage cavity decay rate. The parenthetical additional
time is added when the ancilla needs to be reset and is equal to κt′, as discussed in Appendix
A.1. The comma in the first two indicates κt(0) for Fock and coherent states, respectively,
which have different preparation methods.

Bit k κt(k) (+κt′) ϵ
(k)
g ± σ ϵ

(k)
e ± σ

0 0.0040, 0.0032 0.019± 0.002 0.029± 0.002
1 0.0034 (+0.0046) 0.014± 0.001 0.026± 0.001
2 0.0034 (+0.0046) 0.011± 0.001 0.035± 0.002
3 0.0034 (+0.0046) 0.013± 0.001 0.033± 0.002

Supplementary Material for [Elder et al., 2020]). Appendix A.2 contains additional

details about the calibration process, including how we account for these preparation

errors.

Once we have calibrated the error rates in the model in Table 4.1, we use Eq. 4.13

to calculate the {Fi} and thus reconstruct the detector POVM. We compare the

modeled POVM to the measured POVM in Fig. 4.4 by preparing the Fock states

{|j⟩}0≤j≤15 and measuring all four bits. The residuals are typically 1%, and never

more than 4%, showing good agreement with the model and bounding unmodeled

errors. We could in principle use the measured detector POVM to perform error mit-

igation, but we would still need to model transitions during the Fock state preparation

and would not be able to confirm our understanding of the error mechanisms.

4.5.3 Calculation of information extracted by the detector

To be able to call our detector single-shot, it must extract a large fraction of the

information it is designed to measure per shot. In particular, of the four bits it ideally

measures, we would like to determine how many of these bits are lost to measurement

errors. The difference of ideal and wasted bits gives the average number of bits

extracted per measurement.

Our task is then to calculate the number of wasted bits in our measurement, which
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is equivalent to number of extra bits needed to classify the input given a measurement

result (or the number of bits remaining to be measured). This quantity is the entropy

Si [Shannon, 1948] of the distribution P (|j⟩ |i) = P (detector input |j⟩ |measurement result i).

We finally average over the results i to obtain 4 − ⟨Si⟩, the average number of bits

extracted in a single shot of the measurement.

We begin by calculating the conditional probability

P (|j⟩ |i) = P (result i|input |j⟩)P (|j⟩)
P (i)

. (4.14)

Recalling that P (result i|input |j⟩) = Cij and assuming a uniform prior P (|j⟩) = 1/N

we simplify Eq. 4.14

P (|j⟩ |i) = CijP (|j⟩)∑
k CikP (|k⟩)

=
Cij∑
k Cik

. (4.15)

Finally, we write down the average entropy over all measurement outcomes, weighting

by P (outcome i)

⟨Si⟩ = −
∑

ij

P (|j⟩ |i) log2(P (|j⟩ |i))P (i)

= − 1

N

∑

ij

Cij log2

(
Cij∑
k Cik

)
. (4.16)

Using the error parameters listed in Table 4.1 to construct C, we find 4−⟨Si⟩C, Fock =

3.14 bits. We can also use the measurement results in Fig. 4.4 to determine P (result i|input |j⟩),

yielding 4− ⟨Si⟩Fock = 3.11 bits. This number likely provides an upper bound of ⟨Si⟩

as the check protocol for Fock states (described in Section 4.5.2) introduces a lengthy

delay between state preparation and measurement.

As mentioned above, the preparation errors included in both of these calculations
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likely inflate the number of bits the measurement itself wastes. We cannot decon-

volve only the preparation error from the measurement results, but we can zero the

contribution of preparation to κt(0). We emphasize that κt(0) will always contain a

contribution from the previous experimental step, but we can construct a C confined

to errors that solely occur during the measurement duration. This scenario yields

4− ⟨Si⟩C, no prep = 3.17 bits, which is likely a lower bound as the residuals in Fig. 4.4

show that C does not perfectly capture all errors.

Finally, we can use this method to estimate the single-shot error budget. With

κt(k) as in Table 4.1 and unit fidelity CP̂k pulses and ancilla readout (ϵ(k)g = ϵ
(k)
e = 0)

we find 4− ⟨Si⟩only κt(k) = 3.72 bits. The remaining information is lost to photon loss

in the storage mode. This suggests that significant gains can be made by optimizing

the CP̂k pulses and ancilla readout before needing to decrease κt(k).

The raw measurement fidelity of each state is at least 80% before error mitigation

even for the most challenging input state n = 15. The measurement extracts on

average between 3.11 and 3.17 of the four possible bits of information. This fraction

is greater 3/4, suggesting that the bitwise measurement is single-shot.

4.5.4 Error deconvolution

Now that we have modeled the entire collection of {Fi}, we form a matrix Cij = (Fi)j,j,

where C − I is shown in Fig. 4.4(b), of conditional probabilities referred to as the

“confusion matrix." This allows us to relate the measured populations Pmeas to the

state’s ideal distribution Pideal with a simple relation [Maciejewski et al., 2020]

Pmeas = CPideal. (4.17)

Once we have C, we invert it to solve the above equation for the mitigated probability

vectors Pmit = C−1Pmeas. These vectors are properly normalized, but may have
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Figure 4.5: Error mitigation results for coherent (left panel) and Fock states (right
panel). The α were chosen such that the Hilbert space can be truncated to the first 16 Fock
states, with error less than 2.2%. For each prepared state |ψ⟩, the error in the measure-
ments DTV

(
Pmeas

|ψ⟩ ,Pideal
|ψ⟩

)
(blue) is compared to the error in the mitigated measurements

DTV

(
Pmit

|ψ⟩ ,P
ideal
|ψ⟩

)
(orange). The large difference in overall error rates between Fock and

coherent states results from the error mechanism to which each is most susceptible. Fock
states transition to orthogonal states under photon loss, while coherent states are mainly
affected by bit measurement errors. The single photon loss probability κt(k) ≈ 0.03 is similar
to the single bit error rates ϵ(k)e ≈ .03, ϵ

(k)
g ≈ .01.
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Figure 4.6: Condition number vs. storage mode error rate. As the cavity error rate
increases, the condition number (ratio of largest to smallest singular value) of C diverges,
indicating that the inversion of C is no longer numerically stable. For simplicity, we choose
typical experimental values for the errors ϵ(k)g = 0.01, ϵ

(k)
e = 0.03 and sweep all κt(k) = κt′

simultaneously.

negative entries. We correct the mitigation results by finding the closest vector Pmit

with respect to the Euclidean norm that has non-negative entries [Maciejewski et al.,

2020].

This protocol works in the range of error rates that allow robust inversion of C. In

the limit of small error rates, C approaches the identity. As the error rates ϵ(k)g , ϵ
(k)
e ,

and κt(k) become large, we expect that C will become ill-conditioned. For example, as

the storage mode error rates κt(k) approach 1, the probability C0n of any photon state

|n⟩ decaying to |0⟩ approaches 1. But since the column vectors of C are normalized

to 1, they approach degeneracy and prevent the inversion of C. This exact scenario is

illustrated in Fig. 4.6. Similarly, the condition number also diverges as ϵ(k)g , ϵ
(k)
e → 1.

We operate the small error rate regime in which C is robustly invertible.

The simple form of Eq. 4.17 offers the tantalizing possibility that we could avoid

error modeling altogether by preparing a high-fidelity set of states, and directly in-

verting Pideal to find C. Coherent states seem to be an ideal candidate due to the

high fidelity with which we can prepare them, but suffer from ill-conditioned ideal

populations Pideal, which make the determination of C highly sensitive to errors in
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Pmeas [Lundeen et al., 2009]. Furthermore, error modeling of the Fock states is re-

quired due to preparation error discussed in the previous section.

To quantify the quality of our measurement, we use the total variation distance

metric to compare probability distributions A and B,

DTV (A,B) =
1

2

∑

k

|Ak − Bk| . (4.18)

The factor of 1/2 accounts for the double-counting of probability differences.

To check the performance of the error mitigation and verify the error model, we

apply it to the same Fock states we prepared in the calibration process, and to a set

of coherent states with 0 ≤ α ≤ 3. The results are shown in Fig. 4.5. In both cases,

the error mitigation includes photon losses occurring during state preparation (recall

the selective pulse check discussed in Section 4.5.2). This is reasonable because the

operation that directly precedes the bitwise measurement is known in advance as part

of the pulse sequence.

The large difference in the pre-mitigated errors in Fig. 4.5 between the Fock and

coherent states is due to the nature of these states. For the Fock states, a single lost

photon transitions |n⟩ to an orthogonal state |m⟩, resulting in the maximum possible

error. Furthermore, the transition rate increases with photon number, resulting in

large pre-mitigation errors. On the other hand, coherent states are more robust to

photon loss and do not transition to an orthogonal state, leaving bit measurement

errors as the dominant error mechanism.

The error mitigation successfully reduces errors in all tested states to less than

5%, providing the most dramatic improvement to the Fock states, whose average

error is reduced from 13.5% to 1.1%. The success of the error mitigation shows that

we understand the error syndromes in our measurement and can effectively quantify

them. This allows us to use the model to find the error rates required to meet a
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desired measurement fidelity, which may vary from application to application.

4.5.5 Scalability of error mitigation

In the previous sections, we demonstrated an efficient measurement of the number

of photons in a mode, and an effective method to mitigate the errors in the mea-

surement. Our protocol can be performed simultaneously on a system with multiple

storage modes, each dispersively coupled to their own ancilla qubit, to measure the

joint photon number of the system. Imagine a system with M storage modes with

uncorrelated measurement errors between the modes. Here, the entries of Pmeas are

elements of the joint probability distribution P (n1, n2, . . . , nM). If we truncate the

Hilbert space of each mode to some maximal number of photons Nmax, then the length

of Pmeas is NM
max. This exponentially large space suggests that our approach to error

mitigation is not scalable to multiple modes.

However, it turns out that calculating any particular element of Pmit from Pmeas is

efficient, as we show below. Calculating particular elements of Pmit may be sufficient

for problems in which the goal is to study features of an output distribution that can

be altered by measurement errors. For instance, we may be interested in correcting

the relative peak intensities of Franck-Condon factors [Wang et al., 2020, Clements

et al., 2018], which only requires processing the measured peaks, not the entire Hilbert

space. The resulting spectrum will have significant peaks at the same output photon

numbers, with intensities adjusted to account for measurement errors, increasing the

simulator’s accuracy. This way, the simulator still does all the hard work of iden-

tifying the significant peaks; we only need to post-process the heights to mitigate

measurement errors.

There are two properties that make calculating any element of Pmit efficient. The

first is that the multi-mode confusion matrix is the Kronecker product of single-mode

confusion matrices, meaning that it is efficient to calculate any element in the inverse
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of the multi-mode confusion matrix. In general, though, C−1 contains an exponential

number of nonzero matrix elements so writing down the entire matrix is not feasible.

The second property is that the vector Pmeas is necessarily sparse; assuming we do

not perform an exponentially large number of measurements, most configurations

(n1, n2, . . . , nM) are never actually measured. Together, these two properties imply

that any entry of Pmit can be efficiently computed,

Pmit
i =

∑

j∈S

(
C−1

1 ⊗ C−1
2 ⊗ . . .⊗ C−1

M

)
ij
Pmeas
j (4.19)

where S is the set of nonzero entries in Pmeas, which is only polynomially large.

We cannot use this fact to efficiently calculate the entire distribution Pmit, however,

because Pmit can contain exponentially many nonzero entries. In the case where

simply adjusting peak intensities is insufficient, we have developed a method for

expanding C−1 that mitigates errors up to a chosen order. This method is detailed

in [Curtis et al., 2021].

4.6 Conclusion and outlook

Our bitwise measurement protocol utilizes the long lifetimes of 3D microwave cavities

and the interactions generated by a Josephson junction to implement a high-fidelity,

single-shot, microwave photon number-resolving detector. We use error mitigation

techniques to improve the measurement fidelity of the Fock states by nearly an or-

der of magnitude. Larger resolvable photon numbers are reachable by synthesizing

additional CP̂k pulses to measure more bits.

In addition to enabling error mitigation, our error model provides insight into

the error budget of our PNR detector. For example, we estimate that with unit

fidelity CP̂k pulses and ancilla readout (ϵ(k)g = ϵ
(k)
e = 0) we can extract 3.72 bits

of information in a single shot in our system with the current κt(k). This suggests
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that further optimization of the control pulses and ancilla readout can increase the

information extracted per shot by up to 0.6 bits. Any additional improvements to

the single-shot fidelity require decreasing κt(k) by decreasing the pulse lengths or

increasing cavity lifetimes. Adaptive check methods may also be able to improve

single-shot fidelity at the expense of adding complexity to the error model.

Even with limited fidelity, optical PNR detectors have motivated the development

of multiphoton quantum information processing protocols. Bringing high-fidelity

PNR detectors to the microwave regime further bolsters the ability of cQED to per-

form photonic protocols, such as vibronic spectra simulations mentioned in Section

4.2. Additionally, this capability will motivate the development of algorithms that

take advantage of the large bosonic Hilbert space available in cQED systems.
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Chapter 5

Principles of error-detected gates

The bitwise measurement explored in Chapter 4 demonstrated that with careful cali-

bration, we can deconvolve the effect of transmon and qubit errors in a measurement,

on average. This technique is promising for experiments where the goal is to re-

construct a probability distribution that represents transition probabilities, but isn’t

generally applicable when we want to maximize the fidelity of a single measurement.

For the rest of the dissertation, we shift focus to maximizing the fidelity of a single

run of a quantum circuit via error detection.

Error detection interleaves measurements between gates whose result can tell us

if something went wrong during the gate. This technique has even higher standards

for the quality and non-invasiveness of our measurements. Failure to detect errors

ruins gates immediately, causing potentially unrecoverable errors in logical qubits. It

is also not sufficient for these measurements to be simply QND, which can still allow

dephasing within the codespace, we need them to have a minimal, or deterministic,

effect on our stored information.

Error detection differs from error correction in that the information stored in an

error-detected circuit is lost when the error occurs. This means that a single error-

detected circuit itself isn’t useful for error correction, but a large number of error-
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detecting circuits can be joined together in an error-correcting code to form a logical

qubit [Wu et al., 2022,Teoh et al., 2023]. For a detailed and thorough introduction

to these ideas, see James Teoh’s excellent dissertation [Teoh, 2023].

This approach holds a large advantage over conventional approaches of joining

large numbers of error-prone devices together because the extra information we ex-

tract from error detection makes decoding logical errors much easier. In this paradigm,

error-correction based on higher-order codes (such as the surface code) of error-

detected physical qubits has two error rates (thresholds) below which scaling the

number of physical qubits decreases the overall logical error rate. The first of these

rates, the erasure rate, is the probability that we detect an error in a physical qubit

and erase it from the logical code by resetting it. This approach is especially powerful

when uncorrectable leakage errors are detectable and can be flagged. The second is

the remaining error rate in gates that aren’t erased. In the case that leakage errors

are efficiently converted into erasures, the remaining errors are Pauli errors in the

code space. Both of these thresholds depend on the fraction of errors that can be de-

tected [Wu et al., 2022]. This makes sense because as the fraction of detectable errors

decreases to zero, we expect to recover traditional surface code thresholds. Notably,

knowing where errors occur in the code allows up to d− 1 erasures per cycle of error

correction, an increase from the limit of (d−1)/2 Pauli errors in conventional surface

codes [Teoh et al., 2023].

The error-detected physical qubits used in this dissertation are formed from a mi-

crowave cavity (or two) coupled to a transmon ancilla. We encode a logical qubit in

the cavity mode(s) and use the transmon to decode and perform gates on the cavity.

The transmon, however, has much faster decoherence rates and is the dominant con-

tributor to infidelity in the resulting gate. We will mainly focus on detecting transmon

errors in these chapters. Detection of errors in the logical qubit is a function of the

code we use to encode the logical information. Error-detecting codes include dual
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rail [Kubica et al., 2022,Teoh et al., 2023] and binomial and the generalized Fock 0N

codes with code words |0⟩ and |N⟩ [Michael et al., 2016]. Generally, any code that

satisfies the Knill-Laflamme condition is also an error-detecting code [Teoh, 2023].

In the next three chapters, we introduce error-detected gates and demonstrate a

logical error-detected RL
Z(θ) gate on a binomial qubit. From now on, we use super-

script L to indicate rotations explicitly on logical qubits encoded in quantum error-

correcting or error-detecting codes. Absence of superscript L indicates generality to

logical or physical qubits. In this chapter, we introduce the idea of error-detected

gates, show that their advantage results from our high-fidelity measurement capa-

bilities. We also discuss the ingredients needed for an error-detected gate in the

transmon-cavity architecture that we utilize to design our error-detected RL
Z(θ) gate

in Chapter 6. Chapter 7 extends our usage of the transmon as a qubit to a qutrit,

which is an essential ingredient for our error-detected gate. In Chapter 8, we put

to work our list of requirements and new qutrit design to and benchmark an error-

detected RL
Z(θ) rotation.

5.1 Sources of gate errors

Almost all quantum algorithms and error correction can be decomposed into a series

of gates followed by a measurement. Let’s take a look at a series of gates Ui acting

sequentially on an ensemble of initial states

|ρinitial⟩ U1 U2 · · · Un |ρfinal⟩

In the absence of any coupling between our quantum system and the environment, the

gate propagators Ui are unitary. This means that the only source of error in the circuit

is our ability to design the controls ϵ(t) that generate Uiρ = UiρU
†
i to implement

our desired unitary gates. The quality of our implementation is quantified by the

90



trace/unitary/control fidelity defined in 2.54. Maximizing the trace fidelity requires

careful calibration of the Hamiltonian and response of the microwave components

that produce and filter the drives.

Unfortunately, in reality, there is always unwanted coupling between our systems

and the environment. We describe this coupling with jump operators Ji that can add

noise to certain system parameters (such as resonant frequency noise, dephasing) or

swap excitations between the system and environment (decay). The evolution in this

case is not unitary, and is generated by the quantum Liouvillian in Eq. 3.15

U = T exp

(∫
L(t)dt

)
. (5.1)

On its own, this expression is not particularly helpful in revealing the effects of deco-

herence, but we can organize the Dyson series of the propagator as a sum of super-

operators

U(t, 0)ρ =
∞∑

p=0

Gp(t, 0)ρ (5.2)

=
∞∑

p=0

ppphysgp(t, 0)ρ (5.3)

where Gp(t) is the time evolution when exactly p jumps of any type occur [Ma et al.,

2020]. For small error rates, the probability of p jumps monotonically decreases,

meaning that Gp(t) contribute less to the total evolution U(t, 0) as p increases. In

Eq. 5.3, we separate out a scale factor ppphys from Gp(t) that is the approximate proba-

bility that p jumps occur. Generally, ppphys ∝ (κt)p for some average decoherence rate

κ.

Note that Eq. 5.2 is not necessarily the same as the Kraus representation of U(t, 0),

although some elements of the sum may have obvious Kraus representations. One
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such term is G0(t) which takes the form

G0(t, 0)ρ = Ueff(t, 0)ρU
†
eff(t, 0) (5.4)

where

Ueff(t, 0) = exp

(
−i
∫ t

0

Heff(t1)dt1

)
(5.5)

and the effective Hamiltonian Heff(t) in this case includes the non-Hermitian anti-

commutator term in Eq. 3.15

Heff(t) = H(t)− i

2

∑

l

κlJ
†
l Jl (5.6)

with jump operators Jl and decoherence rates κl. This “no-jump” term generates two

effects: norm decay of pure states and no-jump backaction. The no-jump effects can

be seen most clearly in the case of photon loss in a bosonic mode C. Consider a

superposition of zero and n photons. The no-jump evolution generated by κCC†C/2

is

Ueff(t, 0)
1√
2
(|0⟩+ |n⟩) = 1√

2
e−κCtc

†c/2 (|0⟩+ |n⟩) (5.7)

=
1√
2

(
|0⟩+ e−κCtn/2 |n⟩

)
(5.8)

biases the state towards |0⟩ and reduces the norm below 1 [Michael et al., 2016]. The

new norm squared 1+2e−κCtn/2+e−κCtn

2
represents the probability that no jumps occur

in duration t.

To find the evolution under a fixed, non-zero number of jumps p, we average over
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all possible trajectories by integrating over all jump times [Ma et al., 2020]

Gp(t, 0) =
∫ t

0

dtp · · ·
∫ t3

0

dt2

∫ t2

0

dt1G0(t, tp)S · · · SG0(t2, t1)SG0(t1, 0) (5.9)

where S is the effect of discrete jumps from Eq. 3.15:

Sρ =
∑

l

κlJlρJ
†
l . (5.10)

The norm of each Gp(t, 0)ρ represents the probability of p jumps occurring during the

evolution of ρ.

This means that, unsurprisingly, all of the error in a gate U comes from the

effects of discrete jumps and no-jump evolution. The goal of quantum error detection

is then to filter out the contribution of Gp for p ≥ 1 in NISQ-like applications or

notify a decoder of an erroneous gate in real-time. If we know that no jumps have

occurred in a duration dt, we can correct the no-jump evolution to O(κCdt) with

a unitary [Michael et al., 2016,Mirrahimi et al., 2014]. This is not done on average

with error mitigation techniques like the ones discussed in Chapter 4, but by detecting

jumps as they happen on a shot by shot basis. We do this by engineering Heff(t) such

that jumps have a controlled and measurable effect on the system.

In other words, what we really want is some method to mark each gate in a string

as successful or failed without disturbing the fidelity of states where all of these checks

pass. When an attempted application of the channel Ui fails due to a jump, we should

flag it

|ψinitial⟩ U1 U2 · · · Ũi · · · Un |ψfinal⟩

Success Success Failure Success

where the failed gate ŨiρŨ †
i represents a trajectory with at least one jump that con-

tributes to the average evolution Uiρ. From now on, we use U to indicate a successful,
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jump-free application U |ψ⟩ = Ueff(t, 0) |ψ⟩ /| ⟨ψ|Ueff(t, 0)
†Ueff(t, 0)ψ⟩ | of the channel

U and Ũ to indicate a failed application with at least one jump. The exact form of

Ũ depends on the timing of the jumps that occurred.

As stated in the introduction to this chaper, the standard cQED system is a cavity

coupled to a transmon ancilla qubit, which enables gates and measurements on the

linear cavity mode. When we perform a gate on a logical qubit encoded in the cavity

mode, we often necessarily entangle the transmon with the logical information. This

certainly happens when using optimal control, as discussed in Section 2.2.2. When

optimizing these gates, we need to specify the evolution on both the cavity and

transmon modes. Generally, we choose a set of state transfers such that the control

pulses implement the identity on the transmon and the desired unitary on the cavity

|g⟩ ⊗ |ψ⟩ → |g⟩ ⊗ U |ψ⟩. However, if the transmon decoheres during the gate, the

evolution is no longer unitary and produces a random state in both the cavity and

the qubit. But we know that a successful gate always takes |g⟩ → |g⟩, so adding a

transmon measurement after the gate

|ψ⟩
U

|g⟩

will detect final states other than |g⟩ that may herald errors that leave the transmon

in a superposition. We want to figure out a way to design gates that maximizes the

probability that a success results in a specific flag state, which we choose to be |g⟩ for

the rest of this dissertation. That is, the measurement projects U into a successful

state U |ψ⟩ when

|ψ⟩
U

U |ψ⟩

|g⟩ |g⟩

Success
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and failed when

|ψ⟩
U

Ũ |ψ⟩

|g⟩ |ḡ⟩

Failed

where |ḡ⟩ is a non-ground state of the transmon.

It is of utmost importance that we verify that any error detection we perform has

minimal backaction on the information encoded in the cavity state |ψ⟩. This way,

when we concatenate gates and error detection (transmon measurements)

|ψ⟩
U1 U2 U3 U4

· · ·

|g⟩ · · ·

we don’t add any infidelity beyond the unitary infidelity of the gates.

5.2 Error detection basics

Before designing error-detected gates, we want to check if the framework we described

improves the fidelity of the gates we mark as successful. In particular, we want to

answer a few questions:

• What sets the rate at which failed gates slip through our error detec-

tion scheme?

• If we are relying on the transmon ancilla to flag gate errors, we need

high-fidelity, QND transmon measurements. How accurate and QND

are these measurements? What are typical values?

• What is the connection between gate success rate, detection fidelity,

and accepted gate fidelity?

• How do undetected errors affect subsequent gates?
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5.2.1 The case where all errors are detectable

Let’s start by finding a simple model for the state at the output of an error-detected

gate. Suppose that we’ve designed our gate as discussed above so that successful

gates leave the transmon in |g⟩ and failed gates leave the transmon in other states.

Then we can write the effect of U on a collection of initial states ρ0 = |g⟩⟨g| ⊗ |ψ⟩⟨ψ|

|ψ⟩
U

|g⟩

as

Uρ0 = Psuccess|g⟩⟨g| ⊗ U |ψ⟩⟨ψ|U † + Ufailρ0 (5.11)

where Psuccess is the probability of no jumps occurring, producing a successful gate.

Now, we know that by design Ufail will map the transmon state |g⟩ to some excited

state, but how does Ufail act on the state |ψ⟩? Since the jumps occur randomly, we

assume that the net effect of all Gp(t, 0) for p ≥ 1 is to depolarize any input ρ0 and

produce a uniformly random output

Ufailρ0 =
∞∑

p=1

Gp≥1(t, 0)ρ0 =
pphys

d
ρḡ ⊗ I+O(p2phys) (5.12)

where I is the d × d identity matrix on the cavity space and ρḡ is a depolarized

transmon state with ⟨g|ρḡ|g⟩ = 0 and Tr(ρḡ) = 1. This assumption allows us to

define a simple, trace-preserving channel for the gate U to first order in the physical

failure rate

Uρ0 = (1− pphys)|g⟩⟨g| ⊗ U |ψ⟩⟨ψ|U † +
pphys

d
ρḡ ⊗ I (5.13)

where a transmon measurement with result g projects into the successful state U |ψ⟩
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with probability

Psuccess = Tr ((|g⟩⟨g| ⊗ I)Uρ0) = (1− pphys). (5.14)

However, as we learned in Chapter 4, measurements aren’t perfect, and the trans-

mon measurement operatorsMk rarely project completely into state |k⟩. Furthermore,

the Mk may even have residual non-QNDness in the form of off-diagonal elements

that induce transitions between transmon states. For now, let’s consider the diagonal

measurement operator

Mg =
√
P (g| |g⟩)|g⟩⟨g|+

√
P (g| |ḡ⟩)

∑

k ̸=g
|k⟩⟨k| (5.15)

that correctly detects the ground state with probability P (g| |g⟩) but also mistakes

non-ground states |ḡ⟩ as ground with probability P (g| |ḡ⟩). With this measurement

operator, we can fully write the output ρsuccess of a gate flagged successful

|ψ⟩
U

|g⟩

Success
and see the effect of both gate failure rate and Mg. The average output state

ρ′success =Mg Uρ0Mg = (1− pphys)P (g| |g⟩)|g⟩⟨g| ⊗ U |ψ⟩⟨ψ|U † +
pphysP (g| |ḡ⟩)

d
ρḡ ⊗ I

(5.16)

(dropping the O(p2phys) correction from now on) is unnormalized because projective

measurements are not trace preserving. Before we normalize, notice that the right-

most term’s coefficient is the product of two presumably small rates pphys and P (g| |ḡ⟩).

As a result, two errors must occur for a failed gate to occur in our circuit: the gate
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failing itself and a measurement error. See Fig. 5.1 for a visualization of the error

pathways in an error-detected gate. After renormalizing, we have

ρsuccess = (1− ϵpass)|g⟩⟨g| ⊗ U |ψ⟩⟨ψ|U † +
ϵpass

d
ρḡ ⊗ I (5.17)

where ϵpass is the rate at which failed gates pass our check

ϵpass =
pphysP (g| |ḡ⟩)

(1− pphys)P (g| |g⟩) + pphysP (g| |ḡ⟩)
∼ pphysP (g| |ḡ⟩)

P (g| |g⟩) . (5.18)

The normalization denominator of ϵpass is also the probability that we accept a gate

Psuccess = (1− pphys)P (g| |g⟩) + pphysP (g| |ḡ⟩) (5.19)

as successful. We call this the “success rate” and pphys the “failure rate.”

5.2.2 The case where only one jump is detectable

However, we will see that it is often not possible to design a gate such that all trajec-

tories with more than zero jumps are detectable. Let’s consider the more reasonable

case where we can only design a gate U where one jump is detectable. For example,

the aforementioned binomial code allows error detection via a parity measurement

after one jump that switches its parity to odd. A second jump switches the parity

back to even causing a parity measurement to flag no error. Consider a U constructed

such that only trajectories with exactly one jump leave the transmon in |ḡ⟩, but for

p > 1 jumps depolarize the transmon as well. That is

G1(t, 0)ρ0 =
pphys

d
ρḡ ⊗ I (5.20)

∞∑

p=1

Gp≥2(t, 0)ρ0 =
p2phys

dq
I⊗ I+O(p3phys) (5.21)
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to second order in pphys with q the size of the transmon Hilbert space. This means

that there is a non-zero probability that failed gates with two or more jumps will be

flagged as successful, even without any measurement errors

Ufailρ0 =
pphys

d
ρḡ ⊗ I+

p2phys

dq
I⊗ I+O(p3phys). (5.22)

See Fig. 5.2 for a visualization of the failure pathways when two or more jumps cannot

be reliably detected.

We see clearly that the states with two jumps can leak through detection by

following the same procedure as before to find the un-normalized final state

ρ′success =P (g| |g⟩)|g⟩⟨g| ⊗
(
(1− pphys − p2phys)U |ψ⟩⟨ψ|U † +

p2phys

dq
I

)
+ P (g| |ḡ⟩)pphys

d
ρḡ ⊗ I.

(5.23)

to second order in the small error rates P (g| |ḡ⟩) and pphys. The normalization factor

is equal to the success rate

Tr(ρ′success) = P (g| |g⟩)
(
1− pphys − p2phys +

p2phys

q

)
+ P (g| |ḡ⟩)pphys. (5.24)

Normalizing ρsuccess = ρ′success/Tr(ρ
′
success) doesn’t produce as tidy of an expression

as it does in Eq. 5.17, but even unnormalized, we see that as pphys increases, at

some point p2phys > pphysP (g| |ḡ⟩) and two jump errors become the dominant source

of infidelity over misclassified single jump errors.
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1
dρḡ ⊗ I

1− pphys

Gate U

|g〉〉⊗U |ψ〉〉U†

Measurement Mg

ρ′success

ρfail

P (ḡ| |g〉)

P (g| |g〉) = 0.998

P (
g| |ḡ

〉) =
0.0
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p
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Figure 5.1: Pathways and fidelity of error detection when all jumps are detectable. Left:
error pathways in both the application of the gate and the error detection. The probability
of each pathway is labeled with a corresponding output state. There is a small probability
P (ḡ| |g⟩) = 0.002 that successful gates are discarded as failed gates. Right: infidelities
1 − F̄g(Ut,U) with (red) and without (blue) error detection for two cases: F̄g(Ut, U) = 1
(solid line) and F̄g(Ut, U) = 0.9999 (dashed line). The factor of improvement pphys/ϵpass = 29
is constant for the unity fidelity case, and is maximized for the non-unity case at higher pphys.
The quantities used to generate these lines are the ones labeled on the left and are found in
Table 5.1. The 1− F̄g(Ut,U) are plotted in the regime where the approximation pphys ≪ 1
is valid.
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5.3 Fidelity of error-detected gates

5.3.1 Fidelity when all jumps are detectable

While the process we described above to find ρsuccess is not trace-preserving and thus

not a valid quantum channel, we can still compute the overall fidelity of the accepted

gates by tracing out the qubit. Let’s start with the fidelity of the effective channel

that produced the final state in Eq. 5.17, which detects all numbers of jumps

Ueffρ = (1− ϵpass)UρU
† +

ϵpass

d
I. (5.25)

Unlike the channel U , the effective channel Ueff is only defined on the cavity because

we are measuring out the transmon. We use Eq. 2.58 to compute the average gate

fidelity of Ueff to a target cavity unitary Ut

F̄g(Ut,Ueff) = (1− ϵpass)F̄g(Ut, U) +
ϵpass (1 + d2)

d2(d+ 1)
, (5.26)

where we have used the fact that
∑

j Bj = d. This expression allows us to compute

the error-detected gate fidelity from the control fidelity of the underlying unitary and

the gate and measurement failure rate ϵpass. The fidelity scales linearly in pphys, as

shown in Fig. 5.1 for several different control fidelities. Without error detection, the

fidelity of channel 5.13 has the exact same form as Eq. 5.26, but scales linearly with

pphys instead of ϵpass

F̄g(Ut,U) = (1− pphys)F̄g(Ut, U) +
pphys (1 + d2)

d2(d+ 1)
. (5.27)

The maximum infidelity reduction occurs at unity control fidelity F̄g(Ut, U) = 1 by a

factor of pphys/ϵpass ∼ P (g| |g⟩)/P (g| |ḡ⟩). This ratio of true to false gate success sets

the improvement we can expect from error detection. In the next section, we charac-
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Figure 5.2: Pathways and fidelity of error detection when more than one jump is un-
detectable. This figure has the same format as Fig. 5.1. On the left, we have added an
undetectable error pathway with rate p2phys. On the right, we see that the dashed line for
the error-detected infidelity with F̄g(Ut, U) = 0.9999 does not achieve the same factor of
improvement as in Fig. 5.1 due to the presence of undetected errors. These undetected
errors have a non-linear effect on the infidelity, resulting in a slope greater than one. This is
most clearly demonstrated by the dot-dashed line where P (g| |ḡ⟩) = 0 to clearly show that
p2phys becomes the dominant source of error for larger pphys. Again the plot is truncated to
maintain the accuracy of our approximations.

terize both of these rates, finding that they are small and the ratio P (g| |g⟩)/P (g| |ḡ⟩)

approaches 30.

5.3.2 Fidelity when only one jump is detectable

Repeating the same procedure for the more realistic case where only one jump is

detectable we find the ϵpass in Ueff to be

ϵpass =
p2physP (g| |g⟩)/q + pphysP (g| |ḡ⟩)

P (g| |g⟩)(1− pphys − p2phys) + p2physP (g| |g⟩)/q + pphysP (g| |ḡ⟩)
(5.28)

∼
p2physP (g| |g⟩)/q + pphysP (g| |ḡ⟩)

P (g| |g⟩) . (5.29)

From Eq. 5.26, it’s clear that for pphys ≪ P (g| |ḡ⟩) the failure misclassification domi-

nates the infidelity, but the error from multiple undetected jumps p2phys overtakes it as

pphys ∼ P (g| |ḡ⟩). We see this trend borne out in Fig. 5.2. O(p2phys) infidelity scaling
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is then good evidence that erroneous trajectories in G1(t, 0) are being filtered out of

ρsuccess and is a signature we will look for in later sections.
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Probability Value
P (g| |g⟩) 0.998
P (ḡ| |g⟩) 0.002
P (g| |ḡ⟩) 0.034
P (ḡ| |ḡ⟩) 0.966

P (|g⟩ → |g⟩) 0.999
P (|g⟩ → |e⟩) 0.001
P (|e⟩ → |g⟩) 0.090
P (|e⟩ → |f⟩) 0.017
P (|f⟩ → |e⟩) 0.133

Figure 5.3 & Table 5.1: Transmon assignment fidelities and QNDness. Top: 60 series
of measurements where the transmon was prepared in 1

2 (|e⟩+ |f⟩) and then measured 100
times. Blue indicates a measurement result corresponding to |g⟩, white to |e⟩, and red to |f⟩.
One can see long series of consistent measurements interrupted by different outcomes due to
measurement errors. The bottom figure is a prediction of the underlying state producing
each measurement result in the top figure. This prediction was produced by training a
HMM on the measurement outcomes to find the underlying states, and the assignment and
transition probabilities listed in the table. Errors are not provided, but could be found with
resampling techniques.

5.4 QND transmon measurements

For the scheme described here, we need P (g| |g⟩) ∼ 1 and P (g| |ḡ⟩) ≪ 1. We first

want to verify that our transmon measurements are QND on both the transmon and

cavity so that the output of the error-detected gate isn’t affected by the measurement.

Without both of these conditions, we cannot concatenate gates and error detection is

dead on arrival. Transmon QNDness is important so that the measurement doesn’t

heat the successful flag state |g⟩ to |e⟩ or |f⟩, spoiling the next gate in a sequence.

To find P (g| |g⟩) and P (g| |ḡ⟩), we perform a simple measurement where we pre-
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pare the transmon and then measure it repeatedly. This provides a trajectory of states

with which we can train a hidden Markov model [Gammelmark et al., 2014, Hann

et al., 2018, Martinez et al., 2020] to find the transition rates (non-QNDness) and

measurement fidelities P (g| |g⟩) ∼ 1 and P (g| |ḡ⟩) ≪ 1. See Appendix B for a copy

of the code used. The experiment circuit is simple

N
1√
2
(|e⟩+ |f⟩) 100 ns delay







repeatedly measuring the initial superposition N times to track jumps and measure-

ment misassignments. The assignment and transition probabilities are listed in Table

5.1. The ratio P (g| |g⟩)/P (g| |ḡ⟩) = 29 suggests that error detection will improve the

fidelity of accepted gates up to a factor of nearly 30. It’s worth noting that these val-

ues allow us to specify the measurement effects Eg =M †
gMg, which does not uniquely

determine Mg. However, for simplicity we often assume Mg is QND, and therefore

diagonal.

To check how QND the transmon measurement is on states stored in the cavity

mode, we perform a cavity Ramsey measurement similar to the one in Section 3.1

N

|0⟩ X01

(
π
2

)
Z01(θ) X01

(−π
2

)
•

|g⟩ X(π| |0⟩)







replacing the idle unitary evolution with N repeated transmon readouts whose results

we discard. The residual cross-Kerr between the populated readout resonator and the

cavity produces a small frame rotation Z(θ) of θ = 0.013 × 2π radians. See Fig. 5.4

for data and fit.
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Figure 5.4: Fock readout Ramsey. Instead of a delay between π/2 pulses, we insert
readouts. Each readout repetition is 2900 ns. From the fit, we find T2 = 1.26 ms and a
deterministic phase rotation per readout of 0.013× 2π radians. The T2 here is comparable
to that of Fig. 3.3 (T2 = 1.1 ms) showing that the transmon measurement is largely QND
with respect to the cavity.

5.5 Recap

• What sets the rate at which failed gates slip through our error de-

tection scheme? In the gate design assumed above, Ufail leaves the transmon

ancilla in one of the excited states ρḡ. The rate at which we detect these errors

is then the measurement fidelity of distinguishing the states |g⟩ and |ḡ⟩. The

probability of a failed gate appearing in an ensemble of accepted gates is then

the probability of both gate failure and measurement misassignment occurring.

We call this rate

ϵpass ∼
pphysP (g| |ḡ⟩)
P (g| |g⟩) . (5.30)
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In most cases, we design our gates to detect only one jump, leaving us blind to

multiple jumps. The “pass” rate in this case is

ϵpass ∼
p2physP (g| |g⟩)/q + pphysP (g| |ḡ⟩)

P (g| |g⟩) . (5.31)

• If we are relying on the transmon ancilla to flag gate errors, we

need high-fidelity, QND transmon measurements. How accurate and

QND are these measurements? What are typical values? The mea-

sured fidelity in our experiment of correctly labeling |ḡ⟩ as a failed gate is

P (ḡ| |ḡ⟩) = 0.966. The rate at which we mistake a failed state for a successful

one is P (g| |ḡ⟩) = 0.034. These measurements are very QND on the transmon,

exciting it out of its ground state with P (|g⟩ → |e⟩) = 0.001. Transmon mea-

surements do not substantially affect the T2 of the cavity mode, as shown in

Fig. 5.4. They do produce a deterministic frame rotation that we can track by

updating the phase of our local oscillators.

• What is the connection between gate success rate, detection fidelity,

and accepted gate fidelity? Gates fail when jumps occur in the cavity or

transmon mode. These jumps occur at rate pphys, but can be detected. The rate

at which we accept gates, the success rate, depends on how many jumps we can

detect, but is generally the sum of the probability that no jumps occur (order

unity) and undetectable jumps occur (small). Pathways for gates to be labeled

successful are shown in Figs. 5.1 and 5.2. The fidelity of a single error-detected

gate depends on ϵ and the control fidelity

F̄g(Ut,Ueff) = (1− ϵ)F̄g(Ut, U) +
ϵ (1 + d2)

d2(d+ 1)
. (5.32)

where ϵ = ϵpass when we utilize error detection and ϵ = pphys when we don’t.
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• How do undetected errors affect subsequent gates? There are two types

of undetected errors: misclassified gates and induced errors where the transmon

readout following a successful gate excites the transmon out of |g⟩. Failed gates

that are misclassified as successful ones depolarize the cavity state and are not

detectable during subsequent gates. These types of errors ruin a circuit, causing

a logical error if a qubit is encoded in the cavity. If a transmon readout flags

a gate as successful, but induces a transition to an excited state, the error can

usually be detected after the following gate (this often depends on the specific

gate implementation). When utilizing error detection within a larger logical

qubit, the decoder can benefit from delayed error detection [Chang et al., 2023].
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Chapter 6

Design of error-detected gates

Now that we are convinced that error-detected gates are useful and can provide a

large increase in fidelity, we need to design a gate that detects jumps. To start, we

will attempt to design gates that detect up to one jump; with current decoherence

and gate times, the probabilities of double jumps are small compared to single jumps

and misassignment [Teoh et al., 2023]. The three main sources of decoherence whose

induced jumps we want to detect are

1. Cavity photon loss D[
√
κC], with typical 1/κ ∼ 1 ms. We leave detection of

cavity photon loss up to the code used to encode a qubit in the cavity. In

the experiments that follow, we use the binomial/kitten code with code words

|0L⟩ = 1√
2
(|0⟩ + |4⟩), |1L⟩ = |2⟩. This is an error-correcting and detecting code

up to losing one photon. Single photon loss switches parity to odd, which we

can measure using the techniques of Chapters 3 and 4. We will not explicitly

discuss cavity error detection in this chapter, although it will make a surprise

appearance in Chapter 8.

2. Transmon excitation decay D[
√
κA]. Due to the transmon’s anharmonicity, the

decay rates between adjacent states do not scale linearly with excitation number

as in a linear cavity. We often write two Lindblad jump operators for the
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lowest two excited states D[
√
κge|g⟩⟨e|], D[

√
κef |e⟩⟨f |] because each transition

couples of a different bath of photons. For the hardware used in this chapter,

we typically find 1/κge ∼ 60 µs and 1/κef ∼ 40 µs. There is not an explicit

two photon coupling to the environment, so multi-photon dissipation such as

D[
√
κgf |g⟩⟨f |] can be neglected for transmons [Koch et al., 2007].

3. Transmon dephasing D[
√
2ΓϕA†A]. Again, we often write this as a sum of de-

phasing in two subspaces D
[√

2Γϕe |e⟩⟨e|
]
+ D

[√
2Γϕf |f⟩⟨f |

]
. Note here that

we absorb the matrix element of A†A into Γϕn. Typically, 1/Γϕe , 1/Γ
ϕ
f > 100 µs.

The pure dephasing time 1/Γϕn is determined via T (n)
1 measurements of |n⟩ and

T
(gn)
2 measurements of coherence times of superpositions |g⟩ + |n⟩. Then use

Γϕn = 1/T
(gn)
2 − 1/(2T

(n)
1 ) to find the pure dephasing rate. Of all the decoher-

ence mechanisms, it will require the most effort to detect deleterious dephasing

jumps.

6.1 How to detect transmon decay?

Since we are interested in only detecting single jumps, our task is to design the G1(t, 0)

with jump operator
√
κA such that gates with transmon excitation decay

G1(t, 0)|g⟩⟨g| ⊗ |ψ⟩⟨ψ| = ρḡ ⊗ ρfail (6.1)

fail with the transmon in an excited state. However, we typically implement our gates

with a Hamiltonian that drives the transmon’s g − e transition such as in Eqs. 2.36

and 2.47. This means that J =
√
κge|g⟩⟨e| jumps interrupt the no-jump evolution of
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the gate at random times

G1(t, 0)ρ =

∫ t

0

dt1G0(t, t1)SG0(t1, 0)ρ (6.2)

= κge

∫ t

0

dt1Ueff(t, t1)|g⟩⟨e|Ueff(t1, 0)ρUeff(t1, 0)
†|e⟩⟨g|Ueff(t, t1)

†, (6.3)

using the definitions from Section 5.1 and where we have assumed, for the moment,

that the only error mechanism is transmon decay. From this expression, it’s clear

that while jumps interrupt the evolution of Ueff, the drives still continue to produce

additional evolution because the jump |g⟩⟨e| leaves the transmon in the g−e computa-

tional subspace. Since we cannot know when the jump occurred, we cannot engineer

controls such that the transmon’s final state is always |ḡ⟩. Partial error detection is

still possible though because any measurement result of |ḡ⟩ indicates an error, but we

cannot trust that a measurement of |g⟩ yields a successful gate due to a jump leaving

the transmon in a superposition state.

The solution is to add one more transmon level to our toolbox. As soon as we

have at least three levels, we can define a control/computational subspace and an

orthogonal error space. We define our control space as the space spanned by |g⟩ , |f⟩

and the error space to be |e⟩. This corresponds to a new control Hamiltonian

H =− α

2
A†A†AA− KC

2
C†C†CC − χA†AC†C (6.4)

+ ϵ∗A(t)|g⟩⟨f |+ ϵA(t)|f⟩⟨g|+ ϵ∗C(t)C + ϵC(t)C
†. (6.5)

that has drives of the form |g⟩⟨f |+h.c.. This direct g− f interaction has been previ-

ously used for fault-tolerant gates [Reinhold et al., 2020]. We discuss how to engineer

this interaction, optimize controls, and measure the fidelity of a g−f transmon qubit

in Chapter 7.
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With the three-level transmon, gate trajectories with one jump always end in |e⟩

G1(t, 0)ρ = κef

∫ t

0

dt1Ueff(t, t1)|e⟩⟨f |Ueff(t1, 0)ρUeff(t1, 0)
†|f⟩⟨e|Ueff(t, t1)

† (6.6)

= κef |e⟩⟨e| ⊗
∫ t

0

dt1 ⟨e|Ueff(t, t1)|e⟩⟨f |Ueff(t1, 0)ρUeff(t1, 0)
†|f⟩⟨e|Ueff(t, t1)

† |e⟩

(6.7)

because the matrix elements ⟨n|H|e⟩ = 0 of Eq. 6.4 are zero between |e⟩ and any

other qubit state, prohibiting those transitions. The resulting post-jump evolution

⟨e|Ueff(t, t1)|e⟩ is solely generated by the cavity drives and does not drive the qubit

out of |e⟩. Ideally, the only path for the error state |e⟩ to leak back into the control

subspace is via a second jump. The probability of two jumps happening in a rea-

sonably short gate is small, and second order. There is also the matter of no-jump

backaction due to transmon relaxation, we will return to this subject in Section 6.2.2.

6.2 How to detect transmon dephasing?

Now that we have a strategy to detect transmon decay errors, we want to know if our

g − f strategy provides protection against dephasing. Unlike decay, the dephasing

jump operator
√
2Γϕf |f⟩⟨f | does not couple to an orthogonal error space, but acts

within our computational subspace. Dephasing during a gate

G1(t, 0)ρ = 2Γϕf

∫ t

0

dt1Ueff(t, t1)|f⟩⟨f |Ueff(t1, 0)ρUeff(t1, 0)
†|f⟩⟨f |Ueff(t, t1)

† (6.8)

leaves the transmon in a superposition of |g⟩ , |f⟩. Again, measurements of |f⟩ indicate

certain failure, but measurements of |g⟩ don’t necessarily herald success. How can we

ensure that measurements of |g⟩ actually herald a successful gate?
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6.2.1 Path-indepedent gates

In the case of transmon relaxation, when we measure |e⟩ at the end of a gate, we

gain a high degree of confidence that one jump occurred. There is no such obvious

flag in the case of dephasing. The transmon can yield a measurement of |g⟩ at the

end of a trajectory with zero or 20 jumps, there is no way for us to distinguish these

trajectories. A solution to this problem is to design our gate in such a way that

a final measurement of (|f⟩) |g⟩ yields a (un)successful gate regardless of how many

dephasing jumps occurred. This idea is known as path-independence [Ma et al., 2020].

A gate is considered path-independent if up to k jumps, a measurement of |g⟩ (or

some other flag state) at the conclusion of the gate heralds a successful application

of that gate. Formally, we say that a gate is path-independent from |g⟩ to |g⟩ when

⟨g|
(

k∑

p=0

Gp(t, 0)(|g⟩⟨g| ⊗ |ψ⟩⟨ψ|)
)
|g⟩ ∝ Ut|ψ⟩⟨ψ|U †

t (6.9)

where Ut is the target unitary on the cavity and the proportionality constant is a

probability factor. Our goal is to satisfy this condition for one jump k = 1, which

turns out to be quite difficult.

There is a construction that satisfies path independence to dephasing |f⟩⟨f | up

to k = ∞. The idea is that if every incremental rotation of the transmon Bloch

vector generates the same, time-independent evolution on the cavity, then the effect

of dephasing will only affect the position of the transmon’s Bloch vector, and won’t

have backaction on the cavity’s evolution. Our idea is to tie the cavity’s evolution to

a simple transmon rotation from |g⟩ → |f⟩ followed by a reset to |g⟩, which heralds

a successful gate

|ψ⟩
UPI(t)

|g⟩ Xgf (π)

Generally, this means that for UPI to be path-independent, its no jump propagator
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G0(t1, t)ρ = Ueff(t1, t)ρU
†
eff(t1, t) can be expressed as

Ueff(t1, t) =
∑

m,n

ξmn(t1, t)|m⟩⟨n| ⊗ Umn(t1, t) (6.10)

for complex valued functions ξmn(t1, t) [Ma et al., 2020].

Let’s consider a brief and fairly general example of path-independence where the

target cavity unitaries in the right hand side (RHS) of Eq. 6.10 are time-independent.

Suppose that we can engineer the Hamiltonian

H = Ω|f⟩⟨g| ⊗ Ut + Ω|g⟩⟨f | ⊗ U †
t (6.11)

that generates the no-jump propagator in the form of Eq. 6.10

Ueff(t1, t) = e−i(t1−t)(Ω|f⟩⟨g|⊗Ut+Ω|g⟩⟨f |⊗U†
t ) (6.12)

= cos(Ω(t1 − t))I⊗ I− i sin(Ω(t1 − t))
(
|f⟩⟨g| ⊗ Ut + |g⟩⟨f | ⊗ U †

t

)
.

(6.13)

We don’t include the transmon no-jump evolution i|f⟩⟨f | that rotates the transmon

towards |g⟩ here because it doesn’t distort Ut. The path-independent no-jump prop-

agator Ueff performs Ut on the cavity when the initial transmon state is |g⟩

Ueff(π/(2Ω), 0) |g⟩ ⊗ |ψ⟩ = −i |f⟩ ⊗ Ut |ψ⟩ (6.14)

and identity when the initial state is |g⟩.

If a single jump occurs during the gate at time t

Ueff(π/(2Ω), t)|f⟩⟨f |Ueff(t, 0) |g⟩ ⊗ |ψ⟩ = −i sin(Ωt)(cos(π/2− Ωt) |f⟩ ⊗ Ut |ψ⟩ − i sin(π/2− Ωt)) |g⟩ ⊗ I

(6.15)
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the final state of the transmon is entangled with a successful application of Ut or

failed (identity) gate. The g − f π-pulse that follows Ueff(t) returns the transmon to

the successful flag state |g⟩ in the presence of no jumps. We see that the probability

of a successful gate cos2(π/2 − Ωt) depends on the time of the jump and decreases

the later the jump occurs. When there is more than one jump, each jump effectively

reverses the direction of the transmon’s rotation, but the same structure and result

remains

Ueff(t− tn)|f⟩⟨f |Ueff(tn − tn−1)|f⟩⟨f | · · · |f⟩⟨f |Ueff(t1)(|g⟩ ⊗ |ψ⟩) (6.16)

= cos(θn) |g⟩ ⊗ |ψ⟩ − i sin(θn) |f⟩ ⊗ Ut |ψ⟩ . (6.17)

The success rate depends on the jump times where θn = Ω
∑n

k=0(−1)k(tk+1 − tk) and

t0 = 0, tn+1 = π
2Ω

. Remarkably, this means that dephasing jumps don’t necessarily

produce failed gates, but rather produce a superposition of failed and successful gates.

We collapse this superposition with an error-detecting measurement at the conclusion

of the gate. In this case, the failed gates perform the identity and we can reset our

transmon and try again [Reinhold et al., 2020].

Engineering a Hamiltonian that produces the no-jump structure in Eq. 6.10 turns

out to be very difficult. In fact, this dissertation is aware of only one gate that

satisfies path independence to dephasing: selective number-dependent arbitrary phase

(SNAP) gates [Krastanov et al., 2015, Ma et al., 2020, Ma et al., 2022]. The two-

qubit number-conserving entangling gates in [Tsunoda et al., 2023] always fail into

a detectable state after a dephasing jump, but never succeed after the jump. Both

of these gates are cavity photon-number preserving and only utilize drives on the

transmon ancilla and beamsplitter coupling element.
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6.2.2 The equal-latitude condition

The assumption of cavity photon-number preservation simplifies our g − f control

Hamiltonian

H = −KC

2
C†C†CC − χf |f⟩⟨f |C†C + ϵ∗(t)|g⟩⟨f |+ ϵ(t)|f⟩⟨g| (6.18)

so that only the transmon g − f drives remain. We’d like to build some intuition of

what path-independence in this case means. Notice that this Hamiltonian is block-

diagonal, allowing us to re-organize the composite transmon-cavity Hilbert space into

a direct sum of infinitely many g − f qubits conditioned on n photons in the cavity.

All qubits are coupled to the same drive

H =
⊕

n

(
−KC

2
(n2 − n)− nχf |f⟩⟨f |+ ϵ∗(t)|g⟩⟨f |+ ϵ(t)|f⟩⟨g|

)
(6.19)

with non-local dephasing operator
∏

n |f⟩⟨f | that dephases all qubits simultaneously.

So why have we transformed our coupled cavity and transmon into a countable

set of qubits with a weird non-local dephasing operator? Consider the evolution of

N of our qubits initialized in the state
⊕N−1

n=0 |g⟩ /
√
N . The shared drive ϵ(t) rotates

each qubit leaving it in a (potential) superposition at time t

|ψ(t)⟩ = 1√
N

⊕

n

(an(t) |g⟩+ bn(t) |f⟩). (6.20)

where |an|2 + |bn|2 = 1 meaning that each qubit is equally represented in this super-

position. Measurements ⟨Zn⟩ of any single qubit yields a result between N/(N − 1)

and −N/(N − 1). Now, suppose a dephasing jump occurs. The re-normalized state

115



after the jump is

|f⟩⟨f | |ψ(t)⟩√
⟨ψ(t)|f⟩⟨f |ψ(t)⟩

=
1√∑

k |bk(t)|2
⊕

n

bn(t) |f⟩ (6.21)

and any further evolution to t2 > t produces

|ψ(t2)⟩ =
1√∑

k |bk(t)|2
⊕

n

bn(t)(an(t2) |g⟩+ bn(t2) |f⟩). (6.22)

But now each qubit is not evenly represented in the resulting superposition! Instead,

the qubit is now present in amount |bn(t)|2∑
k |bk(t)|2 which depends on the time at which

the jump occurred and the probability of measuring |f⟩. This means that not only

does the dephasing jump collapse superpositions, its backaction also reweights the

amount of each qubit in the superposition, unless all |bn(t)|2 are equal. This same

effect occurs continuously for the no-jump backaction for both dephasing |f⟩⟨f | and

single excitation decay |e⟩⟨f |. That is, the jump and no-jump backaction is minimized

only when |bn(t)|2 are equal. Each qubit can rotate about a different axis, as long as

their excited state population is uniform.

Remembering that each qubit represents the transmon state conditioned on a spe-

cific cavity Fock state, this means that the jump and no-jump backaction can produce

codespace logical errors or even much more harmful leakage errors. If we want the

backaction of dephasing jumps to not affect our cavity state, we need the probabil-

ity |bn(t)|2 of measuring |f⟩ given n cavity photons to be independent of n. This is

especially important for bosonic codes with codewords consisting of superpositions

of Fock states. Transmon ancilla dephasing that reweights superpositions produces

leakage in superposition code words, such as the kitten code word [Michael et al.,

2016] |0L⟩ = (|0⟩+ |4⟩)/
√
2, unless |bn(t)|2 is independent of n. We call this condition

the “equal latitude” condition.

The equal latitude condition arises naturally from the definition of the no-jump

116



path-independent propagator Eq. 6.10. We show this by computing the conditional

probability P (|f⟩ |n), which we call the latitudes, of measuring |f⟩ when there are n

photons in the cavity. We do this by computing two probabilities

P (|f⟩ |n) = P (|f⟩ ∩ n)
P (n)

=
Tr((|f⟩⟨f | ⊗ |n⟩⟨n|)ρ(t))

Tr(|n⟩⟨n|ρ(t)) (6.23)

for the pure state ρ(t) = Ueff(t1, t)|g⟩⟨g| ⊗ |ψ⟩⟨ψ|U †
eff(t1, t). This gives a value inde-

pendent of n

P (|f⟩ |n) = Tr((|f⟩⟨f | ⊗ |n⟩⟨n|)ρ(t))
Tr(|n⟩⟨n|ρ(t)) (6.24)

=
|ξgf (t1, t)|2| ⟨n|ψ⟩ |2∑
k |ξgk(t1, t)|2| ⟨n|ψ⟩ |2

(6.25)

=
|ξgf (t1, t)|2∑
k |ξgk(t1, t)|2

(6.26)

that is solely dependent on the transmon’s trajectory. The denominator of Eq. 6.26

does not necessarily sum to one because the no-jump evolution is not trace-preserving.

6.2.3 Path-independent SNAP

SNAP is a photon-number preserving gate on the cavity that selectively applies a

complex phase to a finite number of Fock states

S(ϕ⃗) =
kmax∑

k=0

eiϕk |k⟩⟨k|. (6.27)

SNAP and displacements form a basis for cavity unitaries [Krastanov et al., 2015,Fösel

et al., 2020] and is often considered as the “discrete” version of optimal control. Con-

veniently, SNAP directly performs RL
Z(θ) rotations in the binomial code by applying

a complex phase to |1L⟩ = |2⟩: RL
Z(θ) = S(ϕ⃗) where ϕ⃗2 = θ and ϕ⃗0 = ϕ⃗4 = 0. Logi-

cal rotations RL
X , R

L
Y can also be implemented with interleaved rounds of SNAP and
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squeezing

|ψ⟩ Sq.(z1)
S(ϕ⃗1)

Sq.(z2)
S(ϕ⃗2)

· · ·

|g⟩ · · ·
Replacing displacements with squeezing maintains parity of the binomial code, pre-

serving its error-detecting properties. The parameters zk, ϕ⃗k are found via numerical

optimization with the same techniques described in Section 2.2.2, but where the blocks

in the quantum circuit are squeezing and SNAP instead of step propagators [Fösel

et al., 2020]. We have numerically found that five rounds of squeezing and SNAP

applied to the {|0⟩ , |2⟩ , |4⟩ , |6⟩} Fock states are needed to reach discretization error

of 10−5 for RL
X(θ), R

L
Y (θ), H

L gates.

Previous implementations of SNAP drove the transmon qubit with number-selective

frequency combs to rotate the transmon with a different phase for each Fock state

[Heeres et al., 2015, Reinhold et al., 2020]. To satisfy the equal-latitude condition,

we add frequency content at both |0⟩ and |4⟩ with zero phase so that P (|f⟩ |4) =

P (|f⟩ |2) = P (|f⟩ |0). In the frame rotating with the g − f transition, the SNAP

Hamiltonian that implements S(ϕ⃗) (neglecting Kerr for simplicity) is

H = −χf |f⟩⟨f |C†C + Ω
∑

k=0,2,4

ei(kχf t+ϕk)|g⟩⟨f |+ h.c.. (6.28)

To see the effect of each frequency component in the drive, we enter a frame rotat-

ing with the dispersive interaction as we did in Eq. 2.44. This time, the unitary

transformation exp
(
−itχf |f⟩⟨f |C†C

)
produces

H̃ = Ω
∑

k=0,2,4

ei((k−C
†C)χf t+ϕk)|g⟩⟨f |+ h.c. (6.29)

= Ω
∑

k=0,2,4

∑

n

ei((k−n)χf t+ϕk)|g⟩⟨f | ⊗ |n⟩⟨n|+ h.c.. (6.30)

If χf ≫ Ω, then we can neglect the off-resonant rotating terms and get a Hamiltonian
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Figure 6.1: Top left: real I(t) and imaginary Q(t) parts of the control waveform ϵ(t)
in Hamiltonian 6.18 (with KC = 0) that implements R(Z = π) on the binomial code with
SNAP. The waveform is a sum of Gaussian envelopes with σ = 1/χf = 1727 ns with total
length 2σ = 3454 ns modulated at frequencies 0,−2χf ,−4χf . Bottom left: the latitude
of the transmon conditioned on each Fock state present in the binomial code. ⟨(σz|n)⟩ =
Tr(σz ⊗ |n⟩⟨n|ρ(t))/Tr(|n⟩⟨n|ρ(t)) where ρ(0) = |+y⟩. The n = 0 and n = 4 curves fully
overlap. Clearly the waveform does not produce an equal-latitude gate, and dephasing jumps
at points of non-equal latitude produce logical rotations. Right: simulation of the resulting

gate fidelities in the presence of only dephasing decoherence D
[√

2Γϕf |f⟩⟨f |
]
. Here, we

assume that our error detection is perfect P (f | |f⟩) = 1, P (f | |f̄⟩) = 0 for simplicity. We
plot the infidelities 1− F̄ with and without measuring |f⟩ at the end of the pulse (we are not
including the g − f π-pulse that resets the transmon to |g⟩). The error-detected fidelity is
computed by measuring out the transmon in |f⟩ and renormalizing. This results in replacing
E [ρ] in Eq. 2.61 with ρsuccess = (|f⟩⟨f |E [ρ]|f⟩⟨f |)/Tr(|f⟩⟨f |E [ρ]). For the non-error detected
case, the transmon mode is traced out after simulation of E [ρ] so that the fidelity Eq. 6.49 is
that of the resulting operation on the cavity alone. We also plot the failure rate 1−P (|f⟩).
Notice that while error-detection improves fidelity by nearly two orders of magnitude at

experimentally measured T gfϕ (blue vertical line), the infidelity scales as O

((
T

T gf
ϕ

)1.24
)

,

which does not meet the quadratic error scaling that is the signature of gates that detect
single jumps.
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for SNAP

HSNAP = Ω
∑

k=0,2,4

eiϕk |g⟩⟨f | ⊗ |k⟩⟨k|+ h.c.. (6.31)

= ΩS(ϕ⃗)|g⟩⟨f |+ ΩS†(ϕ⃗)|f⟩⟨g| (6.32)

that is in exactly the path-independent form in Eq. 6.11.

However, χf is typically around 1 MHz, requiring long pulses (small Ω) to satisfy

the RWA condition above. If we want to approach or exceed that speed limit, we need

to do additional pulse shaping and tune the values ϕk to account for over/undershoot

resulting from the effects of the off-resonant terms [Landgraf et al., 2023]. Unfortu-

nately, while we can correct the coherent effects of off-resonant terms, there is not

an obvious way to ensure that the equal-latitude condition is met. In Fig. 6.1, we

simulate the transmon trajectories of a logical RL
X(π) rotation on the binomial code

and show that equal latitude is not satisfied, manifesting in nearly linear scaling in

the error rate Γϕf , not the quadratic error scaling we expect with true single jump

detection.

6.2.4 Numerical optimization of path-independent SNAP

Since previous SNAP constructions have not satisfied the equal-latitude condition

necessary for path-independence to transmon dephasing, we are forced to find a new

construction. DRAG-like techniques [Gambetta et al., 2011] offer advanced pulse

shaping tools, but their application to enforcing equal-latitude remains an open ques-

tion to us. Instead, we will utilize the optimal control techniques reviewed in Section

2.2.2 to design pulses that are path-independent up to one dephasing jump. Opti-

mizing in the presence of more than one jump is possible with Monte-Carlo methods,

but for pphys ≪ 1 single-jump errors will be the dominant contribution to the gradi-

ent. The memory required to include multiple dephasing jumps is prohibitive for the
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Monte-Carlo inspired methods we use in this section. For now, we focus on achieving

path-independence up to just one jump.

Our control Hamiltonian is the same as 6.18

H = −KC

2
C†C†CC − χf |f⟩⟨f |C†C + ϵ∗(t)|g⟩⟨f |+ ϵ(t)|f⟩⟨g| (6.33)

= −KC

2
C†C†CC − χf |f⟩⟨f |C†C + I(t)σgfx + iQ(t)σgfy (6.34)

where I(t) = ℜ(ϵ(t)) and Q(t) = ℑ(ϵ(t)). To make it easier to experimentally

measure the fidelity of our SNAP gates, we choose to optimize logical Z rotations

on the binomial code as defined at the beginning of 6.2.3. In particular, we opti-

mize pulses to realize gates |g⟩⟨g| ⊗ Gk for logical gates Gk in the SL group GS =

{I, RL
Z(π), R

L
Z(π/2), R

L
Z(−π/2)} (note that RL

Z(π/2) is often referred to as SL, in

which case GS = {I, RL
Z(π), S

L, (SL)†}) to perform the logical unitary when the trans-

mon begins and ends in |g⟩.

The first step when numerically optimizing pulse controls is to choose a cost func-

tion. The evolution we want to simulate, dephasing, produces non-unitary evolution,

so we cannot use the unitary cost functions in Section 2.2.2. Instead, we must use the

general fidelity function Eq. 2.58 that quantifies the fidelity of a channel. Since our

logical space has dimension1 dL = 2, we use the channel fidelity for a qubit Eq. 2.61.

This requires that we compute the evolution U(|g⟩⟨g|⊗ρL) for the d2L = 4 logical code

words ρL ∈ {|+⟩⟨+|, |−⟩⟨−|, |0⟩⟨0|, |1⟩⟨1|}. We assume that the transmon is always

initialized in |g⟩ at the beginning of a gate and again call our target unitary on the

cavity mode Ut. Four states are needed in this case to span the image of any U , but it

can be possible to use fewer initial states depending on the structure of the channel’s

errors. This can be especially useful in multi-qubit simulations.

1. The dimension d of the underlying Hilbert space on which the code words are defined can be
higher.
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To optimize gates up to one dephasing jump, we want to simulate evolution pro-

duced by the channel U up to one dephasing jump. In this case, we write the fewer-

than-two-jumps channel U (1) as the sum of the no-jump and one-jump propagators

by truncating the Dyson series Eq. 5.2

U (1)ρ =
1

N (G0(t, 0)ρ+ G1(t, 0)ρ) (6.35)

=
1

N

(
UeffρU

†
eff + 2Γϕf

∫ t

0

dt1Ueff(t, t1)|f⟩⟨f |Ueff(t1, 0)ρUeff(t1, 0)
†|f⟩⟨f |Ueff(t, t1)

†
)

(6.36)

for Ueff defined in Eq. 5.5 and G1(t, 0) defined in Eq. 6.8. We need a normalization

factor N = Tr (G0(t, 0)ρ+ G1(t, 0)ρ) such that Tr(U (1)ρ) = 1 because the truncated

Dyson series may not preserve trace. N , which depends on ρ, is the probability that

fewer than two jumps occur during the evolution of ρ.

The first term in Eq. 6.36 is easy to evaluate by computing the no-jump evolution

Ueff from the step propagators in Eq. 2.48. The one-jump propagator in the second

term looks more intimidating, but is vastly simplified when ρ is a pure state ρψ =

|ψ⟩⟨ψ|. Then, the final density matrix is an average

U (1)ρψ =
1

N

(
Ueff|ψ⟩⟨ψ|U †

eff + 2Γϕf

∫ t

0

dt1|ψ(t1)⟩⟨ψ(t1)|
)

(6.37)

over the jump time t1 of all trajectories

|ψ(t1)⟩ = Ueff(t, t1)|f⟩⟨f |Ueff(t1, 0) |ψ⟩ . (6.38)

We do not renormalize the states |ψ(t1)⟩, as the norm represents the probability of a

trajectory with a jump at time t1 occurring.

Computing η trajectories for d2L state vectors of physical dimension d requires

O(ηd2Ld
3) operations. Propagating d2L density operators each of dimension d × d is
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much more costly, requiring O(d2Ld6) operations 2 [Abdelhafez et al., 2019]. To ac-

curately approximate density matrix evolution with trajectories, η can be as small

as η = 10 for systems with low error rates [Abdelhafez et al., 2019]. This provides

a significant advantage over the density operator method, especially for bosonic sys-

tems with d ≫ 2. Minimizing required resources not only benefits runtime; it also

lowers the memory overhead of using automatic differentiation techniques to compute

gradients [van Merriënboer et al., 2019].

In fact, computing the expectation value of any operator after evolution of a pure

state ρψ = |ψ⟩⟨ψ| in a non-unitary channel can be translated to an average over

trajectories

Tr(AUρψ) = ⟨φ|A|φ⟩. (6.39)

The overbar indicates an average over all of the final states |φ⟩ generated by standard

Monte-Carlo trajectory techniques. The uncertainty in the average is determined

by the number of trajectories over which one averages. Chapter 4 of [Wiseman and

Milburn, 2014] is an excellent reference for computing Monte-Carlo trajectories. We

have implemented this trajectory method using techniques that reduce the sampling

cost [Abdelhafez et al., 2019], but do not utilize it here as we are focused on first

tackling the one-jump trajectories.

Instead of randomly sampling the jump times as in Monte-Carlo methods, we

evenly sample the t1. This converts the integral in Eq. 6.36 that averages over all

jump times t1 into a sum

U (1)ρψ =
1

N

(
Ueff|ψ⟩⟨ψ|U †

eff + 2Γϕfdt
N−1∑

k=0

|ψ(kdt)⟩⟨ψ(kdt)|
)

(6.40)

2. This is similar to the method for finding U (1) itself, which requires propagating d2 physical
basis states.
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where dt is the timestep used in the step propagators. The total pulse length is

t = Ndt. Although we evenly sample jumps in time, but the no-jump evolution of

Ueff correctly encodes the probability of a jump (or no jump) at time t1 in the norm

of that trajectory. Computing the average value of A with this state

Tr(AU (1)ρψ) =
1

N

(
Tr
(
AUeff|ψ⟩⟨ψ|U †

eff

)
+ 2Γϕfdt

N−1∑

k=0

Tr (A|ψ(kdt)⟩⟨ψ(kdt)|)
)

(6.41)

=
1

N

(
(⟨ψ|U †

eff)A(Ueff |ψ⟩) + 2Γϕfdt
N−1∑

k=0

⟨ψ(kdt)|A|ψ(kdt)⟩
)

(6.42)

=
1

N (Ψ(|ψ⟩))
∑

|k⟩∈Ψ(|ψ⟩
⟨k|A|k⟩ (6.43)

reveals that it is equal to averaging (summing) over the set trajectories

Ψ(|ψ⟩) = {Ueff |ψ⟩} ∪
{√

2Γϕfdt |ψ(kdt)⟩
}

k

. (6.44)

which a function of the initial pure state |ψ⟩. It’s easy now to explicitly write down

the normalization factor

N (Ψ(|ψ⟩)) =
∑

|k⟩∈Ψ
| ⟨k|k⟩ |2 (6.45)

to explicitly indicate its dependence on the set of trajectories Ψ.

Generating these trajectories for each of the four initial states Φ = {|g⟩⊗|+⟩ , |g⟩⊗

|−⟩ , |g⟩ ⊗ |0⟩ , |g⟩ ⊗ |1⟩} allows us to compute each trace in Eq. 2.61 sampling from
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only one jump trajectories. Putting it all together, the average gate fidelity is

F̄g(Utarget,U (1)ρ) =
1

4

∑

|ϕ⟩∈Φ
Tr
(
Utarget|ϕ⟩⟨ϕ|U †

targetU (1)(|ϕ⟩⟨ϕ|)
)

(6.46)

=
∑

|ϕ⟩∈Φ

∑

|k⟩∈Ψ(|ϕ⟩)

⟨k|Utarget|ϕ⟩⟨ϕ|U †
target |k⟩

4N (Ψ(|ϕ⟩)) (6.47)

=
∑

|ϕ⟩∈Φ

∑

|k⟩∈Ψ(|ϕ⟩)

| ⟨k|Utarget|ϕ⟩ |2
4N (Ψ(|ϕ⟩)) (6.48)

which is an average over trajectories and initial states similar in form to the incoherent

state transfer fidelity Eq. 2.57. The difference here is that our set of initial states spans

all density matrices, so the information lost when taking the magnitude of a complex

number is restored by using a larger basis.

Notice that the fidelity computed here is the channel fidelity to the target unitary

Utarget defined on both the transmon and cavity space. To find the average gate

fidelity on the cavity, we can perform a partial trace of the qubit and compute the

average gate fidelity to a cavity target unitary Ut

F̄g(Ut,U) =
1

4

∑

ρ∈{|+⟩⟨+|,|−⟩⟨−|,|0⟩⟨0|,|1⟩⟨1|}
Tr
(
Utρ

†U †
t TrA (U(|g⟩⟨g| ⊗ ρ))

)
(6.49)

where TrA indicates a partial trace over the mode with A annihilation operators, the

transmon. This represents the case where we reset the transmon at the end of each

gate. We utilize this formula to compute the non-error-detected fidelity in Fig. 6.1.

However, taking a partial trace doesn’t help us if we want to optimize an error-

detected gate. In that case, we need to optimize a slightly different quality that is the

fidelity between a cavity operation and target Ut conditioned on the measurement of

a transmon state.
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Conditional fidelity

The previously described technique gives us a recipe for computing the unconditional

fidelities of gates with zero or one jumps. It is difficult to optimize a gate that is

path-independent to dephasing, but always successfully ends with the transmon in

|g⟩. What we want for error detection is to optimize the path-independence of a gate

via the resulting fidelity when the error detection flags a gate as successful, as in

Section 5.3.

In Chapter 5, we calculated the fidelity of error-detected gates after successful pro-

jection into a particular transmon state that heralds a successful gate. In particular,

the state at the output of an error-detected channel U is

ρsuccess =
MgUρMg

Tr (MgUρMg)
(6.50)

from Eq. 5.16 for a success measurement operator Mg. To define the conditional

average gate fidelity, we replace the output of the channel U (1)(|ψ⟩⟨ψ|) in Eq. 6.46

with the renormalized output of the error-detecting measurement

F̄g(Utarget,U (1)) =
1

4

∑

|ϕ⟩∈Φ

Tr
(
Utarget|ϕ⟩⟨ϕ|U †

targetMgU (1)(|ϕ⟩⟨ϕ|)Mg

)

Tr (MgU (1)|ϕ⟩⟨ϕ|Mg)
(6.51)

=
∑

|ϕ⟩∈Φ

∑

|ψ⟩∈Ψ(|ϕ⟩)

1

4N (Ψ)

|⟨ψ|MgUt |ϕ⟩|2
⟨ψ|MgMg|ψ⟩

. (6.52)

where Ut is the target unitary on the cavity mode.

We have to be careful when optimizing the conditional fidelity above. Left to its

own devices the optimizer will maximize the ratio in Eq. 6.52, but may do so with

small numerator (unconditional fidelity) and denominator (success rate). To push the

optimizer towards a solution with near-unity numerator and denominator, we slowly

phase in the denominator as a function of the numerator. This ramp function does
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Figure 6.2: This figure has exactly the same format as Fig. 6.1. Top left: real I(t)
and imaginary Q(t) parts of the control waveform ϵ(t) in Hamiltonian 6.18 that implements
R(Z = π) on the binomial code with SNAP. The Hamiltonian parameters for the optimiza-
tion are listed in Table 7.1. Bottom left: the latitude of the transmon conditioned on each
Fock state present in the binomial code. The latitudes closely overlap for the entire gate
duration. Right: simulation of the resulting gate fidelities using Eq. 2.58 in the presence of

only dephasing decoherence D
[√

2Γϕf |f⟩⟨f |
]
. With numerical optimization, the infidelity

now scales as O

((
T

T gf
ϕ

)1.88
)

, is substantially closer to quadratic scaling than the manually

constructed waveform in Fig. 6.1.
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not need to be complicated. In fact, we use a simple rectified linear unit (ReLU

in machine learning parlance) as a ramp. ReLU ramps the denominator from 1 to

⟨ψ|MgMg|ψ⟩ between two chosen average values pstart, pend of the numerator

∑

|ϕ⟩∈Φ

∑

|ψ⟩∈Ψ(|ϕ⟩)

1

4N (Ψ)

|⟨ψ|MgUt |ϕ⟩|2

R
(
max|k⟩∈Ψ(|ϕ⟩(|⟨ψ|MgUt |k⟩|2), ⟨ψ|MgMg|ψ⟩ , pstart, pend

) .

(6.53)

The ramp function R is defined as

R(x, y, pstart, pend) = 1− (1− y)min

(
max

(
0,

x− pstart

pend − pstart

)
, 1

)
(6.54)

We have found this to be an essential ingredient in finding high-fidelity path-independent

SNAP gates with high success rate and generally choose pstart ∼ 0.85, pend ∼ 0.90.

Fig. 6.2 shows an example numerically optimized SNAP gate whose fidelity scales as

O

((
T/T gfϕ

)1.88)
, which is nearly quadratic.

Gates implemented with optimal control methods are infamous for having wave-

forms and state trajectories that make little intuitive sense. At first glance, the

waveform in Fig. 6.2 seems to have little structure, but a closer analysis in Fig. 6.3 of

a RL
Z(−π/2) logical rotation shows that our optimizer produces a pulse with decipher-

able structure. The optimizer the dispersive interaction and fast, unselective π-pulses

to impart a differential phase between the logical code words |0L⟩ , |1L⟩. Remarkably,

the gate has the same structure as a manual construction utilizing the “exponential

gadget” technique [Tsunoda et al., 2023] that provides a design for logical RL
Z(θ) and

RL
ZZ(θ) gates across many codes. These error-detectable gates are also designed to

detect up to one dephasing jump using a g−f transmon, so it is exciting and encour-

aging that our numerical technique finds the same construction. In the presence of

multiple jumps, the exponential gadget construction does not always flag a failed gate

(see Appendix I of [Tsunoda et al., 2023]). Although not explored here, optimization
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in the presence of multiple jumps could reveal new discrete constructions that detect

multiple errors. We can also use our numerical techniques to explore new construc-

tions other than the “exponential gadget” in the Schwinger picture of [Tsunoda et al.,

2023].

6.3 Conclusion

The techniques described in this chapter for designing error-detected gates focus heav-

ily on errors in the transmon mode. This is intentional since its coherences are so

much shorter than the cavity mode’s. The two main errors occuring in the transmon

have vastly different solutions. The first, excitation decay, can be detected up to one

error by expanding the code distance of the transmon control space. This is accom-

plished by adding a third level |f⟩ so that decay produces a transition to a detectable

orthogonal error space |e⟩.

As we’ve seen, transmon dephasing is much more of a challenge than decay. Path-

independence describes a framework in which the resulting gate at the end of some

evolution depends solely upon the concluding measurement result of the transmon.

This perfectly fits our error-detection goals, but does not prescribe a method to find a

path-independent construction for any gate. One of the only known path-independent

gates is SNAP, provided that a rather strict Hamiltonian condition Ω ≪ χ is met.

Our current systems generally don’t meet this requirement for the speeds at which

we want to operate the gate, which break the equal-latitude condition required for

path-independence.

We tackle this problem by formulating a version of optimal control that optimizes

a pulse over trajectories that contain up to one jump. Our software pushes us closer to

quadratic scaling in the dephasing error rate, suggesting that we can detect nearly all

deleterious single jump trajectories. We have tried to use this approach to find other
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Figure 6.3: Waveform (a) and state trajectories for a RLZ(−π/2) logical rotation on the
binomial code. In (b), we plot the conditional transmon σy expectation values ⟨(σy|n)⟩ =
Tr(σy ⊗ |n⟩⟨n|ρ(t))/Tr(|n⟩⟨n|ρ(t)) (solid lines) for the three Fock states n = 0, 2, 4 present
in the code words. These expectation values indicate evolution along the equator of each
Bloch sphere conditioned on n photons, but do not contain global phases. To see the
evolution of the phase between each photon-number Bloch sphere, we look at the phase of
the |g⟩⟨g| ⊗ |n⟩⟨0| density matrix elements arg (Tr (|g⟩⟨g| ⊗ |n⟩⟨0|ρ(t))) /π (dashed lines).
With both of these quantities, we identify five different, discrete stages of the gate with
the circuit (c). First, there is a short, high-amplitude σx rotation bringing the three Bloch
vectors onto the equator. This is followed by idle evolution under the dispersive interaction
of duration ∼ χf/(4π) = 432 ns implementing a super-parity selective RZ(π) rotation on
the three Bloch spheres. This rotation anti-aligns the Bloch vectors of |0⟩ , |4⟩ to |−Y ⟩ and
|2⟩ to |+Y ⟩. Odd-numbered Fock states in the error space are aligned with |±X⟩. The
main trick occurs with the following RY (−π/2) rotation. This rotation doesn’t rotate any
of the individual code space Bloch vectors, but applies a global, differential phase θ = −π/2
between states entangled with |−Y ⟩ and |+Y ⟩. That is, RY (θ)(|−Y ⟩ ⊗ (|0⟩+ |4⟩) + |+Y ⟩ ⊗
|2⟩) = eiθ |−Y ⟩ ⊗ (|0⟩ + |4⟩) + |+Y ⟩ ⊗ |2⟩. This rotation is at the heart of the exponential
gadget and is where the tunable phase θ is applied [Tsunoda et al., 2023]. The next stage of
the gate is another number-selective RZ(π) to re-align all Bloch vectors at |−Y ⟩. The final
unselective RX(−π/2) returns all code space Bloch vectors to |+Z⟩ = |g⟩. Bloch vectors
corresponding to the odd-numbered Fock states end on the equator. The measurement at
the end then detects up to one transmon dephasing or decay jump during the gate, as well
as the presence of odd Fock states with low efficiency.
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gates that are path-independent up to one dephasing jump, but so far have failed

to find path-independent Fock state creation or RL
X , R

L
Y rotations on the binomial

code. It is likely that an additional resource is needed to unlock path-independent

implementations, such as dynamic control of χ.
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Chapter 7

Controlling the transmon qutrit

Typically, only the lowest two transmon energy eigenstates are used as a qubit. At

Yale, we use these two levels to assist with cavity state preparation, manipulation,

and measurement. Other approaches use the transmon qubit directly for quantum

simulation [Kandala et al., 2019, Kim et al., 2023] and error correction [Andersen

et al., 2020,Acharya et al., 2023, Jurcevic et al., 2021]. This g − e transmon qubit is

the easy to calibrate and control, but alone does not have any inherent error detecting

properties.

In fact, there has been a significant amount of effort in ensuring that the transmon

operates as a two-level g − e system. Fast g − e qubit gates produce leakage to |f⟩

and higher levels which can be mitigated using the DRAG-like techniques discussed in

Section 2.2.1. These techniques reduce the leakage, but do not completely eliminate

leakage from gates and idle heating. This type of leakage is an unrecoverable error

in surface codes, encouraging the development of leakage reduction units (LRUs)

that quickly reset the transmon back into the g − e qubit subspace [Vittal et al.,

2023,McEwen et al., 2021,Lacroix et al., 2023,Battistel et al., 2021]. Many of these

methods are autonomous to avoid the delay incurred by the latency of measurement

and feedback.
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However, the higher energy levels of the transmon are not only a nuisance spoiling

g − e qubits, but in some applications have real advantages. End-of-line transmon

measurements can be improved by first exciting |e⟩ to a higher level so that any

energy decay during the readout will not confuse |g⟩ with |ḡ⟩ [Elder et al., 2020].

We can define g − f erasure qubits where any measurement of |e⟩ detects a decay

error [Kubica et al., 2022].

Any gate construction where our goal is to use three transmon levels to detect

single decay jumps, such as in Chapter 6, requires a direct coupling between the |g⟩

and |f⟩ states of the transmon. This type of interaction has been used previously in

fault-tolerant logical error detection and logical gates [Rosenblum et al., 2018,Rein-

hold et al., 2020]. In this chapter, we derive another way to engineer this coupling

that is well-suited for use in optimal control. We optimize g − f qubit gates and

logical gates on a binomial qubit and measure their fidelities with randomized bench-

marking. The techniques developed here are applied in the following chapter in our

demonstration of an error-detected gate.

7.1 Engineering the g − f interaction

Conventionally, control over the three level transmon relies on individual control of

the g − e and e− f transitions using the Hamiltonian in Eq. 2.36 repeated here:

H = ∆|e⟩⟨e|+ (2∆− α)|f⟩⟨f |+ ϵ∗(t)
(
|g⟩⟨e|+

√
2|e⟩⟨f |

)
+ h.c.. (7.1)

∆ is the drive detuning from ωA, so drives with ∆ = 0 activate g−e transitions, while

drives with ∆ = −α activate e − f transitions. These drives must have bandwidth

less than α to avoid spuriously driving the other transition. Resonantly driving these

transitions enables full control the the g−e−f transmon, but there is not an obvious

sequence that prepares a superposition |g⟩ + |f⟩ without intermediate population in
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|e⟩. If decay occurs at this point, it cannot reliably be detected as it falls back into

the g − f computational space. We need a direct |g⟩⟨f |+ h.c. interaction.

7.1.1 Raman drives

The three level, two drive case mentioned above was first examined in optical systems.

Stimulated Raman adiabatic passage (STIRAP) minimizes intermediate leakage (to

|e⟩, in our language) during population transfer in a three-level system by driving

each transition detuned from resonance in a counter-intuitive order [Gaubatz et al.,

1988,Unanyan et al., 1998,Fleischhauer et al., 1999]. In our notation, this corresponds

to activating the g − e coupling after the e − f coupling to realize |g⟩ → |f⟩. Laser

pulse-shaping is generally difficult, but simple Gaussian waveforms are sufficient for

STIRAP. Extensions to superconducting qubits [Zheng et al., 2022] take advantage

of microwave arbitrary waveform generators to extract additional performance.

In this section, we discuss the transmon Raman transition in the context of con-

structing arbitrary gates, not just |g⟩ ↔ |f⟩ population inversion. We enact the two

photon g − f interaction using drive frequencies that sum to the energy difference

2ωA−α between |g⟩ and |f⟩. That is, ϵ(t) has two carrier frequencies ωA−∆, ωA−α+∆

and two envelopes ϵ1(t), ϵ2(t)

ϵ(t) = ϵ1(t)e
i∆t + ϵ2(t)e

−i(−α+∆)t. (7.2)

There are no restrictions on the sign of ∆, but its magnitude will determine the

interaction rate and leakage rate to |e⟩. Here, we choose the sign of ∆ = ωA − ω1 so

that ∆ represents the amount the g − e drive is red detuned from resonance, which

corresponds to the amount the e− f drive is blue detuned. We illustrate the spectral

location of these drives in Fig. 7.1.

We can find the effect of these drives by plugging in I(t) = ℜ(ϵ(t)), Q(t) = ℑ(ϵ(t))
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Figure 7.1: Left: to activate the g−f two photon transition, we place two drives detuned
from the g− e and e− f transitions by an equal but opposite amount. The spectral content
of each pulse needs to be less than ∆ to avoid overlap with the single photon transitions.
Right: a power Rabi experiment where we vary only the amplitude of the Gaussian drive
at ωA−α+∆. The data (dots) are fitted to A sin(Bx+C) +D (solid line). B corresponds
to the amplitude required to perform a RX(π) rotation of the g − f qubit.

into the DRAG Hamiltonian Eq. 2.40

HDRAG =(I1(t) + cos((α−∆)t)I2(t))σ
x
ge −

2I1(t)
2 + I2(t)

2

√
2α

− 4I1(t)I2(t) cos((α−∆)t)√
2α

σxgf

(7.3)

+

(
2∆− α− 4I(t)2

α

)
|f⟩ ⟨f |+

(
∆− 2I(t)2

α

)
|e⟩ ⟨e|+

(
Q− İ(t)

α

)
(σyge +

√
2σyef ).

neglecting terms that rotate at 2(α−∆). We’ve only expanded one of the I(t)2 terms

to limit the mess. As before, HDRAG contains undesired g − e and e − f rotations,

off-resonant g − f rotations, and now the desired on-resonant σxgf term. The term

that survives further RWAs is 4I1(t)I2(t) cos((α − ∆)t which is detuned by only ∆.

Notably, the Rabi rate is the product of both drive envelopes I1(t)I2(t). This is

rather convenient as we separate the two drives into a “pump” mode with a simple

Gaussian envelope and “control” mode that contains different frequency components

for selective rotations [Rosenblum et al., 2018] and phases for SNAP [Reinhold et al.,

2020]. We plot a power Rabi in Fig. 7.1 that demonstrates linear amplitude squaring

135



in each drive.

There do exist a couple of drawbacks with this Raman scheme. The first is that

the rate of unselective g−f pulses is set by ∆ which is typically substantially smaller

than α. As one decreases the duration of a g − f π-pulse its bandwidth increases. If

the bandwidth of this pulses exceeds ∆, the spectrum of the waveform can overlap

with the g − e or e − f transitions, producing leakage to |e⟩ and spoiling a gate’s

decay detecting potential. It’s likely that DRAG techniques to minimize leakage are

applicable, but we do not explore those here. Short of non-trivial pulse shaping, one

should ask: is there an optimal choice of ∆ where leakage is minimized? Yes! We

will return to this case shortly, but it turns out that ∆ = α/2 places both drives

spectrally equidistant between the g − e and e− f transitions.

The second drawback of the Raman scheme is that there does not exist a frame

in which the only explicit time dependence in the Hamiltonian is from baseband

envelopes ϵ1(t), ϵ2(t). This is a problem for optimal control, where we want to avoid

simulating the evolution of Hamiltonians with fast oscillating terms eiωt. We always

perform optimal control in the rotating frame that minimizes these terms to avoid

accumulating error when we approximate the evolution with step-propagators. There

is also the practical aspect of ensuring that time step of the simulation dt is small

enough to accurately sample the fast oscillations.

7.1.2 The ∆ = α/2 case

The case when the detuning ∆ = α/2 is worth treating on its own. In this case,

both of the Raman drives have the same frequency, so we will continue with only one
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Figure 7.2: Left: to activate the gf/2 two photon transition, we place a drive at ωA−α/2
between the single photon g − e and e − f transitions. This provides spectral separation
between the gf/2 transition and either single photon transition of α/2. Right: a power
Rabi experiment where we vary the amplitude of a Gaussian drive and observe that the
oscillations depend on the square of the drive amplitude. The data (dots) are fitted to
A sin(Bx2 + C) + D (solid line). B corresponds to the amplitude required to perform a
RX(π) rotation of the g − f qubit.

envelope ϵ(t). Re-examining the DRAG Hamiltonian Eq. 2.40

HDRAG =I(t)σxge −
I(t)2√
2α
σxgf +

(
2∆− α− 4I(t)2

α

)
|f⟩ ⟨f | (7.4)

+

(
∆− 2I(t)2

α

)
|e⟩ ⟨e|+

(
Q− İ(t)

α

)
(σyge +

√
2σyef ).

We want to choose ∆ and Q(t) to bring the g− f coupling into resonance and cancel

the residual g− e and e−f couplings and Stark shifts while leaving other g− e terms

far off-resonant. We eliminate the deleterious terms by choosing

Q(t) =
İ(t)

α
(7.5)

∆(t) =
α

2
+

2I(t)2

α
(7.6)

which are nearly the same choices we make to minimize leakage to |f⟩ for g−e drives.

We call this technique for engineering the g − f interaction the “gf/2” method.

A substantial difference between the gf/2 approach and the previously discussed
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two drive scheme is that the gf/2 Rabi rate is the drive amplitude squared I(t)2. We

demonstrate amplitude squaring with a simple power Rabi experiment in Fig. 7.2.

With two drives, we are able to assign one as a pump and use the second to se-

lectively drive transitions. Now, the amplitude squaring works as a form of two-

wave mixing generating additional frequency components. For example, a selective

g − e π-pulse with frequency content at 0,−2χ,−4χ implements a parity check.

However, the gf/2 amplitude squaring term I(t)2 mixes the frequency components

present in a selective π-pulse and changes the states to which the pulse is selec-

tive. For example, a drive I(t) = 1 + cos(χf t) + cos(2χf t) with frequency content at

0,−2χf ,−4χf has frequency content at 0,−χf ,−2χf ,−3χf ,−4χf once it is squared

I(t)2 = 1
2
(cos(4χf t) + 2 cos(3χf t) + 5 cos(2χf t) + 6 cos(χf t) + 4). That is, selective

pulses with monochromatic frequency content operate in the expected way, but fre-

quency combs require additional engineering via optimal control or other manual

means.

There are two primary benefits of the gf/2 scheme. The first is reduced leakage

without choosing ∆ ≫ α, which substantially slows down gates. The frequency con-

tent of a pulse can cover up to α/2 without colliding with a single photon transition.

The second is that the driven Hamiltonian can be written in a rotating frame that

removes fast oscillating terms modulating the envelope ϵ(t). This is accomplished

simply by choosing ∆ = α/2 in Eq. 7.1. Then the full transmon-cavity Hamiltonian

is

Hgf =
α

2
A†A− α

2
A†A†AA− KC

2
C†C†CC − χe|e⟩⟨e|C†C − χf |f⟩⟨f |C†C (7.7)

+ ϵ∗A(t)A+ ϵA(t)A
† + ϵ∗C(t)C + ϵC(t)C

†.

When playing gf/2 control waveforms, we set the generator frequency to ωA − α
2

to

realize the same rotating frame as used above.
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Figure 7.3: This figure has exactly the same format as Figs. 6.1 and 6.2. Top left:
real I(t) and imaginary Q(t) parts of the control waveform ϵ(t) in Hamiltonian 7.7 that
implements R(Z = −π/2) on the binomial code with SNAP. The Hamiltonian parameters
for the optimization are listed in Table 7.1. Bottom left: the probability of finding the
transmon in |e⟩ for four different initial states. Right: simulation of the resulting gate
fidelities using Eq. 2.58 in the presence of only decay decoherence D[

√
κ|g⟩⟨e|]+D[

√
κ|e⟩⟨f |].

We set the decay rates between all three levels to be equal for simplicity. Accurate error
detection of single decay then manifests with O((κT )2) scaling. The exponent achieved here
of 1.85 is likely limited by residual |e⟩ populations during the pulse. The instantaneous
leakage can be reduced with longer pulses, at the cost of a higher probability of any jump
occurring.
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Even though our choice of ∆ = α/2 naturally reduces leakage to |e⟩, there can still

be residual leakage, especially as we try to minimize the length of our control pulses to

reduce the effects of decoherence. We can ask optimal control to minimize the leakage

by adding a cost function that explicitly computes the population of |e⟩, but there is

a more convenient option. The jump operator D[
√
κge|g⟩⟨e|] contributes a no-jump

term to the effective Hamiltonian − iκge
2
|e⟩⟨e|. The no-jump evolution Ueff reduces the

norm of states based on the probability that no jump occurs during their trajectory.

This offers a way to penalize intermediate population in |e⟩: the no-jump evolution

has no effect if the state’s trajectory never contains |e⟩. Furthermore, the optimal

fidelity is reached when both the state transfers are optimized and the norm reduction

from this no-jump term is minimized. This produces an optimization Hamiltonian

Hopt = Hgf − iκe|e⟩⟨e| (7.8)

where an effective choice of κe is typically on the order of 1/(500 ns) for the opti-

mizations done here. Choosing a κe that is too small blunts the effectiveness of the

penalty, while choosing one too large overwhelms the optimal fidelity locations in

the optimization landscape. A logical RL
Z gate of the type discussed in Section 6.2.4

optimized using these leakage minimization techniques is shown in Fig. 7.3. Since the

objective of the optimizer no longer simply describes the fidelity, but the fidelity with

a penalty, the true fidelity of the gate needs to be simulated post-optimization. To

test the quality of the leakage minimization, it’s best to perform simulations such as

the one in Fig. 7.3 and look for evidence of quadratic scaling in the presence of error

detection. Poor leakage minimization will result in gates with linear scaling in κgeT .
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Table 7.1: Hamiltonian parameters for Eq. 7.7 and system decoherence rates. The trans-
mon gf dephasing rate Γϕf varies rather widely in time due to a suspected coupling to a
two-level system.

System Parameter Operator convention Value

Transmon frequency ωAA
†A ωA/2π = 4.038 GHz

Transmon anharmonicity −α
2
A†A†AA α/2π = 134 MHz

Cavity frequency ωCC
†C ωC/2π = 4.038 GHz

Readout frequency ωrr
†r ωr/2π = 9.215 GHz

Dispersive shift from |e⟩ −χe|e⟩⟨e|C†C χe/2π = 386.4± 0.4 kHz
Dispersive shift from |f⟩ −χf |f⟩⟨f |C†C χf/2π = 579.3± 0.9 kHz

Second order dispersive shift χ′
e

2
|e⟩⟨e|C†C†CC χ′

e/2π = 0.4± 0.1 kHz
Cavity self-Kerr −KC

2
C†C†CC KC/2π = 507 Hz

Transmon |e⟩ lifetime D[
√
κge|g⟩⟨e|] 1/κge ≈ 54 µs

Transmon |e⟩ thermal population P (|e⟩) = 0.01
Transmon |g⟩ → |e⟩ heating D[

√
κeg|e⟩⟨g|] 1/κeg > 4.5 ms

Transmon |f⟩ lifetime D[
√
κef |e⟩⟨f |] 1/κef ≈ 42 µs

Transmon ge dephasing D
[√

2Γϕe |e⟩⟨e|
]

1/Γϕe ≈ 300 µs

Transmon gf dephasing D
[√

2Γϕf |f⟩⟨f |
]

1/Γϕf ≈ 30− 300 µs

Cavity single photon decay D[
√
κCC] 1/κC ≈ 1 ms

7.2 Benchmarking the g − f qubit

Once we’ve optimized or designed a gate, we want to evaluate its performance in actual

quantum hardware. However, the fidelity functions in Section 2.2.2 assume full access

to the state at the output of Uρ. If we can reconstruct the states at the output of

a channel, as in Section 3.2.1, then we can evaluate the traces to find the average

gate fidelity. This type of state reconstruction requires full state tomography, which

is particularly expensive (number of measurements needed) for cavity oscillators with

many levels. Gate set tomography and process tomography reconstruct the channel U

itself, but these approaches require even more measurements than state tomography.

Is there a simpler way to evaluate gate fidelity? Yes!

Randomized benchmarking is a technique that enables the extraction of qubit

gate fidelities without performing any gate or state tomography. It is SPAM (state
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preparation and measurement) independent, making it a favorite technique of exper-

imentalists. The main idea, which we will discuss further below, is to start with a set

of gates that generate all rotations among the six cardinal states of the Bloch sphere.

If one chooses a sequence of gates that ideally perform the identity, then the fraction

of repetitions that return to the starting state gives us an idea of the accuracy of the

constituent gates. Repeating this process for different numbers of gates provides a

sequence-length dependent rate at which the state returns to its starting point. This

rate is related to the average gate fidelity of the aforementioned set of gates.

7.2.1 The randomized benchmarking toolbox

Formally, randomized benchmarking (RB) is a technique to convert any error channel

into the depolarizing channel [Magesan et al., 2011,Horodecki et al., 1999,Emerson

et al., 2005]. The probability of an idling state under a depolarizing channel to remain

in its starting state is exponential in time. The rate of exponential decay λ is the

strength of the depolarizing channel which is related to the average gate infidelity

1− avgkF̄ (Uk, Ck) for unitary gates Ck ∈ C. The F̄ used here is the same as defined

in Eq. 2.61. The set C is required to be the 24 Clifford gates (or gates whose products

generate all Cliffords) to produce the “twirling” effect that converts any error channel

into depolarizing noise. The full theory of randomized benchmarking is beyond the

scope of this dissertation, but we review four versions of randomized benchmarking

that we use in the following sections and chapter. This review is not intended to be

exhaustive, and focuses on showing which quantities one learns from each method

and the experimental requirements of the method.

Clifford/generator randomized benchmarking (CRB/GRB)

Using random unitaries to estimate the average gate fidelity [Emerson et al., 2005]

inspired the first version of randomized benchmarking [Knill et al., 2008] implemented
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on trapped ions. NMR [Ryan et al., 2009] and superconducting qubit implementa-

tions [Chow et al., 2009] soon followed, establishing randomized benchmarking as a

platform-agnostic tool to quantify average gate fidelities. Later work formalized the

Clifford group C (or a group G that generates the Clifford group) as the set of random

unitaries that provide the most rigorous estimate of average gate fidelity [Magesan

et al., 2011]. The steps to implement CRB/GRB are:

1. Initialize the qubit in one of its logical states, say |0⟩.

2. Choose n random gates Uk from C (G) and compute the recovery gate Un+1 =

U †
1U

†
2 · · ·U †

n that ideally reverses the evolution of Un · · ·U2U1.

3. Apply Un+1Un · · ·U2U1 to |0⟩ and measure |0⟩⟨0|.

4. Repeat many times at different n to build up statistics of the probability P0(n) to

return to |0⟩ after n random gates (this is often called the “survival probability."

5. Fit P0(n) = A + Bλn. The average infidelity of each Clifford (generator) gate

in C (G) is then (1 − λ)(d − 1)/d for the Hilbert space dimension d (d = 2 for

qubits).

The circuit for RB/GRB is for 1 ≤ k ≤ n. Note that each Clifford gate Ck may be

composed of multiple generator gates [Epstein et al., 2014], so the infidelity per gate

when λ is extracted from Clifford RB is then λ/n̄ where n̄ is the average number

of generators needed per Clifford. Likewise, we can estimate a Clifford fidelity from

GRB by multiplying that λ by n̄.

Leakage randomized benchmarking (LRB)

[Wood and Gambetta, 2018,Andrews et al., 2019,McKay et al., 2017,Chen et al.,

2016]. In quantum error correcting and detecting codes, we define the codespace as a

subspace of the entire Hilbert space in which we encode logical information. However,
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coherent and incoherent errors occur that produce leakage out of the codespace into a

recoverable (or detectable) error space as well as a potentially unrecoverable subspace.

Leakage is not trace-preserving, and is thus not natively handled by CRB/GRB.

We often want to quantify this rate of leakage out of the codespace and potential

seepage back into the codespace. LRB enables us to find these rates as well as the

average fidelity when the gate acts on a state initially in the codespace. This fidelity

includes the effect of leakage, but ignores any evolution occurring in the leakage

space (including seepage), as our information is likely already spoiled. This fidelity is

experimentally achievable by detecting and removing leakage before each gate. Note

that LRB can produces higher gate fidelity estimate than CRB/GRB when the main

source of error is leakage.

The main procedural difference between LRB and CRB/GRB is the addition of

measurements that can distinguish between the codespace and leakage space, not only

determine if the state after a sequence of gates is the same as the initial state or not.

To perform LRB as in [Wood and Gambetta, 2018], follow steps 1-4 of CRB/GRB.

At the end of these steps, we have two probabilities available to us: the survival

probability P0(n) and the probability of remaining in the codespace Pcode(n). Fit

Pcode(n) = A+ Bλncode. The leakage rate per gate is L1 = (1− A)(1− λcode) and the

seepage rate is L1 = A(1− λcode). Next, use λcode to fit P0(n) = A0 +B0λ
n
code +C0λ

n

where 0 ≤ A0 ≤ A, 0 ≤ C0 ≤ 1, 0 ≤ A0 + B0 + C0 ≤ 1. The average gate fidelity

F̄ is then F̄ = ((d − 1)λ + 1 − L1)/d where d is the dimension of the codespace. If

the leakage rate is very slow λcode ≪ λ,B ≪ A, then we cannot accurately separate

errors within the codespace from leakage and seepage errors. In this case, it is best

to use conventional CRB/GRB.
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Interleaved randomized benchmarking (IRB)

[Magesan et al., 2012]. This version of RB allows one to extract the infidelity of a

single gate U by interleaving that gate in a random sequence of Cliffords Ck ∈ C In

IRB, the gates between which we interleave U must be Cliffords, otherwise the IRB

protocol is similar to CRB:

1. Initialize the qubit in one of its logical states, say |0⟩.

2. Choose n random gates Ck from C and compute the recovery gate Un+1 =

C†
1U

†C†
2U

† · · ·C†
nU

† that ideally reverses the evolution of C1UC2 · · ·CnU .

3. Apply Un+1UUn · · ·UU2UU1 to |0⟩ and measure |0⟩⟨0|.

4. Repeat many times at different n to build up statistics of the survival probability

P0(n).

5. Fit P0(n) = A+BλnU . 6. Perform conventional CRB and extract λ as above.

6. The average gate infidelity of U is then (d − 1)(1 − λU/λ)/d. IRB works best

when the infidelity of U is a similar order of magnitude to the infidelity of each

Clifford Ck. When the true infidelity of U is about an order of magnitude less

than Ck, the infidelity estimate begins to deviate from its true value [Epstein

et al., 2014].

Character randomized benchmarking (cRB)

[Helsen et al., 2019,Claes et al., 2021]. cRB allows randomized benchmarking of a

subset of gates (Clifford or non-Clifford) that form a group G. This is useful when

there isn’t access to the full set of Clifford gates or the Cliffords have substantially

lower fidelity than a gate we want to benchmark with IRB. Examples of gate groups

include the group {I, RZ(π), RZ(π/2), RZ(−π/2)} in which the rotations around the

Z axis can in principle be replaced with rotations around any other fixed axis. The
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benchmarking protocol utilizes multiple different initial states and expectation mea-

surements that depend on the exact structure of the group. The protocol is as follows:

1. Initialize the qubit in a logical state ρb.

2. Choose n random gates Uk from G. Compile the first two gates U2U1 = U ′
1 into

a single gate and compute the inverse gate Un+1 = U †
1U

†
2 · · ·U †

n.

3. Apply Un+1Un · · ·U3U
′
1 to the initial state ρb and measure an observable Mb.

4. Repeat many times at different n to build up statistics of each observableMb(n).

5. Compute a weighted survival probability as described in Eq. 3 of [Claes et al.,

2021] and fit to Eq. 4. Then use eq. 5 to estimate the average gate fidelity of

G.

Again, the exact form of ρi, Mi, and the weighted probability function depend on the

group G. We explicitly list each of these when we benchmark the RZ group mentioned

above in Chapter 8.

7.2.2 g − e qubit RB results

We’ve previously mentioned that many other efforts in quantum computing utilize

the g − e transmon qubit as the building block for error-correcting codes. Before

benchmarking the g−f qubit, we want to set a performance baseline and benchmark

our transmon’s g − e qubit. Our system parameters are listed in Table 7.1. We

implement all g − e rotations with Gaussian pulses as in Eq. 2.45 and apply the

first order DRAG correction Q(t) = İ(t)/α discussed in Section 2.2.1 resulting in the

waveform shown in Fig. 2.1.

The LRB protocol allows us to extract the leakage rate, seepage rate, fidelity

within the computational space, and overall fidelity. The results are shown in Fig. 7.4,

but we want to emphasize a few of the results here as well. First, the overall fidelity
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g-e transmon qubit

Figure 7.4: Leakage randomized benchmarking of the g − e transmon qubit. Left: level
diagram of the transmon qutrit. Our drive centered at ωA primarily drives the g − e tran-
sition, but also produces a small coupling between e − f . When the transmon leaks to
|f⟩ via this coupling, it randomly seeps back into the computational space via decay to |e⟩
at rate κeg. Right: generator and leakage randomized benchmarking of the g − e trans-
mon qubit. Our generating set G here is {RX(π/2), RY (π/2), RX(π), RY (π)} each with
the waveform shown in Fig. 2.1, but with varying amplitude and phase. The GRB average
fidelity is 0.99947 ± 0.00003. Our standard transmon readout techniques can distinguish
the |g⟩ , |e⟩ , |f⟩ states allowing us to perform LRB (higher transmon states are generally
interpreted as |f⟩ in our readout). The leakage rate is L1 = (2.0 ± 1.2)10−5 and seepage
rate is 0.002 ± 0.001 with average computational space fidelity 0.9998 ± 0.0004. The seep-
age rate is identical to the probability of a decay |f⟩ → |e⟩ during the 80 ns gate with
κef = 2.5 · 10−5/ns.

of the gate (which does not separate leakage and seepage into separate quantities)

is 0.99947 ± 0.00003. We can achieve fidelities this high because the 80 ns gates

are nearly three orders of magnitude less than any coherence time. Leakage to |f⟩

is limited by the DRAG waveform correction to (2.0 ± 1.2)10−5 per gate. Seepage

back into the computational space occurs with rate (2 ± 1)10−3 per gate which is

approximately the gate time 80 ns divided by the T f1 = 40µs.
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7.2.3 g − f qubit RB results

As mentioned in Section 7.1.2, we utilize optimal control to find g − f qubit con-

trols that minimize intermediate leakage to |e⟩. We optimize a set of pulses G =

{RX(π/2), RY (π/2), RX(π), RY (π)} with a very aggressive duration of 80 ns in Fig. 7.5

using Eq. 7.7 with all cavity terms removed

Hgf =
α

2
A†A− α

2
A†A†AA+ ϵ∗A(t)A+ ϵA(t)A

† (7.9)

and include a penalty on |e⟩ occupation Eq. 7.8. We use the unitary fidelity function

Eq. 2.54 and limit the bandwidth of these control pulses to 50 MHz to avoid any

non-idealities in upconverting these baseband pulses with IQ mixers.

When using numerically optimized waveforms, we must tune up a scale factor that

converts between the unitless waveform amplitude and FPGA DAC amplitude. After

roughly tuning this value, we perform fixed-depth randomized benchmarking while

sweeping the scale factor over a small range ±10% to accurately tune this amplitude

conversion factor. Randomized benchmarking can be used to tune up a variety of

parameters [Rol et al., 2017, Reinhold, 2019], but we use it here only to tune this

scale factor.

Now that we have an optimized set of g − f qubit rotations, we perform LRB

in Fig. 7.6 to test their performance. The average g − f qubit gate fidelity reaches

0.998, short of the g − e qubit fidelity with higher leakage and seepage rates. There

are two main culprits: high leakage due to short 80 ns pulses and single excitation

decay now manifests as leakage, where in the g − e qubit it is a computational space

error. Minimizing intermediate coherent leakage to |e⟩ comes at the cost of higher

exposure to incoherent excitation decay. We have already seen in Fig. 7.3 that low

leakage rates that preserve transmon decay detection are possible for longer pulses.

Erasure qubits based on the g − f transmon qubit will prioritize coherent leakage to
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g-f transmon qubit

Figure 7.6: Leakage randomized benchmarking of the g − f transmon qubit. Left: level
diagram of the transmon qutrit. Our drive is centered at ωA − α/2 to implement the
gf/2 driving scheme. The strongest leakage channel is to |e⟩, which can be reached by
coherent residual couplings to |e⟩ in Eq. 7.4 and |f⟩ → |e⟩ decays. Right: generator and
leakage randomized benchmarking of the g − f transmon qubit. Our generating set G here
is {RX(π/2), RY (π/2), RX(π), RY (π)} each optimized with Eq. 7.7 including the penalty
Eq. 7.8 with waveforms shown in Fig. 7.5. The GRB average fidelity is 0.99840 ± 0.00007.
The leakage rate is L1 = 0.00167±0.00008 and seepage rate is 0.00275±0.00013 with average
computational space fidelity 0.9986± 0.0007. Like the g− e pulses in Fig. 7.4, these control
pulses have length 80 ns. The leakage rate is dominated by |f⟩ → |e⟩ whose probability is
0.002 as computed for the seepage case in Fig. 7.4. The discrepancy is likely due to the fact
that |f⟩ is not occupied with unity probability throughout the random gate sequence. The
seepage rate exceeds the probability of |e⟩ → |g⟩ decay 0.0016 for κef = 2 · 10−5/ns. This
suggests that there is some residual coherent coupling to |e⟩, which is a result of our choice to
optimize as short of a pulse as possible. We can see intermediate leakage in the trajectories
shown in Fig. 7.5. Increasing the pulse duration beyond 80 ns will reduce coupling to |e⟩.

|e⟩ that is not detectable [Kubica et al., 2022]. In Fig. C.1, we extend the pulse length

to 160 ns which results in lower intermediate leakage. The relatively high fidelity of

the g − f qubit rotations without any error detection suggests that the SNAP gates

discussed in Section 6.2.3, which only involve transmon g− f qubit rotations, should

achieve similarly high fidelities with error detection.
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7.3 Adding a cavity drive

In this section, we extend g − f control from just the transmon Hilbert space to

the entire joint cavity-transmon Hilbert space. We provide two examples here that

quantify the fidelity of binomial/kitten code state preparation and logical gates. As

a reminder, the two logical binomial/kitten code words are

|0L⟩ = |+Z⟩ = 1√
2
(|0⟩+ |4⟩) (7.10)

|1L⟩ = |−Z⟩ = |2⟩ . (7.11)

State preparation pulses and logical gates are optimized with the gf/2 Hamiltonian

in Eq. 7.7 with an added |e⟩ population penalty and a penalty for states occupied

above a cutoff

Hopt = Hgf − iκe|e⟩⟨e| − iκN
∑

n>Nmax

|n⟩⟨n| (7.12)

where we generally choose Nmax = 10 and κN = 1/(100 ns). The cutoff is important

because we have to truncate the cavity Hilbert space in optimal control, and do not

want spurious boundary effects resulting from population of the highest remaining

levels.

7.3.1 Fock state creation

The most important binomial code word to initalize is |1L⟩ = |2⟩ since |0L⟩ can be

prepared by applying a logical rotation to |1L⟩. We implement two photon state

preparation by defining a unitary Uprep where Uprep(|g⟩ ⊗ |0⟩) = |g⟩ ⊗ |2⟩. Using the

cost function 2.54 and Hamiltonian 7.12 with parameters in Table 7.1, we optimize a

control pulse on the two dimensional subspace spanned by |g⟩ ⊗ |0⟩ , |g⟩ ⊗ |2⟩. Since

we don’t define the action of U outside of these two states, the optimizer chooses a
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Figure 7.7: Left: measured Wigner function after apply a numerically optimized pulse to
create |2⟩ in the cavity from |0⟩. The bandwidth of both the cavity and transmon control
waveforms is restricted to 25 MHz. We reconstruct the density matrix from this Wigner
using the techniques described in Section 3.2.1. Middle: plot of the Wigner function of
the reconstructed state. The reconstructed state has fidelity 0.971 to the target state |2⟩.
Right: residuals between the measured and reconstructed Wigner functions, multiplied
by a factor of 5. There is little structure in the residuals, indicating an accurate state
reconstruction. The fidelity estimated here is limited by both state preparation and Wigner
function measurement errors.

random, yet unitary, operation to perform on the rest of the Hilbert space. Since this

gate is implemented with the gf/2 transition, we can detect when transmon decay

occurs, but cannot always detect transmon dephasing. A Wigner function captured

after preparing |1L⟩ is shown in Fig. 7.7. We reconstruct the density matrix from the

Wigner function and estimate a fidelity of 0.971 between the prepared state and |1L⟩.

When preparing logical states, we always start by initializing the cavity and trans-

mon in vacuum, apply the |1L⟩ pulse, and use selective π-pulses to verify preparation

of two photons

|2⟩ Ncheck

|0⟩
Uprep

•

|g⟩ RX(π) RX(π)





with Ncheck = 2 or 3. The transmon measurement after Uprep allows one to restart
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state preparation if an error occurs Uprep that leaves the transmon in a superposition

of ground and excited states. We only keep states for which all measurements return

|g⟩ which filters out many transmon errors during [Elder et al., 2020]. We can further

increase the fidelity of our check by using a selective g − f π-pulse instead of a g − e

one, which clearly flags transmon decay.

7.3.2 Binomial qubit RB

Now that we have logical state preparation, we can benchmark logical gates. Our

goal in this section is to show the viability of using the g − f transmon ancilla for

gates on bosonic qubits. We return to error-detected gates in Chapter 8. We choose

a generator set G = {RL
X(π/2), R

L
Z(π/2), R

L
Z(−π/2), RL

Z(π), I} that includes only one

population-changing gate RL
X(π/2) that requires cavity drives. In all cases, we restrict

the transmon drive bandwidth to 25 MHz and the cavity drive to 10 MHz and optimize

with the trace fidelity Eq. 2.54 and Hamiltonian 7.7. We implement all RL
Z(θ) gates

with only drives on the transmon. Here, the identity gate is not instant, but takes

the form of a 40 ns delay for technical reasons. Waveforms and leakage |e⟩ population

trajectories are shown in Fig. 7.9.

Unlike the transmon, we cannot in a single shot measure the binomial qubit into

its code words or leakage states. For the moment, this rules out LRB, so we focus on

GRB. Our benchmarking circuit is

n |2⟩
|2⟩

Gk

eiθA
†A

Gn+1

•

|g⟩ Reset Rgf
X (π)







where state preparation is performed as discussed in the previous section. Note

that we initialize in |1L⟩ instead of |0L⟩ because |1L⟩ is both easier to prepare and
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Figure 7.8: Randomized benchmarking of G = {RLX(π/2), RLZ(π/2), RLZ(−π/2), RLZ(π), I}.
All gates are generated via optimization of Eq. 2.54 with Hgf Eq. 7.12. Hamiltonian param-
eters are given in Table 7.1 and waveforms in Fig. 7.9. Each point in the figure is an average
of 680 different random sequences of length n. The errorbars are the binomial uncertainty
of finding the logical qubit in |1L⟩ at the end of the sequence. These errors are propagated
through the fit to find an average gate fidelity of 0.986± 0.001. The dotted line represents
the offset of the exponential fit, whose difference from 0.5 indicates the presence of leakage
out of the codespace resulting from both transmon and cavity errors.

and measure. The cavity frame rotation eiθA
†A with θ = −0.019π accounts for a

miscalibration of χf and is not present in later experiments. The selective g − f

π-pulse at the end leaved the transmon in |g⟩ only if there are not two photons in the

cavity. Any measurements of |e⟩ or |f⟩ indicate two photons, where measurements

of |e⟩ indicate decay |f⟩ → |e⟩ during the selective pulse. This still indicates two

photons in the cavity, as the transmon only reaches |f⟩ when there are two photons.

Fig. 7.8 shows the results of this GRB circuit. The average gate fidelity of G

reaches 0.986±0.001, and is 0.983±0.001 if we remove the near-unity fidelity identity

gate from the average. These fidelities are comparable to numerically optimized gates

with the g−e transmon qubit [Heeres et al., 2017,Reinhold et al., 2020], demonstrating

that the g − f transmon is a drop-in replacement for the g − e transmon.
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7.4 Conclusion

Our goal is the design and implementation of error-detected gates. In Chapter 6, we

determined that we need a direct coupling to the third transmon level |f⟩ so that

any measurement indicating the transmon in |e⟩ flags a transmon decay error. In

this chapter, we utilized the gf/2 virtual two photon transition to engineer a direct

g− f interaction that enables fast g− f qubit gates and is more amenable to optimal

control techniques than previous Raman methods. Leakage to |e⟩ limits the speed of

the g − f qubit gates, but can be mitigated with DRAG-like techniques and optimal

control. We combine the gf/2 interaction with cavity drives to optimize binomial

code logical state preparation and gates. Randomized benchmarking shows that these

gates achieve the same fidelity as gates implemented with the g−e transmon. In fact,

we expect that in most cases the fidelity of gates implemented with the g−f transmon

will exceed the g − e case, due to χf > χe, which is the relevant speed limit when

combining cavity and transmon control.
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Chapter 8

Demonstration of error-detected gates

In the previous three chapters, we have laid out a set of requirements for an error-

detected logical gate, introduced solutions to meet each requirement, and even demon-

strated a g − f qubit. Before moving on to our demonstration of an error-detected

logical ZL gate for the binomial code, we recap the requirements and our progress so

far.

8.1 Recap

• Principle of error-detected gates. In Chapter, 5 we introduced the idea

of adding a mid-circuit measurement after each gate that checks for detectable

errors. A circuit

|ψ⟩
U1 U2 U3 U4

· · ·

|g⟩ · · ·

is only accepted if all measurements return successful results. The gain from

error-detection is determined by two factors: our ability to map errors to a

detectable state and the accuracy with which we can detect those states. Er-
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ror detection improves the fidelity of gates marked successful by a factor of

pphys/ϵpass as discussed in Section 5.3. We showed that ϵpass, the rate at which

we accept failed gates, is small due to high quality, QND transmon measure-

ments which were characterized in Section 5.4. To realize the gain from error

detection, we need to design gates that map errors to a specific set of detectable

states.

• Detection of transmon dephasing. Jumps in the transmon are the primary

source of errors for gates that require entangling the transmon and cavity. To

build an error-detected gate, we need to design a gate that detects dephas-

ing jumps. In Section 6.2, we introduce the idea of path independence as a

framework for detecting harmful dephasing jumps. We introduce SNAP as an

implementation of an error-detected RL
Z gate. Path-independent SNAP requires

a condition we call “equal-latitude,” (discussed in Section 6.2.2) which can be

difficult to enforce given the off-resonant Hamiltonian terms. We develop a ver-

sion of optimal control in Section 6.2.4 that largely recovers first order error

detectability as shown in Fig. 6.2.

• Detection of transmon decay. The other main error mechanism is transmon

excitation decay. In Section 6.2, we review the idea of using the lowest three

levels of the transmon instead of the lowest two. If we can engineer a direct

coupling between the |g⟩ and |f⟩ states, then any measurement of the transmon

in |e⟩ indicates a decay jump has occurred. Chapter 7 focuses on deriving and

demonstrating this interaction. We utilize a virtual two photon transition to

drive the g− f interaction with only a single drive in Section 7.1.2. This makes

numerically optimizing pulses easier, and enables g − f qubit gates in Section

7.2.3 that approach the fidelity of g − e qubit gates. The main limitation is

set by our rather low transmon anharmonicity α. In Section 7.3, we expand
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g − f control by adding a cavity drive and optimize Fock state preparation as

well as a set of logical binomial code gates with fidelity 0.983 ± 0.001. These

results build our confidence that our g − f control is flexible enough to enable

high-quality error detection.

In this chapter, our goal is to characterize error-detected gates with randomized

benchmarking. We introduce the benchmarking circuit in the next section, but ob-

serve that our RL
X(θ), R

L
Y (θ) rotations are of insufficient fidelity to accurately measure

the RL
Z(θ) gate fidelities with IRB as done in related implementations [Reinhold et al.,

2020]. We instead switch to character randomized benchmarking (cRB) as defined

in Section 7.2.1 to measure the average fidelity of our ZL gates. The average gate

infidelity extracted from cRB decreases by a factor of 22 when we include error cor-

rection compared to the case without. This improvement is powered by a somewhat

surprising property of our gates.

8.2 Error-detected generator randomized benchmark-

ing

As mentioned above, we did not use IRB to measure ZL gate fidelity, but we will still

include results from the RB results that establish the baseline for IRB. We start by

modifying the GRB circuit used in Section 7.3.2 by adding a mid-circuit measurement

n

|2⟩
Gk

eiθA
†A

Gn+1

•

|g⟩ Reset RL
X(π| |2⟩)





after each gate in the generator set G = {RL
X(π/2), R

L
Z(π/2), R

L
Z(−π/2), RL

Z(π), I}.

As discussed in Section 5.4, there is a small cross-Kerr between the readout resonator
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Figure 8.1: Randomized benchmarking of G = {RLX(π/2), RLZ(π/2), RLZ(−π/2), RLZ(π), I}.
All gates are generated via optimization of Eq. 2.54 from Hgf Eq. 7.12. This means that
the RLZ gates here are not optimized for path-independence to dephasing, which we do not
expect to have a significant impact at native coherence times. Hamiltonian parameters are
given in Table 7.1 and waveforms in Fig. 7.9. The errorbars are the binomial uncertainty of
finding the logical qubit in |1L⟩ at the end of the sequence. When we ignore the measurement
results (except the very last measurement before decoding, blue line), we find an average gate
fidelity 0.9872 ± 0.0003. Post-selecting on shots where every single measurement indicated
|g⟩ (orange line), we find an error-detected average gate fidelity of 0.991±0.001. The dotted
line represents the offset of each exponential fit, whose difference from 0.5 indicates the
presence of leakage out of the codespace resulting from both transmon and cavity errors.

and the cavity, which imparts a small, deterministic phase to the cavity. We calibrate

the deterministic phase θ = 0.034π phase per gate using the same Ramsey technique

as in Fig. 5.4. For the results depicted in Fig. 8.1, the transmon reset is replaced

with a simple measurement. At the time the data was taken, fast, repetitive mea-

surements activated a process that excited the transmon into states higher than |f⟩.

The fidelity we extract from this circuit is not the average fidelity of the gates in G,

but the average fidelity of these gates followed by a transmon measurement. If our

transmon measurement is highly non-QND, we expect the non-error-detected results

to be substantially worse than those in Fig. 7.8.

Results using the pulses optimized in Fig. 7.9 are displayed in Fig. 8.1. These

pulses are not optimized to be path independent to transmon dephasing, so we only
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expect to detect transmon decay in this experiment. We find an average gate fidelity

of 0.9872± 0.0003 when ignoring the mid-circuit measurement results, which is com-

parable to the fidelity 0.986± 0.001 without any measurements discussed in Section

7.3.2.

Utilizing the mid-circuit measurement results to perform error-detection in Fig. 8.1

reduces the average gate infidelity from 0.0128 to 0.009, a reduction of only a factor

of 1.42. We suspect that this rather disappointing result has two separate causes:

1. Anomalously high control infidelities of the RL
X(π/2) rotation. Other bench-

marking data with a different generator setG′ = {RL
X(π/2), R

L
Y (π/2), R

L
X(π), R

L
Y (π)}

found non-error-detected average gate fidelities of ∼ 0.97. The source of the

infidelity is unknown, but distortion and delay of the control signals by the

room temperature electronics is a prime candidate that can be mitigated with

calibration. As the control infidelities increase, the gain from error-detection

decreases because the infidelity is no longer dominated by incoherent jumps in

the transmon and cavity. We are currently unaware of any path-independent

implementations of RL
X(θ) and RL

Y (θ) rotations as the previously discussed expo-

nential gadget construction is only compatible with excitation-conserving gates.

The connection to the equal-latitude condition when the cavity is driven is also

currently unknown.

2. No fast transmon reset. As mentioned above, the fast, repetitive readouts

present in active transmon reset heat the transmon into a high excited state. In

lieu of active reset, we post-select on the transmon being in the ground state fol-

lowing the gate Gn+1 before the selective π-pulse checks if the cavity returned to

its starting state. This post-selection inherently detects transmon errors that

occur near the end of the random sequence even if we ignore the other mid-

circuit measurements. The net result is that this approach always detects some

transmon errors, and thus overestimates the baseline “non-error-detected” gate
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fidelities. Later experiments in this chapter restore transmon reset and avoid

this problem.

One surprising result in Fig. 8.1 is the reduction of leakage out of the binomial

code space when error-detection is used. Survival probabilities below 0.5 indicate that

leakage has occurred in addition to depolarization. The first occurrence of photon

loss shifts code words to unique, orthogonal error words [Michael et al., 2016]

C |0L⟩ =
√
2 |0̄L⟩ =

√
2 |3⟩ (8.1)

C |1L⟩ =
√
2 |1̄L⟩ =

√
2 |1⟩ . (8.2)

That is, given a single photon jump during a string of gates in any RB sequence,

the survival probability is zero. However, when we optimize our gates with the trace

fidelity Eq. 2.54, we choose the projector P onto the binomial code space. In error

detection, we do not need to preserve logical information in the error space, which

lifts a constraint on gate design that results in substantially faster RL
Z gates than in

previous implementations [Reinhold et al., 2020], even with a smaller value of χf .

Since we don’t care about information encoded in the odd Fock states, the optimizer

has the freedom to implement any unitary on those states. Sometimes this unitary

leaves the transmon in a superposition of |g⟩ and |f⟩, adding some probabilistic cavity

photon loss error detection since we flag measurements of |f⟩ as an error. In Fig. 8.2,

we plot probabilities that our gates excite the transmon to |f⟩ given that the input

to the gate is |g⟩ ⊗ |0̄L⟩ or |g⟩ ⊗ |1̄L⟩. We see that {RL
X(π/2), R

L
Z(π/2), R

L
Z(−π/2)}

detect some error words with probability 0.5, while the RL
Z(π) gate does not detect

any photon loss. This effect conveniently brings partial cavity photon loss detection

without needing to add any additional parity measurements.

We will show shortly in Section 8.4 that the fidelity of all of the RL
Z(θ) gates

significantly exceeds that of the RL
X(π/2) gate. The RL

Z are predicted to achieve non-
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Figure 8.2: Each gate in the generator set G = {RLX(π/2), RLZ(π/2), RLZ(−π/2), RLZ(π), I}
responds differently when the cavity input states are the error words |g⟩ ⊗ |1̄L⟩ (blue lines)
or |g⟩⊗|0̄L⟩ (orange lines). Three of the gates partially excite the transmon, so a subsequent
transmon measurement of |f⟩ will flag a logical error in the absence of additional transmon
errors. These trajectories are simulated without any decoherence.
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Table 8.1: cRB experiment configurations. The table is sorted by the initial state prepared
at the beginning of each cRB shot. Note that ρb=0 isn’t a physical state, we prepare |0⟩⟨0|
and |1⟩⟨1| in separate shots and subtract the ZL expectation values of each to include the
minus sign in ρb=0.

b ρb Eb χb((S
L)α) Fb(n)

0 1
2
(|0⟩⟨0| − |1⟩⟨1|) ZL 1 A0λ

n
0 +B0 A0 ≈ 1, B0 ≈ 0

1 |+⟩⟨+| XL eiπα/2 A1λ
n
1 A1 ≈ 1

2

error-detected fidelities approaching 0.99 (measured in Section 8.4), largely due to

their shorter duration of 1200 ns vs. 2000 ns as seen in Fig. 7.9. In order to proceed

to IRB, the infidelity of our Clifford gates must be less than ten times the infidelity

of the interleaved gate. We need on average 2.25 elements of G to generate a Clifford,

implying an error-detected Clifford infidelity of (1−0.991) ·2.25 = 0.020. Simulations

suggest that error-detected RL
Z gates may reach or exceed fidelities of 0.998, so we

abandon IRB and switch to cRB, which allows us to benchmark groups consisting

solely of the high-fidelity RL
Z gates.

8.3 Character randomized benchmarking protocol

We repeat the cRB steps here, this time tailored to the groupGS = {I, RL
Z(π), S

L, (SL)†}

for SL = RL
Z(π/2) [Claes, 2023].

1. Initialize the qubit in a logical state ρb from Table 8.1.

2. Choose n random gates Uk from GS. Compile the first two gates U2U1 = U ′
1

into a single gate and compute the inverse gate Un+1 = U †
1U

†
2 · · ·U †

n.

3. Apply Un+1Un · · ·U3U
′
1 to the initial state ρb and measure the observable Eb in

Table 8.1.

4. Repeat many times at different n to build up statistics of each observable

⟨Eb⟩ (U1, n). Note that the expectation value is a function of the circuit depth
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n and initial gate U1.

5. Compute the weighted survival probabilities Fb(n) = 1
4

∑
U∈GS

χ∗
b(U) ⟨Eb⟩ (U1, n).

6. Fit each Fb(n) according to Table 8.1.

7. Compute the average gate fidelity of GS as FG = (λ0 + 2ℜ(λ1) + 3)/6.

Unlike CRB and GRB, cRB utilizes Pauli expectation values instead of survival proba-

bilities. This presents an experimental difficulty because measuring Pauli expectation

values of the binomial code is non-trivial. The primary challenge is that to measure

a single-shot of an expectation value, we need to distinguish three different subspaces

in the Hilbert space: both code words and the leakage/error space, much like leakage

randomized benchmarking. Unfortunately, it is very difficult to map a three-outcome

operator to the transmon; it is much easier to map the outcomes of binary-valued

observables to the transmon, as in Chapter 4.

The easiest, and most accurate, measurement we can make on the cavity is the

one we utilized during our benchmarking in 7.3.2: number-selective π-pulses. We

therefore modify the cRB protocol to utilize the survival probability P (U1, n) instead

of logical expectation values. This modification does not change the decay rates of

the fitted exponentials, and thus does not affect the resulting fidelity. Our circuit is

then

k

ρb

Uk

eiθA
†A

Un+1 R(U1)

•

|g⟩⟨g| Reset Reset Rgf
X (π| |2⟩)







where the axis of logical rotation RL(U1) before the selective π-pulse is determined

by U1 in each shot to ideally bring the logical state back to |1L⟩ at the end of the

sequence. If these logical rotations are not all of nearly equal fidelity, this addition
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can spoil cRB’s insensitivity to SPAM error. We use a number-selective g−f π-pulse

at the end that correctly indicates |2⟩ even in the presence of transmon decay, as any

path to |e⟩ must first pass through |f⟩ (assuming that heating is negligible). This

technique substantially improves measurement contrast.

8.4 Character randomized benchmarking results

8.4.1 Gate optimization

At this point, we want to put everything together and optimize waveforms for the

set GS that utilize the gf/2 transition and are path independent to one dephasing

jump. Before optimizing, we observe that there is a 2876 ns delay between gates in

cRB due to the readout duration and phase update latency. During this idle time,

cavity Kerr is still present, but can be preemptively cancelled by adjusting the phases

of the SNAP gates implementing each element of GS because cavity Kerr commutes

with the gf/2 SNAP Hamiltonian

H =
α

2
A†A− α

2
A†A†AA− KC

2
C†C†CC − χe|e⟩⟨e|C†C − χf |f⟩⟨f |C†C (8.3)

+ ϵ∗A(t)A+ ϵA(t)A
†.

For a similar reason, rather than implementing the identity gate I as a brief delay

followed by a readout, which must be present after each gate for technical reasons (the

number of readouts per experimental shot must be constant in our control system),

we choose to optimize a pulse with the same length as the RL
Z gates. All pulses are

optimized using the path independent cost function in Eq. 6.53 with Ut = RL
Z(θ)

defined only on the logical code space formed from even Fock states. We include

a code snippet used to generate the pulses in Appendix D. We plot waveforms and

latitudes in Fig. C.2. In Fig. 8.3, we plot the trajectories for the error space |0̄L⟩ and
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|1̄L⟩ as well as the infidelity scaling with respect to only transmon decay or dephasing.

The near O(p2phys) scaling to both decay and dephasing jumps suggests that our pulses

should produce error-detected gates. We note that the identity pulse does not display

O(p2phys) scaling to dephasing, but is higher fidelity than the RL
Z rotations because very

little excited state population is required to implement the Kerr-corrected identity

gate.

8.4.2 Fidelity and benchmarking simulations

While the infidelity plots in Fig. 8.3 suggest that our gates could be error detectable,

we would like to predict their overall performance in the presence of all errors as well.

In this section, we perform two simulations of the gate fidelities. The first computes

the fidelity of each gate in GS separately using Eq. 6.49 while the second simulates

the cRB protocol itself to capture the effect of probabilisitic cavity error detection.

We will see that the average gate fidelity extracted from cRB simulations exceeds the

single-shot average gate fidelity because of this effect.

To simulate the fidelity of a single gate, we must simulate the gate evolution

itself, as well as idle evolution during the readout. Since the readout takes twice

the duration of the gate (2876 ns vs. 1200 ns), we expect the readout to introduce

significant infidelity via cavity decay. To compute the average gate fidelity with the

readout, we simulate the evolution of four states ρi ∈ {|+⟩⟨+|, |−⟩⟨−|, |0⟩⟨0|, |1⟩⟨1|}

under the following circuit

ρi
Gk Idle Idle

|g⟩⟨g| Mg︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
1200 ns 1438 ns Instant 1438 ns

that models the transmon readout as instant projection sandwiched between idle

evolution [Chou et al., 2023]. Mg is the measurement operator corresponding to the
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ground state |g⟩. This is the point where we can add measurement infidelity and

non-QNDness. The final cavity measurement marks where we compute the average

gate fidelity. We plot results of this fidelity in Fig. 8.7 using Hamiltonian 8.3 with all

decoherence operators characterized in Table 7.1. The result here is the fidelity aver-

aged over all gates in GS. The slope in the error scaling is depressed by a rather high

baseline error from cavity photon loss during the gate. Our simulation suggests that

decreasing the readout duration would substantially improve single-gate fidelities.

The second simulation mimics exactly the cRB protocol, while incorporating the

technique used above to model the mid-circuit transmon measurement. The circuit

is similar starting with a cRB initial state ρb

n+ 1

ρb
Uk Idle Idle

|g⟩⟨g| Mg







with the same durations as used in the average gate fidelity simulation above. Here,

instead of simulating a new state trajectory for every random gate sequence, we

compute the superoperator propagators corresponding to each block in the circuit

diagram and use them to propagate the state through the random sequence of Gk.

After each application of Mg, we re-normalize the state and compute the relevant

logical expectation value. With these expectation values, we can extract an average

gate fidelity for GS by fitting the weighted survival probabilities. Results of these

simulations at the experimentally used gate depths are plotted in Figs. 8.4 and 8.7.

8.4.3 Experimental results and discussion

To implement the protocol in Section 8.3, we must prepare three different states for

the b = 0 and b = 1 components of cRB. For b = 1, we prepare ρb=1 = (|0L⟩+|1L⟩)/
√
2

and apply random gates sorted by the first one before measuring in the logical XL
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basis. This component of cRB measures the accuracy of our logical rotations between

superpositions of |0L⟩ , |1L⟩. The b = 0 stage of cRB prepares eigenstates of GS (also

the code words) to measure the rate of bit flips and leakage induced by our gates.

The initial state ρb=0 = (|0L⟩⟨0L| − |1L⟩⟨1L|)/2 for this stage is traceless and thus

unphysical. However, we achieve the same result by preparing each of |0L⟩ , |1L⟩,

applying random gates, and measuring the probability of remaining in the initial

state. The minus sign in ρb=0 is added in post-processing to compute the expectation

value ⟨ZL⟩ for the initial state ρb=0 = (|0L⟩⟨0L| − |1L⟩⟨1L|)/2.

In Fig. 8.4, we show cRB results for the b = 0 and b = 1 cases up to gate depth

n = 71. For clarity, we do not combine the outcomes of each b = 0 state prepara-

tion into a single expectation value. Using the mid-circuit measurements to perform

error detection clearly provides a substantial improvement in gate fidelity. The im-

provement is so significant that we can only see linear decay in the error detected

survival probabilities. The measured success probability of 0.9634± 0.0003 limits the

benchmarking sequence length and prevents us from seeing the decay plateau. At

the longest sequence of 71 gates, the sequence completes with no detected errors only

7.4% of the time. There are a couple of potential problems that merit discussion.

The first is that in the b = 0 case, the survival probability of code words |0L⟩

and |1L⟩ have noticeably different decay rates with and without error detection. One

source of this discrepancy is that the probabilistic cavity error detection provided by

the gates (see Fig. 8.3) detects jumps in both code words, but not residual no-jump

evolution in |0L⟩. The other source is the static cavity self-Kerr that is only preemp-

tively cancelled when the transmon does not experience a jump. |1L⟩ is immune to

transmon jumps of any type because they do not induce leakage, unlike the code word

|0L⟩ = 1√
2
(|0⟩ + |4⟩) that can leak to 1√

2
(|0⟩ − |4⟩) due to transmon errors that spoil

the superposition phase. This phase sensitivity is why the survival probabilities for

ρb=0 = |0L⟩⟨0L| decrease so much faster than those for ρb=0 = |1L⟩⟨1L| in Fig. 8.4.
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b=1 b=0

Figure 8.4: Top row: experimental cRB results. The two cases b = 0 and b = 1
are carried out according to the parameters in Table 8.1. The fit function for each data
trace is linear An + B or exponential Aλn + B based on which fit has a lower reduced
chi-square statistic. We compute the uncertainties (error bars) from the standard deviation
of the survival probability at each sequence length. We use the uncertainties to scale the
fit residuals and propagate error through each fit. The data in the b = 0 case have much
smaller error bars due to minimal impact that transmon errors have on a single code word.
The shaded regions cover the best fit with σ uncertainty in the fit parameters. The fitted
offset of the exponentials has fairly high uncertainty even for the non-error detected gates.
The extracted error-detected average gate fidelity is 0.9995±0.0001 with non-error detected
fidelity 0.989 ± 0.001. Bottom row: simulated cRB results with 200 averages at each
sequence length using the technique described in 8.4.2 with decoherence and parameters
from Table 7.1. The insets show the first 15 points in each simulation and reveal a initial
fast decrease at the short gate depths due to decoherence during the readout and phase-in
of the probabilistic cavity error detection.
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The survival probabilities for the initial states |0L⟩ , |1L⟩ in the b = 0 case have

different contrasts due to our modification to decode by measuring |1L⟩. Benchmark-

ing shots that start and end in |1L⟩ do not require a logical rotation, but shots that

start in |0L⟩ require two RL
X(π) rotations that introduce SPAM error and reduce mea-

surement contrast. In Fig. 3.3, we found a preparation and measurement contrast

of 0.68, which is approximately the survival probability at a sequence length of one.

Spectroscopy of our prepared state reveals that the populations of |0⟩ and |4⟩ both

approach 0.5. The source of the infidelity is not clear to us, but we suspect there

are errors in the relative phase between these two Fock states which can produce

leakage to |0⟩ − |4⟩ reducing the state preparation fidelity. Randomized benchmark-

ing encodes gate fidelity in the decay rate of survival probabilities, which is separate

from contrast reduction due to state preparation and measurement errors. For these

reasons, we choose to fit the survival probability decay of each state separately and

then average their decay rates to find λ1, otherwise the unequal contrast propagates

into unequally weighting the two decay rates.

The second potential problem is the difficulty of fitting the linear short-term be-

havior of an exponential. In Fig. 8.1 we saw that adding error detection changes the

leakage properties of the gate, resulting in a different survival probability plateau

at long gate depths. At short gate depths, we can approximate an exponential

A(λn + B) ∼ A(1 + log(λ)n) + AB, but linear fits αn + β cannot distinguish the

two offsets A (the exponential contrast) and AB, which impacts our estimation of

log(λ) = α(1+B)
β

. Furthermore, the binomial code decays through its leakage space

partly back into its code space, setting different plateaus B at different timescales, as

we see in Fig. 8.5. Since the gates in GS possess similar error-detecting probabilities

to those in Fig. 8.1, which plateaus with survival probability 0.5, we set B = 0.5 here.

This value also represents a worst-case choice, as λ = exp
(
α(1+B)

β

)
decreases with

larger B since the slopes α are always negative. We make this choice when fitting the
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Figure 8.5: Binomial code word populations under cavity decay D[
√
κC] with κ =

1/(1ms). |1L⟩ = |2⟩ leaks out of the code space to |1⟩ when it loses one photon. How-
ever, if it loses another photon and falls to |0⟩, it leaks back in to the codespace because
| ⟨0|0L⟩ |2 = 1/2. The same is true for |0L⟩, which decays through |1L⟩ towards |0⟩. We see
this manifest as a bump in the black curve as population leaks into, and then out of, |1L⟩.
This behavior complicates randomized benchmarking, which already struggles with leakage,
by adding an error channel that passes from the code space, through the leakage space, and
then back into partial overlap with the code space. However, at short time scales, both decay
exponentially at similar rates as there is little contribution from multiple jumps [Michael
et al., 2016]. We expect randomized benchmarking to be valid in this region.
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cRB in Figs. 8.4 and 8.7.

With these two solutions, we extract an average non-error detected fidelity 0.989±

0.001 and an error-detected fidelity to 0.9995 ± 0.0001 for gates in GS. This error-

detected fidelity exceeds the g−f transmon qubit fidelity from Fig. 7.6, which should

not surprise us since we are now detecting the previously dominant leakage errors.

Our error detection reduces the infidelity by a factor of 22, which nearly matches

the best-case prediction of 30 we made in Section 5.4 based on our measurement

characterization. We believe that the probabilistic logical error detection mentioned

previously plays a big part in this reduction. In the cRB simulations in Fig. 8.4, we

see an initial rapid decrease in survival probability before flattening out after ∼ 4

gates. This transition period occurs because the logical error detection is inefficient

and only accurately detects logical errors after multiple “measurements.” For single

gates, logical errors that occur during the gate or error detection are likely missed,

producing a lower fidelity gate. The fidelity measured here is then not the fidelity

of a single gate in isolation, but the average fidelity of each gate in a sequence of 71

successful gates. Since these gates detect errors other than transmon dephasing and

decay, we expect the failure rate of a sequence of gates to exceed that of a single

gate. We see that this is consistently true in Fig. 8.7. Further increases in fidelity

are limited by undetectable double transmon jumps and cavity decay during the final

transmon readout.

8.4.4 Sweeping the transmon dephasing rate

Now that we have estimated the average gate fidelity of GS at the natural decoherence

rates of our system, we would like to see how the gate fidelity scales with the transmon

dephasing and decay rates. Any scaling that we measure will be the average of all

gates in GS; we do not have a way to extract individual scalings without using IRB

as in [Reinhold et al., 2020]. In this chapter, we focus on characterizing the average
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gate fidelity at different dephasing rates. We don’t expect the scaling to approach

O(p2phys) because the average scaling of ∼ 1.6 will be weighed down by the identity

gate’s near linear scaling, as seen in Fig. 8.3. Furthermore, the error scaling in Fig. 8.3

is the most optimistic scenario where we only subject the system to one decoherence

mechanism at a time. When all are present, the single-gate fidelities are limited by

cavity photon loss, as seen in Fig. 8.7.

To tune the value of Γϕf , we apply a weak readout drive to the readout resonator.

The transmon is dispersively coupled to the readout resonator, so photon number

shot noise in the resonator induces random frequency fluctuations of the transmon.

The induced dephasing rate is

Γϕk =
κ

2
ℜ



√(

1 +
iχkr
κ

)2

+
4iχkr n̄

Γ
− 1


 (8.4)

∼ n̄κ(χkr)
2

κ2 + (χkr)
2

(8.5)

for n̄ ≪ 1 photons in a resonator with loss rate κr dispersively coupled to the kth

transmon level with strength χkr [Reinhold, 2019,Rigetti et al., 2012]. In our system,

both κ and χer are approximately 1 MHz. Populating the readout resonator induces

additional dephasing on all transmon states, not just |e⟩ or |f⟩. We only characterize

the induced Γϕf because our error detection ideally removes shots where we find the

transmon in |e⟩.

A weak drive on the resonator produces a small coherent state that loses photons

at rate κrn̄. In addition to inducing dephasing, this coherent state produces a deter-

ministic dispersive shift of the transmon. To operate our gates in the presence of the

additional noise produced by populating the readout, we must accurately calibrate

this static frequency shift. In Fig. 8.6, we plot the induced decoherence rates and

deterministic frequency shifts as a function of DAC amplitude and show that we can

tune Γϕf over a full order of magnitude.
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Figure 8.6: T f2 and T ϕf at various readout drive DAC amplitudes. Weak drives on the
readout produce additional dephasing, but also induce a deterministic detuning (blue dots).
We need to calibrate both before running cRB with artificially induced dephasing. The
data here is taken in three separate groups that acquire data over different timescales. As
the dephasing rate increases in each group, the fit uncertaintly increases. The three groups
overlap so that we can see this effect, but also acquire an accurate T2 and ∆. The transmon
used in our measurements jumped between two frequencies separated by 12.5 kHz, each
with different values of T ϕf at zero DAC amplitude. This data was taken when the transmon
had jumped to the frequency with corresponding lower coherence times. The leftmost data
points in Fig. 8.7 corresponds to the highest observed T ϕf . This jumpiness means that when
acquiring data for the higher coherence times, we measure T2 and calibrate the detuning
between averaging at each cRB gate depth. We check that the value of T ϕf remained constant
over the course of collecting survival probabilities at all gate depths after each experiment.
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Figure 8.7: cRB results as a function of Γϕf . Measured average gate fidelities of GS at
different values of Γϕf set by weakly driving the readout (dots). Error bars result from the
uncertainty in the T2 measurements and the shot noise of the cRB measurements. The data
with pphys ∼ 0.08 suffered from a miscalibration in the T2 tuning sequence and did not
produce a reliable error-detected fidelity. Solid lines are the average simulated fidelities of a
single gate in GS , including the error-detecting readout following each gate. The infidelity
floor here is set by photon loss in the cavity, which occurs with approximate probability
pphys = TκC/2 = 0.008, where the factor of 2 accounts for the average photon number of
the code words n̄ = 2. As the failure rate of each gate increases, it becomes difficult to
measure the survival probability at long gate depths. The sequence depths used for each
measurement are 71, 21, 21, 11, 11, 11, ordered from smallest Γϕf to largest. The average
gate fidelities are found by simulating cRB (stars) for these same sequence length agree well
and are generally covered by the experimental values. We use the measurement operator
Mg =

√
0.998|g⟩⟨g| +

√
0.001|e⟩⟨e| +

√
0.001|f⟩⟨f | with values informed by Table 5.1. The

dashed line is tangent to the simulated error-detected fidelity of a single gate.

177



To find the average gate fidelity of GS at any Γϕf , we simply drive the readout

resonator with the appropriate amplitude at the same time as the we play the pulses

that implement each gate in GS, with appropriate detuning. We do not include a

ringdown time after each gate as we immediately measure the transmon’s state for

error detection, re-populating the resonator. The results at six different values of Γϕf

are shown in Fig. 8.7.

8.5 Conclusion

The results in Fig. 8.7 are the culmination of the last four chapters, and demonstrate

that error detection can provide a significant improvement in fidelity. The path here

required combining the relatively new ideas of error detection and path independence

with incremental upgrades to previously used g − f transmon control techniques

[Rosenblum et al., 2018,Reinhold et al., 2020]. The gates produced are of such high

fidelity that we needed to implement a new variant of randomized benchmarking,

character randomized benchmarking, on bosonic qubits (for the first time, as far as

we are aware).

Comparing the results with simulations, we realized that our gates contain “built-

in” logical error detection, a pleasant surprise for which we did not explicitly optimize.

In Fig. 6.3, we showed that the RL
Z(θ) gates we numerically optimize share a structure

with the gate construction derived in [Tsunoda et al., 2023]. This gate construction

has some built-in logical error detection that was previously unused. A successful

string of gates then means that no detectable transmon or logical errors have occurred,

removing the need for separate, interleaved logical error measurements. This result

also suggests that a better definition of gate fidelity is needed for error-detected

circuits, since the error detected fidelity per gate can depend on circuit depth.

The 0.9995 error-detected fidelity that we measure with cRB compares favorably
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to other error-detected gates in superconducting qubits and neutral atoms [Lu et al.,

2023,Ma et al., 2023]. This infidelity is a factor of 50 smaller than a fault-tolerant

version of the same gate [Reinhold et al., 2020], which has a significantly more diffi-

cult implementation that includes non-deterministic gate durations. The simplicity of

the error-detected gate, which does not require real-time transmon reset, χ-matching,

or preservation of logical information in the presence of an error, contributes to this

improvement. Fault-tolerant implementations can likely be improved with our nu-

merically optimized gf/2 control scheme, but care needs to be taken to ensure that

information in the error space is preserved.

We need to note that the RL
Z gates we demonstrated here do not form a universal

qubit gate set, as opposed to the other error-detected gates mentioned above. SNAP

gates combined with displacements [Krastanov et al., 2015] or squeezing enable uni-

versal control of the binomial qubit implemented here. These gates tend to be more

difficult to implement, as they need to preserve or modify phases across a large spread

of Fock states. It is likely possible to find waveforms that meet these requirements,

but larger control bandwidths may be needed. Increasing the values of χf and α

will ease the difficulty in finding these controls, but can only be increased to a point.

However, we still believe this is a significant demonstration because it shows that we

can construct gates that detect all dominant error syndromes, which will be the goal

for any architecture that utilizes a transmon ancilla for any or all of its gates.
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Chapter 9

Conclusion and outlook

To end this dissertation, I want to provide some perspective on our achievements and

suggest additional avenues of exploration. The work presented so far has built upon

the ideas and excellent work of my predecessors and I hope that some of the tools

developed here find applications in future projects.

Real-time Hidden Markov Model (HMM) state estimation

We designed the multi-bit photon-number resolving measurement in Chapter 4 to

sample from the output state of multi-photon quantum simulations. While highly

effective, our error mitigation scheme only deconvolves errors in the resulting sampled

distribution. If we want to use this measurement, or a similar multi-bit measurement,

for error correction and detection, we need to optimize the single-shot fidelity. In the

quantum chemistry experiment, our goal was to obtain as much information about

the input state as possible, but in error detection, we need to have high confidence

in the post-measurement state. We can add redundant measurements that re-sample

one of the bits to improve single-shot fidelity. For example, since single photon loss

is the most likely cavity error in the bitwise measurement, a second measurement

of parity at the end would reveal any single photon loss during the full sequence.
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Furthermore, we can perform real-time maximum likelihood state inference using our

HMM. HMMs have been used to assign states in post-processing [Martinez et al.,

2020], but real-time HMM state estimation will require new logic in the FPGAs that

run our control systems. One potential benefit of this scheme is that the HMM state

inference assigns a degree-of-belief to its estimation, allowing us to set a threshold

at which we throw out or repeat a measurement in real-time. During this project,

we also considered constructing an adaptive protocol where the next measurement is

chosen based on the outcome of the current one. However, Sal Elder and I found that

optimizing the binary decision tree underpinning this scheme is NP-complete [Hyafil

and Rivest, 1976].

Optimization of path-independent gates

In Chapter 6, we used a numerical optimizer to find RZ(θ) logical rotations on the

binomial code that appear path-independent to one dephasing jump. Recovering the

promise of path-independence to all orders in dephasing is likely a much more difficult

task. To truly engineer a Hamiltonian of the form

HSNAP = ΩS(ϕ⃗)|g⟩⟨f |+ ΩS†(ϕ⃗)|f⟩⟨g| (9.1)

may require a large amount of bandwidth not available with current control systems.

We have tried optimizing RZ(θ) logical gates with Monte-Carlo methods that include

all trajectories, but trajectories with more than one jump are rare and thus only

make a small contribution to the gradient. We have also not found path-independent

implementations of RX(θ) and RY (θ) logical gates. Further theoretical exploration

is ongoing [Xu et al., 2023] and I encourage numerical explorations that promote

previously static interactions, such as χf |f⟩⟨f |C†C, to parametric interactions.
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Further optimization of g − f driving

The g − f transmon has applications in two prominent proposals for erasure qubits

[Kubica et al., 2022,Teoh et al., 2023]. We’ve demonstrated high-fidelity g− f qubits

and optimal control of logical bosonic qubits using the gf/2 interaction, but further

optimization to minimize undetected errors is always needed. At the quantum hard-

ware level, increasing the anharmonicity α immediately reduces leakage. But there

are avenues for improvement in control design as well. In the optical community,

STImulated Raman Adiabatic Passage (STIRAP) is a common control scheme for

three level systems that aims to minimize leakage to a lossy intermediate state. Typ-

ical schemes use two optical drives near the single photon transitions, as we do in

Section 7.1.1, but newer proposals [Petiziol et al., 2020] suggest adding a third direct

g − f coupling (the gf/2 interaction, in our case). We did not try this combination,

but future efforts should explore counterdiabatic methods. We also encourage efforts

to extend optimal control to wide bandwidths that cover each of the methods above.

The main obstacle to wide-band optimization is that integrating differential equations

with fast oscillating terms tends to be more difficult than the relatively narrow-band

pulses we optimized here.

Built-in error detection

One of the more surprising results in this dissertation was the emergence of logical

error detection in our RZ(θ) logical gates in Chapter 8. Closer inspection of the pulse

structure in Fig. 6.3 suggests that some degree of logical error detection should be

present in the exponential gadget construction of [Tsunoda et al., 2023]. Built-in error

detection, even if it is not single-shot, simplifies gate circuits by removing the need for

some separate logical error measurements. It’s not clear that built-in single-shot error

detection is the optimal choice either. For example, adding single-shot error detection

to the RZ(θ) logical gates would require nearly doubling their duration, potentially
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increasing the erasure rate beyond threshold due to transmon errors. Many schemes

don’t perform logical error detection after every gate, and probably don’t need perfect

error detection built in to each gate. Understanding the trade-offs and what limits

the efficiency of built-in error detection is an open question.
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Appendix A

Bitwise measurement appendix

A.1 Dynamic ancilla reset statistics

As discussed in the supplemental material in [Elder et al., 2020], our ancilla qubit

reset protocol does not always succeed in a single attempt. This increases the duration

between bits on a shot-by-shot basis. This duration is proportional to the number

of reset attempts, whose probabilities shown in Fig. A.1 have a long tail, with 35.1%

of resets requiring more than one attempt. The average number of reset attempts

required across all Fock states prepared in Figs. 4.4 and 4.5(b) is n̄reset = 2.05.

Each reset attempt has a duration of 2.244µs so we use the average reset time κt′ =

2.244µs · κn̄reset = 0.0046 in the model.

It is tempting to remove runs via postselection that take more than a chosen

threshold of reset attempts, but this introduces bias into the measurement results

as the number of required reset attempts increases with the number of photons in

the storage mode. Postselecting on a low threshold such as five attempts (used in

[Elder et al., 2020]) removes 5% more measurements of |15⟩ than |1⟩. Setting the

postselection threshold at 50 attempts lowers this disparity to 0.6%, but we still

choose to avoid postselection to produce an unbiased measurement. A more granular
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Figure A.1: Ancilla dynamic reset probabilities from the Fock state data in Figs. 4.4
and 4.5(b). After each bit measurement, we readout and, if necessary, dynamically reset the
ancilla. This protocol requires more than one attempt with probability P (N > 1) = 0.351
and at most 50 with probability 1− P (N > 50) = 0.997.

approach to ancilla reset using the state-dependent reset probability distributions can

be included in the HMM if one separately calibrates this dependence.

A.2 Choice of calibration states

Consider a set of calibration states {|ψj⟩}. After preparing each |ψj⟩, we measure the

kth bit to find the probability of measuring bk = 0, 1 for each basis state Pcal
bk,j

= P (bk =

0, 1| |ψj⟩) = ⟨ψj|E(k)
bk

|ψj⟩. Our preparation protocol may suffer from transitions caused

by ancilla readout and storage mode decay that we can model in the calibration

process

Pcal
bk,j

=
∑

m,n

Tm,n(κt
(0))E

(k)
bk,n

Oj,m, (A.1)

where Oj,m = | ⟨ψj|m⟩ |2 changes from the calibration basis {|ψj⟩} to the Fock basis.

The argument of T , κt(0), includes the duration of the final check of the preparation

protocol and the CP̂0 pulse. It can be shown that the effective transition duration for

this final check is approximately half of the length of the selective pulse. The value
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Figure A.2: CP̂k pulses generated by optimal control. Each pulse has a fixed duration
of 1200 ns. The amplitude is multiplied by a calibrated constant before being played by
FPGA-based signal synthesizers. The signal is upconverted via an IQ mixer and passed
through a series of amplifiers and attenuators before reaching the ancilla qubit.

of κt(0) is given in Table 4.1. Solving for the diagonal of E(k)
bk

we find

E
(k)
bk,i

=
(
T−1(κt(0))O−1Pcal)

i,i
(A.2)

from which we average and extract ϵ(k)g , ϵ
(k)
g .

Our task is then to pick a basis of calibration states |ψj⟩. In our systems, we can

prepare coherent states |α⟩ with the highest fidelity due to the speed of preparation. If

we choose a calibration basis {|αj⟩} such that there is very little probability finding n

photons with n > Nmax, we would expect these states to be an excellent candidate for

a calibration basis. However, the presence of O−1 in Eq. A.2 complicates matters. To

satisfy n ≤ Nmax, the range of αj is necessarily restricted. In this regime, the coherent

states are only barely linearly independent and have significant co-overlap ⟨αj|αk⟩.

This results in O being an ill-conditioned matrix, meaning that O−1 magnifies small

errors in Pcal [Maciejewski et al., 2020]. We avoid the ill-conditioning problem by

using the Fock states {|j⟩}0≤j≤Nmax as our calibration basis resulting in O = 1.
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Table A.1: Parameters for the Hamiltonian A.3 used in the optimal control construction
of the CP̂k gates.

Parameter Value

α/(2π) 132 MHz
KC/(2π) 2.59 kHz
χ/(2π) 885 kHz
χ′/(2π) 3.67 kHz

A.3 CP̂k pulse construction

We use the optimal control techniques introduced in Ref. 2.2.2 here to create the

CP̂k. The Hamiltonian for our system is

H = −α
2
A†A†AA− KC

2
C†C†CC − χA†AC†C +

χ′

2
A†AC†C†CC + ϵ∗A(t)A+ ϵA(t)A

†

(A.3)

with parameter values in Table A.1. We choose to optimize the pulses using the cost

function in Eq. 2.57 as we do not care about scrambling the relative state phases. If

we intend to use this measurement mid-circuit, we should instead use Eq. 2.55. Both

quadratures of these pulses are shown in Fig. A.2 with Hamiltonian parameters listed

in Table A.1. Each pulse reaches a fidelity of at least 99.9% in a lossless system.

A.4 Complete sets of commuting observables

Consider the commuting observables parity P̂0 and super-parity P̂1 on the subspace

N < 4. While both observables have twice-degenerate eigenvalues {+1,−1}, the four

pairings of these eigenvalues are unique and correspond to a single shared eigenstate.

This can be seen by examining the spectral decomposition of the parity operator
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P̂k = B̂0
k + B̂1

k in terms of its measurement operators

(
B̂

0(1)
k

)
ii
=





1(−1) if
⌊
i
2k

⌋
is even (odd)

0 else
(A.4)

The spectral decomposition of successive measurements of P̂1 and P̂0 is

P̂1P̂0 = B̂0
1B̂

0
0 + B̂0

1B̂
1
0 + B̂1

1B̂
0
0 + B̂1

1B̂
1
0 (A.5)

Each measurement operator B̂b1
1 B̂

b0
0 on the RHS is rank one, and projects into a def-

inite photon number state (one dimensional subspace) of the N < 4 subspace labeled

by the two measured eigenvalues. These relabeled eigenvalues b1, b0 are the unique

binary decomposition of the measured number of photons n in the storage mode

n =
∑

k 2
bk . That is, the results of measuring P̂0 followed by P̂1 fully determine the

post-measurement state. These sets of observables are called complete sets of com-

muting observables. An example of measuring a state with this CSCO is illustrated

in Fig. 4.2(b).

More generally, a set of B generalized parity measurements forms a CSCO that

can resolve the first 2B photon states

P̂n−1 . . . P̂0 =
∑

b0,...,bn−1

B̂bn−1
n−1 . . . B̂b0

0 (A.6)

Each term on the RHS forms a measurement operator M̂i that projects the system

into the Fock state |i⟩. Note that in principle, the measurement can be made in

any order since all parity operators commute [P̂k, P̂j] = 0. This flexibility will be

important when we detail the experimental implementation.

Finally, we can identify a measurement of P̂k as measuring the kth bit in the

binary decomposition of the photon number |n⟩ = |bk . . . b0⟩. This technique for PNR
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detection, which we refer to as “bitwise" measurement, requires the fewest binary

measurements of any scheme assuming no prior knowledge of the state.
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Appendix B

Transmon QNDness HMM code

Below, we insert a copy of the notebook with which we produced the state trajectories

in Fig. 5.3 and transition probabilities in Table 5.1.
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Transmon QND Characterization with HMM

November 6, 2023

[1]: %matplotlib inline
%config InlineBackend.figure_format = 'retina'
import sys, os
from fpga_lib.dsl import Results
import h5py as h5
import numpy as np
import matplotlib.pyplot as plt
import scipy.signal
import scipy
import matplotlib.cm as cm
from sklearn import mixture
from hmmlearn import hmm
import copy
from matplotlib import colors

Alright, lets now import our readout trajectory data after running the circuit in Chapter 5.4 and
categorize |𝑔⟩ results as 0, |𝑒⟩ as 1, and |𝑓⟩ as 2.

[2]: datadir = r'/home/rsl/smeagol-data/data/exp/'
exp_name = r'control_exps.readout_exps.repeated_readouts_one'
datestamp = '20230728'
grp = '1'
fn = os.path.join(datadir, exp_name, 'archive', datestamp) + '.h5'
r = Results.create_from_file(fn, str(grp))
data = r['default'].data
sequence_length = r.run_params["repetitions"]
no_shots = r.run_params["averages_per_block"] * r.run_params["blocks_finished"]

g_se_data = r['p_g'].data
e_se_data = r['p_e'].data
f_se_data = r['p_f'].data
se_data = 0 * g_se_data + 1 * e_se_data + 2 * f_se_data

if not r.run_params['ignore_h']:
h_se_data = r['p_h'].data
se_data += 3 * h_se_data

Initialize a CategoricalHMM and make a reasonable guess at each transition, emission, and initial
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probability parameters.

[3]: model = hmm.CategoricalHMM(n_components=3, params='ste', init_params='',␣
↪n_iter=10)

model.transmat_ = np.array([[0.95, 0.05, 0],
[0.05, 0.94, 0.01],
[0, 0.10, 0.9]])

model.startprob_ = np.array([0.05,0.475,0.475])
model.emissionprob_ = np.array([[0.95, 0.05, 0],

[0.02, 0.95, 0.03],
[0.01, 0.04, 0.95]])

model.fit(se_data.reshape(-1, 1), lengths=[sequence_length] * no_shots)
model_predict = model.predict(se_data.reshape(-1, 1), lengths=[sequence_length]␣

↪* no_shots)
model_probs = model.predict_proba(se_data.reshape(-1, 1),␣

↪lengths=[sequence_length] * no_shots)
model.monitor_

[3]: ConvergenceMonitor(
history=[-1872518.5047480152, -1130568.0936627276, -1124463.8713005045,

-1123496.2744208237, -1123248.074949735, -1123161.7926334778,
-1123124.4626839412, -1123105.471926099, -1123094.5408239854,
-1123087.6362426819],

iter=10,
n_iter=10,
tol=0.01,
verbose=False,

)

[4]: model.startprob_

[4]: array([0.02402432, 0.48204098, 0.4939347 ])

[5]: model.transmat_

[5]: array([[0.99854562, 0.00145438, 0. ],
[0.08975935, 0.89276979, 0.01747086],
[0. , 0.13252274, 0.86747726]])

[6]: model.emissionprob_

[6]: array([[9.97621679e-01, 2.37832056e-03, 0.00000000e+00],
[1.03541439e-02, 9.84310394e-01, 5.33546175e-03],
[2.35342583e-02, 5.99134413e-04, 9.75866607e-01]])

Sometimes states get mislabelled and we have to relabel them. We swap the 1 and 2 labels below
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[ ]: switch1 = 1
switch2 = 2

intermediate = np.where(model_predict[1] == switch1, 5, model_predict[1])
intermediate = np.where(intermediate == switch2, switch1, intermediate)
model_predict = (0, np.where(intermediate == 5, switch2, intermediate)) # keeps␣

↪[1] indexing below

Now compare the data and trained HMM predictions. This output is the same as Fig. 5.3.

[7]: fig, ax = plt.subplots(2, 1, figsize=(5, 4))
ax[0].imshow(se_data[80:140, :].T, aspect='auto', origin='lower',␣

↪interpolation='none', cmap='bwr')
ax[1].imshow(model_predict[8000:14000].reshape((60, 100)).T, aspect='auto',␣

↪origin='lower', interpolation='none', cmap='bwr')
ax[1].set_xlabel("Shot number", fontsize=10)
ax[1].set_ylabel("nth measurement", fontsize=10)
fig.tight_layout()

Let’s now make an image of the posterior probability of each state in the prediction above. We
plot 1-DOB (degree of belief) and see that the model’s confidence in some state predictions is lower
than others.
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[8]: fig, ax = plt.subplots(1, 1, figsize=(6, 3))
plot = ax.imshow(1-np.max(model_probs[8000:14000, :], axis=1).reshape((60,␣

↪100)).T, aspect='auto', origin='lower', interpolation='none', cmap='bwr',␣
↪norm=colors.LogNorm(vmin=1e-4, vmax=0.5))

ax.set_xlabel("Shot number", fontsize=10)
ax.set_ylabel("nth measurement", fontsize=10)
fig.colorbar(plot, ax=ax)
fig.tight_layout()

4



Appendix C

Additional control waveforms
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Appendix D

Code used to generate RLZ(θ) gates

Below we attach the code used to generate the pulses in Figs. 8.3 and C.2. The

code operates on an internal repository found at QOGS (Quantum Optimal Gate

Synthesizer) written in collaboration with Alec Eickbusch. The optimizer is built on

TensorFlow to enable GPU acceleration and autodifferentiation.
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Optimization of Path-independent Z Rotations

November 6, 2023

[ ]: %load_ext autoreload
%autoreload 2
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import tensorflow as tf
import multiprocessing
import numpy as np
import scipy as sp
import scipy.signal as signal
import qutip as qt
from qutip.qip.operations.gates import rx, ry, rz, hadamard_transform
from QOGS.optimizer.tf_adam_optimizer import AdamOptimizer
from QOGS.gate_sets import GRAPE, PI_GRAPE, trajGRAPE
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
import matplotlib as mpl
import h5py
import copy
import os

opt_type = "PI" # must be "PI", "GRAPE", or "trajGRAPE"
name_prefix = 'gf_PI_'
detect_parity = False
end_in_f = False

[ ]: ### GF/2 COUPLING ###
q_dim = 5
c_dim = 5
DAC_time_resolution = 2 # in ns

# In GHz = cycles / ns
anharm = 0.134
kerr = 507e-9 # 864e-9
chi_e = 387e3 * 1e-9
chi_p_e = 400e-9
chi_f = 2 * 289.6e3 * 1e-9 # 2 is the bosonic factor
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drive = D = 2 * np.pi * 1e-3

detuning = anharm / 2
e_decay_rate = 1 / 100 / 5

a = qt.tensor(qt.destroy(c_dim), qt.qeye(q_dim)) # cavity
b = qt.tensor(qt.qeye(c_dim), qt.destroy(q_dim)) # qubit
ad = a.dag()
bd = b.dag()
Igg = qt.tensor(qt.qeye(c_dim), qt.fock_dm(q_dim,0))
Iee = qt.tensor(qt.qeye(c_dim), qt.fock_dm(q_dim,1))
Iff = qt.tensor(qt.qeye(c_dim), qt.fock_dm(q_dim,2))

jump_op = qt.tensor(qt.fock_dm(c_dim, 0) + qt.fock_dm(c_dim, 2) + qt.
↪fock_dm(c_dim, 4), qt.fock_dm(q_dim, 2)) * np.sqrt(2 / 5000) # this is the␣
↪jump operator for gf dephasing in the codespace

H0 = detuning * bd * b
H0 += -(anharm/2) * bd * bd * b * b
H0 += -(kerr/2) * ad * ad * a * a
H0 += -chi_e * ad * a * qt.tensor(qt.qeye(c_dim), qt.basis(q_dim, 1).proj())
H0 += -chi_f * ad * a * qt.tensor(qt.qeye(c_dim), qt.basis(q_dim, 2).proj())
H0 += chi_p_e / 2 * ad * ad * a * a * qt.tensor(qt.qeye(c_dim), qt.basis(q_dim,␣

↪1).proj())
H0 *= 2*np.pi

H0 -= 1j / 2 * qt.tensor(qt.qeye(c_dim), qt.fock_dm(q_dim, 1)) * e_decay_rate
H0 -= 1j / 2 * qt.tensor(qt.qeye(c_dim), qt.fock_dm(q_dim, 3)) * e_decay_rate
H0 -= 1j / 2 * qt.tensor(qt.qeye(c_dim), qt.fock_dm(q_dim, 4)) * e_decay_rate

Hcs = [D*(b + bd), 1j*D*(b - bd)] # I, Q

success_op = qt.tensor(qt.fock_dm(c_dim, 0) + qt.fock_dm(c_dim, 2) + qt.
↪fock_dm(c_dim, 4), qt.fock_dm(q_dim, 2 if end_in_f else 0))

1 Z gate setup

[ ]: # define the logical gate to apply
l0 = qt.basis(2,0) # +Z
l1 = qt.basis(2,1) # -Z
plus = (l0 + l1) / np.sqrt(2)
i_state = (l0 + 1j * l1) / np.sqrt(2)
mi_state = (l0 - 1j * l1) / np.sqrt(2)

# define the logical basis states in the basis of the system
l0_sys = (qt.basis(c_dim,0) + qt.basis(c_dim,4))/np.sqrt(2)
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l1_sys = qt.basis(c_dim,2)

# define two functions that convert logical operators/states to system␣
↪operators/states

logical_to_sys = lambda Q: Q.full()[0,0]*l0_sys*l0_sys.dag() + Q.
↪full()[0,1]*l0_sys*l1_sys.dag() + Q.full()[1,0]*l1_sys*l0_sys.dag() + Q.
↪full()[1,1]*l1_sys*l1_sys.dag()

logical_to_sys_op = lambda Q: Q.full()[0,0]*l0_sys*l0_sys.dag() + Q.
↪full()[0,1]*l0_sys*l1_sys.dag() + Q.full()[1,0]*l1_sys*l0_sys.dag() + Q.
↪full()[1,1]*l1_sys*l1_sys.dag() + (qt.qeye(N) - l0_sys.proj() + l1_sys.
↪proj())

logical_to_sys_state = lambda Q: Q.full()[0, 0]*l0_sys + Q.full()[1, 0]*l1_sys␣
↪# Q is a vector, so the second superfluous index is always zero

# list of gate names. we'll eventually make a dictionary of gate name and␣
↪initial/final states

gates = ['RZ', 'RZ2', 'RZm2', 'I']
unitaries = [rz(np.pi), rz(np.pi / 2), rz(-np.pi / 2), rz(0)]
unitaries_dict = dict(zip(gates, unitaries))
to_optimize = gates

preempt_Kerr = True
preempt_angle = (-1j) * (2876 * 1 * kerr / 2 * 2 * np.pi) # note that the sign␣

↪is flipped because the Kerr term is negative in H. (-i) is for time evolution
if preempt_Kerr:

pre_op = (preempt_angle * ad * ad * a * a).expm()
name_prefix += 'Kerr_'

else:
pre_op = qt.tensor(qt.qeye(c_dim), qt.qeye(q_dim))

# now collect gate name, initial, and final states
setups = {}
for k in to_optimize:

init_logical_states = [l0, l1, rx(np.pi / 2) * l0, rx(-np.pi / 2) * l0]#,␣
↪unitaries_dict['RYm2'] * l0, unitaries_dict['RXm2'] * l0]

final_logical_states = [unitaries_dict[k] * j for j in init_logical_states]
init_states = [qt.tensor(logical_to_sys_state(j), qt.basis(q_dim, 0)) for j␣

↪in init_logical_states]
final_states = [pre_op * qt.tensor(logical_to_sys_state(j), qt.basis(q_dim,␣

↪2 if end_in_f else 0)) for j in final_logical_states]
non_PI_inits = []
non_PI_targs = []
name = name_prefix + 'Binomial_GRAPE_' + k
N_blocks = 601 # try lowering to 501
n_circuits = 0
n_traj = 0
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n_circuits = 32
non_PI_inits = []
non_PI_targs = []
PI_weight = 1.0
synth_params = {
'N_blocks': N_blocks, # note that the length of the pulse is this times the␣

↪DAC_time_resolution
'N_multistart' : n_circuits, #Batch size (number of circuit optimizations␣

↪to run in parallel)
'epochs' : 1000, #number of epochs before termination
'epoch_size' : 5, #number of adam steps per epoch
'learning_rate' : tf.keras.optimizers.schedules.

↪PiecewiseConstantDecay([100, 200 if opt_type=='PI' else 500], [1.0, 0.1, 0.
↪05]), #learning rate for adam 0.1 if opt_type == 'PI' else

'term_fid' : 2.0, #0.995, #terminal fidelitiy
'dfid_stop' : 1e-7, #stop if dfid between two epochs is smaller than this␣

↪number
'initial_states' : init_states, #qubit tensor oscillator, start in |g> |0>
'target_states' : final_states, #end in |e> |target>.
'name' : name, #name for printing and saving
'coherent' : True,
'filename' : 'OCPs/' + name + '.h5', #if no filename specified, results␣

↪will be saved in this folder under 'name.h5'
}

# We initialize the gateset here
gate_set_params = {
'H_static' : H0,
'H_control' : Hcs,
'DAC_delta_t' : DAC_time_resolution,
'inplace' : False, # true uses less memory, but is slower. Just use false
'scale' : [400 if k == 'RZ' else 200], # range of DAC amplitudes for␣

↪initial random waves 50 for ge, 20 for gf
'bandwidth' : [0.15], # 0.5 with leakage reduction, 0.2 otherwise
'ringup' : 20,
'jump_ops' : jump_op if opt_type == "PI" else [jump_op], # another annoying␣

↪API difference that I need to fix
'non_PI_inits' : non_PI_inits,
'non_PI_targs' : non_PI_targs,
'success_op' : success_op,
'threshold_start' : 0.85,
'threshold_end' : 0.9,
'PI_weight' : PI_weight,
'n_trajs' : n_traj,
'gatesynthargs': synth_params
}
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setups[k] = gate_set_params

2 Optimize pulses

[ ]: value = setups['RZ2']
GRAPE_gate_set = PI_GRAPE(**value)
opt = AdamOptimizer(GRAPE_gate_set)
opt.optimize()
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