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Analog quantum simulators, which efficiently represent model systems, have the potential to provide new
insight toward naturally occurring phenomena beyond the capabilities of classical computers. Incorporating
dissipation as a resource unlocks awider rangeofout-of-equilibriumprocesses such as chemical reactions.Here,
we operate a hybrid qubit-oscillator circuit quantum electrodynamics simulator and model nonadiabatic
molecular dynamics through a conical intersection. We identify dephasing of the electronic qubit as the
mechanism that drives wave-packet branching when the corresponding oscillator undergoes large amplitude
motion. Furthermore,we directly observe enhanced branchingwhen thewave-packet passes through the conical
intersection. Thus, the forces that influence a chemical reaction can be viewed from the perspective of
measurementbackaction in quantummechanics—there is an effectivemeasurement-induceddephasing rate that
depends on the position of thewave packet relative to the conical intersection.Our results set the groundwork for
more complex simulations of chemical dynamics using quantum simulators, offering deeper insight into the role
of dissipation in determiningmacroscopic quantities of interest such as the quantumyield of a chemical reaction.
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I. INTRODUCTION

Quantum processors applied to quantum chemistry have
mostly focused on calculating static electronic energies [1],
though experimental demonstrations have been limited to
variational methods in the current near term intermediate-
scale quantum era of devices [2,3]. Modeling molecular
dynamics that ensue from interaction with light, however, is
a driven-dissipative many-body problem that goes beyond
just calculating the fermionic electronics and includes the
dynamics of bosonic rotational and vibrational degrees of
freedom as well. Electronic transport dynamics have been
investigated using quantum processors in the context of
light harvesting in photosynthesis, where individual sites
are approximated as two-level systems and encoded in
qubits [4,5]. Vibrational dynamics and vibronic spectra
have also been simulated using bosonic modes that can
support multiphoton states [6–8], but only under the
adiabatic Born-Oppenheimer approximation.

In many polyatomic molecules, nonadiabatic couplings
between potential energy surfaces influence a wide range of
photoinduced chemical processes [9]. Central to nonadia-
batic dynamics are features known as conical intersections
(CIs), which indicate an electronic degeneracy that invalid-
ates the Born-Oppenheimer approximation and results in
strong hybridization between the electronic and nuclear
degrees of freedom. This hybridization has immense
consequences for excited state dynamics when the molecu-
lar wave packet traverses these intersections, producing, for
example, ultrafast radiationless reactions. Using quantum
simulators to study nonadiabatic dynamics has been pro-
posed with digital quantum computers [10] and trapped-ion
systems [11–13], but experimental demonstrations have
remained elusive.
In this work, we experimentally demonstrate dissipative

nonadiabatic dynamics using a circuit quantum electrody-
namics (circuit QED) quantum simulator. Using microwave
drives, we engineer a CI in a system containing one qubit
and two harmonic oscillators. The qubit represents two
electronic energy levels that are modulated by two gener-
alized nuclear coordinates encoded in harmonic oscillators.
Our approach uses a simple and optimal one-to-one
mapping of the three modes of the model to three modes
of our simulator; this native mapping enables the
approach’s hardware efficiency and can be straightfor-
wardly scaled up using existing multimode systems
[14,15]. Importantly, we engineer intrinsic qubit coherence
times an order of magnitude longer than the timescale of the
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engineered dissipation. This corresponds to the physical
scenario where the dynamics are not dominated by sponta-
neous emission of the electronic excitation. By simulta-
neously measuring the qubit and performing Wigner
tomography [16] of one of the oscillators as they evolve
under a control Hamiltonian, we correlate qubit dephasing
events with wave-packet branching. Finally, when the CI is
active, we observe enhanced branching when the wave
packet passes through the CI. This can be understood as a
competition between the measurement-induced dephasing
strength and a position-dependent electronic energy gap.
Our results demonstrate that superconducting circuits
possess all of the capabilities required to implement faithful
simulations of nonadiabatic dynamics.

II. MODEL CONICAL INTERSECTION
HAMILTONIAN

The variety of numerical methods and associated models
developed for addressing nonadiabatic molecular dynamics
on classical computers is vast [17–19]. Common to all of
these methods are various approximations which reduce the
computational cost compared to exact solutions, which of
course scale exponentially with system size. For quantum
simulation of nonadiabatic problems, we seek models that
treat all degrees of freedom quantum mechanically; this

effectively translates to a basis choice. Vibronic coupling
(VC) model Hamiltonians [20] use a diabatic basis for the
electronic eigenfunctions in order to avoid divergence
issues associated with the standard adiabatic basis in the
vicinity of a CI [21]. See Appendix A for a more detailed
discussion of the choice of basis. VC Hamiltonian param-
eters may be either empirically fit to reproduce exper-
imental data [22] or obtained from ab initio calculations
such as for pyrazine [23] and pyrene [24]. Computational
studies investigating the influence of various forms of
rovibrational damping on nonadiabatic dynamics utilize
VC Hamiltonians with different approximations for the
bath [25–27].
In this work, we consider a linear vibronic coupling

(LVC) model—the simplest VC Hamiltonian that contains
a conical intersection—with two electronic states
fjþi; j−ig coupled to two generalized rovibrational modes
â and b̂:

Ĥa=ℏ ¼ Δaâ†âþ gxσ̂xðâþ â†Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ĝa

; ð1Þ

Ĥb=ℏ ¼ Δbb̂
†b̂þ gyσ̂yðb̂þ b̂†Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

ĝb

; ð2Þ
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FIG. 1. Model molecular Hamiltonian with a conical intersection and experimental setup. (a) Eigenspectrum of Ĥa, which consists of
two displaced quantum harmonic oscillator Fock ladders (dashed lines) of the tuning mode depending on if the qubit is in jþi (blue) or
j−i (red). (b) In the basis of j�i for the qubit, the addition of ĝb ¼ gyσ̂yðb̂þ b̂†Þ on top of Ĥa couples the two Fock ladders of the

coupling mode (with energy Δbb̂
†b̂) via σ̂y ¼ jþih−j þ j−ihþj (dashed arrows) for each Fock state of the tuning mode. Hence,

dynamics of the coupling mode can cause transitions between j�i. (c) Schematic of the circuit QED device used in this experiment. The
tuning and coupling modes are 3D λ=4 coaxial resonators which are coupled to an electronic qubit (encoded in a transmon) with a
readout resonator and Purcell filter [31]. An additional ancilla module with a transmon mode and readout resonator is coupled to the
tuning mode for independent state tomography. The coupling mode is intentionally overcoupled to a 50 Ω transmission line, resulting in
a linewidth κb=2π ≈ 320 kHz. (d) Relative mode frequencies and drive configuration used to enact ĤLVC. A full table of system
parameters is given in Appendix C.
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ĤLVC ¼ Ĥa þ Ĥb; ð3Þ

where our electronic states j�i are eigenstates of σ̂x. Our
model contains first-order intrastate and interstate coupling
strengths gx and gy, respectively, as well as generalized
rovibrational frequencies Δa and Δb. We refer to modes â
and b̂ as tuning and coupling modes, respectively, as the
dimensionless coordinate q̂t ¼ âþ â† “tunes” the energy
between the electronic states j�i and q̂c ¼ b̂þ b̂† mediates
coupling between the two electronic states via σ̂y ¼
jþih−j þ j−ihþj (see Appendix A for a detailed conver-
sion to conventional position and momentum operators).
We identify the position q̂t of the tuning mode as a reactive
coordinate, which typically undergoes large amplitude
motion for real systems of interest. It is important to
emphasize, however, the generalized nature of these coor-
dinates in the diabatic basis; one will need to perform a
diabatic-to-adiabatic transformation for extracting adiabatic
populations [28].
The eigenstates of Ĥa are depicted in Fig. 1(a). The

electronic states and tuning mode are coupled by a condi-
tional displacement interaction that shifts the equilibrium
position of the oscillator depending on the electronic state.
In the absence of any operator that couples jþi and j−i, an
initial state jψi ¼ j�i ⊗ jψ0ia, where jψ0ia is an arbitrary
state of the tuning mode, will evolve along the correspond-
ing harmonic potential with the qubit remaining in j�i. The
addition of ĝb couples the electronic states via the states of
the coupling mode, as shown in Fig. 1(b). The combination
of ĝa and ĝb defines the conical intersection [29]. The full
eigenspectrum of ĤLVC is not easily depicted, as it involves
entangled states in the uncoupled basis of all three modes.
We note that our description of the tuning and coupling
modes would be interchanged had we elected to focus on
the eigenstates of σ̂y. This model has historical origins in
the well-known Jahn-Teller effect which was originally
thought to be rooted in molecular symmetries. More
recently, though, the model has been extended to larger
polyatomic molecules with CIs that are not necessarily
symmetry induced [30].

III. EXPERIMENTAL IMPLEMENTATION

In this work, we operate a quantum simulator realized as
a 3D circuit QED processor [8] where the nuclear tuning
and coupling modes are represented by λ=4 coaxial cavity
modes and the electronic degree of freedom is encoded in a
transmon qubit [32] [Fig. 1(c)]. The tuning mode is long-
lived with a linewidth κa=2π ≈ 0.23 kHz, whereas the
coupling mode is overcoupled to a 50 Ω transmission line,
resulting in a decay rate κb=2π ≈ 320 kHz. We engineer
ĤLVC [Eq. (3)] in a driven, rotating frame by combining a
strong Rabi drive on the transmon, which results in an
effective dressed qubit with an energy splitting of ΩR, with
simultaneous red and blue sideband drives on the cavity

modes detuned by ∓ΩR [Fig. 1(d)]. This technique has
been previously developed to simultaneously measure
noncommuting qubit observables [33], foreshadowing
the intimate link between measurement and the dissipative
dynamics of our model system. Our desire to control
multiphoton wave packets in the tuning mode requires a
larger Rabi frequency than used previously [33]. This is
needed to maintain the validity of the rotating wave
approximation (RWA). To this end, we incorporate a static
detuningΔR on the Rabi drive and adiabatically prepare the
driven qubit eigenstates. This enables large Rabi frequen-
cies while suppressing leakage to higher levels of the driven
transmon (see Appendix B).

A. Simulator calibrations

A key requirement of our quantum simulator is the ability
to initialize and perform tomography of the electronic qubit,
which in our experiment is encoded by a driven transmon
with an effective Rabi frequency ΩR that is defined by the
amplitude εR and static detuningΔR of the Rabi drive. In the
frame of a single Rabi drive on the transmon, the driven
Hamiltonian has the form Ĥd ¼ ðΩR=2Þσ̂z where σ̂z ¼
jg̃ihg̃j − jẽihẽj when expressed in the driven eigenbasis
spanned by fjg̃i; jẽig that adiabatically connects to the
undriven transmon eigenstates fjgi; jeig. We note that jg̃i ≈
ð1= ffiffiffi

2
p Þðjgi þ jeiÞ and jẽi ≈ ð1= ffiffiffi

2
p Þðjgi − jeiÞ, with minor

contributions from higher excited states, when expressed in
the basis of undriven transmon eigenstates. The conditional
displacement interactions that we engineer in our experiment
fĤa; Ĥbg are conditioned on Pauli operators whose eigen-
states lie on the equator of the driven Bloch sphere (i.e., σ̂x
and σ̂y), and thuswill precess around the equator at a rateΩR.
We can use this high frequency precession as a way of
precisely calibrating ΩR, which in turn lets us measure the
expectation value of any Pauli operator aligned on the
equator of the driven Bloch sphere over time. As long as
the Rabi frequency is constant as a function of time, this
technique is compatible with any interaction Hamiltonian
that involves our driven qubit including Ĥa, Ĥb, and ĤLVC.
For the free evolution case where only the Rabi drive is on
and no cavity sidebands are active, we measure hσ̂xi as a
function of time and extract a corresponding driven coher-
ence time T2ρ ¼ 27 μs [34]. This further elucidates the
reasoning behind our chosen convention for the Pauli
operators in Eqs. (1) and (2); we prefer the eigenstates of
σ̂z to be stationary in the frame of the drive. Full details of this
measurement scheme are described in Appendix D.
The goal of our experiment is to understand the dynam-

ics of the subsystem consisting of the electronic qubit and
tuning mode under the influence of the conical intersection
and dissipation in the coupling mode. The symmetry
between the two interactions Ĥa and Ĥb is broken by
their disparate dissipation rates, which results in qualita-
tively different dynamics. Specifically, we work in the
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coherent regime where gx ≫ κa for the tuning mode and the
dissipative regime gy ≲ κb for the coupling mode. As such,
we proceed to calibrate and characterize each interaction
independently before combining them together to study the
full Hamiltonian ĤLVC of interest that includes the conical
intersection.
We first calibrate the conditional displacement interac-

tion Ĥa on the tuning mode, which determines how
coherent wave packets in the tuning mode propagate for
each electronic state in the absence of the coupling mode.
For clarity, we will describe coherent wave packets in the
tuning mode as reactive wave packets following our earlier
designation that the position of the tuning mode is a
reactive coordinate of interest in a molecular system that
undergoes large amplitude motion. This Hamiltonian pro-
duces two distinct harmonic potential energy surfaces
whose equilibrium positions are offset from the origin
by an amount �αg, where αg ¼ gx=Δa for each electronic
state j∓i. Moreover, we are interested in the regime where
jαgj ≳ 1 such that there are two macroscopically distinct
ground states. Reactive wave packets that are prepared with

the qubit in j�i at any location in phase space should
oscillate around the respective ground state [Fig. 2(a)]. We
demonstrate this first for an initial vacuum state, which is a
displaced state with respect to the minimum of each of the
driven potentials. We initialize the driven qubit in j−i and
then ramp on two sideband drives quickly with respect to
1=ΩR with the appropriate phases (see Appendix D). By
adjusting the average of the sideband frequencies relative to
the Stark-shifted cavity frequency, we tune Δa, taking care
to satisfy the resonance conditions at each frequency
configuration. We observe the resulting dynamics by
measuring the projection onto the vacuum state as a
function of time using a photon-number-selective π pulse
]35 ] on a separate transmon ancilla [Fig. 2(b)]. At the same

time, we measure hσ̂xi of the qubit using our previously
described measurement scheme and observe that it largely
remains in its initial eigenstate j−i up to decoherence. In
the context of the LVC model, we have hσ̂xi ¼ 2hP̂þi − 1

and hP̂−i ¼ 1 − hP̂þi, where P̂� ¼ j�ih�j are projectors
onto the diabatic states and hP̂�i are the corresponding
diabatic populations. This demonstrates that we are able
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FIG. 2. Calibrating coherent and dissipative conditional displacement interactions on the tuning mode (a),(b) and the coupling mode
(c). (a) Depiction of tuning mode dynamics under Ĥa. The oscillator’s equilibrium position shifts by þαg when the qubit is in j−i (red)
and −αg when the qubit is in jþi (blue). Top: an initial wave packet j−i ⊗ jα ¼ 0ia oscillates along the red potential surface associated
with j−i. Bottom: in phase space, the state performs a circular trajectory around the equilibrium location, indicated by the red triangle for
the top schematic. Smaller and larger equilibrium positions are indicated by the circle and square, respectively. (b) Coherent state
revivals during evolution under Ĥa. We prepare an initial state j−i ⊗ jα ¼ 0ia and simultaneously measure the vacuum projector of the
tuning mode P̂a

0 ¼ j0iah0ja (top) and σ̂x (bottom) for different calibrated values of Δa. Solid lines are fits to a simple analytic model,
extracting values gx=2π ¼ 450 kHz and Δa=2π ¼ 457 kHz (circles), 355 kHz (triangles), and 246 kHz (squares) which determine the
values of αg. Approximate locations of the coherent state for each calibration at a delay time marked by the magenta arrow are shown in
the bottom panel of (a). At the same time, the qubit largely remains in j−i up to intrinsic decoherence. (c) Top: coupling mode state
trajectories starting in vacuum j0ib for various values of Δb (rates from the bottom panel) with fixed values of ĝb and κb, splitting in
phase space depending on if the qubit is in j�yi. Full coherent state distributions are not depicted because we are in the weak
measurement regime where there is significant overlap between the coherent states. Bottom: measurement-induced dephasing of j−i
with gy=2π ≈ 117 kHz, Δb=2π ≈ f0ðcirclesÞ; 400ðtrianglesÞ; 800ðsquaresÞg kHz and κb=2π ≈ 320 kHz obtained from independent
calibrations. Solid lines represent equivalent time-domain master equation simulation results (see Appendix F). All error bars indicate
standard deviations and may not be visible compared to marker size.
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engineer Ĥa with in situ control of the Hamiltonian
parameters.
Next, we independently calibrate Ĥb and its dissipative

dynamics in the absence of coupling to the tuning mode.
From a quantum optics perspective, the combination of a
conditional displacement interaction Ĥb and single photon
loss with rate κb=2π ≈ 320 kHz results in measurement-
induced dephasing of the qubit along the axes orthogonal to
the interaction [36,37]. We verify this behavior by prepar-
ing an eigenstate of σ̂x, tuning the qubit axis of the
interaction to be σ̂y by adjusting the relative phase of
the sidebands on the coupling mode (see Appendix B), and
measuring hσ̂xi as a function of time [Fig. 2(c)]. The
measurements reveal dephasing rates that are suppressed
when Δb increases, as expected. Similar to the interaction
on the tuning mode, the conditional displacement strength
gy and detuning Δb can be controlled in situ. Ultimately,
this yields a tunable measurement-induced σ̂y dephasing
with a finite bandwidth, which we will proceed to activate
in conjunction with the coherent interaction on the tuning
mode. Full experimental calibration details for both inter-
actions fĤa; Ĥbg are provided in Appendix D.

B. Demonstration of wave-packet branching

Before combining the two conditional displacement
interactions to enact ĤLVC, we first perform a control
experiment to observe branching of a reactive wave packet
due to the intrinsic noise of our quantum simulator. Under
Ĥa, where the eigenstates of σ̂x determine the two potential
surfaces, we define branching of a reactive wave packet to
be a process (either coherent or noisy) that flips jþi ↔ j−i,
which causes the wave packet to branch to the opposite
potential surface [Fig. 3(a)]. Note that this process bears
resemblance to trajectory-based surface hopping algo-
rithms [38,39], except that in those algorithms nuclei are
treated classically. We can probe this effect, while also
simultaneously verifying that we have control over two
simultaneous conditional displacement interactions, by
enacting the following control Hamiltonian:

Ĥx=ℏ ¼ Δaâ†âþ Δbb̂
†b̂þ σ̂x½gxðâþ â†Þ þ gyðb̂þ b̂†Þ�:

ð4Þ

We engineer Ĥx by adjusting the sideband drive phases to
align the interaction of bothmodes to σ̂x (seeAppendixB). In
this scenario, the eigenstates of Ĥx are product states in the
uncoupled basis fj∓i ⊗ D̂ð�αgÞjnia ⊗ D̂ð�βgÞjnibg,
where dissipation modifies the value of βg ¼ gy=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

b þ κ2b=4
q

and fjnia=bg are Fock state ladders of each

mode. As such, any measurement-induced dephasing from
the coupling mode should not perturb the dynamics of a
reactive wave packet since they do not cause transitions

between j�i. Thus, our previous description of branching
remains valid in the case ofwhite noise andwe do not have to
consider the dynamics of the coupling mode.
For our control experiment, we enact Ĥx with calibrated

parameters gx=2π ¼ 410 kHz, Δa=2π ¼ 324 kHz, gy=2π≈
156 kHz, and Δb=2π ≈ 0 kHz. We prepare a ground
state of the tuning mode j−i ⊗ j þ αgia ⊗ j0ib (see
Appendix D) and let the system evolve under Ĥx for a
delay time τ ¼ 10 μs that is short compared to the intrinsic
coherence time of the qubit τ < Tx

2ρ (here we label the
decoherence with a superscript x to indicate it is measured
with Ĥx active). Next, we simultaneously measure the qubit
in the σ̂x basis and perform Wigner tomography on the
cavity using the ancilla transmon [16]. In the language of
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FIG. 3. Wave-packet branching under white noise dephasing.
(a) A ground state reactive wave packet j−i ⊗ jαgi branches from
the red potential surface to the blue potential surface when a
dephasing event flips the electronic qubit from j−i to jþi (and
vice versa). When the wave packet branches at random times, it
will subsequently evolve along the blue potential surface which
diffuses the oscillator state toward a mixed state. (b) Measured
(left) and simulated (right) Wigner functions of the tuning mode
conditioned on the σ̂x measurement outcome being either j−i
(top, P− ¼ 91%) or jþi (bottom, Pþ ¼ 9%) after evolving
jψ0i ¼ j−i ⊗ j þ αgia ⊗ j0ib for 10 μs under Ĥx with the
parameters listed in the main text. Experimentally, the overall
phase of the measured Wigner functions is determined by the
phase acquired by the cavity relative to the initial displacement
due to Stark shifts and is free to be adjusted [40]. The phase in the
simulation is aligned to that of the coherent projected data (j−i).
Additional deviations of the experimental data from the simu-
lation are likely due to higher order Hamiltonian terms, whose
precise calibration and control remain an open task left for future
experiments.

OBSERVATION OF WAVE-PACKET BRANCHING THROUGH AN … PHYS. REV. X 13, 011008 (2023)

011008-5



quantum dynamics, the Wigner distribution is function in a
phase space that contains full information about the
quantum state. The marginal distributions represent
wave-packet probability distributions of the tuning mode
along position and momentum, which in our case is
represented by the real and imaginary components of the
electromagnetic field fReðαÞ; ImðαÞg. Correlating the
tomography results with the qubit measurement outcome
reveals that the wave packet remains coherent if the qubit
did not experience a dephasing event, i.e., stays in j−i, or
fully dephases otherwise if environmental noise caused a
flip from j−i → jþi [Fig. 3(b)]. Because the time of each
individual dephasing event is unknown to the experimen-
talist, the oscillator state will be in a uniformly distributed
mixed state with constant total energy in the displaced
frame (reminiscent of a donut in phase space centered
around the opposite ground state). Thus, we have verified
that wave-packet branching indeed occurs alongside qubit
dephasing in our quantum simulator, and that we are able to
faithfully enact two conditional displacement Hamiltonians
simultaneously.

C. Dissipative dynamics through a conical intersection

Thewave-packet branching observed under Ĥx and awhite
noise dissipator ðγx2ρ=2Þ × D½σ̂y�ρ̂, where 2π × γx2ρ ¼
1=Tx

2ρ, largely does not depend on the location of the reactive

wave packet, and thus on the corresponding energy gap∝ σ̂x.
Under ĤLVC and the conical intersection, this is no longer the
case. To demonstrate this, we activate ĤLVC with calibrated
parameters gx=2π¼158.0kHz,Δa=2π¼125.8kHz, gy=2π ¼
115 kHz, and Δb=2π ≈ 0 kHz. With our confirmed under-
standing that qubit dephasing along σ̂x drives wave-packet
branching, we prepare the system with reactive wave packets
at different locations j−i ⊗ fj0ia; jαgia; j2αgiag ⊗ j0ib and
directly monitor hσ̂xi as a function of time [Fig. 4(a)]. We
observe that the qubit dephasing is both highly nonexponen-
tial and stronger upon passage of the reactive wave packet
through the intersection. Additionally, we further verify that
this behavior indeed correlates with dephasing of the cavity
state by takingWigner functionsof an initially displacedwave
packet before and after passage through the conical inter-
section. In this instance,we reduce the interaction strengths of
the reactive potential surface to get a clear signature of
branchingover the course of oneperiodofmotion, andchoose
zero detuning on the coupling mode’s conditional displace-
ment to achieve the strongest dephasing, representing a very
slow intranuclear mode.
In order to qualitatively understand the dissipative

dynamics that we observe, we can imagine treating the
tuning mode classically. Here, we are left with a simplified
Hamiltonian,

(a)
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-3 30

Im
(�

)

-3

3

0

-1

0

1

Parity

(b)

Delay time � (μs)

FIG. 4. Branching through a conical intersection. (a) Top: measured expectation value of σ̂x with standard error bars over time for the
three different initial states j−i ⊗ jα0ia ≈ fj0iaðmagentaÞ; jαgiaðblue greenÞ; j2αgiaðorangeÞg ⊗ j0ib, where αg ¼ gx=Δa ≈ 1.26. The
magenta wave packet prepared at the CI immediately dephases, whereas the other two dephase more slowly, as they are farther away.
After half of an oscillation period τ ∼ 1=ð2ΔaÞ, the orange wave packet arrives at the CI and dephases. Solid lines are predictions from a
master equation simulation using independently fitted parameters. Dashed lines represent the negligible background decoherence due to
Tx
2ρ on the timescale of the interaction and dissipation. Bottom: unconditional Wigner tomography on the tuning mode at τ ¼ 2 μs (left)

and 6 μs (right) for preparing jα0ia ≈ j2αgia, revealing a coherent wave packet before and dephased state after passage through the CI.
The distortion of the Wigner function from a Gaussian at τ ¼ 2 μs suggests the presence of a residual self-Kerr nonlinearity in the
oscillator. (b) A semiclassical interpretation of the dephasing versus location of the three initial wave packets prepared in (a). The
potential surfaces are shown in dashed lines to emphasize that they are no longer exact in the diagonalized basis of ĤLVC. The dissipative
dynamics arises from a competition between the σ̂x energy gap E with the finite strength of the dephasing Γmeas.
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ĤZeno=ℏ ¼ EðxÞσ̂x þ Δbb̂
†b̂þ gyσ̂yðb̂þ b̂†Þ; ð5Þ

subject to single photon loss on mode b̂ at a rate κb. The
function EðxÞ can be interpreted as the position-dependent
energy gap (in frequency units) between qubit states for a
conditional displacement interaction. At the CI, i.e., at
x ¼ 0, this energy gap vanishes and we are left with the
environment measuring σ̂y with a measurement strength
Γmeas ¼ g2yκb=½ðκb=2Þ2 þ Δ2

b� in the steady state where
gy ≪ κb. Away from the origin, the qubit has a finite
energy along an axis orthogonal to that of the measurement
and we recover a scenario reminiscent of Zeno dynamics of
a driven qubit [41]. This reduces the effective measurement
strength, resulting in slower decoherence and thus reduced
branching events [Fig. 4(b)]. As such, a semiclassical
approximation would correspond to choosing a time-
dependent trajectory xðtÞ for an initial Gaussian wave
packet. Interestingly enough, this model contains regions
in parameter space where the steady-state qubit polarization
is not 0.5 as one may naively expect. A full in-depth
analysis is provided in Appendix G. In our full model, wave
packets in the tuning mode will diffuse in phase space due
to the branching, resulting in dynamics that are quantita-
tively different from the above simplified model.

IV. OUTLOOK

Modifications to our experimental setup can be made to
expand the scope of dynamics in our LVC model. For
instance, by overcoupling the tuning mode to a trans-
mission line, the reactive coordinate will experience dis-
sipation which would eventually localize an initially
excited wave packet into the two ground states and define
a branching ratio. The addition of κa as a tuning knob,
particularly in the regime κa ∼ κb, expands the landscape of
competing forces in our model and represents a more
realistic description of a reaction. We note the possibility of
tuning the decay rate of each oscillator in situ via
mechanical means in our 3D architecture, which would
enable a flexible way to explore the wider range of
parameter space.
On a broader scale, it will be necessary to both scale up our

simulator and add complexity to our model in order to
simulate larger molecules and challenge classical methods.
As described in Appendix B, our method of enacting ĤLVC
can easily be extended to existing multimode systems where
a large number of cavity modes (∼10) are dispersively
coupled to a single transmon, such as in Refs. [14,15].
Expanding from the LVC model to include higher order

couplings, however, will require the development of new
control techniques that have yet to be proposed for any
system. This would allow for a more accurate modeling of
realistic systems, whose dynamics are heavily influenced
by nuclear topography. The flexibility of engineering the
Josephson potential to enact mixing processes of various

orders poses promise for this task [42,43]. Furthermore,
systems that have Franck-Condon regions far from the CI
will translate to larger photon numbers in our simulator. As
such, precisely controlling the desired nonlinear reaction
Hamiltonian over the domain of larger photon numbers will
be a central challenge to address in future experiments.
Beyond quantum chemistry, the successful implementa-

tion of our quantum simulator motivates the investigation
of novel cavity QED physics [44,45]. The primary advan-
tage of our approach is the in situ tunability of the
constituent interactions in a quantum simulator to explore
system dynamics in various parameter regimes.

V. CONCLUSION

In summary, our results highlight the interplay between
coherent evolution and engineered dissipation in a system
whose energy landscape contains a CI. We achieve this via
careful Hamiltonian engineering of a circuit QED processor
involving five simultaneous microwave drives and engi-
neered dissipation, along with the appropriate state prepa-
ration and measurement protocols to observe branching
dynamics. In particular, branching events arise when
dissipation in the coupling mode induces flips on the
electronic state and correspondingly causes the reactive
wave packet to jump onto the opposite potential surface.
These branching events are at the heart of chemical reaction
dynamics, such as the cis-trans isomerization reaction of
rhodopsin [46], a central process in human vision, and
occur more frequently upon passage through the CI. Our
experiment demonstrates and further confirms the immense
flexibility of this platform to perform quantum information
processing tasks by dressing microwave modes with
continuous drives [33,47,48], and constitutes an important
step toward investigating more complex chemical phenom-
ena with higher degrees of accuracy. It is worth noting that
the techniques developed in our work may readily be
applicable to control multimode bosonic systems coupled
to one or a few qubits [15,49]. Looking ahead, incorpo-
rating additional features into our simulator such as addi-
tional controlled nonlinearities and structured dissipators,
while scaling up the number of electronic states and
rovibrational modes, will enable more accurate simulation
of larger molecules. More broadly, this expands the land-
scape of controllable qubit-oscillator interactions in a
circuit QED platform, which may be useful for bosonic
quantum computation, error correction, and simulation.
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APPENDIX A: CONSTRUCTING A DIABATIC
HAMILTONIAN CONTAINING A CONICAL

INTERSECTION

In this appendix, we describe the general formalisms
behind obtaining various model and/or ab initio molecular
Hamiltonians that involve strong vibronic coupling. We
begin with a brief review of adiabatic potential energy
surfaces and highlight the difficulties that arise in the
vicinity of conical intersections. This motivates the use of
diabatic electronic states, which form the basis of the
Hamiltonians that we consider [50].
The standard molecular Hamiltonian is

Ĥmol ¼ T̂nð∂R⃗Þ þ T̂eð∂r⃗Þ þ V̂ðr⃗; R⃗Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ĥe

; ðA1Þ

where T̂ and V̂ correspond to kinetic and Coulomb
potential energies, respectively, and the subscripts n
and e denote nuclei and electrons. r⃗ and R⃗ represent the
positions of the electrons and nuclei, respectively.
The conventional approach based on the Born-

Oppenheimer approximation begins with noting that the
electronmassesme aremuch smaller than the nuclearmasses
mN . This motivates momentarily dropping T̂nð∂R⃗Þ ∝ 1=mN

altogether, leaving behind a reduced Hamiltonian of the
electrons only with parametric dependence on the nuclear
coordinates R⃗. By choosing an ansatz for the total molecular
wave functionΨðr⃗; R⃗Þ ¼ Σiφiðr⃗; R⃗ÞχiðR⃗Þ, we get a reduced
electronic Schrodinger equation:

Ĥeφiðr⃗; R⃗Þ ¼ EiðR⃗Þφiðr⃗; R⃗Þ; ðA2Þ

where EiðR⃗Þ is the potential energy surface for the ith
electronic eigenstate. Here, we have identified a complete set
of adiabatic electronic eigenfunctions φiðr⃗; R⃗Þ. Returning to
the full Schrodinger equation,

ĤmolΨðr⃗; R⃗Þ ¼ ½T̂nð∂R⃗Þ þ Ĥe�
X
i

φiðr⃗; R⃗ÞχiðR⃗Þ; ðA3Þ

we can obtain a reduced equation for the nuclear motion by
integrating over a complete set of adiabatic electronic
eigenfunctions φ�

jðr⃗; R⃗Þ. This brings out terms such as

hφjðr⃗; R⃗Þj∇̂RĤejφiðr⃗; R⃗Þi
EjðR⃗Þ − EiðR⃗Þ

; ðA4Þ

which arise from the application of T̂nð∂R⃗Þ ∝ −ð1=2mNÞ∇̂2
R

onφiðr⃗; R⃗Þ. These are commonly referred to as nonadiabatic
coupling terms in the literature. It is clear that in the vicinity
of a conical intersection, these terms diverge as the denom-
inator becomes very small and the adiabatic electronic basis
fails to be an appropriate basis for calculations and analyses.
Given the aforementioned issue, one can consider

instead a diabatic electronic basis ϕkðr⃗Þ such that the
molecular wave function can be expressed as

Ψðr⃗; R⃗Þ ¼
X
k

ϕkðr⃗Þχ0kðR⃗Þ; ðA5Þ

where the diabatic states are, by definition, diagonal in the
nuclear kinetic energy operator. Off-diagonal couplings
between electronic states must of course exist, but now they
arise via the potential hϕjjV̂ðr⃗; R⃗Þjϕii and do not involve
wave-function derivatives.
This forms the basis for a general vibronic coupling

Hamiltonian:

ĤVC ¼
X
n

jϕni½T̂n þWnnðR⃗Þ�hϕnj þ
X
n≠m

jϕniWnmðR⃗Þhϕmj:

ðA6Þ

In our experiment, we consider a minimal model for a two-
dimensional linear vibronic coupling Hamiltonian, where
we have for two normal modes:

T̂n ¼
P̂2
t

2mt
þ P̂2

c

2mc
; ðA7Þ

Ŵ ¼

0
B@

P
i¼t;c

1
2
miΔ2

i Q̂
2
i þ gxq̂t gyq̂c

gyq̂c
P
i¼t;c

1
2
miΔ2

i Q̂
2
i − gxq̂t

1
CA;

ðA8Þ
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with momentum P̂t=c and position Q̂t=c with effective
masses mt=c and frequencies Δt=c, respectively. By recast-
ing these coordinates into dimensionless creation and
annihilation operators,

P̂t=c ¼ pt=c
ZPFp̂t=c; ðA9Þ

Q̂t=c ¼ qt=cZPFq̂t=c; ðA10Þ

where p̂t ¼ iðâ† − âÞ, p̂c ¼ iðb̂† − b̂Þ, q̂t ¼ âþ â†, q̂c ¼
b̂þ b̂†, and qiZPF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2miΔi

p
, pi

ZPF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏmiΔi=2

p
for

i ∈ ft; cg, we arrive at ĤLVC [Eq. (3) of the main text].

APPENDIX B: ENGINEERING CONDITIONAL
DISPLACEMENTS

Here, we describe how we engineer the conditional
displacement interactions that make up ĤLVC. As discussed
in the main text, this Hamiltonian consists of two simulta-
neous conditional displacement interactions fĤa; Ĥbg of a
single qubit to two different cavity modes, where the qubit
coupling axes are orthogonal. To simplify the derivation,
wewill begin by focusing on how we enact just one of these
interactions. As we will see, adding additional interactions
to other cavity modes is relatively straightforward, and the
qubit coupling axis is freely adjustable in the effective
x-y plane.
We expand upon the derivation provided by Ref. [33] by

incorporating the finite anharmonicity of the transmon
mode. We begin with the static Hamiltonian of a transmon
mode q̂ dispersively coupled to a cavity mode ĉ:

Ĥstatic=ℏ¼ ωcĉ†ĉþωqq̂†q̂−
αq
2
q̂†q̂†q̂ q̂−χĉ†ĉq̂†q̂; ðB1Þ

where αq is the transmon anharmonicity and χ is the
dispersive shift. At a high level, we will see that the
conditional displacement interaction arises by transforming
the cross-Kerr interaction between the transmon and the
cavity. Thus, our approach will be to consider how driving
each mode transforms the static interaction. Specifically,
we drive the system with one tone coupled to the transmon
and two coupled to the cavity:

Ĥd=ℏ ¼ 2εR cos½ðωq þ ΔRÞt�ðq̂þ q̂†Þ
− 2iε1 sinðω1tþ φ1Þðĉ − ĉ†Þ
− 2iε2 sinðω2tþ φ2Þðĉ − ĉ†Þ; ðB2Þ

such that the full system Hamiltonian is described by
Ĥ ¼ Ĥstatic þ Ĥd. For convenience, we regroup the terms
such that we can write Ĥ ¼ Ĥqðq̂; q̂†Þ þ Ĥcðĉ; ĉ†Þ þ Ĥint,
where Ĥint=ℏ ¼ −χĉ†ĉq̂†q̂. We first go into the rotating

frame of the transmon drive via Ĥ → Û Ĥ Û† þ i _̂UÛ†,
where Û ¼ eiðωqþΔRÞtq̂†q̂:

Ĥ=ℏ ¼ −ΔRq̂†q̂ −
αq
2
q̂†q̂†q̂ q̂þεRðq̂þ q̂†Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ĥq=ℏ

þ Ĥc=ℏ − χĉ†ĉq̂†q̂; ðB3Þ
noting that we have performed the rotating wave approxi-
mation and discarded terms rotating at OðωqÞ.
Furthermore, the cross-Kerr term remains unaffected since
it is proportional to q̂†q̂. Now, we diagonalize Ĥq and
reexpress it in the resulting eigenbasis:

Ĥq=ℏ ¼
X
i

ϵijiihij; ðB4Þ

wherewe label i ∈ fþ;−; f̃;…g in correspondencewith the
fact that wewill beworking in a regimewhere the two lowest
driven eigenstates strongly resemble those of a standard qubit
that is driven on resonance, but now incorporate a weak
dressing with higher levels of the transmon. We identify the
Rabi frequency to be the energy difference between the
lowest two eigenstates ϵþ − ϵ− ¼ ΩR and define an effective
anharmonicity as ϵ− − ϵf̃ ¼ ΩR þ α̃. At this stage,we turn to
numerics and construct a unitary basis transformation
between the undriven and driven transmon eigenstates for
a finite truncation of the transmon Hilbert space. We then
reexpress the cross-Kerr interaction in the driven basis,
giving us

Ĥ=ℏ ¼
X
i

ϵijiihij þ Ĥc=ℏ − χĉ†ĉ
X
jk

ujkjjihkj: ðB5Þ

We can further simplify this by going into the frame of the
driven transmon Û ¼ eiĤqt=ℏ, which performs the trans-
formations jji → eiϵjt=ℏjji, resulting in

Ĥ=ℏ ¼ Ĥc=ℏ − χĉ†ĉ
X
jk

ujkeiðϵj−ϵkÞt=ℏjjihkj
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

q̂†q̂

; ðB6Þ

where ujk ¼ u�kj. We consider the terms associated with the
lowest three levels explicitly:

q̂†q̂¼ uþþjþihþjþu−−j−ih−jþuf̃ f̃jf̃i ˜hfj
þuþ−eiΩRtjþih−jþu−þe−iΩRtj−ihþj
þu−f̃e

iðΩRþα̃Þtj−i ˜hfjþuf̃−e
−iðΩRþα̃Þtjf̃ih−j

þuþf̃e
ið2ΩRþα̃Þtjþi ˜hfjþuf̃þe

−ið2ΩRþα̃Þtjf̃ihþj: ðB7Þ

At this stage, we pause and turn to simplify Ĥc. First, we
choose to parametrize the two drive frequencies
ω1=2 ¼ ωc − Δc ∓ ΩR. By going into the rotating frame
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at the average of the drive frequencies Û ¼ eiðωc−ΔcÞtĉ†ĉ, we
arrive at

Ĥ=ℏ ¼ Ĥint=ℏþ Δcĉ†ĉ − ε1ðĉe−iΩRtþiφ1 þ ĉ†eiΩRt−iφ1Þ
− ε2ðĉeiΩRtþiφ2 þ ĉ†e−iΩRt−iφ2Þ: ðB8Þ

Finally, we assume that the drive strengths are equal ε2 ¼
−ε1 ¼ ε and parametrize the drive phases as their sum and
differential components φΣ ¼ ðφ1 þ φ2Þ=2 and φδ ¼
ðφ1 − φ2Þ=2. This allows us to further simplify our
Hamiltonian to

Ĥ=ℏ ¼ Ĥint=ℏþ Δcĉ†ĉ − 2iε sinðΩRt − φδÞ
× ðĉeiφΣ − ĉ†e−iφΣÞ: ðB9Þ

We can observe here that the sum phase of the two sidebands
contributes simply as a static rotation of ĉ; therefore we can
always align to this frame by experimentally adjusting this
phase. Hence, we will set φΣ ¼ 0 here on out to simplify our
expressions. At this stage, we aim to eliminate this time-
dependent drive term by performing a displacement trans-
formation Û ¼ eξðtÞĉ†−ξ�ðtÞĉ. This is achieved by choosing
ξðtÞ¼ð2ε=ΩRÞcosðΩRtþφδÞ¼ξ0ðeiðΩRtþφδÞþe−iðΩRtþφδÞÞ,
where ξ0 ¼ ðε=ΩRÞ, which also transforms ĉ → ĉþ ξðtÞ.
This gives

Ĥ=ℏ¼ Δc½ĉ† þ ξ�ðtÞ�½ĉþ ξðtÞ�
− χ½ĉ† þ ξ�ðtÞ�½ĉþ ξðtÞ�

X
jk

ujkeiðϵj−ϵkÞt=ℏjjihkj

¼ Δc½ĉ†ĉþ ξðtÞðĉþ ĉ†Þ þ ξ20�
− χ½ĉ†ĉþ ξ0ðeiðΩRtþφδÞ þ e−iðΩRtþφδÞÞðĉþ ĉ†Þ þ ξ20�
×
X
jk

ujkeiðϵj−ϵkÞt=ℏjjihkj: ðB10Þ

By substituting the expansion for q̂†q̂, discarding terms that
rotate at ΩR and higher, and neglecting constant offsets, we
are left with an effective static interaction Hamiltonian:

Ĥ=ℏ ¼ Δcĉ†ĉ

− χξ0uþ−ðe−iφδ jþih−j þ eiφδ j−ihþjÞðĉþ ĉ†Þ
− χĉ†ĉðuþþjþihþj þ u−−j−ih−j þ uf̃ f̃jf̃i ˜hfjÞ:

ðB11Þ

Importantly, this approximation requires larger Rabi frequen-
cies as we drive harder to induce larger desired interaction
strengths (see Appendix B 1). Finally, by neglecting the final
term (see Appendix B 2), we arrive at the conditional
displacement Hamiltonian between the transmon and one
cavity mode:

Ĥ=ℏ¼ Δcĉ†ĉ− g½cosðφδÞσ̂x þ sinðφδÞσ̂y�ðĉþ ĉ†Þ; ðB12Þ

where g ¼ χξ0uþ− ≈ ðχξ0=2Þ and we have defined our Pauli
operators such that σ̂z ¼ jþihþj − j−ih−j. Here, we have
formally identified the qubit that wewill usewithin the larger
driven transmon Hilbert space. As we can see, the coupling
axis of the qubit fully depends on the differential phase φδ of
the cavity sidebands relative to the qubit phase (which we
have defined as zero here), which can be easily adjusted
experimentally without invoking additional Hamiltonian
terms.Note that throughout our derivations,we have assumed
no accidental frequency collisions that bring unintended
Hamiltonian terms into resonance, as would for instance
occur if the magnitude of the Rabi frequency ΩR approaches
the magnitude of the transmon anharmonicity αq.
This scheme extends relatively straightforwardly to

multiple cavity modes dispersively coupled to the same
transmon. Incorporating a pair of sidebands on each addi-
tional cavity is sufficient to activate a conditional displace-
ment involving the driven transmon, as long as the
resonance condition is satisfied. It is also worth noting
that we have assumed that each sideband couples only to a
single cavity mode—in practice, finite crosstalk compli-
cates the calibration procedure of activating all sidebands
together. In our experiment, we enact the aforementioned
Hamiltonian Eq. (B12) for two cavity modes ĉ ∈ fâ; b̂g
coupled to orthogonal axes of the qubit.

1. Optimizing the static cross-Kerr

Here, we consider Eq. (B10) and ask the following
questions. How large do we need the Rabi frequency to be
in order to safely discard all the rotating terms? Does the
answer to this question inform any design choices with
regard to our static Hamiltonian? To answer these ques-
tions, we first consider all of the different terms that rotate
at ΩR, neglecting any phases:

½Δcξ0ðĉþ ĉ†Þ − χuþ−ĉ†ĉσ̂∓ − χξ20uþ−σ̂∓�e�iΩRt:

Note that there are also terms that rotate at α̃, 2ΩR;ΩR þ α̃,
2ΩR þ α̃, and 3ΩR þ α̃, but since the prefactors will all be
of the same order, we consider the smallest rotating
frequency for the most stringent condition. Importantly,
we also require that α̃ > ΩR, otherwise other terms involv-
ing jf̃i will be activated and we can no longer restrict
ourselves to a qubit subspace. This sets a limit on how large
of a Rabi frequency can be used for a fixed anharmonicity
αq. The above terms reveal that our conditions for the RWA
are

ΩR ≫
�
Δajξ0hðĉþ ĉ†Þij; χ

2
hĉ†ĉi; χ

2
ξ20

�
; ðB13Þ

which notably depends on the state of the cavity. It is clear
from this that as the conditional displacement interaction
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strength g ≈ ðχξ0=2Þ increases, the approximation becomes
less valid. However, we can instead rewrite the condition
for a fixed g:

ΩR ≫
�
Δajξ0hðĉþ ĉ†Þij; g

ξ0
hĉ†ĉi; gξ0

�
; ðB14Þ

which reveals that there is indeed an optimal value for ξ0
given a fixed g. For considering photon numbers hĉ†ĉi ∼
Oð1Þ and g ≈ Δc, we best satisfy all these conditions by
choosing ξ0 ≈ 1. This, in turn for a fixed g, suggests that we
should roughly target a static cross-Kerr strength of χ ≈ 2g.

2. Choice of static detuning of the Rabi drive

The final term in Eq. (B11) represents an effective cross-
Kerr interaction between cavity photons and the driven
transmon eigenstates. For a true two-level system driven on
resonance, which is a good approximation for transmons in
the regime that the Rabi frequency is much weaker than the
anharmonicity ΩR ≪ αq, one finds that uþþ ¼ u−− ¼ 1=2,
which results in a static frequency shift of the cavity and
hence a nulled cross-Kerr. As the Rabi frequency ΩR
approaches the anharmonicity αq, however, uþþ ≠ u−−
for a drive that is on resonance owing to the hybridization
of the driven eigenstates with higher energy levels of the
transmon. This results in a residual cross-Kerr which can be
interpreted as a slight shift in the Rabi frequency due to the
presence of photons in the cavity. This is problematic as it
both changes the resonance condition of the interaction and
biases our measurement scheme as a function of the cavity
photon distribution.
By adding an additional static detuning knob ΔR on the

Rabi drive, we can determine an optimal working con-
figuration that nulls this effective cross-Kerr. We show this
optimization in Fig. 5. The presence of this static detuning
thus dictates that we perform an adiabatic preparation of
our driven qubit eigenstates. This has the further benefit of
eliminating leakage events associated with large Rabi

frequencies and finite transmon anharmonicity, but has
an additional challenge which we address in Appendix D 5.

APPENDIX C: EXPERIMENTAL DETAILS

A list of the static system parameters is given in Table I.
A schematic of the wiring diagram for this experiment is
depicted in Fig. 6. We comment below on notable features
not explicitly shown in the wiring diagram.

1. Wiring diagram

A field-programmable gate array-based quantum con-
troller synchronizes multiple modules that contain DACs
and ADCs for generating the pulses (I and Q control) and
digitizing the readout signals, respectively. rf switches are
only open while pulses are played on a corresponding
mode. The control line for the tuning mode is split between
the resonant drive (left) and sideband pumps (right), which
are never played simultaneously; thus a closed loop where
both rf switches are open together is never formed. The
band-stop filter on the pump line is centered on the tuning
mode’s resonance frequency, suppressing pump-induced
noise that may lead to heating of the cavity mode. dc blocks
are placed around each active component, as well as on
each line at the boundary of the cryostat (i.e., the line
separating 300 and 4 K in the schematic). All components
in the 20 mK region are thermally anchored to the mixing
chamber plate via OFHC copper braids. We use Josephson
Parametric Converters (JPCs) as quantum limited ampli-
fiers—only coupling to the signal port is shown.

2. Temperature stabilization

As the derivations of Appendix B suggest, the resonance
condition for enacting our reaction Hamiltonian [Eq. (3) of
the main text] relies on matching the sideband detunings to
the Rabi frequency. The Rabi frequency depends linearly

FIG. 5. Optimizing the static detuning. By numerically diag-
onalizing Ĥq=ℏ for various values of ΔR, we can plot the
dimensionless factor that contributes to the residual cross-Kerr
for ΩR=2π ¼ 80 MHz and αq=2π ¼ 244 MHz. We find an
optimal value of ΔR=2π ≈ 7 MHz.

TABLE I. List of static system parameters.

System quantity Parameter Value

Transmon frequency ωq=2π 4850 MHz
Transmon anharmonicity αq=2π 244 MHz
Transmon relaxation Tq

1
80 μs

Transmon decoherence Tq
2

7 μs
Tuning mode frequency ωa=2π 5436 MHz
Tuning mode linewidth κa=2π 0.23 kHz
Coupling mode frequency ωb=2π 6506 MHz
Coupling mode linewidth κb=2π 320 kHz
Tuning mode–Transmon coupling χaq=2π 295 kHz
Coupling mode–Transmon coupling χbq=2π 210 kHz
Ancilla frequency ωqa=2π 4509 MHz
Ancilla relaxation Tqa

1
60 μs

Ancilla decoherence Tqa
2

10 μs
Tuning mode-Ancilla coupling χa;qa=2π 845 kHz
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on the amplitude of the Rabi drive [roughly speaking, using
the two-level approximation that ΩR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2R þ Δ2

R

p
and we

operate in a regime where ϵR ≫ ΔR, resulting in
ΩR ≈ ϵR½1þ ðΔ2

R=2ϵ
2
RÞ�], and thus is susceptible to ampli-

tude fluctuations such as those caused by variations in the
gain at any stage of our microwave control chain. A
dominant source of these variations is due to ambient

temperature fluctuations in the lab. To this end, we suppress
these fluctuations by anchoring the components (particu-
larly a Marki LXP IQ mixer and MITEQ low noise
amplifier; see turquoise box in Fig. 6) to a Thorlabs optical
breadboard and placing the breadboard in a cardboard box.
We then actively stabilize the temperature of the air in the
box via an op-amp-based proportional-integral-derivative
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feedback controller that heats an Ohmite ceramic resistor
(R ¼ 2.5 Ω) based on a differential measurement of the
temperature using a 100 kΩ thermistor referenced to a set
point. Figure 7 shows the typical performance of our
stabilization and correlates the temperature variations with
the amplitude variations as measured via the Rabi fre-
quency. Over the course of 24 hours, we achieve an
absolute temperature stability within 50 mK and a relative
amplitude stability of 100 kHz=72.9 MHz ≈ 10−3, sug-
gesting that we have a relative amplitude sensitivity of
1% per 500 mK. We note that the timescale for a typical
calibration and measurement of a dataset presented in this
paper is roughly a few hours, meaning we can operate in a
window where the relative amplitude stability can be much
better than 10−3.

APPENDIX D: CALIBRATION PROCEDURES

In this appendix, we describe the various calibration
experiments in detail along with their pulse sequences.

1. Tomography of the Rabi qubit

We initialize eigenstates j�i of σ̂x in the driven frame by
first preparing the corresponding states of the undriven

transmon via a standard π=2 rotation and then adiabatically
ramping on the Rabi drive τRramp ≫ 1=ΔR. In order to
measure the Rabi qubit in the driven basis, we need a
decoding operation that maps the driven states j�i onto our
measurement basis jg=ei. Given that our decoding oper-
ation is a π=2 rotation performed using the same microwave
clock as the initial π=2 rotation, we need to know the phase
evolution of the j�i states in the frame of this drive
centered at the bare g − e transition frequency ωq of the
transmon. Notably, this phase depends on the Rabi fre-
quencyΩR, the static detuningΔR, the evolution time τ, and
a fixed offset phase φ0:

φdecode ¼ ðΩR − ΔRÞτ þ φ0: ðD1Þ

By calibrating this rate appropriately, we are able to
continuously measure hσ̂xi as a function of time and extract
a corresponding driven coherence time (see Fig. 8) [34]. In
all of the experiments in this paper, we choose to map
jþi → jei and j−i → jgi. As such, we have the map-
ping hσ̂xi ¼ 2hP̂ei − 1.
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FIG. 7. Tracking system stability over time. Top panel: simultaneous measurements of the Rabi frequency and the ambient
temperature (inferred from the measured thermistor resistance) where the active microwave components are held. The data shows that
the two are correlated. Middle panel: extracting driven coherences T2ρ suggests a stable amplitude noise spectrum within an acquisition
time τacq ¼ 3 min (bottom left-hand panel: a typical time-domain Ramsey trace), with a single instance where the amplitude drift was
large (bottom right-hand panel), as confirmed via looking at the raw data binned 10 shots at a time over τacq.
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2. Individual sideband interactions

The sideband interactions have the form:

Ĥred=ℏ ¼ gĉσ̂−z þ g�ĉ†σ̂þz ; ðD2Þ

Ĥblue=ℏ ¼ gĉσ̂þz þ g�ĉ†σ̂−z ; ðD3Þ

for a general cavity annihilation operator ĉ, and σ̂þð−Þ
z ¼

jẽðg̃Þihg̃ðẽÞj are the raising and lowering operators of the
two driven qubit eigenstates that adiabatically connect to
the ground and first excited state of the transmon. For our

system, we have ĉ ∈ fâ; b̂g. The qualitative behavior of
each individual sideband interacting with the driven qubit
will be different given that we are operating in the regime
where g > κa and g≲ κb. The former will result in either
creating and annihilating two excitations simultaneously
jg̃; 0i ↔ jẽ; 1i (red sideband) or a coherent exchange
between an excitation in the driven qubit and a photon
in the cavity jẽ; 0i ↔ jg̃; 1i (blue sideband) [51]. The
latter will stabilize the qubit in either the excited state jẽi
(red sideband) or the ground state jg̃i (blue sideband) [52].
To solidify the connection with these previous experi-
ments, we note that jg̃i ≈ ð1= ffiffiffi

2
p Þðjgi þ jeiÞ and jẽi ≈

ð1= ffiffiffi
2

p Þðjgi − jeiÞwhen expressed in the basis of undriven
transmon eigenstates.
In order to calibrate the interaction strengths, we will

operate in the restricted two-dimensional subspace of the
joint Hilbert space of the cavity and qubit as described
above. This allows us to simplify our analysis and replace
the qubit raising and lowering operators σ̂�z with general
bosonic creation and annihilation operators d̂ð†Þ. We then
follow Refs. [47,53] and capture the full range of dynamics
by solving the equations of motion for d̂ under Ĥblue and
incorporating a cavity damping rate κ. We also include a
static detuning term δĉ†ĉ to capture the effect of sweeping
the pump frequency that enables the interaction. The
resulting field has the form:

d̂ðtÞ ¼ d̂ð0Þ
Ω

e−κeff t=4
�
Ω cosh

�
Ωt
4

�
þ κeff sinh

�
Ωt
4

�	
;

ðD4Þ

where Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2eff − ð4gÞ2

p
and κeff ¼ κ þ 2iδ.

For each interaction, we prepare our system in either
jẽ; 0i (blue sidebands) or jg̃; 0i (red sidebands) and scan
the frequency of the cavity sideband and the delay time for
a given pump amplitude. By measuring the qubit pop-
ulation, we extract hd̂†ðtÞd̂ðtÞi and can fit the resulting
data using Eq. (D4). For the exchange interaction under
the blue sideband, we have hd̂†ð0Þd̂ð0Þiblue ¼ 1 for the
qubit initially in its excited state, giving us an expression
for hd̂†ðtÞd̂ðtÞiblue. For the red sideband, the features are
qualitatively identical, with the exception that the qubit
starts out in the ground state, giving us hd̂†ðtÞd̂ðtÞired ¼
1 − hd̂†ðtÞd̂ðtÞiblue. Notably, this assumes that the effective
interaction strength g is independent of the pump detuning
δ, which is strictly not true but should be a very good
approximation in our regime given that the scale of the
chevron features, set by g, is much smaller than the
absolute detuning from the cavity resonance ∼ΩR. We
allow for an overall amplitude, global offset, and time
offset in our fit, leaving g and κ to be the only free
parameters. In the case of the coupling mode, we first
perform this fit for a range of interaction strengths g ≈ κb
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FIG. 8. Free evolution of the driven Rabi qubit. (a) A Ramsey-
style pulse sequence is used to calibrate the decode rate. The final
π=2 rotation has a phase that depends on both the delay time τ and
the programmed decode rate Ωd. (b) The 2D plot reveals an
optimal decode rate which is inferred to be equal to the true Rabi
frequency offset by the static detuning ΩR − ΔR. (c) The decode
rate can then be fixed to the optimal value to extract a driven
transverse relaxation time T2ρ ≈ 27 μs via fitting to an exponen-
tial decay function (solid line).
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and extract a decay rate κb=2π ≈ 320 kHz. For the
remainder of the calibrations where g < κb, we fix this
quantity and let the interaction strength g be the only free
parameter to be fitted. The full calibration for different
pump amplitudes is shown in Fig. 9.

3. Conditional displacements

The combination of simultaneous red and blue cavity
sidebands enacts a conditional displacement interaction.
This requires that two conditions are fulfilled: (1) the
interaction strengths of each individual sideband interaction
be equal and (2) the frequency difference between the two
sidebands equals twice the Rabi frequency. If these two
conditions are met, then we can model the interaction
using Eq. (B12).
In practice, the presence of each sideband will Stark shift

both the transmon and cavity modes. Thus, to capture the
dominant effect of all of these Stark shifts (which
influences the resonance condition), we perform individual

sideband calibrations with the opposite sideband on but
detuned by an amount larger than the interaction strength we
are using (i.e., by an additional 2 MHz in our experiments).
We scan the pump amplitudes and match the individual
sideband strengths before bringing both sidebands into
resonance. This relies on the assumption that over a variation
of ∼2 MHz, the relative change in the cavity Stark shift,
which influences the dimensionless pump strength that
determines the interaction strength, is negligible. Finally,
we fine-tune the difference frequency of the two sidebands
while keeping the average value fixed [which fixes Δc in
Eq. (B12) in order to account for any change in the Rabi
frequency which we are very sensitive to]. This sensitivity is
revealed bymeasuring the transverse relaxation timeT2ρ, and
choosing a calibration point where this value is maximized,
suggesting that the resonance conditions are fulfilled as well
as possible. This calibration procedure gives us the data
shown in Fig. 2(b) of the main text.
For the tuning mode, the dynamics of an initial vacuum

state jα0 ¼ 0ia evolving under a conditional displacement
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FIG. 9. Calibrating individual exchange interactions. (a) Pulse sequence. The transmon is initialized in either jgi or flipped to jeiwith
a π rotation depending on if the red or blue sideband is activated. The sideband is turned on with a ramp time τSBramp ≫ 1=ΔSB, where
ΔSB ¼ ωpump − ωc is the detuning from the sideband to the Stark-shifted cavity frequency. A frequency selective π rotation of the ancilla
qubit maps the vacuum projector of the tuning mode onto the state of the ancilla, which is subsequently measured with the qubit
simultaneously. (b) Interaction strengths g for individual sideband interactions between the driven qubit and the tuning mode (triangles)
or coupling mode (squares). g is extracted via a fit using Eq. (D4) for the red sidebands (red markers) and blue sidebands (blue markers).
Error bars are smaller than the markers. ξ is calibrated via independent measurements of χa=b and the qubit’s Stark shift as a function of
pump amplitude. Dashed and dotted lines represent the expected interaction strength in the ideal case g ¼ χa=bξ=2 for the tuning and
coupling modes, respectively. Deviations of the data from a linear relation for the tuning mode coincides with regions where the Stark
shift becomes nonlinear in pump power. Slight disagreement between the data and theory expectation for the coupling mode may stem
from an inaccurate estimate of χb and from a sensitivity of the extracted fit values to a true value of κb. (c) Raw calibration data of the
qubit population for a fixed pump amplitude [dashed circles in (b)] for the tuning mode (top) and coupling mode (bottom). The sideband
detunings are referenced to the cavity frequencies, showing that we are operating at Rabi frequencies ΩR=2π ≈ 80 MHz.
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interaction will be a circular trajectory in phase space
around the location of the ground state αg ¼ gx=Δa. By
measuring the population in jn ¼ 0ia, we are effectively
measuring the overlap of a coherent state with itself as it
oscillates in time. This justifies the use of a simple model,
where the state autocorrelation function is hβe−iΔtjβi ¼
ejβj2ðe−iΔat−1Þ. The corresponding probability is

P0 ¼ jhβe−iΔatjβij2 ¼ e2jβj2ðcos½Δat�−1Þ: ðD5Þ

To make the connection with our model, we choose
β ¼ αg ¼ gx=Δa. We use Eq. (D5) (along with an overall
amplitude and offset to account for preparation and
measurement errors) as our fitting function for the data
in Fig. 2(b) of the main text.

4. Cavity displacements along the interaction axis

As described in Appendix B, the cavity phase of the
conditional displacement [i.e., the phase which defines the
position operator x̂ ∝ ðĉeiφΣ þ ĉ†e−iφΣÞ] is determined by
the sum phase of the red and blue sidebands. Given that we
are turning on the conditional displacement interaction
suddenly (τSBramp ≪ 1=g), the phase of our initial displace-

ment operation D̂ðα0Þ on the tuning mode will determine
the location in the driven phase space where the wave
packet begins. Displacements whose phase is aligned to the
conditional displacement cavity phase will prepare wave
packets along the position axis, whereas care needs to be
taken to prepare wave packets with various momentums
that are located at one of the two ground state positions. In

our experiment, we prepare coherent states with no initial
momentum along the reaction coordinate.
In order to calibrate the displacement phase, we begin

with a calibrated conditional displacement where we have
extracted gx and Δa, which gives us a value for the ground
state amplitude αg ¼ gx=Δa [Fig. 2(b) of the main text].
Note that this does not rely on any displacement phase
since we are starting off in a vacuum state. Next, we scan
the phase of an initial displacement of 2αg and turn on the
conditional displacement interaction for various delay
times. The optimal phase will be the one where we recover
revivals that are half a period out of phase from those in
Fig. 2(b) of the main text. This can be interpreted as
follows. A vacuum state in the lab frame j0ilab looks like a
displaced state j−αgidisp with respect to the displaced
ground state jαgilab ¼ j0idisp, and thus will oscillate around
the ground state, reaching jαgidisp after half a period. By
determining the phase that enables us to prepare jαgidisp
(which is j2αgilab in the lab frame and will return to the
vacuum state j−αgidisp after half a period), we can prepare
any state along the position axis, including the displaced
ground state, as shown in Fig. 10(b).

5. Echoing the residual entanglement
during ramping of the Rabi drive

The adiabatic preparation of our driven qubit eigenstates
as motivated in Appendix B 2 has two benefits: for a fixed
transmon anharmonicity, we can (1) use larger Rabi
frequencies while canceling the residual cross-Kerr and
(2) avoid leakage events to higher transmon levels (up to
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FIG. 10. Calibrating conditional displacements. (a) Pulse sequence. The displacement pulse is played after the Rabi drive is turned on
and the cross-Kerr is nulled. An echo sequence eliminates the residual entanglement between the qubit and cavity during the ramp off of
the Rabi drive. (b) Top: coherent revivals for various initial displacements along the interaction axis, probed through measurement of the
vacuum projector. The contrast is maximized when the wave packet passes through the origin, and oscillations vanish when the ground
state αg ≈ 1.3 is prepared. The data in Fig. 3(b) are taken at the location of the yellow star. Bottom: simultaneous measurement of Tx
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natural heating rates of the dressed eigenstates) associated
with a resonant drive. The primary consequence of this
approach is the undesired interaction between the qubit and
cavity photons during the ramp time of the Rabi drive.
Qualitatively, this undesired interaction stems from

ramping between the static interaction Hamiltonian
Ĥint=ℏ ¼ −χĉ†ĉq̂†q̂ and the driven Hamiltonian where
the cross-Kerr interaction is nulled. Thus, if there are
photons in the cavity during either the ramp on or off of
the Rabi drive, they will entangle with the superposition
states of the qubit that we are manipulating. We can avoid
this effect during the ramp on of the Rabi drive by
performing our displacement operation after the Rabi drive

is fully ramped on, i.e., during the time when the cross-Kerr
interaction is nulled [see Fig. 10(a)]. For addressing the
entanglement during the ramp off of the Rabi drive, we
implement a simple and short echo sequence of the qubit to
undo the interaction. This works because the entanglement
is fully determined by χ and the ramp time τRramp and not the
cavity photon distribution. This is important as we do not
want a scheme which depends on the cavity state that we
are manipulating. Figure 11 shows how implementing this
protocol eliminates spurious features that arise from this
entanglement when performing a decode calibration
experiment [Fig. 8(b)] when Ĥa is active. In practice, this
calibration is only done with respect to photons in the
tuning mode. Given that we operate the coupling mode in a
regime where gy < κb, the photon distribution remains
relatively small and thus any residual entanglement effects
are negligible.

APPENDIX E: EXTENDED DATA AND
POSTSELECTING ON LEAKAGE EVENTS

In this appendix, we present additional data (Fig. 12) that
support what is shown in the main text, specifically
focusing on leakage statistics. Our measurement of the
transmon is able to distinguish between fjgi; jei; jfig on a
single-shot basis, which gives us information on leakage
events outside the qubit manifold that we use for our
experiments. In the absence of decoherence, our adiabatic
preparation scheme should ideally eliminate any leakage to
the second excited state jfi and higher (assuming there are
no accidental resonances induced by the drives). In
practice, any relaxation or heating between undriven trans-
mon levels will lead to transitions between the driven
eigenstates that have finite support across multiple undriven
basis states. In all of the data presented, we postselect away
outcomes where the transmon is measured to be in jfi. We
compile the postselection statistics in Table II, and note that
overall the leakage probabilities are small.

APPENDIX F: MASTER EQUATION
SIMULATIONS

The theoretical predictions for hσ̂xi in Figs. 2(d) and 4(b)
are obtained by performing a numerical simulation of a full
time-domain master equation using a PYTHON-based open
source software (QuTiP):

_̂ρ ¼ −
i
ℏ
½Ĥsim; ρ̂� þ κbD½b̂�ρ̂þ γy

2
D½σ̂y�ρ̂;

where the left-hand side of the equation is the time
derivative of the system’s density matrix and D½Â�ρ̂ ¼
Â ρ̂ Â† − 1

2
Â†Â ρ̂− 1

2
ρ̂Â†Â. We extract hσ̂xi by plotting

Tr[ρ̂qubitσ̂x], where ρ̂qubit ¼ Tra;bρ̂ is the reduced density
matrix of the qubit only. For the measurement-induced
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FIG. 11. Echoing away residual entanglement. Simultaneous
measurement of the vacuum projector on the tuning mode via a
transmon ancilla (left) and the driven qubit (right) while Ĥa is
active. The pulse sequence used for this calibration is shown in
Fig. 10 without (top) and with (bottom) the π rotation and echo
delay τED and only sidebands on the tuning mode. There is no
initial displacement amplitude (α0 ¼ 0). Time dynamics of the
tuning mode’s vacuum projector reveals coherent revivals as
expected [as in Fig. 2(c) of the main text], independent of the
decode rate on the driven qubit. Scanning the decode rate without
the echo sequence results in distortions to the driven Ramsey data
that are correlated with the cavity photon distribution. Imple-
menting the echo sequence eliminates this effect, suggesting that
the systems remain unentangled at all delay times. Here, we use
an optimized value of the delay time τED ¼ 144 ns.
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dephasing in Fig. 2(d), we use Ĥsim ¼ Ĥb from Eq. (2) and
an initial state j−i ⊗ j0ib for various values of Δb. For the
full system dynamics through the conical intersection in
Fig. 4(b), we use Ĥsim ¼ ĤLVC from Eq. (3) and initial
states j−i ⊗ jα0ia ⊗ j0ib for various values of α0.
Across these two simulations, the parameters

fgx;Δa; gy; κbg are determined via independent calibra-
tions, and Δb is estimated via the frequencies of the
sidebands on the coupling mode. The value of γy is set
by an independent measurement of Tx

2ρ, specifically via
γy ¼ 1=Tx

2ρ. Finally, the amplitude and offset are adjusted
using the measured experimental values from the

corresponding Tx
2ρ control measurement, leaving zero free

parameters.

APPENDIX G: DISSIPATION ANALYSIS
AND ZENO DYNAMICS

In this appendix, we describe the oscillator-induced
dissipation of the qubit resulting from the evolution under
the master equation,

_̂ρ¼ −
i
ℏ
½ĤZeno; ρ̂� þ κb

�
b̂ ρ̂ b̂† −

1

2
b̂†b̂ ρ̂−

1

2
ρ̂b̂†b̂

�
; ðG1Þ

(a) (b) (c)

(d)

FIG. 12. Extended data and leakage statistics. (a)–(c) Probability of leaking out of the qubit subspace to jfi for the data presented in
Figs. 2(b), 2(c), and 10, respectively. (d) The same dataset as appears in Fig. 4(a) (left), but including two additional initial states with
jα0ia ¼ jαg=2ia (blue) and j3αg=2ia (red), with the associated leakage probabilities (right). All of the leakage probabilities are
equivalent to the percentage of data that is postselected away for the rest of the data in the paper, which is always less than 5%.

TABLE II. Extended data information. Quantities in brackets correspond to identifiers within a dataset. Different values of Δc,
c ∈ fa; bg, require a fine-tuning calibration on the drive configuration to match Rabi frequency shifts, but preparing different initial
states does not.

Dataset Drives (þRabi) Figures ΩR½Δc�=2π (MHz) T2ρ [α0] (μs) Leakage

Coherent state revivals
82.532 [0.457]

Fig. 12(a)Tuning mode sidebands 2(c) 82.532 [0.355] Not measured
82.492 [0.246]

Measurement-induced
dephasing

79.915 [0] 36.6
Fig. 12(b)Coupling mode sidebands 2(d) 79.9175 [0.4] 40.5

79.9225 [0.8] 36.3
Coherent revivals þ state
preparation

Tuning and coupling
mode sidebands

10(b) 80.045 see Fig. 10(b) Fig. 12(c)

Conical intersection dynamics

51.7 [0]

Fig. 12(d)
51.1 [αg=2]

Tuning and coupling
mode sidebands

4(a) 81.013 57.8 [αg]
53.9 [3αg=2]
48.8 [2αg]
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with

ĤZeno=ℏ ¼ EðxÞσ̂x þ Δbb̂
†b̂þ gσ̂zðb̂† þ b̂Þ ðG2Þ

from Eq. (5) of the main text. The dynamics of the system
are effectively the same as Zeno dynamics of a driven qubit
generated by the competition between EðxÞσ̂x, which tries
to lock the state of the qubit to an eigenstate of σ̂x, and
gσ̂zðb̂† þ b̂Þ, which in combination with photon loss in the
oscillator tries to project the state of the qubit onto an
eigenstate of σ̂z. Note that here we choose the dissipation to
be along σ̂z as opposed to σ̂y. The resulting dissipative
dynamics is crucially dependent on the parameters
EðxÞ;Δb; g; κb. While an exact analytic expression for
the time dependence of the qubit density matrix cannot
be obtained in general, here we consider a few extreme
parameter regimes which can be easily analyzed and
provide a window to the vast range of qubit dynamics
possible.
This simplest case is when EðxÞ ¼ 0. In this case, it is

possible to use Fokker-Planck equations to calculate an
effective dephasing rate. However, when EðxÞ ≠ 0, this
approach will fail to give an analytical expression for the
dephasing rate. In this case, we will invoke additional
constraints which will allow us to apply the Born-Markov
approximation and derive an effective master equation for
the qubit.

1. EðxÞ ≠ 0

To get a simple intuitive understanding of the oscillator-
induced dephasing when EðxÞ ≠ 0, we consider two cases:
(a) Δb ¼ 0, κb ≫ g and (b) j2Δb − EðxÞj ≪ j2Δb þ
EðxÞj, j2Δb þ EðxÞj ≫ κb ≫ j2Δb − EðxÞj; g.
Case (a)—In this case, the oscillator mode can be

eliminated using the standard Born-Markov approximation
and a simple effective master equation for the qubit is
obtained:

ρ̂q ¼ −i½Ĥq; ρ̂q� þ κqðσ̂zρ̂qσ̂z − ρ̂qÞ; ðG3Þ

with Ĥq ¼ EðxÞσ̂x, κq ¼ g2κb=½4EðxÞ2 þ κ2b=4�. Note that
we have set ℏ ¼ 1 and will do so from here onwards. In this
case, the state of the qubit will be an equal mixture of jþi
and j−i or jgi and jei.
Case (b)—In this case, the standard Born-Markov

approximation yields the following master equation:

ρ̂q ¼ −i½Ĥq; ρ̂q�

þ κq

�
j−ihþjρ̂qjþih−j − 1

2
jþihþjρ̂q −

1

2
ρ̂qjþihþj

�
;

ðG4Þ

with Ĥq ¼ EðxÞσ̂x, κq ¼ g2κb=f½2EðxÞ − Δb�2 þ κ2b=4g.
Unlike in case (a), here, the steady state of the qubit will

be the pure state jþi. The difference between the master
equations Eqs. (G3) and (G4) can be understood by
observing that when j2Δb þ EðxÞj ≫ κb ≫ j2Δb − EðxÞj,
then the transition between jþi ⊗ j0i and j−i ⊗ j1i
becomes more likely than that between jþi ⊗ j1i to j−i ⊗
j0i because the former, happening at frequency
2Δb − EðxÞ, lies within the bandwidth κb. The first term
in the tensor product refers to the state of the qubit and the
second term refers to the vacuum j0i and single photon
Fock state j1i of the oscillator mode. Consequently, if the
photon is subsequently lost from the oscillator, the qubit
will be preferentially projected to the state j−i.
Thus, the steady-state value of hσ̂xi is 0 for case (a) and

−1 for case (b). Clearly, we see that the qubit dynamics
depends on the parameters fEðxÞ;Δb; g; κbg, and in certain
cases can have a steady-state value of hσ̂xi between 0
and −1.
We note here that by considering our full model [Eq. (3)

of the main text] with not only dissipation on the coupling
mode κb but also dissipation on the tuning mode κa, we can
expect a more complex landscape of steady-state dynamics
which may qualitatively fall into the above regime.

2. EðxÞ= 0
In this case, we follow the approach in Ref. [41] and

begin by writing the density matrix of the qubit and
oscillator as

ρ̂ ¼ jgihgj ⊗ ρ̂gg þ jeihej ⊗ ρ̂ee þ jgi
× hej ⊗ ρ̂ge þ jeihgj ⊗ ρ̂eg; ðG5Þ

where jg; ei represent the qubit states and ρ̂ij acts on the
oscillator Hilbert space conditioned on the qubit state.
From Eqs. (G1) and (G2) with EðxÞ ¼ 0 and Eq. (G5),
we get

_̂ρge ¼ −igðb̂† þ b̂Þρ̂ge − igρ̂geðb̂† þ b̂Þ
− iΔbðb̂†b̂ρ̂ge − ρ̂geb̂

†b̂Þ þ κbb̂ρ̂geb̂
†

−
κb
2
b̂†b̂ρ̂ge −

κb
2
ρ̂geb̂

†b̂: ðG6Þ

Next, we use the positive-P representation ρ̂ge ¼R
Pðα; α�; tÞdαdα� and write the effective Fokker-Planck

equation:

∂P
∂t

¼ −2igPðαþ α�Þ þ iðgþ ΔbαÞ
∂P
∂α

þ iðg − Δbα
�Þ ∂P
∂α�

þ κbPþ κbα

2

∂P
∂α

þ κbα
�

2

∂P
∂α�

: ðG7Þ

Now we must solve the above equation with some given
initial condition. In the setup of interest we start with the
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oscillator mode in vacuum so that Pðα; α�; 0Þ ¼ δ2ðαÞ ¼
limε→0ð1=πεÞ expð−jαj2=εÞ and the qubit in the state jþi.
We can make the Gaussian ansatz, Pðα; α�; tÞ ¼
exp½−aðtÞ þ bðtÞαþ cðtÞα� − dðtÞjαj2� and write the
equivalent differential equations for a, b, c, d to get

− _a ¼ igbþ igcþ κb;

− _d ¼ −κbd;

_b ¼ −2igþ
�
iΔb þ

κb
2

�
b − igd;

_c ¼ −2igþ
�
−iΔb þ

κb
2

�
b − igd: ðG8Þ

These time-dependent equations can be easily solved
with initial conditions now written as að0Þ ¼ ln πε,
bð0Þ ¼ 0, cð0Þ ¼ 0, dð0Þ ¼ 1=ε, but the analytic expres-
sions are considerably simplified when Δb ¼ 0. Once we
get a, b, c, d we are able to reconstruct P and hence ρ̂ge.
The relevant quantity of interest is the time dependence of
the expectation value of the operator jgihej:

hjgihejðtÞi ¼ Tr½ρ̂ge� ¼
Z

Pðα; α�; tÞd2α: ðG9Þ

For Δb ¼ 0 and an initial condition where the qubit is in
jþi and the oscillator in vacuum, we have

hjgihejðtÞi ¼ 1

2
exp

�
−
8g2t
κb

þ 16g2

κ2b
ð1 − e−κbt=2Þ

	
: ðG10Þ

Next, we consider the rate equation for ρ̂gg:

_̂ρgg ¼ −igðb̂† þ b̂Þρ̂gg þ igρ̂ggðb̂† þ b̂Þ
− iΔbðb̂†b̂ρ̂gg − ρ̂ggb̂

†b̂Þ þ κbb̂ρ̂ggb̂
† −

κb
2
b̂†b̂ρ̂gg

−
κb
2
ρ̂ggb̂

†b̂: ðG11Þ

Like before, we use the positive-P representation
ρ̂gg ¼

R
Pðα; α�; tÞdαdα�, so that

∂P
∂t

¼ −ig
∂P
∂α�

þ ig
∂P
∂α

− iΔb
∂α�P
∂α�

þ iΔb
∂αP
∂α

þ κbα

2

∂P
∂α

þ κbα
�

2

∂P
∂α�

: ðG12Þ

We can again make the Gaussian ansatz Pðα; α�; tÞ ¼
exp½−aðtÞ þ bðtÞαþ cðtÞα� − dðtÞjαj2�, and solve the
corresponding differential equations for a, b, c, d
to get Pðα;α�; tÞ¼ δ2½α−αðtÞ�, where αðtÞ ¼ 2ig½1 −
expð−κbt=2Þ�=κb (for Δb ¼ 0). Thus, hjgihgjðtÞi ¼ 1=2.
Similarly we can show that hjeihejðtÞi ¼ 1=2. Hence the
diagonal terms of the qubit density matrix do not decay

with time—only the off-diagonal terms do. Thus, in this
case the qubit undergoes pure dephasing due to its coupling
with the oscillator mode and at steady state becomes an
equal mixture of jgi and jei.
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