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The ambition of harnessing the quantum for computation is at odds with the fundamental phe-
nomenon of decoherence. The purpose of quantum error correction (QEC) is to counteract the
natural tendency of a complex system to decohere. This cooperative process, which requires par-
ticipation of multiple quantum and classical components, creates a special type of dissipation that
removes the entropy caused by the errors faster than the rate at which these errors corrupt the
stored quantum information. Previous experimental attempts to engineer such a process faced an
excessive generation of errors that overwhelmed the error-correcting capability of the process itself.
Whether it is practically possible to utilize QEC for extending quantum coherence thus remains an
open question. We answer it by demonstrating a fully stabilized and error-corrected logical qubit
whose quantum coherence is significantly longer than that of all the imperfect quantum components
involved in the QEC process, beating the best of them with a coherence gain of G = 2.27 ± 0.07.
We achieve this performance by combining innovations in several domains including the fabrication
of superconducting quantum circuits and model-free reinforcement learning.

Implementing a single correctable logical qubit requires
a physical system with a large state space. It should ac-
commodate the code subspace and its redundant replicas
where the logical information will be displaced without
distortion when physical errors occur [1]. This redun-
dancy is inextricably associated with an additional oper-
ational cost of QEC, known as the control overhead. In
the search for an efficient way to alleviate its detrimental
effects, bosonic codes [2–5] based on the state space of
a harmonic oscillator have been proposed as a promising
alternative to the standard approach based on registers of
physical qubits [6–8]. In hybrid architectures, these two
approaches are complementary, with qubit-register codes
built upon logical qubits dynamically protected with ef-
ficient base-layer bosonic QEC [9–11].

Although some aspects of QEC have been demon-
strated with superconducting circuits [12–19], trapped
ions [20–22], and spins in solid-state systems [23–25], the
control overhead prevents current-day experiments from
getting to the heart of what QEC promises to achieve
– extending the lifetime of quantum information stored
in the system. This extension is quantified by the gain
G, defined as the ratio between the coherence time of an
actively error-corrected logical qubit and the best pas-
sive qubit encoding in the same system. The break-even
point is reached at G = 1. A bosonic cat-code experi-
ment [12] managed to achieved G = 1.1, but with a code
that continuously shrinks to the vacuum state. Other ex-
periments with various bosonic codes [13–15] and qubit-
register codes [16–19] have achieved G = 0.1− 0.9.

We demonstrate full code stabilization and error cor-
rection with gain G = 2.27± 0.07 using the Gottesman-
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Kitaev-Preskill (GKP) encoding [2] of a logical qubit into
grid states of an oscillator. The QEC of this code was
previously realized in superconducting circuits [14] and
trapped ions [20]. In our work, similarly to [14], the os-
cillator is an electromagnetic mode of a superconduct-
ing cavity whose quantum state is manipulated using
a transmon ancilla, see Fig. 1(a). Our system has an
average relaxation and dephasing time of T

t

1 = 280µs

and T
t

2E = 240µs for the tantalum-based transmon [26],
and T

c

1 = 610µs and T
c

2 = 980µs for the high-purity
aluminum cavity [27]. We implement in this system
a “trickle-down” QEC scheme based on the proposals
in Refs. [20, 28], which includes real-time classical pro-
cessing and measurement-based feedback. We train the
QEC circuit parameters in-situ with reinforcement learn-
ing (RL) [29–31], ensuring their adaptation to the real
error channels and control imperfections of our system.
At peak performance, the achieved lifetimes of logical
Pauli eigenstates are TX = TZ = 2.20 ± 0.03 ms and
TY = 1.36 ± 0.03 ms, and the logical Pauli error proba-
bilities per QEC cycle are pY = (4.3 ± 0.4) × 10−4 and
pX = pZ = (1.81 ± 0.04) × 10−3. With such low log-
ical error probabilities, we explore the QEC process on
a previously inaccessible time scale of thousands of cy-
cles, subjecting to scrutiny the standard assumptions of
the theory of QEC, such as the stationarity of error rates
and absence of leakage-induced correlations. Finally, we
perform error-injection experiments to identify the major
factors limiting logical performance and chart the path
towards the next-generation logical qubit.
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FIG. 1. Experimental system. (a) The sample consists
of a superconducting aluminum cavity and a sapphire chip
with a transmon circuit, readout resonator and Purcell fil-
ter. The electromagnetic mode of the cavity implements a
harmonic oscillator, and {|g〉, |e〉} levels of the transmon are
used as ancilla qubit to assist in oscillator QEC. (b) The
sample is cooled in a dilution refrigerator and controlled with
microwave and digital electronics. The QEC process is or-
chestrated by a field-programmable gate array (FPGA), and
its parameters are optimized in-situ by a reinforcement learn-
ing agent implemented on a graphics processing unit (GPU).
(c) Experimental Wigner functions of the Pauli eigenstates
of a grid code with ∆ = 0.34 measured after six QEC cycles.

ENGINEERING ERROR CORRECTION

We now explain the principles of our experiment. Its
core idea is to realize an artificial error-correcting dissi-
pation that removes the entropy from the system in an
efficient manner by prioritizing the correction of frequent
small errors, while not neglecting rare large errors. This
idea is illustrated in Fig. 2(a) for a cartoon system in
which redundancy is achieved with only 4 orthogonal sub-
spaces in total, where C0 is the code subspace and C1−C3
are the error subspaces. In this example, the dissipation
scheme #1 is maximally efficient from the perspective
of entropy removal, since it corrects any error in a sin-
gle step. Such an approach is taken by all qubit-register
stabilizer codes, where measurement of the stabilizers,
syndrome decoding, and recovery, when composed, real-
ize a dissipation channel of high Kraus rank. Although
this approach can also be applied to the oscillator grid
code (see Methods), its implementation entails large con-
trol overhead, which in practice might bring more errors
than it is designed to correct. By contrast, the trickle-
down dissipation scheme #2 has the capacity to correct
all the same errors, but it is not able to do so in a sin-
gle step. Importantly, the most probable small errors,
corresponding to the error space C1, are still corrected
in a single step. Owing to this simplification, such an

approach reduces control overhead in the grid code, and
therefore it was adopted in our work. The continuous-
time version of approach #2 was also demonstrated for
other bosonic codes in [15, 32].

The stabilizer generators of an ideal square grid code
are SX0 = D(lS) and SZ0 = D(ilS), where lS =

√
2π is the

length of a grid unit cell, and D(α) = exp(αa† − α∗a)
is the displacement operator for an oscillator with cre-
ation and annihilation operators a† and a. Logical Pauli
operators of the ideal code are defined as XL =

√
SX0

and ZL =
√
SZ0 . The ideal codewords obey perfect

translation symmetry in phase space and thus contain
an infinite amount of energy. The finite-energy code is
obtained by applying a normalizing envelope operator
N∆ = exp(−∆2a†a) to the ideal codewords, where ∆
parametrizes the code family that approaches the ideal
code in the ∆ → 0 limit. In phase space, this pa-
rameter controls the extent of the codewords and the
squeezing of their probability peaks. Our experimen-
tal Wigner functions of the codewords with ∆ = 0.34
are shown in Fig. 1(c). The operators of the finite-
energy code are obtained through the similarity trans-
formation induced by the envelope operator [28], for ex-
ample, SX/Z∆ = N∆S

X/Z
0 N−1

∆ .
To realize an error-correcting dissipation channel R∆

for the finite-energy code, there is at our disposal a sin-
gle ancilla qubit and a classical controller. In principle,
with such resources, it is possible to implement arbitrary
quantum channels of Kraus rank 2M by recycling the an-
cilla M times and using feedback operations conditioned
on the state of the classical M -bit memory of the con-
troller [33, 34]. Here, we construct a rank-4 error correc-
tion channel as a composition of two rank-2 dissipators
R∆ = RX

∆ ◦ RZ

∆ that drive the system towards the +1

eigenspace of the finite-energy code stabilizers SX/Z∆ . A
general rank-2 dissipation can be implemented as a uni-
tary U∅ that entangles the system with the ancilla qubit,
followed by ancilla projective measurement with outcome
b, and a classically-conditioned unitary Ub, see Fig. 2(b).

In our experiment, any unitary is compiled down to a
set of primitive operations: qubit rotations around any
equatorial axis Rϕ(θ) = exp[−i(θ/2)(cosϕσx + sinϕσy)]
implemented as 32 ns Gaussian pulses with spectral cor-
rections [35]; oscillator displacements D(α) implemented
as 40 ns Gaussian pulses; relatively slow conditional ro-
tations CR(θ) = exp(iθσza

†a) implemented by waiting
a certain amount of time under the dispersive coupling
Hamiltonian Hd/~ = χσza

†a/2 with χ = 2π × 46.5 kHz;
and virtual oscillator rotations RV (ϑ) = exp(iϑa†a) im-
plemented dynamically on the field-programmable gate
array (FPGA) in 448 ns. These primitives are used to
construct a fast echoed conditional displacement gate
ECD(β) = σxD(σzβ/2) as shown in Fig. 2(b), whose
speed ∂t|β| = |α|χ is enhanced compared to the native
interaction strength χ by a large factor |α| – magnitude
of the intermediate displacement in phase space [14, 36].

Both rank-2 dissipators are then implemented as fol-
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lows: the unitary U∅ is decomposed as a parametrized
circuit consisting of layers of qubit rotations Rϕ(θ) and
entangling ECD(β) gates, while the unitary Ub is realized
as only a virtual rotation, see Fig. 2(b). The role of Ub is
twofold: to implement switching between RX

∆ and RZ

∆ by
changing the quadrature of the oscillator by π/2, and to
compensate for a spurious rotation due to the always-on
dispersive coupling Hd. The role of U∅ is to approximate
the mapping of the finite-energy stabilizer onto the state
of the ancilla together with autonomous back-action that
pushes the state from the error spaces towards the code
space. Several ansätze for decomposition of U∅ were pro-
posed in Ref. [28]. We adopt a modified version of the
so-called small-big-small (SBS) protocol, named to reflect
the relative amplitudes of the three conditional displace-
ment gates that it contains: ~β = lS × (i∆2/2, 1, i∆2/2),
see Supp. Info. S4C for further details.

A single application of the resulting composite dis-
sipator R∆ realizes a QEC cycle; we refer to applica-
tions of constituent dissipators RX/Z

∆ as even/odd cycles.
In our implementation, the duration of a QEC cycle is
tc = 2 × 4.924µs, which includes execution of unitary
gates, ancilla measurements, and real-time processing
and decision making by the controller.

LEARNING QEC CIRCUIT PARAMETERS

While the SBS ansatz and gate calibrations lead to
a functioning QEC process, the highest level of perfor-
mance cannot be achieved with a crude model of the
system based on a few independently calibrated param-
eters – any such model will inevitably contain unrealis-
tic assumptions. Some model inaccuracies and unknown
control imperfections can be compensated by closed-loop
optimization with direct feedback from the experimental
setup. Previously, pulse-level optimization was success-
fully utilized to improve gate fidelities [37–40], but it was
never applied to enhance the performance of QEC. Here,
for the first time, we apply a real-time reinforcement
learning agent to this task, as illustrated in Fig. 1(b).
We use the proximal policy optimization (PPO) algo-
rithm [30, 31], which was shown in simulations to out-
perform other approaches on high-dimensional problems
with stochastic objective that arise in quantum control
[41]. We parametrize the QEC circuit with P = 45 pa-
rameters that include the amplitudes of various primitive
pulses in the circuit decomposition, parameters of the an-
cilla reset, etc.

The training episodes begin with dissipative pre-
cooling of the oscillator followed by feedback cooling to
prepare the system ground state |g〉|0〉, see Methods.
Then, a logical Pauli eigenstate | + X〉 or | + Z〉 is ini-
tialized with a method from [36], and a candidate QEC
protocol is run for T = 160 cycles. We chose this duration
to enhance the signal-to-noise ratio of the reward, similar
to the technique used to sample randomized benchmark-
ing cost functions [37–40]. At the end of the episode, the

FIG. 2. QEC implementation and optimization. (a)
Cartoon comparison of error-correcting dissipation channels.
The standard dissipation #1 corrects any error in a single
step, while the “trickle-down” dissipation #2 can be viewed
as directional hopping between error spaces that eventually
brings the quantum state to the code space C0. The colors
of the arrows correspond to unique Kraus operators, whose
number is equal to the channel rank. Higher-rank dissipa-
tion removes entropy more efficiently, but incurs larger control
overhead. (b) Implementation of a general rank-2 channel on
the oscillator using a single ancilla qubit. The unitary U∅ is
approximated as a parametrized circuit consisting of N lay-
ers of qubit rotations and oscillator conditional displacements.
Each conditional displacement gate utilizes a large intermedi-
ate displacement of magnitude |α| to enhance the gate speed.
(c) Evolution of reward of the RL agent during the train-
ing. The black triangle indicates the start performance based
on independent calibrations. Expectations of Pauli operators
are taken in their respective eigenstates and include SPAM
errors. (d) One realization of the learning trajectory of the
intermediate photon number used to execute the big condi-
tional displacement gate (“B” in the SBS circuit). Light blue
shade shows the variance of the sampled parameter values
during the training and dark blue line shows the mean.

reward for the RL agent is obtained by measuring the
logical Pauli operator XL or ZL (depending on the ini-
tial state), which provides a proxy for the logical lifetime.
This logical measurement is done with one-bit phase es-
timation of the ideal-code Pauli operators [14, 42], and
its fidelity is intrinsically limited to (1 + e−π∆2/4)/2 [11].
Although there exist methods of logical readout adapted
to the finite code envelope [20, 28, 43], we use the phase
estimation method to avoid biasing the RL agent towards
a particular finite envelope size and to let it pick the op-
timal size given the error channels of our system.

By construction, the reward incentivizes the RL agent
to find a QEC protocol that leads to the longest log-
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ical qubit lifetime. The typical evolution of the aver-
age reward during the training is shown in Fig. 2(c).
The performance level indicated with a black triangle
is achieved with independent calibrations of the system
and control parameters, see Supp. Info. S2. The RL agent
significantly improves upon this baseline performance in
two stages: in the first hundred training epochs, the
agent corrects large errors in the initial parameter val-
ues, and in the subsequent few hundreds of epochs, it
fine-tunes the circuit parameters to achieve the highest
performance.

Several trends in the learning trajectories highlight the
benefits of the model-free RL approach; we elucidate
them in more detail in the Supp. Info. S4D. Here, we only
highlight a single illustrative example. In our implemen-
tation of the ECD gate, there exists a nontrivial tradeoff
between coherent and incoherent errors: the gate can be
implemented faster by displacing the oscillator further
in phase space, i.e., populating it with more intermedi-
ate photons, but this makes the gate more susceptible to
high-order nonlinear effects [36]. Moreover, some choices
of this intermediate photon number can result in a Stark
shift of the ancilla into resonance with a spurious degree
of freedom, e.g., a two-level defect [44, 45]. How these
tradeoffs translate into logical qubit performance is dif-
ficult to model, but the RL agent can learn the optimal
value of the large intermediate displacement without a
model. As shown in Fig. 2(d), it chose to reduce the in-
termediate photon number, improving the performance
of QEC at the cost of a much slower gate.

OBSERVING QEC BEYOND BREAK-EVEN

After the training is finished, we pick the best per-
forming QEC circuit for further characterization. Here,
we focus on the ability of QEC to create a good quantum
memory, i.e. to convert the effect of passage of time into
an identity channel I : ρ → ρ that preserves all qubit
states.

A metric quantifying the deviation of any quantum
channel E : ρ → E(ρ) from the identity is the average
channel fidelity, F [E ] =

∫
dψ〈ψ|E(|ψ〉〈ψ|)|ψ〉, where the

integral is over the uniform measure on the qubit state
space, normalized so that

∫
dψ = 1. In general, this

fidelity decays over time in a nontrivial way, but to lead-
ing order it evolves as F(t) ≈ 1 − 1

2Γ t, where the decay
rate Γ is equivalent to an average decoherence rate of all
pure states on the qubit Bloch sphere. Conveniently, it
suffices to average across the six Pauli eigenstates alone
[46], leading to an experimental procedure for extracting
Γ that can be applied to any kind of qubit irrespective
of its error channel. In Fig. 3, we show the results of
such an experiment, conducted for three different qubit
encodings in our system: the {|g〉, |e〉} subspace of the
transmon, the {|0〉, |1〉} subspace of the oscillator, and
grid code of the oscillator (with and without QEC).

Both the {|0〉, |1〉} and {|g〉, |e〉} qubits are subject to

FIG. 3. System coherence. (a−c) For each qubit, we ini-
tialize Pauli eigenstates, let them evolve freely or under QEC
for a variable amount of time, and measure the respective
Pauli operators. The data for {|g〉, |e〉} and {|0〉, |1〉} qubits is
fitted to amplitude damping and white-noise dephasing chan-
nel, and data for error-corrected GKP qubit is fitted to a
Pauli channel. In (c), the | + X〉 data is symmetrically re-
flected with respect to 0 for better visibility. Empty circles
represent evolution in absence of QEC, when grid states de-
cay towards vacuum. (d) Lifetime of average channel fidelity
for these three qubits.

amplitude damping and white-noise dephasing channels,
captured by their respective T1 and T2 times, with fi-
delity decay constant given by Γ = (1/T1 + 2/T2)/3.
From the perspective of a quantum memory, the best
uncorrectable physical qubit in our system is {|0〉, |1〉},
shown in Fig. 3(b), which achieves Γ{01} = (800µs)−1.
The {|g〉, |e〉} qubit, shown for completeness in Fig. 3(a),
only achieves Γ{ge} = (250µs)−1.

Higher excited states of the oscillator have shorter life-
time due to bosonic enhancement of spontaneous emis-
sion. Therefore, as with any QEC code, encoding a qubit
using grid states incurs an immediate penalty in the fi-
delity decay rate. Moreover, this natural decay, shown in
Fig. 3(c) with empty circles, takes the grid states outside
the logical manifold and eventually towards the vacuum
state |0〉.

Our error correcting dissipation stabilizes the grid code
manifold and, together with naturally occurring dissipa-
tion, leads to a logical Pauli channel within this man-
ifold, with the lifetimes of logical Pauli eigenstates of
TX = TZ = 2.20 ± 0.03 ms and TY = 1.36 ± 0.03 ms.
Under the Pauli channel, the fidelity decay constant is
given by Γ = (1/TX + 1/TY + 1/TZ)/3, which in our
experiment amounts to ΓGKP = (1.82 ms)−1.

The principal metric characterizing the quality of QEC
from the perspective of quantum memory is the coher-
ence gain of an actively error-corrected logical qubit over
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FIG. 4. Analysis of error syndromes. (a) A sample of ancilla measurement outcomes during QEC. The e outcome
(yellow) indicates correction of physical errors. The black arrow points to a syndrome string of the type eg/eg/... likely left by
a large error in one oscillator quadrature. Red indicates transmon leakage out of the {|g〉, |e〉} qubit subspace. (b) Average
probability of each measurement outcome as a function of time. After correcting state initialization errors, QEC settles into
a steady state that persists for at least a hundred thousand cycles. (c) Probability of e outcome as a function of time after
injecting position displacement errors of varying amplitude. Since a logical gate in the ideal code comprises a displacement of
amplitude lS/2, a displacement of amplitude lS/4 makes a large-distance error, which takes several cycles to correct with our
low-rank QEC channel. (d) Decay of Pauli eigenstates after eliminating by post-selection the experimental shots with strings
of ≥ d consecutive e outcomes in the same-quadrature cycles. Data for XL eigenstates is not shown; it is expected to behave
similarly to ZL. The improvement in lifetime indicates that e outcomes are indeed correlated with occurrence of errors. NP in
the legend stands for “no post-selection”.

the best passive qubit encoding. In our experiment, the
highest achieved gain is G = Γ{01}/ΓGKP = 2.27 ± 0.07,
confidently beyond break-even.

QEC PROCESS CHARACTERIZATION

Having characterized the logical qubit as a quantum
memory, we next examine the properties of the QEC
process. Ancilla measurement outcomes, referred to as
syndromes, inform us which stochastic path the QEC
process has taken in each cycle. In Fig. 4(a) we show a
(statistically unrepresentative) sample of these outcomes
that comprise trajectories of different experimental shots.
Such a dataset contains an immense amount of informa-
tion about the QEC process, not available in previous
experiments with the grid code QEC [14, 20].

To interpret this dataset, we adopt here a simplified
model of trickle-down dissipation such as depicted in
Fig. 2(a), which captures the essence of our QEC process.
The caveats of this model and the exact Kraus decompo-
sition of our QEC circuit are provided in Supp. Info. S4B.
In this simplified model, the g outcome indicates that
the state was projected onto the code space, while an
e outcome indicates that the state was transferred one
level down the error hierarchy, partially or completely
correcting an error.

From the dataset in Fig. 4(a), we observe that the vast
majority of outcomes are g (green), which means that
errors are rare. The stochastic pattern of e outcomes
(yellow) reflects randomly occurring errors. Most errors
are small and, when corrected, leave single isolated e out-
comes. An example syndrome string likely generated by

a large error in one quadrature is indicated with an ar-
row: it has a characteristic eg/eg/... pattern. We also
observe isolated ancilla leakage events (red). Leakage to
|f〉 is reset in the same cycle with high probability. Some-
times, leakage persists for multiple cycles (streak of red),
due to the transmon escaping to a state higher than |f〉,
which is not addressed in our reset scheme.

The average probability of each outcome as a function
of time is shown Fig. 4(b), where the process starts from
a |+X〉 state. After about 10 cycles of initial state cor-
rection, the process settles into a dynamical equilibrium
which persists for at least a hundred thousand cycles (the
longest measured here) without any notable increase of
the error rates over time. Detailed analysis reveals that
the QEC process is nearly stationary, with residual devi-
ations from stationarity caused by the transmon leakage
to states higher than |f〉 at a rate 1.3 × 10−4 per cycle,
see Supp. Info. S4F.

In this dynamical equilibrium, physical errors excite
the quantum state out of the code space with probabil-
ity perr = 0.13 ± 0.02 per QEC cycle, as deduced from
the statistics of syndrome outcomes. The competition
between physical errors and error-correcting dissipation
results in a “thermal” distribution across the subspaces
with probability 〈Π0〉 = 0.82 ± 0.02 of occupying the
code space, see Methods. Having perr � 1 justifies the
use of low-rank error-correcting dissipation in our sys-
tem, which is sufficient to prevent physical errors from
accumulating and causing logical errors. At the high-
est achieved QEC gain, the logical Pauli error probabil-
ities per QEC cycle are pY = (4.3 ± 0.4) × 10−4 and
pX = pZ = (1.81± 0.04)× 10−3. By comparing the total
logical error probability, pX + pY + pZ , to the physical
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error probability perr, we conclude that 97% of the errors
are successfully corrected by our process.

Since rare large errors require several cycles to be cor-
rected, the QEC process is weakly time-correlated with a
correlation length of 3.9±0.1 cycles, see Supp. Info. S4F.
To understand these correlations, in Fig. 4(c) we inject
displacement errors along the position quadrature and
monitor the syndromes that they produce as a function
of time. Such errors leave traces of e outcomes in pro-
portion to their distance to the closest logical operation.
For example, a displacement of length 0, equivalent to
a logical identity, leaves no syndrome trace; a displace-
ment of length lS/2 is close to a logical bit-flip of the
finite-energy code, and hence it leaves only a small syn-
drome trace; on the other hand, a midway displacement
of length lS/4 makes a large-distance error which takes
the longest time to correct with a low-rank dissipator,
generating a lasting trace of e outcomes.

This displacement error injection experiment confirms
that errors indeed generate the e syndromes, but do these
syndromes herald the occurrence of errors? To verify this,
we perform post-selection of trajectories with different
syndrome patterns. In particular, we discard trajecto-
ries that have ≥ d consecutive e outcomes in the same-
quadrature cycles, with resulting post-selected decay of
Pauli eigenstates shown in Fig. 4(d). In the case d = 5,
post-selection eliminates rare large-distance errors and
improves the fidelity lifetime only by a factor 1.2, but
at the cost of rejection probability of 7 × 10−4 per cy-
cle. On the other hand, in the case d = 1, post-selection
eliminates relatively frequent small errors that are close
to identity, as well as rare large uncorrectable errors that
are close to a logical operation. It is because of the lat-
ter that the fidelity lifetime in this setting improves by a
factor 6.3, but with a more severe rejection probability of
6×10−2 per cycle. These favorable post-selection results
indicate that such a method can be used for probabilistic
preparation of high-fidelity logical states, including the
magic states required for universal quantum computing
[47], which is left for future investigation.

CONCLUSION AND OUTLOOK

In this work, we used real-time error correction to real-
ize a fully stabilized logical qubit whose lifetime is more
than doubled compared to the best passive qubit encod-
ing in the system, marking the transition of QEC from
proof-of-principle studies to a practical tool for enhancing
quantum memories. Our work improves upon previous
QEC experiments, which do not protect the logical iden-
tity operator IL [12], protect only one of the logical Pauli
operators XL or ZL[32, 48, 49], implement correction in
post-processing [16, 17, 19], require post-selection [50],
and do not reach break-even [13–17, 19]. Instrumental
for this achievement, among other factors, was the adop-
tion of a model-free learning framework, improved fab-
rication technique for the ancilla transmon, and a novel

grid-code QEC protocol.
Performing additional experiments, we identified the

core challenges that need to be addressed to ensure future
progress of grid-code QEC. In particular, by studying
long-time system stability, we found that occasional col-
lapses of the logical performance are strongly correlated
with appearance of spurious degrees of freedom in the
system. Their resonant interaction with the Stark-shifted
transmon ancilla degrades the fidelity of our operations,
see Supp. Info. S4 J. In the short term, this effect could
be mitigated by adopting a tunable ancilla and periodi-
cally re-training the QEC circuit to find better spectral
locations. In the long term, the behavior of these defects
needs to be understood, as they pose even greater danger
for scaled-up quantum devices [16, 17, 19].

In addition, we expect that considerable enhancement
can be gained by tailoring the QEC process not only to
error channels of the oscillator, but also those of the an-
cilla. Our QEC circuit is fault-tolerant with respect to
ancilla phase-flip errors by design [28]. With the trans-
mon ancilla used here, the sensitivity of the logical life-
time to ancilla phase flips is 65 times smaller than to
ancilla bit flips, as found with noise injection experi-
ments, see Supp. Info. S4 I. Future development should
incorporate robustness against ancilla bit flips, either
through path-independent control [51, 52] or by adopting
a biased-noise ancilla [53].

ACKNOWLEDGMENTS

We acknowledge discussions with R. Cortiñas, J. Claes,
and A. Mi. This research was supported by the U.S.
Army Research Office (ARO) under grants W911NF-18-
1-0212 and W911NF-16-1-0349, and by the U.S. Depart-
ment of Energy, Office of Science, National Quantum In-
formation Science Research Centers, Co-design Center
for Quantum Advantage (C2QA) under contract number
DE-SC0012704. The views and conclusions contained
in this document are those of the authors and should
not be interpreted as representing official policies, ei-
ther expressed or implied, of the U.S. Government. The
U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purpose notwithstand-
ing any copyright notation herein. Fabrication facilities
use was supported by the Yale Institute for Nanoscience
and Quantum Engineering (YINQE) and the Yale SEAS
Cleanroom.

AUTHOR CONTRIBUTIONS

V.S., A.M. and A.E. built the experimental setup.
R.J.S. contributed to experimental apparatus. I.T., S.G.
and L.F. fabricated the ancilla transmon chip. B.R.,
S.S. and S.M.G. developed the theory. B.R., V.S., A.E.
and B.B. developed dissipative oscillator cooling. A.E.,
V.S. and A.Z.D. developed state initialization technique.



7

V.S. implemented reinforcement learning, performed the
experiments, and analyzed data. V.S., A.E., B.R. and
M.H.D. regularly discussed the project and provided in-
sight. M.H.D. supervised the project. V.S. and M.H.D.
wrote the manuscript with feedback from all authors.

COMPETING INTERESTS

R.J.S., L.F. and M.H.D. are founders, and R.J.S. and
L.F. are shareholders of Quantum Circuits, Inc.

METHODS

QEC of the ideal grid code

To understand error correcting properties of the
ideal code, consider an error channel E decomposed
in the displacement basis. An ideal grid code with
code projector Π0 satisfies Knill-Laflamme conditions [1]
Π0D

†(εα)D(εβ)Π0 ∝ δ(εα− εβ)Π0 for all errors in a cor-
rectable set E+ = {D(ε) : |Re(ε)|, |Im(ε)| < lS/4}. A
displacement error of amplitude ε creates an error state
|ψε〉 = D(ε)|ψ〉, where |ψ〉 is any state from the code
space. Since a displaced grid state is still translationally
invariant, it remains an eigenstate of the ideal code sta-
bilizers, and the phase of its eigenvalue encodes a contin-
uous error syndrome: SZ0 |ψε〉 = exp(2ilSRe[ε])|ψε〉 and
SX0 |ψε〉 = exp(−2ilSIm[ε])|ψε〉. Error correction of an
ideal grid code can be done in a similar manner to any
stabilizer code: first, measure the stabilizers to obtain
the error syndrome, which here corresponds to phase es-
timation of SX/Z0 that yields the error amplitude ε. This
step projects the state onto one of the orthogonal error
spaces. Then, apply the recovery operation, here a sim-
ple displacement D(−ε), to correct the error. Such pro-
cedure realizes an artificial dissipation R of an infinite
rank which corrects any error from E+ in a single cycle,
(R◦E)(ρ) ∝ ρ, analogously to the cartoon high-rank dis-
sipation in Fig. 2(a). In contrast to this approach, our
experiment realizes low-rank dissipation that asymptoti-
cally satisfies ([R]n→∞ ◦ E)(ρ) ∝ ρ.

Dissipative cooling to vacuum

We utilize the dissipation engineering framework [54]
to design fast cooling of the oscillator to vacuum state |0〉
in the weak-coupling regime where previous known cool-
ing methods [55] fail; we also expect this novel method
to be applicable to cooling of trapped ions [20]. Simi-
larly to error-correcting dissipation, we realize this cool-
ing as a composition of two rank-2 channels that shrink
the oscillator state in the orthogonal quadratures. The
unitary U∅ in this case is realized as a three-layer cir-
cuit obtained from first-order Trotter decomposition of

U = exp[−iε(aσ+ + a†σ−)], where ε � 1 controls the
cooling rate. This unitary swaps the excitations of the os-
cillator into the ancilla, which is reset in every cycle. The
duration of one full cooling cycle (including both quadra-
tures) is tc = 2× 3.38 us. With ε = 0.4, we achieve cool-
ing at a rate 20 times faster than natural energy damping
rate of the oscillator. In our experiment, 25 full cycles of
such a dissipative cooling are then followed with a feed-
back cooling protocol adapted from [12] to remove any
residual thermal population. See Supp. Info. S2F for
more details.

Reinforcement learning implementation

The QEC circuit is parametrized with a vector ~p. In-
stead of optimizing ~p directly, the RL agent learns pa-
rameters of the probability distribution from which ~p
is stochastically sampled during the training to ensure
adequate exploration of parameter space. To this end,
we use a factorized multivariate Gaussian distribution
N (~µ, ~σ) with mean ~µ and covariance matrix diag[~σ]2. To
capture the pattern of relations between different com-
ponents of ~p, the mean and covariance are represented
as parametrized functions ~µ(θ) and ~σ(θ) of common hid-
den variables θ. In this work, ~µ and ~σ are produced at
the output of a neural network with two fully connected
layers of 50 and 20 rectifier linear unit (ReLU) neurons.
Starting with initial vector of parameters ~µi found with
independent calibrations, during the course of learning
the agent gradually deforms the distribution and localizes
it on the new vector ~µf , the final result of the optimiza-
tion. Typically, as it proceeds, the agent also reduces the
covariance of the distribution to have a finer control over
the mean. These features of learning are observed in the
example evolution of one component of ~p in Fig. 2(d).
During one training epoch, we evaluate 10 QEC circuit
candidates with 300 episodes (i.e. experimental shots)
per candidate. The collected information is used to up-
date the neural network parameters θ according to the
PPO algorithm, which completes the epoch. One epoch
takes approximately 16 seconds, with the majority of
time spent on re-compilation of FPGA instruction se-
quences and its re-initialization. See Supp. Info. S3B for
more details.

Steady state of the QEC process

We perform Wigner tomography of the logical states
after varying duration of the QEC process, reconstruct
the density matrix, and from its spectral decomposi-
tion extract the expectation value of the code projector
〈Π0〉 = 0.825±0.003, where error bar represents the stan-
dard deviation with respect to different process durations
of 100, 200, 400, and 800 cycles. In addition to the code
space, only one error space is occupied in the steady state
with an appreciable probability of 0.170±0.005. The log-



8

ical decoherence within this error space happens at the
same rate as within the code space. For more details, see
Supp. Info. S4H.

The expectation value of the code projector in the
steady state can be estimated independently, using the
statistics of syndrome outcomes. Under the approxima-
tions discussed in Supp. Info. S4E, the probability that a
syndrome string of length 2n consists only of g outcomes
asymptotically approaches 〈Π0〉(1− perr)

n−1 for large n.

Using this method, we extract 〈Π0〉 = 0.81 ± 0.02 and
perr = 0.13 ± 0.02. The error bar in this case repre-
sents the accuracy of the model for the string probabil-
ity, which is valid to first order in perr. The value of
〈Π0〉 quoted in the main text is the average of the two
methods. Constructing a detailed error budget of the ag-
gregate error probability perr based on the system-level
simulation of the known error processes is an avenue left
for future work.
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S1. EXPERIMENTAL SETUP AND SAMPLE PARAMETERS

Assembly. Our system design follows the hybrid planar-3D circuit QED architecture developed in [1]. The storage
oscillator is realized as an electromagnetic mode hosted by a seamless superconducting coaxial stub cavity made of
high-purity aluminum and treated with a chemical etch to improve surface quality. This is the same physical cavity
as used in [2], although with lower coherence time due to aging during the storage time of ∼ 2 years. The cavity
is anchored to a copper bracket inside a cryoperm shield. The ancilla chip is inserted in a tunnel waveguide that
connects to the storage cavity, and is secured at one end with a copper clamp. Thermalizing copper braids run from
the clamp to the base plate of the dilution refrigerator, see Fig. S1.
Ancilla chip fabrication. The ancilla chip contains a transmon qubit, a stripline readout resonator, and a stripline

bandpass Purcell filter. The resonators and transmon are tantalum-based devices, with Josephson junction of the
transmon made of a small aluminum section; they are fabricated with a process similar to [3]. Adopting a tantalum-
based platform results in improved qubit coherence relative to an all-aluminum platform; however, the reasons for
this are still under active investigation. Possible explanations include, but are not limited to: 1) The corrosion
resistance allows for the use of rigorous acid-based cleaning techniques to be employed during the fabrication process
that improves surface dielectric quality and minimizes the presence of organic residues; 2) The high melting point
of tantalum allows for deposition to occur at higher temperatures, where atomic mobility is high enough to enable
epitaxial film growth with a high degree of crystalline order; 3) Tantalum has a higher superconducting transition
temperature than aluminum, which may lead to increased resistance to quasiparticle loss.

We use a C-plane sapphire wafer produced using the heat exchanger method (HEM), as it was shown to have
smaller dielectric loss [4]. The wafer was initially cleaned with a piranha solution (2 : 1 H2SO4 : H2O2) for 20
minutes and rinsed with DI water. The wafer was then annealed at 1200 ◦C in an oxygen-rich environment for 1 hour.
After cooling down to room temperature, the wafer was immediately transferred to a sputtering system for tantalum
deposition. 150 nm of tantalum was deposited by DC magnetron sputtering with the substrate temperature being
held at 800 ◦C. The Purcell filter, readout resonator, and transmon pads were subtractively patterned using a positive
photoresist mask and reactive ion etching. After tantalum patterning, the Josephson junction was patterned using
electron-beam lithography and defined using the Dolan bridge method. The junction was deposited using electron-
beam evaporation of aluminum at 2 angles with an interleaved static oxidation step to construct the tunnel barrier.
Liftoff was performed in NMP heated to 90 ◦C, followed by sonication in acetone, isopropanol, and DI water. Finally,
the wafer was protected with a layer of photoresist before dicing into individual chips, followed by additional cleaning
with NMP, acetone, and isopropanol to remove the protective photoresist.
System parameters. The measured parameters of this system are summarized in Table S1.

Cavity mode

Frequency ωc = 2π × 4.479 GHz
1st order dispersive shift χ = 2π × 46.5 kHz
2nd order dispersive shift χ′ = 2π × 5.8 Hz
Kerr nonlinearity K = −2π × 4.8 Hz

Relaxation T
c
1 = 606± 10 us

Dephasing T
c
2 = 980± 30 us

Ancilla transmon

Frequency ωt = 2π × 5.921 GHz
Anharmonicity α = −2π × 222 MHz

Relaxation T
t
1 = 280± 30 us

Equilibrium population n tth = 0.043± 0.008

Dephasing (Ramsey) T
t
2R = 62± 5 us

Dephasing (Echo) T
t
2E = 238± 8 us

Readout resonator

Frequency ωr = 2π × 9.107 GHz
Dispersive shift χqr = 2π × 0.60 MHz
Coupling strength κr(c) = 2π × 0.47 MHz
Internal loss κr(i) = 2π × 0.03 MHz

TABLE S1. Measured system parameters. For transmon parameters (T t
1 , T

t
2R, T

t
2E , ntth) and cavity parameters (T c

1 ,
T
c
2 ) that appreciably fluctuate in time, we provide the mean and standard deviation over a week-long period. The definition

of the Hamiltonian parameters can be found in Section S2B.

Control wiring. As shown in Fig. S2, the quantum system is controlled by a classical computer (VPXI-ePC)
that hosts two control cards (X6-1000M) from Innovative Integration. Each card integrates digital-to-analog con-
verters (DAC), analog-to-digital converters (ADC), digital inputs and outputs (DIO), and a Xilinx VIRTEX-6 field-
programmable gate array (FPGA). This controller was developed in [5] and used in prior bosonic QEC experiments
[5, 6]. The baseband control signals are sampled from the DACs at 500 MS/s rate with 16-bit resolution and upcon-
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FIG. S1. Sample assembly. (a) Clamped ancilla chip. (b) Thermalization. (c) Shielding.

verted to the oscillator, qubit, and readout frequencies through single-sideband modulation of the local oscillators
(Agilent N5183A). After amplification, the signals are gated with fast RF switches (9 ns rise time, 5 ns fall time)
and filtered before entering the dilution refrigerator. The signals are further attenuated and filtered in the cryogenic
environment. A crucial component of the filtering is the eccosorb CR-110 infrared absorber filter [7] located inside the
cryoperm shield, and the copper plate, painted with stycast epoxy mixed with black carbon powder, that wraps around
the sample. On the output side, the reflected readout signal is amplified at 30 mK stage with a near-quantum-limited
Josephson array-mode parametric amplifier (JAMPA) [8], followed at 4 K stage by a low-noise HEMT amplifier. Upon
further amplification at 300 K stage and down-conversion to 50 MHz, the readout signal is digitized, demodulated, and
integrated with a filter function to obtain I and Q quadratures. Their values are compared to the decision boundaries
Ith and Qth to obtain two bits of information s0 = Θ(I − Ith) and s1 = Θ(Q − Qth), where Θ is the Heaviside
step function. This allows to classify the measurement outcome as “g” if s0 = 0, “e” if (s0, s1) = (1, 0), and “f” if
(s0, s1) = (1, 1). The bits s0 and s1 are redistributed to all control cards which run independent but synchronized
control flows that include conditional branching on these bits. Further details of the readout subroutine are described
in Section S2C.

S2. CALIBRATION AND CHARACTERIZATION EXPERIMENTS

A. Primitive pulses

Qubit rotation. The waveform for transmon g ↔ e and e↔ f rotations is a Gaussian with σ = 8 ns and symmetric
chop at 2σ. The pulse amplitude is calibrated with a standard amplitude Rabi experiment, shown in Fig. S3(a). We
find that finite negative detuning of a few MHz is needed to maximize the Rabi contrast in both cases. In a similar
manner, we calibrate a selective square pulse of duration 2π/χ ≈ 22µs that performs g ↔ e rotations conditioned on
the oscillator in |0〉.

Oscillator displacement. The waveform for oscillator displacements is a Gaussian with σ = 10 ns and symmetric
chop at 2σ. It is calibrated in several steps, refining the accuracy at each step. First, before the precise value of χ is
known, we use a rough calibration by creating a coherent state of unknown amplitude α and measuring the probability
of |0〉 via a selective qubit pulse, with the results shown in Fig. S3(b). Fitting the data to P (0) = e−|α|

2

allows us
to calibrate the DAC amplitude for displacement of |α| = 1. This first-stage calibration enables us to use active
oscillator cooling, see Section S2F, which is important for the next calibration step that relies on a vacuum state.
Next, after determining the value of χ (using number-resolved qubit spectroscopy, see Section S2B), we measure the
Wigner function of vacuum W (α) = (2/π)e−2|α|2 and adjust the DAC amplitude calibration to obtain the variance
of 1/4, with the results shown in Fig. S3(c). We find that these two calibrations typically agree within 2%.
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FIG. S2. Experimental setup. For simplicity, the diagram omits DC ground connections of all active components, and
attenuators placed at different locations at 300 K stage to ensure power levels within specs for amplifiers and switches.

FIG. S3. Calibration of primitive pulses. (a) Amplitude Rabi experiment to calibrate qubit rotations. (b) First-step
calibration of displacement: probability of |0〉 in a coherent state, P (0) = e−|α|

2

. (c) Second-step calibration of displacement:
Wigner function of vacuum, W (α) = (2/π)e−2|α|2 .
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FIG. S4. Calibration of Hamiltonian parameters. (a) Number-resolved qubit spectroscopy with a selective square pulse
of duration ∼ 50µs when the oscillator is in the vacuum state (blue) and a coherent state (red). (b) Optimal return phase
in the out-and-back experiment (inset) with the qubit in |g〉 and |e〉. As seen from the phase dispersion with n, the effective
oscillator nonlinearity is larger when the qubit is in |e〉. (c) Average oscillator rotation frequency (ωg + ωe)/2, and a linear fit
to extract ∆ and K. (d) Relative oscillator rotation frequency ωg −ωe, and a linear fit to extract χ and χ′. The star indicates
χ obtained in (a).

B. Hamiltonian parameters

Our system is well described with the following Hamiltonian

H/~ = ∆ (a†a) +
1

2
χ (a†a)σz +

1

2
K (a†a)2 +

1

4
χ′ (a†a)2 σz, (S1)

where ∆ is the oscillator frequency detuning in the chosen rotating frame, χ is the dispersive shift, χ′ is the second-
order dispersive shift, and K is the Kerr nonlinearity.

We calibrate χ with number-resolved qubit spectroscopy [9] in the presence of a coherent state of small amplitude
α ≈ 0.6 in the oscillator. The spectroscopy data, shown in Fig. S4(a) in red, is fitted to a 5-component equal-spacing
mixture of the spectroscopy lineshapes with the oscillator in vacuum, shown in blue, which results in χ = 46.6 kHz.
After additionally performing the cavity mode spectroscopy (data not shown), we set the LO frequency to work in
the rotating frame with ∆ = 0.

After calibrating the displacement amplitude, as described in Section S2A, we perform an out-and-back experiment
[10] to determine the higher order nonlinearities K and χ′. In this experiment, shown in the inset of Fig. S4(b), we
create a coherent state |α〉 with an average number of n = |α|2 photons, wait for some time while it rotates in
phase space, and attempt to return it back to the origin with a displacement of variable phase. The optimal return
phase for qubit in |g〉 and |e〉 is shown in Fig. S4(b). Performing this experiment for different wait times allows to
extract the effective oscillator rotation frequencies ωg(n) and ωe(n). The linear fit of the average rotation frequency
(ωg+ωe)/2 = ∆+K n yields the values of the detuning ∆ and Kerr nonlinearity K, as shown in Fig. S4(c). The linear
fit of the relative rotation frequency ωg−ωe = χ+χ′ n yields the values of the dispersive shift χ and the second-order
dispersive shift χ′, as shown in Fig. S4(d). We find that the value of χ predicted with this method typically agrees
with the value obtained via number-resolved spectroscopy to within 1%.

C. Readout and reset

The transmon measurement consists of a readout pulse of duration 700 ns with 40 ns ramp-up and ramp-down.
The reflected microwave signal is acquired (after 300 ns delay to account for signal travel time) for the duration of
1400 ns. After acquiring the readout signal, FPGA performs digital signal processing, which consists of demodulation,
integration of the signal with a filter function, and thresholding, all of which takes 332 ns. Next, the bits s0 and s1

that encode the measurement outcome are distributed to all control cards, which takes 100 ns. For a schematic of
this measurement process, see Fig. S5(a). When the readout is used to realize ancilla reset, additional time is spent
on branching on the s0 and s1 signals to apply appropriate feedback pulses. The branching is done as shown in
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FIG. S5. Ancilla measurement. (a) Timing of different components of readout and reset. (b) Logarithmic histogram of
the integrated readout signal for different transmon initial states. (c) Markov transition matrix derived from the histogram in
(b). It shows the probability of transition from any initial state to any final state during the measurement. (d) Time trace
of |e〉-state lifetime (color coded). The resonator field amplitude in the steady state is proportional to the DAC amplitude
(horizontal axis). The amplitude used for the actual readout corresponds to

√
n = 0.22. When spurious resonance around√

n = 0.1 reappears, the readout fidelity significantly reduces.

Fig. S8(a), taking additional 200 ns to complete the reset. Due to the slow ringdown of the readout photons on a time
scale of 1/(κr(c) +κr(i)) ≈ 320 ns, the readout resonator is not fully empty when the feedback pulses are applied, partly
limiting their fidelity through measurement-induced dephasing mechanism [11]. This limitation could be addressed in
the future by using a strongly coupled readout resonator with photon lifetime on the order of ten nanoseconds [12],
or, alternatively, by using an active resonator depletion protocol [13] as was done in the grid-code experiment [14].

To characterize the readout, we perform a two-measurement experiment in which the ancilla state is prepared with
post-selection on the outcome of the first measurement [15]. The second measurement follows with a 500 ns delay
after the first one. Its outcome is histogrammed, as shown in Fig. S5(b) for |g〉, |e〉 and |f〉 initial states. The SNR
of our readout is large enough to not be a dominant cause of the readout infidelity. Instead, the fidelity is limited by
state transitions during the finite readout time. Some transitions are expected due to the finite lifetime of the ancilla
excited states, and the excess is induced by the readout pulse itself [16].

The Markov matrix in Fig. S5(c) describes the transition probabilities in this characterization experiment. It is
obtained by integrating the parts of a histogram on various sides of two thresholds. The diagonal elements of this
matrix can be interpreted as readout fidelities of different transmon states, with precision of about ∼ 10−3 for |e〉
and |f〉 states due to possible decay during the 500 ns delay between the two measurements. The readout fidelity of
the ground state F (g)

r = 0.9997 is significantly better than that of the excited state F (e)
r = 0.9914 – a crucial feature

exploited in our QEC protocol, where the dominant “no error” syndrome is mapped to the g outcome
The readout fidelity of |g〉 is also more stable over time, see Section S4 J. The readout fidelity of |e〉 fluctuates over

time due to fluctuations of T t
1 (n) (qubit lifetime in the presence of n readout photons). A sample drift of T t

1 (n) is
shown in Fig. S5(d). The exact reason for this effect is still not well understood. It is possible that the dependence
T t

1 (n) comes from drive-induced hybridization of the transmon energy levels [17]. Higher levels are sensitive to offset
charge, and thus fluctuations of environmental charges can affect the hybridization strength and lead to fluctuations
of T t

1 (n). Another possible explanation is that fluctuating T t
1 (n) dependence comes from a spectral overlap of the

Stark-shifted qubit frequency with a spurious degree of freedom (not necessarily charged), e.g. a two-level defect,
which itself fluctuates [18]. The correlation between the logical qubit performance, the readout infidelity of |e〉 state,
and the fluctuating T t

1 (n) is further discussed in Section S4 J.
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D. Conditional displacement

We create an echoed conditional displacement gate ECD(β) = σxD(σz β/2) using the approach described in
Ref. [10]. As illustrated in Fig. S6(a), this gate consists of the following steps: (i) the oscillator is displaced out in
phase space by large amplitude α; (ii) the conditional rotation is accumulated during the time interval τ along the arc
of a large radius |α| – this is equivalent to accumulation of the conditional displacement in the direction orthogonal to
α at an enhanced rate χ|α|; (iii) the oscillator is returned back towards the origin of phase space with displacement
of amplitude −α cos(χτ/2); (iv) the qubit state is flipped with an echo π-pulse; (v) an analogous large displacement
sequence is repeated in the symmetrically opposite direction in phase space. Under the dispersive coupling model and
in the limit of instantaneous rotation and displacement pulses, this protocol results in a net conditional displacement
of amplitude β = −2iα sin(χτ). Due to deviations from this idealized scenario, such as finite pulse durations and
higher order Hamiltonian terms, we need to experimentally calibrate the amplitude α(β) of the large displacement
required to achieve a desired conditional displacement.
Calibration of amplitude. Starting with qubit in |g〉 (or |e〉, with similar results) and oscillator in |0〉, we apply

the ECD gate with fixed delay τ in the displaced state and varying amplitude α, and then attempt to undo the effect
of the gate and return the oscillator to vacuum with a simple displacement D(−β/2). This out-and-back sequence is
repeated N times to increase the resolution. At the end of the experiment, the qubit is probed with a selective pulse
conditioned on oscillator in |0〉. The complete sequence is illustrated in Fig. S6(b), and the experimental data for the
gate with delay τ = 600 ns is shown in Fig. S6(c). From this calibration measurement, we fit the dependence α(β|τ),
and we perform this calibration for a set of different wait times τ .

During the optimization of the QEC performance, our RL agent is asked to pick the optimal values of the large
displacement amplitude α and of the conditional displacement amplitude β. Therefore, we need to have a calibrated
inversion function τ(α, β) that predicts the wait time τ to realize a gate with these parameters. We find that the
empirical relation

τe(α, β) = β
(
p0 +

p1

2α

)
− p2, (S2)

with fit parameters ~p = {p0, p1, p2}, is able to simultaneously fit all ECD calibration datasets, such as the one shown
in Fig. S6(c), sufficiently well to be used with the training of the RL agent. Note that in the idealized model, we
would have ~p = {0, 1/χ, 0}. The empirical fit results are shown in Fig. S6(d), where the shaded region indicates the
prohibited parameter values, including the limited dynamic range of the DAC that allows α ∈ [0, 26] given our choice
of fixed-duration displacement pulses.
Calibration of qubit phase. As explained in Ref. [10], this experimental implementation of the ECD(β) gate

results in additional qubit phase accumulation Θ[β] = ξ|β|2, i.e. we implement ECD(β) = exp(−iσz Θ[β]/2) ECD(β).
The amplitude calibration experiment described above is not sensitive to this phase, because the qubit always remains
in the eigenstate of σz. However, this phase is important when conditional displacements are concatenated, e.g. in
the ECD control unitaries, as described in Section S3A.

To calibrate this phase Θ[β], we perform the following “cat-and-back” experiment

ECD(−β)Rx(π) ECD(β), (S3)

also shown in Fig. S6(e), which is ideally equivalent to σx exp(iΘ[β]σz). Starting with a qubit in |+〉, the final state
will satisfy 〈σy〉 = sin(2ξ|β|2) and 〈σx〉 = cos(2ξ|β|2) irrespective of the initial oscillator state.

However, due to decoherence and control imperfections in the ECD implementation, we find that the ancilla qubit
also experiences loss of purity. Under the assumption that the losses of purity during the two conditional displacement
gates ECD(β) and ECD(−β) are uncorrelated and independent of the direction in phase space, we model it as a uniform
contraction of the Bloch vector by

√
1− p[β] per ECD gate, where p[β] = η0 + η2 |β|2 + η4 |β|4. Hence, we fit the

cat-and-back experiment to the following model:(
〈σx〉
〈σy〉

)
= (1− p[β])

(
cos(2Θ[β])
sin(2Θ[β])

)
, (S4)

with fit parameters {η0, η2, η4, ξ}, of which only ξ is used in the ECD control compilation method, see Section S3A.
The results of qubit state tomography together with the fit to the model in Eq. (S4) are shown in Fig. S6(f) for the

same ECD gate as in Fig. S6(c). As explained in Ref. [10], the value of ξ depends on the shape of the phase space
trajectory during the ECD gate, and thus we calibrate it independently for every choice of delay time τ .
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FIG. S6. Calibration of the ECD gate. (a) Realization of ECD gate using the approach from [10]. (b) Variation of
the out-and-back experiment for calibration of the amplitude α of the large displacement required to achieve a conditional
displacement amplitude β. For a fixed delay τ between out and back displacements, and a given value of β, we sweep α to
find the optimum. The out-and-back sequence is repeated N times to increase the resolution. At the end of the experiment,
the qubit is probed with a selective pulse conditioned on oscillator in |0〉. (c) Data from the amplitude calibration experiment
shown in (b), using τ = 600 ns and N = 4. (d) Simultaneous fit of the collection of fixed-τ datasets, such as the one shown
in (c), to the empirical function in Eq. (S2). The shaded region indicates the prohibited parameter values. (e) Cat-and-back
experiment. Starting with a pure qubit state |+〉 and arbitrary oscillator state, this experiment results in a phase accumulation
in the equatorial plane on a qubit Bloch sphere, which is detected with qubit state tomography. (f) Results of the qubit state
tomography in cat-and-back experiment with the ECD gate with wait time τ = 600 ns. In this experiment, the oscillator was
initially prepared in the |+ Z〉 grid state. The data is fitted to the model in Eq. (S4), shown with black solid lines.

E. Oscillator error channels

Relaxation and excitation. To measure the oscillator relaxation rate γ c1 = γ c↓ + γ c↑ , we first prepare Fock state
|1〉 using a unitary control circuit with 5 layers, see Section S3A. After a time delay of varying length, we measure
the remaining occupation of |1〉 and fit it to an exponential decay with time constant T c

1 = 1/γ c1 . To measure
this occupation, we apply a spectrally selective ancilla qubit pulse which flips the qubit conditioned on one photon
in the oscillator. Monitoring the oscillator over a week-long period, we find the mean and standard deviation of
T
c

1 = 606± 10µs. As seen from the histogram in Fig. S7(a), the relative fluctuations of T c
1 are small compared to the

relative fluctuations of other error channels in the same time frame. We attribute this stability to the fact that most
of the electromagnetic field of this mode resides in the vacuum of the cavity.

To bound the rate of thermal excitation γ c↑ , we apply the feedback cooling technique described in Section S2F, to
the oscillator in its steady state. Since we find no detectable difference in the qubit number-resolved spectroscopy
contrast of the zeroth peak after feedback cooling, the resolution of this measurement of ∼ 1 % provides a bound on
the oscillator excitation rate of γ c↑ < 1/(60 ms). This rate is negligible compared to all other rates in the system and
is ignored in the rest of the analysis.
Dephasing. To measure the rate of dephasing γ c2 within the {|0〉, |1〉} manifold, we prepare a superposition |0〉+|1〉

using the Y 90 gate realized with a unitary control circuit with 8 layers, see Table S2. After a time delay of varying
length we apply the Y 90 gate again and measure the occupation of |0〉. In the reference frame of the LO, the oscillator
state rotates with angular frequency χ/2 during the time delay, which results in Ramsey oscillations modulating the
exponential decay with decay time constant T c

2 = 1/γ c2 . We adjust the sampling rate to make the oscillations appear
slow. We find the one-week mean and standard deviation of T

c

2 = 980± 30µs.
One possible source of oscillator dephasing is stochastic rotations acquired due to dispersive coupling with the

transmon combined with transmon stochastic excitation and relaxation events [19]. The dephasing rate due to
this effect was predicted to be γ c,tϕ ≈ n tthγ

t
↓ in the limit χ � γ t1 and γ t↓ � γ t↑ , where n tth is the steady-state

population of |e〉. In our system, the correlation between γ cϕ = γ c2 − γ c1 /2 and γ c,tϕ is difficult to measure because
these rates are small and their estimators are subject to strong relative fluctuations. By comparing the medians
of their marginal distributions, γ c,tϕ = 1/(6.5 ms) and γ cϕ = 1/(5.1 ms), shown in Fig. S7(b), we find the remaining
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FIG. S7. Fluctuating error channels. (a) Histogram of T1 and T2 times of the transmon and the oscillator, and logical
lifetimes of error-corrected grid states. The histogram is derived from a week-long scan described in Chapter S4 J. (b) Oscillator
pure dephasing time extracted from the measured oscillator parameters and predicted from the dispersive coupling model.

unexplained contribution to dephasing at a rate γ c? = 1/(24 ms) whose source is not yet identified. It is plausibly
related to second-order excitations from |e〉 to |f〉 [2].

F. Active oscillator cooling

Given the long relaxation time T
c

1 = 606µs of our oscillator, passive cooling that relies on the natural interaction
with the cold environment is impractically long. For example, starting with a Fock state |1〉, it would take approx-
imately 4.6T

c

1 = 2.8 ms to reduce the average population to 0.01 photons. In practice, since we work with the grid
states, the required cooling time is even longer. Therefore, the goal of our active cooling routine is to reduce the
experimental duty cycle time and also to remove any residual thermal population. We achieve these goals via a
two-step procedure which consists of an engineered dissipative pre-cooling and subsequent feedback cooling.
Dissipative pre-cooling. We introduce a novel oscillator cooling method based on the conditional displacements,

ancilla rotations, and ancilla resets. This protocol can also be realized in trapped ions, as was hinted in Ref. [20].
To derive this protocol, we apply the same dissipation engineering framework [21] as used in Ref. [22] to derive

the SBS stabilization of the GKP manifold. The dissipator γD[a] can be approximated with a sequence of discrete
entangling interactions U(t) between the ancilla and the oscillator, and ancilla resets. For γD[a], the interaction
should be of the form U(t) = exp[−i

√
γt(aσ+ + a†σ−)], where the constraint 〈a†a〉γt� 1 controls the validity of this

discrete approximation. To further approximate this unitary as a multi-layer circuit with gates from our gate set, we
perform the first order Trotter decomposition:

U = exp

(
−i
√
γt

2
(xσx + pσy)

)
(S5)

= exp

(
−i
√
γt

2
xσx

)
exp

(
−i
√
γt

2
pσy

)
+O(γt) (S6)

≈ R†y(π/2) ECD(−iε)R†x(π/2) ECD(ε)Ry(π/2)Rz(π/2), (S7)

where we defined the “trimming amplitude” ε =
√
γt. Furthermore, since the ancilla qubit is assumed to always start

in |g〉, we can omit the first gate Rz(π/2). The resulting unitary part of the dissipative cooling circuit is:

R†y(π/2) ECD(−iε)R†x(π/2) ECD(ε)Ry(π/2), (S8)

also summarized in Table S2. To achieve uniform cooling in all directions in phase space, the orientation of the ECD
gates needs to cycle between position and momentum quadratures. A single cycle, including the pulse sequence in
(S8), ancilla reset, and subsequent virtual rotation gate on the FPGA, has a duration of 3.38µs.

To demonstrate the performance of this cooling protocol, we start with a |+Z〉 grid state with ∆ = 0.3 and apply
varying number of cooling cycles, monitoring the population of |0〉 with a selective qubit pulse. As seen in Fig. S8(c),
dissipative cooling allows the state to shrink towards vacuum significantly faster than passive cooling. With ε = 0.4,
the cooling rate is 20 times faster than energy relaxation time of the oscillator. For small ε ≤ 0.3 the steady-state
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FIG. S8. System cooling. (a) Ancilla reset subroutine with measurement-based three-state feedback. (b) Oscillator
feedback cooling subroutine adapted from Ref. [5]. (c) Demonstration of dissipative cooling of the oscillator starting from
GKP | + Z〉 state with ∆ = 0.3. A single cooling cycle consists of a pulse sequence in Eq. (S8), ancilla qubit reset as in (a),
and virtual rotation gate to the orthogonal quadrature for the next cycle. The duration of a single such cycle is 3.38 us. The
case ε = 0 is equivalent to passive cooling. Dashed lines represent the contrast of the zeroth photon number peak in qubit
spectroscopy after passive cooling of 5 ms and after feedback cooling with Y = 3.

thermal occupation after dissipative cooling is similar to passive cooling of this state of duration 5 ms. Larger ε allows
for faster cooling, but at the expense of significant residual thermal occupation.
Feedback cooling. To remove the residual thermal photons, we further apply the feedback cooling protocol

introduced in Ref. [5] and shown in Fig. S8(b). With the help of a selective qubit pulse conditioned on |0〉 and qubit
measurement, the protocol repetitively asks the question “Is the oscillator in vacuum?” and terminates only when it
receives Y consecutive “yes” answers. It would be inefficient to run this feedback protocol starting with an arbitrary
initial oscillator state, since the probability py of obtaining “yes” can be very small. The dissipative pre-cooling quickly
boosts this probability to a level essentially limited by the fidelity of the selective qubit pulse, and thereby decreases
the run time of the subsequent feedback cooling step. The run time of feedback cooling is non-deterministic, but the
expected number of rounds in a model with constant py is

Nfc(py, Y ) =
p−Yy − 1

1− py
(S9)

Our final routine, called “active cooling” throughout this work, consists of 25 cycles of dissipative pre-cooling
(50 cycles, if counting each quadrature individually) with ε = 0.4 followed by the feedback cooling with Y = 3.
We estimate that with py = 0.87, achieved after the pre-cooling, the expected run time of the whole routine is
approximately 50 × 3.38µs + Nfc(0.87, 3) × 25µs = 270µs, which in our system corresponds to 0.45T c

1 (and could
potentially be reduced further).

From the contrast of the zeroth photon number peak in the qubit spectroscopy [dashed lines in Fig. S8(c)], we see
that passive cooling of duration 5 ms starting from the |+Z〉 grid state still leaves a residual thermal population larger
than what our protocol achieves in a much shorter time. However, when active cooling is applied to an oscillator in
its steady state (nominally, vacuum) we find no resolvable improvement of the spectroscopy contrast, which leads us
to conclude that the residual thermal population after active cooling is at the sub-percent level where it cannot be
resolved with our spectroscopy. This observation is used in Section S2E to derive an upper bound on the oscillator
thermal excitation rate.
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Dissipative cooling SBS protocol |+ Z〉 grid state prep. Y 90 gate for {|0〉, |1〉} qubit
t β ϕ θ β ϕ θ β ϕ θ β ϕ θ
1 +0.4 +π/2 +π/2 +0.2i +π/2 +π/2 +0.52 + 2.54i −1.28 +1.57 +0.64 + 0.11i −1.06 +1.58

2 −0.4i 0 −π/2 +
√

2π 0 −π/2 −0.83− 0.36i +2.85 −2.76 −0.15− 1.00i +2.64 −1.44
3 0 +π/2 −π/2 +0.2i 0 +π/2 −0.36 + 0.85i +0.29 +0.55 +1.02 + 0.05i +0.58 −1.97
4 0 +π/2 −π/2 −0.86 + 1.61i −0.29 +1.43 +1.55 + 1.02i −1.84 −1.55
5 −2.16 + 0.12i +0.29 +0.92 +0.34 + 1.06i +2.74 +0.26
6 −0.09 + 1.73i +2.85 −1.56 −0.26− 0.92i −0.01 −1.25
7 +2.05 + 0.73i +0.29 +1.08 −0.61− 0.05i −2.91 −1.75
8 +0.22− 0.66i −0.29 −2.71 +0.02 + 0.05i −1.79 −1.67
9 −0.08− 1.56i +0.29 +2.06
10 +0.19 + 0.04i +2.85 +1.60
11 0 +1.86 +1.57

TABLE S2. Circuit parameters. Parameters for dissipative cooling and SBS protocol are created based on the models
described in Section S2F and Ref. [22] respectively. Parameters for | + Z〉 grid state preparation and Fock Y 90 gate on
{|0〉, |1〉} qubit are numerically optimized with Keras.

S3. QUANTUM CONTROL OPTIMIZATION

A. Model-based optimization of control circuits

Circuit decomposition. Our control gate set consists of two parametrized gates: (i) echoed conditional displace-
ment of the oscillator ECD(β) = σxD(σz β/2), where D(α) = exp[αa† − α∗a] is the displacement operator, and (ii)
rotation of the qubit R(ϕ, θ) = exp [−i(θ/2)(σx cosϕ+ σy sinϕ)]. Recently, it was shown that this gate set is well
suited for the universal control of an oscillator with weak dispersive coupling to a qubit [10]. Most unitary operations
in our experiment are decomposed as parametrized multilayer circuits of the form

circuit(β,ϕ,θ) = ECD(βT )R(ϕT , θT )︸ ︷︷ ︸
layer T

· · · ECD(β1)R(ϕ1, θ1)︸ ︷︷ ︸
layer 1

, (S10)

where β ∈ CT is a vector of conditional displacement amplitudes, and ϕ,θ ∈ RT are vectors of qubit rotation phases
and angles respectively. For example, we utilize this decomposition as part of the following operations:

− Dissipative cooling of the oscillator, see Section S2F.

− Preparation of the GKP states, see Section S4H.

− Small-Big-Small protocol, see Section S4C.

− Preparation of the Fock state |1〉, see Section S2E.

− Y 90 gate on Fock {|0〉, |1〉} encoding, see Section S2E.

Circuit optimization. A circuit optimization method for this gate set was developed in Ref. [10]. Here, we
present a simplified modular framework based on the Keras library [23], which allows to optimize circuit parameters
in a manner similar to training of the neural networks. The parametrized control circuits (S10) are created as
instances of the tf.keras.Sequential class which is commonly used to concatenate multiple neural network layers.
Here, we instead use custom layers that represent the parametrized gates ECD(β) and R(ϕ, θ) as subclasses of
tf.keras.layers.Layer. This allows us to exploit flexible and user-friendly application-programming interface of
the Keras library to optimize the circuit parameters and automatically monitor various aspects of the optimization
progress. To illustrate the accessibility of such an approach, in Fig. S9 we provide an example code for optimization of
the Y 90 gate on the {|0〉, |1〉} qubit. Complete code with dependencies and further examples is available in Ref. [24].
Such optimization, which is performed for a batch of B = 300 circuit candidates in parallel on a graphics processing
unit (GPU), takes about 10 minutes to finish. In Table S2, we list circuit parameters for some of the control operations
in our experiment. Curiously, some of the numerically optimized parameter values are clearly interpretable, e.g. in
GKP state preparation circuit the rotations at steps t = 1, 6, 10, 11 seem to be by an angle π. Detailed inspection of
these circuits can lead to improved analytic constructions, which is left for future research.
Pulse compilation. Having obtained the circuit parameters, we compile the waveforms to be played on the qubit

and oscillator control lines. Such compilation requires prior calibration of the rotation R(ϕ, θ) gate, described in
Section S2A, and the ECD(β) gate, described in Section S2D.



21

FIG. S9. Circuit optimization. Example of a Python script for optimization of the circuit parameters for Y 90 gate on the
{|0〉, |1〉} qubit. Gates are represented as custom Keras layers, and the circuit is compiled as sequential model. Optimization
utilizes TensorFlow backend for automatic differentiation of the model.

As explained in Ref. [10] and in Section S2D, our experimental implementation of the ECD(β) gate results in
additional qubit phase accumulation Θ[β] ∝ |β|2, i.e. we implement ECD(β) = exp(−iσz Θ[β]/2) ECD(β). We use
the experimental calibration of this phase to adjust the numerically optimized vector ϕ according to the rule

ϕt ← ϕt −
t−1∑
τ=1

(−1)t−τΘ[βτ ], t > 1. (S11)

In addition, in many cases of interest the ancilla qubit at the end of the circuit returns to |g〉 and disentangles from
the oscillator. In such cases, the last conditional displacement ECD(βT ) can be realized as a simple displacement
D(βT /2). We use this simplification in state preparation circuits and in the SBS protocol.

In Fig. S10, we show an example waveform for unitary preparation of the |+Z〉 grid state using a parametrized circuit
with T = 11 layers. Each ECD gate is decomposed via large displacements and conditional rotations. For clarity,
in this example all conditional rotations are implemented with a constant wait time τ = 200 ns; hence, the whole
compiled waveform has a duration of 6.4µs. Faster implementations are possible if the wait time is adapted to the
magnitude of the conditional displacement, as described in Section S2D. For example, in our system the conditional
displacement of amplitude |β| < 0.5 could, in principle, be implemented with zero wait time, see Fig. S6(d).

B. Model-free reinforcement learning for QEC

While most quantum operations in our experiment are optimized with a model-based approach described above, for
quantum error correction we deploy a more powerful framework of model-free optimization. We use a reinforcement
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FIG. S10. Waveform for | + Z〉 grid state preparation. The parametrized control circuit is decomposed into primitive
gates: qubit rotations, oscillator displacements, and conditional rotations. The waveform is compiled from this sequence of gates
using experimental calibrations. Each qubit rotation and oscillator displacement is replaced with a corresponding Gaussian
pulse, and the conditional rotation is replaced with a delay of certain length during which the system freely evolves under the
dispersive coupling Hamiltonian.

FIG. S11. Reinforcement learning. (a) Experimental training loop. (b) Training time budget per epoch.

learning algorithm called proximal policy optimization (PPO) [25, 26]. For a detailed description of this algorithm in
the context of quantum control we refer to Ref. [8]; here, we only provide a basic high-level picture. The complete
training loop of our experiment is illustrated in Fig. S11; it is structured as follows:
Step 1. On training epoch t, neural network produces a probability distribution N (~µt, ~σt), where ~µt = ~µ(θt),

~σt = ~σ(θt), and θt summarizes the values of all weights and biases of the neural network in the current epoch.
Step 2. We sample a batch of B = 10 parameter vectors from this distribution. They correspond to different QEC

circuit candidates that should be evaluated in experiment. The neural network and sampling are implemented on
NVIDIA 2080Ti graphics processing unit (GPU) in a separate computer. The sampled vectors are sent to the control
computer via a local area network with negligible communication time.
Step 3. Based on these parameter vectors, we compile QEC circuit candidates, translated into FPGA instructions

and DAC waveforms. All circuit candidates follow the same program execution flow, but the control waveforms and
the content of FPGA registers is different for every candidate. The FPGA is reset and its wave memory is updated.
This time-consuming step is the bottleneck of the training loop.
Step 4. Each candidate is evaluated in experiment. To this end, we initialize logical Pauli eigenstates |+ Z〉 and

|+X〉, run the QEC for T = 160 cycles, and then perform one-bit phase estimation of the corresponding logical Pauli
operators. To suppress the sampling noise, we repeat this Navg = 150 times per Pauli and per circuit candidate. In
total, one epoch of training consists of Ntot = 2BNavg = 3000 experimental shots.
Step 5. To produce the reward, we treat the measurement of a Pauli operator after T cycles as a proxy for logical

lifetime. While averaging the measurement outcomes, we mask the experimental shots that started with incorrect
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state initialization, as flagged by a verification ancilla measurement after the state initialization.
Step 6. Once the rewards are available, PPO algorithm updates the neural network parameters θt → θt+1 for the

next epoch. The gradients of these parameters are computed with automatic differentiation via back-propagation.
After updating the neural network, the new training epoch begins.

The time budget of this training is shown in Fig. S11. All steps outlined above amount to 15.6 s per epoch.
In the current implementation, the major bottleneck is Python-to-FPGA transition (step 3). Because of this, the
implementation is less optimal in terms of sample efficiency than the proposal in Ref. [8]. The optimal approach would
be to spend the total sample budget per epoch to evaluate more circuit candidates with minimal accuracy, instead
of evaluation only a few candidates with high accuracy (achieved through averaging). In other words, based on the
results of Ref. [8], we expect that a training with (B,Navg) = (1000, 1) would require fewer experimental shots to
reach a given performance level than a training with (B,Navg) = (10, 100). However, considering the total run time
of the training, we had to compromise between bare sample efficiency (number of shots) and the overhead in step 3
of the pipeline. The overhead is independent of Navg but increases with B, and due to a limited FPGA instruction
sequence length we can only evaluate B ≤ 10 candidates per compilation. After paying the compilation overhead in
step 3, a certain amount of averaging comes essentially for free and does not considerably affect the run time, hence
the choices made here.

In Section S4D, we describe the QEC circuit parametrization, show the evolution of parameter values during the
course of training, and provide interpretation of the observed trends.

S4. QUANTUM ERROR CORRECTION OF THE GRID CODE

A. Brief introduction to grid code

Qubit-register stabilizer codes are based on the group of Pauli operators; consider instead a stabilizer code based
on the group of oscillator displacement operators. By definition, the +1 eigenstates of a displacement operator D(α)
are displacement-invariant in phase space along the direction of α with a period |α|. Having two code stabilizers
SX0 = D(αX) and SZ0 = D(αZ) imposes displacement invariance along two non-equivalent directions, which means
that all codewords are grids in phase space with a unit cell defined by {αX , αZ}. The requirement of commutativity
of SX0 and SZ0 imposes a constraint

α∗XαZ − αXα∗Z = 2l2sni, n ∈ Z, (S12)

where lS =
√

2π. Here, we consider encoding of a single logical qubit into an oscillator, which corresponds to n = 1.
By parametrizing the complex-valued displacement amplitudes as αX = lS [M22 − iM12] and αZ = lS [iM11 −M21],

FIG. S12. Wigner functions (numerical) of grid states.
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we obtain a grid code with the following stabilizers:

SZ0 = D(lS [iM11 −M21]), (S13)
SX0 = D(lS [M22 − iM12]). (S14)

From the constraint (S12) we derive a single requirement that a real matrix M =

[
M11 M12

M21 M22

]
has a determinant

detM = 1. This matrix defines the structure of the grid in phase space. Here, we only consider the square grid code,

which is obtained with M =

[
1 0
0 1

]
. The hexagonal code with M =

√
2√
3

[
1 1/2

0
√

3/2

]
was realized in Ref. [14].

The Pauli operators of the logical qubit are defined as

XL =
√
SX0 = D(lS [M22 − iM12]/2), (S15)

ZL =
√
SZ0 = D(lS [iM11 −M21]/2). (S16)

They satisfy the standard algebraic properties X2
L = I, Z2

L = I, and XLZL = −ZLXL, inside the code space. Using
the identity YL = −iZLXL, we find the third Pauli operator YL = −iD(lS [iM11 − iM12 +M22 −M21]/2).

The eigenstates of Pauli ZL of the ideal grid code are shown in Fig. S12(a). Finite-energy code families can
be obtained by regularizing the ideal code through application of an envelope operator [22, 27], with a common
choice being N∆ = exp(−∆2n). We show several members of this code family in Fig. S12(b-d). Note that such
a regularization leads to non-orthogonal states, with fidelity loss due to the finite state overlap that scales as ∝
exp[−(3/8)π/∆2]/(1− exp(−2∆2)) (see Eq. S28 in Ref. [22]), which is negligible for our choice of ∆ = 0.34.

B. Small-Big-Small (SBS) protocol

Here, we describe the SBS protocol, first proposed in Ref. [20, 22] from a new angle. The full QEC circuit in
this protocol is shown in Fig. S13(a) with nominal parameter values listed in Table S2; it implements a channel
R∆(ρ) = (RZ

∆ ◦RX

∆)(ρ). Let (K
X/Z
g ,K

X/Z
e ) denote the Kraus operators of the constituent rank-2 channels RX/Z

∆ (we
omit the ∆ subscript from the Kraus operators for simplicity). These operators read:

KX

g = cos(
√
πp) cos(

√
π∆2x) + sin(π∆2/2) cos(

√
πp), (S17)

KX

e = − cos(π∆2/2) sin(
√
πp) + i cos(

√
πp) sin(

√
π∆2x), (S18)

where x = (a+ a†)/
√

2 and p = i(a†− a)/
√

2, and (KZ
g ,K

Z
e ) are obtained with a substitution (x, p)→ (−p, x). Then,

the Kraus operators of a composite rank-4 channel are:

Kgg = KZ

gK
X

g , Kge = KZ

gK
X

e , Keg = KZ

eK
X

g , Kee = KZ

eK
X

e . (S19)

For ∆ = 0.34, these Kraus operators are shown as matrices in the truncated eigenbasis of K†ggKgg in Fig. S13(b).
This eigenbasis splits into pairs of states Ci = {|0Li 〉, |1Li 〉}, i ∈ N, that define orthogonal replicas of the logical
subspace C0 generated by the errors. We show the Wigner functions of the projectors Π0, Π1, and Π2 onto the
first three subspaces in Fig. S13(d). Note that Π1 ≈ aΠ0 a

† and Π2 ≈ a†Π0 a, hence the errors in the first level
of hierarchy resemble photon loss (a) and gain (a†) errors. While a and a† only approximately satisfy the Knill-
Laflamme conditions [28] for the finite-energy grid code, the actual error operators that define the subspaces C1 and
C2 satisfy these conditions exactly (since the eigenspaces of a Hermitian operator K†ggKgg are orthogonal). Similarly,
by inspecting the Wigner functions of the projectors onto higher subspaces, we find that the second level of error
hierarchy resembles a2, a†a and a†2. The number of error subspaces in each level is given by the number of unique
combinations of a an a†: two subspaces (a and a†) in the first level, and three subspaces (a2, a†a and a†2) in the
second level, leading to the blocks of size 4× 4 and 6× 6 in the Kraus matrices in Fig. S13(b). Further understanding
the structure of the error hierarchy is the subject of ongoing research.

Unlike in the standard stabilizer formalism of QEC [29], Kraus operators here do not correspond to a projection of
a state onto a single error subspace and its subsequent transfer to the code space. Instead, the transfer here is realized
gradually, following an error hierarchy imposed by the QEC circuit. To clarify the action of the Kraus operators, their
reduced representation using directional flow of a quantum state between error subspaces is shown in Fig. S13(c) [this
representation ignores the dynamics within each subspace]. We now briefly discuss the interpretation of the processes
corresponding to each of the gg, ge, eg, ee outcomes of a QEC cycle. Outcome gg heralds a process in which the
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FIG. S13. SBS protocol. (a) Circuit structure of one QEC cycle. (b) Kraus operators of the QEC cycle with ∆ = 0.34,
written in the eigenbasis of K†ggKgg. This eigenbasis splits into pairs of states Ci = {|0Li 〉, |1Li 〉}, i ∈ N, that define replicas
of the logical subspace C0. Color encodes the absolute value of the matrix elements. (c) Flow diagram corresponding to each
Kraus operator. Circles represent error spaces, and arrows show the most relevant matrix elements. The dynamics within the
subspaces is discarded in this representation. (d) Numerical Wigner functions of the projectors onto the subspaces C0, C1, and
C2. Comparison to the subspaces generated from the code space by the errors a and a† reveals that the errors in the first level of
hierarchy approximately correspond to a and a†. (e) Quantum state trajectories with errors and QEC. The state is represented
in the same basis as in (b); color encodes the absolute value of the state components in this basis. Red dotted lines are guides
to the eye that separate the error subspaces. The occurrence of errors is indicated with red arrows at the top. The time axis
is measured in QEC cycles. The Kraus operators are applied between the time steps, and the syndrome string encodes which
Kraus operator was applied on every step. The state transfer fidelity, shown at the bottom, measures the squared overlap of
the final and initial state vectors.
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state has remained in the same subspace. The probability of emitting gg from within the code space is nearly 1. This
property is exploited in Section S4E to extract the expectation value of the code projector 〈Π0〉 from the statistics
of long strings of the gg/gg/... type. Both ge and eg outcomes herald the process in which the quantum state was
transferred one level down the error hierarchy. Strings like eg/eg/eg/... therefore correspond to processes in which
the state directionally hops level by level towards the code space. Finally, the ee outcome heralds a transfer two levels
down the error hierarchy.

Besides the transfer between the error spaces, the Kraus operators apply a deterministic logical flip: XL in the
RX

∆ cycles, and ZL in the RZ

∆ cycles. This flip is visible in the off-diagonal structure of the sub-blocks in the Kraus
matrices, see Fig. S13(b). For example, the lower right 2 × 2 block in Kgg represents the code subspace, and the
off-diagonal structure represents the combined effect of XLZL = −iYL on the codewords. Due to this effect, the
lifetime of +1 and −1 logical Pauli eigenstates in our QEC protocol are exactly equal. We track the Pauli frame in
software, and undo its change in the data reported in Fig. 3 of the main text.

To demonstrate how the errors are corrected by this QEC scheme, we show several examples of quantum state
trajectories in Fig. S13(e). In the first trajectory, the state is initialized as one of the logical basis states, and then
evolved for several QEC cycles without any errors. The Pauli frame switching is apparent here from the oscillating
pattern within the code space (in this picture, the phase information is not shown, but the QEC process also protects
the phase of the logical qubit). In the second trajectory, an error a† was applied to the state prior to QEC, and then
it was almost perfectly corrected, accompanied by the emission of eg/gg/... syndrome string. In the third trajectory,
this error was instead corrected during the third QEC cycle, and the quantum state spent extra time in the error
space C2. This example explicitly demonstrates that the Pauli frame update is applied correctly irrespective of the
subspace, hence Pauli gates done in this manner are transversal. The subsequent trajectories demonstrate that even
higher-order errors, such as a†2 or a†4, can be corrected with high fidelity. Moreover, as seen in the fifth trajectory,
the state can be recovered even if additional errors happen while the previous errors have not yet been fully corrected.
The latter example highlights that the “slowness” of the low-rank error-correction dissipation is not a problem, as long
as the error rate is sufficiently small compared to the correction rate.

A few remarks with regards to the simplified interpretation of the QEC process in the main text are in order: (i)
The correct interpretation of the action of a QEC cycle requires considering pairs of outcomes, like ge, instead of
isolated outcomes, like g or e. We adopted the latter approach in the main text for simplicity of exposition. (ii) The
gg outcome does not herald the projection onto the code space, as mentioned in the main text, but rather a process in
which “no error was corrected”. Conditioned on the state residing in the code subspace, this outcome will be emitted
with probability nearly 1. However, if the state is in one of the error spaces this outcome can still occur with smaller
probability starting from about 0.47 at the lowest level in the error hierarchy and reducing for higher levels. (iii)
When one of the outcome eg, ge or ee is obtained, there is a small chance that the QEC process has added an error,
leading to a random walk among the error spaces that is heavily biased towards the code space.

C. QEC cycle: implementation details

In this section, we describe implementation details of a QEC cycle, whose schematic is shown in Fig. S13. The
various datasets in this work were taken with several different versions of the QEC circuit. All these versions have the
same overall structure, but different parameter values obtained from re-training after the system drift has appreciably
affected the logical performance (this happens on a time scale of 1-2 weeks, see Section S4 J). Below, the quoted
durations of various components of a QEC cycle refer to the circuit version that we used to collect the system
lifetimes dataset and that achieved the highest reported QEC gain.
SBS unitary. We refer to the unitary part of the circuit U∅ prior to ancilla measurement as “SBS unitary” since

it is based on the ansatz from Ref. [22]. The SBS unitary is compiled as a four-layer parametrized circuit with
nominal parameters shown in Table S2, and is further translated into the pulse sequence with the method described
in Section S3A. The last circuit layer does not contain an ECD gate, and instead only contains a qubit rotation and
oscillator displacement. Since the qubit is reset after the SBS, the function of the latter rotation is to choose the
“reset axis”, which can be an arbitrary axis on the qubit Bloch sphere.

As shown in Ref. [22], without any special asymmetries between |g〉 and |e〉 it would not matter along which axis the
ancilla reset is done – all choices result in the same completely positive trace-preserving map after averaging over the
measurement outcomes. However, in practice the asymmetry comes from the ancilla relaxation channel that degrades
the readout fidelity of the |e〉 state. Hence, it is advantageous to choose the reset axis that preferentially returns
the |g〉 outcome. The parameter sequence for SBS unitary in Table S2 takes this choice into account. The choice
of reset axis also results in different unraveling of state trajectories and different Kraus operators. The choice made
here enabled the interpretation of e outcomes as syndromes that signal occurrence and correction of errors, which is
utilized in the post-selection experiments, described in Section S4G. This is in contrast with Ref. [14], where g and e
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outcomes are interpreted as left or right displacement of the grid.
The duration of the SBS unitary is not fixed, because its constituent ECD gates can be implemented with different

choices of the speed enhancement factor α (amplitude of the intermediate displacement). Since α is included in the
action space of the RL agent, all circuit candidates during the training have different durations of the SBS unitary
(we will soon comment on how this affects the reward comparison among them). In the final circuit that achieved the
highest reported QEC gain, the duration of SBS unitary is tSBS = 1546 ns.
Ancilla reset. In principle, error correction with SBS protocol could be fully autonomous (without a classical

feedback loop) as was envisioned in the proposal [22] and realized in a trapped ion system [20]. The autonomous
scheme has an advantage of significantly simplifying the demands on the classical co-processor (in our case, the
FPGA). Moreover, there exist various dissipative reset protocols for the transmon [30–32]. However, the disadvantage
of a fully autonomous implementation in our system is that it is not able to compensate for a spurious rotation of the
oscillator due to the always-on dispersive coupling with the ancilla. The back-action of discarding the ancilla state
during the reset is the dephasing of the oscillator – a particularly harmful error channel for the GKP code [22]. Partly
because of this reason, we chose to implement ancilla reset through measurement and classical feedback, as described
in Section S2C, with the total duration of ancilla reset subroutine of treset = 2332 ns.
Virtual rotation. Due to the always-on dispersive coupling, the oscillator acquires a spurious rotation during

the ancilla readout time. In experiment [14], a simple echo sequence was used to cancel this rotation. With such
an approach, ancilla spends half of the time in |g〉 and half in |e〉 regardless of the actual syndrome measurement
outcome, which is detrimental to the code due to additional error sources associated with the |e〉 state. Here, we
instead chose the reset axis which results in 0.9 probability of detecting |g〉. Therefore, the ability to compensate for
the spurious oscillator rotation without echoing the state back to |e〉 is crucial to maintain this advantage.

We achieve this by dynamically tracking the oscillator phase that stochastically changes due to random ancilla
measurement outcomes, and compensating for it with a virtual counter-rotation. The spurious oscillator rotation
angle accumulates during the reset time treset, during the time tVR that it takes to execute the virtual rotation on the
FPGA, and during the idle time tidle when ancilla is nominally in |g〉 (the latter will be explained shortly). Therefore,
in the idealistic dispersive coupling model, the oscillator would rotate by ϑg = χ(tVR + tidle + treset)/2 if the ancilla
is found in |g〉, and ϑe = χ(tVR + tidle − treset)/2 if it is found in |e〉. Although the |f〉 state is not computational,
our controller is able to reset it with an accompanying virtual rotation by angle ϑf . Instead of relying on the simple
dispersive coupling model, in experiment we independently calibrate the angles ϑg/e/f with a variation of out-and-back
experiment [10] to account for additional minor timing contributions related to FPGA program entering or exiting a
subroutine, etc. These calibrated angles are used to initialize the QEC circuit for training.

Another important aspect of the virtual rotation is the switching between momentum and position quadratures of
the oscillator to realize RX

∆ and RZ

∆ dissipators. Such switching can be achieved with a rotation of the SBS unitary
by π/2 in phase space. This results in additional deterministic contribution ϑSBS in every virtual rotation gate. The
value of ϑSBS is π/2 for the square grid code, and π/3 for hexagonal grid code.

The virtual rotation gate utilizes a floating point register ϑ on the FPGA. During this gate, the FPGA performs

Component Subcomponent Duration (ns)
Enter cycle 24

SBS

Enter SBS 24
Circuit layer 1 502
Circuit layer 2 708
Circuit layer 3 262
Circuit layer 4 76

Exit SBS 24

Reset

Enter reset 24
Roundtrip delay 300

Acquisition 1400
Signal processing 332

Distribution of s0 and s1 100
Branching and feedback 200

Exit reset 24

Virtual rotation Mixer matrix calculation 400
Mixer update 48

Idle Delay 452
Exit cycle 24

TABLE S3. Timing of the cycle components.
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FIG. S14. Evolution of QEC circuit parameters during the training. Top row: example from one particular training
run. The shaded region bounds the minimal and maximal sampled parameter values. Solid lines indicate the mean. Bottom row:
evolution of the mean parameter values in several independent training runs performed during a two-day period, showcasing
the reproducibility of the training results.

the calculation ϑ← ϑ+ ϑg/e/f + ϑSBS with subsequent reconfiguration of the dynamic mixer matrix which applies a
rotation transformation to the oscillator pulses before they are being streamed at the DAC. The total duration of the
virtual rotation gate that includes all these steps is independent of ϑ and is equal to tVR = 448 ns.
Idle section. During the agent training, the reward is measured after a fixed number of T = 160 cycles, and not

after some fixed physical duration of time. Therefore, it is necessary to keep the duration of a QEC cycle constant
across different protocol candidates to ensure a fair reward comparison. At the same time, the agent is able to affect
the physical duration of the SBS unitary by changing the speed enhancement factor α in the ECD gates. To reconcile
these two requirements, after the virtual rotation gate we add a section of idle time that is calculated based on the
duration of the SBS unitary in each circuit candidate. We constrain the combined duration of SBS unitary and the
idle section to be 2µs. In the circuit that achieved the highest reported QEC gain, the duration of the idle section was
tidle = 452 ns. Note that in the previous QEC experiments that tried to create a long-lived quantum memory [5, 6],
the idle section was inserted intentionally to avoid frequently entangling the high-quality oscillator with low-quality
ancilla. Here, we find that inserting any additional idle time degrades the performance, hence we kept it nearly to a
minimum while still leaving some room for change of the SBS duration by the RL agent.

In Table S3, we provide a detailed timing breakdown of all components of the cycle.

D. Learned and scripted parameters

Our QEC protocol has multiple parameters which could be optimized to improve its performance. Some of these
parameters are difficult to incorporate into our optimization framework in its current form, and therefore their values
are chosen as an approximate compromise between various tradeoffs and then held constant. The rest P = 45 of them
are optimized with reinforcement learning, given a reasonable starting point obtained from independent calibrations.
Here, we briefly explain the meaning of these parameters.
Scripted parameters:
◦ Duration, shape, and amplitude of the readout pulse.
◦ State classification thresholds.
◦ Timing of all components of the reset subroutine.
◦ Durations of primitive pulses (qubit rotations and oscillator displacements).
◦ Combined duration of the SBS unitary and the idle section.
Learned parameters:
◦ Virtual rotation angle (ϑg, ϑe, ϑf ) for each measurement outcome. It is initialized with a result of independent

calibration using a variation of out-and-back experiment.
◦ Detuning of transmon |g〉 ↔ |e〉 and |e〉 ↔ |f〉 pulses (same parameter for all pulses). It is initialized with a result

of independent calibration, when oscillator is in the vacuum state (i.e. when there is no Stark shift).
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◦ Spectral corrections to |g〉 ↔ |e〉 and |e〉 ↔ |f〉 pulses based on derivative reduction by adiabatic gate (DRAG)
scheme [33] (same parameter for all pulses). It is initialized with 0.
◦ Complex-valued amplitudes of conditional displacement gates in the first three layers of the SBS unitary, and a

complex-valued amplitude of the unconditional displacement in the fourth layer. Two small amplitudes are initialized
with βS1 = βS2 = 0.2i, and the big amplitude is initialized with βB =

√
2π. The unconditional displacement is

initialized with 0.
◦ Magnitudes of the intermediate large displacements used to execute the ECD gates in the first three layers of the

SBS unitary. They are initialized with αS1 = αS2 = 6 for small conditional displacements and αB = 16 for the big
conditional displacement. Note that changing these parameters also influences the duration of the ECD gates.
◦ Angular corrections to intermediate large displacements in the first three layers of the SBS unitary. These heuristic

parameters compensate for effect of second-order dispersive shift and for the fact that conditional displacement
accumulates along an arc of small curvature instead of a straight line. These corrections are initialized with 0.
◦ Phases and angles of all ancilla rotations in the SBS circuit layers (including the echo pulses inside the ECD

gates), and in the ancilla reset subroutine. These parameters are initialized with nominal values from Table S2.
◦ Detuning of the local oscillator (LO) frequency for the cavity mode. This LO is calibrated with spectroscopy and

set to be half-way between the number-split oscillator frequencies when qubit is in the states |g〉 and |e〉, corresponding
to ∆ = 0 in Eq. (S1).
Evolution of parameters during training. In Fig. S14, we show the evolution of several QEC circuit parameters

during the training. Most parameters, when initialized well, merely exhibit small fluctuations around the mean.
However, some parameters undergo systematic and reproducible changes, as observed in the provided examples. For
instance, in Fig. S14(a), the big conditional displacement amplitude Re[βB ], which we expect to be equal to the
size of the grid unit cell, changes from a calibrated value of

√
2π by about 8%, likely indicating the presence of

a miscalibration error (the last calibration was done several weeks prior to this training). Similarly, the trend in
Fig. S14(e) towards the negative detuning of the |e〉 ↔ |f〉 pulses could be compensating for an additional Stark shift
that was not present at the initial calibration stage (calibration was performed with vacuum state in the oscillator).
In Fig. S14(b), the trend in amplitudes βS1 and βS2 of the two small conditional displacements in the SBS unitary
is particularly insightful, as it helped us identify a limitation of the proposal in Ref. [22], according to which the
amplitudes βS1 and βS2 should be identical and equal to i∆2/2, while the RL agent systematically converges to
|βS2| > |βS1|. Using simulations, we verified that in presence of error channels that act during the execution of the
SBS unitary, this is indeed a correct inequality. The optimal ratio of these two amplitudes is found in simulations to
be strongly dependent on the error channel. The agent adapts this ratio to the real error channel of our system.

In Ref. [8], it was shown that a similar RL agent is able to converge to correct solutions even starting from completely
random parameter initializations. Here, we initialize the parameters close to their expected optimal values through
various calibrations, but the compounded effect of small errors (at the level of a few percent) in multiple parameters
results in a QEC protocol which, although fully functional, is far from optimal. In particular, we were not able to reach
break-even with only the independent calibrations and educated guesses, hence model-free RL can be acknowledged
as one of the most crucial factors in the success of this project.

E. Syndrome measurement statistics

A sample of 600 experimental QEC shots is shown in Fig. S15, where QEC is ran for T = 1000 cycles in each shot.
Consider a string of measurement outcomes going from any chosen time step ti to a time step ti+2n (it contains n
QEC cycles). The probability P ([gg]n) that this string contains only gg outcomes is shown in Fig. S16(a), where it
is averaged over the experimental shots and over initial times ti (the averaging over ti is done with a sliding window
method which is applicable due to process stationarity). While in the most general case the functional form of P ([gg]n)
is a sum of multiple decaying exponentials, we clearly observe only a single dominant exponential contribution. Hence,
we fit this probability to P ([gg]n) = aλn, obtaining a = 0.936 ± 0.003 and λ = 0.86517 ± 0.00013. By adopting a
model for the error process and for the QEC process, we can link the fit parameters {a, λ} to model parameters. In
general, such a model would be quite complex. However, here we are interested in only two characteristic parameters
of the process: the probability 〈Π0〉 of occupying the code space in the dynamical equilibrium of the QEC process,
and the probability perr of having an error that transfers the state out of the code space. These parameters can be
extracted with very minimal model assumptions.

Using the transfer matrix approach, it can be shown that perr ≈ 1−λ and 〈Π0〉 ≈ aλ under the following assumptions:
1) The error probability is small perr � 1, which is justified since the cycle duration is small compared to all relevant
error rates in the system, and is confirmed by the fit results; 2) The conditional probability P C0gg of emitting gg
when the quantum state is in the code space is nearly 1. This is justified, since in the error-free model of the SBS
protocol described in Section S4B this probability is 0.999; 3) The conditional probability P err

gg of emitting gg when
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FIG. S15. Syndrome measurement outcomes. A sample of 600 experimental QEC shots of duration T = 1000 cycles
each. The “g” outcome (green) is prevalent, heralding the no-error process, while occasional “e” outcomes (yellow) indicate
correction of errors, and “≥ f ” outcomes (red) indicate leakage. When transmon escapes to a state higher than |f〉, which is not
addressed by our reset scheme, the leakage outcome persists for multiple cycles (streaks of red). In the readout IQ plane such
states occur above the Q threshold, and therefore they are conveniently classified as leakage, but without further identification
of the exact leakage state. After transmon stochastically drops back to |f〉, the controller is able to reset it and return the
ancilla to the computational manifold. However, during the cycles when ancilla is effectively inactive, the code is not stabilized.
Hence, leakage streaks are often followed by streaks of e outcomes where QEC re-stabilizes the code manifold.

FIG. S16. Analysis of syndrome measurement outcomes. (a) Probability of a string gg/gg/... as a function of its
length, together with the fit to a single exponential decay. (b) Histogram of durations of leakage events. Events of duration 1
or 2 cycles are predominantly |f〉 state; longer duration events are likely |h〉 or higher excited states. The exponential fit gives
the effective lifetime of these leakage states. (c) Fraction of shots that experienced a leakage event of duration d up to a given
time. Dotted lines are fits to a constant-rate model, see Section S4F.

the quantum state is in any of the error spaces is small P err
gg � 1. This assumption is partially justified, since

in the error-free model of the SBS protocol this probability is smaller than 0.5 for the first error space, and then
monotonously reduces for the higher levels of the error hierarchy; 4) The probability P corr

gg of correcting an error and
emitting gg is small P corr

gg � 1. In the error-free model of the SBS protocol this probability is exactly zero, while in
practice it is limited to ∼ 10−2 due to the readout infidelity of the |e〉 state.

This result can be intuitively understood as follows: the two most probable system trajectories that generate the
string of all gg’s correspond to (i) starting in the code space and remaining there for n steps, which happens with
probability 〈Π0〉(1 − perr)

n, and (ii) starting in the code space, remaining there for n − 1 steps, and transitioning
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FIG. S17. Correlation of syndrome measurement outcomes. (a) Correlation matrix rij for the first 30 cycles, computed
from the dataset in Fig. S16(a). (b) rij for the full QEC duration of 1200 cycles with zoomed-in color scale to resolve small
numbers. (c) rij after removing leakage events of duration ≥ 2 cycles. (d, e) Cuts of the correlation matrices from (b) and
(c) at different locations in the QEC trajectory. In a stationary process, rij would only depend on |i− j|, which is clearly not
satisfied in (d). After removing length ≥ 2 leakage events, the deviation from stationarity is not resolvable.

out on the very last step, which happens with probability 〈Π0〉(1− perr)
n−1perr. The sum of these two contributions

equals 〈Π0〉(1− perr)
n−1 ≡ aλn, leading to perr ≈ 1− λ and 〈Π0〉 ≈ aλ. The corrections to these formulas are of the

second order in parameters {p err, 1 − P C0gg , P err
gg , P

corr
gg }. From the fit in Fig. S16(b), we extract perr = 0.13 ± 0.02

and 〈Π0〉 = 0.81 ± 0.02. Note that this result for 〈Π0〉 agrees within the error margin with the result obtained by
an independent method based on the reconstruction of the density matrix from the measured Wigner functions in
Section S4H. Here, the error of the fit is negligible compared to the model approximations, hence the quoted error
bars are obtained from an estimate of the second-order corrections ∼ p2

err ≈ 0.02.
Here, we only considered the string of a special type gg/gg/...; an important avenue of future research would include

learning the error channel from the full statistics of syndrome outcomes, using the dataset in Fig. S15.

F. Analysis of transmon leakage

To quantify transmon leakage, we histogram its duration in Fig. S16(b). The most likely leakage duration is 1
cycle, since the controller resets |f〉 to |g〉 with high probability. However, because of the finite readout fidelity of
|f〉, shown in Fig. S5(b), the controller sometimes fails to reset this state, resulting in the next most probable leakage
duration of 2 cycles. After that, the histogram follows exponential distribution with decay constant of 17.2 cycles,
corresponding to 85µs, which we attribute to the effective lifetime of higher leakage states that are not addressed by
our reset scheme. This time scale is consistent with our estimate ∼ 280µs/3 = 93µs of the |h〉 state lifetime, derived
from the bosonic statistics and the average measured lifetime of |e〉 state.

To extract the leakage rate, in Fig. S16(c) we plot the fraction of shots that experienced a leakage event of a
certain duration up to a given cycle. We fit the data to a constant-rate model L(t) = 1 − exp(−t/τl) where t is the
cycle index and pl = 1/τl is the leakage rate (i.e. leakage probability per cycle). We find τl = 1480 ± 10 cycles,
corresponding to a leakage rate of pl = (6.76± 0.04)× 10−4. Similar analysis can be done for leakage events of length
≥ 2; with the fit to the same model, we find the time scale of τl,≥2 = 7820 ± 10 cycles, and the corresponding rate
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NP L d ≥ 5 d ≥ 4 d ≥ 3 d ≥ 2 d ≥ 1

Survival prob.
per cycle 1.0000 0.9985 0.9993 0.9986 0.9972 0.9907 0.9396

Improvement
of ΓGKP

1.00 1.10 1.18 1.36 1.68 2.44 6.31

Lifetime of
|+ Z〉 (ms) 1.874± 0.004 2.11± 0.01 2.23± 0.01 2.55± 0.01 3.13± 0.02 4.60± 0.02 10.0± 0.6

Lifetime of
|+ Y 〉 (ms) 1.147± 0.004 1.23± 0.01 1.36± 0.01 1.56± 0.01 1.93± 0.01 2.80± 0.02 9.4± 1.0

Lifetime of
|+ Z〉 (cycles) 381± 1 427± 1 452± 2 518± 2 636± 4 934± 4 2000± 100

Lifetime of
|+ Z〉 (cycles) 233± 1 250± 1 275± 2 317± 2 393± 3 567± 5 1900± 200

TABLE S4. Post-selection results. Top row labels the post-selection schemes. NP stands for “no post-selection”; L stands
for “leakage”; d ≥ N means post-selection that discards trajectories containing strings of N or more consecutive e outcomes in
the same-quadrature cycles.

of pl,≥2 = (1.280 ± 0.002) × 10−4. Note that this measurement was performed at the time of slightly sub-optimal
performance, and therefore the leakage rate at the maximal achieved QEC gain might have been smaller.

Next, we study the correlation of syndrome measurement outcomes across time. The correlation matrix is given by

rij =
E[mimj ]− E[mi]E[mj ]√

(E[m2
i ]− E[mi]2)(E[m2

j ]− E[mj ]2)
, (S20)

wheremk is the measurement outcome obtained at cycle k, and empirical expectation values are obtained by averaging
across experimental shots. For the dataset of Fig. S15 this correlation matrix is shown in Fig. S17(a), where we consider
only the first 30 cycles. Overall, the correlation is weak, and the correlation between RX

∆ and RZ

∆ channels (separated
by odd number of cycles) is weaker than the correlation between the same-quadrature channels (separated by even
number of cycles).

By zooming in the color scale to visually resolve small numbers and considering the full duration of the trajectory
of 1200 cycles, as shown in Fig. S17(b), it becomes evident that the process is not perfectly stationary. To emphasize
this, we show in Fig. S17(d) the correlation coefficient rij as a function of |i − j| for several choices of j. Further
along the QEC trajectory the process acquires a correlation tail. Although quite weak, this correlation stretches over
hundreds of cycles.

Previously, it was demonstrated that leakage removal helps to reduce correlated errors in the arrays of transmons
[34]. Our QEC protocol already contains a mechanism for leakage removal from the |f〉 state through measurement-
based feedback in every cycle. However, leakage states higher than |f〉 are not cleared by our reset. The signature of
such leakage events to higher states is two or more consecutive leakage syndrome outcomes. To check the hypothesis
that this residual leakage to states higher than |f〉 is responsible for increase of correlation, we post-select trajectories
that do not have any length-two or longer leakage events. In the post-selected dataset, the correlation matrix does not
display any detectable non-stationarity, as seen in Fig. S17(c,e), confirming the hypothesis. By fitting the remaining
short-time correlations in Fig. S17(e) to an exponential decay, we conclude that it takes 3.9±0.1 cycles (approximately
2 QEC cycles) to lose the memory of a typical large error. However, the most probable small errors are corrected in
a single QEC cycle.

G. Post-selection of errors

Here, we provide additional details about the the post-selection experiment that verifies the ability of our QEC
scheme to faithfully identify the errors. The post-selection results are summarized in Table S4. Note that this
experiment was performed at the time of slightly sub-optimal system performance, hence the baseline results with no
post-selection are lower than in some other experiments reported here, e.g. in Section S4 J. The main conclusion of
this post-selection experiment is that it enables significant improvement of the error probability at a cost of only a
modest rejection probability.

The saturation of lifetimes in the most stringent post-selection scheme (which preserves only the all-g trajectories)
can be related to the following mechanisms: (i) Direct logical errors, which are undetectable in any QEC scheme.
(ii) Misclassification of e as g (due to ancilla decay during the measurement), which means that some of the all-g
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FIG. S18. State reconstruction. (a) Wigner tomography experiment. (b) Calibration experiment to extract α-dependent
contrast of the Wigner tomography. This calibration relies on the assumption that the loss of contrast in tomography is
primarily due to incoherent errors during the parity mapping gate CR(π). (c) Results of the qubit state tomography in the
calibration experiment shown in (a). The measurement of 〈σx〉 is fit to a quadratic function of |α| (black dashed line), and its
square root (black dotted line) is used as a Wigner function measurement contrast in the state reconstruction. (d) Experimental
Wigner function of the |+ Z〉 state immediately after initialization. (e) Wigner function of the reconstructed state. (f) Real
part of the density matrix of the reconstructed state in the photon number basis.

trajectories that survived the post-selection actually contained errors, and some of those errors might have been close
to a logical operation instead of the identity operation. (iii) The non-orthogonality of logical states, which in our case
is not a limiting factor.

H. Wigner tomography of logical states

Tomography and its calibration. Wigner tomography is derived from the expression for the Wigner function
W (α) = (2/π)〈Πα〉, where Πα = D(α)ΠD†(α) is the displaced parity operator, and Π = exp(iπa†a) is the photon
number parity. The displaced parity operator is unitary and can be measured with phase estimation. It is also
hermitian, and hence its eigenvalues are constrained to be ±1. Therefore, it is particularly convenient to measure
displaced parity by mapping it onto the qubit observable [35], which is achieved in our system with a circuit shown in
Fig. S18(a). The conditional rotation gate CR(π) is realized with a delay of duration π/χ under the dispersive coupling
Hamiltonian, which amounts to approximately 10µs. Because of such long duration, previous GKP experiments with
similarly small χ chose to perform state tomography using the characteristic function instead [10, 14]. However, the
long coherence of our system allows to measure Wigner function with reasonably high fidelity.

We use several calibration techniques to improve the quality of the subsequent state reconstruction from the tomo-
graphic data. First, to symmetrize the effect of ancilla relaxation during the readout, in half of the phase estimation
runs we map +1 eigenvalue of Πα to the g outcome, and in another half to the e outcome. This technique eliminates
any finite offset inW (α), but maintains reduced contrast due to ancilla relaxation and decoherence. Next, to calibrate
the contrast reduction, we perform an experiment with a similar circuit in which CR(π) is replaced with [CR(π)]2 = I,
see Fig. S18(b). We fit the result of this experiment, shown in Fig. S18(c), to 〈σx〉 = 1−p[α], where p[α] = η0 +η2|α|2
is the purity loss per CR(π) gate. Under the assumption that contrast reduction in tomography is primarily due to
incoherent processes (ancilla relaxation and dephasing, and oscillator photon loss), the inferred tomography contrast
is P (α) =

√
1− p[α]. At α = 0, this inferred contrast is equal to 0.8, which matches the measured contrast of the

Wigner function of vacuum in Fig. S3(c), justifying the assumptions of this calibration method.
The phase space points αi for Wigner tomography are chosen on a square 81×81 grid in a complex plane restricted

to |Re[αi]|, |Im[αi]| ≤ 3.2. We acquire 2400 shots per point in 6 separate acquisition time frames. Between the time
frames we perform system performance checks; data acquisition is put on hold if the spurious resonance in T t

1 (n)
reappears [see Fig. S5(d)]. A single state tomography dataset consists of 15.7 million shots, and takes a long time to
acquire – from 6 hours in the case of T = 0 cycles, to 26 hours in the case of T = 800 cycles. Therefore, conclusions
derived from the analysis of tomography data apply to long-time average system performance.
State reconstruction. Tomographic data is used to produce a best guess for the density matrix of the state. We

parametrize the density matrix as ρ = C†C/Tr[C†C], where C = A+ iB, and A and B are real-valued matrices. Such
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parametrization ensures that ρ is positive semi-definite with trace 1. We truncate the density matrix to dimension
N = 32 in photon number basis. Coefficients of matrices A and B are optimized using the least squares fit of the
Wigner tomography and contrast data, with the cost function given by

cost =

Nα∑
i=1

(
2

π
Tr[ρD(αi)ΠD

†(αi)] · P (αi)−W (αi)

)2

. (S21)

An example Wigner tomography of the |+Z〉 grid state together with its reconstruction is shown in Fig. S18(d-f).
As will be described shortly, using the reconstructed density matrix we extract various parameters of the state: its
purity, mean photon number, and envelope size.
Evolution of logical states. We visualize the evolution of logical |+ Z〉 and | − Z〉 grid states during the QEC

by taking Wigner tomography snapshots after 0, 100, 200, 400, and 800 cycles, with results shown in Fig. S19.
The marginal of the Wigner function along momentum quadrature gives the probability density of the oscillator

position, shown in the third row of Fig. S19. The |+ Z〉 and | − Z〉 states have non-overlapping support in position
representation, clearly observed in the data at T = 0 cycles. During the QEC process these basis states mix under
the logical Pauli channel, which is manifested in the appearance of position peaks of the opposite state, until finally
they become almost (but not completely) indistinguishable after T = 800 cycles.

On the other hand, the marginal of the Wigner function along position quadrature gives the probability density
of the oscillator momentum, shown in the last row of Fig. S19. In the momentum representation, | + Z〉 and | − Z〉
states share the same support, but have a different pattern of phases associated with the peaks of the wavefunction.
The phase information is discarded in the probability density function, which looks identical for both states.
Spectral analysis of reconstructed states. Focusing on the time evolution of the | + Z〉 state, we perform

spectral decomposition of its reconstructed density matrices at T = 100, 200, 400, 800. We find that the eigenvalues
of the density matrix are arranged in pairs corresponding to the images of this state and of its complement | − Z〉
in different subspaces of the QEC, see Fig. S20(a). In particular, we identify only two subspaces with a substantial
presence of the state during the QEC process: the code space C0, shown in Fig. S20(b), and the error space C2
corresponding to an error E that most closely resembles a†, see Fig. S20(c) and Section S4B.

While the QEC circuit imposes the structure of the error subspaces, as described in Section S4B, the properties
of the “thermal” distribution across these subspaces in the dynamical equilibrium is defined by the strength of the
various error mechanisms in our system as well as the rate at which these errors are corrected. The probability of
occupying the code space, given by the sum of the first two eigenvalues, remains constant over time and equal to
〈Π0〉 = 0.825±0.003, where error bar represents the standard deviation with respect to different durations of the QEC
process. This value agrees well with an independent analysis in Section S4E. Having only one relevant error subspace
in the steady-state distribution also qualitatively agrees with an observation in Section S4E that errors are rare. We
believe that other error subspaces are populated with probability < 1%, which is beyond the resolution power of this
method. Developing a more accurate and sample-efficient reconstruction technique for characterizing the distribution
across the error spaces is an important direction left for the future.
Extracting code envelope size. For each QEC duration T , the reconstructed density matrix is used to find the

fidelity of the experimental states to the family of finite-energy codewords {| ± Z∆〉} parametrized by the envelope
size ∆. For T > 0, we additionally displace the target codewords by (0.08− 0.12i)

√
π/2 to account for a small shift

visible in the tomography. Since these target states are pure, the fidelity is given by F+
∆ = Tr [|+ Z∆〉〈+Z∆| ρ] and

F−∆ = Tr [| − Z∆〉〈−Z∆| ρ]. For experiments that start with a preparation of | + Z〉, these fidelities are shown in
Fig. S21(a) for each QEC duration from the dataset in Fig. S19. Immediately after the initialization, the fidelity F+

∆

is maximized for ∆ = 0.36, where it reaches 0.85. During the QEC process, F+
∆ gradually reduces while F−∆ increases,

consistent with the logical Pauli channel. The sum 〈Π∆〉 = F−∆ + F+
∆ , which is equal to the expectation value of

the code projector, remains nearly constant for T > 0. It is maximized at ∆ = 0.34 (9.4 dB), where it is equal to
〈Π∆〉 = 0.817± 0.003. This value is close to 〈Π0〉 = 0.825± 0.003 extracted from the density matrix spectrum, which
indicates that the code C0 stabilized in the experiment is indeed the one defined by the envelope operator exp(−∆2n)
with ∆ = 0.34.

The purity of |+ Z〉 state is shown in Fig. S21(b). During the QEC process, it reduces below 0.5, since the steady
state contains a mixture of the codewords with their images in the error spaces. However, the part of this mixed state
that resides within the code space should approach a purity of 0.5. To confirm that this is the case, for every state
ρ we define its projection onto the code space as ρ∆ = Π∆ ρΠ∆/Tr[Π∆ ρΠ∆], where we only consider the code with
the optimal envelope ∆ = 0.34. As seen in Fig. S21(b), the purity of ρ∆ after initialization is close to 1, and after
hundreds of cycles it approaches 0.5, as expected for the logical Pauli channel.

Lastly, in Fig. S21(c) we plot the evolution of the average photon number 〈n〉 = Tr[a†a ρ] during the QEC process.
The extracted steady-state photon number is 〈n〉 = 4.67± 0.02.
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FIG. S19. Wigner tomography after QEC. Evolution of |+ Z〉 state (1st row) and | − Z〉 state (2nd row) is followed for
800 cycles. Color scheme is the same as in Fig. S18, with the range scaled to [−0.63, 0.63]. Marginal of the Wigner function
along momentum (position) quadrature, which gives probability density of the oscillator position (momentum), is shown in the
3rd (4th) row in blue for |+ Z〉 state, and orange for | − Z〉 state. The probability density is not normalized.

I. Sensitivity to ancilla errors

Ancilla phase flips. Our QEC circuit is fault-tolerant with respect to ancilla phase flips by design [22]. To
see this, consider that if σz error happens during the ancilla readout, it would have no effect because the readout
projects the ancilla onto an eigenstate of σz. Likewise, during the virtual rotation gate or the idle time the ancilla
is nominally in the |g〉 state, which is an eigenstate of σz. Finally, the effect of σz errors on the SBS unitary can
be understood by propagating them through the circuit layers. For example, if such an error happens during the
big conditional displacement, it is equivalent to changing the circuit parameters from ~β = lS × (i∆2/2, 1, i∆2/2) to
~β = lS × (i∆2/2, 1,−i∆2/2). Since ∆2 � 1, this change is equivalent to a small error that will be corrected in the
following QEC cycles.
Ancilla bit flips. In contrast, ancilla bit flips can detrimentally affect the logical qubit in several ways. If such an

error happens during the middle half of the big conditional displacement of amplitude lS , it will with high probability
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FIG. S20. QEC subspaces. (a) Spectrum of
the reconstructed density matrices of the |+ Z〉
state evolving under the QEC process. The spec-
trum separates into two pairs of eigenvalues: one
pair corresponds to the code space C0, and an-
other pair corresponds to an error space obtained
from the code space by application of an er-
ror operator E. Dashed lines show the sum of
the eigenvalues within each pair, which gives the
probability of occupying the code space and the
error space. (b) Wigner function of the projec-
tor Π0 onto the first pair of eigenvectors (taken
at T = 800), defining the code space. (c)Wigner
function of the projector EΠ0E

† onto the sec-
ond pair of eigenvectors, defining the error space.
This error space corresponds to C2 subspace in
Section S4B.

FIG. S21. Analysis of | + Z〉 evolution. (a) Expectation value F±∆ of the state projectors | ± Z∆〉〈±Z∆| for a range of
values of ∆ and for different durations of the QEC process. The fidelity F+

∆ decreases, while F−∆ increases as a function of
time, as expected for a logical Pauli channel. The expectation value of the code projector 〈Π∆〉 = F+

∆ + F−∆ (black dotted
lines) remains nearly time-independent for T > 0. (b) Purity of the reconstructed state ρ and of its projection onto the code
space ρ∆ as a function of time. (c) Average photon number as a function of time.

generate a logical error. This mechanism accounts for a significant fraction of logical errors in the experiment.
For example, its contribution to the Pauli error probability pX = 1.8 × 10−3 (per QEC cycle), is estimated to be
∼ 0.5 × 0.5 × 0.5 × (700 ns/280µs) ≈ 0.3 × 10−3, where the factors of 0.5 account for (i) half of the superposition
state being sensitive to ancilla decay, (ii) half of the QEC cycle is devoted to position quadrature, (iii) half of the big
conditional displacement gate. In practice, the relaxation time of the ancilla is likely degraded during the execution of
the conditional displacement due to the large number of intermediate photons in the oscillator, see [10] and evidence
in Section S4 J. Hence, this estimate provides an optimistic lower bound. Ancilla bit flips can also create detrimental
back-action on the oscillator if they happen during the readout time. Since readout outcome is used in a feedback loop
to implement a virtual rotation gate, misclassification of the ancilla state generates rotational errors that the GKP
code is not well suited to correct, with erroneous rotation angle distributed in the range 0.0−0.6 radians. To estimate
the contribution of such errors to the logical error rate, consider that a rotation by ∼ ∆/(lS/2) ≈ 0.3 radians would
diminish the overlap of the blobs in the Wigner function; therefore, a significant fraction of misclassification-induced
rotation errors cause large disturbance of the stabilized code space. The transmon |e〉 state is the most prone to
misclassification. Since readout fidelity of the |e〉 state is close to 99%, and this outcome is generated 10% of the time,
we estimate an additional ∼ 0.5× 10−3 contribution to logical error probability per QEC cycle from this mechanism.
The two contributions described here account for half of the logical error probability pX , and the remaining half is
not yet well understood.
Transmon noise injection. To check the effect of ancilla errors on the logical performance in a controllable way,

we perform noise injection experiments that selectively increase the transmon phase-flip rate γ tϕ or bit-flip rate γ t1 ,
with the results shown in Fig. S22. With noise injection, we are able to increase γ t1 by a factor of 14 (spoiling T t

1

from 290µs to 20µs), and γ tϕ by a factor of 140 (spoiling T t
ϕ from 430µs to 3µs). Using linear fits in the low-error
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FIG. S22. Effect of ancilla errors. Logical error rates γZ and
γY as a function of physical error rates γtϕ and γt1 of the ancilla
transmon (γX is expected to behave identically to γZ). Physical
error rates are varied with noise injection. The error sensitivi-
ties dγZ/dγt1 = 0.17, dγY /dγt1 = 0.25, dγZ/dγtϕ = 0.0027, and
dγY /dγ

t
ϕ = 0.0050 are extracted by linear fits in the low-error

region. The derived sensitivity of ΓGKP = (γX + γY + γZ)/3 to
phase flips is 65 times smaller than to bit flips.

region, we extract the error sensitivities dγZ/dγt1 = 0.17, dγY /dγt1 = 0.25, dγZ/dγtϕ = 0.0027, and dγY /dγtϕ = 0.0050.
The derived sensitivity of ΓGKP = (γX + γY + γZ)/3 to ancilla phase flips is 65 times smaller than the sensitivity to
ancilla bit flips, confirming the qualitative arguments provided above. Mitigating the effect of ancilla bit flips on the
logical performance is one of the most important future directions in grid-code QEC.
Verifying noise injection. In the following, we explain how the noise injection experiments were conducted

and how we verified that the noise affects the system as intended, i.e. selectively tunes γ tϕ or γ t1 . We are able to
achieve high degree of selectivity, with negligibly small spurious effects. To spoil γ t1 , we inject noise at the transmon
frequency, and to spoil γ tϕ, we inject noise at low frequency [36]. The baseband white noise with flat spectral density
up to 80 MHz is sourced from an Agilent 33250A arbitrary waveform generator. In the γ t1 tuning experiment, it is
upconverted to the qubit frequency using a double-balanced mixer with an LO blue-detuned by 30 MHz from the
qubit frequency. After this pre-processing, the noise is filtered and combined with the qubit control line after the
switch (in contrast to all control pulses, the noise is not gated).

In Fig. S23(a), we inject resonant noise to tune γ t1 . This noise couples to the σx operator and therefore changes γ t↓
and γ t↑ symmetrically, which results in increased steady-state population of the qubit, approaching 0.5 at the largest
applied noise power. Note that this noise also affects the dephasing rate γ t2E , but the changes in γ t2E are explained
by changes in γ t1 : the extracted pure dephasing rate γ tϕ = γ t2E − γ t1/2 remains independent of the noise power, as
intended in this experiment. The error bars on γ tϕ increase at large noise power, because this small rate is extracted
as a difference of two large rates. The oscillator dephasing rate γ c2 is also affected by the noise, which is explained by
the increased rate of qubit up- and down-transitions that dephase the oscillator through the dispersive coupling [19].
The pure dephasing rate γ cϕ = γ c2 − γ c1 /2 of the oscillator agrees reasonably well with the prediction γ c,tϕ = n tthγ

t
↓

derived from this mechanism (black dotted line). The disagreement at high noise power is under investigation; it
likely comes from the breakdown of the simple formula for γ c,tϕ in the limit where n tth is not small.

In Fig. S23(b), we inject baseband noise to tune γ tϕ. In addition to this desired effect, within the same dynamic
range of the noise we observe an undesired increase of the qubit excited state population by a factor of 2 (data not
shown), likely due to the heating of the attenuators by the dissipated noise power. Since γ t↑/γ

t
1 � 1, the qubit lifetime

is not significantly affected by this heating. The lifetime and coherence of the oscillator also remain independent of
the noise power. The increase of the error bars on γ c1 and γ c2 with the noise power is related to strong degradation
of the fidelity of the transmon selective pulse used to read out the population of the oscillator |0〉 and |1〉 states as
described in Section S2E. This pulse has a duration of ∼ 20µs and it is directly sensitive to the transmon coherence;
at the highest injected noise power, where coherence time is spoiled down to 3µs, the fidelity of this selective pulse is
only a few percent.

In Fig. S23(c), we show the effect of the noise on the readout fidelity of the transmon |g〉 and |e〉 states. In principle,
the noise that induces phase flips (σz errors) should not affect the readout of σz. However, due to the aforementioned
heating of the qubit, we observe a weak degradation of F (g)

r . On the other hand, noise at the qubit frequency couples
to σx and results in significant degradation of both F (g)

r and F (e)
r .

J. Long-time system stability

With repetitive measurements of the lifetimes of {|0〉, |1〉} qubit, {|g〉, |e〉} qubit, and error-corrected GKP qubit,
we investigate the stability of our quantum system over time, with results of a week-long scan shown in Fig. S24. We
find that the {|0〉, |1〉} qubit is the most stable, which we attribute to the fact that most of the electromagnetic field
is stored in the vacuum of the cavity. In contrast, the {|g〉, |e〉} qubit exhibits notable fluctuations of the |e〉 state
lifetime; such fluctuations are often observed in transmons [18, 37], and are typically attributed to two-level defects in



38

FIG. S23. Noise verification experiments. (a) Component error rates as a function of the root mean square (RMS)
voltage of the injected noise (at the generator plane). Here, noise is up-converted to the qubit frequency to increase γ t1 . (b)
Same as in (a), but with the baseband noise that increases γ tϕ. (c) Readout infidelity of the transmon |g〉 and |e〉 states in
these two noise injection settings.

the amorphous dielectric, although there are other mechanisms that could lead to such fluctuations, and their source
in our system is not yet understood.

We also find significant fluctuations of the lifetime of an error-corrected GKP qubit. Periods of relative stability
are regularly interrupted with sudden drops and resurgences of performance, correlated with the appearance and
disappearance of a resonant feature in the T t

1 (n) dependence, see Fig. S24(c). The behavior of readout infidelity of
the |e〉 state is also correlated with this feature, see Fig. S24(b). We find that the correlation coefficient between the
logical error rate and the readout infidelity is r = 0.81. However, preliminary simulations indicate that degradation of
the readout fidelity alone is not sufficient to explain the collapses of the logical performance. We therefore believe that
the presence of the spurious resonance affects not only the readout fidelity, but also the fidelity of the SBS unitary.

A plausible causal chain is the following: 1) for unknown reason, the spurious degrees of freedom (defects) appear
and disappear; 2) when the transmon |g〉 ↔ |e〉 transition frequency is resonant with the defect, their interaction
strength is enhanced, which reduces the lifetime of the |e〉 state; 3) during the readout, the transmon is Stark-shifted
by the readout photons into resonance with the defects, which increases the probability of readout errors; 4) when the
transmon state is misclassified, the virtual rotation gate is executed with an incorrect angle, inducing a phase-space
rotation error on the oscillator; 5) during the conditional displacement gates, the transmon is also Stark-shifted into
resonance with the defects by the intermediate photons of the cavity mode; 6) when transmon decay happens during
the big conditional displacement gate, it has a significant chance of inducing a logical error. This proposed connection
between spurious defects and fluctuations of the logical performance could be verified with detailed system-level
simulations that take into account time-dependent Stark shift of the transmon and Stark-shift-dependent degradation
of T t

1 , which is left for the future analysis.
Apart from the stochastic fluctuations, we observe a systematic drift that warrants periodic retraining of the QEC

circuit. This drift can be seen by comparing the initial and final data points of the scan in Fig. S24, where all
the monitored physical error sources are similar in magnitude, but the logical lifetime is reduced in the final point
as compared to the initial point. Due to this effect, the various datasets reported in our work were acquired with
different version of the QEC circuit that were retrained every 1-2 weeks.

K. Average channel fidelity

The average channel fidelity of a quantum channel E : ρ→ E(ρ) to a target unitary channel U : ρ→ UρU† is

F(E ,U) =

∫
dψ〈ψ|U†E(|ψ〉〈ψ|)U |ψ〉, (S22)

where the integral is over the uniform measure on the state space, normalized so that
∫
dψ = 1. Henceforth, we refer

to this metric simply as fidelity.
To derive an equivalent but experimentally-compatible expression, we make use of the Pauli transfer matrix (PTM)

representation of a channel Rij [E ] = 1
2Tr(σiE [σj ]), where {σk, k = I,X, Y, Z} are Pauli matrices. This representation
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FIG. S24. Quantum system stability. (a) Lifetimes of Pauli Y and Z eigenstates of {|0〉, |1〉} qubit, {|g〉, |e〉} qubit, and
an error-corrected GKP qubit. (b) Inverse readout infidelity of the transmon |g〉 and |e〉 states. Logical lifetime is strongly
correlated with (1−F (e)

r )−1. (c) Transmon lifetime T t
1 as a function of the number n of the steady-state photons in the readout

resonator. The dashed line denotes the DAC amplitude used for the actual readout. The correlated degradation of the system
performance and appearance of a spurious resonance that degrades T t

1 (n) around
√
n = 0.1 is indicated with purple arrows.

has several useful properties, e.g. that composition of channels corresponds to a product of their PTMs [38]. In terms
of the PTM, we have the following expression for fidelity:

F =
2Fe + 1

3
, Fe =

1

4
Tr
(
RT [U ]R[E ]

)
, (S23)

where Fe is often called the entanglement fidelity.
To benchmark a quantum error correction channel, we compare it to an identity channel I : ρ→ ρ with Rij [I] = δij .

In this case, Eq. (S23) can be further simplified to

F =
1

12

∑
P=X,Y,Z

(
Tr[P E(|+ P 〉〈+P |)]− Tr[P E(| − P 〉〈−P |)]

)
+

1

2
, (S24)

where we made use of the identities Tr[σPE(σP )] = Tr[P E(| + P 〉〈+P |)] − Tr[P E(| − P 〉〈−P |)] for P ∈ {X,Y, Z},
and Tr(E [I]) = 2. The complete derivation of this formula starting from Eq. (S22) can be found in Ref. [39]. In
experiment, the right-hand side of Eq. (S24) is measured by preparing ±1 Pauli eigenstates, passing them through
the channel E , and then measuring the corresponding Pauli operator, as cartooned in Fig. S25(a). Such a procedure
is applicable to an arbitrary duration t of the channel E(t).

We focus on the comparison of three different qubits in our system: {|0〉, |1〉}, {|g〉, |e〉}, and an error-corrected GKP
qubit. The free evolution of the two passive qubits is modeled using a composite amplitude damping and white-noise
dephasing channel, while the evolution of an error-corrected GKP qubit is modeled using a logical Pauli channel.
Given these well-justified assumptions on the error channels, from Eq. (S24) we find:

F{01}(t) =
1

6
e−γ

c
1t +

1

3
e−γ

c
2t +

1

2
, (S25)

F{ge}(t) =
1

6
e−γ

t
1t +

1

3
e−γ

t
2Et +

1

2
, (S26)

FGKP(t) =
1

6
e−γXt +

1

6
e−γY t +

1

6
e−γZt +

1

2
. (S27)
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FIG. S25. Average channel fidelity.
(a) Illustration of channel action on
the Pauli eigenstates. By linearity, the
evolution of these six cardinal points
is sufficient to predict the average ef-
fect across the whole Bloch sphere.
(b) Expected time evolution of av-
erage channel fidelity for three dif-
ferent qubits, calculated using exper-
imentally extracted lifetimes of Pauli
eigenstates.

We show the time evolution of the fidelity given by Eqs. (S25−S27) in Fig. S25(b), using experimentally extracted
decay rates at the highest QEC gain measured in our experiment.

As seen above, in general the fidelity decays to its steady-state value in a way that cannot be characterized by a
single time constant even in the simplest error models such as Pauli noise or amplitude damping. Therefore, fitting
the fidelity decay to a single exponential is not strictly valid, although this heuristic approach was adopted in the
previous works on bosonic QEC [5, 6, 40]. To avoid such an inconsistency, we consider the channel E acting for only a
short time δt. Any time dependence of the fidelity, even if it contains multiple exponentially decaying contributions,
at short times is equivalent to a linear decay:

F(δt) = 1− 1

2
Γ δt, (S28)

where Γ is an effective depolarization rate, and 1/Γ is the fidelity lifetime. For a depolarizing channel Edep(ρ) =

(1− p)ρ+ p I2 with a depolarization probability p = 1− e−γt, we have Γ = γ, motivating the name and the coefficient
1/2 in Eq. (S28). For qubits considered here, the effective depolarization rates are:

Γ{01} =
2γ c2 + γ c1

3
, Γ{ge} =

2γ t2E + γ t1
3

, ΓGKP =
γX + γY + γZ

3
. (S29)

We define the coherence gain G as an improvement of the effective depolarization rate of an error-corrected logical
qubit over the best physical qubit in the same system (with the break-even point corresponding to G = 1). In a
bosonic circuit QED system, the latter is typically the {|0〉, |1〉} qubit, hence G = Γ{01}/ΓGKP. The highest gain
achieved in our experiment is Gmax = 2.27 ± 0.07. During a scan discussed in Section S4 J, gain remained above
break-even 100% of this week-long time window, with a median of G = 2.0.

Lastly, we acknowledge that the decay constant of the average channel fidelity is not the only relevant metric that
we expect to be correlated with the future ability of such systems to participate in quantum computations. Other
metrics, such as the SPAM fidelity and the fidelity of gates, are important as well, and we leave their optimization
and detailed characterization for future work.
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