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Bosonic modes have wide applications in various quantum technologies, such as optical pho-
tons for quantum communication, magnons in spin ensembles for quantum information storage
and mechanical modes for reversible microwave-to-optical quantum transduction. There is emerg-
ing interest in utilizing bosonic modes for quantum information processing, with circuit quantum
electrodynamics (circuit QED) as one of the leading architectures. Quantum information can be
encoded into subspaces of a bosonic superconducting cavity mode with long coherence time. How-
ever, standard Gaussian operations (e.g., beam splitting and two-mode squeezing) are insufficient
for universal quantum computing. The major challenge is to introduce additional nonlinear control
beyond Gaussian operations without adding significant bosonic loss or decoherence. Here we review
recent advances in universal control of a single bosonic code with superconducting circuits, includ-
ing unitary control, quantum feedback control, driven-dissipative control and holonomic dissipative
control. Entangling different bosonic modes with various approaches is also discussed.

Key words: bosonic modes, circuit QED, unitary dynamics, quantum feedback control, driven-
dissipative processes, holonomic quantum computation

I. INTRODUCTION

Quantum computation holds the promise of solving
certain problems, such as factorization of large inte-
gers and simulation of quantum many-body problems [1],
much faster than any known classical computers. To
build such a quantum computer, the physial platform
should work in the quantum regime with long coher-
ence time, fast quantum operations and good scalabil-
ity, which are dauting obstacles for current technologies.
The promising strategies to overcome such obstacles are
quantum error correction (QEC) [2–4] and fault-tolerant
(FT) quantum computation [5], where the coherence time
of the quantum memories can be extended and the quan-
tum operations can tolerate some low-probalistic errors
(including errors in the QEC circuit) below a certain
threshold.

In the prototypical model for quantum computation -
the quantum circuit model, a quantum bit of informa-
tion (qubit) is encoded into a two-level system, called a
physical qubit, and the usual approach for QEC is to en-
code a logical qubit into some subspace of multiple phys-
ical qubits, so that different error processes lead to dis-
tinguishable syndromes and can therefore be corrected.
However, the increased number of physical qubits for a
logical qubit introduces more decoherence for the system
to correct. Moreover, the logical gate operations become
quite complicated since multiple physical systems need
to be addressed simultaneously. Hence, it is still an out-
standing experimental challenge to build a more robust
quantum register using multiple physical qubits.

An alternative scheme is to encode the quantum infor-
mation into bosonic modes such as harmonic oscillators
[6, 7]. A single bosonic mode already provides an in-

finitely large Hilbert space, from which we choose a log-
ical subspace for an error-correcting code [8–13]. Such
bosonic QEC modes can be hardware-efficient compared
to the conventional QEC codes based on muliple qubits.
Moreover, the bosonic modes often have relatively sim-
ple decoherece (mainly bosonic exciation loss channel)
which lose excitations one by one. There have been sev-
eral error-correcting encoding schemes in a single bosonic
mode proposed to date, including the Gottesman-Kitaev-
Preskill (GKP) codes [10, 14], cat codes [11, 15, 16], bino-
mial codes [12], rotation-symmetric codes [17] and other
variations [13, 18]. The GKP codes, consisting of su-
perpositions of highly squeezed states, are not only pro-
tected against small shifts in position but also have been
shown to perform well against the more realistic ampli-
tude damping channel [13]. The cat codes use superposi-
tions of coherent states evenly distributed around a circle
in phase space, which can be protected against (single or
multiple) bosonic excitation loss and dephasing errors.
The binomial codes exploit superpositions of Fock states
weighted with binomial coefficients, which can exactly
correct the bosonic excitation loss, gain and dephasing
errors up to a specific degree. Recently QEC based on
cat codes or binomial codes in superconducting cavities
have reached or approached the break-even point [19, 20],
at which the lifetime of the logical qubit exceeds that of
the single best physical qubit within the logical qubit.
The encoding based on GKP codes has also been demon-
strated in trapped-ion mechanical oscillators [21–23] and
superconducting cavities [24].

For bosonic modes, the standard operations (e.g.,
phase rotation, one-mode squeezing, beam splitting, and
two-mode squeezing) are all Gaussian operations, which
can only transform Gaussian states into Gaussian states
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FIG. 1. (a) Schematic of various approaches for controlling a
quantum system: (i) Unitary control on the system alone or
both the system and an ancilla; (ii) Quantum feedback control
based on measurement of the ancilla; (iii) Driven-dissipative
control with either engineered dissipation or Hamiltonian en-
gineering; (iv) Holonomic quantum control based on only
engineered dissipation. (b),(c) Schematic and device photo-
graph of a circuit QED system modeled as a coupled qubit-
oscillator system. The storage cavity with long coherence time
is used to encode quantum information, the transmon qubit
acts as an ancilla for universal control of the storage cavity,
and the readout cavity with short coherence time is used for
qubit readout. Both the storage cavity and transmon qubit
can be addressed by microwave control fields. Reprinted with
permission from [47, 69].

[6, 25]. However, universal control of a single bosonic
mode can be achieved by adding a single nonlinear op-
eration [25]. When such a direct nonlinear operation is
difficult to realize directly, it is still possible to implement
a indirect nonlinear interaction by coupling the bosonic
mode to a finite-level ancilla. Moreover, quantum non-
demolition (QND) measurement of the ancilla enables
measurement-based feedback control and therefore ar-
bitrary operation on the bosonic mode. Here, we will
review recent advances in the approaches for universal
control and arbitrary operation of bosonic modes, includ-
ing unitary control, quantum feedback control, driven-
dissipative control and holonomic control [Fig. 1(a)]. In
the first two approaches, an ancilla qubit is coupled to a
single bosonic mode to introduce nonlinear interaction
and feedback control, while in the remaining two ap-
proaches, a special coupling between the bosonic mode
and reservoir or a special Hamiltonian of the bosonic
mode is engineered to support some stabilized mani-
fold, consisting of all coherent superpositions of multiple
steady states that are free of any nonunitary effect caused
by the reservoir.

The physical platform we consider is circuit quantum

electrodynamics (circuit QED) [26–31], which is an ana-
log of cavity QED [32] using superconducting circuits
[33, 34]. Cavity QED engineers the environment of the
atoms by placing them in a cavity that supports only
discrete bosonic modes of the electromagnetic field. Ex-
amples of cavity QED systems include alkali atoms in
optical cavities [35] and Rydberg atoms in microwave
cavities [36]. Circuit QED uses superconducting qubits
(such as transmon qubits [37]) as artificial atoms coupled
to microwave resonators. A key advantage of circuit QED
is the extremely strong coupling between the supercon-
ducting qubits and the cavity. For quantum computation
using circuit QED, a storage cavity resonator with long
coherence time as a bosonic mode can encode the quan-
tum information, while the transmon qubits can act as
an ancilla to aid universal control of the storage cavity
[Fig. 1(b) and (c)].

This review is organized as follows. In Sec. II, we
review the universal control of a single bosonic mode
with the aid of an ancilla qubit dispersively coupled to
it. Then we introduce, in Sec. III, the extension from
the universal unitary control to quantum feedback con-
trol and arbitrary quantum channel construction for the
bosonic mode by QND measurement of the ancilla. In
Sec. IV, it is shown that reservoir engineering and Hamil-
tonian engineering can be promising strategies to realize
universal quantum computation in some unitarily evolv-
ing subspace of the bosonic mode. In Sec. V, the com-
bination of reservoir engineering and holonomic quan-
tum control is introduced to realize universal control of
bosonic modes. Then in Sec. VI, we introduce the quan-
tum control schemes to entangle different bosonic modes
for universal quantum computation. In Sec. VII, we
briefly summarize the review and outline some future di-
rections for quantum control of the bosonic modes. For
convenience, we take the reduced Plank constant as ~ = 1
throughout this review.

II. UNITARY QUANTUM CONTROL

Quantum control of a single bosonic mode (typically a
harmonic oscillator) can be achieved in the coupled qubit-
oscillator system with a qubit as an ancilla. Many theo-
retical and experimental works were devoted to prepar-
ing arbitrary oscillator states assisted by an ancilla qubit
with Jaynes-Cummings (JC) coupling [38–42]. However,
it is more challenging to achieve universal control of the
oscillator, which usually needs a multi-level ancilla [43],
slow adiabatic evolutions [44] or a large number of con-
trol operations [45]. If the ancilla and the oscillator are
strongly off-resonant with the detuning much larger than
their JC coupling strength, we arrive at the dispersive
Hamiltonian [46, 47]

H0 = ωT|e〉〈e|+ ωCa
†a− χa†a|e〉〈e|, (1)

where ωC (ωT) is the oscillator (ancilla) frequency, a (a†)
is the annihilation (creation) operator of the oscillator
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TABLE I. Recent theoretical and experimental advances in quantum control of bosonic modes in circuit QED.

Unitary control Unitary & Feedback Unitary & Dissipation
Ancilla-induced nonlinearity Quantum adaptive control Quantum Zeno dynamics
Theory:
- SNAP gate [48]
- Optimal control [53, 54]
- E-SWAP gate [120]

Theory:
- CPTP maps [69]
- Teleported gate [125]
- ET gate [82, 83]
- PI gate [80]

Theory:
- Dissipative cat [91]
- Kerr cat [98]
- FT syndrome detection [103]
- Bias-preserving Kerr cat [104]
- Bias-preserving dissipative cat [101]
- Holonomic gatea [111]

Experiments:
- SNAP gate [49]
- Optimal control [53]
- CNOT gate [57]
- CZ gate [117]
- E-SWAP gate [118]

Experiments:
- QEC [19, 20, 24]
- CPTP simulation [74, 75]
- Teleported CNOT gate [119]
- FT parity measurement [79]
- PI SNAP gate [81]
- ET phase gate [84]

Experiments:
- Dissipative cat [92, 94, 100]
- Kerr cat[105]

a This scheme uses only dissipation.

excitation, χ is the dispersive coupling strength, and |e〉
denotes the excited state of the ancilla. The dispersive
Hamiltonian can be interpreted from two different per-
spectives [Fig. 2(b) (upper pannel)]. On the one hand,
the oscillator frequency has a shift dependent on the an-
cilla state. In circuit QED, this ancilla-state-dependent
shift of the cavity leads to changes in the amplitude and
phase of photons reflected from or transmitted through
the cavity and therefore enables a QND measurement on
the ancilla state [26, 27]. On the other hand, the an-
cilla transition frequency has a shift proportional to the
oscillator excitation number. In the strongly dispersive
regime of circuit QED, the ancilla frequency shift is much
larger than the cavity line width and ancilla line width,
and therefore the ancilla spectrum is split into a series
of separately resolved peaks, representing the distribu-
tion of photon numbers within the driven cavity [46].
Moreover, for quantum control of the oscillator, such a
strongly-dispersive coupling regime makes it possible to
selectively address the ancilla if and only if the oscilla-
tor is in a specific number state, hence providing new
opportunities for universal control of the oscillator.

Typically we can achieve universal unitary control and
quantum measurements of the ancilla, but only limited
unitary control on the oscillator, so the key point is to use
the ancilla to realize some other unitary control on the
oscillator to achieve universal control. Below we intro-
duce two schemes: the unitary control either separately
acts on the ancilla or oscillator and then is combined, or
acts on the both of them simultaneously [Fig. 2(a)].

A. Displacement operations and SNAP gates

The first scheme for universal control of the oscillator
is to separately apply unitary control on the subsystems
(either the ancilla or the oscillator) and then combine

them [48, 49]. The unitary control on the ancilla may
indirectly realize some unitary operations on the oscilla-
tor if we make appropriate pre-section and post-selection
of the ancilla state. Then combining these indirect op-
erations with the direct ones, we may realize universal
control of the oscillator.

One common kind of direct unitary transformation on
the oscillator is the displacement operation

D(α) = exp(αa† − α∗a), (2)

which can be generated by a linear drive on the cavity
HC = εC(t)eiωCta† + H.c. with α = −i

∫
εC(t)dt . How-

ever, the displacement operation alone is not universal,
i.e. it cannot generate arbitrary operations on the oscil-
lator. To see this, note that the displacement operation
can only prepare a coherent state from the vacuum, i.e.
|α〉 = D(α)|0〉 = exp(−|α|2/2)

∑∞
n=0(αn/

√
n!)|n〉, while

universal control requires that any given target state can
be prepared from any initial state including the vacuum
state.

The dispersive coupling of the oscillator to the ancilla
introduces a nonlinear term for the oscillator Hamilto-
nian, and make it possible to realize indirect control on
the oscillator, such as the selective number-dependent ar-
bitrary phase (SNAP) gate,

S (~ϕ) =

∞∑
n=0

eiϕn |n〉〈n|, (3)

which imparts arbitrary phases ~ϕ = {ϕn}∞n=0 to the dif-
ferent Fock states of the oscillator. The original proposal
to realize SNAP gates is to weakly drive the ancilla with
multiple frequency components, HT = εT(t)eiωTt|g〉〈e|+
H.c. with εT(t) =

∑
n Ωei(φn(t)−nχt) and φn(t) being

time-dependent. If Ω � χ, the driving component with
frequency ωq −nχ induces a unitary evolution in the an-
cilla subspace {|g, n〉, |e, n〉} = {|g〉, |e〉}⊗ |n〉 with a neg-
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FIG. 2. Universal unitary control of a harmonic oscillator via an ancilla qubit. (a) Schematic drawing of the experimental
circuit QED system. A λ/4 coax-stub cavity resonator is coupled to a transmon and readout resonator on a sapphire substrate.
Input couplers close to the transmon and cavity deliver the respective time-dependent microwave control fields εT(t) and εC(t).
(b) Schematic of universal control of the qubit-oscillator system via displacements and SNAP gates. A weak displacement
operation (red dashed arrows) couples the states |g, n− 1〉 and |g, n〉 with strength

√
nε for all n. The SNAP gate (blue solid

arrows) can simultaneously accumulate different geometric phases {ϕn} to states {|g, n〉}. Here we adopt the rotating frame
associated with ωTa

†a so that the states {|g, n〉} have the same energy. (c) Experimental demonstration of the control strategy in
(b) (separately acting on the transmon and cavity). Phasor representation, tranmon spectrum, and Wigner function are shown
after each of the steps in the 1-photon Fock state creation experiment. In the phasor representation, the arrow corresponds
to the complex amplitude cn of the initial cavity state |ψ〉 =

∑
n cn|n〉 and the area of the circle is proportional to |cn|2. The

qubit spectrum refers to the ancilla transmon transition frequency dependent on the number of photons in the cavity. (d)
Experimental demonstration of control strategy based on numerical GRAPE algorithms (acting on both the transmon and
cavity simultaneously). Lower panel: optimized transmon and oscillator control waveforms of length approximately 2π/χ to
take the oscillator from vacuum to the 6-photon Fock state. Solid (dotted) lines represent the in-phase (quadrature) field
component. Upper panel: oscillator photon-number population trajectory vs. time conditioned on transmon in |g〉. A complex
trajectory occupying a wide range of photon numbers is taken to perform the intended operation. Reprinted with permission
from [48, 49, 53].

ligible effect on the rest of the system, while the driving
phases φn(t) depending on the oscillator excitation num-
ber n can induce different evolution paths in different
ancilla subspaces, as shown in Fig. 2(b) (lower pannel).
Suppose the initial state of the whole system is a prod-

uct state, |ψ(0) = |g〉⊗
∑N
n=0 cn|n〉 =

∑N
n=0 cn|g, n〉 with

N being the truncated oscillator excitation number, then
we may let the ancilla undergo cyclic evolutions in each
subspace {|g, n〉, |e, n〉} and return to |g, n〉 at time τ .
We can tune φn(t) so that the final state accumulates
different geometric phases ϕn for different n [50], i.e.

|ψ(τ)〉 =
∑N
n=0 cne

iϕn |g, n〉. For example, we may set
φn(t) = 0 for t ∈ [0, τ/2) and φn(t) = ϕn for t ∈ [τ/2, τ ]

with τ = π/Ω being the Rabi period, and the unitary
propagator on the whole system [in the interaction pic-
ture associated with the dispersive Hamiltonian in Eq.
(1)] is

U(τ, 0) = |g〉〈g| ⊗ S(~ϕ) + |e〉〈e| ⊗ S(−~ϕ), (4)

which implies that the unitary gate on the oscillator is
S(~ϕ) [S(−~ϕ)] if the initial ancilla state is |g〉 (|e〉).

The original SNAP gate based on the geometric phases
can be simplified by first decomposing the above propa-
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gator [Eq.(4)] as U(τ, 0) = U(τ, τ/2)U(τ/2, 0) with

U(τ/2, 0) = (|g〉〈e|+ |e〉〈g|)⊗ I, (5a)

U(τ, τ/2) = |g〉〈e| ⊗ S(~ϕ) + |e〉〈g| ⊗ S(−~ϕ), (5b)

where I is the identity operator for the oscillator. Note
that the first half evolution U(τ/2, 0) causes a flip of the
ancilla state while leaving the oscillator state unchanged,
and the second half evolution U(τ, τ/2) causes a further
flip of the ancilla state and produces the SNAP gate on
the oscillator at the same time [Fig. 2(b) (lower pannel)].
So we may simplify the SNAP gate by applying only the
drive during the second half period, which we may call
the simplified SNAP gate. Moreover, if the simplified
SNAP gate is not completed, we have

U(τ/2 + ∆t, τ/2)

= cos θ(|g〉〈g|+ |e〉〈e|)⊗ I
− i sin θ [|g〉〈e| ⊗ S(~ϕ) + |e〉〈g| ⊗ S(−~ϕ)] , (6)

where ∆t ∈ [0, τ/2] and θ = Ω∆t. In this case, the
pre-selection and post-selection of the ancilla state in-
duces either the identity operation or SNAP gate on
the oscillator. For example, PeU(τ/2 + ∆t, τ/2)Pe = I
and PgU(τ/2 + ∆t, τ/2)Pe = S(~ϕ) with Pm = |m〉〈m|
(m = g, e). Note that in the above discussions, we con-
sider the limiting case Ω/χ→ 0, while in practice Ω/χ is
finite and causes deviations from the ideal SNAP gates
[48, 49]. Nevertheless, it is possible to minimize such gate
errors due to finite Ω/χ by optimizing the detunings and
pulse shapes of the multi-frequency drive on the ancilla
[51].

It has been demonstrated that universal control of an
oscillator can be achieved by combining the displacement
operations D(α) and the SNAP gates S(~ϕ) [48], since the
generators of D(α) and S(~ϕ) and the commutators be-
tween these generators generate the full Lie algebra u(N)
for any truncated oscillator space {|0〉, · · · , |N − 1〉} [25].
As an example, we show in Fig. 2(b) that a Fock state
|1〉 of the oscillator can be created by applying the opera-
tion D(β2)S(~ϕ)D(β1), where ~ϕ is fixed to be (π, 0, 0, · · · )
while the displacement parameters β1, β2 are obtained by
numerical optimization. A systematic method was pre-
sented in [48] to construct an arbitrary unitary operation
in any truncated oscillator space. With this method, the
number of operations to prepare the oscillator Fock state
|n〉 can be significantly decreased from O(n) to O(

√
n).

Recently a more efficient scheme by parameter optimiza-
tion has been proposed to implement a broad range of
cavity control with only 3 to 4 SNAP gates [52]. Nev-
ertheless, it is still an open problem to find the optimal
way for decomposing an arbitrary target unitary into dis-
placement operations and SNAP gates.

B. Universal control by numerical optimization
algorithms

The previous analytic approach based on displace-
ment operations and SNAP gates implicitly assumes that
the cavity drive [εC(t)] and transmon drive [εT(t)] are
never applied simultaneously, which makes the evolution
more tractable. However, to find more efficient control
schemes, it is better to include the possibility of simulta-
neously driving both the ancilla and the oscillator. The
arbitrary control field may take the form

HCT = εC(t)eiωCta+ εT(t)eiωTt|g〉〈e|+ H.c., (7)

where εC(t), εT(t) can be arbitrary complex-valued func-
tions of time. The exact form of the control field can
be obtained by numerical optimization algorithms [53],
such as the Gradient Ascent Pulse Engineering (GRAPE)
method [54, 55]. The basic procedure of the GRAPE
method is as follows: (1) specify the target unitary U
and the evolution time τ ; (2) discretize the total time τ
into M equal steps of duration ∆t = τ/M , and during
each step the control amplitudes are constant; (3) make
an initial guess of the control amplitudes, then calculate
the fidelity between the implemented unitary and target
unitary, and also the gradient of the fidelity with respect
to each variation of the control amplitude in each time
step; (4) adapt the control amplitudes according to the
fidelity gradient, and repeat step (3) until a local maxi-
mum of the gate fidelity is achieved.

There are two approaches to obtaining the control
fields εC(t), εT(t) using GRAPE for universal control of
the cavity. In the first appraoch, both εC(t) and εT(t) are
optimized with GRAPE. The numerical optimized pulses
thus obtained have been extensively used in experiments
to control superconducting cavity modes [19, 20, 56, 57].
As an example, we show in Fig. 2(c) the control ampli-
tudes εC(t), εT(t) to prepare the cavity state from the
vaccum state |0〉 to the Fock state |6〉. With this ap-
proach, Heeres et al. [53] have also realized a universal
set of gates on the logical qubit based on error-correcting
cat codes in a cavity. Compared with the SNAP gate
that takes a rather long time 2π/Ω due to Ω/χ� 1, the
logical gates based on GRAPE algorithm take a much
shorter time 2π/χ.

C. Other approaches

Besides the above two schemes, there are various
other approaches to control harmonic oscillators via
ancilla-induced nonlinearity. One approach is called
photon blockade control, in which the frequency of
εT(t) is set as ωT − Nχ to drive resonantly the
transition |g,N〉 ↔ |e,N〉, therefore blockading the
population transfer between the cavity subspace
{|0〉, |1〉, · · · , |N − 1〉} and the rest of the cavity Hilbert
space [58]. Then universal control of the N -level qudit
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can be realized by optimizing εC(t) with GRAPE [59],
which has been experimentally demonstrated in [60].
A superconducting oscillator can also have stimulated
nonlinearity by a three-wave interaction with an an-
cillary oscillator, enabling control of the single-photon
manifold at rates faster than the dispersive protocols
[61]. Moreover, using a single transmon as the central
processor, universal quantum operations have been
realized between arbitrary eigenmodes of a a linear
array of coupled superconducting resonators, realizing a
random access quantum information processor [62].

III. QUANTUM FEEDBACK CONTROL

In the last section, the system (an oscillator and an
ancilla) as a whole are assumed to be a closed system
and therefore can be sufficiently described by unitary dy-
namics. However, the inevitable coupling of the system
to the environment typically induces non-unitary evolu-
tions of the system, which can be fully characterized by
completely positive and trace preserving (CPTP) maps
[1, 63] (also called quantum operations or quantum chan-
nels). Hence, it is important to systematically extend the
quantum control techniques from a closed system to an
open quantum system. In this section, we will show that
an arbitrary CPTP map of the system can be constructed
by coupling the the system to an ancilla qubit with QND
readout and quantum feedback control.

Feedback control, where information about the system
state is fed back to the controller for correction, is widely
used in classical control theory. However, its extension
to the quantum world is nontrivial [64], since a quan-
tum measurement of the system will inevitably affect
the quantum state of the system. Quantum feedback
control generally falls into two categories: measurement-
based feedback control [65] and coherent feedback control
[66]. Below we will show that the measurement-based ap-
proach can be used to construct arbitrary CPTP maps
and realize robust quantum operations.

A. Arbitrary CPTP map construction

A CPTP map can be described by the Kraus represen-
tation [63]

ε(ρ) =

N∑
i=1

KiρK
†
i , (8)

where ρ is the density matrix of the system we con-
sider and {Ki}Ni=1 is the set of Kraus operators satisfying∑N
i=1K

†
iKi = I to preserve the trace of ρ. The Kraus

representation is not unique, since a new set of Kraus op-
erators {Fi}Ni=1 can be constructed with any N ×N uni-
tary matrix U , Fi =

∑
j UijKj , characterizing the same

CPTP map. The minimum number of Kraus operators

is called the Kraus rank of the CPTP map, and is no
larger than d2 with d being the Hilbert space dimension
of the system.

1. Construction of CPTP maps with arbitrary Kraus rank

For the construction of arbitrary CPTP maps, Lloyd
and Viola first showed that it is sufficient to repeatedly
apply Kraus rank-2 channels in an adaptive fashion [67],
but they did not consider efficient construction with a
low-depth quantum circuit. Recently Shen et al. have
extended the binary-tree construction for arbitrary posi-
tive operator-valued measure (POVM) [68] to an efficient
protocol for CPTP map construction [69]. In this proto-
col, a CPTP map with Kraus rank-N can be constructed
with an ancilla qubit by the lowest possible circuit depth
L = log2N, where each round of operation consists of one
joint unitary of system and ancilla and one QND mea-
surement on the ancilla qubit. Below we will briefly in-
troduce such a binary-tree construction for CPTP maps.

Let us first consider the construction of a rank-2
CPTP map with Kraus operators {K0,K1}, which can be
achieved by only one round of operation: (1) initialize the
ancilla qubit in |0〉 (the qubit state basis being {|0〉, |1〉});
(2) perform a joint unitary operation U ∈ SU(2d) with
d being the dimension of the system; (3) discard or
trace over the ancilla qubit. The key point is to design
U so that its d × d submatrices satisfy 〈0|U |0〉 = K0,
〈1|U |0〉 = K1.

The quantum circuit to implement a rank-N CPTP
map with Kraus operators {K0, · · · ,KN} consists of L =
log2N rounds of operations [Fig. 3(a)]. Each round of
operation includes: (1) initialization of the ancilla qubit
in |0〉; (2) joint unitary gate over the system and ancilla
(conditional on the measurement outcomes from previous
rounds), (3) QND readout of the ancilla, and (4) stor-
age of the classical measurement outcome for later use.
The lth round unitary gate Ub(l) is represented by the
node of the binary tree b(l) = (b1b2 · · · bl) ∈ {0, 1}l with
l = 0, · · · , L− 1, while the Kraus operators Kb(L) are as-
sociated with the leaves of the binary tree b(L) ∈ {0, 1}L
[Fig. 3(b)]. A systematic way is presented in [69] to
design the nodes Ub(l) so that the leaves of the binary
tree are exactly the desired Kraus operators, Kb(L) = Ki

for i = (b1b2 · · · bL)2 + 1 ≤ N and Ki>N = 0 [(· · · )2

denotes a binary number]. Arbitrary quantum channels
can also be constructed in the quantum circuit model
including controlled-not (CNOT), single-qubit gates and
partial trace operations on the qubits and any ancilla,
and with free single-qubit gates the minimum number of
CNOT gates has been found in [70].

2. Physical implementation with circuit QED

Circuit QED in the dispersive regime is a promising
platform to implement the arbitrary CPTP map con-
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FIG. 3. Arbitrary CPTP map construction with quantum feedback control. (a) Binary tree representation with depth L = 3.

The Kraus operators Kb(L) are associated with the leaves of the binary tree, b(L) ∈ {0, 1}L. The system-ancilla joint unitary to

apply in lth round Ub(l) depends on the previous ancilla readout record b(l) = (b1b2 · · · bl) ∈ {0, 1}l associated with a node of the
binary tree. (b) Schematic setup of a circuit QED system used for constructing an arbitrary quantum channel. (c) Quantum
circuit for arbitrary channel construction. The dimension of the system d can be arbitrary and the circuit depth depends only
on the Kraus rank of the target channel. (d) The quantum circuit to implement an arbitrary Kraus rank-2 channel with the
circuit QED system. Reprinted with permission from [69].

struction. The transmon qubit acts as the ancilla (the
transmon state |g/e〉 corresponds to the ancilla state
|0/1〉 in the last subsection), and a d-dimensional sub-
space (e.g., the lowest d Fock states) of the storage cavity
with high-quality-factor (high-Q) acts as the qudit. The
QND readout of the transmon qubit can be realized by
coupling a readout cavity with low-Q to the transmon.
Then the readout result is fed back to a controller that
induces an effector to implement the conditional control
on the qudit [Fig. 3(c)].

Similar to the SNAP gates, we can implement the fol-
lowing entangling unitary gate for the whole system in-
cluding the transmon and the cavity,

Uent(~θ) =

d∏
n=0

exp(−iYnθn/2), (9)

where ~θ = (θ0, · · · , θd), and Yn = −i|g, n〉〈e, n| + H.c.
is the the Pauli-Y operator for the two-dimensional sub-
space {|g, n〉, |e, n〉}. The drive on the transmon for the
above gate is Hent =

∑
n Ωne

−i(ωT−nχ)t|g〉〈e| + H.c.,
where the driving amplitude Ωn and the gate time τ
should satisfy θn = 2Ωnτ . This entangling gate produces
a CPTP map with Kraus operators {Sg, Se} with Sg =
diag(cos θ1, · · · , cos θd) and Se = diag(sin θ1, · · · , sin θd).
If we precede Uent with a unitary V † acting on the
qudit alone and perform an conditional unitary W =
|g〉〈g| ⊗Wg + |e〉〈e| ⊗We after Uent, the entangling gate
becomes U ′ent = WUentV

† [Fig. 3(d)], which is known
as the “cosine-sine” decomposition [71] that can decom-
pose an arbitrary unitary into CNOT and single-qubit
gates. The Kraus operators corresponding to U ′ent are

〈g|U ′ent|g〉 = WgSgV
†, 〈e|U ′ent|g〉 = WeSeV

†, which are
singular value decomposition of any operator for the
qubit [1] and therefore can simulate any rank-2 CPTP
map. Likewise we can use such entangling gates to sim-
ulate the CPTP map with any Kraus rank.

Recently there have been several experiments for quan-
tum channel simulations in various platforms, including
trapped ions [21], nuclear mangnetic resonance (NMR)
system [72] and IBM’s cloud computer [73]. In particu-
lar, using a scheme similar to the above one, Hu et al.
[74] first realized arbitrary quantum channel simulation
for a single photonic qubit in circuit QED. Although this
experiment only simulates quantum channels with Kraus
rank-2 for a 2-level qubit with one round of adaptive con-
trol, a recent experiment has extended the capability to
simulate arbitrary rank-16 channels for a 4-level qudit
with 4 rounds of adaptive control [75]. For the platforms
other than circuit QED, the real-time adaptive control
is often the main limitation: for trapped ions, it is quite
challenging to avoid the recoil problem when performing
adaptive measurement for trapped ions; for NMR sys-
tems, single-shot readout is not available, so many ancil-
las must be used to simulate the adaptiveness; the IBM’s
cloud computer does not allow real-time adaptive control.

The ability to construct an arbitrary CPTP map may
have various applications, such as QEC and quantum
state initialization/stabilization. For example, the sim-
ulated quantum channel enabling QEC can help achieve
the Heisenberg limit in quantum metrology [76, 77], and
dissipative quantum circuits consisting of sequences of
quantum channels subject to specific constraints can lead
to finite-time robust state stabilization [78].
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B. Robust quantum operations with adaptive
control

The measurement-based adaptive control can help
achieve robust quantum operations, such as FT quan-
tum measurements and FT quantum gates. Below we
show the recent theoretical and experimental advances
of FT operations enabled by adaptive control in circuit
QED.

In Sec. II, we have shown that universal control of a
bosonic mode can be achieved with the aid of an ideal
ancilla. Moreover, the ancilla can also measure the even-
odd excitation number parity of the bosonic mode (as an
error syndrome detecting single excitation loss), by first

preparing the ancilla in state (|g〉+|e〉)/
√

2, evolving with
the dispersive Hamiltonian [Eq. (1)] for a time π/χ, and
finally performing Ramsey interferometry on the ancilla
to determine its phase. However, ancilla systems are typ-
ically more vulnerable to environmental noise, e.g. the
transmon coherence time (∼ µs) is much shorter than
the cavity mode coherence time (∼ms), so the ancilla
errors (e.g. relaxation error |g〉〈e| and dephasing error
|e〉〈e|−|g〉〈g|) during the operation time can propagate to
the oscillator and corrupt the encoded information irre-
versibly. This drawback calls for new operation schemes
that are FT to these ancilla errors.

A recent experiment shows that the parity measure-
ment of a cavity mode in circuit QED can be made FT
to the ancilla transmon errors by using three transmon
levels and adaptive control [79]. The three-level trans-
mon (|g〉, |e〉, |f〉) is coupled to a cavity mode with

Hdis = −χa†a(|e〉〈e|+ |f〉〈f |). (10)

Note that the dispersive coupling strength is the same for
the trasmon in |e〉 or |f〉 (χ-matching condition), which
can be realized with an engineered side-band drive [79].
The dispersive Hamiltonian commutes with the domi-
nant ancilla relaxation error (|e〉〈f |) and also any an-
cilla dephasing error (cg|g〉〈g + ce|e〉〈e| + cf |f〉〈f | with
cg, ce, cf ∈ C). Such an ancilla error during the mea-
surement is equivalent to an ancilla error at the end, so
although the measurement fails if the error happens, the
cavity logical state is still well protected and the mea-
surement errors can be overcome by majority voting.

With the same three-level ancilla satisfying the χ-
matching condition, the SNAP gates in Sec. II A can
be made FT to the dominant ancilla relaxation error and
any dephasing error by adaptive control [80, 81]. Such
a SNAP gate is implemented by applying the Hamilto-
nian that drives the |g〉 ↔ |f〉 transition instead of the
|g〉 ↔ |e〉 transition, with the effective Hamiltonian in
the interaction picture as

Hint = Ω [|g〉〈f | ⊗ S(−~ϕ) + |f〉〈g| ⊗ S(~ϕ)] . (11)

Without any ancilla error, the logical gate on the cavity
with the ancilla going from |g〉 to |f〉 is the ideal SNAP
gate S(~ϕ). With a single ancilla relaxation error |e〉〈f |

during the control, the ancilla ends in |e〉 and the final
logical operation is still S(~ϕ). With a single ancilla de-
phasing error (e.g. |f〉〈f | − |g〉〈g|) and a projective mea-
surement of the ancilla after the gate, the ancilla may
end in |f〉 with the logical gate still being S(~ϕ), or end in
|g〉 with the logical gate being the identity operation [Fig.
4(a) and (b)]. Thus the control protocol can be repeated
if the ancilla is measured in |g〉 until the SNAP gate suc-
ceeds. Such error-corrected SNAP gates have recently
been experimentally realized [81] with a reduction of the
logical gate error by a factor of two in the presence of
naturally occurring decoherence, a sixfold suppression of
the gate error with increased transmon relaxation rates
and a fourfold suppression with increased transmon de-
phasing rates [Fig. 4(c) and (d)].

Recent theory shows that the error-corrected SNAP
gate belongs to a general class of FT gates on a log-
ical system protected against Markovian ancilla errors,
called path-independent (PI) quantum gates [80]. The
PI principle requires that for given initial and final an-
cilla states, the logical system undergoes a unitary gate
independent of the specific ancilla path induced by con-
trol drives and ancilla error events. With a certain ini-
tial ancilla state, the desired quantum gate on the logical
system is successfully implemented for some final ancilla
states, while the other final ancilla states herald a fail-
ure of the attempted operation, but the logical system
still undergoes a deterministic unitary evolution without
loss of coherence. So the PI gate on the central system
can be repeated until it succeeds. A special class of the
PI gates is the error-transparent (ET) gates for a QEC
code, theoretically proposed in [82, 83] and experimen-
tally demonstrated [84] against a specific system error.

The FT measurement and PI gates belong to an inter-
esting class of CPTP maps, called quantum instruments
[69]. For quantum instruments, both the classical mea-
surement outcomes and the post-measurement states of
the quantum system are tracked, with the corresponding
CPTP map

εQI(ρ) =

M∑
µ=1

εµ(ρ)⊗ |µ〉〈µ|, (12)

where {|µ〉〈µ|}Mµ=1 is a set of M orthogonal projections

of the measurement device, and {εµ}Mµ=1 is a set of
completely positive and trace nonincreasing maps while∑M
µ=1 εµ(ρ) preserves the trace. For the FT parity mea-

surement, {εµ} contains either the parity measurement
channels or the identity channel, while for PI gates {εµ}
is a set of unitary channels.

IV. DRIVEN-DISSIPATIVE CONTROL

The inevitable coupling of a quantum system to the
reservoir generally deteriorates the coherence and coher-
ent control of the system. However, in some cases, the
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FIG. 4. Error-corrected (PI) SNAP gate in circuit QED. (a) PI principle of error-corrected SNAP gate demonstrated by
the ancilla transition graph. The ancilla transition from the ground state |g〉 to the second excited state |f〉 (green arrows)
implements the SNAP gate S(~ϕ) on the logical system (boxes), while the reverse ancilla transition from |f〉 to |g〉 implements
the inverse SNAP gate S(−~ϕ). The ancilla transition from any state to itself (red closed loops) produces the identity operation
on the logical system. Without ancilla errors, all closed loops in the ancilla transition graph produce the identity operation on
the logical system, satisfying the PI condition. With the χ-matching condition in Eq. (10), the dominant ancilla relaxation
error from |f〉 to |e〉 (blue arrows) produces an identity operation on the logical system, still ensuring the PI condition. The
ancilla relaxation from |e〉 to |g〉 breaks the PI condition but is a second-order error. (b) The SNAP operation for implementing
a logical rotation S(ϕ) = e−iZLϕ with ZL = |0L〉〈0L| − |1L〉〈1L| for the binomial code {||0L〉 = (|0〉 + |4〉)/

√
2, |1L〉 = |2〉}.

The control consists of applying a Raman drive detuned from the |g〉 ↔ |e〉 transition (blue arrow) as well as a comb of
control drives (green arrows), detuned in the opposite sense from the |e〉 ↔ |f〉 transition and separated in frequency by twice
the ancilla-cavity dispersive shift 2χ. The measured Wigner tomograms of the cavity state, postselected on the final ancilla
state following a |g〉 ↔ |f〉 swap (dashed arrows), are shown to the right. (c) Error-corrected SNAP gate performance from
randomized benchmarking (RB) and interleaved randomized benchmarking (IRB). The effective gate error probability can be
learnt by fitting both the RB and IRB results to an exponential model (dotted lines). The error probability without interleaved
logical gates is γRB = 2.5%±0.1% (black), while the error probability associated with the error-corrected (non-error-corrected)
operation as γIRB − γIRB = 2.4%±0.1% (4.6%±0.1%) from the red (blue) curve. (d) Robustness of the error-corrected SNAP
gate with added ancilla dephasing (|f〉〈f |− |g〉〈g|, left pannels) and relaxation noise rates (|e〉〈f |, right pannels). In both cases,
SC (red markers) is significantly less likely than SNC (blue markers) to translate ancilla errors induced by the added noise into
logical errors. The dotted lines are derived from a full quantum simulation using independently measured system parameters.
Reprinted with permission from [81].

system can be driven into a unitarily evolving steady
subspace, which can encode and process the quantum
information while being largely immune to environmen-
tal noise. This can be achieved by either reservoir en-
gineering (designing both the system Hamiltonian and

the coupling to the reservoir) or Hamiltonian engineer-
ing (designing only the system Hamiltonian), which are
both called driven-dissipative control in this paper. In
this section, we will discuss the formation and control of
stabilized manifolds of Schrödinger cat states in cavity
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FIG. 5. Formation and control of a stabilized manifold by reservoir engineering. (a) Confinement of a quantum state
belonging to a large Hilbert space into a two-dimensional quantum manifold spanned by {|C+

α 〉, |C−α 〉}. The cube represent a
multi-dimensional Hilbert space, while the sphere represents the manifold of states. Stabilizing forces (orange arrows) direct all
states toward the inner sphere without inducing any rotation in this subspace. (b) Conceptual representation of quantum Zeno
dynamics in the stabilized manifold. The dark blue circle represents a cross section of the Bloch sphere of a two-state manifold
in (a). The quantum Zeno dynamics corresponds to the motion along the circle. The trajectory induced by a drive in the large
Hilbert space has a component both along the circle and out of it. The nonlinear dissipation and drive (orange arrows) cancels
the movement outside the circle while leaving only the rotation on the circle. (c) Schematics of the experimental device. The
quantum manifold is stabilized within the Hilbert space of the fundamental mode of an aluminium post storage cavity (cyan).
This resonator is coupled to two Josephson junctions on sapphire (yellow for the reservoir and crimson for the transmon qubit),
which are read out by stripline resonators (gray). Three couplers (brown) bring microwave drives into the system and carry
signals out of it. (d) Sequence of different drives in (c) for quantum Zeno dynamics. To make resonant the conversion between
one reservoir photon and two storage photons, two pumps on the reservoir with frequencies 2fS− fR and fR are used to create
pairs of storage photons. An additional linear displacement drive on the storage cavity induces the quantum Zeno dynamics.
The drive on the transmon qubit is to initialize the storage cavity in the stabilized manifold and read-out the parity of the
storage cavity. (e) Evolution of the measured parity of the storage cavity as a function of time. The initial cat states are even
cat state |C+

α 〉 with |α|2 = 2, 3, 5 (circles, squares, diamonds). The storage drive is either off (black markers) or on (colored
markers) with various strengths given in units of a chosen base strength ε0. Reprinted with permission from [94].

bosonic modes with both approaches.

A. Reservoir engineering

Reservoir engineering is a powerful technique to realize
steady state or subspace in condensed matter physics and
quantum information processing [85–87], since the steady
state is often an exotic phase of matter that is difficult to
stabilize in nature [86], while the steady subspace may be
used to store, protect and process quantum information
[87]. In particular, when the quantum system is coupled
to a Markovian reservoir, the time evolution of the system

is governed by the Lindblad master equation [88],

ρ̇ =Lρ = −i[H, ρ] +
∑
l

D[Fl]ρ, (13)

where the Liouvillian L is a superoperator on the system,
H is the Hamiltonian of the system including the driving

term, D[Fl]ρ = 2FlρF
†
l − F †l Flρ − ρF †l Fl is the Lind-

bladian dissipator with Fl being the dissipation-inducing
jump operator that can depend on a parameter. The
Markovian reservoir engineering refers to the design of
the system Hamiltonian H and the jump operators {Fl},
so that a stabilized manifold consisting of multiple steady
states [89–91] is formed to encode quantum information
and even allow QEC.



11

1. Stabilized manifold with quantum information

Single-mode two-photon process. Consider that a sin-
gle cavity mode is driven by an external field such that
it can only absorb photons in pairs, and the energy de-
cay of the mode also happens in pairs of photons, then
the Lindbladian master equation describing such a two-
photon driven-dissipative process is

ρ̇ =[ε2a
†2 − ε∗2a2, ρ] +D[

√
κ2a

2]ρ

=D[
√
κ2(a2 − α2)]ρ, (14)

where ε2 and κ2 are the driving amplitude and decay rate,
respectively. The second line of the above equation shows
that the driven-dissipative dynamics can be described
by a single Lindbladian dissipator D[

√
κ2(a2 − α2)] with

α =
√

2ε2/κ2. The stabilized manifold is determined
by D[

√
κ2(a2 − α2)]ρ = 0, and any state satisfying

a2|ξ〉 = α2|ξ〉 or a|ξ〉 = ±α|ξ〉 is in this manifold. Such
a stabilized manifold also forms a decoherence-free sub-
space [4]. The stabilized manifold for two-photon process
is the two-dimensional Hilbert space spanned by two co-
herent states {|α〉, |−α〉} [Fig. 5(a)]. For any initial state
ρ(0), the cavity mode asymptotically converges to some
pure or mixed state ρ(∞) in such a stabilized manifold.
For example, if the initial state is the vacuum state |0〉
or the single-photon Fock state |1〉, the asymptotic state
is the pure even (|C+

α 〉) or odd (|C−α 〉) Schrödinger cat
state with

|C±α 〉 = N2(|α〉 ± | − α〉), (15)

where N2 is a normalization constant.

The logical qubit can be encoded into the even-odd
Schrödinger cat states {|C+

α 〉, |C−α 〉} (with large α so
that |〈C+

α |C−α 〉| ≈ 0) [91]. A qubit encoded in such a
way is called the dissipative-cat qubit. For such a logical
qubit, the dephasing error D[

√
κφa

†a] can be largely sup-
pressed when κφ � κ2, while the single photon loss error
D[
√
κ1a] causes a bit-flip error and therefore cannot be

suppressed by the two-photon process. Experimentally
Leghtas et al. [92] first successfully confined the quan-
tum states of a superconducting cavity to the stabilized
manifold spanned by the even-odd cat states.

Single-mode four-photon process. The four-photon pro-
cess is described by letting both the absorption from the
driving field and the energy decay into the bath happen
through quadruples of photons,

ρ̇ =[ε4a
†4 − ε∗4a4, ρ] +D[

√
κ4a

4]ρ

=D[
√
κ4(a4 − β4)]ρ. (16)

The stabilized manifold is the four-dimensional Hilbert
space spanned by {| ± β〉, | ± iβ〉} with β = (2ε4/κ4)1/4.
When the cavity mode starts at initial Fock states
|0〉, |1〉, |2〉, |3〉, it asymptotically converges to the pure

states

|C(0mod4)
β 〉 = N4(|C+

β 〉+ |C+
iβ〉),

|C(1mod4)
β 〉 = N4(|C−β 〉 − i|C

−
iβ〉),

|C(2mod4)
β 〉 = N4(|C+

β 〉 − |C
+
iβ〉),

|C(3mod4)
β 〉 = N4(|C−β 〉+ i|C−iβ〉), (17)

which form the four-component subspace of the
Schrödinger cat states.

To suppress the single photo loss error, which is usually
the dominant error channel of the cavity modes, we can
use the encoding scheme that can track the single-photon
jump event and perform QEC. This can be achieved by
encoding the qubit into the logical subspace spanned by
the two cat states {|C0mod4

α 〉, |C2mod4
α 〉} with even photon

number parity. Then a single photon loss changes the
photon number parity from even to odd. The photon
number parity of the cavity mode can be monitored in
a QND manner by a Ramsey experiment on an ancilla
transmon qubit dispersively coupled to the cavity.

Single-mode d-photon process. The two-photon and
four-photon processes can be generalized to d-photon
processes (d = 2, 4, 6, · · · being an even integer) with

ρ̇ =[εda
†d − ε∗dad, ρ] +D[

√
κda

d]ρ

=D[
√
κd(a

d − γd)]ρ, (18)

with γ = (2εd/κd)
1/d. The stabilized manifold is the

d-dimensional Hilbert spanned by {|γλν〉} with λν =
exp(2iπν/d) (ν = 0, 1, · · · , d − 1), which are d coherent
states lying equidistantly in the phase space. The asymp-
totic states or cat code are d different superpositions of
such d coherent states {|Cµmodd

γ 〉} (µ = 0, 1, · · · , d − 1)
with

|Cµmodd
γ 〉 = Nd

2d−1∑
ν=0

λ−µν |γλν〉, (19)

which is a superposition of µmodd Fock states.
The d-dimensional Hilbert cat space can be divided
into d/2 subspaces labeled by s = 0, 1, · · · , d/2 −
1, where the s-subspace is spanned by two states

{|Csmodd
γ 〉, |C(s+d/2)modd

γ 〉} and may encode a logical
qubit [15, 16]. After losing k photons, the s subspace
is mapped to the s − k subspace. Hence we can distin-
guish up to d/2− 1 photon losses without destroying the
encoded logical states by projectively measuring the exci-
tation number mod d/2 (called the “Zd/2 measurement”).
We can also encode a qudit into the d/2-dimensional sub-

space {|C0modd
γ 〉, |C2modd

γ 〉, · · · , |C(d−2)modd
γ 〉} that can

correct a single photon loss error.

Multimode processes. The driven-dissipative processes
can be extended from a single cavity mode to a two modes
with operators {a, b} [93]. Suppose that both modes si-
multaneously absorb energy from the driving field and
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release energy to the bath through pairs of photons,

ρ̇ =[εp4b
†2a†2 − ε∗p4a

2b2, ρ] +D[
√
κp4a

2b2]ρ

=D[κp4(a2b2 − δ4)]ρ. (20)

The stabilized manifold is spanned by the pair-
coherent/Barut-Girardello states [95]. Quantum infor-
mation encoded in a subspace of such a manifold is im-
mune to the dephasing errors in both modes. Most in-
terestingly, arbitrary photon loss errors in either mode
can be corrected by continuously monitoring the pho-
ton number difference between the two modes. The two-
mode generalization above can also be extended to the
multimode case, with the additional advantage of being
able to correct for higher-weight products of losses or for
photon losses and gains at the same time [93].

2. Quantum gates by quantum Zeno dynamics

We have shown that the logical qubit encoded in the
stabilized manifold can be dynamically protected from
the photo loss and dephasing errors and therefore act a
good quantum memory. It is also possible to perform
universal gates on such a logical qubit. The arbitrary
rotations around x-axis of a single qubit and the two-
qubit entangling gate can be generated by quantum Zeno
dynamics.

When a quantum system is frequently measured to de-
termine whether it is in the initial state, the system will
always stay in the initial state, which is called the quan-
tum Zeno effect [96]. But if frequent measurements are
performed to see if it is in a multi-dimensional subspace,
the system is not freezed but evolves according to an
effective Hamiltonian obtained by projecting the initial
Hamiltonian into the measurement subspace. Such dy-
namics are called Quantum Zeno dynamics [97]. The
driven-dissipative processes act as a continuous measure-
ment on the quantum system to see if it is in the multi-
dimensional stabilized manifold, so if we apply another
driving Hamiltonian H, the effective driving Hamiltonian
is Heff = PCHPC with PC being the projector onto the
stabilized manifold [Fig. 5(b)].

For the two-photon process with the logical qubit
{|C+

α 〉, |C−α 〉}, we may apply a linear drive on the os-
cillator, Hx = εx(a + a†). The two-photon process acts
as a continuous measurement which projects the driving
Hamiltonian onto an effective x-axis rotation Hamilto-
nian in the qubit space,

PCHxPC = ΩxX, (21)

where PC = |C+
α 〉〈C+

α | + |C−α 〉〈C−α |, X = |C+
α 〉〈C−α | +

|C−α 〉〈C+
α | and Ωx = εx(α+α∗). One can see that a pop-

ulation transfer between the even cat state |C+
α 〉 and the

odd cat state |C−α 〉 is enabled by a resonant single-photon
drive on the system [Fig. 5(d)-(f)]. Recently Touzard et
al. [94] have experimentally observed such coherent os-

cillations between the even and odd cat states by tuning
the desired dissipation rate (two-photon loss rate κ2) to
be 2 orders of magnitude larger than the undesired dis-
sipation rate (single-photon loss rate κ1) [Fig. 5(c)].

For the four-photon process with the logical qubit
{|C0mod4

α 〉, |C2mod4
α 〉}, the population transfer between

two logical states needs a two-photon drive Hx2 =
εx2(a2 + a†2) with the projected Hamiltonian in the sta-
bilized manifold as

PC′Hx2PC′ = Ωx2(X02 +X13), (22)

where PC′ =
∑3
i=0 |Cimod4

α 〉〈Cimod4
α |, Xij =

|Cimod4
α 〉〈Cjmod4

α | + |Cjmod4
α 〉〈Cimod4

α | and Ωx2 =
εx2(β2 +β∗2). The above effective Hamiltonian have two
driving components: one acting on the qubit subspace
to drive the Rabi oscillation between |C0mod4

α 〉 and
|C2mod4
α 〉}, and the other one acting on the remaining

subspace to drive the Rabi oscillation between |C1mod4
α 〉

and |C3mod4
α 〉} with the same driving amplitude. Such

a gate has the additional advantage of being error-
transparent to single-photon loss error, since in the
stabilized manifold the single photon loss operator
commutes with the effective Hamiltonian and therefore
can be detected/corrected at the end of the gate without
compromising the encoded quantum information [82, 83].
For a general d-photon processes to a qubit, the x-axis
rotation Hamiltonian is Hx,d = εx,d(a

d + a†d).

In addition to the x-axis single-qubit gates, the two-
qubit entangling gates can be realized by applying ap-
propriate driving fields. To complete the set of universal
gate, we may turn off the driven-dissipative control and
apply a Kerr Hamiltonian to implement single-qubit π/2-
rotation around the z axis [91]. The universal control of
the qubits encoded in single modes can be extended to
those encoded in multiple modes [93]. For example, an
arbitrary x-axis rotation of the qubit encoded in double
modes can be realized by the drive Hp = εx,p(ab+ b†a†).

B. Hamiltonian engineering

Apart from reservoir engineering, it is also possible to
form and process a stabilized manifold by only Hamilto-
nian engineering. The stabilized manifold can be chosen
to be a degenerate eigenspace of the system with a de-
signed Hamiltonian, which is typically decoupled to the
remaining eigenspace by a large energy gap and therefore
can be protected from specific system errors [Fig. 6(a)].

1. Formation of the Kerr-cat qubit

Consider the Hamiltonian of a Kerr-nonlinear res-
onator under the application of a single-mode squeezing
drive [98, 99], written in a frame rotating at the resonator
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FIG. 6. Formation and control of a stabilized manifold by Hamiltonian engineering. (a) Illustration of the eigenspectrum of a
Kerr-nonlinear resonator with a squeezing drive. The even-odd cat states |C±α 〉 are two eigenstates with a large energy gap from
the other eigenstates. (b) Photograph of the nonlinear resonator (purple frame) inside the copper section of the readout cavity.
Also represented are the x-axis rotation drive (ωa) and the squeezing-generation drive (2ωa). Here ωa denotes the resonator
frequency and is equivalent to ωC in Eq. (1). (c) Schematic of the nonlinear resonator with pad offset δ to set the dispersive
coupling to the readout cavity and spiral symbol representing the nonlinear inductor (SNAIL element). (d) Scanning electron
micrograph of the SNAIL element consisting of four Josephson junctions in a loop threaded by an external magnetic flux. (e)
Pulse sequence for initialization (to |C+

α 〉), Rabi oscillation and readout of the Kerr-cat qubit. Here ωs = 2ωa, and ωb is the
frequency of the readout cavity. (f) Dependence of the Rabi frequency on

√
ε2. (g) Dependence of the experimentally measured

Rabi oscillations on evolution time ∆t and on the phase of the Rabi drive arg(ε2). (h) Cuts of (g) for the three Rabi-drive
phases indicated by dashed lines. (i) Simulated Wigner function of the oscillator density matrix corresponding to the symbols
in the bottom panel of (h). Reprinted with permission from [105].

frequency ωC,

HKerr = −Ka†2a2 + (ε2a
†2 + ε∗2a

2), (23)

= −K
(
a†2 − α∗2

) (
a2 − α2

)
+
|ε2|2

K
. (24)

Here K is the strength of the nonlinearity and α =√
ε2/K. The second line makes it clear that the even-

and odd-parity cat states |C±α 〉 are the degenerate eigen-
states of this Hamiltonian [98, 99]. This cat subspace
is separated from the rest of Hilbert space by a gap
ωgap ∝ 4K|α|2 [98]. A qubit encoded in such a way
is called the Kerr-cat qubit. Observe that as the strength
of the two-photon drive decreases, that is |ε2| → 0 and
hence |α| → 0, the states |C±α 〉 continuously approach
the vacuum and single-photon Fock state, respectively.
In fact, in this limit the Kerr-cat qubit is essentially
the well-known transmon which encodes a “Fock qubit”
in the two photon-number states: vacuum and single-
photon Fock state. It follows that, an initially undriven
Kerr-nonlinear resonator (≡ Fock-qubit) prepared in vac-
uum or single-photon Fock state will respectively evolve

to the states |C+
α 〉 or |C−α 〉 as the amplitude of the squeez-

ing drive is increased adiabatically. For the adiabatic
condition to be satisfied, the rate of change of the two-
photon drive must be slower than the minimum energy

gap, ˙|ε2(t)|/|ε2(t)| � 2K. So typically a large Kerr-
nonlinearity results in faster cat state. Nevertheless, it is
possible to apply counter-adiabatic two-photon drive to
go faster than the adiabatic condition would allow [98].

Like the case of a dissipative-cat qubit [Eq. (14)], the
probability of a bit-flip error (e.g., due to frequency fluc-
tuations D[

√
κφâ

†â]) is exponentially suppressed com-
pared to a phase-flip error (for example due to single pho-
ton loss D[

√
κâ]) in the Kerr-cat qubit as well. While the

dissipative-cat qubit is protected against bit-flip errors by
a decoherence-free subspace enabled by engineered dissi-
pation [100–102], the Kerr-cat qubit is protected from
such errors by the underlying eigenspace structure of the
two-photon driven Kerr-nonlinear resonator [103–105].
Interestingly, the Kerr- and dissipative-cat qubit real-
izations are completely compatible with each other and
have complementary properties [98, 103, 104]. The in-
herent nonlinearity of the Kerr-cat mode provides the
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ability to implement fast, high-fidelity gates. It also
naturally provides the ability to parametrically engi-
neer two-photon dissipation, which can be subsequently
used for autonomous correction of possible leakage er-
rors [98, 103, 104]. Recently, the adiabatic preparation
of Kerr-cat was experimentally demonstrated [105] and
the asymmetry in the bit- and phase-flip errors was also
confirmed. Figure 6(b-d) shows the device of the su-
perconducting setup for realization of the Kerr-cat qubit
[105].

2. Quantum gates for the Kerr-cat qubit

Selective control of the dynamics of the Kerr-cat qubit
in the two-dimensional subspace {|C+

α 〉, C−α 〉} is possible
because of the energy gap ωgap separating the qubit sub-
space from the rest of the Hilbert space.

Consider a coherent microwave tone applied to the res-
onator at the resonator’s resonance frequency ωC. In
the rotating frame, the resulting Hamiltonian is H1 =
HKerr + εxa

† + ε∗xa. The a† term can cause transitions
outside the cat-subspace. However, these transitions are
off-resonant and in the limit |εx| � ωgap, leakage out of
the qubit subspace can be neglected. Similar to Eq. (21),
the effective Hamiltonian in the qubit subspace is

PCH1PC = ΩxX − ΩyY (25)

where PC , X are the same as those defined in Eq.
(21), Y = i|C−α 〉〈C+

α | − i|C+
α 〉〈C−α |, Ωx = α(εx +

ε∗x)
(
r−1 + r

)
/2, Ωy = iα(ε∗x − εx)

(
r−1 − r

)
/2 and r =√

1− e−2α2/
√

1 + e−2α2 . Consequently, a resonant co-
herent microwave drive applied in phase with the squeez-
ing drive (εx = ε∗x) causes Rabi-oscillations around the
x-axis and hence implements a X(θ) = exp(iθX/2) op-
eration [98, 103, 104], where θ = ΩxT with T being

the evolution time. Since r − r−1 ∼ 2e−2α2

in the limit
of large α, the Rabi oscillations around y-axis is expo-
nentially suppressed with α2. The Rabi oscillations of
the Kerr-cat qubit were demonstrated in a recent experi-
ment [105], as shown in Fig. 6(e-i). Readout of the Kerr-
cat qubit can be realized by coupling the Kerr-cat cav-
ity to a line resonator with a beam-splitter interaction
followed by a homodyne measurement of the line res-
onator [105]. Furthermore, it follows from Eq. (25) that
a resonant beam-splitter interaction, generated paramet-
rically between two driven nonlinear resonators, leads to
an Ising coupling and realizes a XX(θ) = exp (iθX1X2)
gate [98, 103, 104].

The Kerr-cat qubit has an asymmetric noise channel
such that Y and Z errors are exponentially suppressed.
This asymmetry illustrates that the qubit couples to
the environment predominantly along the x-axis, while
coupling along the y and z-axis is suppressed. This
coupling asymmetry, also evident from Eq. (25), results
from the Hilbert-space structure of the Hamiltonian
of the driven Kerr-nonlinear resonator. Consequently,

in order to allow coupling to the z-axis, it becomes
necessary to turn-off the two-photon pump. When this
pump is turned off, the cat-qubit freely evolves under
the Kerr-nonlinearity and a Z(π/2) gate is realized
after a duration π/2K [47, 105, 106]. After finishing
the operation, the two-photon pump can be turned
on again in order to recover the Kerr-cat qubit. It is
important to note that unlike the X(θ) and XX(θ)
gates, a Z(π/2) rotation propagates a X error as a
linear combination of X and Y errors and consequently
destroys the underlying asymmetric noise structure of
the qubit [104].

Remarkably, recent theory shows that it is possible to
realize a two-qubit, controlled-Z (CZ) gate without turn-
ing off the two-photon drive and thereby preserving the
structure of the noise bias (termed as CX gate in [104]
due to the different bases adopted there). The ability
to implement a bias-preserving CZ gate makes the Kerr-
cat qubits desirable for efficient quantum error correc-
tion. Moreover, the CZ gate can be implemented with
parametric drives and four-wave mixing via the inherent
Kerr-nonlinearity in the cat-qubit mode, which is very
convenient to realize as no additional coupling elements
are required.

V. HOLONOMIC QUANTUM CONTROL

In the last section, we have shown that through Marko-
vian reservoir engineering, the Lindbladian dynamics
can be designed to support a mult-dimensional stabi-
lized manifold or decoherence-free subspace to encode the
quantum information without suffering dissipation, and
it is also possible to realize univeral control of the states
in the stabilized manifold with the aid of the quantum
Zeno dynamics. In this section, we will show that the
universal control of the states in the stabilized manifold
can be achieved by an alternative method - holonomic
quantum control.

In holonomic quantum computation (HQC) [4, 107,
108], the qubit states undergo adiabatic closed-loop par-
allel transport in parameter spaces, acquiring Abelian
Berry phases [109] or non-Abelian adiabatic quantum
holonomies [110] to achieve noise-resistant universal com-
putation. Recently Albert et al. [90, 111] introduced
the idea of HQC to Markovian reservoir engineering and
found that universal computation of a quantum system
consisting of superpositions of well-separated coherent
states of single or multiple harmonic oscillators can be
achieved by three families of adiabatic holonomic gates,
including the loop gates, collision gates for single oscil-
lator mode and controlled-phase gates for multiple har-
monic oscillators. Below we will briefly introduce the first
two family of gates.

Consider the following Lindbladian for a single oscilla-
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FIG. 7. Holonomic gates for the logical subspace spanned
by {|C+

α 〉, |C−α 〉}. (a) Wigner function sketch of the state be-
fore (top) and after (bottom) a loop gate acting on | − α〉,
depicting the path of |−α〉 during the gate (blue) and a shift
in the fringes between. (b) Phase space diagram for the loop
gate with X = 〈a + a†〉/2 and P = −i〈a − a†〉/2. The pa-
rameter α1(t) is varied along a closed path (blue) of area A,
and the state | − α〉 gains a phase θ = 2A relative to |α〉. (c)
Effective Bloch sphere of the cat qubit | ± α〉 depicting the
rotation caused by the loop gate. The black arrow depicts the
initial state while the red arrow is the state after application
of the gate. The dotted blue arrow does not represent the
path traveled since the states leave the logical space during
the gate. (d)-(f) Analogous descriptions of the collision gate,
which consists of reducing α to 0, driving back to αeiφ, and
rotating back to α. Reprinted with permission from [111]. .

tor,

ρ̇ = D

[
κ

d−1∏
ν=0

(a− αν(t))

]
ρ. (26)

which is a generalization of Eq.(18) that supports the
stabilized manifold spanned by a set of coherent states
{|α0(t)〉, · · · , |αd−1(t)〉}. Note that different from the
constant parameters {αν} in the last section, {αν(t)}
here is time-dependent and can be tuned as external
parameters. Then by adiabatically changing {αν(t)}
through closed paths in phase space, the stable coherent
states {|αν(t)〉} also undergo the same adiabatic evolu-
tions.

A. Loop gates

One type of the holonomic control is the loop gate,
which can accumulate tunable relative Berry phases over
superpositions of stabilized coherent states. First con-
sider the simple case with d = 2 (e.g., the single-
mode two-photon process), the steady state space is

{|α0(t)〉, |α1(t)〉} with α0(0) = −α1(0) = α [Fig. 7(a)].
This stabilized manifold holds the even-odd cat qubit
{|C+

α 〉, |C−α 〉}. Suppose that α1(t) undergoes an adiabatic
variation through a closed path while α0(t) is kept con-
stant and well separated from α1(t) [Fig. 7(a) and (b)],
the state |α1(t)〉 will accumulate a Berry phase θ = 2A
with A being the area enclosed by the closed path. Such
an operation is called a loop gate with implemented uni-
tary

Uloop = eiθ/2 exp[−iθ(|α〉〈α| − | − α〉〈−α|)/2]

= eiθ/2 exp[−iθ(|C+
α 〉〈C−α |+ |C−α 〉〈C+

α |)/2], (27)

which performs an x-axis rotation for the even-odd cat
qubit [Fig. 7(c)]. For the general case with an arbitrary
d, the loop gates consist of an adiabatic evolution of αν(t)
around a closed path isolated from all the other αν′(t)
(ν′ 6= ν).

B. Collision gates

The other type of the holonomic control is the colli-
sion gate, which can coherently convert the population
of a stabilized coherent state to another. To get the idea
of collision gates, notice that there are two distinct pa-
rameter regimes for the even-odd cat cat states: α � 1
and α � 1. In the regime α � 1, the cat states |C±α 〉
are well separated and nearly orthogonal. However, in
the regime α� 1, the cat states are reduced to the Fock
states with |C+

α 〉 → |0〉 and |C−α 〉 → |1〉, so a bosonic ro-
tation Rφ = exp(iφa†a) will make the two Fock states |0〉
and |1〉 accumulate a relative phase φ. If we start with
the even-odd cat qubit |C±α 〉 with large α, first reduce α
to 0, then apply bosonic rotation Rφ and final drive back
from 0 to α, the net result is that |C+

α 〉 and |C−α 〉 accu-
mulate a relative phase φ with the implemented unitary

Ucoll = eiφ/2 exp[−iφ(|C+
α 〉〈C+

α | − |C−α 〉〈C−α |)/2]

= eiφ/2 exp[−iφ(|α〉〈−α|+ |α〉〈−α|)/2], (28)

which performs a z-axis rotation for the even-odd cat
qubit [Fig. 7(f)]. Denote the nonunitary driving from
0 to αeiφ as Sφ, then the collision gate can also be rep-

resented as S0RφS
−1
0 = Rφ(R†φS0Rφ)S−1

0 = RφSφS
−1
0 .

So an equivalent construction of the collision gate is re-
ducing α to 0, driving back to αeiφ and rotating back
to α [Fig. 7(d) and (e)]. The generalization of the colli-
sion gate to an arbitrary d is straightforward: start with
the {|αλν〉}d−1

ν=0 configuration with λν = ei2πν/d and large
enough α, tune α to zero (or close to zero), pump back
to a different phase αeiφ, and rotate back to the ini-
tial configuration. Note that in the cat state basis with
α� 1, |Cµmodd

α 〉 → |µ〉 will gain a phase proportional to
its mean photon number [111].
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VI. MULTI-MODE QUANTUM CONTROL

In all the sections above, we have concentrated on the
quantum control of single bosonic mode, although some-
times we briefly mention the extension to the multi-mode
control. In this section, we will focus on the quantum
control of multiple bosonic modes, mainly how to entan-
gle two bosonic modes, which is a prerequisite for uni-
versal quantum computation. Recent experimental ad-
vances in circuit QED to entangle cavity modes include
preparation of two-mode cat state [112], two-mode W
state [60] and three-mode W state [60], on-demand state
transfer and entanglement generation [56, 113–116], and
the realization of CNOT gate [57], controlled-Z (CZ) gate
[117], exponential-SWAP (eSWAP) gate [118] and tele-
ported CNOT gate [119]. Below we will introduce the
eSWAP gate and teleported CNOT gate.

A. Exponential-SWAP gate

The eSWAP gate can coherently transfer the states
between two bosonic modes, regardless of the choice of
encoding [120]. To illustrate the eSWAP gate, we first
introduce the unitary SWAP operation Sij between any

two bosonic modes ai, aj , defined as SijaiS
†
ij = aj and

SijajS
†
ij = ai (the same relation for a†i , a

†
j). Applying

the SWAP operation twice results in S2
ijai/jS

†2
ij = ai/j ,

which is the identity operation Iij for the two bosonic
modes. The eSWAP gate is defined as the unitary propa-
gator induced by a Hamiltonian in the form of the SWAP
operation

UeSWAP(θ) = exp(iθSij) = cos θIij + i sin θSij , (29)

which represents a superposition of the identity and the
SWAP operation with the superposition coefficient tun-
able by the rotation angle θ. At θ = π/2, π/4, the

eSWAP gate is reduced to the SWAP gate and
√

SWAP
gate, respectively. One powerful feature of the eSWAP
gate is that it can entangle two bosonic modes for any
bosnoic code. To see this, suppose the qubit code for

the bosonic mode is |0L/1L〉i = f0/1(a†i )|0〉 with f0/1(a†i )

being a function of a†i and |0〉i the vaccum state for the
ith bosnic mode, and the initial state of the ith and jth
bosonic modes is |0L〉i|1L〉j , then applying the eSWAP

gate results in U ijeSWAP(θ)|0L〉i|1L〉j = cos θ|0L〉i|1L〉j +

i sin θ|1L〉i|0L〉j [Note that Sijf0/1(a†i )S
†
ij = f0/1(a†j) and

Sij |0〉i|0〉j = |0〉i|0〉j ].
To implement the eSWAP operations, one can first use

a ancilla qubit with states {|g〉, |e〉} coupled to the two
bosonic modes to realize the controlled-SWAP or Fredkin
gate Cij = |g〉〈g| ⊗ Iij + |e〉〈e| ⊗ Sij . The Fredkin gate
can be decomposed as [Fig. 8(b)]

Cij = e−
π
4 (aia

†
j−aja

†
i )ei

π
2 |e〉〈e|a

†
iaie

π
4 (aia

†
j−aja

†
i ), (30)

where the first and last unitaries are 50:50 beam splitters
and the middle one is the controlled-phase shift (CPS)
of one bosonic mode conditioned on the ancilla state.
The CPS operation can be achieved by a dispersive cou-
pling between the ancilla and the bosonic mode [Eq. (1)].
Then the eSWAP gate can be realized as [Fig. 8(c)]

UeSWAP(θ)|+〉|ψ〉ij = CijXθCij |+〉|ψ〉ij , (31)

where |+〉 = (|g〉 + |e〉)/
√

2, Xθ = eiθ(|g〉〈e|−|e〉〈g|) and
|ψ〉ij is the wavefunction for the two bosonic modes.

Recently Gao et al. [118] have experimentally imple-
mented the eSWAP operations in three-dimensional (3D)
cicuit QED system [Fig. 8(a)] and demonstrated high-
quality deterministic entanglement between two cavity
modes with several different encodings including the
Fock- and coherent-state coding schemes. As opposed
to the eSWAP gate, a traditional CNOT gate between
the multiphoton qubits in two cavities has also be real-
ized by the mediation of a driven ancilla transmon, with
the driving pulse obtained from GRAPE optimal control
algorithm [57]. Moreover, a geometric method has been
utilized for realizing CZ gates between two logical qubits
encoded in two cavities [117].

B. Teleported CNOT gate

A promising strategy toward scalable quantum compu-
tation is to adopt a quantum modular architecture [Fig.
9(a)], which is a distributed network of modules that
communicate with one another through quantum and
classical channels [121, 122]. Each module is composed
of two functional subsystems [Fig. 9(b)]: the data qubits
that store and process quantum information and the com-
munication qubits that mediate interactions between dif-
ferent modules. The intra-modular operations between
the data and communication qubits are performed inde-
pendently in each module so that the crosstalk and resid-
ual interactions between different modules are minimized
even for a scaled-up system, while the inter-modular op-
erations between the data qubits are enabled by dis-
tributing entanglement between communication qubits.

Due to the isolation between different modules, the
multi-qubit operations between modules cannot depend
on direct interactions but instead utilize quantum tele-
ported gates [123–126] that are enabled by entanglement
sharing, local operations and classical communications.
Consider two modules with the data qubits (D1 and D2)
and communication qubits (C1 and C2), the teleported
CNOT gate between D1 and D2 can be implemented by
the following steps [Fig. 9(c)]: (1) generation of entangle-
ment in the communication qubits C1 and C2, (2) local
operations performed within each module entangle the
data and communication qubits, (3) measurement of C1
in the Pauli-Z basis and C2 in the Pauli-X basis and (4)
classical communication and feedforward operations.

Recently Chou et al. [119] have experimentally real-
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FIG. 8. Design of eSWAP gate with circuit QED. (a) Schematic drawing of the three-dimensional circuit QED system used
to realize the quantum Fredkin gate and eSWAP operations between two bosonic modes Alice and Bob. (b) Decomposition of
the Fredkin gate into two 50:50 beam-splitters and a controlled phase shift (CPS). The CPS for one cavity mode is described

by the unitary UCPS = |g〉〈g| ⊗ IC + |e〉〈e| ⊗ eiπa
†a, which can be realized through the dispersive coupling between the cavity

mode and a ancilla transmon. (c) Quantum circuit to realize the eSWAP unitary between two bosonic modes controlled by an
ancillary transmon. Reprinted with permission from [118].

ized such a teleported CNOT gate in a deterministic way
in cicuit QED. The experimental architecture consists
of two modules [Fig. 9(d)]. Each module consists of
a high-Q 3D electromagnetic cavity as the data qubit,
a transmon qubit as the communication qubit and a
Purcell-filtered, low-Q stripline resonator for readout of
the transmon qubit. The local operations on the data
cavity mode in each module were realized by the op-
timal control pulses obtained by GRAPE method (see
Sec. IIB). The communication channel was realized by
an additional cavity mode that functions as a quantum
bus coupling to both communication qubits in the two
modules. With the first-level bosonic binomial quantum
code [12], the teleported CONT gate was implemented
deterministically with the process fidelity reaching 79%.

VII. SUMMARY AND OUTLOOK

Encoding quantum information in bosonic modes is
a hardware-efficient approach to quantum computation,
and universal quantum control of the bosonic modes is
a crucial step towards this goal. Here we have given
an extensive account of the recent advances in univer-
sal control of the bosonic modes. Although the ap-
proaches in this review were initially developed in the
context of circuit QED, they can be extended to various
other platforms, such as cavity QED [35], trapped ions
[42], nanophotonics [127] and Rydberg atoms [128] in the
strongly dispersive regime [46].

We have shown that universal control of a single
bosonic mode can be achieved with the aid of an an-
cilla qubit. The SNAP gates of a harmonic oscillator
(cavity resonator) can be implemented by indirect con-
trol of a dispersively coupled ancilla (transmon qubit),
and the SNAP gates combined with displacement oper-
ation are sufficient for universal control. We can even
construct arbitrary quantum channels for the oscillator
by QND readout of the ancilla and quantum feedback
control. However, it is still an open problem to find the
optimal control of the qubit-oscillator system with min-
imized expenditure of energy and resources [129]. An-
other problem with this qubit-oscillator system is that
the ancilla qubit usually suffer relaxation and dephasing
errors during the quantum gates and these ancilla er-
rors may propagate to the logical qubits in the oscillator
and corrupt the quantum information. We have shown
recent theoretical and experimental advances in this re-
spect, including the theoretical discovery of PI gates [80]
and experimental realization of FT parity measurement
[79] and PI SNAP gates [81] in circuit QED.

Universal quantum control can also be achieved in
some noise-resilient subspace of the bosonic modes, with
the aid of reservoir engineering or Hamiltonian engineer-
ing. With reservoir engineering, the bosonic modes may
support some multi-dimensional decoherence-free sub-
space to encode quantum information. Applying appro-
priate drive can implement the desired unitary on this
stabilized manifold allowed by quantum Zeno dynamics.
Universal control in such stabilized manifold can also be
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FIG. 9. Modular architecture and teleported CNOT gate with circuit QED. (a) Schematic drawing of the modular quantum
architecture for quantum computation. Modules are represented as nodes of a quantum network, and coupling between modules
is generated through reconfigurable communication channels that may be enabled (dark purple lines) or disabled (light purple
lines). (b) Each module acts a small quantum processor that is capable of high-fidelity operations among data qubits (magenta)
and communication qubits (cyan). Here two modules are shown with data qubit D1, D2 and communication qubits C1, C2.
(c) Quantum circuit for teleported CNOT circuit between D1 and D2. (d) Experimental realization of modular structure in
circuit QED. The data qubit is realized by a high-Q cavity (magenta), a communication qubit by a transmon qubit (cyan)
and a low-Q readout resonator (black), and the communication channel by another cavity with a bus mode. Reprinted with
permission from [119].

achieved by holonomic quantum control, where the ex-
ternal parameters are tuned so that the stable states
undergo some adiabatic evolutions. Recent experimen-
tal advances include the formation of stabilized manifold
in two-photon precess [92, 105] and Rabi population os-
cillations in such a manifold [94, 105]. However, it is
still challenging to experimentally generate desired engi-
neered dissipation that is much stronger than the un-
desired dissipations. Moreover, it remain unsolved to
systematically extract high-order nonlinear Hamiltonian
of the oscillator, in order to support high-dimensional
steady state subspaces.

Apart from universal control of single bosonic modes,
coupling different bosonic modes is also needed for uni-
versal quantum computation. We have introduced two
approaches to entangle two bosonic modes with recent
experimental realizations: the eSWAP gate independent
of the bosonic encoding [118] and the teleported CNOT
gate for a modular architecture [119]. It is interesting
to further design some robust generalization of eSWAP
gates that are FT to the ancilla errors and bosonic loss
errors. Moreover, the teleported CNOT gate has only
been realized for adjacent modules, and it will be the
next milestone to demonstrate the non-local teleported
gates using spatially separate modules.
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Appendix A: Implementation of driven-dissipative
processes in circuit QED

In this appendix, we will discuss the physical realiza-
tion of reservoir engineering or driven-dissipative pro-
cesses, in particular, how to construct the desired Lind-
bladian jump operators in Eq. (13). We will first take
the two-photon driven-dissipative process in circuit QED
as an example and then provide the general recipe.

Consider a high-Q storage cavity and a low-Q read-
out cavity linked by a Josephson junction [Fig. 10(a)].
The Josephson junction provides a nonlinear coupling be-
tween the modes in the two cavities [130],

H0 =
∑
k

ωka
†
kak − EJ(cos(Φ/φ0) + (Φ/φ0)2/2), (A1)

where Φ =
∑
k φk(ak + a†k), EJ is the Josephson energy,

φ0 = 1/2e is the reduced superconducting flux quantum,
φk is the standard deviation of the zero point flux fluctu-
ation for mode k with frequency ωk. Note that the bare
frequencies of the cavity modes are usually shifted by
the nonlinear couplings. We are concerned with only one
fundamental mode in each cavity, with ar/as, ωr/ωs be-
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FIG. 10. Implementation of two-photon driven-dissipative
processes in circuit QED. (a) Two superconducting cavities
(a high-Q storage cavity and a low-Q storage cavity) are cou-
pled through a Josephson junction. A pump and a drive mi-
crowave tones are applied to the readout cavity, creating the
appropriate nonlinear interaction that generates a coherent
superposition of steady states in the storage. (b) Four-wave
process experienced by the storage cavity, where two photons
of the storage combine and convert, stimulated by the pump
tone, into a readout photon that is irreversibly radiated away
by the transmission line. (c) Reversed four-wave process as
opposed to that in (b). Reprinted with permission from [92].

ing the annihilation operator, the frequency of the mode
for the storage/readout cavity (already accounting for
the frequency shift by nonlinear couplings), respectively.
Then we apply a weak resonant drive tone and a strong
off-resonant pump tone on the readout cavity

Hp = [εb(t) + εp(t)](ar + a†r), (A2)

where εb(t) = 2εb cos(ωrt), and εp(t) = 2εp cos(ωpt) with
ωp = 2ωs − ωr. In the rotating frame associated with
Hrs0 = ωsa

†
sas + ωra

†
rar and with the rotating wave ap-

proximation, we get an effective Hamiltonian describing
the storage and readout cavities,

Hsr =(g2a
2
sa
†
r + g∗2a

†2
s ar)− εp(ar + a†r) + χss(a

†
sas)

2

+ χrr(a
†
rar)

2 + χsr(a
†
sas)(a

†
rar), (A3)

where χss/χrr is the self-Kerr coefficient for the stor-
age/readout cavity and χsr is the cross-Kerr coefficient
between the storage and readout cavity. Now let us add
the single photon loss channel for mode ar with the ef-
fective Lindbladian master equation

˙ρsr = −i[Hsr, ρsr] +D[
√
κrar]ρsr. (A4)

After neglecting the Kerr and cross-Kerr terms in Hsr, we
can adiabatically eliminate mode ar in the above master
equation [131] and get an effective master equation only
for mode as [Eq. (14)] with the corresponding parameters

ε2 = 2εbg2/κb, κ2 = 4g2
2/κb and α =

√
εb/g2.

We add three points for the above adiabatic transfor-
mation: (i) the pump tone on the readout cavity (the
first term in Hsr) stimulates a conversion of a pair of
photons in mode as to a single photon in mode ar, so
a single photon loss in mode ar (the dissipation term
D[
√
κrar]) through the lossy channel can result in a loss

in photon pairs in mode as (D[
√
κ2as]); (ii) the drive

tone (the second term in Hsr) injects energy into mode
ar and then a single photon in mode ar can be con-
verted to a pair of photons in mode and vice versa [Fig.
10(b) and (c)], resulting in the driving Hamiltonian as

(ε2a
†2
s −ε∗2as); (iii) the self-Kerr and cross-Kerr couplings

(the last three terms in Hsr) are undesired terms for the
driven-dissipative control, but fortunately has negligible
effect on the scheme [91]. Note that the above construc-
tion for single storage cavity (single-qubit gate) can be
directly extended to the case of protectively coupling two
storage cavities (two-qubit entangling gate), by introduc-
ing additional coupling between different storage cavity
modes.

Similar to two-photon process, the four-photon pro-
cess can be realized by designing the effective Hamilto-
nian of the storage and cavity modes as Hsr = (g4a

4
sa
†
r +

g∗4a
†4
s ar)− εp(ar +a†r). It has been theoretically proposed

that such highly nonlinear interactions between the stor-
age and readout cavity modes can be implemented by
an architecture of Josephson ring modulators [91], which
may perfectly select the desired nonlinear interactions
while avoiding other undesirable interactions.

Now we summarize the general recipe for realizing a
jump operator F in reservoir engineering [85, 111]. First,
the central system should be coupled to some auxiliary
system, possibly by the nonlinear coupling Hamiltonian
Fc† + H.c. with c being the operator for the auxiliary
system. Second, the auxiliary system suffers Markovian
dissipation with c being the Lindbladian jump operator.
Then, if the thermal fluctuations in the auxiliary sys-
tem can be neglected, one can adiabatically eliminate
the auxiliary system and obtain an effective Lindbladian
master equation for the central system with the desired
jump operator F . Moreover, we may also need some ad-
ditional drives on the auxiliary system to realize some
other desired drives on the central system.
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