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Microwave photons are used to wire up modular quantum processors, but mitigating the effects of loss
between modules remains a crucial challenge. We use a low-loss bus resonator to couple bosonic qubits
across a superconducting network with protocols made robust to photon loss in the bus. We transfer a
multiphoton qubit and track loss events, improving the fidelity to the break-even point with respect to the
best uncorrectable encoding. We also demonstrate a entanglement protocol using Hong-Ou-Mandel inter-
ference and error detection to prepare a two-photon Bell state with fidelity 94% and success probability
0.79, halving the error obtained with a single photon. This network link also presents new opportunities
for resource-efficient direct gates between modules.
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I. INTRODUCTION

Modular networks are a promising paradigm for
increasingly complex quantum devices, wherein inde-
pendent processor elements can be operated in con-
cert by transferring qubits and generating entanglement
between modules [1–3]. These tasks require a low-loss,
high-speed intermodule link that enables extensible net-
work connectivity. Satisfying these demands simultane-
ously remains an outstanding goal for optical quantum
networks [4,5] as well as for modular superconduct-
ing processors. In particular, modular networks must
address the problem of inefficiencies in signal cou-
pling, transmission, routing, and receiving, both by min-
imizing losses in these stages and by mitigating the
impact of loss on operation fidelities. Both optical fiber
and microwave transmission line can be very efficient
transmission channels, with energy transmission loss
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over a meter of superconducting cable as low as 10−3

(Ref. [6]).
Circuit quantum electrodynamics (cQED) combines the

low loss of superconducting transmission lines with effi-
cient switchable couplings between qubits and microwave
photons [7–9], making it a promising platform for modular
quantum computing. However, robust and scalable net-
works require communication protocols with performance
beyond even small losses. Towards this end, schemes that
condition on successful transmission with an ancillary
herald are employed in both optical [5] and microwave
networks [8,10], albeit at the cost of reduced operation
rate. The cQED toolkit also enables quantum nondemoli-
tion (QND) measurement of multiphoton bosonic qubits
for deterministic correction of loss [11], though realiza-
tion of this approach for communication has remained an
outstanding challenge [12,13].

Thus far, many cQED network realizations have been
unable to leverage the intrinsic quality of superconduct-
ing cable owing to a reliance on lossy directional elements
such as circulators, used to facilitate communication with
propagating photons [8,13–17]. In contrast, intermodule
links that forgo directional elements can have much lower
loss and are bidirectional, supporting a standing-mode
structure [18,19]. A single mode can be used as a quan-
tum bus [20,21], potentially connecting several modules
[Fig. 1(a)]. This simple link provides features that are not
available in a directional channel, such as interference of
photons from different modules. When the bus connects
two bosonic modes â1,2, this interference can give rise to
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an effective beamsplitter transformation:

â1 → cos θ â1 + sin θ â2,

â2 → cos θ â2 − sin θ â1,
(1)

where the beamsplitter angle θ controls the amount of
mode mixing in the operation. The beamsplitter is a pow-
erful tool for manipulating and entangling propagating
photons [22,23], and has proven useful for entanglement
and gates between bosonic quantum memories [24–26].

In this article, we present two advances in networking
superconducting modular processors: (1) error-corrected
transfer of a qubit between two modules at the break-
even point; and (2) an entanglement protocol which uses
error detection to achieve higher fidelity than previously
demonstrated. These protocols rely on two ingredients: a
method of linking modules using a low-loss coaxial bus
that avoids the loss of circulators; and the use of multi-
photon bosonic qubits. With these two elements, we enact
a low-loss tunable beamsplitter for microwave photons
in different stations, and leverage their bosonic properties
to make errors detectable. In addition to facilitating the
construction of modular networks with improved opera-
tions, this work introduces an outlook for gates that do not
require a separate means of entanglement [26,27].

II. A TUNABLE BEAMSPLITTER OVER THE
QUANTUM NETWORK BUS

As a simple demonstration of the quantum network bus,
we connect two modules with a superconducting coaxial
cable of length l = 6.6 cm, though this technique extends
to longer links (see Appendix C 3). We choose the third
harmonic (l = 3λ/2) of the cable as the bus, shown in
Fig. 1(b). Constructed without lossy microwave compo-
nents or connectors, this mode has a relatively high quality
factor (Q = 51,000; κb/2π = 110 kHz). Each module con-
tains a 3D cavity bosonic qubit coupled to the bus via a
conversion transmon [28]. When the transmon is driven
by two off-resonant pumps with frequency difference close
to the difference between the cavity (âj ) and bus (b̂) fre-
quencies, the Josephson nonlinearity enables parametric
conversion [9,29] of the form

Hj /� = ge−i�j tâ†
j b̂ + g∗ei�j tâj b̂†. (2)

The pump amplitudes control the conversion rate g, and
their frequencies set the detuning �j from the frequency-
matching condition.

An important consideration when utilizing this cou-
pling is to ensure that no information is left in the bus
at the end of the protocol. When conversion is activated
in both modules simultaneously, the resulting three-mode
system allows bidirectional population transfer in which
the bus begins and ends in the vacuum state [Figs. 1(c)
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FIG. 1. The quantum bus in a modular network. (a) Modules
are connected via a standing mode of a transmission line or
waveguide structure that serves as a quantum bus (blue). A con-
version element (green switch) allows gated interaction (purple
arrow) between each module and the bus. (b) Circuit quantum
electrodynamic implementation. The bus b̂ is the second over-
tone of a section of superconducting coaxial cable. Each module
contains a 3D cavity âj coupled to the bus mode via paramet-
ric conversion, facilitated by a conversion transmon (green),
and induced by a pair of microwave drives applied to a con-
version transmon through a dedicated drive port (not shown,
see Fig. 7). Modules contain an ancilla transmon and readout
resonator (gray) for state preparation, error detection, and tomog-
raphy. (c) Simultaneous parametric conversion between each
cavity and the bus enables effective interaction between the two
cavity modes. Symmetric detuning of conversion in both mod-
ules controls the participation of the bus mode (vertical axis
representing energy not to scale). (d) Sketch of the dynamics of
the three mode system for zero detuning (top), transferring an
excitation from cavity 1 to 2. Midway through transfer, occupa-
tion of the bus is significant. For large detuning (bottom), the bus
is eliminated at all times, but the interaction is much slower (time
axes not to scale). However, even at zero detuning, there is a time
(final point) where the bus occupation returns to zero, effectively
eliminating the bus for any input state.

and 1(d)], satisfying this requirement. However, constant
resonant conversion (�1 = �2 = 0) is not well suited for
entanglement by partial transfer, because halfway through
transfer the occupation of the bus is maximized, leaving
it entangled with the cavities. There are solutions to this
problem that involve modulating the coupling strengths in
time, such as stimulated Raman by adiabatic passage [30],
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but this approach does not allow the full range of inter-
ference effects utilized here (see Appendix B 6). Instead,
we choose to use equal, nonzero detuning in both mod-
ules (�1 = �2 = �). The best-known case is the vir-
tual Raman regime � � g, where the bus occupation is
suppressed, effectively eliminating it from the dynamics,
resulting in the beamsplitter evolution of Eq. (1) between
the cavities. This elimination suppresses infidelity due to
loss in the bus, but lengthens the protocol significantly,
an unfavorable tradeoff when other sources of decoherence
demand faster operations.

We address these concerns by working at intermediate
detuning � ∼ g, where the beamsplitter transformation in
Eq. (1) can be constructed with any mixing angle θ with-
out slowing down the protocol. We take the conversion
rate as fixed, because it is usually limited by experimental
constraints, and use detuning as a control parameter. For
a given detuning, the bus returns to vacuum and is elim-
inated periodically, with period τBS = 2π/

√
8g2 + �2.

Thus, the evolution is a linear transformation on the two
cavities of the form of Eq. (1), with beamsplitter angle

θ(�) = π

2

(
1 − �τBS

2π

)
, (3)

(see Appendix B). This operation, tunable from opaque
to transparent, is equivalent to a physical beamsplitter
for propagating photons as depicted in Fig. 2(a), but we
emphasize that here this evolution applies to two stationary
modes, whose initial (final) states are represented by the
input to (output from) the beamsplitter. By relying on para-
metric conversion and a high-quality bus, this scheme has
the benefit compared with previous experiments [8,13–19]
of not requiring precise frequency matching or tunability.

We apply this idea to eliminate the bus at two beam-
splitter working points: fully transparent for state transfer,
and 50:50 for entanglement generation. We prepare a sin-
gle photon in cavity 1, turn on conversion in both modules,
and measure the occupation of each cavity as a function of
time, shown in Fig. 2(b), for g/2π = 560 kHz, the value
used throughout this work. At zero detuning (θ = 90◦),
we observe complete excitation transfer between cavities
in τSWAP = 624 ns, with energy transfer efficiency η =
84%. Furthermore, an intermediate detuning � = √

8/3g
realizes a 50:50 beamsplitter (θ = 45◦), which can gen-
erate entanglement from separable input states. The time
to eliminate the bus at this detuning is τ50:50 = 520 ns,
demonstrating the advantage of this operating point over
the much slower virtual Raman regime. The dynamics
as a function of detuning in Fig. 2(c) demonstrate the
continuous tunability of this operation.

Both operations are several hundred times faster than the
decay rate of either bosonic qubit (κ−1

1,2 = 300, 450 μs),
so the excitation decay during the beamsplitter is domi-
nated by dissipation in the bus (κ−1

b = 1.5 μs). The transfer
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FIG. 2. Variable beamsplitter by elimination of the bus. (a) An
effective two-mode beamsplitter transformation between cavities
with angle θ enabled by appropriate choice of conversion detun-
ing � and time. A single photon prepared in cavity 1 results
in population in both cavities, measured after conversion. (b)
Left: measured population for resonant conversion to realize state
exchange. Bus population (line) is inferred from fitting the data
(circles). Arrow at 624 ns indicates full transfer time, where
cavity 1 and the bus are empty, and population of cavity 2 is
maximized. Right: partial detuning effects a 50:50 beamsplitter.
At 520 ns, the bus is eliminated and population of the cavities are
equal. (c) Measured populations as a function of detuning and
time shows crossover from resonant interaction to far-detuned
virtual Raman. Dashed lines are detunings used in (b). Spurious
higher-order pumped transition is visible around +1.5 MHz. The
rapid equilibration suggests this is a frequency collision with a
moderately dissipative package mode or higher-order transition
between system modes.

inefficiency due to loss is 1 − η ≈ κb/2g = 11%; thus,
these operations can be improved in future with increased
conversion rate or bus quality, which is partly limited
by resistive loss at the interface with the modules (see
Appendix A 2). In addition, excitation events of either con-
version transmon due to thermal or pump-induced transi-
tions [29] dispersively shift the bus and cavity frequencies,
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effectively turning off conversion and dephasing the cav-
ity. These events are responsible for an additional 3–4%
inefficiency, but could be mitigated with a different type
of conversion element [31]. The value of g used here is
a tradeoff between speed, which reduces loss errors, and
excitation errors induced by the pumps; an element which
makes this tradeoff more favorable can in future improve
the beamsplitter.

III. ERROR-TRACKED QUBIT TRANSFER

To characterize the bus as a communication link, we turn
to the task of state transfer, an operation which can move
qubits between modules for local processing or entan-
glement distribution. We demonstrate transfer of a single
qubit from one module to another; however, the link is
bidirectional and linear, allowing simultaneous two-way
transfer for any input states. The simplest encoding is the
Fock basis: presence or absence of a single photon. We pre-
pare a known superposition α|0〉 + β|1〉 in cavity 1, apply
the 90◦ beamsplitter, and perform Wigner tomography on
the resulting state in cavity 2 [Fig. 3(c)]. This protocol is
performed for six input states, two of which are shown in
Fig. 3(b). The resulting mean state fidelity, reconstructed
using maximal likelihood estimation (MLE; see Appendix
D 3), is F̄Fock = 92(1)%, the average fidelity with which an
arbitrary quantum state is transferred.

This protocol yields significant improvement over pre-
vious experiments which relied on directional communica-
tion links [13,16], but the performance remains dominated
by loss in the bus. We demonstrate suppression of this
source of infidelity by leveraging strategies for correcting
photon loss in stationary memories [11,12,32]. Because the
cavities and the bus are all harmonic oscillators, we use an
encoding which detects loss in any of these modes with a
single measurement. We choose the cat code [32], super-
positions of four coherent states with even photon number
parity, and add a QND parity measurement using an ancilla
transmon prior to Wigner tomography [Fig. 3(c)]. The cat
code employed here is chosen to contain on average n̄ ≈
1.7 photons, more than three times as many as the Fock
encoding. This increase makes loss events more likely, and
is the unavoidable overhead of an error-correctable encod-
ing. Indeed, without error detection, the mean state fidelity
is F̄cat = 80(1)% < F̄Fock (Table III). However, the parity
measurement can detect loss events, mitigating the impact
on fidelity and resulting in a net gain.

By adding the syndrome measurement before tomogra-
phy, we overcome the overhead to reach the break-even
point with respect to the Fock encoding. The measured
Wigner functions sorted by parity outcome are shown in
Fig. 3(d). The dominant outcome is that the parity remains
even (peven = 0.84), and the fidelity in this no-error case
is F̄even = 93(1)%. Change in parity denotes a single loss

(a)

−2

0

2

−2 0 2
−2

0

2

−2 0 2

ReceivedPrepared(b)

(c)

P

Re

Im

Re

Im

−2

0

2

−2 0 2

−2

0

2

−2 0 2 −2 0 2

(d) Prepared Even Odd ( )W
2/π

–2/π

0

W W

FIG. 3. Quantum state transfer via the bus. (a) Pulse sequence for qubit transfer in the single-photon encoding. Qubit is prepared
in cavity 1, 90◦ beamsplitter is applied, and state of cavity 2 is measured via Wigner tomography. (b) Two qubit states, |1〉 and
|+x〉, as prepared in cavity 1, and as received in cavity 2 after the beamsplitter. Prepared states have a deterministic phase shift
from a measurement which ensures the ancilla transmon is in its ground state after state creation. Received states have an additional
deterministic phase shift from the conversion process. (c) Transfer of a qubit in the error-correctable cat encoding. After transfer, the
error syndrome, photon number parity, is measured in cavity 2 prior to Wigner tomography. (d) Logical qubit states |1〉L and |+x〉L in
the cat code prepared and received, conditioned on parity measurement outcome. Phase shifts are the same as in (b), but with additional
rotations of received states owing to the parity measurement, which are different for the two outcomes due to dispersive interaction
with different ancilla states.
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error (podd = 0.16), and we find the coherence to be pre-
served in the odd manifold, with fidelity F̄odd = 86(3)%.
This error can be corrected in real time, or the state con-
ditionally decoded [11], but the odd manifold is also a
valid logical encoding, so future operations may simply
be updated without feedback correction; hence, the state is
error-tracked. Averaged over all trials, the resulting deter-
ministic fidelity is F̄cat,tracked = 92(2)%, which includes
encoding and syndrome measurement errors of approxi-
mately 3% (see Table I). Even in the presence of code
overhead and these imperfections, the cat code still reaches
the break-even point at which the transfer fidelity is as high
as in the Fock encoding. Extending this protocol to include
active error correction, we add a fed-forward conditional
decoding procedure, and find the performance in this case

to also lie at the break-even point with the Fock code (see
Fig. 19 and Table III). In future, use of a more robust
parity measurement [33] and suppression of conversion
transmon excitations, an uncorrectable error, should enable
error-corrected state transfer beyond break-even.

IV. ENTANGLEMENT GENERATION

To fulfill another key network requirement, we generate
entangled states between modules, a critical resource for
nonlocal gates [1,34,35] and stabilizer measurements [36].
The 50:50 beamsplitter in Fig. 2(b) can entangle the mod-
ules for a variety of input states. The simplest input is a
single photon in one of the cavities (|10〉), ideally creat-
ing the odd-parity Bell state (|10〉 + |01〉) /

√
2 [Fig. 4(a)].
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FIG. 4. Entanglement generation with a 50:50 beamsplitter. (a) A single photon is prepared in cavity 1, and detuned conversion
effects a 50:50 beamsplitter. Ideal state and dominant error state are shown in the output. Cavity 2 is measured in a basis chosen
from {X , Y, Z}, while Wigner tomography is performed on cavity 1. (b) Measured Wigner tomograms of cavity 1, conditioned on
logical measurement in module 2, in two bases. Inset label indicates measurement basis and outcome; states are anticorrelated in Z
and correlated in X . Phase shift due to pumps is calibrated out by choice of measurement axis. (c) Reconstructed two-qubit state Pauli
operator expectation values. Dominant error, polarization towards zero photons (|+z〉 = |0〉), is visible in single qubit observables.
(d) Two-photon Bell state from Hong-Ou-Mandel interference. One photon is prepared in each cavity as inputs to the 50:50 beamsplit-
ter. To detect loss events, parity is measured in each cavity simultaneously before tomography. Ideal state and rejected error states are
shown in beamsplitter output. (e) Conditional Wigner tomograms, postselected on even parity in both cavities. Phase shift in X basis
is deterministic effect of parity measurements and pumps, not calibrated out in this experiment. (f) Reconstructed Pauli expectation
values for two-photon Bell state.
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To characterize the entanglement, we perform logical two-
qubit tomography by measuring the Wigner function of
one cavity, conditioned on the state of the other (see
Appendix D 4 for more detail). We measure cavity 2 in
one of three logical bases {X , Y, Z}, ideally projecting cav-
ity 1 into one of the corresponding basis states depending
on the measurement result. The Wigner function of cavity
1, measured simultaneously and conditioned on the logical
measurement outcome, shows the correlations expected of
an entangled state [Fig. 4(b)]. From these data we recon-
struct the logical two-qubit state, which has fidelity to
the ideal Bell state F̄Bell,01 = 88(1)%, not corrected for a
2% error in the logical measurement. The reconstructed
joint Pauli expectation values [Fig. 4(c)] exhibit dominant
two-qubit correlations, but visible single-qubit polariza-
tion towards the vacuum state indicates that the infidelity
results mostly from photon loss in the bus.

Finally, we implement a scheme for QND detection
of loss during entanglement generation, which is prob-
abilistic but results in higher fidelity when successful.
We apply the 50:50 beamsplitter to the two-photon input
state |11〉, ideally producing (|20〉 + |02〉) /

√
2, an exam-

ple of Hong–Ou–Mandel interference [37] that relies on
frequency conversion to make photons indistinguishable
[25,38]. Single-photon loss during the beamsplitter results
in odd photon number occupation in one of the cavities
(either |10〉 or |01〉), and can be detected by measuring
the parity of each cavity, as indicated in Fig. 4(d). As
the ideal state has only even number, these measurements
do not dephase the entangled state. We declare success-
ful entanglement when both cavities are found to have
even parity (success probability 0.79), and postselect the
resulting data. The measured conditional Wigner functions
in Fig. 4(e) exhibit the expected correlations in the two-
photon manifold. The reconstructed logical state, shown
in Fig. 4(f), shows reduced single-qubit polarization com-
pared with the single-photon protocol, since this would
only result from loss of two photons, a second-order error.
The Bell state fidelity, again uncorrected for tomogra-
phy, is F̄Bell,02 = 94(1)%, a two-fold reduction of errors
from the single-photon case, with only a small failure rate,
which can be improved by reducing loss in the bus. We
emphasize that this simple and effective protocol is only
possible with bosonic qubits and a bidirectional bus which
supports multiple indistinguishable photons.

This error-detected protocol also admits a simple and
rapid way to increase the effective success probability.
Because the state upon failure is known (|10〉 or |01〉),
we can simply load another photon into the empty cavity
and reapply the beamsplitter. For instance, with up to three
entangling attempts, the success probability increases to
0.95, with only a small decrease in the fidelity to F̄ (3)

Bell,02 =
91(1)%, with an average entangling time of 5.2 μs,
20 times faster than the cavity decoherence times (see
Appendix G). This ability to rapidly generate high-fidelity

Bell states is an essential feature for teleportation schemes
using resource entanglement.

V. CONCLUSION

We have demonstrated an approach for communica-
tion in a cQED network with higher performance and a
wider range of capabilities, showing how both qubit trans-
fer and entanglement generation can be improved with
multiphoton encodings and error-detection. Using a single
error syndrome measurement, we improve the transfer of
a logical qubit to the break-even point, using deterministic
quantum error-correction for modular networking. Using
the same toolkit to detect loss during an entangling oper-
ation, we generate a Bell state with significantly higher
fidelity than can be obtained with a single photon in the
same hardware. This platform offers routes towards exten-
sible networks by coupling several modules to a single
bus (see Appendix C 3), or arraying modules with multiple
two-port buses.

The transfer efficiency in this experiment is an improve-
ment over implementations relying on circulators, and can
be further advanced by identifying and reducing sources
of loss in the bus, and by employing a better source of
nonlinearity for parametric conversion. Likely sources
of loss are resistance in the joints between the mod-
ules and the bus, and materials used in the bus.
Joint losses can be mitigated by superconducting coat-
ings such as indium, which can achieve extremely
high-quality seams [39]. Dielectric or surface losses
within the bus can be reduced by constructing a
bus from common materials of higher quality such
as chemically etched high-purity aluminum [40] or
waveguide [6], with a larger radius to reduce surface
participations, and with less dielectric material between the
conductors.

The capabilities demonstrated here ease the construc-
tion of modular systems, improve their performance, and
makes the modular approach to quantum machines more
powerful and practical. The high-fidelity entanglement
protocols enable efficient distillation and faithful tele-
ported operations over the network [1,3]. Alternatively,
error-corrected state transfer permits shuttling of log-
ical qubits between modules to instead perform local
entangling gates, and is even robust to thermal noise in
the bus [41]. Finally, a low-loss beamsplitter between
bosonic qubits in separate modules presents the striking
opportunity to enact universal gates such as controlled-
SWAP and exponential-SWAP [26,27] directly across
the network without resource entanglement or shuttling.
More broadly, the conversion interaction employed here
is a general tool for manipulating bosonic degrees of
freedom in separate modules, which can be applied for
boson sampling [23,42] and as a tunable hopping term
for quantum simulation. This diverse set of possibilities
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in a single platform provides many directions for future
research towards distributed quantum computing with
superconducting networks.
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APPENDIX A: EXPERIMENTAL SETUP

1. Modules

Each module is a nominally identical device constructed
from a solid piece of 99.99% pure aluminum, chemi-
cally etched as in Ref. [40] to improve surface quality.
Modules consist of a central post cavity [28,40] with
two orthogonal tunnels intersecting the cavity, similar to
the sample in Ref. [43]. One tunnel houses a chip con-
taining the ancilla transmon, readout resonator, and Pur-
cell filter [28]. The other tunnel houses a separate chip
with conversion transmon. This tunnel is intersected by
another, smaller tunnel, housing the end of the coaxial bus
resonator (see Appendix A 2). All chips are double-
polished sapphire with aluminum films defined by a single
electron-beam lithography step, and double-angle evapo-
ration to form the Josephson junctions in a Dolan bridge
process. Samples are thermally anchored to the base
stage of a dilution refrigerator at approximately 20 mK,
with a magnetic shield surrounding the modules and bus.
Device Hamiltonian parameters and coherence times are
listed in Table II. Module and chip design is shown in
Fig. 5

2. Coaxial bus resonator

Modules are connected by a l = 6.6 cm section of com-
mercial NbTi coaxial cable (Coax Co. SC-086/50-NbTi-
NbTi) with PTFE dielectric. The cable is a multimode
resonator with free spectral range 1.9 GHz. The third har-
monic (l = 3λ/2) is used as the bus in this experiment, as it
has largest dispersive coupling to the conversion transmon
by virtue of being close in frequency. The final 7.5 mm
of outer conductor and dielectric is removed from each

Ancilla
arm

Converter
arm

Bus
coupling

Readout
in/out

Ancilla
drive in

Cavity
drive in

Converter
drive and
pumps in

1 mm

1 mm

(a)

(c)

(b) Ancilla drive in

Bus coupling

0.7 inch

FIG. 5. Module and chip design. (a) Three-quarter cross section of a module. Post cavity (center) intersected by two tunnels. Labels
indicate coupling pin locations. (b) Ancilla chip layout shows transmon pads (left) and meander stripline readout (right). Label indi-
cates approximate location of ancilla drive port. Readout port and stripline Purcell filter, located further to the right, not shown. (b)
Conversion transmon chip layout. Label indicates approximate location of bus coupling pin. Drive port, located further to the right,
not shown.
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FIG. 6. Photo of assembled
modules. Wiring excluded. Sam-
ple mounted to copper bracket
at base of dilution refrigerator.
Copper braids connect the copper
chip holders directly to the
bracket for chip thermalization.

end of the cable to expose the inner conductor. The cable
is inserted in a tunnel in the module, with exposed inner
conductor near one capacitor pad of the conversion trans-
mon. The outer conductor is clamped against the body of
the aluminum module with a brass screw, with a small
amount of bulk indium between screw and cable to pro-
vide a larger area of contact force. This mounting scheme
places only two superconducting joints in the path of cur-
rent flow for the bus mode, one at each end. The outer
conductor is lightly sanded before assembly to remove
some of the oxide layer. The quality of this interface is
irreproducible, and likely limits the quality factor of the
bus (see Appendix C 2). Figure 6 illustrates the assembled
modules and coaxial cable.

3. Experimental wiring

Each module has a mostly separate and identical
drive chain to address all modes and apply the off-
resonant pumps to the conversion transmon (see Fig. 7).
Measurement of the ancilla transmon is performed with
dispersive readout in reflection off a port which is strongly
coupled to the Purcell filter. Readout pulses are sourced
at room temperature with a continuous-wave generator
(RF) and fast microwave switch. Reflected readout signals
are amplified at the base stage by two SNAIL parametric
amplifiers (SPA) [44] with approximately 23 dB of gain,
20 MHz of instantaneous bandwidth, and noise visibility
ratio of 7 dB. The SPAs are operated in phase-preserving
mode by detuning the pump from twice the readout fre-
quency by about 20 MHz. SPA pumps are gated by directly
pulsing the source generators. Signals are further ampli-
fied at 4 K (40 dB) and room temperature (30 dB), then
down-converted to an intermediate frequency (50 MHz)
by a separate local oscillator (LO). This signal, as well
as a reference signal formed by mixing the RF and LO
continuously, are amplified again (14 dB) and digitized
by a pair of analog-to-digital converters (ADCs). The sig-
nal and reference are compared on each experimental shot,

and the relative trajectory is integrated with an appropriate
envelope and thresholded to discriminate ancilla states.

All other input signals are IQ modulated by eight pairs of
digital-to-analog converters (DACs), amplified and filtered
at room temperature. DACs, ADCs, and digital chan-
nels are on four Innovative Integration X6-1000M cards,
which have FPGAs loaded with custom logic. All con-
trol and measurement lines are additionally filtered at low
temperature (see Fig. 7).

4. Pump scheme and phase locking

Each conversion transmon is driven by a pair of far-
detuned pumps, applied approximately 100 and 1200 MHz
above the transmon frequency (called pump X and pump
Y, respectively). Mode and pump frequencies are listed in
Table II. All pump pulses have a constant duration of the
length quoted in the text, plus a cosine-shaped rise and
fall, each 48 ns in length. As the overall phase of a trans-
mitted state depends on the initial phase as well as the
phase of each of the four pumps, three local oscillators are
shared between the modules as indicated in Fig. 7. These
local oscillators source the cavity drive, pump X , and
pump Y for both modules. Ancilla and readout input sig-
nals are created by independent sources. Resonant drives
for conversion transmons, used only for characterization
experiments, are sourced by the same drive chain as
pump X .

The use of shared LOs between control setups ensure
the LO phases cancel out in the data. Likewise, the
phase of the oscillators which control the single-sideband
(SSB) modulation frequency must also be locked. This
is ensured by choosing SSB frequencies such that the
parametric conversion frequency condition ωa1 + ωX 1 −
ωY1 = ωa2 + ωX 2 − ωY2 is met. This condition guarantees
that a photon converted from cavity 1 into the bus and out
into cavity 2 acquires the same phase on every experimen-
tal shot. In addition, the phase of the oscillators which set
these SSB frequencies are reset at the beginning of every
experimental shot to remove long-term drifts.
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FIG. 7. Experimental wiring diagram. Input and output signal lines. Setup is duplicated across vertical dashed line. Three LOs in
gray are shared between the two halves for phase-locking. Some attenuation and filtering at room temperature not shown.

5. Crosstalk between modules

Although the modules used in this experiment are nom-
inally identical for ease of manufacture, future realizations
might benefit from intentional asymmetry between the
modules. The near-degeneracy of the two cavity modes,
detuned by only 8 MHz, causes a small amount of crosstalk
between control pulses. We find when we displace one

cavity with a wide-band pulse, the other is displaced by
2–3% in amplitude. This may cause small errors in simul-
taneous control and tomography, which can be easily mit-
igated by a small intentional detuning between the two by
machining the lengths of the posts to be slightly different.

Crosstalk of control signals during joint cavity tomogra-
phy may contribute to reconstruction errors in the Wigner
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functions or errors in decoding the cavity state onto the
transmon. These effects, however, will typically decrease
the quoted state fidelity and so do not lead to an overes-
timation. This form of crosstalk could be suppressed by
including compensation drives in the cavity control pulses.

The measurement chains for the two modules are com-
pletely independent, which is an advantage of this experi-
ment compared with some previous works [13–15,17]. As
a result of this choice, and of the spatial and frequency
separation of the readout resonators, the ancilla readout
crosstalk is immeasurably small. The frequency separa-
tion (about 25 linewidths; Table II) alone would limit
the expected crosstalk to below 0.5%, and we confirmed
the absence of crosstalk at this level by measuring one
ancilla while performing a Rabi contrast measurement on
the other.

The strong coupling of the conversion transmons to the
bus, and their proximity in frequency space, leads to a
strong dispersive coupling to one another. Owing to the
situation of the frequencies in the straddling regime [45],
the dispersive shift between the two conversion transmons
is +2π × 2 MHz. As we do not use the conversion trans-
mons as anything other than a mixing element, this shift
plays no role, but it could be used to rapidly entangle the
two modules.

APPENDIX B: DERIVING THE EFFECTIVE
BEAMSPLITTER

1. Conversion Hamiltonian

The parametric conversion between cavity and bus
results from a four-wave mixing process as in Ref. [9].
In the frame of the drives, the effective Hamiltonian
describing the interaction between the bus and both cav-
ities can be rewritten as

Ĥ/� = igâ1b̂† − igâ†
1b̂ − igâ2b̂† + igâ†

2b̂ − �b̂†b̂. (B1)

We take g to be real and equal for both modules, but the
amplitude and phase is controlled by the amplitudes and
relative phases of the off-resonant pumps. In particular, we
must tune the amplitudes so that g is equal on both sides.
The common detuning � of the bus mode is controlled
by detuning one of the pumps used for each conversion
interaction away from the conversion resonance by �. This
is the detuning in Fig. 2 of the main text.

2. Equations of motion and elimination of the bus

The lossless dynamics of this bilinear Hamiltonian may
be readily found by solving the Heisenberg equations of

motion for â1, â2, and b̂:

˙̂a1(t) = −gb̂(t)

˙̂a2(t) = gb̂(t)

˙̂b(t) = g(â1(t) − â1(t)) + i�b̂(t).

(B2)

As the equations of motion are linear, the solution for the
field operators can be written in matrix form as

⎛

⎝
â1(t)
â2(t)
b̂(t)

⎞

⎠ =
⎛

⎝
M11 M12 M13
M21 M22 M23
M31 M32 M33

⎞

⎠

⎛

⎝
â1(0)

â2(0)

b̂(0)

⎞

⎠ , (B3)

with matrix elements

M11 = M22

= 1
2

[
1 + ei�t/2

(
cos

√
2�t − i�√

8�
sin

√
2�t

)]

M12 = M21

= 1
2

[
1 − ei�t/2

(
cos

√
2�t − i�√

8�
sin

√
2�t

)]

M13 = −M31 = −M23 = M32 = − g√
2�

ei�t/2 sin
√

2�t

M33 = ei�t/2
(

cos
√

2�t + i�√
8�

sin
√

2�t
)

with � ≡ g

√

1 + �2

8g2 , (B4)

where we have defined the effective interaction rate � in
analogy with detuned vacuum Rabi oscillations. Popula-
tion thus oscillates between the cavity and bus modes with
frequency 2

√
2�, with the amplitude of oscillation pro-

portional to (g/�)2. In the large detuning limit � � g,
this amplitude is suppressed, scaling as (g/�)2, a familiar
result in the context of virtual Raman transitions.

This exact solution makes it clear that at time t = τ such
that

√
2�τ = kπ (for integer k), M13 = M31 = M23 =

M32 = 0. This means that â1(τ ) and â2(τ ) are decoupled
from b̂(0), and b̂(τ ) = b̂(0), up to an overall phase. This is
precisely what we mean by the bus being eliminated. The
first time this elimination occurs (k = 1) is

t = τBS = π√
2�

= 2π
√

8g2 + �2
, (B5)

which we refer to as the beamsplitter time. The solution for
the field operators at the beamsplitter time is

â1(τBS) = e−iθ (â1(0) cos θ + iâ2(0) sin θ
)

,

â2(τBS) = e−iθ (â2(0) cos θ + iâ1(0) sin θ
)

,
(B6)
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which is a beamsplitter transformation with mixing angle

θ = π

2

(
1 − �√

8�

)

= π

2

(

1 − �
√

8g2 + �2

)

= π

2

(
1 − �τBS

2π

)
.

(B7)

This general result establishes the two working cases used
in the main text, explained in the next two subappendices.

3. State transfer and efficiency

The first useful working point is used for state transfer.
By choosing � = 0, we have θ = π/2, which occurs at
time τSWAP = π/(

√
2g). This results in evolution

â1(τSWAP) = â2(0),

â2(τSWAP) = â1(0),
(B8)

which swaps the state of the two cavities. Our choice of the
phase of g in Eq. (B1) results in a true SWAP operation at
these conditions. Any deviation in the phase of g would
result in a cavity phase space rotation on one or both of the
input states, which can be calibrated out in any encoding:
this is not a logical qubit phase.

In this case, we can easily include the effect of damp-
ing in the bus by replacing � → iκb/2 in Eq. (B2). In
this case, we replace the detuned Rabi frequency � with

the loaded oscillation frequency g̃ = g
√

1 − κ2
b /(32g2).

To compute the energy efficiency in the presence of loss,
it is sufficient to consider the case of an input coher-
ent state |α〉 in cavity 1, and vacuum in cavity 2, which
emulates the one-way state transfer demonstrated in the
main text. In this semiclassical case, it is convenient to
replace the field operators with their expectation values,
e.g., aj (t) = 〈âj (t)〉. The initial conditions are then a1(0) =
α and a2(0) = b(0) = 0. As long as the oscillations are
underdamped (κb <

√
32g, g̃ ∈ R), the bus will still peri-

odically be eliminated. The exact solution for the average
dynamics is given by

a1(t) = α

2

[
1 + e−κbt/4

(
cos

√
2g̃t + κb√

32g̃
sin

√
2g̃t
)]

,

a2(t) = α

2

[
1 − e−κbt/4

(
cos

√
2g̃t + κb√

32g̃
sin

√
2g̃t
)]

,

b(t) = α√
2

g
g̃

e−κbt/4 sin
√

2g̃t,

(B9)

where we drop the operator circumflex notation to denote
the expectation value. For the values used in this exper-
iment, the loading of the oscillation frequency is a very
small effect, and g̃ ≈ g to a very good approximation.

The energy efficiency of the transfer, η, is the energy
in mode a2 at the end of the transfer relative to the initial
energy in mode a1, and is given by

η = |a2(τSWAP)|2
|a1(0)|2 ≈ 1

4

(
1 + e(−πκb/

√
32g)

)2
≈ 1 − πκb√

32g
,

(B10)

which is η = 0.89 for the experimentally measured values
of g and κb quoted in the main text.

4. Entanglement generation

The other regime utilized in this work is the 50:50
beamsplitter (θ = π/4), which is obtained at � = g

√
8/3.

At this detuning, � = g
√

4/3, and the interaction time is
τ50:50 = π

√
3/8/g = √

3/4τSWAP. The resulting operation
is

â1(τBS) = 1√
2

e−iπ/4 (â1(0) + iâ2(0)
)

,

â2(τBS) = 1√
2

e−iπ/4 (â2(0) + iâ1(0)
)

,
(B11)

which can produce maximally entangled final states for
certain initial states.

Loss in the bus will also introduce a finite efficiency in
the θ = 45◦ beamsplitter. For a singe-photon input state,
this efficiency is to leading order in κb/g

1 − ηBS = κbg2

2�2

τ50:50

2
= 3

√
3π

8
√

32

κb

g
≈ 0.36

κb

g
, (B12)

which is less loss than the resonant swap because the
process is faster and populates the bus less.

As there is only one excitation, the state which results
from loss is |00〉. Thus, the above inefficiency results in a
mixture of the ideal Bell state and the vacuum state:

ρ = ηBS
1
2

(|01〉 + |10〉) (〈01| + 〈10|) + (1 − ηBS)|00〉〈00|.
(B13)

The second term has zero fidelity to the ideal state, thus,

1 − FBell,bus = 1 − ηBS = 3
√

3π

8
√

32

κb

g
≈ 0.36

κb

g
. (B14)

5. Other sources of error

Although the dominant source of error in both state
transfer and entanglement generation are dissipation in the
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bus, there are a few other smaller contributions, which we
describe here and summarized in Table I.

In the case that the storage cavities have identical damp-
ing rates κa, we may adjust the expressions for inefficiency
to include this effect. In the weak-loss limit, the mean
occupation of the bus through transfer of one photon is
approximately one quarter, as can be seen from Eq. (B9).
Thus, the total occupation of the storage modes is the
remaining three quarters, three times more populated on
average. To leading order, this means we should replace
κb with κb + 3κa in expressions for the inefficiency and
infidelity in state transfer. For entanglement protocols the
effect is similar, but the prefactor on κa will be slightly
larger owing to the suppression of the bus occupation in
the detuned regime. In this experiment, the storage dissi-
pation is two to three orders of magnitude smaller than that
of the bus in this experiment, which is why we may safely
neglect the storage decay in our estimates.

The other major contributor to inefficiency is excitation
of the conversion transmons, which occur at a rate �up.
Due to the large dispersive shift, these events effectively
turn off the conversion process, halting the evolution. The
inefficiency due to this effect is of order �up × τSWAP per
transmon. Thus, the total inefficiency is of the form

ηall sources ∼ π(κb + 3κa)√
3g

+ 2�upτSWAP. (B15)

Finally, we observe that the conversion transmon excita-
tion rate �up depends on the strength of the conversion
pumps, and so grows with the conversion rate g. For
example, the pumping used for the conversion can enable
parasitic processes that couple the converter, the storage
cavities, or the bus to other unwanted modes or sources
of dissipation. The details of this process depend on many
properties of the system and are numerically investigated
in depth in Ref. [29]. A more complete understanding of
these effects is work in progress and can lead to poten-
tial improvements in performance of these conversion
processes in future.

In short, the combination of virtual excitation of the
transmon and dissipation and/or dephasing can lead to real
excitations. It is not known to be possible in general to
give an analytic expression for this effect, but examining
Eq. (B15), we can see that if there is even a linear depen-
dence of �up on g, then there is some optimum g which
minimizes the infidelity, and for larger conversion rates
the second term will dominate. In practice, the excitation
rate can be superlinear in the pump strength, leading to
a narrow optimum. We find this optimum empirically by
measuring the exitation rate �up, which we find to be 1 to
2 μs−1 for each transmon. We choose the parameters such
that the dominant error source is loss, which is detectable,
rather than excitation events, which are not.

6. Alternate entangling schemes

There are other many ways the conversion process used
here can generate entanglement. For instance, modulating
the conversion couplings in time can effect an entangling
partial swap. One such approach is to prepare a single pho-
ton in cavity 1, turn on conversion to the bus for only
cavity 1 for time thalf = π/(4g) to “half swap” a single
photon into the bus. This creates a Bell pair between cav-
ity 1 and the bus. We may then turn on conversion from
the bus to cavity 2 for tfull = π/(2g), which fully swaps
the bus occupation into cavity 2, resulting in a Bell state
between the two cavities. A continuous version of this pro-
tocol involves simultaneous on resonance conversion with
unequal strength, such that g1 =

(√
2 − 1

)
g2. Dynam-

ics are qualitatively similar to the beamsplitter operation
we use in this work, with the bus mode being occupied
at intermediate times and returning to vacuum after time
approximately π/g resulting in the 50:50 beamsplitter rela-
tions. However, such protocols implement Hamiltonians
that are not symmetric under the exchange of modes a1
and a2. As a consequence, should a photon loss event
occur in the bus mode, the environment will gain infor-
mation that projects the cavities into states that are not
symmetric in a1 and a2, making it difficult to implement
robust multiphoton entanglement schemes. For protocols
such as the error-detected Hong–Ou–Mandel entanglement
scheme, we must make sure to engineer a “true beam-
splitter” transformation. For this scheme, if photon loss
occurs in the bus mode, the environment does not learn
from which cavity this excitation originated, owing to the
indistinguishability implied by the symmetry of the inter-
action. In fact, even after a single-photon loss event in the
bus, the joint cavity state is ideally the single-photon Bell
state |01〉 + |10〉. It is only after the parity measurements
that the state is projected into either |01〉 or |10〉. Entangle-
ment schemes that are insensitive to photon loss on the bus
or otherwise rely on it will be the subject of future work.
Another approach robust state transfer and entanglement
generation is stimulated Raman by adiabatic passage [30],
which modulates the coupling strengths in time in a way
which suppresses the occupation of the bus at all times.
However, because this modulation must be adiabatic with
respect to the maximum coupling strength, such protocols
are necessarily much slower than those used here, similar
to the virtual Raman approach. Loss induced by nonadia-
baticity will not have the indistinguishability properties of
the beamsplitter.

In addition, encoding-independent entangling gates
between bosonic modes such as exponential-SWAP
and Fredkin gates [26] may be constructed by sand-
wiching local operations with ancillae between 50:50
beamsplitter operations. The tools demonstrated in
this work enable such operations between separable
modules.
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APPENDIX C: BUS RESONATOR
CHARACTERIZATION

1. Quality factor and attenuation length

With quality factors in the tens of thousands, the hypo-
thetical maximum state transfer efficiency from just using a
section of superconducting coaxial cable is extremely high.
To illustrate this point, we consider the 6.6 cm section of
cable we use for this work, which has modes with Q ≈
50 000. Regarding the cable as a Fabry-Pérot cavity with
uniform loss, this quality factor corresponds to an energy
attenuation length of 300 m [6]. Over reasonable meter-
scale lengths of cable within a cryostat, this corresponds
to a single-pass loss approaching 10−3. This fundamental
limit is orders of magnitude smaller than the single pass
loss observed in circulator-based communication links,
which are limited to around 0.1 [13,16,17].

In the current implementation, the achievable efficiency
is limited by the speed of the protocol [see Eq. (B10)], as a
transmitted photon essentially makes many passes through
the bus. However, by increasing the conversion strength
would move closer towards this fundamental limit. Fur-
thermore, as the bus is a 3D cavity, it is reasonable to
believe that the quality factor can be improved by several
orders of magnitude with improved materials and better
seam quality.

2. Quality factor measurements

a. Measuring the bus ex situ

We have used a scheme similar to Ref. [6] to charac-
terize the quality of the bus mode before integrating it
with the modules. We couple to the modes of a section
of cable in reflection and measure S21 with a vector net-
work analyzer. The cable is terminated at one end in a
tunnel of 6061 aluminum alloy that functions as a waveg-
uide below cutoff. At the other end, we capacitively couple

to the cable via a coupling pin in a similar tunnel. We set
the distance between the coupling pin and center conduc-
tor of the cable such that we are nearly critically coupled.
The cable is secured to these blocks of aluminum in the
same way it is attached to the modules, with an indium-
tipped brass set screw. Typical quality factors are of order
50 000 although quality factors as high as 160 000 have
been observed. Quality factors can differ by factors of two
to three in the same cable when we reseat the mounting
screws between cooldowns. As such, we suspect seam loss
between the outer conductor of the cable and the aluminum
package of the modules to be a limiting factor. Efforts are
ongoing to improve the quality and reproducibility of the
seam between the cable and modules. This screening pro-
cess also allows us to measure the frequency and quality of
potential bus resonators before assembling the full exper-
imental hardware. We are also able to measure multiple
modes of the same cable in this way. Figure 8 shows such
measurement of four modes of the same cable used in the
main text.

b. Measuring the bus in situ

When the bus is installed in the modules, we can mea-
sure its properties without any dedicated drive or measure-
ment lines. Since the mode of interest has a dispersive
shift to the conversion transmon, we can detect population
in the bus by performing spectroscopy on the converter,
much the way we measured storage mode population with
the ancilla. The results of this spectroscopy with the cable
driven to a coherent state is shown in Fig. 9(a).

Given the number-resolved spectrum in Fig. 9(a), the
damping rate of the cable κb  χbc. We can measure this
rate directly by displacing the cable and driving the con-
verter with a selective pulse at ω = ωc. The height of this
spectroscopic peak corresponds to the occupation of the
|0〉 state of the bus. This ring-down measurement, shown
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FIG. 9. Bus characterization in situ. (a) Spectroscopy on con-
version transmon for a coherent state |α = 1〉 in the bus.
(b) Lifetime measurement of bus. Bus is displaced to |α = 2.5〉,
then after a variable delay, the conversion transmon is driven
with a selective π pulse at ω = ωc.

in Fig. 9(b), reveals a bus lifetime of 1.6 μs, or κb/2π =
100 kHz.

We certify that the lifetime of the bus is not degraded
in the presence of the conversion pumps. This is done by
preparing a single excitation in one of the storage modes
and turning on conversion on only one module, such that
excitations swap into the bus and back into the storage
cavity. By measuring the storage population after applying
conversion for variable time t we can extract both g and κ

from the fit in Fig. 10. The fitted value κb/2π = 110 kHz
shows minimal change in the presence of the conversion
process. Likewise, fitting the data in Fig. 2(b) of the main
text results in a similar value of κb. We also verify that the
cable has no measurable thermal population by examin-
ing the storage population after a single swap between the
storage and bus when we initialize vacuum.

3. Dependence of scheme on cable length

The section of cable we use is fairly short, suitable
for joining adjacent modules together. Regarding the

extension of this scheme, imagine a large future modular
system within a single dilution refrigerator. A 1 m long
bus could connect from one side to the other of such a
system, and has approximately 100 antinodes, allowing
for connections to several intermediate stations. For all
other hardware kept fixed, there are some challenges which
arise when making the link much longer. Increasing the
length of the bus linearly increases the mode volume, and
hence reduces the single photon coupling strength by the
square root of the length, or a factor of five compared with
our current 5 cm bus length. Hence the swap rate would
remain approximately 100 kHz or 3 μs, which would still
be acceptable given some modest improvements in e.g., the
quality factor of the bus.

This reduction in g may be compensated for by increas-
ing the capacitive coupling between the conversion trans-
mon and the cable. In doing so, we may Purcell limit the
transmon and storage cavity as well as increase crosstalk
between modules. We have reason to believe we may
already be Purcell limiting the conversion transmons: their
lifetimes as measured before the addition of the bus were
a factor of a few longer. The Purcell effect arises due to
off-resonance static couplings to modes of the cable even
in the absence of conversion drives. As we make the cable
longer, the free spectral range decreases as 1/l. Within a
fixed frequency window, there are now more cable modes
the conversion transmon or storage mode can couple to off-
resonantly. This potential issue could be addressed with
filtering dedicated filter modes between the conversion
transmon and the bus. This is similar to the approached
used in Ref. [18], but in this case the filter modes need not
be precisely frequency-matched. Improving the quality of
the bus modes would also lessen the effect of the Purcell
limit.

Finally, it is worth emphasizing that even for a longer
cable, we can still effectively model the dynamics by con-
sidering coupling to a single bus mode and the protocols
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FIG. 10. Cavity-bus swapping dynamics. (a) A single photon is prepared in cavity 1, then conversion to the bus is enable by turning
on both pumps. Measured occupation of |1〉 in cavity 1 shown versus time and detuning of one pump from resonance. (b) Line cut at
zero detuning shows ring-down of population from decay in the bus. Value of conversion strength and decay rate in text is extracted
from fit.

030321-14



ERROR-DETECTED STATE TRANSFER AND ENTANGLEMENT... PRX QUANTUM 2, 030321 (2021)

would be unchanged. Only when g � FSR will we need
to consider simultaneous coupling to multiple bus modes,
as was explored in Ref. [19]. For a 1 m cable, the FSR is
approximately 100 MHz, much larger than the conversion
strengths we can engineer at present.

APPENDIX D: EXPERIMENTAL AND
ANALYTICAL TECHNIQUES

1. Measurement

Diagrams of pulse sequences can be found in Fig. 11.

a. Ancilla measurement

For all measurements which are not at the end of the
experimental sequence, we use a 460 ns long square
readout pulse calibrated to discriminate ancilla states |g〉
and |e〉. The acquisition window is 580 ns long. This

measurement is used for system reset as well as parity
assignment. Ancillae have assignment fidelities of 0.99 for
|g〉 and 0.98 for |e〉, with the asymmetry due to relaxation
events during the measurement.

b. Tomographic readout

Measurements used for tomography (the final measure-
ments in an experimental run) are preceded by a pulse on
the ancilla which inverts the population in |e〉 and |f 〉.
The readout pulse and acquisition (500 and 640 ns, respec-
tively) are longer, and calibrated to distinguish states |g〉
and |f 〉. This allows for a measurement which is much
less sensitive to decay events of the ancilla [46,47], pro-
viding higher and more symmetric assignment fidelity,
higher than 0.995 for all states. This improves the mea-
surement contrast and reduces errors in the single-shot
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=
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Wigner measurement
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Optimized control pulse
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FIG. 11. Protocols and pulse sequences. (a) Measurement and control subroutines. Pulse durations quoted in Appendix D are full
duration of pulses shown here. (b) Variable beamsplitter tuneup, used in Fig. 2 of the main text. Frequency and duration of constant
pump pulse are swept, with values reported in axes labels of Fig. 2. Pulse ring-up and ring-down length is 48 ns each for every
experiment reported on, with a cosine amplitude profile. All four pump pulses have the same temporal profile. All durations reported
here and elsewhere are of the constant section. (c) Pulse sequence for qubit transfer, used in Fig. 3 of the main text. Dashed components
only used in the error-tracked protocol. (d) Pulse sequence for entanglement generation used in Fig. 4 of the main text. Dashed
components only used in the error-detected protocol.
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projective measurement in the entangled state tomography
(Appendix D 4).

c. Cavity and ancilla manipulation

Unless otherwise noted, all ancilla rotations are effected
with 40 ns Gaussian pulse (σ = 10 ns). Cavity displace-
ments are 40 ns Gaussian pulses (σ = 10 ns). All other
manipulation of the cavity state are carried out with numer-
ically optimized control pulses (NOCPs) on the cavity and
ancilla using the GRAPE algorithm [48]. Pulse lengths are
500–1200 ns depending on the operation.

d. Parity measurement

Cavity photon number parity measurement is effected
with a Ramsey-type sequence on the qubit [49]. Two 90◦
ancilla rotations with an interpulse delay of π/χat = 416
(492) ns for module 1 (2) entangles ancilla state with pho-
ton number. Ancilla rotations for parity measurement are
24 ns Gaussian pulses (σ = 4 ns) to make pulses maxi-
mally unselective on photon number. Parity measurements
used for error detection have the phase of the second rota-
tion reversed to map even number (the most probable
outcome) onto the ground state of the ancilla, to minimize
the probability of errors during ancilla measurement.

e. Cavity population measurement and normalization

Measurement of the occupation of the nth Fock state in
the cavity is made by applying a spectrally narrow rotation
on the ancilla, at frequency ωq + nχ , exciting the ancilla
only for this number state. Selective pulse lengths are
1200 ns (σ = 400 ns) for module 1 and 1920 ns (σ = 480
ns) for module 2. To normalize for errors in the pulse and
readout, we measure this occupation for each relevant n, as
well as a reference measurement of the ancilla state with no
rotation, then subtract the reference and normalize so that
the sum of all occupations is 1. This normalization proce-
dure is applied to the data in Figs. 2(b) and 2(c) in the main
text.

f. Conversion transmon measurement

The conversion transmons do not have their own readout
resonators, and are measured indirectly through the cavi-
ties. This is used only for system reset and characterization
measurements. The cavity can be used to measure the con-
verter as in Ref. [43]. After the cavity is determined to be
in its vacuum state (see Appendix D 2), it is displaced to
a coherent state with amplitude α, typically ∼ 1.5. After
a delay of approximately 200 ns, the opposite displace-
ment is applied. If the converter is in its ground state, the
coherent state will not have moved during the delay, and
will return to vacuum. If the converter was excited dur-
ing this time, the cavity state will rotate by an angle χact,
typically around 70◦. The reverse displacement brings this

to another coherent state with a very small overlap with
the vacuum state. By applying a π pulse to the ancilla,
selective on zero photons in the cavity, we obtain an exci-
tation probability proportional to the converter excitation
probability, with a fidelity of about 0.95. Importantly, this
measurement is unlikely to incorrectly give the result cor-
responding to the converter in its ground state, so it is
useful for verifying with high confidence that the converter
is not excited.

2. System reset and state preparation

a. System reset by feedback

To ensure the modules begins in a known state, we use
an active feedback cooling sequence that makes use of
the ability of our control hardware to perform simultane-
ous and independent control branching when resetting the
ancilla transmons.

The set of nested subroutines used at the beginning of
every experimental sequence is shown in Fig. 12. The
sequence begins by ensuring both ancillae are in their
ground states, actively resetting as necessary. Then a π

pulse, selective on n = 0 photons in the cavity, is applied
to each ancilla, followed by measurement. Measurement of
the ancilla in |e〉 heralds an empty cavity. If both cavities
are empty, we continue (see the next paragraph). If not, we
reset the ancillae to |g〉, then actively empty the cavities
by performing swaps with the bus (as in Fig. 10), one at a
time, with a 10 μs delay after the swap to allow the state
to decay in the bus. This is at least two orders of magni-
tude faster than waiting for the long-lived cavities to decay
on their own. We then start the sequence over, beginning
with ancilla reset, and repeating as necessary to ensure both
cavities are in the vacuum state.

Once the cavities are confirmed empty, we use them
to measure the state of the conversion transmons. This
uses the Ramsey-style selective displacement described in
Appendix D 1f, which displaces the cavity if the transmon
is not in its ground state. We then repeat the cavity mea-
surement. If the cavities are again found in vacuum, we
know the converters were in |g〉. We then reset the ancil-
lae one last time, and begin the experimental sequence.
If either cavity is not in the vacuum state, this means its
converter was not in |g〉. We then empty both cavities and
begin the entire sequence from the beginning. As the time
to empty the cavities is relatively long, we do not actively
reset the converters, but simply allow them to decay during
this time.

After successful completion of this cooling routine, we
find the ancilla transmons and cavities with less than 1%
probability each of being out of their respective ground
states. The conversion transmons are difficult to mea-
sure to this degree of accuracy, since their measurement
sequence is fairly long and involved. Given the length
of this sequence, it is likely that they have rethermalized
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to about the 1% level (each) by the time the cooling is
completed successfully.

b. State preparation

As discussed previously, all nontrivial cavity states are
prepared with NOCPs. For all operations used to prepare
cavity states, the ancilla is meant to return to its ground
state at the end of the pulse. Errors during the operation
can result in occupation of the excited state, usually with
probability 2–3% depending on the pulse. To detect these
errors, we measure the state of the ancilla after applica-
tion of the pulse for all experiments. If not measured to
be in its ground state, we consider this a failure of the
preparation, and reset the entire system before trying again.
This measurement is responsible for the small, determinis-
tic phase shift seen in the Wigner tomograms of the states
as prepared, shown in Figs. 3(b) and 3(c) of the main text.
Although this makes the entire experiment probabilistic,
we regard this as a part of the system initialization pro-
cess, which is already nondeterministic. Operations not at
the beginning of the experimental sequence are not error-
detected in this way. With improved ancilla coherence and
calibration, this step is not necessary [48].

c. Logical state encoding

For each of the two logical encodings used in Fig. 3
of the main text, the state is encoded in the cavity using
NOCPs. First the state is prepared in the ancilla trans-
mon with a phase- and amplitude-controlled rotation. Then
the pulse, which maps combined ancilla-cavity state |g〉|0〉
(|e〉|0〉) onto |g〉 |0〉L (|g〉 |1〉L). As stated in Appendix
D 2b, we then confirm the ancilla has successfully returned
to its ground state before proceeding. The mean fidelity of
the encoded states are 0.99 for the Fock encoding and 0.98
for the cat encoding, obtained from Wigner tomography.

3. Wigner tomography and reconstruction

a. Measurement, symmetrization, normalization, and
reconstruction

The Wigner function measurement is carried out as in
Ref. [49], for instance. The cavity is displaced by a variable
amount β, and the average parity is measured using the
parity measurement described in Appendix D 1d. To sym-
metrize the measurement, we perform two distinct parity
mapping sequences: one which maps even photon numbers
to |g〉 of the ancilla; and one which maps even to |e〉. We
take the difference of the two resulting datasets. This sym-
metrizes the Wigner function against biased readout errors
and finite number-selectivity of the ancilla rotations.

The Wigner function of any physical cavity state should
integrate to 1, even for a mixed state. As our reconstruction
routine assumes the data to be physical, we normalize the
measured Wigner functions by a trapezoidal 2D integral

over the entire dataset. This corrects for loss of contrast due
to the parity mapping sequence and the ancilla measure-
ment, an effect of 2–3%. This results in the data presented
in the main text.

The cavity state ρ is reconstructed from the Wigner
function using MLE, the same routine used in [13]. The
routine is a convex optimization over the space of phys-
ical cavity density matrices with dimension d = 8 for all
data. As the largest states measured have mean photon
number n̄ ≤ 2, this Hilbert space is sufficiently large to
capture all population. The physicality constraints are that
ρ is positive semidefinite and Tr (ρ) = 1.

b. Fidelity error bars

The state fidelities quoted in the main text are computed
as the fidelity of the reconstructed state to the ideal state
ρideal, F = Tr

(√√
ρidealρ

√
ρideal

)2
. The net contribution of

errors in reconstruction due to noise and systematic errors
such as the dependence of the parity measurement con-
trast on mean photon number contribute about 1% error on
average, as estimated from simulating these imperfections
on ideal data. This gives the error bar quoted for most of
the mean state fidelities in the text. The systematic error
for F̄odd, which is reconstructed from Wigner functions
taken after a measurement of odd parity, is larger due to
the occurrence of ancilla decay errors during the first par-
ity measurement, because odd parity is associated with a
measurement of the ancilla in |e〉. These errors result in
distortion of the measured Wigner function from dephas-
ing caused by the dispersive shift to the ancilla. However,
owing to the low probability of this case, the overall error
in F̄cat,tracked is not as large.

The errors in the entangled state reconstruction,
described in Appendix D 4, are similar, because this
method relies mostly on density matrices reconstructed
from Wigner functions.

4. Entangled state tomography

To clearly illustrate the correlations between the two
cavities, we perform Wigner tomography on cavity 1,
postselected on a logical measurement in cavity 2 in the
x, y, and z bases, as indicated in Figs. 4(a) and 4(d) of the
main text. As the Wigner function is a complete description
of the state, these conditional Wigner tomograms provides
enough information to reconstruct the full two-qubit state.

a. Logical basis measurement

The logical basis measurements for entanglement char-
acterization are effected by decoding the cavity state onto
the ancilla using NOCPs. These are the opposite of the
encoding operations in Appendix D 2c. The mapping is
|g〉 |0〉L (|g〉 |1〉L) to |g〉|0〉 (|e〉|0〉). We then measure the
ancilla to effect a z basis measurement, or rotate the ancilla
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into the appropriate basis with a π/2 pulse around the Y
(X ) axis to measure in the x (y) basis.

To assess the fidelity of the decoding operations, we
prepare six cardinal states in the ancilla (|±z〉, |±x〉, and
|±y〉), encode and immediately decode, then apply the
rotation which should restore the ancilla to the ground
state, and measure. We find on average a 3–4% error,
depending on the encoding. We assume the infidelity
of encoding and decoding is similar, and attribute half
the average incorrect measurement result to the “decode,
rotate, and measure” operation, which is the same oper-
ation that makes up the logical basis measurement. This
yields the approximate 2% tomographic error quoted in the
main text.

b. Two-qubit state reconstruction

Conditional Wigner tomograms for the z and x bases are
shown in Figs. 4(b) and 4(e) of the main text; the complete
dataset is shown in Fig. 17. We reconstruct each Wigner
function individually to produce the density matrix of cav-
ity 1, conditioned on the measurement outcome in cavity 2.
As before, the measured Wigner function is normalized
before reconstruction, to correct for measurement contrast
in the parity mapping and ancilla readout. The result is two
conditional density matrices for each of the three bases.
This way we can reconstruct the two-qubit state without
having to apply a decode pulse on cavity 1 as well.

We use these conditional density matrices to reconstruct
the logical two-qubit density matrix. This reconstruction
uses a routine used in Ref. [34], adapted for our tomog-
raphy scheme. The use of the |f 〉 level of the ancilla
for enhanced and roughly symmetric measurement con-
trast obviates the need for additional measurements to
symmetrize the resultant data (see Appendix D 1b).

Each joint choice of bases for the two cavities is given
by {k, l} ∈ {x, y, z}⊗2, where k corresponds to the basis
choice for cavity 1 and l for cavity 2. We refer to the mea-
sured probabilities of the logical measurements in cavity 2
as p±l, and the conditional density matrices of cavity 1 as
ρ±l. The goal is to produce the expectation values p±k,±l of
the four projectors �±k,±l = |±k〉1|±l〉2〈±k|1〈±l|2, which
correspond to the probability of measuring the joint state
to be in |±k〉1|±l〉2. This joint probability is p±k,±l =
p±lP(±k| ± l), where P(±k| ± l) is the conditional proba-
bility of measuring ±k in cavity 1 given the result ±l in
cavity 2. This conditional probability is the expectation
value of the single-cavity projector �±k = |±k〉1〈±k|1,
given the result ±l in cavity 2.

To compute these conditional probabilities, we take the
conditional density matrix ρ±l and evaluate P(±k| ± l) =
〈�±k〉±l ≡ Tr (ρ±l�±k), which is the squared overlap of
the measured cavity state with the logical state |±k〉1 given
outcome ±l. This is essentially the probability we would
measure cavity 1 to be in |±k〉1 with an ideal projective

measurement. It is important to note here that, because the
cavity density matrix is of dimension larger than two, leak-
age out of the logical subspace (here, {|0〉, |1〉}) results in
P(+k| ± l) + P(−k| ± l) < 1. We show that this results in
a reconstructed logical two-qubit state with trace slightly
less than 1. As we assign a binary outcome to the logical
measurement of cavity 2, p+l + p−l = 1 by construction.
This means that leakage out of the logical space on cav-
ity 2 is not directly observed. However, such leakage will
contribute to infidelity. As the decode operation cannot
account for this leakage, the result is some arbitrary out-
come of the ancilla measurement, which is we assume to
be uncorrelated with the result in cavity 1. Thus, while
the decode-and-measure sequence will mask this leakage,
it should convert it to infidelity in the form of a statisti-
cal mixture. Put another way, this local operation cannot
increase the amount of entanglement, so it does not result
in overestimation of the fidelity.

The 3 × 3 × 4 = 36 computed joint probabilities p±k,±l
are fed into the MLE reconstruction routine, which is a
convex optimization over the space of all physical two-
qubit (22 dimensional) density matrices. To ensure physi-
cality, the resultant density matrix ρL is constrained to be
Hermitian and positive semidefinite. In addition, Tr (ρL) ≤
1 to account for the possibility of leakage out of the logical
space as discussed previously. This leakage is very small
for the {|0〉, |1〉} encoding: the trace of ρL (the value of the
II bar) is found to be 0.999, consistent with very small
(< 10−3) occupation of Fock states above n = 1 for the
reconstructed cavity density matrices.

For the two-photon entangled state, there is a small but
measurable amount of leakage outside of the {|0〉, |2〉} code
space due to errors in the parity measurement and cavity
decay during tomography. The value of the II bar (and,
hence, the trace of ρL) is 0.991, consistent with a typical
1% occupation of the |1〉 state in the measured Wigner
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FIG. 13. Optimum cat code size. For efficiencies ranging from
0.75 to 0.95 (text annotations at right), the ideal corrected infi-
delity versus cat size α. Optimum fidelity denoted by black
triangles.
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functions of cavity 1. In fact, the occupation of the error
state |1〉 is found to be largest for states with large occu-
pation of |2〉, suggesting cavity decay errors are primarily
responsible.

APPENDIX E: CAT CODE CONSTRUCTION

1. Definition

Our error-correctable encoding is the four-component
cat code [32]. The codewords have definite photon number
modulo 4:

|0〉L ∝ (|α〉 − |iα〉 + |−α〉 − |−iα〉) ∝
∑

n=2,6,10,...

αn

√
n!

|n〉,

|1〉L ∝ (|α〉 + |iα〉 + |−α〉 + |−iα〉) ∝
∑

n=0,4,8,...

αn

√
n!

|n〉,

(E1)

where we omit the state-dependent normalization factors.
These states are orthogonal for all values of α.

A single-photon loss event on the logical space spanned
by these codewords takes a superposition of codewords
into the error space which is also spanned by the odd-parity

four-component cats:

|0〉E ∝ (|α〉 − i|iα〉 − |−α〉 + i|−iα〉) ∝
∑

n=1,5,9,...

αn

√
n!

|n〉,

|1〉E ∝ (|α〉 + i|iα〉 − |−α〉 − i|−iα〉) ∝
∑

n=3,7,11,...

αn

√
n!

|n〉.

(E2)

TABLE I. State transfer error contributions. Error quoted due
to bus loss for cat code is the remaining infidelity from second-
order errors, assuming perfect error-tracking. “State preparation”
error is fidelity of preparing a single photon for the inefficiency,
and mean state fidelity of encoding for the infidelities. Infidelity
due to parity measurement is roughly equal contributions of error
in parity mapping and ancilla measurement, both of which can be
suppressed by repeated fault-tolerant parity measurement [33].

Source Inefficiency
Infidelity

(Fock)
Infidelity

(Cat)

Bus loss 0.11 0.04 0.01
Transmon excitation 0.04 0.02 0.03
State preparation 0.01 0.01 0.02
Parity measurement n/a n/a 0.02
Total 0.16 0.07 0.07
Measured 0.16(1) 0.08(1) 0.08(2)
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FIG. 15. Full Fock code data. Measured Wigner functions for all six cardinal states of Fock encoding, as prepared in module 1 (top)
and received in module 2 (bottom).

An odd parity outcome after the state transfer tells us we
just need to relabel the codewords to that of the error
space and we will have mostly preserved the quantum
information.

2. Optimum cat size

The value of α for the cat code is something we can
chose when we encode in the initial states with NOCPs.
We can see that in the limit α → 0, the codewords become

|0〉L = |2〉, |1〉L = |0〉. This is not a good encoding for error
detection because only the |0〉L codeword can lose a pho-
ton. Upon measuring odd parity, the state is projected into
|1〉, destroying any initial superposition. We can detect
errors, but cannot recover the information. For small but
finite values of α, upon knowing that a photon was lost,
the state will be polarized more towards the codeword that
started with the larger number of photons resulting in a
loss of fidelity. Similarly, upon knowing that no photon
was lost, the state is polarized more to the codeword with
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FIG. 16. Full cat code data. Measured Wigner functions for all six cardinal states of cat encoding, as prepared in module 1 (first
row), received in module 2 with no parity measurement (second row), and received and conditioned on even (third row) and odd
(fourth row) parity.
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FIG. 17. Full entanglement data. (a) Single-
photon entanglement tomography data for z, x,
and y bases, top to bottom. (b) Two-photon
entanglement tomography data for z, x, and y
bases, top to bottom.

fewer photons. This no-jump backaction results in a logical
dephasing error.

This no-jump error is suppressed exponentially for large
α, since |0〉L and |1〉L will contain the same number of
photons on average (n̄ = |α|2). However, at larger α, the
dominant error is two-photon loss errors. As loss of two
photons does not change the parity, this error is unde-
tectable, and results in a logical bit-flip. As such, there
is an optimum value of α to use for a given energy
transfer efficiency η as illustrated in Fig. 13. This trade-
off has been explored theoretically in more detail in
Ref. [50].

In this experiment, η = 0.84 yields an optimal starting
α = 1.3. With only photon loss error, this puts a theo-
retical upper bound of 0.97(1) for the transfer fidelity.

The measured value of 0.92 is lower due to additional
experimental errors, mainly excitations of the conversion
transmons and infidelity in the parity measurement and
state preparation.

3. Comparison with binomial encoding

The optimal cat code basis is qualitatively very sim-
ilar to the lowest-order binomial encoding [12] with
codewords |0〉L = (|0〉 + |4〉)/√2, |1〉L = |2〉. For the
experimental transfer efficiency η = 0.84, the cat code is
predicted to give slightly better transfer fidelity by a few
percent due to lower overhead. This is owing to the fact
n̄ ≈ 1.7 for the optimal cat code versus n̄ = 2 for the
binomial code.
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FIG. 18. Repeated Hong
–Ou–Mandel entanglement.
(a) Cumulative failure proba-
bility and fidelity of repeated
Hong–Ou–Mandel interfer-
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as a function of the number of
rounds accepted. (b) Fidelity
versus failure probability.
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(a)

(b)

Fock encoding

Cat encoding

FIG. 19. Decoded state transfer qubit tomography. State transfer between ancilla 1 and ancilla 2 achieved with an additional
decoding NOCP pulse on module 2. Qubit tomograms of ancilla 2 for the six cardinal states are shown for the two encodings.
(a) Using the Fock encoding for intermodule state transfer (b) Using the cat encoding for intermodule state transfer, with parity-
conditional decoding. Tomograms sorted by even parity outcomes (top row) and odd parity outcomes (middle), and full deterministic
data (bottom).

4. Posttransfer basis

After the transfer protocol, the information is encoded in
a new logical basis. After reconstructing the density matrix
of the six cardinal transferred states, we find the basis that
maximizes the average transfer fidelity independently for
each parity outcome. We optimize the choice of basis over
the size of the cat, α, and a deterministic phase shift that
is different for the even and odd parity outcomes. For both
parity outcomes, we find an optimal α = 1.2, close to what
we expect from the no-jump backaction. Both these bases
still have the same error-correctable properties as the orig-
inal basis, namely further single-photon loss events can be
detected by measuring parity jumps.

APPENDIX F: ERROR-CORRECTED STATE
TRANSFER

To demonstrate the feed-forward tools needed to
actively correct for photon loss during the state transfer,
we extend the error-tracked state transfer with a real-
time conditional decoding procedure. We apply a decoding
NOCP on module 2 to transfer the state from cavity 2
to ancilla 2, ideally leaving cavity 2 in the vacuum state,
analogous to the decoding used for the logical measure-
ment used for entanglement tomography in Appendix D 4.
Overall, this amounts to transferring the qubit state from
ancilla 1 to ancilla 2 with the information encoded in
the |g〉, |e〉 states of ancilla 2 at the end of the protocol.
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Ancilla measurement for qubit tomography is the same as
the measurement described in Appendix D 4a.

As the qubit is encoded in a different basis depending
on the measured error syndrome outcome, we preload two
decodings: one for even parity and one for odd. The con-
troller branches on the parity measurement outcome to
use the correct decoding operation, similar to Ref. [11].
The NOCPs for the Fock and cat encodings introduce a
small additional infidelity estimated to be around 1–2%
due to ancilla decoherence and pulse errors. As the ancilla
can be treated as a two-level system, leakage errors out
of the cavity code space are converted into errors on the
ancilla of another type, which in general depends on the
details of the leakage and the NOCP. Although the decod-
ing process masks the form of these errors, it cannot, in
principle, improve the fidelity beyond what was measured
from direct Wigner tomography.

For both Fock and cat encodings, we find an ancilla-
to-ancilla average state transfer fidelity of 0.91, indicating
we are also at break-even for this extended version of our
protocol. Qubit tomography and individual transfer fideli-
ties are shown in Fig. 19 and Table III. Alternatively, one
may error correct the cavities by performing conditional
NOCPs that map the appropriate posttransfer basis back to
the original encoded basis.

The decoded state tomograms revel important essen-
tial features of error correction with the cat code. As the
codewords used do not have the same average photon num-
ber, there is a noticeable polarization error towards the
state |0〉L in the case of a single-photon loss, evident in
Fig. 19(b). In other words, when we detect a single pho-
ton error, we learn something about the logical state: we
were more likely to have started in state |0〉L (contains
n = 2, 6, . . .), the state with larger average photon num-
ber. Similarly, there is also a smaller polarization towards
state |1〉L (contains n = 0, 4, . . .) in the event of no pho-
ton loss. These opposite polarizations cancel out in the
weighted deterministic state, resulting in a symmetric loss
of contrast in the X and Y bases, which is a logical dephas-
ing error. Also apparent in the deterministic data is a
symmetric decrease in the Z polarization due to bit-flip
errors from multiphoton loss events. As we operate at the
optimum point, these logical bit and phase flip errors are
balanced, and the result is a uniformly depolarizing error.
A different choice of α can bias the logical error chan-
nel. This tradeoff is explored more fully theoretically in
Ref. [50].

APPENDIX G: EFFECTIVELY DETERMINISTIC
TWO-PHOTON ENTANGLEMENT

For the Hong–Ou–Mandel entanglement scheme, in the
event we measure a parity outcome other than (even,
even), we in principle still know the current state of both
cavities. The parity outcomes in the event of single-photon

loss are (even, odd) and (odd, even) which occur with
equal probability and project the cavities into the states
|01〉 and |10〉. We may reload a photon in the empty cav-
ity using the corresponding NOCP to rapidly reprepare
the initial state |11〉 and try again to generate the desired
Bell state within the same experimental realization. We
can repeat this protocol indefinitely until we obtain the
desired (even, even) parity outcome, effectively making
this scheme deterministic. With this multiround modifi-
cation and keeping 100% of the data, we can reach an
average Bell state fidelity of 0.88(1), comparable with the
single-photon Bell state generation scheme. If we impose a
cutoff to the maximum number of rounds, we can boost this

TABLE II. Sample parameters. Uncertainties of measured
Hamiltonian parameters are less than 0.1% except when indi-
cated by fewer significant digits. Subscript f refers to Purcell
filter. Decay parameters are observed to fluctuate around 10%;
typical values are given. (a) Here χcc of module 1 was not
measured, but is expected to be similar to that of module 2.
(b) Ramsey decay of ancilla 1 was not a simple exponential, indi-
cating a frequency instability. Reported number is decay scale at
short times.

Parameter name Symbol Module 1 Module 2

Hamiltonian parameter (MHz)
Mode frequency ωa/2π 6514.3 6505.2

ωt/2π 5838.5 5668.7
ωc/2π 5081.6 5149.2
ωr/2π 8970.7 9014.9
ωf /2π 9077 9114
ωb/2π 5643

Pump frequency ωX /2π 5222 5228
ωY/2π 6098 6095

Cross-Kerr χat/2π −1.138 −0.953
χac/2π −0.765 −1.077
χbc/2π −4.3 −2.7
χrt/2π −1 −1

Self-Kerr χaa/2π −3.9 × 10−3 −4.1 × 10−3

χtt/2π −213.5 −203.4
χcc/2π a −112

Decay parameter (μs)
Energy decay time Ta

1 300 450
Tt

1 35 65
Tc

1 10 20
Tr

1 0.10 0.10
Tf

1 0.004 0.005
Tb

1 1.6
Ramsey decay Ta

2R 100 140
time Tt

2R 15b 30
Tc

2R 10 20
Hahn echo Tt

2E 35 80
decay time Tc

2E 20 40
Steady-state excitation
Ancilla 1 − P(g) 0.10 0.12
Cavity n̄ 0.01 0.01
Converter 1 − P(g) 0.1 0.1
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TABLE III. State transfer fidelities Transfer fidelities of the reconstructed states shown in Figs. 15, 16, and 19. Fidelities obtained
from Wigner function reconstruction and from decoding onto ancilla are presented. For the cat encoding, fidelities for each parity out-
come, as well as the probability of measuring odd parity, are provided. Fidelity is given for cat code without a syndrome measurement.
Weighted fidelity is the deterministic average fidelity of that state, weighted by the probability of the parity outcome.

Transferred state

Metric Method Parity outcome |0〉L |1〉L |+x〉L |+y〉L |−x〉L |−y〉L Average

Fock encoding
Fidelity Wigner n/a 0.986 0.829 0.928 0.931 0.925 0.929 0.921

Decoded n/a 0.977 0.821 0.911 0.932 0.913 0.927 0.913
Cat encoding

Probability podd 0.218 0.104 0.162 0.162 0.162 0.160 0.161
Fidelity Wigner No syndrome 0.721 0.867 0.808 0.793 0.802 0.787 0.796

Even 0.915 0.950 0.940 0.923 0.943 0.921 0.932
Odd 0.939 0.824 0.859 0.840 0.858 0.856 0.863

Weighted 0.921 0.937 0.927 0.910 0.930 0.911 0.922
Decoded Even 0.923 0.927 0.934 0.917 0.936 0.918 0.923

Odd 0.909 0.823 0.840 0.810 0.832 0.846 0.843
Weighted 0.920 0.916 0.920 0.900 0.919 0.908 0.913

fidelity whilst maintaining a high success probability. This
tradeoff between fidelity and maximum allowed number of
rounds is shown in Fig 18. While this scheme mitigates the
effect of single-photon loss errors in the bus, errors from
undesired transmon excitation become increasingly preva-
lent at high round number and result in failure to reload
photons or enact the beam splitter, and inaccuracies in the
parity measurements. This is evidenced by the large num-
ber of rounds needed to reach failure probability near zero
in Fig. 18. If the only error were photon loss in the bus, we
would expect greater than 99% success probability within
three rounds.

The control flow for this repeated entanglement scheme
is shown in Fig. 14. The flow is broken into several blocks:
“Initialize” (2,208 ns, performed only once), “Attempt”
(2,364 ns, repeated for each attempt), “Reset” (774 ns
on average, repeated for each attempt after the first), and
“Tomography” (2280 ns, upon success). Each readout
block includes an acquisition delay for internal controller
and cabling delays (360 ns), an acquisition time (580 ns),
and a delay for the controller state estimation to be ready
for branching (220 ns). As explained in Appendix D 1b, the
final tomography measurements have an additional ancilla
e − f rotation (40 ns), a longer acquisition (640 ns), and
no controller delay. The “Reset” length is not deterministic
because of the differing lengths of the Fock state cre-
ation pulses and the differing number of decision branching
steps (48 ns), so we quote the average. The primary par-
ity measurement outcomes are “gg” (success), “eg,” and
“ge” (odd–even and even–odd, respectively), but there is a
small (∼ 1%) probability to measured “ee” (odd–odd) due
to measurement errors. In this case, we reset both ancilla
and proceed as if the parity measurement were faith-
ful, returning to the beamsplitter to try again. We could
instead measure the parity again to confirm or reject these

outcomes as failures, but because these events are rare, the
flow taken in this case is not very important.

Taking into account these sequence lengths and the
relative probabilities of the number of rounds to success
(see Fig. 18), the average time to success when consider-
ing up to three rounds is 5205 ns, as quoted in the main
text, not including tomography. The mean time to success
for the fully deterministic protocol (up to 147 rounds) is
6257 ns. This time is only slightly longer because the prob-
ability of success approaches one in only a small number
of rounds.

APPENDIX H: EXPANDED DATA AND SAMPLE
PARAMETERS

1. Full state transfer data

Wigner tomograms of all six states of the Fock encod-
ing, measured as prepared in cavity 1 and received in
cavity 2, are presented in Fig. 15. Wigner tomograms of
all six states of the Fock encoding, measured as prepared in
cavity 1, received in cavity 2 without parity measurement,
and sorted by parity after measurement, are presented in
Fig. 16. Decoded tomograms are shown in Fig. 19. State
fidelities for all datasets are presented in Table III.

2. Full entanglement data

All six conditional Wigner tomograms for the single-
and two-photon entangled states are presented in Fig. 17.
Results of multiround two-photon entanglement are shown
in Fig. 18.

3. Sample parameters

Measured sample parameters for both modules can be
found in Table II.
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