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Single-photon detectors are ubiquitous and integral components of photonic quantum cryptography, com-
munication, and computation. Many applications, however, require not only detecting the presence of any
photons, but distinguishing the number present with a single shot. Here, we implement a single-shot, high-fidelity
photon number-resolving detector of up to 15 microwave photons in a cavity-qubit circuit QED platform. This
detector functions by measuring a series of generalized parity operators, which make up the bits in the binary
decomposition of the photon number. Our protocol consists of successive, independent measurements of each bit
by entangling the ancilla with the cavity, then reading out and resetting the ancilla. Photon loss and ancilla readout
errors can flip one or more bits, causing nontrivial errors in the outcome, but these errors have a traceable form,
which can be captured in a simple hidden Markov model. Relying on the independence of each bit measurement,
we mitigate biases in ensembles of measurements, showing good agreement with the predictions of the model.
The mitigation improves the average total variation distance error of Fock states from 13.5%–1.1%. We also
show that the mitigation is efficiently scalable to an M-mode system provided that the errors are independent and
sufficiently small. Our work motivates the development of new algorithms that utilize single-shot, high-fidelity
PNR detectors.
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I. INTRODUCTION

Many quantum information processing protocols that uti-
lize photonic platforms require devices that detect single
photons. These single-photon detectors (SPDs) perform es-
sential tasks such as measuring the output of a photonic
register or heralding in probabilistic quantum gates. Uses of
SPDs include quantum key distribution [1–3], linear optical
quantum computing (LOQC) [4,5], quantum communica-
tion [6–12], and photonic quantum simulations [13–16].
Highly efficient SPDs with low dark count rates based on
avalanche photodiodes and, more recently, superconducting
nanowire single-photon detectors [17–19] have been devel-
oped and satisfy the demands of these optical applications.

The information processing capacity of intrinsically
bosonic optical modes, however, can be much greater by
executing protocols that manipulate multiphoton states. In
these cases, SPDs are insufficient for distinguishing between
multiple photons and photon number-resolving (PNR) de-
tectors are required instead. Proposals to enhance quantum
communication [20] and key distribution [21] protocols, per-
form teleported gates [4], and extend conventional boson
sampling [13,22–25] all require PNR detectors. Building an
optical PNR detector has proven to be a difficult task. There is
a variety of promising approaches relying on highly efficient
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SPDs in multiplexing or arraying schemes [26–31] and transi-
tion edge sensors [32–34]. These recent advances have vastly
improved performance, but the limited fidelity and resolvable
photon number of optical PNR detectors hamper multiphoton
experiments [24].

The detection of single microwave photons is less estab-
lished and more challenging, due to their lower energy and
higher thermal background levels. The dispersive interaction
between a photon and an atom or qubit enables a wide range of
measurement capabilities not possible in the optical domain.
In cavity QED, the dispersive interaction with Rydberg atoms
enabled the observation of single photon jumps [35]. In circuit
QED (cQED) systems, Josephson junctions coupled to mi-
crowave cavities generate the dispersive interaction essential
for measuring single microwave photons [36,37]. Addition-
ally, the dispersive interaction has been used to create [38,39]
and manipulate [40,41] these photons in a wide variety of
ways. cQED analogs of optical photodetectors such as the
Josephson photomultiplier [42–44] have also been developed.

Introducing high-performance PNR detectors to the mi-
crowave regime could greatly enhance the prospects for
performing boson sampling and other photonic quantum
information processing techniques with cQED systems.
Early quantum nondemolition (QND), single-shot, number-
resolving measurements of microwave photons used flying
Rydberg atoms to iteratively update the experimentalists’
knowledge of the photon number distribution [45]. Previous
efforts in cQED to develop PNR measurements have fallen
short of combining single-shot and QND capabilities. Spectral
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FIG. 1. Projective, binary-valued measurements. (a) Measuring a qubit in its energy eigenbasis (the basis of σz eigenstates) projects
the qubit into its ground state |g〉 with probability |α|2 or its excited state |e〉 with probability |β|2. The measurement operators M̂g and
M̂e commute with the Hamiltonian at all times. As a result, the shared eigenstates are not perturbed by additional measurements or time
evolution, making the measurement QND. (b) Here, Fock states are represented with the first two bits (parity and superparity) of their
binary decomposition |n〉 = |b1(n)b0(n)〉 for N < 4. An initial measurement of parity (black arrows labeled by measurement outcome and
corresponding measurement operator) projects |ψ〉 into the even or odd subspace, and renormalizes the remaining state probabilities. A
subsequent measurement of superparity (red arrows), further projects the state fully into a single Fock state |n〉. The detected photon number
is computed using a record of each measurement.

density analysis [39] and state interrogation methods [36]
are QND, but require many shots of the experiment to build
up time or spectroscopic traces. Parity measurements have
been used to count photon jumps [46], but, while single
shot, the full PNR measurement is not QND. More recently,
frequency multiplexing [47] and multiple feed forward mea-
surements [48] have been used to make QND, single-shot
PNR measurements, but suffer from limited fidelity.

In this paper, we describe a measurement protocol that
implements a high-fidelity, single-shot PNR detector of mi-
crowave photons. The single-shot nature of this measurement
is essential to sample from the exponentially large Hilbert
space inherent to experiments with multiple bosonic modes.
We previously introduced this protocol to efficiently sample
from the probability distribution at the output of a multiphoton
bosonic quantum simulator, reducing the required number
of measurements by a factor of 256, the size of the Hilbert
space [49]. Errors in the storage and ancilla modes caused
nontrivial bias in the output, but these errors are well un-
derstood and can be modeled with a simple hidden Markov
model. We calibrate and use this model to improve the fidelity
of the measurement by an order of magnitude using error
mitigation methods, reducing the measurement infidelity to a
few percent.

This paper is structured as follows. First, in Sec. II, we
discuss QND measurements of multiple observables with a

single prepared state. We verify measurements of parity and
its generalizations satisfy the conditions required to be QND.
Next, we show how to construct a PNR detector of microwave
photons from successive QND measurements of parity and
its generalizations. This is accomplished by representing the
photon number in its binary decomposition. In Sec. IV, we
introduce the error syndromes of our system along with a
hidden Markov model (HMM) that parametrizes the errors.
After calibrating the error rates, we use the model to mitigate
the errors on an ensemble of states using deconvolution meth-
ods. Finally, we show that our error deconvolution protocol is
scalable in the number of modes and maintains computational
efficiency.

II. BACKGROUND

Optical photon detectors such as photomultiplier tubes,
avalanche photodiodes, and superconducting nanowire SPDs
function by converting incoming photons into electrical
charges, which are then amplified to produce a detectable
signal [17]. This process is single shot, but is inherently
destructive as the incoming photons are consumed by the
detector. Standard techniques in cQED for measuring single
photons are QND [37,46], allowing for additional processing
of the state. Our protocol for PNR detection utilizes this ability
to perform multiple measurements that collectively form a
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number-resolving measurement. In this section, we generalize
the notions of QND and single shot to a multilevel system with
multiple measurements.

A. Multilevel QND measurements

To realize a single-shot PNR detector, we need to extend
the concept of QND measurements to the case of a multilevel
system and multiple measurements. Not all observables can
be measured in a QND way; they must satisfy two condi-
tions [50]. The first QND condition is that the observable Â
commutes with the system Hamiltonian Ĥ to ensure that a
repeated measurement of it yields the same result at any sub-
sequent time (in the absence of external perturbations, such as
photon loss). The second condition is that Â commutes with
the measurement Hamiltonian ĤM , which contains additional
terms that couple to a meter. This condition protects the state
from additional evolution induced by the measurement pro-
cess. QND measurements implement measurement operators
M̂λ for each outcome λ, which project the system into the
eigenstate labeled by its eigenvalue λ.

Let us first consider the usual case of QND measurements
of a qubit or two-level system initialized in an arbitrary
state |ψ〉 = α |g〉 + β |e〉. A measurement of the system in
this basis, with measurement operators M̂g = |g〉〈g| and M̂e =
|e〉〈e|, projects |ψ〉 into |g〉 with probability |α|2 and |e〉 with
probability |β|2. The outcome of this measurement tells us
exactly the state of the qubit following the measurement. If
the measurement of the observable is QND, then repeated
measurements at any subsequent time will yield the same
result, as seen in Fig. 1(a).

How can we extend this concept to perform a QND mea-
surement on a multilevel system? For instance, consider a
four-level subspace of a bosonic mode s with operators ŝ, ŝ†.
Two bits of classical information must be obtained to de-
termine the state of this system. This can be accomplished
with two QND measurements, whose composition projects
the system into a single level. The first QND measurement
halves the Hilbert space, and projects the state into one of its
two subspaces, extracting one bit of classical information. A
second measurement further halves this subspace, extracting
the second bit and projecting the state into a single level of
s. This is only possible if the two operators commute, or else
the second measurement would project into a superposition
of states from the two subspaces of the first measurement,
spoiling the first bit of information.

For example, the binary decomposition of the number of
excitations in s contains two bits identifying the state of
the four-level system discussed above. Parity P̂0 divides the
space into even and odd subspaces with measurement opera-
tors B̂(0)

b0=0 = |0〉〈0| + |2〉〈2| and B̂(0)
b0=1 = |1〉〈1| + |3〉〈3|. This

measurement projects the system into the state corresponding
to measurement outcome b0, which is the least significant
bit in the binary decomposition of the excitation number of
s. Measurements of superparity P̂1, which commutes with
P̂0, measure the second-least-significant bit b1 with measure-
ment operators B̂(1)

b1=0 = |0〉〈0| + |1〉〈1| and B̂(1)
b1=1 = |2〉〈2| +

|3〉〈3|. Measured in succession, these two observables project
the system into a single Fock state labeled by its binary de-
composition |b1b0〉, as shown in Fig. 1(b). These generalized

parity measurements form the basis of our approach to real-
ize a QND, PNR detector of microwave photons in a cQED
system.

B. Multilevel single-shot measurements

As we discuss in the previous section, measuring a two-
level or multilevel system requires extracting one or more
bits of information. For these measurements to be considered
single-shot, they must accurately measure a significant ma-
jority of their bits in a single shot. When measuring a qubit,
this means that one gains close to one bit of information
about the state per measurement, per initial state subjected to
that measurement. With a correspondingly high measurement
efficiency and a low dark count rate, a qubit measurement
then extracts enough of the available information that we can
measure it with precision close to the shot noise limit imposed
by the ensemble size.

We call a multilevel measurement single shot if a signifi-
cant fraction of the bits are faithfully extracted per shot. For
example, choosing 3/4 as this fraction corresponds to extract-
ing more than three bits of information per shot for a PNR
detector with N = 16 levels. To determine P(n) of a multilevel
system, we must sample many times from an ensemble of
states. If the PNR measurement that acquires each sample
meets this threshold, the error in the sampled P(n) is limited
by the shot noise of the number of samples. This capability
is particularly crucial to extract joint probability distributions
from M N-level systems without individually checking each
of the NM states. We discuss the single-shot character of our
detector in Sec. IV B.

III. BITWISE MEASUREMENT

A. Measuring binary-valued cavity observables

Our PNR detector uses a qubit ancilla to measure binary-
valued observables of a bosonic storage mode via the
dispersive interaction. These observables Ô divide the Hilbert
space into exactly two subspaces with distinct eigenvalues
λ1, λ2. We can imagine a gate that entangles the two ancilla
states with the eigenspaces Eλ1 , Eλ2 . A readout of the ancilla
would then project the storage mode into the corresponding
eigenspace. This two-step measurement is QND only if the
QND conditions are satisfied for all steps in the measurement.
For a measurement of Ô to satisfy the first QND condition, it
must be diagonal in the energy eigenbasis.

We next verify that the second QND condition is satisfied.
Our three-mode cQED system consisting of a readout mode, a
storage mode, and an ancilla has operators r̂, r̂†, ŝ, ŝ†, and σ̂z,
respectively. The composite system Hamiltonian is

Ĥ/h̄ = ωσ

2
σ̂z + ωsŝ

†ŝ + ωr r̂†r̂ − χsσ

2
ŝ†ŝσ̂z − χrσ

2
r̂†r̂σ̂z.

(1)
The device is the same as used in Refs. [51,52] with sim-
ilar parameters, unless otherwise noted. We first apply an
ancilla-storage entangling drive, which produces the map-
ping Hamiltonian Ĥmap/h̄ = Ĥ/h̄ + 	(t )σ̂x. For observables
Ô, frequency-selective drives 	(t ) can implement the requi-
site entangling operation by exciting the ancilla conditioned
on a Fock state. The second step, ancilla readout, also
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utilizes a dispersive interaction, realized with the Hamiltonian
Ĥreadout/h̄ = Ĥ/h̄ + ε(t )r̂ + ε∗(t )r̂†. This readout completes
the measurement of Ô. Both the mapping and readout Hamil-
tonians commute with the diagonal Ô, and satisfy the second
QND condition. These drives can induce dephasing [52], but
do not induce additional decay in the storage mode [46].
Measurements of Ô are thus QND, enabling the measurement
of multiple generalized parity operators that form the basis of
our number-resolving measurement.

B. Generalized parity measurements

To implement the number-resolving measurement, we syn-
thesize gates that map the binary-valued generalized parity
operators onto the ancilla qubit. Each gate enables the mea-
surement of one bit, so to resolve the first N states, we require
B = log2 N gates. The generalized parity operators

(P̂k )i j =
{

0 for i �= j

1 − 2
(⌊

i
2k

⌋
(mod 2)

)
for i = j

(2)

with eigenvalues λ = ±1 halve the Hilbert space into two
eigenspaces E+1 = {n|bk (n) = 0} and E−1 = {n|bk (n) = 1},
where bk (n) is the kth bit in the binary decomposition of n.
The P̂k are diagonal in the energy eigenbasis and thus sat-
isfy both conditions for QND measurement. To perform this
measurement, we use numerical optimal control techniques
(see Appendix D for more details) to synthesize a CNOT-like
unitary operation

CP̂k =
∑

bk (n)=0

eiϕn |n〉〈n| ⊗ |g〉〈g| +
∑

bk (n)=1

eiϕn |n〉〈n| ⊗ |e〉〈g|

+
∑

bk (n)=1

eiϕ′
n |n〉〈n| ⊗ |g〉〈e|. (3)

The gate imparts phases ϕn, ϕ
′
n, but these do not affect the final

measurement outcome because the composite measurement
projects into a single Fock state, rendering the induced phase
irrelevant. We can set these phases ourselves, but here allow
the optimizer flexibility to choose the phases. Applying this
gate to an ancilla prepared in |g〉 coupled to a storage mode
with state |φ〉 = ∑

n cn |n〉 entangles the odd and even sub-
spaces with the state of the ancilla,

CP̂k (|φ〉 ⊗ |g〉)

=
∑

bk (n)=0

cneiϕn |n〉 ⊗ |g〉 +
∑

bk (n)=1

cneiϕn |n〉 ⊗ |e〉. (4)

QND measurements of the ancilla then project the storage
state into either E+1 or E−1 depending on the outcome, re-
alizing the measurement operators

B̂(k)
0(1) =

∑
bk (n)=0(1)

eiϕn |n〉〈n|. (5)

The act of measuring B parity operators P̂B−1, . . . , P̂1, P̂0

with outcomes bB−1, . . . , b1, b0 in the subspace including
only the first N states is equivalent to applying the measure-
ment operator

M̂n = B̂(B−1)
bB−1

. . . B̂(1)
b1

B̂(0)
b0

= |n〉〈n| (6)

and renormalizing. This operator projects the system into
the Fock state |n〉 = |bB−1(n) . . . b1(n)b0(n)〉 completing the
bitwise measurement. This approach requires the minimal
number of binary measurements of any scheme assuming
no prior knowledge of the state. This protocol implements
a detector resolving up to 2B photons, where the number
of generalized parity (bit) measurements we make is fully
programmable.

C. Experimental implementation

To resolve the storage mode photon number in a single
shot, we sequentially measure the generalized parity opera-
tors, whose outcomes form the binary decomposition of the
photon number. For each bit, we apply CP̂k , read out the
ancilla, and dynamically reset it using the same method as in
Ref. [51]. More details of the reset protocol, including statis-
tics on the number of attempts required, are in Appendix A.
This process is concatenated to measure all four bits, allowing
us to resolve up to 15 photons, as shown in Fig. 2(a).

Another approach performs a series of paritylike measure-
ments, feeding forward the result of each bit measurement to
determine the correct qubit rotation angle for the next mea-
surement [48]. However, any errors that occur during a single
measurement are fed forward and corrupt any subsequent
measurements, resulting in correlated errors. Our method,
which independently measures each bit, is more suitable for
error mitigation with postprocessing techniques.

Each component of our measurement chain is susceptible
to errors. The storage mode suffers from stochastic photon
loss at a rate κ . The ancilla is vulnerable to dephasing and
excitation decay during the mapping pulse CP̂N as well as de-
cay during the readout procedure. The probability of reading
out the ancilla in the ground (excited) state when the readout
should have yielded e(g) is εe(g). The long lifetimes of the
storage mode T s

1 ≈ 1 ms and ancilla T σ
1 ≈ 25 μs relative to

the 2.9 μs duration of each measurement ensure that these
errors are small. The dynamic reset protocol rarely leaves the
ancilla in the excited state, and is not a significant source of
error.

Counterintuitively, a single error in the entire sequence can
produce a result that differs from the correct value by up to
eight photons. This happens because a single error can flip
multiple bits in the photon number’s binary decomposition.
For example, the loss of a single photon from |8〉 = |1000〉
after the measurement of b0 = 0, b1 = 0, b2 = 0 results in
b3(7) = 0. Thus, the effect of such an error is to mistakenly
read out |8〉 = |1000〉 as |0〉 = |0000〉. This error is illustrated
by the green square in the right panel of Fig. 2(b), which
also shows the measurement outcomes when a single ancilla
readout or storage decay error occurs.

IV. MEASUREMENT ERROR MITIGATION

Can we use our knowledge of the error mechanisms de-
scribed above to improve the fidelity of our measurements?
To answer this question, we use an approach known as error
mitigation, which relies on data postprocessing to improve the
quality of an ensemble of calculations or measurements. Error
mitigation has been proposed [53,54] and realized [55] for use
with variational algorithms. Here, our error mitigation efforts
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FIG. 2. Measurement circuit diagram and error syndromes. (a) The photon number of a state |ψ〉 = ∑
n cn |n〉 in the storage cavity with

decay rate κ is measured by sequentially interrogating the least-significant to most-significant bit in the binary decomposition of the photon
number (i = 0, 1, 2, 3). Optimal control pulses excite the ancilla conditioned on the value of bi in the storage cavity, followed by a dynamic
reset of the ancilla to ensure that it starts in its ground state for the subsequent bit measurement [51] (see Appendix A for reset statistics). The
combined map-measurement process has associated error rates εe(g) for mis-assigning the ancilla to be in the |g〉 (|e〉) state when it should be
|e〉 (|g〉). (b) Single ancilla (left panel) and decay (right panel) errors associated with the different bits (0 - yellow, 1 - red, 2 - blue, and 3 -
green) produce different, but partially overlapping, error syndromes. Note that the syndromes for the decay errors depend on the order in which
the bits are measured, and that the entries are qualitative labels of the measurement errors occurred and are not indicative of error magnitudes.

focus on an ensemble of measurements, which sample from
the population distribution of some quantum state.

In this section, we introduce an error model based on
the error syndromes described in Sec. III C. This model is a
function of several error rates, which must be calibrated. We
discuss our calibration technique and compare the model to
experimental results. Finally, we introduce the deconvolution
techniques that use the calibrated model to mitigate the errors
in the measurement and show an improvement on two sets of
states.

A. Error model

Our goal is to characterize the errors so that we can
model measurement outcomes. This is equivalent to finding
the elements {Fi}0�i�Nmax of the positive operator-valued mea-
sure (POVM) that describes our measurement [56,57]. For
instance, the bitwise measurement is composed of B indi-
vidual bit measurements, each with a corresponding POVM

{E (k)
bk=0, E (k)

bk=1} where E (k)
bk

= (B̂(k)
bk

)
†
B̂(k)

bk
. Each ideal Fi is then

a product of POVM elements constituting the bitwise mea-
surement:

Fi=bB−1...b0 = E (B−1)
bB−1

. . . E (0)
b0

. (7)

Note that the Fi and E (k)
bk

are diagonal because the bit mea-

surement operators B̂(k)
bk

are QND. Ideally, Fi = |i〉〈i|, but our

implementations of the E (k)
bk

have errors, so (Fi ) j, j is the prob-
ability that the measurement detects i photons when there are
j photons in the mode P(outcome = i| | j〉).

Our system can be described with a hidden Markov model
(HMM) that has been used for qubit readout [58–62] and to
improve the readout of qubits encoded in oscillators [51,63].
A HMM parametrizes the errors in the storage mode, known
as transitions, and the fidelity of the measurements of each
bit, known as emissions. The probability of a transition in the

storage mode during a time interval t from |i〉 to | j〉 is

Ti, j (κt ) =
(

i

j

)
(eκt − 1)i− je−iκt , (8)

where κ is the decay rate of the mode [63]. The ancilla can
decay during the controlled rotation CP̂k and the readout
procedure, leading to an incorrect bit measurement. Since the
bit measurements are QND, only the diagonal entries E (k)

bk ,i
are

nonzero, even in the presence of errors. We modify the entries
of these ideal POVM elements

E (k)
bk ,i

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⌊
i

2k

⌋
is even

{
1 − ε (k)

g for bk = 0

ε (k)
g for bk = 1⌊

i
2k

⌋
is odd

{
ε (k)

e for bk = 0

1 − ε (k)
e for bk = 1

(9)

to introduce error rates εg(e) describing errors in the CP̂k

mapping or ancilla readout.
We now integrate both error mechanisms into a single

model describing the errors in the measurement. The bit-
wise measurement algorithm described in Sec. III C alternates
between entangling pulses and ancilla reset. The cavity is
subject to spontaneous decay for the duration of the algorithm,
punctuated by projective measurements of the entangled an-
cilla. This duration, however, is not deterministic due to the
dynamic ancilla reset. Our HMM models the errors in the
measurement by constructing an alternating chain of tran-
sition and emission (measurement) events. To calculate the
{Fi}, we sum over all transition paths sk between storage state
| j〉 and measurement outcome i. Weighting these paths by
the probability that the bit measurements yield the binary
decomposition of i = b3b2b1b0 gives

(Fi ) j, j =
∑

s1...sB

Tj,s1 (κt (0) )E (0)
b0,s1

Ts1,s2 (κt (1) + b0κt ′)

× E (1)
b1,s2

. . . TsB−1,sB (κt (B−2) + bB−1κt ′)E (B−1)
bB−1,sB

.

(10)
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FIG. 3. Measured error syndromes and hidden Markov model prediction. (a) Misassignment probabilities of prepared Fock states measured
bitwise. (b) Misassignment probabilities predicted by the HMM. The HMM models the error syndromes depicted in Fig. 2 using the known
storage mode loss rate κ and the calibrated error rates ε (k)

g , ε (k)
e . The HMM correctly predicts the structure of the errors (b) and agrees with the

data down to the percent level (c). The negative values along the diagonal indicate the correct assignment probability deficit with each column
summing to zero. The rows are the measured and modeled {Fi − 1i}, respectively, where 1i is the matrix that is zero except for a one in its
ith diagonal entry. The residuals may arise from calibration errors or other error syndromes that are not modeled by the HMM. The residuals
provide a typical bound of less than 1%, and no more than 4%, on the error syndromes not included in the HMM.

Each transition matrix T and POVM element E (k)
i are

parametrized by the respective error rates κt (k) and ε (k)
g , ε (k)

e ,
which are not necessarily the same for each bit. Note that the
time between each bit measurement depends on each result,
as a measurement of bk = 1 requires an ancilla reset pulse
followed by readout verification. We discuss how the dynamic
ancilla reset statistics inform our choice of κt ′ in Appendix A.
Equation (10) provides the desired parametrized POVM ele-
ments, which, once calibrated, we use to mitigate errors in our
measurement.

B. Model calibration and results

Now that we have a model for the errors, we must deter-
mine the values of the error parameters κt (k) and ε (k)

g , ε (k)
g . The

duration of each bit measurement is recorded shot by shot;
the microwave pulses have fixed durations and the dynamic
ancilla reset records the number of required attempts. Since
measurements of the cavity’s decay rate κ are straightforward,
we only need to determine the ε (k)

g , ε (k)
g .

We calibrate the bit measurement errors by measuring a
single bit on a basis of states. This characterizes the {E (k)

i }
from which we extract the ε (k)

g , ε (k)
g . This procedure relies

on the ability to prepare a basis of states with high fidelity,
so that preparation errors do not pollute the measurement
errors. We prepare Fock states by repeatedly converting two
excitations in the ancilla into a single photon as detailed in
Refs. [51,64]. We check the photon number with a series of
selective pulses. If any fail to flip the ancilla, the storage mode
is cooled to vacuum and the preparation protocol tries again.
This method prepares high-fidelity Fock states, but does allow
photon decay during the final check (see the Supplemental
Material for Ref. [51]). Appendix B contains additional details
about the calibration process, including how we account for
these preparation errors.

Once we have calibrated the error rates in the model (tabu-
lated in Appendix C), we use Eq. (10) to calculate the {Fi} and
thus reconstruct the detector POVM. We compare the modeled
POVM to the measured POVM in Fig. 3 by preparing the Fock
states {| j〉}0� j�15 and measuring all four bits. The residuals
are typically 1%, and never more than 4%, showing good
agreement with the model and bounding unmodeled errors.
We could in principle use the measured detector POVM to
perform error mitigation, but we would still need to model
transitions during the Fock state preparation and would not be
able to confirm our understanding of the error mechanisms.

The raw measurement fidelity of each state is at least 80%
before error mitigation even for the most challenging input
state n = 15. The measurement extracts on average between
3.11 and 3.17 of the four possible bits of information (the
range exists due to state preparation details; see Appendix E
for further discussion). This fraction is greater 3/4, suggesting
that the bitwise measurement is single shot.

C. Error deconvolution

Now that we have modeled the entire collection of {Fi}, we
form a matrix Ci j = (Fi ) j, j , where C − I is shown in Fig. 3(b),
of conditional probabilities referred to as the “confusion ma-
trix.” This allows us to relate the measured populations Pmeas

to the state’s ideal distribution Pideal with a simple relation [57]

Pmeas = CPideal. (11)

Once we have C, we invert it to solve the above equation
for the mitigated probability vectors Pmit = C−1Pmeas (Ap-
pendix F contains a discussion of the invertibility of C). These
vectors are properly normalized, but may have negative en-
tries. We correct the mitigation results by finding the closest
vector Pmit with respect to the Euclidean norm that has non-
negative entries [57].
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FIG. 4. Error mitigation results for coherent (left) and Fock states (right). The α were chosen such that the Hilbert space can be truncated
to the first 16 Fock states, with error less than 2.2%. For each prepared state |ψ〉, the error in the measurements DTV (Pmeas

|ψ〉 , Pideal
|ψ〉 ) (blue) is

compared to the error in the mitigated measurements DTV (Pmit
|ψ〉, Pideal

|ψ〉 ) (orange). The large difference in overall error rates between Fock and
coherent states results from the error mechanism to which each is most susceptible. Fock states transition to orthogonal states under photon
loss, while coherent states are mainly affected by bit measurement errors. The single photon loss probability κt (k) ≈ 0.03 is similar to the
single bit error rates ε (k)

e ≈ .03, ε (k)
g ≈ .01.

The simple form of Eq. (11) offers the tantalizing possibil-
ity that we could avoid error modeling altogether by preparing
a high-fidelity set of states, and directly inverting Pideal to
find C. Coherent states seem to be an ideal candidate due to
the high fidelity with which we can prepare them, but suffer
from ill-conditioned ideal populations Pideal, which make the
determination of C highly sensitive to errors in Pmeas [65].
Furthermore, error modeling of the Fock states is required due
to preparation error discussed in the previous section.

To quantify the quality of our measurement, we use the
total variation distance metric to compare probability distri-
butions A and B,

DTV (A, B) = 1

2

∑
k

|Ak − Bk|. (12)

The factor of 1/2 accounts for the double counting of proba-
bility differences.

To check the performance of the error mitigation and verify
the error model, we apply it to the same Fock states we
prepared in the calibration process, and to a set of coherent
states with 0 � α � 3. The results are shown in Fig. 4. In both
cases, the error mitigation includes photon losses occurring
during state preparation (recall the selective pulse check dis-
cussed in Sec. IV B). This is reasonable because the operation
that directly precedes the bitwise measurement is known in
advance as part of the pulse sequence.

The large difference in the premitigated errors in Fig. 4 be-
tween the Fock and coherent states is due to the nature of these
states. For the Fock states, a single lost photon transitions |n〉
to an orthogonal state |m〉, resulting in the maximum possible
error. Furthermore, the transition rate increases with photon
number, resulting in large premitigation errors. On the other
hand, coherent states are more robust to photon loss and do

not transition to an orthogonal state, leaving bit measurement
errors as the dominant error mechanism.

The error mitigation successfully reduces errors in all
tested states to less than 5%, providing the most dramatic
improvement to the Fock states, whose average error is re-
duced from 13.5%–1.1%. The success of the error mitigation
shows that we understand the error syndromes in our measure-
ment and can effectively quantify them. This allows us to use
the model to find the error rates required to meet a desired
measurement fidelity, which may vary from application to
application.

D. Scalability of error mitigation

In the previous sections, we demonstrated an efficient
measurement of the number of photons in a mode, and an
effective method to mitigate the errors in the measurement.
Our protocol can be performed simultaneously on a system
with multiple storage modes, each dispersively coupled to
their own ancilla qubit, to measure the joint photon number
of the system. Imagine a system with M storage modes with
uncorrelated measurement errors between the modes. Here,
the entries of Pmeas are elements of the joint probability distri-
bution P(n1, n2, . . . , nM ). If we truncate the Hilbert space of
each mode to some maximal number of photons Nmax, then
the length of Pmeas is NM

max. This exponentially large space
suggests that our approach to error mitigation is not scalable
to multiple modes.

However, it turns out that calculating any particular el-
ement of Pmit from Pmeas is efficient, as we show below.
Calculating particular elements of Pmit may be sufficient for
problems in which the goal is to study features of an out-
put distribution that can be altered by measurement errors.
For instance, we may be interested in correcting the relative
peak intensities of Franck-Condon factors [24,49], which only
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requires processing the measured peaks, not the entire Hilbert
space. The resulting spectrum will have significant peaks at
the same output photon numbers, with intensities adjusted to
account for measurement errors, increasing the simulator’s ac-
curacy. This way, the simulator still does all the hard work of
identifying the significant peaks; we only need to postprocess
the heights to mitigate measurement errors.

There are two properties that make calculating any element
of Pmit efficient. The first is that the multimode confusion
matrix is the Kronecker product of single-mode confusion
matrices, meaning that it is efficient to calculate any el-
ement in the inverse of the multimode confusion matrix.
In general, though, C−1 contains an exponential number of
nonzero matrix elements so writing down the entire matrix
is not feasible. The second property is that the vector Pmeas

is necessarily sparse; assuming we do not perform an expo-
nentially large number of measurements, most configurations
(n1, n2, . . . , nM ) are never actually measured. Together, these
two properties imply that any entry of Pmit can be efficiently
computed,

Pmit
i =

∑
j∈S

(
C−1

1 ⊗ C−1
2 ⊗ · · · ⊗ C−1

M

)
i jP

meas
j , (13)

where S is the set of nonzero entries in Pmeas, which is only
polynomially large. We cannot use this fact to efficiently cal-
culate the entire distribution Pmit, however, because Pmit can
contain exponentially many nonzero entries. In the case where
simply adjusting peak intensities is insufficient, we have de-
veloped a method for expanding C−1 that mitigates errors up
to a chosen order. This method is detailed in Appendix G.

V. CONCLUSION AND OUTLOOK

Our bitwise measurement protocol utilizes the long life-
times of three-dimensional (3D) microwave cavities and the
interactions generated by a Josephson junction to imple-
ment a high-fidelity, single-shot, microwave photon number-
resolving detector. We use error mitigation techniques to
improve the measurement fidelity of the Fock states by nearly
an order of magnitude. Larger resolvable photon numbers are
reachable by synthesizing additional CP̂k pulses to measure
more bits.

In addition to enabling error mitigation, our error model
provides insight into the error budget of our PNR detector. For
example, we estimate that with unit fidelity CP̂k pulses and
ancilla readout (ε (k)

g = ε (k)
e = 0) we can extract 3.72 bits of in-

formation in a single shot in our system with the current κt (k).
This suggests that further optimization of the control pulses
and ancilla readout can increase the information extracted per
shot by up to 0.6 bits. Any additional improvements to the
single-shot fidelity require decreasing κt (k) by decreasing the
pulse lengths or increasing cavity lifetimes. Adaptive check
methods may also be able to improve single-shot fidelity at
the expense of adding complexity to the error model.

Even with limited fidelity, optical PNR detectors have mo-
tivated the development of multiphoton quantum information
processing protocols. Bringing high-fidelity PNR detectors to
the microwave regime further bolsters the ability of cQED
to perform photonic protocols, such as vibronic spectra sim-
ulations [49]. Additionally, this capability will motivate the

development of algorithms that take advantage of the large
bosonic Hilbert space available in cQED systems.
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APPENDIX A: DYNAMIC ANCILLA RESET STATISTICS

As discussed in the Supplemental Material in Ref. [51], our
ancilla qubit reset protocol does not always succeed in a single
attempt. This increases the duration between bits on a shot-
by-shot basis. This duration is proportional to the number of
reset attempts, whose probabilities shown in Fig. 5 have a long
tail, with 35.1% of resets requiring more than one attempt.
The average number of reset attempts required across all Fock
states prepared in Figs. 3 and 4(b) is n̄reset = 2.05. Each reset
attempt has a duration of 2.244 μs so we use the average reset
time κt ′ = 2.244 μs · κ n̄reset = 0.0046 in the model.

It is tempting to remove runs via postselection that take
more than a chosen threshold of reset attempts, but this in-
troduces bias into the measurement results as the number of
required reset attempts increases with the number of pho-
tons in the storage mode. Postselecting on a low threshold
such as five attempts (used in Ref. [51]) removes 5% more

FIG. 5. Ancilla dynamic reset probabilities from the Fock state
data in Figs. 3 and 4(b). After each bit measurement, we readout and,
if necessary, dynamically reset the ancilla. This protocol requires
more than one attempt with probability P(N > 1) = 0.351 and at
most 50 with probability 1 − P(N > 50) = 0.997.
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TABLE I. HMM error parameters. The error σ of ε (k)
g , ε (k)

e is cal-
culated by propagating error in Eq. (B2). 1/κ ≈ 1 ms is the storage
cavity decay rate.

Bit k κt (k) (+κt ′)b ε (k)
g ± σ ε (k)

e ± σ

0 0.0040, 0.0032a 0.019 ± 0.002 0.029 ± 0.002
1 0.0034 (+0.0046)b 0.014 ± 0.001 0.026 ± 0.001
2 0.0034 (+0.0046)b 0.011 ± 0.001 0.035 ± 0.002
3 0.0034 (+0.0046)b 0.013 ± 0.001 0.033 ± 0.002

aFock and coherent states, respectively, which have different prepa-
ration methods.
bThe parenthetical additional time is added when the ancilla needs to
be reset and is equal to κt ′, as discussed in Appendix A.

measurements of |15〉 than |1〉. Setting the postselection
threshold at 50 attempts lowers this disparity to 0.6%, but
we still choose to avoid postselection to produce an unbi-
ased measurement. A more granular approach to ancilla reset
using the state-dependent reset probability distributions can
be included in the HMM if one separately calibrates this
dependence.

APPENDIX B: CHOICE OF CALIBRATION STATES

Consider a set of calibration states {|ψ j〉}. After prepar-
ing each |ψ j〉, we measure the kth bit to find the probability
of measuring bk = 0, 1 for each basis state Pcal

bk , j = P(bk =
0, 1| |ψ j〉) = 〈ψ j |E (k)

bk
|ψ j〉. Our preparation protocol may suf-

fer from transitions caused by ancilla readout and storage
mode decay that we can model in the calibration process

Pcal
bk , j =

∑
m,n

Tm,n(κt (0))E (k)
bk ,n

Oj,m, (B1)

where Oj,m = | 〈ψ j |m〉 |2 changes from the calibration basis
{|ψ j〉} to the Fock basis. The argument of T , κt (0), includes
the duration of the final check of the preparation protocol and
the CP̂0 pulse. It can be shown that the effective transition
duration for this final check is approximately half of the length
of the selective pulse. The value of κt (0) is given in Table I.
Solving for the diagonal of E (k)

bk
we find

E (k)
bk ,i

= (T −1(κt (0) )O−1Pcal )i,i (B2)

from which we average and extract ε (k)
g , ε (k)

g .
Our task is then to pick a basis of calibration states |ψ j〉.

In our systems, we can prepare coherent states |α〉 with the
highest fidelity due to the speed of preparation. If we choose
a calibration basis {|α j〉} such that there is very little prob-
ability finding n photons with n > Nmax, we would expect
these states to be an excellent candidate for a calibration
basis. However, the presence of O−1 in Eq. (B2) complicates
matters. To satisfy n � Nmax, the range of α j is necessarily
restricted. In this regime, the coherent states are only barely
linearly independent and have significant co-overlap 〈α j |αk〉.
This results in O being an ill-conditioned matrix, meaning
that O−1 magnifies small errors in Pcal [57]. We avoid the
ill-conditioning problem by using the Fock states {| j〉}0� j�Nmax

as our calibration basis resulting in O = 1.

APPENDIX C: MODEL ERROR RATES

Table I contains error parameters calibrated in Sec. IV B
and used in the HMM.

APPENDIX D: CP̂k PULSE CONSTRUCTION

Optimal control techniques are a powerful tool to engineer
quantum gates and initialize nonclassical quantum states. We
use this tool here to create the CP̂k entangling gates in a
manner very similar to that described for a cavity-transmon
system in Ref. [41].

In particular, we use gradient ascent pulse engineering
(GRAPE) [66,67] to compute both quadratures of an ancilla
control pulse that realizes CP̂k . The optimizer uses the cavity-
qubit Hamiltonian in the rotating frame

ĤGRAPE/h̄ = −α

2
â†â†ââ − K

2
ŝ†ŝ†ŝŝ

− χsσ

2
ŝ†ŝâ†â + χ ′

sσ

2
ŝ†ŝ†ŝŝâ†â

+ I (t )(â + â†) + iQ(t )(â − â†) (D1)

to compute the best 	(t ) = I (t ) + iQ(t ) that implements
CP̂k . We convert 	(t ) into a DAC amplitude with a scaling
factor determined by calibrating the Rabi rate of a π pulse on
the ancilla qubit. The substitution σ̂z → â†â allows GRAPE
to optimize over multiple transmon levels. We do not include
loss in the qubit and cavity in the optimization. The optimizer
finds the ideal control pulse 	 by maximizing the fidelity of
the state transfer in Eq. (4)

F (	) =
∑

k

∣∣ 〈ψ (k)
target

∣∣Û (	)
∣∣ψ (k)

initial

〉 ∣∣2
, (D2)

where Û (	) is the unitary implemented by the pulse 	. Note
that the modulus is taken within the sum, so the optimal
pulse produced by the optimization maximizes the incoherent
fidelity of the CP̂k gates. Both quadratures of these pulses are
shown in Fig. 6 with Hamiltonian parameters listed in Table II.
Each pulse reaches a fidelity of at least 99.9% in a lossless
system.

APPENDIX E: CALCULATION OF INFORMATION
EXTRACTED BY THE DETECTOR

To be able to call our detector single shot, it must extract
a large fraction of the information it is designed to measure
per shot. In particular, of the four bits it ideally measures, we
would like to determine how many of these bits are lost to
measurement errors. The difference of ideal and wasted bits
gives the average number of bits extracted per measurement.

Our task is then to calculate the number of wasted bits
in our measurement, which is equivalent to number of extra
bits needed to classify the input given a measurement re-
sult (or the number of bits remaining to be measured). This
quantity is the entropy Si [68] of the distribution P(| j〉 |i) =
P(detector input | j〉 |measurement result i). We finally aver-
age over the results i to obtain 4 − 〈Si〉, the average number
of bits extracted in a single shot of the measurement.
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FIG. 6. CP̂k pulses generated by optimal control. Each pulse has a fixed duration of 1200 ns. The amplitude is multiplied by a calibrated
constant before being played by FPGA-based signal synthesizers. The signal is up-converted via an IQ mixer and passed through a series of
amplifiers and attenuators before reaching the ancilla qubit.

We begin by calculating the conditional probability

P(| j〉 |i) = P(result i|input | j〉)P(| j〉)

P(i)
. (E1)

Recalling that P(result i|input | j〉) = Ci j and assuming a uni-
form prior P(| j〉) = 1/N we simplify Eq. (E1)

P(| j〉 |i) = Ci jP(| j〉)∑
k CikP(|k〉)

= Ci j∑
k Cik

. (E2)

Finally, we write down the average entropy over all measure-
ment outcomes, weighting by P(outcome i)

〈Si〉 = −
∑

i j

P(| j〉 |i) log2(P(| j〉 |i))P(i)

= − 1

N

∑
i j

Ci j log2

(
Ci j∑
k Cik

)
. (E3)

Using the error parameters listed in Table I to construct C,
we find 4 − 〈Si〉C, Fock = 3.14 bits. We can also use the mea-
surement results in Fig. 3 to determine P(result i|input | j〉),
yielding 4 − 〈Si〉Fock = 3.11 bits. This number likely provides
an upper bound of 〈Si〉 as the check protocol for Fock states
(described in Sec. IV B) introduces a lengthy delay between
state preparation and measurement.

As mentioned above, the preparation errors included in
both of these calculations likely inflate the number of bits the

TABLE II. Parameters for the Hamiltonian (D1) used in the
optimal control construction of the CP̂k gates.

Parameter Value

α/(2π ) 132 MHz
K/(2π ) 2.59 kHz
χsσ /(2π ) 885 kHz
χ ′

sσ /(2π ) 3.67 kHz

measurement itself wastes. We cannot deconvolve only the
preparation error from the measurement results, but we can
zero the contribution of preparation to κt (0). We emphasize
that κt (0) will always contain a contribution from the previous
experimental step, but we can construct a C confined to er-
rors that solely occur during the measurement duration. This
scenario yields 4 − 〈Si〉C, no prep = 3.17 bits, which is likely a
lower bound as the residuals in Fig. 3 show that C does not
perfectly capture all errors.

Finally, we can use this method to estimate the single-
shot error budget. With κt (k) as in Table I and unit fidelity
CP̂k pulses and ancilla readout (ε (k)

g = ε (k)
e = 0) we find

4 − 〈Si〉only κt (k) = 3.72 bits. The remaining information is lost
to photon loss in the storage mode. This suggests that signif-
icant gains can be made by optimizing the CP̂k pulses and
ancilla readout before needing to decrease κt (k).

APPENDIX F: INVERTIBILITY OF C

Our error mitigation protocol works in the range of error
rates that allow robust inversion of C. In the limit of small er-
ror rates, C approaches the identity. As the error rates ε (k)

g , ε (k)
e ,

and κt (k) become large, we expect that C will become ill
conditioned. For example, as the storage mode error rates
κt (k) approach 1, the probability C0n of any photon state |n〉
decaying to |0〉 approaches 1. But since the column vectors
of C are normalized to 1, they approach degeneracy and
prevent the inversion of C. This exact scenario is illustrated
in Fig. 7. Similarly, the condition number also diverges as
ε (k)

g , ε (k)
e → 1. We operate the small error rate regime in which

C is robustly invertible.

APPENDIX G: CONFUSION MATRIX EXPANSION

If simply correcting peak intensities in a measured spec-
trum is insufficient, we can expand the confusion matrix about
the identity matrix. By truncating this expansion to some
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FIG. 7. Condition number vs. storage mode error rate. As the
cavity error rate increases, the condition number (ratio of largest to
smallest singular value) of C diverges, indicating that the inversion
of C is no longer numerically stable. For simplicity, we choose
typical experimental values for the errors ε (k)

g = 0.01, ε (k)
e = 0.03

and sweep all κt (k) = κt ′ simultaneously.

order so that the total number of relevant matrix elements
is polynomial, we can calculate polynomially many of the
largest entries in Pideal. Using this approach, we may find
significant peaks Pideal

s �= 0 even when Pmeas
s = 0. However,

each peak height will only be accurate to the order at which
the expansion is truncated.

Consider the confusion matrix Cm for photon number read-
out of the mth mode. Let us assume that Cm is close to the
identity, so that its inverse is also close to the identity,

C−1
m = I + εEm, (G1)

where ε � 1 is some small number, and Em is a matrix nor-
malized so that

‖Em‖max = max
i j

|[Em]i j | = 1. (G2)

Thus,

Pmit = [(I + εE1) ⊗ (I + εE2) ⊗ . . . ⊗ (I + εEM )]Pmeas.

(G3)

Now, the main idea is to use this expansion to compute only
the entries of Pmit, which are O(εq), then neglect all entries,
which go as higher powers in ε. To perform this computation,
first notice that we only need to consider a small subset of
the columns of C−1 because Pmeas is sparse. That is, only
the columns [C−1]∗, j∈S contribute, where [C−1]∗, j denotes
the jth column of C−1. While each such column contains
exponentially many nonzero entries NM

max in general, it turns
out that the columns may contain only polynomially many
nonzero entries when expanded in ε, depending on the order
of the expansion. To compute Pmit we then compute all en-
tries, which are nonzero to order q in the columns [C−1]∗, j∈S ,
giving us a sparse representation of C−1. It is then efficient to
multiply C−1Pmeas.

Each entry in C−1 is a product of entries from the single-
mode confusion matrices C−1

k . In each column of C−1
k , there

are Nmax elements, one of which is O(1) and up to Nmax − 1
of which are O(ε) as defined in Eq. (G1). Each of the NM

max
elements in a column of C−1 is a product of M elements where
the kth element in the product is drawn from a fixed column
of C−1

k . Our task is to count the number such products that
result in an element of O(εq). We choose q columns out of
M to each contribute a factor of ε, and within each column
we choose one of Nmax − 1 entries that are O(ε). There are
thus at most

(M
q

)
(Nmax − 1)q entries in a column of C−1, which

are polynomials of degree q in ε. Therefore, the total number
of nonzero entries N per column, which must be calculated
when expanding [C−1]∗, j∈S to qth order in ε is

N =
q∑

�=0

(Nmax − 1)�
(

M

�

)
.

If N is only polynomially large, this approach is efficient, as
the sparsity of Pmeas ensures that the total number of entries
N |S| in [C−1]∗, j∈S is not exponentially large.

We now examine the scaling of N , which can be written
as N = O(N�

max) × ∑q
�=0

(M
�

)
. The partial sum of binomial

coefficients
∑q

�=0

(M
�

)
does not have a closed form expression;

for small values of q it is O(Mq), but for q = M it is O(2M ).
Thus, whether this approach is efficient depends on the choice
of q. For small q, we have N = O(Nq

maxMq) so that the total
number of nonzero entries scales polynomially in the number
of modes M and the maximal photon number Nmax, ensuring
the efficiency of the expansion.
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