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Quantum machines have the potential to serve as groundbreaking tools for scien-

tific discovery in the coming decades. As the complexity of these devices increases, it

may be necessary to borrow ideas from complex classical systems, and build them in

a modular fashion, with independently designed, optimized, and tested components,

networked together into a functioning whole. To build a modular machine from su-

perconducting circuits requires the ability to perform operations between quantum

bits housed in separate modules. For this, we must be able to move qubits between

modules, or generate entanglement across the network, conveying information in the

form of photons. In all implementations to date, photon loss in the links between

modules is a dominant source of error, which must be overcome in order to build a

scalable modular machine. We demonstrate two approaches for rapid and faithful

quantum communication and entanglement between modules in a superconducting

quantum network. Encoding information in cavity resonators allows application of

strategies for error mitigation in harmonic oscillators to detect photon loss in the

communication path. Using a low-loss communication bus, we transfer a qubit in a

multi-photon encoding and track loss events to improve the fidelity. Furthermore,

generating entanglement with two-photon interference and post-selection against loss

errors produces a Bell state with half the error obtained in the single photon case. We

discuss several routes towards high-fidelity operations in superconducting quantum

networks based off these tools.
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Chapter 1

Introduction

1.1 Quantum computing

The advent of electrical1 computers has had an impact on the world that cannot

be overstated. The effect on daily life is obvious to anyone with a cell phone, and is

beyond the scope of this thesis. More close to home is the impact of computing power

on technological and scientific development. It is the domain of a physicist to reduce

a complicated physical system to one which can be understood on a whiteboard,

but the ability to produce detailed numerical simulations for nonlinear systems, or

to check the validity of simplifying assumptions, is indispensable. Moreover, there

are seemingly simple problems on which one can make no headway beyond educated

guesses until modeling numerically. This makes the laptop, or the computing cluster,

an essential scientific tool.

The continual advancement of speed, memory and parallelism, without a corre-

sponding increase in size or cost, is a remarkable achievement. One of the drivers of

this progress is the well-known Moore’s Law, an observation made in 1965 by Gor-

don Moore [1]. The trend Moore noted, which has persisted for 6 decades, is that

1. as a successor to organic and mechanical

1
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new integrated circuits tend to double in their transistor count, and hence number

of operations per cycle, every 2 years or so. This growth has largely been driven by

miniaturization, as the minimum feature size of commercial semiconductor fabrica-

tion has shrunk by a factor of two roughly every 4 years2, from 10 µm in 1971 [2] to

10 nm in 2016 [3]. A steady exponential over six order of magnitude is even more

amazing when one considers that Moore made his observation based on five data

points. In addition to improving device density, smaller transistors are faster, since

their reduced resistance and capacitance improves switching times, and hence, clock

rates.

While Moore-like progress has driven every advance in computing since the start

of the Space Race, it cannot continue indefinitely. The simplest reason is that atoms

have a finite size, and it is impossible to make metallic features smaller than a few

Å that still act like a metal. Of course, there are practical limits before this, and

diminishing returns on pushing further miniaturization before this hard lower bound.

A concern one might have is that, as the number of transistors per area increases,

the heat dissipated into the chip will rise with it, leading to a thermal runaway.

Fortunately, Moore’s law has a cousin, Dennard scaling, the 1974 observation [4]

that the power consumption of a transistor is proportional to its area. This leads to

a constant power usage per area on chip as the transistor density increases. This

is essential for continued performance improvements, not merely due to the cost of

wall-power consumption, but so the processor does not simply melt. The problem

is that Dennard scaling started to break down a little more than ten years ago [5],

which is partly responsible for the stagnation in processor clock speeds over the last

few years. The end result is that, while it may still be possible to push for smaller

transistors and denser chips, it may not be a good idea.

2. The increase in count is twice as fast as the increase in linear dimension because the count
follows an area law.
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The eventual end, or at least saturation, of traditional transistor density and speed

has prompted many alternative routes for the future of computing. New kinds of tran-

sistor technology may provide different scaling constraints. However, the emergence

of quantum technologies prompts a more drastic paradigm shift.

For a compelling argument for why quantum mechanical hardware might be of in-

terest and use, one can look to the first such argument, made by Richard Feynman in

1982 [6] in a lecture about simulating or imitating physical systems on a computer. In

particular, he describes a kind of computer which would be adept at predicting prob-

abilistic natural processes, like quantum mechanics. This is an important scientific

task in order to gain more understanding and predictive power over real materials.

Feynman gives up on the idea of efficiently calculating the probability of each pos-

sible outcomes, since the number of probabilities to compute is exponentially large

in the system size. Instead, one can build a computer which is itself probabilistic,

and simulate the system and record the output n times, yielding an estimate of the

probabilities with relative accuracy proportional to 1/
√
n. The crucial insight is that

classical machines have a difficult time emulating quantum ones, since quantum me-

chanics deals with probability amplitudes, which do not add the same way classical

probabilities — they interfere. This makes a classical machine rather bad at simu-

lating a quantum one. One instead considers a computer with elements that behave

quantum mechanically themselves.

Feynman’s insights spurred significant interest in the new field of quantum simula-

tion. But in the next decade the view of what a quantum computer could do expanded

with the discovery of several algorithms which use this interference property to solve

computational tasks which have nothing to do with quantum physics at all. Perhaps

the first and most-often quoted was Peter Shor’s algorithm for integer factorization

in sub-linear time, a substantial improvement over the best known classical algorithm

[7]. Another, Grover’s search algorithm [8], makes clear use of the interference prop-
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erties of quantum states to enhance the probability of getting correct answer and

suppress the wrong ones. The past two decades has seen continual growth in the

quantum algorithms toolbox, as well as in classification and understanding thereof;

see for example [9]. Other, more recent, developments have turned back to the origi-

nal quantum simulation idea, with applications in quantum chemistry. Some of these

methods, such as the variational quantum eigensolver [10], lend themselves to the

mapping of a wide variety of optimization problems onto the problem of finding the

ground state of a quantum mechanical Hamiltonian, and can do this very efficiently.

The ever-growing interest in programmable quantum simulators and universal

quantum computers leads naturally to the question of how to build such a machine.

This thesis aims to carve out a small part of that question.

1.2 Modularity as a design principle

When considering how one might put together a quantum computer, it is worth

making some comments about how classical computers are built. The question of

computer architectures is far beyond the scope of this thesis, but I will make a few

general observations which serve to motivate similar ideas in quantum machines.

The central point is that most classical computers3 are constructed out of simpler

building blocks. The idea of such a modular construction has many implications, and

is present at all scales of design. Here we comment on a few of the ways in which

classical computers are modular in construction, and some of the advantages.

Modular processors and memory

At the heart of a modern computer is a memory unit, which stores data, and a

processing unit, which performs operations on said data. But both of these parts

3. Most complex machines in general, really.
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have many subdivisions, and hierarchical structure. For instance, modern processors

have several levels of local memory (“caches”), with reduced size and increased speed

as they get closer to the heart. This hierarchy has huge advantages over an isotropic

memory bank, which would either be extremely expensive or very slow. Additionally,

newer processors may contain several interconnected “cores,” which can function as

independent processors with their own local caches. At some point, CPU designers

realized it was more feasible to connect four cores, rather than make one core four

times larger. This allows for a kind of tiling of functional blocks, which provide an

organized route towards increased complexity.

Modular assembly

A layer up from the modular design of individual components, there is a modularity

in the assembly of those components. The fact that one can buy a processor, RAM,

and hard drive from three different vendors and plug them in to a motherboard

from a fourth, all before lunchtime, without any advanced technical experience, is

a remarkable achievement. This degree of interchangeability was made possible in

part by competition in the market, but it also makes sense from a design-oriented

perspective. Having these essential parts of a computer be independent in their

design, optimization, and manufacture allows progress to occur in parallel. Advances

in memory can be made by researchers who are not experts in processor design, for

example.

Replaceable parts are also an essential feature for both emerging and mature

technologies. Computers in the 1940’s had to contend with the high failure rates of

vacuum tubes. ENIAC, one of the first general purpose electronic computers, had

18,000 vacuum tubes, and the operators had to replace one about every two days

[11]. While modern hardware is much more reliable, failures still happen, especially

in large-scale operations. According to a report by Google in 2007 [12], the failure
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rate for disk drives in their server farms was a few percent per year; in the population

of 100,000 drives included in their study, this is several failures per day4. The notion

that reliability allows scale is clear here, but it is certain that neither of these examples

would be possible without replaceable parts.

The next step: modular networking

The final level of modularity relevant here is the idea of networks. Where do we go

once we have built the largest or densest processor we know how to build, but still need

more computing power? The answer in classical computing is unquestionably to build

a network of smaller machines which can work in parallel. Distributed computing is

responsible for a huge variety of large-scale scientific and industrial tasks which are out

of reach for single computers, because of time or memory roadblocks. But this idea of

networking is especially relevant for early-stage hardware, when it is not yet obvious

how one might double the complexity of a processor without encountering a host

of new design problems and constraints. Freely-scalable quantum integrated circuits

are an active research goal, but many of the current approaches require industrial-

level fabrication capabilities, which are simply not widely available to the scientific

community. This bottleneck means developing methods for scaling networks of less-

complex systems is a valuable approach for the academic community to continue to

drive innovation.

Modularity for quantum machines

Modularity is at the heart of design, assembly, and scaling of classical computers, but

it is not without challenges. A central task in a modular or networked configuration

is communication between modules. This comes with issues of latency, bottlenecks,

4. This is even after screening for faulty hardware before installation. Reliability of manufacture
is an entirely separate issue. I had to replace brand-new desktop RAM when running simulations
for the sample hardware in Chapter 7.
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routing, information loss, and error correction. A particularly challenging scaling

problem is the issue of getting signals on and off of a chip. As the chip size increases,

the number of bits can scale as the area, but the space for interconnects along the

edge goes as the perimeter, and hence grows more slowly. This necessitates the

use of the third dimension for signal routing. Communication between quantum

modules faces all of these problems, as well as some new ones. Namely, the problem

of communication errors requires a new set of tools in the quantum domain.

1.3 The structure of this thesis

This thesis describes two experiments which represent complementary routes towards

error-corrected quantum networking in a circuit quantum electrodynamic (cQED)

platform.

Chapter 2 will lay out some basic formalisms and concepts of quantum information

that will run throughout this work, including quantum bits (qubits), measurement,

and entanglement. A central theme of this work is quantum errors and error cor-

rection, since information loss between modules in cQED networks appears to be a

major bottleneck. We will give the basic language for talking about quantum error

correction in this chapter. We also present a few envisioned architectures for modular

quantum machines and their relation to the experiments which make up this thesis.

Chapter 3 will introduce a vehicle for storing quantum information, the harmonic

oscillator, which is well-suited for the task of distributing information in a cQED net-

work. This chapter will end with a discussion of how to detect and correct energy loss

errors in a harmonic oscillator. We will begin with an encoding strategy which fails

to correct more errors than in introduces. Motivated by insight from this example,

we will discuss a few encodings which can improve the performance of the system.

Chapter 4 will consider what kind of interactions and mediators we need to net-
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work harmonic oscillators in cQED. The central theme will be building links which

use microwave transmission line to carry information with photons. Uni- and bi-

directional channels for communication and entanglement will be discussed, and the

effect of photon loss in the link will be considered in a few different regimes. We will

discuss strategies for suppressing the effects of this loss, as well as differences between

linking qubits versus oscillators.

Chapter 5 will turn to the implementation of oscillators, qubits, transmission

line links, and the couplings discussed in the previous chapter, in a three-dimensional

cQED hardware platform. I have really stood on the shoulders of giants when it comes

to this, so I will defer much of the technical discussion to other theses [13, 14, 15],

and mainly include details which are non-standard, or not covered elsewhere. This

includes the design and measurement of coaxial transmission line resonators for the

experiment in Chapter 7.

In Chapter 6 we will discuss the pitch and catch experiment that I worked on

with Chris Axline and Wolfgang Pfaff [16], in which we implemented the proposal in

[17] to send quantum states and generate entanglement between two modules with

propagating photons in a unidirectional transmission channel. Chris’s thesis contains

a very complete description of the experiment ([15], Chapter 7), so I will not reproduce

the technical details, but rather summarize the results and focus on the advantages

and challenges of this approach, and what I learned from this experiment. I will try

to focus on aspects of the approach which are not discussed elsewhere.

The last technical chapter will be the quantum network bus, on which I worked

closely with James Teoh, and for which a manuscript is in preparation [18]. This ex-

periment uses a bidirectional, standing-wave channel to accomplish some of the same

goals as pitch and catch, but the use of a higher-quality link, as well as independent

readout of the modules, allowed us to implement the error-correction state transfer

protocol envisioned in Chapter 6. The bidirectional link also admits new features
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based on interference of photons from the two modules, which we use to implement

a beamsplitter transformation between microwave cavities in separate modules. We

use the beamsplitter, and associated Hong-Ou-Mandel interference [19], to generate

an entangled state across the network which we can check for errors locally, allowing

us to generate higher-fidelity entanglement with multiple photons.

Finally, Chapter 8 will try to provide an outlook for these two approaches. I’ll

discuss how these tools can be combined and expanded to build networks with more

modules and higher quality communication channels. I’ll also explain some broader

applications for the quantum network bus, including how it can be used to realize

operations over the network, a novel approach which may simplify the networking

apparatus.



Chapter 2

Modular Quantum Processors

Given our interest in building a quantum computer, and having discussed some of

the appeals of modular design principles, this chapter will consider these two goals

together. In Section 2.1, we will lay out some of the essential properties of quantum

bits and their manipulation, before turning to interactions between qubits in Section

2.2. Section 2.3 will discuss some of the things that can go wrong. The concept (and

prevalence) of quantum errors will bring us to a discussion of quantum error correction

by grouping multiple qubits together into a so-called “logical qubit” (Section 2.4.

Finally, in Section 2.5 we will consider a few different ideas for modular quantum

machines, and looks at how integrating traditional error correction with them may

prove difficult. This will motivate the idea of a special kind of logical qubit made of

only one object, rather than multiple, which may prove more amenable to essential

operations in a modular quantum computer.

10
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2.1 Quantum bits

2.1.1 Bits and Qubits

We begin by describing the elementary building blocks of quantum computer, the

quantum bit (abbreviated “qubit”), and how it differs from a classical bit (simply,

“bit”). One statement of the difference between bits and qubits that I like (and is

some derivative of something I remember first hearing from Michel Devoret) is that

bits have a unique description — their state is labeled by either 0 or 1. For qubits the

story is rather different, as there is no such unique labeling, but rather a continuous

family of labels, or bases, with which to describe the state, all of which are equally

good and equivalent.

This lack of a preferred basis is equivalent to the notion that a qubit state can be

written as a vector in a two-dimensional vector space (Hilbert space), fully described

by two complex numbers. Again, there is a continuous family of equally valid basis

states, but the most common way to see the state written is

|ψ〉 = α |0〉+ β |1〉 =

α
β

 (2.1)

with α, β ∈ C.

We use a handy notation for the inner product, a measure of the length and

similarity of two vectors:

〈0|0〉 = 〈1|1〉 = 1

〈0|1〉 = 〈1|0〉 = 0

(2.2)

which means that |0〉 and |1〉 are orthogonal to one another, and have unit length.

Orthogonality is a requirement for these two states to comprise a basis. Finally, we

consider the length of |ψ〉, and find that it is equal to one as long as |α|2 + |β|2 = 1,

a condition referred to as normalization. We will often (read: immediately) cheat
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and suppress this normalization when it is clear from the context that the state

vector should have unit length. Another simplification is that the overall phase of the

complex numbers α and β is irrelevant; that is, multiplying the entire state vector

by any unit complex number changes no physical observable quantity. So there are

really only two real parameters needed to completely describe this state.

2.1.2 Projective measurement and operators

To get a better sense of what this is all for, we will introduce the phenomenon of

measurement, which is of central importance to quantum mechanics and quantum

information machines. After all, if we perform a computation, we need to read out

the answer at the end.

When measured, a single qubit always 1 gives a binary outcome. Essentially,

measurement turns a qubit back into a bit, at least for a time. The meaning of the

coefficients α and β in this context lies in their relation to the probabilities with which

the two outcomes of this measurement occur. When performing such a measurement,

one finds the answer 0 with probability p0 = |α|2 and 1 with probability p1 = |β|2.

This is the motivation for working with normalized vectors, since the length of ψ is the

sum of these two probabilities. If there are only two outcomes, these probabilities had

better add up to one. Note that in this imagined experiment, there is no difference

between, for example the two states

|+x〉 ≡ |0〉+ |1〉

|−x〉 ≡ |0〉 − |1〉
(2.3)

to which we give special names because of their particular importance, to be seen

1. When we speak of measurement in this thesis, we consider it to be instantaneous and projective.
For some experiments demonstrating the continuous interplay of measurement and unitary dynamics,
see [20, 21, 22, 23, 24, 25].
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momentarily. Both of the above have p0 = p1 = 0.5, so they will appear identical to

our experiment.

So far, a qubit seems to behave the same as a bit, but with some extra randomness

thrown in. But by remembering our earlier comments about the equivalence of differ-

ent bases, we can note that the above states, which are orthogonal by construction,

can be used to describe any other states; for example,

|0〉 ≡ |+z〉 = |+x〉+ |−x〉

|1〉 ≡ |−z〉 = |+x〉 − |−x〉

|ψ〉 = αx |+x〉+ βx |−x〉 αx = α + β, βx = α− β.

(2.4)

We call this the “x basis.” Note the introductions of new names for |0〉 and |1〉, which

we will use interchangeably, so that we can call it the “z basis” for symmetry. More on

those names in a moment. Since there is no preferred basis, anything we can do in one

we can do in another. This includes measurement — we can measure a qubit in the x

basis just as well as in the z basis. If we do this on the state |+x〉, we’ll find outcome

+1 every time, and conclude there is no randomness at all. Moreover, if we measure

the state |−x〉 in the x basis, we’ll find −1 every time. In this basis, these two states

are maximally distinguishable. This basis-dependent apparent randomness, which

has no classical analogue, is a central feature of qubits.

Any basis can be defined by an operator (matrix) for which the basis states are

eigenvectors with distinct eigenvalues. These eigenvalues represent the measurement

outcomes, and are sometimes just labels, but can correspond to physically measured

values. For the bases discussed so far, these operators are called the Pauli matrices,
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and the correspondence is:

σz |+z〉 = +1 |+z〉

σz |−z〉 = −1 |+z〉

σz =

1 0

0 −1



σx |+x〉 = +1 |+x〉

σx |−x〉 = −1 |+x〉

σx =

0 1

1 0



σy |+y〉 = +1 |+y〉

σy |−y〉 = −1 |+y〉

σy =

0 −i

i 0


(2.5)

Note the addition of the y basis, with basis states |±y〉 = |+z〉 ± i |−z〉. We refer to

the collection {|±z〉 , |±x〉 , |±y〉} as the cardinal states.

Given an arbitrary basis |±n〉 in which to make a measurement, the probabilities

of the two outcomes when measuring a state |ψ〉are

p+ = | 〈+n|ψ〉 |2 = 〈+n|ψ〉 〈ψ|+n〉 p− = | 〈−n|ψ〉 |2, (2.6)

which is the general case of the z basis measurement discussed above.

To complete this discussion of measurement probabilities, we define the expec-

tation value of a measurement, which is the average of all the possible outcomes,

weighted by the probabilities of those outcomes. For a general operator O with

eigenvectors {|oj〉} and eigenvalues {λj}, the expectation value is

〈O〉 =
∑
j

λjpj =
∑
j

λj 〈ψ|oj〉 〈oj|ψ〉 = 〈ψ|O |ψ〉 , (2.7)

where we have used the fact that O can be written in its eigenbasis as O =
∑

j λj |oj〉〈oj|.

2.1.3 The Bloch sphere

The discussion of the essential features of single qubits benefits from a geometric

visualization. A common way to represent the Hilbert space of a qubit is the Bloch

sphere, where the state of the qubit is a vector anchored at the center of a unit sphere
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Figure 2.1: The Bloch Sphere. An arbitrary pure qubit state can be parametrized
by polar angle θ and azimuthal angle φ. A mixed state requires also a length, or can be
parametrized by Cartesian coordinates, (x, y, z) = (〈σx〉 , 〈σy〉 , 〈σz〉).

and whose tip is on the surface. We can then interpret the magnitude and complex

phases of the coefficients of the qubit state as geometric quantities, namely

|ψ〉 = α |+z〉+ β |−z〉 = cos

(
θ

2

)
|+z〉+ eiφ sin

(
θ

2

)
|−z〉 , (2.8)

with φ ∈ [0, 2π] the azimuthal angle, and θ ∈ [0, π] the declination from the north

pole. As mentioned in Subsection 2.1.1, these two real numbers are sufficient to

describe the state vector. In this representation, shown in Figure 2.1, the pairs of

cardinal states introduced above point to opposite sides of the sphere, with |±z〉

pointing to the north and south poles, and |±x〉 and |±y〉 on the equator.

2.1.4 Evolution and gates

So far we have discussed different qubit states on the Bloch sphere, but we haven’t

discussed how one gets their qubit to go from one state to another. The general

prescription is to apply some control to the system, which causes the state to con-

tinuously evolve. In this section we will give an example of how one can rotate the

qubit state from an eigenvector in the z basis to one in the x basis. A much more

complete and pedagogical discussion is given, for instance, in [26]. We describe the
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time evolution under a Hamiltonian with the Schrödinger equation

i
∂

∂t
|ψ〉 = H |ψ〉 H = Ωσy, (2.9)

which, for a qubit, is just a simple matrix equation. Note that we are using a con-

vention where the Hamiltonian has units of frequency rather than energy, which

corresponds to setting ~ = 1. The quantity Ω is called the Rabi frequency, or Rabi

rate. This is an eigenvalue equation in the y basis — the time evolution of the states

|±y〉 is just a phase factor e∓iΩt. However, for superposition of these two states (so,

any other state), the evolution is of the form

|ψ(t)〉 = αye
−iΩt |+y〉+ βye

+iΩt |−y〉 (2.10)

By writing any initial state in the y basis and applying this formula, the time evolution

can be computed. But an often-more-useful formalism is to integrate the Schrödinger

equation and calculate the time-dependent operator which corresponds to this evolu-

tion, which is called the propagator. For this kind of time-independent Hamiltonian,

the propagator is defined as

|ψ(t)〉 = U(t) |ψ(t = 0)〉 = e−iHt |ψ(t = 0)〉 = e−iΩtσy |ψ(t = 0)〉 (2.11)

Through a handy identity (true for any of the Pauli matrices),

e−iΩtσy = cos ΩtÎ− i sin Ωtσy (2.12)

which will continuously rotate the state about the y axis on the Block sphere, inter-

changing z and x eigenstates.

This kind of continuous rotation is a tool used in most any quantum information
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platform to enact discrete gates. For instance, the above propagator, when Ωt = π,

will swap the position of the |±z〉 states, as well as the |±x〉 states, and is called a Y

gate, or a π pulse about the y axis. The same evolution for Ωt = π/2 has the effect

|+z〉 → |+x〉 → |−z〉 → − |−x〉 → − |+z〉 Yπ/2 =
1√
2

1 −1

1 1

 , (2.13)

called a π/2 pulse, often denoted Yπ/2 to distinguish it from the “full” Y gate, some-

time written as Yπ for clarity. We will continue to use this notation of Pauli matrices

σi when describing Hamiltonians, and capital letters when describing the unitary

operations that result.

These types of gates are essential parts of quantum algorithms. They can also

be very useful in practical implementations thereof, since not all physical hardware

platforms have the same native capabilities. For instance, above we discussed mea-

surement in arbitrary bases, but this is not typically possible. In our platform of

choice, cQED, we can usually only measure in the z basis2. So how then do we mea-

sure in, say, the x basis? The easiest and most common method is to apply a Yπ/2

rotation on the qubit before measuring in the z basis; this exchanges x for z and

effects an x measurement, and is shown in Figure 2.2. Note, however, that there is a

phase acquired in Equation 2.13 as one goes around the Bloch sphere. This phase is

not visible in this measurement, but it may not be desired when the gate occurs in

the middle of some sequence of operations. A more faithful exchange of the x and z

bases is the Hadamard gate, defined as

|+z〉 ↔ |+x〉

|−z〉 ↔ |−x〉
H =

1√
2

1 1

1 1

 , (2.14)

2. With certain tricks, one can measure directly in other bases. For examples see [27, 28]
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which cannot be implemented directly with a single Pauli Hamiltonian, but can be

generated with H = Ω(σx+σz), or with two consecutive rotations of the kind we have

discussed.

Y Z
=X

H Z

or

Figure 2.2: Single Qubit Basis Change. A qubit can be measured in the x basis by
rotating with a Hadamard or Y gate, then measuring in the z basis.

2.1.5 Impure states and the environment

So far we have discussed quantum states which can be fully described as a state vector

living on the surface of the Bloch sphere, which are called pure states. We saw that

these states can exhibit randomness in measurement, but there is always a basis in

which they will give a deterministic result. How does quantum mechanics describe a

truly random outcome, that is equally random in any basis? These kinds of processes

we can emulate classically by flipping a coin, for instance. These states must be “far”

from a pure state in some sense — they must be equally far from any pure state to

be equally random in all bases. The point in Figure 2.1 which is equidistant from

any point on the surface is the center of the Bloch sphere, so we use vectors inside

the Bloch sphere to represent these so-called mixed states.

We cannot describe mixed states with a state vector, but instead with a matrix,

called the density matrix, for which we use the symbol ρ. Properly, ρ is an operator

which can be represented by a matrix. This matrix can still be written in any basis

in Hilbert space, and we usually use the z basis like we did for state vectors. The

simplest example is the density matrix for a pure state |ψ〉, which we write is

ρ = |ψ〉〈ψ| , (2.15)
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which seems rather pointless, but is fine. The real use comes when we want to write

down our coin flip example. The density matrix for a fair coin is

ρ =
1

2
|+z〉〈+z|+ 1

2
|−z〉〈−z| =

1
2

0

0 1
2

 (2.16)

which we can interpret in words as “equally likely to be in |+z〉 as in |−z〉.” This

looks like a superposition, but it is decidedly not. When written as a sum of terms

corresponding to orthogonal states, the coefficients are probabilities, and are strictly

positive (and sum to one), so they do not interfere the way that amplitudes in a

superposition can. This maximally-mixed density matrix is the same in any basis:

ρ =
1

2
|+z〉〈+z|+ 1

2
|−z〉〈−z|

=
1

2
|+x〉〈+x|+ 1

2
|−x〉〈−x|

=
1

2
|+y〉〈+y|+ 1

2
|−y〉〈−y| ,

(2.17)

This non-obvious fact makes clear the basis-independence of the measurement prob-

abilities.

The density matrix lends itself to being described concisely in terms of expectation

values of measurements, which is excellent news, since that is what we measure when

we take an ensemble average over many copies of the state. The expectation value of

an operator O is generalized from Equation 2.7 using the trace:

〈O〉 = Tr (ρO) =
∑

|φ〉∈{|+z〉,|−z〉}

〈φ|ρO|φ〉 = 〈+z|ρO|+z〉+ 〈−z|ρO|−z〉 , (2.18)

which gives, in the above coin flip example,

〈σz〉 = Tr (ρσz) =
1

2
− 1

2
= 0 (2.19)
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In the general case, one writes

ρ =
1

2

(
Î + 〈σz〉σz + 〈σx〉σx + 〈σy〉σy

)
(2.20)

Returning to our graphical picture of Hilbert space, the coordinates of the state

vector in the Bloch sphere are (x, y, z) = (〈σx〉 , 〈σy〉 , 〈σz〉). In contrast to a pure

state, the length of this vector is no longer required to be equal to one; for instance,

the maximally mixed state is located at (x, y, z) = (0, 0, 0).

But we haven’t yet said under what situation this kind of classical randomness

appears in a quantum experiment. How might we find a qubit which seems to carry

no information at all? Let’s say you prepare a qubit in the state |+x〉 and then

measure it in one of the three Pauli bases. You would expect a deterministic answer

of +1 in the x basis, and randomness in the z and y bases. Imagine, however, that

in between the time you prepare the state and measure it, your lab-mate measures

it in the z basis, and discards her random answer. In doing this, she will project

the qubit into |+z〉 or |−z〉. When you measure the state, you’ll find randomness

in the x or y bases, since you’re now measuring in the wrong basis. But you’ll also

find randomness in the z basis, because even though the qubit is in a z eigenstate,

you don’t know which one. You will get the same answer she did, but if she doesn’t

tell you what it was, you will have nothing to compare your result to. If you repeat

this experiment many times, preparing |+x〉, allowing your lab-mate to measure in

the z basis, and then also measuring in the z basis, the statistics of your experiment

will suggest the qubit is not prepared in a z eigenstate. Likewise, if you sometimes

measure in the x or y bases and look at those results too, the qubit will not appear

to be in an eigenstate of any basis. This set of experiments is enough to infer the

density matrix, since we measure all of the expectation values of Equation 2.20, but

they will all be zero, and the qubit will sit at the center of the Bloch sphere — the
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maximally mixed state.

This is one way to prepare a mixed state. While it seems a rather contrived

example, it is exactly how one can describe what happens when your qubit has un-

intended interactions with the environment, which tries to measure the qubit state

faster than you can manipulate it. We will discuss this further in Section 2.3. But

first, we will investigate the case where your lab-mate is replaced with another quan-

tum system. This situation will produce measurement results on your qubit which

are indistinguishable from the case we have just discussed — until we investigate the

correlations.

2.2 Interacting qubits and entanglement

In Subsection 2.1.5 we discussed a situation where a qubit will have a completely

random measurement outcome in any basis; in stark contrast with a pure state, this

maximally mixed state contains no quantum information at all. We interpreted this

as the information being lost to the environment. But there is another case we must

consider, which is when that information is not lost, but is simply stored non-locally.

What we mean by this is that two bits of quantum information can be stored in two

qubits, but in an inseparable way, where the information is stored in the correlations

between the qubits, not in the state of one or the other. When we look at only one

of the two qubits, it will look maximally mixed because it contains no information

However, when taken together, the correlations between the two qubits will reveal the

underlying state. This phenomenon is called entanglement, and its properties underly

(and in some cases, allow) much of the behavior of a quantum machine.

We will begin this discussion in Subsection 2.2.1 with a brief description of how

we write down states for multiple qubits. In Subsection 2.2.3 we will define some

entangled states and describe their properties. Subsection 2.2.4 will explain how
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one makes entangled states, with gates which act on multiple qubits, and how more

complicated quantum circuits can be build from some of these building blocks.

2.2.1 Two-qubit states

We begin by describing two-qubit states in the general. We will still write a state

vector, but instead of indicating the state of a particular qubit, it will give the state of

the system, or collection of qubits. With d qubits, the state lives in a 2d-dimensional

vector space, so we can always describe the state in some basis of that space. A

convenient basis is to use strings of 0’s and 1’s, where each bit in the string corresponds

to one of the qubits. For example, for two qubits, one can write

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 =



α00

α01

α10

α11


. (2.21)

Strictly, these strings are a shorthand: |01〉 = |0〉⊗ |1〉 (sometimes |0〉 |1〉 when the

meaning is clear) is called a tensor product, which means that we assume some un-

derlying divisibility to the system Hilbert space. The tensor product just takes two

vectors from different Hilbert spaces and glues them together into a vector which lives

in this new, larger, space.

A special kind of two-qubit state is one for which Equation 2.21 factors; for in-

stance,

|ψ〉 =
1

2
|00〉+

1

2
|01〉+

1

2
|10〉+

1

2
|11〉

=
1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)

= |+x〉 ⊗ |+x〉 .

(2.22)

This kind of state, which can be written as a product of two pure states, is called a
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separable state. When the system is in such a state, the behavior of the two qubits

is completely uncorrelated, and can be prepared by applying independent gates to

each qubit: |+x〉⊗ |+x〉 = (H |0〉) ⊗ (H |0〉) = (H ⊗ H)(|0〉 ⊗ |0〉). However, there

are (many more) states which do not admit such factorization; for example,

|ψ〉 =
1

2
|00〉+

1

2
|01〉+

1

2
|10〉 − 1

2
|11〉 (2.23)

This is an example of an entangled state, where the two qubits’ states are too linked to

be separated out. We will explore the special properties of entangled states beginning

in Subsection 2.2.3, and further discuss their use in a quantum computer in Subsection

2.5.3.

2.2.2 How to ignore a qubit

To discuss the properties of entanglement and two-qubit states at large, we need a

mechanism for describing measurement of a particular qubit in a two-qubit system.

Let’s say you are measuring the first qubit (qubit 1) in the z basis, but you can’t, or

don’t want to, measure qubit 2. The framework we use to “ignore” one or more qubits

in a multi-qubit state is the partial trace, which takes a state vector and returns a

density matrix.3 The partial trace for a two-qubit system in state |ψ〉 is defined as

ρ1 = Tr2(ρ) =
∑

|φ2〉∈{|+z〉,|−z〉}

〈φ2| ρ |φ2〉 = 〈+z2|ρ|+z2〉+ 〈−z2|ρ|−z2〉 (2.24)

where ρ = |ψ〉〈ψ| is the density matrix for the original two-qubit state, and |±z2〉 ≡

Î⊗ |±z〉. Here the notation Tr2(ρ) means “trace out qubit 2.”

3. The fact that tracing out qubits from the system requires the same formalism as Subsection
2.1.5 is a clue that entanglement and the environment have something to do with one another.
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Let’s give an example. The somewhat trivial case is a separable state like |00〉:

ρ1 = Tr2(|00〉〈00|)

= 〈02|00〉 〈00|02〉+ 〈12|00〉 〈00|12〉

= 〈02|02〉 |01〉〈01| 〈02|02〉+���
�〈12|02〉 |01〉〈01|����〈02|12〉

= |01〉〈01|

(2.25)

which is a pure state! The interpretation of this is that the two qubits knew nothing

of one another to begin with, qubit 1 doesn’t lose anything by ignoring qubit 2. Now

that we have reduced ourselves to a single-qubit density matrix, we can use Equation

2.18 to calculate expectation values of any operator for qubit 1.

2.2.3 Entanglement

What are the properties that define an entangled state? To answer this, we consider

an example of a particularly useful and easy-to-work-with entangled state, called a

Bell state:

|O+〉 =
1√
2

(|01〉+ |10〉) . (2.26)

There’s actually nothing terribly special about this state as compared to any other

entangled state. In fact, any so-called maximally entangled state can be turned into

any other with the right set of single-qubit gates. But Equation 2.26, along with

its cousins |O−〉 = 1√
2

(|01〉− |10〉) and |E±〉 = 1√
2

(|00〉± |11〉), form a basis for the

Hilbert space and have some readily apparent properties which make them useful4.

The task of preparing |O+〉 will be the subject of much of this thesis, and we’ll use

this state as an example for several of the properties of entanglement.

The Bell state |O+〉 has some obvious properties, and some not-so-obvious ones.

4. Here, O and E stand for “odd” and “even”, respectively, referring to the parity of the number
of excitations in these states.
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First we consider the individual measurement probabilities of qubit 1 in the Pauli

bases. Tracing out qubit 2

ρ =
1

2
(|01〉〈01|+ |01〉〈10|+ |10〉〈01|+ |10〉〈10|)

ρ1 =
1

2
(|0〉〈0|+ |1〉〈1|)

(2.27)

yields the maximally mixed state in Subsection 2.1.5. We know that this state has

random measurement outcomes in any basis, so it seems this entangled state I told

you was special looks just like a random coin.

To see the difference between an entangled state and a mixed state, we need to

measure both qubits. To do this we define a measurement operator on the two-qubit

space: σz⊗Î. This corresponds to measuring qubit 1 and doing nothing to qubit 2,

but doesn’t require us to trace out the second qubit. The expectation value of this

operator is zero (we already showed measuring σz gives a random answer), but if after

the measurement, the two-qubit state is projected into one of two pure states, |01〉

or |10〉, with equal probability depending on the measurement outcome. Let’s say we

take all the cases where we measured qubit 1 to be in |0〉. If we proceed to measure

qubit 2, we will always find it in |1〉. Likewise if we take the cases where qubit 1 was

in |1〉, qubit 2 is always in |0〉. We say that the qubits are perfectly anticorrelated

in the z basis — there are only two joint outcomes in this basis, which are shown in

Figure 2.3. Another way to say this is that qubit 2 has a definite state if and only if

you condition the measurement on the state of qubit 1.

This is all well and good, but this anticorrelation in the z basis would also be ob-

served for the mixed state ρ = 1
2

(|01〉〈01|+ |10〉〈10|), which we could have if someone

were randomly preparing either separable state |01〉 or |10〉 and not telling us which.

How do we distinguish the entangled state from this mixed one? We do this in the

same way as we did for one qubit in Subsection 2.1.5 — by preparing it many times

and measuring in one of a few bases on in each preparation. The entanglement will



2.2. INTERACTING QUBITS AND ENTANGLEMENT 26

a

b c

−1 1

−1

1

z1

z2

−1 1

−1

1

x1

x2

entangled mixed

−1 1

−1

1

y1

y2

I
I

X
I

Y
I

Z
I

I
X

I
Y

I
Z

X
X

Y
X

Z
X

X
Y

Y
Y

Z
Y

X
Z

Y
Z

Z
Z

Pauli operator

−1.0

−0.5

0.0

0.5

1.0

E
xp

ec
ta

tio
n 

va
lu

e

I
I

X
I

Y
I

Z
I

I
X

I
Y

I
Z

X
X

Y
X

Z
X

X
Y

Y
Y

Z
Y

X
Z

Y
Z

Z
Z

−1.0

−0.5

0.0

0.5

1.0

Figure 2.3: Correlations of Entangled States. a) Measurement correlations of two
qubits in three bases for a maximally entangled state (filled circles) and a maximally mixed
state (open circles). Correlations in z basis are maximal for both, but measurement in x
and y bases reveal more correlations for the entangled state. b) Joint Pauli expectation
values for mixed (left) and entangled (right) states. Horizontal axis labels denote which
pair of Pauli operators are measured.

reveal itself in an overabundance of correlations between the qubits. If we measure

both qubits in the x basis, for instance, the mixed state will yield totally uncorrelated

results, with equal probabilities for |+x〉 |+x〉, |+x〉 |−x〉, |−x〉 |+x〉, and |−x〉 |−x〉.

However, the entangled state |O+〉 will yield correlation in the x bases — only the

outcomes |+x〉 |+x〉 and |−x〉 |−x〉 will occur; likewise for the y basis. These results

are summarized in Figure 2.3.

Observations of these correlations are necessary and sufficient for demonstrating

entanglement. In analogy to Equation 2.20, the two-qubit state can be written in



2.2. INTERACTING QUBITS AND ENTANGLEMENT 27

terms of all the joint Pauli expectation values:

ρ =
1

2

∑
σ1,σ2∈{Î,σx,σy ,σz}

〈σ1⊗σ2〉σ1⊗σ2 (2.28)

The 16 expectation values in the above expression fully characterize any two-qubit

state, and we use them to graphically display the state. Figure 2.3b shows the joint

Pauli expectation values for both the maximally mixed state and the maximally

entangled state |O+〉. They differ clearly in the amount of two-qubit correlations, but

both show zero single-qubit expectation values, denoting that there is no information

stored locally in either case. A separable pure state like |+x〉 |+x〉 would show obvious

single-qubit Pauli expectation values for the Î⊗ σx and σx ⊗ Î operators.

2.2.4 Two-qubit gates

We have given a flavor of some of the properties of entangled states, and in Section

2.5 we will discuss some of their uses, but we haven’t yet described how one makes an

entangled state. This thesis is largely concerned with this question, so we introduce

several operations between multiple qubits, which will appear in different contexts

throughout.

Entangling gates

Two-qubit gates can be used to generate entanglement, and are important ingredients

in quantum algorithms. There is a broad class of such gates which look like a single-

qubit gate, controlled on the state of another qubit. The circuit symbols for some

important ones are shown in Figure 2.4. A simple one, which can take the separable

state in Equation 2.22 into the entangled state in Equation 2.23, is called the ZZ, or

CPHASE, gate. The name ZZ is read to mean “a Z gate on qubit 1, if qubit 2 is in

the −z eigenstate.” Since the Z gate flips the sign of the |1〉 component, this gate flips
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the sign on the |11〉 state, leaving the others untouched. This gate is symmetric on

permutation of the two qubits (it reads equivalently as “a Z gate on qubit 2, if qubit

1 is in the −z eigenstate”) and the circuit symbol reflects this notion. The effect of

the gate in operator notation is

CPHASE = Î− 2 |11〉〈11| =

00 01 10 11


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

(2.29)

where the column headers on the matrix are a reminder of the basis ordering we are

using (as per Equation 2.21). Note that the ZZ gate is not the same as the unitary

Z⊗Z = (Z⊗I)(I⊗Z). This is just two single-qubit gates applied simultaneously, which

does not generate entanglement. However, a Hamiltonian of the form HCPHASE =

gσz ⊗ σz does generate a CPHASE-like5 gate, and is a native interaction in cQED.

Another common two-qubit gate, which is also defined for classical computers, is

the XZ or CNOT1,2, gate. Following the same nomenclature, it is “an X gate on qubit

1, if qubit 2 is in the −z eigenstate.” We name qubit 1 the “target”, and qubit 2 the

“control.” Its dual, the ZX, or CNOT2,1, gate, has the opposite sense of target and

control. In matrix-land,

CNOT1,2 =



1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0


CNOT2,1 =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(2.30)

5. Specifically, this Hamiltonian generates a CPHASE followed by some single-qubit Z gates.
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Figure 2.4: Two-qubit Gates. a) Three universal two-qubit controlled gates. b) A
CPHASE gate can be transformed into a CNOT gate with two single-qubit gates on the
target (top) qubit. c) A SWAP gate constructed from three CNOT gates. d) A CPHASE
gate between two qubits (top, bottom) using a third (middle) as a mediator. SWAP gates
between top and middle can be constructed from CNOT gates, two of which (gray) cancel
out and are not needed. Implementation with native SWAP can be more efficient.

The circuit symbol in Figure 2.4 reflects the asymmetry of this gate. A non-obvious

feature of these gates is that you can change basis, and consider the above XZ gate

as “a Z gate on qubit 2, if qubit 1 is in the −x eigenstate” — it is invariant under

exchange of the z and x basis and the target and control. Another symmetric two-

qubit gate is the XX gate, which is an X rotation controlled on the x basis, but this

is less commonly used as primitive gate6.

Each of these two-qubit gates can be maximally-entangling — there are separable

states to which they can be applied to produce maximally entangled states. For

CPHASE, Equation 2.23 is such an input state. They also have the property of

universality — any one of them is sufficient for universal control over two-qubits,

when coupled with a complete set of single-qubit gates. This makes one or more high-

quality two-qubit gates essential for any quantum computing platform. Furthermore,

since any of these gates is universal, the others can be synthesized from it with some

6. The XX gate is a native operation in trapped ion systems called the the Mølmer-Sørensen gate
[29].
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single-qubit rotations. Figure 2.4b shows an example of how to construct a CNOT

from a CPHASE and Hadamard gates.

SWAP-like gates

There is another class of two-qubit gates which can be used to interchange the state

of the qubits. This may be useful in a system with reduced connectivity, where it

is necessary to move qubit states around to perform gates between neighbors, for

instance. The simplest is the SWAP gate, which does what you might expect:

SWAP : |ψ〉 |φ〉 → |φ〉 |ψ〉 SWAP =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


. (2.31)

While its matrix form looks similar to CNOT2,1, SWAP cannot produce an entan-

gled state from separable states. Interestingly, SWAP can be constructed from three

CNOT gates, as shown in Figure 2.4c, an identity which is also true for classical bits.

The potential utility of SWAP is shown in Figure 2.4d. Imagine you have three

qubits {1,2,3}, in a chain with only nearest-neighbor gates. If you want to implement

a CPHASE gate between qubits 1 and 3, the conceptually simplest way is the SWAP

1 and 2, perform the CPHASE between 2 and 3, then swap 1 and 2 again. Such an

operation can be constructed from an additional four CNOT gates, but native SWAP

gates would be much more efficient. This is also of use in a star- or tree-like structure,

where some “hub” qubits might be well connected to many other “spoke” qubits, but

the spoke qubits might only talk to one hub. In this way the hub can be used to

effect gates between spokes.

Finally, there are variations on SWAP which we call SWAP-like, because they
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have some similar properties. First is
√

SWAP, which is defined as

√
SWAP =



1 0 0 0

0 eiπ/4√
2

e−iπ/4√
2

0

0 e−iπ/4√
2

eiπ/4√
2

0

0 0 0 1


. (2.32)

which, unlike SWAP, is a maximally entangling gate. As the name suggests, applying
√

SWAP twice yields SWAP.

Somewhat more strangely, there is iSWAP, which looks like SWAP with some

single-qubit phases, but is decidedly not.

iSWAP =



1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 1


. (2.33)

Though it may not look like it, iSWAP is also a maximally entangling gate. Sur-

prisingly, it is equivalent (up to single-qubit Zπ/2 gates) to CPHASE×SWAP, as

described by Schuch and Siewert [30]. These authors point out that, in a chain of

qubits with only nearest-neighbor couplings, it is necessary to swap qubits around,

and give a few examples where the ability to do this in a single step while entangling

is advantageous. On the other hand, in a system with dense connectivity, SWAP is

largely a bookkeeping matter, so iSWAP is just as powerful as CPHASE or CNOT.

The SWAP-type interaction can be obtained with

HSWAP−like = gσ+ ⊗ σ− + gσ− ⊗ σ+, (2.34)

where we have introduced the raising and lowering operators σ+ = |1〉〈0| and σ− =
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|0〉〈1|, respectively. Interactions of this type are readily available in cQED, and we

will make use of them. As we will see in Chapter 4, when we apply these interactions

to harmonic oscillators, we will get something like SWAP and
√

SWAP, but with

some interesting wrinkles.

2.3 Quantum errors

So far we have discussed the ideal operation of gates and measurements, but quantum

systems are far from ideal. The power that originates from continuous rotations on

the Bloch sphere also make qubits very sensitive to small amounts of noise. This

inherent fragility of quantum information, along with the great care that must be

taken to protect it, make errors a central challenge in quantum computing.

In this section we will introduce common types of errors which occur on qubits,

as well as a common framework for discussing them, the Kraus map, which we will

employ in Chapter 3 to discuss errors in oscillators. We will turn in the next section

to the topic of how to correct these errors.

2.3.1 Types of quantum errors

In this section we will lay out some error types, but the exact mathematical formal-

ism will be saved for Subsection 2.3.2. In classical information systems there are a

few kinds of errors which can occur, most of which have some parallel in quantum

machines. A simple one which we will use as an example is the bit-flip error, which,

well, flips the bit from 0 to 1 and from 1 to 0. In the quantum case, there are two

kinds of bit flips, X and Y, but we’ll consider just X errors for simplicity. As usual,

we’ll represent the occurrence of an error with an operator: Abf = A†bf = σx. So the

occurrence of the error is described by applying this operator to the initial state ρi,
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resulting in final state ρf :

ρf = AbfρiA
†
bf = σxρiσx. (2.35)

A similar looking error type is the phase-flip, which is a rotation around the z axis:

Apf = σz.

Another kind of error is decay of probability from |−z〉 to |+z〉. This is very

common because most physical qubits use an energetically excited state as |−z〉,

and nature likes to absorb that energy and put it somewhere else. Formally called

amplitude damping, we will sometime call it a loss error, or a T1 process, which is

what we call the time scale on which this decay happens. It looks a little different:

AT1 = σ−. It’s different because σ− isn’t unitary, so σ−ρσ
†
− = σ−ρσ+ doesn’t preserve

the trace of ρ. This operation yields zero on the 0 state, because it can’t decay

anywhere. This is a bit odd, and leads to some interesting results; namely, the

absence of the error also has an effect on the state. Let’s look into that, with math,

because it’s necessary for understanding properties of error-correcting encodings used

in this thesis.

2.3.2 Describing errors with Kraus maps

In Equation 2.35, we said the action of the bit flip error was ρi = σxρfσx. Of course,

this must be something which happens only some of the time, with probability p. If

the error always happened, it wouldn’t really be an error, it would just relabel the

states. So we also need to describe the case where the error doesn’t happen. This

type of stochastic process will result in a mixed state, so it can’t be described with a

unitary operator. We use instead a more general process, called the Kraus map, which

is application of several operators with various weights. The set of Kraus operators
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(sometimes “jump operators”) is labeled {Ek}, and their action effects a process

ρf =
∑
k

EkρiE
†
k. (2.36)

Since the diagonals of the density matrix represent probabilities for each basis state,

their sum, Tr (ρ), should always be equal to one7. The condition for trace-preservation

is
∑

k E
†
kEk = Î.

Equation 2.36 can clearly take a pure state into a mixed state. But what are

the Kraus operators, and what is the resulting mixed state? If the error occurs with

probability p, then this number should appear on the error term in the sum. In the

notation of the operators in Subsection 2.3.1, the operator denoting the error should

be something like Ek =
√
pAk. Let’s examine this for a few of the error channels

described above.

Bit-flip

For bit-flip errors we have E1 =
√
p σx. For trace-preservation, E0 =

√
1− p Î, since

σ2
x = Î. The clear interpretation of this Kraus operator is “with probability 1−p,

nothing happens.” As an example, starting from the pure state ρi = |0〉〈0|, the error

channel results in

ρf = (1− p) |0〉〈0|+ p |1〉〈1| , (2.37)

which is mixed to the extent that the error probability p is close to one-half. As we

mentioned above, p = 1 is not really an error at all, and in this case the purity of the

state is preserved.

7. This is not always true. When the qubit lives in a larger Hilbert space, and there is probability
to go outside the computational subspace into the rest of the space, this can reduce the trace. This is
called code-space leakage. Physics is still probability-conserving. This is just a side-effect of ignoring
the rest of Hilbert space.
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Amplitude damping

Now for something a bit more interesting. As we said, the amplitude damping op-

erator is not unitary, which means E†1E1 is not proportional to Î. This means that

the rest of the Kraus operators will similarly not square to something proportional

to Î. The surprising conclusion is that the “no-error” case E0 cannot be written as

√
1− p Î as it was for the bit-flip error. So “no-error” has a backaction action on the

state, which is in general not unitary, and therefore not completely reversible. This

will be developed for a more extensive case when we talk about multi-level systems

in Chapter 3, but for a qubit it is straightforward.

We start with E1 =
√
p σ−. Since E†1E1 = p |1〉〈1|, this implies E0 = |0〉〈0| −

√
1− p |1〉〈1|. This is indeed not proportional to the identity. It has the effect of

reducing the population in the 1 state, even when the decay error didn’t happen. We

interpret this as a sort of Bayesian update — if an excitation wasn’t lost, it means

that is is more likely that there was no excitation to begin with, and the population

in 1 decreases continuously with p. Earlier we discussed mixed states as something

which result from interactions with the environment. In this case, the environment

likes to eat the excitation. If it sits there trying to take bites of the state and comes

up hungry, it will eventually conclude that there was no excitation to eat in the first

place. This no-error backaction results in an effective dephasing of the state, to be

discussed more in Chapter 3.

2.3.3 Discrete versus continuous errors

Here we make some final words of conclusion about quantum errors. It is a bit strange

that we began the topic of errors by claiming that qubits are continuously sensitive

to noise, but then formally introduced errors as discrete events which happen with

some probability. There is a dual to the Kraus map, a continuous description using

the Lindblad master equation (LME), the extension of the Schroödinger equation to
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density matrices.

The LME describes continuous evolution under a Hamiltonian H, which gives

unitary dynamics, and a Lindbladian L, which yields non-unitary evolution8. The

LME reads

dρ

dt
= −i[H, ρ] + γLρL† − 1

2
ρL†L− 1

2
L†Lρ. (2.38)

In this formalism, the coefficient γ denote the rates at which the error occurs. The

Lindbladian is related to the Kraus operators — integrating the LME yields a sum of

terms which look like powers of Lk. Specifically, the term γLρL† in the LME gives rise

to the sum of terms EkρE
†
k in the Kraus map (Equation 2.36). This sum terminates

for qubits, but in Chapter 3 we’ll see an infinite series for amplitude damping on

oscillators. The error probability after a time t is something like p = 1− e−γt, which

completes the correspondence between the discrete and continuous pictures.

These two descriptions predict the same density matrix, so you may wonder why

we bother with the Kraus map, and indeed, why it is even valid to treat continuous

error processes as discrete ones. The real use of this approach will become clear in

Section 2.4, where we will have the ability to measure whether errors have occurred.

Consider the bit-flip channel. If the underlying process is some small noisy angle

≈ θ of rotation about the x axis, then the Bloch vector will never really flip entirely.

However, if we have the ability to projectively measure whether a flip has occurred,

without measuring the state itself, then with a probability p ∼ sin2 θ, we will find a

bit flip. In a sense, a correctly tailored measurement forces one of the Kraus operators

Ek to be the one that occurred. When detecting errors in this way, the Kraus map is

the natural formulation of the problem because it closely corresponds to the resultant

measurement records. As we mentioned earlier, we are only going to concern ourselves

with strong, projective measurements. The dynamics when the strengths of the error

8. There can be multiple Lindbladians, but for simplicity we consider only one type of error here
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and measurement processes are similar is beyond the scope of this thesis.

2.4 Error correction and logical qubits

In the previous section we introduced a few types of quantum errors, and developed

a formalism, the Kraus map, for treating the effect of errors on a single qubit. But

what is the effect of errors on a computation, and what do we do about it?

Loosely speaking, any quantum algorithm will involve preparing an input state,

applying some (large) number of single- and multi-qubit gates, and then measuring

some subset of the qubits to extract an answer. But if an error occurs on any of

the qubits during the algorithm, it will probably give the wrong answer at the end.

If the probability of all the errors anywhere in the system adds to more than one-

half, then the algorithm will give the wrong answer most of the time. Given that

many interesting quantum algorithms which promise an advantage over classical ones

require many (dozens–hundreds) qubits, and even more (hundreds–thousands) gates,

the probabilities of individual errors need to be extremely small to not build up with

increasing qubit- and gate-count. Clearly, we need a way to recover from errors so

that a single one doesn’t completely derail the computation.

In this section, we will begin with a brief discussion of classical error correction,

then extend these ideas to the simplest quantum error correction code, the bit-flip

code. This is a prototypical example of a logical qubit, one made from multiple physical

qubits. We will describe the concept of a syndrome measurement, and explain how it

can be used to improve the performance of a logical qubit over physical ones. This will

bring us to the crucial concepts of overhead and fault-tolerance in error correction,

and some of the challenges therein.



2.4. ERROR CORRECTION AND LOGICAL QUBITS 38

2.4.1 Classical error detection and correction

As we mentioned in Section 2.3, there are a few types of errors in classical com-

puters. The simplest is the bit-flip, which we continue to use as an example here.

It’s somewhat simpler to describe errors which occur in memory, but the ideas also

can be extended to errors during operations. Classical RAM, for instance, stores a

number as a string of bits. For example, 6 = (110). But if something causes the

most significant (leftmost) bit to flip, then this string will read (010) = 2, and any

proceeding computation using this data will fail. A common way to deal with this in

early computers, before hardware was as reliable as it is today, was to add an extra

bit, which was set to 0 or 1, depending on whether the parity (the number of ones)

of the data string was even or odd, respectively. This is called a parity-check bit, and

in this example, we represent the number 6 = (0110), with the parity bit underlined.

Now, before any computation, we check that the parity bit agrees with the parity

of the data. If it does not, something terrible has happened, and the computation

usually aborts to avoid further corruption of data or an erroneous result.

The parity-check bit is an example of a simple error-detection protocol. It is

limited in scope, as it gives no way of knowing which bit flipped, and so there is no

way to correct the error. Additionally, it only works if an odd number of bits have

flipped. In many applications, this is not sufficient. We may want our computer to

detect errors and then correct them, rather than just stalling. In order to do this,

we need to know which bit flipped so we can flip it back. One way to do this is to

add redundancy. By storing the same information in a larger number of bits, the

information is delocalized, and local errors cannot completely corrupt it. A simple

example is a repetition code, where we use three (or any odd number) of physical

bits per logical piece of information — for example, 6 = ([111][111][000]). Within

each subgroup of three, each physical bit is initialized to the same value. This way,

if the middle bit flips, we have 6
?
= ([111][101][000]). By checking each subgroup to
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see if all physical bits are the same, we find an error in the middle subgroup. Two of

the three bits read 1, so we assume this is the correct value, and we reset the middle

bit to restore the correct string. While this encoding still only allows us to detect a

single error per subgroup, it has the advantage over the parity-check bit that we can

actually fix the error. The cost is tripling the size of the data string. Through this

section, we will quantify the advantages of this kind of scheme, as well as the cost.

2.4.2 Quantum bit-flip code

The quantum analogue of the classical bit-flip code looks very similar on the face of it.

However, there are a few subtleties which have to do with the properties of quantum

measurement.

Encoding

Figure 2.5a shows the structure of the three-qubit bit-flip code. We begin with a

quantum state |ψ〉 in the first data qubit (D1). Classically, we would measure D1,

and then set each of D2 and D3 equal to this value, but this would collapse an initial

superposition in D1. Instead, we must use a unitary procedure which flips D2 and

D3 to 1 if D1 is in the 1 state. This is the CNOT gate described in Subsection 2.2.4.

This series of two CNOT gate prepares the entangled state

|ψ〉 = α |0〉+ β |1〉 → |ψL〉 = α |000〉+ β |111〉 . (2.39)

We use the notation |ψL〉 to denote a logical qubit state — one that is not prepared in a

two-dimensional Hilbert space, but in some larger (in this case, 23 = 8-dimensional9)

one. The subspace spanned by |±zL〉 = {|000〉 , |111〉} is called the code space, and

|±zL〉 the code words.

9. More generally, the dimension is 2n for n physical qubits
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Error syndrome measurement

How do we check for errors in this encoding? We cannot in general simply measure

each qubit and compare, as we did in the classical case. If this is the end of the algo-

rithm and we simply want to learn the value of the logical qubit, then it is sufficient

to measure and majority vote in this way. But this collapses the superposition, so if

we are continuing the algorithm, this is no-go. So we need another way to extract

information from the system, while preserving the superposition. We are going to

ask the question: “which error occurred?” There are four possible outcomes: “no er-

ror,” “D1 flipped,” “D2 flipped,” and “D3 flipped,” corresponding to error operators

{Î, σ(1)
x , σ

(2)
x , σ

(3)
x }. If we are to distinguish these four cases, we need to measure two

bits of classical information. To do this, we add two extra ancilla qubits, A1 and A2,

to the mix.

Each ancilla will interact with two data qubits, as shown in Figure 2.5b,c, and

then be measured. This measurement will tell us “did either of these two qubits

flip?” without telling us which one flipped, or what its state is. When no errors

have occurred, the qubit states are the same; but if an error has happened, they will

differ. We apply a CNOT gate with D1 as control and A1 as target, then another

between D2 and A1. Each will flip A1 if the data qubit is in the 1 state. If they

are both 0, A1 will not flip; if both are 1, A1 will flip twice, returning to 0. If D1

and D2 are different, A1 will flip once and be measured in 1. This is a kind of parity

measurement, just like the classical parity check bit. As in that case, it doesn’t tell

us which bit flipped, just that an error occurred. The same process is repeated, or

carried out simultaneously, with D2, D3, and A2. The two measured bits are the

error syndrome, and together they tell us which of the data bits flipped, if any. The

mapping between error operators and error syndromes is

Î ←→ 00 σ1
x ←→ 10 σ2

x ←→ 11 σ3
x ←→ 01 (2.40)



2.4. ERROR CORRECTION AND LOGICAL QUBITS 41

D1 D2 D3

A1 A2

Z

Z

D1

A2

A1

D2

D3

10
-2

10
-1

10
0

Bit flip probability  

10
-3

10
-2

10
-1

10
0

In
fid

el
ity

single qubit
three qubits, uncorrected
three qubits, corrected

a b

dc

Figure 2.5: Three qubit Bit-flip Code. a) Encoding operation initializes logical
qubit into code space. b) Physical connectivity for ancilla gates for syndrome measure-
ments. c) Gates and measurements for error syndrome measurements. d) Infidelity versus
single-qubit error probability. Performance for single qubit, three qubits without syndrome
measurement, and three qubits with perfect error detection. Break even point p=0.5, where
corrected fidelity exceeds single-qubit fidelity, is circled.

Now we can unambiguously determine which qubit flipped without collapsing the

superposition, and apply a corrective X gate to restore it.

In many cases, knowledge of the error is sufficient, and it is not strictly necessary

to correct it. In this example, if we found a bit-flip occurred on D1, we could correct

it. However, we could just let it be, allowing the code space to be deformed, with new

code words {|100〉 , |011〉}. These two states are just as distant from one another (in

sense to be defined in Subsection 2.4.3) as the original code words, so this is just as

good a code to use. We simply need to update all our future operations, as well as our

interpretation of the results at the end of the experiment. We call this error tracking.

If we repeat the syndrome measurement several times and catch a few errors, the

code space may deform several times.
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2.4.3 Conditions for error correction

We can formalize and generalize the example above to give a set of conditions for a

“good” error-correction code. There is a set of necessary and sufficient requirements,

called the Knill-Laflamme (K-L) conditions [31]. Given set of Kraus error operators

{Ek}, logical codewords |±zL〉 allow recovery if and only if

〈+zL|E†kEj |−zL〉 = 0

〈+zL|E†kEj |+zL〉 = 〈−zL|E†kEj |−zL〉 .
(2.41)

The first of these says that no two errors can map different logical codewords onto

overlapping states. For k 6= j, this ensures that we can unambiguously distinguish

different errors. For k = j, it states that error k maintains orthogonality of the

codewords, thus preserving the information content. The second K-L condition states

that the probability of a given error occurring is the same for both code words. This

ensures that the error syndrome itself contains no information about the state. This

is part of what makes amplitude damping a difficult error to correct. In Chapter 3

we’ll look at a bad error-correcting code which does not satisfy this second condition.

2.4.4 Error correction performance

It is essential to be able to characterize how well an error-correction code performs.

For instance, even in ideal conditions the bit flip code only allows approximate re-

covery from errors. This is because the code only corrects a single error, but it is

possible that two of the three bits can flip. This is represented by additional Kraus

operators (e.g. σx⊗σx⊗Î) for which the K-L conditions are not satisfied. This kind of

error happens with a probability ∼ p2, so it is less likely than a single bit flip, so long

as p is small. We can hope to enhance the overall quality by detecting and correcting

the dominant errors. We’ll continue to use this code as an example; in Chapter 3 we
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will consider other approaches.

Mean state fidelity

There are many metrics for quantifying how well a bit of quantum information is

preserved as it passes through an error channel, but the one used throughout this

work will be the mean state fidelity. The Uhlmann fidelity [32] of one quantum state

to another is

F(ρ1, ρ2) = Tr

(√√
ρ1ρ2
√
ρ1

)2

= Tr

(√√
ρ2ρ1
√
ρ2

)2

(2.42)

which for pure states reduces to

F(|ψ1〉 , |ψ1〉) = |〈ψ1|ψ2〉|2 (2.43)

We use this as a way to assess how close to an ideal state |ψ1〉 a measured state |ψ2〉 is.

We can imagine measuring “is the qubit in |ψ1〉?” and the fidelity is the probability

with which we find the answer to be “yes.” Some sources like [26] use the square root

of this definition, but I prefer the physical interpretation as a probability of ending

up in the right state. The square root definition is also always a higher number, and

so sometimes looks overly optimistic.

So far this is just for a given pair of states. But to understand an error channel, we

can imagine running all possible input states through it and measuring the average

fidelity to the input state. This is of course impractical, but we can choose a uniform

and over-complete set of states as a proxy. For a representative set of N initial states

{ρ(k)
i }, one can compute the state fidelity for each final state {ρ(k)

f } and average:

F̄ =
1

N

N∑
k=1

F
(
ρ

(k)
i , ρ

(k)
f

)
(2.44)
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which we call the mean state fidelity. We typically use as input states the six cardinal

points on the Bloch sphere: {|±z〉 , |±x〉 , |±y〉}.

Code overhead

With a metric in hand that we can easily calculate or measure, we can talk about the

quality of an error channel. There are three relevant cases we should consider. The

first is the fidelity as a function of error probability p for the simplest encoding we can

make use of. In the bit-flip error channel, this is a single qubit. The second case is the

fully error-corrected logical encoding, with all syndrome measurements. This is the

encoding we hope will work best. Finally, it is instructive to consider the performance

of the logical encoding without the syndrome measurement or correction. More qubits

exposes us to more errors, so this uncorrected fidelity is always worse than the single

qubit, but it’s useful to see how far we’ve come by adding the measurements and

correction. For our bit-flip example, the infidelity for these three cases is plotted in

Figure 2.5d, calculated as described below.

As discussed in Subsection 2.4.2, the bit-flip code corrects at most one error. But

we should consider how likely these errors are, and how likely multiple errors are. For

one qubit, the error probability is p. When this error occurs, it inverts the qubit state.

With probability 1−p, no error occurs. Simple? Yes, but the last subtlety is that not

all states are affected equally by the error. We need to consider the infidelity resulting

from the error, which is state-dependent (hence why we average over all input states).

The states |±z〉 , |±y〉 have zero fidelity to themselves after a bit flip, but |±x〉 are

unaffected up to a global phase. So the resulting average infidelity 1−Fsingle = 2
3
p,

because only two-thirds of the states are corrupted. Note the difference from the

classical bit flip, which always corrupts the bit completely.

When we add more qubits, the probability of errors increases, and we have the

possibility of up to three errors. The probability of n errors pn is given, as well as the
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asymptotic probability for small p:

p0 = (1− p)3 ∼ 1− 3p p1 = 3p(1− p)2 ∼ 3p

p2 = 3p2(1− p) ∼ 3p2 p3 = p3 ∼ p3

(2.45)

The factor of 3 that appears on p1 is combinatorial in nature, because there are three

possible ways one error can occur. The same goes for p2. In general, the probability

for n errors on k qubits is k choose n.

It is clear from Equation 2.45 that the probability of a single error p1 ≈ 3p is about

three times higher than in the single-qubit case. We refer to this increase as the code

overhead. It is the price we pay for redundancy — introducing a larger probability of

errors. But wait, there’s more. With no error detection, one or two errors completely

corrupts any state — that is, the uncorrected fidelity given n errors Fn,uncorr = 0 for

n = 1, 2. This is also worse than the single-qubit encoding, since one or two errors

takes us out of the code space, with no symmetry points left invariant under error.

All told, the uncorrected infidelity is

1−Funcorr =
3∑

n=0

pn × (1−Fn,uncorr)

= (1− p)3 × 0︸ ︷︷ ︸
no error

+ 3p(1− p)2 × 1︸ ︷︷ ︸
one error

+ 3p2(1− p)× 1︸ ︷︷ ︸
two errors

+ p3 × 2

3︸ ︷︷ ︸
three errors

= 3p− 3p2 +
2

3
p3.

(2.46)

Note that 1−F3,uncorr = 2/3. This has the same origin as the same factor of 2/3 in the

single-qubit case, that |±xL〉 are invariant under the error. For small p, 1−Funcorr ≈ 3p

is a constant factor of 9/2 times worse than the single-qubit infidelity.

This all sounds terrible, but we can save the day with the error syndrome mea-

surement. When we introduce the syndrome measurement, assuming it is perfect,

we completely eliminate the infidelity due to single errors, and we’re left with an
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uncorrectable error probability p2 + p3 = 3p2(1−p) + p3 = 3p2 − 2p3, which is much

reduced. Accounting for both the error probabilities and infidelities as above, the

resulting infidelity is

1−Fcorr =
3∑

n=0

pn × (1−Fn,corr)

= (1− p)3 × 0︸ ︷︷ ︸
no error

+ 3p(1− p)2 × 0︸ ︷︷ ︸
one error

+ 3p2(1− p)× 2

3︸ ︷︷ ︸
two errors

+ p3 × 2

3︸ ︷︷ ︸
three errors

= 2p2 − 4

3
p3.

(2.47)

Here, F2,corr = 2/3 because, after restoration to the code space, |±xL〉 will again be

invariant.

Error suppression and break-even

For small error probability, the corrected infidelity 1−Funcorr is a factor of 3p smaller

than the trivial single-qubit encoding fidelity 1−Fsingle. This is the whole point — by

introducing a larger Hilbert space with which we can check for errors, we add errors

but reduce their overall impact. The remarkable fact is that the gain is not a constant

factor, but rather a scaling advantage. The corrected infidelity is only second-order

in the error rate p. This error-suppression means that, on a logarithmic scale, the

advantage of error correction increases as the error is made smaller, as we see clearly

in Figure 2.5d. We call this a first-order error-correction code, because it suppresses

the infidelity by one order of p.

The consequence of this scaling suppression is that there is a critical error rate at

which we begin to see the advantage. This is where the lines corresponding to the

single-qubit and corrected three-qubit infidelities cross in Figure 2.5d, at p = 0.5. We

interpret this as the point where the error suppression balances out the overhead, and

it is called the break-even point. The goal is to work reasonably below this point to



2.4. ERROR CORRECTION AND LOGICAL QUBITS 47

reap the advantages of our hard work.

2.4.5 Continuing to win

What if we go through all this trouble and find the resulting error rate is better,

but still not good enough to reliably carry out our computation? We could use a

higher-order code which suppresses the infidelity from p to order pn, for some n > 2,

but in practical cases this may have diminishing returns. For instance, we may find

that some other uncorrected error, like phase flips, becomes dominant at this point.

What then?

One approach is to use concatenation — to use the resultant logical qubit as the

underlying “physical” qubit in another sort of repetition code. In this simple case, this

would involve using three groups of three qubits to form a new, second-level, logical

qubit. In some cases, the second order error on the physical qubit can manifest as an

error of a different type, so the concatenation may not be uniform. Another approach

is to use a larger code. For instance, a five-qubit bit-flip code can correct two single-

qubit errors, and is therefore a second-order error-correction code. In general one can

build the best practical low-order code, characterize the errors of the logical qubit,

and then choose a second level encoding tailored to correct these errors, rinse, and

repeat.

2.4.6 Fault tolerance

One critical consideration we have not discussed yet are imperfections in the error-

correction procedure. There are many such errors that can occur, and by increasing

the number of qubits from one to five (including the ancilla), we have exposed our-

selves to a lot of them. We discussed double bit-flip errors, which are the minimum

cost. But the scary thing is that errors in the ancillae can really hurt our logical

information. There are benign errors, like incorrect measurements, which lead us to
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think an error occurred, and introduce a bit flip by “correcting” this false syndrome.

This is not so bad, because if we run the correction circuit repeatedly, we can catch

this introduced error the next time around. More problematically, certain ancilla

errors which occur during the interaction with the data qubits can corrupt the logical

qubit. For instance, a bit flip on ancilla 1 between the two CNOT gates will introduce

a phase error on the logical qubit, which is uncorrectable. This is horrific, and would

require introducing an entirely new circuit to detect and correct phase errors, even if

they don’t occur on the data qubits to begin with.

This idea of error-propagation from ancilla to data is one of the things which make

practical error correction extremely difficult. The fact that the additional complexity

can not only amplify errors but introduce new kinds as well is related to the idea of

fault-tolerance — adding complexity in a way which does not make things worse. This

is a phrase with many meanings, but in this context it means “not adding enough new

errors to nullify the quantum error-correction gain.” In the context of concatenated

error-correction codes, it means that the error rate will continue to decrease as we

add more layers. For repetition code, it means that seven qubits is better than five

is better than three. Remarkably, there are code-dependent fault-tolerance thresholds

on memory, gate, and measurement errors such that, if everything operates below

these thresholds, the logical error rate can be made arbitrarily low by adding more

layers, or more qubits within the layers. Thus getting operations “below threshold”

is a bit of a holy grail in quantum error correction.

2.5 Modular quantum information processors

Having laid out some of the basic ideas which we will be using throughout this thesis,

we turn now to a difficult question to answer. It seems we will need a large number of

independently-controlled and measured qubits to do anything of use. Thanks to the
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inevitability of quantum errors, we may even need a lot more physical qubits than we

have logical bits of computing power. So a question we can and should begin to ask is,

how can we build such a machine where qubits are sufficiently reliable, independent,

and connected?

These three requirements can to some extent be traded off on one another, and

the balance will absolutely be platform-dependent. A quantum computer made of

superconducting circuits may look very different, architecturally speaking, from one

based on trapped ions or color centers. It is possible that the structures of competing

technologies will on some level converge in the future, but differences will likely remain

based on their relative strengths and challenges. Certainly in the near term these

candidate platforms will have their similarities and their differences. But one core

idea which is being pursued across the board is that of a modular quantum machine

[33, 34, 35, 36].

The concept of a modular architecture for quantum computing means a lot of

different things to different people, and is difficult to precisely define. But the overar-

ching principle is the attempt to break this exceedingly complex problem into smaller

pieces, or modules, which can then be wired together into a larger device. Modules

which can be independently conceived of, designed, manufactured, tested, and assem-

bled offer a massive simplification as compared to creating one monolithic component

which is far more complex. Modularity in this sense may have additional benefits in

the early days of quantum computers, when it is still difficult to make the modules in

a reliable way. The ability to pre-screen or test modules before assembly, or replace

ones which fail or under-perform, has been critical for prototyping devices for the

experiments in this thesis.

It is unclear exactly what a modular quantum machine will look like. This thesis

will not answer this question. I will simply provide a few concepts for structures

which might be of use, and the rest of the thesis will be about providing some tools
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for these architectures. Specifically, we will be concerned with the problem of quantum

communication and networking between modules.

2.5.1 Basic requirements

To begin with, if we will have qubits in separate modules, there are a few things we

will need:

– Quantum storage: At least some of the modules must have qubits where

information can live, probably with some level of quantum error correction.

– Quantum processing: Some or all of the modules will have qubits on which

gates are applied. This may be completely overlapping with the storage qubits,

or totally disjoint, with the storage serving only as a memory bank. Error

correction is probably needed here too.

– Classical I/O: Each module will need inputs from the classical control appa-

ratus. These inputs will be needed to effect gates, and, as we will discuss, to

actuate commutation with the rest of the computer in some way. Additionally,

some or all modules will need input and output for measurement.

– Quantum I/O: In addition to classical data, the modules must have some way

for quantum information to get in and/or out. This may take many forms,

and we will discuss three possibilities in the rest of this section. The common

feature is that some quantum link is needed to make the individual modules

act like a unified whole. Broadly speaking, this relies on the ability to generate

entanglement which spans the entire modular machine.

The different kinds of quantum I/O links we can have motivate a few different ar-

chitectures. This is a non-specific and non-exhaustive list. The three architectures

described here are not even mutually exclusive. Different approaches may have ad-

vantages at different scales, and we can imagine combining or concatenating them.
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Figure 2.6: Shuttling-based Modular Architecture Multiple storage and processing
elements are connected to a router via bi-directional channels which allow transfer of qubit
states. Router can serve to shuttle qubits between storage banks, or to perform multi-qubit
gates between qubits brought from disparate storage elements.

2.5.2 Shuttling architecture

The first architecture we’ll describe, sketched in Figure 2.6, is perhaps conceptually

simplest. We envision some number of memory modules containing multiple qubits,

connected in a star- or tree-like manner about one or more routing elements. The

general prescription is that qubits stay in the memory modules as much as possible,

but move between modules for interactions. This is somewhat analogous to a classical

cluster computer, but also looks loosely like a von Neumann architecture.

Links

In this paradigm, we imagine that the modules are connected to the router with links

which allow qubits to be sent in both directions. In some platforms, like trapped ions

or neutral atoms, it may be possible to physically move the qubits [37, 38]. For solid-

state qubits, this is likely not viable, so we instead map the qubit onto the quantum

state of light, which is sent over microwave transmission line, waveguide, or optical
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fiber.

Role of the router

The router in this architecture may have different uses. It may be a kind of switch-yard

which is mostly passive, just directing the qubits through. It may have way-stations

where some error correction is performed to compensate for errors in transit. Or it

may even be more of a processing unit, as indicated in Figure 2.6. One could imagine

two qubits being brought in from different modules, interacting through a two-qubit

gate, and then being sent back to their modules. It could even be the full analog of a

von Neumann machine, where all operations happen in this quantum processing unit

(or units), and the outer modules are just memory elements, like RAM.

One challenge in this approach is that the links and the router must be of extremely

high quality that moving a qubit from one module to another does not significantly

degrade its state. Of course there will be some errors, so we need them to be of a

form and magnitude that can be handled by our error-correction scheme. As we will

discuss in Section 2.6, some amount of dedicated error-correction on the transmitted

qubits is likely important.

Place in this thesis

The kind of links needed for this shuttling architecture are discussed in Chapter 4

in theory, and in practice in Chapter 7. If the router can provide switchable non-

reciprocity, or the module-link interface is of sufficient bandwidth, then the prop-

agating photonic link in Chapter 6 could also be used to transport qubits in this

architecture.
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2.5.3 Entanglement-based architecture

A different kind of architecture may not require the ability to send arbitrary qubit

states. It is sufficient to generate entanglement between modules and use that as

a resource for all computation. This is known thanks to some pioneering work by

Gottesman and Chuang [39].

Entanglement as a resource

There are two ways to compute without direct communication between modules,

both using quantum teleportation and an entangled state between qubits in separate

modules. It is possible to move the state of a third qubit from one module to another,

using only local operations and classical commutation. An extension of this scheme,

diagrammed in Figure 2.7, allows an arbitrary controlled unitary — a two-qubit

gate — to be performed between two qubits which never interact directly. This

means that if we can efficiently prepare entangled states which span modules, we

never need to send quantum states through physical channels. We can teleport states

between modules and perform local gates, or we can perform teleported gates directly.

As pointed out in the original proposal, this scheme has advantages in terms of

error propagation. Since the link is only classical, the extent to which errors can

spread between modules is much reduced as compared to with direct two-qubit gates.

This may reduce error propagating within or between error-correction codes, which

makes it easier to compute fault tolerantly. Teleported gates have recently been

demonstrated in cQED [40] and in a trapped ion system [41].

Entanglement through uni-directional channels

This entanglement-based architecture of course requires the ability to efficiently pre-

pare many entangled states between modules. One approach is to prepare entangle-

ment locally, and send half of the Bell pair through a quantum channel to another
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Figure 2.7: Teleported Gate. Top pair and bottom pair of qubits envisioned to be in
separate modules. An inter-module resource Bell, intra-module gates, measurements, and
classical feed-forward, effects a CNOT gate between modules.

module. This sounds like it requires the same kind of link as the shuttling-based

architecture in Subsection 2.5.2, but it is a bit more flexible, since the interface only

needs to allow transport in one direction. For instance, we can entangle a qubit in one

module with light in the channel, then route and absorb the light in another module,

mapping it onto a qubit and generating intermodule entanglement. This lends itself

to an architecture with a bank of “sender” modules and a bank of “receiver” modules,

with a router in between, as in Figure 2.8a. This distinction is not strictly necessary

if the router is bidirectional.

Entanglement with interference and measurement

A complementary approach to preparing entanglement relies on the use of interfer-

ence, and detectors which cannot distinguish the source of a photon [42, 43, 44]. The

use of beamsplitters for interference lets us treat the two modules on equal footing,

and is diagrammed in Figure 2.8b. Instead of entangling and sending from one to

another, a communication qubit in each module is entangled with a “flying” qubit

encoded in the state of light. The two flying qubits are routed to, then interfered on a

beamsplitter to become mutually entangled, and then measured at a set of detectors.

The act of measurement, if done correctly, projects the communication qubits into
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Figure 2.8: Entanglement-based Modular Architecture. a) Classically-controlled
router allows uni-directional transfer of qubit states from top modules to bottom modules,
and generation of resource entanglement. b) Router interferes emission from modules and
directs resultant correlated light onto photon detectors. Detectors project qubits in modules
into entangled states.

an entangled pair, which can then be used for teleportation.

This scheme is more general than I have described it. There are other ways of

using flying light to effect a measurement which projects two qubits into an entan-

glement state which don’t require interference with a beamsplitter, see for instance

[45]. Alternatively, it is possible to interfere bosonic atoms instead of light, so this

approach could be used with atomic qubits if the spatial control is of sufficient quality.

Entanglement purification

The entanglement prepared in this architecture will not be perfect, which would

result in errors in the subsequent teleported operation. Fortunately, there are ways to

improve the quality of entanglement by generating multiple entangled pairs between

modules and performing local operations and measurements [46, 47, 48, 34]. This is

known as purification or distillation of entanglement. This approach may be essential



2.5. MODULAR QUANTUM INFORMATION PROCESSORS 56

to producing Bell pairs which enable teleportation below error-correction thresholds

[49, 50]. Purification schemes require the ability to generate Bell pairs quickly enough

that multiple pairs can be gathered together before they decohere, and has already

been demonstrated in a platform where the generation is probabilistic [51].

Role of the router

In this design, the router is probably a passive element which directs and/or inter-

feres light, but need not provide any measurements or operations itself. But the

router/processor in the shuttling architecture (Subsection 2.5.2) could probably play

the role of the router and detector bank, so it may be possible to use both approaches

in a single platform.

Place in this thesis

The experiments in Chapter 6 and Chapter 7 both provide ways of preparing entan-

gled states on demand, so either approach lends itself to this approach.

2.5.4 Gate-based architecture

We come now to the final architecture discussed here. This approach concerns it-

self not with the ability to send information between modules, but instead to perform

gates directly between them. This is the least well-developed of the three, since direct

gates between qubits in disparate modules have not been demonstrated yet. However,

a two-qubit gate (e.g. CNOT, CPHASE, or SWAP-like) which can be implemented

between modules with high fidelity might cut down drastically on the hardware over-

head needed. It may not be necessary to devote resources to communication qubits

like in the teleported scheme, or way-station qubits in the shuttling based scheme.

This architecture also need not have a router if interactions are flexible or dense

enough.
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Figure 2.9: Gate-based Modular Architecture. Array of modules connected by lines
which allow gates directly between qubits in disparate modules.

This approach, sketched in Figure 2.9, may lend itself well to topological error-

correction codes, where qubits are usually arrayed in a two- or three-dimensional

lattice with only nearest-neighbor interactions. The gates available between modules

could allow for the lattice to extend between modules seamlessly10.

Place in this thesis

Chapter 7 will demonstrate an approach for a link which should enable direct gates

between modules in a few ways, though actually demonstrating this remains an out-

standing goal.

2.6 Conclusion

In this chapter we described quantum bits and their essential features, then described

some of the requirements we need to build a quantum information machine. We

turned next to the discussion of what can go wrong, and talked a bit about how we

can correct quantum errors. Finally, we considered a few prototypical architectures for

10. Since these inter-module gates might be of lower quality than the intra-module ones, the
control apparatus would probably want to minimize the number of long-range gates.
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building large quantum machines out of smaller modules, and how we might connect

them.

But it is reasonable to expect that our modules might be of very high quality, and

it is in braving the outside world, sending a qubit from one to another, that we might

suffer the greatest chance of errors. This isn’t necessarily going to be the case, but

until we develop links which are as good as our memories and processors, we must be

prepared to deal with errors in transit. Indeed this is one of the goals of this thesis.

So if we have communication errors, we probably need error correction here as

much as we do anywhere else. But this presents a challenge. For instance, if we

need to send a logical qubit to another module, we might think to decode it onto

a single qubit and send that. But this would leave us completely exposed to errors

in transmission with no recourse for correction. Instead, we could keep the qubits

encoded in some repetition code, and send them one at a time through the link. This

sounds decidedly inefficient. Another alternative would be to send them through

multiple channels in parallel, but this requires a drastic increase in the connectivity

between modules.

This brings us to a concept which will be a core topic in Chapter 3 — the

“hardware-efficient logical qubit”. This is an object which can be sent through a

single link all in one go. If we are using photonic links, then we certainly need to

send multiple photons together, because we need a large enough Hilbert space to

satisfy the Knill-Laflamme conditions. So why don’t we encode our information in a

collection of photons to begin with? In the next chapter we’ll describe exactly how

to do that with bosonic qubits.



Chapter 3

Oscillators and Error Correction

In Chapter 2 we laid out some of the basic tenets of quantum information processing

and error detection and correction, and discussed some ideas for modular architectures

for quantum machines. We left that discussion on a final tension between the need

to correct errors in quantum communication between modules, and the difficulties

involved in sending a logical qubit through a communication channel. This motivated

the idea of a “hardware-efficient” logical qubit for communication — some quantum

resource which can hold redundant information in multiple excitations, but can be

moved through a photonic link as a single object. In this chapter, we will describe

such an object. In fact, it is the harmonic oscillator, one of the simplest textbook

quantum systems.

In Section 3.1 we will describe the quantum LC resonator, the archetypal harmonic

oscillator in cQED. We will cover useful bases, important classes of states, and the

Wigner function, a phase-space visual representation that we will use throughout

this thesis. Then in Section 3.2 we will describe the effect of dissipation on the

oscillator in the Kraus formalism introduced in Chapter 2. Next Section 3.3 will turn

to the discussion of error detection and correction in the harmonic oscillator. First

we will consider some desirable qualities of an error-correction code; namely, the

59



3.1. HARMONIC OSCILLATORS IN CQED 60

ability to detect photon loss errors with a measurement of number parity. We will

then introduce an encoding which has this quality, but does not make for a proper

first-order error-detection code. Having understood what makes this code fail, we

will move on to Section 3.4, where we will give the rest of our requirements for error-

correction codes, and then introduce a few that we will use here, and compare their

behavior and performance. Finally, we will give a quick summary of other bosonic

codes for photon loss, and leave off with some thoughts about how we can use these

encodings for robust quantum communication.

3.1 Harmonic oscillators in cQED

This section will serve as a very simple description of the quantum harmonic oscillator

in the context of cQED. A much more detailed treatment can be found in [52], for

example, which describes quantum circuits in general, including the Josephson junc-

tion element we will rely on in Chapter 5. Here we’ll focus on introducing a useful

basis in which to describe a few kinds of states of interest, as well as coupling to the

environment through dissipation and drives. We’ll make use of the Wigner function,

which serves as a useful representation of the oscillator state in phase space, as it is

one of the primary characterization tools used in experiments this thesis.

3.1.1 Ladder Operators and the Oscillator Hilbert Space

We begin with the simplest realization of a harmonic oscillator in cQED — the LC

oscillator. The circuit, consisting of an inductance L and capacitance C in parallel,

is shown in Figure 3.1. The quantum mechanical variables are the charge q̂ on the

capacitor and the flux φ̂ across the inductor. The flux is defined as the time integral

of the voltage drop across the inductor, φ̂ =
∫ t
−∞ v̂(t′)dt′. This is in analogy to the

charge q̂ =
∫ t
−∞ î(t

′)dt′, the integral of the current through the capacitor.
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Figure 3.1: The LC Oscillator. The harmonic oscillator has an infinite number of
levels, equally separated in energy by ~ωa.

These variables obey the canonical commutation relation [φ̂, q̂] = i~, and the

dynamics are governed by the quadratic Hamiltonian

H =
q̂2

2C
+
φ̂2

2L
. (3.1)

This is in direct analogy to a mechanical oscillator with mass m and spring constant

k if one makes the replacement φ̂→ x̂, q̂ → p̂, C → m,L→ k−1.

This is all well and good, but is not terribly well suited to the techniques available

in cQED, as we rarely measure the charge or flux directly in this context. Instead,

we adopt a basis for describing the state which will be naturally adapted to the kinds

of experiments performed throughout this thesis. That will be the number, or Fock,

basis, which uses as an index the number of excitations in the oscillator. This is made

easy by defining the annihilation (a) and creation (a†) operators (collectively, ladder

operators), which are so common throughout this thesis that we forgo the operator

hats to reduce clutter. The ladder operators are defined such that1

φ̂ = φa

(
a+ a†

)
q̂ =

1

i
qa

(
a− a†

) H =
q̂2

2C
+
φ̂2

2L
= ωa

(
a†a+

1

2

)
, (3.2)

1. As in Chapter 2, the Hamiltonian H has frequency units, which corresponds to ~ = 1.
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where the zero-point fluctuations φa =
√

~Za/2 and qa =
√

~/2Za, and the resonant

frequency ωa =
√

1/LC and characteristic impedance Za =
√
L/C depend on the

inductance and capacitance. In this light, it is straightforward to think of the operator

a as proportional to the (integral of the) complex-valued voltage across the inductor

and capacitor. The real part (in-phase, I) is related to the flux across the inductor,

and the imaginary part (quadrature, Q) to the charge on the capacitor. This complex

phase-space connection will be made more explicit in Subsection 3.1.2, and visualized

in Subsection 3.1.3. As a final note, the ladder operators obey the commutation

relation for bosons: [a, a†] = 1, as a direct consequence of the canonical commutation

relation for φ̂ and q̂.

3.1.2 Fock and coherent states

We said above that the ladder operators would make representing key kinds of states

easy, so let’s see what that looks like. The first class of states we will consider are

the number, or Fock, states. They are eigenstates of the Hamiltonian in Equation

3.2, with eigenenergies En = ω0(n + 1/2), for integer n ≥ 0. We use the notation

|n〉 for these states. They are not eigenstates of either ladder operator, but of the

product: a†a |n〉 = n̂ |n〉 = n |n〉, where we have defined the number operator n̂ = a†a.

The Fock states {|0〉 , |1〉 , |2〉 , ...} form an infinite orthonormal basis for the oscillator

Hilbert space.

The second commonly encountered class of states is the coherent states, which

are the eigenstates of the lowering operator: a |α〉 = α |α〉, for any complex number

α. These are “classical” states, in that the expectation values of the charge and flux,

defined in terms of the real and imaginary part of α, obey the classical equations

of motion for an oscillator, and that the fluctuations on these quantities are the
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minimum as allowed by the uncertainty principle. In the Fock basis,

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 . (3.3)

The Fock state occupations of a coherent state (the square of the coefficients in

Equation 3.3) are a Poisson distribution with mean |α|2, which is the expectation

value of the photon number operator a†a. As such, the notation |0〉 is unambiguous,

because the coherent state with zero amplitude is the number state 0, or vacuum

state. For clarity, we use Greek symbols like α for coherent states and Roman letters

like n to index Fock states. When there is ambiguity, we denote coherent states with

a specific amplitude as |α = 1〉, for example.

The coherent states cover the entire oscillator phase space, but are not exactly

orthogonal, so they form an over-complete basis set, which isn’t usually the most

convenient representation except in special cases. The overlap of two coherent states

is

|〈α|β〉|2 = e−|α−β|
2

, (3.4)

which has the nice interpretation of being a function only of the distance between

the two coherent states in complex phase space. This overlap rapidly drops as the

distance increases, but it has important consequences for |α|, |β| .
√

2.

Cat states

Before we move on to discussing creation and measurement of oscillator states, we

describe one more class of states, which will be of interest for quantum error correction

in Section 3.4 — superpositions of coherent states. The states are often called cat

states, because they are superpositions of two “classical” states. An example is the
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two-component cat state

∣∣C±α 〉 =
1

N±α
(|α〉 ± |−α〉) N±α =

√
2 (1± e−2|α|2) (3.5)

Because of the finite overlap of any two coherent states, the normalization constant

N±α → 1√
2

as α →∞ but N+
α 6= N−α for any finite α. Due to the sign alternation in

the amplitude of the Fock state components of |−α〉 (Equation 3.3), the symmetric

superposition |C+
α 〉 has only even photon number Fock components, and the antisym-

metric superposition |C−α 〉 has only odd. For this reason, we call these states “even

cats” and “odd cats,” respectively.

Since states with this property of even or odd number content will be central to

our discussion of error correction of oscillators, we define the parity operator

P̂ = eiπa
†a =

∞∑
n=0

(−1)n |n〉〈n| (3.6)

Even states like |C+
α 〉 are eigenstates of P̂ with eigenvalue +1, and odd states like

|C+
α 〉 have eigenvalue −1. Likewise, Fock states |n〉 are also eigenstates of P̂ , with

eigenvalue depending on the parity of n. Coherent states are in general not eigenstates

of P̂ , except trivially for α = 0.

3.1.3 Representing the oscillator state

It is useful to have a compact visual representation for oscillator states, akin to

the Bloch sphere for qubits. For this we use the Wigner function, which will be a

primary experimental characterization tool in Chapters 6, and 7, since it is a complete

representation of the state, and is convenient to measure (see Chapter 5). The Wigner

function for a state given by density matrix ρ is

W (β) =
2

π
Tr
(
D̂†(β)ρD̂(β)P̂

)
(3.7)
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Figure 3.2: The Wigner Function. a) The vacuum state is a symmetric Gaussian in
phase space. b,c) Fock states |1〉 , |2〉 are made of concentric rings. They carry no phase
information, and so are rotationally symmetric. d) A coherent state with complex amplitude
α is the vacuum state displaced by that amplitude. Here α = 1.7. e,f) Two-legged cat states
formed from symmetric (antisymmetric) superpositions of two coherent states of opposite
phase have even (odd) parity.

This is understood as “the average parity of the state when displaced by β,” and

indeed it is measured by displacing the cavity and measuring 〈P̂ 〉. The prefactor 2/π

ensures that the Wigner function is normalized (its integral over all phase space is

equal to one), even for mixed states. Knowledge of the Wigner function for all β is

equivalent to knowledge of the entire density matrix, and an experimental measure-

ment of W (β) allows one to reconstruct ρ (see Chapter 5). Since the dimensionality

of the oscillator density matrix is infinite, in practice one measures W (β) for |β|2 up

to about 2n̄, where n̄ =
〈
a†a
〉

is the mean photon number of ρ.

The Wigner functions of a few common states are shown in Figure 3.2. Note

in particular that W (0) is simply the expectation value of the parity of the state

(multiplied by 2
π
). For Fock states |0〉 , |2〉 (generally, |2n〉) and the even cat, this

center point is maximally positive (red), and for |1〉 (generally, |2n+ 1〉) and the odd

cat, it is maximally negative (blue). Figure 3.2d shows the coherent state |α = 1.7〉,



3.2. DISSIPATION AS AN ERROR CHANNEL 66

which is just the vacuum state |0〉 shifted to a new center. The Wigner functions of

the cat states show the two coherent states, but with characteristic fringes in between

these two “legs,” and opposite parity.

3.2 Dissipation as an error channel

So far we have considered some of the features of a harmonic oscillator in isolation,

but any physical oscillator also includes some decay channel, where it can lose some

energy into the environment. We describe dissipation in the same way we introduced

bit flips and amplitude damping in Section 2.3 — with Kraus operators, and the

Lindblad master equation.

3.2.1 The Amplitude Damping Kraus Map

In the continuous LME picture, the Lindbladian representing decay in an oscillator is

the annihilation operator a, which removes one photon from the oscillator at a time.

We define the rate at which this occurs as κ, and the LME in the oscillator frame

reads

ρ̇ = κaρa† − κ

2
ρa†a− κ

2
a†aρ (3.8)

Consider the instantaneous differential evolution of this decay channel acting on a

Fock state ρ = |n〉〈n|. The first term reads nκ 〈n|ρ|n〉 |n−1〉〈n−1| — it adds popula-

tion to the Fock state |n− 1〉, at a rate that grows linearly with n and is proportional

to the occupation of |n〉. The last two terms, which maintain the normalization of

the state, do not change the photon number, but reduce the amplitude of the n-th

component. Together they read −nκ 〈n|ρ|n〉 |n〉〈n|.
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The dual of the LME is the Kraus map, introduced in Subsection 2.3.2,

ρf =
∑
k

EkρiE
†
k

∑
k

E†kEk = Î, (3.9)

which can help give a picture of what happens for some discrete time t, and makes

clear the effect of loss of multiple photons. The Kraus operator Ek corresponding to

loss of k photons is given in [53]2:

Ek =

√
(1− η)k

k!
ηn̂/2ak (3.10)

with η = e−κt, and n̂ = a†a the number operator. As we will see, this operator has

two effects: the part which reads ak corresponds to applying the lowering operator k

times, and ηn̂/2 = diag(ηn/2) tends to shrink the occupation in higher number states,

irrespective of which Kraus operator is applied. Note that this shrinkage term doesn’t

change which number states are occupied, just their relative weights.

These Kraus operators have a convenient action on a Fock state:

Ek |n〉 =

√(
n

k

)√
ηn−k(1− η)k |n− k〉

E0 |n〉 =
√
ηn |n〉

E1 |n〉 =
√
nηn−1(1− η) |n− 1〉

(3.11)

where we have given a few useful special cases. Finally, since the Kraus map outputs

a mixture of such terms, the normalization of the above terms is the the probability

of that Kraus operator being applied. For example, the probability of not losing any

photons from |n〉 is 〈n|E†0E0|n〉 = ηn.

2. Alternative, equivalent definitions are found in [54, 55]
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3.2.2 Damping on the Fock code

Let’s unpack this with a simple example, considering the action on a logical qubit in

the simplest encoding we might consider in an oscillator. This is the so-called Fock

code, where |±zL〉 = {|0〉 , |1〉}. To understand the behavior of this code, we will need

to know how the damping channel acts on various states in the code space. Once we

have a handle on the basic behavior we will quantify the extent to which a logical

qubit survives this channel, for which we will use the mean state fidelity introduced

in Section 2.3.

Behavior of cardinal states

We begin with the local codeword |−zL〉 = |1〉, but we need to work with the density

matrix ρi = |1〉〈1|. Since the code space occupies only the first two levels of the Hilbert

space, we only need to consider the Kraus operators E0 and E1; all other error terms

will be exactly zero on the logical qubit. The final state under the channel defined

by Equation 3.10 is

ρf = E0ρiE
†
0 + E1ρiE

†
1

= e−κt |1〉〈1|+ (1− e−κt) |0〉〈0|

= η |1〉〈1|+ (1− η) |0〉〈0|

(3.12)

This is sensible — the population in |1〉 decays exponentially in time, and the popu-

lation in |0〉 grows. Moreover, we recognize η as the energy efficiency of this process.

For an average number of photons n̄ in the initial state, there will be on average

ηn̄ photons in the final state. The efficiency is a useful notion, because we can just

consider this action as a channel, which could be occurring in time or in space.

So the population will decay from a Fock state. Additionally, the action of the

loss channel on the code word |+zL〉 = |0〉 is identity, since we can’t lose a photon

from nothing. This story gets more interesting when we consider the action on the
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superposition state |±xL〉 = (|0〉+ |1〉)/
√

2. Now the Kraus map gives

ρf = E0ρiE
†
0 + E1ρiE

†
1

=
1

2

(
|0〉+

√
η |1〉

)(
〈0|+√η 〈1|

)
+

1− η
2
|0〉〈0| .

(3.13)

The last line is the one-jump action, which always results in zero photons, with

probability (1− η)/2. This is half the loss probability for one photon.

Less intuitively, the first line is the no-jump action, which results a pure state that

is not the initial state. When no loss occurs, there is a continuous deformation of the

superposition toward |0〉, even though the jump operator does not include a power

of a. Strangely enough, it seems that the no-jump event is just as likely to remove a

photon as the one-jump event is for this state. The qualitative explanation for this

is that the environment is slowly measuring the state. If some time has gone on and

no photon was absorbed by the environment, it becomes less likely that there was a

photon in the oscillator to begin with. This has the effect of reducing the population

in |1〉 as the state is slowly projected into |0〉. While the state remains pure, this is

bad news for our logical qubit. For instance, |±xL〉 converge to the same state (|0〉),

so the information is lost even when a photon is not absorbed.

Fidelity

We are now in a position to compute (and more importantly, explain) a perfor-

mance metric for this encoding as a function of η. As in Subsection 2.4.2, we use

the mean state fidelity to assess how well an arbitrary qubit state would make it

through the channel. We apply the Kraus map to each of the six cardinal states

{|±z〉 , |±x〉 , |±y〉}, compute their state fidelities to the ideal state individually, and

then average. When looking at the results, it is best to plot the infidelity 1−F versus

the inefficiency 1− η, since the scaling at low inefficiency will tell us what order the
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code is sensitive to loss.

When we perform this analysis for the Fock encoding, we find that the mean

infidelity scales linearly with the inefficiency; see Figure 3.3. In particular, we find

1−F ≈ (1− η)/3 for small inefficiencies; this scaling is plotted as a guide to the eye.

This factor of 1/3 confused me for a long time. One might expect that the infidelity

would be half the inefficiency, since the average photon number in this encoding is

n̄ = 0.5. Indeed, the error probability is (1 − η)/2, but, just as in the bit flip code,

we must also consider the resulting infidelity when an error occurs. In this case,

since E1 |1〉 ∝ |0〉, an error keeps us in the code space, and there is some overlap

with the original state for most points on the Bloch sphere. The calculation requires

calculating the probability of loss p
(i)
loss for each state i, the fidelity F (i)

loss when a photon

is lost, and the fidelity F (i)
noloss in the case the photon is not lost. To leading order,

F (i)
noloss = 1 for all i. Averaging over the six cardinal states,

1−FFock =
1

6

6∑
i=1

[
p

(i)
loss × (1−F (i)

loss) + (1− p(i)
loss)×����

���
(1−F (i)

noloss)
]

=
1

6

6∑
i=1

p
(i)
loss × (1−F (i)

loss)

=
1

6

 0︸︷︷︸
|0〉

+ (1− η)× 1︸ ︷︷ ︸
|1〉

+4

(
1− η

2
× 1

2

)
︸ ︷︷ ︸
|±x〉,|±y〉


=

1

6

[
(1− η) +

4

4
(1− η)

]
=

1

3
(1− η)

(3.14)

Roughly speaking, the factor of 1/3 comes from the fact that two-thirds of the states

have fidelity 1/2 under loss. To actually predict this correctly, it is important to

weight the infidelity by the loss probability for each state, as we have done.

Looking at Figure 3.3, we see that the infidelity deviates from this linear slope at
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Figure 3.3: The Fock Code. a) Left: Wigner functions of |+zL〉 , |−zL〉 , |+xL〉 from
top to bottom. Right: Same logical states with loss channel applied η = 0.8. b) Mean state
infidelity versus inefficiency of channel, with linear approximation (1− η)/3.

large losses. This is because I was sneaky in assuming Fnoloss = 1 in Equation 3.14.

This is decidedly not true; as we saw in Equation 3.13, the no-jump evolution does

deform the equator states towards |0〉. This means there is an additional contribution

to the infidelity from this effect, but it is second order in 1 − η, so it only becomes

apparent at large inefficiencies.

3.2.3 Damping on coherent states

The odd behavior of reduction of energy even in the case of no absorption of a photon

by the environment (the action of E0) is perhaps most pronounced for coherent states,

which have the interesting property of being eigenstates of the annihilation operator:

a |α〉 = α |α〉. As a result, the Kraus operator Ek has a fairly simple effect on a

coherent state:

Ek |α〉 = αk
√

(1− η)k

k!
|√ηα〉 (3.15)
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Since the state vector in this expression is independent of k, the entire Kraus map

acting on the coherent state remains pure; specifically, it is

|α〉 → |√ηα〉 (3.16)

which decays continuously with η towards the vacuum state as η decreases towards

zero. However, as we will see in Section 3.4, superpositions of coherent states become

mixed.

3.3 Error detection with photons

Having defined the harmonic oscillator as it appears in a cQED context, we will begin

to explore some of the ways it can be used as a hardware-efficient housing for a bosonic

logical qubit.

Photons are one of the oldest candidates for qubits. In the optical domain, the

idea of qubits stored in the polarization state of photons was the basis for thought

experiments dating back to Einstein, Podolsky, and Rosen [56]. Moreover, propos-

als and realizations of entanglement and quantum information manipulation with

photons have been around for more than three decades [57, 58]. These proposals

often consider encoding information in multiple, spatially separate photonic modes

(originally, optical fiber channels).

The story of error-correction with bosonic qubits began as an extension of those

protocols. Chuang, Leung, and Yamamoto [54] presented the first multi-mode bosonic

codes designed with amplitude damping in mind. Not long after, the first single-mode,

multi-photon bosonic encoding, the Gottesman-Kitaev-Preskill (GKP) encoding [59],

was envisioned as a way to protect information in an oscillator from noisy kicks from

the environment. It turns out that many physical error channels can look like a small

kick, so the GKP codes are an interesting candidate in a variety of platforms, only
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recently realized in the motional mode of a trapped ion [60] and in a superconducting

cQED cavity resonator [61].

In cQED in particular, much focus is on correcting the photon loss in quantum

memories. While 3D cavities can have some of the lowest dissipation rates of any

cQED qubit candidate [62, 63], photon loss is still the dominant intrinsic error. In

fact, it was demonstrated that the inherent dephasing rate of a superconducting cav-

ity resonator [64] can be more than an order a magnitude smaller than its dissipation

rate, and probably even weaker than that. In the past few years, experimental demon-

strations have reached the break-even point of error correction with codes designed

for amplitude damping in cQED resonators [65, 66], with performance mainly limited

by non-fault-tolerance. Namely, dephasing and other types of errors are introduced

by the quantum degrees of freedom used to control and measure the resonators. Elim-

inating the propagation of errors from these ancillae into the memory is a recent topic

of successful research in our lab [64, 67].

Apart from protecting quantum memories, bosonic error-correction has applica-

tions in quantum communication as well. The pioneering work of Chuang and co-

authors [54] was motivated in part by the idea that using optical fiber for quan-

tum communication would necessitate the ability to correct for losses over long dis-

tances. Development of multi-photon codes for this purpose has continued ever since

[68, 69, 70].

This is part of the approach we are taking for developing ways to move qubits and

generate entanglement in cQED modular architectures. Even over relatively short

distances, it is reasonable to expect that links between modules might be a weak

point where errors can creep in, as the information must leave the carefully sheltered

environment inside the modules. So far, most demonstrations in this direction have

been primarily limited by losses in transmission channels, routing elements, and in-

terconnects [45, 71, 72, 16, 73, 74, 75]. As such, we seek to implement transfer of
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encoded bosonic qubits between modules, with an error-detection step at the end to

recover from losses in transmission. Even more powerfully, it has been pointed out

that such schemes can be robust to thermal noise in the transmission channel as well

[76, 77].

In this section, we describe the basic idea behind the types of bosonic codes we will

use in this thesis, which involve code words with well-defined photon number parity.

In Subsection 3.3.1 we explain how these kinds of codes automatically satisfy some

of the Knill-Laflamme (K-L) conditions, at least approximately. Then in Subsection

3.3.2 we define a simple code with this structure, which seems at first blush to enable

correction of losses, but instead only allows us to detect them. Motivated by this

example, we will move on to Section 3.4, where we describe some codes which do

allow for quantum error correction.

3.3.1 Detecting loss with parity measurements

Let’s revisit the Kraus map for photon loss from Equation 3.10:

Ek =

√
(1− η)k

k!
ηn̂/2ak (3.17)

If the efficiency of a channel is high (1 − η . 0.1), the prefactor
√

(1− η)k/k! is

suppressed as k increases. This means the dominant Kraus terms are E0 and E1 —

no jump, and one photon lost. By considering only these two error terms, we will be

developing a first-order error-correction code3. Up to second order in 1 − η, all bets

may be off.

In order to satisfy the first K-L error-correction criterion (Subsection 2.4.3), it is

essential that the Kraus operators we are worried about take our two logical code

3. Of course the probabilities of the various Kraus operators being applied are state-dependent,
so a more detailed analysis will be necessary to ensure that we have build a true first-order error-
correction code, where the infidelity is proportional to (1− η)2.
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words to orthogonal subspaces:

〈+zL|E†0E1 |−zL〉 = 〈+zL|E†1E0 |−zL〉 = 0 (3.18)

One way to ensure this is to have the code states |±zL〉 both live in a subspace of well-

defined photon number parity. Since the one-jump operator E1 changes the photon

number parity, and the no-jump operator E0 does not, this automatically satisfies

this half of the first K-L condition, and we have a fighting chance. This statement

relies on the ability to detect single-photon loss errors, but using an encoding with

well-defined parity makes this straightforward — we just need to measure the photon

number parity in a QND way. If we find it has changed, we assume E1 was applied.

If not, we assume E0. Of course, the next-order error E2 will preserve the parity by

removing two photons, which is an undetectable error, but we will ensure that this

only happens to higher order in 1− η.

3.3.2 A bad encoding

Obviously the single-photon Fock encoding does not have this parity structure, and

definitely does not satisfy Equation 3.18, since E1 |1〉= |0〉=E0 |0〉. What about using

one more level of the oscillator: |±zL〉={|0〉 , |2〉}? We call this the “0–2” encoding.

Both code words have even photon number parity, so Equation 3.18 is satisfied.

However, consider applying the Kraus map and then measuring parity. If we find

the parity has changed from even to odd, we know E1 was applied. However, the

probability of this operator occurring on the code word |+zL〉= |0〉 is exactly zero —

we can’t lose a photon if there were none to start with. This means that any time we

measure odd parity, which happens with probability first-order in 1−η, we will project

the state onto |1〉, which completely erases the encoded information. This breakdown
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is related to a failure to satisfy the second K-L condition: for this encoding

0 = 〈+zL|E†1E1 |+zL〉 6= 〈−zL|E†1E1 |−zL〉 ∝ 1− η (3.19)

Performance comparison

Indeed, a calculation of the performance of this code bears out this failure. As when

we discussed the three-qubit bit flip code in Section 2.4, it is instructive to look at the

performance of this code without an error syndrome measurement. In this case, one

would näıvely assume the infidelity is equal to the inefficiency, since this encoding has

on average one photon. Unlike the Fock encoding, this assumption is correct to first

order, since loss of a photon takes us out of the code space, resulting in zero fidelity.

This means the uncorrected 0–2 code, plotted in Figure 3.4, is three times worse than

the 0–1 code.

This is a discussion of error correction, so what happens if we can perfectly detect

and compensate for photon loss errors? It’s useful to separate the results into the

two syndrome outcomes — no jump (even parity), and one jump (odd). If there is

no loss, we assess the fidelity to the original code space. In this case, we can to first

order only consider the action of E0, which in this space is

E0 = |0〉〈0|+ η |2〉〈2| (3.20)

This keeps us in the code space, with a deformation on the equator states of the Bloch

sphere. However, the infidelity induced by this deformation is only second-order in

1 − η. This corresponds to exact satisfaction of the first K-L condition for the two

dominant Kraus operators, and approximate satisfaction of the second

〈+zL|E†1E1 |+zL〉 ≈ 〈−zL|E†1E1 |−zL〉 , (3.21)
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Figure 3.4: 0–2 Code. a) Left: Wigner functions of |+zL〉 , |−zL〉 , |+xL〉 from top to
bottom. Center: Same logical states with loss channel applied η = 0.8, conditioned on even
parity. Right: Same, conditioned on odd parity. b) Mean state infidelity versus inefficiency
of channel, with and without parity conditioning. Linear approximation for no syndrome
is 2(1− η), approximation with syndrome is (1− η)/3, same as Fock code.

at least to first order. So far, so good.

Things quickly get sad when we consider the one-jump error, signaled by a mea-

surement of odd parity. In this case, there is only one possible state the oscillator can

be in, |1〉. The best we can do is use the Fock code as our error space, to which we

have a constant average infidelity of 1/2. The resulting infidelity contribution is this

constant factor times the error probability, which is on average 1− η. This is clearly

a first-order error, so the scaling of the 0–2 code, even with perfect error detection,

is no better than the Fock code. In fact, a full calculation of the error-detected mean

fidelity in Figure 3.4 shows identical performance to the Fock code. This means that

we can never expect to pass any break-even point with this encoding.

As a final note, another way to look at the failure of this encoding is to consider

it from the point of view of the environment which is stealing photons from the

oscillator. If the environment absorbs a photon, it effectively measures the state of

the logical qubit to have been in |−zL〉 = |2〉. The backaction of this measurement

collapses the qubit into a known state. For this reason, this effect is sometimes
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described as a dephasing error. Since the rate at which photons are lost from an

oscillator is proportional to the average photon number n̄, this effect will be present

in any encoding where n̄ is not constant as we move about the Bloch sphere. The

dephasing rate is proportional to the difference in n̄ between states in the encoding.

This is precisely the K-L condition in Equation 3.21, which is not satisfied even to

first order for E1 in the 0–2 code.

3.4 Error correction with photons

The 0–2 code and its failure modes provide good instruction for building a first-

order error-correcting code that uses number parity as the error syndrome. The

requirements are:

1. A code space |±zL〉 with well-defined number parity

2. An set of error code words |±zE〉 ≈ E1 |±zL〉 which are orthogonal to one

another, and to |±zL〉

3. A uniform average photon number n̄ throughout the encoding

As we will see, the second and third of these requirements may only be satisfied to

first order in 1−η for most realistic encodings. This is acceptable as long as the

second-order errors remain small. There will already be some second-order errors

from the action of E2, the two-jump error, so we’re just looking to not make these

too much worse.

3.4.1 The cat code

A primary code of interest in this thesis, and the first experimentally-demonstrated

bosonic error-correction code, is the cat code, which has basis states formed from

superpositions of coherent states [78]. As we saw in Subsection 3.1.2, a symmetric
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superposition of two coherent states of opposite phase |α〉 + |−α〉 has even parity.

However, we need two orthogonal states of even parity to make up a logical encoding.

For this, we use two distinct superpositions of four coherent states (legs) along the

positive real, positive imaginary, negative real, and negative imaginary axes in phase

space:

|+zL〉 =
1

N0(α)
(|α〉 − |iα〉+ |−α〉 − |−iα〉)

|−zL〉 =
1

N1(α)
(|α〉+ |iα〉+ |−α〉+ |−iα〉)

(3.22)

where N0,1 are normalization constants which differ from 2 to the extent that the legs

are not orthogonal. This is actually a continuous family of codes, parametrized by

the size α, assumed to be real and positive; the importance of this parameter will be

discussed in Subsection 3.4.3.

Since each of the coherent states has the same weight in any given number state,

but with different phases as per Equation 3.3, these superpositions interfere such that

not only do the two code words have definite parity (number modulo 2), but they

also have definite 4-parity (number modulo 4):

|+zL〉 =
4

N0(α)

∑
n=2,6,10...

αn√
n!
|n〉 ≡

∣∣C2mod4
α

〉
|−zL〉 =

4

N1(α)

∑
n=0,4,8...

αn√
n!
|n〉 ≡

∣∣C0mod4
α

〉
,

(3.23)

where we have introduced notation similar to |C±α 〉 for the two-legged cats. Due to this

structure, the code words are manifestly orthogonal, and superpositions within the

code space will have even parity, but undefined 4-parity. The 4-parity P̂4 is essentially

the logical Z operator in this encoding:

P̂4 = eiπa
†a/2 =

∞∑
n=0

in |n〉〈n| (3.24)

It is worth noting that in the limit of α→ 0, the first term in the sums in Equation
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3.23 dominates, and this encoding trends towards to |±zL〉 = |2〉 , |0〉, which is the

0–2 encoding up to an exchange of the logical code words.4

3.4.2 Cat code errors

Given the ability to measure parity, one can use this as an error syndrome for an

amplitude damping channel with the cat code. Under such a channel with some

finite efficiency, we observed in Subsection 3.2.3 that the amplitude of a coherent

state shrinks: |α〉 → |α′〉 =
∣∣√ηα〉. This happens in the cat code as well, which

deforms the code space. Additionally, the parity can either remain even (no-jump)

or change to odd (one-jump). The code space in the no-jump case is the same but

with a smaller value of alpha:

|+z′L〉 =
∣∣C2mod4
α′

〉
=

1

N0(α′)
(|α′〉 − |iα′〉+ |−α′〉 − |−iα′〉)

|−z′L〉 =
∣∣C0mod4
α′

〉
=

1

N1(α′)
(|α′〉+ |iα′〉+ |−α′〉+ |−iα′〉)

(3.25)

For the case of a parity switch, the one-jump operator E1 ≈ a has basically the same

effect, except that it also draws out a factor of the coherent state amplitude, since

the coherent state are eigenstates of the lowering operator. The resulting error states

are

|+zE〉 =
∣∣C1mod4
α′

〉
∝ (α |α′〉 − iα |iα′〉 − α |−α′〉+ iα |−iα′〉)

|−zE〉 =
∣∣C3mod4
α′

〉
∝ (α |α′〉+ iα |iα′〉 − α |−α′〉 − iα |−iα′〉)

(3.26)

In other words, one jump causes the four-parity to change, while also shrinking the

coherent state amplitude by the same amount as the no-jump case. By checking

for errors, we can assess the mean state fidelity in these new, shrunken encodings,

conditional on the parity signature. The resulting mean state fidelity, plotted in

4. This is an arbitrary choice of definition. In [79] the cat code basis states are swapped. In
[78, 65] these are the x states, and the code words are two-legged cats.



3.4. ERROR CORRECTION WITH PHOTONS 81

10-2 10-1 100
10-4

10-3

10-2

10-1

100

no syndrome
w/ syndrome
Fock codein

fid
el

ity

inefficency

ideal even odda b

Figure 3.5: Cat Code. a) Cat code with α = 1.5. Left: Wigner functions of
|+zL〉 , |−zL〉 , |+xL〉 from top to bottom. Dotted circles denote location of coherent state
“legs.” Center: Logical states with loss channel applied η = 0.8, conditioned on even parity.
Circles are contracted towards the origin, centered at α′ =

√
ηα. Right: Same, conditioned

on odd parity. b) Mean state infidelity versus inefficiency of channel, with and without
parity conditioning. Linear approximation for no syndrome is α2(1 − η). Approximation
with syndrome is quadratic: α2(1−η)2. Black arrow indicates break-even inefficiency, below
which corrected infidelity is lower than Fock code, at η = .72.

Figure 3.5 for α = 1.5, shows that this is a first-order error-correcting code, and it

breaks even with the Fock code around η = 0.72.

3.4.3 Second order errors

The cat code is a fairly remarkable beast. Despite its seemingly complex structure, it

has a very simple action under the no-jump and one-jump Kraus operators. So what

can go wrong? The first, and most obvious, uncorrectable error is double-photon loss

(E2). Losing two photons causes the code words to change 4-parity by two, and they

are mapped to one another. This is a logical bit-flip error, and it is missed by the

parity check.

The probability of this double error depends both on the efficiency and the size

of the cat. The larger the cat, the more photons it has, and the larger the prefactor

of α2 is in the Kraus operator (Equation 3.15). So to minimize this error probability,
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we might think to make α smaller. The problem that arises is that for small coherent

state amplitude (α . 2), the form of the logical equator states becomes a strong

function of alpha. When α is large, the legs of the cat are approximately orthogonal.

In this limit, N0(α) ≈ N1(α) ≈ 2, and

|+xL〉 ≈
1√
2

(|α〉+ |−α〉) =
∣∣C+
α

〉
|−xL〉 ≈

1√
2

(|iα〉+ |−iα〉) =
∣∣C+
iα

〉 (3.27)

which are even parity two-legged cats, along the real and imaginary axes of phase

space, respectively. However, when α is not that large, this approximation breaks

down, and we actually have

|+xL〉 ≈ cos θα
∣∣C+
α

〉
+ sin θα

∣∣C+
iα

〉
|−xL〉 ≈ cos θα

∣∣C+
iα

〉
− sin θα

∣∣C+
α

〉 (3.28)

for some small parameter θα which is a function of α. These two states are orthogonal

(they must be, or this is not a good encoding), but they have overlapping support

in phase space. If we apply the no-jump operator, which shrinks the coherent state

amplitudes but doesn’t change the relative weightings, we end up with

|+x′L〉 ≈ cos θα
∣∣C+
α′

〉
+ sin θα

∣∣C+
iα′

〉
|−x′L〉 ≈ cos θα

∣∣C+
iα′

〉
− sin θα

∣∣C+
α′

〉 (3.29)

which are not orthogonal for α′ 6= α, since the mixing angle θα is wrong for the new

cat size α′. This means the equator states begin to overlap as the coherent states

shrink, which is a logical phase-flip error.

It turns out this dephasing error, which is small as long as α is not too small, is

exactly the same kind of effect we saw for the 0–2 encoding under the no-jump Kraus

operator — it is related to the fact that |±zL〉 have different average photon number.
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Figure 3.6: Fidelity vs Cat Size. For efficiencies ranging from 0.75 to 0.95 (text
annotations at right), the ideal corrected infidelity versus cat size α. Optimum fidelity
denoted by black triangles.

This leads to the measurement of parity gaining a little information about which code

word the qubit is in, dephasing any superposition. This effect makes us prefer larger

α, and so to optimize the performance we need to trade this against logical bit-flips

from double jump errors. The performance versus α for a few different efficiencies

is plotted in Figure 3.6. For a more complete discussion of this optimization, see

[55, 69]. The takeaway is that lossier channels tend to prefer smaller α than less lossy

ones. In a realistic implementation, we need to consider not just the efficiency of the

channel, but also our ability to encode, decode, and perform syndrome measurements

on the oscillator, which may also be α-dependent.

3.4.4 Other bosonic codes

There are a whole host of other bosonic error-correction encodings, and we give an

incomplete list here.

General cat codes

We presented in Subsection 3.4.1 the four-legged cat code, but there are also versions

of cat codes with six, eight, or more legs, which have larger separation in Fock space

between code words. For example, in the six-legged cat code, all states have definite
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photon number modulo 3 (0,3,6,9...), and so the code can tolerate up to two photon

losses, provided that we can measure the three-valued syndrome three-parity. These

codes have the potential advantage of correcting errors to higher order, or different

kinds of errors, like photon gain. However, the legs are closer together as compared to

the four-legged version, so to maintain the same protection from the shrinkage-induced

non-orthogonality, we need to use more photons in our states. This requirement, along

with the more complicated syndrome measurement, is part of the reason these codes

have not been experimentally implemented yet.

Binomial codes

The so-called binomial codes proposed in [53] are constructed with the goal of exactly

satisfying the K-L condition in Equation 3.21, which the cat code fails to do for small

α. There is a very general construction given in the proposal, but codes in this

class are constructed as superpositions of Fock states with binomial coefficients. This

means the maximum photon number occupation is bounded, unlike in the cat code,

where the occupation decays but is nonzero. The simplest version is

|+zL〉 = (|0〉+ |4〉) /
√

2

|−zL〉 = |2〉

|+zE〉 = |3〉

|−zE〉 = |1〉
(3.30)

Indeed the mean photon number of any state in this encoding is n̄ = 2. However,

unlike the cat code, the error space is a bad code in this respect, just like the 0–2

code. This means that, after measuring a parity jump, we should restore the state

back to the original code space before carrying out another round of error-detection,

as was done in [66].

This realization of the binomial code has very similar structure to the four-legged

cat code for α =
√

2, and the performance, shown in Figure 3.7, is very similar. We

demonstrate the application of this code for communication in Chapter 6. Other
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Figure 3.7: Binomial Code. a) Left: Wigner functions of |+zL〉 , |−zL〉 , |+xL〉 from top
to bottom. Center: Logical states with loss channel applied η = 0.8, conditioned on even
parity. Right: Same, conditioned on odd parity. b) Mean state infidelity versus inefficiency
of channel, with and without parity conditioning. Linear approximation for no syndrome
is 2(1 − η). Approximation with syndrome is quadratic: 2(1 − η)2. Black arrow indicates
break-even inefficiency, below which corrected infidelity is lower than Fock code, at η = .68.

versions of binomial codes are proposed in [53] to correct dephasing or photon gain

as well as decay.

GKP codes

We mentioned earlier the grand-daddy of bosonic error correction, the GKP code [59],

which has code words formed from superpositions of well-localized, Dirac-like peaks

in phase space, arranged in a grid. As a result of the grid structure, these states are

eigenstates of discrete displacements by the lattice constant, and so the syndrome

involves measuring not parity, but a function of the displacement operator. Likewise,

this means these codes can be protected from small random displacements by the

environment. A recent surge of interest in GKP codes has come since the realization

that these codes, somewhat remarkably, perform extremely well when exposed to

amplitude damping errors. In fact, a comparison amongst the bosonic code zoo [55]

showed that GKP codes are in some sense optimal, and perform extremely well even
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for fairly modest efficiencies like the ones encountered in this thesis.

Other related encodings

Many of the codes discussed here were motivated by seemingly straightforward syn-

drome measurements. However, codes with less obvious syndrome measurements but

other desirable properties exist. For example, the
√

17 code [53] corrects one decay

error with n̄ ≈ 1.56, and versions of cat and binomial codes with different structure

to the signs of the Fock state amplitudes [80] allow for similar reduction of extent in

Fock space. These codes sacrifice a sensible parity structure, so the syndrome mea-

surement requires more complex control. Additionally, there are several proposals

[53, 81] for encoding a single logical qubit in two or more oscillators, using some joint

property as a syndrome.

Stabilized cat codes

It bears mentioning that there are alternatives to the scheme of encoding, allowing

some free evolution of the oscillator, and then measuring a syndrome. There are

several approaches to continuously stabilizing the code words which involve creation

of two or more degenerate steady states in the oscillator into which a qubit can be

encoded. Autonomous stabilization of cat states using exotic engineered dissipation

was proposed [82] and realized in cQED [83], followed by manipulation of the state

[84], and most recently, demonstration of exponential suppression of one type of

error with cat size [85]. In parallel, a non-dissipative approach which engineers the

Hamiltonian of a non-linear oscillator to create stable cat states was proposed [86] and

implemented [28], demonstrating suppression of one error type. Both dissipative and

Hamiltonian approaches have the potential to create noise-biased qubits with only

one dominant error mechanism, which may provide efficient routes towards repetition

codes with extremely forgiving thresholds [87, 88].
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3.5 Conclusion

In this chapter we introduced the harmonic oscillator and its large Hilbert space as

an object in which we may encode information in a hardware-efficient way. It is

possible to build error-correction codes for the amplitude damping channel in a single

harmonic oscillator, with a single error syndrome measurement. This is something

which would have taken multiple physical two-level qubits and multiple syndrome

measurements to do, as we discussed in Chapter 2.

We are going to use this ability to encode information in multi-photon quantum

states like the cat code to move information around in very small modular quantum

information machines. The primary error limiting these operation will be photon loss

in the link between modules, and so we will leverage the error-correction strategy

discussed here for the problem of quantum communication. In Chapter 4 we will

discuss how to use photonic links as a means of sending information, and discuss a

few approaches. Chapter 5 will get into the implementation of all of these tools in 3D

cQED, and Chapters 6 and 7 will describe the experiments putting it all together.



Chapter 4

Building Bridges with Photons

In Chapter 2 we laid out three approaches towards modular quantum information

machines: a shuttling architecture where qubits can be moved between modules;

an entanglement-based approach where operations across the network are effected

by teleported gates; and an architecture which implements gates directly between

modules. In order to implement any of these architectures, we need a link or bridge

between two or more modules which has the ability to support quantum information,

at least transiently. As we explained in Chapter 2, we consider the links to carry

microwave photons — in this chapter we will describe two approaches, one using

propagating photons, and another which employs photons in a standing wave mode.

In Section 4.1 we describe some of the requirements we demand of such a link be-

tween modules, and what we expect to do with them. Section 4.2 gives the framework

we use to describe the dynamical behavior when we couple two resonators together,

and the useful unitary interaction which results. Next, Section 4.3 introduces the

transmission lines which will make up the physical medium of the bridge. Here, we

discuss coupling an oscillator to a transmission line in both the discrete mode (fi-

nite length) regime, as well as the continuum (infinite length) limit. The coupling

can be physically realized in a few different ways, and this chapter will be mostly

88
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agnostic to the implementation of the coupling. Our coupling of choice, which is

frequency-converting parametric conversion, will be described in Chapter 5.

Next, we detail the two main approaches taken in this thesis. The first is the so-

called “pitch and catch” scheme, or Cirac-Zoller-Kimble-Mabuchi (CZKM) protocol,

named for the authors of the proposal [17], initially envisioned for atomic qubits in

optical cavity, and first realized in [89]. In Section 4.4 we give the basic idea behind

the in-principle lossless transfer of an arbitrary state from one resonator to another,

using a uni-directional transmission line medium. We then describe a different and

somewhat simpler coupling mechanism in Section 4.5. This approach uses a single

mode of a finite-length section of transmission line, which we call a quantum bus.

Here, we comment on some nice features enabled by this bi-directional link, especially

when coupling resonators.

Finally, in Section 4.6 we describe how these different approaches perform when

there is loss in the transmission channel, which is of great practical concern, as all

implementation so far have been largely limited by such loss. We try to unify the ways

one usually thinks about the loss in the two different regimes of interest, and describe

how a few techniques for suppressing this loss can be implemented. Notably, we show

that the simplest picture used usually breaks down in some limit, and the minimum

amount of loss incurred is always that of a single pass through the transmission

channel. We conclude with a few outgoing comments on how we hope to use bosonic

error correction to surpass this hard limit.

4.1 What do we need from a bridge?

As we detailed in Chapter 2, we require links which enable some subset of the following

operations:

– Moving qubit states between modules to perform local two-qubit gates
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– Generating entanglement between qubits in separate modules to be used for

state or gate teleportation

– Directly actuating entangling gates between qubits in separate modules

Since we have so far only realized the first two operations, we will mainly focus on

these. The third approach will be discussed in Chapter 8, as we believe we have

provided a promising step towards direct gates between modules.

We need not only to be able to perform one or more of these operations, but we

need to do them well. By this I mean we need to not add too many errors, or at

least introduce errors predominantly of only one type. To realize this goal, we require

that the communication protocol is rapid compared to decoherence in the modules,

so that the performance is not limited too much by qubit lifetimes. Additionally, we

need to ensure we are not performing this operation when we do not intend to. For

this we require at least some part of the scheme to be switchable. This can mean quite

a few things, but here we mostly concern ourselves with a coupling at the interface

between the module and link which can be turned on and off. Even more, we may

require this control to be continuous; that is, that we can vary the coupling strength

in time. This is an essential part of the CZKM protocol described in Section 4.4.

4.1.1 Photons as mediators

Interactions between qubits or resonators with transmission lines as demonstrated in

cQED fulfill all of these requirements. A great body of work has demonstrated strong,

switchable interactions of various kinds, including frequency-tunable resonators and

qubits [90, 91, 92, 93], flux-tunable couplers [94, 95], and sideband or parametric

modulation [96, 97, 71, 98], which is the tool used in this work. Importantly, the tun-

able couplings mentioned here enable the kind of continuous time-dependent control

we need for certain approaches. These tools usually involve some sort of emission or



4.2. COUPLING RESONATORS 91

absorption of microwave light from or into the qubit.

Another feature of cQED is that interactions can be highly selective, meaning

that the vast majority of photon emission from a qubit can be directed into a single

channel. This is a great advantage over optical and atomic platforms, where emission

into free space can be a major challenge in ensuring highly-efficient links. This selec-

tivity comes from the ease with which microwave mode structures can be engineered

on-chip, and from the effective one-dimensional confinement provided by microwave

transmission lines and waveguides.

4.1.2 Hybrid quantum systems

Another advantage to using photons as mediators between modules is that many

other platforms have shown strong interactions with microwave resonators or qubits,

including but not limited to mechanical oscillators [99, 100], diamond color centers

[101], quantum dots [102], and collective magnetic excitations of a bulk material

[103]. This provides an appealing approach to building hybrid quantum networks,

where modules might contain radically different physical hardware, all united by

their ability to send and receive quantum information encoded in microwave photons.

A compelling example of this is [104], where a quantum state was released from a

superconducting resonator into a transmission line, then absorbed by a mechanical

resonator in another module.

4.2 Coupling resonators

In this section, we discuss some couplings and operations of interest between two

harmonic oscillators. Subsection 4.2.1 introduces a general type of unitary transfor-

mation between two resonators — the beamsplitter. This beamsplitter arises nat-

urally in many contexts, and has a variety of uses, which we will discuss. Then in
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a b

Figure 4.1: Coupled Oscillators. a) Schematic of beamsplitter transformation between
two bosonic modes, here depicted as a physical beamsplitter with two propagating photonic
inputs and outputs. b) Coupling configuration which effects the same transformation be-
tween stationary microwave modes. The element which coupled the oscillators with rate g
can be capacitive, inductive, or a more exotic circuit.

Subsection 4.2.2 we turn to the typical cQED coupling Hamiltonian which generates

a beamsplitter transformation, the conversion Hamiltonian. We’ll discuss this con-

version in a general setting, but then turn to the coupling between a resonator and a

single mode of a transmission line. In Subsection 4.3.3 we introduce the effect of many

modes, and when the mode spacing become dense (the line long), see the crossover to

the continuum limit, where the response of the line becomes flat and dissipative. It is

in this regime that we can convert between the standing oscillator and a wavepacket

in the line by modulating the coupling strength in time.

4.2.1 Beamsplitter transformation

We consider two resonators, with field operators a1 and a2. In Figure 4.1a, these

operators represent propagating photons incident on a beamsplitter. This is a central

element in linear quantum optics [58, 105], and we like to use this picture because

it is an easy way to to think about how the field operators behave. Any sequential

combination of beamsplitters and single-mode phase shifters can be represented by a

single two-dimensional unitary matrix U which acts on the vector ~a = [a1, a2], which

is the input to the optical circuit. The output field operators are ~a′ = [a′1, a
′
2] = U~a.
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The most general two-mode unitary transformation is

~a′ = U~a = eiϕ

 eiζ cos θ eiφ sin θ

−e−iφ sin θ e−iζ cos θ


a1

a2

 , (4.1)

which we generally call the beamsplitter transformation. The angle θ denotes how

much the resonator modes mix as a result of the interaction, and is accordingly called

the mixing, or beamsplitter, angle. The angles ζ and φ are relative phases between

the arms of the beamsplitter inputs, and ϕ is a global phase imparted on the output.

This type of transformation is not on its own sufficient for quantum computation

with bosonic modes. It belongs to a class know as Gaussian operations, because

it effects a mode-mixing in phase space, which will transform Gaussian states1 into

Gaussian states. The beamsplitter does not create quantum states from classical ones,

and Gaussian operations on Gaussian states can be efficiently computed classically,

and therefore offers no quantum advantage. However, this does not mean Gaus-

sian operations are not useful. On the contrary, when paired with some quantum

resource like single photon inputs, or single-photon detectors on the output, linear

operations are sufficient for universal quantum computation [58]. Since cQED offers

well-understood methods of preparing and measuring single photons, Gaussian oper-

ations are of use for measurement and manipulation of bosonic qubits, which includes

generation of multi-photon entangled states [106, 107].

4.2.2 Conversion coupling

Figure 4.1 shows the lumped-element cQED picture (b) corresponding to the linear

optics one (a). The beamsplitter transformation in Equation 4.1 can be generated by

1. Gaussian states are those for which the Wigner function is a two-dimensional Gaussian. This
includes symmetric Gaussians (coherent states) and asymmetric ones (squeezed states).
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a bi-linear Hamiltonian of the form

Hconv = ga†1a2 + ga1a
†
2 (4.2)

For simplicity, we take g real. More generically, Hconv = ga†1a2 + g∗a1a
†
2 for any

complex g. This Hamiltonian, which converts photons between the two modes, arises

in many contexts in cQED. For example, coupling the two resonators with a capacitor

or inductor and setting their frequencies to be equal results in this Hamiltonian in

the rotating frame of the resonators. In Chapter 5 we will explain how it can arise

even when the resonators are far-detuned using driven parametric conversion.

Throughout this chapter we will write the equations of motion for the field oper-

ators in the Heisenberg picture. This is convenient because it allows for easy semi-

classical solutions when the Hamiltonian is bilinear like Equation 4.2. This will let us

find the exact solution for coherent states by treating the operators a1,2 as complex

numbers with initial values A1,2. This corresponds to taking the expectation value of

the equations. Additionally, we can find the exact solution for the mean photon num-

ber 〈a†kak〉 = |〈ak〉|2 in each mode. This will allow us to extract the state-independent

efficiency η as defined in Section 3.2. Note that in most cases, this photon number

calculation is only certain to be correct if one of the oscillators begins in vacuum (or

both in coherent states). This is because the classical solution will capture the classi-

cal phase interference, but not the quantum-mechanical interference. It will not, for

instance, accurately predict the statistics of Hong-Ou-Mandel interference [19], and

we will need to use a quantum mechanical calculation for this.

The Heisenberg equations of motion resulting from Equation 4.2 are

ȧ1(t) = −iga2(t)

ȧ2(t) = −iga1(t)

a1(t = 0) = A1

a2(t = 0) = A2,

(4.3)
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which admit solutions

a1(t) = A1 cos (gt)− iA2 sin (gt)

a2(t) = A2 cos (gt)− iA1 sin (gt) .

(4.4)

We can write this evolution as a unitary in matrix form (a la Equation 4.1):

U(t) =

 cos (gt) −i sin (gt)

−i sin (gt) cos (gt)

 , (4.5)

which is the general beamsplitter with ϕ = ζ = 0, φ = −π/2, and time-dependent

mixing angle θ(t) = gt. This means that an arbitrary mode mixing can be effected

by tuning either g or t.

SWAP from beamsplitter

To give an example of how to work in this formalism and show the utility of this

type of operation, we consider a simple example of how the beamsplitter can effect a

SWAP operation at gt = π/2, where

U(t) =

 0 −i

−i 0

 or
a1 → −ia2

a2 → −ia1.

(4.6)

Since we’re working with bosonic modes, there are many logical encodings we can con-

sider, but we’ll stick with the simplest one, the Fock encoding {|0L〉 |1L〉 = |0〉 , |1〉}.

We can compute the matrix corresponding to U in the Fock basis, by calculating

matrix elements like

〈01|U |10〉 = 〈00|a2Ua
†
1|00〉 = 〈00|a2(ia†2)U |00〉 = i 〈00|U |00〉 = i, (4.7)

where we use 〈00|U |00〉 = 1, since the Hamiltonian of Equation 4.2 has no action on
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the vacuum state. By computing the rest of the matrix elements likewise, we find the

logical unitary UL in the Fock encoding is

UL =

00 01 10 11


1 0 0 0

0 0 i 0

0 i 0 0

0 0 0 −1

, (4.8)

which is a SWAP operation between the two qubits, up to Zπ/2 gates on both qubits:

UL =
(
Zπ/2⊗Zπ/2

)
× SWAP.

While we have shown this is true for the Fock encoding, the π/2 beamsplitter

effects SWAP on any encoding. This can be seen by writing the logical states in

the Fock basis as
∑

n cn |n〉 =
∑

n
cn√
n!
a†
n |0〉 and computing the matrix elements by

passing the factors of a† through U as above.

Entangling operations

Equation 4.8 looks like iSWAP, but it is not, due to the phase that appears on the

|11〉 state. So the beamsplitter with θ = π/2 is not an entangling operation. However,

the 50:50 beamsplitter (θ = π/4) can entangle the resonators, for certain input states.

It is important to note, that although the 50:50 beamsplitter can be generated by

simply halving the evolution time of the SWAP gate to gt = π/4, it is not
√

SWAP.

This is due to the interference properties of bosons. For example, even in the Fock

encoding, the 50:50 beamsplitter on the separable input state |11〉 results in the state

|02〉+ |20〉 — this is the well-known Hong-Ou-Mandel interference [19]. While this is

a maximally entangled state, it is outside of the original code space, and therefore is

not a gate.
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Although it is not a computational gate, the 50:50 beamsplitter is a useful entan-

gler, even for the simple single-photon input state |10〉. In Chapter 7 we will exploit

the properties of this beamsplitter to generate entanglement between modules in a

simple network. Additionally, one can construct computational gates like
√

SWAP

[108, 107] by cascading 50:50 beamsplitters and single-resonator operations.

Other couplings

It is worth noting that Equation 4.1 is not the only operation which can result from

bi-linear Hamiltonians. By including interaction terms which do not preserve photon

number, like a†1a
†
2 + a1a2, we can generate squeezed light, which is quantum but

still Gaussian. This kind of two-mode squeezing interaction is used in parametric

amplifiers (see [109] for a review), and the single-mode version, along with a two-

mode beamsplitter, has been used to simulate problems in quantum chemistry [110].

There are also non-linear couplings like self-Kerr (a†1a
†
1a1a1) and cross-Kerr (a†1a1a

†
2a2)

interactions, to be expanded upon in Chapter 5, which can generate quantum non-

Gaussian light.

4.3 Transmission line and distributed-element res-

onators

The physical link of choice in cQED will be microwave coaxial transmission line, which

is compact, high-bandwidth, flexible, easy to couple to, commercially available, and

can be very low loss when made from superconducting materials. Coaxial line of

finite length can act as a multi-mode resonator. In this section, we’ll give a quick

description of transmission line of finite length, and consider coupling the modes of

this distributed element object to an external resonator through one end. We’ll then

consider the continuum limit, where the line becomes long enough that the modes are
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no longer discrete. In these regime we talk about propagation of photons wavepackets,

which is a superposition of many standing modes. We’ll then discuss the effects of

dissipation in both regimes.

4.3.1 Transmission line

A length of transmission line is essentially a one-dimensional object, made of two

conductors with mutual capacitance and inductance. We’ll mostly be concerned with

coaxial transmission line like the one pictured in Figure 4.2, which consists of an inner

conductor and an outer ground shield, but most of this holds for other types as well.

We first consider the lossless transmission line, with capacitance and inductance per

unit length C and L, respectively. The voltage V (x, t) between the two conductors,

and current I(x, t) in the center conductor, as a function of time and space in the

line, are related by the telegrapher’s equations

∂V (x, t)

∂x
= −L∂I(x, t)

∂t
∂I(x, t)

∂x
= −C ∂V (x, t)

∂t
,

(4.9)

We usually combine these into a wave equation for the current (or voltage)

∂2I(x, t)

∂x2
=

1

c2

∂2I(x, t)

∂t2
, (4.10)

with speed of light c = 1/
√
LC. Note that the speed of light in the line is usually

slower than in vacuum, due to a capacitance which is increased by the presence of a

dielectric.

If the length of the line is ` and it is open at each end, there are boundary condi-

tions I(x = 0, t) = I(x = `, t) = 0. The one-dimensional wave equation with homo-

geneous boundary conditions has infinite discrete eigenmode solutions with complex
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Figure 4.2: A Transmission Line Resonator. A length of open-ended transmission
line supports standing modes. The voltage profiles of the first three modes are shown, with
λ1 = 2`, λ2 = `, and λ3 = 2`/3, from dark to light.

current and voltage profiles and eigenfrequencies

In(x, t) = In sin

(
2πx

λn

)
e−iωnt

Vn(x, t) = Vn cos

(
2πx

λn

)
e−iωnt

λn =
2`

n
ωn =

nπc

`
= 2πnFSR, (4.11)

for positive integer n, where In and Vn are the maximum current and voltage for mode

n, respectively. We have introduced the free spectral range, FSR = c/2`, which is the

frequency spacing between modes in angular frequency units. The FSR is the inverse

of the round-trip for light to travel from one end of the line to the other and back.

This timescale will be relevant later on when we discuss the crossover from standing

to propagating light. The first three voltage profiles are shown in Figure 4.2.

4.3.2 Coupling

We can couple the modes of a transmission line to an external, lumped- or distributed-

element, resonator in any of the ways we discussed in Section 4.2. Typically, a lumped

resonator can be connected to the end of the line by some coupling element, with rate

g. This topology is shown in Figure 4.3a. When we do this, the lumped resonator

will in fact couple to all of the modes of the line. The strength of these couplings

may not be equal, but we’ll take a simplified approach and assume they are2. The

2. Capacitive or inductive couplings have frequency-dependent rates, increasing with frequency
for a capacitor and decreasing for an inductor. For the parametric couplings described in Chapter
5 and used in Chapter 7, the frequency dependence is nontrivial.
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a b

Figure 4.3: Coupling a Resonator to a Transmission Line. a) A lumped element
resonator coupled to one end of a finite transmission line. The resonator can couple to
any mode of the line. b) In the infinite length limit, where the mode frequency spacing is
smaller than the coupling rate g, the resonator decays at a rate κ into the continuum of the
line.

coupling to multiple modes is will mostly of concern when the FSR becomes small, so

we may hope that at least for small changes in frequency the coupling can be assumed

roughly constant.

4.3.3 The continuum limit

Here we’ll describe the crossover from coupling to one mode (unitary dynamics) to

the coupling to many modes (input-output theory and the Langevin equation) as

the length of the transmission line is made long, as in Figure 4.3b. The discussion

here closely follows the much more complete treatment in Chapter 12 of [111]. The

goal is to eliminate the infinite number of transmission line modes to get an effective

dynamics for the lumped mode. This will involve replacing the unitary coupling rate

g with a decay constant κ which we will derive below. We’ll then circle back to what

happens in the line.

Let’s call the lumped mode a and the modes of the line bk, with frequencies ωk =

2πkFSR. The conversion Hamiltonian Equation 4.2 assumes the modes involved are

resonant. To describe the coupling to multiple modes, we need to introduce detuning,

which we will do with a time-dependent Hamiltonian, going into the rotating frame
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for each of the line modes, but stay in the lab frame for mode a. The detuning of

mode k from the lumped resonator is ∆k = ωk − ωa. The Hamiltonian reads

H(t) = Ha +
∑
k

(
ga(t)b†k(t)e

i∆kt + ga†(t)bk(t)e
−i∆kt

)
, (4.12)

where Ha is the rest of the Hamiltonian, involving only mode a, including the fre-

quency term ωaa
†a. We write the Heisenberg equations

ȧ(t) = i[Ha, a]− ig
∑
k

bk(t)e
−i∆kt (4.13a)

ḃ(t)k = −iga(t)ei∆kt, (4.13b)

then integrate Equation 4.13b to get b(t)

bk(t) = −ig
∫ t

0

a(τ)ei∆kτdτ (4.14)

and substitute it into Equation 4.13a:

ȧ(t) = i[Ha, a]− g2
∑
k

∫ t

0

a(τ)ei∆k(τ−t)dτ. (4.15)

This is generally true, and gives the dynamics for a(t), which depends on all past

times. But to get it into a more usable form, we now take the limit where the modes

bk of the line become very close together in frequency. This is the limit where `→∞

and FSR → 0. We can replace the sum over k with an integral over ∆, using the
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density of states, which is 1/(2πFSR):

ȧ(t) = i[Ha, a]− g2

2πFSR

∫ ∞
−∞

∫ t

0

a(τ)ei∆(τ−t)dτd∆

= i[Ha, a]− g2

��2πFSR

∫ t

0

a(τ)��2πδ(τ − t)dτ

= i[Ha, a]− g2

FSR

1

2
a(t).

(4.16)

The integral over frequency yields a Dirac delta function, which when integrated over

gives us half the integrand3, resulting in this effective equation for a(t). We make the

identification κ ≡ g2/FSR, and have

ȧ(t) = i[Ha, a]− κ

2
a(t). (4.17)

This is the Langevin equation for an oscillator a coupled to a semi-infinite transmission

line, though it can also be used to describe any other source of damping as well.

Frequency integration limits

We played a bit fast and loose with the conversion of the sum over modes of the line

into an integral over frequency space. In particular, we integrated over all detunings,

from −∞ to ∞, when in reality there is a minimum frequency. This is justified

because modes that are far away in frequency should not contribute much to the

dynamics of a. However, there is an implicit assumption here that g � ωa, which

is usually the case in cQED, though the so-called ultra-strong coupling regime has

become of interest in recent years [112, 113, 114, 115, 116].

3. Half because the integrals stops at t, so we only integrate over half the delta function.
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Input field

The derivation above assumes any amplitude in the modes bk comes from a; that

is, we assumed bk(t = 0) = 0. But they could already have some occupation. This

manifests as an additional term in Equation 4.15 which becomes an integral over all

modes of the line at t = 0, and is proportional to

∫ ∞
−∞

b[∆]e−i∆td∆, (4.18)

and which we can call ain(t). It shows up in the final equation of motion as an

additional term

ȧ(t) = i[Ha, a]− κ

2
a(t)−

√
κain(t). (4.19)

Since ain is a superposition of eigenmodes in the line, it can be thought of as a

wavepacket traveling towards the resonator. Any wavepacket whose spatial extent

fits within the line can be Fourier expanded in this way. In other words, if the

frequency bandwidth of the input field is larger than the FSR, we can think of it as

an incoming wavepacket.

Output field

Likewise, the occupation of the transmission line modes also gives rise to an outgoing

wavepacket, which we call aout(t). Again, it makes sense to think in this way as long as

mode a is interacting with enough of the line modes that it generates a superposition

in frequency space. This is the case if the coupling strength g is as large or larger than

the FSR. In the time domain, we can say that if the interaction time 1/g is short

compared to the round trip time 1/FSR, then the state of the resonator a can be

converted to propagating light in the line before that light has time to reflect off the

far end, return, and interfere with itself. In this picture the concept of standing wave

modes (ultimately an interference effect) breaks down, and we talk about wavepackets.
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The interplay of the resonator field with the incoming and outgoing wavepackets

is succinctly summarized in the input-output relation

aout(t) =
√
κa(t) + ain(t). (4.20)

This says that the outgoing field is a sum of the emitted resonator field and the

reflected incoming field.

There is a phase convention we have used here between the definitions of ain and

aout. This manifests here as a plus sign in Equation 4.20 — the incoming field is

reflected with no phase flip. This is the case for a parallel LC resonator with a

capacitor or inductor in series with the resonator and the line (as in Figure 4.1), since

this looks like an open circuit off-resonance. For a series LC resonator with a parallel

coupling capacitance or inductance, the reflected signal is inverted because the circuit

looks like a short to ground off-resonance. This doesn’t really change the discussion

much, other than a sign convention on the output.

Relationship between coupling and dissipation rates

A final comment about the relation κ = g2/FSR. This is a handy statement, but

a little confusing. The left-hand side is a statement about the continuum limit, but

the right side assumes discrete modes. Moreover, g and FSR are length-dependent,

whereas κ is not. It turns out that the ratio g2/FSR is constant as a function of

length for a fixed coupling element, since FSR ∼ 1/` and g ∼ 1/
√
`. The coupling

strength decreases as the length increases because g2 is the per-photon interaction

energy. As the mode volume increases, the voltage and current at the ends of the

line decrease, which lowers the interaction energy4. This also means that we may

consider the continuum limit as 1) the regime where the length is longer than the

4. Put another way, the zero-point voltage and current fluctuations decrease as 1/
√
` for constant

energy per photon (frequency).
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wavepacket spatial extent, or 2) the limit where the round trip time is long compared

to the interaction time. These are different ways of saying g > FSR.

4.3.4 Loss

While the transmission lines we use in this thesis are superconducting, they are are

only lossless at zero frequency. The exact mechanisms which contribute to the loss at

finite frequency are not entirely known, but it is likely some combination of dielectric

loss, surface conductance loss, and resistive joint losses. These are all the same sorts

of factors which dictate losses of superconducting resonators and qubits [117, 118, 119,

120]. Here we consider the effects of a few different kinds of losses on the modes of a

transmission line resonator, and relate that to the effect on propagating wavepackets.

Single-pass loss

A simple assumption for the loss in a line is that the dissipation is equally distributed

throughout the length of the line. This would be the case for a uniformly lossy dielec-

tric, or a finite surface conductance. In this case, we can talk about an attenuation

constant ζ, which has dimension of inverse length. For a wavepacket propagating

down the line, the energy decays exponentially in the length x traveled, and is pro-

portional to e−ζx. Note that here ζ is the energy attenuation constant, which is

twice the electric/magnetic field attenuation constant, usually referred to as α in the

literature [121]. We use this somewhat nonstandard notation ζ for the attenuation

constant to avoid confusion with α, which we have been using to denote coherent

state amplitudes. Given ζ, the single-pass loss (SPL), the fraction of energy lost over

a single transit from one end to the other of a length `, is

SPL = 1− e−ζ` ≈ ζ`, (4.21)
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where the approximation holds if the loss is fairly small. This approximation will be

valid for everything considered here.

Damping rates and quality factors

We have spoken of wavepackets, but we know that a finite length of line has standing

modes. Loss in the line means these modes have finite decay rates κn, where n indexes

the mode number. The decay rate has dimension of inverse time, and the fraction of

energy remaining in a time t is e−κt. Comparing this to the equivalent exponential

involving the attenuation per length, and remembering that the speed of light c relates

x = ct, we have

e−κnt = e−ζx = e−ζct =⇒ κn = cζ. (4.22)

Another useful identity is to relate the SPL to the decay rate, which involves the

FSR:

SPL ≈ ζ` = ζ
c

2FSR
=

κn
2FSR

. (4.23)

As an aside, recall that FSR is an angular frequency (in Hz), while κ is an inverse

time, so there is a hidden factor of 2π in this expression.

We’ll use κn below in some figures of merit, but an oft-quoted and related quantity

is the dimensionless quality factor Qn = ωn/κn, so it is useful to relate this to the

above:

Qn =
ωn
κn

=
2πnFSR

κn
=

πn

SPL
=
πn

ζ`
. (4.24)

There is an explicit dependence on the mode number in the quality factor, but there

can also be an implicit dependence if ζ (and hence, the SPL) is frequency-dependent.

If this is the case, then κn will be frequency-dependent as well. Whether this is the

case will depend on the dissipative mechanism.

We should give some rough numbers for what we can expect for ζ is supercon-

ducting transmission line. For a typical on-chip stripline resonator (see Subsection
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5.1.2), l = 1 cm and the fundamental mode (n = 1) has Q = 106 or higher [122]. Then

Equation 4.24 gives us ζ = πn
Q`

= 1/(3 km), which is roughly equal to that of optical

fiber used for long-distance quantum communication. 3D coaxial cavity resonators,

discussed in Subsection 5.1.3, store most of their energy in the lossless vacuum and

can be even lower-loss, with Q = 8× 107 [79], which gives an attenuation constant of

ζ = 1/(700 km). While the transmission line links we employ for the experiments in

this thesis are not yet at this quality (see Section 5.8), we should be optimistic about

the prospects of superconducting microwave links.

Dielectric loss

If the loss is sourced by loss in a dielectric (like PTFE), which fills the entirety of the

transmission line, then we often characterize the dissipation of this material with a

dimensionless loss tangent tan δ [121], which is the fraction of energy dissipated per

cycle of oscillation, per the fraction of energy stored in the dielectric. For a full filling,

all the electric energy lives in the dielectric, and

Qn =
1

tan δ
=⇒ κn = ωn tan δ = 2πnFSR tan δ. (4.25)

If the loss tangent is frequency-independent, then the decay rate increases linearly

with frequency.

Joint loss

Another possible source of loss arises because the transmission line must be connected

to something at its ends. When we use a line to bridge two modules, there will be

a connection between the ground shield of the line and the housing of the module

at each end. This joint can have some resistance, which will dissipate energy if the

modes of the line flow current across it. A simple model where the joint is envisioned
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Figure 4.4: Joint Loss in a Transmission Line Resonator. A simple model for joint
loss places a resistor in the round shield a distance x0 from the end of the line. Current
profiles for modes n = 2, 3 show strong dependence of current in the resistor on position
This position is a current zero for mode n = 3 (light), while for n = 2 (dark) it is near a
maximum.

as a interruption in the ground of the line with resistance R, a distance x0 from one

end, is pictured in Figure 4.4. In particular, different modes have different spatial

current profiles, which can affect the amount of loss inherited by each.

To calculate the damping rate for mode n caused by the resistor, we need the

ratio of power dissipated to total energy stored. The power dissipated is

Pn =
1

2
R|In(x0)|2 =

RI2
n

2
sin2

(
2πx0

λn

)
=
RI2

nβn
2

, (4.26)

which is half the maximum instantaneous power. We define βn = sin2 (2πx0/λn),

which is a mode-dependent geometric factor encoding the amount of current the

mode puts across the resistor.

In analogy to a lumped element resonator, the total energy in the mode is the

maximum energy stored in the inductor

En =
1

2
LI2

n =
ZnI

2
n

2ωn
, (4.27)

where Zn is the characteristic impedance of mode n. For a transmission line with

characteristic impedance Zc, we have [121]:

Zn =
2

nπ
Zc. (4.28)
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Zc depends on geometry, and is usually 50 Ω or thereabouts.

The damping rate is then

κn =
Pn
En

=
ωnRI

2
n

ZnI2
nβn

=
πnωnβn

2

R

Zc

= π2n2βnFSR
R

Zc

, (4.29)

and the quality factor is

Qn =
ωn
κn

=
2

πnβn

Zc

R
. (4.30)

We have written these expressions to make it clear that there is a dimensionless ratio

of the resistance to the (mode-independent) characteristic impedance Zc, as well as a

mode-dependent geometric factor. The geometric factor βn may not be monotonic in

n, depending on where the joint is. For instance, if the joint is exactly in the middle

(x0 = `/2), then βn = 1 for odd n, but βn = 0 for even n, and the loss vanishes.

This geometric dependence makes it hard to say anything about the scaling with

n in general. However, an interesting regime is x0 � λn for all n of interest — this

corresponds to the joint very near the end of the line. In this case βn ≈ (2πx0/λn)2 =

n2π2x2
0/L

2. Then we have damping rate and quality factor

κn = π4n4 x
2
0

L2
FSR

R

Zc

Qn =
1

π3n3

2L2

x2
0

Zc

R
,

(4.31)

which is a strong dependence on mode number (and frequency) indeed. This joint-

induced scaling of Qn ∼ 1/n3 could contribute to the stronger-than-expected behavior

observed at low temperatures in [123].

We can estimate what sort of resistance R we might expect between a joint for

two superconductors, which has been measured for cavity resonators [124]. In this

case, the joint is not usually point-like, but instead is distributed over some seam with

perimeter lseam. We parametrize the quality of the seam with the conductance gseam,
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which has units of 1/Ω m, or conductance per length of seam. The total resistance is

then R = 1/(gseamlseam). For the kind of coaxial cable used in Chapters 5 and 7, the

perimeter is lseam = 2πr ≈ 3 mm. For bulk aluminum alloy, gseam ≈ 104/Ω m, which

gives R = 30 mΩ. From Equation 4.30, this would grant a worst-case (βn = 1) of

Q ≈ 103. However, there are two ways the seam-limited quality can be much higher

than this. The use of indium films as a contact layer between metals can increase the

seam conductance to gseam ≥ 108/Ω m, which would improve this worst-case quality

factor by four orders of magnitude to Q ≈ 107. More recently, indium bump-bonding

has increased this bound by an additional factor of 100 [125].

Moreover, we can improve the resonator quality by placing the joint in a better

place, where the current is smaller. For instance, if the joint is within 2% of a

wavelength from the end (x0 = 0.02λn), then β)n ≈ .01, and even with the worst

seam quality from [124], we would have Q ≈ 105, with plenty of room to improve

with a more optimistic seam.

4.3.5 Waveguide

We pause for a moment to mention that transmission line is not the only possible

photonic link. We could instead use waveguide, which is made of a single conductor

with a hollow interior. Much of this discussion still applies, but there may be some

advantages for waveguide links. For instance, without a center conductor, there is

no need to use dielectric to support it, and so we can eliminate bulk dielectric loss.

Waveguide also typically has larger lateral dimensions, which reduces the concentra-

tion of energy in the surface currents, and hence reduces conductor losses. Indeed,

the superconducting waveguides measured in [123] were found to be lower loss than

coaxial cable. Finally, waveguide has a cutoff frequency, below which it has no stand-

ing or propagating modes. The cutoff frequency is set by the lateral dimensions, and

is independent of the length. This adds additional control to the mode structure,
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which may be useful when tailoring interactions between the link and the modules.

For instance, waveguide filters have been used to couple a resonator strongly to a

transmission line without limiting the lifetime of a qubit below the cutoff frequency

[71].

4.4 The CZKM protocol

Having described coupled resonators and resonators coupled to a transmission line

continuum, we turn now to two approaches one can take to use transmission line

as a coupling link between two resonators. These schemes can effect state transfer

and generate entanglement between modules. The first uses a line of apparently

infinite length, and so the coupling is mediated by a continuum. There is a “sender”

resonator which emits a wavepacket into this continuum, and a “receiver” which

perfectly absorbs this wavepacket. The other approach, described in Section 4.5,

employs a single mode of a finite length of transmission line to enable unitary swapping

dynamics between resonators coupled to either end.

4.4.1 The physical system

This first approach was proposed [17] as a way of transmitting the state of an atom

through an optical fiber by exchanging the excitation from the atom to an optical

cavity at a variable rate g(t). The cavity couples to the fiber at a constant rate κ,

and thus the excitation leaks out into the fiber at an effective rate which depends on

both g and κ. The control of the effective rate allows for the emission of the cavity to

be shaped into a smooth wavepacket. By a similar coupling on the other end of the

fiber, this wavepacket can be perfectly absorbed into an atom in another cavity, over

arbitrarily long distance. We will explain the protocol in the cQED context, replacing

the atoms with resonators, but the essential details are the same.
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Module 1 Module 2

a

b

Figure 4.5: Physical layout for the CZKM Protocol. a) State transfer between
atoms (red, orange) in cavities (blue) via emission through a directional optical fiber link.
Modulated conversion coupling (purple arrows) and static decay (blue arrows, white mir-
rors) control emission profile. c) cQED realization. The modes a1 and a2 are made to
couple through a directional channel and local output modes b1 and b2. Local couplings
g1 and g2 are varied in time to release and capture a specified wavepacket shape. Output
mode decay rates κ1 and κ2 are fixed.

The cQED layout of the CZKM protocol is shown in Figure 4.5. Two modules

are connected by a transmission line. Each module, indexed by k ∈ {1, 2}, contains a

storage resonator ak and an output resonator bk. The output resonator couples to the

link at a fixed rate κk. The storage and output resonators couple with a time-variable

rate gk(t).

The goal is to transfer an arbitrary resonator state from resonator a1 to resonator

a2, initially assumed to be in the vacuum state. As we mentioned above, we will

treat the transmission line as a continuum. For it to act exactly as a continuum,

the line would need to be infinitely long5. Since there might be loss in the line, we

don’t actually want an infinite length, just a convenient one. We get around this by

inserting a directional element, a circulator, into the line. This directs any emission

from or reflections off module 2 into a matched resistor. In this way, from each

5. More precisely, long such that the round-trip time is long compared to times corresponding to
the coupling rates g and κ, and the wavepacket bandwidth, which we will see below is ∼4g2/κ.
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module, the line looks infinitely long, since emission never returns.

4.4.2 Effective coupling rate

We’ll begin by considering the dynamics of module 1, since the circulators ensures

they are independent of module 2. The coupling between modes a1 and b1 is the

conversion Hamiltonian in Equation 4.2. The Langevin equations are

ȧ1(t) = ig∗1(t)b1(t)

ḃ1(t) = ig1(t)a1(t)− κ

2
b1(t).

(4.32)

Note that we allow g1 to be complex. Since module 1 sees a matched input, bin,1 = 0.

The input-output relation then simply reads

bout,1(t) =
√
κ b1(t). (4.33)

For a generic g1(t), these equations can be solved numerically. However, these

equations admit an analytic solution for constant g1(t) = g. Assuming the storage

resonator has initial field amplitude a1(0)=a0, and the output resonator is empty

(b1(0)=0),

a1(t) =
a0

2
√

1− κeff

κ

[(
1 +

√
1− κeff

κ

)
e
−κt

4

(
1−
√

1−κeff
κ

)

−
(

1−
√

1− κeff

κ

)
e
−κt

4

(
1+
√

1−κeff
κ

)]
b1(t) =

2iga0

κ
√

1− κeff

κ

[
e
−κt

4

(
1−
√

1−κeff
κ

)
− e−

κt
4

(
1+
√

1−κeff
κ

)]
,

(4.34)

where we define κeff = 4|g|2/κ.
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Under the approximation |g| � κ, the solution simplifies to

a1(t) = a0e
−κeff t/2

b1(t) =
2iga0

κ

[
e−κeff t/2 − e−κt/2

]
,

(4.35)

which means that the field in storage resonator a1 decays exponentially with a rate

κeff/2, so the energy decays at κeff . Meanwhile, the field in the output resonator

quickly rises, and then decays, also at κeff/2. The emitted field is then

bout,1(t) =
√
κb1(t) = 2ig

√
κa0

[
e−κeff t/2 − e−κt/2

]
. (4.36)

The initial energy content in the mode a1 is |a0|2 (in units of photons), and integrating

the output field reveals
∫∞

0
|bout,1|2dt = |a0|2, which means that all of the energy is

conveyed through the output resonator and emitted into the transmission line. The

complete conversion means we have a chance of transmitting the entirety of the state

in a1 somewhere else, for any initial state, thanks to the linearity of the equations of

motion. We just have to be able to absorb this emission somewhere else.

4.4.3 Absorbing reflections

The emission from module 1 will be incident on module 2 as bin,2(t)=bout,1(t)=
√
κ b1(t).

The dynamics for this module are then dependent on what happens in module 1:

ȧ2(t) = ig∗2(t)b2(t)

ḃ2(t) = ig2(t)a2(t)− κ

2
b2(t)−

√
κ bin,2(t)

= ig2(t)a2(t)− κ

2
b2(t)− κb1(t),

(4.37)
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with input-output relation

bout,2(t) =
√
κ b2(t) + bin,2(t) =

√
κ (b1(t) + b2(t)) . (4.38)

Unfortunately, the constant conversion coupling considered above in Subsection

4.4.2 produces a wavepacket which is not efficiently absorbed with constant receiver

coupling g2 = g1. This can be seen by considering the time-reverse of the emission

process. The profile of the emitted field is a decaying exponential in time, with time

constant κeff/2. In the time-reverse picture, we have perfect absorption of an incoming

wavepacket with the reverse profile, which is a rising exponential. For this reason,

constant couplings do not provide a good temporal-mode match between sender and

receiver.

The observation made by Cirac and co-authors was that, by appropriately tun-

ing g1(t) and g2(t), it is possible to enforce the condition bout,2(t)=0 for all time,

which means that no power is reflected from module 2, and the incoming state is

perfectly absorbed. This null reflection results from destructive interference between

the incoming filed bin,2 with the intra-cavity field b2:

b2(t)=−b1(t). (4.39)

They solved this problem by choosing the wavepacket bout,1(t) to be time symmetric:

bout,1(−t) = bout,1(t). This, taken with the interference condition, also forces b1 and

b2 to be time symmetric. Then, by enforcing g2(t) = g1(−t), they showed that there

is a solution to the coupled dynamical equations.

The work of Cirac et al. was a critical step towards the first demonstration of

communication with optical photons [89]. However, the solution presented therein

leaves a little bit to be desired. For starters, this approach does not lend itself very

well towards including certain additional Hamiltonian terms induced by the coupling
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(see Chapter 5). Additionally, the conversion strength g1(t) is left at a maximum at

the end of the protocol, and g2(t) is assumed to have been at a maximum for all time

before hand. This is related to the fact that the structure of the problem is such

that it admits no complete transfer of excitation in finite time. This can be seen in

the constant-coupling solution in Equation 4.35, where the occupation of a1 decays

exponentially, but never reaches zero exactly. In practice one must choose a finite

time for the protocol, such that the energy emitted is some fraction of the initial

energy contained in a1, which is as large as is practical. For these reasons, we present

a related but more complete numerical approach to this problem.

4.4.4 Practical solutions

Guided by the results from [17], we break this problem into two separate pieces,

treating the sender and receiver independently. The two subproblems are, given a

wavepacket temporal envelope bout,1(t) defined on t ∈ [0, T ],

– find the sender coupling g1(t) which releases this wavepacket, containing the

right amount of energy η1 =
∫ T

0
|bout,1(t)|2dt < 1; and,

– find the receiver coupling g1(t) which absorbs this wavepacket, with efficiency

η2 = 1−
∫ T

0
|bout,2(t)|2dt < 1.

Given the necessary imperfect release and capture efficiencies η1 and η2, the maximum

transfer efficiency will be η = η1η2. The envelope, and the release and capture

efficiencies, are chosen by the user, but certain choices may be practical or not.
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Release

The solution for the first subproblem involves some gymnastics with Equation 4.32,

reproduced here to minimize page turning:

ȧ1(t) = ig∗1(t)b1(t) (4.40)

ḃ1(t) = ig1(t)a1(t)− κ

2
b1(t). (4.41)

Since b1(t) and its derivatives are determined by the outgoing wavepacket, we can

regard these as equations for a1(t) and g1(t). We take the time derivative of the

second equation, and substitute in the first:

b̈1(t) = iġ1(t)a1(t) + ig1(t)ȧ1(t)− κ

2
ḃ1(t)

= iġ1(t)a1(t)− g1(t)g∗1(t)b1(t)− κ

2
ḃ1(t).

(4.42)

Next we multiply this equation by g1(t)

g1(t)b̈1(t) = iġ1(t)g1(t)a1(t)− g2
1(t)g∗1(t)b1(t)− κ

2
g1(t)ḃ1(t), (4.43)

and solve Equation 4.40 for ig1(t)a1(t) to substitute in:

ġ1(t)
(
ḃ1(t) +

κ

2
b1(t)

)
− g2

1(t)g∗1(t)b1(t)− g1(t)
(κ

2
ḃ1(t) + b̈1(t)

)
= 0. (4.44)

We have succeeded in eliminating the unknown a1(t), and have just one equation

for g1(t) in terms of b1(t) and its derivatives. This is a nonlinear equation for the

complex-valued g1(t) which must in general be solved numerically, with the initial

condition on g1(0) coming from Equation 4.41:

g1(0) =
ḃ1(0) + κb1(0)/2

ia1(0)
. (4.45)
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Since the output resonator should be empty at the beginning of the protocol, it is wise

to choose bout,1(0) = 0, or the solution cannot be exact. Additionally, by choosing

ḃ1(0) = 0, we have g1(0) = 0. For these reasons, we usually use a wavepacket shape

like bout,1(t) ∝ sin2 (πt/T ), which leads to smooth behavior of g1(t), without a step-like

turn-on.

In practice we find that a solution for g1(t) can be found in a numerically stable

way as long as the duration and shape of the wavepacket are chosen appropriately,

and the released energy fraction η1 . 0.99. The minimum duration is set both by

the maximum attainable conversion rate gmax, as well as the bandwidth of the output

mode κ. We typically find 1/T � gmax < κ. This means the transfer time is slower

than any of the dynamical timescales of the problem. This comes from the fact that

we are utilizing damping of the communication resonator, which necessitates waiting

several time constants to empty it fully.

Capture

Remarkably, the procedure for computing the capture coupling g2(t) is almost iden-

tical to the release. This is because, given the interference condition Equation 4.39,

the equations of motion for module 2 are

ȧ2(t) = ig∗2(t)b2(t)

ḃ2(t) = ig2(t)a2(t) +
κ

2
b2(t),

(4.46)

which look just like the equations for module 1, but with the sign of κ inverted.

Since b2(t) is specified by the incoming wavepacket, we again can perform the same

manipulation to eliminate a2(t). The difference is that we do not have a useful initial

condition, but rather a final condition

g2(T ) =
ḃ2(T )− κb2(T )/2

ia2(T )
a2(T ) =

√
η2

∫ T

0

|bin,2(t)|2dt. (4.47)



4.4. THE CZKM PROTOCOL 119

For practical reasons, we then solve the equation for g2(t) in reverse, from t = T to

0. If the wavepacket is time-symmetric and the decay constants κ are the same in

both modules, this will result in g2(t) = g1(T − t), though these conditions are not

necessary.

4.4.5 Entanglement generation

The above procedure enables arbitrarily high fidelity transfer of unknown quantum

states. This is useful for moving qubits around in a modular architecture, and can

be used to generate entanglement between modules if we transmit half of a locally

entangled Bell pair. However, a very minor modification of this protocol enables direct

generation of an entangled state between sender and receiver. After preparing a single

photon in a1, we can turn on the release process, but tune it so that only half of the

energy is released. This corresponds to specifying
∫ T

0
|bout,1(t)|2dt = 0.5, but can be

done with the same overall temporal envelope for the output field, which requires a

different release control profile g1(t). This generates an entangled state between a1

and the propagating wavepacket. By fully absorbing the incoming state at module 2,

we can swap that entanglement into a2, resulting in a single-photon Bell state between

the two modules. A nice feature of this approach is that the capture control g2(t) is

the same as for state transfer, since the problem is linear in the incoming wavepacket

bin,2(t). Indeed it is slightly easier than state transfer, because the maximum control

amplitude for partial release is smaller than for full state release.

It is worth noting that the general evolution of a state |ψ〉s in the sender after

half-release is that of a 50:50 beamsplitter between the sender and the propagating

wavepacket, initially in |0〉. After absorption, the results is a 50:50 beamsplitter

between the sender and receiver, provided the initial state of the receiver is vacuum.

For example, with an initial coherent state |α〉s |0〉r, the final state is
∣∣α/√2

〉
s

∣∣α/√2
〉

r
,

which is not entangled.
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4.5 The quantum bus

The CZKM protocol discussed above has some advantages; namely, it is independent

of the length of the link. There are, however, some challenges. For instance, the

output modes need to be matched in frequency, within their bandwidth κ, which

is usually less than a part in a thousand precision on the frequency. This either

presents the fabrication challenge of making identical resonators, or requires in situ

frequency tunability. Additionally, as we will discuss below, the required circulator is

usually lossy, which limits the fidelity of the transfer, and it enforces a directionality

of communication, which may limit the flexibility of the interaction. These challenges

will be discussed in more detail in the discussion of the experimental implementation

in Chapter 6. In this section we present a somewhat simpler approach which uses a

single mode of a finite section of line, with no directional element.

The physics discussed here bear a lot of resemblance to the original quantum bus

experiments from Yale [90] and NIST [91], but we will consider coupling resonators

instead of qubits. Additionally, we’ll leave the exact coupling mechanism vague as

we did in the last section. The analysis here applies to any coupling which realizes

the conversion Hamiltonian in Equation 4.2. As we will see, this approach has some

significant implications over the CZKM scheme.

4.5.1 The physical system

The hardware layout for coupling two resonators through a transmission line is

sketched in Figure 4.6. The first simplification from the CZKM protocol is that

there are no output resonators, reducing the hardware requirements. Instead, we

envision modes a1 and a2 each directly coupled to a single mode of the line, b, at rate

g. The coupling rate can be time dependent, and could differ on the two ends, but

the simplest case is a gated coupling (simple on-off) with equal rates. We’ll discuss
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Figure 4.6: The Quantum Bus. Two resonators are coupled to either end of a length
of transmission line. The resonators interact via a single mode of the line.

different approaches in Section 4.7. The lack of a need for numerical time-dependent

control also simplifies the calibration requirements significantly.

The full Hamiltonian reads

H = iga1b
† − iga†1b− iga2b

† + iga†2b. (4.48)

Note the phase of the coupling g is different between the two ends. Here, this is

just for convenience — it amounts to redefining the phase of a2 with respect to a1.

However, in Section 4.7, when we consider multiple modes of the line, this relative

phase will be important.

4.5.2 Swapping dynamics

The Heisenberg equations and initial conditions for the field operators under the

Hamiltonian in Equation 4.48 are

ȧ1 = − gb

ḃ = ga1 − ga2

ȧ2 = gb

a1(0) = A1

b(0) = 0

a2(0) = A2,

(4.49)
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where we assume b is in vacuum. The solution is

a1(t) = A1 cos2
(
gt/
√

2
)

+ A2 sin2
(
gt/
√

2
)

a2(t) = A2 cos2
(
gt/
√

2
)

+ A1 sin2
(
gt/
√

2
)

b(t) =
1√
2

(A1 − A2) sin
(√

2gt
)
.

(4.50)

These dynamics come with some interesting features, which we briefly explore here.

Population transfer

As we might expect from the Hamiltonian, population transfers between modes a1

and a2, through the bus mode b. If we are using the bus as an intermediary, we

probably do not want our operation to leave population therein. Fortunately, for

any initial state of the storage resonators, the bus periodically returns to the vacuum

state. The first such emptying occurs at t = τSWAP = π/
√

2g. At this time, we note

that the argument of the oscillatory terms in a1,2(t) is π, and so

a1(τSWAP) = A2

a2(τSWAP) = A1

b(τSWAP) = 0,

(4.51)

which is exactly a SWAP operation, for any input states.

Dark states

Equation 4.50 has the interesting property of being constant in time if A1 = A2; that

is, if the resonator modes begin in the same state, the bus will be empty at all times.

This comes from a destructive interferences of the amplitudes being swapped into

the bus from each end. This interference is a classical effect — the same situation

happens with three masses coupled with springs in a chain. There is an eigenmode of
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the system where both of the outer masses oscillate out of phase, and the forces they

exert on the center mass (b) cancel. We call this a ”dark state” of the system, and

we will explore its properties more in Subsection 4.6.2 when considering dissipation

in the bus. This still effects a SWAP at times τSWAP, since in this case SWAP is

equivalent to identity.

We can see the dynamics will be trivial in this case by factoring Equation 4.48:

H = ig(a1 − a2)b† − ig(a1 − a2)†b, (4.52)

which is clearly zero on two-mode states |ψ〉1,2 for which a1 |ψ〉1,2 = a2 |ψ〉1,2. This

is true of certain entangled states like |10〉 + |01〉6, as well as classical and separable

ones like |α〉 |α〉. This kind of dark state was used in [75]; we will comment more on

this in Section 4.8.

4.5.3 Beamsplitters with the bus

As we mentioned in Section 4.2, the SWAP operation between resonators is a particu-

lar realization of the beamsplitter transformation, with θ = π/2. With direct conver-

sion coupling between two modes, we found we could generate any angle beamsplitter

just by changing the interaction time: θ = gt. When using the bus as an intermediary

as described in Subsection 4.5.2, this is not the case, since the bus is populated at

all times 0 < t < τSWAP. So to effect a proper two-mode beamsplitter between the

resonators, we need an extra control parameter.

Since the beamsplitter rotation is a symmetric object with respect to its oper-

ation on the two modes a1 and a2 (except for the phase φ), we want to introduce

a Hamiltonian term which treats a1 and a2 the same, and keeps the property that

the Hamiltonian is invariant under a1 ↔ a2 (modulo a minus sign). We choose to

6. But not |10〉 − |01〉, which is the one we will prepare later.
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introduce a detuning ∆ on the bus mode:

H = iga1b
† − iga†1b− iga2b

† + iga†2b−∆b†b, (4.53)

but otherwise the interaction is unchanged from Equation 4.48. The resulting equa-

tions of motion are updated to include

ḃ = ga1 − ga2 + i∆b. (4.54)

Note that by this convention the detuning has opposite the usual sign. This is just

for convenience; either positive or negative detuning will work, just changing some of

the acquired phases.

The solution for the dynamics is a bit complicated, so we choose to write just the

expression for the bus:

b(t) =
g√
2J

(A1 − A2)ei∆t/2 sin
(√

2Jt
)

J ≡ g

√
1 +

∆2

8g2
, (4.55)

where we have defined the effective coupling rate J in analogy to detuned vacuum

Rabi oscillations. Now the amplitude of the population in the bus depends on the

ratio of g and ∆, and is suppressed for ∆ 6= 0. However, the bus retains its periodic

behavior, and there is still a time for which it is empty. We call this the beamsplitter

time,

τBS(∆) =
π√
2J

=
2π√

8g2 + ∆2
. (4.56)

At the times when the bus is eliminated, the dynamics must effect a two-mode

beamsplitter on a1 and a2. Indeed, we find

a1(τBS) = e−iθ (A1 cos θ + iA2 sin θ)

a2(τBS) = e−iθ (A2 cos θ + iA1 sin θ) ,

(4.57)
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which is the beamsplitter transformation given in Equation 4.1, with beamsplitter

angle

θ =
π

2

(
1− ∆√

8J

)
=
π

2

(
1− ∆√

8g2 + ∆2

)
=
π

2

(
1− ∆ τBS

2π

)
, (4.58)

and phases φ = −θ, ϕ = π/2, and ζ = 0. For instance, the useful 50:50 beamsplitter

(θ = π/4) is obtained at ∆ =
√

8/3 g. At this detuning, J = g
√

4/3 and the

interaction time is τBS =
√

3/8π/g =
√

3/4 τSWAP.

This approach has a few nice features. For a given coupling strength g, we can

enact an arbitrary beamsplitter angle by correctly choosing the detuning and time,

with θ ∈ [0, π]. Since the effective Rabi rate is faster for larger detuning, smaller angle

beamsplitters take less time than the resonant SWAP. As we’ll explore more in the

next section, the population of the bus is suppressed by the detuning, which will make

these operations a little less sensitive to loss in the bus. Finally, this beamsplitter

can generate entangled states from single-photon input states. We’ll demonstrate

this for two different input states in Chapter 7. For instance, we will demonstrate

Hong-Ou-Mandel interference. This kind of symmetric interference cannot occur in

the CZKM protocol because of the directionality of the communication channel.

4.5.4 Large-detuning limit

We here consider an important limit of the quantum bus, which is for ∆ � g. We

observed above that Equation 4.55 shows the field amplitude in the bus is suppressed

by the detuning. As we will discuss in Section 4.6, this can be advantageous when

the bus is lossy, and this the regime used in the original Yale experiment [90]. For

now, we’ll stick with the lossless case and just understand the dynamics.

Motivated by the observation that the occupation of the bus is suppressed as

g/∆ when the detuning is large, we can approximate the equations of motion by
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adiabatically eliminating the bus entirely. This is the approximation ḃ(t) = 0, which

gives us

b =
ig1

∆
a1 +

ig2

∆
a2. (4.59)

In Subsection 4.5.2, we set g1=−g2=g (assumed real), but we will keep these as

independent complex parameters for this discussion because it will be important

later. Substituting this expression into the equations of motion Equation 4.51, we

have

ȧ1 =
ig∗1g2

∆
a2 −

i|g1|2

∆
a1

ȧ2 =
ig1g

∗
2

∆
a1 −

i|g2|2

∆
a2.

(4.60)

These are the same equations we had in Equation 4.3, with effective rate geff =

−g1g
∗
2/∆, which give rise to arbitrary-angle beamsplitter transformations with θ =

gefft.

There are additional detuning (Stark shifts) induced by the off-resonant coupling

to the bus, but as long as |g1|2 = |g2|2, these are the same, and the interaction is

still resonant in the right frame.7 Assuming g1 and g2 are real, the time dynamics

according to Equation 4.4 are

a1(t) =A1 cos
(g1g2

∆
t
)

+ iA2 sin
(g1g2

∆
t
)

a2(t) =A2 cos
(g1g2

∆
t
)

+ iA1 sin
(g1g2

∆
t
)
.

(4.61)

In this limit, often dubbed the virtual Raman regime, we have an effective two-

mode coupling, which, as we saw, generates arbitrary beamsplitter angles simply by

tuning the time. The cost of this elimination is that the interaction is slowed down

by a factor for g/∆ as compared to the resonant case. We will discuss this trade-off

in Subsection 4.7.1.

7. Even if the couplings are not exactly matched, this coupling can still generate a 50:50 beam-
splitter. The main effect is that the maximum angle is somewhat less than π/2, so we can’t quite
get to a full SWAP in this case.
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4.6 Loss in the link

Having established a few ways in which we can use transmission line to couple distant

resonators, we now turn to the issue of loss in the line. So far, all of the inter-module

quantum communication experiments in cQED have been limited in large part by

loss, either in the transmission line itself, of in the connection and directional elements

[45, 71, 73, 16, 74, 75]. For the transfer of excitations, this has resulted in an energy

efficiency (as defined in Chapter 3) of η = 0.6− 0.85. While we hope to use bosonic

error correction to improve the fidelity beyond that enabled by the efficiency, it is

important to understand the contributions to this loss. We will examine the role of

loss in the scenarios described above.

4.6.1 Loss in the CZKM protocol

Since the “pitch and catch” approach involves only a single pass of a wavepacket

through the link, it is straightforward to model the inefficiency due to transmission

loss. We simply modify the relationship between the outgoing wavepacket at module

1 and the incoming wavepacket at module 2: bin,2(t) =
√
ηt bout,1(t). This way, the

energy which leaves module 1 is reduced by a factor of ηt when it arrives.

What is the typical source of this loss? In the three experiments which realized this

protocol [73, 16, 74], the length of superconducting coaxial cable between modules was

about one meter8. Based on independent measurements of the attenuation constant

in this commercial cable, which can be of order 1 km, the measured efficiency is likely

not a result of attenuation in the cable itself. However, the required circulator is

expected to be somewhat lossy. Though datasheets supplied by the vendor quote this

loss to be of order 5% or less, it is difficult to calibrate insertion loss to this precision

for cryogenic devices. Moreover, these measurements are typically performed at 4 K

8. The authors of [74] appear to have used non-superconducting cable, but it is not completely
clear.
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or above. It is known that loss of materials at microwave frequencies can worsen at

lower temperatures or lower input powers. The ferrite core that gives these devices

the required non-reciprocity is expected to be the main source of loss.

Additionally, the performance of a circulator can depend on the exact impedance

seen from the third port, which is assumed to be perfectly matched. In a realistic

setting, there will be some impedance mismatches on this port, potentially leading to

incoming photons being directed the wrong way through the circulator and being lost.

Even a circulator which is internally lossless may suffer from this problem. Finally,

the connectors both at the circulator and at the modules can introduce some loss.

The insertion loss of coaxial connectors is not well-known in this setting; in [74] this

is estimated to be 2-3% each, including losses in the printed circuit board holding the

sample.

It bears noting that the connections can cause loss without being dissipative them-

selves. Impedance mismatches at the modules, at the circulator, and even down-

stream after the third port of the circulator can harm the isolation of the circulator,

and cause some amount of signal energy to go from port 1 to port 3, instead of to

port 2 where it will make it to the receiver. While this isolation is indicated by the

manufacturer to be of order 1%, these impedance mismatches may emerge as compo-

nents contract at low temperatures, and may result in frequency-dependent isolation

issues, which would be difficult to measure and resolve. Impedance mismatch is not a

problem in the quantum bus, where it will serve to slightly modify the mode frequen-

cies and couplings. This does not cause inefficiency as it does in the CZKM protocol,

as there is no place for energy to escape as a result.

All told, these experiments find transmission efficiencies of around ηt ≈ 0.8. In

addition, as discussed in Subsection 4.4.4, there are inherent limitations on releasing

and capturing the wavepacket, which result in energy left in the sender, and reflected

from the receiver, respectively. These can also be a few percent each. Imperfections in
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calibration of the control pulse shapes can further limit the transfer, as can dephasing

of the storage and receiver resonators. The net result of all these factors results in an

effective single-pass loss η which limits the fidelity of state transfer and entanglement

generation.

State transfer

We can view this loss as the amplitude damping channel discussed in Section 2.3

and Section 3.2. For transfer of states encoded in single photon, we examined the

mean state fidelity versus efficiency in Subsection 3.2.2. The result is that the mean

infidelity goes as the inefficiency: 1−F ≈ (1−η)/3. This means that for the losses

found, the expected fidelity of state transfer is F ≈ 0.9 in the absence of other

limitations.

Entanglement generation

As discussed in Subsection 4.4.5, entanglement can be generated between the two

modules by half-release and capture of a single photon from module 1. The resulting

ideal Bell state is |O+〉 = (|01〉 + |10〉)/
√

2. However, since the loss acts on the sent

portion of the state, and not on what is left behind, the resulting state is asymmetric.

We can model this simply as writing the state |O+〉 and acting the loss channel with

efficiency η on the second resonator. The resultant density matrix in the 0-1 subspace

is

ρf = E0ρiE
†
0 + E1ρiE

†
1

=
1

2
(η |01〉〈01|+√η |01〉〈10|+√η |10〉〈01|+ |10〉〈10|)

+
(1− η)

2
|00〉〈00|

=
(1 + η)

2
|O+,η〉〈O+,η|+

(1− η)

2
|00〉〈00| ,

(4.62)
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where we define

|O+,η〉 =
1√

1 + η
(
√
η |01〉+ |10〉) , (4.63)

which is a normalized pure state, equal to the Bell state |O+〉 for η = 1.

The final density matrix in Equation 4.62 is a mixture of two pure states. The

second component is the separable state |00〉 resulting from losing the photon, with

probability pjump = (1−η)/2. This makes sense, as the probability of losing a photon

is half the probability per photon (the inefficiency), since on average one half of the

photon is sent. This vacuum state has zero overlap with the ideal Bell state.

The other component in Equation 4.62 is the no-jump case, |O+,η〉, which is en-

tangled, but not maximally so. This has fidelity to the ideal bell state of

Fnojump = |〈O+|O+,η〉|2 =
(1 +

√
η)2

2(1 + η)
, (4.64)

with probability pnojump = (1+η)/2. However, the infidelity in this case is only second

order in the inefficiency.

The resulting infidelity of the state after loss is

1−FBell = 1− pnojumpFnojump = 1− 1

4
(1 +

√
η)2 ≈ 1

2
(1− η) = pjump, (4.65)

which is a bit worse than the infidelity for state transfer.

4.6.2 Loss in the quantum bus

We now investigate the effect of loss in the quantum bus approach. Instead of talking

about propagation lengths, we talk about decay rates, since we are using a standing-

wave mode, and make the connection back later in this section.

We assume the bus resonator has an energy decay rate κb, which can be included
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in the equations of motion by including the damping terms:

ḃ = ga1 − ga2 + i∆b− κb

2
b. (4.66)

This saps energy from the system at a rate proportional to κb|b|2. Accordingly, the

total amount of loss incurred will depend on the occupation of the bus, and the length

of the protocol.

Resonant transfer

To understand the energy efficiency of the resonant quantum bus, we’ll consider

the case of one-way transfer. It’s sufficient to consider the case of a coherent state

|α〉. This lets us work in the classical picture. In the language of Subsection 4.5.2,

this is A1 = α,A2 = 0. As long as the population oscillations are under-damped

(κb < 4
√

2g), the population in the bus will still periodically be eliminated, and the

dynamics are modified from (4.50). In the limit of weak damping,

a1(t) = αe−κbt/4 cos2
(
g̃t/
√

2
)

+
α

2

(
1− e−κbt/4

)
a2(t) = αe−κbt/4 sin2

(
g̃t/
√

2
)

+
α

2

(
1− e−κbt/4

)
b(t) =

α√
2
e−κbt/4 sin

(√
2g̃t
)
,

(4.67)

where the oscillation frequency is loaded by the damping: g̃ = g
√

1− (κb/4
√

2g)2.

Even with a fairly large amount of damping (κb ≈ g), this frequency loading is less

than a 2% effect, so it has a very small impact on the duration τSWAP. As a result, we

can neglect the distinction between g and g̃. In fact, the weak damping approximation

is still good even when κb is as large as g. The field decay rate is κb/4 instead of

the usual κb/2 because the bus mode is only occupied for half the transfer time on

average.
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At the first swap time we have

a1(τSWAP) =
α

2

(
1− e−κbτSWAP/4

)
a2(τSWAP) =

α

2

(
1 + e−κbτSWAP/4

)
b(τSWAP) = 0.

(4.68)

The energy efficiency for state transfer with the quantum bus is

ηbus =
|a2(τSWAP)|2

|α|2

=
1

4

(
1 + e−κbτSWAP/4

)2

≈ 1− κbτSWAP

4
.

(4.69)

Since τSWAP = π/
√

2g, we have the inefficiency as a function of g and κb:

1− ηbus ≈
π√
32

κb

g
≈ 0.55

κb

g
(4.70)

This efficiency plays the same role as in the CZKM protocol, as this is also an am-

plitude damping channel. This gives us a way to compare the two approaches — in

principle, whichever has a higher efficiency should yield higher fidelity state transfer.

Of course, other sources of infidelity will appear, but we may hope these are less

costly than the link loss.

An alternate way to compute the loss is to note that the rate at which energy

decays from the three-mode system is κb|b(t)|2. The total energy loss is then the

integral thereof, and the inefficiency is the ratio of that energy loss to the initial
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energy

1− ηbus =
1

|α|2
κb

∫ τSWAP

0

|b(t)|2dt

= κb

∫ τSWAP

0

1

2
e−κbt/2 sin2

(√
2g̃t
)

dt

≈ κb

2

τSWAP

2

=
πκb√
32g

,

(4.71)

where we assumed again that the oscillations are under-damped, ignoring the expo-

nential in the integral. This is valid to leading order in κb/g.

Saturation behavior

The dynamics of Equation 4.67 are pretty interesting. We see that, at long time,

the amplitude in the storage modes does not decay to zero, but rather saturates

at one half. In terms of energy, there is one quarter of the original energy in each

mode, the other half having dissipated in the bus. This is due to the presence of

a dark mode, as discussed in Subsection 4.5.2. Symmetric superpositions of field

in a1 and a2 are stationary and do not populate the bus, and hence do not decay.

Antisymmetric superpositions will decay completely, and are called “bright.” The

initial state |α〉 |0〉 is halfway between bright (|α〉 |α〉) and dark (|α〉 |−α〉), and hence

decays only halfway.9

Another result of this is that there is a little energy left behind in the original

resonator after a full SWAP. The inefficiency contribution from this effect is pretty

small. To leading order, the energy fraction left behind is π2

128

(
κb

g

)2

, which is much

smaller than the inefficiency due to loss, and can usually be neglected.

9. Here, “halfway between” means it is a superposition of bright and dark in the classical sense
of the word — think wave mechanics or eigenmodes of coupled pendula.
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Entanglement generation

As described in Subsection 4.5.3, by detuning the bus we can introduce an arbitrary

angle beamsplitter. We will use a 50:50 beamsplitter (θ = π/4) on a single photon

input |1〉|0〉 to produce a maximally entangled state in Chapter 7. As a reminder,

the conditions for the 50:50 beamsplitter are ∆ =
√

8/3 g, J =
√

4/3g, and τBS =√
3/8π/g. Here we compute the effect of dissipation on the state creation.

First, we can calculate the expected energy loss. We do this as we did above for

resonant transfer, by integrating the dissipated power in the bus. There is a slight

complication, though. Since the initial state is not classical, and has no well-defined

phase, working with the field operators directly is a bit tricky. However, we can look

at Equation 4.55, which gives the expectation value of b(t) for initial coherent states

A1 and A2. In this case, clearly A2 = 0. We’ll take the magnitude squared:

|b(t)|2 =
g2

2J2
|A1|2 sin2

(√
2Jt
)
. (4.72)

If we interpret |A1|2 = 1 as the initial mean photon number in mode a1, then the

above equation gives us what we need to calculate the dissipated power10. In analogy

to Equation 4.71, we have

1− ηBS = κb
g2

2J2

∫ τBS

0

sin2
(√

2Jt
)

dt

=
κbg

2

2J2

τBS

2

=
κbg

2

2J2

π

g

√
3

8

=
3
√

3π

8
√

32

κb

g

≈ 0.36
κb

g
,

(4.73)

10. This is really an abuse of this framework. We said A1 was the complex amplitude of 〈a1〉,
which is zero for a Fock state. Here we are interpreting |A1|2 as

〈
a†a
〉
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which is less loss than the resonant swap because the process is faster and populates

the bus less.

Since there is only one excitation, the state which results from loss is |00〉. So the

above inefficiency results in a mixture of the ideal Bell state and the vacuum state:

ρf = ηBS |O+〉〈O+|+ (1− ηBS) |00〉〈00| (4.74)

The second term has zero fidelity to the ideal state, so

1−FBell,bus = 1− ηBS =
3
√

3π

8
√

32

κb

g
≈ 0.36

κb

g
, (4.75)

at least to first order in κb/g. The qualitative behavior is a bit different than in the

CZKM protocol, because the loss results in a symmetric state, whereas when the loss

happened in transit through a continuum, the final state was biased, with the receiver

being less occupied than the sender

Comparison to CZKM

It is worth noting that, if the loss is dominated by dissipation in the transmission line

itself, then the bus will perform significantly worse than the CZKM protocol. This

is because, in this case, κb = 2SPL FSR (from Equation 4.23). The state transfer

inefficiency is

1− η ≈ κb

2g
=

2SPL FSR

2g
= SPL

FSR

g
� SPL. (4.76)

Since the use of a single-mode bus assumes g � FSR, the inefficiency is always larger

than the SPL. One qualitative way to see this is that the state takes multiple passes

through the line, so it must incur the SPL many times. For example, in the experiment

in Chapter 7, we have g/2π = 560 kHz and FSR = 1.9 GHz, so the loss-enhancement

ratio is FSR/g ≈ 500.
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However, as we have noted and will see in Chapter 6, the loss in the CZKM

protocol is probably not dominated by the line loss, but rather the circulator and

connectors. In this case, removing the circulator loss will provide a net gain, even

though it increases the sensitivity to line loss. Fortunately, as discussed in Subsection

4.3.4, we have reason to believe the SPL through a meter of superconducting trans-

mission line could be made be as low as 10−6. Even with a loss-enhancement of 500,

this could still allow an energy efficiency η ≈ 0.999.

4.7 Suppressing loss

In Chapter 7 we will show an implementation of a quantum bus with SPL of around

2× 10−3, but the limited coupling strength g results in an inefficiency of around

0.1. In this situation, we might ask what we can do to improve the transfer for

fixed parameters g and κb. Here we will discuss two approaches for suppressing the

inefficiency directly, and one for improving the infidelity for fixed inefficiency.

4.7.1 Virtual Raman

As discussed in Subsection 4.5.4, the bus can be used in the far-off resonant regime,

with detuning ∆ � g. The situation is diagrammed in Figure 4.7a. In this case, we

have an effective direct interaction between modes a1 and a2. The adiabatic elimina-

tion of the bus allows for a nice compact representation of the effective equations of

motion for the resonators, but we still need to compute the occupation of b to predict

the loss rate. As per Equations 4.59 and 4.61, and assuming g1 = −g2 = g,

b(t) =
ig

∆
(a1(t)− a2(t))

=
ig

∆
(A1 − A2) cos

(
g2

∆
t

)
− i (A1 − A2) sin

(
g2

∆
t

)
|b(t)|2 =

g2

∆2
|A1 − A2|2.

(4.77)
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a b

Figure 4.7: Virtual Raman via the Bus. a) Off-resonant coupling through a single
bus mode. b) When the detuning is not small compared to the FSR, coupling to multiple
modes must be considered.

The only thing that changes when we have g1 = +g2 = g is that the relative phase

between A1 and A2 becomes a sum instead of a difference. This is conveniently

constant in time (by assumption).

Let’s consider exchanging an excitation from a1 to a2; so, A1 = α,A2 = 0. In

this limit, the decay rate of energy from the system is κeff = (g/∆)2κb. This leads

to oscillations of the excitation which decay at this rate. The effective swap rate

geff = g2/∆, so the SWAP time is π/2geff = π/2/(g2/∆), and the inefficiency after

one swap is

1− ηVR ≈
π

2geff

κeff =

(
π

2

∆

g2

)(
g2

∆2
κb

)
=
πκb

2∆
. (4.78)

Since we are assuming ∆ � g, this inefficiency is much smaller than that attained

going resonantly through the bus:

1− ηVR ≈
πκb

2∆
=
πκb

2g

( g
∆

)
� κb

2g
≈ 1− ηbus. (4.79)

So, although it takes longer, there is a net gain by using the virtual transfer because

the decay rate is suppressed by more than the swap time is increased.

Breakdown

Equation 4.78 makes it look like we can suppress the inefficiency as much as we want

by making ∆ larger and larger. This is not the case, since there is a maximum
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detuning, ∆ = 2πFSR/2 = πFSR. This is because, by detuning more than this, we

will be getting closer to the next mode. The best we can do is use this maximum

detuning, at which we are equidistant from modes k and k + 1, as in Figure 4.7b.

We might actually worry that in this case, the effective couplings mediated by

each mode will cancel, since the detunings have opposite sign. However, due to the

alternating sign of the eigenmodes (see Figure 4.3), the relative sign of g1 and g2 will

alternate with k. For example, if mode k is even (g
(k)
1 = g

(k)
2 = g), then mode k + 1

is odd (g
(k)
1 = −g(k)

2 = g). Thus the effective coupling rates are

g
(k)
eff =

g2

∆k

=
g2

2πFSR/2
=

g2

πFSR

g
(k+1)
eff =

−g2

∆k+1

=
−g2

−2πFSR/2
=

g2

πFSR
,

(4.80)

which have the same magnitude and sign. The effective couplings thus add, and we

should have geff = 2g2/πFSR. However, since we populate both modes k and k + 1,

the effective decay rate is κeff = 2(g/∆)2κb, and the inefficiency at max detuning is

1− ηVR,max ≈
π

2geff

κeff =

(
π

2

πFSR

2g2

)(
2
( g

πFSR

)2

κb

)
=

κb

2FSR
, (4.81)

which is exactly the single pass loss of the line, as shown in Subsection 4.3.4.

A more detailed calculation would consider all the modes of the line, since the

coupling through the next nearest modes k − 1 and k + 2 are of the same order and

oppose the coupling through k and k + 1 considered here. Additionally, adding the

decay rates is a bit of a slight of hand, because as we add more modes, the spatial

pattern of field in the line becomes more complex (and wavepacket-like), and so we

need to think about the interference effects here to really get this right. But the point

is that we can’t beat the single pass loss with the virtual Raman regime.
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4.7.2 STIRAP

An alternate approach to suppress the loss also comes from atomic physics. In a

simple three-mode (or three-level) system like the quantum bus, it is possible to

transfer population from one resonator to the other continuously, while the population

of the lossy intermediate mode is exactly zero. This is accomplished by modulating

the couplings g1 and g2 slowly in time, and is called stimulated Raman by adiabatic

passage, or STIRAP [126]. This allows for in-principle perfect population transfer,

even if the intermediate mode is quite lossy.

One might think that STIRAP could be applied in this system to completely avoid

the loss in the bus. Indeed it can be used to improve resonant transfer, as discussed

in [75]. However, a detailed calculation including the effect of off-resonant coupling to

the neighboring modes shows that, while the occupation of mode k can be eliminated,

the coupling to k ± 1 occupies those modes, contributing some loss. This calculation

was done in [127], and numerics show that the minimum inefficiency is exactly the

single pass loss.

4.7.3 Bosonic error correction

Virtual Raman and STIRAP are potentially useful approaches to improve the effi-

ciency. However, both come at the cost of significant increase in the length of the

protocol. In realistic scenarios where other sources of decoherence become more pro-

nounced at longer times, this is not always practical way to enhance the fidelity.

A complementary approach, which is compatible with resonant transfer as well

as STIRAP and the virtual Raman regime, is to encode a qubit in multi-photon

states. By using any of the bosonic error-correcting codes discussed in Chapter 3, we

can measure the photon number parity after transfer. If a single photon was lost in

transit, we can detect and correct this loss. We will detail our efforts towards this in

Chapter 6 and Chapter 7.
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4.8 Related experiments

In addition to the experiments mentioned above, which realized the CZKM protocol

around the same time, there were recently two other cQED experiments which are

relevant to this discussion, both from Chicago.

The group of Andrew Cleland recently performed an experiment [128] which

probed the crossover from standing modes to propagating photons. The experimen-

tal layout was similar to the one shown in Figure 4.6, but with two transmon qubits

taking the place of the end-point resonators. Additionally, the entire experiment was

located on a single chip, with a 78 cm coplanar waveguide transmission line connect-

ing the qubits. The free spectral range of the line was 79 MHz. The coupling between

the qubits and the line was a rapidly tunable inductor. When the coupling was kept

much smaller than the FSR (g/2π ≈ 5 MHz), the individual modes of the can be re-

solved, and they used one of them to transfer excitations and generate entanglement

between the qubits. However, as the coupling was turned to its maximum rate of

g/2π = 47 MHz, the dynamics lose their frequency structure, and the coupling is as

if to a continuum. They show that by shaping the coupling in time, they are able

to release and absorb something like a wavepacket, even in this regime where the

coupling is comparable to the FSR. The results of this work make nicely clear the

connection of these two seemingly different physical dynamics. As the coupling is

increased, the superposition of multiple modes gives rise to a wavepacket in the line

in precisely the same formalism used to describe this connection in Section 4.3.3.

An experiment performed in David Schuster’s group used another approach to

couple qubits on separate chips [75]. Again, the topology was similar to Figure 4.6,

but with an important distinction. Since the transmission line (normal metal coaxial

cable) was not particularly low-loss, the modes of the line were too low-Q to facilitate

entanglement generation, and also would have induced too much dissipation on the

qubits themselves. The authors added a resonator on each chip between the qubit
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and the cable. In this sense, the layout resembles that in Figure 4.5, but with no

circulator in the line. These communication resonators were made to be frequency-

degenerate with one another, and hybridized strongly with a nearby mode of the

cable. This three-mode hybrid system has one mode which has no participation in

the lossy cable, and instead lives only in the on-chip resonators, and is significantly

higher-Q than the bare cable modes. They used this “dark mode” as a quantum

bus for entanglement generation between the qubits, avoiding the two lossy “bright

modes”. Since the rate of coupling from the qubit to the dark mode was much less

than the FSR of the cable, or of the splitting of the dark and bright modes, the

dynamics to good approximation are those discussed in Section 4.5.

The emergence of the dark mode is essentially the same physics pointed out in

Subsection 4.5.2, which give rise to hybrid dark states of the three-mode system.

While a simple analysis suggests the dark mode should be perfectly lossless, the

authors explain that the presence of other nearby cable modes prevent this from

being exactly true. A more careful analysis shows that the off-resonant coupling

to other cable modes prevents the dark mode from being totally lossless, and the

population transfer through it is limited by the single pass loss of the cable.

4.9 Conclusion

In this chapter we introduced most of the theoretical underpinnings of the commu-

nication and entanglement protocols used in Chapters 6 and 7. We began with the

physics of coupled oscillators and the generation of beamsplitter transformations. We

discussed the behavior of finite lengths of transmission line, and the crossover from

standing modes to a continuum when coupling a resonator to the line. We also de-

scribed some loss mechanisms in transmission line and how they imprint themselves

on the damping rates of the modes therein.
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We then described the CZKM protocol for communication and entanglement via

propagating photons, and gave a framework for generating the time-dependent con-

trols needed for release and capture of wavepackets. In Chapter 6 we will add some

system-dependent implementation details critical to our realization of this protocol.

We also introduced the quantum bus as a way to couple distant resonators, both for

SWAP and entangling beamsplitter operations. Finally, we discussed the effects of

loss in the communication link on these schemes, and some ways towards suppressing

the resulting infidelity.

In the next chapter, we will provide a description of the hardware and couplings

used to implement the schemes described here, before turning to the results in Chap-

ters 6 and 7.



Chapter 5

3D cQED Hardware and

Techniques

This chapter will introduce the physical hardware for the experiments in Chap-

ters 6 and 7, including the basic implementation of resonators and qubits in three-

dimensional circuit quantum electrodynamics (3D cQED). Many more details of the

hardware discussed here can be found in [15]. Section 5.1 will discuss the kinds of

3D resonators we use. In Section 5.2 we will discuss the problem of controlling a

linear resonator, and describe the transmon, the source of nonlinearity and quantum

control and measurement in our experiments. This section will describe the origin of

the dispersive coupling between transmons and resonators. Then Section 5.3 we will

describe the basic 3D cQED module, with a long-lived storage cavity, transmon, and

readout resonator. Here we will also describe the coupling to the outside world.

Having discussed the physical hardware and couplings, we then turn to measure-

ment and manipulation of these devices. For excellent discussions of calibration and

tuneup of the operations here, see [13, 14]. We will mostly focus on details which have

not been described in detail elsewhere. In Section 5.4 we discuss control and mea-

surement of transmons with readout resonators strongly coupled to the environment.
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Section 5.5 will describe measurement and control of 3D cavities as error-correctable

quantum memories. Section 5.6 will turn to the final kind of control, used extensively

here — parametric conversion. We’ll give a general description of how new Hamilto-

nian terms can be selectively enabled through off-resonant driving. We’ll then give

the contexts in which we employ this kind of coupling, and some of the advantages

of this kind of coupling, as well as some challenges.

Then in Section 5.7 we will discuss how we can measure a transmon which does not

have a readout resonator, but is instead coupled to a memory cavity [129]. Finally,

Section 5.8 will discuss the coupling of a module to a quantum bus resonator housed

in coaxial cable.

5.1 Superconducting resonators

In this section, we will describe three kinds of 3D resonators used in this thesis.

5.1.1 Coaxial cable resonators

Perhaps the simplest realization of a superconducting resonator is a section of coaxial

transmission line with open boundary conditions, which, as discussed in Chapter 4,

hosts an infinite set of equally-spaced modes. The circuit model and fundamental

mode voltage profile is shown in Figure 5.1a. Since all modes of this structure have

voltage maxima at the ends, they are particularly easy to couple to capacitively.

One can easily construct this kind of resonator out of coaxial cable. There are

a few commercial vendors of semi-rigid NbTi coax with PTFE dielectric, pictured

in Figure 5.1b, including Coax Co. and Keycom, in the UT-85 form factor. This

kind of cable has been used for low-loss transmission of signals from the 20 mK base

plate of a dilution refrigerator up to the 4 K stage, where commercial amplifiers can

be used. NbTi is a superconductor of choice for this application because it has a
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1 cm

Figure 5.1: 3D Resonators. a) Schematic and circuit for fundamental mode of an open-
ended transmission line resonator. Voltage profile in blue. b) NbTi coaxial cable resonator
with outer conductor and dielectric removed at ends for coupling. c) Schematic of on-chip
stripline resonator, made of aluminum trace (blue) on sapphire chip in aluminum tunnel.
Blue line is electric field amplitude. d) Schematic and circuit for fundamental mode of
coaxial transmission line resonator with one open end and one shorted end. Voltage profile
in red. e) Schematic of 3D post cavity resonator. Red line is electric field amplitude profile,
which decays exponentially in the waveguide section (top).

critical temperature around 10 K. Indeed, it has been found that this kind of cable

is extremely low-loss, and suitable for transmission of quantum signals of fairly long

distances. In particular, this kind of cable can house modes with quality factors

as high as 105 [123], which implies the attenuation length is as long as 1 km. This

method, using standing-wave modes of sub-meter lengths of cable, allows accurate

measurement of small losses, since the quality factor measures the loss of many passes

through the transmission line. See Section 5.8 for our characterization of this type of

cable.
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5.1.2 Stripline resonators

A ubiquitous player in 3D cQED experiments is the λ/2 stripline resonator, formed

by a thin-film aluminum strip on a sapphire chip, in a bulk aluminum tunnel, as

depicted in Figure 5.1c. This is just another open-ended transmission line, with the

on-chip portion forming the center conductor and the tunnel playing the role of the

ground. This is somewhat similar to the coplanar waveguide λ/2 resonators used

extensively in planar cQED, but the large mode-volume and diffuse electromagnetic

fields allow for internal quality factors 5-10 times higher in the 3D case. We typically

use the fundamental mode in the 7 to 10 GHz range, which places the next harmonic

well above 12 GHz. Due to the high dielectric constant of sapphire (εr =10–11), the

speed of light is slowed, and a 9 mm stripline has a fundamental frequency around

9 GHz.

While the stripline is a fairly compact solution for an on-chip resonator, we often

desire multiple elements on the same chip, and we wish to make the resonator take up

less linear space. As a result, we sometimes further shorten the resonator by adding

meanders, as will be shown in Subsection 5.3.3. The resulting increased inductance

and capacitance lowers the frequency for fixed end-to-end length, or reduces the length

of fixed frequency.

Straight striplines can have quality factors from 106 to 107 [122, 15]. Meandering

striplines tend to store more energy in lossy surface dielectrics, and so may have

somewhat worse internal quality factors. However, as we will discuss in Section 5.3,

we typically intentionally limit the quality factor of these modes by coupling to an

output transmission line to use them for transmon readout, so the internal quality

factor is not critical.
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5.1.3 3D post cavities

The final linear element in our arsenal is the λ/4 post cavity, sketched in Figure

5.1d,e. These resonators resemble a section of transmission line which is shorted at

one end — the stub makes up the center conductor. Since there is no dielectric, the

speed of light is that in vacuum, so we get a 6.5 GHz fundamental for a stub length

of 11 mm. Since the next harmonic is at three times the fundamental, we can make

post cavities with frequencies as low as ∼3.5 GHz without causing frequency crowding

issues.

Machined from a solid piece of aluminum, the post cavity stores the vast majority

of its energy in vacuum, with no places of high confinement that we have with on-chip

devices. Additionally, the seamless design has no points of large current losses. The

result is a highly coherent resonator. Post cavities made from high-purity aluminum

(99.99% pure or higher) and chemically treated [62] can have quality factors in excess

of 108 [63]. This makes them ideal memory elements, and these cavities form the

backbone of our experiments.

There must of course be a seam somewhere, since the cavity is machined and then

closed up. However, we include a long continuation of the outer conductor above the

post. With no center conductor, this acts as a length of waveguide. The lowest cutoff

frequency in a circular waveguide of radius r = 5 mm belongs to the TE11 mode,

and is at fcutoff ≈ 0.3c/r ≈ 18 GHz [121]. As a result, the fields and currents of

the fundamental mode, which is well below cutoff, fall off exponentially going up the

waveguide. We design the housing to be long enough that current flowing across the

seam at the end of the waveguide does not limit the quality of the mode at the level

we need. For r = 5 mm, the field decay length is mostly frequency-independent below

10 GHz, and is about 3 mm. In practice we use waveguide lengths of around 3 cm. In

fact, the coupling to the TE11 should be very small by symmetry. The attenuation

length is closer to 2 mm, and is set by the TM01 mode, which has a cutoff frequency
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about 30% higher than the TE11 mode [121, 130].

5.2 The transmon: introducing nonlinearity

Given the linear elements described above, how do we manipulate and measure them?

Here we will answer this question, introducing an additional key circuit element —

the transmon. In Subsection 5.2.1 we describe the oscillator control problem — with a

drive on a harmonic oscillator, one can only move the state around in phase space, and

cannot create quantum states or encode and manipulate a qubit. In Subsection 5.2.2,

we will describe the Josephson junction, a nonlinear inductor, which we can use to

make an anharmonic oscillator with an inherent nonlinearity that enables nontrivial

quantum control. Subsection 5.2.3 will describe some of the spectral features which

allow it to be easily manipulated like a qubit. Then in Subsection 5.2.5 we will give

a brief introduction to the formalism we use to talk about coupling of a transmon

to one or more resonators. A complete treatment of the transmon is found in the

original proposal [131], and the “black-box quantization” (BBQ) description of the

coupling of oscillators to one or more Josephson junctions which is favored here is in

[132]. We give the basic idea behind BBQ in Subsection 5.2.2.

5.2.1 Oscillator control with drives

We continue the discussion of oscillators in Chapter 3 to see why it is nontrivial

to produce the kinds of quantum states discussed there. We can introduce a time-

dependent control field to a resonator by irradiating it with microwave light near its

resonance frequency, in which case the Hamiltonian is1

H = ω0a
†a+ iε(t)ae−iωt − iε∗(t)a†eiωt (5.1)

1. I have dropped the zero-point term 1
2ω from the oscillator Hamiltonian, because it has no

consequences for the dynamics.
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with complex drive amplitude ε(t). It is convenient to transform our Hamiltonian

into the frame of this drive with the unitary transformation U(t) = eiωa
†at, which

cancels out the rapidly vary phase on the drive and yields

H = ∆a†a+ ε(t)a+ ε∗(t)a† (5.2)

with detuning ∆ = ω0 − ω.

The drive can clearly induce transitions between neighboring photon number

states, moving up and down the Fock state ladder. However, since all of these tran-

sitions are at the same frequency, we have no control over the relative rates, and this

Hamiltonian can only result in a very specific kind of evolution. In particular, for

∆ = 0, the propagator associated with this Hamiltonian is

U(t) = D̂(α(t)) = e−α(t)a+α∗(t)a† α(t) =

∫ t

0

ε(t′)dt (5.3)

This displacement operator has the property of simply shifting the state in phase

space — it takes coherent state |β〉 → |β + α(t)〉. This means that one cannot create

quantum states like Fock or cat states with a simple drive. The consequence of this is

that no two-dimensional subspace of a harmonic oscillator can easily serve as a qubit,

since there is no natural way to perform an X gate by Rabi flopping, for instance.

5.2.2 The Josephson Junction

The key to creating nonlinear circuitry in cQED is the Josephson junction, an element

made by separating two superconducting islands with a weak link (in our case, a

few nanometer-thick insulating barrier) across which electrons tunnel in pairs. The

zoology of Josephson junction qubits is a rich and historic field [133, 134, 135, 136, 131,

137], but in this work we’ll mostly treat the junction as a special non-linear inductor

which can replace the linear one supposed in our LC circuit in Figure 5.2a [132]. In
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a b

Figure 5.2: The Transmon as an Anharmonic Oscillator a) LC circuit and harmonic
energy levels in quadratic potential. b) Nonlinear LC resonator with anharmonic spectrum
in quadratic potential with negative quartic term. Energy levels are unequally spaced, with
anharmonicity χtt < 0.

particular, the inductance of the Josephson is a function of the flux across it, which

yields a nonlinear response. For convenience, we introduce the dimensionless phase

ϕ = φ/φ0, where φ0 = ~/2e is the reduced flux quantum. The effective inductance of

the junction is L(ϕ) = LJ

cosϕ
, where the Josephson inductance LJ is the “small signal”

inductance. The Josephson inductance is a design parameter, set at time of device

fabrication, though by combining two junctions in parallel, LJ can be tuned with

a static magnetic field. We stick to fixed-inductance in this work for experimental

convenience.2

In the language of Equation 3.1, replacing the linear inductor with a Josephson

junction results in a Hamiltonian of the form3

H = 4ECn̂
2 − EJ cos ϕ̂

= ωtt
†t− EJ cosnl

(
ϕt(t+ t†)

) (5.4)

with Josephson energy EJ = φ2
0/LJ, capacitive charging energy EC = e2/2C, and

2. Introducing this kind of in situ tunability also comes with sensitivity to magnetic noise, which
can adversely affect device coherence.

3. Here we use n̂ = 2q̂, which is the number of Cooper pairs which have tunneled across the
junction. In this simple parallel configuration, this is the same as the charge on the capacitor, but
this is not generally the case. n̂ is the correct variable to use in this context, as it obeys the canonical
commutation relation with ϕ.
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frequency ωt =
√

8EJEC. The non-linear cosine is the Taylor expansion of cosine

starting at fourth order:

cosnl (x) = cos(x)−
(

1− 1

2!
x2

)
=

1

4!
x4 − 1

6!
x6 + ... (5.5)

Finally, note the introduction of ϕt, the zero-point fluctuation of the phase. This is a

measure of the per-photon phase drop across the junction, and it depends on the char-

acteristic impedance of the resonance [132]; here ϕt = φ0

√
~Zt/2 = φ0

√
~/2
√
L/C,

with φ0 = ~/(2e) the reduced flux quantum.

5.2.3 The Transmon Spectrum

In the last line of Equation 5.4, we continue to use harmonic oscillator ladder oper-

ators, but call them t, t†, for “transmon.” This is only a good approximation when

the nonlinear terms are sufficiently small, and the oscillator is still largely harmonic.

Quantitatively, this is the case when EJ � EC (typically at least 50 times larger)

[131]. In this regime, the qualitative behavior is that of an oscillator with a small

quartic term in the potential, as shown in Figure 5.2b. By ignoring higher order terms

of the Taylor expansion, and working in the rotating wave approximation (RWA), we

have

H = ~ω̃tt
†t− 1

4
EJϕ

4
t t
†2t2

= ~ω̃0t
†t− ~χtt

2
t†

2
t2

(5.6)

This fourth-order term introduces a change in the energy spectrum, and to leading

order the eigenenergies of Equation 5.6 are En = nω̃t − n(n − 1)χtt/2, with anhar-

monicity χtt ≡ EJϕ
4
t/2 ≈ EC ∼ 2π × 100− 300 MHz.

The deformation of the energy levels results in transition frequencies

νn−1,n = (En − En−1)/~ = ω̃0 − χtt(n− 1) (5.7)
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which are distinct for each n. This solves the control problem of the harmonic oscil-

lator discussed in Subsection 5.2.1 — as long as the drive strength ε is weaker than

the anharmonicity χtt, one can selectively address any transition between |n〉 and

|n+ 1〉 with a single drive. This allows the operation of the first two levels |0〉 , |1〉

of the transmon as a qubit. We often refer to the first three levels as |g〉, |e〉, and

|f〉, for “ground,” “excited,” and “f is another letter near g and e.” The fundamental

frequency ω̃0 is also shifted from the “bare” harmonic frequency ω0 = 1/
√
LC by the

deformation of the potential (of order χtt).

A few comments before we move on. The energy spectrum of an isolated transmon

can be predicted exactly in the model here. However, for more complicated circuits,

which we employ shortly, it is much more convenient to solve the energy spectrum

numerically. This makes it much easier to extract the effect of higher orders of non-

linearity, non-RWA effects, and the spectrum in the presence of multiple oscillators.

Finally, this discussion has completely ignored the offset charge (discussed at length

in [131]). The entire point of the transmon is to suppress the effects of the offset

charge, but it is important to check that one is operating in the “good transmon”

regime, with EJ/EC sufficiently large. If not, noisy environmental charges cause the

transmon frequency to fluctuate unacceptably. Some handy numerical results can

be found in [13], but this dephasing mechanism is usually negligible as long as the

relative anharmonicity χtt/ω0 . 5%.

5.2.4 3D transmons

The transmons used in this experiment are pattered on double-polished sapphire in

a single electron-beam lithography step [138]. The capacitance consists of two large,

roughly rectangular, co-planar pads, 100 to 500 µm wide and 1 to 2 mm long. The

capacitor pads are connected by a single Josephson junction, fabricated with double-

angle shadow evaporation. The devices in Chapter 6 were made with the bridge-free
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technique for junction fabrication [139], while those in Chapter 7 were made using

the Dolan bridge method [140].

5.2.5 Dispersive coupling for transmons and oscillators

In the previous subsection we introduced the transmon as a solution to the problem

of control for a harmonic oscillator. Now we will explain how coupling between

transmons and harmonic oscillators can be easily described using the BBQ formalism

[132] already introduced, and how an oscillator coupled to the environment (as in

Subsection 4.3.3) can be used to measure the transmon state. Then in the next

two sections we will return to harmonic oscillators as storage elements for quantum

information, and explain how a transmon can be used to manipulate and measure

that information.

The treatment of the junction as a weakly non-linear inductor [132] allows for easy

simulation of the transmon and any resonators to which it is coupled in a classical

linear circuit modeler or finite-element package. We use ANSYS HFSS for this. The

idea is to solve the classical linear circuit for the eigenfrequencies ωk and the associated

zero-point phases ϕk. Then each mode we wish to consider (including the transmon)

appears in the Hamiltonian, extending Equation 5.4:

H =
∑
k

ωka
†
kak − EJ cosnl

(∑
k

ϕk(ak + a†k)

)
, (5.8)

from which the non-linear properties can be computed. It is possible to write down

the frequencies and zero-point phases for a lumped element circuit model with linear

couplings, but the beauty of the BBQ method is that a 3D finite element eigensolver

like the one in HFSS doesn’t care about your circuit model — all it knows how to

do is find the eigenmodes. This is because the quantities ωk and ϕk are classical and

linear. These quantities can be extracted from the modeler as in the original BBQ
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method, which computes the impedance as seen by an imagined port in parallel with

junction, or from the electric and magnetic field distributions of the eigenmodes, as

in [141].

Either way, one extracts the parameters in Equation 5.8, and diagonalizes the

Hamiltonian. Typically, as long as the modes are sufficiently far detuned, it is then

sufficient to map the resulting numerical model onto the Hamiltonian

H =
∑
k

ωka
†
kak +

∑
k

χkka
†
k

2
a2
k +

∑
k 6=l

χkla
†
kaka

†
lal (5.9)

This Hamiltonian, which treats transmons and oscillators as the same kind of

object, has a few obvious features. First, there is another round of dressing of the

frequencies due to the presence of nonlinear terms. We also have the anharmonicity,

or self-Kerr, for each mode (χkk = −1
2
EJϕ

4
k). As mentioned above, the self-Kerr of a

transmon-like mode is usually a few hundred MHz, and the self-Kerr of a resonator-

like mode will range from 1 − 50 kHz in this thesis. Finally, we have the nonlinear

couplings, the cross-Kerrs, χkl = −EJϕ
2
kϕ

2
l , between each pair of modes. These can

be read as “the frequency shift of mode k per photon in mode l.” These cross-Kerrs,

or dispersive shifts, are the critical resource for measurement and operations, and are

usually on the order of 1 MHz between a resonator and a transmon. Cross-Kerrs

between two resonators, inherited from their mutual coupling to the junction of a

transmon, are usually small enough to be neglected, though they can be a resource

[142] or a nuisance [65]. The “typical” values given for these quantities are for the

work in this thesis, but different applications demand different dispersive shifts, and

they can range over several orders of magnitude throughout the literature.
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5.3 3D cQED modules

Now that we have introduced the players, we turn to the question of putting them

together into a simple quantum information processing module. In this section we’ll

describe the basic layout of a 3D cQED module. Subsection 5.3.1 will give a cartoon

of the most basic such kind of module. Then in Subsection 5.3.2 we’ll discuss how

we selectively couple to one mode of the package to create a fast readout resonator.

Finally, in 5.3.3, we’ll diagram the actual hardware used in Chapter 7.

5.3.1 Integrating cavities and qubits

As we have discussed, we need a nonlinear element like a transmon coupled to our

post cavity in order to perform quantum operations on it. Moreover, we need some

kind of way to measure the state of that transmon, rapidly and with high fidelity.

In this thesis, we use extensively the integration scheme introduced in [122], di-

agrammed in Figure 5.3a. This architecture consists of a housing machined from a

single piece of 99.99% pure aluminum which is chemically etched to remove surface

damage and contaminants [62]. The housing contains a central post cavity with a

circular waveguide topper, as described in Subsection 5.1.3. Intersecting this cavity

near the top of the post is a tunnel, usually 3-4 mm in diameter. In the tunnel

we place a sapphire chip, 1-3 mm wide and 20-30 mm long. The chip carries a 3D

transmon and a stripline resonator for state readout.

The effective circuit diagram showing the couplings between the modes of the

module is in Figure 5.3b. In particular, the size and spacing of the pads making

up the transmon set its capacitance, a significant fraction of which is to the ground

of the tunnel. Then, the placement of the chip with respect to the cavity post sets

the coupling capacitance between the transmon and cavity, and hence the dispersive

coupling χat. The top of the post is where the cavity electric field is largest, so this
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cavity readouttransmon

a b

Figure 5.3: Cavity-Transmon-Readout Integration. a) Basic 3D cQED module with
post cavity, transmon, and stripline readout resonator. b) Circuit model for a). Coupling
capacitances in gray.

is an efficient place to couple. In practice, shifting the chip further in or out of the

cavity is a good way to control this capacitance.

Next, the coupling of the transmon to its readout resonator is set by the geometry

on chip. The coupling capacitance, and consequently the dispersive shift χrt, can be

set quite precisely by adjusting the separation at the time of fabrication.

5.3.2 Coupling to the world

Now we discuss the coupling of the module to the outside world via input and output

signal lines. We have been using more or less the same kind of coupling in the lab

since the first 3D devices [138], which is an SMA connector to free-space launcher

with an interchangeable pin. This mechanism is discussed at length in [122, 15]. The

coupler pin extends into a small tunnel with diameter chosen to form a 50 Ω match

with the pin diameter. The length of the pin can be chosen to vary the coupling

quality factor Qc to a given mode over three or four orders of magnitude. The ideal

coupling rate depends on the application.
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Drive pins

For signal delivery to any of the modes, we choose a coupling rate which does not limit

the lifetime to the level of the intrinsic quality Qi. In practice, Qc is usually chosen to

be at least a few times larger than the expected Qi. For a transmon, this should be

Qc ∼ 107. For post cavities with Qi ∼ 108, the coupling must be even weaker. These

couplings must however be sufficient to deliver enough drive amplitude to effect fast

transmon manipulation (see Subsection 5.4.2) and cavity displacements.

The readout resonator

In order to extract information from the system to perform transmon readout, we

require a mode with an intentionally large coupling to the environment κ as defined

in Subsection 4.3.3. If we hope to measure the transmon state much faster than its

lifetime, we need a readout resonator which can emit a signal in a time 1/κ . 500 ns.

In the language of quality factors, this corresponds to Qc = ωr/κ . 3× 104. So we

see that the ability to vary the coupling over five orders of magnitude using a single

technology is extremely useful.

5.3.3 The quantum bus

Here we have a look at the samples used in Chapter 7, shown in Figure 5.4. In

addition to the features of the basic module discussed in Subsection 5.3.1, we point

out a few new components.

The conversion transmon

One of the added components is a second transmon for coupling the cavity to a quan-

tum bus, which we refer to as the conversion transmon (or converter), in the sense of

parametric conversion to be discussed in Section 5.6. For differentiation, the trans-

mon discussed so far is called the ancilla, and it is used to manipulate and measure
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Figure 5.4: Quantum Bus Sample. a) Three-quarter cross section of module used
in Chapter 7. Post cavity (center) intersected by two tunnels. Labels indicate coupling
pin locations. b) Ancilla chip layout shows transmon pads (left) and meander stripline
readout (right). Label indicates approximate location of ancilla drive port. Readout port
and stripline Purcell filter, located further to the right, not shown. b) Conversion transmon
chip layout. Label indicates approximate location of bus coupling pin. Drive port, located
further to the right, not shown.

the cavity. The converter is housed on a separate chip in its own tunnel, orthogonal

to the one housing the ancilla, and is “blind” in that it does not have a readout

resonator. This sample is in this respect a reduced version of the one used in [129],

which had three such blind transmons, and measurement of this transmon (discussed

in Section 5.7) is a simplified version of a protocol presented in that reference.

The bandpass Purcell filter

The details of dispersive readout are found in Subsection 5.4.3, but the general rule is

we also usually want a dispersive shift between the ancilla transmon and readout of

χrt ≈ κ. Unfortunately, strong coupling to a dissipative mode induces an unwanted

dissipation on the ancilla. This channel, known as Purcell decay, induces in the

simplest approximation a decay rate on the ancilla κP = κχ2
rt/χ

2
tt. Since we want κ

and χrt to be large, but the maximum χtt is set by charge dispersion limitations, we

are in a bind.



5.4. CONTROL AND MEASUREMENT OF TRANSMONS 159

Fortunately, it is possible to engineer a filter which breaks this Purcell relationship.

By placing an additional resonator between the readout mode and the coupling pin,

we can effectively make the impedance seen by the sample strongly frequency depen-

dent. The original “Purcell filter” [143] acted like a band-stop filter at the transmon

frequency. This works, but it limits the filtered region to small bandwidth, and adds

modes to the device near the transmon frequency, which may contribute to spectral

crowding. An alternate approach, explored in [144, 145, 122] and employed here, is

the band-pass Purcell filter. When the filter resonator is placed near in frequency to

the readout resonator, it “passes” at the readout frequency, allowing large κ. How-

ever, the qubit is far-detuned from the filter, and so is less able to spontaneously emit

out the coupling port. This leads to a more favorable relation between κP and κ. An

alternate approach is the high-pass waveguide Purcell filter used in [71]. This works

quite well thanks to the sharp cutoff of rectangular waveguide, though it adds quite

a bit of volume to the sample.

5.4 Control and measurement of transmons

We will describe operation of these samples from the outside in, beginning with

manipulation and measurement of the ancilla transmon before moving on to the

storage cavity in Section 5.5, the conversion transmon in Section 5.7, and the quantum

bus in Section 5.8.

5.4.1 Microwave drives

We introduced the Hamiltonian of a drive on a mode a in Subsection 5.2.1:

Hdrive = ωaa
†a+ iε(t)ae−iωt − iε∗(t)a†eiωt (5.10)
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In order to source such a drive, with arbitrary phase and amplitude control over

ε(t), we generate an intermediate-frequency (IF) signal with the correct envelope ε(t)

from a pair of digital-to-analog converters (DACs). The two DACs produce outputs

Re (ε(t)e−iωIF) and Im (ε(t)e−iωIF). The DACs are housed on an Innovative Integration

X6-1000M board, which generates the IF signals with a 2 ns sampling rate. The IF

signals are typically centered around ωIF/2π = −120 to 120 MHz, with up to 250 MHz

bandwidth. The IF pair is up-converted with an IQ mixer (Marki IQ0307 or IQ0618)

using a continuous-wave microwave local oscillator (LO, Vaunix LabBrick LMS-103

or Agilent/Keysight MXG) at ωLO/2π = 3 to 10 GHz. This results in a fully phase

and amplitude controlled signal centered at ωRF = ωLO + ωIF, where, again, ωIF can

be chosen positive or negative.

Drive signals are typically filtered and attenuated both at room temperature and

in the cryostat. The experimental wiring used in Chapter 7 is shown in Figure 5.5.

5.4.2 Transmon rotations

We effect rotations on the transmon with pulses sourced as described above. The

difference between rotations about the X and Y axes is just the complex phase of ε(t).

We do not typically have direct control about the Z axis, which can be introduced

with serial combinations of X and Y rotations, though this is not needed in this

thesis. For fast transmon rotations, we typically use Gaussian-shaped pulses ε(t) ∝

e−t
2/2σ2

, truncated at 4σ in total width, with σ ≤ 10 ns. For manipulation in the

{|e〉 , |f〉} manifold, we use the same drive chain to source pulses detuned by the

qubit anharmonicity, which is within the bandwidth of our DACs. This requires a

positive ωIF for {|g〉 , |e〉} rotations, and a negative one for {|e〉 , |f〉} rotations.

Cavity displacements are sourced in the same manner, with similar pulse shapes.

Readout drives were generated this way for Chapter 6 but with square envelopes. In

Chapter 7 we instead gated a CW source at the readout frequency with a microwave
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switch and a digital output from the X6-1000M board, because we were using all

available IF outputs for drives which required frequency and phase control.

5.4.3 Dispersive readout

We now turn to readout of the transmon state, giving just the essentials; more details

can be found in [146, 147, 22, 144, 148], for instance. The task at hand is rapidly

mapping the state of the transmon onto the state of some directly-measurable classical

quantity. In this case, it will be the phase and amplitude of an outgoing microwave

field.

The interaction

The transmon t coupled to the readout resonator r with dispersive shift χrt, which

is in turn coupled to a transmission line at a rate κr. The dispersive Hamiltonian in

this two-mode case is the simplified version of Equation 5.9:

H = ωtt
†t+ χttt

†2t2 + (ωr + χrtt
†t)r†r (5.11)

where we have factored the dispersive interaction in a way that makes it clear that

there is a frequency shift of χrt on the readout per excitation in the transmon. We’re

neglecting the self-Kerr of the readout, which makes it difficult to solve for the average

behavior with classical methods, and is usually small enough to be neglected when

predicting the general behavior.

The readout response

We irradiate the readout resonator with a square pulse of light rin at a frequency

ω near its resonance frequency, detuned by an amount ∆ = ω − ωr. The equation

of motion for the readout resonator is given by the Langevin equation (Subsection



5.4. CONTROL AND MEASUREMENT OF TRANSMONS 163

4.3.3):

ṙ = i(ωr + ∆ + χrtt
†t)− κr

2
r −
√
κrin. (5.12)

This makes clear the effective detuning depends on the transmon occupation number

nt =
〈
t†t
〉

= 0, 1, 2 for the transmon in |g〉 , |e〉 , |f〉. The lovely fact is that the

expectation value of this equation — the average trajectory 〈r〉 in phase space, and

hence, the average output field 〈rout〉 = 〈rin〉+
√
κr 〈r〉 — is linear and can be solved

in Fourier space. The response of the readout resonator to the incoming field is that

of a Lorentzian filter of bandwidth κr and center frequency ωr + ∆ + χrtnt. The

state-dependent center frequency of the readout leads to a state-dependent response

of the average resonator field in the time domain. The average field is shown for the

first three transmon states in Figure 5.6, for a square drive pulse placed near ∆ = 0.

Signal processing techniques

The quantum and classical fluctuations of the output field means that any single

measured trajectory will have some (usually Gaussian) noise, so the trajectories need

to be distinct enough to be reliably discriminated on a single-shot basis. In prac-

tice one needs a quantum-limited parametric amplifier on the output so the classical

noise from subsequent amplification stages does not overwhelm the signal. We use a

Josephson Parametric Converter [149, 45, 150] in Chapter 6, and two SNAIL Para-

metric Amplifiers [151] in Chapter 7. The next stage is a low-noise semiconductor

HEMT amplifier located at the 4 K stage of the refrigerator, with more stages at room

temperature.

As can be seen in the trajectories in Figure 5.6, the information content of the

signal grows in time as the average trajectories become more distinct, and then de-

creases again after the pulse ends and the field rings down towards zero. However,

the size of the noise is usually time-independent, so the signal-to-noise ratio is not

constant. One can integrate the time trace to extract a single complex number, but
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Figure 5.6: Dispersive Readout. a) Magnitude of steady-state field in readout
resonator versus drive frequency for the first three transmon states. Parameters are
χrt = 2π × 0.8 MHz, κr = 2π × 1.6 MHz. Black arrow indicates ω = ωr, where we
place the drive in this example. b) Measured real (in-phase) and imaginary (quadrature)
parts of average resonator field 〈r〉 for three transmon states for a constant pulse 500 ns
in length. Sharp features at t = 0 and t = 500 ns correspond to turn on and turn off of
pulse, which is visible in this reflection measurement. About 35 000 shots are included for
each state. c) Trajectories from b) plotted in phase space. d) Histograms of weighted and
integrated signals, sorted by prepared state. Horizontal (vertical) axis corresponds to s1

(s2) for distinguishing |g〉 and |e〉 (|e〉 and |f〉). e) Projection of histograms from d) onto s1

axis. Vertical dotted line indicated threshold v1.

this disproportionately weights short and long times. In practice, one can construct

weighting envelopes w1,2(t) from the average responses for each transmon state, by

which the trajectory is multiplied before integration. For example, when the noise

is Gaussian and state-independent, the ideal weighting envelope to distinguish |g〉

and |e〉 is w1(t) =
(
〈rout(t)〉e − 〈rout(t)〉g

)∗
. This is the difference of the average

signals for the two states, which weights most heavily the times when the difference

is largest, and weights less the times which contain less information, like the early

part of the signal. The complex conjugate serves to orient the signal in the real axis.

The signal used to distinguish |g〉 and |e〉 is then s1 = Re
∫ T

0
w1(t)r(t)dt. Likewise,



5.4. CONTROL AND MEASUREMENT OF TRANSMONS 165

we create a second envelope to distinguish |e〉 from |f〉. The optimal envelope is

w2(t) =
(
〈rout(t)〉f − 〈rout(t)〉e

)∗
, and the signal is s2 = Re

∫ T
0
w2(t)r(t)dt. Indepen-

dent thresholds v1,2 are then determined to assign a binary measurement outcome

m = 0 for s1 < v1 and m = 1 for s1 > v1.

This discrimination problem can be cast in a framework in which the above

weighting strategy corresponds to linear discriminant analysis. More sophisticated

techniques like Bayesian filtering and quadratic discrimination [147, 152] can be ap-

plied to improve the fidelity of assignment when the noise is not Gaussian, or is

state-dependent. Relaxation of the transmon during the measurement is a common

example of this. This is often difficult to implement in a real-time quantum con-

troller, and has not been widely adopted yet. Additionally, drive pulses which are

not square, or are multi-chromatic, can improve the speed and fidelity with which

readout is performed by separating the trajectories more rapidly, and by emptying

the resonator faster [144, 153, 154, 61].

Chapter 6 makes use of a more complicated scheme where two transmon-readout

pairs share a single measurement chain (see also [45, 71, 72]). This cascaded readout

scheme is a bit more complicated, but the same semi-classical analysis is sufficient to

describe the behavior.

5.4.4 Improving measurement contrast with higher levels

Typical readout discrimination fidelities for an appropriately designed sample can

reliably be around 98%. The contrast is primarily dominated by decay events of the

transmon during the readout acquisition, which cause an abrupt change in the readout

trajectory, and can lead to mis-assignment of |e〉 as |g〉. For typical transmon lifetimes

of 50 µs and readout duration of 500 to 1000 ns, we expect this to happen around 1%

of the time. However, this problem is exacerbated by the fact that population of the

readout resonator can enhance the qubit decay rate [155, 156]. In many cases, this
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measurement contrast can be calibrated out, but when we require true single-shot

state assignment (for instance, for looking at entanglement correlations in Chapter

7), it is advantageous to have higher discrimination fidelity.

Exciting the transmon from |e〉 to |f〉 immediately prior to readout has two ad-

vantages that can increase the fidelity with which we can assign the initial state to

|g〉 or |e〉. The readout response in the |f〉 state is included in Figure 5.6. Since

the readout resonator is further detuned from the drive, the trajectory bends more

severely. This effective larger dispersive shift (≈ 2χrt) provides a higher measurement

rate for the same drive amplitude and system parameters, enhancing separation of

the trajectories and distinguishability. Additionally, since the primary error channel

for the |f〉 level is to decay to |e〉, the separation persists even during a decay event,

to first order. This protection of the assignment fidelity from errors has been explored

in depth recently in [157], though the idea is much older than that [158].

Example average trajectories and histograms which show the obvious improvement

in distinguishability from using the |f〉 level are plotted in Figure 5.6, measured with

sample 2 from Chapter 7. The ground state is prepared by measuring and post-

selecting on |g〉, then measuring again to obtain the data shown. The first excited

state is prepared by following this first measurement with a g–e π pulse. The second

excited state is prepared as we prepare |e〉, but with an additional e–f π pulse. The

assignment fidelity [147] is improved from 0.988 for g–e to 0.996 for g–f, both by

separating the trajectories more rapidly and by reducing the effect of decay errors.

A nice additional feature is that the measurement contrast becomes more symmetric

between |g〉 and |f〉, due to the first-order protection from decay events.

The drawback of this approach is that the lifetime of the |f〉 state is usually shorter

than that of the |e〉 state, so while decay errors do not impact the assignment fidelity,

they may be more likely, and can degrade the fidelity of subsequent operations. For

this reason, we only use this technique when the measurement is the final operation in
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the experimental sequence and we only care about distinguishing power. Despite these

challenges, the |f〉 state, or even higher levels, can in some cases be discriminated from

both |g〉 and |e〉, and has been used for operation and measurement of the transmon

as a multi-level system in several contexts [155, 159, 64, 67].

5.5 Controlling and measuring oscillators

Having discussed control and readout of the transmon, we can now turn to the task

of controlling and measuring a long-lived storage cavity with a transmon. In this

section, we will treat the dispersive measurement described in Subsection 5.4.3 as a

subroutine, ignoring the actual dynamics of the readout resonator.

5.5.1 The dispersive spectrum

The coupling between the transmon and the cavity mode a can be factored as

H = ωaa
†a+ (ωt + χata

†a)t†t+ χttt
†2t2 (5.13)

This makes clear that the transmon frequency is shifted by χat per photon in the

cavity4. When the dispersive shift χat is large compared to the decay rate Γ1 and

dephasing rate Γ2 of the transmon and decay rate of the cavity κa, we are in the

so-called number-split regime. Since χat/2π ∼ 1 MHz, Γ1/2π,Γ2/2π ∼ 5 kHz, and

κa/2π ∼ 100 Hz, we typically operate deep within this regime. In this limit, one can

drive the transmon at frequency ω = ωt + nχat, and if the drive strength ε � χat,

excite it if and only if the cavity is in |n〉[160, 161]. The resulting spectrum as a

function of drive frequency, with a coherent state in the cavity, is shown in Figure

4. Corrections to this Hamiltonian should be made when considering the |f〉 state and above, since
higher orders of nonlinearity cause the dispersive shift to vary as we go up the transmon ladder. See
for example [67].
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Figure 5.7: Number Splitting. a) Measured spectrum of transmon with a weak ex-
citation tone, with a coherent state |α = 1〉 in the cavity. Line-widths are determined by
the spectral width of the excitation pulse, which is set so that the pulse time is as short
as possible while still resolving the peaks. b) When driving at ω = ωt as indicated by the
arrow in a), with ε� χat, a selective rotation is effected, which excites the transmon if and
only if the cavity is in |0〉.

5.7. This type of experiment is used to measure the dispersive shift, which is the

spacing between the peaks. Since the height of each number peak is proportional

to the cavity occupation in that Fock state, we can fit this spectrum to extract the

photon number distribution in the cavity.

5.5.2 Selective measurement and control

In the number-split regime, we have control over the transmon state conditioned on

the cavity number state. In practice, we effect a selective π pulse with a Gaussian

drive pulse with σ & 1/3χat. This type of control can be used for performing phase

gates on the cavity [162, 163, 67, 164] via a 2π pulse, returning the transmon to its

ground state but acquiring a number-state dependent phase. These phase gates, when

combined with cavity displacements, offer universal control over the cavity state, as

proposed in [162] and demonstrated in [163].

Selective transmon rotations are also an easy way to measure the state of the
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cavity; specifically, it can be used to ask the binary question “is the cavity in |n〉?”

in a QND way [161]. This is a basic form of tomography on the cavity, which is a

useful characterization technique as well as the primary readout for certain bosonic

simulation experiments [110]. In the specific case of n = 0, we use it extensively

as a way of ensuring that the cavity is in the vacuum state before beginning an

experiment, by mapping the answer “yes n = 0” onto the transmon excited state.

Finally, in Chapter 6, by simultaneously applying drives on all of the even (or odd)

number peaks, we can measure the photon number parity of the cavity, and hence

the Wigner function (see also [163, 98, 16]).

These selective operations are not extremely fast compared to the transmon de-

coherence. For χat = 2π × 1 MHz, the total π pulse duration is at least 2 µs. This

results in several percent probability of a decay or dephasing event during the pulse,

both of which can result in the transmon ending in the ground state when it should

have been excited. This results in the measurement “n = 0?” having a false negative

probability of several percent. False positives are much less likely, so when we want to

be sure the cavity is in vacuum, we map the result “yes n = 0” onto the excited state.

As discussed above, readout errors also mostly give false negatives, so the outcome

|e〉 gives us high confidence that the cavity is empty.

5.5.3 Ramsey-type Control and Measurement

While the selective operations discussed above offer straightforward control and mea-

surement of coupled transmons and cavities, they have the disadvantage of necessarily

being several times slower than 2π/χat. Certain types of operations and measurements

can be done in a time π/χat, or even faster.
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Figure 5.8: Ramsey-type Parity Measurement. a) Pulse sequence shows two trans-
mon π/2 pulses with a delay between. During the delay, the dispersive interaction effects a
parity-CPHASE. Measuring of the transmon state is equivalent to measuring the parity of
the cavity state. b) Bloch sphere for n = 0 to n = 4 (dark to light) at different times in the
sequence. First rotation brings all number states to |+x〉. Number states acquire phase at
different rates, fanning out. At t = π/χat, even n components are anti-parallel to odd. A
final rotation aligns even parity states with |g〉 and odd states with |e〉.

Parity-selective rotations

In Subsection 5.5.2 we considered transmon rotations with rates much weaker than

χat. An alternate approach is to use unselective rotations much faster than the

dispersive evolution, and delays. A common example is the parity map, which excites

the transmon if the cavity has even parity, and leaves it in the ground state if the

parity is odd. This sequence was used in [165] to generate entangled states, and then

in [166, 65, 66] as an error syndrome measurement (see Section 3.4), and is used

throughout the lab to measure Wigner functions. A more sophisticated version using

three levels of the transmon has been used to measure the joint photon number parity

of two cavities [167].

As discussed above, this can be managed with a comb of selective rotations at

frequencies ωt + nχat for even n. However, the same task can be accomplished quite

a bit faster faster with a Ramsey sequence, the dynamics of which are shown on
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the {|g〉 , |e〉} Bloch sphere in Figure 5.8. First, an unselective π/2 rotation (length

τπ/2 � 1/χat) brings the transmon to the state |+x〉 for all cavity number states.

Then, we wait. After a wait time t, the transmon acquires a phase nχatt for each cavity

number state |n〉. This phase, which amounts to a number-dependent Z rotation,

appears as a fanning out on the Bloch sphere, since the number components rotate

at different rates. After a time tp = π/χat, the phase is nπ. Since the phase is

only defined modulo 2π, the even components have return to |+x〉, while the odd

components coalesce at |−x〉. This delay time has amounted to a parity-controlled

Zπ/2 rotation, which is why we indicate it as a CPHASE gate in Figure 5.8. A final

unselective π/2 with the opposite phase reorients the transmon Bloch vectors to Z

eigenstates, turning the sequence into a parity-CNOT. Now, measuring the transmon

state is tantamount to a measurement of the parity of the cavity state.

The use of the dispersive evolution during the delay to map the two parity man-

ifolds onto orthogonal states of the transmon is what enables this protocol to work

in minimal time, π/χat + 2τπ/2. Actually, it’s slightly shorter than that, since some

of the dispersive evolution occurs during the transmon pulses. We calibrate the time

by performing this Ramsey experiment with a coherent state in the cavity, and fit-

ting the measured transmon excitation probability as a function of wait time to a

Poisson-distributed sum of cosines — see [168], Chapter 5 for more details.

5.5.4 Numerical universal control

The discussion above has so far only considered control sequences where selective or

unselective transmon rotations and cavity displacements are interleaved, but we have

not considered

– Operations which are neither fully selective nor fully unselective

– Driving both the cavity and the transmon simultaneously
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This is because transmon rotations and cavity displacements do not commute with

the dispersive Hamiltonian, nor even do displacements in different directions commute

with one another, nor rotations about different axes. So it is rather difficult to

qualitatively understand what happens when one drives the cavity and transmon

simultaneously, even with constant amplitude and phase, let alone when these vary

in time.

Fortunately, it is straightforward to simulate the unitary propagator of a single

transmon and cavity under arbitrary time-varying simultaneous drives and an ar-

bitrary static Hamiltonian, provided the drives can be approximated as piecewise

constant. Moreover, it is possible to numerically compute the derivative of the final

propagator with respect to the drive amplitudes at each discrete time point. This

allows for convenient numerical optimization of a desired evolution over the drive

parameters via gradient descent [169, 170], first used in nuclear magnetic resonance

experiments [171, 172]. There are a few related approaches to this kind of opti-

mization, like chopped random basis [173, 174] and the Krotov method [175], but

gradient-descent pulse engineering (GRAPE) has become a workhorse of experiments

in the Schoelkopf and Devoret labs over the last few years since the first demonstration

of this method of control in cQED [79].

As used in this work, the problem statement is as follows. For a time-independent

Hamiltonian H0, and time-dependent drive Hamiltonian

Hd(t) = Re (εa(t))
(
a+ a†

)
+ iIm (εa(t))

(
a− a†

)
+

+ Re (εt(t))
(
t+ t†

)
+ iIm (εt(t))

(
t− t†

)
,

(5.14)

the propagator after a time T is

U(T ) =
N−1∑
n=0

exp [i (H0 +Hd(tn)) dt] (5.15)
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for time interval dt = T/N . The optimization task is to map a set of M initial joint

transmon-cavity states {
∣∣ψi

k

〉
} to final states {

∣∣ψf
k

〉
}. The fidelity with which this

task is accomplished for given set of drives is

F =
1

M

∣∣∣∣∣
M−1∑
k=0

〈
ψf
k

∣∣U(T )
∣∣ψi

k

〉∣∣∣∣∣
2

. (5.16)

Due to the piecewise-constant approximation of Hd, the calculation of the 4N gradi-

ents of the fidelity can be computed in a time linear in N , which makes this optimiza-

tion problem tractable on a desktop. The result is a numerically optimized control

pulse (OCP).

We use the GRAPE algorithm for deterministically preparing quantum states in

cavities, and for encoding and decoding arbitrary qubit states in a variety of logical

encodings. It is easy to prepare an arbitrary superposition in the transmon {|g〉t , |e〉t}

manifold, and then we apply an OCP calculated to take {
∣∣ψi

k

〉
} = {|g〉t |0〉a , |e〉t |0〉a}

into {
∣∣ψf

k

〉
} = {|g〉t |0L〉a , |g〉t |1L〉a}. Now changing encodings is then simply a matter

of using a different OCP.

The duration of an OCP is user-defined in the problem, and there is some flexibility

in it. For performing nontrivial operations on a cavity, the pulse duration usually

needs to be of order T ∼ 1/χat. Making the pulse longer provides the algorithm with

more control knobs, and more time in which to allow the dispersive evolution to work.

Longer pulses usually require less amplitude and bandwidth of the drives, which is

desirable. However, since the transmon is entangled with the cavity for most of the

pulse, the actual infidelity is limited by the dephasing time T2 of the transmon, at

around T2/T , which is usually of order 1%. Shorter pulses are less susceptible to the

transmon decoherence, but usually require larger excursions in the oscillator phase

space (akin to increasing the lever arm in the conditional displacement in Subsection

5.5.3). This enhances the sensitivity to cavity decoherence and higher-order terms in
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the Hamiltonian, which can be included in H0 but may be known with less accuracy.

The corresponding larger amplitude and bandwidth of the drives may also increase

susceptibility to distortion and nonlinearities in the control hardware. These issues

are explored in [79, 176] — the optimal balance is usually found empirically.

5.6 Parametric control

The control discussed so far, while made extremely general, flexible, and easy to im-

plement by the GRAPE algorithm, is so far limited to drives resonant with the cavity

and transmon, with rather narrow bandwidth. These numerical techniques don’t

generalize well to control of multiple cavities, since the complexity of the optimiza-

tion grows rather quickly with Hilbert space size, which increases dramatically when

adding a second cavity. Optimized control pulses of this form also require exciting

the transmon, exposing the cavity to the typically much worse coherence properties

of this element. While this approach is likely necessary in some contexts, there are a

variety of operations which can be executed without entangling the cavity with the

transmon, by applying off-resonant drives.

This section will explain how the nonlinearity of the Josephson junction can be

used to perform nontrivial operations on one or more cavity modes. In particular, we

will make use of the many rotating terms in the fourth-order Taylor expansion of the

cosine in Equation 5.8 to enable new, resonant Hamiltonian terms. The explanation

used here is related to the descriptions found in [83, 98, 106], but is often described

as a type of sideband driving [96, 71] which traces its roots to atomic physics. This

approach is an example of parametric Hamiltonian engineering, and bears similari-

ties to the kind of control used in parametric amplifiers [149, 177] and flux-tunable

superconducting circuits [97]. I like this description because it makes it very easy to

estimate the relative strengths of these processes. An approach which allows numer-
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ical calculation to higher order of nonlinearity can be found in [178].

5.6.1 From Off-resonant Drive to Parametric Pump

We begin with the multi-mode BBQ Hamiltonian in Equation 5.8, reproduced here

with a drive applied to mode l at frequency ωd:

H =
∑
k

ωka
†
kak − EJ cosnl

(∑
k

ϕk(ak + a†k)

)
+ ε(t)e−iωdtal + ε∗(t)eiωdta†l (5.17)

The full details of the derivation will not be reproduced here (see [176], Appendices

3 and 4), but the result is that by making a few frame changes, we can work our way

to a much simpler Hamiltonian from which we will quickly see new interactions arise.

First, we move into the rotating frame of the each mode k 6= l, and the rotating frame

of the drive for mode l, yielding

H = ∆a†lal − EJ cosnl

(
ϕl(ale

−iωdt + a†l e
iωdt) +

∑
k 6=l

ϕk(ake
−iωkt + a†ke

iωkt)

)

+ ε(t)al + ε∗(t)a†l ,

(5.18)

with drive detuning ∆ = ωl−ωd. This gets rid of the fast rotation on the drive term.

We can now make a displacement transformation on mode l by the dimensionless

amplitude ξ(t) = ε(t)/∆ to eliminate the drive term, resulting in

H = ∆a†lal − EJ cosnl

(
ϕl

(
(al + ξl)e

−iωdt + (a†l + ξ∗l )e
iωdt
)

+
∑
k 6=l

ϕk(ake
−iωkt + a†ke

iωkt)

)
(5.19)

which moves the drive inside the non-linear cosine. Finally, we get rid of the first

term by rotating mode l again into its proper rotating frame, ending with

H = −EJ cosnl

(
ϕlξle

−iωdt + ϕlξ
∗
l e
iωdt +

∑
k

ϕk

(
ake
−iωkt + a†ke

iωkt
))

(5.20)
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By making these transformations, we can say that instead of coupling to a partic-

ular mode al, we couple directly to the phase across the junction. In fact, Equation

5.20 doesn’t really require us to prefer a particular mode — the strength of the effec-

tive phase bias depends only on the product ϕlξ, and in general the same effects can

be observed by driving any mode.

The nonlinear cosine term in the Hamiltonian in Equation 5.20 allows all products

of any four of the terms in the sum in its argument. This results in two kinds of new

Hamiltonian terms, which we discuss now.

5.6.2 Always-on terms

The first type of term which emerges from the driven Hamiltonian are time-independent

for any combination of mode and drive frequencies. This gives rise to self- and cross-

Kerr terms as discussed in Subsection 5.2.5. However, it now also yields low-order

terms which are non-rotating if they include equal numbers of any term and its con-

jugate. An example is the so-called Stark shift:

EJ

(
ϕaae

−iωat
) (
ϕaae

−iωat
)† (

ϕlξle
−iωdt

) (
ϕlξle

−iωdt
)†

= EJϕ
2
aϕ

2
l |ξl|2a†a(((((

((((
e−i(ωa−ωa+ωd−ωd)t

(5.21)

which is a frequency shift on mode a dependent on the square of the pump amplitude.

This sort of term is resonant for any mode and pump frequencies because the conju-

gates cancel the rotation. In fact, the drive induces a Stark shift on every mode which

couples to the junction. The Stark shift can be useful for limited in situ frequency

tuning [90, 179], but it is mostly an annoyance in this work.
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5.6.3 Exotic Terms Made Resonant

The other class of emergent Hamiltonian term can enable new sorts of processes, and

are made non-rotating for certain values of the pump frequency. An example which

can be obtained with a single pump with two modes a and b is

EJ

(
ϕaae

−iωat
)2 (

ϕbbe
−iωbt

)† (
ϕlξle

−iωdt
)†

= EJϕ
2
aϕbϕlξ

∗
l a

2b†e−i(2ωa−ωb−ωd)t

(5.22)

which is resonant for ωd = 2ωa − ωb. This term (and its Hermitian conjugate)

exchanges two photons in mode a for a photon in b and a photon in the pump, and is

used in various forms where one of a and b is a transmon and the other is a resonator

[96, 83, 64].

5.6.4 Parametric conversion

The process of choice for the experiments in this thesis involve two pumps at different

frequencies. By applying the frame changes twice, we can include two pump terms

inside the cosine, with strengths and frequencies ξ1,2 and ω1,2. We will use this

configuration to exploit the term

EJ

(
ϕaae

−iωat
) (
ϕbbe

−iωbt
)† (

ϕcξ1e
−iω1t

)† (
ϕcξ2e

−iω2t
)

= EJϕaϕbϕ
2
cξ
∗
1ξ2ab

†e−i(ωa−ωb−ω1+ω2)t

(5.23)

(and conjugate), which is resonant when ω2 +ωa = ω1 +ωb. In this case, we exchange

a photon from mode a and pump 2 for one in mode b and pump 1. In other words,

this processes turns on whenever the detuning between the two pumps is equal to

the detuning between the modes, with rate gab = EJϕaϕbϕ
2
cξ
∗
1ξ2 =

√
χacχbc ξ

∗
1ξ2.

The ability to quickly cast the mixing strength in terms of design parameters like

cross-Kerrs is a nice feature of this formalism.
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In this description we assume c is the transmon mode mutually coupled to two

resonators a and b, though this process is quite general. This conversion coupling is

exactly of the form we assumed in Section 4, and indeed we will use it in the two

contexts described therein. In Chapter 6, a and b will be a storage cavity and stripline

resonator, respectively, with b strongly coupled to a transmission line continuum, re-

alizing the setup proposed for the Cirac protocol for communication with propagating

photons (Section 4.4)5. Then in Chapter 7, a will again be a storage cavity, but b will

be a quantum bus — a mode of a coaxial cable resonator, which will couple in this

way to a module at each end, implementing the circuit in Section 4.5.

5.6.5 Unwanted effects and limitations

As we will discuss in the two experiments in the chapters to follow, this conversion

process can be rapid and selective, but it is not perfect. Often by applying pumps

to the system, we can excite other undesired processes, which may be detuned but

much stronger than the process we desire. This usually manifests as excitations being

created or destroyed or moved around, usually into the transmon mode which is most

strongly coupled to the junction (large zero-point ϕc). Additionally, due to the large

Stark shift experienced by the transmon, surprising processes can become resonant

at particular pump strengths, leading to similar excitation. These spurious transmon

excitations are poison, because the dispersive shift of modes a and b to the transmon

are usually larger than g, so stochastic excitations of the converter will shift the modes

away from the resonance condition, both deactivating the conversion and dephasing

the cavities. These effects place maxima on the pump strengths we are willing and

able to use, and hence on the conversion rate g. An additional concern is that the

pumps, which are quite strong compared to most of our other microwave drives,

5. Note that in Chapter 6 we will assume the pumps couple to modes a and b, not to the transmon
c, so the expression used there will differ slightly.
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may locally heat attenuators at the base stage of the refrigerator, adding wide-band

thermal noise which can excite modes of the sample, even after the pump is turned

off.

Practical limits

The physics of the pump-induced transmon excitation is a subject of active research.

A very thorough theoretical and experimental investigation was carried out in [178].

The full story is complicated and beyond the scope of this thesis. But there are a few

things which can go wrong. One is that a transmon driven strongly and off-resonantly

has dressed eigenstates6 which are superpositions of the undriven eigenstates. This

means that a decay channel in the undriven basis can look like an excitation in the

driven basis. The same is true of dephasing. These new excitation mechanisms

can lead to excitation rates which depend on the decay and dephasing rates of the

transmon, the pump strength ξ, and in some cases the pump detuning ∆ from the

transmon frequency. The other kind of effect is a resonant one — since the non-

linearity of the transmon allows all even-order mixing processes, we can accidentally

drive strong processes which can excite the transmon. These processes are in principle

predictable, but there are many of them, and their frequency is a strong function of

the pump strength. The problem compounds when two pumps are applied, because

the number of frequency collisions grows greatly.

The observations of [178] suggest a few practical considerations to soften these

concerns. A generally useful approach is to place the pumps blue-detuned (posi-

tive detuning) from the transmon resonance. Since the transmon anharmonicity is

negative, many more high-order transitions exist at lower frequencies, and these tran-

sitions also tend to shift down as the pumps strength is increased. Similarly, placing

the cavity modes to be coupled likewise blue-detuned has a similar effect. We took

6. Strictly speaking, Floquet eigenstates.
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this approach in Chapter 7. Other results of that work suggest that some of these con-

cerns are mitigated by making the pump detuning ∆ large compared to the transmon

anharmonicity. This all favors pumps at rather high frequencies, which is challeng-

ing if they are far-detuned from all modes, since ξ ≈ ε/∆. Engineering microwave

structures like waveguides which pass the pumps into the sample but do not induce

spontaneous emission of the transmon and cavities is an active direction of research,

and was for instance exploited in [180].

A general rule of thumb is that the phase across the junction ϕξ should probably

remain less than about 1, though, as discussed above, frequency collisions can cause

problems before this if they are not avoided. For a transmon, the zero point phase

ϕc ≈ (2EC/EJ)1/4 is typically around 0.4, so we usually drive with ξ < 1. This limits

the achievable conversion strength between cavity modes a and b to gab <
√
χacχbc,

which is usually on the MHz scale. Indeed, in Chapters 6 and 7, the maximum

conversion strength is gab/2π ≈ 400 to 550 kHz. This is improved by increasing

the cross-Kerrs χac and χac, but this then induces additional self-Kerr, which can be

problematic.

For the sample in Chapter 7, at the maximum conversion strength, we observed

excitation rates of the driven transmon on the order of 1/(100 µs). Given a conversion

strength of 500 kHz, the swap time is 500 ns, which yields a dephasing error rate

of about 0.5%.7 This is quite a bit larger than the error due to photon loss in a

millisecond-lifetime 3D cavity, so further reducing these effects is a great practical

concern. As far as we know, the conversion process itself is lossless, other than these

ways in which it induces decoherence on the participating modes.

7. In this experiment, there are two transmons, and the swap time is a bit longer than this. All
told, including improper initialization of these transmons to their ground state, the total error from
uncontrolled excitations is about 4%.
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5.7 Measuring a transmon through a high-Q cav-

ity

Now we turn to the measurement of a transmon which does not have a readout

resonator. This will be the conversion transmon that we use to drive parametric

coupling between the cavity and the quantum bus in Chapter 7. For the purpose

of experimental simplicity, and to reduce frequency crowding around the modes of

interest, we do not include an additional resonator for measurement of this transmon.

While we do not use this as a quantum degree of freedom for information processing,

we do need to be able to measure it in order to characterize it, and to use it to measure

the bus resonator. For this we map the ground and excited state of the conversion

transmon onto pointer coherent states of the storage cavity, which we can measure

quite well.

The mapping we use to measure the transmon is

|g〉 |0〉 → |g〉 |0〉

|e〉 |0〉 → |e〉 |α′〉
(5.24)

followed by a measurement of whether the cavity is in vacuum, as described in Sec-

tion 5.5. As long as α′ is significantly larger than one, this allows exponentially

perfect discrimination between the two transmon states, since the overlap between

the two cavity pointer states is |〈0|α′〉|2 = e−|α
′|2 . We present two approaches to this,

which parallel the selective and Ramsey-style cavity-dependent transmon operations

discussed above.

5.7.1 Cavity spectrum

As we explained in Subsection 5.2.1, drives on a harmonic oscillator cannot create

quantum states. However, in the presence of the dispersive Hamiltonian, they can
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have nontrivial action. By refactoring Equation 5.11

H = (ωa + χatt
†t)a†a+ ωtt

†t+ χttt
†2t2 (5.25)

we see the transmon-state-dependent dispersive shift of the cavity. This spectrum in

the resolved-regime is illustrated in Figure 5.9a. By driving the cavity at frequency

ω = ωa with ε � χat, we can selectively displace it if and only if the transmon is in

|g〉. This can be used to create entangled states like |g〉 |α〉 + |e〉 |0〉. Then, if α is

large, by measuring whether the cavity is in |n=0〉, we can effectively measure the

state of the transmon.

Ramsey selective displacements

Much like the selective transmon rotations discussed in Subsection 5.5.2, this kind

of selective displacement is fairly slow, so decay events of the transmon during the

mapping sequence can limit the fidelity. Instead, we use the dual of the Ramsey-type

parity-selective transmon rotation, which can effect an equivalent selective displace-

ment, but in an arbitrarily short time (in principle). This is the simplest version of

the protocol proposed in [181], and implemented in [129], where it is used to measure

joint observables of multiple “blind” transmons.

A parallel of the transmon Ramsey sequence discussed in Subsection 5.5.3, this

protocol consists of two cavity displacements of opposite amplitude, with a delay in

between, as shown in Figure 5.9b. The evolution in cavity phase space is shown

in Figure 5.9c, for the |g〉 and |e〉 states of the transmon. The displacements are

assumed very fast compared to 1/χat, though this is not a requirement [61]. The

first displacement prepares a coherent state with amplitude α. During the delay, the

|g〉 state does not evolve, but the coherent state rotates by an angle χatt when the

transmon is in |e〉. By now applying the opposite displacement, the cavity returns to
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Figure 5.9: Transmon-Selective Cavity Displacement. a) Response of the cavity
as a function of drive frequency ω, for first two transmon states. b) Pulse sequence for
Ramsey-style selective cavity displacement. Displacement is applied, then a delay time
during which the dispersive shift enacts a CPHASE-type operation, followed by the opposite
displacement. Measuring the cavity to be in |0〉 is then a measurement that the transmon
is in |g〉. c) Evolution of the cavity Wigner function in the frame rotating at ωa during the
sequence in b), for transmon in |g〉 (top) and |e〉 (bottom). Joint transmon-cavity state is
indicated in each panel. Arrows indicate movement of the cavity state.

vacuum for the transmon in |g〉, but is displaced to |α′〉 when the transmon is excited,

where α′ = α(eiχatt − 1). Now a measurement of the cavity in n = 0 constitutes a

measurement of the blind transmon in |g〉.

Unlike the parity-selective rotation, this sequence does not have a minimum delay

time. The separation between these two coherent states is maximal when t = tp =

π/χat, but since the orthogonality is exponential in the separation, as long as |α′|2 &

4.5, the overlap error is less than 1%. For instance, a modest displacement of α = 2

and a delay time of tp/2 is sufficient, and the displacement size can be traded against
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the time further. Higher order effects like the self-Kerr of the cavity, as well as pulse

errors, can adversely affect the fidelity of this mapping sequence, but this idea of

using the displacement size as a lever arm has broad applications, since the effect

is to amplify the Hamiltonian, which semi-classically scales as n̄χ. For instance,

some recent work from the Devoret group [61] embraces this approach, using a small

dispersive shift and large cavity displacements to enact highly nontrivial control with

conditional displacements. The authors demonstrate a few ways to suppress or cancel

certain higher order effects like the self-Kerr, and provide an interesting and fruitful

direction for future research.

5.8 Attaching a quantum bus

Now that we have described everything inside the module, we can talk about the

physical implementation of the quantum bus prosed in Chapter 4. For this we use a

coaxial cable resonator as described in Subsection 5.1.1. In this section we describe

the characterization of these resonators.

5.8.1 Measurement ex situ

We can directly measure the mode structure and quality of the cable resonators in a

simple standalone characterization rig, shown in Figure 5.10a. We capacitively couple

one end of the cable to the continuum of a copper coax cable which is connected to

our measurement apparatus. In this way we can measure the frequency response of

the resonator modes with a vector network analyzer (VNA). This technique is similar

to [123], though in that work the response was measured in transmission, with the

external coupling assumed to be small. In reflection we can independently measure

the internal and coupling rates, and there is only one coupling port, rather than two.
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Figure 5.10: Bus Characterization ex situ. a) Setup for measuring cable resonators
in reflection. Cable is embedded in aluminum tunnel, held in place with brass set screw.
Copper cable (left) enters other end of tunnel, and is soldered into a flange. Both have outer
conductor and dielectric removed in the tunnel (not shown). b) Reflection measurement of
n = 3 mode, with fit. c) Extracted internal decay rate κ and internal and coupling quality
factors for four modes of the same cable.

Connectorization

To minimize the complexity of the testing rig, and to make it as similar to the

situation we will have when we integrate the cable into the modules, we use a simple

connectorization and coupling scheme between the cable resonator and the signal

line. We remove about 0.3 inches of outer conductor and dielectric to expose the

inner conductor. The end of the cable is inserted into a loose-fitting tunnel in the

body of an aluminum coupling block. A brass set screw pushes the outer conductor

of the cable against the wall of the tunnel. This NbTi-Al joint is the only seam

between the block and the cable. We tip the set screw with a small amount of

indium, which deforms and provides a larger contact area, and allows us to apply

more force on the joint before damaging the cable outer conductor. The copper cable

has outer conductor and dielectric stripped similarly, soldered into a copper flange,

and inserted into the other end of the block. The opposite end of the cable resonator
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is embedded in another block, but with no copper cable. The small diameter of the

tunnel confines the mode well within the tunnel, so the radiative losses from this end

should be negligible. The flange is secured with screws and is visible in Figure 5.10a.

The coupling is achieved by positioning the co-linear center conductors close together.

To achieve coupling quality factors on the order of 105, the spacing between the two

center conductors is typically 0.5 to 1 mm, though the coupling rate is frequency

dependent.

Results

As an example, the VNA reflection trace of a 5.5 cm long cable resonator is shown in

Figure 5.10b. This is the n=3 mode of this resonator, which has a free spectral range

of just under 2 GHz. The extracted internal damping rates and internal and external

quality factors of four modes of this cable, spanning 4 to 8 GHz, are shown in Figure

5.10c. In qualitative agreement with [123], the internal quality factor decreases at

higher frequencies. While those authors attribute this to the increase of conductor

dissipation with frequency, their data do not fit the expected power law dependence

Q ∼ ω−1 at low temperatures. As described in Chapter 4, losses in the seam between

the outer conductor and the ground shell at the coupling end would also produce

decrease in quality factor at higher frequency. Our data do not follow an obvious

power law, so it is difficult to attribute the loss to one culprit.

We have measured cable manufactured by both Coax Co. and Keycom, and found

no systematic difference in quality between the two, which have different density

dielectric. The experimental results shown here and in Chapter 7 use cable from

Coax Co. As suggested by the vendor, we have tried gently removing the NbTi oxide

layer with fine-grit sandpaper before assembling, but the run-to-run variation so far

seems to be larger than any benefit this conveys.
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5.8.2 Integration

To use the quantum bus to couple our modules together, we need to integrate it

into the modules with a capacitive coupling between the bus and the converter. The

coupling is similar in spirit to the way we couple input and output signals (Subsection

5.3.2), with the outer conductor and dielectric removed as described in Subsection

5.8.1, and the center conductor protruding into the tunnel which holds the conversion

transmon chip. The center conductor is orthogonal to the dipole moment of the

conversion transmon, and crosses over it at the approximate location indicated in

Figure 5.4. The pin is located 0.7 to 1 mm from the surface of the chip. If one

wanted to increase this coupling rate in future, it should increase roughly linearly

with the width of the transmon capacitor pad.

Spectroscopy

With the bus cable connected to a module at each end, there is no easy way to couple a

diagnostic line to it directly, but we can measure it through the module without adding

any complexity. Since the mode of interest has a dispersive shift to the conversion

transmon, we can detect population in the bus by performing spectroscopy on the

converter, much the way we measured storage mode population with the ancilla. The

results of this spectroscopy with the cable driven to a coherent state is shown in

Figure 5.11a. The cable and converter are mutually number split, with a dispersive

shift of χbc = −2π × 4.3 MHz.

Bus lifetime

Given the number-resolved spectrum in Figure 5.11a, the damping rate of the cable

κb � χbc. We can measure this rate directly by displacing the cable and driving

the converter with a selective pulse at ω = ωc. The height of this spectroscopic

peak corresponds to the occupation of the |0〉 state of the bus. This ring-down



5.8. ATTACHING A QUANTUM BUS 188

0 5 10
time (μs)

data
fit:  

−15 −10 −5 0
(MHz)

0.4

0.6

0.8

sp
ec

 s
ig

na
l (

a.
u.

)
data
fit:  

a b

Figure 5.11: Bus Characterization in situ. a) Spectroscopy on conversion transmon
for a coherent state |α = 1〉 in the bus. b) Lifetime measurement of bus. Bus is displaced
to |α = 2.5〉, then after a variable delay, the conversion transmon is driven with a selective
π pulse at ω = ωc.

measurement, shown in Figure 5.11b, reveals a bus lifetime of 1.6 µs, or κb/2π =

100 kHz.

While in the standalone configuration we measured the damping rate of the same

mode of this cable to be as low as κb/2π = 50 kHz, this is not yet consistently achieved

from run to run. It could be that, given a different insertion into the package as

compared to the testing housing in the standalone setup, the location of a lossy seam

might be impacting the mode differently. It could also be variation in the quality of

this seam given different mounting conditions.

In the language of Subsection 4.3.4, the measured quality factor would imply an

effective resistance βnR = 200 µΩ, where R is the actual resistance and βn ≤ 1 is a

dimensionless geometric factor which depends on the location of the seam and the

mode number n. Due to the distributed nature of the clamping method here, it is

difficult to say with confidence what βn is for these modes. Most likely, the large

contact area reduces the effective resistance by providing multiple parallel channels

through which the current can flow from the cable into the aluminum, since the seam

conductance measured in [124] for aluminum alloy joints would predict R ≈ 30 mΩ

(see Subsection 4.3.4). Alternatively, the soft aluminum might deform against the
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harder NbTi, providing a seam of reasonable quality. More careful variation of the

seam location and conditioning is required to fully understand this effect.

5.9 Conclusion

In this chapter we described the parts of the modules used in Chapter 6 and Chapter

7 to realize the protocols for entanglement and communication proposed in Chapter

4. We also gave an introduction to parametric conversion, which will be used as the

coupling mechanism assumed in the two protocols. In the next two chapters we will

describe the experimental results and conclusions taken from them.



Chapter 6

Pitch and Catch with Photons

6.1 Introduction

In this chapter we use all the tools and hardware we have developed in the previous

chapters to describe our experiment achieving quantum state transfer and entan-

glement generation between 3D cavity memories using parametric conversion and

propagating photons.

6.1.1 Communication with flying photons

We described the basic features of the approach taken here in Section 4.4, including

the proposal by Cirac, Zoller, Kimble, and Mabuchi [17]. This protocol was orig-

inally envisioned as a way to perfectly transfer the state of one atom to another

through an optical fiber. The idea is to map the state of the atom onto a propagating

photonic wavepacket, and then capture that wavepacket at the other end. In this

sense, the approach lends itself to implementation in the shuttling-type modular ar-

chitecture presented in Subsection 2.5.2, provided we have a sufficiently flexible and

non-reciprocal router.

However, by slight modification of the protocol, we can also generate entanglement

190
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between the two atoms, thus making this approach applicable to the entanglement-

based architecture described in Subsection 2.5.3. In this case, we begin with an

excitation in one atom, and only release it halfway as a photon. This creates an

entangled atom-photon pair. By completely absorbing the photon at the receiver, we

swap the entanglement into the atom-atom pair. This entanglement can then be used

with local operations and measurements for teleported operations [39].

6.1.2 Prior art

Versions of this protocol were first realized with atoms in optical cavities [89, 35].

Given the difficulties involved in efficiently coupling and transmitting optical photons,

these demonstrations have been non-deterministic, with success probability below

1%. In the microwave domain, however, it is quite easy to direct emission from a

resonator into a transmission line with efficiency as high as 99%. This has led to

a rich body of research towards controllable interactions between superconducting

qubits and microwave light.

Control of emission from a qubit or resonator into a continuum has been imple-

mented in a variety of ways. The Santa Barbara group demonstrated tunability of

the coupling of a resonator to a transmission line which enabled efficient emission of

qubit states and absorption of classical light [95, 182]. The tunable coupling is a bit

of a shortcut to the Cirac protocol, proposed in [183]. In this approach, one directly

varies the decay rate κ, instead of a conversion rate into a communication resonator

with fixed κ. This simplifies the dynamics a bit, but the spirit is very similar. A

related approach using a qubit with tunable coupling to a fixed resonator, essentially

tuning the Purcell decay, was used by the Princeton group to demonstrate temporal

control over the emission profile [184]. One downside of these approaches is that

they seem to suffer from poor on-off-ratio, requiring additional effort to protect the

quantum memories from this tightly-coupled decay channel.
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A complementary approach, more closely following the original Cirac proposal,

involves microwave-drive-actuated frequency-conversion from a qubit to a communi-

cation mode with fixed decay rate into a transmission line. This sort of coupling can

be understood as a parametric conversion processes in the language of Section 5.6,

but is sometimes called a sideband transition in the literature. This sort of coupling

is naturally present in any transmon-resonator system, and does not require explicit

tunable coupler elements or flux-tunability, making it nicely suited for 3D cQED. This

approach was first used to demonstrate fairly sophisticated temporal control over the

emitted photon in the Zürich group [96]. A related driven coupling approach was

used in the Devoret group to entangle distant qubits via flying photons [71], though

not originally with the intent to demonstrate a state transfer scheme, but instead the

kind of measurement-based entanglement scheme discussed in Subsection 2.5.3 [44].

Around this time, we began applying this type of conversion processes in our 3D

cavity systems. By driving conversion between the long-lived storage cavity and the

lossy readout mode, using the nonlinearity of the ancilla transmon junction, we found

we could drastically reduce the lifetime of the cavity, using components which already

needed to be present in the system. This tool became an easy and commonly-used

way to increase experimental repetition rates [79], rather than wait many millisec-

onds for the cavity to spontaneously decay. Perhaps more important, this is a useful

way to cool the cavity to its ground state, since we often measure appreciable equi-

librium population above that which we would expect given the nominal tempera-

ture. However, this conversion was expected to be a coherent process, and indeed

we demonstrated as much, including entanglement between the propagating field and

the state left behind, by measuring the statistics of the emission [98]. Although the

conversion made use of the transmon junction, the excitations converted thereby did

not need to excite the transmon mode. Consequently, this results in the same kind

of linear coupling between harmonic oscillators discussed in Section 4.2, and hence
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the conversion process ought to be state-independent for multi-photon states. Indeed

we demonstrated as much, seeing clear signatures of the initial quantum states in

the emitted field. The ability to faithfully convert these kinds of states suggested we

might be able to use this process to implement the Cirac protocol using the encodings

discussed in Section 3.4 to correct for photon loss between modules.

6.1.3 Concurrent art

At the same time we were performing the experiment described in this chapter, two

related efforts were carried out. Based on the work of [71], the Devoret group demon-

strated deterministic entanglement generation between two transmons in separate

modules with a directional channel and shaped photons [73]. We collaborated on

this, and each experiment benefited from the other. Meanwhile, Andreas Wallraff’s

group in Zürich built upon their previous work coupling transmons to oscillators [96]

to implement a similar experiment [74]. It bears noting that the Zürich experiment

uses significantly stronger couplings, and the transfer is nearly an order of magnitude

faster than the Yale. However, given the similar losses observed between the modules,

the overall performance is comparable between all three experiments.

6.1.4 This chapter

Here we will lay out the details of our implementation, the spiritual successor to [98].

The report is published in [16], and many details can be found in Chris Axline’s thesis

[15]. I will focus on the essential components and the takeaways which motivated our

subsequent work.

In Section 6.2 we discuss the hardware configuration and some design consid-

erations. Then Section 6.3 demonstrates efficient release and capture of temporally-

shaped microwave photons. This includes a description of the modifications we needed

to make to the shaping protocol described in Subsection 4.4.4. Section 6.4 shows
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sender receiver

30 cm 30 cm

output

Figure 6.1: Cirac Protocol Hardware. Two nominally identical modules are con-
nected through a uni-directional transmission channel. Each module (i = s, r for “sender”,
“receiver”) contains a 3D storage cavity (ai, red), transmon (ti, green), and stripline com-
munication resonator (bi, blue), also used for readout. Communication resonators couple
to transmission line at rate κi. Conversion between storage and communication modes is
actuated by two off-resonant pumps with strengths ξi1,2, applied to storage and communica-
tion modes, respectively. Figure reproduced from [16] in accordance with Springer Nature
copyright permissions.

transfer of arbitrary quantum states in the Fock encoding. Then in Section 6.6 we

demonstrate the very minor modification to the protocol which allows for on-demand

entanglement generation. Motivated by the dominant imperfection — photon loss —

in Section 6.5 we demonstrate the compatibility of this approach with qubits encoded

in an error-correctable manifold. Finally, in Section 6.8 we summarize the difficulties

involved in this experiment and some of the lessons learned.

6.2 Cirac protocol implementation

The modules used in this experiment are more or less clones of the one used in [98],

with some updates to make them more amenable to the scheme here.

6.2.1 Hardware configuration

The layout of the samples is shown in Figure 6.1. Each module contains the essentials

described in Chapter 5: a 3D post cavity, a transmon, and a stripline readout res-

onator. The readout resonators also serve as the communication resonators for state

transfer protocol. These resonators are each coupled to a superconducting trans-
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mission line which terminates at a circulator, such that the emission from the first

module is incident on the second, but the emission from the second is directed to

the third port of the circulator, which carries the signal to a measurement chain.

This circulation enforces the assumption that the line is a continuum, and that there

are no standing wave modes. In the language of Chapter 4, this allows coupling via

propagating modes without requiring the line to be long enough that the free spectral

range is smaller than the coupling rate. This is important, because that length in

this experiment would be longer than 100 meters. The circulator also breaks the

symmetry between the roles of the modules, and so we call one the sender and the

other the receiver. We label the storage, communication, and transmon modes in the

sender (receiver) as as, bs, and ts (ar, br, and tr). The communication modes couple

to the line at fixed rate κs and κr, which are similar but need not be exactly matched.

The measured system parameters are summarized in Table 7.1.

6.2.2 Parametric conversion scheme

We use a four-wave mixing parametric conversion of the type introduced in Section

5.6. The layout in frequency space is shown in Figure 6.2. Since the detuning between

the conversion pumps needs to equal the detuning between the storage and communi-

cation modes, it is convenient to locate the pumps symmetrically detuned from those

modes by a small amount ∆. We choose |∆|/2π between 30 and 50 MHz, which

allows the pumps to be sourced by the same drive chain as the cavity and readout

drives. The pump near the storage we call pump 1, and that near the readout pump

2.

By applying the pumps so close to the linear modes, we consider the coupling to

the junction phase to be through these modes. As a result, the relevant Hamiltonian
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Hamiltonian parameter (MHz) Sender value Receiver value
Frequency ωa/2π 4219.3 4269.6

ωb/2π 10031.5 10031.5∗

ωt/2π 6156.1 6417.6
Cross-Kerr χab/2π −16× 10−3 −12× 10−3

χac/2π −2.86 −2.29
χbc/2π −2.4 −2.18

Self-Kerr χaa/2π −8× 10−3 −5× 10−3

χbb/2π −8× 10−3 −6× 10−3

χcc/2π −183.43 −196.17
Damping parameter (µs)
Energy decay time T a

1 460± 10 770± 10
T t

1 26± 3 27± 3
T b1 0.14± 0.01 0.11± 0.01

Ramsey decay time T a
2R 102± 3 130± 4
T t

2R 12± 2 12± 2
Hahn echo decay time T t

2E 15± 2 15± 2
Steady-state excitation Sender value Receiver value
Transmon 1− P (g) 0.195 0.209
Cavity n̄ 0.166 0.172

Table 6.1: Pitch and Catch Bus Sample Parameters. Uncertainties of measured
Hamiltonian parameters are < 0.1% except when indicated by fewer significant digits. For
the cavity and transmon decay times, the uncertainties given are the typical fluctuations
observed over the course of one day. ∗This is the frequency set by tuning and is used during
all phases of the experiment.
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sender

receiver

in situ tuning

Figure 6.2: Frequency Layout. Off-resonant pumps (purple) are applied with approx-
imately equal detuning ∆ from storage and communication modes to enable conversion.
Storage modes need not be frequency matched, but communication modes must be approx-
imately resonant. Communication mode of receiver is mechanically tuned in situ. Figure
reproduced from [16] in accordance with Springer Nature copyright permissions.

term for a single module is

HFWM = EJ cosnl

(
ϕa(ae−iωat + a†eiωat) + ϕb(be−iωbt + b†eiωbt) + ϕt(te

−iωtt + t†eiωtt)

+ϕa(ξ1e
−iω1t + ξ∗1e

iω1t) + ϕb(ξ2e
−iω2t + ξ∗2e

iω2t)
)

(6.1)

The desired conversion term is

Hconv = EJϕ
2
aϕ

2
bξ
∗
1ξ2ab

†e−i(ωa−ωb−ω1+ω2)t = χabξ
∗
1ξ2ab

†e−iδt (6.2)

where χab = EJϕ
2
aϕ

2
b = χatχbt/2χtt is the cross-Kerr between the storage and com-

munication mode. We have subsumed all of the mode and pump frequencies into a

single detuning δ, which denotes how far the pumps are from the nominal resonance

condition ωa − ω1 = ωb − ω2. The prefactor g ≡ χabξ
∗
1ξ2 is the conversion rate,

controlled by the pump amplitudes.
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Stark shifts

As introduced in Subsection 5.6.2, there are frequency shifts induced by each pump

on each mode. The Stark shifts relevant to the conversion process are

δa = 2χaa|ξ1|2 + χab|ξ2|2

δb = 2χbb|ξ2|2 + χab|ξ1|2

δt = χat|ξ1|2 + χbt|ξ2|2

(6.3)

The last of these, the Stark shift on the transmon, is much larger than the first two,

but since this mode does not directly participate in the conversion, the precise value is

not important. These large shifts do lead to unwanted resonant transitions involving

the transmon [178], which are dependent on the pump amplitudes and frequencies.

We try to find pump frequencies and amplitudes which mitigate these transitions.

6.2.3 Frequency tunability

Since the Cirac protocol relies on the emission from the sender being compatible

with the receiver, the communication modes of these module must be approximately

matched in frequency. Fortunately, while the bandwidth of the emitted photon is on

the order of 4g2/κ (see Subsection 4.4.2), the tunability bandwidth of the conversion

process (the frequency range over which the photon can efficiently be emitted) is κ,

the line-width of the communication mode. This is somewhat larger, which makes

the frequency matching of the modules more lenient. However, this is still a tighter

tolerance than we can reliably make our stripline resonators, so in-situ tunability was

needed in this experiment.

The frequency of the communication mode of the receiver module was enabled

by introducing a superconducting aluminum pin in a tunnel which intersected the

waveguide enclosure of the stripline. The pin acted as an additional capacitance to
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ground, so bringing it closer to the device lowered the frequency, The pin was driven

by a piezoelectric stage (Attocube ANPz101-A4), and by moving the stage over a

range of a few millimeters, we could tune the frequency over a few hundred MHz,

with sub-MHz precision. Once an acceptable frequency was attained, the rest of the

experiment was performed for fixed pin position. Since the frequency could only be

adjusted downward, we introduced a similar, stationary pin for the sender module to

ensure it was within the tuning range.

Related experiments with similar frequency-matching requirements [71, 73] used

an adjustable screw inserted into a 3D cavity used as a communication mode. The

screw could only be adjusted at room temperature, but since these cavities can be

measured while warm, it is possible to extrapolate the change in frequency from 300 K

down to base temperature with a few cool-downs. Since the stripline resonators are

too lossy at room temperature to measure accurately, this is not feasible with our

samples.

It is difficult to know how much dissipation is induced by the tuning pin. Although

it is superconducting, it may not be well-grounded, as contact with the walls of the

tunnel can provide too much friction for the piezoelectric stage to overcome. As

a result, the pin may be floating in its tunnel, forming a coaxial transmission line

through which the communication mode can radiate into free space. We were not

able to simply track the line-width of the mode with pin insertion, since the coupling

bandwidth can change as the mode profile are perturbed. Additionally, it is quite

hard to measure few-percent changes in the bandwidth. So it is possible this tuning

mechanism adds some loss, which would result in transmission inefficiency. Flux

tunability, or extreme diligence in device assembly, might provide a cleaner route

towards the frequency matching requirement.
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6.2.4 Joint readout

Since the communication resonators are also used for readout of the transmons, the

measurement signal from the sender is incident on the receiver. This means we cannot

measure the sender without also measuring the receiver1. This sort of configuration

was used in similar experiments [45, 71]. The signal layout is shown in Figure 6.3a.

To perform simultaneous joint readout, we applied a transmission tone on the sender

resonator. The emission is also reflected off the receiver, and so gains information

about both transmons. While for certain parameter regimes this might be sufficient,

we found it necessary to apply an additional transmission tone on the receiver. The

two measurement fields interfere, so the relative amplitude and phase are important.

The sum of the two tones exits the third port of the circulator and is measured with a

Josephson parametric converter (JPC) [149, 45, 150]. It is important to use a phase-

preserving amplifier for this joint readout because we extract two bits of information,

which is easiest done by using both quadratures of the signal.

While this joint readout is sufficient for most purposes, it is not ideal. In our re-

alization, there is significant crosstalk between the state assignment of the two trans-

mons. We characterize this in Figure 6.3b,c. We vary the amplitude of a transmon

excitation pulse on both modules, and perform the joint readout and state assignment.

As shown in the one-dimensional cuts in Figure 6.3c, there is a few percent of spurious

signal which depends on the state of the opposite transmon. This crosstalk presents

some challenges for the high-fidelity state discrimination required for quantum error

correction, though it could be mitigated with more careful tuneup. The sequential

style of readout also halves the bandwidth of the measurement signal, slowing down

readout. Some of these issues will be addressed with the introduction of independent

readout chains in Chapter 7.

1. The converse is allowed, and we did measure the receiver on its own for some calibration
experiments. But in general we used the joint readout described here for most of our measurements.
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Figure 6.3: Joint Readout. a) Communication channel is also used for transmon mea-
surement. Both communication resonators are driven in transmission at the same frequency.
Emission from sender (red) also reflects off receiver, where the two signals combine. Both
are routed out the third port of the circulator to a quantum-limited phase-preserving de-
tection chain (not shown). b) Measured signal during simultaneous Rabi experiment. Both
transmons are excited by different amounts before joint measurement. c) Cuts along dashed
lines in b). Ideal behavior would show no signal versus receiver rotation in sender signal,
and vice versa. Data show 2–3% unwanted crosstalk in assignment. Figure reproduced from
[16] in accordance with Springer Nature copyright permissions.

6.3 Releasing and capturing shaped photons

Here we detail a few practical extensions of the Cirac wavepacket shaping protocol

explained in Section 4.4. To recap, we pick a specified wavepacket shape bout,1(t),

and are tasked to find conversion couplings g(t) for the sender which produce this

wavepacket, and receiver couplings which absorb it. However, since the coupling g

is dependent on the pump amplitudes ξ1,2, the task is to find those controls. The

additional complication is that the frequencies of the storage and communication

modes depend on those amplitudes.
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6.3.1 Control scheme

Since the conversion rate g (detuning δ) depend on the product of pump amplitudes

(difference of pump frequencies), it is sufficient to vary the amplitude and frequency

of only one of the pumps, leaving the other fixed. We choose to vary ξ1(t), since it is

weaker than ξ2, and hence the dynamic Stark shifts will be smaller if ξ2 is fixed. We

include 200 ns smooth turn-on and turn-off times for this constant pump so that its

bandwidth is limited and it does not excite the cavity or communication modes.

The procedure for constructing a numerical solution for the pump is the same

as presented in Subsection 4.4.4, but we cast the equations of motion in terms of

g(ξ1(t), ξ2), with the time dependence of g coming through ξ1(t). Hence the time

derivatives of g in Equation 4.44 are replaced by derivatives of ξ1. There are also

additional terms resulting from the static and dynamical Stark shifts (and derivatives

thereof). The full derivation can be found in [15] or the Methods section of [16]; here

we just give the result, since the basic procedure is already written in Subsection

4.4.4. The equation to be solved for the sender is

0 = (ġ(t)− iδa(ξ1)g(ξ1))
(
ḃ(t) +

κ

2
b(t) + iδb(ξ1)b(t)

)
−g2(t)g∗(t)b(t)− g(t)

(κ
2
ḃ(t) + b̈(t) + iδ̇b(t) + iδb(ξ1)ḃ(t)

) (6.4)

The equation for the receiver is similar, as explained in Subsection 4.4.4.

The functional form of the Stark shifts are given in Equation 6.3, and it is con-

venient to be able to to take the time derivative analytically, e.g. δ̇b = 2χab|ξ1|d|ξ1|dt
.

The same is true of the functional form of g(ξ1), though we found deviation from the

simple form of Equation 6.2. At higher pump powers, we found from calibration ex-

periments that we also needed to include a small dependence on higher powers of the

pump strengths. This likely comes from higher order terms in the cosine, or the effect

of the Stark shifts changing the detuning, and hence the effective pump strength ξ.
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Figure 6.4: Release and Capture of Shaped Wavepackets. a) Experimental se-
quence consists of state preparation in receiver, application of shaped conversion pumps,
and measurement. Propagating signals are measured by quantum-limited heterodyne de-
tection chain. b) Measured heterodyne signal for release of a coherent state |α = 1〉, with no
capture pulses applied. In-phase (I, dotted), quadrature (Q, dashed), and amplitude (solid,
shaded), show agreement with ideal wavepacket shape (black, dotted). c) Measured photon
flux (I2 +Q2, normalized) for coherent state. With capture pumps applied (“catch,” dark),
measured reflected signal is greatly suppressed. Figure reproduced from [16] in accordance
with Springer Nature copyright permissions.

The maximum g used in this work was about 2π × 400 kHz.

6.3.2 Wavepacket release and absorption

To verify the control of the emitted wavepacket, we prepare a coherent state in the

sender cavity, and apply the shaped release pumps, as shown in Figure 6.4a. The

pumps shown in this figure are the numerically-computed shapes. We measure the

emitted field, which reflects uncaptured off the receiver and goes out the third port of

the circulator to our quantum-limited detection chain. The average signal, measured

in heterodyne [98] and shown in Figure 6.4b, shows very close match to the ideal

shape.

To demonstrate absorption of the emitted signal, we perform the same experiment,

while simultaneously applying the pumps on the receiver. Figure 6.4c shows the

measured power (the absolute square of the average heterodyne signal) with and

without the capture, showing a large reduction in the reflected power. The fractional

change in reflected energy is a direct measure of the receiver efficiency, which is
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Figure 6.5: Single-photon Efficiency. a) Measured cavity occupations in Fock states
n = 0–4 after release and capture for coherent state |α〉 = 1 (top) and Fock state |1〉
(bottom). b) Extracted efficiency for states of varying mean photon number n̄. Slope
of line is efficiency η. Figure reproduced from [16] in accordance with Springer Nature
copyright permissions.

ηr = 0.93(1).

6.3.3 Total efficiency

Having established the ability to release and capture a coherent state, we can evaluate

the end-to-end efficiency of the process by measuring the energy in both cavities after

capture be measuring the number-split transmon spectrum (see Subsection 5.5.1).

The results of this experiment, for a coherent state with n̄ = 1 and Fock state |1〉,

are shown in Figure 6.5. For both states, we find the sender cavity is with high

probability emptied — the sender efficiency is ηs = 0.97(1). The measured mean

photon number in the receiver yields the total efficiency η = 0.74(3) for both states.

By preparing and transmitting a variety of coherent and Fock states we find that the

efficiency is state-independent up to n̄ = 4 (Figure 6.5c). This is essential for the

ability to transmit bosonic error-correction code words, and a result of the fact that

the conversion process does not necessarily excite the transmon.
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6.3.4 Contributions to inefficiency

While the measured efficiency is high enough to enable quantum communication, it is

important to understand the origins of the loss. The major contributors are unwanted

excitation of the transmons and transmission loss.

Transmon excitations

As stated above, the transmons which enable the conversion process ideally do not

become excited during release and capture. However, we observe significant excitation

rates of both. A large fraction of that comes from their rather high equilibrium

occupation (∼20%) and short lifetimes (∼ 25 µs), resulting in an excitation rate of

∼ 1/(100 µs). Given the 6 µs transfer time, and imperfect initialization, we expect

as much as 5-10% excitation of these transmons by the end of the transfer time.

Additionally, the pumps add to this excitation rate [178]. The result is that the

receiver transmon has an 87% probability of being found in its ground state at the

end of the transfer, and 91% for the sender.

These excitation events have two effects. The first is that occupation of the

transmon |e〉 state dispersively shifts the storage and communication modes by χat

and χbt respectively, which are both larger than the conversion rate g. Since both

modes are shifted, the conversion is still resonant to the extent that χat = χbt; they

are not exactly matched but are fairly similar, such that the added detuning is of

order g. In this limit, the conversion still mostly happens, but the photon is released

at the wrong frequency if the sender transmon is excited, and not captured.

Fortunately, not all excitations events completely extinguish the transfer, since,

for instance, an excitation which occurs in the last microsecond of time will have

little effect. This effect is estimated to cause a loss of the photon about half of the

time when the sender transmon is excited, which means the true sender efficiency

ηs = 0.93(1). Similarly, if the receiver transmon is excited, the capture process is
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not resonant with the photon which arrives, and so it is not well-absorbed. This is a

dominant contribution to the measured receiver efficiency.

The second effect of the transmon excitations are to confound our measurement

of the cavity state in the receiver. Since the transmon spectrum is used to perform

tomography on the cavity, stochastic excitation events primarily reduce measurement

contrast. Since we always normalize the spectrum to give physical probabilities for the

number state occupations (as in Figure 6.5a), we can say little about the occupation

of the cavity when the receiver transmon is excited. For this reason we say that

the measured efficiency is conditioned or heralded on the transmon being found in

its ground state. This places a finite success probability on the protocol, which is

not fundamental to the scheme but is important in this realization. That success

probability is ps = 0.87(3), the probability of finding the receiver transmon in |g〉

quoted above. For all numbers where this is relevant, we give the directly measured

value, which is implicitly conditioned on this success, and an estimated deterministic

number which conservatively assumes complete failure in the event that the transmon

is excited. For the efficiency, this deterministic number is ηd ≥ ps×η = 0.87×0.74 =

0.64(3). In what follows we present the deterministic (directly measured) value, with

the conservative lower bound of the fully deterministic value in parentheses.

Other inefficiencies

The dominant additional contribution to the inefficiency is loss in the transmission

path, including connectors, cabling and circulator. This is difficult to measure pre-

cisely, but we estimate it by performing a control experiment which looks at the

transmission of the pump ξ2 from sender to receiver, which is near the communica-

tion frequency. By comparing the relative Stark shifts of the two transmons, we can

estimate the attenuation of the pump leaking from one system to the other. From this

experiment we find a transmission efficiency ηtx = 0.80± 0.15. The large error comes
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from the rather large uncertainty in the cross-Kerrs χbt which are used to convert

the Stark shift into a drive amplitude. In the related experiment performed in the

Devoret group [73], a similar calibration was done at the communication frequency by

measuring the relative dephasing of the transmons due to emission from the sender; a

similar value was found, though that experiment had several additional components

in the transmission path.

6.4 Quantum state transfer

Given the measured transmission efficiency, we expect to be able to transfer quantum

states from sender to receiver. In particular, we can encode an arbitrary quantum bit

in the sender cavity, and should transmit it faithfully to the receiver. Since we showed

the transfer process to be state-independent, we have a choice of encoding. To demon-

strate this capability, we used the simplest, the Fock code, with |±zL〉 = {|1〉 , |0〉}.

To keep consistent with the notation of previous chapters, we have permuted 0 and

1 in the above definition, because in this chapter we identify the top of the Bloch

sphere |+z〉 with the Fock state |1〉.

6.4.1 State preparation

We prepare the six cardinal states of this encoding in the sender cavity using numer-

ically optimized control pulses (OCP). Two of the prepared states, characterized by

Wigner tomography, are shown in Figure 6.6a. Since one of the code words is the

vacuum state, we do not need a control pulse to generate this state. Since the equator

states (equal superpositions of |0〉 and |1〉) are the same up to the phase of the cavity,

these states are generated with a single OCP. The phase of the cavity drive during

the pulse dictates the phase of the final state. All told, only two distinct numerical

OCPs are used to prepare these six states.
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Figure 6.6: Quantum State Transfer Between Modules. a) Measured Wigner
function of states as prepared before transfer (left) and received after transfer (right). Two
states in Fock encoding are shown. b) Reconstructed logical Bloch sphere. Prepared states
shown in red, received in orange. Green arrows denote expected movement due to amplitude
damping with measured efficiency. Figure reproduced from [16] in accordance with Springer
Nature copyright permissions.

6.4.2 Received fidelity

For each transfered state, we measure the resultant Wigner function. Each Wigner

function is normalized and reconstructed using a convex optimization technique [14];

two of those received Wigner functions are shown in Figure 6.6a. The resulting

mean state fidelity, averaged over all six states, is FFock = 0.87(4) (deterministic:

FFock,d ≥ ps×FFock = 0.76(4). The implicitly conditioned and deterministic fidelities

both exceed the classical bound of 2/3, which is the best fidelity with which one

can reconstruct an unknown quantum state with only classical communication [185].

Thus we have demonstrated deterministic quantum communication between remote

modules.

In addition to the average fidelity, it is instructive to see how each state evolves

under the transmission channel. Figure 6.6b shows a representation of the Bloch

sphere with all six reconstructed states as prepared and received. The states show
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clear decay towards |0〉 as would be expected from a lossy channel with the measured

efficiency. Moreover, the measured fidelity FFock is in good agreement with the fidelity

expected from a pure amplitude damping channel with this efficiency, FFock,expected =

0.91(1), as estimated and calculated in Subsection 3.2.2 (see Figure 3.3).

6.5 Transferring error-correctable states

Given that the heralded transfer fidelity is primarily limited by photon loss, this is an

opportunity to attempt to improve the communication with error-correctable bosonic

codes. As a demonstration of this capability, we use the lowest-order binomial code,

which, as defined in Subsection 3.4.4, has |±zL〉 = {(|0〉 + |4〉)/
√

2, |2〉} Since the

transfer process is state-independent, this amounts to simply preparing new input

states.

6.5.1 State preparation

The cardinal states in the binomial encoding are prepared using OCPs as in the Fock

code. Since both code words are nontrivial states, we need a pulse for each of the

north and south poles. Additionally, the equator states are not all related by a cavity

phase shift, so the logical states |+xL〉 and |+yL〉 are made with different OCPs.

However, due to the symmetry of the code, |+xL〉 and |−xL〉 are related by a π/2

cavity phase, and likewise for |±yL〉, so we need four pulses to prepare the six cardinal

states. Three of these logical states are shown in Figure 6.7a.

6.5.2 Transfer fidelity

Using the same sequence to transfer these states, we again measure the resultant

Wigner functions for each of the six states. Three of these are shown in Figure 6.7a.

The measured fidelity is Fbin = 0.54(4) (deterministic: Fbin,d ≥ ps × Fbin = 0.47(4)).
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Figure 6.7: Error-Correctable State Transfer. a) Measured Wigner function of states
in binomial encoding as prepared before transfer (left) and received after transfer (right). b)
Reconstructed logical Bloch sphere. Prepared states shown in red, received in orange. Green
arrows denote expected movement due to amplitude damping with measured efficiency. c)
Calculated (lines) and measured (points) infidelity versus inefficiency for Fock and binomial
codes. Dashed line and diamond denote projected performance of binomial code with ideal
error detection. Shaded region is beyond break-even where corrected binomial code can
out-perform that off uncorrectable Fock code. Figure reproduced from [16] in accordance
with Springer Nature copyright permissions.

This again agrees with the expected fidelity from the loss channel, Fbin,expected =

0.60(3). The Bloch sphere representation in Figure 6.7b shows a characteristic sym-

metric shrinkage towards the origin, since the dominant error is leakage outside the

code-space into the odd manifold. The error is roughly equal for all states, since they

have equal mean photon number.

Due to the overhead of the larger photon number (n̄ = 2) of the binomial code, the

measured fidelity is lower than in the Fock encoding. However, the parity structure

of this code should allow for detection and correction of single-photon loss errors.
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While we are not able to perform the parity measurement with high fidelity in this

sample (see Section 6.7), we have access to the full density matrix for each state

from the Wigner reconstruction. To asses the extent to which we could enhance

the fidelity with parity measurement, we can perform error correction “in software.”

We project the density matrix onto the even (odd) subspaces and asses the fidelity

within the ideal code space (error space). The even parity no-loss encoding includes

the effect of deformation on the code word |+zL〉 = (|0〉 + |4〉)
√

2, which becomes

(
√

1 + ε |0〉 +
√

1− ε |4〉)
√

2 after no photon loss, for some positive ε, which we de-

termine in post-processing. The resulting fidelity assuming ideal parity measurement

would be Fbin,corr = 0.87, which is equal to the measured fidelity in the Fock encoding.

The measured and extracted heralded infidelities, along with calculations of the

infidelity versus inefficiency are plotted in Figure 6.7c. This plot, akin to the ones in

Chapter 3, shows that our measured inefficiency is somewhat below the break even

point for the binomial code, η ≈ 0.67, which means that with no further improvements

to the losses, it may be possible to beat the Fock code with error correction. Note that

all measured values fall slightly above the expected calculated lines. This is likely due

to errors such as imperfect state preparation, and the fact that stochastic transmon

excitations may induce additional dephasing errors, even if the state is still partially

captured. These errors are thus important to reduce in future implementations, to

preserve the simple error structure needed to successfully apply this type of error

correction.

6.5.3 Cavity self-Kerr

In addition to loss of contrast and blurring of fine features due to loss, the received

Wigner functions shown in Figure 6.7 show distortion and rotations due to the self-

Kerr of both sender and receiver cavities. The Kerr unitary UK = eiKa
†a†a†aa/2 applies

a number-dependent phase φn = Kn(n−1)/2 to each Fock component. The codeword
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|−zL〉 = |2〉 is undistorted because it consists only of a single Fock state, and so no

phase is visible. Since the effect of Kerr on a state with two Fock components is a

relative phase, the effect on the state |+zL〉 = (|0〉+ |4〉)
√

2 is indistinguishable from

a rotation. However, |+xL〉 has three Fock components in it, so the evolution is a

rotation and shearing which distorts the state.

In this encoding, the Kerr evolution would cause an error were it not determin-

istic. Because the effect is unitary, it can be compensated for, and primarily results

in a redefinition of the code space. After reconstructing the states from the Wigner

functions, we compensate for this by applying the opposite unitary in software, re-

sulting in the fidelities quoted above. This compensation could also be applied in

real-time [163, 79, 66].

There is a loss in fidelity due to the Kerr effect. Although it is a unitary evolution,

the Kerr Hamiltonian does not commute with the photon loss operator a. This results

in some uncertainty in the amount of Kerr evolution undergone in the single-loss case

(odd manifold), which is a kind of dephasing. We estimate this effect to contribute

1-2% infidelity in the in-software error-corrected performance Fbin,corr by computing

the uncertainty on the phase from the measured amount of Kerr evolution and loss.

6.5.4 Outlook for bosonic codes

The final conclusion to be gained from this projection of the error-correction perfor-

mance is that modest improvements in the efficiency should allow drastic enhancement

of the fidelity. This is because the infidelity of the corrected binomial code is second

order in the inefficiency. This means that, further below the break-even point, there

are large gains to be made. Possible improvements to this scheme which may allow

this are discussed in Section 6.8.
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6.6 On-demand entanglement generation

In addition to state transfer, we can use the tools here to generate entanglement be-

tween the two modules. This is of use in an entanglement-based modular architecture,

where Bell states which span between modules can be used to teleport qubit state,

or to perform teleported gates between logical qubits across the network [39].

6.6.1 Partial release

A Bell pair can be created between the sender and receiver cavities by half-release

of a single photon, as described in Subsection 4.4.5. We prepare a single photon in

the sender, then apply pumps computed to release only half the energy, but with the

same temporal envelope. The pump profile used is shown in Figure 6.8a. Since the

dynamics are linear in the field incident on the receiver, the same capture pulses used

for state transfer are used here as well.



6.6. ON-DEMAND ENTANGLEMENT GENERATION 214

6.6.2 Entangled state tomography

In order to assess the fidelity of the resultant Bell state, it is necessary to measure

correlations between the two cavities. After preparing the Bell state, we measure the

cavity states in the z, x, and y bases.

The measurement in the z basis is performed by applying selective π pulses to the

transmon, then measuring the state of the transmon. Since the readout and selective π

pulse contrasts are both less than unity and asymmetric, we use the n = 0, 1, and −1

number peaks to provide a symmetric and normalized measurement. The n = −1

measurement is effectively a measurement of the background transmon excitation,

which must be subtracted out, or it will yield false correlations. This subtraction is

equivalent to the implicit heralding discussed above for state transfer, but it conditions

on both transmons, so the success probability is lower: ps,ent = 0.78(4).

To measure in another basis, we apply an OCP with maps the x or y eigenstates

onto |0〉 and |1〉. This corresponds to a logical Yπ/2 or Xπ/2 gate on the cavity. We

measure in all 3 × 3 = 9 combinations of bases, and in each basis we measure the

3 × 3 = 9 number peak measurements described above. For each pair of bases, we

assess the correlations to extract the occupation probabilities for the four diagonal

elements of the density matrix in that joint basis. The combination of 9 basis pairs is

sufficient to reconstruct the full density matrix using maximal likelihood estimation.

The data described is fed into a reconstruction routine developed by Kevin Chou and

described in Section 5.5 of his thesis [14]. The routine produces a physical, normalized

density matrix, corresponding to the normalization of the data described above. As

noted, this implicitly heralds on both transmons remaining in the ground state, and

effectively normalizes on the cavities remaining in the logical subspace. In a sense,

this method corrects for all measurement infidelity except for the infidelity of the

OCP rotations for measuring in the x and y bases. See Subsection 7.6.2 for further

discussion.
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6.6.3 Results

The expectation values of the joint Pauli operators for the reconstructed state are

shown in Figure 6.8b. The data show dominant two-qubit expectation values expected

for the state |O+〉 = |01〉 + |10〉, with mostly small non-ideal correlations. The

only significant non-ideal Pauli expectation value is 〈IZ〉, which is polarization of the

receiver cavity, and is negative. This is exactly the bias towards zero photons we

expect from transmission loss, which indicates that the entangled state is primarily

limited by loss. The fidelity to the ideal Bell state is FBell = 0.77(2) (deterministic:

FBell,d = ps,ent×FBell = 0.61(2). Both of these values are well above the threshold for

verified entanglement, F = 0.5, so we can cay we have demonstrated deterministic

entanglement between modules.

6.7 Limitations and drawbacks

While this experiment successfully demonstrates on-demand entanglement and de-

terministic transfer of a quantum bit, as well as a route towards future improvement

with bosonic codes, the scheme itself has some undesirable qualities, which we discuss

briefly here.

6.7.1 Loss

As we discussed above, this and related experiments [73, 74] suffer from significant

losses in the transmission channel. Fortunately, this was expected, and there are

many ways of dealing with this limitation. As we showed here, there is potential to

suppress the effect of losses with bosonic error correction. A complementary approach

for enhancing the Bell state fidelity by detecting photon loss involves two rounds of

pitch and catch using so-called time-bin entanglement. Such a protocol was recently

demonstrated in cQED in the Zürich group [159]. In this experiment, the error
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detection was performed in software much like we did here with the binomial code.

However, recently a variant on this with a much simpler error-detection scheme was

realized in the Devoret group, where it was shown that this time-bin approach can

indeed improve the fidelity by heralding on no loss [186]. Additionally, generation

of multiple entangled pairs and entanglement distillation provides a route towards

further improvement of the fidelity.

However, all of these approaches benefit greatly from reduced loss. As shown

in Chapter 5 and in [123], the attenuation expected from a single pass through the

meter lengths of superconducting coaxial cable employed here is much less than 1%.

The loss then likely comes from couplers, connectors, and circulators. There is a

large body of work towards all-superconducting circulators [187, 188, 189] which used

Josephson junctions and parametric modulation as their source of non-reciprocity.

While it has not yet been demonstrated that a superconducting circulator can have

lower insertion loss than a commercial ferrite one, there is reason to believe that this

can be the case. One important aspect of this will be to ensure that the packaging

is as low-loss as possible, lest we lose any gains from the superconducting internal

circuitry.

6.7.2 Time

One of the drawbacks of the Cirac protocol (or the related proposal by Korotkov

[183, 95, 182]) which use a coupling to a continuum is that they necessarily rely on

an exponential decay to release a state into the transmission line. As such, if there

is a maximum coupling rate κ, any protocol which releases the entirety of the state

needs to take at least several time constants 1/κ. The same is true of the capture

process, which is the time-reverse process. So this time limit applies to entanglement

by partial release as well.

For instance, in this experiment, the Rabi time corresponding to the maximum
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conversion strength is π/2g ≈ 600 ns, and the time constant for the communication

mode decay is 1/κ ≈ 160 ns, but the transfer time is 6 µs, an order of magnitude

slower. While increasing these rates can speed up the transfer (see [74], where the

total transfer time is only 180 ns), the time is still much slower than the coupling

rates might imply. This time can be substantially reduced for the same coupling

rates using resonant swapping dynamics instead of exponential decays, as we will

show in Chapter 7.

Further, and somewhat counter-intuitively, for fixed conversion rate gmax, increas-

ing the communication resonator bandwidth κ actually slows down the protocol if

κ > gmax. This is related to the physics of the instantaneous effective decay rate

4g2/κ, as described in Subsection 4.4.2. In this over-damped regime, which is where

the Cirac protocol operates2, a larger bandwidth reduces the occupation of the com-

munication mode, which slows down the effective dynamics.

6.7.3 Frequency matching

Another consequence of the use of flying photons is that the sender and receiver

must be able to communicate at the same frequency. While the channel itself is of

extremely wide bandwidth, the communication modes are rather narrow-band. As

a consequence, frequency tunability or matching in fabrication is essential, and adds

complexity and constraints to the design of the modules. In Chapter 7 we will present

an approach which requires no frequency matching, though it of course comes with

its own design trade-offs.

2. For fixed κ, increasing g > κ doesn’t really help. This is because, in this case, the speed
bottleneck is κ/2, the rate at which field decays into the transmission line.
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6.7.4 Transmon excitation

As we detailed in Subsection 6.3.4, a major contributor to transfer inefficiency is

unwanted excitation of the transmons. The thermal populations in these samples

was unusually high, and it is possible to do much better, though there is still some

work to be done on doing so in a reproducible way. Additionally, some progress has

been made on understanding and predicting the pump-induced transitions [155, 178],

so we hope to be able to systematically reduce these. However, using transmons or

elements with appreciable dispersive shifts to the storage and communication modes

will always present this problem to some extent. The use of Kerr-free three-wave

mixing elements [177] might be a workaround, but the addition of DC flux bias

presents engineering challenges in the 3D cQED architecture, as well as an additional

dephasing channel which may add appreciable uncorrectable errors.

6.8 Future directions and lessons learned

What would be the next step towards better communication with flying photons? As

discussed above, we would really like to be able to implement the error-correction

protocol. There are some barriers to that in this module design. We’ll go into

some of those challenges, and then from there discuss some slightly more complicated

structures which introduce a lot of new design avenues.

6.8.1 Effecting good parity measurements

The ability to perform rapid and high-fidelity measurements of the parity of the cavity

is dependent on a few critical features:

– Fast parity mapping (tp = π/χat)

– Rapid QND measurement of the transmon state (requiring relatively large χbt
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and κ)

– A transmon measurement which does not dephase the cavity

This last requirement is somewhat at odds with our conversion process require-

ments. This is because photons in the readout resonator can “measure” the cavity

state, due to the cross-Kerr χab ≈ χabχbt/4χtt between the two modes. This coupling

is small compared to κ, so the dephasing rate [146] is approximately n̄mχ
2
ab/κ, where

n̄m is the mean photon number in the readout resonator during measurement, and

is typically of order 5 to 10. This means that if χab is too large, the measurement

of the transmon will somewhat dephase the cavity, and our parity measurement in-

troduces uncorrectable errors. This effect can be minimized by appropriate choice

of these parameters [65]. However, the strength of the conversion process g is di-

rectly proportional to χab, so it is not possible to optimize for both of these concerns

at the same time. This added dephasing, combined with the complications of joint

readout discussed in Section 6.2.4, make it challenging to implement fast, accurate,

nondestructive parity measurements in the current hardware.

6.8.2 New module concepts

Given this tension between conversion and parity measurements, it is likely a good

idea to separate this functionality. In Figure 6.9a, we present a design for a module

with two transmons coupled to the storage cavity. One can be used for state prepara-

tion, tomography, and syndrome measurements, and the other can be optimized with

stronger couplings and a tunable-frequency communication resonator to allow rapid

state release and capture. This topology also means the communication channel is

not used for readout, and so the two modules can have independent measurement

chains, simplifying the tuneup of measurement.

This idea of separation of concerns is a powerful and flexible one. In fact, we have
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Figure 6.9: Possible Future Modules. a) Addition of a dedicated ancilla and readout
transmon (top) separates error-detection circuitry from communication hardware. b) By
embedding a Josephson junction in the communication resonator, a conversion transmon
may not be needed.

a lot more freedom in this design. For instance, the communication arm of the sample

now no longer needs a transmon per se. All it needs is a way to effect parametric

conversion between the cavity and communication resonator. This can be imple-

mented by embedding a Josephson junction directly into the stripline communication

resonator, and using this as the source of the parametric nonlinearity. This reduces

the number of modes coupled to the pump, easing some frequency-crowding concerns,

and gets rid of this transmon which can become excited to ill effect. Additionally, by

making the communication mode the most nonlinear part of the system, it changes

the optimization landscape quite a bit. This kind of low-Q, mostly linear resonator3

bears similarity to the kinds of elements found in parametric amplifiers, where much

larger mixing strengths are regularly attained. So this may be a viable approach for

increased conversion strength.

This approach is not without its challenges. One concern is that the low-Q com-

munication mode is directly coupled to the storage mode, whereas before there was a

transmon filtering the coupling. This may induce excess Purcell decay on the cavity,

and necessitate careful engineering of the coupling, or adding a Purcell filter [143, 122].

3. Linear is meant in the sense that χbb � κ, which is required to maintain state-independence.
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Moving the nonlinearity into the communication mode would weaken the participa-

tion of the storage mode in the junction, requiring stronger pumps. These pumps will

induce larger Stark shifts on the communication resonator, which still needs to be

frequency matched to the other module. This might be a feature or a bug, depending

on if the relative Stark shift can be used for fine-tuning the frequency-matching.

Whether these alternate module designs could facilitate higher fidelity communi-

cation with the Cirac protocol is an open question. In the end, the added flexibility

opened up by a dedicated readout ancilla led us to a different approach which forgoes

propagating photons. This experiment is detailed in Chapter 7.



Chapter 7

The Quantum Network Bus

7.1 A low-loss, bi-directional link

In this chapter we present the final results of this thesis, in which we demonstrate

a two-node bi-directional network with a quantum bus connection. A manuscript

describing these results is currently in preparation [18]. Motivated by some of the

challenges encountered in our implementation of the Cirac protocol for directional

state transfer in Chapter 7, use this simpler communication scheme and find superior

performance.

In Section 7.2 we describe the hardware for this experiment. Next, Section 7.3

will explore the control landscape of the bus. Following the theoretical description

in Section 4.5, we demonstrate the tunable beamsplitter with the bus, and find two

working points. Section 7.4 will use the first working point, which realizes a SWAP

between modules. Then in Section 7.5, we use an error-correctable logical encoding

and a single syndrome measurement to demonstrate error-tracked state transfer at

the break-even point.

In Section 7.6, we turn to the problem of generating shared entanglement across

the network, for which we use a 50:50 beamsplitter operation. Here we generate a

222
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high-fidelity single-photon Bell state, the same one created in Chapter 6. However,

the bi-directional nature of the bus allows us to generate a two-photon Bell state

with Hong-Ou-Mandel interference, detailed in Section 7.7. Critically, thanks to the

parity structure of the state, we are able to detect photon loss errors which occur

during the interference. By post-selecting against these errors, we obtain probabilistic

entanglement with higher fidelity that we can achieve with a single photon. Finally,

in Section 7.8, we discuss some of the possibilities, opportunities, and hurdles for

scaling, improving, and extending this flexible networking tool.

7.2 Physical implementation

In Chapter 6, we realized state transfer and entanglement generation with a uni-

directional, nonreciprocal communication channel. We found the performance to be

largely dominated by loss in the link, mostly due to the circulator used to enforce

directionality, and possibly the connectors which join the transmission line to the

modules and circulator. This provides some of the motivation for moving towards a

link without a circulator, and with all-superconducting connections.

We were also inspired by the work by the Schuster group in Chicago [75], where a

finite length of coaxial cable was used to form a bi-directional channel for rapid en-

tanglement generation. In that experiment, a clever approach was taken to avoid the

rather large loss of the standing-wave cable mode, but this scheme requires additional

on-chip resonators which must be frequency-matched to one another. Additionally,

while this trick is quite successful, the protocol still suffers somewhat from the loss

of the cable mode, and has inherent speed limits due to the presence of lossy nearby

resonances.

The approach taken in this chapter is a significant simplification of the Chicago

experiment, enabled by the use of a low-loss bus resonator. The simplicity enables
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Figure 7.1: Quantum Bus Hardware. Two nominally identical modules i = 1, 2,
with storage cavities ai (red, orange), coupled via a quantum bus b. The n = 3 mode,
voltage profile shown, is used in this experiment. Cavities couple to bus simultaneously
via parametric conversion, mediated by the nonlinearity of a conversion transmon (green).
Conversion is induced by applying two drives (not shown) directly to the conversion trans-
mon. Each module has an ancilla transmon and readout resonator (gray) with Purcell filter
(not shown).

a variety of straightforward mechanisms for entanglement generation, and the use of

bosonic qubits provides us means for using error-detection to further suppress the

effects of remaining losses.

7.2.1 Hardware

The hardware schematic for our simple network is shown in Figure 7.1. The modules

(i = 1, 2), described in more detail in Section 5.3.3, consist of a single 3D cavity mem-

ory (ai). Each cavity has a dedicated ancilla transmon and readout resonator, used

for state preparation, tomography, and error syndrome measurement. The ancillae

have separate output chains, a simplification from some of the difficulties encoun-

tered in Chapter 6. Each cavity also has an additional conversion transmon (ci) on

a separate chip. This conversion transmon couples capacitively to the storage cavity,

and to a 5.5 cm NbTi coaxial cable resonator. Details of the mounting scheme, and

characterization of the bus resonator, can be found in Section 5.8.2. The measured

system parameters are summarized in Table 7.1.

The conversion transmon is driven with two blue-detuned pumps to actuate para-

metric conversion between the storage cavity and a single mode of the cable b, which

is the n = 3 resonance. This is the mode we use as the quantum bus. The bus has

a quality factor of 50 000, corresponding to a damping rate κb/2π = 110 kHz, or a
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Hamiltonian parameter (MHz) Module 1 Module 2
Frequency ωa/2π 6514.3 6505.2

ωt/2π 5838.5 5668.7
ωc/2π 5081.6 5149.2
ωr/2π 8970.7 9014.9
ωf/2π 9077 9114
ωb/2π 5643

Cross-Kerr χat/2π −1.138 −0.953
χac/2π −0.765 −1.077
χbc/2π −4.3 −2.7
χrt/2π −1 −1

Self-Kerr χaa/2π −3.9× 10−3 −4.1× 10−3

χtt/2π −213.5 −203.4
χcc/2π † −112

Decay parameter (µs)
Energy decay time T a

1 300 450
T t

1 35 65
T c

1 10 20
T r

1 0.10 0.10
T f

1 0.004 0.005
T b

1 1.6
Ramsey decay time T a

2R 100 140
T t

2R 15∗ 30
T c

2R 10 20
Hahn echo decay time T t

2E 35 80
T c

2E 20 40
Steady-state excitation
Ancilla 1− P (g) 0.10 0.12
Cavity n̄ 0.01 0.01
Converter 1− P (g) 0.1 0.1

Table 7.1: Quantum Bus Sample Parameters. Uncertainties of measured Hamilto-
nian parameters are < 0.1% except when indicated by fewer significant digits. Subscript
f refers to Purcell filter. Decay parameters are observed to fluctuate around 10%; typical
values are given.
† χcc of module 1 was not measured, but is expected to be similar to that of module 2.
∗ Ramsey decay of ancilla 1 was not a simple exponential, indicating a frequency instability.
Reported number is decay scale at short times.
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lifetime of 1.6 µs. While this bus is an order of magnitude longer-lived than the cable

modes used in [75], the lifetime is moderate at best compared to other 3D resonators

This suggests there is significant room to improve the bus quality in the future. As

explained in Section 5.8.2, we believe the lifetime is limited in part by resistive losses

at the joint with the modules, as the same resonator had been measured to have a

quality factor three times larger in a different mounting configuration. Improvement

in the joint quality or location could grant significant increases in κb. In addition,

the choice of commercial coax is not fundamental, and we are presently exploring

resonators which can serve the same purpose, but with lifetimes more comparable to

state-of-the-art 3D cavities.

7.2.2 Parametric conversion

In addition to a reasonably long lifetime, we are able to couple rapidly to the bus.

Figure 7.2 demonstrates parametric conversion from one cavity into the bus, with the

coupling turned off at the other module. The clear and rapid chevron pattern shows

strong coupling compared to the bus lifetime. From this, we extract a conversion

rate of g/2π = 550 kHz. Furthermore, the decay rate found with the pumps on is

κ/2π = 110 kHz, consistent with that measured without pumps in Subsection 5.8.2.

Operating far in the under-damped regime (g = 5κ) allows efficiency SWAPs between

modules.

7.2.3 Advantages

As mentioned above, this scheme provides several simplifying advantages for cou-

pling the storage modes through the bus. Because all the interactions are actuated

by parametric conversion, the precise frequencies of all of the modes are irrelevant.

The frequencies of the conversion transmon and the bus mode simply need to be

somewhere nearby one another to facilitate a large dispersive shift between the two,
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Figure 7.2: Cavity-Bus Swapping Dynamics. a) A single photon is prepared in cavity
1, then conversion to the bus is enable by turning on both pumps. Measured occupation of
|1〉 in cavity 1 shown versus time and detuning of one pump from resonance. b) Line cut
at zero detuning shows ring-down of population from decay in the bus. Value of conversion
strength and decay rate in text is extracted from fit.

which enhances the strength of the parametric conversion. To our knowledge, this

is the first scheme for coupling cQED modules which does not require any precise

frequency matching or tunability. We chose the cavities to be nominally identical for

convenience, but this is not a requirement. In fact, the near-degeneracy of these two

modes, detuned by only 8 MHz, causes a small amount of crosstalk between control

pulses. We find when we displace one cavity with a wide-band pulse, the other is

displaced by 2–3% in amplitude. This may cause small problems in control and to-

mography, which can be easily mitigated by a small international detuning between

the two by machining the lengths of the posts to be slightly different.

Another advantage to this approach compared to the Cirac protocol [17] (see

Section 4.4) is that the interaction time is comparatively rapid. This speedup comes

from the use of unitary swapping dynamics, rather than relying on the exponential

decay of a communication resonator. For example, the swap time from the storage

cavity to the bus mode is about 500 ns, compared to the release time of 6 µs in

Chapter 6, while the maximum parametric coupling strengths is only slightly larger in

this experiment. This more rapid interaction thus benefits from reduced decoherence

from thermal or pump-induced excitation of the transmons.
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Finally, we point out the general simplicity of the protocol. As described in Sec-

tion 4.5, the state transfer and entanglement operations we will employ here do not

require time-dependent control, or careful pre-calibration of Stark shifts and conver-

sion strengths as in Chapter 6. As a result, the characterization needed to implement

the experiment was rather easier. Another nice feature is that there is no need for

direct measurement of the conversion transmons or the bus resonator itself. These

are measured indirectly through the storage mode as detailed in Chapter 5. Indeed,

no direct manipulation of the conversion transmon was necessary, save for initial

characterization experiments like the ones shown in Section 5.8.2.

7.2.4 System initialization

The coherence and thermal occupations of the modes in these samples was a bit

better than in Chapter 6, but the transmons still have a 5–10% chance to be found

out of their ground state in equilibrium. To ensure the modules begins in a known

state, we use an active feedback cooling sequence that makes use of the ability of our

control hardware to perform simultaneous and independent branching when resetting

the ancilla transmons.

The set of nested subroutines used at the beginning of every experimental sequence

is shown in Figure 7.3. The cooling sequence relies on the measurement techniques

introduced in chapter 5. The sequence begins by ensuring both ancillae are in their

ground states, actively resetting as necessary. Then a π pulse, selective on N = 0 pho-

tons in the cavity, is applied to each ancilla, followed by measurement. Measurement

of the ancilla in |e〉 heralds an empty cavity. If both cavities are empty, we continue

(see next paragraph). If not, we reset the ancillae to |g〉, then actively empty the

cavities by performing swaps with the bus (as in Figure 7.2), one at a time, with a

10 µs delay after the swap to allow the state to decay in the bus. This is at least two

orders of magnitude faster than waiting for the long-lived cavities to decay on their
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own. We then start the sequence over, beginning with ancilla reset, and repeating as

necessary to ensure both cavities are in the vacuum state.

Once the cavities are confirmed empty, we use them to measure the state of the

conversion transmons. This uses the Ramsey-style selective displacement described

in Section 5.7, which displaces the cavity if the transmon is not in its ground state.

We then repeat the cavity measurement as described again. If the cavities are again

found in vacuum, we know the converters were in |g〉. We then reset the ancillae one

last time, and begin the experimental sequence. If either cavity is not in the vacuum

state, this means its converter was not in |g〉. We then empty both cavities and

begin the entire sequence from the beginning. Since the time to empty the cavities

is relatively long, we do not actively reset the converters, but simply allow them to

decay during this time.

After successful completion of this cooling routine, we find the ancilla transmons

and cavities with less than 1% probability each of being out of their respective ground

states. The conversion transmons are difficult to measure to this degree of accuracy,

since their measurement sequence is fairly long and involved. Given the length of

this sequence, it is likely that they have re-thermalized to about the 1% level (each)

by the time the cooling is successfully completed. A discussion of the effect of this

thermal population can be found in Subsection 7.3.1.

7.3 A tunable beamsplitter

There are a wide variety of ways to use the quantum bus for communication and

entanglement. The original experiments from Yale and NIST demonstrated two dif-

ferent approaches. The Yale experiment [90] operated with a qubit coupled to each

end of the bus at a rate g. The qubits were resonant with one another, but detuned

by an amount ∆ � g from the bus. This is the virtual Raman regime discussed in
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Figure 7.3: Quantum Bus System Initialization. Logical control flow for system
reset and verification. Each experimental sequence begins with a call to “Reset System,”
which follow the control flow until the conditions have been met to reach “Proceed.” Indi-
vidual subroutines loop until reaching “Return,” at which point they return to the previous
sequence.
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Subsection 4.7.1, where the bus is adiabatically eliminated, and the effective dynam-

ics are described by a direct exchange between the endpoint qubits. This is especially

useful when the bus is quite lossy, as was the case in that experiment. However, the

effective exchange rate is suppressed by g/∆, which is problematic when other sources

of decoherence come into play. Alternately, the NIST experiment [91] involved se-

quential pairwise swaps between the qubits and bus — the first qubit is brought into

resonance with the bus for a time, then moved away as the second qubit is moved

into resonance. This sequential coupling can be used for full or partial swaps between

qubits, but it is quite sensitive to the loss of the bus, because the qubit state must

fully pass through the bus.

The approach we use here is a compromise between fast operation and reduced

sensitivity to loss, while retaining full control over the degree of interaction. This is

the tunable beamsplitter described in Section 4.5, where the storage cavities couple

to the bus at equal rates g, with a common detuning ∆, as indicated in Figure 7.4a.

In this manner we can generate an arbitrary beamsplitter by tuning the detuning and

operation time. We review the basic idea here.

An important consideration when utilizing this coupling is to ensure that no in-

formation is left in the bus at the end of the protocol. For a fixed conversion rate

and detuning, the bus is periodically emptied at time τBS(∆) = 2π/
√

8g2 + ∆2. At

this time, the effective evolution involves only the two storage cavities. The resulting

transformation (reproduced from Equation 4.57) is

a1(τBS) = e−iθ (A1 cos θ + iA2 sin θ)

a2(τBS) = e−iθ (A2 cos θ + iA1 sin θ) ,

(7.1)

which is a beamsplitter with mixing angle

θ =
π

2

(
1− ∆√

8g2 + ∆2

)
=
π

2

(
1− ∆ τBS

2π

)
. (7.2)
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Figure 7.4: A Tunable Beamsplitter. a) Energy-level diagram denoting conversion
(g) between cavity modes, mediated by the bus. Conversion can be detuned by ∆. Photons
decay in the bus at rate κb. b) The conversion process acts as a tunable beamsplitter, with
angle controlled by detuning. The beamsplitter mixes initial cavity states (left), producing
final states (right), which can then be measured in the photon number basis. c) Measured
cavity occupations as a function of conversion time, for a single photon prepared in cavity
1. Solid blue line is population of bus, inferred from fits to the measured cavity occupation.
Operations are realized when the bus is empty, indicated by arrows on time axis. SWAP
(left) inverts the initial cavity occupations, while 50:50 beamsplitter (right) results in equal
occupation. d) Full dynamics as a function of detuning and time. Dashed lines indicate
line cuts plotted in c). Faint splitting visible around detuning 1.5 MHz is an unknown
pump-induced transition.

We indicate this beamsplitter transformation schematically with a physical beam-

splitter as in Figure 7.4b, where the initial (final) cavity states are represented in

inputs to (outputs from) the beamsplitter.

The beamsplitter angle θ is fully tunable from opaque to transparent, but in this

chapter we use two particular working points, both shown in Figure 7.4c. The first

is ∆ = 0, which realized a fully transparent beamsplitter (θ = π/2), and swaps the

state of the two cavities (up to local phases). This point is used for state transfer,

with τSWAP = 624 ns. From this data we extract the efficiency, η = 0.84(1), which is
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significantly higher than in Chapter 6 and related works.

The other useful operation is the 50:50 beamsplitter (θ = π/4), obtained at ∆ =√
8/3 g = 2π × 900 kHz, which we will use for entanglement generation. The 50:50

beamsplitter time is τBS = 520 ns. The full dynamics of the system for a single photon

input state are seen in Figure 7.4d, demonstrating the continuous tunability of this

operation.

7.3.1 Inefficiency contributions

Both SWAP and the 50:50 beamsplitter are several hundred times faster than the

decay rate of either cavity (κ−1
a1,a2 = 300, 450 µs), so the excitation decay during the

beamsplitter is dominated by dissipation in the bus (κ−1
b = 1.5 µs). As explained

in Subsection 4.6.2, the inefficiency contribution due to loss is approximately πκb√
32g
≈

0.55κb/g = 11%; thus, most of the measured inefficiency results from dissipation

in the bus. Accordingly, these operations can be improved in future with increased

conversion rate or bus quality.

The bulk of the remaining inefficiency is due to excitation of either conversion

transmon. Both transmons have significant thermal excitation rates (see Table 7.1),

and additional excitation events are caused by pump-induced transitions [178]. These

events are responsible for 3–4% inefficiency. The value of g used here is a trade-

off between speed, which reduces loss errors, and excitation errors induced by the

pumps; an element which makes this trade-off more favorable can in future improve

the beamsplitter (see Subsection 7.8.1 for discussion). The remaining 1–2% is due to

single-photon preparation and measurement errors.

7.3.2 Tune-up procedure

The working points for SWAP and the 50:50 beamsplitter require both cavities to

convert into the bus at the same detuning. Due to the Stark shifts on the cavities
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and the bus by the pumps, this requires a little bit of fine-tuning. The procedure we

used to find the working point shown in Figure 7.4 is as follows:

1. Find the bus mode frequency spectroscopically via the conversion transmon (as

described in Section 5.8.2).

2. Find a working point for parametric conversion for each cavity, one at a time.

This is done by setting the detuning between the two pumps to be approximately

the detuning between ai and b, and sweeping one pump frequency over a few

MHz to produce the plot in Figure 7.2. This can be fit to extract the center

frequency and coupling rate.

3. Still working one module at a time, adjust the pump amplitude (and frequency)

in one of the modules to match the conversion rate found in the other module

to within about 10%.

4. Now estimate the bus Stark shift induced by each pump in module 2. To do

this, we measured the shift of the conversion chevron center frequency from

module 1 with one of the pumps in module 2 turned on, then the other. The

total added Stark shift is roughly the sum of those two shifts; this is how much

one of the pumps on module 1 must be adjusted.

5. Repeat step 5 in reverse, measuring the bus Stark shift induced by the pumps

in module 1 from module 2. Adjust one of the pump frequencies in module 2

accordingly.

6. In principle this would result in matched conversion rates and detunings in

both modules when all pumps are on, and would determine the time for a

SWAP, but some fine-tuning is still required. This is because the Stark shifts

are large and do not necessarily add exactly (see for example [178]). To fine-

tune, prepare a single photon in module 1, then turn on all four pumps, and



7.4. MOVING A QUBIT WITH SWAP 235

measure the occupation of each cavity as a function of four parameters: time,

frequency and amplitude of one pump in module 1, and frequency of one pump

in module 2. This provides enough knobs to match detunings and conversion

rates. The optimum point in the four-dimensional sweep is the point at which

the population of cavity 1 is minimized and that of cavity 2 is maximized. This

point defines ∆ = 0 in Figure 7.4c,d.

Fortunately, by getting close to the right working point via the iterative steps 4

and 5, the large sweep in step 6 need not be over a very large range. In practice

we swept over a time-span of about 40 ns, 100 to 150 kHz in detuning, at 10% in

pump amplitude. The analysis of this 4D sweep is also iterative. Each time trace

of population, corresponding to a particular set of detunings and amplitude, was fit

to a 4th order polynomial, and the optimum time and occupation for those settings

was extracted from the fit. Then, for each pump amplitude, the optimum occupation

was fit to another 4th order polynomial, and so on, reducing the dimensionality by

one each step. The final step was a fit over the last detuning, which extracted the

optimum pump settings. We then looked back at the first fit to find the optimum

time for those settings.

7.4 Moving a qubit with SWAP

Having established a working point for the SWAP operation, we now turn to the task

of using it for transfer of a logical qubit from one module to the other. The operation

is bi-directional, and so it supports simultaneous transfer in both directions — but

for simplicity of characterization we focus on preparing a set of quantum states in

module 1 and transferring them to module 2, as indicated in Figure 7.5a.
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7.4.1 Encoding a qubit

As a first demonstration, we encode logical qubit states in the storage cavity of

module 1 in the Fock code |±z〉 = {|0〉 |1〉}. To do this, we create an optimal control

pulse (OCP) which maps the state of the ancilla transmon onto the cavity in this

manifold; that is, an arbitrary superposition of transmon states is mapped onto the

same superposition of cavity states:

(c+ |g〉+ c− |e〉)⊗ |0〉 → |g〉 ⊗ (c+ |0〉+ c− |1〉) (7.3)

This same kind of encoding operation is employed in [65, 79], albeit in a different

logical space.

The OCP encoding process is supposed to end with the transmon in its ground

state to be re-used for measurement of the cavity later. Certain errors in the encoding

(coherent or incoherent) can result in the transmon ending in |e〉 instead, which

denotes a failure of the preparation of the logical state. To detect these cases, which

will spoil all proceeding operations, we measure the transmon state immediately after

encoding. If it is found in |g〉, we carry on with the experiment. If instead the

transmon is in |e〉, we know that the encoding has failed, and we reset the entire

system and try again. While this results in a probabilistic protocol, we regard this

as part of the state initialization, not the communication. The success probability is

about 98%, and the average fidelity of encoding is found to be 99% for the Fock code,

as measured from Wigner tomography of the prepared states. Two of these states

are shown in Figure 7.5b. The small rotation on the logical |+x〉 state is due to the

backaction of the transmon measurement on the cavity; it is deterministic and so just

applies an overall cavity phase, which can be compensated for in software.
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Figure 7.5: SWAP to Transfer a Qubit. a) A qubit is prepared in cavity 1, with the
fully transparent beamsplitter applied to swap cavity states. The Wigner function of cavity
2 is measured after. b) Measured Wigner functions of two logical states in the Fock code,
as prepared in cavity 1 (left) and received in cavity 2 (right).

7.4.2 Transfer fidelity

After encoding, we apply the SWAP pumps, and then perform Wigner tomography

on cavity 2 to characterize the state. Two of these Wigner tomograms are shown in

Figure 7.5b. As in Chapter 6, we do this for the six cardinal points on the Bloch

sphere, reconstructing each resulting density matrix. The reconstructed mean state

fidelity is FFock = 0.92(1). This is an improvement in infidelity of about a factor of

two compared to the implementation in Chapter 6, due to the reduced loss of the link

and the much more rapid protocol. The full dataset can be found in Figure 7.11.

As discussed in Subsection 3.2.2, the expected infidelity from the 11% loss is

.11/3 ≈ 0.04. There is an additional 1% infidelity from encoding. Finally, excitation

of either conversion transmon primarily prevents the SWAP, and so result in |0〉 in

cavity 2. In this encoding, the mean fidelity in this case is 0.5, so the 4% excitation

probability contributes 0.02 infidelity. This simple error budget adds up to 0.07,

consistent with the measured infidelity of 0.08(1).
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7.5 Reaching break-even with error tracking

The attained state transfer fidelity in the Fock encoding is very encouraging, but as

discussed, a large chunk of the infidelity comes from loss in the bus. A close look at

Figure 3.5 suggests that we may be within the efficiency regime where we expect to be

able to use error-detection to suppress the infidelity due to loss to second order. The

slightly modified protocol is shown in Figure 7.5a. Our choice of error-correctable

encoding is the cat code, as defined in Subsection 3.4.1. We encode the qubit in

module 1, transfer, and then measure parity in cavity 2, and measure the Wigner

function. It would instead be possible to apply one of two parity-dependent feedback

correction pulses to restore to the original code space, or to conditionally decode the

qubit onto the transmon state, as in [65]. However, since both the even and odd cat

code are both viable logical encodings, it is sufficient to just record the error and

proceed, possibly with fed-forward updates to future operations. For this reason, we

simply sort the resulting tomographic data shot-by-shot, conditioned on the measured

parity outcome, and present the data as error-tracked.

7.5.1 Choice of encoding

We chose the cat code to demonstrate the working of error correction in this encoding,

as defined in Equation 3.23:

|+zL〉 =
4

N0(α)

∑
n=2,6,10...

αn√
n!
|n〉 ≡

∣∣C2mod4
α

〉
|−zL〉 =

4

N1(α)

∑
n=0,4,8...

αn√
n!
|n〉 ≡

∣∣C0mod4
α

〉
,

(7.4)

Figure 3.6 tells us that for η = 0.85 we should use α = 1.3, and so we did. More

careful consideration might suggest using a slightly larger cat size, since the loss-

limited efficiency is closer to 0.9, but the dependence of the fidelity on α is rather
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Figure 7.6: Error-tracked State Transfer. a) A qubit is encoded and swapped as
before, but a parity measurement is performed before tomography. b) Two logical states in
the cat code as prepared (left), and received, sorted by even (center) and odd (right) parity.
Additional rotation for odd states are a deterministic result of the dispersive interaction
from the ancilla being measured in |e〉.

weak around the optimum, so the exact value is not crucial. Reading off this plot,

we expect a best-case infidelity from double errors and shrinkage of 0.01–0.02%, and

a final cat size of α′ =
√
η α ≈ 1.2.

The qubit is encoded in the cavity in the same way as before, but with a new OCP

computed for this encoding. Measured Wigner functions of two of the logical states as

prepared are shown in Figure 7.6b. The average preparation fidelity is 0.98, slightly

lower than in the Fock encoding due to the more complex nature of the state. Note

again the same deterministic phase shift, a result of the verification measurement

which checks for failures in state preparation.

7.5.2 Transfer fidelity

Due to the overhead of using a code with n̄ = α2 = 1.7 photons, the measured fidelity

without the syndrome measurement is Fcat = 0.80(1) < FFock (see Figure 7.11).

However, the parity measurement can detect loss events, mitigating the impact on

fidelity and resulting in a net gain.

When including the syndrome measurement before tomography, we overcome this



7.5. REACHING BREAK-EVEN WITH ERROR TRACKING 240

overhead to reach the break even point with respect to the Fock encoding. The

measured Wigner functions sorted by parity outcome are shown in Figure 7.6b. The

dominant outcome is that the parity remains even (peven = 84%), and the fidelity in

this no-error case is Feven = 0.93(1). We detect a single loss error when the parity

changes (podd = 16%), and the coherence is preserved in the odd manifold, with

fidelity Fodd = 0.86(3). By averaging over all results, the deterministic error-tracked

fidelity is Fcat,tracked = 0.92(2). Even in the presence of code overhead, as well as

errors in encoding and syndrome measurement, the cat code reaches the break-even

point at which the transfer fidelity is as high as in the Fock encoding. The full dataset

can be found in Figure 7.11.

As mentioned above, the expected infidelity due to second order errors not de-

tected in this encoding are 0.01–0.02. The remaining errors in the cat encoding are

largely the same as in the Fock code. State preparation accounts for 0.02, errors in

assigning the parity an additional 0.01–0.02, and transmon excitation events 0.03,

which gives a total expected error around 0.06–0.09, consistent with the measured

0.08.

In future, there are a few improvements which could improve the fidelity of the cat

code in this application, enabling error-corrected state transfer beyond break-even.

Use of a fault-tolerant parity measurement [64] can allow repeated measurement of

the parity to improve confidence, without introducing more errors. Suppression of

conversion transmon excitations will hopefully reduce this rather large, uncorrectable,

effect. Finally, further reducing the loss of the bus resonator to improve the efficiency

will push further past the break-even point, quickly suppressing the second-order

errors.
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7.6 Entanglement on demand

So far we have demonstrated quantum state transfer, which should be useful in a

modular architecture which operates by shuttling qubits between modules. This ap-

proach can also be used to generate intermodule entanglement by preparing local Bell

states and moving one qubit to another module. However, as in Chapter 6, there are

a few readily-available, and more hardware-efficient, ways to generate entanglement

in this system.

7.6.1 Entangling with a 50:50 beamsplitter

We demonstrated in Section 7.3 an operation which takes as input a single-photon

and produces equal population in both cavities on the output. If this operation

is in fact a 50:50 beamsplitter, the output state ought to be the odd Bell state

|O+〉 = (|01〉 + |10〉)/
√

2. In order to confirm the creation of this state, we must

measure joint correlations in three bases. We do this in a bit of a more visually nice

way than in Chapter 6.

7.6.2 Entanglement verification

To clearly illustrate the correlations between the two cavities, we perform Wigner

tomography on cavity 1, post-selected on a logical measurement in cavity 2 in the

x, y, and z bases, as indicated in Figure 7.7a. Since the Wigner function is a complete

description of the state, these conditional Wigner tomograms provides enough infor-

mation to reconstruct the full two-qubit state. To execute the logical measurements,

we use an OCP to decode cavity 2 onto its ancilla. This decoding is the inverse of the

encoding in Equation 7.3 — it leaves the cavity in vacuum and maps the {|0〉 , |1〉}

subspace onto the ancilla {|g〉 , |e〉} states. We then measure the ancilla to effect a z

basis measurement, or rotate the ancilla into the appropriate basis with a π/2 pulse
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Figure 7.7: Entanglement by 50:50 Beamsplitter. a) A photon is prepared in cavity
1, and the 50:50 beamsplitter creates a Bell state. Correlations are assessed by measuring
the Wigner function of cavity 1, conditioned on a measurement in the x, y or z basis in
cavity 2. Ideal state and primarily error state appear at the outputs of beamsplitter. b)
Wigner tomograms of cavity 1, conditioned on the measurement result in cavity 2 (inset
label). States are anticorrelated in z basis and correlated in x and y. c) Reconstructed joint
Pauli observables of the two-qubit entangled state.

around the Y (X) axis to measure in the x (y) basis.

The conditional Wigner functions are shown in Figure 7.7b. The Wigner function

of cavity 1 shows strong correlations in all bases with the measurement outcome in

cavity 2. We reconstruct each Wigner function individually to produce the density

matrix of cavity 1, conditioned on the measurement outcome in cavity 2. As before,

the measured Wigner function is normalized before reconstruction, to correct for

measurement contrast in the parity mapping and ancilla readout. The result is two

conditional density matrices for each of the three bases.

We use these conditional density matrices to reconstruct the logical two-qubit

density matrix. This reconstruction uses a routine developed by Kevin Chou and

described in Section 5.5 of his thesis [14], adapted for our tomography scheme. The

reconstruction routine is the same as that used in Chapter 6, but the underlying data

is different, and far fewer corrections are made for measurement contrast. This is
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made possible by the improved reliability of the ancilla transmons in this experiment,

and the independent readout chains which allow better measurement contrast. Ad-

ditionally, the use of the |f〉 level of the ancilla for enhanced and roughly symmetric

measurement contrast obviates the need for additional measurements to symmetrize

the resultant data (see Subsection 5.4.4).

Each joint choice of bases for the two cavities is given by {k, l} ∈ {x, y, z}⊗2, where

k corresponds to the basis choice for cavity 1 and l for cavity 2. We refer to the mea-

sured probabilities of the logical measurements in cavity 2 as p±l, and the conditional

density matrices of cavity 1 as ρ±l. The goal is to produce the expectation values

p±k,±l of the four projectors Π±k,±l = |±k〉1 |±l〉2 〈±k|1 〈±l|2, which correspond to the

probability of measuring the joint state to be in |±k〉1 |±l〉2. This joint probability is

p±k,±l = p±lP (±k| ± l), where P (±k| ± l) is the conditional probability of measuring

±k in cavity 1 given the result ±l in cavity 2. This conditional probability is the

expectation value of the single-cavity projector Π±k = |±k〉1 〈±k|1, given the result

±l in cavity 2. There are 3× 3 = 9 joint bases, and 2× 2 = 4 joint probabilities per

basis, for a total of 36 conditional probabilities.

To compute these conditional probabilities, we take the conditional density ma-

trix ρ±l and evaluate P (±k| ± l) = 〈Π±k〉±l ≡ Tr (ρ±lΠ±k), which is the squared

overlap of the measured cavity state with the logical state |±k〉1 given outcome ±l.

This is essentially the probability we would measure cavity 1 to be in |±k〉1 with

an ideal projective measurement. It is important to note here that, since the cavity

density matrix is of dimension larger than 2, leakage out of the logical subspace (here,

{|0〉 , |1〉}) results in P (+k| ± l) + P (−k| ± l) < 1. We will see in a moment that this

results in a reconstructed logical two-qubit state with trace slightly less than 1. Since

we assign a binary outcome to the logical measurement of cavity 2, p+l + p−l = 1

by construction. This means that leakage out of the logical space on cavity 2 is not

directly observed. However, such leakage will contribute to infidelity. Since the de-
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code operation cannot account for this leakage, the result is some arbitrary outcome

of the ancilla measurement, which is we assume to be uncorrelated with the result

in cavity 1. Thus, while the decode-and-measure sequence will mask this leakage, it

should convert it to infidelity in the form of a statistical mixture. Put another way,

this local operation cannot increase the amount of entanglement, so it does not result

in overestimation of the fidelity.

The computed joint probabilities p±k,±l are fed into the MLE reconstruction rou-

tine [14], which is a convex optimization over the space of all physical two-qubit (22

dimensional) density matrices. To ensure physicality, the resultant density matrix ρL

is constrained to be Hermitian and positive semi-definite. In addition, Tr (ρL) ≤ 1

to account for the possibility of leakage out of the logical space as discussed above.

The reconstructed state is essentially the Bell state between cavity 1 and ancilla 2,

since we do not correct for errors in the decoding procedure, which introduces about

1% of infidelity. In addition, the measurement errors on ancilla 2 contribute a small

infidelity (∼ 0.5%), also not corrected for.

The extracted fidelity to the ideal Bell state is FBell,01 = 0.88(1). The resulting

joint Pauli expectation values, shown in Figure 7.7c, show clearly dominant two-qubit

expectations. The largest non-ideal bars are IZ and ZI, which correspond to equal

polarization of both qubits towards |0〉, due to loss in the beamsplitter. The trace of

ρL (the value of the II bar) is found to be 0.999, consistent with very small (< 10−3)

occupation of Fock states above n = 1 for the reconstructed cavity density matrices.

7.7 Improved entanglement with error-detection

The Bell state generated using the 50:50 beamsplitter is a significant improvement

over previous efforts. However, the fidelity is clearly limited by photon loss, consistent

with a 9–10% mixture of |00〉. There is no way to detect the loss in this subspace
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using local measurements, since no local observable can distinguish this dominant

error state from |01〉 and |10〉 without collapsing the entangled state. However, by

using multiple photons and an entangled state with well-defined local parity, we can

detect photon loss errors.

7.7.1 Hong-Ou-Mandel interference

So far, all of the communication protocols demonstrated in this chapter can be ex-

ecuted with a directional link. However, we have not yet taken advantage of the

bi-directionality of our quantum bus. In particular, a 50:50 beamsplitter has the in-

teresting property that, when the input states are Fock states with the same photon

number, the output ports, which will generically be entangled, both have even photon

number. This is a property of the indistinguishability of photons, and has been used

to measure the purity [190] and overlap [106] of quantum states.

The minimal and most canonical example of this property is Hong-Ou-Mandel

(HOM) interference [19], where the input state |11〉 results in the output (|02〉 +

|20〉)/
√

2. This corresponds to an odd logical Bell state in the encoding |±x〉 =

{|0〉 , |2〉}. While we noted in Chapter 3 that this is not a full error-correcting encod-

ing, it has some nice properties, and has been used as the logical basis for the control

qubit in a two-qubit logical CNOT gate [191]. For instance, we noted in Section 3.3

that this encoding allows error detection.

7.7.2 Error detection

Since the HOM state has more photons than the single-photon Bell state in Sec-

tion 7.6, it is more sensitive to loss in the bus. However, the dominant error states

resulting from loss are |01〉 and |10〉, which have exactly one photon, and can be

distinguished from the desired entangled state by measuring local parity in each of

the cavities before tomography, as in Figure 7.8a. We then perform tomography on
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Figure 7.8: Error-detected Hong-Ou-Mandel Entanglement. a) A photon is pre-
pared in each cavity before application of 50:50 beamsplitter, resulting in two-photon Bell
state. Prior to tomography, the parity of each cavity is measured, and the data is post-
selected on even parity in both. This rejects dominant error states, shown in beamsplitter
output. b) Wigner tomograms of cavity 1, post-selected on success and conditioned on log-
ical measurement in cavity 2 (inset label indicates measurement outcome). Anticorrelation
observed in z, correlation in x and y. Rotations in x and y bases result from beamsplit-
ter phases and parity measurement, which are not corrected for in this measurement. c)
Reconstructed joint Pauli observables of the two-qubit entangled state.

the cavities as in Section 7.6, but with a decoding OCP for the 0-2 manifold. By

conditioning on even parity in both cavities (ps = 79%), we reject the dominant error

cases, resulting in improved performance at the cost of a small failure rate. The post-

selected conditional Wigner tomograms are show in Figure 7.8b. These data show

clear correlations as before, but in the two-photon manifold. There is a rotation of

the x and y states, which is a combination of phases acquired from the beamsplitter

pumps and the backaction of the parity measurement, but these are deterministic and

can be corrected for or calibrated out1.

As in Subsection 7.6.2, we can reconstruct the logical two-qubit state ρL, but now

using the logical space {|0〉 , |2〉} to define the projection operators Π±k for cavity

1. The beamsplitter phase is calibrated out in Figure 7.7, which is why no rotation is observed
there.
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1. Upon reconstruction and correction of single-qubit Z rotation (deterministic cav-

ity phase rotation), we find fidelity to the ideal state FBell,02 = 0.94(1). This is a

reduction of the infidelity by a factor of two compared to the single-photon state.

The joint Pauli bars, shown in Figure 7.8c, show clear suppression of the IZ and ZI

observables, which indicates successful suppression of photon loss. The value of the

II bar (and hence the trace of ρL) is 0.991, consistent with a typical 1% occupation of

the |1〉 state in the measured Wigner functions of cavity 1, due to imperfect syndrome

measurement and cavity decay during syndrome measurement and tomography. In

fact, the occupation of the error state |1〉 is found to be largest for states with large

occupation of |2〉, suggesting errors during Wigner tomography are primarily respon-

sible. Finally, we reiterate that this tomographic method only corrects for contrast

in the Wigner function, but no other sources of error. The estimated error of the

decode-and-measure sequence is 2%, which suggests the fidelity of the underlying

cavity-cavity entanglement is in excess of 0.95.

7.7.3 Increasing the success rate

Generally speaking, sacrificing success rate for fidelity is acceptable when generating

entanglement as a resource for later operations, as long as it can be generated rapidly.

In particular, we highlight the high success probability of this approach, which is an

advantage when compared to many other heralding approaches. This high success

probability is due thanks to the low-loss beamsplitter and accurate parity measure-

ments.

That said, it is useful to be able to increase the success probability when necessary,

particularly if multiple Bell pairs need to be generated for entanglement distillation,

for instance. This scheme readily admits an increase in the success rate, at a small

cost in the fidelity. The state of the cavities upon failure (loss of a photon) is known

— either |10〉 or |01〉, depending on which cavity was found to have odd parity. This
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Figure 7.9: Repeated Hong-Ou-Mandel entanglement. a) Cumulative failure prob-
ability and fidelity of repeated Hong-Ou-Mandel interference and parity measurement, as a
function of the number of rounds accepted. b) Fidelity versus failure probability.

involved resetting one transmon to its ground state while applying OCP to the other.

We can rapidly reload a photon into the empty cavity and apply the beamsplitter

again, and repeat this until we succeed, finding both cavities to have even parity.

Because the success probability is high, the chance of succeeding on successive rounds

rapidly increases.

We take all of the data from this “try and re-try” experiment, and plot the success

probability and fidelity versus the maximum number of rounds kept. These are plotted

in Figure 7.9. Indeed we see a rapid increase in the probability of success versus

number of rounds. Within ten attempts, the success probability is above 99%.

By repeating until success, we can make this scheme effectively deterministic.

However, the cumulative fidelity decreases monotonically with the number of rounds.

This effect is primarily due to undetectable dephasing-like errors from conversion

transmon excitation or ancilla decay during parity mapping or readout. The deter-

ministic fidelity is FBell,02,det = 0.88(1), which turns out to be equal to that obtained
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in the deterministic single-photon Bell state in Section 7.6. However, this approach

allows an extra degree of freedom which trades fidelity for success rate. In the first

few rounds, this trade-off might be useful in a distillation context, since the success

probability rises faster than the fidelity drops. Note that the fidelity including the

first round is slightly lower than in the single-round experiment presented in Figure

7.8. This data was taken at a different time, and small drifts in state preparation or

measurement fidelity may account for this roughly 1% change, which is within the

reconstruction uncertainty.

7.8 Conclusions

This chapter represents a coming together of a few of the ideas throughout this

thesis. We have presented a method of joining independent modules with a low-loss,

rapid communication link, which grants several simplifications from previous work

like Chapter 6; in particular, this approach does not require specific time-dependent

controls or frequency-matching of samples. Here we give a few thoughts on challenges

in this architecture, and possible opportunities moving forward.

7.8.1 Improving the link

Though we have presented several approaches for suppressing infidelity resulting from

loss in the bus, all of the experiments demonstrated here would benefit from improved

efficiency to begin with. For state transfer, the error-correctable approach benefits

from reduced loss by rapidly suppressing second-order errors, as well as expanding the

available choice of encodings. The uncorrectable Fock encoding also of course benefits

from improvements. If the inefficiency of this link could approach the single-pass loss

— which is more than three order of magnitude smaller than the loss incurred here

— then the need for bosonic error correction in this situation might be obviated to



7.8. CONCLUSIONS 250

begin with. Likewise, both entanglement schemes would benefit from lower loss in

fidelity and/or success probability.

Since the inefficiencies of these protocols depends on the ratio κb/g, we have

two avenues along which we can improve. Reducing the damping rate κb of the

bus is an obvious target. We already know these coaxial cable resonators can have

quality factors three times higher at this frequency, so learning how to improve the

joint quality could make the bus reproducibly better. Materials improvements to the

bus itself, perhaps by replacing or removing the PTFE dielectric, using high-purity

aluminum conductors, or even increasing the diameter of the coax, could reduce

contributions to loss from dielectric and surface resistance. There is little reason to

doubt a connection could be made between modules with quality comparable to the

3D cavity resonators we use as quantum memories. Further discussion on this topic

can be found in Chapter 8.

In parallel, improvements in the parametric conversion scheme would greatly ben-

efit the protocols demonstrated here. The single-junction transmon is a simple con-

verter, but it is far from optimal for this setting. More exotic elements, made with

arrays of junctions, or flux loops, may give rise to cleaner and simpler mixing pro-

cesses, with different trade-offs in terms of the Kerr and dissipation the induce on the

cavities and bus [177, 178]. Some of these elements are challenging to implement in

a 3D architecture, but we believe this is more a question of careful and clever engi-

neering than a fundamental problem. An alternate approach would be to make the

converter itself very low-Q, so that induced excitations decay rapidly, mitigating the

dephasing effect. If this could be done without inducing too much damping on the

cavity and bus (e.g. by Purcell filtering), it might improve the performance, especially

by reducing uncorrectable errors.
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Longer links

One obvious difference between the approach taken here and schemes utilizing prop-

agating photons is the length of the link. When communicating via a continuum, the

length of the transmission line is irrelevant, save for a small amount of added loss.

Here, however, the mode structure of the bus changes as the length is increased. As

discussed in Chapter 4 and demonstrated in [128], the presence of nearby modes is

not really a problem, as it simply leads to an onset of the continuum regime. How-

ever, the presence of extra modes may crowd the frequency spectrum, making it more

difficult to find bands in which to place the parametric pumps, conversion element,

and storage cavity without accidental collisions. Further, these modes may contribute

additional Purcell decay to the conversion transmon, and ultimately to the storage

mode. Finally, with fixed capacitance, as the length of the link increases, the zero-

point phase ϕb of the bus across the converter junction decrease with the square root

of the length, weakening the strength of any parametric process. This may require

increasing the physical coupling capacitance, which will worsen Purcell effects.

One approach which may simultaneously solve a few of these problems is to place

a filter mode between the mixing element and the bus. Bus modes near this filter will

couple more strongly to the transmon, while harmonics further away will couple more

weakly, reducing Purcell effects and suppressing the effects of frequency collisions.

This is similar to the on-chip modes used in [75], but in this context, the exact

frequency of the filter modes would not be crucial; they would simply need to be

nearby a particular mode of the link.

7.8.2 Inter-module gates

The quantum bus has uses beyond the communication and entanglement implemented

here. The bus has long been used as a way to perform gates between qubits [93, 192,

97, 193]. The scheme used here is immediately extensible to operations between
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transmons, such as RIP and cross-resonance gates, which could be used to realize

the kind of architecture proposed in Subsection 2.5.4, with gates performed directly

between modules without the need for teleportation or shuttling.

Using the bus for gates between bosonic qubits is slightly more challenging, but

it is within reach. The beamsplitter itself is not a computational gate, since it takes

the qubits outside their code spaces. However, this operation is a key component of

linear optical quantum computing (LOQC) protocols [58, 105], and so this tool may

enable new avenues for modular computing along these lines, with the added benefits

of deterministic state preparation and QND measurement afforded by cQED.

A particularly interesting extension of traditional LOQC is the exponential-SWAP

gate (eSWAP) [108], which has already been realized within a single 3D cQED module

[107]. The eSWAP is a continuous family of encoding-independent gates which can

be used to construct logical qubits out of two or four cavity modes, and to perform

single- and two-qubit logical gates. This gate consists of two 50:50 beamsplitters,

between which a local operation, similar in structure to the parity mapping used here,

is applied to one cavity. As such, all of the requirements for this gate are already

present in this system. Since the beamsplitter must be applied twice, a lower-loss bus

will be extremely beneficial in demonstrating this type of control. This is an obvious

next application of the quantum bus for interfacing bosonic qubits over a network,

hopefully leading to new approaches for quantum networking in cQED.
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Figure 7.10: Fock Code Transfer Extended Data. Measured Wigner functions for all
six cardinal states of Fock encoding, as prepared in module 1 (top) and received in module
2 (bottom).
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Figure 7.11: Fock Code Transfer Extended Data. Measured Wigner functions for all
six cardinal states of cat encoding, as prepared in module 1 (first row), received in module
2 with no parity measurement, (second row), and received and conditioned on even (third
row) and odd (fourth row) parity.



Chapter 8

Outlook

I’d like to conclude by taking some of the tools developed and lessons learned in this

thesis, and suggesting some possible extensions and future directions.

Lower loss links

Obviously, all off the experiments presented here would have benefited from less loss

in the communication links. Building better interfaces and links is an ongoing task.

For the directional pitch and catch scheme, this requires a better circulator, and

better connectors and couplers. The connectorization scheme used for the quantum

bus resonator, which eschews commercial connectors, it quite low-loss, though some

work is required to make it more robust and controlled. There is ongoing work on

all-superconducting circulators based on interference in Josephson junction devices

[187, 188, 189]. However, use of such an element would still require careful design

and packaging to ensure the total transmission loss is not limited by connectorization

and the required interference elements. Still, there is great promise in this, especially

given that the large instantaneous bandwidth of commercial ferrite circulators is not

a requirement for the comparatively narrow-band communication.

The path towards a lower-loss quantum bus is more straightforward, due to the

254
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relative simplicity of the device. More careful treatment and placement of the joint

between bus and module might improve the robustness of quality, but commercial

coaxial cable is probably not the ideal link moving forward. 3D resonators which

are sensitive to their seam resistance have been made with quality factors as high as

300 million [125], so there are many orders of magnitude over which we can improve

the current iteration. To get there, we probably need to build our own links from

materials of known quality, like high-purity aluminum [62] or indium platings or

coatings [124, 125]. As mentioned in Subsection 4.3.5, aluminum waveguide might

be a nice alternative which requires no dielectric, possesses a mode structure which

can be tailored, and can be coupled to through apertures. As the materials quality is

increased, the joint will become increasingly critical, so these advances must be made

together.

If the communication process can be executed with sufficiently high efficiency, we

may not even require dedicated error-correction, would would simplify certain aspects

of the scheme. As a rule of thumb, if the communication errors are as low as the local

gate errors, and they are of the same type, then they can probably be handled by

whatever error-correction scheme is being used throughout the rest of the quantum

machine. Loss can probably be made to fill these criteria, since amplitude damping

is already an error which must be tacked in most superconducting qubit modalities.

Connecting more modules

While the last few years have seen an explosion of work on cQED networks, so far

no demonstration exists for more than two modules. An obvious question to ask is

how one might wire together networks with N > 2 modules. Either of the methods

demonstrated here could be extended by adding more “communication arms” to each

module and working with pairwise links. However, it would be more efficient to use

a single channel to connect multiple modules.
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Figure 8.1: Extending the Quantum Bus. Multiple modules connected by a single
bus.

It is not clear to me how the pitch and catch protocol with a directional channel

generalizes to more modules. Simply tiling more circulators to make a long uni-

directional channel could work for small N , but may quickly become cumbersome

with the addition of many circulators. A conceptually appealing approach is to devise

a router like the ones described in Section 2.5. Switchable directionality in a low-loss

router would enable many flexible approaches to scaling with propagating photons.

The quantum bus should provide a reasonable way to to interface more than two

modules. In this work, we coupled to the ends of the bus for convenience. However,

equal coupling strengths could be had by coupling to each voltage maximum, as in-

dicated in Figure 8.1. It’s not clear that this would be particularly easy to do with

commercial coaxial cable, as it would require removing sections of the outer conduc-

tor from the interior. However, with a custom link as discussed above, this could

be designed in from the start. A nice feature of this approach is that the voltage

maxima are current minima, so resistive joint losses could be mitigated by appro-

priate design. This design also provides any-to-any communication, or multi-body

interactions coupling through a single bus mode. It might even allow simultaneous

pairwise communication by working in the virtual Raman regime (Subsection 4.7.1)

with different detunings.
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Toward entanglement purification and teleportation

As we stated in Subsection 2.5.3, high-fidelity entanglement can be created from

multiple Bell pairs of lesser quality. So far, this kind of entanglement purification

has only been demonstrated between quantum memories in separate network nodes

with nitrogen-vacancy centers [51]. Using a highly probabilistic remote entanglement

scheme, those authors required many attempts to successfully generate the raw pairs.

Fortunately, that platform has a long-lived memory element (nuclear spin) and a

communication element (electron spin) which couples strongly to light, so the first

pair can be efficiently stored while the second pair is generated.

The two deterministic entanglement schemes presented here lend themselves to a

distillation experiment, since in both cases the entanglement procedure is fast com-

pared to the coherence times of the cavity memories. The entangled pairs could be

created sequentially using a module where the conversion transmon couples two cav-

ities [167, 106] to the bus. Alternatively, only one “communication” cavity needs to

couple to the bus if its state can then be swapped with that of a “memory” cavity

[106]. That same architecture has been used to demonstrate a local entangling gate

[191] which could be used to perform the required Bell measurement for distillation.

In this sense, all the tools are already in place to take this next step in 3D cQED.

Furthermore, a teleported gate has been performed in a single module [40], and these

tools can be readily applied to the remote version.

Heterogeneous modular networks

The two approaches for communication presented here have their own advantages and

challenges. While the quantum bus allows rapid and faithful entanglement generation,

and perhaps direct intermodule gates, we detailed some of the challenges for scaling

to longer bus connections in Subsection 7.8.1. While these problems have potential

solutions, a hybrid approach might be of use here. One can imagine grouping a few
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modules into small “clusters” connected by a single bus for dense local interactions.

But then we could bridge the clusters with longer-distance propagating photon chan-

nels, through which one plays pitch and catch. This long-haul communication role

could also be filled by probabilistic entanglement schemes [71, 159] which are robust

to loss, with part of each module working repeatedly to generate entanglement while

deterministic local operations are being carried out.

There are a lot of options for the connectivity graph of this kind of inhomogeneous

system. Each module in each cluster could have connections to other clusters, in which

case it might look like cities connected by highways, with multiple on- and off-ramps

per city. Alternatively, each cluster could have a module dedicated for long-distance

communication, in which case the structure would be tree-like. A graph can look tree-

like at multiple layers, so this might be the most efficient way to scale up while keeping

the number of operations required to get between any two modules logarithmic in the

system size.

I am optimistic that that the tools and methods explored in this thesis will be of

use in the near future for modular superconducting quantum processors.
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