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Photonic states of high-Q superconducting microwave cavities controlled by superconducting transmon
ancillas provide a platform for encoding and manipulating quantum information. A key challenge in scaling up
the platform towards practical quantum computation is the requirement to communicate on demand the quantum
information stored in the cavities. It has been recently demonstrated that a tunable bilinear interaction between
two cavity modes can be realized by coupling the modes to a bichromatically driven superconducting transmon
ancilla, which allows swapping and interfering the multiphoton states stored in the cavity modes [Gao et al., Phys.
Rev. X 8, 021073 (2018)]. Here we explore both theoretically and experimentally the regime of relatively strong
drives on the ancilla needed to achieve fast SWAP gates but which can also lead to undesired nonperturbative
effects that lower the SWAP fidelity. We develop a theoretical formalism based on linear response theory that
allows one to calculate the rate of ancilla-induced interaction, decay, and frequency shift of the cavity modes in
terms of a susceptibility matrix. We go beyond the usual perturbative treatment of the drives by using Floquet
theory, and find that the interference of the two drives can strongly alter the system dynamics even in the regime
where the standard rotating wave approximation applies. The drive-induced ac Stark shift on the ancilla depends
nontrivially on the drive and ancilla parameters which in turn modify the strength of the engineered interaction.
We identify two major sources of infidelity due to ancilla decoherence. (i) Ancilla dissipation and dephasing
lead to incoherent hopping among Floquet states which occurs even when the ancilla is at zero temperature; this
hopping results in a sudden change of the SWAP rate, thereby decohering the SWAP operation. (ii) The cavity
modes inherit finite decay from the relatively lossy ancilla through the inverse Purcell effect; the effect becomes
particularly strong when the ac Stark shift pushes certain ancilla transition frequencies to the vicinity of the
cavity mode frequencies. The theoretical predictions agree quantitatively with the experimental results, paving
the way for using the developed theory for optimizing future experiments and architecture designs.
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I. INTRODUCTION

The use of multiphoton states of superconducting mi-
crowave cavities to encode quantum information with control
provided by transmon ancillas offers a promising route to-
wards robust quantum computation [1–5]. A key challenge in
scaling up the architecture towards practical quantum comput-
ing is the requirement to communicate (entangle, SWAP, etc.)
on demand the quantum information stored in the cavities.
One promising solution towards fulfilling this requirement is
to generate a set of controllable interactions between cavities
that are bilinear in cavity lowering or raising operators, which
includes both a beam-splitter type and two-mode squeezing
interaction,

V = gBS(t )a†b + g∗
BS(t )ab† + gTMS(t )a†b† + g∗

TMS(t )ab,

(1)

where a, b and a†, b† are the annihilation and creation op-
erators of the two cavity modes, and gBS and gTMS are
the strengths of the engineered beam-splitter and two-mode
squeezing interaction. The bilinear nature of the interactions
has the crucial advantage that it does not introduce any
additional nonlinearities in the system which thus remains
analytically and numerically tractable for moderate-size sys-
tems. The beam-splitter interaction is the basis for SWAP

operations which can be used to route photonic signals
between modules and is also a key element in important
entangling operations such as deterministic controlled SWAP

(Fredkin gate) and exponential SWAP (coherent superposition
of SWAP and identity) gates that have been recently experi-
mentally realized [4]. These operations can empower novel
schemes for universal bosonic quantum computation [6].
The two-mode squeezing interaction, along with single-mode
squeezing and beam-splitter interaction enables an essential
set of operations needed for Gaussian quantum information
processing [7] and quantum simulations of molecular spectra
[8–10].

Cavities have the advantage of having long lifetimes
(∼1 ms), but being harmonic oscillators, they require non-
linear ancillas (e.g., transmons) for universal control. The
frequency mixing capability of the nonlinear transmon ancilla
provides a natural way to engineer the bilinear interactions in
Eq. (1) between cavities. Much like in nonlinear optics, mod-
ulating the ancillas (which play the role of nonlinear medium)
with periodic drives induces effective ancilla-mediated in-
teractions between the otherwise uncoupled cavities. The
ancillas are only virtually excited, so the effects of their
decoherence are partially mitigated. To name a few, bilinear
mode interactions have been previously realized based on this
method between two propagating microwave modes [11,12],
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between one long-lived and one propagating mode [13], and
most recently between two long-lived three-dimensional (3D)
microwave cavities [3]. An alternative way to generate tun-
able cavity-cavity interactions is to use microwave resonators
whose frequencies can be tuned into resonance via external
flux drive [14,15], but that requires a careful analysis of the
flux noise which usually limits the coherence time of the
resonators. A similar method has also been applied to induce
resonant couplings between two transmons [16] and between
one transmon and many cavity modes [17].

Fast entangling and SWAP operation between the cavities
requires the engineered interaction to be relatively strong,
which in turn requires strong drives on the ancilla. In the
presence of strong drives, properties (spectrum, decoherence
rate, etc.) of the nonlinear ancilla can be strongly modified.
For a two-level ancilla, well-known examples include drive-
induced ac Stark shift and power broadening of the linewidth
[18,19]. For a multilevel ancilla such as a weakly anharmonic
transmon [20], the situation can be more complicated. On
one hand, these modifications directly affect the gate rate
and fidelity. On the other hand, properties of the cavities to
which the ancilla is coupled to are also modified. One example
is the inverse Purcell effect where the cavities inherit finite
decay rate from the transmon ancilla due to the hybridization
between them [21]. These nonperturbative effects due to the
drives could potentially reduce the SWAP fidelity even when
the rate of SWAP is enhanced.

In this paper we study both theoretically and experimen-
tally a system that consists of two microwave cavities both
coupled to a nonlinear transmon ancilla. It has been recently
demonstrated that by driving the ancilla with two rf tones,
an ancilla-mediated beam-splitter interaction arises between
the two cavities which allows swapping and entangling the
mutiphoton states stored in the cavity modes [3]. Here we
investigate the regime of relatively strong drives needed to
achieve fast SWAP gates. In particular, we study in detail
the drive dependence of the strength of the ancilla-mediated
interaction and the mechanisms that affect the SWAP fidelity in
this regime.

It has been shown that the dynamics of a driven multimode
cQED system can be conveniently analyzed based on the so-
called “black-box quantization” [22] and perturbation theory
for relatively weak drives or large drive detunings [3,23]. Here
we treat the drives nonperturbatively by working in the basis
of Floquet eigenstates of the driven ancilla, and show that the
theory accurately captures the dynamics of the ancilla beyond
the perturbative regime. Importantly, even in the regime where
the standard rotating wave approximation (RWA) is applicable
and thus the transmon ancilla can be treated as a weakly
nonlinear oscillator [24], the slow dynamics of the ancilla in
the rotating frame of the drive can still be strongly nonlinear.
The situation becomes more complicated when there are two
drives where the frequency difference of the drives sets a new
slow timescale. As we will show, interference between the
drives can strongly alter the system dynamics and leads to
effects such as nonmonotonic ac Stark shift which typically
does not occur when there is only one drive. Floquet theory
has also been recently applied to a coupled cavity-transmon
system subject to an extremely strong drive where the RWA
breaks down [25]; we are not considering that regime here.

FIG. 1. A schematic showing how a beam-splitter interaction
between two cavity modes at different frequencies arises due to their
couplings to a driven ancilla. The frequency of cavity mode a at
the ancilla input (as a probe) is up- or down-converted by integer
multiples K of drive frequency difference ω21 at the output (as a
response) which then interacts with mode b, whereas the frequency
of cavity mode b at the ancilla input (as a probe) is down- or up-
converted by Kω21 at the output (as a response) which then interacts
with mode a. When the condition ωb − ωa = Kω21 is satisfied, there
arises a resonant beam-splitter interaction between the cavities a and
b. The energy needed for this process to become resonant is provided
by an indirect exchange of K excitations between the two drive
reservoirs (indicated by the dashed red arrow), which is a result of
their individual interaction with the ancilla (indicated by the blue
arrows).

The ancilla-mediated bilinear interactions between the cav-
ity modes are related to the linear response of the driven
ancilla to the couplings to the cavities. Due to the interference
between the drives and the nonlinearity, the linear response of
the two-tone driven nonlinear oscillator (the transmon ancilla)
has a much richer structure than a one-tone driven nonlinear
oscillator (cf. [26] and references therein) and is characterized
by a susceptibility matrix which relates the probe (cavity a)
and response (cavity b) at different frequencies; see Fig. 1.
As we will show, the spectra of these susceptibilities depend
nontrivially on the drive and ancilla parameters.

A coherent quantum operation utilizing the ancilla-
mediated interaction between the two cavities requires the
driven ancilla to remain in a pure state during the operation.
Finite coherence time of the driven ancilla due to dissipation
and dephasing reduces the fidelity of the quantum operation
mainly in the following two ways. First, because of the noise
that accompanies ancilla dissipation and dephasing, the an-
cilla can randomly hop between different Floquet eigenstates.
This hopping leads to a sudden change in the strength of the
ancilla-mediated interaction, thereby decohering the quantum
operation.

Unlike a static system, even at zero temperature, there
is a finite rate of both hopping “up” and “down” in the
ladder of ancilla Floquet states leading to a finite-width
distribution among them, a phenomenon termed “quantum
heating” [27,28]. In our system which is effectively at zero
temperature, we observed a finite steady-state population in
the Floquet “excited states” as large as 10% for a relatively
strong drive. A comparison with the theory shows that this
heating is partly due to the quantum noise that accompanies
dissipation and partly due to the noise that leads to ancilla
dephasing. As we will show, the rate of the heating due to
dephasing sensitively depends on the drive detuning from the
ancilla frequency due to the strong frequency dependence of
the noise spectrum.
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Second, even when the ancilla does not hop to another state
during the operation, the cavity inherits finite decay rate from
the typically lossier ancilla as a result of coupling-induced
hybridization of the cavities and the driven ancilla. In the
presence of drives, as we will show, such inherited decay
can be significantly enhanced as a result of drive-assisted
multiphoton resonances and care must be taken in choosing
the frequencies of the drives to avoid these resonances. By
the same hybridization mechanism, ancilla dephasing leads to
incoherent hopping of excitations between the dressed cavities
and the ancilla. This hopping effectively causes cavity photon
loss if the rate of hopping back from the ancilla to the cavity
is smaller than the relaxation rate of the ancilla.

The paper is organized as follows. In Sec. II we describe
the system Hamiltonian followed by a general formulation
that establishes the relations between the linear susceptibil-
ities of the driven ancilla and the ancilla-induced bilinear
interaction as well as decay and frequency shift of the cavities.
We review in Appendixes A and B the expansion of the
Cooper-pair box Hamiltonian for the transmon ancilla and
how the bilinear interaction between the cavities arises based
on the four-wave mixing picture in the perturbative regime.
We briefly describe the quantum noise that accompanies the
ancilla-induced cavity decay in Appendix C. General relations
between nonlinear susceptibilities of the ancilla and ancilla-
induced Kerr of the cavities are shown in Appendix D.

In Sec. III we study the unitary dynamics of the two-tone
driven ancilla. We start by describing the Floquet formulation;
within this formulation, we study the drive-induced ac Stark
shift of the ancilla transition frequencies beyond the perturba-
tive regime as well as the process of multiphoton resonance.
Finally, we derive explicit expressions for the ancilla suscep-
tibilities in the basis of Floquet states. A detailed comparison
between the theory and experiment is presented. We discuss
in Appendix E a formulation equivalent to Floquet theory
by mapping to a time-independent tight-binding Hamiltonian.
Ancilla dynamics in the semiclassical regime is discussed in
Appendix F.

In Sec. IV we study the Floquet dynamics of the driven
ancilla in the presence of both dissipation and dephasing.
Two major factors that limit the SWAP fidelity including the
dissipation- and dephasing-induced hopping among Floquet
states and the inverse Purcell effect are discussed in detail. In
Appendix H we discuss the effects of ancilla decoherence on
its susceptibilities in the transient regime. In Appendix I we
discuss in detail the incoherent hopping between the cavities
and the ancilla induced by ancilla dephasing. In Sec. V we
present concluding remarks.

II. THE SYSTEM HAMILTONIAN
AND GENERAL FORMULATION

Our goal is to engineer the tunable bilinear interactions
shown in Eq. (1) between two initially uncoupled and far-
detuned linear modes via a nonlinear ancilla. In this paper
we consider the linear modes to be modes of two microwave
cavities and the nonlinear ancilla to be a transmon. The
theoretical formulation applies also to other systems such as
high frequency phononic modes controlled by a transmon
ancilla [29,30], eigenmodes of coupled cavity arrays [17], or

higher-order modes of a single microwave cavity [14,31]. The
Hamiltonian of the full system reads

H = H0 + Hc + HI, H0/h̄ = ωaa
†a + ωbb

†b,

Hc/h̄ = ωcc
†c − α

2
c†2c2 + (�1e

−iω1t + �2e
−iω2t )c† + H.c.,

HI/h̄ = (gaa + gbb)c† + H.c. (2)

Here H0 represents the Hamiltonian of the cavity system that
consists of two modes with frequency ωa and ωb, respectively.
Hc represents the Hamiltonian of the transmon ancilla whose
creation and annihilation operators are denoted as c† and c. HI

represents the interaction between the two systems; see below
for a detailed explanation of the Hamiltonian Hc and HI and
the considered parameter regime.

We model the ancilla as a weakly nonlinear oscillator
with frequency ωc and Kerr nonlinearity whose strength is
proportional to α. The nonlinearity is weak in the sense that
the oscillator frequency shift due to nonlinearity is much
smaller than the oscillator eigenfrequency: α〈c†c〉 � ωc. For
a transmon, this Kerr nonlinearity comes from the expansion
of a cosine potential; see Appendix A. Without loss of gener-
ality, we will consider α > 0 as is the case for transmon.

We consider two periodic drives on the ancilla with fre-
quencies ω1,2 and amplitudes �1,2. We consider the drives to
be off-resonant in the sense that the drive detunings |ω1,2 −
ωc| from the ancilla frequency are much larger than the
linewidth of the ancilla transitions so that the ancilla is only
virtually excited by the drives. In the mean time, we consider
the drive detunings and the drive amplitudes to be much
smaller than the ancilla frequency itself so that one can neglect
the counter-rotating terms of the drives �1,2e

−iω1,2t c + H.c.
using the RWA; these terms are already disregarded in Eq. (2).
In this work we will focus on the case where both drives
are blue detuned from ωc so that each drive individually
does not lead to bistability of the nonlinear oscillator when
they become relatively strong [32]. Our formulation, however,
applies to the general case of both red and blue detunings.

We consider a bilinear interaction between the two cavity
modes and the ancilla with a strength ga and gb as represented
by HI in Eq. (2). This interaction arises as a result of the
coupling between the cavity electric fields and the charges on
the islands of Josephson junction that supports the transmon
mode. We have neglected the counter-rotating terms of this
coupling such as gaac + g∗

aa
†c†. This is valid when coupling

strength and cavity detunings from the ancilla is smaller
than the ancilla frequency |ga,b|, |ωa,b − ωc| � ωc. For the
purpose of engineering unitary bilinear interactions between
the cavities via the virtually excited ancilla, we are interested
in the regime where cavities a and b are far detuned from the
ancilla so that |ga,b| � |ωa,b − ωc|.

As a shorthand notation, we will define the detunings
of the modes and the drives from the ancilla frequency as
δa,b,1,2 = ωa,b,1,2 − ωc and the drive frequency difference as
ω21 = ω2 − ω1. Without loss of generality, we assume that
ω2 > ω1. To be consistent with previously used notation [3],
we will also use a notation for the scaled drive amplitude
ξ1,2 = �1,2/δ1,2 which can be understood as the classical
response to the drives if the ancilla were linear.
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A. Linear response of the two-tone driven nonlinear ancilla

A typical approach to treat the driven multimode system
described by Eq. (2) is based on the black-box quantization
[22,23]. This method provides an elegant picture of multiwave
mixing between the drives and cavity modes, and a straightfor-
ward way of calculating the strength of the ancilla-mediated
interaction; see Appendix B. However, the approximation
typically made in applying the method holds in the regime
of weak ancilla anharmonicity (α � |δ1,2|, |δa,b|) and weak
drive strengths.

Our approach here is to treat the coupling between the
ancilla and cavities as a perturbation, and calculate the linear
response of the driven ancilla to the coupling. The linear
response treatment is justified for the following two reasons:
(i) we are interested in the ancilla-mediated bilinear interac-
tion between the cavities; and (ii) the ancilla-cavity coupling
is effectively weak due to their large detuning so that higher-
order response of ancilla to the cavities can be neglected.
In the mean time, we are not treating the drives in linear
response but instead using the Floquet theory to capture the
nonperturbative effects of the drives.

Because of the nonlinearity and the drives on the ancilla,
its linear response to a probe (the cavity modes) can be
at different frequencies from the probe frequency. It is this
frequency conversion capability that allows coupling of two
cavity modes at different frequencies as illustrated in Fig. 1.
When the probes are sufficiently weak such that linear re-
sponse theory is valid and the frequency difference (or sum)
of the two cavity modes matches the frequency (or sum) of
the probe and response of the ancilla, there arises an effective
beam-splitter (or two-mode squeezing) interaction between
the two cavity modes; see next section for the derivation.

To study the linear response of the driven ancilla, we
consider one additional drive (the probe) on the ancilla with
a drive Hamiltonian Hf /h̄ = −fωe−iωt c† + H.c. The role of
fω is played by the fields of the cavity modes. To find the
linear response, we solve the quantum Liouville equation for
the ancilla plus the bath

ρ̇ = −i[Hc+bath(t ) + Hf (t ), ρ]/h̄, (3)

where Hc+bath is the total Hamiltonian of the driven ancilla
and the bath it couples to that leads to ancilla decoherence.
We will consider a specific model for the bath in Sec. IV. Here
we proceed with a general formulation without specifying the
details of the bath. ρ is the total density matrix of the ancilla
plus the bath. We now solve the density matrix to leading
order in the probe field fω: ρ(t ) ≈ ρ (0)(t ) + ρ (1)(t ). Then we
find that the linear response of the expectation value of the
ancilla lowering operator c to the probe can be characterized
by two sets of susceptibilities (or two susceptibility matrices)
and has the following form:

〈c(1)(t )〉 ≡ Tr[cρ (1)(t )]

=
∞∑

K=−∞
[fωχ (ω,ω + Kω21)e−i(ω+Kω21 )t

+ f ∗
ωX(−ω, 2ω1 + Kω21 − ω)e−i(2ω1+Kω21−ω)t ],

(4)

where the susceptibilities are given by

χ (ω,ω + Kω21)

= i

h̄

∫ t

0
dt ′Tr{[c(0)(t ), c(0)†(t ′)]ρ(0)}e−iω(t ′−t )+iKω21t ,

(5)

X(−ω, 2ω1+Kω21−ω)

= i

h̄

∫ t

0
dt ′Tr{[c(0)(t ), c(0)(t ′)]ρ(0)}eiω(t ′−t )+i(2ω1+Kω21 )t .

(6)

The susceptibilities χ and X both have two arguments: the
first is the probe frequency and the second is the response
frequency. Following the convention used in nonlinear optics
[33], we use a positive frequency ω to indicate the response to
a field with complex amplitude fω and a negative frequency
−ω to indicate the response to a field with complex ampli-
tude f ∗

ω . The Heisenberg operator c(0)(t ) in the commutator
evolves under the unitary evolution governed by Hc+bath(t ).
We note that when only drive 1 is present, all susceptibilities
with K �= 0 vanish.

The physical meanings of the two classes of susceptibili-
ties χ and X are as follows. Susceptibility χ (ω,ω + Kω21)
characterizes the frequency conversion process in which the
probe frequency is up- or down-converted by integer multiples
of ω21. Susceptibility X(−ω, 2ω1 + Kω21 − ω) characterizes
the process where (2 − K ) excitations in drive 1 (with fre-
quency ω1) and K excitations in drive 2 (with frequency ω2)
are converted into one excitation at the probe frequency and
one at the response frequency. Importantly, the total number
of excitations is always conserved in the framework of the
RWA. In the next section we will show that the strength of
the susceptibilities at the frequency of the cavity modes quan-
tifies the strength of the ancilla-induced bilinear interaction
between the modes.

To get some intuition about the drive dependence of the
susceptibilities, we qualitatively discuss here the situations
of no drive, one drive, and two drives on the ancilla. A
more detailed discussion is given in Secs. III C and IV C.
In the absence of external drives, only the diagonal part
of the susceptibility matrix χ is nonzero, i.e., χ (ω,ω) �= 0.
The absorption spectrum Imχ (ω,ω) has peaks at frequencies
corresponding to transitions between neighboring levels of
the ancilla and the spectrum Reχ (ω,ω) has characteristic
dispersive line shapes at the same frequencies. The two spec-
tra are related via Kramers-Kronig relations. In the presence
of one drive with frequency ω1, extra peaks emerge in the
spectrum Imχ (ω,ω) at frequencies corresponding to transi-
tions between non-neighboring levels of the ancilla assisted by
the drive. Also, the susceptibility X(−ω, 2ω1 − ω) becomes
nonzero. In the presence of two drives, all the susceptibilities
in Eqs. (5) and (6) with K �= 0 becomes generally nonzero
and their spectrum can have a much richer structure due to the
interference between the two drives.

B. Effective equations of motion for the cavity modes

The fields of the cavity modes perturb the ancilla; the back
action from the ancilla induces frequency shift and decay
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of the cavity modes as well as interactions between them
when a certain frequency matching condition is satisfied. We
now make the connection of the linear susceptibilities to the
ancilla-induced back action.

The Heisenberg equations of motion for the cavity mode
lowering operators a, b in the interaction picture read

˙̃a = − ig∗
ae

iωat c, ˙̃b = −ig∗
be

iωbt c, (7)

where ã = aeiωat , b̃ = beiωbt .
In the spirit of linear response theory, we will make the

substitution in Eq. (7):

c(t ) ≈ c(0)(t ) + 〈c(1)(t )〉,
where 〈c(1)〉 is given by Eq. (4) with fω replaced by −gaã

and −gbb̃, and ω replaced by ωa and ωb, respectively. This
procedure is equivalent to the standard Born-Markov approx-
imation applied in tracing over the ancilla degree of freedom.
The approximation relates to the fact that the dynamics of the
cavity modes in the interaction picture is much slower than the
relaxation dynamics of the ancilla or the rate determined by
the detuning between the cavity modes and the ancilla. Under
this approximation, we should only keep slowly varying terms
after substituting the expression for 〈c(1)〉.

1. Ancilla-induced beam-splitter interaction between
the cavity modes

We now consider separately the two cases of engineering
beam-splitter and two-mode squeezing interaction between
the two cavity modes. In the first case, an excitation of
one cavity mode is converted into an excitation of the other
cavity mode at a different frequency. The energy offset is
compensated by exchanging (indirectly) excitations between
the reservoirs of the two drives. Therefore, frequencies of the
cavity modes must satisfy the condition

ωb − ωa ≈ Kω21, (8)

for any integer K . When the above condition is satisfied, we
obtain approximate equations of motion for the cavity modes
after disregarding rapidly oscillating terms,

˙̃a = −κ (0)
a

2
ã −

(
iδωa + δκa

2

)
ã − (igBS + κBS)b̃e−iδBSt ,

˙̃b = −κ
(0)
b

2
b̃ −

(
iδωb + δκb

2

)
b̃ − (ig∗

BS + κ∗
BS)ãeiδBSt , (9)

where we denote the detuning from the frequency matching
condition as δBS = ωb − ωa − Kω21. We have also included
the intrinsic decay of the cavity modes with a rate κ

(0)
a,b. For

simplicity we have not written explicitly the noise that accom-
panies κ

(0)
a,b and that accompanies δκa,b and κBS which come

from the terms proportional to c(0)(t ). A detailed discussion
of the quantum noise is presented in Appendix C.

Substitution of ancilla operator c with its linear response
〈c(1)〉 results in a shift in the frequency of the cavity modes

δωa,b = −|ga,b|2Reχ (ωa,b, ωa,b ) (10)

and a modification to the cavity decay rate

δκa,b = 2|ga,b|2Imχ (ωa,b, ωa,b ). (11)

The above frequency shift encodes the drive-induced ac Stark
shift on the cavities and the decay is related to the inverse Pur-
cell effect we mentioned in the Introduction. We will discuss
these in more detail in Secs. III C and IV C, respectively.

In addition, because of the frequency matching condition
in Eq. (8), there arises an effective beam-splitter interaction
between the cavity modes whose unitary and nonunitary part
are related to the susceptibility χ via

gBS = −g∗
agb{χ (ωb, ωa ) + [χ (ωa, ωb )]∗}/2, (12)

κBS = g∗
agb{χ (ωb, ωa ) − [χ (ωa, ωb )]∗}/2i. (13)

Here we have neglected the finite detuning δBS and
made the approximations χ (ωb, ωb − Kω21) ≈ χ (ωb, ωa )
and χ (ωa, ωa + Kω21) ≈ χ (ωa, ωb ). This is consistent with
the approximation made in substituting operator c(t ) with
its linear response which requires the linear susceptibility
χ (ω,ω + Kω21) to be sufficiently smooth over the scale of
δBS, in other words, δBS needs to be much smaller than the
ancilla relaxation rate or the detuning of the cavity modes
from the ancilla frequency.

Of primary interest in this paper is to engineer a relatively
strong unitary beam-splitter interaction characterized by gBS

in Eq. (9). For this purpose, as we will show, it is important
to design the cavity frequencies ωa,b to be far away from
any resonant structures of the susceptibility χ (ωa, ωb ), so that
κBS is largely suppressed and gBS is relatively strong. In the
case where the unitary beam-splitter interaction dominates,
the solution to Eq. (9) reads

ã(t ) = ã(0) cos(|gBS|t ) − ieiφ(gBS )b̃(0) sin(|gBS|t ),

b̃(t ) = b̃(0) cos(|gBS|t ) − ie−iφ(gBS )ã(0) sin(|gBS|t ), (14)

where the phase φBS is the argument of the complex beam-
splitter rate φBS ≡ arg(gBS), i.e., exp(iφBS) = gBS/|gBS|. It
depends on the phases of the couplings ga, gb and the rel-
ative phases of the two drives: φBS = arg[g∗

agb(�1�
∗
2 )K ] or

arg[g∗
agb(�1�

∗
2 )K ] + π . ga, gb can always be made real by

choosing a gauge for the modes a and b, then φBS only
depends on the relative phases of the two drives. At t =
π/4|gBS|, Eq. (9) corresponds to a 50:50 beam splitter; at
t = π/2|gBS|, it corresponds to a SWAP of the states between
the two modes.

2. Ancilla-induced two-mode squeezing
interaction between the cavity modes

In the case of engineering a two-mode squeezing interac-
tion, excitations of the two cavity modes are simultaneously
converted into or from the excitations of the drives where the
total number of excitations remains the same. A most general
condition for this process to become resonant is

ωa + ωb ≈ (2 − K )ω1 + Kω2

= 2ω1 + Kω21, (15)

for any integer K . When this condition is satisfied, one obtains
a similar set of equations of motion for the cavity modes as
in Eq. (9) with the beam-splitter interaction replaced by the
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two-mode squeezing interaction,

˙̃a = −κ (0)
a

2
ã − (iδωa + δκa )ã − (igTMS + κTMS)b̃†eiδTMSt ,

˙̃b† = −κ
(0)
b

2
b̃† + (iδωb − δκb )b̃† + (ig∗

TMS + κ∗
TMS)ãe−iδTMSt ,

(16)

where we denote the detuning from the frequency matching
condition in Eq. (15) as δTMS = ωa + ωb − 2ω1 − Kω21.

The unitary and nonunitary parts of the two-mode squeez-
ing interaction are related to the susceptibility X via

gTMS = −g∗
ag

∗
b [X(ωb, ωa ) + X(ωa, ωb )]/2, (17)

κTMS = g∗
ag

∗
b [X(ωb, ωa ) − X(ωa, ωb )]/2i. (18)

Similar to Eqs. (12) and (13), we have made the
approximations X(ωb, 2ω1 + Kω21 − ωb ) ≈ X(ωb, ωa ) and
X(ωa, 2ω1 + Kω21 − ωa ) ≈ X(ωa, ωb ). Here we emphasize
that two-mode squeezing interaction can arise in the case of
only one drive when the condition ωa + ωb ≈ 2ω1 is satisfied.

When the unitary two-mode squeezing interaction domi-
nates, we obtain the solution to the equations of motion in
Eq. (16) to be

ã(t ) = ã(0) cosh(|gTMS|t ) − ieiφ(gTMS )b̃†(0) sinh(|gTMS|t ),

b̃†(t ) = b̃†(0) cosh(|gTMS|t ) + ie−iφ(gTMS )ã(0) sinh(|gTMS|t ),

(19)

where φTMS ≡ arg(gTMS) = arg[g∗
ag

∗
b (�1�2)K ] or arg[g∗

ag
∗
b

(�1�2)K ] + π .
We note that when the condition 2ωa = 2ω1 + Kω21 is

satisfied, there arises a single-mode squeezing term ã2 + a†2

in the Hamiltonian. The above results for two-mode squeezing
[Eqs. (16), (17), and (19)] apply to single-mode squeezing as
well with b replaced by a everywhere.

Formally, Eqs. (10), (11), (12), (13), (17), and (18) com-
prise a set of key results of this paper. They allow us to
calculate the strengths of the ancilla-induced interactions be-
tween the cavity modes as well as ancilla-induced frequency
shifts and decay rates of the cavity modes in the presence
of ancilla drives. One can also establish relations between
the nonlinear susceptibilities of the ancilla and the ancilla-
induced conservative and dissipative nonlinearity of the cavity
modes. These ancilla-induced cavity nonlinearities can be
useful for engineering nonlinear interactions between cavities
and self-interaction for a single cavity mode; see Appendix D.

III. FLOQUET THEORY OF THE TWO-TONE DRIVEN
NONLINEAR ANCILLA

In this section we neglect the coupling between the ancilla
and its environment and study the unitary dynamics of the
driven ancilla. In Sec. IV we will discuss the effects of ancilla
decoherence.

As a qualitative picture, the two off-resonant drives on the
ancilla have two major effects. First, they both lead to the ac
Stark shift of the ancilla energy levels. This ac Stark shift
results from the drive-induced mixing between unperturbed

ancilla eigenstates. In a Floquet language, the ac Stark shift is
embedded in the drive dependence of the quasienergies of the
driven ancilla. Due to the interference between the two drives,
as we will show, the dependence of the ac Stark shift on the
drive amplitudes displays interesting behaviors that are absent
in the case of one drive.

Second, interference of the two drives leads to a non-
trivial periodic modulation of the ancilla Floquet states at
the difference frequency ω21 � ω1,2. We emphasize that this
modulation occurs at a frequency much smaller than the usual
periodic modulation of Floquet states at the drive frequency
(sometimes termed “micromotion”) when there is only one
drive. Thus it can have a significant effect on the ancilla
dynamics even in the regime where the RWA applies.

Because of this periodic modulation of ancilla Floquet
states at frequency ω21, linear response of the ancilla ini-
tialized in a given Floquet state can oscillate at a frequency
different from the probe frequency by integer multiples of
ω21. This lies behind the frequency conversion capability of
the driven ancilla as described in Sec. II.

In this section we will first describe the Floquet formu-
lation of the two-tone driven ancilla. Then we will explore,
within this formulation, the drive-induced ac Stark shift of
ancilla levels and the linear susceptibilities of the driven
ancilla. We will also present a comparison between the theory
and experiment on both the ac Stark shift and the ancilla-
induced beam-splitter rate between two off-resonant cavity
modes within a cQED setup.

A. The Floquet formulation

At first sight, since the ancilla Hamiltonian Hc(t ) in
Eq. (20) is modulated with two drives whose frequencies are
generally incommensurate, one may need a generalization of
the standard Floquet theory that only applies to a periodic
Hamiltonian to the case of quasiperiodic Hamiltonian as a
result of two or more incommensurate modulations. Such
generalization leads to extra dimensions in the Floquet space
which is analogous to the Bloch theory in solids of higher
than one dimension [34–36]. However, in our case, because
we have neglected non-RWA terms for both drives, our Hamil-
tonian can be treated in fact by the standard one-frequency
Floquet theory. This can be seen by going to the rotating frame
at one of the drive frequencies, for instance, ω1. The resulting
Hamiltonian reads

H̃c(t )/h̄ = −δ1c
†c − α

2
c†2c2 + (�∗

1 + �∗
2e

iω21t )c + H.c.

(20)

We emphasize that here we cannot apply the rotating wave
approximation a second time to eliminate the time dependence
in H̃c because ω21 can be of the same order of magnitude as
δ1 and α.

Hamiltonian H̃c(t ) is periodic in time with periodicity
τ = 2π/ω21. According to the standard Floquet theory, the
eigenstates of H̃c(t ) are given by Floquet states [37–40]

�m(t ) = e−iεmt/h̄um(t ), um(t + τ ) = um(t ), (21)

where εm is called the quasienergy. um(t ) is a periodic func-
tion of time with the same period as the Hamiltonian H̃c(t )
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and satisfies the Schrödinger equation,

[H̃c(t ) − ih̄−1∂t ]um(t ) = εmum(t ). (22)

By writing the function um(t ) in terms of its Fourier compo-
nents, one can map the time-dependent Schrödinger equation
in Eq. (22) to a time-independent tight-binding Hamiltonian
[37]; see Appendix E. This mapping is particularly useful in
the absence of ancilla decoherence in which case one can cal-
culate the ancilla susceptibilities from the tight-binding
Hamiltonian based on simple time-independent perturbation
theory.

The Floquet states are analogous to Bloch states in crystals.
Importantly, for a driven system with Hilbert space of dimen-
sion N , there are N independent Floquet states �m(t ), just
like there are N independent stationary states in the absence of
driving. Analogous to the crystal momentum, the quasienergy
εm is defined modulo h̄ω21 in the “reduced Brillouin zone”
scheme. This definition introduces a discontinuity in the
quasienergies as they cross the Brillouin zone boundary.

For the purpose of analytical analysis, we will instead use
the “extended Brillouin zone” scheme in which εm ranges
from −∞ to ∞. This scheme is particularly useful when
the width of Brillouin zone h̄ω21 is small compared to other
characteristic energy scales of system such as h̄δ1 and h̄α.
In this scheme, for each state um with quasienergy εm that
satisfies the Schrödinger equation (22), there is a set of states
u′

m = um exp(iKω21t ) for any integer K with quasienergy
ε′
m = εm + Kh̄ω21 that also satisfies Eq. (22). One can show

that u′
m and um correspond to the same Floquet state �m =

exp(−iεmt/h̄)um and thus are physically equivalent [40]. In
the analysis we are free to choose any set of states |um(t )〉
and associated quasienergies εm as long as they yield a set
of independent Floquet states �m; the value of any physical
quantity will be independent of the choice.

Numerically, Floquet states and quasienergies can be found
by diagonalizing the unitary operator

Uc(0, τ ) = T̂ exp

[
−i

∫ τ

0
dtH̃c(t )

]
. (23)

Eigenvalues zm of Uc(0, τ ) are related to the quasienergies εm

through the relation εm = ih̄ω21(ln zm)/2π . The correspond-
ing Floquet states �m can be found from the eigenstates φm of
Uc(0, τ ) through the relation �m(t ) = Uc(0, t )φm. We use the
numerical software Quantum Toolbox in Python (QuTiP) [41]
to find Floquet states and quasienergies of the Hamiltonian
H̃c(t ) to implement the above procedure.

B. The ac Stark shift

Periodic drives shift the energy levels of a quantum system,
an effect known as the “ac Stark shift.” For a driven weakly
nonlinear oscillator (the ancilla), the ac Stark shift has two
major contributions. First, periodic drives “dispersively” shift
energy levels by nonresonantly coupling neighboring levels.
In a quantum language, this process does not involve absorp-
tion or emission of drive photons by the oscillator. Sometimes
this effect by itself is called ac Stark shift. Second, periodic
drives can induce resonant transitions between the oscillator
levels when the drive frequencies or integer multiples of drive
frequencies match the transition frequencies. In a frame that

rotates with the drive where the resonating states become
degenerate, the periodic drives induce a gap between them
which is often termed the “Rabi splitting.” We will discuss
both of these effects in this section.

The ac Stark shift in the energy levels is manifested in the
shift of quasienergies of the driven ancilla as the drive param-
eters are changed. In order to map from the quasienergies to
the energy levels of the ancilla, we choose a set of states um

with quasienergies εm that connect to the ancilla Fock states
|m〉 at zero drive amplitudes (�1 = �2 = 0). For this choice,
one can express the quasienergies εm as

εm = −mh̄ω1 + Em + δEm(�1,�2), (24)

where Em is the mth bare energy level of the ancilla Em/h̄ =
mωc − αm(m − 1)/2 and δEm is the ac Stark shift to this
level. At zero drive amplitudes, δEm(0, 0) = 0; state |um〉
becomes the Fock states |m〉 of the ancilla and εm becomes
the energy of the ancilla in the rotating frame of drive 1. One
can interpret Eq. (24) as saying that the drives have shifted the
bare energy levels of the undriven ancilla by δEm. We note
that for positive detunings δ1,2 > 0, the order of quasienergy
level is trivially flipped compared to that of the Fock states,
that is, εn > εn+1. This is simply a consequence of being in
the rotating frame. In writing down Eq. (24), we are using the
extended Brillouin zone scheme where εm ranges from −∞
to ∞.

Throughout this paper we will use a shorthand notation to
denote the quasienergy difference of the driven ancilla and
the energy differences (transition frequencies) of the undriven
ancilla:

εmn ≡ εm − εn, Emn ≡ Em − En.

The ancilla frequency ωc in Eq. (20) is equivalent to E10/h̄.

1. Multiphoton resonance

For the considered case of δ1,2 > 0, each drive is off-
resonant with all the transition frequencies of the ancilla be-
tween neighboring levels. The situation is more complicated
when both drives are present. Being off-resonant individually,
the two drives can however “cooperatively” resonate with
one of the ancilla transitions. For the case where ωc < ω1 <

ω2, one can have a process where the ancilla resonantly
gets excited from the nth to the mth level by absorbing
m − n + K drive-1 photons and emitting K drive-2 photons.
The resonance condition for this process is Emn/h̄ + Kω2 =
(K + m − n)ω1. In terms of quasienergies in Eq. (24), the
resonance condition becomes

εmn/h̄ = −Kω21, (25)

meaning that a resonance occurs when there are two levels
whose quasienergies differ by integer multiples of ω21. Note
that the above resonance condition also takes into account the
drive-induced dispersive shift of the ancilla energy levels.

We emphasize that the resonance process discussed above
conserves the total excitation number and thus is allowed
within the RWA. This is in contrast to the multiphoton res-
onance that occurs in atomic gas experiments which often
requires very intense laser light and going beyond the RWA;
cf. [42]. This is also different from a recent study of Floquet
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FIG. 2. Illustration of quasienergy level anticrossings. Shown on
the left is an example of quasienergy spectrum for the case of one
blue-detuned drive (drive 1) as a function of the scaled drive power
|ξ1|2. The detuning of the drive is fixed at δ1 = α. From top to down,
the thick solid lines refer to quasienergy levels εm in Eq. (24) with
m = 0 (black), 1(blue), 2 (red), and 3 (green). Turning on the second
drive (drive 2) leads to anticrossings of quasienergy levels when
projected into the same Brillouin zone; equivalently, there occurs
anticrossing between replicas of quasienergy levels εm which are
shifted from εm by integer multiples of h̄ω21 as shown by the thin
dashed lines. As an illustration, we choose the detuning of drive
2 to be δ2 = 4.5α. On the right is a schematic for the anticrossing
between quasienergy levels at ε0 and ε2 + h̄ω21. The gap �R of the
anticrossing for a weak drive 2 is given by Eq. (27).

resonances of a two-level system modulated at a frequency
much lower than the instantaneous transition frequency [43].

If the drive parameters (detuning and amplitude) are such
that the oscillator is close to the above resonance condition,
further tuning the drive parameters results in an anticross-
ing of the quasienergy levels, when projected into the same
Brillouin zone. Another way to think about it is that, in the
extended Brillouin zone scheme, there are actually infinitely
many replicas of each quasienergy level εm separated by a
distance h̄ω21 as illustrated in Fig. 2. Even though there
is no direct anticrossing between εm and εn, there can be
anticrossing between εm and one of the replicas of εn at
εn − Kh̄ω21.

The gap of the anticrossing between the two quasienergy
levels determines the frequency of Rabi oscillation in the two-
level manifold if the oscillator is initially in a superposition
of them. Near the anticrossing, one can describe the two-level
manifold by a Hamiltonian

HR = h̄

2

(
� �R

�∗
R −�

)
, (26)

where � is the detuning between two levels (in the absence of
Rabi splitting), and �R is the Rabi splitting. Importantly, both
the detuning � and the Rabi splitting �R depend on the drive
strengths. The detuning � only depends on the drive powers
through the drive-induced dispersive energy shift, whereas
the Rabi splitting �R depends on the drive amplitudes and
therefore carries the phases of the drives.

For a relatively weak drive 2 (which is farther detuned from
ωc) but arbitrary drive 1, the Rabi splitting can be calculated
based on the degenerate perturbation theory in the eigenbasis
of the Hamiltonian H̃c at �2 = 0. For a pair of quasienergy
levels whose quasienergy difference εmn/h̄ ≈ −Kω21, we

find the corresponding Rabi splitting to be [44]

�R = 2
∑

n1n2···nK−1

∏K
j=1 �∗

2

〈
φnj

∣∣c∣∣φnj−1

〉
∏K−1

j=1

(
εn0 − εnj

− jω21
) , (27)

where n0 = n, nK = m, and states φn and quasienergies εn are
given by the stationary eigenstates and eigenenergies of the
Hamiltonian H̃c(t ) at �2 = 0, respectively.

Equation (27) shows that the strength of the Rabi splitting
for the case K � 2 is suppressed when the frequency differ-
ence ω21 of the two drives is large. This is because for large
ω21, satisfying the resonance condition (25) requires states
that are far from each other (m − n is large) and therefore
involves a relatively large number of drive photons. For not
extremely strong drives, the Rabi splitting is typically weak.
When both drives are weak, one can show that the Rabi
splitting is proportional to the drive amplitudes raised to a
power given by the number of drive photons involved in the
resonance process: �R ∝ �m−n−K

1 (�∗
2 )K . Importantly, �R =

0 if α = 0 because the oscillator is linear.
Because of the dispersive shift of the quasienergy levels

as the drives are turned on, the oscillator initially in the
ground state inevitably goes through several of these level
anticrossings, as shown also in Fig. 2. Near each anticrossing,
the corresponding Hamiltonian Eq. (26) can be approximated
as in the Landau-Zener problem: � is approximated as a
function linear in time

�(t ) ≈ st, s > 0,

where t = 0 is the time when the anticrossing occurs; �R is
approximated to be a constant. We note that this approxima-
tion relies on the Rabi splitting being sufficiently small so that
the region of anticrossing is narrow and one can neglect the
time dependence in �R . This approximation typically applies
when one or both of the drives are relatively weak. Where
the approximation applies, the probability for the oscillator
to make a diabatic transition is given by the Landau-Zener
formula [45],

Pdiab = exp(−π |�R|2/2s). (28)

As we will show, for a broad range of drive parameters used in
the experiment, the oscillator will make a diabatic transition
when it goes through an anticrossing, except for some special
situations; see below.

We now discuss the possible situations where the ap-
proximation that leads to the Landau-Zener formula breaks
down. The first one is that the drive frequencies are such that
the oscillator is very close to some lower-order multiphoton
resonance before the drives are turned on. Then as the drives
are turned on, it is possible that the Rabi splitting �R changes
faster in time than the detuning between the two resonating
levels. In this case, the standard Landau Zener analysis does
not apply. A situation of this sort was studied for a para-
metrically driven oscillator in Ref. [46]. Another possibility
is that the oscillator comes close to a level anticrossing near
the peak of the drive pulse where the drive amplitude changes
much slower in time than at the pulse edge. In this case, the
transition region may not be narrow in time and the full time
dependence in � and �R needs to be taken into account [47].
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Finally, we comment that for the case where one drive is
red detuned from ωc, because of the nonequidistance of the
oscillator levels, this drive can become resonant with one or
several of the oscillator transitions depending on the ratio
of detuning and anharmonicity [48]. As the drive strength
increases, there can occur systematic level crossings between
the oscillator quasienergy levels even when there is only one
drive. We will not discuss this situation.

2. Dispersive ac Stark shift

In this section we will discuss the drive-induced dispersive
shift of the oscillator levels. In view of the typical param-
eters used in the experiment (see below), we will focus on
the regime where the drive farther detuned from the ancilla
(drive 2) is relatively weak compared to the frequency dif-
ference of two drives (|�2| � ω21) so that the drive-induced
Rabi splitting [Eq. (27)] is much weaker than the dispersive
ac Stark shift.

To conveniently present the dispersive ac Stark shift in
the considered parameter regime and compare with experi-
ments, we define the Floquet state �m with quasienergy εm

in Eq. (24) in the following dynamical way: away from any
level anticrossings, �m is the adiabatic Floquet state of the
oscillator that smoothly connects to the Fock state |m〉 at zero
drive amplitudes and δEm(�1,�2) refers to the energy (or
quasienergy) shift of this state with respect to the zero drive
amplitudes limit; across the level anticrossing we consider

�m to be the diabatic state given that the avoided crossing is
rather weak. We note that this definition inevitably introduces
a discontinuity in δEm across the level anticrossing; the size of
discontinuity depends on the size of the gap at the anticross-
ing. However, this definition ensures that across weak avoided
crossings, the wave function of the state �m does not change
dramatically. In the rest of the paper we will simply refer to the
state �m defined this way as the state that adiabatically con-
nects to the vacuum state |0〉 as the drives are turned on. This
definition of the state �m is also illustrated in Fig. 2. A similar
construction of adiabatic Floquet states is studied in Ref. [49].

In order to observe the dispersive ac Stark shift δE as
defined above, it is important to carefully choose the rate of
turning on the drives. Generally speaking, the rate of ramping
up the drive amplitudes needs to be smaller than the typical
quasienergy spacings which is set by the drive detunings δ1,2

and ancilla anharmonicity α; at the same time, the rate of
the ramps needs to be larger than the typical gap �R of the
anticrossings. For the considered parameter regime where the
gaps are small, the allowed range for the rate of the ramps can
be quite broad.

The shifts δEm in the energy levels leads to shifts in the
transition frequencies of the ancilla. In the limit of weak
drives, the Stark shift of transition frequencies between neigh-
boring levels of ancilla can be found by solving Eq. (22) in
the Fourier domain perturbatively in the drive amplitudes. To
second order in the drive amplitudes, we find that

δEn(n−1)/h̄ ≈ −2α
∑
j=1,2

|�j |2 δj − α

(δj + nα)[δj + (n − 1)α][δj + (n − 2)α]
, (29)

where δEn(n−1) ≡ δEn − δEn−1. Importantly, the shift in the
transition frequency vanishes if the ancilla is linear (α = 0).
The expression above holds for any n � 1.

For positive drive detunings (δ1,2 > 0), the magnitude of
the shift δEn(n−1) decreases as n increases. For weak anhar-
monicity, δEn(n−1) for different n become close to each other
and the expression reduces to that obtained in the four-wave
mixing picture; see Eq. (B5) in Appendix B. Interestingly,
when the detuning and anharmonicity are of the same size,
the shift δEn(n−1) for n > 2 may have opposite sign from δE10

depending on the magnitude of δ1,2 and α.
The situation is more complicated for the case of a negative

driving detuning (δ1 or δ2 < 0). The ac Stark shift of certain
transition frequencies can be greatly enhanced when −δ1,2 is
close to integer multiples of ancilla anharmonicity α as can be
seen from Eq. (29). Such an enhancement of ac Stark shift is a
sign of the drive being resonant with one of the ancilla transi-
tion frequencies between neighboring levels. In the following,
we will focus on the simpler case of positive detunings.

For stronger drives, the ac Stark shifts of the transition
frequencies become nonlinear in the drive powers as shown
in Fig. 3. This nonlinear dependence can be understood as the
drive-induced shift in the transition frequencies modifying the
drive detunings which in turn modify the effective strength
of drives on the ancilla. Therefore, roughly speaking, the
ac Stark shift becomes nonlinear in the drive powers when

the drive-induced frequency shift becomes comparable to the
drive detuning from the frequency ωc of the undriven ancilla.

Because of its nonlinear dependence on the drive powers,
the Stark shift when both drives are present is not a simple
sum of Stark shifts due to each individual drive at the same
amplitude. A somewhat striking effect is that when one drive
is relatively strong, the ac Stark shift δE10 due to a second
drive can become a nonmonotonic function of its drive power
as can be seen in Fig. 3(a). We attribute such a behavior to
the modification of the ancilla anharmonicity due to the first
strong drive; see below.

Another interesting effect that occurs at relatively strong
drive is that, due to the differences in the ac Stark shifts
δEn(n−1) for different n, the effective anharmonicity of ancilla
(the nonequidistance of levels) can be modified. This occurs
even when there is only one drive. As shown in Fig. 3(b), for
the case of positive detuning (δ1 > 0), as the power of drive 1
increases, the transition frequencies between lower levels can
even become smaller than those between higher levels. Even-
tually at stronger drive, one can show that the ancilla levels
become close to being equidistant but with a negative anhar-
monicity (compared to the sign of α); see Appendix F 2 c.

3. Comparison with experiment

In this section we present the comparison between the-
ory and experiment for the dispersive ac Stark shift. In the
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(a)

(b)

FIG. 3. (a) The scaled ac Stark shift δE10/2h̄α of the transition
frequency from the first excited to the ground state of the ancilla
as a function of scaled power of the two drives. The solid lines are
contours of constant δE10. For weak drives, the contours are straight
lines well described by Eq. (29). For strong drives, the contours
become curved and the Stark shift becomes nonlinear in the drive
power. For the purpose of comparing with the perturbative result of
the Stark shift at weak drives δE10/h̄ ≈ −2α

∑
j=1,2 |ξj |2δj /(δj +

α), we have chosen a proper scaling for the x and y axes so that
for small values of x and y, the scaled Stark shift is simply equal to
−(x + y ). The detunings of the two drives are δ1 = α, δ2 = 4.5α.
(b) The ac-Stark-shifted transition frequency (E + δE)n(n−1)/h̄ of
the ancilla in the presence of one drive (drive 1). The transition
frequencies are counted from the bare ancilla frequency E10/h̄ ≡ ωc

and scaled by α. The black, blue, red, and green lines (from top to
down at low drive power) refer to n = 1, 2, 3, and 4, respectively.
The detuning of the drive δ1 = α. In (a), due to level anticrossings,
the quantity δE10 is generally discontinuous at particular values of
drive amplitudes. We make the contour plot by choosing a discrete set
of drive amplitudes and interpolate among them; the discontinuities
appear to be smeared out by such interpolation.

experiment the ancilla is a Y-shaped transmon superconduct-
ing qubit which is coupled to two microwave cavities. The
transmon has an anharmonicity

α/2π = 71.68 MHz

and frequency

ωc/2π = 5.963 GHz.

More details of the experiment setup can be found in Ref. [3].
The procedure to measure the ac Stark shift of the driven

ancilla is as follows. The ancilla is first initialized in the
vacuum state |0〉. Then the rf drives on the ancilla are turned
on with a cosine-shaped envelope. The time for the drive

(a)

(b)

FIG. 4. Comparison of the scaled ac Stark shift δE10/2h̄α be-
tween the theory (solid lines) and the experiment (black dots).
(a) ac Stark shift δE10 as a function of the scaled drive-1 power
while drive 2 is turned off. (b) ac Stark shift δE10 as a function of
the scaled drive-2 power for various drive-1 strengths. From top to
bottom, the scaled drive-1 power |ξ1|2δ1/(δ1 + α) = 0, 0.87, 1.35,
1.95. For a relatively large drive-1 power, the ac Stark shift due to
drive 2 becomes nonmonotonic in its power. The detunings of the two
drives are the same as in Fig. 3: δ1 = α, δ2 = 4.5α. The theoretical
curve in the top panel and the top curve in the bottom panel are
used to calibrate the amplitudes of the two drives, namely, to find
out the conversion factor between the drive amplitudes �1,2 in the
Hamiltonian and the readout of the pulse generator in the experiment.

amplitudes to reach the peak value from zero is kept a constant
(200 ns). During the time the drives are present, we perform
spectroscopy on the ancilla by sending in a π pulse whose
length is close to the duration of drives on the ancilla ∼1 μs.
We sweep the frequency of the spectroscopy tone and when it
matches the Stark-shifted ancilla transition frequency E10/h̄,
the ancilla will be excited from the ground state. We then
measure the transmon population in the ground state using a
dispersive readout after we have turned off the drives with a
symmetric ramp down. This allows us to locate the transition
frequency E10/h̄ of the ancilla in the presence of the rf drives.

The two rf drive amplitudes are calibrated independently
by fitting the measured transition frequency E10/h̄ as a func-
tion of experimental drive powers to the result of the Floquet
theory. Then using the obtained calibration, we compare the
theory and experiment on the Stark shift δE10/h̄ when both
drives are present; see Fig. 4. We obtain excellent agreement
between theory and experiment.

We note that in the process of ramping up the drives, the
ancilla passes through several level anticrossings as illustrated
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in Fig. 2. On the one hand, as indicated by the agreement be-
tween theory and experiment, for the chosen rate of ramping
up and down the drives and a broad range of drive parameters,
the ancilla indeed remains in the state |�0〉 that adiabatically
connects to the vacuum state |0〉 while away from level anti-
crossing and makes a diabatic transition while passing through
the level anticrossing. The same process occurs during the
ramping down of the drives, and the ancilla returns back to
the vacuum state |0〉. On the other hand, we also find that
for some particular combinations of the drive amplitudes, the
ancilla does not end up in the vacuum state after ramping up
and down the drives. This situation occurs because the ancilla
comes close to a level anticrossing near the peak of the drive
envelope where the drive amplitudes change rather slowly or
stay constant, and the probability of diabatic versus adiabatic
transition become comparable. We present an analysis of this
situation in Appendix G.

C. Linear susceptibilities of the driven ancilla
in the Floquet picture

In Sec. II we established the general relation between
the linear susceptibilities of the driven ancilla and the

ancilla-induced bilinear interaction between the cavity modes.
In this section we will derive general expressions for the
susceptibilities in the basis of Floquet states and discuss
different asymptotic limits, in particular, how they relate to the
formula we obtained based on the four-wave mixing picture
(Appendix B). We will also present a comparison between
the theory and experiment on the rate of the ancilla-induced
beam-splitter interaction between the two cavity modes.

1. General expressions

In the absence of ancilla decoherence, we can calculate
the linear susceptibilities from Eqs. (5) and (6) where the
Heisenberg operators c(0)(t ), c(0)†(t ) evolve under the unitary
operation

c(0)(t ) = U †
c (0, t )cUc(0, t )e−iω1t ,

where we have transformed into the rotating frame of drive 1
and Uc(0, t ) is given in Eq. (23).

Then assuming that the ancilla is initially in a given Floquet
state �m and after disregarding rapidly oscillating terms, we
find the linear susceptibilities to be

χm(ω,ω + Kω21) = −
∑

n�=m,K ′

[
cmn,K ′−K (c†)nm,−K ′

(ω − ω1) + K ′ω21 + (εmn/h̄)
+ (c†)mn,−K ′cnm,K ′−K

−(ω − ω1 + Kω21) + (K − K ′)ω21 + (εmn/h̄)

]
, (30)

Xm(−ω, 2ω1 + Kω21 − ω)=−
∑

n�=m,K ′

[
cmn,K ′−Kcnm,−K ′

−(ω − ω1) + K ′ω21+(εmn/h̄)
+ cmn,−K ′cnm,K ′−K

−[Kω21 − (ω − ω1)] + (K − K ′)ω21+(εmn/h̄)

]
.

(31)

The subscript m in the susceptibilities indicates that the initial
state of the ancilla at t = 0 is �m. If the ancilla is in a mixed
state, then an ensemble average over them is needed. cmn,K is
the Kth Fourier component of matrix element 〈um(t )|c|un(t )〉
of operator c between state um and un:

cmn,K ≡ ω21

2π

∫ 2π/ω21

0
〈um(t )|c|un(t )〉e−iKω21t dt.

A useful property of cmn,K is that (c†)mn,K = (cnm,−K )∗.
The strength of ancilla-induced bilinear interaction and

linear frequency shift can be calculated from Eqs. (30) and
(31) above using the general relations Eqs. (10), (12), and (17)
found in Sec. II. In the absence of ancilla decoherence, one
can show that the susceptibilities have a symmetry:

χm(ω,ω + Kω21) = [χm(ω + Kω21, ω)]∗,

Xm(−ω, 2ω1 + Kω21 − ω) = Xm(−2ω1 − Kω21 + ω,ω).

It follows from these symmetry relations that the rate of
ancilla-induced beam-splitter and two-mode squeezing inter-
action simplifies to

gBS = −g∗
agb[χm(ωa, ωb )]∗, (32)

where ωb = ωa + Kω21, and

gTMS = −g∗
ag

∗
bXm(ωa, ωb ), (33)

where ωa + ωb = 2ω1 + Kω21.

As noted in Sec. III A, in evaluating the susceptibilities
using Eqs. (30) and (31), we are free to choose any set of states
|um(t )〉 which yield a set of independent Floquet states �m.
The values of susceptibilities are independent of the choice
because of the summation over K ′. For the purpose of the
analytical calculation, we will choose, as in previous section,
a set of |um(t )〉 that adiabatically connect to ancilla Fock
states |m〉 in the absence of drives and their quasienergies
εm are given by Eq. (24). For numerical analysis, it is often
more convenient to choose the set of the states um with
quasienergies εm in a given Brillouin zone (i.e., the reduced
Brillouin zone scheme) according to the procedure described
below Eq. (23).

Equations (30) and (31) have a structure similar to standard
second-order perturbation theory, the squared matrix element
divided by the energy difference. Indeed, one can also derive
them using time-independent perturbation theory by map-
ping the Hamiltonian H̃c to a time-independent tight-binding
Hamiltonian; see Appendix E.

By thinking of the classical drives as quantized fields, the
expressions for the susceptibilities χ and X can be interpreted
as follows. As illustrated in Fig. 5(a), the first term in χ arises
from a process in which the driven ancilla first makes a virtual
transition from the mth to nth quasienergy level accompanied
by a virtual absorption of an incident probe photon and an
exchange of K ′ excitations between the two drive reservoirs.
Then, the driven ancilla undergoes a virtual transition back
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FIG. 5. A schematic showing how the linear susceptibilities arise
from virtual transitions between quasienergy states of driven an-
cillas in the rotating frame of drive 1. (a) A schematic showing
the process that gives the first term in χ (ω,ω + Kω21). ν is the
frequency of probe field in the rotating frame of drive 1: ν = ω − ω1.

(b) A schematic showing the process that gives the first term in
X(ω, 2ω1 + Kω21 − ω).

to the mth quasienergy level accompanied by an emission
of a probe photon at frequency ω + Kω21, and an exchange
of K − K ′ excitations between the two drive reservoirs. The
net result is that the incident probe photon has been up- and
down-converted by a frequency Kω21 and there is an overall
exchange of K excitations between the two drive reservoirs to
conserve the energy.

The process illustrated in Fig. 5(a) for K �= 0 is analogous
to the Umklapp scattering process in phonon transport in
which phonons with wave vectors adding up to k can be
scattered into phonons with wave vector adding up to k + G

where G is a reciprocal lattice vector. The second term in χ

arises from the time-reversed process of the first term. The
susceptibilities X can also be understood in the same way as
shown in Fig. 5(b). The net result is that the driven ancilla
simultaneously emits two probe photons, one at frequency ω

and the other at frequency 2ω1 + Kω21 − ω.

2. The limit of weak anharmonicity

As discussed previously, the capability of frequency con-
version of the ancilla originates from its finite anharmonicity.
To gain some insights on the magnitude of the linear sus-
ceptibilities, we consider in this section the limit of weak
anharmonicity. In this limit it is convenient to go to a displaced
frame with a displacement given by the response of the ancilla
in the absence of anharmonicity and then treat the anhar-
monicity as a perturbation. The displacement transformation
reads

D = exp[ξ (t )c† − ξ ∗(t )c], ξ (t ) = ξ1 + ξ2e
−iω21t ,

where ξ1,2 is the scaled drive amplitude: ξ1,2 = �1,2/δ1,2.
The Hamiltonian after the transformation HD =

D+H̃cD − ih̄D+Ḋ reads

HD = −δ1c
†c + δ1|ξ (t )|2 − α

[
1
2c†2c2 + 2|ξ |2c†c

+ (
1
2ξ 2c†2 + ξc†2c + |ξ |2ξc† + H.c.

)]
. (34)

In the limit α → 0, Hamiltonian HD is diagonalized in the
Fock basis, and thus the Floquet states of H̃c are simply
displaced Fock states |um(t )〉 = D|m〉, and their quasienergies
remain equidistant with a distance between neighboring levels
given by δ1, regardless of the values of driving strengths. The

two drives do not interfere with each other as a consequence
of superposition principle that a linear oscillator obeys.

It also follows from Eq. (34) that in the limit α = 0, all ma-
trix elements in Eqs. (30) and (31) are zero except cm(m+1),0.
Therefore, among all linear susceptibilities, the only nonzero
one is χm(ω,ω) = −(m + 1)/(ω − ωc ). This is simply the
dispersive shift to the frequency of the cavity modes due to
coupling to the ancilla.

The interplay of drives and finite anharmonicity leads to
two major effects: (i) periodic modulation of the frequency
of the ancilla through the term |ξ 2(t )|c†c in Eq. (34) and
(ii) squeezing of the Fock states through the term c†2ξ 2(t ) +
c2ξ ∗2(t ). The periodic modulation in ancilla frequency leads
to periodic modulation of the phase evolution of the Fock
states. Neglecting other effects, the Floquet states um(t ) ≈
exp[2imα

∫ t
dt ′|ξ (t ′)|2]|m〉. Note that the time dependence

in |ξ (t )|2 comes from the interference between the two
drives. Such modulation leads to a finite matrix element
cm(m+1),K for nonzero K , which results in a nonzero sus-
ceptibility χ (ω,ω + Kω21). It is straightforward to show
that the squeezing terms in Eq. (34) lead to a finite matrix
element cm(m−1),K , which results in nonzero susceptibility
Xm(−ω, 2ω1 + Kω21 − ω). To the lowest order in the anhar-
monicity α, one can show that using perturbation theory

χm(ω,ω + Kω21) ∝ |αξ1ξ2||K|,

Xm(−ω, 2ω1 + Kω21 − ω) ∝ |α| |K−2|+|K|
2 |ξ2||K||ξ1||K−2|,

(35)

for any integer K . The power in the driving amplitudes of the
expressions above is simply the minimum number of drive
photons involved in the underlying process represented by
the susceptibilities as illustrated in Fig. 5. One can show that
if one goes to next-to-leading order in α, there are terms
in the susceptibilities proportional to drive amplitudes raised
to higher powers than that in Eq. (35). As a result, the
perturbation theory in α breaks down at large drive powers.

The terms linear and cubic in ancilla operators c, c† in
Eq. (34) also lead to frequency modulation and squeezing
of the ancilla if one goes to second order in α, but they do
not contribute to the susceptibilities to leading order in α as
shown above. We show in Appendix F 2 that the terms linear
in c, c† can be eliminated by modifying the displacement
transformation, so that ξ is the full classical response of the
nonlinear ancilla to the drives. This way, the nonperturbative
effects of the nonlinearity can be partially captured.

3. Susceptibilities χ0 and X0

Of primary interest to us are the susceptibilities χ0 and X0

where the ancilla is in the Floquet state �0. As described in
Sec. III B, state �0 can be prepared from the ancilla vacuum
state by slowly turning on the drives (but not too slow com-
pared to the gap of quasienergy level anticrossing and ancilla
relaxation rate; see Sec. IV B 2). In this section we will study
in detail the parameter dependence of the susceptibilities χ0

and X0.
Explicit expressions for χ0 and X0 can be obtained in the

limit of weak drives by solving Eq. (22) for the states um
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perturbatively in the driving strengths. For the case of K = 1,
we find that to leading order in the drive amplitudes,

χ0(ω,ω + ω21) ≈ 2α
ξ ∗

1 ξ2

δ(δ + ω21)

δ + δ2

δ + δ2 + α
, (36)

X0(−ω,ω1 + ω2 − ω) ≈ 2α
ξ1ξ2

δ(δ1 + δ2 − δ)

δ1 + δ2

δ1 + δ2 + α
,

(37)

where δ ≡ ω − ωc. One can show the rate of beam-splitter
and two-mode squeezing interaction obtained from the above
susceptibilities reduce to those obtained based on the four-
wave mixing to leading order in the anharmonicity α; see
Appendix B.

Also of interest to us is the susceptibility χ0(ω,ω) which
relates to the ancilla-induced frequency shift of the cavity
modes through Eq. (10). To leading order in the drive am-
plitudes, we find that

χ0(ω,ω) ≈ −1

δ
+

∑
j=1,2

2α|ξj |2(δ + δj )

δ2(δ + δj + α)
. (38)

We note that the ancilla-induced cavity frequency shifts are
generally of the same size as the ancilla-mediated interaction
between the cavities. Therefore, to ensure resonant interaction
between the cavities, it is important to fine tune the drive
frequencies so that the frequency matching conditions in
Eqs. (8) and (15) are satisfied.

An important feature of the spectrum χ0(ω,ω + ω21) and
X0(ω,ω1 + ω2 − ω) is that there are multiple peaks with
dispersive line shape. We show an example of the spectrum
χ0(ω,ω + ω21) in Fig. 6(a). Those peaks are related to res-
onant absorption or emission of the probe field; see Sec. IV.
Such dispersive structure can already be seen from the for-
mulas (36) and (37). The locations of the peaks are shifted as
the drive strengths increase due to the ac Stark shift of ancilla
transition frequencies. We note that, in addition to capturing
the effects of ac Stark shift, the Floquet calculation based on
Eqs. (30) and (31) contains more peaks than the perturbation
theory Eqs. (36) and (37) due to transitions between state �0

and “far away” states that only become strong at large drives.
At strong drive powers, the susceptibilities χ0(ω,ω + ω21)

and X0(ω,ω1 + ω2 − ω) become nonlinear in the drive am-
plitudes. The nonlinear dependence on the drive amplitudes
arises in two ways: first, energy denominators in Eqs. (30)
and (31) depend on the drives through the ac Stark shift in
the quasienergies; and second, the matrix elements generally
depend nonlinearly on the drive amplitudes. The drive depen-
dence of the ac Stark shift has been analyzed in Sec. III. In
order to quantify the latter effect, we choose to probe the
ancilla at a frequency [labeled as ωa in Fig. 6(a)] that is far
from any resonance so that the nonlinear dependence of the
susceptibilities on the drive amplitudes mainly comes from
the matrix elements; see below.

We show in Figs. 6(b) and 7 the dependence of the
engineered beam-splitter rate on the drive amplitudes. As
in the Stark shift analysis, we focus on the situation of
two blue-detuned drives (δ1,2 > 0) where one drive is close
to the ancilla frequency and relatively strong, whereas the
other drive (drive 2) is far detuned and relatively weak. The
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FIG. 6. Comparison between perturbation theory and full Flo-
quet theory on the susceptibility χ0(ω,ω + ω21) which is responsi-
ble for the ancilla-mediated beam-splitter interaction between two
cavity modes with frequencies ωb − ωa = ω21. (a) Susceptibility
χ0(ω,ω + ω21) as a function of probe frequency ω at fixed drive
strengths: |ξ1| = 1.5, |ξ2| = 0.14. The detunings of the drives are
δ1/α = 1, δ2/α = 16.1 as indicated by the vertical dashed lines. The
red and black dots refer to results of the full Floquet theory and
perturbation theory [Eq. (36)], respectively. We have chosen the
relative phase of the two drives to be zero, so that χ0(ω,ω + ω21)
is real in the absence of ancilla decoherence. (b) The scaled beam-
splitter interaction strength |gBS| between the two cavity modes as a
function of driving amplitudes |ξ1| and |ξ2| calculated using Floquet
theory. gBS is related to the beam-splitter strength gBS in Eq. (12)
by a constant factor: gBS = ζgBS, ζ = − 2αg∗

a gb

δaδb

δa+δ2
δa+δ2+α

. The scaling
factor is chosen so that at weak drives, gBS ≈ ξ1ξ

∗
2 . The solid lines

are contours of constant gBS. As a comparison, the dashed lines
are contours of constant |ξ1ξ2|. The frequencies of cavity modes are
detuned from the ancilla frequency by δa/α = −6.9, δb = δa + ω21

as also indicated as a vertical dashed line in the top panel.

deviation of the Floquet calculation from the perturbation
theory in Eq. (36) is most pronounced when the near-detuned
drive becomes strong. Interestingly, the beam-splitter strength
becomes sublinear in the drive amplitude ξ1 for large ξ1.
Such sublinear dependence can be well captured by replacing
ξ1 in Eq. (36) with the full classical response ξ 1 of the
ancilla to drive 1 which relates to ξ1 via the relation ξ 1 =
ξ1/(α|ξ 1|2/δ1 + 1); see Appendix F 2 for details. For a weak
drive, ξ 1 ≈ ξ1; at a strong drive, ξ 1 becomes smaller than
ξ1 and scales as ξ

1/3
1 when αξ 1/δ1 � 1. We also note that

although the beam-splitter strength remains linear in ξ2 [see
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(a)

(b)

FIG. 7. Comparison between the theory and experiment on the
ancilla-induced beam-splitter rate gBS between the two cavity modes
whose frequencies satisfy ωb − ωa = ω21. The red solid and black
dashed lines refer to the results of Floquet theory and perturbation
theory in Eq. (36), respectively. The black dots refer to the experi-
mental results. The detunings of the drives and cavity modes from
the ancilla frequency are the same as in Fig. 6. (a) |gBS(ξ1, ξ2)| as a
function of |ξ1| at fixed |ξ2| = 0.14. (b) |gBS(ξ1, ξ2)| as a function
of |ξ2| at fixed |ξ1| = 2.14. The dots are experimental results. In
the experiment, parameter |ζ |/2π = 0.33 MHz corresponding to
cavity-ancilla coupling strengths |ga/δa | = 0.047, |gb/δb| = 0.054.

Fig. 7(b)], it deviates from the perturbation theory because of
the nonperturbative effect of drive 1.

To confirm the theory, we performed experiments to en-
gineer a beam-splitter interaction between two off-resonant
microwave cavities based on the aforementioned cQED setup
[3]. By initializing one of the cavity modes in the Fock
state |1〉 and then measuring the oscillations of its photon
number population after the beam-splitter interaction has been
turned on, we can extract the strength gBS of beam-splitter
interaction. We find excellent agreement between experiments
and the theory on gBS as a function of drive strengths; see
Fig. 7.

IV. FLOQUET DYNAMICS IN THE PRESENCE
OF DISSIPATION AND DEPHASING

Coherent quantum operations between the cavity modes
based on ancilla-mediated interactions require the ancilla to be
in a pure Floquet state during the operation. However, because
of the finite coherence time of the ancilla, it can undergo
transitions from one Floquet state to another during this time,
thereby reducing the coherence of the desired operation. In

this section we discuss the effects of ancilla dephasing and
dissipation on the engineered bilinear interaction between
cavity modes. Since the ancilla typically has a much shorter
coherence time than the cavity modes in a typical cQED setup,
its decoherence is one of the dominant factors that limit the
fidelity of the operation.

The major effects of ancilla decoherence are twofold. First,
due to the coupling between the ancilla and the cavity modes,
the cavity modes inherit finite dissipation and dephasing rates
from the ancilla through the “inverse Purcell effect.” This
effect becomes particularly strong when the frequency of
the cavity modes is close to some resonance that excites the
ancilla to higher levels with or without absorption of drive
photons. Second, both dissipation and dephasing can induce
transitions among the Floquet states of the driven ancilla, even
when the environment that leads to ancilla dissipation and
dephasing is at zero temperature. This leads to an effective
“heating” of the ancilla. We will show that the transition
rates have nontrivial dependence on the drive powers and
frequencies. In the following, we first present the model we
use to describe ancilla dissipation and dephasing. Then we
will address the two effects separately and present a compar-
ison between theory and experiment. Lastly, we discuss the
ancilla-induced dephasing of the SWAP operation as a result of
its random transitions among the Floquet states.

A. The model of ancilla dissipation and dephasing

We will assume that the ancilla is weakly coupled to a ther-
mal bath and the coupling is linear in the dynamical variables
of the ancilla. Therefore, the ancilla decays by emitting one
excitation at a time to the bath. We will also consider the
possibility that the ancilla is dispersively coupled to a bath
that leads to dephasing. The total Hamiltonian of the ancilla
plus the baths reads

Hc+bath = H̃c(t ) + Hbath + Hi,

Hi = (ce−iω1t + c†eiω1t )h1 + c†ch2, (39)

where we have made a unitary transformation U =
exp(−ic†cω1t ) to go to the rotating frame of drive 1 and
H̃c is the ancilla Hamiltonian in the rotating frame as given
in Eq. (20). h1, h2 are bath operators that lead to ancilla
relaxation and dephasing, respectively.

To find the time evolution of the reduced density matrix of
the ancilla, we follow the standard procedure to eliminate the
bath degrees of freedom based on the Markov approximation.
For Floquet systems, a rather clear derivation can be found
in Ref. [50] and references therein. Here we sketch the main
steps involved in the derivation, tailored for a periodically
driven weakly nonlinear oscillator. We first go to the inter-
action picture and solve iteratively the equation for the total
density matrix to second order in Hi ; after taking the trace
over the bath degrees of freedom, we obtain

˙̄ρc = − 1

h̄2

∫ t

−∞
dt ′Trb([H̄i (t ), [H̄i (t

′), ρ̄(t ′)]]), (40)

where the bar over the operators indicates the interaction
picture and Trb indicates trace over bath degrees of freedom;
ρ̄c ≡ Trbρ̄.
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Next we make two approximations: (1) the total density
matrix ρ̄(t ′) factorizes ρ̄(t ′) ≈ ρbath ⊗ ρ̄c(t ′) where ρbath is the
bath density matrix in equilibrium at t = −∞; and (2) the
rate of change of the reduced density matrix ρ̄c(t ) is much
smaller than the relaxation rate of the bath, so that one can

make the Markov approximation that ρ̄c(t ′) ≈ ρ̄c(t ). The two
approximations ultimately rely on the coupling between the
ancilla and the baths being weak. After making these two
approximations and going back to the Schrödinger picture, we
obtain

ρ̇c(t ) = − i

h̄
[H̃c(t ), ρc] − 1

h̄2

∫ t

−∞
dt ′{〈h1(t )h1(t ′)〉[(ce−iω1t + H.c.)[c(t, t ′)e−iω1t

′ + H.c.]ρc(t ) − [c(t, t ′)e−iω1t
′ + H.c.]

× ρc(t )(ce−iω1t + H.c.)] − 〈h2(t )h2(t ′)〉[c†c(c†c)(t, t ′)ρc(t ) − (c†c)(t, t ′)ρc(t )c†c] + H.c.}, (41)

where c(t, t ′) ≡ Uc(t ′, t )cU †
c (t ′, t ), Uc(t ′, t ) = T̂ exp[−i∫ t

t ′ dt ′′H̃c(t ′′)] and similarly for (c†c)(t, t ′). It is important
to notice that because of the time ordering as denoted by
the operator T̂ , U

†
c (t ′, t ) �= Uc(t, t ′). In arriving at Eq. (41),

we have assumed that there is no correlation between the
bath variables h1 and h2. In accordance with the rotating
wave approximation we have made in treating the drives and
nonlinearity of the ancilla, we can also neglect the cross term
between c and c(t, t ′) and c† and c†(t, t ′) in the second and
third line of the equation above.

In the limit that the spectral density of the bath [the Fourier
transform of correlator 〈h1,2(t )h1,2(0)〉] is sufficiently smooth
(or almost constant) over the scale of the ancilla anharmonic-
ity and drive detunings, Equation (41) reduces to the familiar
Lindbladian master equation:

ρ̇ = −i[H̃c(t ), ρ]/h̄ + (nth + 1)D[
√

γ c]ρ + nthD[
√

γ c†]ρ

+D[
√

2γphc
†c]ρ, D[c]ρ ≡ cρc† − 1

2 {c†c, ρ}. (42)

Here γ and γph are the ancilla decay and dephasing
rate, respectively. They are given by γ = 2h̄−2Re

∫ ∞
0 eiωct

〈[h1(t ), h1(0)]〉 and γph = h̄−2Re
∫ ∞

0 〈h2(t )h2(0)〉dt . We have
assumed that the bath that leads to ancilla relaxation is
in thermal equilibrium with the thermal population nth =
[exp(h̄ωc/kBT ) − 1]−1.

For large drive detunings, however, the assumption of
constant spectral density of the bath might break down, partic-
ularly for the bath that causes dephasing. In the following, we
relax this assumption and consider the more general situation.
To capture the frequency dependence in the spectral density
of the bath, it is convenient to write the density matrix ρc in
the basis of Floquet states of the Hamiltonian H̃c(t ):

ρc(t ) =
∑
mn

ρmn(t )|um(t )〉〈un(t )|.

In such a basis, Eq. (41) has the form

ρ̇mn = −iεmnρmn/h̄ + Mmn
m′n′ (t )ρm′n′ , (43)

where the rank-4 tensor Mmn
m′n′ ∝ 1/h̄2 can be found straight-

forwardly by inserting I = ∑
m |um(t )〉〈um(t )| into Eq. (41)

and using the relation U
†
c (t ′, t )|um(t )〉 = eiεm(t−t ′ )|um(t ′)〉. Its

magnitude depends on the matrix elements of operators
c, c†, c†c in the Floquet basis and the spectral density of the
baths at certain frequencies; see below. Mmn

m′n′ (t ) is periodic

in time with a periodicity τ due to the periodicity in the basis
states um(t ). This is in contrast to systems in equilibrium
where the corresponding tensor M is time independent. In
the following we will give explicit expressions for the tensor
M in the limit of weak damping and dephasing.

B. The limit of weak damping and dephasing

Equation (43) greatly simplifies in the limit of weak damp-
ing and dephasing where the quasienergy spacing and their
nonequidistance is much larger than the broadening of the
quasienergy levels due to coupling to the bath. Due to the
fast oscillation in the off-diagonal element ρmn with a rate
set by εmn/h̄, one can neglect couplings between diagonal
and off-diagonal elements of ρc. Furthermore, when the level
spacings εmn are sufficiently nonequidistant compared to their
broadening, one can as well neglect the couplings among the
off-diagonal elements of ρc. In the same weak damping and
dephasing limit, one can also disregard the time dependence
in M by averaging over a period τ as long as ω21 � γ, γph.
After these approximations, Eq. (43) reduces to

ρ̇mm = −
∑

n

Wmnρmm +
∑

n

Wnmρnn, (44)

ρ̇mn = −iεmnρmn/h̄ − Vmnρmn, m �= n. (45)

Equations (44) and (45) capture the main effects of ancilla
decoherence on the Floquet dynamics: (1) there is incoherent
hopping between different Floquet states with a hopping rate
given by Wmn due to dissipation and dephasing; and (2) the
coherence between quasienergy states acquires a finite decay
rate given by Vmn. These two effects are responsible for the
aforementioned heating and the inverse Purcell effect, respec-
tively. We will study them in detail in the next few sections.

The parameter regime where Eqs. (44) and (45) hold
readily applies to the current cQED experiments. The charac-
teristic quasienergy spacing εmn is set by the drive detunings
δ1,2 and the ancilla anharmonicity α. Typical anharmonicity of
transmon ancilla used in cQED ranges from tens to hundreds
of MHz and is orders of magnitude larger than its dephasing
and dissipation rate which is typically tens of kHz. The
detunings of the drives from the ancilla frequency can be
chosen to be of the same size as the ancilla anharmonicity. We
emphasize that the approximations that lead to Eqs. (44) and
(45) break down near quasienergy level anticrossings where
the level spacings become smaller than their widths.
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1. Incoherent hopping between Floquet states

Due to the noise that accompanies the dissipation and
dephasing, there occurs incoherent hopping between different
Floquet states as described by Eq. (44). The hopping rate Wmn

from the mth to the nth Floquet state is found to be

Wmn = Wγ
mn + W

γph
mn ,

Wγ
mn =

∑
K

[|(c†)nm,K |2nthγ (ω1 + εnm/h̄ + Kω21)

+ |cnm,K |2(nth + 1)γ (ω1 − εnm/h̄ − Kω21)],

W
γph
mn = 2

∑
K

|(c†c)nm,K |2γph(εnm/h̄ + Kω21). (46)

Here the frequency-dependent dissipation and dephasing rates
are given by

γ (ω) = 2h̄−2Re
∫ ∞

0
dteiωt 〈[h1(t ), h1(0)]〉,

γph(ω) = h̄−2Re
∫ ∞

0
dte−iωt 〈h2(t )h2(0)〉. (47)

We have neglected the frequency dependence in nth in the
considered parameter regime |δ1,2|, α � ωc.

The formula for the hopping rate Wmn has the same form
as the usual transition rates given by Fermi’ s golden rule,
the squared matrix element times the density of states at the
energy the bath provides to or receives from the ancilla. The
hopping induced by dissipation is accompanied by absorption
and emission of an excitation near frequency ωc into or
from the bath as represented by the first and second terms
in Wγ , respectively. In contrast to undriven oscillators, the
hopping generally occurs not just between neighboring levels
but also between levels separated by more than one transition
frequency ωc; the extra energy needed for the transition to
occur is provided by the drives, which are embedded in the
Floquet states um. Because of the second drive, there is also
a summation over K which indicates an exchange of K

excitations between the two drive reservoirs.
An important feature of dissipation-induced hopping is that

even at zero temperature (nth = 0) where the ancilla can only
emit excitation to the bath, it can still “hop up” in the ladder of
Floquet states. Let us consider for instance the hopping from
the state um to um+1 and the simple case where only drive 1 is
present [thus K = 0 in Eq. (46)]. For a weak drive, state um

is close to ancilla Fock state |m〉. In hopping from state um

to um+1 at zero temperature, the ancilla absorbs two drive
excitations at frequency ω1 and emits one excitation to the
bath at frequency 2ω1 − E(m+1)m/h̄. Indeed, one can show
that the relevant matrix element for this process c(m+1)m,0 ∝
α�2

1 for a weak drive; see also Eq. (48).

The frequency noise (dephasing) of the ancilla also in-
duces hopping between the Floquet states with a hopping rate
given by W

γph
mn in Eq. (46). Importantly, the hopping induced

by frequency noise does not involve exchange of excitation
between the ancilla and the bath near frequency ωc. Instead,
the hopping occurs because the ancilla makes a transition to
a neighboring level by absorbing or emitting a near-resonant
drive excitation (δ1,2 � ωc) and the extra energy is absorbed
by or emitted to the bath. Therefore, to leading order in the
drive amplitudes, the relevant matrix elements (c†c)m(m±1),0 ∝
�1; see Eq. (48). A transition to a “far away” level is also
possible by absorbing or emitting multiple drive excitations.

An important complication that must be considered is
that spectral density of the noise that leads to dephasing is
typically strongly frequency dependent. The measured de-
phasing rate from Ramsey fringe and spin echo experiments
is a measure of the noise spectrum at very low frequencies,
whereas the inelastic transitions described above rely on the
spectral density of the noise bath at much higher frequencies;
see next section for a detailed discussion.

2. Heating from the Floquet “ground state”

As described previously, even at zero temperature, the
ancilla can hop from one Floquet state to another and thereby
forms a finite-width distribution over the Floquet states after
a relaxation time of the ancilla. In order to perform a coherent
quantum operation between cavity modes utilizing the ancilla-
mediated interactions, one would like to prepare the ancilla in
the Floquet state that has the smallest escape rate. Normally
this state is also the most populated state when the driven
ancilla reaches its steady state. We will call this state the
Floquet “ground state.”

For a driven nonlinear oscillator where the drives are blue
detuned (δ1,2 > 0), as we will show, the Floquet ground state
is the state �0 that adiabatically connects to the ancilla vac-
uum state |0〉 as the drive amplitudes increase or decrease. The
situation is more complicated when the drive is red detuned. In
this case there occur systematic level anticrossings depending
on the ratio of drive detuning and anharmonicity [48] and the
oscillator may undergo a sharp transition to states with large
photon number as the drive amplitude increases [51]. We will
not discuss this situation here.

Of primary interest to us is the “heating rate” from the
Floquet ground state �0 after we have prepared the ancilla
in that state by slowly turning on the drives. In the following
we will focus on the interesting case of nth = 0 where the
heating is solely due to the quantum noise that accompanies
dissipation and frequency noise. In the limit of weak drives,
Floquet state |�0〉 is mostly Fock state |0〉 and has a small
amount of coherent admixture with other Fock states. This
admixture results in a finite transition rate W0n from �0 to �n

for any n. For weak drives, the transition to the neighboring
state �1 dominates and the rate is

W
γ

01 ≈ α2

[∣∣∣∣ ξ 2
1

2δ1 + α

∣∣∣∣
2

γ (2ω1 − ωc ) +
∣∣∣∣ ξ 2

2

2δ2 + α

∣∣∣∣
2

γ (2ω2 − ωc ) +
∣∣∣∣ ξ1ξ2

δ1 + δ2 + α

∣∣∣∣
2

γ (ω1 + ω2 − ωc )

]
,

W
γph

01 ≈ 2[|ξ1|2γph(−δ1) + |ξ2|2γph(−δ2)]. (48)
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An important difference between dissipation- and
dephasing-induced heating is that the former requires nonlin-
earity while the latter does not. One way to understand this is
to consider the limit of zero anharmonicity; see Sec. III C 2.
In this limit, the Floquet states are simply displaced Fock
states. It is not hard to show that the dissipative dynamics in
the displaced frame is exactly the same as in the laboratory
frame without drive; therefore, dissipation can only bring
the ancilla down in the Floquet ladder. In contrast, since
displaced Fock states (in particular, the coherent state) are
superpositions of Fock states, dephasing can cause transitions
among these states. Another enlightening way to see the
difference is to consider the limit of constant γ (ω) and
γph(ω). In this limit, the total rate

∑
n�=m Wmn of leaving the

state �m can be summed up to be equal to the variance of the
operator c and c†c for the dissipation- and dephasing-induced
transitions, respectively:∑

n�=m

Wγ
mn = γ τ−1

∫ τ

0
dt[〈um(t )|c†c|um(t )〉

− |〈um(t )|c|um(t )〉|2],∑
n�=m

W
γph
mn = 2γphτ

−1
∫ τ

0
dt[〈um(t )|(c†c)2|um(t )〉

− 〈um(t )|c†c|um(t )〉2]. (49)

In the limit of zero anharmonicity where �0 is a coherent
state, Eq. (49) shows that

∑
n�=0 W

γ

0n = 0 and
∑

n�=0 W
γph

0n =
2γph(|ξ1|2 + |ξ2|2). The heating due to the interplay of drive
and broadband dephasing noise has also been studied theoret-
ically and observed experimentally for a linear oscillator in
the classical regime [52].

3. Comparison with experiment

To corroborate the theory, we performed measurement on
the drive-induced heating of the superconducting transmon
qubit (the ancilla). The procedure of the experiment is similar
to the ac Stark shift measurement in Sec. III B. Before we
turn on the drive, the ancilla is mostly in the ground state with
a thermal population nth ≈ 0.006. At time t = 0 we turn on
the drive with a rise time 100 ns and then keep the drive on
for various amounts of time. Finally, we measure the ancilla
ground state population after we have turned off the drive.
The drive envelope is symmetric with respect to ramping up
and down each having a hyperbolic tangent shape. For zero
drive amplitude, the ancilla remains in the ground state with
a very small probability in the excited states due to thermal
fluctuations; see the black dots in Fig. 8(b). For a finite drive
amplitude, the ancilla population in the excited (Floquet)
states increases in time and then reaches a steady state during
a timescale set by the relaxation rate γ of the ancilla.

To compare with the theory, we recorded the steady-state
population for various drive amplitudes as shown Fig. 8(a).
In the presence of a single off-resonant drive, the rate of
dephasing-induced hopping is determined by the spectral
component of the ancilla frequency noise near the drive de-
tuning frequency, as can be seen in Eq. (48). For the range of
drive power used in the experiment, the drive detunings from
the ac Stark shifted ancilla transition frequencies range from

FIG. 8. Comparison between the theory (solid lines) and ex-
periment (dots) on the heating from the Floquet ground state �0

in the presence of one drive (drive 1). The detuning of the drive
δ1 = α = 2π ∗ 71.68 MHz. (a) The steady-state population of not in
the ground Floquet state as a function of the scaled drive power. The
experimental data are taken for a pump duration ∼100 μs. The blue,
black, and green dots refer to 48, 100, and 1000 ns ramping time,
respectively. The spike around |ξ1|2 = 0.5 is likely due to leakage
from the mixer that excites the ancilla when the ancilla frequency is
Stark shifted to the frequency of this tone. The theoretical curve is
a result of Eq. (44): P0 ≡ ρ00. We use a constant γ and γ

(hf)
ph whose

ratio is taken to be γ
(hf)

ph /γ = 0 (black), 1/60 (red), and 1/30 (blue);
see the text for details. The dashed lines are results of semiclassical
calculation (see Appendix F 2 a). (b) The transmon population not in
the ground Floquet states as a function of the dimensionless time γ t

for various scaled drive powers. From bottom to top, the scaled drive
powers are |ξ1|2 = 0 (black), 0.55 (blue), 1.52 (red), 4.85 (green),
and 8.66 (purple). At t = 0, when the drive is turned on, the ancilla
is in an effective thermal equilibrium with its environment with a
thermal population nth ≈ 0.006. The independently measured decay
rate of the ancilla is γ = 90 kHz. The solid lines refer to the results
of simulation using Eq. (44) where we have neglected the finite
time of ramping up and down the drive which is much shorter than
the timescale set by 1/γ and assumed that the ancilla adiabatically
evolves from Fock states |n〉 to the adiabatically connected Floquet
states |�n〉 during these times.

tens to hundreds of MHz. We assumed that the dephasing rate
γph(ω) is approximately flat in this frequency region and has
an amplitude γ

(hf)
ph , to be differentiated from the dephasing rate

obtained from Ramsey or spin echo experiment which is only
sensitive to the low-frequency part of the noise spectrum; see
below. We also assumed that the dissipation rate γ (ω) is ap-
proximately flat near the ancilla frequency and has a value γ .
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As shown in Fig. 8, the theory approximately matches the
experiment for a dephasing rate γ

(hf)
ph = γ /60. This is con-

siderably smaller than the independently measured dephasing
rate of the undriven ancilla using Ramsey fringes: γ

(R)
ph =

88 kHz ≈ γ . The latter is a measure of the noise spectrum
near zero frequency over a frequency range set by the inverse
length of the Ramsey experiment which is constrained by γ

(R)
ph

itself [53]; it is typically dominated by the low frequency
component of the ancilla dephasing noise, including 1/f

noise. The difference between γ
(R)

ph and γ
(hf)

ph suggests a falling
off of the dephasing noise spectrum over a range from tens
of kHz to tens of MHz. Also, we emphasize that dissipation
alone only accounts for half of the observed heating.

The observed heating due to dissipation can also be un-
derstood as a result of the drive-induced squeezing of the
ancilla mode as can be seen from Eq. (34). The lowering
operator of the bare ancilla mode is a linear combination of
both the lowering and raising operator of the squeezed ancilla
mode. As a result, annihilation of the ancilla excitations due
to coupling to the environment can lead to both creation and
annihilation of the excitations of the squeezed mode. One
can show using a semiclassical analysis that, even at zero
temperature, there forms a finite-width Boltzman distribu-
tion over the states of the squeezed mode with an effective
thermal population ñth = sinh2 φ. Here φ is the squeezing
parameter and is controlled by a dimensionless parameter
α|ξ1|2/δ1.

For a blue-detuned drive, the amount of squeezing saturates
at strong drive due to the drive-induced frequency shift which
pushes the ancilla frequency further away from the drive
frequency and effectively constrains the maximum squeezing
one can achieve. When the parameter α|ξ1|2/δ1 becomes of
the order ten, the squeezing saturates and the total population
in the excited Floquet states approaches ∼7%. The black
dashed line in Fig. 8(a) shows the result of this analysis (see
Appendix F 2 a for details), which qualitatively captures the
behavior of the full Floquet analysis including the saturation
of the heating at strong drive.

The same semiclassical analysis shows that, on top of
the dissipation-induced heating, ancilla dephasing leads to an
additional effective thermal population ñth = 2|ξ 1|2γ (hf)

ph /γ .
The joint effects of the ancilla dissipation and dephasing are
shown as the red and blue dashed lines in Fig. 8(b) which also
qualitatively match the full Floquet analysis.

To rule out the possibility that the observed heating is
due to ramping up and down the drive too rapidly causing
diabatic transitions (in particular for relatively strong drive),
we performed the measurement for various ramping times
ranging from 48 to 1000 ns. While we did observe slight
variations in the steady-state population for different ramping
times, the overall trend and the saturation value of the excited
state population at large drive amplitude remains the same.
For a very long 5 μs ramping down time, we observed that
the steady-state population in the excited states significantly
reduces which is likely due to the ancilla re-equilibrates while
the drive is turning off. We have also numerically verified that
using a linear ramp in which the drive amplitude increases
linearly in time from zero to its peak value (|ξ1|2 = 10) in
100 ns, the ancilla initially in the ground state has a 99.5%

overlap with the Floquet ground state �0 at the end of the
ramp. This confirms that the drive is turned on adiabatically.

The exact source of the dephasing noise around the drive
detuning frequency with a strength γ

(hf)
ph ≈ γ /60 requires

further investigation. The good agreement between theory and
experiment over a wide range of the drive power (correspond-
ing to an ac Stark shift δE10/2πh̄ up to ∼250 MHz) suggests
that the dephasing noise could be a broadband noise with a
bandwidth larger than hundreds of MHz.

We have ruled out the possibility that the observed heating
comes from the tail of the spectrum of the dephasing noise
induced by the photon number fluctuations of the low-Q
cavity mode for readout. Because of the dispersive cou-
pling between the readout cavity and the transmon ancilla,
thermal fluctuations of the readout cavity photon number
become frequency fluctuations of the transmon; cf. [54].
These frequency fluctuations have a Lorentzian spectrum
∝κnth(nth + 1)/(κ2 + ω2), where nth and κ are the thermal
photon number and relaxation rate of the readout cavity.
Assuming that the measured Ramsey dephasing rate γ

(R)
ph all

comes from the thermal fluctuations of the readout cavity
mode, we obtained that γ

(R)
ph ≈ nth(nth + 1)χ2/κ , where χ is

the dispersive coupling rate between the readout cavity and
the ancilla; we have used the fact that κ (≈1 MHz) � γ, γ

(R)
ph .

Without knowing the values for χ and nth, we can deduce
the dephasing rate at a higher frequency using the Lorentzian
form of the noise spectrum and estimate an upper bound of the
readout-cavity-induced dephasing rate at the drive detuning
frequency (δ1/2π = 71.68 MHz) to be γ

(R)
ph (κ/δ1)2 ∼ 10−5γ.

This dephasing rate is two orders of magnitude smaller than
what we found. However, we have not considered the thermal
fluctuations of higher-order modes of the readout cavity which
usually have larger κ and thus can potentially lead to larger
transmon dephasing rate at high frequency.

4. Decoherence of superpositions of Floquet states

Because of ancilla dephasing and dissipation, superposi-
tions of Floquet states decohere as described by Eq. (45). The
decoherence rate Vmn of a superposition of Floquet states �m

and �n is given by

Vmn = V γ
mn + V

γph
mn ,

V γ
mn = 1

2

∑
j �=m

W
γ

mj + 1

2

∑
j �=n

W
γ

nj +
∑
K

[
1

2
γ (ω1 + Kω21)

× (2nth + 1)|cmm,−K − cnn,−K |2
]
,

V
γph
mn = 1

2

∑
j �=m

W
γph

mj + 1

2

∑
j �=n

W
γph

nj +
∑
K

[γph(Kω21)

× |(c†c)mm,K − (c†c)nn,K |2]. (50)

Here V γ and V γph are the rates of dissipation- and dephasing-
induced decoherence, respectively. In a spectroscopy mea-
surement of the ancilla, the decoherence rate Vmn sets the
linewidth for the transition from the state �m to �n; see
Sec. IV C 2.
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Equation (50) shows that decoherence of superposition
of two Floquet states �m and �n has two contributions:
(i) incoherent hopping from the two states to other states
as given by the first two terms in both V γ and V γph ; and
(ii) “pure dephasing” of the Floquet states with a rate given
by the third terms in V γ and V γph . This form of decoherence
rate Vmn is similar to the decoherence rates of superpositions
of Fock states of an undriven oscillator; because the Floquet
states are coherent admixture of Fock states, their effective
dephasing and dissipation have mixed contribution from both
dissipation and dephasing in the Fock basis.

Depending on the relative magnitude of ancilla dephasing
and dissipation rates, the decoherence rates of Floquet states
can have a nontrivial dependence on the drive parameters.
In the following we discuss the drive dependence of the
decoherence rate Vmn for the case only drive 1 is present and
nth = 0.

We first discuss the drive dependence of V
γ
mn. Since �2 =

0, only K = 0 term is needed in Eq. (50). Assuming a constant
dissipation rate γ (ω) = γ , it follows from Eqs. (49) and (50)
that the expression for V

γ
mn can be simplified to

V γ
mn = γ

2
[〈c†c〉m + 〈c†c〉n − 2Re(〈c〉m〈c〉∗n)], (51)

where 〈c†c〉m, 〈c〉m are the expectation values of the corre-
sponding operators in the mth stationary eigenstate of the
Hamiltonian H̃c(t ) in Eq. (20) at �2 = 0.

At zero or weak drive-1 amplitude, the expression for
V

γ
mn reduces to the familiar form V

γ
mn ≈ (m + n)γ /2. For

stronger drive, we find that the decoherence rate first in-
creases as the drive power increases and then saturates
at a large power; see Fig. 9(a). This initial increase and
saturation at large drive power can be understood simi-
larly as the saturation of the heating rate shown in Fig. 8.
Within a semiclassical approximation, we obtain that V

γ
mn ≈

γ [(m + n)(sinh2 φ + 1/2) + sinh2 φ], where sinh2 φ charac-
terizes the drive-induced squeezing of the ancilla mode; see
Appendix F 2 b. The saturation in V

γ
mn is due to the saturation

of the squeezing as discussed in Sec. IV B 3.
We now discuss the dephasing-induced decoherence of the

Floquet states. To simplify the analysis, we assume that the
dephasing noise spectrum is approximately flat near the drive
detuning frequency and near zero frequency but can have dif-
ferent values in these two frequency regions. The smoothness
of the noise spectrum near zero frequency is already used in
the Markov approximation that leads to Eq. (41). Under these
assumptions, we obtain from Eqs. (49) and (50) that

V
γph
mn = γ

(hf)
ph

[〈(c†c)2〉m − 〈c†c〉2
m + 〈(c†c)2〉n − 〈c†c〉2

n

]
+ γph(0)(〈c†c〉m − 〈c†c〉n)2. (52)

Here γ
(hf)

ph denotes the high-frequency dephasing rate near the
drive detuning frequency as we introduced in Sec. IV B 3;
γph(0) denotes the low-frequency dephasing rate.

For the case γph(0) � γ
(hf)

ph , the decoherence rate V
γph
mn

is dominated by the second term on the right-hand side
of Eq. (52) which describes the pure dephasing of the
Floquet states. At zero drive amplitude, V

γph
mn = γph(0)(m −

n)2. As the drive power increases, the decoherence rate
V

γph
mn sharply decreases indicating that the difference in the
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FIG. 9. The decoherence rate of a superposition of Floquet states
�0 and �n as a function of the scaled drive power for the case of one
blue-detuned drive with detuning δ1/α = 1. The solid and dashed
lines refer to the full Floquet results and semiclassical results in
Appendix F 2 b, respectively. (a) The dissipation-induced decoher-
ence rate V

γ

0n in Eq. (51). (b) The dephasing-induced decoherence
rate V

γph
0n in Eq. (52). The ratio γ

(hf)
ph /γph(0) is chosen to be 1/60 as

we found in Sec. IV B 3.

expectation values of the ancilla number operator in different
eigenstates decreases as a function of the drive power; see
Fig. 9(b). This is somewhat similar to a driven two-level
system where the expectation values of the operator σz in
the two dressed eigenstates in the rotating frame of the drive
|±〉 = cos θ |↑〉 ± sin θ |↓〉 become the same at strong drive:
〈+|σz|+〉 = 〈−|σz|−〉 ≈ 0. Here |↑〉, |↓〉 are the bare states
of the two level system and the drive-induced mixing angle
θ between the two states becomes π/4 at strong drive. Quite
interestingly, this behavior is not captured by the semiclassical
analysis of the driven ancilla shown as the dashed lines
suggesting the strongly quantum nature of this observation.

When the ancilla is coupled to the cavities, the cavities can
inherit finite decoherence rate from the ancilla via hybridiza-
tions with the ancilla states. In the next section we will discuss
this effect in detail.

C. Linear susceptibilities in the presence
of ancilla dissipation and dephasing

In the presence of ancilla decoherence, the linear suscep-
tibilities χ and X can be found quite generally via Eqs. (5)
and (6), where the two-time correlation functions can be
calculated in a way similarly to that in Ref. [55]. Equivalently,
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for the specific model of the bath considered in this section, one can calculate the susceptibilities by adding a perturbation Hf

to Hc in Eq. (41) and calculating ρc and the expectation value of operator c to leading order in Hf .

1. Susceptibilities in the steady state

In the limit of weak damping and dephasing where Eqs. (44) and (45) hold, we find that the ensemble-averaged susceptibility
of the ancilla in the steady state is a sum of “partial” susceptibilities corresponding to the ancilla being in a given Floquet state
weighted by the population in this state,

χ st (ω,ω + Kω21) =
∑
m

P st
m χ st

m (ω,ω + Kω21), Xst (ω, 2ω1 + Kω21 − ω) =
∑
m

P st
m Xst

m(−ω, 2ω1 + Kω21 − ω). (53)

Here the population P st
m is the steady-state solution of the rate equation (44) with Pm ≡ ρmm. The partial susceptibilities χ st

m,Xst
m

have the same form as in Eqs. (30) and (31) except that now the quasienergy differences acquire an imaginary part due to
bath-induced broadening of quasienergy levels. More specifically, one needs to replace εmn with εmn + iVmn in the first term of
Eqs. (30) and (31) and by εmn − iVmn in the second term. To be complete, we repeat the expressions here:

χ st
m (ω,ω + Kω21) = −

∑
n�=m,K ′

[
cmn,K ′−K (c†)nm,−K ′

(ω − ω1) + K ′ω21 + (εmn/h̄ + iVmn)

+ (c†)mn,−K ′cnm,K ′−K

−(ω − ω1 + Kω21) + (K − K ′)ω21 + (εmn/h̄ − iVmn)

]
, (54)

Xst
m(−ω, 2ω1 + Kω21 − ω) = −

∑
n�=m,K ′

[
cmn,K ′−Kcnm,−K ′

−(ω − ω1) + K ′ω21 + (εmn/h̄ + iVmn)

+ cmn,−K ′cnm,K ′−K

−[Kω21 − (ω − ω1)] + (K − K ′)ω21 + (εmn/h̄ − iVmn)

]
. (55)

Equation (53) shows that the effects of ancilla decoher-
ence on its susceptibilities are twofold. First, due to the
dissipation- and dephasing-induced random hopping between
ancilla Floquet states, the unitary part of the susceptibilities is
now a sum over the partial susceptibilities χm,Xm weighted
by the probabilities of the ancilla in the state �m. Second,
decoherence induces finite linewidth of the ancilla transitions;
as a result, its susceptibilities obtain an imaginary part (or
strictly speaking, a nonunitary part).

The expressions for the susceptibilities in Eqs. (54) and
(55) apply when the probe frequency ω is relatively close to
one of the ancilla resonances (corresponding to the values of ω

where the real part of the denominators in the susceptibilities
vanish). The reasons are twofold. First, the detuning of the
probe frequency ω from the ancilla resonance needs to be
much smaller than the bandwidth of the dephasing noise near
zero frequency and other frequencies corresponding to tran-
sitions between different quasienergy levels, so that the noise
spectrum can be approximated as being flat over the frequency
range set by this detuning and one can use here the expression
for V

γph
mn in Eq. (50). As we have found previously, the noise

spectrum can however be quite frequency dependent and fall
off rapidly over a relatively narrow frequency range. For large
probe detuning, one needs to take into account the actual noise
spectrum in calculating V

γph
mn and the susceptibility spectrum is

generally non-Lorentzian.
Second, in arriving at Eqs. (54) and (55), we have ne-

glected the interference between different Lorentzian peaks
[represented by the imaginary part of different terms in the
summation in Eqs. (54) and (55)]. This corresponds to ne-
glecting the coupling between different off-diagonal elements

of the density matrix as assumed in Eq. (45). If the finite
decoherence rate results in an overlap between two Lorentzian
peaks or the probe frequency ω is in between two Lorentzian
peaks with similar intensity, the interference effect is non-
negligible.

Also of interest to us are the transient time-dependent
susceptibilities where the ancilla is initially in one of the
Floquet states and has not reached the steady state. A detailed
discussion is given in Appendix H.

2. Inverse Purcell effect in the presence of drives

As described by Eq. (11) in Sec. II A, the imaginary part
of the susceptibility χ (ω,ω) is related to the ancilla-induced
decay of the two cavity modes. This is sometimes referred
to as the “inverse Purcell effect” in cQED where microwave
cavities inherit a finite decay rate from the artificial atom [21].
We will consider in this section the ancilla-induced decay
where the ancilla has reached its steady state.

In the absence of external drives on the ancilla, the inverse
Purcell effect occurs via the mixing between the cavity exci-
tations and the ancilla excitation from the ground to the first
excited state. Because of this mixing, the cavity inherits a
finite decay rate from the ancilla which adds to the intrinsic
decay of the cavities. The rate of this inherited decay for a
cavity at frequency ω with a coupling strength g to the ancilla
for the case nth = 0 reads

δκ (ω) = 2|g|2Imχ st (ω,ω)

= |g|2 γ (ωc ) + 2γph(0)

(ω − ωc )2 + [γ (ωc )/2 + γph(0)]2
. (56)
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We note that the ancilla dephasing also contributes to δκ .
This can be understood as that the ancilla dephasing noise
inducing incoherent hopping between the dressed cavity mode
and the dressed ancilla with a rate approximately given by
2|g/(ω − ωc )|2γph in the limit of large |ω − ωc|. If γ �
2|g/(ω − ωc )|2γph, the excitation can incoherently hop back
and forth between the cavity and the ancilla many times. In
the opposite limit the excitation is lost after it hops into the
ancilla before it can hop back.

For a detuning |ω − ωc| larger than the bandwidth of the
dephasing noise, γph(0) in Eq. (56) needs to be modified.
A Fermi’ s golden rule calculation shows that the rate of
this incoherent hopping from the cavity to the ancilla is
proportional to the dephasing rate γph(ωc − ω) at the detuning
frequency between the cavity and the ancilla; see Appendix I.

In the presence of drives on the ancilla, the cavity modes
not only mix with ancilla transition from the first excited to
the ground state, but also mix with transitions between higher
levels of the ancilla. Furthermore, there can also be ampli-
fication (negative damping) of the cavity modes at certain
frequencies accompanied by absorption of drive excitations.
In the limit of weak damping and dephasing, it follows from
Eq. (53) that the total rate of the ancilla-induced decay (or
amplification) is given by a sum of Lorentzians where each
component in the sum corresponds to a resonance process that
involves absorption or emission of a cavity mode excitation
(see also Fig. 10):

δκ (ω) = δκ↓(ω) − δκ↑(ω),

δκ↓(ω) = 2|g|2
∑

m�=n,K

P st
m

|(c†)nm,−K |2Vmn

(ω − νmnK )2 + V 2
mn

,

δκ↑(ω) = 2|g|2
∑

m�=n,K

P st
m

|cnm,K |2Vmn

(ω − μmnK )2 + V 2
mn

. (57)

Here δκ↓ and δκ↑ refer to the rates of transition down and
up in the cavity Fock basis and they correspond to the term
proportional to D[

√
δκ↓a]ρ and D[

√
δκ↑a†]ρ in the master

equation for the cavity, respectively; see Appendix C. The
widths of the Lorentzians are given by Vmn in Eq. (50) and
the locations of Lorentzians are given by νmnK and μmnK ; see
below.

Part of the linewidth in Vmn in Eq. (57) comes from the
dephasing of the Floquet states. Similar to the case without
drive, this dephasing causes incoherent hopping between the
cavitylike state and the ancillalike state in the eigenbasis of the
coupled cavity-ancilla system; see Eq. (60). If the relaxation
rate of the ancillalike state exceeds the hopping rate from the
ancilla to the cavity, the excitation that hops from the cavity to
the ancilla will not have time to hop back, which effectively
leads to photon loss from the cavity. A detailed analysis for
this dephasing-induced hopping is given in Appendix I based
on a two-state approximation of the cavity-ancilla system.

The set of Lorentzians in Eq. (57) centered at νmnK cor-
respond to the absorption (therefore decay) of a cavity mode
excitation and transition of the ancilla from Floquet state �m

to �n, accompanied by absorption or emission of 1 − n + m

drive-1 excitations and an exchange of K excitations between
the two drive reservoirs. The process becomes resonant when
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FIG. 10. Illustration of the inverse Purcell effect in the presence
of one drive (drive 1) on the ancilla. (a) An example of partial
susceptibility spectrum Imχ st

0 (ω,ω) of the driven ancilla calculated
using Eq. (54). The scaled drive power is |ξ1|2 = 2 and drive detuning
is δ1/α = 1. (b) Comparison between the experiment (red dots) and
theory (curves) on the rate of drive-induced decay of cavity a as a
function of the scaled drive power. As the drive power increases, the
cavity becomes close to the resonance at frequency ν030 that excites
the ancilla from the state �0 to �3 by absorbing two drive-1 photons
and the cavity photon [the inset shows the susceptibility spectrum
103αImχ st

0 (ω,ω) as a function of the drive power]. The vertical
axis is the total decay rate of cavity a minus the same quantity
in the absence of drive on the ancilla. The points with different
colors (red and magenta) represent two sets of measurements with
different cavity decay rates: κa (ξ1 = 0) = 6.13 ± 0.08 (kHz) (red)
and 5.71 ± 0.06 (kHz) (magenta). In the theoretical calculation using
Eq. (57) (black line), we used the previously found dephasing rate
γ

(hf)
ph = γ /60 to calculate the rate of dephasing-induced hopping

among ancilla Floquet states, and the Ramsey dephasing rate γ
(R)

ph ≈
γ to calculate the rate of incoherent hopping between the cavity
and ancilla. As explained in the text, this choice overestimates the
latter hopping rate when the cavity is far detuned from the ancilla
resonance, but matches the experiment well near the resonance which
occurs at strong drive. As a comparison, the green line shows the
result where an overall constant γph(ω) = γ

(hf)
ph was used. The dashed

black line represents the partial contribution from the resonant peak
at frequency ν030. The coupling strength ga and the detuning δa

between cavity a and the ancilla frequency ωc is the same as in the
beam-splitter experiment: |ga/δa | = 0.047, δa/α = −6.9.

the mode frequency equals

νmnK = ω1 − Kω21 + εnm/h̄

= (1 − n + m)ω1 − Kω21 + (Enm + δEnm)/h̄, (58)

where in the second line of Eq. (58), to better illustrate the
resonance process, we have transformed from the quasienergy
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levels to the bare energy levels of the ancilla using Eq. (24).
The strength of such a resonance process is given by the
squared matrix element |(c)+nm,−K |2 ∝ |ξ1||2(n−m−K+1)||ξ2|2|K|
to leading order in the drive amplitudes. We emphasize that
the absorption peaks centered at νmnK with the same m and
n but different K all share the same widths Vmn because they
all correspond to transitions between the same pair of Floquet
states.

Similarly, the set of Lorentzians in Eq. (57) centered at
μmnK correspond to the emission (therefore amplification) of
a cavity mode excitation and transition of the ancilla from
Floquet state �m to �n, accompanied by the absorption or
emission of 1 + n − m drive-1 photons and an exchange of
K excitations between the two drive reservoirs. The strength
of such a resonance process is given by the squared matrix
element |cnm,K |2 ∝ |ξ1||2(n−m+K+1)||ξ2|2|K| to leading order in
the drive amplitudes. The process becomes resonant when the
mode frequency equals

μmnK = ω1 − Kω21 − εnm/h̄

= (1 + n − m)ω1 − Kω21 − (Enm + δEnm)/h̄. (59)

We show in Fig. 10(a) an example of the spectrum
Imχ st

0 (ω,ω) in the presence of one blue-detuned drive on
the ancilla. The three positive Lorentzian peaks at negative
ω − ωc from left to right represent the process of absorption
of one probe photon at frequency ω and excitation of the
ancilla from state �0 to �1, �2, and �3 by absorbing zero,
one, and two drive-1 excitations, respectively. The negative
peak at negative ω − ωc corresponds to the emission of one
probe photon and excitation of the ancilla from �0 to �1 by
absorbing two drive-1 excitations.

In an experiment, one needs to carefully choose the pa-
rameters of the drives and mode frequencies so as to avoid
the aforementioned resonances. Even though the frequencies
of the cavity modes may be far away from the resonance
frequencies at weak drives, they may become close to res-
onance as the drive strengths increase because of the drive-
induced ac Stark shift of the ancilla transition frequencies;
see Fig. 10. As a result, the ancilla-induced decay of the
cavity mode that is initially away from any resonances very
quickly increases as its frequency becomes close to one of the
resonance frequencies.

As the frequency of the cavity mode moves closer to the
resonance, the linear response treatment of the ancilla-cavity
coupling breaks down when the coupling strength becomes
comparable to the detuning of the cavity mode from the
resonance. Adiabatic elimination of the ancilla might also
break down and one has to take into account the coherent
Rabi oscillation that occurs between the cavity mode and the
relevant ancilla quasienergy level. If cavity mode a is close to,
for instance, the resonance frequency ν0mK , one can neglect
other resonance processes and the Hamiltonian that describes
the Rabi oscillation reads

H = (ωa − ν0mK )a†a + gaa|um(0)〉〈u0(0)|(c†)m0,−K +H.c.,

(60)

where we have made a unitary transformation U =
exp[−i(c†cω1t + a†aν0mKt )]Uc(0, t ) to the cavity-ancilla
Hamiltonian (2) to eliminate Hc and transform into a frame

that rotates at frequency ν0mK for the mode a; Uc is given in
Eq. (23). Here ga (c†)m0,−K is the effective coupling strength
of cavity mode a to the transition of the ancilla from state �0

to �m, and ωa − ν0mK is the relevant detuning. The rate of the
Rabi oscillation due to the coupling depends nontrivially on
the drive strengths as both the detuning ωa − ν0mK from the
resonance and the relevant Floquet matrix element (c†)m0,−K

depend on the drive strengths. As a result, the exact condition
for when the adiabaticity breaks down depends also nontriv-
ially on the rate of turning on the drives.

3. Comparison with experiment

To illustrate the above effect and confirm the theory, we
performed an experiment where we measured the decay rate
of cavity a for increasing amplitude of drive 1 on the ancilla.
The decay rate is measured by putting one photon in the cavity
before turning on the drive on the ancilla. Then we keep
the drive on for various durations of time and measure the
population left in the cavity using another transmon ancilla
dispersively coupled to the cavity [3] after the drive has been
turned off. For the chosen drive detuning, the frequency ωa

of the cavity is initially closest to the resonance frequency
ν030 which corresponds to exciting the ancilla from state �0

to �3 by absorbing two drive photons and the photon from
the cavity. As the drive amplitude increases and the resonance
frequency ν030 moves closer to ωa due to the ac Stark shift
on the ancilla frequency, we observed a significant increase of
the decay rate of the cavity; see Fig. 10(b).

The generally good agreement between the theory and
experiment over a wide range of drive power indicates that
the observed enhanced cavity decay rate is dominated by
the following two processes. First, due to the hybridization
between the cavity excitation and the ancilla excitation from
the state �0 to �3, the cavity inherits finite decay rate from
the ancilla. For this case, the inherited decay rate is close to
3|ga (c†)30,0/(ωa − ν030)|2γ where |ga (c†)30,0/(ωa − ν030)|2
is the participation ratio of the ancilla excitation in the dressed
cavity and 3γ is approximately the decay rate of the state �3

[see Fig. 9(a)]. At |ξ1|2 = 2.5, the participation ratio is about
0.04.

Second, by the same hybridization mechanism, the ancilla
dephasing induces incoherent hopping of excitation from the
cavity to the ancilla which leads to cavity photon loss. To
further confirm the role of this incoherent hopping, we show
as the green line in Fig. 10(b) the corresponding cavity decay
rate where we calculated the incoherent hopping rate using the
previously found high-frequency dephasing rate γ

(hf)
ph = γ /60

in contrast to using the low-frequency Ramsey dephasing
rate γ

(R)
ph ≈ γ (shown as the black line). We observed more

than 50% reduction in the calculated cavity decay rate at
strong drive. We note that at weak drive, the green line agrees
better with the experiment; this is consistent with the fact
that the rate of this incoherent hopping depends on the noise
spectrum at the detuning frequency between the cavity and
the resonance frequency ν030 (see Appendix I). At weak drive,
this detuning is of the order of 100 MHz where the dephasing
noise is relatively weak, as discussed in Sec. IV B 3.

In the experiment we found that the ancilla transition fre-
quency E32/h̄ in the absence of drive is approximately 5 MHz
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lower than the value we expected from the Hamiltonian used
to model the ancilla. This shift in the transition frequency
would move the resonance frequency ν030 down by 5 MHz
and thus the sharp rise in the inverse Purcell decay rate shown
in Fig. 10(b) would occur at a drive power smaller than what
we expected. This is consistent with what we observed in
Fig. 10(b).

We also found that the decay rate κa (ξ1 = 0) of the cavity
in the absence of the drive fluctuates by as large as 10%
from day to day. The data points with two different colors
shown in Fig. 10(b) represent two data sets each taken within
an hour and separated in time by a day. They correspond
to different decay rates κa (ξ1 = 0). The drive-induced decay
rates κa − κa (ξ1 = 0) as shown in Fig. 10 are, however, very
close between the two data sets and both agree qualitatively
with the theory.

Another complication is that the cavity decay rate is ob-
tained by measuring its population over a time ∼1/κa that is
much longer than the ancilla relaxation time 1/γ at least for
weak drive. Immediately after the drive on the ancilla has been
turned on, the ancilla is mostly in the state �0 (neglecting
the very small thermal population nth = 0.006) and has not
reached its steady state yet; thus, the cavity decay inherited
from the ancilla is not strictly speaking described by the
steady-state decay rate in Eq. (57) but instead described by the
transient susceptibility of the ancilla described in Appendix H.
However, for the range of drive power used in this measure-
ment, the steady-state population of the excited Floquet states
is less than 5% as shown in Fig. 8; also their contribution to
the inverse Purcell decay rate is further suppressed by the large
frequency detuning of the cavity from the relevant resonances.
We verified numerically that the decay rate calculated from
the transient susceptibility agrees within a few percent with
the decay rate calculated from the steady-state susceptibility
shown in Fig. 10. Also, we verified that the inverse Purcell
decay rate δκ is dominated by δκ↓ for the same reasons as
above.

To further confirm that the observed enhancement in the
cavity decay rate is indeed due to the mixing of the cavity ex-
citation with the ancilla excitation from the state �0 to �3, we
simultaneously measured the population of the ancilla and the
population of the cavity. We intentionally chose a relatively
short ramping up and down time for the ancilla drive so that
the one-photon state in the cavity remains in the diabatic state
as the drive is being turned on. As a function of the duration
of the drive, we indeed observed anticorrelated oscillations of
the population in the cavity one-photon state and population
of the ancilla not in the ground state. Moreover, when we
prepared the ancilla in the Fock state |3〉 and the cavity in
the vacuum state, we also observed correlated oscillations in
the ancilla ground state population and the cavity population
in the one-photon state after turning on the drive.

D. Ancilla-induced dephasing of the SWAP operation

As discussed in Sec. IV B 2, due to the noise that ac-
companies the dissipation and dephasing, the driven ancilla
randomly hops from one Floquet state to another. Because
different Floquet state yields a different susceptibility, such
hopping leads to fluctuations in the susceptibilities and thus

fluctuations in the ancilla-induced interactions and frequency
shift of the cavity modes. These fluctuations dephase the
cavity modes as well as the quantum operations such as SWAP

between them. We discuss this effect in this section and focus
on the case of engineering a beam-splitter interaction between
the two cavity modes.

To capture the effect that different Floquet states yield
different cavity frequency shifts and beam-splitter rates, we
write down an effective Hamiltonian,

Heff =
∑
m

[δBS,ma†a + gBS,ma†b + g∗
BS,mab†] ⊗ |�m〉〈�m|,

δBS,m = (δωa,m − δωa,0) − (δωb,m − δωb,0). (61)

Here δωa,m, δωb,m denote the ancilla-induced frequency shift
of cavity a, b, respectively, when the ancilla is in Floquet
state �m, and gBS,m denotes the corresponding strength of
the ancilla-induced beam-splitter interaction between them.
δBS,m denotes the detuning from the beam-splitter resonance
condition in Eq. (8). Note that the definition of δBS,m is slightly
different from that in Eq. (9), as here we take into account
explicitly the ancilla-induced cavity frequency shifts. We have
assumed that the drive frequencies have been tuned so that
when the ancilla is in Floquet state �0, the beam-splitter in-
teraction is exactly on resonance, i.e., δBS,0 = 0. Importantly,
since the frequencies of both cavities change as the transmon
hops among Floquet states, it is only the difference in the
frequency changes of the two cavities that matters.

Formally, Eq. (61) can be derived by applying a unitary
transformation to the original Hamiltonian in Eq. (2) to elim-
inate the linear in ga, gb terms and only keep slowly rotating
terms [56].

1. Dispersion of the ancilla-induced cavity
frequency shift and interaction

The finite dispersion (difference) among different Floquet
states of both the ancilla-induced frequency shift and the
beam-splitter interaction strength is a consequence of the
nonequidistance of the ancilla levels due to its finite anhar-
monicity. Level nonequidistance leads to a different response
to a probe when the ancilla is in different Floquet states,
thereby yielding different susceptibilities. As we will show,
the magnitude of this dispersion is controlled by the ratio
of the ancilla anharmonicity α and the detunings of the drives
and cavities from the ancilla frequency. In the following,
we analyze this dispersion in the limit of small and large
anharmonicity.

We begin with the ancilla-induced frequency shift. In the
absence of the drives on the ancilla, the ancilla-induced fre-
quency shift of cavity a when the ancilla is in the Fock state
|m〉 can be found for arbitrary anharmonicity,

δωa,m = |ga|2 δa − α

(δa + mα)[δa + (m − 1)α]
(62)

and similarly for δωb,m.
In the presence of weak drives, there is a small cor-

rection proportional to the drive power to the frequency
shift in Eq. (62). The result simplifies in the limit of small
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anharmonicity (α � |δ1,2,a|):
δωa,m ≈ δωa,0 − 2mα|ga/δa|2[1 + �a (ξ1, ξ2)],

�a (ξ1, ξ2) = −2α
∑
j=1,2

|ξj |2
[
2δ−1

a + 2δ−1
j + (δa + δj )−1

]
.

(63)

We note that the factor 2α|ga/δa|2 corresponds to the cross-
Kerr between cavity a and the ancilla in the language of
Ref. [22] in the absence of the drives; �a (ξ1, ξ2) can be
understood as the drive-induced correction to this cross-Kerr.
The expression for δωa,0 is given in Eq. (38) for weak drives
but arbitrary ratio of α over |δa,1,2|.

In the opposite limit of large anharmonicity α � |δa,1,2|,
we recover the Jaynes-Cummings model in the dispersive
regime [57]:

δωa,1 ≈ − δωa,0

= − (|ga|2/δa )

[
1−2

∑
j=1,2

|ξj |2(δa + δj )/δa

]
,

δωa,m>1 ≈ 0. (64)

For the case ωb − ωa ≈ ω21, the beam-splitter rate gBS,m

among different Floquet states in the limit of weak drives and
weak anharmonicity (α � |δ1,2,a,b|) reads

gBS,m = gBS,0
{
1 − 2mα

[
δ−1
a + δ−1

b + δ−1
1 + δ−1

2

+ (δa + δ2)−1
]}

, gBS,0 = −2αξ1ξ
∗
2
g∗

agb

δaδb

. (65)

The result above can be conveniently found based on the four-
wave mixing picture described in Appendix B and going to
second order in α. Importantly, the difference of the beam-
splitter rates among different Floquet states goes as α2 and
has the same dependence on the drive amplitudes as the beam-
splitter rate itself in the considered limit.

In the opposite limit of large anharmonicity where the
ancilla is effectively a two-level system, we find that

gBS,1 = −gBS,0 = 2ξ1ξ
∗
2 g∗

agb

δa + δ2

δaδb

, gBS,m>1 = 0.

(66)

The fact that gBS,1 and gBS,0 have the same magnitude but
opposite sign follows from Eq. (5). This sign change in the
beam-splitter rate gBS from �0 to �1 is in a sense the maximal
dispersion one can obtain; if the ancilla hops between these
two Floquet states halfway through the SWAP operation, such
hopping would completely nullify the SWAP operation.

Equations (63)–(66) show that the dispersion among differ-
ent Floquet states of both the ancilla-induced frequency shift
and the strength of the beam-splitter interaction goes down
as ancilla anharmonicity decreases with respect to the drive
detunings and cavity detunings from the ancilla and reaches
a maximum as the anharmonicity goes to infinity. To further
illustrate this result, we compare in Fig. 11 the dispersion
of the susceptibility spectra χm(ω,ω + ω21) [which relates
to the ancilla-induced beam-splitter interaction via Eq. (32)]
between the case of relatively large and small transmon anhar-
monicity. For smaller anharmonicity, we use stronger drives

(a)

(b)

FIG. 11. Comparison of the susceptibility spectra χm(ω,ω +
ω21) in Eq. (30) for different m. The red, blue, black, and green
dots correspond to m = 0, 1, 2, and 3, respectively. (a) The scaled
anharmonicity α/δ1 = 0.14. The ratio of the drive detunings δ2/δ1 =
3.1. The scaled drive amplitudes ξ1 = 1.5, ξ2 = 0.15. (b) α/δ1 is
reduced by a factor of 7 compared to (a), the drive amplitudes ξ1

and ξ2 are both increased by a factor of
√

7 so that the quantity
αξ1ξ2/δ1 (which sets the beam-splitter rate) remains unchanged. The
ratio δ2/δ1 remains the same. The inset shows the ratio (χm − χ0 )/χ0

for m = 1 (blue), 2 (black), and 3 (green) for the frequency region
inside the dashed box. At particular probe frequencies, the difference
between χm �=0 and χ0 vanishes. The comparison between (a) and
(b) clearly shows that the difference between the spectra χm(ω,ω +
ω21) for different m goes down as the scaled anharmonicity α/δ1 goes
down.

so that the strength of the beam-splitter interaction remains
unchanged compared to the case of large anharmonicity. It
is clearly shown that the spectra χm for different m differ
significantly from each other at large anharmonicity and be-
come increasingly close to each other as α decreases. The
spectra χm(ω,ω) [which relates to the ancilla-induced cavity
frequency shift via Eq. (10)] displays similar behavior; see
Fig. 12.

An interesting feature of the spectra χm(ω,ω) and
χm(ω,ω + ω21) shown in Figs. 11 and 12 is that at particular
probe frequencies, the difference between χm�=0 and χ0 can
vanish exactly, namely, the spectra χm with different m can
cross each other. Such crossings are a result of the interference
between resonance processes canceling out the difference
among ancilla Floquet states in their linear response. For
instance, the spectrum χm(ω,ω + ω21) in Fig. 11 has an “in-
verted U” shape in the frequency range ωc − ω21 < ω < ωc as
a result of the interference between the resonance near ωc and
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(a)

(b)

FIG. 12. Comparison of the susceptibility spectra χm(ω,ω) in
Eq. (30) for different m. The red, blue, black, and green dots
correspond to m = 0, 1, 2, and 3, respectively. The parameters
used in (a) and (b) are the same as those in Figs. 11(a) and 11(b),
respectively. The inset shows the difference χm − χ0 for m = 1
(blue), 2 (black), and 3 (green) for the part of the spectra inside the
dashed box. It shows that χm �=0 can become equal to χ0 at certain
probe frequency ω. The horizontal dashed red line is to guide the eye.
The comparison between (a) and (b) clearly shows that the difference
between the spectra χm(ω,ω) for different m goes down as the scaled
anharmonicity α/δ1 goes down. We note that the seemingly isolated
dots in the spectra including the two near zero frequency in (b) are
a result of the finite sampling along the frequency axis which does
not suffice to resolve the sharp change in the spectra in a narrow
frequency range due to weak resonances.

ωc − ω21. Due to the nonequidistance of the ancilla transition
frequencies, different χm are shifted with respect to each
other, necessarily leading to crossings of the spectra in this
frequency range. For weak drives and weak anharmonicity,
the location of this crossing can be found by setting the terms
in the square bracket of Eq. (65) to zero.

To reduce the infidelity due to ancilla hopping among
Floquet states, it is desirable to minimize the magnitude of
both gBS,m�=0 − gBS,0 and δBS,m in Eq. (61). The former can be
reduced by designing the system parameters and choosing the
drive parameters so that the frequency of the lower-frequency
cavity (cavity a) is close to or at the point where the spectrum
χm�=0 crosses with χ0 in Fig. 11. To reduce |δBS,m|, we need
the change in the frequency shift δωa,m − δωa,0 of cavity a

due to transmon jumps to match that of cavity b. This requires
not simply designing the cavity frequencies to be close to the
crossing point in Fig. 12(b), but rather to be close to where
|ga|2[χm(ωa, ωa ) − χ0(ωa, ωa )] matches the corresponding

quantity for cavity b. For the frequency configuration used
in the current experiment where the ancilla frequency is in
between the two cavity frequencies, it is preferable to place
the frequency of cavity a to the right of the crossing point
where χm�=0 > χ0 which is also the case for cavity b.

2. Estimating the SWAP infidelity due to the fluctuating
beam-splitter rate and cavity frequencies

Random transitions of the ancilla among Floquet states
lead to fluctuations in gBS and δBS in Eq. (61), which de-
phase the quantum operations that rely on the engineered
beam-splitter interaction. In this section we give a simple
guideline on estimating the infidelity of the SWAP operation
due to these fluctuations in various limits. In Appendix J,
based on the scaling of this infidelity with respect to transmon
anharmonicity α, we argue that a transmon ancilla with small
anharmonicity is favored in reducing the infidelity.

To quantify the effect of these fluctuations, we consider the
simplest case where there is initially one photon in cavity a

and no photon in cavity b, and the ancilla is in state �0 at t =
0. We are interested in the probability of finding this photon
in cavity b after a preselected SWAP time tSWAP = π/2|gBS,0|.
Neglecting the decay of the cavities, their dynamics in the
one-photon manifold can be mapped to that of a spin 1/2
subject to a Rabi drive,

H = δBS(t )σz/2 + gBS(t )σx.

The eigenstates of σz represent the states where the photon is
in cavity a or b. Here we explicitly write the beam-splitter rate
gBS and the detuning δBS as being time dependent due to the
random hopping of the ancilla among different Floquet states.

One can think of the processes represented by δBS(t ) and
gBS(t ) as Markov chains that take discrete values δBS,m and
gBS,m, respectively. The probability to take each value is gov-
erned by the balance equation (44). Importantly, fluctuations
in δBS are correlated with those in gBS as they come from the
same source. In the following, we consider all gBS,m to be
real [so gBS(t ) is also real] which can always be made so by
choosing a proper gauge for the cavity modes. This is possible
because all gBS,m share the same phase as determined by the
relative phase between the two drives and the phases in the
coupling constants ga, gb; see the discussion below Eq. (14).
gBS,m can however be positive or negative for different m.

To understand the effect of the fluctuations in gBS and δBS,
we consider two different limits. The first limit is that the
correlation time of these fluctuations set by the inverse γ −1

of the ancilla relaxation rate is much larger than the duration
of the quantum operation: γ tSWAP � 1. In this limit, the an-
cilla rarely makes a transition from state �0 to other states
during the operation. Assuming that the ancilla at most makes
one transition which occurs with almost uniform probability
across the operation time, one can estimate the SWAP infidelity
using the following formula:

1 − FSWAP ≈
∑
m

∫ tSWAP

0

[
1 − P

(m)
b (tjump, tSWAP)

]
W0mdtjump,

(67)

where P
(m)
b (tjump, tSWAP) denotes the probability of finding a

photon in cavity b at t = tSWAP conditioned on there being one
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jump from Floquet state �0 to �m at time t = tjump. After
some algebra, we find that

1 − FSWAP =
∑
m

W0mtSWAP

2

[
1 + sin(2g̃BS,mtSWAP)

× |gBS,0|
π

gBS,m

g̃BS,m

gBS,m + gBS,0

g̃2
BS,m − g2

BS,0

]
, (68)

where g̃BS,m is the Rabi rate when the ancilla is in state �m:
g̃BS,m =

√
δ2

BS,m/4 + g2
BS,m.

In the case where gBS,m is not very different from gBS,0

and the detuning δBS,m is also much smaller than gBS,0, i.e.,
|δBS,m|, |gBS,m − gBS,0| � |gBS,0|, the infidelity in Eq. (68)
can be expanded in terms of these differences,

1 − FSWAP ≈
∑
m

W0mtSWAP

4

[
3

2

(
δBS,m

2gBS,0

)2

+ π2

3

(
gBS,m − gBS,0

gBS,0

)2]
. (69)

Interestingly, to leading order in the expansion, the infidelity
does not have terms linear in (gBS,m − gBS,0)/gBS,0. We ver-
ified that such quadratic dependence in fact holds for any
operations including 50/50 beam splitter, not just SWAP.

The expression above explicitly shows that the infidelity
goes down as the differences among Floquet states in the
detuning δBS,m and the beam-splitter strength gBS,m go down.
As shown in Eqs. (63) and (65), these differences gener-
ally decrease as the transmon anharmonicity decreases. In
Appendix J we show that for fixed SWAP rate, the rate of
dephasing-induced heating goes up as the anharmonicity de-
creases, whereas the rate of dissipation-induced heating stays
the same. Overall, the infidelity decreases linearly in the
ancilla anharmonicity.

In the opposite limit γ tSWAP � 1, the ancilla undergoes
many transitions among different Floquet states during the
operation and quickly reaches the steady state after the drives
have been turned on. Assuming that the fluctuations in gBS(t )
and δBS(t ) are weak and frequent over the slow timescale
∼t � γ −1, they can be treated as white Gaussian noise. In
the case where the fluctuations in gBS dominate over those in
δBS, we find that the probability to find a photon in cavity b at
time t reads

Pb(t ) ≈ 1
2 [1 − exp(−4σgBS t ) cos(2|〈gBS〉|t )], (70)

where σgBS = ∫ ∞
0 dt〈gBS(t )[gBS(0) − 〈gBS〉]〉. Here we have

neglected the initial transient dynamics of the ancilla imme-
diately after the drives have been turned on. Note that to
maximize the SWAP fidelity in this case, one needs to choose
tSWAP to be π/2|〈gBS〉| and the SWAP infidelity is given by 1 −
FSWAP = [1 − exp(2πσgBS/|〈gBS〉|)]/2. In the limit of small
α where Eq. (65) applies, one can write gBS(t ) as gBS(t ) =
gBS,0 + δgBSm̂(t ), where m̂(t ) represents the fluctuating oc-
cupation number of the ancilla and δgBS = −gBS,0{2α[δ−1

a +
δ−1
b + δ−1

1 + δ−1
2 + (δa + δ2)−1]}. Assuming that the ancilla is

in an effective thermal equilibrium with thermal occupation

ñth (see Appendix F 2 a), we find that

〈gBS〉 = gBS,0 + δgBSñth, σgBS = δg2
BSñth(ñth + 1)/γ.

(71)

An interesting feature of the above result is that σgBS goes
down as the ancilla relaxation rate γ goes up. This is in direct
analogy to the motional narrowing effect in nuclear magnetic
resonance.

In the case where the fluctuations in δBS dominate over
those in gBS, we obtain that

Pb(t ) ≈ 1
2 {1 − exp(−σδBS t/2)[cos(2g̃BSt )

+(σδBS/4g̃BS) sin(2g̃BSt )]}, (72)

where σδBS = ∫ ∞
0 dt〈δBS(t )δBS(0)〉 and g̃BS =√〈gBS〉2 − (σδBS/4)2. Here we have assumed that the

drive frequencies have been tuned such that 〈δBS〉 = 0.
In the limit of small α where Eq. (63) applies, we find that
the decay rate of the probability reads σδBS = 4ñth(ñth +
1)α2[|ga/δa|2(1 + �a ) − |gb/δb|2(1 + �b )]2/γ . In the case
where fluctuations in δBS are comparable to those in gBS,
one needs to take into account the correlations between these
fluctuations and we will not go into detail here.

V. CONCLUSIONS

We have presented a theoretical framework supported by
experiments on generating tunable bilinear interaction be-
tween bosonic modes based on the superconducting circuit
architecture that consists of long-lived microwave cavities
(used to store the encoded quantum information) and trans-
mon ancillas. We showed that for a system of two off-resonant
cavities coupled to a common transmon ancilla, applying
two periodic drives with properly chosen frequencies on the
ancilla allows inducing resonant beam-splitter type and two-
mode squeezing interactions between the two cavities. These
interactions are the essential ingredients for implementing
various entangling gates between the encoded cavities such as
controlled SWAP and exponential SWAP and for quantum sim-
ulations of complex bosonic systems. The agreement between
theory and experiment is excellent, paving the way for using
the theory for designing and optimizing future experimental
devices.

The rates of the engineered bilinear interactions are shown
to be related to the linear response of the driven ancilla
to the coupling to the cavities. Unlike a static system, the
linear response of the two-tone driven nonlinear transmon is
characterized by a susceptibility matrix that relates the probe
(one cavity) at one frequency to the response (the other cavity)
at a generally different frequency. For a weakly nonlinear
oscillator such as a transmon, the linear susceptibilities as
a function of the probe frequency have distinct resonant
structures at frequencies that are in resonance with ancilla
transitions not only between neighboring levels but also non-
neighboring levels due to the presence of external drives.

We developed a Floquet theory for the two-tone driven
nonlinear ancilla that allows calculating the rate of the
ancilla-mediated interaction beyond the perturbative regime.
Interference of the two drives leads to a nontrivial periodic
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modulation of the ancilla Floquet states. These modulations,
on one hand, provide the frequency mixing capability of the
ancilla, on the other hand, strongly modify the spectrum of the
ancilla via effects such as ac Stark shift and multiphoton reso-
nance. The effects become particularly strong when the drive
frequency difference becomes comparable to their strengths.

We identify two major sources of the beam-splitter and
SWAP infidelity due to finite coherence time of the ancilla.
Even when the environment that leads to ancilla decoherence
is at zero temperature, the quantum noise that accompanies
ancilla dissipation and the frequency noise that leads to ancilla
dephasing can cause the ancilla to incoherently hop from
the Floquet “ground” state (that adiabatically connects to the
ancilla vacuum state) to other Floquet states. This is a result
of the interplay of the drive on the ancilla and the noise. This
noise-induced hopping leads to decoherence of the ancilla-
mediated interaction between the cavities. For a relatively
strong drive blue detuned from a typical transmon ancilla
by hundreds of linewidths, we found that the steady-state
population in the Floquet excited states can be as large as 10%
even when the transmon only has a thermal population as low
as 0.6% in the absence of drive.

A second important source of infidelity is that the cavity
inherits finite decay rate from the typically lossier transmon
ancilla via the hybridization of the cavity with the ancilla. In
the presence of drives on the ancilla, the rate of this inherited
decay could be strongly enhanced due to the hybridization of
the cavity with transitions between higher levels of the ancilla
assisted by the drives. Equally important is that ancilla de-
phasing causes incoherent hopping of excitations between the
cavity and the ancilla via the same hybridization mechanism.
Such hopping effectively causes the cavity to lose photons
which we found is the dominant cavity loss mechanism when
the cavity frequency is close to the drive-induced resonances
that excite the ancilla.
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APPENDIX A: EXPANSION OF THE COOPER PAIR
BOX HAMILTONIAN

The transmon superconducting qubit is described by a
Cooper pair box Hamiltonian [20,24]

H = 4ECn̂2 − EJ cos φ̂, (A1)

where EC is the charging energy and EJ is the Josephson
energy. Given that the transmon qubit is operated in the regime
EJ � EC , we have neglected the offset charge and treated the
phase variable φ as being compact. The goal of this Appendix
is to show that in the limit EJ � EC and for not extremely
strong drive, it is sufficient to expand the cosine potential and
keep up to the quartic term.

We now write the phase and number operator in terms of
the creation and annihilation operator c† and c,

φ̂ = 1√
2

(
8EC

EJ

)1/4

(c + c†),

n̂ = 1√
2
i

(
8EC

EJ

)−1/4

(c − c†).

We then expand the cosine potential in Eq. (A1), and keep
up to φ6. After neglecting the non-RWA terms, we obtain in
terms of c†, c

H/h̄ ≈ ωcc
†c − α

2
c†2c2 + 1

6
βc+3c3, h̄ωc =

√
8ECEJ ,

h̄α = EC, h̄β = 1

3
EC

√
2EC/EJ . (A2)

We have neglected the correction O(
√

EC/EJ ) in ωc and α.
Neglecting the sixth-order term in Eq. (A2) requires that√

EC/EJ 〈c†c〉 ∼ α

ωc

〈c†c〉 � 1. (A3)

For the transmon used in the current experiment (ωc/α ≈ 80;
see Sec. III B 3), the above condition is satisfied as long as
the drives are not exceedingly strong, i.e., 〈c†c〉 ∼ |ξ1,2|2 �
ωc/α, where ξ1,2 are the drive amplitudes scaled by the
corresponding drive detunings. The condition to neglect the
non-RWA terms in the expansion such as c+3c is the same as
the above condition. The regime of a very strong drive where
the full cosine potential needs to be taken into account was
considered in a recent paper [25].

We emphasize that the nonlinear dependence of the ac
Stark shift on the drive power we observed in Sec. III B occurs
at a much smaller drive power than that required for the
condition in Eq. (A3) to break down. More precisely, it occurs
when (α/δ1,2)|ξ1,2|2 ∼ 1, where δ1,2 is the drive detuning from
the ancilla frequency ωc which is typically much smaller than
the ancilla frequency itself.

APPENDIX B: DERIVING THE EFFECTIVE
BEAM-SPLITTER AND TWO-MODE SQUEEZING

INTERACTIONS BETWEEN CAVITY MODES BASED
ON THE FOUR-WAVE MIXING PICTURE

In this Appendix we derive the ancilla-induced bilinear
interaction between two cavity modes assuming weak ancilla
anharmonicity. We follow the method of “black box quantiza-
tion” presented in Ref. [22].

The idea is to first diagonalize the quadratic part of the
Hamiltonian Eq. (2) excluding the drive terms. Eigenmodes
A,B,C of the quadratic Hamiltonian are linear combinations
of bare modes a, b, c. In particular, for the considered regime
of large detuning between the ancilla and the cavity modes,
eigenmode A is mostly bare mode a and has a small mixing
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FIG. 13. A schematic of the four-wave mixing process between
the two cavity modes and two drives that leads to the beam-splitter
interaction between the dressed cavity modes A and B. The process
becomes resonant when ωA + ω2 = ωB + ω1. The green box repre-
sents the transmon ancilla as a frequency mixer.

with mode b and c, similarly for eigenmodes B and C. We
now express the annihilation operator of the bare ancilla in
terms of that of the eigenmodes:

c = ξAA + ξBB + ξCC,

where ξA,B,C characterize the mixings between bare mode
c and eigenmodes A,B,C. For weak couplings, ξA,B ≈
ga,b/(ωa,b − ωc ), ξC ≈ 1. Because of such mixings, the non-
linear term −αc†2c2/2 in the Hamiltonian (2) naturally pro-
vides a four-wave mixing between the eigenmodes. For the
purpose of engineering beam-splitter and two-mode squeez-
ing interactions between eigenmodes A and B, we keep the
following terms of interest:

H4-wave/h̄ = −α

2

(|ξC |2ξ ∗
AξBC†CA†B + ξ 2

Cξ ∗
Aξ ∗

BC2A†B†)
+ H.c. (B1)

In terms of the eigenmodes, the drive term in Eq. (2)
becomes

∑
X=A,B,C ξXX(�∗

1e
iω1t + �∗

2e
iω2t ) + H.c. Now we

perform a displacement transformation on (dressed) ancilla C

to eliminate the drives on C:

D̂†CD̂ = C + ξ1e
−iω1t + ξ2e

−iω2t ,

ξ1,2 = �1,2/(ω1,2 − ωC ). (B2)

After such a displacement, the nonlinear mixing terms in
Eq. (B1) provide mixing between the classical drives and
(dressed) cavity modes A and B.

When the frequency difference of modes A and B match
the frequency difference of the two drives, ω2 − ω1 = ωB −
ωA (see Fig. 13), there arises a resonant beam-splitter interac-
tion between modes A and B: gBSA

†B + H.c., where

gBS ≈ −αξ ∗
AξBξ1ξ

∗
2 . (B3)

When the frequency sum of the two drives matches with the
frequency sum of modes A and B, ω1 + ω2 = ωA + ωB , one
obtains a two-mode squeezing interaction between A and B:
gTMSA

†B† + H.c., where

gTMS ≈ −αξ ∗
Aξ ∗

Bξ1ξ2. (B4)

We emphasize that the above formulas for gBS and gTMS

are valid for weak anharmonicity and weak drives. It is not
hard to see that Eqs. (36) and (37) obtained for weak drives
reduce to Eqs. (B3) and (B4) to leading order in the anhar-
monicity. The correction in Eqs. (36) and (37) comes from
the terms we have neglected in the four-wave mixing which
is linear in both the cavity operator and the drive field such

as αξ ∗2
C ξBξ1e

−iω1tC†2B and αξ ∗
2 ξ ∗

Aξ 2
Ceiω2tA†C2. These terms

are off-resonant individually but together can yield a beam-
splitter (or two-mode squeezing) interaction term between
eigenmodes A and B to second order in the anharmonicity.

The four-wave mixing also naturally gives the ac Stark shift
on the ancilla. Again, neglecting the off-resonant terms, we
obtain

Hss/h̄ = −2α(|ξ1|2 + |ξ2|2)C†C. (B5)

Equation (29) in the main text reduces to the above expression
to leading order in α.

Lastly, we comment that by modifying the displacement
transformation in Eq. (B2) so that operator C is displaced by
the full classical response taking into account the nonlinearity,
the higher-order effect of the nonlinearity and the drive can be
partially captured; see Appendix F for the classical analysis of
the two-tone driven ancilla.

APPENDIX C: HEISENBERG-LANGEVIN EQUATIONS
OF MOTION AND THE EQUIVALENT QUANTUM

MASTER EQUATION

Ancilla-induced dissipation on the cavities is accompanied
by quantum noise. We give in this section the explicit ex-
pressions for the noise and also present the quantum master
equation equivalent to the Heisenberg-Langevin equation.

We repeat the equations of motion (9) including the noise
that accompanies the dissipative part δκ and κBS,

˙̃a = −δκa

2
ã − (igBS + κBS)b̃ + ξ̂a (t ) + η̂a (t ),

˙̃b = −δκb

2
b̃ − (ig∗

BS + κ∗
BS)ã + ξ̂b(t ) + η̂b(t ). (C1)

For simplicity we have neglected the intrinsic dissipation of
the cavities which simply renormalizes δκa,b. The Gaussian
quantum noise ξ̂a (and similarly for ξ̂b) associated with δκa

has the following properties:

[ξ̂a (t ), ξ̂ †
a (0)] = δκaδ(t ),

〈ξ̂a (t )ξ̂ †
a (0)〉 = δκ↓

a δ(t ), 〈ξ̂ †
a (t )ξ̂a (0)〉 = δκ↑

a δ(t ), (C2)

where δκ
↓
a and δκ

↑
a are the ancilla-induced cavity transition

down and up rates. The decay rate δκa in the equation of
motion is the difference between them: δκa = δκ

↓
a − δκ

↑
a . δκ↓

a

and δκ
↑
a can be calculated using Eqs. (5) and (11), and they

correspond to the term 〈c(0)(t )c(0)†(t ′)〉 and 〈c(0)†(t )c(0)(t ′)〉
in the commutator of Eq. (5), respectively. Note that δκa

can become negative when the transition up rate dominates,
corresponding to antidamping of the mode; see Sec. IV C 2.

The Gaussian quantum noises η̂a and η̂b associated with
κBS have the following properties:

[η̂a (t ), η̂†
b(0)] = 2κBSδ(t ), [η̂a (t ), η̂†

a (0)] = 0,

〈η̂a (t )η̂†
b(0)〉 = 2κ

↓
BSδ(t ), 〈η̂†

b(t )η̂a (0)〉 = 2κ
↑
BSδ(t ), (C3)

where κBS = κ
↓
BS − κ

↑
BS. Similar to δκ↓,↑, κ

↓
BS and κ

↑
BS, which

can be calculated using Eqs. (5) and (13), correspond to the
term 〈c(0)(t )c(0)†(t ′)〉 and 〈c(0)†(t )c(0)(t ′)〉 in the commutator
of Eq. (5), respectively.
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The quantum master equation equivalent to Eq. (C1) reads

ρ̇ = −i[gBSã
†b̃ + g∗

BSãb̃†, ρ]/h̄ + δκ↓
a D[ã]ρ + δκ↑

a D[ã†]ρ

+ δκ
↓
b D[b̃]ρ + δκ

↑
b D[b̃†]ρ − κ

↓
BS(ã†b̃ρ + ρã†b̃

− 2b̃ρã†) + H.c. − κ
↑
BS(ã†b̃ρ + ρã†b̃ − 2ã†ρb̃) + H.c.,

(C4)

where D[a]ρ ≡ aρa† − {a†a, ρ}/2. The equation above can
be derived starting from the equation of motion for the
full density matrix of cavity-ancilla system and tracing
over the ancilla degree of freedom using the Born-Markov
approximation.

Equation (C4) can be simplified and written in the follow-
ing Linbladian form:

ρ̇ = −i[gBSã
†b̃ + g∗

BSãb̃†, ρ]/h̄ + δκ↓
a D[ã + (2κ

↓
BS/δκ

↓
a )b̃]ρ

+ (δκ↓
b − |2κ

↓
BS|2/δκ↓

a )D[b̃]ρ + δκ↑
a D[ã†

+ (2κ
↑
BS/δκ

↑
a )b̃†]ρ + (δκ↑

b − |2κ
↑
BS|2/δκ↑

a )D[b̃†]ρ.

(C5)

One can interpret Eq. (C5) in the following way. Because
the frequency of cavity b is converted by the ancilla to the
frequency of cavity a, the interference of the two effectively
degenerate modes causes a certain linear combination of the
two modes as determined by the ratio of κ

↓,↑
BS and δκ

↓,↑
a to be

subject to damping (or antidamping), whereas the orthogonal
combination is immune to such loss (or gain). This is man-
ifested in the first term of the second and third line on the
right-hand side of Eq. (C5). The second term of the second
and third line on the right-hand side of Eq. (C5) accounts for
the fact that cavity b can lose or gain photons via the ancilla
without being converted into the frequency of cavity a.

In the special case where the two cavity modes are degen-
erate in frequency [K = 0 in Eq. (8)], we have the identity
δκ

↓,↑
a δκ

↓,↑
b = |2κ

↓,↑
BS |2. Then the second term of the second

and third line on the right-hand side of Eq. (C5) vanish.
We have a “bright mode” given by the linear combination
gaã + gbb̃ that is damped or antidamped by the ancilla and
a “dark mode” gbã − gab̃ that is neither damped nor anti-
damped by the ancilla. In the case of K �= 0, we generally
have δκ

↓,↑
a δκ

↓,↑
b � |2κ

↓,↑
BS |2.

A similar analysis can be applied to the case where there
is a nonunitary two-mode squeezing interaction between the
two cavity modes as described in Eq. (16) of the main text.
We will not discuss this in detail here.

APPENDIX D: NONLINEAR SUSCEPTIBILITIES
OF THE DRIVEN NONLINEAR ANCILLA

Analogous to the linear susceptibilities, nonlinear suscep-
tibilities of the driven ancilla relate to the ancilla-induced
“nonlinear frequency shift” and “nonlinear decay” of the two
cavity modes. To the leading order in the coupling between
the ancilla and cavity modes, the nonlinear frequency shift
corresponds to the ancilla-induced self-Kerr of each cavity
mode and the cross-Kerr between them. The nonlinear decay
corresponds to a decay channel where the rate of decay
depends on the instantaneous energy of the modes. We will

explore in this Appendix their relation with the nonlinear
susceptibilities of the ancilla.

Let us consider two weak probes on the ancilla, one
at frequency ω and the other at ω′: Hf /h̄ = −fωc†e−iωt −
fω′c†e−iω′t + H.c. Each of them represents a cavity mode.
Relevant to the ancilla-induced Kerr on the cavity modes is
the third-order nonlinear response of the ancilla to the probes,

〈c(3)〉 = fω|fω|2χ (3)(ω,ω,−ω,ω)e−iωt + fω|fω′ |2χ (3)

× (ω,ω′,−ω′, ω)e−iωt . (D1)

Here we have introduced the third-order nonlinear suscepti-
bilities χ (3). In the language of nonlinear optics [33], the first
three arguments of χ (3) indicate the frequencies of probe (in-
cident) photons, and the last argument indicates the frequency
of the outgoing photon. We have adopted the convention that
the positive frequency corresponds to a field with complex
amplitude fω and the negative frequency corresponds to a field
with complex amplitude f ∗

ω . By construction, one can permute
the positions of the first three arguments without changing the
value of χ (3).

Similar to Sec. II B, we now substitute Eq. (D1) into the
equations of motion of the two cavity modes Eq. (7), and
replace fω, fω′ with annihilation operators −gaa,−gbb, and
ω,ω′ with ωa, ωb, respectively. After disregarding nonreso-
nant terms, we obtain for cavity mode a,

ȧ = i[HKerr, a] − κnl
aa (a†a)a − κnl

ab(b†b)a + · · ·
HKerr = −χaaa

†2a2/2 − χbbb
†2b2/2 − χaba

†b†ab, (D2)

where “· · · ” represents other linear in a terms. The ancilla-
induced Kerr effects characterized by χaa , χbb, and χab and
rates of nonlinear decay are related to the susceptibility χ (3)

via the following relations:

χaa = |ga|4Reχ (3)(ωa, ωa,−ωa, ωa ),

χab = |gagb|2Reχ (3)(ωa, ωb,−ωb, ωa ), (D3)

κnl
aa = |ga|4Imχ (3)(ωa, ωa,−ωa, ωa ),

κnl
ab = |gagb|2Imχ (3)(ωa, ωb,−ωb, ωa ). (D4)

The nonlinear susceptibility χ (3) can be calculated by
going to higher-order perturbation in Hf using Eq. (3). In
the absence of ancilla decoherence where Imχ (3) vanishes,
the ancilla-induced Kerr can be calculated simply using time-
independent perturbation theory based on the mapping to the
static tight-binding Hamiltonian as described in Appendix E.
After this mapping, the total Hamiltonian including the cavity
modes can be written as

H = Htb + H̃0 + HI ,

H̃0 = (ωa − ω1)a†a + (ωb − ω1)b†b,

HI = (gaa + gbb)c† + H.c., (D5)

where we have transformed to the rotating frame of drive 1
and Htb is given by Eq. (E1).

In order to find the ancilla-induced Kerr while the ancilla
is in a tight-binding eigenstate �εm

(which corresponds to
a Floquet state �m with quasienergy εm; see Sec. III A),
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one only needs to calculate the energy shift δE of the state
|�εm

, Na,Nb〉 due to the perturbation HI in Eq. (D5). Here
Na,Nb indicate the occupation number in mode a and b.
The fourth-order correction δE(4) immediately gives the Kerr.
More precisely, if we group terms in δE(4) according to their
power in Na and Nb, the terms proportional to N2

a , N2
b ,

and NaNb give the ancilla-induced self-Kerr and cross-Kerr,
respectively:

δE(4) = −(χaa,m/2)N2
a − (χbb,m/2)N2

b − χab,mNaNb + · · · ,

where χaa,m denotes the ancilla-induced self-Kerr of the mode
a when it is in the state �εm

, and similarly for χbb,m, χab,m.
A more rigorous way of finding the ancilla-induced Kerr

is to apply a unitary transformation to the Hamiltonian in
Eq. (D5) that eliminates the off-resonant ancilla-cavity cou-
pling to a given order in the coupling rate ga,b. To the fourth
order in the coupling rate, the resulting Hamiltonian contains
the following terms:

HKerr = −
∑
m

∣∣�εm

〉〈
�εm

∣∣[χaa,ma†2a2/2 + χbb,mb†2b2/2

+ χab,ma†b†ab]. (D6)

A systematic procedure to find this unitary transformation can
be found in Ref. [56].

APPENDIX E: MAPPING THE TIME-DEPENDENT
HAMILTONIAN H̃c(t ) TO A TIME-INDEPENDENT

TIGHT-BINDING MODEL

To find the Floquet states and quasienergies, one can write
the function um(t ) in terms of its Fourier components in the
Fock basis |N〉,

um(t ) =
∑
N,K

f
(εm )
NK eiKω21t |N〉.

One can think of the Fourier index K as a second quan-
tum number, and rewrite the state um in a time-independent
form: um → �εm

= ∑
N,K f

(εm )
NK |N,K〉. Then it follows from

Eq. (22) that the amplitudes fNK can be found by solving a
time-independent Schrödinger equation with a tight-binding
Hamiltonian on a 2D lattice:

Htb�ε = ε�ε, �ε =
∑
N,K

f
(ε)
NK |N,K〉,

Htb/h̄ =
∑
NK

(EN/h̄ + Kω21)|N,K〉〈N,K| + √
N + 1

× (�1|N + 1,K〉〈N,K| + �2|N + 1,K − 1〉
× 〈N,K| + H.c.), (E1)

where EN/h̄ = −δ1N − αN (N − 1)/2. Hamiltonian Htb has
on-site energy EN + Kω21 on the site (N,K ) and hopping be-
tween neighboring sites along certain directions; see Fig. 14.
Its eigenenergies are the quasienergies ε in the extended
Brillouin zone scheme and its eigenstates �ε have a one-to-
one correspondence to the states u(t ). Such a mapping to
time-independent Hamiltonian by going to the Fourier basis
has been studied in Ref. [37].

The form of tight-binding Hamiltonian Htb can be under-
stood by thinking of the drive fields quantum mechanically.

FIG. 14. A 2D lattice that represents the tight-binding Hamilto-
nian Htb in Eq. (E1). Quantum number N indicates the level of the
ancilla in the Fock space. K indicates the change in the number
of excitations in drive-2 reservoir. Direct transfer of excitations
between the drives and the ancilla corresponds to hopping on the
2D lattice: hopping along the horizontal direction (indicated by �1)
means exchange of excitations between drive 1 and the ancilla, and
along one of diagonal directions (indicated by �2) means exchange
of excitations between drive 2 and the ancilla. Indirect hopping
along vertical direction can happen via two direct hopping along the
diagonal and horizontal directions meaning exchange of excitations
between drive 1 and drive 2. The solid lines are contours of constant
on-site energy obtained by treating N and K as continuous variables
for the parameters: δ1/α = 1.5, ω21/α = 4. For these parameters,
sites (0,0) and (2,1) have the same on-site energy indicating multi-
photon resonance as discussed in Sec. III B 1.

One can think of |N,K〉 as the state in which there are N

excitations in the ancilla, and there has been an increase of K

excitations in the reservoir of drive 2 which contains a large
number of excitations. Because we are in the rotating frame of
drive 1, the on-site energy on site (N,K ) is counted from the
energy of N + K drive-1 excitations. The interaction between
the drives and the ancilla leads to hopping between different
sites. More precisely, exchange of an excitation between
drive-1 reservoir and the ancilla leads to hopping between
site |N − 1,K〉 and |N,K〉, for each N,K; exchange of an
excitation between drive-2 reservoir and the ancilla leads to
hopping between site |N − 1,K + 1〉 and |N,K〉, for each
N,K . The two types of hopping combined allow one to start
from one lattice site and get to any site on the lattice. One
can derive the same tight-binding Hamiltonian if one treats
the driving fields quantum mechanically and expands about a
large excitation number in the fields [37].

Hamiltonian Htb is invariant up to a constant with re-
spect to translation along the K direction. Because it has a
linear potential along K direction and the hopping strength
is independent of K , translation along K direction by any
number of sites simply amounts to changing the energy by
integer multiples of h̄ω21. One can show that eigenstates of
Htb whose eigenenergies differ by integer multiples of h̄ω21

satisfy the relation f
(ε)
NK = f

(ε+δKω21 )
N (K+δK ) . It follows that those
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eigenstates with eigenenergies differing by integer multiples
of h̄ω21 yield the same Floquet state �. This explains why
there are only N independent Floquet states � if the system
Hilbert space has dimension N . In practice, one can choose
any set of inequivalent states �εm

(or um) for the analysis
and understand that there are infinitely many replicas of them
whose wave functions on the lattice are simply shifted along
the K direction by an integer number of sites.

Hamiltonian Htb allows us to calculate the rate of the
ancilla-induced interaction between the two cavity modes
using a time-independent perturbation theory similar to how
we calculate the ancilla-induced Kerr in Appendix D. Starting
from Eq. (D5), after a unitary transformation to eliminate the
linear in ga, gb terms, one arrives at an effective Hamiltonian
in the interaction picture

HBS =
∑
m

gBS,m

∣∣�εm

〉〈
�εm−Kh̄ω21

∣∣a†b + H.c., (E2)

when the frequency matching condition for the beam-splitter
interaction is satisfied: ωb − ωa = Kω21. Here the superscript
m in gBS,m indicates the corresponding beam-splitter rate
when the ancilla is in the state �εm

.
Without knowing the exact form of the unitary transfor-

mation leading to HBS, one can calculate gBS,m using de-
generate perturbation theory. When the appropriate frequency
matching condition is satisfied, states |�εm−Kh̄ω21 , 0a, 1b〉 and
|�εm

, 1a, 0b〉 are degenerate in the absence of interaction
between the cavity modes and the ancilla. The beam-splitter
rate g

(m)
BS is given by the energy splitting between the two states

caused by the interaction to leading order in ga, gb. To see
that one indeed arrives at the same expression for gBS as that
obtained from time-dependent Floquet theory, one just needs
to replace the Fourier component cmn,K in χm(ω,ω + Kω21)
in Eq. (30) with corresponding matrix element in the basis of
tight-binding wave functions:

cmn,K = 〈
�εm+Kω21

∣∣c∣∣�εn

〉
.

After this replacement, Eq. (30) has exactly the same form as
the energy splitting in the second-order degenerate perturba-
tion theory.

The rate of ancilla-induced two-mode squeezing interac-
tion can also be derived in the same way. The corresponding
effective Hamiltonian in the interaction picture has the form

HTMS =
∑
m

gTMS,m

∣∣�εm

〉〈
�εm+Kh̄ω21

∣∣a†b† + H.c., (E3)

when the cavity mode frequencies satisfy ωa + ωb = 2ω1 +
Kω21. The rate gTMS,m can be calculated as the energy
splitting between the two states |�εm+Kh̄ω21, 0a, 0b〉 and
|�εm

, 1a, 1b〉 using degenerate perturbation theory.

APPENDIX F: SEMICLASSICAL ANALYSIS
OF THE TWO-TONE DRIVEN ANCILLA

In this Appendix we analyze the semiclassical dynamics
of the driven ancilla starting from the Hamiltonian H̃c in
Eq. (20) in the rotating frame of drive 1. The analysis applies
to the regime where the drives on the ancilla are relatively
strong or the drive detuning is much larger than the ancilla
anharmonicity. We note that the experiments presented in the

main text are not quite in the semiclassical regime yet, but the
qualitative features of the results are already captured by the
semiclassical analysis.

For the purpose of semiclassical analysis, it is convenient
to transform from the creation and annihilation operators c†, c
to the quadratures P,Q in the rotating frame,

Q =
√

λ

2
(c + c†), P = −i

√
λ

2
(c − c†), (F1)

where we have introduced the dimensionless Planck constant

λ = α/2|δ1|.
Note that α ∝ h̄.

In terms of P and Q, Hamiltonian H̃c(t ) can be expressed
as a dimensionless Hamiltonian g(Q,P, t ) [26],

H̃c/h̄ = 2|δ1|2
α

g(Q,P, t ),

g(Q,P, t ) = −1

4
[Q2 + P 2 + sgn(δ1)]2 + �1Q + �2

× cos(ω21t + φ21)Q − �2 sin(ω21t + φ21)P,

(F2)

where the dimensionless driving amplitudes �1,2 =√
α|�1,2|/|δ1|3/2. Without loss of generality, we have chosen

a gauge for the ancilla c such that �1 is real and positive, and
�2 = |�2|e−iφ21 .

Here we emphasize that the squared dimensionless drive
amplitude |�1,2|2 = α|�1,2/δ1,2|2/|δ1,2| can be understood as
the ratio of the drive-induced frequency shift and the drive
detuning [see Eq. (29)]. In the presence of only drive 1, �1

is the only parameter that controls the classical dynamics; see
below.

1. Classical equations of motion

The Hamilton equations of motion of the Hamiltonian
g(Q,P, t ) read

dQ

dt̄
= ∂g

∂P
− γ̄

2
Q,

dP

dt̄
= − ∂g

∂Q
− γ̄

2
P, (F3)

where the dimensionless time t̄ = t/|δ1|. We have also added
a dissipation with a scaled rate γ̄ = γ /|δ1|. Note that here γ

is the energy decay rate in accordance with the definition used
in the main text; see Sec. IV.

On a timescale set by the decay rate γ , the nonlinear
oscillator reaches a steady state which is a periodic orbit
with period τ = 2π/ω21 in the phase space. Such a periodic
steady-state solution can be found by substituting the Fourier
decomposition of Q and P , Q(t ) = ∑

K QKeiKω21t , P (t ) =∑
K PKeiKω21t into the equations of motion and solving for

the Fourier components.
In the absence of dissipation, the oscillator generally per-

forms quasiperiodic motion in the phase space in the presence
of the two drives. Such quasiperiodicity can be understood
as follows. When there is only drive 1 (�2 = 0), given an
initial condition, the oscillator occupies a periodic orbit of
the Hamiltonian g at �2 = 0. Turning on drive 2, the orbit is
modulated by the second drive at frequency ω21 and becomes
quasiperiodic unless frequency ω21 is commensurate with
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FIG. 15. Spectroscopic Poincaré section of the Hamiltonian
g(Q,P, t ). The scaled driving amplitudes �1 = 0.89, �2 = 4.5.
The scaled frequency ω21/|δ1| = 15.

the period of this orbit. A convenient way to present such
quasiperiodic motion is via the stroboscopic Poincaré section
where the position of the oscillator in the phase space is
recorded every period τ ; see Fig. 15. Quasiperiodic orbits in
the phase space fill up a full loop in the Poincaré section and
form an island [58]. The center of the island is the periodic
steady state to which the system flows to in the presence of a
weak damping [59].

2. Semiclassical quantization in the presence of one drive

When there is only drive 1, Hamiltonian g is time inde-
pendent; its semiclassical eigenergies can be found using the
Bohr-Sommerfeld quantization rule. For a relatively strong
drive 1 or large detuning (λ � 1), one can also expand the
Hamiltonian g about one of the stable equilibrium positions
of the oscillator in the phase space, and then quantize the
fluctuations around the equilibrium position; cf. [26]. The
equilibrium position corresponds to the classical steady state
in the limit γ → 0. We will focus here on the case of positive
detuning δ1 > 0 where there is only one stable equilibrium
position but will keep the formulation general so that it also
applies to negative detuning.

A fully equivalent way of finding the semiclassical eigen-
states and eigenenergies near the equilibrium position is to
start from the Hamiltonian H̃c (at �2 = 0) in terms of c, c†;
see Eq. (20). One first makes a displacement transformation
to eliminate the linear in c term:

c → c + Q0/
√

2λ. (F4)

Q0 is the value of Q at the equilibrium position of the
oscillator and is given by one of the real solutions to the qubic
equation:

Q0
[
Q2

0 + sgn(δ1)
] = �1. (F5)

Note that the displacement Q0/
√

2λ is denoted as ξ 1 in the
main text (neglecting the phase in the drive amplitude �1).
In terms of the scaled drive strength ξ1 used in the main
text, the above equation becomes ξ 1(α|ξ 1|2/δ1 + 1) = ξ1. The

FIG. 16. The squeezing parameter sinh φ and the squared classi-

cal response Q2
0 as a function of the scaled drive power �

2
1. In terms

of ξ1 defined in the main text, �
2
1 = α|ξ1|2/δ1.

dependence of Q2
0 on the scaled drive power �

2
1 is shown in

Fig. 16 for δ1 > 0.
For negative detuning, there can be three real roots where

two of them correspond to stable equilibrium positions. For
the considered case of positive detuning, there is only one
real root. The value of P at the equilibrium position is P0 = 0
since the Hamiltonian is even in P . Note that such a displace-
ment differs from the displacement discussed in Sec. III C 2 as
it takes into account the nonlinearity of the oscillator.

After the displacement transformation, the Hamiltonian H̃c

becomes

H̃c/h̄ = −δ1c
†c − 2δ1Q

2
0c

†c − δ1Q
2
0(c†2 + c2)/2 + · · · ,

(F6)

where · · · represent terms that are nonquadratic in c and c†.
We note that at the quadratic level, the drive induces frequency
shift and squeezing of the ancilla mode. This Hamiltonian has
a similar form as the Hamiltonian in Eq. (34) of the main text
but does not have linear in c or c† terms and has ξ replaced by
Q0/

√
2λ.

Next, we diagonalize the quadratic part of the above
Hamiltonian via a squeezing transformation

c = caux cosh φ − c+
aux sinh φ, (F7)

where caux, c
†
aux can be thought of as the annihilation and

creation operators of an auxiliary mode that corresponds to
the small vibrations about the equilibrium position of the
oscillator. The squeezing angle φ in Eq. (F7) expressed in
terms of the frequency ωaux (see below) of the auxiliary mode
obeys

sinh φ = sgn(Q0)

[[
2Q2

0 + sgn(δ1)
]
sgn(Q0) − ωaux/|δ1|

2ωaux/|δ1|

]1/2

.

(F8)

The squeezing parameter sinh φ is only a function of Q0

which is controlled by the dimensionless drive amplitude �1

through Eq. (F5).
The dependence of the squeezing parameter sinh φ on the

scaled drive power for positive detuning δ1 > 0 is shown
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in Fig. 16. For small �1, it is linear in �
2
1; for large �1,

it saturates to a value equal to [(2 − √
3)/2

√
3]1/2. This

saturation can be understood as a result of the competition
between the drive-induced frequency shift [the second term
in Eq. (F6)] and squeezing [the third term in Eq. (F6)]. For
positive detuning (δ1 > 0), the drive-induced frequency shift
pushes the effective ancilla frequency further away from the
drive frequency which in turn limits the amount of squeezing.
Since both the frequency shift term and squeezing term in
Eq. (F6) grow linearly in Q2

0, the amount of squeezing one
can achieve saturates at large drive power.

For a large detuning over anharmonicity (|δ1| � α) or
a relatively strong drive, one can neglect the nonlinear in
caux, c

+
aux terms in H̃c. The resulting Hamiltonian in terms of

caux and c
†
aux reads

H̃c/h̄ ≈ −sgn(Q0)ωauxc
+
auxcaux, (F9)

where the frequency of the auxiliary mode is

ωaux = |δ1|
√[

Q2
0 + sgn(δ1)

][
3Q2

0 + sgn(δ1)
]
. (F10)

We note that eigenenergies of H̃c can be negative, and excited
states can have lower eigenenergies than the ground state,
a consequence of being in the rotating frame of the drive.
The frequency ωaux depends on the drive amplitude through
the drive dependence in Q0. For the considered case of
positive detuning, Q0 > 0; ωaux monotonically increases as
the drive amplitude increases.

Equation (F10) allows us to calculate the approximate ac
Stark shift of the transition frequency E10 of the ancilla in the
regime where the semiclassical analysis applies. ωaux relates
to the ac Stark shift δE10 through the relation

δE10/h̄ ≈ δ1 − ωaux. (F11)

We note that δE10 starts off being linear in the drive power
[see also Eq. (29)], then becomes sublinear, and for a rela-
tively strong drive, it becomes proportional to �

2/3
1 .

In the presence of two drives, in principle, one can follow
the same procedure to find semiclassical quasienergy states
and quasienergies of Hamiltonian H̃c(t ) or g(Q,P, t ) in
Eq. (F2) by expanding the Hamiltonian about the “equilibrium
position” (now a periodic orbit in the phase space, or a point in
the Poincaré section; see Fig. 15). The resulting Hamiltonian
does not have terms linear in c, c† but is still periodic in
time with periodicity τ . Similar to the case of one drive, one
can find the approximate quasienergies by diagonalizing the
quadratic part of the resulting Hamiltonian. One can take the
point of view that the quasiperiodic orbits surrounding such a
equilibrium position now become quantized quasienergy lev-
els just like the case of static Hamiltonian where periodic or-
bits surrounding a stable equilibrium position form quantized
energy levels [60]. Going away from the equilibrium position,
there also exists a general semiclassical quantization scheme
for Floquet systems [61,62]; such an analysis is beyond the
scope of this paper.

a. Dissipation- and dephasing-induced heating
in the semiclassical regime

Because of the squeezing transformation from c to caux,
transition down in the ladder of Fock states of operator c

(due to dissipation) can correspond to both transition up and
down in the ladder of Fock states of operator caux. This leads
to an effective “heating” of the auxiliary mode as discussed
in Sec. IV even when the bath that leads to the damping of
the ancilla is at zero temperature. Importantly, the squeezing
vanishes if α = 0 where the system is linear.

Likewise, due to the displacement transformation in
Eq. (F4), dephasing noise leads to transitions between dif-
ferent eigenstates of the auxiliary modes. To see the effects
of ancilla dissipation and dephasing on the auxiliary mode,
we substitute c in Eq. (42) with caux cosh φ − c+

aux sinh φ +
Q0/

√
2λ and H̃c with Eq. (F9). Only keeping the terms in the

Lindbladian that contain equal number of caux and c
†
aux, we

obtain the quantum master equation for the auxiliary mode to
be [27]

ρ̇ = −i[H̃c, ρ]/h̄ + {
D[

√
γ

↓
auxcaux] + D[

√
γ

↑
auxc

†
aux]

+D
[√

γ2c
2
aux

] + D
[√

γ2c
†2
aux

] + D[
√

2γ̃phc
†
auxcaux]

}
ρ.

(F12)

The transition down and up rates between neighboring levels
of the auxiliary mode read

γ ↓
aux = (nth + 1)γ cosh2 φ + nthγ sinh2 φ + γ

(hf)
ph Q2

0/λ,

γ ↑
aux = (nth + 1)γ sinh2 φ + nthγ cosh2 φ + γ

(hf)
ph Q2

0/λ.

(F13)

We emphasize that even at nth = 0, there is a finite transition
up rate γ ↑

aux. The transition up and down rates induced by the
dephasing noise are the same as a result of the assumed sym-
metric noise spectrum in Eq. (42). Note that we have replaced
in Eq. (F13) γph with γ

(hf)
ph as introduced in Sec. IV B 3 of the

main text to emphasize that the rates of transitions caused by
dephasing is determined by the dephasing noise at the drive
detuning frequency which as we found is much smaller than
the dephasing rate obtained from the Ramsey or spin echo
measurement.

In addition, the dephasing noise also induces two-photon
transitions with a rate γ2 = 2γ

(hf)
ph sinh2 φ cosh2 φ. However,

this rate is small compared to the transition rates between
neighboring levels in the considered semiclassical limit of
λ � 1. The dephasing rate of the auxiliary mode γ̃ph is
proportional to the original ancilla dephasing rate γph and
becomes equal to γph in the limit of weak drive.

Neglecting the two-photon transitions, the steady-state dis-
tribution among the eigenstates of the auxiliary mode is of the
Boltzmann form and can be written as follows:

P st
n =

(
ñth

ñth + 1

)n/
(ñth + 1), (F14)

where the effective thermal population is given by

ñth = nth + (2nth + 1) sinh2 φ + (
Q2

0/λ
)
γ

(hf)
ph /γ. (F15)
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In the absence of ancilla dephasing, the above equation re-
duces to that found in Ref. [27].

The total population in the excited eigenstates of the auxil-
iary mode 1 − P st

0 = ñth/(ñth + 1) as a function of the scaled
drive power is shown in Fig. 8 of the main text. For the case
γ

(hf)
ph /γ = 0, the effective thermal population ñth saturates at

strong drive due to the saturation of sinh2 φ in Eq. (F15) (see
also Fig. 16). For a nonzero γ

(hf)
ph /γ , the effective temperature

ñth would rise indefinitely according to Eq. (F15) but even-
tually will be constrained by the finite bandwidth of the noise
that leads to ancilla dephasing. We note that for not very small
λ, the semiclassical analysis already captures qualitatively the
behavior of the results from the full Floquet analysis.

b. Decoherence rates of the driven ancilla

We discuss in this section the drive dependence of the
decoherence rates Vmn of superpositions of Floquet states in
Eq. (50) in the semiclassical approximation.

We approximate the Floquet states as the eigenstates of
the auxiliary mode described by the Hamiltonian in Eq. (F9).
Using Eq. (51) and the squeezing transformation in Eq. (F7),
we find the dissipation-induced decoherence rate to be

V γ
mn ≈ γ [(sinh2 φ + 1/2)(m + n) + sinh2 φ]. (F16)

The result above is shown in Fig. 9(a) and qualitatively
matches the full Floquet results.

Similarly, using Eq. (52), we find that the dephasing-
induced decoherence rate to be

V
γph
mn ≈ γ

(hf)
ph sinh2 φ cosh2 φ(m2 + n2 + m + n + 2)

+ γph(0)(2 sinh2 φ + 1)2(m − n)2. (F17)

In the case γ
(hf)

ph � γph(0), the above result shows that V
γph
mn

increases as a function of drive power and saturates to a
value slightly larger than its value in the absence of the drive.
However, it does not capture the sharp decrease of V

γph
mn as the

drive power increases found using the full Floquet analysis
shown in Fig. 9(b). This indicates the significance of the
quantum correction from the nonquadratic terms in Eq. (F6)
which are neglected in obtaining Eq. (F9).

c. Nonlinearities of the auxiliary mode

We discuss now the effects of the terms nonlinear in
caux, c

†
aux that we have neglected in arriving at Eq. (F9). Those

nonlinear terms come from the original ancilla nonlinearity
−αc†2c2/2. For clarification, we list those terms below:

−α

2
c†2c2 → −α

2
(c†aux cosh φ − caux sinh φ + Q0/

√
2λ)2

× (caux cosh φ − c†aux sinh φ + Q0/
√

2λ)2.

(F18)

On the one hand, nonlinear terms in caux, c
†
aux make the lev-

els of the auxiliary mode slightly nonequidistant. Collecting
all the resonant (i.e., nonrotating) nonlinear terms, we find that
the effective self-Kerr of the auxiliary mode (corresponding to
a term −h̄αauxc

†2
auxc

2
aux/2 in the Hamiltonian) has the following

form:

αaux

α
= C4(φ) − C3(φ)

Q2
0

(ωaux/|δ1|) sgn(Q0), (F19)

where C4, C3 are positive functions of the squeezing angle
φ. The term proportional to C4 comes from the quartic terms
in caux, c

†
aux in Eq. (F18), whereas the term proportional to C3

comes from the qubic terms in caux, c
†
aux taken to second order.

In general, both terms are of the same order of magnitude and
can have different signs depending on the sign of Q0.

For the case Q0 > 0, we find after some algebra that

αaux

α
= −3Q4

0 + 2

2
[
3Q2

0 + sgn(δ1)
]2 . (F20)

The above result applies to both positive detuning (δ1 > 0)
and negative detuning (δ1 < 0) as long as Q0 > 0. Interest-
ingly, for a strong drive 1 where �1 � 1 such that Q0 � 1,
the effective Kerr of the auxiliary mode changes from being
positive to negative (with respect to the sign of α) and ap-
proaches −α/6 in the limit �1 → ∞. This sign change in αaux

is a consequence of the C3 term dominating over the C4 term
in Eq. (F19).

The change in the sign of the effective anharmonicity
αaux has an interesting consequence. If one now turns on the
second drive on the ancilla, the ac Stark shift to the transition
frequencies of the auxiliary mode due to this drive can also
change sign depending on the sign of αaux. Indeed, one finds
that, to leading order in the drive amplitude �2, the ac Stark
shift to the frequency ε10/h̄ of transition between the ground
and excited state of the auxiliary mode reads

δε10/h̄

= −2αaux|�2|2
2 sinh2 φ

(
ω2

21 + ω2
aux

) + (ω21 − ωaux)2(
ω2

21 − ω2
aux

)2 .

(F21)

Clearly, ε10/h̄ changes sign when αaux changes sign. This sign
change in the ac Stark shift due to drive 2 was also observed
in the experiment where the strength of drive 1 has not yet
reached the semiclassical regime yet; see Sec. III B. Quite
interestingly, for stronger drive 2, the ac Stark shift becomes
nonmonotonic in its amplitude as shown in the main text.

We point out that the expression for the effective anhar-
monicity αaux in Eq. (F20) can also be found using the semi-
classical quantization rule: gn − gn−1 = −λν(gn−1) where gn

is the eigenenergy of the nth excited state of the Hamiltonian
g about the equilibrium position and ν(gn−1) is the frequency
of the orbit for the classical Hamiltonian at energy gn−1. Ex-
panding ν(gn) about the ground state energy g0 and keeping
to leading-order term in λ, one finds that [26]

αaux

α
= −1

2

dν

dg

∣∣∣∣
g=g0

ν(g0).

The expression above is invariant with respect to the choice of
coordinate system.

In addition to renormalizing the effective Kerr αaux, the
qubic terms in caux, c

†
aux in Eq. (F18) also provide a capability

of three-wave mixing. If one now turns on the second drive
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on the ancilla and couples the ancilla to two off-resonant
cavity modes, the three-wave mixing among the two cavities
and drive 2 can lead to beam-splitter or two-mode squeezing
interaction between the two cavities. We note that the strength
of such three-wave mixing is proportional to Q0 which fol-
lows Eq. (F5). When �1 becomes of order one, Q0 becomes
sublinear in �1 as can be seen in Fig. 6 of the main text.

APPENDIX G: QUASIENERGY LEVEL ANTICROSSING
AND EXPERIMENTAL EVIDENCE

In this Appendix we present experimental evidence of
quasienergy level anticrossing due to multiphoton resonance
and show that the Floquet theory accurately predicts the
locations of the level anticrossings.

As we discussed in Sec. III B 1, if the ancilla comes close
to, or passes through, a quasienergy level anticrossing near the
peak of the drive envelopes where the drive amplitudes change
slowly, the probability of diabatic vs adiabatic transition be-
tween the two levels can become comparable. In an ac Stark
shift measurement of the ancilla transition frequency E10/h̄

as described in Sec. III B 3, if the above situation occurs, we
would observe that the ancilla has a finite probability of not
remaining in the ground state regardless of the frequency of
the spectroscopy tone.

We show in Fig. 17 an example of this situation where we
vary the strength of drive 2 and keep the strength of drive
1 fixed. At a particular strength of drive 2, there is a sharp
vertical line in the spectrum indicating a high probability

of the ancilla not being in the ground state regardless of
the frequency of the spectroscopy tone. A comparison with
the theoretical quasienergy spectrum shows that there is an
anticrossing between quasienergy levels ε0 and ε2 at that par-
ticular drive strength; as a result, the ancilla has a significant
probability of transitioning from the state �0 to �2 during the
ramping up and down of the drives. Near this resonance, we
observed weak oscillations in the probability of the ancilla not
being in the ground state, a typical situation in a Landau-Zener
transition. Far away from the resonance, these oscillations
damp out indicating a (mostly) diabatic transition when the
ancilla passes through the resonance.

Lastly, we emphasize that the process of multiphoton reso-
nance is strongly suppressed when the frequency difference of
the two drive tones is much larger than their drive amplitudes.
In particular, this is the case for the beam-splitter experiment
presented in Fig. 6, where the frequency difference of the two
drives ω21/α ≈ 15, was much larger than what we used here.

APPENDIX H: TRANSIENT SUSCEPTIBILITIES

Also of interest to us are the transient susceptibilities where
the ancilla is initialized in a given Floquet state. The analysis
of the transient susceptibilities greatly simplifies in the limit of
weak damping and dephasing where Eqs. (44) and (45) hold
and the probe detunings from the ancilla resonances are much
larger than the corresponding linewidths. Assuming that the
ancilla is initially in a pure Floquet state �j at t = 0, we find
that the ensemble-averaged susceptibilities read

χ (ω,ω + Kω21, t ) =
∑
m

Pm(t )χm(ω,ω + Kω21) + i
∑
mnK ′

[Pm(t )Vmn + Ṗm(t )]

( FmnKK ′

δ2
mnK ′ (ω)

− FnmKK ′

δ2
nmK ′ (ω)

)
, (H1)

X(−ω, 2ω1 + Kω21 − ω, t ) =
∑
m

Pm(t )Xm(−ω, 2ω1 + Kω21 − ω) + i
∑
mnK ′

[Pm(t )Vmn + Ṗm(t )]

×
( F̃mnKK ′

δ2
mnK ′ (−ω)

− F̃nmKK ′

δ2
nmK ′ (−ω)

)
. (H2)

Here Pm(t ) denotes the time-dependent population of the ancilla in the state �m and it satisfies the rate equation (44) with

Pm(t ) ≡ ρmm(t ) and the initial condition ρmm(0) = δmj . The (unitary) partial susceptibilities χm and Xm are given in Eqs. (30)
and (31). We have introduced a shorthand notation for the squared Floquet matrix elements and the detuning of the probe
frequency from the corresponding Floquet resonances:

FmnKK ′ = cmn,K ′−K (c†)nm,−K ′ , F̃mnKK ′ = cmn,K ′−Kcnm,−K ′ , δmnK ′ (ω) = (ω − ω1) − εnm/h̄ + K ′ω21.

Equations (H1) and (H2) apply when the detunings δmnK ′ are much larger than the linewidths Vmn and the changing rate of
Pm(t ).

After a time set by the inverse relaxation time of the ancilla, the transient susceptibilities become the steady-state
susceptibilities. This can be seen by setting Pm(t ) to the steady-state population P st

m and Ṗm(0) to zero in Eqs. (H1) and (H2). A
more general result for the steady-state susceptibilities beyond the regime |δmnK ′ | � Vmn is given in Eq. (53) of the main text.

One can think of the ensemble-averaged susceptibilities in Eqs. (H1) and (H2) in a quantum-trajectory-like picture where the
ancilla randomly jumps from one Floquet state to another. In between the jumps, the ancilla remains in a given Floquet state,
say, �j . Then the “instantaneous” susceptibilities of the ancilla are given by the short-time limit of Eqs. (H1) and (H2), where
t is much shorter than the relaxation time of the ancilla. Specifically, we need to set all probabilities Pm�=j (t ) in Eqs. (H1) and
(H2) to zero, Pj to 1, and the time derivative of the probabilities to Ṗm�=j = Wjm, Ṗj = −∑

j ′ �=j Wjj ′ based on Eq. (44). We
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denote the resulting susceptibility as χ tr
j which is given by

χ tr
j (ω,ω + Kω21) = χj (ω,ω + Kω21) + i

∑
nK ′

⎡
⎣Vjn −

∑
j ′ �=j

Wjj ′

⎤
⎦( FjnKK ′

δ2
jnK ′ (ω)

− FnjKK ′

δ2
njK ′ (ω)

)

+ i
∑

nK ′,j ′ �=j

Wjj ′

( Fj ′nKK ′

δ2
j ′nK ′ (ω)

− Fnj ′KK ′

δ2
nj ′K ′ (ω)

)
. (H3)

Note that the expression above is different from the par-
tial susceptibility χ st

j in Eq. (54). One can show that sum-
ming the instantaneous susceptibility χ tr

j over the steady-state

FIG. 17. Quasienergy level anticrossing due to multiphoton res-
onance. Top: Spectroscopy of the two-tone driven ancilla as a
function of the scaled drive-2 power. The power of drive 1 is
fixed at |ξ1|2δ1/(δ1 + α) = 0.22. The scaled drive detunings δ1/α =
1, δ2/α = 4.5. The vertical axis is the frequency of the spectroscopy
tone (a π pulse) counted from the ancilla transition frequency ωc.
The color indicates the population of the ancilla not in the ground
state. Bottom: The quasienergy spectrum of the driven ancilla for the
same range of drive strengths as in the top panel. From top to down at
ξ2 = 0, the blue, green, red, and black lines refer to the quasienergy
levels ε1, ε3, ε2, and ε0, respectively, projected into the same Brillouin
zone. The anticrossing between ε0 and ε2 indicates a multiphoton
resonance where the ancilla is excited from the ground to the second
excited state by absorbing three drive-1 photons and emitting one
drive-2 photon. The gap of the anticrossing is too weak to be seen on
the scale of the plot. In the top panel, the dip at around −30 MHz at
the drive strength where the anticrossing occurs is likely due to that
the ancilla decays from the second to the first excited state and then
be de-excited to the ground state by the spectroscopy tone.

distribution P st
j recovers the ensemble-averaged steady-state

susceptibility χ st in Eq. (53). The instantaneous susceptibility
Xtr

j can be found similarly.

APPENDIX I: INCOHERENT HOPPING BETWEEN
THE CAVITY AND ANCILLA INDUCED

BY ANCILLA DEPHASING

In this Appendix we study in detail the dephasing-induced
incoherent hopping between the cavity and ancilla using a
two-state approximation. To be concrete, we consider the sit-
uation described by the Hamiltonian in Eq. (60) where cavity
mode a is close to the resonance ν0mK and other resonance
processes can be neglected.

Implicitly assumed in the formula for the inverse Purcell
decay rate in Eq. (57) is that the drives are turned on relatively
slowly so that any initial state of the cavity mode stays in the
adiabatic state of the coupled ancilla-cavity system described
by Eq. (60) as the drives are being turned on. Here we make
the same assumption and show that ancilla dissipation and
dephasing lead to incoherent hopping between the adiabatic
states of the Hamiltonian in Eq. (60), and the hopping rate
reduces to the inverse Purcell decay rate in the weak coupling
limit.

To relate to the experiment in Sec. IV C 3, we consider that
cavity mode a is initially in the Fock state |1a〉 and the ancilla
is in the vacuum state |0c〉 before the drives are turned on.
After the drives have been turned on adiabatically, the state
|1a, 0c〉 becomes an eigenstate of the Hamiltonian in Eq. (60):
ψ1 = α1|1a, u0〉 + β1|0a, um〉. We denote another eigenstate
of the Hamiltonian in Eq. (60) in the same subspace as ψ2 =
α2|1a, u0〉 + β2|0a, um〉. In the weak coupling limit, ψ1 will
be mostly |1a, u0〉 and ψ2 will be mostly |0a, um〉.

Finite ancilla dissipation and dephasing induce coupling
between these two states and thus they acquire finite widths.
In the limit where the decoherence-induced widths are much
smaller than the energy splitting between these two states,
there occurs incoherent hopping between these two states as
well as pure loss from these states which can be described by
the following rate equation:

ρ̇1 = −(R11 + R12)ρ1 + R21ρ2,

ρ̇2 = −(R22 + R21)ρ2 + R12ρ1, (I1)

where ρ1,2 refer to the population in the states ψ1,2, respec-
tively. R12, R21 refer to the hopping rates between the two
states; R11, R22 refer to the individual loss rates of the two
states due to hopping to states outside the subspace. To sim-
plify the analysis, we neglected the finite heating rate of the
ancilla from lower to higher Floquet states which is small for
not too strong drive. Therefore, we can restrict ourselves to the
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two state subspace spanned by the states �1 and �2 without
considering the finite rates of hopping to higher Floquet states
and then quickly hopping back.

The rates Rij can be calculated using Fermi’ s golden
rule. The incoherent hopping between the two states is caused
by the pure dephasing of the ancilla Floquet states and the
hopping rates are found to be

R12 =
∑
K

1

2
γ |α1α

∗
2c00,−K +β1β

∗
2 cmm,−K |2+2|α1α

∗
2 (c†c)00,K

+β1β
∗
2 (c†c)mm,K |2γph(Kω21 + �̃R ), (I2)

and R21 has the same form as R12 except that the argument
of γph changes sign. Expression (I2) reduces to the pure
dephasing rate of the Floquet states in Eq. (50) in the weak
coupling limit where α1α

∗
2 = −β1β

∗
2 ≈ −ga/(ωa − ν0nK ); an

important difference is that the rate here depends on the spec-
trum of the dephasing noise at the Rabi splitting frequency
between states ψ1 and ψ2:

�̃R =
√

(ωa − ν0mK )2 + (2ga (c†)m0,−K )2.

Here we assumed that ωa < ν0mK ; in the opposite case, one
needs to change the sign in front of �̃R in Eq. (I2). For
simplicity, we have neglected the usually weak frequency
dependence in γ and the incoherent hopping due to much
smaller intrinsic dephasing and dissipation rate of the cavity.

The individual loss rates R11 and R22 are found to be

R11 = |α1|2κ (0)
a + |β1|2

∑
n<m

Wmn,

R22 = |α2|2κ (0)
a + |β2|2

∑
n<m

Wmn, (I3)

where the rates Wmn are given by Eq. (46) with εm replaced
by εm + (ωa − ν0mK − �̃R )/2 in γ (ω) and γph(ω) for R11 and
by εm + (ωa − ν0mK + �̃R )/2 for R22. We note the rate R11 +
R12 reduces to the inverse Purcell decay rate in Eq. (57) plus
the intrinsic cavity decay rate in the weak-coupling limit.

The solution to Eq. (I1) for the initial condition ρ1(0) =
1, ρ2(0) = 0 reads

ρ1(t ) = e−R+t/2[cosh(Bt/2) + R− sinh(Bt/2)/B],

ρ2(t ) = 2R12e
−R+t/2 sinh(Bt/2)/B,

R± = R22 + R21 ± (R11 + R12),

B =
√

R2− + 4R12R21. (I4)

In the weak coupling limit, the incoherent hopping rate
between the two states is much smaller than the rate of
loss from the ancillalike state ψ2: R21, R12 � R22. One can
neglect the hopping back from the state ψ2 to ψ1 and it
follows from Eq. (I4) that ρ1(t ) decays exponentially with a
rate given by the inverse Purcell decay rate in Sec. IV C 2:
ρ1(t ) ≈ exp[−(R11 + R12)t].

In the strong coupling limit, ψ1 and ψ2 are fully hy-
bridized ancilla-cavity states, i.e., |α1,2|2 ≈ |β1,2|2 ≈ 1/2. If
we assume that the noise that leads to ancilla dephas-
ing has a symmetric spectrum about zero frequency, then
R11 = R22, R12 = R21. It follows from Eq. (I4) that ρ1(t ) ≈

e−R11t (1 + e−2R12t )/2, ρ2(t ) ≈ e−R11t (1 − e−2R12t )/2. After a
relatively fast decay (rise) in ρ1 (ρ2) with a rate R11 + 2R12,
the populations decay with a slower rate R11.

APPENDIX J: SCALING OF THE SWAP INFIDELITY WITH
RESPECT TO THE TRANSMON ANHARMONICITY

In this Appendix we study the scaling of the SWAP infidelity
in Eq. (69) with respect to the transmon anharmonicity α/α0

in the limit α/α0 � 1 and argue that decreasing α/α0 reduces
the infidelity while the beam-splitter rate is kept fixed. Here
α0 is a fixed scaling factor set by the drive detunings or the
cavity detunings from the transmon ancilla; for concreteness,
we choose it to be α0 ≡ |δ1|.

To maintain the same beam-splitter rate while reducing
α/|δ1|, we need to keep the quantity αξ1ξ2/|δ1| constant.
This requires increasing both ξ1 and ξ2 by the same factor
that scales as 1/

√
α/|δ1|. Taking the limit α/|δ1| → 0 then

effectively corresponds to taking the classical limit h̄ → 0
since α/|δ1| ∝ h̄, and αξ1ξ2/δ1 is independent of h̄. We
refer the reader to the systematic semiclassical analysis in
Appendix F where we introduced the scaled Planck constant
λ = α/2|δ1| and the dimensionless drive amplitudes �1,2 =√

α|ξ1,2|2/|δ1|.
For a fixed beam-splitter rate gBS,0, the quantity in the

square bracket of Eq. (69) scales as (α/|δ1|)2 for small α/|δ1|.
This can be seen by substituting Eqs. (63) and (65) into

FIG. 18. The scaling of the rates W
γ

01 and W
γph
01 with respect to

α/δ1 for fixed α|ξ1|2/δ1 = 0.315 and α|ξ2|2/δ2 = 0.001. The ratio
δ2/δ1 = 3.1 and nth = 0. The dots show the Floquet calculation using
Eq. (46). The dashed lines show the semiclassical result in Eq. (F13).
For the chosen parameters, the transition rates are primarily due to
the much stronger drive 1. We clarify that the rate W

γph
01 is nonzero

even when the ancilla is linear (α = 0) and is proportional to the
scaled drive power |ξ1|2 + |ξ2|2 for weak drives; see Eq. (48). The
dependence on α/δ1 shown in the figure is a result of decreasing
α/δ1 while keeping α|ξ1|2/δ1 and α|ξ2|2/δ2 fixed, which requires
increasing ξ1, ξ2 proportionally.

012314-37



ZHANG, LESTER, GAO, JIANG, SCHOELKOPF, AND GIRVIN PHYSICAL REVIEW A 99, 012314 (2019)

Eq. (69) which gives

δBS,m/|δ1|=−2m(α/|δ1|)[|ga/δa|2(1+�a )−|gb/δb|2(1+�b )],

(gBS,m − gBS,0)/gBS,0 = −2mα
[
δ−1
a + δ−1

b + δ−1
1 + δ−1

2

+ (δa + δ2)−1]. (J1)

In addition to reducing α/|δ1|, |δBS,m| can be suppressed by
engineering the two cavities so that |ga/δa| ≈ |gb/δb|. Further
suppression of δBS can be realized by choosing the drive
parameters which modify �a and �b to cancel any residual
difference between |ga/δa| and |gb/δb|. This is similar to
the “χ matching” scheme presented in Ref. [63]. The ratio
(gBS,m − gBS,0)/gBS,0 can also be suppressed by engineering
the frequencies of the cavities and choosing the frequencies of
the drives so that the term in the square bracket of the second
line in Eq. (J1) is small.

Now we discuss the dependence on α/|δ1| of the transition
rates W0m in Eq. (69). As we discussed in Sec. IV B 2, the
rate W0m has two contributions: W0m = W

γ

0m + W
γph

0m where

W
γ

0m is the rate of the dissipation-induced transition and
W

γph

0m is the rate of the dephasing-induced transition. One can
show that for small α/|δ1|, the transition from Floquet state
�0 to the neighboring state �1 is dominant over transitions
to other states. For instance, W

γ

02/W
γ

01 ∝ α/|δ1|,Wγ

03/W
γ

01 ∝
(α/|δ1|)2, and similarly for W

γph

0m . This can be seen from the
semiclassical analysis in Appendix F 2 a by doing perturba-
tions in the parameter λ.

The transition rates W
γ

01 and W
γph

01 have very different
dependence on α/|δ1|. As can be seen from Eq. (F13), the
transition rate W

γ

01 is independent of α/|δ1| and only de-
pends on the ratio α|ξ1|2/δ1 (and also α|ξ 2

2 |/δ2) through the
squeezing parameter. In contrast, the rate W

γph

01 is inversely
proportional to α/|δ1|. We show the scaling of these rates
with respect to α/δ1 for fixed α|ξ1|2/δ1 and α|ξ2|2/δ2 in
Fig. 18.

Combining the scaling of the rate W0m and dispersion in
δBS,m and gBS,m with respect to α/|δ1|, we conclude that,
overall, the infidelity in Eq. (69) will scale as α/|δ1|.
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