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The harmonic oscillator is a ubiquitous system in physics, describing a wide range of phenom-
ena, both classically and quantum mechanically. While oscillators are relatively straightforward
to control classically, they present much more of a challenge in the quantum realm where such
systems, modeled as Bosonic modes, have many more degrees of freedom. Controlling Bosonic
modes is a crucial task in light of proposals to use these systems to encode quantum information
in a way that is protected from noise and dissipation. In this thesis a variety of approaches to
controlling such systems are discussed, particularly in the superconducting microwave domain
with cavity resonators. In the first part, an experiment demonstrates how a simple dispersively
coupled auxiliary system results in universal control, and therefore allows the synthesis of arbi-
trary manipulations of the system. This approach is employed to create and manipulate states
that constitute an error-correctable qubit. The main drawback of this approach is the way in
which errors and decoherence present in the auxiliary system are inherited by the oscillator. In
the second part, | show how these effects can be suppressed using Hamiltonian engineering to
produce a simple form of first-order "fault-tolerance.” This approach allows us to demonstrate
versions of cavity measurements and manipulations that are protected from dominant error

mechanisms.
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Chapter 1

Introduction

The “second quantum revolution” which has been progressing over the past three decades
is characterized by a transformation in the way we view quantum theory. From our initial
perspective, quantum mechanics seemed largely to be a nuisance; very important, if one wished
to get things right, but still a nag. It seemed to place limitations on what ham-fisted creatures as
ourselves could know about the world at once. It told us that we could never observe the world
as neutral outsiders, but that we necessarily influence the world by our act of observation.
It claimed that the world was not even definite, until experiment and observation forced its
hand. At the same time, our ability to manipulate and experience these unusual effects seemed
confined to the realm of subatomic particles, only accessible via the careful interpretation of
laboratory measurements.

Nevertheless, using the understanding of the rules of quantum physics has led us to the
development countless technologies—the laser, semiconductors, medical imaging, and many
others—leading to real material improvements in our control over the natural world and in
human well-being. However, in all of these cases, the quantum behavior is hidden by the coarse-
graining of many subsystems into a single ensemble. Only recently have we gained access to
the realm of single quantum systems which we can manipulate and measure individually, as
opposed to in collective ensembles.

This development has allowed our perspective on quantum mechanics to shift. The promise

of quantum technology, is that we are blessed, rather than cursed, to live in a world that is



fundamentally quantum, if only we can begin harnessing and engineering the uniquely quantum
mechanical effects nature exhibits. We can use the knowledge limitations quantum mechanics
provides to implement unbreakable encryption protocols. We can engineer quantum states
whose sensitivity to disturbance allows us to learn and measure the world faster and more
accurately than would be otherwise possible. And most tempting of all is the promise of a
quantum computer. That we could take the most crucial, revolutionary, and transformative
invention in the entire twentieth century, and radically improve its capabilities goes a long way
in explaining why this application has held such a central position in the dreams of quantum
technology prognosticators.

The story of quantum computing began with exactly the sort of perspective reversal that
characterizes the second quantum revolution, following an observation by Feynman: quantum
mechanics is hard to simulate on a computer. As the system being simulated gets bigger, the
system of equations that must be solved gets exponentially larger. People who have thought
very carefully about this do not see any way to remove this exponential scaling from the problem.
From one perspective this just seems like a bad thing, a limit on our ability to predict and
calculate the world around us. The counterpoint, however, is that we can know how quantum
systems behave, since they exist in reality! We simply must construct a quantum system, and
then observe it. It seems like nature is doing this exponentially difficult calculation somewhere,
and we simply lack the tools to tap into, and control, this natural computational power. This
led early researchers to consider what a computer constructed out of quantum mechanical parts
would look like, and what its capabilities would be. Such a device could certainly solve the
problem of quantum simulation, but the discovery of Shor's algorithm for integer factoring
(Shor, 1994) proved that the utility of such a device would extend beyond simulation. Since
then a torrent of additional quantum algorithms have been proposed, extending the practical
reach of quantum computation beyond breaking the security of widely used cryptosystems.

The theoretical promise of quantum computing was vast and tantalizing. It was not at all
obvious, however, that such a device would be possible to construct. Classical computers are
robust by design. If you take a modern computer, you can expose it to all sorts of radiation,

heat, physical motion, magnetic fields, etc. and within a reasonable margin the computation



performed will not be affected. In contrast, any interaction between a quantum computer and
its environment will affect its statdl] Perhaps this effect would be small, but even small errors
have the potential to accumulate and destroy the computation. In some sense, the problem
is related to the special status of measurement in quantum theory. Classically, measurement
is exactly the type of interaction that (at least potentially) does not affect the state of the
measured system. Quantum mechanically, measurement is not a harmless act. Our inability to
measure without affecting the measured object inhibits our ability to construct robust quantum
systems. It seemed, then, that the task of quantum computing rests on two individually impos-
sible requirements, which had the further complication of being mutually incompatible: perfect
isolation of the quantum system from its environment and perfect control and manipulation of
the quantum system (Unruh, 1995). Quantum computing seemed to be ruled out by the same
issues that plagued analog computing, a platform that could theoretically outperform digital
Turing machines, but in practice could not overcome the limitations of real-world noise and
imperfections.

The subsequent development of quantum error correction (Shor, 1995) and fault-tolerant
quantum computation (DiVincenzo and Shor, |1996; Preskill, 1997)) responded to those criti-
cisms. These methods showed that, under certain reasonable sounding assumptions, quantum
computing in the presence of noise was not physically impossible, but merely staggeringly diffi-
cult. If one could reduce the noise per operation below a certain threshold value then one could
aggregate many noisy, imperfect quantum systems together in order to create a less error-prone
quantum system. If one could repeat this process, aggregating together many aggregates, then
the combined system could have even lower error, and so on. As a result, arbitrarily good
performance could be obtained despite the presence of noise. While there are many ways to
achieve the same result, early proposals for devices that could run Shor’'s method to factor a
430 bit number would require resources equivalent to 10° physical qubits, each operating with
an error rate per operation of 107¢ (Steane, 1998)). At this time, the most advanced platform
for quantum computing was liquid state nuclear magnetic resonance (NMR), where the weakly

coupled nuclear spin degree of freedom formed a naturally (relatively) isolated quantum bit,

lat least any interaction which couples to a degree of freedom used in the computation



and one could perform 3 qubit algorithms, with gate errors around 5% (Cory et al., |1998).
Either experiment had a long way to go to meet the grandiose demands of the theory, or theory
had a long way to go to come up with a proposal that could be implemented in practice.

Since then, many developments have brought us closer to the dream of a useful quantum
computer. A proliferation of physical implementations has been proposed and developed, from
linear optics (Knill et al| [2001)), to spins trapped by crystal defects or within quantum dots
(Loss and DiVincenzo, 1998)), to ions suspended in vacuum (Steane, |1997)), to superconducting
circuits (Devoret, |1997). Each approach has strengths and weaknesses, and none has clearly
and convincingly set itself apart as uniquely capable of addressing all of the challenges involved
in creating a scalable quantum machine. Alternate error correction architectures have been
developed that have raised the threshold error rate, and introduced models where physical
qubits need only local interactions. But practical error correction, which actually enhances a
quantum machine's computation ability, is still a work in progress. Quantum machines are
getting bigger, but still too slowly in order to hope for an error corrected quantum computer
soon. For this reason, there has been much recent interest in the capabilities of a noisy
intermediate scale quantum (NISQ) machine (Preskill, 2018). Such a machine, which lacks
error correction, may still be able to perform useful tasks that a classical computer could not.
But this is far from certain, and while such machines are a necessary stepping stone, they will
not be transformative in the same way as fully fault-tolerant general purpose computers.

We can look for avenues for progress towards that ultimate goal in two different ways, each
of which is going to be necessary in the long term. We can make slow and steady progress
improving the construction and operation of the types of devices we already possess: improving
the materials we use, reducing spurious interactions, finding faster ways to complete operations,
and the like. Such difficult, and at times tedious, engineering is the backbone of our conviction
that we will one day reach the summit. But we can make progress also by looking for shortcuts,
new ways to arrange or join the tools we have, to circumvent, rather than surmount, some of
the obstacles we see in our way. This sort of lateral thinking is best represented by the cat-code
method of quantum error correction (section which allows us to simplify and reduce the

hardware overhead requirements of traditional quantum error correction. These sorts of re-
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imaginings of what a quantum information processor might look like are going to be critical for
keeping the field alive and invigorated as we continue to slog through the difficult engineering

tasks ahead of us.

1.1 Outline of thesis

In this work, we take as a given the motivation to pursue quantum information processing
devices, and the background that entails (see section [1.2). We will begin straight away in
chapter [2 with an overview of the central problem of this thesis: quantum control of the state
of light contained within a cavity resonator. These devices are ubiquitous, easy to fabricate,
and can be highly coherent when compared with other superconducting elements. Yet they
face difficulties in the crucial aspect of control. In isolation, these systems are cursed by
linearity, which renders their outputs trivially related to their inputs, and therefore unsuitable
for computation, as they can be simulated with complexity polynomial in their size. However,
by using these systems in conjunction with non-linear elements, we can control them, and
expose their potential quantum information processing capacity.

One of the promising opportunities a quantum controlled cavity presents is the possibility
to do quantum error correction. In chapter [3] we will see how it is possible to do error
correction with only a single component, and introduce the setting and motivation for the
coming experimental work. Our first experimental goal will be to perform operations on encoded
states in a cavity. In order to get there, we will first set up some necessary background. First
in chapter |4] we return to the issue of control, this time with an eye towards how control
protocols for quantum systems can be developed with the aid of numerical optimization methods
running in silico. These methods have a storied past, finding application in many systems,
surprising many with the ease in which carefully designed protocols can be replaced with a naive
search. Next, in chapter [5], we discuss the hardware with which we can perform experiments on
superconducting cavities interacting with transmon qubits. This chapter serves as an overview
of the state of the art in superconducting cavities, and tries to motivate some of the design

choices that were made in constructing the experimental samples used.
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2: Cavity Control

5: Experiment Hardware
6: Cat-code Gateset

4: Optimal Control

Figure 1.1: Chapter dependency graph. Chapters 6, 8, and 9 contain the primary experi-
mental results. Arrows indicate which chapters are suggested prerequisites for each other.

With the prerequisites of experimental design out of the way, we are free to move on in
chapter [f] to the first main result, which is the application of numerically optimized control
sequences to the subject of cavity control, and more specifically control of a cat encoded qubit.
This chapter will cover the results shown in “Implementing a universal gate set on a logical
qubit encoded in an oscillator” (Heeres et al., 2017).

In order to introduce the final two experiments, it is worth covering the subject of sideband
transitions more carefully (chapter . Understanding this class of operations, which extends
the picture associated with the dispersive coupling model discussed in chapter [2] is crucial for
understanding nearly all of the results in the Yale quantum computing groups in the past few
years. Finally, we get to the fault-tolerance results, which try to address the main limitation of
the cavity control method shown in chapter [6] Specifically, we address the issue of transmon
decoherence events being transformed into cavity decoherence events by the action of the
coupling. This phenomenon, which allows the types and frequencies of errors to be dictated by
the relatively noisy transmon, severely limits the usefulness of cat-code error correction. The
interaction that mediates this error conduction is a fundamental, and necessary component of
our method of manipulating the cavity state. In order to circumvent this problem, we develop
a surgical modification of the interaction Hamiltonian between the transmon and cavity using
detuned sideband drives, which is designed to prevent the spreading of errors between the

components. This allows us, in chapter [8] to develop a “fault-tolerant” parity measurement,
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including the results shown in “Fault-tolerant detection of a quantum error” (Rosenblum et al.,
2018b). Using the same general set of tools, and with a bit more sophistication, we can extend
these results to a (non-universal) set of cavity operations (Reinhold et al., [in preparation) in

chapter [9]

1.2 Background and suggested reading

This thesis is not intended to be either comprehensive or self-contained. It leans heavily on
the work of others who have come before me. Instead of duplicating this previous effort here,
we will instead assume a level of familiarity with foundational concepts. Here we would like to
make these assumptions explicit, and give pedagogical references which explain (better than |
could) the necessary background.

We assume familiarity with quantum mechanics firstly, of course, for which the standard
texts|Shankar| (2011)) and |Griffiths (2004) | have found more than adequate. One should be com-
fortable with the concepts of Hilbert space, projective quantum measurement, the Schrédinger
equation, Heisenberg and interaction pictures. For considerations involving open systems,
including density matrices, POVMs, the Lindblad equation, and superoperators, |[Carmichael
(1993) is helpful, as are the (quite comprehensive) notes by |Steck| (2007)).

Secondly, we will not spend any more pages motivating or explaining basic concepts of
quantum information and computation, such as defining qubits, quantum gates, or quantum
algorithms. For this “Mike and Ike" (Nielsen and Chuang, 2011)) is required reading. In addition,
there are many high-quality treatments of quantum information to be found in the theses of
previous Yale students (Chow, 2010; |Reed, 2013} Blumoff, 2017; |Chou, 2018).

Some familiarity with very basic quantum optics concepts is also assumed, including the
concept of raising and lowering operators as well as that of Fock (photon-number) states.
While the level of knowledge required here does not extend much beyond what can be found in
Griffiths| (2004), it can be supplemented with the treatments found in|Walls and Milburn| (1995)
and Scully and Zubairy| (1997). A more focused discussion relevant to the work presented here

can be found in Vlastakis (2015)).
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Finally, we will not give a pedagogical explanation of the foundational concepts of Cavity
QED (CQED) and its superconducting cousin, Circuit QED (cQED). The fantastic |Haroche
and Raimond (2006) is a complete treatment of the former. The latter was first exposited in
Schuster| (2007)) and has received treatments in many other theses (Bishop| [2010; |Chow, 2010;

Reed, 2013; |Chou, [2018; [Blumoff, [2017; |Brecht, [2017; Axline, 2018)).



Chapter 2

Controlling cavities

Harmonic oscillators are one of the first entities that one encounters when learning about quan-
tum mechanics. Their quantum mechanical description demonstrates the effects of quantization
on a system which is ubiquitous in all sorts of physics. It gives rise to a simple energy level
structure, yet the states described by this structure bear little resemblance to what is classically
familiar. It is a fertile ground for exploring the correspondence principle linking the classical and
quantum worlds. From the standard introduction to quantum oscillators, however, it is not clear
how one might perform experiments which explore many of the quantum mechanical aspects of
such a system, beyond the uncertainty relation. For instance, if quantum mechanics predicts a
certain wavefunction for an energy eigenstate, how can one prepare such a state, and measure
that wavefunction? How can we measure properties other than position and momentum? How
can we encode quantum information?

In this chapter, | will explore the methods and limitations of control in simple harmonic
oscillator systems, of which electromagnetic states in microwave cavities form a subset[T] |
start in section by addressing the issue of linearity, defining linear systems in terms of their
representation using ladder operators, and showing the limited scope of control in this regime.
Next, in section [2.2] | will discuss how this control can be expanded by a controllable resonant

coupling to a two-level system, in the Jaynes-Cummings model. The non-linearity associated

1\We can see the direct analogy between quantum mechanical oscillators and cavity modes via the quantization
of the electromagnetic field (Steck, 2007, §8.3).
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with the two-level system is the resource used to prepare new types of cavity states. From
there, in section [2.3) we consider the off-resonant, or dispersively coupled regime. Here the
tools at our disposal are subtler, and require some cleverness in their assembly to produce useful
operations, but | give some examples of operations which can be constructed from a “dispersive
toolkit." Next in section [2.4] we consider how to formalize the notion of universal control, that
is, the idea of a general process or recipe, which takes an arbitrary quantum-mechanically
allowed transformation of the cavity, and produces a means for realizing that transformation
with available controls. The “SNAP protocol” allows for this by giving a sort of template
pulse sequence, constructed out of the dispersive toolkit, for which every cavity transformation
is approximated by filling out this template with the correct numbers and parameters. This
reduces the problem of realizing control to one of searching within a limited parameter space.
Finally, in section we will see that this “template” formulation, while theoretically useful,
imposes a large overhead, which can be alleviated by considering arbitrary control pulses,
represented as general functions of time. The techniques necessary to find these control pulses
will be explored in chapter This is enough to get us through the first set of experimental
results. We will revisit the subject of cavity control using more exotic sideband drives, whose

frequencies are far from any mode’s resonance, in chapter

2.1 The limits of control in linear cavities

A superconducting cavity resonator is a simple object to describe: it consists of a box, whose
walls define electromagnetic boundary conditions, which give rise to a set of non-interacting
bosonic modes. Each of these modes has a resonance frequency, and has a simple harmonic

oscillator Hamiltonian (setting 7 = 1 from now on):

H =" wyalas. (2.1)
k
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If the resonator is coupled to the outside world, for instance with pins connected to a drive

line, we can often treat the incident fields classically (¢(¢)), and find the driven Hamiltonian:

H = Zwkazak +e(t)Q (ak + aL) (2.2)
k

We will now show that the evolution of such a system is “trivial” in the sense that it can only
produce a displacement of the modes. Restricting ourselves to a single mode (with frequency
w) for now, but without loss of generality, we first go into a rotating frame to remove the
detuning term wa'a. Frame changes are performed by first specifying a unitary operation U (t)

and making the following replacements (See appendix |A.1)

) = |¢) = U [4) (2.3)
H - H =UHU' —iuU! (2.4)

In this case, we have U = exp (—iwaTat). For this transformation, we will frequently make

use of the relation (see appendix |A.3)
Uf(a,a U = f(ae™! ale ™) (2.5)

Applying equation [2.4] and to the single-mode version of equation results in

H — H =¢(t) (aei”t + h.c.) (2.6)

We can “solve” H using the Magnus expansion (Magnus, 1954). The evolution of the system

in the rotating frame is given by the unitary:

U(to,t) = T exp <z th H(T)) = exp{z Qk} (2.7)

to L
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The terms in the expansion (€2j) are formed from increasingly nested commutators. Here,

setting H; = H(7;):

2 =—i | dn Hy
-1 t T

1
—_— d7'1 dTQ [Hl,HQ]
2 to to

7 t T1 T2
QS — 6/ d7'1/ d7'2 dT3 [Hl, [H27H3H + [H?n [H27H1]]
to to Jto

Q, =

Since [ﬁ(Tl),H(TQ)} is a complex scalar quantity (as follows from {a, aT] = 1),the Magnus
series terminates after the second level. The second level itself gives only a global phase which

we will ignore for now, and thus the evolution is given by

Ulto,t) = exp (—z’ “dr H(T)) (2.8)

to

= exp (cwT - a*a) =D, (2.9)

Where o = ftf) dre(t)e™?t. The displacement, D,, is one of the fundamental concepts in

quantum optics. Displacements acting on the vacuum produce coherent states

a) = Da[0) = e loP/2 3" 2 1) (2.10)

Vn!

Coherent states can be thought of as “nearly classical” states. They have (expected values)
of both position and momentunﬂ (Re() and Im(c) respectively) while also maintaining the
necessary (but minimal) requisite uncertainty in these properties required for consistency with
Heisenberg uncertainty. However, because all evolution is reducible to displacements, the only
states which can be produced are coherent states. The system described in equation does
not allow for the production of non-classical states of light, e.g. photon-number states. It can

be shown (see |Lloyd and Braunstein| (1999)), or appendix that a Hamiltonian must have

2These quantities correspond to position and momentum (in some units) for a mechanical oscillator. For an
electromagnetic oscillator these correspond to electric and magnetic field (in some units). See section for
more discussion.
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SR 7

(a) The ground state in phase space (b) A displaced state

Figure 2.1: Displacement in phase space. We can picture the state of the cavity in phase
space whose coordinates can be thought of as “position” and “momentum,” in analogy with a
mechanical oscillator, and with some appropriate scaling factors. (a). In the ground state, the
cavity state is centered on the origin, but is spread out over an area as required by Heisenberg
uncertainty. (b) A displaced state |a) has the same spread in phase space distribution, but is
centered about a new point with coordinates given by the real and imaginary parts of a. This
state is produced from the ground state by the displacement operator D,

M . . .
terms of the form (a')” @’ with M + N > 3 in order to be able to create arbitrary states
or operations. While such a term would be useful, it is not at all obvious how to create such
non-linearities directly without disrupting many of the properties of the cavity which we wish

to exploit, such as its high coherence, and simple idling evolution.

2.2 Control in the Jaynes-Cummings model

An alternative to directly controlling the cavity with internal non-linearity is to couple the cavity
to an external system with its own non-linearity. Any finite dimensional system possesses the
required non-linearity, so a natural model to consider is the Jaynes-Cummings model of an

oscillator coupled to a two-level qubit (Jaynes and Cummings, 1962):
H=uw.ala+ %az +g (aTO'_ + aa+> . (2.11)

This model is the foundation of the field of cavity quantum electrodynamics (CQED) and by

analogy the superconducting circuit equivalent, circuit quantum electrodynamics (cQED). It
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is natural to again go into the rotating frame using equation as before, with the transfor-

mations U; = exp (iwcaTat) followed by U; = exp (iwq0.t/2). This results in

H=g (aTJ_e_’At + h.c.) , (2.12)

where A = w, — wj.

Let us see how, assuming control of the qubit frequency w,, such an interaction can be
used to create photon number states in the cavity. First note that it is possible to create
“photon number states” in the qubit, when |A| = |w. — w,| is large, simply by applying a
drive. Since the form of the drive is H; = @ax, applying any pulse with the appropriate
area ([dt€(t) = m) results in the unitary operation o, which produces an exact excited
state in the qubit. One can use the qubit’s ability to inject single excitations, along with the
excitation-conserving Jaynes-Cummings interaction (equation in order to produce photon
number states in the cavity, as shown in figure This method was used to create some
of the first non-classical states in cavity resonators, such as Fock states (Krause et al., 1989)
and cat states (Meystre et al., [1990). It was then shown that it was theoretically possible to
construct control sequences which create arbitrary cavity states (Vogel et al., 1993; |Law and

Eberly, 1996). These protocols have been experimentally demonstrated using superconducting

cavities and flux-tunable transmon qubits (Hofheinz et al., 2009).

2.3 Control in the dispersive regime

There are several reasons why one might prefer to avoid relying upon frequency tuning, as is
required in order to toggle the interaction in equation [2.12]in order to perform operations. To
begin with, such control will always increase the complexity of implementation of the device, but
more worrying is the impact such a control mechanism has on the qubit coherence properties,
as the qubit frequency becomes sensitive to fluctuations in the controlling field, and thus
dephases at a faster rate. In the case of fixed frequency, and large detuning (A > g) we can
approximate the Jaynes-Cummings model with a dispersive model. Treating the interaction

term as a perturbation, and going to second order in perturbation theory, we end up with the
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(a) exciting the qubit (b) swapping the qubit and cavity

Figure 2.2: Photon number creation using resonant Jaynes-Cummings interactions. One
can see how to prepare photon number states in the Jaynes-Cummings model by “climbing the
ladder.” There are two steps involved. (@) One can insert a single excitation into the system
by driving the qubit. lts non-linearity assures that exactly one excitation is added. (b) The
excitation is swapped from the qubit to the cavity by bringing the qubit into resonance with the
cavity for a fixed amount of time. If these two steps are alternated, one can bring the cavity
to higher and higher photon number levels (Law and Eberly, |1996; Hofheinz et al., 2009).

new model

H=uw.a'a+ %az + %aTaaz, (2.13)

with x = 2¢g?/A. This is the correct form only for an actual two-level system. For a multi-level
system like a transmon (section |5.2)) this is only an approximation valid when the detuning to
the ge transition is small compared with the detuning to other transitions. See appendix

for a general treatment. In our preferred rotating frame equation becomes simply

H = ya'ale)e| (2.14)
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where |g) and |e) are the ground and excited states of the qubit. There are two complementary
pictures we can adopt when thinking about this Hamiltonian: Either there is a x frequency
shift of the cavity when the qubit is in the excited state, or there is a x frequency shift of the
qubit per photon in the cavity. When we attempt to control this system, we again introduce
drives:

H = ya'ale)e| + (Q(t)o_ +e(t)a + h.c) (2.15)

There are some “obvious” ways we can exploit this Hamiltonian to perform operations, which
taken together, form a “toolkit” for manipulating cQED systems (Vlastakis, 2015). The five

most important members of this toolkit are:
1. unselective cavity displacements: D,,
2. unselective qubit rotations about axis cos(¢)o, + sin(¢)o,: Ry(6)
3. entangling conditional phase: Cy = exp (igbaTa |e><e\>
4. selective cavity displacements Dy, |g)(g| + I. |e)(e|
5. selective qubit rotations: |0)0| Ry(0) + (I. — |0X0|) I

To obtain the first two, we note that, given a large enough driving field (2 > x or € > x),
we can simply ignore the effect of the interaction and produce the unselective variants of these
operations. The entangling phase can be prodcued by simply waiting, i.e. 2 = ¢ = 0. If
there is a superposition state in both the qubit and the cavity{ﬂ the two systems will become
entangled. In general we can make gates of the form Cy = exp (z’gbaTa|e) <e|> by evolving

under the Hamiltonian for a time t = ¢/x. For instance, over a time t = 7/x, we can use

eiqﬁaTa ‘a> —

ei¢a> to show

(l9) +le)) [} = 1g) [e) +[e) | =) (2.16)

We can obtain the final operations by re-introducing a drive term, but now weakly. If a drive

pulse is sufficiently long, and hence its bandwidth is sufficiently narrow (BW < x) then the

3A displaced state |) will do, since it is a superposition of photon number states



2.3. CONTROL IN THE DISPERSIVE REGIME 17

ﬁA ﬁn

ISP 2

Figure 2.3: Phase-space rotation conditional on qubit state. We can represent the state of
an oscillator entangled with a qubit by showing the oscillator state conditioned on a given qubit
state. Here we show the oscillator state conditioned on |g) as a blue outline in phase space, while
the state conditioned on |e) is red. (a) shows an unentangled coherent state, |g, @) + |e, ).
(b) shows how, under the action of the ya'a |e)e| interaction, the cavity becomes entangled
with the qubit by rotating only the |e) picture with respect to the |g) picture.

drive can be made selective with respect to the state of the undriven system. For instance, a
narrow drive, centered around zero-frequency in this rotating frame, applied to the transmon,
will induce Rabi oscillations if and only if the cavity contains zero photons. This is a photon-
number selective qubit drive. By detuning this drive by a frequency ny, for some integer n,

this drive can become selective on any number of photons, resulting in the operation:
Ry (6) = [n)n| Ry(6) + (L. — In)n|) I, (217)

Conversely, a drive applied to the cavity with such a narrow bandwidth will induce a displacement

of the cavity, if and only if the qubit is in the ground state.

2.3.1 Applications: Parity map

One of the most useful applications of this toolkit for our purposes is the photon number parity
mapping operation. Photon number parity is a property of the cavity which is defined to be

+1 when the number of photons is even, and —1 when the number of photons is odd. We can
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represent this as an observable operator (II) using regular ladder operators:
=cm'ae— (—1)¢'a-p, . — Py. (2.18)
Here we have defined the projectors onto the even and odd photon number parity subspaces:

Poen= > |k)Xk| Poga= Y |k)K|

k even k odd

The parity map operation copies the bit of information corresponding to the photon number
parity from to the state of the qubit. The linchpin of this operation is the entangling conditional

phase operation. We can see how they are related

Cr = I |g)g| + I e)el (2.19)
- (Peven + Podd) ‘g><g‘ + (Peven - Podd) ’6><6‘ (2-20)
= Pevean + Pyyqo (221)

The entangling conditional phase, with an angle of 7, flips the phase of the qubit if and only if
there are an odd number of photons (see figure . In order to make this into a parity map,
we need to flip the (computational basis) state (o, or o) rather than the phase (¢.). This

can be achieved by sandwiching the entangling operation by qubit 7/2 rotations

R(7/2)Cr R(—7/2) = PayenI + Pogaor, (2.22)

We can represent this operation in a more traditional circuit diagram form, like so:

Cavity Lcﬂ

Qubit — R(

OB
SN—
=
ol
SN—
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Figure 2.4: Experimental plot of qubit Ramsey spectroscopy vs. photon number. At
t ~ 0.53 us the even and odd peaks coalesce on |g) and |e) respectively, indicating that this
wait time produces a parity map. The very slight asymmetry of the curves is a result of the
higher order dispersive shift, which makes the transmon frequency shift not exactly linear in
the photon number. This data was measured on sample 3 (table

2.3.2 Applications: Wigner tomography

One of the most significant uses of the parity map operation is that it allows us to easily
characterize the quantum state of the cavity, via a process known as Wigner tomography. First,
let us recall what quantum state tomography is, and how it works on qubits. In tomography,
we have some process which generates a quantum state, and our goal is to learn what that
state is, by performing measurements. Because measurements are destructive, we need to use
many copies of the state. A general d dimensional quantum system has d? — 1 degrees of
freedom in its density matrix, and therefore we need to measure the expectation value of d> — 1
linearly independent operators in order to reconstruct the state. In a qubit, we can measure
the expectation value of 3 operators, typically o, oy and o.

In cavity quantum state tomography, we have an infinite dimensional system, so we do
not want to proceed by simply listing some set of operators. We would rather have a family
of operators generated in some simple way, where subsets of these operators can accurately
represent quantum states which we are reasonably likely to encounter in the lab. One way of
generating such a family of operators is via displacements. If we can measure a given operator

X, then we can also easily measure a new operator D_, X D,, by first displacing the cavity by
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an amount «, and then measuring X. Almost any operator X will suffice in order to generate
a tomographically complete set of measurements, but it turns out that parity (X = II) is
a particularly effective choice which yields the Wigner function(Cahill and Glauber, 1969, eq.
4.12):
2
Wa(p) = —z(D-oI1D,)

T P

(2.23)

We can also represent this measurement in circuit form by concatenating a cavity displacement

with a cavity parity measurement:

Qubit Rg R

ISIE]

The effectiveness of the Wigner function in characterizing the cavity state derives from its

relationship with the marginal distributions.

[ dpWerin(p) = alpla) (2.24)

[ & Werinlp) = (lolp) (2.25)

Here |z) and [p) are eigenstates of a + a' and i(a — af), respectively. In this repsect it
resembles a joint probability distribution on position and momentum space. But unlike a
probability density function, the Wigner function can be negative (figure . Negativity of
the Wigner function is the signature of uniquely quantum mechanical states, which cannot be
thought of classically, and is equivalent to the notion of contextuality (Spekkens, 2008)), which
states that the results of a quantum measurement depend on what other measurements one
might be trying to make.

Since the Wigner function is linearly related to the density matrix, it is a matter of simple
inversion to reconstruct the density matrix. The viability of this inversion is given by the
condition number of the operator relating the two. It is well conditioned for a sufficiently dense
sampling of the complex plane. See appendix [C.1.2] for more details on how we perform state

reconstruction with Wigner tomograms.
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Figure 2.5: Example Wigner function. The Wigner function for the cat state 5 (|a) +|—a)).
The function integrates to give the probability density for measurements in the position or
momentum bases. Unlike a joint probability density, the Wigner function can be negative, as
seen in the blue parts of the fringes between the two coherent states. x,,¢ and p,pf are the
h

zero-point fluctuations of the quadratures, which for mechanical oscillators are z,5f = /5,

and p,pr = \/—hrg“.

2.3.3 Applications: qcMAP

The toolbox gives us a way of characterizing states of the cavity. What we need next is an
interesting state to characterize. We can easily generate coherent states |«), but the Wigner
function of such a state is just a shifted version of the Wigner function of the vacuum. One
of the core features of quantum mechanics is superposition, so we might hope to construct

superpositions of coherent states as an example of a non-trivial, non-classical state.

C3) o< la) £ |-a) (2.26)
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The “"qcMAP" protocol, derived first by |Leghtas et al.| (2013a)) and shown experimentally by
Vlastakis et al.|(2013). Assuming we start in the coherent state |a), we can put the qubit into
superposition of |g) and |e) using /2 rotation. Then if we again employ the conditional phase

space rotation C we find we get part of the way there:
Cr
|9, @) +le,a) == [g, @) + |e, —a)

This is almost what we want, but the cavity is still entangled with the transmon. This can be

dealt with using a clever combination of displacements and conditional qubit rotations.

19, @) + [e, —a) 2% |g,2a) + |e, 0)
RY
By lg) (|2a) +10))

225 1g) (|a) + |—a))

We can summarize this set of operations in the gate notation:

Cavity ———— Do, [ Cr [+ D | D}

Qubit — Rg 'R

3

2.4 SNAP and universality

While it is clear from the preceding sections that the cQED toolkit enables the construction
of a wide variety of operations, it is also quite “ad hoc”. While the construction of certain
operations is quite obvious, or can be worked out simply on pen and paper, it lacks a general
recipe for going from a desired operation to a concrete circuit.

The first question which must be answered is that of the possibility of such a recipe. Is
there always a circuit which corresponds to a given operation? What we would like is something
resembling the Solovay-Kitaev theorem (Nielsen and Chuang, 2011) which gives a recipe for
producing approximations of any single-qubit operation from an “instruction set” of fixed single-

qubit gates.
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This was achieved by [Krastanov et al.| (2015) which gave a construction for how to achieve
arbitrary operations on dispersively coupled cQED systems using a set of two operations: dis-
placements and selective number-dependent arbitrary phase (SNAP) operations. SNAP oper-
ations allow an arbitrary set of relative phases to be applied to different photon number states,

and can be represented with the form

SO) =" "% |k)k]|. (2.27)
k

The key to implementing such an operation is the combination of two concepts, the previously
discussed selective qubit rotations, and the notion of a “geometric phase.”

Geometric phases were first described by [Berry (1984) in the context of explaining adiabatic
deformations of a Hamiltonian which traversed a loop in parameter space. Being an adiabatic
transformation, eigenstates are mapped onto themselves, but superpositions of eigenstates can
acquire relative phases which are dependent on the path traversed. Specifically, the phases are
equal to the integral over the interior of the path of a quantity defined on called the Berry
curvature. This was later generalized as a property of loops traversed within Hilbert space
by |Aharonov and Anandan| (1987). There are two salient examples of this phenomenon for
our purposes, one for cavities and one for qubits. In cavities, for instance, one can imagine
traversing a loop by performing the following displacements, tracing out a parallelogram in
phase space:

D,DsD_,D_g = *'moF (2.28)

This equality can be checked using the relation
D.f(a,a"\D_, = f(a+ a,a’ + o*). (2.29)

The resulting phase, it is easy to check, is given by the area enclosed by the loop, and this

is a general result which applies to loops other than parallelograms. A similar result can be
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Figure 2.6: Geometric phase from cyclic displacements. By performing a set of displace-
ments which traverses a fixed loop, the system acquires a total phase which is proportional
to the area of the enclosed loop. Here the area of the parallelogram is Ima*3. This phase
is global and unobservable by itself, but can be made physically relevant by performing the
displacements in a selective, entangling way.

obtained for qubits,
Ry(—m)Ro(m) = €72 = ¢ |g){g| + ¢~ |e)(e] (2.30)

We can see that the phase is proportional to the area enclosed by the trajectory on the Bloch
sphere. Note that, in the context of a single cavity, or a qubit starting in the ground state,
there is no way to observe this phase, as it is a global phase. However, when the path taken
depends on the state of another system, this phase can become relative. If we replace the qubit

rotations in equation with photon number selective rotations from we obtain
R (~m) Ry (m) = ¢ In, g)(n. g| + ¢~ In, e)n e + (L ~ [n{n]) I, (231)

We can obtain the SNAP operation ([2.27)) by chaining several of these operations together

(figure [2.8).

N
R (—m)R{M () - R (—m)RY (m) = 3 e [k, )k, gl + ¢ %% |k e)k,e|  (2.32)
k=0

— —

= 5(0) lg)gl + S(=0) e)e| (2.33)
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{9}

Figure 2.7: Geometric phase on the Bloch sphere. By performing a set of rotations which
bring the energy eigenstates back to themselves, we effectively perform a rotation around the z
axis, with angle given by the enclosed area. Unlike the cavity case, the phase is state-specific.
This imparts one phase to the state |g), and the opposite phase to the state |e).
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Figure 2.8: Circuit depiction of SNAP. In this figure, the upper set of lines represent the
photon number states which compose the cavity, and the bottom line represents the qubit.
The SNAP protocol consists of a set of conditional qubit flips (here all of the rotations are by
an angle pi, i.e. Ry = cosfo, +sinfo,
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Figure 2.9: SNAP energy level diagram. The SNAP protocol consists of simultaneous drives
on the x-separated transitions |g,n) <> |e,n) for all relevant n. The different enclosed areas
on the |n) conditional Bloch spheres gives a phase to the relevant photon number state. The
progressive sum of the different qubit drives produces a pulse shape shown at the bottom.
In order to have complete control of the cavity, a photon number changing drive, such as the
displacement, indicated in orange, must be added. Figure adapted from [Krastanov et al.| (2015])

We see that, assuming the transmon starts in the ground state, the correct SNAP operation
is performed on the cavity. While this construction seems awkward and unwieldy at first
glance, this protocol can be drastically simplified by realizing that the various selective pulses
on different photon number states can be performed simultaneously, as shown in figure [2.9
SNAP is not a true addition to the cQED toolbox, but rather a re-arrangement, with an
eye towards cavity control. It has the important property that, assuming the qubit begins in
the ground state, the qubit remains unentangled with the cavity at the end of the operation.
Krastanov et al.| (2015) showed that any operation on the cavity could be approximated by an
alternating sequence of SNAP operations and displacements, following an argument similar to

that in appendix [Bl One can approximate a target unitary operation U as
U ~ Dy, S(01)Dy,S(0s) - Doy S(0y) (2.34)

In order to find the parameters, {6y} and {ax}, in the construction [2.34, one must turn to a
numerical optimization, using a computer to evaluate the fidelity with which some proposed
parameter set approximates the desired operation, and modifying the parameters to increase

that fidelity. This continues in successive rounds until a desired fidelity is reached.
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2.5 Optimal control

The construction has a serious downside when it comes to practical application however.
While some operations can be constructed using a small number of gates, for instance the
construction of Fock state |1) as shown in |Heeres et al.| (2015)), in general an operation on n
photons requires O(n?) gates. We can reduce this cost by noting that the form of was
motivated primarily by theoretical convenience in terms of analysis, rather than optimality in
terms of performance. Specifically, we can see that the construction consists of alternating
sections of driving the cavity and driving the qubit. Additionally, the qubit drive is designed to
leave the qubit unentangled from the cavity. In this case we have a clear intuitive model for
the system dynamics in each stage. However, there is no technical reason why we cannot drive
both the qubit and cavity at the same time. While the dynamics are more difficult to reason
about without resorting to brute numerical integration, it is clear that the fastest version of an
operation will not arbitrarily enforce the alternating form seen in the [2.34] construction. The
implication is that we should choose driving fields from a much broader set of possibilities. A
drive should be acceptable so long as we can predict in simulation what the result of such a
driving field will be. We will show how the combination of a differentiable quantum simula-
tion algorithm and gradient descent optimization methods results in the ability to numerically
identify suitable driving fields in chapter [4] and demonstrate the efficacy of these techniques as

applied to a particular problem in chapter [6]
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Figure 2.10: Comparing SNAP and optimal control sequences. This is a (not-to-scale)
schematic comparing the structure of the SNAP and optimal control protocols in the time
domain. The SNAP protocol (top) for universal cavity control designates alternating periods
of driving the transmon and the cavity. The short cavity pulses produce unconditional displace-
ments, and the transmon driving (each step of time O(1/x)) produces relative phases on the
different photon numbers (equation . Alternating these components allows any operation
to be well approximated in a number of steps related to the number of photons involved. In
comparison, the optimal control method (bottom) has no such restriction preventing the simul-
taneity of transmon and cavity driving. This particular driving field comes from the experiment
in chapter [6] and produces a Hadamard operation on a cat encoded qubit. This method of
control can in general be much shorter in length than the SNAP protocol. Note that this pulse
is still limited in the sense of having intentionally restricted amplitude and bandwidth.



Chapter 3

Doing more with less: error

correction with harmonic oscillators

In quantum computation, information is no longer binary, or even discrete, but parameterized
by continuously varying amplitudes. Even very small disturbances to these amplitudes can
accumulate and inevitably destroy the result of a computation. The first critics of quantum
computation pointed to this aspect, and suggested that quantum computing might only be
a mathematical curiosity, no more useful than analog computers, which might beat classical
digital computers at solving some problems in an idealized setting, but cannot scale due to the
noise and imperfections that pervade the real world. The development of the first quantum error
correction protocols (Shor, [1995) demonstrated that this is a flawed analogy. While quantum
states are “analog” entities, the errors which can occur are discrete, or more accurately, can be
discretized by the act of measurement. Error correction is the foundation of useful quantum
computation, and without it quantum mechanics is too fragile an edifice for the construction
of useful machines.

In this chapter, | will introduce our approach to performing error correction, by encoding
information in harmonic oscillators. | will begin in section by explaining the generic mathe-
matical framework underpinning quantum error correcting codes in all types of systems. Next,
in [3.2) we see how this framework is applied in “typical” two-level system based error correcting

codes, as well as some of the issues which make implementing this approach a daunting task. In

29
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section [3.4] | will explain how moving from two-level systems to cavities changes the underlying
error model. Subsequently, in [3.5, we see how the error model and error correction criteria
combine to guide our development of oscillator-based encodings. This leads us to consider “cat
codes,” encodings based on superpositions of coherent states as well as other types of

codes ([3.7)).

3.1 Error correction criteria

There are many quantum error correcting codes, but at the heart of all of them, is the satis-
faction of the error correction criteria, first put forward by Knill and Laflamme| (1997). In this
model, we imagine we encode quantum information by preparing a “logical” state [¢1,) which

is a superposition of “code words” {|kr)}:

L) =Y ek lkL) (3.1)
k

This state is then processed by a noisy quantum channel, denoted in the Kraus operator-sum

representation

Pin = [VLXUL] = pour = 3 By [or)tor| Ef (3.2)
k

The criteria state that the encoded information can be exactly recovered from po,¢ if and only

if the following conditions are met for all ¢ and j in the dimension of the code space:

(z| Bi By lir) = Cadij. (3.3)

These criteria can be separated into two parts. The d;; indicates that the action of the error
operators cannot make different code words overlap with each other, which would certainly
scramble the encoded information. The Cy; part (a matrix independent of ¢ and j), indicates
that the rate of occurrence of the errors must be the same for all code words. We can represent

this in operator notation, as in |Nielsen and Chuang (2011), as

PLE|E, P, = CyPy, (3.4)
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where Pr, = >, |kr)kr| is the projector on the logical space. In the case of a logical qubit,

with two code words |07) and |11) the criteria reduce to the equations
(0| E,Ey|11) =0 (3.5)

(OL| EoEy [0L) = (11| EoEy |11) (3.6)

3.2 Error models for qubits

In general, a quantum channel acting on a d dimensional system has d?(d — 1)? parametersE].
This gives 12 parameters for a channel on qubits. This gives a very large space of possibilities
for how errors can creep into the system. However, we can collect this entire continuum of
error models under a single umbrella via error discretization. We can achieve this using two
facts. First, it is easy to check, if an error correcting code {|0r),|11)} satisfies the criteria
for a set of errors { Ex}, then it also corrects for a set of errors which is linearly related, i.e.
{F; = mj,EyL}, for some set of coefficients m. Second, any single-qubit error operator can
be represented in the Pauli basis, E = c¢;I + c,0, + ¢yoy + c.0,. Therefore, it is possible to
correct any single qubit error model using a code which targets only single qubit Pauli errors.
To simplify even further, we can imagine that the rate for each Pauli channel is identical, which

results in the standard “depolarizing channel” model of qubit errorsE]

p— §I+ (1-p)p (3.7)

This is equivalent to a set of errors given by {(1 — %TP)I, Loy, Roy, ho.}. It should be clear

that there can be no error correcting code satisfying equation [3.3] when our system consists
of a single qubit undergoing depolarizing noise. When we consider multiple qubits undergoing
depolarizing noise, we take the error operators to be any Pauli operator acting on any individual

qubit. This is only approximately correct, since there are error operators corresponding to errors

1This can be derived by starting with the d* parameters of a hermiticity-preserving linear map on d?-
dimensional operators, and subtracting the d> constraints imposed by the trace preservation.

2This approximation can be justified via a process of “Clifford twirling” which replaces any error channel with
a depolarizing one. See section
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on multiple qubits. We can justify omitting these terms when p is small, since they will have
rates scaling like O(p¥), with k > 2. Some simple math shows how many qubits we need.
If we have n qubits there are 3n + 1 error operators, 3 Paulis per qubit, plus the identity
corresponding to the no-error case. In order for each error to be uniquely identifiable, we must
have a two-dimensional subspace corresponding to each error operator, for a total dimension of
2(3n + 1) is not strictly require The dimension of an n qubit system is 27, so we must have
2" > 2(3n + 1), which is only possible when n > 5.

There are many examples of codes which have been found to satisfy these properties.
Almost all of these codes are elegantly described by the “stabilizer code” framework presented
in|Gottesman| (1997)). The first of these, and the easiest to understand, was the nine qubit |Shor
(1995) code, which concatenates three-qubit bit-flip and phase-flip encodings. The smallest,
a five qubit code, was found by |Laflamme et al| (1996). However, the most elegant, for a
variety of reasons, is the seven qubit encoding by |Steane| (1996). While correction of single-
qubit errors is an attractive place to start, without orders of magnitude reduction in physical
qubit error rates, codes which allow for multiple errors are needed. The “obvious” approach is
concatenation, which stacks error correction protocols, so that the logical qubits of one layer
form the physical qubits of the layer above. While this is the easiest approach to describe on
paper, topological codes are an attractive alternative because they can be realized using only

local interactions between qubits in a lattice (see figure 3.1)).

3.3 Making error correction work in practice

There have been experimental implementations of the several of these codes, in trapped ions
Chiaverini et al. (2004); |Nigg et al.| (2014), nitrogen vacancy centers Cramer et al.| (2016)), and
superconducting circuits |Reed et al.| (2012)); Kelly et al.| (2015); [Riste et al. (2015)); |Cércoles
et al.| (2015). However, none of these demonstrations had the desired effect of producing a

higher quality qubit. Whether measuring the lifetime or the gate fidelity, the encoded qubits

3This property of uniquely identifying every error makes a code “non-degenerate,” and is not strictly required
by equations However, it can be shown that no smaller (n < 4) degenerate quantum codes exist which
correct for single qubit errors.



3.3. MAKING ERROR CORRECTION WORK IN PRACTICE 33

(a) * ?OYO?O
@XOX@X0Ox@® XOX.XOX:XOX;
SL = X, X, XX + +°+°+?+?
)r( 1727374 @ XO0OX@XO0OX@XxX0O X@X0O Xx@ xXO X @
52= 41t + +o+o-’.o+o
@XOX@XOX®XO X@X Ox:xo x:
o*o*o *O*O
12345678
®) ® C?)EH:; TT
S)? = )(2)(.3’)(5)‘.'6 33 = X3X4X5X? ®*© % ’i::?;
S=2,2,2,2, 89=2,2,2,2, @ O—ga—
C] (j) (%-lq)E}éT [t
©Oxex© & ]+1:I‘l‘x+>
X © —1:|¥x.)
@ ©

*——repeat———

Figure 3.1: Steane code & Surface code The Steane code , ) is the smallest
example of a [Calderbank, Rains, Shor, and Sloane (1997) (CSS) code which corrects for any
single qubit error. It consists of 7 physical qubits, and requires the measurement of 6 stabilizer
syndromes, each of weight 4 (left). It is also the smallest example of the “color code” (Bombin|
2015) which is a type of topological error correcting code. The most common topological error
correcting code is the surface code (right). These codes can be extended by tiling of a primitive
unit cell, and are designed to tolerate correlated errors so long as the errors remain “local.”
Figures adapted from |Campbell et al.| (2012)) and |Fowler et al | (2012).

end up being worse than the physical qubits, unless errors were deliberately introduced. Why
is this the case? Gate fidelity is a separate beast, which requires a discussion of the issues of
fault-tolerance, which we shall delay until chapter [8] If we focus solely on the simpler case
of storage error rates, the first issue one encounters is that of overhead. The mere act of
increasing the size of the system, say from one qubit to n qubits, has increased the rate of
error occurrence by a factor of n. Now, even adding a single layer of error correction, for an
error rate of v and a time of dt, we will go from a physical qubit error probability of p = ~dt
to a logical qubit error probability p, = (5)p?. Therefore, unless p < 1/(3), the final error rate
will be worse. Under this consideration, one wants to minimize ¢, that is perform correction
as often as possible, to avoid double error events. However, the problem is not this simple. In
practice one must actually detect and correct the error using some protocolﬂ This protocol
generally involves introducing an ancilla qubit, interacting this ancilla with many system qubits,

and finally performing a measurement of the ancilla. Each of these steps can have imperfections

*In many types of codes, as in the cat-code to be described, it is actually possible to get away without
correction, at least until the final stage of decoding.
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which add back into the overall error rate, in a way which is independent of the time. Adding

all of these per-round errors into one quantity pper-round. the total effective error rate is

pL n 2 Pper-round
=== YOt + ———. 3.8
v (2) ot ( )

If we choose dt to minimize this quantity 7, one finds

Pper-round
\ (5)7?
)pper—round

Now we find improvement only when v < v or equivalently,

(3.10)

(;L)pper-round <1 (311)

From this perspective, we see the fundamental issue is both fighting the overhead (here (;L))

and the error associated with the detection and correction (Pper-round)-

3.4 Error models for cavities

In principle, given the infinite dimension of the harmonic oscillator Hilbert space, there could be
an infinite number of error operators to be accounted for. However, in practice it is often the
case that, when compared with most two level systems, there are actually fewer relevant errors
to consider. This comes down mostly to the fact that cavities' resonant frequencies are defined
almost entirely by their geometry and the speed of light. The stability of these properties leads
to stability of the cavity resonant frequencies, and thus essentially eliminates intrinsic dephasing
noise. In contrast, most two level systems have frequencies which depend on many fluctuating
parameters, such as magnetic or electric fields.

This leaves energy decay. Resonators contain energy very well, but never perfectly. Energy

always leaks from a resonator into its environment. This energy loss can be modelled using a
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Lindblad-Markov master equation with jump operator a (see appendix [A.6)):
p =i[H,p] + xDla](p), (3.12)
where the dissipator Liouvillian is defined as

Dla)(p) = apa’ — = {aTa, p} . (3.13)

If we integrate this equation for a time dt, we can write the effective quantum channel in the

operator sum notation:

p— > E.pE] (3.14)
n=0

where the Kraus operator E,, corresponds to the loss of n photons (Michael et al., [2016])

_ o—KIt\n o
(1— e st

n!

E, = alagn (3.15)

Kot
The part involving e~ "2ala gives the amplitude damping component, which we will come back

to in section [3.6.2] In the limit of kK0t < 1, we can make the approximation

By~ 1 (3.16)
E, =~ Vkita (3.17)
Epo1 = O(kdt) (3.18)

3.5 Error correction in damped harmonic oscillators

Let us take a look at the error correction criteria [3.5 and again from the perspective of
the damped harmonic oscillator error set, {I,a}. In this case, there are eight independent
equations which constitute the error correction criteria, and these equations all have reasonable
interpretations, which one can keep in mind while considering potential codes. To begin with,
our code words must be orthogonal

(OL|1L) =0 (3.19)
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Photon loss must not make |11,) look like |0r,) or vice versa.
(OclallL) =0 (3.20)

(0r|a’ 1) =0 (3.21)
Our states must remain orthogonal after photon loss.

(0z|a’a]lp) =0 (3.22)
Our states are normalized.

(02]0L) = (1z|1L) (3.23)

Photon loss must not take |[41) o< [0z) + |11) to |—r) o< |0r) — |1L), or vice versaEI
(Orlal0r) = (1zla[lL) (3.24)

<0L]aT\OL> = <1L‘CLT’1L> (3.25)

The states must have equal average photon number, and thus equal probability of decay oc-
curring.

<0L|aTa|OL> = <1L|aTa\1L> (326)

While not strictly necessary, one convenient way of satisfying equations and is to
impose the constraint that

(Orlal0) = (1[allr) =0 (3.27)

This can be interpreted as saying that we should look for codes where the “error space” formed
by the span of @ |0z) and a|1) should be completely orthogonal to the uncorrupted logical
space. In all of the (functional) codes we will analyze here, this additional constraint will be

satisfied.

®We can see the equivalence of these two statements by looking at (+1|a|—r) = 0 and making use of [3.20)

and @}
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3.6 Cat codes

Given that, for short times, the single dominant error channel for a damped harmonic oscillator
is the application of the photon annihilation operator a, one is naturally led to consider coherent
states, when considering building codes for this channel. This is because coherent states are

eigenstates of a:

ala) = DaD_naD, |0) (3.28)
= D,(a+ «)|0) (3.29)
= a|a) (3.30)

Is this sufficient then? Can we protect information by encoding into coherent states? Let's see
what happens when we do so, with [0z) = |a) and |11) = |5), and with the (approximate)

error operators {I,a}. The error correction orthogonality criteria, becomes 4 equations:
(alB) = el < 0

(alalg) = peTl=2 Z 0

(af al|8) = a%e I PF/2 Z g

f — o*Be~la—BlP/2 L
(ala'a|B) = a*pe =0

While these equations can never be exactly satisfied, they can be arbitrarily close to being
satisfied by taking o and 3 to be sufficiently far apart. So far so good! Our basis states remain
orthogonal under the action of the errors. We proceed to the next criteria, [3.6] where we again

get four equations.

(ala) =1=1=(8]8)
(alala) =a = 8= (8lal|s)

(alal|a) = o* £ 8* = (8] a' |8)
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(ala’ala) = |a* £ 8> = (8] a’a|B)

The first is of course satisfied, and we can satisfy the last by choosing 3 = e’¢a. However,
we cannot satisfy middle two. There are several ways we can interpret this failure. The most

clear, however, is to consider the logical superposition states |+1) = |01) £ |11):

(—rlal+r) = ({a] = (B]) a (|} +15)) (3.31)

~a-—f (3.32)

We see that the action of the error takes |+1) to at least some part |—1). This means that,
while the errors may not induce confusion in the |0/17) basis, it will corrupt superposition
states.

We can solve this problem by recalling that equations|3.20} |3.21f and [3.27| suggest that we

make the “error space” completely orthogonal to the “logical space.” We can do this by noting
that the action of the error changes the photon number parity: if we have an even number of
photons, and then we lose a photon, we now have an odd number of photons. This suggests we
encode our information into states of definite parity, in which case the error space is guaranteed
to be orthogonal to the logical space. While coherent states do not have definite parity (with
the exception of the vacuum), we can easily construct such states with a sparse representation

in the coherent state basis (A is a normalization constant):

1 1 a | (=a)"
) £ 1ma) = 5 5 (= S ) ) (333)
1 a” n
- N;W(li(_l) ) n) (3.34)
NS ?/Og In) (3.35)

n even/odd

=[C3) (3:36)

These are the so-called cat states, theoretically described by |Leghtas et al.| (2013b)) and

Mirrahimi et al| (2014), and produced experimentally by Vlastakis et al.| (2013). They are
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named by analogy to Schrédinger's thought experiment, where we imagine that, in the limit
of large amplitudes «, the state is a superposition of what would otherwise be considered
“classical” states.

If we want to choose logical basis states using cat states such that the parity is well defined
in the logical subspace, we must keep the sign fixed (we choose even states for reasons discussed
in section and differentiate the states by choice of a. Maximizing symmetry leads to the

following encoding]

02) =) (3.37)

1) =|cih) (3.38)

This encoding satisfies our demand that the photon number parity be well defined and even.
We know then consequentially, that under the action of photon loss (a) the parity will remain

definite, but change from even to odd.

alon) =a|Cy) (3.39)
= (@) +a]-a)) (3.40)
_ % (ala) — a|—a)) (3.41)
—alc7) = ally) (3.42)
all))=a ’q@ (3.43)
= ia ]CZ.;> =ia|lg) (3.44)

We see then, that more than just going to the odd parity subspace, the action of photon loss

keeps us in the odd parity cat states, which form the “error space” {|0g),|1g)}. Itis instructive

This is not the final definition we will be using, which is rather equations and
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Figure 3.2: Cat code logical Bloch sphere. Wigner functions for the six stabilizer states of
the logical Bloch sphere using cat states of size & = v/3. This follows definitions and[3.57}
and is the same size cat as is used in the experimental implementation of chapter |§|

to see what happens when we lose a second photons after the first:

al|0g) :a‘C';> (3.45)
= 1 (ala) ~ al-a)) (3.46)
= & (@la) + al-a)) (3.47)
_ ]c;> = a0 (3.48)
allp) =a ‘q.;> (3.49)
= ia|Cif) =ia1y) (3.50)

We see then that photon loss returns us from the error space back to the logical space. We do
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not return without incident, however.

a’?|0r) = a*|0z) (3.51)

a2 ‘1L> = —a2 |1L> (3.52)

We can remove the factor of o via normalization, but the relative sign between |07) and [1)
is an o, operation on the logical qubit which switches |+7) and |—1). In fact, photon loss

forms a 4-cycle on the cat codes

a*|0y) =at|0g) (3.53)

a*|1p) = o*|1z) (3.54)

However, so long as we know the number of photons lost modulo 4, we know what position
we occupy within the 4-cycle and correspondingly how to recover our quantum information
(figure B.3).

From the perspective of a quantum memory application, where the only goal is to store and
recover quantum information, the only thing we must do is count photon jumps, in a way which
does not learn information about the encoded qubit, which is possible by measuring specifically
the photon number parity. By repeatedly measuring the photon number parity, we can infer
that, between two parity measurements where the parity remains the same, no photons were
lost, and between parity measurements which differ, a single photon was lost. This is a valid
inference only in the limit where the probability of multiple photons being lost is negligible.
The extent to which this is not negligible represents a failure mode of the encoding.

Over a period of time dt given some uniform photon loss rate x, and assuming the population
of cavity is kept fixed at 7, the number of photons lost should follow a Poisson distribution
with rate parameter nkdt, i.e. p(n) = (nkdt) e "™ /n! ~ (kdt)™ /n! in the limit of small xét.
The action of the error correction can be seen as eliminating the error associated with single
photon loss, pushing the error rates from first to second order, i.e. O(nkdt) to O((nkdt)?).

In order for cat code error correction to be practical to use in real systems, there are several
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Figure 3.3: The 4 cycle of the cat code under photon loss. The logical subspace (red
Bloch spheres) has definite (even) photon number parity. Losing a photon brings us from the
logical space to the error space (blue Bloch spheres) which has odd photon number parity. If
we lose additional photons, we are taken back to the logical space. However, this process of
losing two photons does not behave as the identity, but rather amounts to the application of a
logical Pauli operator corresponding to the axis associated with the two-legged cat states (in
this figure, o, but for the code words in equations and it is o) This figurew was
adapted from Ofek et al | (2016).

issues we must address. First is the possibility of preparing such states in the first place, an
obvious prerequisite. Next is the detection and correction of photon loss in a way which does
not “learn too much” and destroy the encoded quantum information. Additionally we must
consider other types of errors, both of the coherent control type as well as the dissipative noisy
type, and make sure these errors are either negligible or suppressed. Finally, if we wish to go
beyond information storage, and do actual computation, we will need ways of manipulating the
cat states, preferably in a way which preserves the structure of the errors.

We will address the preparation and manipulation problems head on in chapter [} since
these issues are tied closely to the particular control scheme employed, specifically using far
detuned, dispersively coupled transmon qubits to allow for universal control of cavity states.

We can discuss the issue of error detection and correction at a much higher level of generality.
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3.6.1 Choosing «

Cat codes are not a single code, but are instead a family of codes parameterized by the coherent
state amplitude a. As o becomes bigger, the average photon number 7 increases quadratically,
as |a|?. The rate of photon loss is proportional to 72, and therefore increasing o can increase
the error rate via undetected double photon loss events. However, o cannot be too small either,

because of the non-orthogonality of coherent states.
(alB) = (0|8 — a) = e~ I A%/ (3.55)

While this non-orthogonality is the root source of the problem, it is possible to formulate exactly
orthogonal code words for any given value of « by defining our basis states in terms of the

“four-legged cats” instead of the “two-legged cats":

0) = /7 (la) +[=a) + [ie) + |—icv)) (3.56)

12) = 57 (la) + [—a) — |ie) — |—icv)) (3.57)

A

Here NV} # 2 because of the finite overlap of of |C}) and ‘C:&> However, |01) and |1;) are

exactly orthogonal, as can be confirmed via examining their Fock basis representations:

0) = (3.58)

N ZF|4n

4n+2

NZ\/T

1) = |4n + 2) (3.59)

These states have definite and distinct “super-parity,” defined by the second-least significant
bit of the binary expansion of the photon number. This is orthogonal, no matter the value of
a, so long as a > 0. It is instructive to consider the limit of infinitesimal «, which results in

the following encoding:

10) = 0) (3.60)

1) =12) (3.61)
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Figure 3.4: Expected photon number in cat code vs . The photon number difference
vanishes at a ~ 1.54, 2.34 and 2.94. This can make a difference if the cat code is used for
only a single round of error correction. In a more long-term error correction setting, we will
need the code to work equally well in both the even- and odd-parity subspaces. Additionally, if
no mechanism is provided to re-inject photons, « will decline over time (section

This is obviously not a valid error correction code. While we can certainly detect the presence
of an error here, by measuring the state |1), once we do this, there is no way of recovering the
encoded information. For general small values of «, the problem is the difference in photon
number between the two logical states, violating the error correction criteria This can be
seen from figure , which shows this deviation of 7 from |a|? as a function of a. There are
particular values of o at which the difference vanishes. These points are the optimal point for
the even encoding. A general examination of these issues involved with selecting « is given by

Li et al.| (2017).

3.6.2 “No-jump” errors and autonomous stabilization

While monitoring the parity degree of freedom can track the occurrence of photons escaping
the cavity, there is no point in doing so indefinitely. There are a finite number of photons in
the cavity, and after a sufficiently long time, all of them leak out, and we will inevitably find
ourselves in the vacuum state. This would seem to set a time limit on our ability to perform

error correction. Let's see how this manifests dynamically by first considering the evolution



3.6. CAT CODES 45

of a coherent state under photon loss. Using the Lindblad equation for a damped harmonic

oscillator (appendix [A.6]), we have
i Legt
op =k |apa’ — 5{(1 a,p}). (3.62)

There are two parts to this evolution, the “jump” component apa', corresponding to the loss
of a a photon, and the “no jump" component {a'a, p}, corresponding to the backaction of the
effective weak measurement photon-loss induces. A coherent state is an eigenstate of photon
loss, so it turns out that we can actually ignore the effect of photon jumps, and focus on the
backaction[] This is effectively a non-Hermitian Hamiltonian evolution (Dalibard et al., 1993),
which being time-independent, has a matrix exponential solution. We can then show that a

coherent state remains a coherent state:

W(t + 6t)) = e~ 50tala|q) (3.63)
_ —gatkaj

e x k) (3.64)
- !

= ‘a@7%6t> . (365)

A coherent state therefore collapses in amplitude, exponentially, with a timescale of % In cat
states, similar behavior will occur. While we cannot ignore the effect of photon loss in the same
way (indeed this is the purpose of the error correction) the amplitude of the cat components
will inevitably shrink in the same way if not counteracted. So long as the coherent states |«a)
and |ia) remain sufficiently orthogonal, the induced error is manageable, but this cannot remain
the case over arbitrarily large timescales, without exponentially large cat state amplitudes. One
needs a mechanism for re-introducing photons to the cat code. We note that it is possible to
stabilize a coherent state against the effect of photon loss by providing a drive. This can be
checked by doing the algebra in the full master equation, but it can be more easily seen by
starting from the driven non-Hermitian Hamiltonian H = ea + ¢*a’ — i%aTa, and seeing that

2ie
K

we can make the drive vanish by going to a displaced frame of amplitude =€. This process is

"The photon loss component is not zero, but rather proportional to p. This term compensates for the loss
of normalization we see when only focusing on the backation.
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completely analogous to the process of driving with a detuning, as described in appendix [A.4]

It turns out that a similar mechanism can be employed to stabilize cat states. The problem
of using a drive like ea + h.c. is that it necessarily changes parity and thus would immediately
mix the even and odd subspaces. What is needed is actually a parity-conserving drive of the
form ea® + h.c.. This type of drive was implemented using sideband drives (see chapter [7))
and was shown by |Leghtas et al|(2015) to stabilize a cat state in the cavity. More accurately,
it stabilizes not just a cat state, but any state in the manifold spanned by |a) and |—a).
However, this is not quite enough to stabilize all of the cat-code states spanned by and
[3.57] For this purpose, we need to go one level higher, and drive four photons at a time,
with a drive of the form ea* + h.c. (Mirrahimi et al, 2014). Implementing such a drive is a
difficult, demanding task, but progress has recently been made toward this goal (Mundhada
et al., 2018). In addition, it is possible to use optimal control pulses (as discussed in chapter@

to perform re-inflation in a stroboscopic manner, rather than a continuous one.

3.7 Alternate cavity encodings

3.7.1 Binomial codes

Cat codes are built from coherent states, and are best integrated with other components geared
toward coherent states, such as those found in the dispersive toolbox described in section @]
However, there are occasions and reasons to prefer states which are sparsely described in the
photon number basis. For this reason, we often turn to the so-called “binomial codes,” described
by [Michael et al. (2016]). These codes are closely related to the cat code, but are constructed
in such a way that they are supported by a finite number of photon number states. There is an
entire family of such codes which can be constructed to protect against any number of photon
loss (a), photon gain (a') or dephasing events (afa). The best known version, however, is the
one which mimics the original cat code (colloquially known as the “kitten code").
1

V2
1) =12) (3.67)

02) = —=(10) + [4)) (3.66)
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Figure 3.5: Binomial code logical Bloch sphere. Wigner functions for the six stabilizer states
of the logical Bloch sphere using the lowest order binomial encoding (equation [3.66). These
states clearly resemble the cat-code states (figure , but are supported by a finite number
of Fock states.

This is in some sense the smallest functioning version of the cat code (although not the smallest
functioning code, see section . In practice it operates in much the same way, requiring
continual monitoring of the parity degree of freedom to catch photon jumps as they occur.
Unlike the cat code, however, photon loss events must be immediately corrected, rather than

simply tracked, as the resulting error space

0E) = [3) (3.68)

1g) = (1), (3.69)

is not a valid error correcting code at all. Additionally, the issue of no-jump errors are more
severe, as any decrease in 1 takes us to an (at least partially) uncorrectable space. However,

because these code words involve such a small number of photons, different methods can be
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Figure 3.6: Six-legged cat code logical Bloch sphere. Stabilizer states of a generalized cat
code, which corrects up to two photon loss events. Created from equation [3.70 with d = 3
and a = 4.

used to address and manipulate them, as demonstrated in |Rosenblum et al.| (2018al).

3.7.2 Cat code generalizations

The cat code as presented consists of superpositions of 4 equally spaced coherent states. We

can easily generalize to 2d equally spaced coherent states, for any value of d (Li et al., 2017)).

1 2d-1
00) = 57 2 eimk/da) (3.70)
1 Qdil )
1) = 57 2 ()F [/ a) (3.71)
k=0

For 2d coherent states in the code words, we can correct up to d — 1 photon loss errors,
essentially by defining code words which occupy only Fock state levels [n) with n = 0 mod 2d

or n = d mod 2d Fock state levels. We can see one example of these generalized codes in
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figure [3.6] where in order to protect against two photon loss events, we can promote the four-
legged cat to a six-legged cat. This maintains a spacing of 3 photons between logical states,

ensuring that single or double photon loss events remain in orthogonal spaces to the code space.

3.7.3 Numerically optimized codes

A more exotic class of codes can be found by a numerical optimization. The code words pro-
duced by this procedure are not known to be generated by any generic analytic representation.
In order to find logical states |¢;) for i € {0, 1} which allow for the correction of error operators
Ey, for Ey, € {I,a}, one can consider the various inner products formed from the range of the

error operators acting on the logical states
fii = (Wil ELE|9;) . (3.72)

The degree of violation of the error correction criteria f;;i = d; jci, is summarized by the cost

function

= Z | fooij — fraij |2+ | forij|*- (3.73)
Kl

In order to prefer lower occupation, the penalty
2= Y (Wil ala ), (3.74)
i

is introduced with Az = 1073. An optimization is considered successful if the value ¢; goes to
zero as we relax Az — 0. Code words are produced by numerically optimizing over complex
unit vectors the total cost:

minimize c¢1 + co. (3.75)
o1 €CY
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Figure 3.7: Numerically optimized /17 code logical Bloch sphere. Wigner functions for
the six stabilizer states of the numerically identified “1/17" code (equation )

Several of these codes have analytic expressions which have been found[f| One such code is the

“V/17" code (Michael et al., 2016)

0z) = \}6 <\/7 —V1710) + V17— 1 |3>> (3.76)
1) = \}6 <\/9—\/ﬁ|1> - \/\/ﬁ—3|4>> (3.77)

The states of this code word are visualized in figure 3.7] It is interesting to note that the
error syndrome for this code is not photon number parity. This set of states manages to
be smaller than the binomial code by enforcing condition in a more subtle way.
Instead of ensuring that |0z) and a|11) have disjoint support in the photon number basis, the
orthogonality relies on the relative signs of the amplitudes. In fact, the use of negative signs

in the relative amplitudes of the photon number states is the only known defining feature of

8These expressions have been found essentially by performing a reverse lookup from the floating-point repre-
sentation
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these codes.

3.7.4 GKP codes

The oldest of the bosonic encodings is the code named after its authors, |Gottesman, Kitaev,
and Preskill| (2001)), termed the GKP, or “grid” code. The motivation for this code comes from
considering a completely different model for the errors that the system undergoes. Instead
of thinking about photons leaking into the environment, one considers that the basic control
mechanism of an oscillator is displacement. What happens if there is noise on this control line?
The answer is small random displacements. The GKP code is designed so that, if one performs
an unknown displacement on the system which is within a small enough magnitude, then one
can measure some properties of the system which reveals this displacement, without revealing
any information about the encoded qubit. The properties which one needs to measure are
(a + a') mod v/27 and i(a — a') mod v/27. Equivalently, one can measure the eigenvalues of
the displacements D 5= and D, 5. In fact, measuring these two values completely determines
the state of the oscillator, up to the encoded degree of freedom. That means that one can
prepare GKP states simply by measuring the error syndromes. If one did this perfectly, the
result would be seen in the Wigner function as an infinite grid of points in phase space. It
suffices in practice to use finite-precision measurements, which results in a grid tapered by a
Gaussian envelope (figure[3.8). One could perform these measurements in cQED settings using
phase-estimation protocols on the conditional displacement operator (Terhal and Weigand,
2016)). One might think that the performance of such codes on the photon loss model would
be inferior to that of codes which were explicitly designed to handle photon loss, rather than
the more general class of errors. However, numerical investigations of photon loss over finite
times, a more realistic error model was analyzed in (Albert et al., |2018), which showed that
GKP codes have an advantage in certain parameter regimes. More recently it was shown that
A variant of the traditional GKP code which uses a hexagonal, rather than square, lattice
can be shown to be “optimal” code for photon loss under average photon number occupation
constraints (Noh et al.,|2019). The ability to correct photon loss events in a code which corrects

for displacements, comes from the ability to map photon loss into a linear combination of small
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.......

Figure 3.8: Wigner functions for the six stabilizer states of the logical Bloch sphere using GKP
code words having envelope parameter A = 0.25 (see definition from |Albert et al.| (2018)).

displacements

.1 . .
a= 113(1) = (D.+iDjc — D_.—iD_j;) (3.78)



Chapter 4

Numerical quantum optimal control

In many fields of science we are often faced with two related problems: analysis and synthe-
sis. The former starts from a set of assumptions about a system regarding its structure and
dynamics, and proceeds to calculate some effects, how it will behave, how it transforms inputs
to outputs, etc. The latter starts with desired behavior or desired transformation function,
and proceeds to construct a system or set of assumptions that would produce such effects. In
quantum mechanics the analysis problem is very well known. Typically all one needs to do is
write down the appropriate equation, whether that be one of Schrédinger, Lindblad or Langevin
form, and integrate in order to predict the system dynamics.

What is the “quantum synthesis” problem then? There are many candidates depending on
which parts of the system one considers fixed and which one considers mutable. Here we are
going to consider the synthesis of control fields. We assume we have a quantum system, whose

Hamiltonian can be written in the following form:
H (&(t)) = Ho + Y _ ex(t)Hy (4.1)
k

The component we shall "synthesize" is the time-dependent control field €(¢). This is a problem
tailored to the tools we have available. Since the introduction of the arbitrary waveform
generator (AWG) as a control instrument, we have the ability to implement arbitrary drive

fields in order to control our systems, limited only by the amplitude and bandwidth the AWG

53
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provides. The question of optimal control has become salient, given the unlimited range of
possibilities in terms of feasible control. In order to establish “optimality” we will need a specific
method for evaluating the desirability of any given instance of the control field, i.e. a function
f(€(t)) that we seek to maximize.

As has been shown by the rapid rise and development of neural network machine learning
algorithms, even an extremely large number of parameters can be efficiently optimized so long
as two conditions hold: there exists an efficient means of calculating gradients of the target
cost function with respect to the parameters, and that sub-optimal local minima are sufficiently
unlikely, or at least are approximately equivalent to the true global minimum. With quantum
optimal control we face a similar problem when considering the space of all possible control
fields, since the number of parameters representing a technically feasible control field can be
quite large. However, because there are efficient methods of computing the gradient, and
because the quantum control problem in the appropriate limit contains few “traps,” it is in
practice tractable (Rabitz et al., 2005]).

This gradient based approach to pulse optimization was first identified by [Khaneja et al.
(2005) and called gradient ascent pulse engineering (GRAPE). It was immediately apparent
that this method had many possible applications and extensions which could be achieved by
modifying the cost function while maintaining differentiability. We will discuss the basic GRAPE
problem definition as well as some variants which make the algorithm a flexible tool for designing
control sequences. Initially derived in an NMR context, GRAPE, and related methods, have
found use in a wide variety of quantum systems and applications (Dolde et al. |2014; |Anderson
et al} [2015). Since GRAPE crucially depends on the model of the system, its successful
application is powerful evidence that the Hamiltonian used accurately captures the system

dynamics over a broad range of driving conditions.

4.1 Defining the problem

The simplest problem that can be tackled by GRAPE is that of state transfer, i.e. the operation

should take some specified initial state |tinit) to a corresponding target state |ttarg). We need a
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differentiable notion of how close any control pulse € is to achieving this goal. For this purpose

we use the fidelity, and set our task to be one of maximizing this fidelity:

max(igﬁze F (e(t)) (4.2)
F(e(t)) = [(Yrarg| U (T, (1)) [hinie) (4.3)

where the unitary U defined by the waveforms €(t) is given by the time-ordered exponential

of the Hamiltonian up to some final time T,

U(T,e(t)) =T exp (— /(fitH (e(t))) . (4.4)

To make the problem numerically tractable, €(t) is represented as a piecewise constant function
with N = T'/§t steps of length 6t. We denote the vector of parameters describing this piecewise

constant function as €.

U ((e) =UnUpn_1---UU, (4.5)
Uy = exp (M::H(E’(k:&)) (4.6)

The time step 0t can be set to the corresponding time resolution of the AWG, or can be set in

accordance with the needed bandwidth (see figure [4.1]).

4.2 Calculating the gradient

The calculation of the fidelity itself is a moderately computationally intensive feat. The easiest
way to measure the gradient of a function is via the finite difference method, which is to simply
apply a small perturbation in every direction in control space, and measure the change in the
fidelity. For N control parameters, this would require IV evaluations of the fidelity. For a realistic

simulation of a long pulse, N could be extremely large, numbering thousands of parameters.
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Simulating piecewise-constant
approximation of a 7 pulse
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Figure 4.1: Inaccuracy introduced by piecewise-constant approximation. We consider the
effects of replacing a smooth pulse with a piecewise constant approximation, in this case a
Gaussian 7 pulse with detuning 5/0. The error introduced by this approximation is plotted
versus the choice of time step d¢t. The result indicates that one should have roughly an order of
magnitude separation between the time step and the desired pulse bandwidth in order to avoid
errors introduced by filtering, interpolation or finite output bandwidth.

This overhead is preventable if we use a smarter approach to calculating the gradient.
The operation fidelity will typically break into one or multiple computations of overlap

integrals between some propagated initial state:

c= <wtarg|wfinal> (4-7)

= (Yrarg| Un - - - Ut [Yinit) (4.8)

Where each of the U are propagators corresponding to a time slice of width 4t where the

Hamiltonian is time independent, and thus can be calculated via simple matrix exponentiation.

ist

U —exp (4 H @) (4.9)

The derivative with respect to any particular control parameter, say €, can be found by simply
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differentiating the relevant term in equation which yields the following expressionE]
aekc = <7;Z)targ| Uy--- Uk+1 (aekUk) Ug_1---Up ‘¢init> (410)

In the limit of small §t, the derivative of the time step propagator can be approximated with
the following:

0, Uy = % (0, H) U, (4.11)
but in practice we can also use an exact form of the derivative, which is derived in appendix
as well as by |Najfeld and Havel (1995). If we naively calculate the cost of calculating O, ¢
and multiply by the number of independent components (that is indices k), we get our N2 cost
as was the case with a finite-differences approach. However, by examining the expression, we
see that we can get all components together much more cheaply by caching some intermediate

results (Khaneja et al., [2005). Plugging this back into [4.10, we can see that the calculation

can be broken into three components:

10t
aekc = ? <wtarg| UN e Uk+1 (aekH(ek’)) Uk te Ul |winit>a (412)
—_—

(wiis® oy

that is to say a matrix element calculation on the derivative of the Hamiltonian 9., H. This
calculation involving two states: the forward-propagated initial state ‘T/Jf(vlzgj> as well as the
reverse propagated target state ’wb{ml > We can compute and store in memory each of these

trajectories using the following rules:

‘¢f§f2]> _ |7[)init> k=0 (4.13)
Uy ‘wfk 1)> otherwise
EEATE L (4.14)

‘Qbéfjgl > otherwise

1\We treat the case of a single control field, for the purposes of simplicity of notation. The generalization to
multiple control fields is straightforward.
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In terms of the basic operation of matrix exponential vector muItipIicatiorﬂ, it takes N calls to
evaluate the overlap ¢ and only 2N calls in order to get the entire gradient as well! This is a
drastic improvement over the N? steps required for a naive approach.

Once we have a method of computing the cost function (which consists of the fidelities
along with other pulse dependent penalty terms which will be discussed in detail in the following
sections) the next step is to choose an algorithm for actually performing the function minimiza-
tion. Specifically, the algorithm must use the knowledge of the function value and gradient in
order to propose new points in control space to evaluate. Luckily there has been quite a bit
of work done in this area, which allows for use of off-the-shelf function minimization routines.
There are two main classes of minimization routines: Line-search methods and trust-region
methods (Nocedal and Wright, 2000). In line search methods, one alternates between picking
a direction in parameter space, radiating from our current point, and subsequently performing
a 1-d minimization protocol to find the minimum along this line. In trust region methods, we
develop a (usually quadratic) model of the cost function, assume its validity within a “trust
region” consisting of a ball of some radius centered on our current point, and move to the
model's predicted minimum within this trust region.

The simplest method is basic gradient descent, which is a line search method where the
direction chosen is simply the gradient at the point. However, this is rarely the best choice. The
Newton method chooses directions using not only the gradient, but also the Hessian matrix of
second derivatives of the function. However, we need not invoke the cost of calculating the
Hessian (an inherently O(NN?) operation simply by the size of the Hessian). We can get much of
the benefit of the Newton method using so-called quasi-Newton methods, which seek to build
a model of the Hessian using knowledge of the history of the gradient. Out of these algorithms,
the L-BFGS method (Byrd et al., [1995)) distinguishes itself by never explicitly constructing the
Hessian, which would be memory intensive, but rather only keeps a long enough history of the
gradient in order to evaluate approximate Hessian-vector products. Detailed comparisons of
these quasi-newton algorithms suggest that BFGS and its limited memory variant are the most

performant on GRAPE style pulse optimization problems (de Fouquieres et al| [2011). There

*This operation is called expm multiply in the scipy linear algebra library, and can be done quicker than
separately computing the matrix exponential and doing matrix-vector multiplication.
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are compelling reasons to believe that even better convergence can be achieved by computing
not only the gradient but the Jacobian of the induced propagator VU (€) in combination
with a trust-region approach (de Fouquieres, |2012), although my attempts at replicating this

performance enhancement were unsuccessful.

4.3 Cost function variations

We can consider many variations on the cost function defined in equation[4.3] The most obvious
of which is to consider the action of the operation not on a single state, but on multiple states.
There are two primary ways we can synthesize the effect on multiple states, coherently (i.e.

enforcing a relative phase between state transfers)

2

F@) = , (4.15)

5 ()

k

U@ i)

or incoherently (i.e. caring only of the probability for each state to end up in the correct target

state)

U@ [ (4.16)

k
‘F(g) = Z ’<'¢t(ar)g
k
In the limit where the number of states equals the system dimension, the coherent multi-state

fidelity (4.15)) is equivalent to the unitary fidelity:
.i. 2
F@ = |m{U@UL}| (4.17)

Optimizing a full unitary operation is sensible for qubits, or systems of a few qubits, but in the
cavity manipulations to be performed in the following sections, this is not usually a sensible
operation, since doing operations involving states at the border of the truncation (i.e. the
maximum photon number state considered in the simulation), would typically require a larger
truncation to simulate accurately (driving |npp) will almost always in part bring us partially to

[7ph +1)).
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4.3.1 Open system GRAPE

We can generalize the problem in a different way, by considering the effect of dissipation and

decoherence. In this case we replace the Schrédinger equation

O |¢p) = iH(t) |¢) (4.18)

with the Liouville master equation

dip = L(p), (4.19)

where the time evolution is generated by the Liouvillian

L(p) = i[H,p] + Y D[A}](p) (4.20)
k

= ilH.p)+ Y AL~ (Al Ao + pALAy) (4:21)
k

The Liouvillian can be considered itself to be a simple matrix via vectorization, which uses the

isomorphism between the space of d x d matrices C?*¢ and the product space C%® C? ~ c®.

peC™ p)y eCteC? (4.22)

pij = (i, jlp) (4.23)

(ApB)i; =Y AppuBi; (4.24)
k,l

ApB — A ® BT |p) (4.25)

Putting this together allows us to rewrite the Liouvillian in explicit matrix form:
j T s L AlA
L—>z<H®}I—H®H>+2Ak®Ak—§(AkA®H+H® 1AL) (4.26)
k

The point is that we can cast the Liouville equation in exactly the same form as the

Schrédinger equation [4.18

d|p) = Llp). (4.27)
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The major differences introduced here are first that the Hilbert space has transformed from
C? to the larger C%, and second that the generator of evolution is no longer skew-Hermitian,
and therefore algorithms that rely on the ability to diagonalize the Hamiltonian by a unitary
transformation will fail. With these caveats aside however, we can compute the evolution under
the master equation as well as its gradient with respect to the control parameters as in the

lossless case.

4.3.2 Robust control

Often times, the control system one is dealing with may have uncertainties in its parameters.
These uncertainties can arise either because it is difficult to characterize these parameters
accurately, or because these parameters are not stable in time, but rather fluctuate. This
uncertainty leads to model inaccuracy, and therefore infidelity in the final operation. However,
we know it is possible to construct protocols that are robust to variations in parameters. Most
famous of these is the “spin echo” experiment first discovered by Hahn| (1950), in which a
spin’'s Bloch vector under an uncertain precession frequency, can be refocused at time ¢ by
the application of a 7 pulse at time t/2. This technique has been extended to a variety of
applications under the heading of “dynamical decoupling” (Viola et al., [1999)). While these
techniques are powerful and general, numerical optimization is more general still, and requires
fewer assumptions and mathematical finesse.

One can define a robustness metric for a pulse in several ways. If this metric is differentiable,
and efficiently computable, then we can attempt to perform gradient descent. While the global
optimum may be unattainable, we can always at least seek something locally optimal. If the
Hamiltonian depends on some parameter ¢, we may attempt to become insensitive to this
parameter by minimizing 9ypF. However, a more pragmatic approach is to sample. Randomly
draw M values 60; from the predicted distribution of 8, and optimize simultaneously for all
values:

M
maximize Z]—"(e(t),&k) (4.28)
k

e(t)

The computational overhead is the factor of M. Random sampling is preferable to drawing
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the points uniformly, as the imposed structure that comes from a regular spacing of 85 can be
exploited by the algorithm to produce results that seem robust on the sample set, but are not

valid over the entire region.

4.3.3 Gauge degrees of freedom

Sometimes, rather than add constraints or additional objectives to our problem, we would prefer
to remove unnecessary specifications, to allow the pulse more freedom, and in turn, hopefully
let it be done in the shortest time possible. To take a concrete example, because of the nature
of operating in a rotating frame, the difference between a cavity or qubit operation along one
quadrature or another is only a matter of changing the phase of our pulses. To put it another
way, we can implement phase space rotations (o, for qubits, a'a more generally) “in software”
simply by adjusting the phase of all subsequent pulses (McKay et al., 2017)). This means that
we can make our pulse optimization problem easier by specifying the desired final state only up
to a final phase space rotation. We can formalize this as follows:

. 2
maximize | (trarg| €% U (€) [Yini)| (4.29)

€,

We introduce the additional parameter 6, which gives the optimization algorithm another degree
of freedom, by which to adjust the target to match the implementation, rather than the other
way around. More generally, we can specify a list of “gauge degrees of freedom,” {Ay}, and

perform the following maximization:

maximize ’<¢targ| i Dk QkAkU(g(t)) |inie)

2
&t),0 ‘

(4.30)
Another useful class of degrees of freedom is a “subsystem” degree of freedom. In this case
we have a Hilbert space with a Kronecker product structure H = Ha4 ® Hp, and we only care
about the state in one part, say in H4. In this case we want to allow the target state in Hp

to be whatever makes the task the easiest. To do so, we can use the set of gauge operators
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{I4 ® ‘iB><jB’}i,je[dimH5]E| This set of operators allows the optimization to set whatever
targets states in subsystem B it would like to make its optimization easiest. This can be useful
when, for instance, we are performing a measurement of some property of the cavity using the

transmon, and have no intention of using the cavity state after the measurement.

4.4 Constraints and penalties

The optimization problem defined by equation is generally underdetermined, i.e. there are
many solutions €(¢) which achieve equally high fidelities. Therefore, we can add additional
terms to the optimization cost function, such that the resulting solution optimizes against
several other desiderata. For a set of constraints on the solution {g; > 0}, where ideally

gi (€(t)) = 0, we can associate a Lagrange multiplier \;, and modify our optimization to read:

maxigmize F(€) — Z Aigi (€) (4.31)

The values A; are chosen by trial-and-error, set to be just large enough that the violation of the
constraint upon termination is within acceptable levels. If the \; are set too large, it is possible
to distort the control landscape significantly enough to introduce inescapable local optima,
preventing the optimization from succeeding. In this case, it can be desirable to perform the
optimization first with a lower value of \;, and only ratcheting it up when the correct “basin”

has been found (Riviello et al., [2015)).

4.4.1 Limiting the pulse amplitude

There are several reasons why we might want to limit the pulse amplitude. The first is that,
without introducing additional amplifiers, the output power of our AWG is limited, and thus to
be feasible, we need €(t) < emax for all . In other words, we would like a hard cut-off. We can
achieve this cutoff in one of two ways. We can either employ an optimization algorithm which

naturally allows for such constraints, or we can use an alternate parameterization to represent

3]t can be convenient to work with the Hermitian operator basis instead, substituting (|ig)jz|,|is)is|) —
(lis)Xip| +h.c.,i(lip)Xjs| —h.c.)).
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the pulse. The former depends on the availability of a suitable algorithm implementing inequality
constraintsﬂ The latter can be implemented by changing the optimization problem:

maximize F (€(Z)), (4.32)

xT

where the pulse € is constructed from the parameters I as
€k = €max tanh(zy). (4.33)

In order to make this formulation compatible with gradient descent, we need to transform V:F
into VzF
€max/

We may also wish to prefer to stay well below the AWG maximum output power for the
majority of the pulse for other reasons. For instance, the active components in the lines, such
as mixers and amplifiers, each of which have non-linearities, which become more relevant, and
difficult to model, at higher powers. While we can try to compensate for this behavior (see
section , we can also try to minimize its relevance by using lower powers. In this case we

can use a penalty realizing a “soft” cut-off relative to some lower amplitude €softmax:

gamp,nonlin(g) = Z (e\€k|2/\€softmax\2 _ 1) (4.35)
k

Finally, because each pulse induces a heat load proportional to its integrated power, we might

wish to minimize this undesired side effect. To address this, a simple penalty will suffice:

Gamp,lin (€(t>) = Z |€k‘2 (436)
k

4.4.2 Limiting the bandwidth

As with amplitude there are a variety of reasons one might want to constrain the bandwidth

of a pulse. We again must consider the maximum available bandwidth of the AWG, the model

“The L-BFGS-B method supplied by scipy.optimize supports these types of constraints
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uncertainty at higher detunings from resonance, as well as nonlinearities and dispersion of the
transfer function. We can similarly take a variety of approaches to constraining the bandwidth,
from a hard cutoff, to a soft cutoff, to a linear frequency-dependent penalty. To implement the
hard cutoff, we reparameterize as in equation [4.32] however we write the pulse this time as the

inverse discrete Fourier transform (DFT) of the parameters (Motzoi et al., 2011)),
€= (DFT) 'z (4.37)

We can constrain certain components of the frequency representation, corresponding to fre-

quencies above the cutoff wmax to be identically zero in this representation,E]
|wk| > Wmax = 2 =0 (4.38)
We must similarly propagate the derivative calculation through this reparameterization:
Vz = (DFT) Ve (4.39)

We can allow for penalty formulations as well, by penalizing, in either a linear or non-linear way,
the magnitude of the derivative of the pulse. Since the pulse is piecewise constant, we replace

the derivative with the difference between adjacent points.

YGderiv,lin = Z |6k+1 - ek’2 (440)
k
e |?2/5€2
Yderiv,nonlin = Z e|€k+1 K[/ O€coftmax — 1 (4.41)
k

The choice between these two options comes down to whether or not there exists a relevant

frequency scale €sofimax, OF Whether it is a general preference for lower bandwidth pulses.

®The hard cutoff in frequency and the hard cutoff in amplitude are incompatible with each other. It is
not known to us whether there exists a representation which guarantees a hard cutoff in both frequency and
amplitude.
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4.5 Limiting the intermediate photon number

Since computer memory is finite, we are forced to choose a photon number truncation ngp
such that the operator a becomes a npp X np, matrix. When we do this, we are in effect
replacing our infinite-dimensional oscillator with a finite-dimensional qudit. This replacement is
only valid if all of the system dynamics relevant for the desired state transfers occurs within the
{10}, ..., |nph — 1)} subspace. For generic applied drives this is not the case. In order to enforce
this property, we modify the optimization problem to find a solution which operates identically
under several different values of ny,. Writing the fidelity as computed with a truncation nph

as F,

Tpns WE have:

maX|m|ze (Z Frontk (€ ) <Z Aigi (€ ) (4.42)

To enforce that the behavior is identical in the different truncations, we add the penalty term

Gascrepaney (€(1)) = 3 (Pt (€00)) = Fu s (€(1))) (4.43)

k1#k2

The choice of nyp determines the maximum photon number population that can be populated
during the pulse, and figures in determining the minimum time necessary for the operation
(faster pulses can be achieved with higher np).

A more recently developed, and more direct, method is to add a penalty term for any

occupation of the final photon state (|npn — 1)) in the truncated Hilbert space at any time:

N 2
Grrajectory = Y | (mpn — 1 fud) | (4.49)

A naive analysis of the complexity of calculating the gradient for this penalty seems to yield a
scaling behavior of N2, as it involves the computation of N terms (each k) where the k-th term
has complexity of k = O(NN), as it mirrors the computation of the fidelity itself (equation [4.8)).
However, as was shown in |Leung et al. (2017)), by clever application of the backpropagation

method, it is possible to design an approach with O(N) scaling.
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4.6 Troubleshooting optimization convergence

One of the first difficulties one might encounter when attempting to prepare optimal control
pulses is difficulties in convergence. This could manifest as a failure of the search algorithm
to find an improvement on the initial guess, or convergence to the zero-amplitude identity
sequence, or perhaps convergence to a trivial operation (such as a single mode rotation or

displacement). In this case there are several things one should check for.

1. Check that the time given T = Nt is appropriate, and is specified in units that are
consistent with the units specifying the Hamiltonian. For instance, if the Hamiltonian is

specified in GHz, then the time step should be in units of ns.

2. Ensure constraints are not too stringent. If the optimization is failing, a good first step
is to completely remove all constraints and penalties, and make sure that the algorithm

works in this context before re-introducing them.

3. Ensure that the starting guess is sufficiently “random.” If the initial guess is too close
to a special point, such as the identity operation, the gradient can become vanishingly
small, below machine precision. To overcome this, increase the amplitude of one’s initial

guess.

4. Ensure that the algorithm is being patient enough. Gradient based search algorithms
usually have termination conditions specified in terms of the norm of the gradient. It is
often necessary to lower the gradient norm threshold for termination to ensure that it

does not give up 7]

5. Ensure that you are being patient enough. It can often appear that an algorithm is stuck,
as it quickly finds some way to produce partial fidelity and then seems to peter out. It
may take many iterations of low fidelity gain steps in order to find the correct “direction”
in control space to take. Once this direction is found, then the fidelity gain can increase

rapidly, resulting in a characteristic “double-sigmoid” curve shape for fidelity-vs-iteration.

bgtol in scipy.minimize
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4.7 What if it doesn’t work?: Debugging optimal control pulses

A frequent objection to the use of optimal control pulses is that they seem impossible to debug.
This is in contrast with constructive approaches, where each component of the pulse sequence
should effect a known operation, which can be tested in isolation. Additionally, each component
typically contains only a few parameters, each of which can be empirically tuned. When the
combined operation fails to perform, we have steps to take in order to try to identify what is
going wrong. Optimal control pulses, on the other hand, have no straightforward decomposition
into component parts, and have far too many parameters to optimize empirically. However, a
methodical approach can still be employed to systematically eliminate potential problems.

It is helpful to consider the task of making optimal control pulses not as a search for any
one particular operation, but as the construction of a system which maps desired operations
to instantiated pulses. Only when this system is approximately correct should one move on to
the particular operation of interest. In order to go from scratch to an approximately correct
optimal control system, one should begin by designing pulses which are as simple as possible to
verify. This allows one to quickly check whether a change to the system improved performance
or not. For instance, in the transmon-cavity system, a simple diagnostic pulse is one which

produces a single photon state:

0) @ g) — [1) ©1g) (4.45)

The verification experiment corresponding to this operation is a pair of measurements: do we
end the operation in the ground state and, given that we do, does a selective pulse on the

transmon detuned by y bring us to the excited state |e)?

Cavity — .
Optimal Control Pulse

Qubit — R(m)

With such a sequence we can easily check the fidelity of the operation, keeping in mind the
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Figure 4.2: Flowchart for bringing an optimal control system online.
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fidelity of the readout and selective pulses used to characterize it. Our goal is to proceed
in steps, the first of which is to reach the point where the system is in the vicinity of the
desired operating point, where we can gain increasing trust that modifications which improve
our observed evaluation metric are truly bringing us closer to the optimal point.

Often times, even with a fairly accurate starting characterization of the Hamiltonian, the
fidelity at first will be nil, as there can be major errors in the implementation of the system.

Here are a list of common errors one can check for at this stage:

= Inconsistent use of factors of 27 in the definition of the Hamiltonian. In the pygrape

software package, Hamiltonians should be specified with 2.

= Incorrect relationship between the AWG amplitude and the effective driving rate. This

can be checked by simulating a simple pulse such as a displacement or qubit rotation.

= Sign error in the definition of the quadrature drive, resulting in frequency inversion i.e.
should the drive term be +i(a — a') or —i(a — a’)? The answer depends on the
conventions used in realizing the pulse in the control electronics. This can be checked by

negating the sign of the quadrature drive, and seeing if it performs better in practice.

» Use by the pulse of non-linearities which are artifacts of the Hilbert space truncation.
This can be checked by simulating in a larger Hilbert space and verifying that the fidelity

is practically unchanged.

After performing checks for these basic types of errors, the next most crucial step is to identify
the right set of pulse constraints. The motivation behind constraining the pulse is to attempt
to strike the right balance between the underconstrained regime, where coherent control errors
dominate, and the overconstrained regime, where excessive pulse length results in decoherence
dominated errors. If pulses fail to operate “as expected” it can be a sign that the constraints
are not large enough. If pulses are taking too long, it can be a sign that the constraints are

too stringent.
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4.8 Closed-loop optimization methods

Finally, there are modifications to the pulse which can be implemented and tested empirically,
without the need to re-optimize via GRAPE. The intention behind these modifications is to
account for an imperfect delivery of the control pulse to the system. There are two main
categories of errors which can be addressed via these methods. The first is distortion due to
reflections and impedance mismatches resulting in frequency dependent transmission between
the AWG and device port. The second is non-linearity of the active components, such as mixers
and amplifiers, resulting in compression. We can model the first process, which takes our pulse,
as played by the AWG f(t) to the drive experienced by the system €(t), as multiplication in the

frequency domain by the transfer function G(w):
e(t) = F 7 G(w) - FIFB] (W) (1) (4.46)

If we had complete knowledge of G(w), we could instead play the pre-distorted pulse f(t) at
the AWG level:

fity =7 [Gw) ™ ZfO) )] () (4.47)

The pre-distortion would in this case cancel with the line distortion to produce a pulse for which
€(t) = f(t). However, in practice, we often do not have a good way of measuring this transfer
function directly. Instead we can assume that G(w)~! is well approximated by a low-order

polynomial in both amplitude and phase:

Gw) '~ (Z bkwk> o Len! (4.48)
k

Similarly, regarding compression, we would have the following type of relationship between the

fand e
e(t) = z(f(1)), (4.49)
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which could be inverted given perfect knowledge of z:

F(t) = =7 (et): (4.50)

Instead, we can model z~! as a low order polynomial

2 r) ~ Z dpa® (4.51)
k

This gives us a handful of parameters {by}, {cx}, and {dx}, with which to vary the pulse
shape. This is a large reduction over the hundreds or thousands of parameters which comprise
the pulse in its full piecewise-constant representation. With this lower dimensional space in
hand, we can perform a closed-loop optimization which considers the empirical performance of

any given pulse.



Chapter 5

Meet the samples

The experiments which will be described in chapters |6 [8] and [9 were all performed with a similar
experimental apparatus, with a few refinements realized in between. As seen in figure 5.1} the
system is comprised of three principal components, each of which corresponds to an electro-
magnetic mode in our final quantum system. These are the storage cavity, formed by the walls
of the aluminum enclosure, the transmon qubit, defined by a capacitively shunted Josephson
junction, and the readout oscillator, simply formed by a length of open-terminated transmission
line. In this chapter, | will discuss each of these components in turn, explaining the reasons for

adopting these components, and focusing on the methodology for choosing their parameters.

5.1 The seamless storage cavity

In order to motivate the design of the cavity which acts as our storage resonator, which contains
our encoded logical qubit, | will briefly describe the considerations which go into designing high
quality factor cavities.

Any enclosed “box” formed from good conductors can be described by a discrete set of
electromagnetic modes, which describe fields occurring inside of the box, and which do not
couple to the outside world, at least not without “puncturing” the box. Each of these modes
has a particular electric and magnetic field profile within the box. Energy contained by a mode

oscillates between electric and magnetic components at a rate given by the mode's character-

73
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Figure 5.1: Cartoon schematic of the cavity-transmon system. A )\/4 coax post cavity
resonator is coupled to a transmon and readout resonator on a sapphire substrate. Input
couplers close to the transmon and cavity deliver the respective time-dependent microwave
control fields ez (t), €.(t) and ero(t).

istic resonance frequency, w. The particular details of the geometry of the box determine its
electromagnetic modes. In particular, there is a mode of lowest frequency, and we are typically
concerned only with a few of the lowest frequency modes.

If the box was formed entirely from perfect conductor and vacuum, this would be the entire
story, but since this can never be exactly true, there is also the possibility of dissipation. The
energy contained within a mode can transfer from the mode to other, auxiliary degrees of
freedom, such as phonons, plasmons, or other quasiparticles in the conductor, spins or dangling
bonds in the imperfect layers of dielectric which coat the conductor surface, or out through the
apertures which are inevitable in an experimental device which by necessity has some coupling
to the outside world. We can try to simplify the vast space of possible detailed mechanisms
for energy loss by categorizing them into three groups. The first is conductor loss, which is
associated with current which is forced through an imperfect conductor. The second is dielectric
loss, which arises from electric fields coupling to dipoles in the dielectric which have their own
intrinsic loss mechanisms. The final is radiative loss, in which energy transfers from the box
modes, to propagating external modes. The sum total of theses loss mechanisms induces a
characteristic loss rate k. We can calculate the number of oscillations per decay time as the

quality factor Q = w/k.
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If we are interested in making the loss rate x as small as possible, there are broadly two
approaches we can take. We can either change the materials from which we construct the
box, or we can change the geometry of the box. We will have to pursue both avenues in order
to reach the highest possible quality factors. We begin with the choice of conductor, where
superconductors are the obvious choice. However, while superconductors have no resistance
to static, DC currents, they do have resistance to oscillating currents, especially when that
frequency approaches the superconducting gap, so conductor loss cannot be neglected. If
bulk conductor loss was the only concern, we could simply choose the superconductor with
the smallest residual resistivity, but the choice of metal also dictates the choice of oxide which
covers the surface of the metal. The properties of this oxide are not just a property of the metal,
but also the conditions of its formation, which can be manipulated by removing native oxide,
and allowing it to regrow under controlled conditions. For these reasons, (superconductor, high-
quality oxide) high purity (99.999%) aluminum has been our material of choice for constructing
cavity resonators, although similar qualities have been achieved in Niobium as well. In an
attempt to improve the quality of the oxide, which would have normally developed during
the machining process in a dirty environment, a chemical etch is used to remove the existing
oxide and allow for a cleaner oxide to redevelop. However it has been found that extremely
long etches, removing material far beyond the oxide layer has been shown to improve quality
even more, and therefore the underlying mechanism behind the improvement remains obscure
(Reagor, 2015)).

The geometry itself plays a very important role in determining the loss rate. While these
calculations are difficult and tedious to perform exactly, some rules of thumb apply. In general,
the more compact the geometry, the more the cavity is susceptible to the surface effects, both
in terms of current and dielectric, and therefore the higher the effective loss. One particularly
pernicious aspect of the geometry is the presence of seams, which are regions where two
separate pieces of conductor are mechanically affixed to one another. These are necessities of
manufacturing with a subtractive processE] and are entirely undesirable by themselves. Seams

introduce a localized region of relatively high resistivity when compared with the superconductor

! Additive processes, such as 3D printing and laser sintering have the potential to bypass this issue, but bring
their own challenges, especially regarding material purity and cleanliness (Creedon et al.| [2016)
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which surrounds it. The mere presence of a seam is not a problem however, but rather the
current which is forced to flow through it. Therefore the location of the seam can be crucial.
For instance, modes with symmetry can have planes bisecting them across which no current
flows. Choosing to put a seam in this place will ideally induce no loss, although in practice
the symmetry is broken by various imperfections, partially reintroducing some seam associated
loss.

In order to overcome the issues associated with seam, one can turn to the magic of under-
cutoff waveguides. When a machining tool such as a drill bit removes material from a piece of
metal, it necessarily leaves an opening to the outside world. This opening forms a waveguide,
i.e. a single-conductor transmission channel for electromagnetic signals. Unlike two-conductor
transmission lines, such as twisted-pair or coaxial transmission lines, waveguides do not allow
signals of arbitrary frequency to pass. They are in effect high-pass filters, with a cutoff frequency

that scales inversely with the radius of the aperture. For a circular waveguide of radius r this

cutoff id?

2.405¢
fer

(5.1)

2rr

where the 2.405 factor is calculated from the roots of the first Bessel function (Pozar, 2011)).
If we can create a mode of resonance frequency fy using only apertures small enough that the
cutoff frequency f. is larger than fy, then signals from the mode at one end of the waveguide
cannot reach the seam which will necessarily be present at the other end. Now coming up with
designs for mode geometries which can be machined in this way requires a fair bit of ingenuity,
but it is possible as demonstrated by “post cavity” design of Reagor et al.| (2016). This is the
design for all of the experiments performed in this thesis, as well as most of the experiments
involving 3D cavities performed recently at Yale. However, there are other designs which are
currently in development using the same methodology, in order to produce seamless multi-mode
cavities and other variations (Naik et al., 2017]).

In the post cavity design, we form a section of coaxial transmission line, with one end

2There are actually many modes of circular waveguides which can be excited. The lowest frequency mode
is the TE11l mode, which has a cutoff constant of 1.841. However, the symmetries of the post cavity we are
coupling to means there is zero nominal coupling to the TE11 mode, and therefore we move to the next lowest
frequency mode, the TMO1 mode.
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shorted and the other end open, as can be seen in figure 5.1l The frequency of the mode with
post length [ is approximately fo ~ ;7. The cutoff frequency of the hole needed to create
this post by machining is determined by the outer radius of the coaxial transmission line r.

Therefore, in order to be protected, we need

2.405¢ S < N £ - 21
2mr 4] r 4 x2.405

~ 0.653 (5.2)

Therefore the aspect ratio needed is actually not too bad. Of course the post must be narrower
than the outer radius, and we should be significantly below the cutoff, but we can achieve
negligible seam participation with aspect ratios of 2-3 in reasonable designs.

We can summarize our cavity design methodology by referring to figure 5.2 We choose
the cavity frequency which gives us the post length as i%i. Note this is only approximate,
and must be adjusted for in a finite element simulation which can account for all of the stray
capacitances and edge effects. For instance, our cavities have a target frequency of 4.5 GHz,
which would naively prescribe a post length of 1.67 cm, but given other details of our geometry,
we find we need a length of 1.50 cm. The resonance frequency also determines the maximum
aperture radiusas %25‘3. We should choose the actual radius 7 as far below this maximum
as possible. In our case, the maximum radius was 2.55 cm, and the actual radius was 0.53
cm. We can then specify the allowable level of participation in the seam in order to choose the

waveguide length . The current induced as a function of distance along the waveguide (z)

2.405
T

2
vanishes exponentially as e=#% where = \/( ) — (%)2 The energy density goes as the

—28z

square of current and thus vanishes as e . In order to suppress the seam participation by a

factor of , the waveguide should be at least of distance 1;—69” In our case we had 1/ =~ 2.2 mm.

225/3) ~ 10710 reduction in participation. See the

The depth of 25 mm gives us a factor of e~
work done by |Brecht| (2017 for a more rigorous treatment of calculating seam losses.
5.2 The antenna transmon

The 3D transmon qubit consists of two antenna-like aluminum pads connected by a single

Josephson junction. It is fabricated on a piece of sapphire 430 microns thick, which it shares
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A

®

Figure 5.2: Schematic of cavity and transmon critical physical dimensions. This cartoon
shows the critical dimensions of the geometry of the cavity-transmon system. The circled
numbers are referenced in the text.

with the readout resonator. This qubit is topologically identical with a “Cooper pair box,”
(Nakamura et al., [1999)) which is described using two primary parameters, as can be seen in

the Hamiltonian (Schuster, [2007)):
2 Eu
H = 4Ec(N = N, + =23 |nn + 1] + hec. (5.3)

The term N, describes an offset voltage (N, = V,C/e) applied between the two pads either
intentionally by a gate, or unintentionally by a noisy environment. First we have the charging
energy Ec which is the energy associated with moving moving a single electron from one pad to

the other. It is determined by the capacitance between the pads via Ec = ¢2/2C. Second we
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have the Josephson energy E';, which is the tunnel rate, set by the junction area and thickness.
It is linearly related to the area and is vanishes exponentially with the thicknessE] We can
infer E; at room temperature by measuring the resistance across the junction (Ry), using the

Ambegoakar-Baratoff relationship: (Ambegaokar and Baratoff, |1963):

A
E; = tanh . (5.4)

The so called transmorﬂ limit of the Cooper pair box Hamiltonian occurs when E; > Eq.
In this limit the sensitivity to offset gate voltage vanishes dn,wge — 0, (Koch et al., 2007).
We can relate the junction Hamiltonian to a diagonalized picture, where we consider the
transmon to be an anharmonic oscillator (essentially, a particle in a cosine potential rather than

a quadratic potential), which for the first few energy levels can be represented as
H = w,obb + O;—T(bT)sz. (5.5)
We can relate the parameters of [5.3] and in the transmon limit:

Wye ~ \/SEJEC/h (56)

ar ~ Ec/h (5.7)

Therefore, we have the following prescription for designing a transmon. Given the desired
anharmonicity, we can determine the needed capacitance C' = e2/(2arh) (for 120 MHz this is
about 1 pF). Then we can specify a value for wgeﬂ which sets our desired Josephson energy as
Ej ~ w?/8ar.

Now we need a way of translating C' and E; into geometry. There is obviously no unique
way of performing this translation, and therefore our description of how to proceed here is as

much art as science. When it comes to the geometry of the capacitance there are two major

3For this reason, it is especially important to control the growth of the junction oxide, as small variations can
produce large swings of F;

*The name “transmon” derives from “transmission line shunted plasma oscillation.” The “plasma oscillation”
part of this is clear: the excitations of the system are not definite charge states, but rather vibrations of the
charge plasma back and forth across the junction. The “transmission line shunted” part remains obscure.

Sthis must be at least a factor of ~ 20 larger than a7 in order to stay in the transmon regime
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concerns we have. First is the mechanical stability, and susceptibility to vibrations. Second is
the quality of the dielectric. Let's address these concerns one at a time.

If the capacitance is prone to variations induced by mechanical instability, this can lead
to an unstable transmon frequency, and therefore dephasing. The main source of mechanical
instability is the mechanism holding the sapphire substrate on which the transmon is printed.
Movement of the chip within the cavity can vary the distance between the transmon pads and
the sidewalls, and therefore change the capacitance. The closer the pads are to the walls,
the more important this capacitance is, and the larger the change in capacitance for a given
variation in distance. Under this consideration there are two changes we can prescribe. First,
we can increase the distance of the transmon from any side walls present, for instance, by
increasing the radius of the cylindrical cutout in which it is housed. Second, we may bring the
transmon pads closer together, increasing the part of the capacitance which is direct, rather
than mediated by the sidewalls, and making the electric field profile tighter.

One major component of energy loss is imperfect dielectric, with defects and disorder which
can absorb excitations from the transmon. By volume the vast majority of dielectric present in
our system is one of two types: vacuum and sapphire. The vacuum can be considered perfect
and lossless, while the sapphire is merely very high quality. While these parts store the majority
of the electric energy, they are not necessarily the most important contribution to dielectric loss.
The small amounts of dielectric on the interface between two components is often the most
disordered and lossy, by many orders of magnitude, and therefore can be a dominant source
of loss, despite having such a small volume. Each type of interface can contribute, including
metal-vacuum, substrate-vacuum, and metal-substrate. Different geometries will have differing
relative participation in the surface, and therefore different dielectric induced loss rates. For
instance, a very narrow gap between the pads will confine much of the electric field near the
sapphire surface, increasing the substrate-vacuum surface participation. For this reason, larger,
more spread out designs, which decrease the ratio of surface to bulk, have a tendency to have
higher lifetimes (Paik et al., 2011)).

With these considerations in mind we can write down a schematic procedure for generating

the transmon geometry features as seen in figure 5.2l We will first choose the transmon
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enclosure radiusas large as possible without allowing field from the cavity mode to propagate
to the seam associated with this opening, i.e. placing the cutoff frequency above the storage
frequency. In our case this was about 0.2 cm. Given that radius, we choose the pad distance
as large as possible such that the field will still be primarily directed from one pad to the
other, without being mediated by the side walls of the enclosure. One might also be inclined
to reduce this distance for the sake of keeping the transmon pads relatively compact. In our
case, the distance was kept fixed at 150 micron. Next we take the desired anharmonicity to
determine the length and width of the pads . The capacitance is roughly linear in the width
and logarithmic in the length, so the width is the primary variable. Next take the desired
transmon frequency, calculate the desired E;, and use this to determine the Junction area .
While a first principles calculation of the needed area is in principle possible, in practice we
use calibration measurements to determine the relationship between junction size and normal-
state resistance Ry, and then this calibration lets us pick the desired size via equation |5.4]
Finally, we can determine the coupling x between the transmon and storage mode using both
the positioning of the transmon, and a “coupler” bulb . We can scale the coupling by
increasing the insertion of the bulb into the cavity. The precise value of x is determined from
finite-element simulation of the entire geometry via black box quantization (BBQ) (Nigg et al.,

2012). A thorough description of how we use BBQ in practice can be found in [Blumoff| (2017)).

5.3 The stripline readout

In the original version of the post cavity device (Reagor et al., |2016)), the readout mode was a
second post cavity. It was soon realized, however, that this was not necessarily economical. A
readout mode has different requirements than a storage mode. A readout mode is intentionally
overcoupled to a transmission line which carries away the readout signal. This means that any
loss rate due to internal mechanisms (such as seam or dielectric losses) which is significantly
smaller than the loss rate due to the transmission line has a negligible effect. As a result,

we prefer to use the “stripline” design (Axline et al., 2016) which has several benefits. First
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it is much more compact, taking up a much smaller volume than a post cavity. Second it is
lithographically defined, allowing greater precision in its geometry, and therefore in its frequency
and transmon coupling. Finally, it can be more easily changed, i.e. if a different frequency or
coupling rate is desired, a new chip can be manufactured, as opposed to a new enclosure.
There are only two design steps required. First is choosing the readout frequency. This is
usually done on the basis of the frequency of available quantum limited amplifiers. In our case,
we had a JPC with maximum performance around 9.2 GHz, and therefore we aimed for this as

our readout resonant frequency. This choice determines the length of the readout [] which as

a A/2 mode, is set to \/Eic . The effective dielectric is somewhere between 1 (vacuum) and
effWRO
~ 10 (sapphire) given by the exact geometry, and in our case is about 3.37. Finally, we must

choose our desired interaction strength xro, which in turn determines the spacing between the

transmon and readout . The precise mapping between spacing and xro is determined via

BBQ, as was done with the storage-transmon Y.

5.4 Coupling pins

The final crucial piece of sample geometry is our means of communicating with it. For this
purpose we have introduced coupling pins, which can be thought of as coax transmission lines
which connect to our control electronics at one end, transitioning to an under-cutoff circular
waveguide at the other end. The length of this under-cutoff waveguide attenuates the coupling
between the pin and the mode at the other side.

Ultimately we must choose the length of under-cutoff waveguide (or equivalently, the length
of pin to insert into a predetermined length of waveguide) to determine the coupling rate Kext.
There are two tasks ahead of us: first determining the desired value of keyt for each mode to
each coupler, and determining the geometry required to achieve that desired coupling rate. Our
answer for the desired coupling rate is simplest for the readout cavity. We wish to maximize
the “readout rate” for any given amplitude, which for a perfect acquisition chain, is equal to
the dephasing rate (equation , with I' — Kext). This is maximized when xYro = Kext,RO-

For the coupling rates to the transmon and storage modes, we want these to be non-zero
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for the purposes of driving the system, but would prefer them to be as small as possible to
avoid the induced energy decay rate. Typically, if we have some other loss rate ki, from other
uncontrolled sources, e.g. dielectric loss, we can choose a value Keyxt < Kint, Where our ultimate
energy decay rate should not be significantly affected by the presence of the coupIerE]

In order to compute what geometry is required to implement a desired coupling rate, we
could in principle do an analytic calculation involving under-cutoff waveguide, and aperture or
dipole coupled cavities (Pozar, 2011, §7.6), but more practical is performing a finite-element
simulation. We have used the ANSYS electromagnetic simulation package in its “eigenmode”
method of operation. A matched (5012) resistor is added to the distant edge of the pin couplers
to simulate the effect of an arbitrarily long transmission line which allows outgoing radiation.
The eigenmode analysis produces resonant frequencies as well as quality factors which can
be converted to coupling rates. If the only source of loss in the simulation is the resistor
corresponding to a pin of interest, then the simulated loss rate is the pin's associated coupling
rate.

For the cavity pin, which by virtue of its position couples only to the storage cavity, we can

simply choose a depth @ such that the storage cavity lifetime is unaffected. However, for the

readout pin, we will necessarily have some coupling to both the transmon and readout modes.
Since we want the readout coupling high and the transmon coupling to be low, the salient

metric is the ratio of Kext 7/Kext,R0. We can choose the pin's position along the length of the

chip enclosure @ in order to maximize this ratio. This can actually be a bit non-intuitive, as

the maximum ratio may not be as far from the transmon as possible (Blumoff, [2017, §3.6.2).
In our geometry and frequency range, it was possible to find a location with a coupling ratio
of approximately 103. This means that for a 500 ns readout lifetime, we limit the transmon
lifetime to 500us, an acceptable limit at our current stage of technological development. If we
wished to develop a sample with a higher coupling ratio we would need to turn to the method
of Purcell filtering, developed by Reed et al.|(2010). One can find a treatment of this method

which is more amenable to the stripline readout in |Axline (2018), §4.3. Given that we have

minimized the pin impact on transmon lifetime, we can set the length @ to achieve a desired

®nterestingly, this implies that as our systems’ intrinsic coherence parameters become better and better, we
will need to weaken our coupling more and more, necessitating larger and larger drive amplitudes.
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readout time.
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5.5 Putting it all together

5.5.1 Fabrication

The fabrication procedure is relatively standard, and well documented in other sources, par-
ticularly Reagor (2015). | will summarize the process for completeness. The cavity enclosure
(figure is machined from a block of high-purity (99.999%) aluminum. It is subjected to
two sequential two-hour chemical etches using “aluminum etch A,” a combination of nitric
and phosphoric acid. The cavity design should account for the removal of approximately 150
microns of material uniformly throughout.

The transmon is fabricated on a 430 micron thick 2" wafer of sapphire by a liftoff process. A
MMA/PMMA bilayer is spun on the surface of the wafer, followed by deposition of a thin gold
anti-charging layer using a sputterer. Then a pattern is written via electron beam lithography
(figure [5.4). The junction is defined using the bridge-free method (Lecocq et al), [2011), which
has been shown to allow faster quasiparticle relaxation times than the Dolan bridge method.

After writing, the gold layer is removed by a 15 second potassium iodide (KI) etch. The
e-beam resist is developed by a two-minute immersion in a temperature-controlled IPA/Water
bath which has been shown to perform favorably in comparison with MIBK (Yasin et al., [2002).
After development, the sample is subjected to an Ar/O2 plasma to clean the exposed sapphire
surface, and then undergoes two cycles of aluminum deposition, each followed by controlled
oxidation. After deposition, the excess metal is lifted off by a 2 hour (typically overnight) soak
in NMP kept at 50° C. After liftoff, a thick photo-resist (SC1827) is applied for the purpose
of protecting the sample surface during dicing. The chip is diced, and the samples are cleaned
using NMP, acetone, and methanol. The chip is held in place by a clamp and inserted into the

cavity trench resulting in a final geometry similar to that seen in figure [5.5]

5.5.2 Attenuators and filtering

No less crucial than the sample itself is the apparatus we connect it to. To begin with,
we must thermalize the sample, and we have two objectives in this regard. First, we must

bring the sample temperature low enough to reach the superconducting regime, which for
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Figure 5.3: 3/s-section view of machined cavity component.

aluminum is 1.2K. Second, we must remove all blackbody radiation at the frequency of interest
of approximately 5 GHz, corresponding to a temperature of % ~ 240 mK.

Bringing the base plate of the refrigerator, to which our sample can be firmly attached, to
a temperature well below these limits (about 20 mK) is a necessary first step to achieving good
thermalization. It would be sufficient too if not for the fact that we need to introduce cables
which attach at one end to our sample, and at another end to our control electronics living at
room temperature. These cables act as a window, and would carry very hot radiation from the
outside world into our sample, preventing it from cooling down. We can overcome this problem
by adding attenuators to our cables. These attenuators remove all but an insignificant fraction
of the thermal photons from the outside. They remove all but a fraction of the signal (driving)
photons as well, but this fraction can be significant if the input drive strength is sufficiently
high. The cost of adding attenuators is that they contribute thermal photons of their own, as a
result of Johnson-Nyquist noise, which itself is a result of the fluctuation-dissipation theorem.

This added component can be made small if the attenuator itself is well thermalized and cold.
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Figure 5.4: Transmon and readout chip schematic. (top left) The layout of 14 chips on
a 2" wafer. Each chip (top right) contains a transmon and a readout mode, as well as a set
of test junctions. The junction (bottom) has several geometry components with varying levels
of e-beam dosage applied. The pink leads below and above the U-shaped blue regions should
only allow metal to reach the substrate on one orientation of the multi-angle deposition. All
indicated numbers are measurements in units of microns
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Figure 5.5: Assembled device schematic

For this reason, we add attenuators on the input lines and anchor them to the cold plate of
the fridge. The isolation factor G required to get the thermal photon population at frequency

w down to a target level n can be found via

n = GT_LBE(293 K, w) + (1 — G)’r_lBE(QO mK,w), (58)

where we use the Bose-Einstein distribution

nge(T,w) = —. (5.9)

For a target population of 7 ~ 1073 at 5 GHz requires G ~ —60 dB. About 10 dB of
attenuation is present from just the lines themselves, so we need to add at least 50 dB of
explicit additional attenuation. If we were to put this amount of attenuation at base, however,
for a given amount of power delivered to the sample, we would have to dissipate 10° times
that power. We do not have the cooling power to maintain 20 mK temperatures with this heat
load, and therefore this amount of power would heat up the fridge. We can obtain nearly the
same performance without affecting the base temperature by splitting the attenuation in two
parts, the first of which is attached to a higher temperature stage (here, -20 dB at 4 K), such

that the majority of the heat load is dissipated at this stage, and the remaining attenuation
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occurs at 20 mK. The logic is that in this scheme, we only need as much attenuation at base
as is required to attenuate the 4 K thermal photons, rather than what is needed to attenuate

the 290 K thermal photons. The equations for this two stage thermalization are then:

ng gk = Gy KﬁBE(293 K,w) + (1 — Gy K)ﬁBE(4 K,UJ) (5.10)

Nbase = Ghase4 K + (1 — Gpase) 7B (20 mK, w). (5.11)

If we say G4k ~ —20 dB and Gpase = —40 dB, the final population is about 3 x 1073, a
relatively small increase in thermal population compared with the single-stage approach. We
can actually avoid the dissipation of any significant amount of heat at the base stage by using
the “direct-tenuator” approach. Instead of using a 20 dB attenuator at base, one can instead
use a directional coupler, with a -20 dB coupled port. The majority of the power goes straight
through the directional coupler, and is carried on a line which goes back up to the 4 K stage,
where it can be dissipated more easily. The downside of this approach is that it sacrifices an
additional line between the base and 4 K stages, which is not always available. In addition,

We must use a similar scheme on the output lines as well, but instead of attenuators, we
use isolators, which are non-reciprocal devices which act as attenuators for signals travelling in
one direction, but have low loss in the other direction, allowing the outgoing signal integrity to
be preserved while simultaneously protecting the sample from incoming radiation.

We care not only about photons at the frequency of our modes, but also at higher fre-
quencies, as these can excite quasiparticles and cause all sorts of other nasty effects. If we
had perfect, infinite bandwidth attenuators, our presently described setup would be sufficient.
However, commercially available attenuators are typically only characterized up to about 20
GHz or so. At higher frequencies these devices can effectively act as passthroughs, allowing
harmful infrared radiation to pass through. For this purpose we introduce additional filters,
formed by replacing the dielectric in a length of coax with a special epoxy (eccosorb) which is
designed to be as absorptive as possible in the infrared. Finally, we can use reflective (lossless)
low-pass filters designed to reject frequencies above 10 GHz in order to cover the range between

20 GHz and the infrared band covered by the eccosorb.
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We can summarize the attenuation and filters used in our actual experiments via the dia-

gram [5.6]
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It turns out that the ordering of the components is quite critical. Specifically, the eccosorb
should be the last component, and as close to the sample as possible, in order to minimize
the temperature of the transmon mode. It is not known precisely why this is the case, but
one hypothesis is that the cables and connectors of the microwave components are “leaky,”
allowing high-frequency photons in from the environment. The ambient photon temperature
can be much hotter than the base temperature, especially since most fridges do not have cans
which isolate the base plate from the 1 K stage. Additionally, it has been found to be crucial
to thermally anchor all of the components at base as directly as possible. It is not desirable to
rely upon the coaxial microwave cables themselves to conduct heat. Instead, one should use

conductive copper braid, tightly clamped, when direct affixing to the base plate is not possible.

5.5.3 Readout amplification

We are forced to attenuate the signals going to the sample in order to keep the signal to noise
ratio high. For the same reason, we must perform amplification of the outgoing signal, as
the signal sizes coming out of the system will be dwarfed by the thermal noise in the room
temperature acquisition electronics. To do so, we must use a series of low-noise amplifiers,
positioned at different temperature stages.

The most important amplifier is the first, which will largely determine the signal-to-noise
ratio. For this purpose, we use a Josephson Parametric Converter (JPC), which is a quantum
limited amplifier built out of a ring of four Josephson junctions (Bergeal et al., 2010). The

system effectively implements the Hamiltonian
Hipc = wea'a + wpb'b + wecle + gla +a) (b + b (e + ), (5.12)

Where the three modes are called the signal, idler, and pump modes. The system is flux tuned
until we & wg + wp, within the linewidth of the pump mode. By applying a large displacement
&, to the pump mode we can activate the term ab + a’b! with strength g¢. (see chapter for

more discussion of how to analyze “activating” Hamiltonian terms with pumps). The effect of
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this two-mode squeezing HamiltoniarE] is to transform the ladder operators over the interaction

time ¢ (set by the linewidth) resulting in,

a — a cosh g&.t — b sinh g&.t (5.13)

This can be interpreted as adding amplification to the field of the signal mode (on the order
of cosh g&.t), while mixing in some component of the field of the idler mode. This idler mode
contribution can be minimized by keeping the idler input to be cold vacuum, in which case the
idler mode contribution is to add a “half-photon” of noise. Amplifiers are a deep and subtle
topic, to which this hand-wavy description does not do justice. See |Sliwa| (2016) for a rigorous
discussion of how to model the JPC and other types of quantum amplifiers.

JPC amplifiers have a limited dynamic range, meaning that the output begins to saturate
at some input power, which we approach when operating the JPC with 20 dB of gain on
typical readout signals. Therefore a different type of device is required to perform additional
amplification. For this purpose we employ a high electron mobility transistor (HEMT) amplifier.
These devices operate at 4K, and provide about 30 dB of gain, with a very low noise figure
(=~ 0.1 dB). A final room temperature amplifier, provides the final &~ 20 dB of gain required to
cancel the effect of the attenuators, bringing the total apparent Ss; of the input-output lines

close to unity.

5.5.4 Electronics

The role of the electronics is to firstly, generate the signals which we send into the lines to
manipulate the system, and secondly to acquire, interpret, and potentially even act upon the
returning signals which carry the information about the system’s behavior.

We can start with the signal generation. The most straightforward approach to this
problem is to use a so-called “direct-synthesis” approach using a high-speed, high-bandwidth
(~ 50 GS/s, ~ 20 GHz) AWG to create the desired signals ex nihilo, as was shown in Raftery

et al.| (2017). However, this approach requires very expensive hardware, and the capabilities

"See |Walls and Milburn| (1995) for a concise description of the action of both single-mode and multi-mode
squeezing operators
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and limitations of this approach still need to be explored and characterized. For this reason,
we use a more traditional approach involving lower bandwidth (~ 1 GHz) AWGs together
with microwave signal generators, which can produce high-quality pure tones up to 20 GHz.
With this approach we can produce any signal we want in the same frequency range, with the
constraint that the instantaneous bandwidth is within the AWG bandwidth. We can see an
example setup in figure[5.7] The main performance metric for the signal generation electronics
is phase noise, i.e. how well defined is the phase of a signal, relative to a delayed version of
itself. The phase noise is the power present in the output, at a given offset from the carrier
frequency, relative to the carrier output power. The power spectral density (PSD) can be run
through a “filter-function” analysis to produce the effect of phase noise on the Ramsey decay
curve (Bylander et al., 2011} |Green et al., 2013; Soare et al., 2014). Other components we
see in figure [5.7] are amplifiers, which allow us to reach the desired input power, and switches,
filters, and isolators, to ensure that the signal is as clean as possible. The switches are a critical
component which must be placed after any room temperature amplifier, as these amplifiers
increase the apparent noise temperature going into the system. The logic behind the switch
is that this noise is acceptable for the short periods of time when the drive is active (say for
a fast 7 pulse) but would be very detrimental over longer periods of idling time. DC blocks
are placed around all active components, such as switches, amplifiers, and mixers, to prevent
ground loops whenever possible. Finally, several diagnostic ports are created. We tap off the
AWG outputs before the mixer, in order to allow us to see the pulse sequence playing in the
time domain on an oscilloscope. A small portion of the RF power is diverted to a spectrum
analyzer before going to the fridge, which allows us to perform IQ mixer calibrations without

disrupting the setup.
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Figure 5.7: Signal generation and acquisition electronics This is the final setup used for the
FT SNAP experiment (chapter E[) Similar setups are used for the previous two experiments.
The “source” block at the top is repeated several times, and is parameterized by the LO
hardware, and the mixer hardware, with other components remaining the same. The GFM1
and EHM1 sectors produce the sideband drives corresponding to the |g,n) <> |f,n — 1) and
le,n) <> |h,n —1). These were used for photon preparation (section and x cancellation

(section , respectively.



Chapter 6

Universal control of a cat-code qubit

Quantum error correction (QEC) aims at the creation of logical qubits whose information
storage and processing capabilities exceed those of its constituent parts. Any logical qubit will
inevitably face difficulties in control, by its very nature. The information is encoded in such a
way that the environment cannot, without great difficulty or coincidence, learn about, measure,
or manipulate it. This means that the designers of operations on a logical qubit must overcome
the control barriers they themselves erected in the first place. This is one more facet of the
fundamental tension of quantum computing, between isolation and control.

In order to perform gates on a logical qubit one must perform operations on the entire system
in such a way that it results in the desired transformation within the two-dimensional logical
subspace. In any encoding scheme the system dynamics are not naturally confined within the
logical subspace. Therefore, implementing operations requires carefully tailored controls which
address each component of the system and manage their mutual interactions.

In encodings based on many entangled two-level systems, which are designed to detect and
correct individual errors on any of the subsystems, such as the 7-qubit Steane code, control
comes in the form of single-qubit drives on each of components, as well as entangling drives
between connected pairs. While this control scheme may seem simple in theory, in practice one
will have to reckon with the presence of many types of deviations from the model, including
cross-talk between the lines and always-on unwanted interactions between adjacent qubits.

These complications will make this task much more difficult in practice.

97
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We have shown in section [2.3] how a dispersively coupled qubit gives universal control
to a cavity, and consequently, in principle, of encoded states within the cavity. While the
control scheme is much less intuitive than that of multiple qubits, it is actually much simpler
to characterize the model deviations, such as Kerr non-linearity. We will begin this chapter
by showing how we perform the necessary system characterization, in section [6.I With this
characterization in hand, we can proceed in section to employ numerical optimal control
techniques detailed in chapter [4] allowing us to demonstrate a contrived, but highly nontrivial
action on the cavity. In[6.3|we move the setting back to the cat code detailed in section by
developing pulses which transfer quantum information between the traditional transmon qubit
and the cavity logical qubit. Finally, in[6.4] we can create and test a set of operations on the

logical qubit.

6.1 First things first: Characterizing the system

The model we will use to describe the system is a dispersive model, by which we mean the
static components are entirely diagonal in the photon number basis. We can partition the

Hamiltonian into sectors:
H<t) = Hoscillator + Htransmon + Hinteraction + Hdrive (t) (6-1)

We can begin by characterizing the transmon and oscillator sectors

(6
Hyansmon = WTbTb + ?T(bT)Qb2 (62)
fa+ K ah2q2
H iljator = wea'a + E(a ) a (63)

It is absolutely crucial to know the resonant frequencies w¢e and wyp, as accurately as possible.
The most precise method for determining this is via Ramsey interferometry. The method and
fit is slightly different for the cavity and transmon (see ﬁgure but both operate on the same
principle of comparing the phase of the subsystem with that of a local oscillator for varying

times.
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(a) Transmon Ramsey sequence (b) Cavity Ramsey sequence

Figure 6.1: Transmon and cavity Ramsey sequences Ramsey sequences are a set of time-
parameterized experiments which directly yield accurate measurements of the system'’s resonant
frequency. On the left is a transmon Ramsey sequence, which plays two 7/2 qubit rotations
separated by a variable time. On the right, a pair of small cavity displacements is separated by
a variable time. The photon number can be mapped onto the transmon by a selective transmon
rotation. In order to measure the coherence decay constant accurately, it is important to use a
detuned local oscillator (either in hardware, or virtually, in software).

The anharmonicities K and agp differ by many orders of magnitude, and therefore require
very different approaches in order to characterize. One might ask why we would need to
characterize the anharmonicity, if we are not intending on employing the |e) <+ |f) transition
in our operationE] but this term can, especially at large transmon drive amplitudes induce
an effective Stark shift. Therefore including it is essential to achieve the highest level of
performance, but the required precision is lower. To measure this, we can perform simple
spectroscopy (figure [6.2).  Accounting for the cavity anharmonicity, also known as the (self-
)Kerr non-linearity K, is no less important. While it may be negligibly small when acting on
states within the cat code manifold, the n? scaling with respect to photon number means that

any intermediate occupation of higher photon number states will induce sensitivity to the value

!In principle using this transition is possible, and would likely provide a large benefit for doing faster operations,
but would require additional characterization. Extending optimal control to using this resource would be a useful
further direction to explore.
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Figure 6.2: Transmon EF Spectroscopy The transmon anharmonicity can be found by varying
the frequency of the second pulse in this sequence around the expected location of wy.

of K. The relevant information for calculating K is contained within an extension of the cavity
Ramsey sequence (figure ) which, in addition to scanning the delay time 7 also scans the
cavity displacement «.. After acquiring this data, we can fit the data using the following model

(figure [6.3):

. i 2
flwe, K t,a) = | (o] ectelatizt(al)a? |q) 2 (6.4)

The next piece of characterization that needs to be carried out is to identify the interaction.
The most important parts of this Hamiltonian are the linear () and quadratic (x’) photon

number dependent dispersive shifts:
Xl
Hinteraction = XaTabTb + 5((1”20/2!;[1) (6_5)

We can determine these parameters quite accurately by measuring the transmon frequency
at different photon numbers. While, at this stage of characterization, we might not be able
to prepare individual photon number states deterministicaIIyE] we can prepare large photon
number states via simply driving large displacements in the cavity. Performing spectroscopy of

the transmon reveals a frequency comb (see figure|6.4)). By scanning the value of «v and fitting

2see sections and for how this can be done with optimal control or sideband drives, respectively
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Figure 6.3: Determining the cavity Kerr non-linearity. This protocol is the same as the cavity
Ramsey sequence seen in figure [6.Ip, with the added complication of varying the displacement
amplitude. The Kerr non-linearity can be determined from the “bending” of the curves seen
here. The quantitative fit can be found using equation
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Figure 6.4: Transmon spectroscopy for determining y and ’.The dispersive shift x and its
second order correction term Y’ are determined from transmon spectroscopy experiments with
several different displacements (top). Each peak is fit to a Gaussian and the resulting center
frequencies are fit using a quadratic model. We see in the bottom plot the deviation of the
peak locations from a linear fit, and that a quadratic adjustment is sufficient correction.
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the comb using a sum of Gaussians, we can extract the transmon frequency for every photon
number, up to the number of photons we are going to allow in our optimal control pulses. We
can then fit this set of numbers to a low order polynomial. In this experiment second order was
sufficient.

Finally we need to characterize the driven sector of the Hamiltonian:

Hdrive(t) - 60(75)01 + 6T(t)b + h.c. (66)

In particular, we need to relate the rates ec and ep (in units of Hz) to the AWG amplitude (in
either DAC units or voltage). Given that we have a characterized 7 pulse or cavity displacement.
For an ideal two-level system, we can calculate the drive rate (€7 max) corresponding to the

peak of a Gaussian pulse of with o required to perform a pi pulse:

7+ = cos() + isin(f)o, (6.7)
T
— =40 :
. (68)
+2
= €7 max | dte 207 (6.9)

= €7,maxV 2102 (6.10)
[
€T, max = &7 (6.11)

Assuming a linear relationship between the DAC setting and the drive rate then gives us a
map from arbitrary DAC settings to drive rates. Similarly, from a unit displacement, we can

calibrate €.
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1=« (6.13)
t2
= €Ccmax | dte 202 (6.14)
= €C,max V 2m0? (6.15)
1

€C.max = 6.16
Cmax = o (6.16)

6.2 Showing off a bit: Creating distant Fock states from scratch

After performing the necessary system characterization, resulting in an accurate model of the
cavity-transmon Hamiltonian (see Table for the results of this characterization), the next
step is to tune up the optimal control. We do this largely by following the procedure in figure[4.2]
To fill out the details of this protocol, we can specify that the “evaluation pulses” we targeted
for the purposes of getting the pulse constraints correct was a set of operations designed to

create different Fock states in the cavity, and took the form
0) ® [g) — |n) @1g) (6.17)

An example of one of these pulses (specifically for n = 6), and its simulated trajectory in
phase space, is visualized in figure[6.5] Under the action of this 500 ns pulse, we see that the
cavity and transmon quickly become entangled, with the cavity state having little recognizable
or meaningful structure apart from the beginning and end states. We can compare this with
the shortest equivalent sequence constructed via SNAP and displacements, we would require
at least 2 SNAP operations and 3 displacements, which in this experiment, would take at least
3 s and would be susceptible to control errors via Hamiltonian terms other than x.

The real test of this pulse is performing it in practice. This is effectively asking the question:

is our model Hamiltonian accurate enough to reliably predict the system evolution within the
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Figure 6.5: Phase space trajectory of pulse creating 6 photons. Sub-plots 1-6 are individual
time slices of the cavity-transmon trajectory. For each time slice we characterize the cavity state
conditional on both |g) and |e) with a Wigner function, which is normalized to the probability of
occupying the respective transmon state. Note that this is not quite tomographically complete,

which would require four Wigner-like functions per time slice (Vlastakis, 2015, §6.3.1). The

trajectory shows how the Fock state is built up in phase space, gradually approaching the

correct form seen in the final panel.
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Figure 6.6: Wigner function Fock state |6) as created by optimal control Characterization
of the oscillator state using Wigner tomography (bottom) and transmon spectroscopy (top),
where grey dashed lines indicate the transition frequency associated with the first 7 Fock states.
The single peak in the spectroscopy data directly reveals the oscillator’'s population due to the
dispersive interaction giving a frequency shift of 6x /27 ~ 13 MHz.

bandwidth, amplitude and photon number occupied during the pulse evolution? We can see
in figures[6.7] and [6.6] that it is. In particular, the photon number distribution predicted by the
simulation matches the observed trajectory quite well. While the dissipation-free simulation for
this pulse has a transfer fidelity > 99.9%, accounting for the known sources of decoherence,
mostly transmon dephasing in this sample, reduces the prediction to 98.5%. It is difficult to
confirm the fidelity of this Fock state experimentally to this level of accuracy, due to the issues
of separating state and measurement fidelity in state tomography, but the best estimates from
the transmon spectroscopy indicate a fidelity of 98%, arrived at by comparing the contrast of

the vacuum |0) to the prepared state [6).

6.3 Alternating Hilbert spaces: Encode and decode

With the optimal control system brought online (see appendix [F| for the final code which
produced our pulses), we can move on to our more concrete goal of manipulating cat-encoded
quantum bits. Our target encoding is the orthogonal cat code specified in equations [3.56] and

3.57} with e = v/3. In order work with this code, we will need to be able to prepare and measure
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Figure 6.7: Photon number trajectory of pulse creating 6 photons, compared with
experiment. Lower panels: optimized transmon and oscillator control waveforms of length
approximately 27/ to take the oscillator from vacuum to the 6-photon Fock state. Solid
(dotted) lines represent the in-phase (quadrature) field component. Upper panels: oscillator
photon-number population trajectory versus time conditioned on transmon in |g), both in
simulation (top) and experiment (bottom). A complex trajectory occupying a wide range of
photon numbers is taken to perform the intended operation.

its states. We note that we have a very good ability to prepare and characterize states in the
transmon. We can extend this capability to the cavity if we can map quantum information

from one system to the other. For this reason we create the encode (Uenc) and decode (Ugec)

pulses (see figure [6.8p)

encode

(alg) + Ble) @10) =25 Jg) @ (@ or) + B1L1)) (6.18)

These operations will coherently move quantum information between our easily addressed

transmon and the cavity. These pulses are each 1100 ns ~ 2.4 x 27 /x in length, and are
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Figure 6.8: Characterization of encoded states. a, Ug,c and Uy. are operations which
coherently map between two distinct two-dimensional subspaces, represented by Bloch spheres.
The first subspace consists of the transmon |g) and |e) levels, with the oscillator in the vacuum.
The second is given by the oscillator-encoded states |0z) and |11) (equations and 3.57)),
with the transmon in the ground state. b, Wigner tomography sequence which characterizes the
encoded states. A transmon state is prepared by applying an initial rotation U; and is mapped
to the oscillator using Uenc. An oscillator displacement Dy followed by a parity mapping
operation IT (implemented using an optimal control pulse) allows one to measure the oscillator
Wigner function W(3). The transmon can be re-used to measure the oscillator’s parity because
the encoding pulse leaves the transmon in the ground state with high probability (p > 98%).
¢, Applying Ugnc to the transmon states |g) and |e) produces states whose Wigner functions
are consistent with the intended encoded basis states . A transmon spectroscopy experiment
(top panel) illustrates that only photon number states with n = 0 mod 4 and n = 2 mod 4
are present for logical state [07) and |11,) respectively. d, Applying Uenc to superpositions of
the transmon basis states demonstrates that the relative phase is preserved and that Ug,c is
a faithful map between the transmon and logical qubit Bloch spheres. These states, on the
equator of the Bloch sphere, are equally weighted superpositions of |0z) and |11) and therefore
contain all even photon numbers present in the basis states.
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ref

F=96.3%

Figure 6.9: Process tomography of encode-decode. We perform transmon tomography on
the process UgecUenc, Which is ideally the identity. The result of the tomography is shown in

the Pauli transfer representation (appendix |C.2.1)).

specified with a 2 ns time resolution. About 99% of the spectral content lies within a band-
width of 33 MHz (27 MHz) for the transmon (oscillator) drive. The pulses which implement
these operations can be seen in figure [6.10] In order to validate the encoding, we can perform
Wigner tomography (see section , figure ) and ensure that the resulting state matches
expectations. Depending on whether transmon state is |g) or |e) before applying the encode op-
eration, the resulting cavity state could be a four-legged cat state with even or odd superparity.
Because of the linearity of the encoding transformation, superposition states in the transmon
are transformed into the corresponding superposition states in the cavity, producing either hor-
izontal or vertical two-legged cats. In figure [6.8c-d we see the encoded states corresponding to
the 6 cardinal points of the Bloch sphere (c.f. figure . The encoding pulse is not limited to
these points, and works to produce arbitrary encoded states, given the corresponding transmon
state. Maximum likelihood reconstruction of the density matrix associated with the measured
Wigner functions indicates an average fidelity of 0.96. This metric underestimates the fidelity
of Uenc because it is affected by several sources of error not intrinsic to the encoding operation
itself, including error in the parity mapping and measurement infidelity.

We can test the decode operation by performing encode followed by decode. If these
operations are ideal, the net transformation should be the identity operation. We can test this
property by preparing different states in the transmon, and measuring what transmon state we
end up in (figure. With this method, we can perform process tomography on the transmon
(see appendix , and calculate a fidelity to the identity of F ~ 96.4%. Some of this error
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comes from inaccuracy in the transmon state preparation and measurement (SPAM) errors, as

we will discuss in the next section.

6.4 Testing encoded operations

This brings us to a discussion of the operations manipulating the cat code. Using the same set
of conditions as those which generated the encode and decode, we create a universal set of gates
on our logical qubit, which includes o, and o, rotations by 7 and 7/2, as well as Hadamard
and T gates (see appendixfor the final code which produced our pulses). We include as well
an identity operation, which is as long as the other pulses, which intends to cancel the spurious
evolution of the cavity under its Kerr non-linearity. Looking at these pulses in is not too
enlightening. We can note, however, that the T and identity operations, which do not change
photon number, but only impart phases to the cavity, can be implemented with only transmon
drive, as would be done if these operations were implemented in SNAP. This was a result of
the optimization, which in the face of drive amplitude constraints, chose to make the cavity
drive negligibly small, as it was not neededE]

In order to verify these operations, to begin with, we can prepare encoded states in the cavity,
apply the operation, and then characterize the cavity state (figure . While this is sufficient
to establish qualitative agreement, a more precise evaluation can be determined from process
tomography (figure [6.12). Process tomography provides a full characterization of a quantum
operation, but depends on pre-existing trusted operations and measurements which are not
available for our encoded subspace. However, an indirect characterization of a gate Ux on our
logical qubit can be performed using the operation UgecUxUenc, which maps the transmon
subspace onto itself. This allows one to use the trusted state preparations and measurements
on the transmon to perform tomography on the composite process. The reconstructed process
matrices show qualitative agreement with the intended encoded qubit gates. We can break
the calculated infidelity down into 3 parts: transmon preparation and measurement error,

encode-decode error and gate error. Using the experimentally determined process fidelities

3If we had attempted to make these pulses as fast as possible, it is likely that a cavity drive would still be
needed, as the transmon-only approach has a strong speed limit.
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Figure 6.10: Optimized pulse waveforms. In the first column, we plot the complex waveforms
er(t) and ec(t). In the second column, we show the Fourier spectrum |&(w)|?. Blue (red) lines
correspond to drives on the transmon (oscillator). Solid (dotted) lines correspond to the in-
phase (quadrature) component of the drive. Note that the | and the T gate do not have to
change the photon number distribution, but only have to apply different phases to each Fock
state component. This can be done by manipulating the transmon (Heeres et al., 2015) only;
GRAPE finds a solution with a very small oscillator drive amplitude as well.
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Figure 6.11: Wigner functions demonstrating the action of encoded operations. We see
the in progressive steps the application of Ugne, UxUenc, and UxoUx Uepc, resulting in the
states |[4+1) — |—r) — |11)

both without any operation Fpt(No Op.) = 0.982, as well as with the encode and decode
pulses FpT(UgecUenc) = 0.964, we estimate an infidelity contribution of approximately 1.8%
for each of the first two components. To account for these factors to first order, the infidelity of
operations on the encoded qubit are reported relative to Fp1(UgecUenc). We find an average
infidelity of 0.75% over our set of 9 gates (see table .

In order to establish the fidelity of this set of operations more accurately, we perform ran-
domized benchmarking (Magesan et al, [2011)) (RB) on our encoded qubit (see appendix [C.4)).
In this protocol, the encode operation is applied, followed by a random selection of N opera-
tions from our gate set. Then the operation corresponding to the inverse of the product of the
preceding IN operations is applied, followed by the decode operation and transmon readout. We
do not repeat the same sequence, but instead draw a new random sequence for each single-shot
measurement. From the resulting data (figure [6.13) we infer an average gate fidelity of 0.991.

The infidelity of each of the individual gates is isolated using interleaved randomized bench-
marking (Magesan et al., 2012) (iRB), which alternates between a single fixed and a random
gate. Comparing the fitted decay constants of the RB and iRB results allows us to extract
the fidelity of the fixed gate. The results are summarized in table [6.1] together with the gate
fidelities based on process tomography (figure and Lindblad master equation simulations

accounting for finite 77 and T» of the transmon and oscillator (see table(5.1)). We note that all
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Figure 6.12: Process tomography of operations on encoded qubit. In order to charac-
terize a gate Ux on the encoded qubit, transmon process tomography is performed on the
operation UgecUxUenc. Process tomography is implemented by performing an initial trans-
mon rotation Uj; right after state preparation, as well as a final transmon rotation Uy, right
before measurement of the transmon. We show the process tomography results for selected
operations. The process tomography yields an estimated quantum channel G. We represent
this channel in the Pauli transfer representation. The bar labeled with operators AB represents
Tr (AG(B)) /2. Red and pink bars indicate the experimental and ideal values, respectively. The
infidelity AFp of operation Ux is estimated as the difference between Fp1(UgecUx Uenc) and
FpT(UdecUenc) = 0.964. The selected set of operations, { X180, X90,Y90,T'}, allows univer-
sal control of the logical qubit.
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Figure 6.13: Randomized benchmarking of operations on encoded qubit. a, Randomized
benchmarking (RB) sequence. In RB a sequence of Clifford operations of length n is chosen
at random (U{X,Y,...})v followed by the operation which inverts the effect of the sequence
(Ucorr)- In order to apply this technique to the operations on the encoded qubit, we begin the
experiment by encoding, and decode before measurement. Our implementation of RB creates
a new random gate sequence for every measurement, and is thus not biased by the distribution
of sequences which are measured. b, Interleaved randomized benchmarking (iRB) sequence:
In order to establish the fidelity of a single operation (here, Ux), the operation is interleaved
with random operations, and the benchmarking result is compared with the non-interleaved
case. ¢, The probability of measuring the correct result versus sequence length n is fit to a
two parameter model peorrect = 0.5 + Ae ™. The lower panel shows the fit residuals. Each
data point is the result of 2000 averages, with a new sequence realization every shot. The error
averaged over all gates is computed as 7 = (1 — e~ /7(RB)) /2 (Magesan et al., 2011). The
average error for a single gate X is computed as 7(X) = (1 — e!/7(X)=1/7(RB)) /9 (Magesan
et al., [2012).

gates are implemented with an approximately equal infidelity of 1% and that process tomog-
raphy and iRB yield consistent results. While several sources of decoherence are accounted for
in the master equation simulations, the dominant source of infidelity in the model is transmon
dephasing (T ~ 43 pus). The strong agreement between simulations and experiment indicates
that the infidelity is primarily caused by decoherence and that additional contributions asso-
ciated with imperfections in the model Hamiltonian and the applied pulses are a significantly

smaller effect.

6.5 Empirical tuning

In order to get the maximum amount of performance out of the pulses, it was necessary to

perform compensatory pre-distortions, in order to cancel the effect of a non-ideal transfer
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n Gate 1— FrB (%) AFpT (%) 1 — Fsim (%)

I 0.78 £ 0.06 0.51 0.31
X90 1.34 +0.09 0.57 0.78
-X90 1.564 £0.10 0.71 0.83
X180 1.89 £0.12 0.88 1.09
Y90 1.63 £0.11 0.98 0.76
-Y90 1.38 £ 0.09 0.52 0.75
Y180 2.18+0.14 0.99 1.67
H 1.58 £0.11 0.86 1.00
average 1.54+0.10 0.75 0.90
UencUdee  2.89+0.03 1.39 1.76
T - 0.71 0.40

Table 6.1: Operation fidelities. Measured and simulated gate infidelities. All fidelities reported
are average gate fidelities F(&1,&) = [dYF(E1(v), E2(v)), where F is the usual quantum
state fidelity F'(p1, p2) = Tr(\/p1p2+/P1)- FRB, AFpT and Fiin are the values extracted from
interleaved randomized benchmarking, process tomography (see figure and simulations
using the Lindblad master equation respectively. The row labeled “average” gives the fidelities
averaged over the first 8 gates, which is the set used in the standard randomized benchmarking
experiment. The T gate is separated since, as a non-Clifford operation, it is incompatible with
standard randomized benchmarking.

function corresponding to the physical lines and components interposing the AWG and device.
We perform the distortions described mathematically in section [4.8] specifically, using a first

order polynomial to model the transfer function, resulting in the five parameter model:

ér = Ar.F 1 [(1 + Brw)ZFer]] (6.19)

é0 = Ac.Z 1| (1 4+ Bow)e™" Fed]| (6.20)

The overall pulse amplitude correction is captured by Ap and Ac. The “dispersion” (really,
frequency dependent loss) of the lines is captured by the parameters By and Bg. Finally,
the delay between the two channels is captured by 7. We use the randomized benchmarking
protocol to perform empirical tuning of these five parameters (Egger and Wilhelm, 2014; Kelly
et al., 2014). We optimize the amplitude and dispersion parameters per channel simultaneously,

but otherwise tune the parameters independently, resulting in the three parameter scans seen

in figures and [6.15]
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Figure 6.14: Dispersion and amplitude optimization The randomized benchmarking decay
constant versus transmon drive amplitude for several different dispersion compensation values
(in % per MHz). The amplitude must be changed in parallel when the dispersion value is
adjusted, necessitating the 2D sweep.
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Figure 6.15: Delay optimization The delay between the transmon and cavity pulses is necessary
to compensate for the varying cables and components which conduct the signals from the AWG
to the sample. The delay is implemented via a linear phase shift in the Fourier domain, allowing
us to use effective delays smaller than the AWG time discretization of 2 ns.



Chapter 7

Venturing forth in frequency space:

sideband drives

Up to this point we have employed a model of a coupled transmon cavity system in the fully
“dispersive” regime. Under the assumption that the various modes of the system are sufficiently
detuned from one another, we can incorporate bilinear coupling terms (i.e. those which are only
second order in the ladder operators) to form a set of normal modes, and model the interactions
and nonlinearities as being diagonal in the photon number basis of these normal modes. This
derivation relied upon a critical assumption however: that the frequencies of the driving fields
would be constrained to a small window in the vicinity of the modes’ resonant frequencies. In
the experiments discussed in chapters[2 and [6] this was a valid assumption, by design. Even in
the general optimal control case, we considered only pulses which were produced by mixing a
narrow bandwidth (< 100 MHz) signal with a local oscillator centered on the cavity or transmon
resonant frequencies. This allowed us to assume that each pulse acted only via the a, af, o_
and o operators, in the rotating frame of the local oscillator.

While this is a useful simplifying condition, and as we have seen, allows for in principle
universal control of the system, there are powerful control techniques which are only accessible

via driving outside of these frequency ranges.

116
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7.1 Four-wave mixing: A cornucopia of terms

We begin by considering a single mode Hamiltonian (the multi-mode generalization is straight-
forward), involving three terms. The first gives the resonant frequency of the mode w,. The
second is a linear drive, with amplitude ¢, applied to that mode, rotating at some other frequency
wq. The last is “the rest” of the Hamiltonian, some general function of the mode’s ladder
operators.

H, =w,ala+e¢ (eiwdta + h.c.) +f (a, aT) (7.1)

The goal of the procedure is to eliminate the first two terms, and see how the final term is
transformed. We can begin by going into a frame rotating at frequency wy to eliminate the

time dependence of the second term (see appendix [A.3)):

H,; =Ad'a +¢ (a + aT) + f (e‘iwdta, ei‘“dtaT) , (7.2)

where A = w, — wq. Next we can go into a displaced frame with displacement —% (see

appendix [A.4)) to eliminate the second term entirely.

H;=Ad'a+ f (e_iwdt <a - Z) , el (aJr - Z)) (7.3)

Finally we can go into a second rotating frame to eliminate the first term.
H4 _ f (ae—iwat o ie—iwdt aTeiwat o eeiwdt) (7 4)
A ’ A '

This is our final form. We can summarize this result by saying that, in the interaction picture,
the ladder operators rotate at their resonant frequency, and the drive appears as a scalar term
added to the ladder operator each place it appears. This scalar term has magnitude inversely
proportional to the detuning from resonance, and itself rotates at the drive frequency.

Now we can apply this knowledge to the specific case of the Josephson junction Hamiltonian

to see how 4-wave mixing terms emerge. We take a model of several electromagnetic modes
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each of which has some coupling to a Josephson junction:

H=Hy+ H,, (7.5)

Hy = ! (of?) ! (76)

The superscript (0) indicates that these are the “bare” mode operators and resonant frequencies,

independent of the junction. The Josephson junction Hamiltonian is given by
H,; = wycos(P), (7.7)
Where @ is the total flux across the junction, in units of the reduced flux quantum ¢y =

276 .

This flux is constituted by a linear sum of the fluxes of each of the participating modes,

&= Zqﬁk 'a\” 1 hc. (7.8)

where the ¢ are participation factors corresponding to the flux induced across the junction
from the zero-point fluctuations of the corresponding mode k. Assuming the participations are
small, and ignoring the scalar part, the Josephson junction Hamiltonian can be expanded in
powers:

(7.9)

2 Pt Pb

ot e "
We note that the terms which are second order in the ladder operators, which come from both

Hy and Hjj, can be grouped together and written as

2
Lﬁ—ag%ff(ﬂmeﬁ@. (7.10)

for some matrixE] of coefficients X, and for a vector of ladder operators, defined as

@ = (af? - @ (@) - (a?)'): (7.11)

While X is a matrix, we write X in standard font rather than boldface to emphasize that it is not an operator
on Hilbert space
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The matrix of coefficients can be diagonalized, the effect of which is to produce a new set of
eigenmodes with ladder operators aj, (note no superscript) which are linear combinations of

the {a§-0)} and {(a®)(©}. The resulting Hamiltonian can be written

; ot b
H:Zk:wkakak+wJ TR (7.12)

® can be represented in the new basis as well as ® = >, ¢rar + h.c. where usually, but not
necessarily, we have ¢ =~ gzbg)).

If we add drives to this system, with amplitudes {2} and frequencies {wg}, we can
go through the process described before of going to a displaced rotating frame, eliminating
the drives and the detuning part >, wka,tak, and using the prescription from equation to

transform the remaining partE]

4
H— ﬂ (Z ¢k(akeiwkt + é‘keiwd,kt) + h.C.) 4+ .. (7.13)
4! k:

Here we have defined the unitless mode displacement amplitude &, = Q/(wr — wq). For
n modes there are (4"44'3) unique terms in the expansion of the fourth-order term, one corre-
sponding to every choice of 4 elements from the set {ay, alfk, &;}, with replacement. However,
the vast majority of these terms will be negligible, since they will rotate at a fast frequency.
Barring unintended collisions, only two types of terms will remain. The first is those which are
“diagonal” in that every ay, or &; is matched with a corresponding a' or &), in the term. These
produce anharmonicities ((a')2a?), dispersive shifts (afab'd), or Stark shifts (|¢|>a’a). The
second type is terms which we intentionally make resonant by the choice of our drive frequency.

Therefore, we have essentially the ability to pick Hamiltonian terms involving two or three
system excitations (with two or one pump excitations making up the energy difference and
bringing the total up to four) and bring them forth. These observations have been used

extensively in the field of quantum limited amplifiers (Vijay et al., 2009; Bergeal et al., [2010)).

More recently these processes have been used to create operations in high-Q cQED experiments.

2Here we assume there is one drive per mode, although it is possible to do the same treatment with multiple
drives per mode, although the notation and indexing becomes more cumbersome
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In the following sections, we will look at several examples of such processes that this method

enables.

7.2 Q-Switching for faster system reset

Long-lived storage cavities are obviously a boon for the fidelity of storage and manipulation
of quantum information. But at the same time it presents an annoyance to the experimenter.
Before we can perform an experiment, we must prepare the system in a known, low-entropy
state. While there are shortcuts which can be achieved through measurement, or by designing
protocols which allow multiple initial states, in general this is achieved by waiting a period
of time much longer than the system’s lifetime, allowing the system to thermalize with its
environment. As the lifetime becomes longer, this method becomes slower.

What we would like to do is be able to switch the decay rate of the system (and therefore
the quality factor @, hence Q-switch) from as slow as possible, during the experiment, to as
fast as reasonably possible, during the reset after the experiment. We can achieve this by
exploiting the fast decay rate of the readout mode. We engineer a swap interaction which
allows excitations to jump between the readout and the storage cavity, allowing the cavity to
effectively inherit some of the loss of the readout.

To do this, we introduce two pump tones, one at w.+ A and the other at wro + 4, for some
detuning value A (figure [7.1). This allows us to make the following Hamiltonian effectively
resonant:

H=yg (aTr + arT) (7.14)
We can determine g from the prefactors in equation [7.13

. Wy 2 QQCQT

Given a loss rate on the readout xrp, The effective loss rate of the storage cavity depends on
the relationship between xkro and g. When g > kro the excitation swaps rapidly back and

forth between the cavity and the readout mode, spending about half of its time, and therefore
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Figure 7.1: Four wave mixing protocol for Q-Switching The use of two pump photons
allows the conversion of readout photons in storage photons and vice-versa.
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Figure 7.2: Sequence for tuning up a Q-switch pump. After preparing some significant
number of photons in the cavity, we apply the Q-switch by driving both the cavity and readout
modes detuned from resonance. We then probe the probability of having zero photons with
a transmon selective pulse and transmon readout. Nominally the detuning of the two drives
should be the same, but because of Stark shifts, one should scan the frequency of one of the
drives in a small window to identify the ideal driving point.

experiencing about half of the effective decay rate. k.eff = Kro/2. In the opposite limit,
g < KRo the decay rate is counter-intuitively inversely proportional to KRro as ke eff ~ 49%/KRO

(Axline, 2018, §6.1.3). The optimum (fastest) decay rateE| is achieved with 2g = kRro.

7.3 Creating photons one at a time

While we showed in section how it was possible to create Fock states in the storage mode

via optimal control pulses and the dispersive interaction, a constructive approach is possible

3Decay rate is a bit of a misnomer, as the occupation of the readout mode is not exactly an exponential
decay. It has the form of a critical damping curve e /7 (a + tb) for some constants a and b.
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Figure 7.3: Four wave mixing protocol for photon preparation The use of a single pump
photons allows the conversion of two transmon photons into a single storage photons and
vice-versa.

using sidebands. In the same way that Q-switching allowed us to import the energy decay
properties of the readout to the storage cavity, a different sideband will allow us to import the
single-photon creation ability of the transmon to the storage cavity.

To do so, we will employ drives at frequencies wye + A and w.+ A to effect the Hamiltonian
ga'|g)e| 4+ h.c.. We note that this drive, acting for a time 3 Will take le,0) to exactly |g,1).
Therefore, by performing a 7 pulse, followed by a transmon-exchange pulse we can inject a
photon into the cavity. We can inject a second photon by performing a subsequent transmon

7 pulse and exchange operation. However, the second exchange operation must be of time

™

2v2¢g’
s

more photons are injected. To do |e,n) to |g,n + 1) takes time NG

as the exchange interaction has a Bosonic enhancement factor which speeds it up as

We can also do this operation in a faster and simpler way by using the |f) state. Using a

single drive of frequency wy = wy — we, we can activate the following Hamiltonian (figure[7.3)

H = g (af g\ f| +alf)g]) (7.16)

Since the rate g is proportional to the junction participation factors ¢ involved, using more
transmon excitations rather than cavity mode excitations can result in a faster operation for
a given mode displacememﬂ This method uses one additional transmon excitation (requiring

both ge and ef 7 pulses as preparation steps), but uses only a single pump tone.

“although generating that displacement may be harder if the needed frequency is very far from resonance
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Figure 7.4: Demonstration of deterministic photon preparation via sideband driving.
Here we see the results of preparing photon number states |0) through |4) via single-pump
sideband driving as described in equation [7.16] This qubit spectroscopy vs preparation number
shows that the prepared state is high fidelity. The main failure mechanism is the transmon
ending in the incorrect state, resulting in the slightly higher background for the higher photon
number states. No postselection was performed in this particular experiment.

7.4 Engineered dissipation

We saw in section how sidebands could enable the modification of dissipative properties by
turning on conversion processes to modes with large native dissipation. In section [7.3| we saw
how sidebands could be used to address inherently multi-photon processes, such as creating
or removing two transmon excitations at a time. These two processes can be combined to
allow the creation of multi-photon dissipation, an extremely interesting concept with surprising
application. Most interestingly, we can drive a pump at frequency 2w. — wro to convert two
photons in the storage cavity into a single photon in the readout cavity. The reverse process
is supressed in the limit that the forward rate gopn is much smaller than the readout loss
rate kro. This was demonstrated in an experiment by |Leghtas et al| (2015)) as part of the
autonomous cat code stabilization protocol, discussed previously in section 3.6.2l Multiple
multi-photon dissipation processes can be concatenated together to create even higher-order
effective processes, as shown in the 4-photon dissipation experiment by Mundhada et al.| (2018)).

In addition to multi-photon processes, it is possible to create engineered transmon dissipa-
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tion processes. For instance, one can drive a process at wey + A and wro — AE]wiII enable a
process | f)e| 7T 4 h.c.. This effectively creates a dissipation from |e) to |f). This can create
a type of single error channel qubit in the {|g),|f)} subspace, as to first order in the ratio of

the pumping rate to the transmon lifetime, decay is converted to dephasing.

®note the change in sign, which changes it from conversion to two-mode squeezing



Chapter 8

A Fault-Tolerant Parity Measurement

One of the crowning achievements of quantum information theory is the theory of fault-tolerance
(DiVincenzo and Shor, 1996; |Preskill, (1997)). While the error correcting codes put forward by
Shor (1995) and others showed the feasibility of long-term storage of quantum information, it
was the theory of fault-tolerance which made possible the prospect of actually doing computa-
tion. In going from storage to computation one must begin to think of how errors propagate
through the computing circuits. While an error correcting code might be designed to deal with
a certain class of errors (e.g. single qubit errors), the action of doing computation can transform
the errors to a new, larger, potentially uncorrectable set. The prototypical example of this is

the transformation of one bit flip into two by the action of a CNOT gate:

(8.1)

b—:—«

—b— 4

If we are dealing with a code which corrects only single qubit errors, then the sudden appearance
of two errors will be uncorrectable, and this problem generalizes to higher-order codes. The
key to avoiding this problem is to design gates which control the spread of errors so that errors
remain correctable. One way of achieving this task is to perform gates “transversally” (Bacon|
2006). This means that you do the gate without performing entangling gates within encoded

qubits. For instance, in the Steane code, one can perform a logical CNOT on a pair of encoded
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In this scheme, one bit flip error in the target logical does become two errors, but each of these
resides in different logical qubits. It can thus be corrected by applying the error correction
procedure to both logical qubits. A fully fault-tolerant system requires all of the components
responsible for operating an error corrected quantum computer to be made fault tolerant (FT).
This includes a universal logical gate set, as well as state preparations, logical measurements,
error syndrome measurements, and error correction. It was shown by |Aharonov and Ben-Or
(1997) that if the error rate per component at the physical level is lower than a threshold value,
then the effective error at the logical level is lower, and thus code concatenation provides a
path toward qubits with arbitrarily low error rates. While in the first protocols considered this
threshold was as low as 1079, theoretical advances have produced codes with thresholds as
high as a few percent (Fowler et al., 2012, Campbell et al 2017).

In this chapter we will discuss a novel approach to developing fault tolerance which is
realizable with orders of magnitude fewer components, building up to the results shown in
Rosenblum et al.|(2018b). We will start in section by discussing an approach to creating
fault-tolerance at the Hamiltonian level, by engineering symmetries into our interaction with
knowledge of the structure of the dominant error mechanisms. Next, in section we will
discuss a particular mechanism for engineering interactions, using sideband drives which were
discussed in chapter [l This mechanism will allow us fine grained control of the dispersive

interaction Hamiltonian. Next, in section we can show how this technique can reduce the
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propagation of errors in an idling system by temporarily decoupling the transmon and cavity,
and showing that the driven sideband method is compatible with high-coherence operation. We
will then go beyond idling, and construct an actually useful operation, the parity measurement,
in a protected, fault-tolerant way. In section we perform experiments which analyze the
cavity behavior as a function of transmon state, which allows us to separate out the different
error mechanisms and their respective effects on the cavity. In [8.6) we summarize these results
to calculate the net performance enhancement derived from the fault-tolerance modifications,

and conclude by analyzing the dominant residual sources of error.

8.1 Error Transparency: A paradigm for hardware-efficient fault-

tolerance

FT protocols can have an enormous overhead to implement, and for this reason, we should seek
out shortcuts wherever we can. Much like the cat code, which took advantage of the structure
of the errors to produce a parsimonious encoding, one can look for approaches which reach the
goal of preventing the propagation of errors and the development of uncorrected errors using
the fewest additional complications.

For this purpose, we turn to the concept of error transparency of Kapit (2017). In this
approach, the physical Hamiltonian implementing a gate is carefully tailored such that it com-
mutes with the correctable errors when acting on the logical state manifold, at all times during
the gate operatiorﬂ. In a mathematical language, if we can have some errors { Ay} that we
anticipate occurring and can correct for, we seek to find an interaction Hamiltonian H;,t which
implements the gate such that

VEk : [Hint>Ak] =0 (82)

This condition implies that we avoid the type of error propagation exhibited in equation [8 It
in essence enforces a symmetry property of the interaction, which renders it invariant under

the action of the errors. Reaching this type of condition, however, requires that the systems

Error transparency (ET) can be thought of as the “computing” equivalent of the concept of decoherence
free subspaces (DFS) (Lidar et al} |1998)). In some sense the analogy is (FT:QEC)::(ET:DFS)
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have many internal degrees of freedom, and that the errors have structure, so that not all
transitions are allowed. We need this complexity in order to maintain the properties of the
interaction which give us the desired operation, while simultaneously zeroing the components
of the interaction which would not commute with the errors. This type of interaction is unlikely
to present itself as naturally occurring, and may require us to perform some type of interaction
engineering.

How does this apply to our chosen system of cat-encoded cavity qubits coupled to transmon
ancillae? As we have developed in section [2.3] and seen applied in chapter [6] our workhorse
interaction is the dispersive interaction, Hix = ya'ab’d. There are two primary types of
errors that we need consider when analyzing error propagation through this interaction: energy
decay (a or b) and pure dephasing (afa or b'b). The latter errors are diagonal, and therefore
commute with the interaction. We should be careful to say now that this does not in itself
mean that dephasing errors are harmless, but rather that the application of this interaction

Hamiltonian does not exacerbate the harm. Decay events are another story.

[aTabTb, a} = a(b'b) (8.3)

[aTabTb, b} = b(a'a) (8.4)

We can interpret these equations as telling us that the action of the interaction Hamiltonian
is to transform decay of one mode to decay of that mode plus dephasing of the other mode.
This can be seen in a more intuitive way as well. Consider a transmon in the excited state,
interacting with a cavity via this interaction for a time At which is long compared with 1/y.
The cavity rotates at rate x (in the interaction picture) so long as the transmon is in the excited
state. If at some point, say time fgecay, during this interaction, the transmon decays to the
ground state, the cavity evolution will stop. The cavity will therefore acquire a phase xtdecay-
The uncertainty we have in the jump time is proportional to At. Therefore the uncertainty in
the acquired phase is YAt > 1. A large uncertain acquired phase is exactly a pure dephasing
event.

From this analysis we see that the dispersive interaction is transparent with respect to pure



8.2. CANCELLING x: THE SIMPLEST USEFUL SYMMETRY 129

dephasing, but not with respect to energy decay of the ancillary transmon. To reach full (or
at least fully first order) error transparency, we will have to engineer our interaction. The next
two sections will develop and demonstrate our preferred method of engineering the dispersive

shift. We will return to error transparency in section [8.4]

8.2 Cancelling x: The simplest useful symmetry

Our tools for modifying our x interaction spring from the sideband drives which were discussed
in chapter [/l These drives allow us to implement terms outside of the native dispersive shift.
However, its not immediately clear how we can realize a driven dispersive shift with these
tools. We can find a clue by considering the origin of the native dispersive shift in the Jaynes-
Cummings model (equation . In this model, the combination of an excitation exchange
term g(aTo; +h.c.) and a detuning term Aa'a, in the regime of A > g, results in a
dispersive shift.

We can create a similar effect using sideband drives. First, note that we can create exactly
the exchange term, g (aTa, + h.c.), this time in the rotating frame, using a pair of drives each
equally detuned from either the cavity and transmon resonance frequency, say at wgye — A and
we — A. Such a pair of drives enables the four-wave mixing process which converts photons
of one frequency to photons of another frequency. Because this process occurs in the rotating
frame, a photon is actually exchanged from one mode to the other as a function of the time
the exchange term is applied. However by applying a detuning to one of the drives, we end up
with exactly the detuned Jaynes-Cummings Hamiltonian which gave the dispersive interaction
in the first place. We can look at this process slightly more rigorously as follows: In the rotating

frame, after discarding quickly oscillating terms, the Hamiltonian can be written as

H = afax" |e)e| + ¢ (aoureim + h.c.) (8.5)

= Hy + Hie" + H_ e8¢ (8.6)

We can use a Floquet theory analysis (see appendix [A.8]) which treats general periodic Hamilto-

nians of form (8.6 and produces effective time-independent Hamiltonians, under the assumption
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Figure 8.1: Sideband drive indicated on cavity-ancilla level diagram. An applied microwave
tone (double red arrows) drives the |e,n) <+ |h,n — 1) transition frequency with Rabi rate y/n{2
and detuning A. The resulting Stark shift changes the effective x. by an amount Q2/4A.

that |Hy|,|Hx1| < A. The generic form is then, to first order in %EI,

1
Heff: H0+ E[HI’H_I] (87)
2
— 9 (gt
= Hy+ A [a a_,acnr} (8.8)
g2
= Hy + ZaTaaz (8.9)

This justifies our intuition from before. We see that, (at least in the case that A is much larger
than ), we can simply add the driven dispersive interaction to the native one to obtain a net
interaction.

We can simplify and strengthen this approach by using a different, but related, sideband
process. Instead of converting one cavity photon into one transmon photon using two pump
photons, we can convert one cavity photon into two transmon photons using a single pump
photon (figure[8.1)). For reasons that will become apparent later, we choose to address |e) <+ |h)
instead of |g) <> |f) as our two-excitation transition. This level of transition selectivity is
possible and necessary because the anharmonicity a which separates the sideband transitions
is much larger than the sideband exchange rate g. The derived exchange term from this new

sideband drive replaces o_ = |g)e| with |e)}(h|. Now if we apply a detuning to this new drive,

2Since it is not important we have omitted a Stark shift term which also falls out of the commutator.
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the derived interaction replaces o, = |e)e| — |g)g| with |h)h| — |e)e|. This results in a new

driven interaction Hamiltonian

(1h)h] = le)el) (8.10)

>

Hd riven —

which can be added to the native interaction to form the total,

Hint = H|(not) + Hdriven (811)
2 2

~ala (<x§0> - i) leXel + x5 17X 1+ <x§?’ + QA) rh><h\) . (8.12)

= ala (e [e)el + X7 LF)XF1+ xn )] (8.13)

From this formula for the interaction, there are two interesting points we will explore. The first
is the case of

92
W0+ % =0, (8.14)

where the cavity does not distinguish between |g) and |e). With this tool we will be able to
decouple the cavity from transmon thermal population, and improve its idling coherence time

(section [8.3)). In the next case, we can choose
0, 9 (0)

Here the cavity does not distinguish between |e) and |f), and will be protected against decay
from |f). We call these cases x.4-cancelling and xf.-cancelling, respectively, where we intro-
duce the notation X4 = xa — X»- Note that both x-cancelling points are possible (albeit
with different drives) because the sign of the induced dispersive shift can change with the sign
of the detuning from sideband resonance. We can see an implementation of both of these
cases in figure [8.2l We can measure this change in x by applying the drive for varying side-
band detunings, varying the number of photons in the cavity, and characterizing the transmon
frequency, via standard transmon spectroscopy methods. By carefully inspecting the photon

number dependence of the transmon frequency, we find we can completely eliminate the linear
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Figure 8.2: Cancelling the dispersive interaction with a sideband drive Spectroscopy of the
lg) to |e) (left) and |e) to |f) (right) transitions performed with a varying number of photons
in the cavity. Xeg (Xfe), as well as higher order nonlinear dispersive shifts can be extracted from
the spread in transition frequencies with respect to photon number. The indicated crossing
points show where x4 (Xfe) is approximately zero, as emphasized by the blue arrows in the
insets depicting the effective driven level diagram. The dotted lines refer to the transition
frequencies when no sideband drive is applied.

dispersive shift, while leaving a residual 5 kHz nonlinear dispersive shift (figure [8.3)).

8.2.1 Choosing drive parameters

We note that there are two parameters available to us in order to satisfy either equation[8.14]or[8.15]
Assuming the validity of the model, for any value of pump strength (g) we can find a detuning
(A) which yields the appropriate x. How can we break this degeneracy in practice? The first
obvious concern is the validity of the dispersive approximation, which relies on £ being small.
The next lowest order term is a driven ’ of order Z—t, smaller by a factor of 1—22 = %. There-
fore, to minimize this concern, we choose A large, and therefore large g. There are additional
reasons to prefer this direction. Firstly, we see decreased hybridization (which is again of order
XS])/A) between the |e) and |h) states. This hybridization allows for the possibility of unde-
sired transitions, say from | f) to |h) via T/® processes. Additionally, in order to avoid spurious
transitions from |e) to |h) or vice versa, the pump must be turned on adiabatically, a process
that becomes slower as the detuning is reduced.

A different set of considerations keeps us from putting the drive power (and therefore
detuning) at whatever maximum is supported by the control electronics. Firstly, we have to

balance the gain obtained from the x cancellation process with the cost of adding a heat load
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Figure 8.3: Measuring the nonlinear component of the driven dispersive shift. We
prepare photon number states |0) through |4), turn on the pump to the detuning used for x.s
cancellation, and perform transmon ef spectroscopy as in figure[8.2] From each trace we extract
the detuning from bare resonance. We fit these frequencies to a quadratic model, from which
we can infer the non-linear frequency shift, X;f ~ b kHz. This is largely a driven effect, resulting
from the higher order terms in the perturbative Floquet analysis derived in appendix @
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Figure 8.4: Characterizing x-cancelling pump. Chevron pattern observed in the population
of |h,0) when preparing |e,1) and switching on the sideband drive at a detuning A from
resonance for a varying amount of time.
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to system in the form of a strong drive. If we heat up components in the transmission lines, or
even the base temperature of the fridge, we will adversely affect the performance of the system.
Even with no added line noise or heat load, however, there may still be issues with high drive
levels. For instance, we can see how a large displacement can combine with native transmon

dephasing to produce heating:

Y6 D[bTb] — 74 D[(bT + &) (b + £¥)] (8.16)

~ 75 D[b] + €7, D[b'] + D[b'D] (8.17)

In addition, higher drive powers enables higher order transitions between levels. The number of
accessible transitions becomes denser and denser in frequency space as drive power increases,
until it is no longer an unlikely coincidence to drive spurious transitions, but rather an inevitabil-
ity. For a more rigorous exploration of this and other issues, see Sank et al.| (2016); Zhang

et al.[(2019).

8.3 Extending the cavity lifetime by protecting it from the trans-

mon

Dispersive shifts, when combined with thermal population leads to dephasing. The typical
setting for this statement is that of a two level qubit and a dispersively coupled readout cavity
(Gambetta et al., 2006). The exact formula for how much dephasing to expect from a coupled
mode, with dispersive shift x, decay rate I', and equilibrium population 7y, was calculated in

Rigetti et al.| (2012)).

1 T L4+ix\?  4dixnm
— =-R 1
T, 2 e(\/< T > T (8.18)

- gy

~ 8.19
F2 +X2 ( )

ﬁthr X >> F
~ (8.20)

i’ v« T
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These formulae apply equally to the case of a readout mode inducing dephasing in a transmon
as to a transmon inducing dephasing in a storage cavity. In this latter case, we are almost
always operating in the photon number resolved regime, allowing us to take the xy > I' limit of
equation This quantity ny, ' is (for gy, << 1) precisely the rate of jumps from the ground
state to the excited state. This has a simple interpretation: In the photon number resolved
limit, any jump from the ground state to the excited state results in dephasing of the coupled
cavity. Removing the transmon from our picture, and viewing only the cavity, it appears that
we have a new error channel 7y, I'D[a‘a]. This is an error which is not corrected by the cat
code, and therefore can be a limiting factor if the rate is at all comparable to the rate of cavity
single-photon loss. Indeed, this was one of the issues which limited performance in the cat code
demonstration by [Ofek et al| (2016) |

We could avoid this problem if we could decouple the cavity from the transmon, for instance
by setting x = 0. We need non-zero dispersive shift at certain times, when we are deliberately
interacting the two systems to achieve a goal such as performing a parity measurement, but
during other times, say idling between parity measurements, decoupling would be advantageous.
We can apply the result shown in figure [8.2) which allows us to do just that. What remains to
show is that this actually helps. In order to do this, we zoom in on the region of frequency space
around the x.4-cancelling point. At each point here, in addition to measuring x4, we measure
the cavity coherence time T, i.e. the characteristic time over which a superposition of |0) and
|1) Fock state loses coherence. In figure we see the improvement in the cavity coherence
time in the region where |x¢4| < T' = 1/Tff. We note that the coherence time breaks down
into two contributions, energy decay and pure dephasing as 1/75 = 1/(217) +1/T. Removing
the dephasing component via x.4-cancelling brings us close to the decay imposed limit of 277.
In fact at the optimal point, the pure dephasing time was increased from 779 /iy, &~ 1.1 ms to
14 ms. This demonstration proves two things. Firstly the thermal occupation of the transmon

was indeed was limiting the cavity coherence and this limit can be lifted by turning off the

30ne prospective method for addressing the problem of dephasing in the cat code is to employ the driven-
dissipative autonomous stabilization protocols discussed in section This method protects against pure,
white noise dephasing quite well, but against thermal excitation induced dephasing, we require that the stabi-
lization rate I'opn is large not only compared with 1/Ty, but with x as well, which can be much larger. This
effect limited the effectiveness of the coherent state stabilization by |Leghtas et al.| (2015)).
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Figure 8.5: Improving the cavity coherence time by decoupling the cavity from thermal
ancilla excitations. While a bare cavity is nearly completely limited by single photon loss, a
cavity dispersively coupled to an ancilla experiences dephasing because of spontaneous ancilla
excitations. (A) The measured dispersive interaction (blue markers) varies as a function of
sideband drive detuning from resonance A as x., = ng + Q2 /4A (solid orange line). (B)
Cavity coherence times as a function of the sideband drive frequency obtained from cavity
Ramsey experiments. In the absence of quantum error correction, the cavity coherence time
is limited to 27F ~ 2.2 ms (red dot-dashed line). Without sideband drive, thermal ancilla
excitations limit the cavity coherence to about 700 us (dotted black line). Protection against
these excitations starts occurring when |xq4| < I'/27 (dashed grey lines), where I' = 1/T77 is
the ancilla |e) to |g) decay rate. This dephasing source is almost entirely removed for x4, = 0,
resulting in a coherence time 75 (xey = 0) = 1.9 ms (solid grey line), close to the 2 ms limit set
by second-order thermal excitation from |e) to |f) (dashed green line). The analytical behavior
of the cavity coherence (orange line, equation closely matches the observed values.
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dispersive interaction. Second, and more critical, is that the negative effects of applying a
strong driving tone continuously do not overwhelm the benefits. Other coherence properties of
the system seem to be largely preserved in the presence of the y-cancelling drive. One major
reason for this is the fact that the drive is only “active” (in the sense of being close to resonance
with any accessible transition) when the transmon is in the excited state |e). Since this is only
the case ny, ~ 3% of the time, some of the ill effects of the drive, (e.g. hybridization with |h))
are “second order” errors, in the sense of occurring with a rate which is the product of two

small numbers.

8.4 Parity measurement using |f)

We now return to the task of implementing fault-tolerance via error transparency. We note
that, when dealing with the states in the transmon, we have a separation of scales between

the rates associated with various decoherence processes, with decay (|g)e|, |e)f], etcE]) and

dephasing (|g)g|, |e)e|, etc.) occurring at a rate of tens to hundreds of microseconds, and

excitation rates (|e)(g

, |f)Xel|, etc) being orders of magnitude slower. Other transition rates,
say those involving a direct two excitation loss such as |g)(f| appear to be zero within the error
of measurement, a fact which can be justified by symmetry arguments leading to selection
rules. This does not mean that two-excitation transitions do not happen, but rather that such
transitions are mediated by the single-excitation processes, e.g. |e)(f| followed by |g)e|, and
are thus suppressed over timescales short compared to the single-excitation transition rate.
With these facts in mind, we can consider, over short time periods, what are the dominant
transitions which occur starting from the within the subspace spanned by |g) and |f). These
are decay |e)(f| and dephasing \f)(f”ﬂ If these are our relevant errors, how can we satisfy

the error transparency condition (equation [8.2))7 Using the form of the interaction given by

*Here we associate processes with the operator found in the corresponding Lindblad dissipator
®Note either a |gXg| or a | f)}f| dissipator produce equivalent results when constrained to the two dimensional
subspace.
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equation [8.13}

[Hint, [ FXf]] =0 (8.21)

[Hine, le)(f1] = (xe — xy) a'ale) ] (8.22)

We have seen in figure that we can indeed make x. = X under the appropriate drive
frequency (a detuning with the opposite sign of that used in section . Moreover, we can do
this without giving up our productive resource for entangling with the cavity, which within the
{lg) | f)} subspace is simply X, the difference between the cavity frequency in the |g) and |f)
states. This is in a sense a fault tolerant dispersive interaction.

We can employ this dispersive interaction towards nearly all of the uses of this interaction
explored in chapter 2] Specifically, here, we will address the creation of a fault-tolerant version
of the parity measurement discussed in section The required protocol is a straightforward
modification of the traditional parity measurement. Instead of simply preparing a superposi-
tion |g) + |e), we additionally perform a 7 pulse on the |e) <+ |f) transition, producing the
superposition |g) + | f). We allow this state to evolve for a time t = 7/ s such that the parity
is mapped to the sign of the superposition. The preparation sequence is then reversed, which
maps even parity to |g) and odd parity to the |e).

In order to make this fault tolerant, in the sense of preventing cavity dephasing arising
from decay from |f) to |e), we apply a drive at the x-cancelling point during this wait time.
In figure we see a diagram indicating how one can visualize the fact that the interaction

commutes with the error, and therefore produces no backaction on the cavity.

8.5 Postselecting on errors: ldentifying transmon-induced cavity
dephasing
In this protocol the outcome of the parity measurement depends on what, if any, error event

occurs in the transmon. If no errors occur, the transmon will be in |g) for even parity, and

le) for odd parity. If a dephasing event occurs, these outcomes will be reversed, with |e) for
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Figure 8.6: Schematic circuit diagram of a FT parity measurement. Circuit schematic
showing the effect of ancilla energy relaxation on a Schrédinger cat state (depicted by its Wigner
tomogram, left) during a parity map in both the traditional (A) and FT (B) schemes. In these
circuit diagrams the lines within a bundle represent the individual states of the associated mode.
Cy = eifa’a represents a cavity phase shift of angle 6 conditional on the state of the ancilla.
(A) In the non-FT implementation, an error occurring at time ¢ € (0,7/x) results in a cavity
phase shift of xt. This completely dephases the cavity state when averaged over ¢. (B) In the
FT implementation, an error occurring at time t is equivalent to the same error occurring at
the end of the parity map, since the error commutes with the interaction.

even parity and |g) for odd parity. If a decay event occurs, the final state will be |f). If we

can ensure that the cavity is to a high degree of certainty in an even parity state, then the

states |g), |e), |f) cleanly map to the trajectories, of no-error, dephasing error, and decay error,
respectively. This is in contrast with the original protocol for the parity measurement where
the two outcomes cannot separate the three possible error types. In this case the decay error
is folded into both the |g) and |e) outcomes.

We employ three different parity measurement protocols in order to demonstrate the en-

hancement in cavity coherence obtained from .-cancelling:
= II,.: The traditional parity measurement from section [2.3.1]
» II,;: The parity measurement using the |g) and |f) states

= IlIpt: The fault-tolerant parity measurement, employing the xf.-cancelling drive during

the wait time.

Circuit schematics corresponding to each of these types of protocols can be found on the left

half of figure [8.8l There are two important metrics when it comes to characterizing these
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Figure 8.7: Circuit protocol for characterizing the parity syndrome measurement We
start by initializing the cavity in the cat state |C;f) . After every parity map II (indicated in
blue), we perform a three-outcome ancilla readout, and reset the ancilla using m-pulses (R;).
We can repeat the parity map and reset procedures N times before moving on to do cavity
tomography via Wigner measurement. For the results in figure [8.8, we have N = 1, while in
figure we have N varying along the x axis. We do two additional parity measurements
before the final Wigner measurement in order to ensure that the cavity parity is even, using the
IL,; protocol.

protocols. First, we are concerned with the assignment fidelity, which is the probability of cor-
rectly learning the cavity parity. Second, we are concerned with non-fault-tolerance, which here
manifests as a probability of cavity dephasing. In order to compare these different parity mea-
surement protocols, and extract both the assignment fidelity and the probability of dephasing,
we employ the sequence depicted in figure We perform Wigner tomography (section m
appendix which is postselected on the outcome of the measurement. The results can be
seen in figure To begin with, we can determine the parity measurement fidelity from the
outcome probabilities. In the case of Il,., the determination is quite simply the probability of
measuring |g), which is approximately 84%, as this is the correct outcome for the even parity
cat state. In the case of three outcomes, however, we must treat the case of measuring |f)
not as a complete failure. This outcome is rather a heralded failure. Therefore instead of

abandoning hope of learning the parity correctly, we can try again. The probability of success

in this repeated protocol is then py + pepy +png 4+ .= 1526_ For IIy this is about 89%,
and for IlgT it is about 86%.

While we see a modest degradation of the transmon coherence properties under the influence
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Figure 8.8: Cavity Wigner functions, postselected on parity measurement outcomes. The

outcome (shown in the bottom right of each Wigner plot) informs us about ancilla behavior
The prevalence of this outcome is indicated in the top
right. For each Wigner tomogram, a state fidelity F (shown in the top left) is given, each with
statistical error smaller than 0.01. The fidelity of the initial cat state is 0.95 due to imperfections
in state preparation and tomography. For IT,. (B) and IL,s (C), ancilla relaxation results in a
dephased cavity state, whereas for ITgt (D) the logical qubit is preserved.

during the parity mapping (top).
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Figure 8.9: Comparing protocols with repeated parity measurements. Fidelity vs. number
of measurements (V) for the three types of parity measurement. The dotted lines are simu-
lated fidelities extracted from Monte-Carlo trajectories (section8.6)), and the dashed lines are
exponential fits to the data F(N) = Ae=V/No 4 ¢ with A ~ 0.56 and ¢ ~ 0.37 for all curves.

of the xf-cancelling drive leading to a slight reduction in assignment fidelity, we see a large
improvement in terms of the decay-induced cavity dephasing. Looking at the Wigner functions
in figure[8.8] we can visually confirm the improvement in cavity coherence. While the component
corresponding to either no error or transmon dephasing is coherent regardless (recall that the
dephasing event commutes with the interaction), the coherence of the decay component is
severely degraded unless the .-cancelling pump is applied.

In order to quantitatively extract the average coherence reduction per parity measurement,
we repeatedly measure the parity, and estimate the state fidelity as a function of the number
of measurements applied (figure . The fidelity exponentially approaches the fidelity of a
completely dephased cat state{ﬂ, with different number constants for each of the protocols which
were considered.

With an exponential fit, we can assign a characteristic number of measurements (Np) in
which the cavity fidelity decays. At this point, we can quantify the improvement offered by
the FT protocol. We see that Ny(Ilzs)/No(IIze) = 2.6 £ 0.2, showing that even without

sideband drive, the IL,; protocol offers some advantages compared to ILg.. The first reason

8The fidelity would deviate from this in the long time limit as the average photon number drops to zero.
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is that the probability of relaxation is lower for Il since the relaxation time of |f) (24 us)
is nearly equal to that of |e) (26 us), while the parity measurement time of ILy¢ (as well as
ITrr) is less than half that of II,. The second reason is that the cavity is less dephased
given that an ancilla relaxation event occurred, since the cavity angle is distributed between
0 and wx?e/x})g = 0.6m As evident from the residual coherence after a relaxation event in
figure ) The FT implementation improves on II,; by a factor of 2.0 & 0.1, resulting in a
total fault-tolerance gain of No(ITg)/No(ILge) = 5.1 £0.3.

We can compare the observed cavity dephasing rates with predictions for residual uncor-
rected errors, the largest of which are thermal excitation during the parity map and decay during
readout. Monte-Carlo simulations (see following section) of how the cavity phase distribution
is affected by these factors produce fidelity decay curves which are in good agreement with the
observed results. The agreement is best in the case of the non-FT measurements, where cavity
dephasing is dominated by a single well-understood mechanism, namely, ancilla decay during
the parity map. The simulation underestimates the decay in the FT case, indicating that there
are additional mechanisms for dephasing which are not captured in our model. Some of these

mechanisms may be explained by ancilla decoherence induced by the strong sideband drive.

8.6 Performance analysis

How should we interpret these results? To start, we can compare the measured performance
to our predictions based on the model provided by the decoherence parameters, and other
known sources of uncorrected error. As we can see in table[8.I] there are three main categories
of failure: unprotected transitions during the parity map, such as heating or double decay,
unprotected transitions during the transmon readout, and readout assignment errors. We also
see that, in this parameter regime, at least for ILgT none of the error sources are truly dominant
over the others. Heating from |f) to |h) is the largest predicted issue, but double decay, and
decay during the readout, are all equivalently important. However, these issues do add up to
a substantial error rate. However, this predicted aggregate dephasing probability (1.36%) is

smaller than the corrected component of decay during the parity map (2.84%). If we compare
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Failure mode Probability of 5 fto, 1] Dephasing per  Probability
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s | le) = lg) P;%F;O =0.58%  Xge [0,tro] 42% 0.25%
E 1 = e RO —042%  Xge [0,tro]  T2% 0.3%
1
:c)' Assign |g) as |e) 0.04% Xge [trO,tro]  100% 0.04%
E | Assign [e) as [g) 0.01% Xge [trostro]  100% 0.01%
@ | Assign |e) as |f) 0.02% Xef [tro,tro]  100% 0.02%
£ | Assign |f) as le) 0.01% Xef [tro.tro]  100% 0.01%
Total error probability (IIgt) 1.36%
Total error probability (II,) 4.20%

Table 8.1: Error budget for FT parity measurement. In these formulae tmap = 7/X g =
2.1 us is the time required to perform the parity mapping, tro = 1.2 us is the time required
to perform the readout of the ancilla. {pg,pe,pr} ~ {0.8,0.12,0.08} are the probabilities
of ending the protocol in g,e, f, respectively. The probability of ancilla assignment error is
estimated from the overlap of the Gaussian distributions in the histograms of the readout
outcomes, as well as the prior probability of measuring a given state. Dephasing per occurrence

is calculated from f(dx, to,t1) as defined in

the dephasing probabilities to 1/No(ILy) ~ 4.78% and 1/No(IIgt) =~ 2.45%, it seems that
there is some unaccounted for contribution to the error of the ITgt protocol.

In order to simulate the fidelity of the cavity state after a sequence of parity measure-
ments more accurately, we can employ a Monte Carlo approach to sample from the ultimate
distribution of cavity phases. This produces the dotted lines in figure [8.9] We construct a
Monte Carlo model that takes into account the errors listed in table [8.Il Each of the k errors
has a probability of occurrence (p1,...,pr), a change in cavity frequency (5X(1), e ,5X(k)),
and a range of times for which this shift is active ([t(()l),tgl)], s ((]k),tgk)]). We simulate the
cavity's trajectory over N parity measurements by sampling the number of each event from
the multinomial distribution nq,...,n; ~ Multinomial(N, p1,...,px). Then, for each event,
we sample the change in cavity phase from a uniform distribution associated with that event

i ~ Unif(éx(i)t(()i),6X(i)t§i)). Finally, we sum these phases 6 = le Z?;l 6; j, and com-
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2
pute the final fidelity ’<C§‘C;w> . We repeat this procedure 10,000 times and compute

an average fidelity as a function of N. While the Monte-Carlo simulation should be the most
accurate method of predicting the fidelity decay curve, we would also like to have a mechanism
for assessing the relative importance of each error channel in determining the final dephasing
rate. To do so, we first calculate an effective “dephasing per occurrence” for each event, which
is a number between 0 and 1 indicating the degree of dephasing induced by the error. The
dephasing probability is then the product of the probability of occurrence and dephasing per

occurrence (see table [8.1]). We compute the infidelity f per occurrence as follows:

ot =1 [Marl(ct g (829
0
—1— /\/'Q(til—to) /,: dt ‘<Oz’aeiﬁxt> N <a‘_aei5xt>‘2 (8.24)
4 t1 2 . 2 . 2
=1- m /to dt ‘e—a (1+exp(—idxt)) +e @ (1—exp(—z§xt))‘ (8.25)

Where N = 2 (1 + e_2|a|2) is a normalization factor. The effective dephasing per occurrence

can be found by comparing the fidelity to the fidelity of the completely dephased state:

F(8x,to, t1) = min {1, f(J;g’B’g’;r%)X)} (8.26)

The sampling results produce very good agreement for the I, and I, cases, while also
similarly modestly underestimating the error in the Ilgt case.

In summary, we have demonstrated the fault-tolerance of the parity measurement, in the
sense of reducing the impact of transmon energy decay on the cavity phase coherence. We
should now return to our original goal of evaluating how this will effect the performance of cat
code error correction, in the style of the experiments shown by Ofek et al.|(2016). Unfortunately,
with the sample used in this demonstration, we do not have the capability of applying the parity
measurement to improve the cat code lifetime substantially. This is a result of the very low x xT5
product which sets the assignment fidelity of the parity measurement. In the complete absence
of any sort of non-fault-tolerance, even very low assignment fidelities are acceptable, because

one can simply repeat the measurement until a sufficient confidence is established. However,
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in this case, we would require about 5 parity measurements to have 99% assignment certainty,
at which point the five-fold reduction in non-fault-tolerance from the improved protocol is
cancelled.

In order to successfully apply this technique in the context of error correction we have
several improvements to seek out. First we should use a sample with state-of-the art coherence
times and thermal populations, as there is nothing intrinsic about our setup which makes this
particularly difficult. Second, we should increase the dispersive shift x so the parity measurement
can be performed faster. Implementing this requires being able to cancel larger values of Y,
which could be aided by ongoing efforts to reduce the negative effects of strong pumps. Finally,
we should make the readout faster, and more ideal. The cavity is completely exposed to qubit
transitions during the readout, and if we cannot find a way to decouple the storage and qubit
during this time, the best we can do is to make the readout as fast as possible. Order of
magnitude improvements in this area are possible (Heinsoo et al., 2018) and could significantly

reduce the residual non-fault-tolerance of the protocol.



Chapter 9

Fault-tolerant SNAP

In chapter [8] we saw how we could construct an implementation of the photon number parity
measurement, an essential component of cavity-encoded error correction, in a manner which was
fault-tolerant with respect to transmon decoherence. While this is one essential component,
in order to make progress towards a fully fault-tolerant system, we must implement every
component in a protected way. In this chapter, we will see how our previous approach can be
extended to a different task: manipulating the cavity state. While we saw how cavity gates
could be implemented in chapter [6] these implementations left a lot to be desired. While
relatively high fidelity, these operations were limited by both transmon decay and dephasing
processes. Additionally, these operations would not preserve the structure of cavity errors, i.e.
cavity photon loss during the pulse would not be correctable via parity measurement, as it
would be if such an error had occurred during an idling period.

If we compare the SNAP operation and the parity measurement, there are many similarities.
Both rely on the dispersive shift x acting over a period of time, and both involve direct driving
of the transmon around its resonance frequency with a bandwidth set by ny. The major
difference is the fact that the transmon drive in the SNAP pulse is more or less continuously
engaged. This distinction complicates the simple picture of error transparency (section
which gave us fault tolerance before. However, a more subtle set of algebraic criteria can show
how we can still get fault-tolerance in SNAP (Ma and Jiang, lin preparation). In practice we

can largely proceed by analogy with the FT parity protocol: we will replace all usages of the

147
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excited state |e) with the excited state |f), and during the y evolution we will drive the system
so that x. = xy. We will measure the transmon to determine whether any decoherence events
occurred, and to determine if the operation succeeded. There are two large questions to be
addressed, one theoretical, and one practical. Firstly, we must be much more careful about how
transmon dephasing acts on our system, since it will occur during periods where both x and a
transmon drive are present. Secondly, the SNAP protocol relies on a drive which continuously
takes |g) to |e); following our prescription, how can we implement a drive which takes |g)

directly to |f)?

9.1 An interaction picture for SNAP

We begin by recalling the SNAP operation as discussed in section This operation consists
of several simultaneous drives applied to the transmon at frequencies which are detuned from
vacuum resonance by an integer multiple of the dispersive shift . Each of these drives has the

same amplitude, but differs in the phase. We can write this as follows:

H = K(ITCLO'Z +Q Z X0 g 4 h e, (9.1)
2 k

Where (2 is the drive rate and 6 are the phases associated with each drive. We can modify this
Hamiltonian, following our prescription, adding awareness of the third transmon level |f), and

driving transitions directly between |g) and |f) (discussion of how to do this in section [9.3)).

Hine = (xele)el + x7 [f)f]) ala + Q37 00 gy f] 4 hc. (9.2)
k

In order to find a time-independent picture for this operation, we can perform the canonical

transformation (appendix |A.1)) using the time dependent unitary

U = exp{it (xe ee| + xs [F)Xf]) aa}. (9.3)
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Under this transformation, the ladder operators are transformed as follows:

a s eiOxeleXel+xs1 (D) g (9.4)
g0 f| > eixrtala gy f| (9.5)
lg)e| > exetala gyl (9.6)
le) f] = ellxsmxeltala ey g (9.7)

It will be important to remember that the jump operators are also transformed in precisely this

way. The resulting interaction Hamiltonian can be written as follows:

Hie = QY elOuktoxsalaton) | pyg) 4 hc, (9.8)
k

~ QY €| f k) f k| + hec. (9.9)
k

where the rotating wave approximation that we have made in the second line is valid in the
limit where xy > (). We can simplify this one more layer by recalling the definition of the

SNAP operation
S(0) = 3 e k) (9.10)
k

We can therefore rewrite [0.9] as:

Hin: = Q (S(0) | X9l + (=) 19X 1) (9.11)

The evolution under this Hamiltonian is trivial to solve due to the simple fact that the Hamil-
tonian, constrained to the {|g),|f)} subspace, is 'Pauli-like’ in that it squares to the identity

within the subspace:

Hiy = Q% (o)l + FXS1), (9.12)

and therefore we have

et = |c)e| + cos(X) (la¥al + |FX 1) + isin(2) (S(@) |F)g| + S(~6) lgXf1) . (9.13)
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In practice, 2 will not be constant, but rather have some Gaussian envelope profile. In this

case, we can replace 2t with the integrated area under the envelope.

9.2 Analyzing fault propagation in SNAP

The simplest way to see the behavior of the SNAP operation under the action of decoherence
is to consider what happens if a discrete jump happens at some time t in the middle of the
operation lasting time T'. Let's start by considering a decay event |e)(f|. Recalling equation[9.7]
in this picture we must write ¢{0xs—xe)ta’a o) £| \We assume we start with the transmon in
the ground state, and some state in the cavity |¢cay). We analyze the evolution in three
steps, an initial Hamiltonian evolution, the application of a jump operator, and the remaining

Hamiltonian evolution

[hinal) ox eHm (T (fuxeltale ey f]) o Hint (|ypcyy) @ |g)) (9.14)

 eilxs—xe)tala (Sw") ‘wcav>) ® le) (9.15)

So we see that the operation still effectively takes pIace!E] The intuition here is that, in order to
have a decay event in the first place, we must have made our transit from |g) to |f). The only

trouble is the unwanted rotation e¢i(xs—xe)ta'a

, which is not deterministic since it depends on
the random jump time t. We will remove this as before, by the second part of our prescription,
pumping to ensure that x. = x . Of course the transmon ends up in the incorrect state, but

this is no matter if we can measure and reset the transmon as part of our protocol.

What of transmon dephasing? In this case the operator we wish to consider is |f)(f]. In

This is only the case when we start in the ground state |g). We can implement the SNAP operation starting
in |f), with very similar results, except that in the case of decay (|e)f]|), the effective cavity operation is the
identity, as in the case of dephasing.
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this case the rotating frame has no effect on the jump operator: E]

[tsnar) oc € Hm T [ £) | it (|ghcar) ® |g)) (9.16)
o ¢ Hin(T=1) ( (8) [Yeav)) © 1) (9.17)
o cos ( 1) (S(0) [tear)) ® |f) + isin (AT = 1) ([Year) @ 19))  (9.18)

This appears complicated, but as before, the act of measuring the transmon at the end of
the protocol makes everything simple. We either measure |f) and obtain S(6) [tcay), our
desired final state, or we measure |g) and obtain |¢c.y), i.e. our original state with no operation
performed.

The final piece to consider is cavity decay, a. Recalling equation [9.4] this term has an
elOxeleXel+xsIfXFD time dependency. This effectively induces a transmon dephasing event,

meaning that as before, we will have some final probability of measuring either |g) or |f).

[4ffinal) oc € Hint(T=) (ei(x6|e><e\+><f\f><f|)ta) eHimt (1) © |g)) (9.19)
e (alien) @19)) + 2 (aS(0) lpea) @ |f>)
¢s (SB)a lvea) ® |1)) + c1 (S(=)aS (@) [vear) @ 19)) ,  (9.20)

where the unimportant prefactors ¢y, ..., cq4 can be computed easily, and will in general depend
on the time of the jump ¢. We see that, in order to be obviously harmless, it would be sufficient
to have {a S(g)} = 0. However, this is impossible so long as 6 # 0. We can, however, make
this work if the less restrictive S(6)a |1heay) = @S(8) [tcay) condition is met. For this purpose,
we will consider that we are in something like a cat code state, where |1)cay) only occupies even

photon number parity. We can write our condition in operator form as

S(0)aPeven = aS(0) Peven, (9.21)

2A similar analysis can be performed for different models of dephasing, say |gXg| or |£}f] — |g)Xg|, and yield
equivalent results
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where Pk, is the projector on the even parity subspace. We can expand the definitions above:

S(6)aPuyen = (Zewk k) k) (Z Vn+1|n) n+1|> ( 3 |m><m|> (9.22)

<Zew’“ k) k:) <¥d\/ﬁ|n<n+1|> (9.23)

- ,;;d VE + 16 |k)k + 1| (9.24)

aS(0) Paser - (z VT Tjnkn + 1|) (Z % ) k|) (mz rm><m|> (925)
- <; Vit 1n)n + 1|> (kz e |k:><l<:|> (9.26)

- kg;d VE + 1+ |k)k + 1| (9.27)

Comparing with we see that this condition can be satisfied by setting 0 = 01 for

k odd. We can return to equation and simplify (using |¥cav) = Peven |¥cav))

[tinat) o (e1 + 1) (@ [teav) @ 9)) + (c2 + ¢3) (aS) [ @ 1)) . (9.28)

This is quite remarkable: we have a transformation that we can effect on a cavity encoded
qubit which is completely compatible with error correction! We simply need to dial the cavity
phases such that the phases are equivalent in the even and odd parity subspaces. There is
of course some probability of failing to implement the operation (as in the case of transmon
dephasing), but this property is determined by a measurement of the transmon. The intuition
for this fact is the observation that we can make the transmon trajectory identical in the even
and odd subspaces, (assuming we know the starting photon number parity), along with the
knowledge that transmon dephasing (an inevitable result of x combined with cavity decay) is

not a catastrophic error.
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9.3 Raman SNAP

Let us turn now to the problem of how to implement this drive. The missing piece is the drive
component of equation[9.2, f(t) [g)(f|+h.c.. Asingledrive, applied at frequency wys = wge+wer
cannot implement this as a result of symmetry: The drive only couples states of differing parity.
This means that we will need another approach to driving this transition. We turn to the method
of stimulated Raman transitions (Linskens et al., [1996; Bateman et al., 2010)). In this method,
we apply drives to both the |g) <> |e) and |e) <> |f) transitions. We detune these drives
by an equal and opposite amount: resulting in frequencies wge — A and wer + A, If Ais
sufficiently large compared to the drive amplitude, then the effect of this scheme is to drive
transitions between |g) and |f) without any intermediate occupation of |e). Given individual
drive amplitudes €2, the effective gf Rabi rate is %2.

We wish to combine stimulated Raman driving with the simultaneous number-selective
driving of SNAP. In order to do this, we must engineer a situation where, for each n up to the
maximum number of addressed photons, there exists a pair of drives with frequencies which
satisfy wi +ws = wyr+nxy. In addition, these frequencies must avoid wy. and wgy individually,
and we must be careful not to drive spurious transitions by other pairs of drives not considered.

One elegant way of satisfying all of these constraints is to adopt the approach shown in
figure . One strong drive is placed at a given detuning A from wy.. This drive is shared
among all of the photon-number selective transitions. The matching pairs for each of these
transitions is then given by a weaker tone at wer+ A +n) . In comparison with schemes where
every Raman transition has a distinct pair of drive tones, this scheme is much simpler, and

avoids the problem of accidentally driving unintended transitions with other tone pairings.

9.4 Some assembly required: The FT SNAP protocol

Implementing a fault-tolerant gate requires more than careful pulse shaping. There are several
components which must be characterized and assembled. Putting these all together results in
the protocol seen in figure [9.2] Here we see the combination transmon drives as well as the

x-cancelling pump and readout pulses.
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Xgr = 11MHz TG I|f)

A = 45 MHz

Figure 9.1: Energy level diagram for Raman SNAP scheme. The SNAP protocol is im-
plemented with one strong drive, detuned from wy. by A = 45 MHz, and 3 weaker drives,
allowing the simultaneous driving of |n,g) <> |n, f) for n = 0,2,4, as required for the kitten
code (equation [3.66). The SNAP evolution is completed by a fast pulse taking |f) to |g)
unconditionally.

We anticipate that one of the major sources of failure in this operation is transmon decay
during the transmon readout. Since we are unable to effectively cancel x during the readout
operatiorE] transitions during the readout will lead to cavity dephasing. In order to minimize
this error, we can exploit the fact that the transmon states have different probabilities of
transitioning, specifically, |f) is shorter lived than |e), which is shorter lived than |g). We can
perform a permutation of the states before measuring (specifically, swapping |f) and |g)) so
that the most likely state ends up in the state least likely to decay.

The transmon readout is a major source of concern, and requires some optimizing in order

to balance the many factors which it influences. There are several desiderata:

= We wish to shorten the length of time, such that the probability of transmon decay is

minimized.

= We wish to decrease the number of photons used, so that the readout does not ac-
cidentally learn the number of photons in the storage cavity via cross-Kerr interaction

(xrsa'arir).

3The reason for this is that, while there are many photons in the readout cavity, the transmon frequency
becomes undefined on the scale of nixro by the shot-noise in the readout population. Since this quantity is
comparable to the detuning (4, in equation , the chi-cancelling point is also ill-defined.
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Figure 9.2: Pulses comprising the FT SNAP protocol. There are five stages to the protocol
(times and amplitudes are not to scale). (1) Apply the (half-)SNAP operation with three drives.
Two are Raman drives, detuned from the wy. and w,s transitions, respectively. The third is the
Xe-cancelling pump. (2) Swap the |g) and | f) states, so that no error is mapped to |g), decay
is mapped to |e), and dephasing is mapped to |f), in accordance with the outcome probabilities
to minimize the probability of decay during the transmon readout. (3) Readout the transmon.
(4) On the basis of the readout result we reset the transmon to the ground state. (5) (not
shown) In the case of measuring |f), which corresponds primarily to transmon dephasing, the
logical operation was the identity, so we try again, restarting the procedure at step 1.

= We wish to readout with sufficient length and photon number to completely discriminate

lg), le), | f), and even potentially |h).

These factors cannot be completely eliminated with any choice of readout parameters, and
therefore must be balanced in the final implementation.

Finally we must use the readout result to inform our subsequent actions. There are three
main components to how we use the result. Firstly, we must return the transmon to the ground
state by performing the appropriate set of 7 pulses. Secondly, we must compensate for the
deterministic rotation of the storage cavity during the readout pulse by an amount y,tro when
we measure the state |x). We can perform this rotation “in software” by simply rotating all
future cavity drives by the appropriate angle. In the characterization experiments we run here,

this includes cavity drives which are either part of optimal control cavity manipulations, or
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displacements which are part of Wigner tomography. The ability to adjust these phases in
real time on the basis of recorded measurements is a critical capability for our implementation.
Finally, we must determine whether the gate was successful. In our chosen implementation,
starting in the ground state, performing the SNAP, and returning quickly to the ground state,
the cavity gate is implemented in the case of either ‘no error’ (|g)) or decay (|e), and is
not implemented in the case of dephasing |f). Therefore, in order to make our operation

deterministic, we must be ready to repeat the entire protocol in the case that we observe |f).

9.5 Tuneup procedure

Given the number of components in the protocol, the procedure for arriving at a fully calibrated

operation involves many steps.

1. Perform standard tuneup to identify wye, wer, as well as the corresponding 7 pulses.

Measure x. and x;.
2. Tune up a transmon readout protocol that can distinguish |g), |€) and | f) in a single-shot.

3. Tune up a method of preparing photon number states in the cavity, either directly or by

postselection.
4. Find the rough x. = xy pump driving point as done in figure [8.2]

5. Tune up a direct | f)g| operation using a Raman pair, with the pump on for the duration.
Optimize the detuning parameter A. Choose the amplitude so that m pulse time is

significantly smaller than x.

6. Replace one of the Raman drives with a SNAP comb with frequency separation x;.
Adjust the amplitude and frequency of the SNAP components such that an optimal 7
pulse is performed starting from any relevant photon number.

7. Tune the phase offsets by performing Wigner tomography on S(0), S(0)2, S(0)*, etc.

8. Scan the pump detuning in a small range and measure the cavity coherence after a SNAP,

postselecting on decay (|e)). This is needed because the x cancelling point during idle
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operation is not necessarily the same as during SNAP, as a result of various Stark shifts.

Choose the pump frequency and re-perform steps [6] and [7]

9. Measure the cavity phase adjustments which must be performed following a |e) or |f)

result.

There are several “free” parameters which we might vary in an attempt to improve the final
operational fidelity of the protocol. Changing each of these parameters can require different

re-calibration.

» Changing the x-cancelling pump amplitude or detuning requires performing the calibration

beginning at step

» Changing the Raman detuning A requires re-performing all of the calibration steps be-

ginning at step [

» Changing the readout pulse parameters, such as readout pulse length or amplitude requires
re-performing steps [7] and [9] since the cavity phases coming out of the readout can be

affected.

Some of these steps merit a bit of explanation. In step [6] we prescribe a method for
calibrating the SNAP pulse. In this step, for a pulse targeting n photon levels, we wish to
identify 2n parameters, specifically the amplitude and frequency for each of the components.
To first order, the frequencies are known to be nx s and the amplitudes are simply the amplitude
required for a single selective pulse, as determined in step [b| However in practice these pulses
are not completely independent from each other, especially as we would like to push the pulse
time down, to minimize the error rate, away from the limit where t,,e > 1/x¢. Our main goal
is to have an operation which effects a 7 rotation to the transmon regardless of the number of
photons in the cavity. To do this, we prepare a given photon number n, play the current pulse,
scanning the amplitude and detuning, to determine a correction which enhances the probability
of ending up in |f). We apply this correction to the n-th component of the SNAP pulse, and
then proceed to the next photon number n + 1. Because the components are not necessarily

independent, we may need to repeat this entire procedure a few times in order to fully converge.
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In step [/| we seek to determine the relative phases for each of the n components of the
pulse. Ideally, if we set all of the pulses to the same phase, the result should be the identity
operation, up to an overall cavity rotation of Z,uiseX . In practice this is not the case for two
reasons: first the pulses are not acting independently, second the cavity evolves under its own
internal non-linearity %(aT)zaQ. In order to compensate for both of these effects (and the
overall cavity rotation if desired, although this is not strictly necessary), we can adjust the
phases of each of the components.

There are many possible methods for tuning the cavity phases. Our approach involves
characterizing a series of states via Wigner tomography. For each state we construct a maximum
likelihood density matrix, the largest eigenvalue eigenvector of which should resemble the desired
state. The argument of each of the amplitudes comprising this eigenvector give us a set of
phases to assign to the state. We begin by preparing a state of interest which is a superposition
of all of the relevant photon number states, in our case the “kitten code” state (|0) 4 /2 |2) +
|4))/2. We characterize the phases of this state using the above method to establish a baseline.
We then prepare the same state and apply the SNAP operation, with zero nominal phases, such
that the target operation is the identity, and characterize the resulting state. The difference
between the phases inferred from the second state and the first state are used to correct
the phases of the SNAP drive. To get better accuracy we can go on to repeated SNAP
applications: prepare our baseline state and apply the nominal identity operation 2, 4, or 8
times, and characterize the phases of the resulting state. This allows us to exacerbate small
phase offsets and get better calibration accuracy.

Finally, we should discuss how to measure the cavity coherence, as is required in step [8]
The most general method to achieve this result is to perform a Wigner tomography. However,
when we are scanning over many points, and wish to establish the coherence at each point, the

overhead of full state tomography is cumbersome. Instead of this, we construct using optimal
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control, an operation which implements the following transformation:

9, +L) ¥ |g;¥1) (9.29)
l9, =) ¥ |e,¥2) (9.30)
l9.+8) = |g,¢1) (9.31)
9, —E) = e, ¥2) (9.32)

where the cavity logical states are the binomial code words (equation , and the cavity states
[t1),...,|ts) are arbitrary states which are fixed by the gauge choice in the optimal control,
following the methods presented in section [4.3.3] This allows us to map the preservation or
loss of the relative photon number phases, regardless of cavity decay, onto the transmon state.

in a way which maximizes contrast.

9.6 Characterizing the FT SNAP

We proceed now to the actual experimental results, as performed on the sample described in
table[5.1] We can begin by demonstrating the effectiveness of the SNAP pulse in rotating the
transmon state between |g) and |f) without occupying |e). We see the pulse and transmon
population trajectory in figure[9.3] The observed trajectory matches well against the predicted
trajectory, and there is essentially no excited state population except for the slow accumulation
resulting from decay from |f). We note that the evolution is not smoothly continuous, but
rather goes in steps. As the number of photons addressed increases, and consequently the
number of frequency components, the pulse times become more and more defined. This does
not drastically change the analysis, although there can be a concern regarding the divergence of
different photon number trajectories. The degree to which the trajectories differ is the degree
to which the time of the jump conveys information about which photon number state we are
inE‘] This knowledge of photon number translates directly to cavity dephasing, and therefore

should be avoided by using a long enough pulse.

*It would be an interesting, as of yet unperformed, exercise to bound the difference in trajectories as a function
of the length of the SNAP operation.
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Figure 9.3: Measured trajectory of transmon state throughout Raman SNAP. We can
measure the trajectory by stopping the pulse suddenly and measuring the transmon state using
a readout which discriminates between |g), |e), |f) and |h). The total pulse has peaks separated
by le ~ 416 ns as a result of the drives components separated by 2x in frequency. We see
good agreement with the simulated trajectory (dashed lines).
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We can next demonstrate the maintenance of cavity coherence regardless of the transmon
measurement outcome. To do so we will start by preparing an encoded cavity state, in this case,
a binomial state |+1) (section [3.7.1)). We will then apply a logical Z rotation by angle 7/2,
which should ideally result in the state |i+7). We implement this operation using the SNAP

protocol, acting on Fock states |0), |2) and |4), with phases 0, /2 and 0, respectively. In

Data Simulation
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Figure 9.4: Wigner functions showing cavity state from FT SNAP conditional on trans-
mon. The three transmon states correspond to the three dominant transmon trajectories, no
error (=~ 94%), decay (=~ 3%) and dephasing (=~ 1%). We start the cavity off in the binomial
code word |+ ), resembling a horizontal cat state. The effect of the operation is a 7/2 rotation
about the logical o, ideally producing the state |i+7). We see this state in the |g) and |e)
Wigner functions. In |e) there is an additional cavity phase space rotation which can be dealt
with in software by updating the phase of the cavity drives. In the dephasing case, the Wigner
function resembles the input state, with the exception of some Kerr evolution producing a slight
distortion. These states agree well with numerical simulation.

figure [0.4] we can see the cavity state postselected on the outcome of the measurement used in
the FT SNAP protocol. The three outcomes correspond to the three dominant trajectories: no
error, transmon decay, and transmon dephasing. In the no error case, the operation completes
as desired, resulting in the correct final state. In the decay trajectory, we see (and this only holds

when the y-cancelling pump is applied) that the cavity coherence is preserved and additionally
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