
Abstract

Controlling Error-Correctable Bosonic Qubits

Philip Reinhold

2019

The harmonic oscillator is a ubiquitous system in physics, describing a wide range of phenom-

ena, both classically and quantum mechanically. While oscillators are relatively straightforward

to control classically, they present much more of a challenge in the quantum realm where such

systems, modeled as Bosonic modes, have many more degrees of freedom. Controlling Bosonic

modes is a crucial task in light of proposals to use these systems to encode quantum information

in a way that is protected from noise and dissipation. In this thesis a variety of approaches to

controlling such systems are discussed, particularly in the superconducting microwave domain

with cavity resonators. In the first part, an experiment demonstrates how a simple dispersively

coupled auxiliary system results in universal control, and therefore allows the synthesis of arbi-

trary manipulations of the system. This approach is employed to create and manipulate states

that constitute an error-correctable qubit. The main drawback of this approach is the way in

which errors and decoherence present in the auxiliary system are inherited by the oscillator. In

the second part, I show how these effects can be suppressed using Hamiltonian engineering to

produce a simple form of first-order ”fault-tolerance.” This approach allows us to demonstrate

versions of cavity measurements and manipulations that are protected from dominant error

mechanisms.

Controlling Error-Correctable Bosonic Qubits

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Philip Reinhold

Dissertation Director: Robert J. Schoelkopf

December 2019

© 2020 by Philip Reinhold
All rights reserved.

ii

Contents

Contents iii

List of Figures vi

List of Tables ix

List of Abbreviations and Symbols x

Acknowledgments xiv

1 Introduction 1
1.1 Outline of thesis . 5
1.2 Background and suggested reading . 7

2 Controlling cavities 9
2.1 The limits of control in linear cavities . 10
2.2 Control in the Jaynes-Cummings model . 13
2.3 Control in the dispersive regime . 14

2.3.1 Applications: Parity map . 17
2.3.2 Applications: Wigner tomography . 19
2.3.3 Applications: qcMAP . 21

2.4 SNAP and universality . 22
2.5 Optimal control . 27

3 Doing more with less: error correction with harmonic oscillators 29
3.1 Error correction criteria . 30
3.2 Error models for qubits . 31
3.3 Making error correction work in practice . 32
3.4 Error models for cavities . 34
3.5 Error correction in damped harmonic oscillators 35
3.6 Cat codes . 37

3.6.1 Choosing α . 43
3.6.2 “No-jump” errors and autonomous stabilization 44

3.7 Alternate cavity encodings . 46
3.7.1 Binomial codes . 46
3.7.2 Cat code generalizations . 48
3.7.3 Numerically optimized codes . 49

iii

3.7.4 GKP codes . 51

4 Numerical quantum optimal control 53
4.1 Defining the problem . 54
4.2 Calculating the gradient . 55
4.3 Cost function variations . 59

4.3.1 Open system GRAPE . 60
4.3.2 Robust control . 61
4.3.3 Gauge degrees of freedom . 62

4.4 Constraints and penalties . 63
4.4.1 Limiting the pulse amplitude . 63
4.4.2 Limiting the bandwidth . 64

4.5 Limiting the intermediate photon number . 66
4.6 Troubleshooting optimization convergence . 67
4.7 What if it doesn’t work?: Debugging optimal control pulses 68
4.8 Closed-loop optimization methods . 71

5 Meet the samples 73
5.1 The seamless storage cavity . 73
5.2 The antenna transmon . 77
5.3 The stripline readout . 81
5.4 Coupling pins . 82
5.5 Putting it all together . 86

5.5.1 Fabrication . 86
5.5.2 Attenuators and filtering . 86
5.5.3 Readout amplification . 93
5.5.4 Electronics . 94

6 Universal control of a cat-code qubit 97
6.1 First things first: Characterizing the system 98
6.2 Showing off a bit: Creating distant Fock states from scratch 103
6.3 Alternating Hilbert spaces: Encode and decode 105
6.4 Testing encoded operations . 109
6.5 Empirical tuning . 113

7 Venturing forth in frequency space: sideband drives 116
7.1 Four-wave mixing: A cornucopia of terms . 117
7.2 Q-Switching for faster system reset . 120
7.3 Creating photons one at a time . 121
7.4 Engineered dissipation . 123

8 A Fault-Tolerant Parity Measurement 125
8.1 Error Transparency: A paradigm for hardware-efficient fault-tolerance 127
8.2 Cancelling χ: The simplest useful symmetry 129

8.2.1 Choosing drive parameters . 132
8.3 Extending the cavity lifetime by protecting it from the transmon 134
8.4 Parity measurement using |f〉 . 137

iv

8.5 Postselecting on errors: Identifying transmon-induced cavity dephasing 138
8.6 Performance analysis . 143

9 Fault-tolerant SNAP 147
9.1 An interaction picture for SNAP . 148
9.2 Analyzing fault propagation in SNAP . 150
9.3 Raman SNAP . 153
9.4 Some assembly required: The FT SNAP protocol 153
9.5 Tuneup procedure . 156
9.6 Characterizing the FT SNAP . 159

10 Conclusion and Prospects 167

Bibliography 171

A Identities and derivations 183
A.1 Changing frames . 183
A.2 Commutator relations . 184
A.3 Rotating frame . 185
A.4 Displaced frame . 187
A.5 Dispersive Hamiltonian for a multi-level ancilla 188
A.6 Damped harmonic oscillator master equation 191
A.7 Fréchet Derivative of the matrix exponential 193
A.8 Approximate time-independent Hamiltonians 194

A.8.1 Floquet formalism . 195
A.8.2 Block Diagonalization . 196

B Construction of unitary operations from a universal control set 198

C Tomographies, large and small 200
C.1 State tomography . 200

C.1.1 Optimizing tomography . 202
C.1.2 Wigner tomography . 203

C.2 Process tomography . 203
C.2.1 Pauli transfer representation . 206

C.3 Gate set tomography . 207
C.4 Randomized benchmarking . 208

D Taming the Black Mamba: Structure and software for the Yngwie FPGA quan-
tum controller 211
D.1 Understanding the hardware . 211
D.2 The Yngwie VHDL logic . 213

D.2.1 Analog output chain . 213
D.2.2 Analog input chain . 215
D.2.3 Digital inputs and outputs . 216
D.2.4 Tables . 218
D.2.5 CPU . 219

D.3 The Yngwie python libraries . 221

v

D.3.1 Basic sequencing . 221
D.3.2 Master table . 222
D.3.3 Analog tables . 223
D.3.4 Digital tables . 223
D.3.5 Result records . 224

D.4 The Yngwie FPGA instrument class . 224
D.4.1 Running experiments . 226

D.5 The fpga lib.dsl sequencing language . 227
D.5.1 Output . 228
D.5.2 Acquisition . 228
D.5.3 Control flow . 229
D.5.4 CPU . 230
D.5.5 Sweeping parameters dynamically . 231
D.5.6 Data decoding . 232

D.6 The fpga lib.entities quantum control abstractions 233
D.6.1 Mode objects . 233
D.6.2 Readout objects . 234

D.7 The fpga lib.experiment experiment class 235
D.8 The fpga lib.gui graphical interface . 236

E The pygrape optimal control package 239
E.1 Overview . 239
E.2 Setups . 240

E.2.1 Gauge Operators . 241
E.3 Constraining the result with penalties . 241
E.4 Monitoring the progress with reporters . 242
E.5 Report data . 243

F Optimal control pulse generation script 244

G Optimal Wigner displacement generation script 248

vi

List of Figures

Introduction 1
1.1 Chapter dependency graph . 6

Controlling cavities 9
2.1 Displacement in phase space . 13
2.2 Photon number creation using resonant Jaynes-Cummings interactions 15
2.3 Phase-space rotation conditional on qubit state 17
2.4 Experimental plot of qubit Ramsey spectroscopy vs. photon number 19
2.5 Example Wigner function . 21
2.6 Geometric phase from cyclic displacements . 24
2.7 Geometric phase on the Bloch sphere . 25
2.8 Circuit depiction of SNAP . 25
2.9 SNAP energy level diagram . 26
2.10 Comparing SNAP and optimal control sequences 28

Doing more with less: error correction with harmonic oscillators 29
3.1 Steane code & Surface code . 33
3.2 Cat code logical Bloch sphere . 40
3.3 The 4 cycle of the cat code under photon loss 42
3.4 Expected photon number in cat code vs α . 44
3.5 Binomial code logical Bloch sphere . 47
3.6 Six-legged cat code logical Bloch sphere . 48
3.7 Numerically optimized

√
17 code logical Bloch sphere 50

3.8 GKP code logical Bloch sphere . 52

Numerical quantum optimal control 53
4.1 Inaccuracy introduced by piecewise-constant approximation 56
4.2 Optimal Control tune-up flowchart . 69

Meet the samples 73
5.1 Cartoon schematic of the cavity-transmon system 74
5.2 Schematic of cavity and transmon critical physical dimensions 78
5.3 3/4-section view of machined cavity component 87
5.4 Transmon and readout chip schematic . 88

vii

5.5 Assembled device schematic . 89
5.6 Fridge wiring diagram . 92
5.7 Signal generation and acquisition electronics 96

Universal control of a cat-code qubit 97
6.1 Transmon and cavity Ramsey sequences . 99
6.2 Transmon EF Spectroscopy . 100
6.3 Determining the cavity Kerr. non-linearity . 101
6.4 Transmon spectroscopy for determining χ and χ′ 101
6.5 Phase space trajectory of pulse creating 6 photons 104
6.6 Wigner function Fock state |6〉 as created by optimal control 105
6.7 Photon number trajectory of pulse creating 6 photons, compared with experiment106
6.8 Characterization of encoded states . 107
6.9 Process tomography of encode-decode . 108
6.10 Optimized pulse waveforms . 110
6.11 Wigner functions demonstrating the action of encoded operations 111
6.12 Process tomography of operations on encoded qubit 112
6.13 Randomized benchmarking of operations on encoded qubit 113
6.14 Dispersion and amplitude optimization . 115
6.15 Delay optimization . 115

Venturing forth in frequency space: sideband drives 116
7.1 Four wave mixing protocol for Q-Switching 121
7.2 Sequence for tuning up a Q-switch pump . 121
7.3 Four wave mixing protocol photon preparation 122
7.4 Demonstration of deterministic photon preparation via sideband driving 123

A Fault-Tolerant Parity Measurement 125
8.1 Sideband drive indicated on cavity-ancilla level diagram 130
8.2 Cancelling the dispersive interaction with a sideband drive 132
8.3 Nonlinear component of the driven dispersive shift 133
8.4 Characterizing χ-cancelling pump . 133
8.5 Improving the cavity coherence time by decoupling the cavity from thermal

ancilla excitations . 136
8.6 Schematic circuit diagram of a FT parity measurement 139
8.7 Circuit protocol for characterizing the parity syndrome measurement 140
8.8 Cavity Wigner functions, postselected on parity measurement outcomes 141
8.9 Comparing protocols with repeated parity measurements 142

Fault-tolerant SNAP 147
9.1 Energy level diagram for Raman SNAP scheme 154
9.2 Pulses comprising the FT SNAP protocol . 155
9.3 Measured trajectory of transmon state throughout Raman SNAP 160
9.4 Wigner functions showing cavity state from FT SNAP conditional on transmon 161

viii

9.5 Randomized benchmarking the FT SNAP operation 163
9.6 Graph of possible error trajectories in FT SNAP protocol 164
9.7 Characterizing the effect of injected errors on the FT SNAP operation 166

Conclusion and Prospects 167
10.1 Natural χ matching . 169

Tomographies, large and small 200
C.1 Numerically optimized displacements for Wigner tomography 204

Taming the Black Mamba: Structure and software for the Yngwie FPGA quantum
controller 211
D.1 Outline of organization of components in FPGA stack 212
D.2 Yngwie analog output chain . 213
D.3 Yngwie analog input chain . 215
D.4 Inter-card connections to use for multi-card feedback 218
D.5 fpga lib basic sequencing model . 227
D.6 Schematic depicting two schemes for readout phase-locking 235
D.7 fpga lib.gui experiment running interface 237

ix

List of Tables

Meet the samples 73
5.1 Comparison of System Parameters for experiments performed in this thesis . . 85

Universal control of a cat-code qubit 97
6.1 Operation fidelities . 114

A Fault-Tolerant Parity Measurement 125
8.1 Error budget for FT parity measurement . 144

Taming the Black Mamba: Structure and software for the Yngwie FPGA quantum
controller 211
D.1 Yngwie FPGA digital output mapping . 217

x

List of Abbreviations and Symbols

Abbreviations

ADC analog-digital converter, page 211

AWG Arbitrary waveform generator, page 54

BBQ Black Box Quantization, page 81

BCH Baker-Campbell-Hausdorff expansion of eABe−A, page 186

CQED cavity quantum electrodynamics, page 13

cQED circuit quantum electrodynamics, page 13

DAC digital-analog converter, page 211

DFT Discrete Fourier Transform, page 65

DSL domain specific language, page 227

FPGA field-programmable gate array, page 211

FT fault tolerant, page 126

GKP Gottesman-Kitaev-Preskill cavity encoding, page 51

GRAPE Gradient ascent pulse engineering, page 54

HEMT High electron mobility transistor, page 94

iRB Interleaved randomized benchmarking, page 111

JPC Josephson Parametric Converter, page 93

QEC Quantum error correction, page 97

RB Randomized benchmarking, page 111

SNAP selective number-dependent arbitrary phase operation, page 23

SPAM State preparation and measurement. Usually the errors associated with these
processes, page 109

SSB single-sideband modulation. A method of mixing two signals together to produce
only the sum or difference frequencies, rather than both., page 213

xi

Greek Characters

αT The transmon anharmonicity ωef − ωge, page 79

Π The photon number parity operator, page 18

ΠFT The fault-tolerant parity measurement protocol using the |g〉 and |f〉 ancilla
states, as well as a χfe-cancelling drive, page 139

Πgf A parity measurement protocol using the |g〉 and |f〉 ancilla states, page 139

Πge A parity measurement protocol using the |g〉 and |e〉 ancilla states, page 139

χ The strength of the dispersive interaction between a transmon and cavity. Equiv-
alent to χe., page 15

χ′ The higher-order cavity-transmon dispersive shift via χ′

2 (a†)2a2b†b, page 86

χRO The readout-transmon dispersive interaction strength, page 82

χe The cavity-transmon dispersive shift associated with the excited state |e〉 via
χea

†a |e〉〈e|. Equivalent to χ., page 86

χf The cavity-transmon dispersive shift associated with the excited state |f〉 via
χfa

†a |f〉〈f |, page 86

χfe χf − χe, page 131

χfg χf − χg = χf , page 143

χeg χe − χg = χe, page 131

∆ A frequency difference, page 14

σ̂± Pauli raising or lowering operators, page 13

σ̂x,y,z Pauli X/Y/Z operators, page 13

κ The cavity loss rate, page 74

κext The loss rate induced by (usually intentional) coupling to a transmission line,
page 83

κint The loss rate induced by (usually unintentional) coupling to internal degrees of
freedom, such as phonons, two level systems, and quasiparticles, page 83

|α〉 Coherent state with amplitude α, page 12

|C±α 〉 The even or odd 2-legged Cat state of amplitude α, page 22

Ω(t) The qubit/transmon driving profile, page 16

ωRO The readout resonant frequency, page 82

ωc The storage cavity frequency, page 13

xii

ωq The (Jaynes-Cummings) qubit resonant frequency, page 13

ωef The transmon |e〉 ↔ |f〉 transition frequency, page 99

ωge The transmon |g〉 ↔ |e〉 transition frequency, page 79

ε(t) Cavity drive profile, page 11

Latin Characters

a,a† Cavity annihilation and creation operators, page 11

b, b† Transmon annihilation and creation operators, page 86

Cφ Entangling conditional phase operation, page 16

Dα Displacement operator (by an amount α), page 12

Ic Identity operation on the cavity, page 16

Iq Identity operation on the qubit, page 16

Peven/odd The projector onto the even or odd photon number parity subspace, page 18

r, r† Readout annihilation and creation operators, page 86

Rφ(θ) Qubit rotation by an angle θ around axis given by cos(φ)x̂+ sin(φ)ŷ, page 16

S(~θ) SNAP operation with phases θk, page 23

|C±α 〉 The even/odd cat state with amplitude α, page 38

|e〉 The transmon first excited state, page 16

|f〉 The transmon second excited state, page 16

|g〉 The transmon ground state, page 16

|h〉 The transmon third excited state, page 16

F Fidelity, either of a state or process, page 109

N A normalization constant, page 38

T The time-ordering operator, page 12

F The Fourier transform operator, taking a time domain representation to a fre-
quency domain representation, page 71

D[A] The dissipator Liouvillian for jump operator A, page 35

EC Cooper pair box/Transmon charging energy, page 78

EJ Josephson energy determining the hopping rate of cooper pairs across the tunnel
barrier, page 78

xiii

g The rate associated with a photon exchange term, page 14

K Cavity self-Kerr anharmonicity, page 86

Q The quality factor Q = ω/κ, page 74

T c1 Cavity energy decay rate, page 86

T ef1 Transmon f → e relaxation rate, page 86

T ge1 Transmon e→ g relaxation rate, page 86

T c2 Cavity coherence time, page 135

Tφ Transmon dephasing rate, page 86

Wα(ρ) The Wigner function associated with the quantum state ρ, page 20

xiv

Acknowledgements

Working on the fourth floor of Becton is every day a humbling and inspiring experience, and

its not because of the architecture. I’d like to express my gratitude to everyone who helped me

along the way in this journey.

Firstly, I will be forever indebted to ROBERT SCHOELKOPF for allowing me to be a part

of his team. Rob has created an environment that allows science (and scientists) to flourish.

In addition to sound advice about microwave hygiene, ground loops, and experimental best

practices, Rob has taught me about the importance of crafting a message, and always keeping

an eye on the bigger picture. Although I did not have as many conversations with MICHEL

DEVORET as others, each time I did, I walked away with new understanding. It was his

insistence on careful precision that disabused me of many mistaken beliefs. I am grateful to

LIANG JIANG for many fruitful discussions. From this experimentalist’s perspective, Liang is

the perfect theorist collaborator. He understands the state of the art well enough to be able

to pinpoint immediately those ideas which are exactly the right combination of interesting yet

achievable.

After the faculty on my committee, I am most indebted to my postdoc collaborators with

whom I had the pleasure to work side by side, facing the joys and hardships of constructing

experiments and interpreting data. I can thank REINIER HEERES in particular for saving my

scientific career at a time when I was struggling by giving me a direction and a project that

worked well with my skill set. Working with Reinier taught me how qubits worked in practice,

and how to think about designing experiments to probe their properties. His encouragement

and enthusiasm took the FPGA software project from a hidden corner on my hard drive to tens

of projects throughout the lab. I have had the pleasure of working very closely with SERGE

xv

ROSENBLUM for the past few years, and I believe it has been one of the most productive

parnterships I have ever had. Serge, a true scientist, is ceaseless in his drive to find intuitive

explanations. Serge understands the importance of making our work accessible, and working

with him has made me a better communicator.

I am thankful to everybody on the fourth-floor who I’ve had an opportunity to work or

discuss science with over the past six years. I’d like to thank those members of the previous

generation welcomed me to the lab and brought me onboard. JACOB BLUMOFF was the

first person I met arriving at Yale. Jacob, along with KEVIN CHOU, taught me the essential

tools of the trade, and were my first line of defense against confusion. The lab would have

descended into total chaos if it was not for the watchful eyes of CHRIS AXLINE and ANIRUDH

NARLA, who, in addition to being skilled physicists, made sure that negligence was never

allowed to accumulate. Alongside them I must also thank LUIGI FRUNZIO, whose influence

kept my fabrication experience as pain free as any graduate student could hope. NISSIM OFEK

underwent a heroic effort in both architecting and implementing the FPGA controller. It’s not

a task that any one person could be expected to do, but by sheer force of will he succeeded,

and created something wonderful.

I’d like to thank rest of those in my cohort who have shared with me in the PhD expe-

rience. EVAN ZALYS-GELLER is a nearly infinite font of spontaneously generating, wildly

creative ideas, whose discussions taught me more engineering concepts than I knew existed.

KYLE SERNIAK has been the social core of the lab in my time here, and his friendliness belies

his deep understanding of fabrication and superconductivity. I’ve particularly enjoyed my inter-

actions with CHRIS WANG and SAL ELDER. Chris’s ability to juggle many responsibilities has

kept the lab running smoothly in recent years, and Sal’s probing questions have deepened my

understanding of physics I had never thought to question. I’ve also learned a great deal about

quantum circuits in their many forms from discussions with NICK FRATTINI. My experience

would not have been the same without those who joined me at the lunch carts nearly daily, in

particular CHAN U LEI, VIJAY JAIN, LEV KRAYZMAN, JACOB CURTIS, SUHAS GANJAM

and ZHIXIN WANG with whom I’ve had an enormous volume of wide-ranging conversations.

I would be remiss to omit mention of DAVID SCHUSTER, who started me down this path,

xvi

mentoring me as an undergraduate, and inspiring me to pursue quantum information studies.

Dave has a way of presenting ambitious projects as imminently achievable, and he is one of the

most creative scientists I know.

Finally I’d like to thank my family and friends for encouraging me through these many years

of uncertainty. My mother and father, CHRISTY REYNOLDS and LARRY REINHOLD, as

well as my partner PAMELA SOTO, have held steadfast their confidence in my ability, through

my periods of self-doubt. Without their support this thesis would not have been possible.

xvii

Chapter 1

Introduction

The “second quantum revolution” which has been progressing over the past three decades

is characterized by a transformation in the way we view quantum theory. From our initial

perspective, quantum mechanics seemed largely to be a nuisance; very important, if one wished

to get things right, but still a nag. It seemed to place limitations on what ham-fisted creatures as

ourselves could know about the world at once. It told us that we could never observe the world

as neutral outsiders, but that we necessarily influence the world by our act of observation.

It claimed that the world was not even definite, until experiment and observation forced its

hand. At the same time, our ability to manipulate and experience these unusual effects seemed

confined to the realm of subatomic particles, only accessible via the careful interpretation of

laboratory measurements.

Nevertheless, using the understanding of the rules of quantum physics has led us to the

development countless technologies—the laser, semiconductors, medical imaging, and many

others—leading to real material improvements in our control over the natural world and in

human well-being. However, in all of these cases, the quantum behavior is hidden by the coarse-

graining of many subsystems into a single ensemble. Only recently have we gained access to

the realm of single quantum systems which we can manipulate and measure individually, as

opposed to in collective ensembles.

This development has allowed our perspective on quantum mechanics to shift. The promise

of quantum technology, is that we are blessed, rather than cursed, to live in a world that is

1

2

fundamentally quantum, if only we can begin harnessing and engineering the uniquely quantum

mechanical effects nature exhibits. We can use the knowledge limitations quantum mechanics

provides to implement unbreakable encryption protocols. We can engineer quantum states

whose sensitivity to disturbance allows us to learn and measure the world faster and more

accurately than would be otherwise possible. And most tempting of all is the promise of a

quantum computer. That we could take the most crucial, revolutionary, and transformative

invention in the entire twentieth century, and radically improve its capabilities goes a long way

in explaining why this application has held such a central position in the dreams of quantum

technology prognosticators.

The story of quantum computing began with exactly the sort of perspective reversal that

characterizes the second quantum revolution, following an observation by Feynman: quantum

mechanics is hard to simulate on a computer. As the system being simulated gets bigger, the

system of equations that must be solved gets exponentially larger. People who have thought

very carefully about this do not see any way to remove this exponential scaling from the problem.

From one perspective this just seems like a bad thing, a limit on our ability to predict and

calculate the world around us. The counterpoint, however, is that we can know how quantum

systems behave, since they exist in reality! We simply must construct a quantum system, and

then observe it. It seems like nature is doing this exponentially difficult calculation somewhere,

and we simply lack the tools to tap into, and control, this natural computational power. This

led early researchers to consider what a computer constructed out of quantum mechanical parts

would look like, and what its capabilities would be. Such a device could certainly solve the

problem of quantum simulation, but the discovery of Shor’s algorithm for integer factoring

(Shor, 1994) proved that the utility of such a device would extend beyond simulation. Since

then a torrent of additional quantum algorithms have been proposed, extending the practical

reach of quantum computation beyond breaking the security of widely used cryptosystems.

The theoretical promise of quantum computing was vast and tantalizing. It was not at all

obvious, however, that such a device would be possible to construct. Classical computers are

robust by design. If you take a modern computer, you can expose it to all sorts of radiation,

heat, physical motion, magnetic fields, etc. and within a reasonable margin the computation

3

performed will not be affected. In contrast, any interaction between a quantum computer and

its environment will affect its state1. Perhaps this effect would be small, but even small errors

have the potential to accumulate and destroy the computation. In some sense, the problem

is related to the special status of measurement in quantum theory. Classically, measurement

is exactly the type of interaction that (at least potentially) does not affect the state of the

measured system. Quantum mechanically, measurement is not a harmless act. Our inability to

measure without affecting the measured object inhibits our ability to construct robust quantum

systems. It seemed, then, that the task of quantum computing rests on two individually impos-

sible requirements, which had the further complication of being mutually incompatible: perfect

isolation of the quantum system from its environment and perfect control and manipulation of

the quantum system (Unruh, 1995). Quantum computing seemed to be ruled out by the same

issues that plagued analog computing, a platform that could theoretically outperform digital

Turing machines, but in practice could not overcome the limitations of real-world noise and

imperfections.

The subsequent development of quantum error correction (Shor, 1995) and fault-tolerant

quantum computation (DiVincenzo and Shor, 1996; Preskill, 1997) responded to those criti-

cisms. These methods showed that, under certain reasonable sounding assumptions, quantum

computing in the presence of noise was not physically impossible, but merely staggeringly diffi-

cult. If one could reduce the noise per operation below a certain threshold value then one could

aggregate many noisy, imperfect quantum systems together in order to create a less error-prone

quantum system. If one could repeat this process, aggregating together many aggregates, then

the combined system could have even lower error, and so on. As a result, arbitrarily good

performance could be obtained despite the presence of noise. While there are many ways to

achieve the same result, early proposals for devices that could run Shor’s method to factor a

430 bit number would require resources equivalent to 106 physical qubits, each operating with

an error rate per operation of 10−6 (Steane, 1998). At this time, the most advanced platform

for quantum computing was liquid state nuclear magnetic resonance (NMR), where the weakly

coupled nuclear spin degree of freedom formed a naturally (relatively) isolated quantum bit,
1at least any interaction which couples to a degree of freedom used in the computation

4

and one could perform 3 qubit algorithms, with gate errors around 5% (Cory et al., 1998).

Either experiment had a long way to go to meet the grandiose demands of the theory, or theory

had a long way to go to come up with a proposal that could be implemented in practice.

Since then, many developments have brought us closer to the dream of a useful quantum

computer. A proliferation of physical implementations has been proposed and developed, from

linear optics (Knill et al., 2001), to spins trapped by crystal defects or within quantum dots

(Loss and DiVincenzo, 1998), to ions suspended in vacuum (Steane, 1997), to superconducting

circuits (Devoret, 1997). Each approach has strengths and weaknesses, and none has clearly

and convincingly set itself apart as uniquely capable of addressing all of the challenges involved

in creating a scalable quantum machine. Alternate error correction architectures have been

developed that have raised the threshold error rate, and introduced models where physical

qubits need only local interactions. But practical error correction, which actually enhances a

quantum machine’s computation ability, is still a work in progress. Quantum machines are

getting bigger, but still too slowly in order to hope for an error corrected quantum computer

soon. For this reason, there has been much recent interest in the capabilities of a noisy

intermediate scale quantum (NISQ) machine (Preskill, 2018). Such a machine, which lacks

error correction, may still be able to perform useful tasks that a classical computer could not.

But this is far from certain, and while such machines are a necessary stepping stone, they will

not be transformative in the same way as fully fault-tolerant general purpose computers.

We can look for avenues for progress towards that ultimate goal in two different ways, each

of which is going to be necessary in the long term. We can make slow and steady progress

improving the construction and operation of the types of devices we already possess: improving

the materials we use, reducing spurious interactions, finding faster ways to complete operations,

and the like. Such difficult, and at times tedious, engineering is the backbone of our conviction

that we will one day reach the summit. But we can make progress also by looking for shortcuts,

new ways to arrange or join the tools we have, to circumvent, rather than surmount, some of

the obstacles we see in our way. This sort of lateral thinking is best represented by the cat-code

method of quantum error correction (section 3.6) which allows us to simplify and reduce the

hardware overhead requirements of traditional quantum error correction. These sorts of re-

1.1. OUTLINE OF THESIS 5

imaginings of what a quantum information processor might look like are going to be critical for

keeping the field alive and invigorated as we continue to slog through the difficult engineering

tasks ahead of us.

1.1 Outline of thesis

In this work, we take as a given the motivation to pursue quantum information processing

devices, and the background that entails (see section 1.2). We will begin straight away in

chapter 2 with an overview of the central problem of this thesis: quantum control of the state

of light contained within a cavity resonator. These devices are ubiquitous, easy to fabricate,

and can be highly coherent when compared with other superconducting elements. Yet they

face difficulties in the crucial aspect of control. In isolation, these systems are cursed by

linearity, which renders their outputs trivially related to their inputs, and therefore unsuitable

for computation, as they can be simulated with complexity polynomial in their size. However,

by using these systems in conjunction with non-linear elements, we can control them, and

expose their potential quantum information processing capacity.

One of the promising opportunities a quantum controlled cavity presents is the possibility

to do quantum error correction. In chapter 3, we will see how it is possible to do error

correction with only a single component, and introduce the setting and motivation for the

coming experimental work. Our first experimental goal will be to perform operations on encoded

states in a cavity. In order to get there, we will first set up some necessary background. First

in chapter 4 we return to the issue of control, this time with an eye towards how control

protocols for quantum systems can be developed with the aid of numerical optimization methods

running in silico. These methods have a storied past, finding application in many systems,

surprising many with the ease in which carefully designed protocols can be replaced with a näıve

search. Next, in chapter 5, we discuss the hardware with which we can perform experiments on

superconducting cavities interacting with transmon qubits. This chapter serves as an overview

of the state of the art in superconducting cavities, and tries to motivate some of the design

choices that were made in constructing the experimental samples used.

1.1. OUTLINE OF THESIS 6

2: Cavity Control

6: Cat-code Gateset

7: Sideband drives

8: FT Parity

9: FT SNAP

3: Oscillator Codes 4: Optimal Control5: Experiment Hardware

Figure 1.1: Chapter dependency graph. Chapters 6, 8, and 9 contain the primary experi-
mental results. Arrows indicate which chapters are suggested prerequisites for each other.

With the prerequisites of experimental design out of the way, we are free to move on in

chapter 6 to the first main result, which is the application of numerically optimized control

sequences to the subject of cavity control, and more specifically control of a cat encoded qubit.

This chapter will cover the results shown in “Implementing a universal gate set on a logical

qubit encoded in an oscillator” (Heeres et al., 2017).

In order to introduce the final two experiments, it is worth covering the subject of sideband

transitions more carefully (chapter 7). Understanding this class of operations, which extends

the picture associated with the dispersive coupling model discussed in chapter 2, is crucial for

understanding nearly all of the results in the Yale quantum computing groups in the past few

years. Finally, we get to the fault-tolerance results, which try to address the main limitation of

the cavity control method shown in chapter 6. Specifically, we address the issue of transmon

decoherence events being transformed into cavity decoherence events by the action of the

coupling. This phenomenon, which allows the types and frequencies of errors to be dictated by

the relatively noisy transmon, severely limits the usefulness of cat-code error correction. The

interaction that mediates this error conduction is a fundamental, and necessary component of

our method of manipulating the cavity state. In order to circumvent this problem, we develop

a surgical modification of the interaction Hamiltonian between the transmon and cavity using

detuned sideband drives, which is designed to prevent the spreading of errors between the

components. This allows us, in chapter 8, to develop a “fault-tolerant” parity measurement,

1.2. BACKGROUND AND SUGGESTED READING 7

including the results shown in “Fault-tolerant detection of a quantum error” (Rosenblum et al.,

2018b). Using the same general set of tools, and with a bit more sophistication, we can extend

these results to a (non-universal) set of cavity operations (Reinhold et al., in preparation) in

chapter 9.

1.2 Background and suggested reading

This thesis is not intended to be either comprehensive or self-contained. It leans heavily on

the work of others who have come before me. Instead of duplicating this previous effort here,

we will instead assume a level of familiarity with foundational concepts. Here we would like to

make these assumptions explicit, and give pedagogical references which explain (better than I

could) the necessary background.

We assume familiarity with quantum mechanics firstly, of course, for which the standard

texts Shankar (2011) and Griffiths (2004) I have found more than adequate. One should be com-

fortable with the concepts of Hilbert space, projective quantum measurement, the Schrödinger

equation, Heisenberg and interaction pictures. For considerations involving open systems,

including density matrices, POVMs, the Lindblad equation, and superoperators, Carmichael

(1993) is helpful, as are the (quite comprehensive) notes by Steck (2007).

Secondly, we will not spend any more pages motivating or explaining basic concepts of

quantum information and computation, such as defining qubits, quantum gates, or quantum

algorithms. For this “Mike and Ike” (Nielsen and Chuang, 2011) is required reading. In addition,

there are many high-quality treatments of quantum information to be found in the theses of

previous Yale students (Chow, 2010; Reed, 2013; Blumoff, 2017; Chou, 2018).

Some familiarity with very basic quantum optics concepts is also assumed, including the

concept of raising and lowering operators as well as that of Fock (photon-number) states.

While the level of knowledge required here does not extend much beyond what can be found in

Griffiths (2004), it can be supplemented with the treatments found in Walls and Milburn (1995)

and Scully and Zubairy (1997). A more focused discussion relevant to the work presented here

can be found in Vlastakis (2015).

1.2. BACKGROUND AND SUGGESTED READING 8

Finally, we will not give a pedagogical explanation of the foundational concepts of Cavity

QED (CQED) and its superconducting cousin, Circuit QED (cQED). The fantastic Haroche

and Raimond (2006) is a complete treatment of the former. The latter was first exposited in

Schuster (2007) and has received treatments in many other theses (Bishop, 2010; Chow, 2010;

Reed, 2013; Chou, 2018; Blumoff, 2017; Brecht, 2017; Axline, 2018).

Chapter 2

Controlling cavities

Harmonic oscillators are one of the first entities that one encounters when learning about quan-

tum mechanics. Their quantum mechanical description demonstrates the effects of quantization

on a system which is ubiquitous in all sorts of physics. It gives rise to a simple energy level

structure, yet the states described by this structure bear little resemblance to what is classically

familiar. It is a fertile ground for exploring the correspondence principle linking the classical and

quantum worlds. From the standard introduction to quantum oscillators, however, it is not clear

how one might perform experiments which explore many of the quantum mechanical aspects of

such a system, beyond the uncertainty relation. For instance, if quantum mechanics predicts a

certain wavefunction for an energy eigenstate, how can one prepare such a state, and measure

that wavefunction? How can we measure properties other than position and momentum? How

can we encode quantum information?

In this chapter, I will explore the methods and limitations of control in simple harmonic

oscillator systems, of which electromagnetic states in microwave cavities form a subset.1 I

start in section 2.1 by addressing the issue of linearity, defining linear systems in terms of their

representation using ladder operators, and showing the limited scope of control in this regime.

Next, in section 2.2 I will discuss how this control can be expanded by a controllable resonant

coupling to a two-level system, in the Jaynes-Cummings model. The non-linearity associated
1We can see the direct analogy between quantum mechanical oscillators and cavity modes via the quantization

of the electromagnetic field (Steck, 2007, §8.3).

9

2.1. THE LIMITS OF CONTROL IN LINEAR CAVITIES 10

with the two-level system is the resource used to prepare new types of cavity states. From

there, in section 2.3, we consider the off-resonant, or dispersively coupled regime. Here the

tools at our disposal are subtler, and require some cleverness in their assembly to produce useful

operations, but I give some examples of operations which can be constructed from a “dispersive

toolkit.” Next in section 2.4 we consider how to formalize the notion of universal control, that

is, the idea of a general process or recipe, which takes an arbitrary quantum-mechanically

allowed transformation of the cavity, and produces a means for realizing that transformation

with available controls. The “SNAP protocol” allows for this by giving a sort of template

pulse sequence, constructed out of the dispersive toolkit, for which every cavity transformation

is approximated by filling out this template with the correct numbers and parameters. This

reduces the problem of realizing control to one of searching within a limited parameter space.

Finally, in section 2.5 we will see that this “template” formulation, while theoretically useful,

imposes a large overhead, which can be alleviated by considering arbitrary control pulses,

represented as general functions of time. The techniques necessary to find these control pulses

will be explored in chapter 4. This is enough to get us through the first set of experimental

results. We will revisit the subject of cavity control using more exotic sideband drives, whose

frequencies are far from any mode’s resonance, in chapter 7.

2.1 The limits of control in linear cavities

A superconducting cavity resonator is a simple object to describe: it consists of a box, whose

walls define electromagnetic boundary conditions, which give rise to a set of non-interacting

bosonic modes. Each of these modes has a resonance frequency, and has a simple harmonic

oscillator Hamiltonian (setting ~ = 1 from now on):

H =
∑
k

ωka
†
kak. (2.1)

2.1. THE LIMITS OF CONTROL IN LINEAR CAVITIES 11

If the resonator is coupled to the outside world, for instance with pins connected to a drive

line, we can often treat the incident fields classically (ε(t)), and find the driven Hamiltonian:

H =
∑
k

ωka
†
kak + ε(t)Ωk

(
ak + a†k

)
(2.2)

We will now show that the evolution of such a system is “trivial” in the sense that it can only

produce a displacement of the modes. Restricting ourselves to a single mode (with frequency

ω) for now, but without loss of generality, we first go into a rotating frame to remove the

detuning term ωa†a. Frame changes are performed by first specifying a unitary operation U(t)

and making the following replacements (See appendix A.1)

|ψ〉 → |ψ̃〉 = U |ψ〉 (2.3)

H → H̃ = UHU † − iUU̇ † (2.4)

In this case, we have U = exp
(
−iωa†at

)
. For this transformation, we will frequently make

use of the relation (see appendix A.3)

Uf(a,a†)U † = f(aeiωt,a†e−iωt) (2.5)

Applying equation 2.4 and 2.5 to the single-mode version of equation 2.2 results in

H → H̃ = ε(t)
(
aeiωt + h.c.

)
(2.6)

We can “solve” H̃ using the Magnus expansion (Magnus, 1954). The evolution of the system

in the rotating frame is given by the unitary:

Ũ(t0, t) = T exp
(
−i
∫ t

t0
dτH(τ)

)
= exp

{∑
k

Ωk

}
(2.7)

2.1. THE LIMITS OF CONTROL IN LINEAR CAVITIES 12

The terms in the expansion (Ωk) are formed from increasingly nested commutators. Here,

setting Hi ≡ H̃(τi):

Ω1 = −i
∫ t

t0
dτ1H1

Ω2 = −1
2

∫ t

t0
dτ1

∫ τ1

t0
dτ2 [H1,H2]

Ω3 = i

6

∫ t

t0
dτ1

∫ τ1

t0
dτ2

∫ τ2

t0
dτ3 [H1, [H2,H3]] + [H3, [H2,H1]]

...

Since
[
H̃(τ1), H̃(τ2)

]
is a complex scalar quantity (as follows from

[
a,a†

]
= 1),the Magnus

series terminates after the second level. The second level itself gives only a global phase which

we will ignore for now, and thus the evolution is given by

U(t0, t) = exp
(
−i
∫ t

t0
dτH(τ)

)
(2.8)

= exp
(
αa† − α∗a

)
≡Dα (2.9)

Where α =
∫ t
t0

dτ ε(t)eiωt. The displacement, Dα, is one of the fundamental concepts in

quantum optics. Displacements acting on the vacuum produce coherent states

|α〉 = Dα |0〉 = e−|α|
2/2∑

n

αn√
n!
|n〉 (2.10)

Coherent states can be thought of as “nearly classical” states. They have (expected values)

of both position and momentum2 (Re(α) and Im(α) respectively) while also maintaining the

necessary (but minimal) requisite uncertainty in these properties required for consistency with

Heisenberg uncertainty. However, because all evolution is reducible to displacements, the only

states which can be produced are coherent states. The system described in equation 2.2 does

not allow for the production of non-classical states of light, e.g. photon-number states. It can

be shown (see Lloyd and Braunstein (1999), or appendix B) that a Hamiltonian must have
2These quantities correspond to position and momentum (in some units) for a mechanical oscillator. For an

electromagnetic oscillator these correspond to electric and magnetic field (in some units). See section 5.1 for
more discussion.

2.2. CONTROL IN THE JAYNES-CUMMINGS MODEL 13

x̂

p̂

(a) The ground state in phase space

x̂

p̂

Dα

Re α

Im
α

(b) A displaced state

Figure 2.1: Displacement in phase space. We can picture the state of the cavity in phase
space whose coordinates can be thought of as “position” and “momentum,” in analogy with a
mechanical oscillator, and with some appropriate scaling factors. (a). In the ground state, the
cavity state is centered on the origin, but is spread out over an area as required by Heisenberg
uncertainty. (b) A displaced state |α〉 has the same spread in phase space distribution, but is
centered about a new point with coordinates given by the real and imaginary parts of α. This
state is produced from the ground state by the displacement operator Dα

terms of the form (a†)MaN with M + N ≥ 3 in order to be able to create arbitrary states

or operations. While such a term would be useful, it is not at all obvious how to create such

non-linearities directly without disrupting many of the properties of the cavity which we wish

to exploit, such as its high coherence, and simple idling evolution.

2.2 Control in the Jaynes-Cummings model

An alternative to directly controlling the cavity with internal non-linearity is to couple the cavity

to an external system with its own non-linearity. Any finite dimensional system possesses the

required non-linearity, so a natural model to consider is the Jaynes-Cummings model of an

oscillator coupled to a two-level qubit (Jaynes and Cummings, 1962):

H = ωca
†a+ ωq

2 σz + g
(
a†σ− + aσ+

)
. (2.11)

This model is the foundation of the field of cavity quantum electrodynamics (CQED) and by

analogy the superconducting circuit equivalent, circuit quantum electrodynamics (cQED). It

2.3. CONTROL IN THE DISPERSIVE REGIME 14

is natural to again go into the rotating frame using equation 2.4 as before, with the transfor-

mations U1 = exp
(
iωca

†at
)

followed by U2 = exp (iωqσzt/2). This results in

H̃ = g
(
a†σ−e

−i∆t + h.c.
)
, (2.12)

where ∆ ≡ ωc − ωq.

Let us see how, assuming control of the qubit frequency ωq, such an interaction can be

used to create photon number states in the cavity. First note that it is possible to create

“photon number states” in the qubit, when |∆| = |ωc − ωq| is large, simply by applying a

drive. Since the form of the drive is Hd = Ω(t)
2 σx, applying any pulse with the appropriate

area (
∫

dtΩ(t) = π) results in the unitary operation σx, which produces an exact excited

state in the qubit. One can use the qubit’s ability to inject single excitations, along with the

excitation-conserving Jaynes-Cummings interaction (equation 2.12) in order to produce photon

number states in the cavity, as shown in figure 2.2. This method was used to create some

of the first non-classical states in cavity resonators, such as Fock states (Krause et al., 1989)

and cat states (Meystre et al., 1990). It was then shown that it was theoretically possible to

construct control sequences which create arbitrary cavity states (Vogel et al., 1993; Law and

Eberly, 1996). These protocols have been experimentally demonstrated using superconducting

cavities and flux-tunable transmon qubits (Hofheinz et al., 2009).

2.3 Control in the dispersive regime

There are several reasons why one might prefer to avoid relying upon frequency tuning, as is

required in order to toggle the interaction in equation 2.12 in order to perform operations. To

begin with, such control will always increase the complexity of implementation of the device, but

more worrying is the impact such a control mechanism has on the qubit coherence properties,

as the qubit frequency becomes sensitive to fluctuations in the controlling field, and thus

dephases at a faster rate. In the case of fixed frequency, and large detuning (∆ � g) we can

approximate the Jaynes-Cummings model with a dispersive model. Treating the interaction

term as a perturbation, and going to second order in perturbation theory, we end up with the

2.3. CONTROL IN THE DISPERSIVE REGIME 15

|g, 0

|g, 1

|g, 2

|g, 3

|g, 4

|e, 0

|e, 1

|e, 2

|e, 3

|e, 4

(a) exciting the qubit

|g, 0

|g, 1

|g, 2

|g, 3

|g, 4

|e, 0

|e, 1

|e, 2

|e, 3

|e, 4

(b) swapping the qubit and cavity

Figure 2.2: Photon number creation using resonant Jaynes-Cummings interactions. One
can see how to prepare photon number states in the Jaynes-Cummings model by “climbing the
ladder.” There are two steps involved. (a) One can insert a single excitation into the system
by driving the qubit. Its non-linearity assures that exactly one excitation is added. (b) The
excitation is swapped from the qubit to the cavity by bringing the qubit into resonance with the
cavity for a fixed amount of time. If these two steps are alternated, one can bring the cavity
to higher and higher photon number levels (Law and Eberly, 1996; Hofheinz et al., 2009).

new model

H = ωca
†a+ ωq

2 σz + χ

2a
†aσz, (2.13)

with χ = 2g2/∆. This is the correct form only for an actual two-level system. For a multi-level

system like a transmon (section 5.2) this is only an approximation valid when the detuning to

the ge transition is small compared with the detuning to other transitions. See appendix A.5

for a general treatment. In our preferred rotating frame equation 2.13 becomes simply

H = χa†a |e〉〈e| (2.14)

2.3. CONTROL IN THE DISPERSIVE REGIME 16

where |g〉 and |e〉 are the ground and excited states of the qubit. There are two complementary

pictures we can adopt when thinking about this Hamiltonian: Either there is a χ frequency

shift of the cavity when the qubit is in the excited state, or there is a χ frequency shift of the

qubit per photon in the cavity. When we attempt to control this system, we again introduce

drives:

H = χa†a |e〉〈e|+ (Ω(t)σ− + ε(t)a+ h.c.) (2.15)

There are some “obvious” ways we can exploit this Hamiltonian to perform operations, which

taken together, form a “toolkit” for manipulating cQED systems (Vlastakis, 2015). The five

most important members of this toolkit are:

1. unselective cavity displacements: Dα

2. unselective qubit rotations about axis cos(φ)σx + sin(φ)σy: Rφ(θ)

3. entangling conditional phase: Cφ = exp
(
iφa†a |e〉〈e|

)
4. selective cavity displacements Dα |g〉〈g|+ Ic |e〉〈e|

5. selective qubit rotations: |0〉〈0|Rφ(θ) + (Ic − |0〉〈0|) Iq

To obtain the first two, we note that, given a large enough driving field (Ω � χ or ε � χ),

we can simply ignore the effect of the interaction and produce the unselective variants of these

operations. The entangling phase can be prodcued by simply waiting, i.e. Ω = ε = 0. If

there is a superposition state in both the qubit and the cavity3, the two systems will become

entangled. In general we can make gates of the form Cφ = exp
(
iφa†a |e〉 〈e|

)
by evolving

under the Hamiltonian 2.14 for a time t = φ/χ. For instance, over a time t = π/χ, we can use

eiφa
†a |α〉 =

∣∣∣eiφα〉 to show

(|g〉+ |e〉) |α〉 → |g〉 |α〉+ |e〉 |−α〉 (2.16)

We can obtain the final operations by re-introducing a drive term, but now weakly. If a drive

pulse is sufficiently long, and hence its bandwidth is sufficiently narrow (BW � χ) then the
3A displaced state |α〉 will do, since it is a superposition of photon number states

2.3. CONTROL IN THE DISPERSIVE REGIME 17

x̂

p̂

(a)

x̂

p̂

(b)

Figure 2.3: Phase-space rotation conditional on qubit state. We can represent the state of
an oscillator entangled with a qubit by showing the oscillator state conditioned on a given qubit
state. Here we show the oscillator state conditioned on |g〉 as a blue outline in phase space, while
the state conditioned on |e〉 is red. (a) shows an unentangled coherent state, |g, α〉 + |e, α〉.
(b) shows how, under the action of the χa†a |e〉〈e| interaction, the cavity becomes entangled
with the qubit by rotating only the |e〉 picture with respect to the |g〉 picture.

drive can be made selective with respect to the state of the undriven system. For instance, a

narrow drive, centered around zero-frequency in this rotating frame, applied to the transmon,

will induce Rabi oscillations if and only if the cavity contains zero photons. This is a photon-

number selective qubit drive. By detuning this drive by a frequency nχ, for some integer n,

this drive can become selective on any number of photons, resulting in the operation:

R
(n)
φ (θ) = |n〉〈n|Rφ(θ) + (Ic − |n〉〈n|) Iq. (2.17)

Conversely, a drive applied to the cavity with such a narrow bandwidth will induce a displacement

of the cavity, if and only if the qubit is in the ground state.

2.3.1 Applications: Parity map

One of the most useful applications of this toolkit for our purposes is the photon number parity

mapping operation. Photon number parity is a property of the cavity which is defined to be

+1 when the number of photons is even, and −1 when the number of photons is odd. We can

2.3. CONTROL IN THE DISPERSIVE REGIME 18

represent this as an observable operator (Π) using regular ladder operators:

Π ≡ eiπa†a = (−1)a†a = Peven − Podd. (2.18)

Here we have defined the projectors onto the even and odd photon number parity subspaces:

Peven =
∑
k even

|k〉〈k| Podd =
∑
k odd
|k〉〈k|

The parity map operation copies the bit of information corresponding to the photon number

parity from to the state of the qubit. The linchpin of this operation is the entangling conditional

phase operation. We can see how they are related

Cπ = Ic |g〉〈g|+ Π |e〉〈e| (2.19)

= (Peven + Podd) |g〉〈g|+ (Peven − Podd) |e〉〈e| (2.20)

= PevenIq + Poddσz (2.21)

The entangling conditional phase, with an angle of π, flips the phase of the qubit if and only if

there are an odd number of photons (see figure 2.4). In order to make this into a parity map,

we need to flip the (computational basis) state (σx or σy) rather than the phase (σz). This

can be achieved by sandwiching the entangling operation by qubit π/2 rotations

R(π/2)CπR(−π/2) = PevenIq + Poddσy (2.22)

We can represent this operation in a more traditional circuit diagram form, like so:

Cavity Cπ

Qubit R(π2) • R(π2)

2.3. CONTROL IN THE DISPERSIVE REGIME 19

Figure 2.4: Experimental plot of qubit Ramsey spectroscopy vs. photon number. At
t ≈ 0.53µs the even and odd peaks coalesce on |g〉 and |e〉 respectively, indicating that this
wait time produces a parity map. The very slight asymmetry of the curves is a result of the
higher order dispersive shift, which makes the transmon frequency shift not exactly linear in
the photon number. This data was measured on sample 3 (table 5.1)

2.3.2 Applications: Wigner tomography

One of the most significant uses of the parity map operation is that it allows us to easily

characterize the quantum state of the cavity, via a process known as Wigner tomography. First,

let us recall what quantum state tomography is, and how it works on qubits. In tomography,

we have some process which generates a quantum state, and our goal is to learn what that

state is, by performing measurements. Because measurements are destructive, we need to use

many copies of the state. A general d dimensional quantum system has d2 − 1 degrees of

freedom in its density matrix, and therefore we need to measure the expectation value of d2−1

linearly independent operators in order to reconstruct the state. In a qubit, we can measure

the expectation value of 3 operators, typically σx, σy and σz.

In cavity quantum state tomography, we have an infinite dimensional system, so we do

not want to proceed by simply listing some set of operators. We would rather have a family

of operators generated in some simple way, where subsets of these operators can accurately

represent quantum states which we are reasonably likely to encounter in the lab. One way of

generating such a family of operators is via displacements. If we can measure a given operator

X, then we can also easily measure a new operator D−αXDα by first displacing the cavity by

2.3. CONTROL IN THE DISPERSIVE REGIME 20

an amount α, and then measuring X. Almost any operator X will suffice in order to generate

a tomographically complete set of measurements, but it turns out that parity (X = Π) is

a particularly effective choice which yields the Wigner function(Cahill and Glauber, 1969, eq.

4.12):

Wα(ρ) = 2
π
x 〈D−αΠDα〉ρ (2.23)

We can also represent this measurement in circuit form by concatenating a cavity displacement

with a cavity parity measurement:

Cavity Dα Cπ

Qubit Rπ
2 • Rπ

2

The effectiveness of the Wigner function in characterizing the cavity state derives from its

relationship with the marginal distributions.

∫
dpWx+ip(ρ) = 〈x|ρ|x〉 (2.24)∫
dxWx+ip(ρ) = 〈p|ρ|p〉 (2.25)

Here |x〉 and |p〉 are eigenstates of a + a† and i(a − a†), respectively. In this repsect it

resembles a joint probability distribution on position and momentum space. But unlike a

probability density function, the Wigner function can be negative (figure 2.5). Negativity of

the Wigner function is the signature of uniquely quantum mechanical states, which cannot be

thought of classically, and is equivalent to the notion of contextuality (Spekkens, 2008), which

states that the results of a quantum measurement depend on what other measurements one

might be trying to make.

Since the Wigner function is linearly related to the density matrix, it is a matter of simple

inversion to reconstruct the density matrix. The viability of this inversion is given by the

condition number of the operator relating the two. It is well conditioned for a sufficiently dense

sampling of the complex plane. See appendix C.1.2 for more details on how we perform state

reconstruction with Wigner tomograms.

2.3. CONTROL IN THE DISPERSIVE REGIME 21

−4 −3 −2 −1 0 1 2 3 4
x̂/xzpf

−4

−3

−2

−1

0

1

2

3

4

p̂/
p z

p
f

0

1

P
(x

)

0 1

P (p)

−2/π

0

2/π

Figure 2.5: Example Wigner function. The Wigner function for the cat state 1
N (|α〉+ |−α〉).

The function integrates to give the probability density for measurements in the position or
momentum bases. Unlike a joint probability density, the Wigner function can be negative, as
seen in the blue parts of the fringes between the two coherent states. xzpf and pzpf are the
zero-point fluctuations of the quadratures, which for mechanical oscillators are xzpf =

√
~

2mω

and pzpf =
√

~mω
2 .

2.3.3 Applications: qcMAP

The toolbox gives us a way of characterizing states of the cavity. What we need next is an

interesting state to characterize. We can easily generate coherent states |α〉, but the Wigner

function of such a state is just a shifted version of the Wigner function of the vacuum. One

of the core features of quantum mechanics is superposition, so we might hope to construct

superpositions of coherent states as an example of a non-trivial, non-classical state.

∣∣C±α 〉 ∝ |α〉 ± |−α〉 (2.26)

2.4. SNAP AND UNIVERSALITY 22

The “qcMAP” protocol, derived first by Leghtas et al. (2013a) and shown experimentally by

Vlastakis et al. (2013). Assuming we start in the coherent state |α〉, we can put the qubit into

superposition of |g〉 and |e〉 using π/2 rotation. Then if we again employ the conditional phase

space rotation Cπ we find we get part of the way there:

|g, α〉+ |e, α〉 Cπ−−→ |g, α〉+ |e,−α〉

This is almost what we want, but the cavity is still entangled with the transmon. This can be

dealt with using a clever combination of displacements and conditional qubit rotations.

|g, α〉+ |e,−α〉 Dα−−→ |g, 2α〉+ |e, 0〉

R
(0)
π−−−→ |g〉 (|2α〉+ |0〉)

D−α−−−→ |g〉 (|α〉+ |−α〉)

We can summarize this set of operations in the gate notation:

Cavity Dα Cπ Dα • D†α

Qubit Rπ
2 • Rπ

2.4 SNAP and universality

While it is clear from the preceding sections that the cQED toolkit enables the construction

of a wide variety of operations, it is also quite “ad hoc”. While the construction of certain

operations is quite obvious, or can be worked out simply on pen and paper, it lacks a general

recipe for going from a desired operation to a concrete circuit.

The first question which must be answered is that of the possibility of such a recipe. Is

there always a circuit which corresponds to a given operation? What we would like is something

resembling the Solovay-Kitaev theorem (Nielsen and Chuang, 2011) which gives a recipe for

producing approximations of any single-qubit operation from an “instruction set” of fixed single-

qubit gates.

2.4. SNAP AND UNIVERSALITY 23

This was achieved by Krastanov et al. (2015) which gave a construction for how to achieve

arbitrary operations on dispersively coupled cQED systems using a set of two operations: dis-

placements and selective number-dependent arbitrary phase (SNAP) operations. SNAP oper-

ations allow an arbitrary set of relative phases to be applied to different photon number states,

and can be represented with the form

S(~θ) =
∑
k

eiθk |k〉〈k| . (2.27)

The key to implementing such an operation is the combination of two concepts, the previously

discussed selective qubit rotations, and the notion of a “geometric phase.”

Geometric phases were first described by Berry (1984) in the context of explaining adiabatic

deformations of a Hamiltonian which traversed a loop in parameter space. Being an adiabatic

transformation, eigenstates are mapped onto themselves, but superpositions of eigenstates can

acquire relative phases which are dependent on the path traversed. Specifically, the phases are

equal to the integral over the interior of the path of a quantity defined on called the Berry

curvature. This was later generalized as a property of loops traversed within Hilbert space

by Aharonov and Anandan (1987). There are two salient examples of this phenomenon for

our purposes, one for cavities and one for qubits. In cavities, for instance, one can imagine

traversing a loop by performing the following displacements, tracing out a parallelogram in

phase space:

DαDβD−αD−β = e2i Imαβ∗ (2.28)

This equality can be checked using the relation

Dαf(a,a†)D−α = f(a+ α,a† + α∗). (2.29)

The resulting phase, it is easy to check, is given by the area enclosed by the loop, and this

is a general result which applies to loops other than parallelograms. A similar result can be

2.4. SNAP AND UNIVERSALITY 24

x̂

p̂

Dα

Dβ

D−α

D−β ei Imα∗β

Figure 2.6: Geometric phase from cyclic displacements. By performing a set of displace-
ments which traverses a fixed loop, the system acquires a total phase which is proportional
to the area of the enclosed loop. Here the area of the parallelogram is Imα∗β. This phase
is global and unobservable by itself, but can be made physically relevant by performing the
displacements in a selective, entangling way.

obtained for qubits,

Rφ(−π)R0(π) = eiφσz = eiφ |g〉〈g|+ e−iφ |e〉〈e| (2.30)

We can see that the phase is proportional to the area enclosed by the trajectory on the Bloch

sphere. Note that, in the context of a single cavity, or a qubit starting in the ground state,

there is no way to observe this phase, as it is a global phase. However, when the path taken

depends on the state of another system, this phase can become relative. If we replace the qubit

rotations in equation 2.30 with photon number selective rotations from 2.17 we obtain

R
(n)
φ (−π)R(n)

0 (π) = eiφ |n, g〉〈n, g|+ e−iφ |n, e〉〈n, e|+ (Ic − |n〉〈n|) Iq (2.31)

We can obtain the SNAP operation (2.27) by chaining several of these operations together

(figure 2.8).

R
(N)
θN

(−π)R(N)
0 (π) · · ·R(0)

θ0
(−π)R(0)

0 (π) =
N∑
k=0

eiθk |k, g〉〈k, g|+ e−iθk |k, e〉〈k, e| (2.32)

= S(~θ) |g〉〈g|+ S(−~θ) |e〉〈e| (2.33)

2.4. SNAP AND UNIVERSALITY 25

x
y

|e

|g

Figure 2.7: Geometric phase on the Bloch sphere. By performing a set of rotations which
bring the energy eigenstates back to themselves, we effectively perform a rotation around the z
axis, with angle given by the enclosed area. Unlike the cavity case, the phase is state-specific.
This imparts one phase to the state |g〉, and the opposite phase to the state |e〉.

Figure 2.8: Circuit depiction of SNAP. In this figure, the upper set of lines represent the
photon number states which compose the cavity, and the bottom line represents the qubit.
The SNAP protocol consists of a set of conditional qubit flips (here all of the rotations are by
an angle pi, i.e. Rθ = cos θσx + sin θσy

2.4. SNAP AND UNIVERSALITY 26

Figure 2.9: SNAP energy level diagram. The SNAP protocol consists of simultaneous drives
on the χ-separated transitions |g, n〉 ↔ |e, n〉 for all relevant n. The different enclosed areas
on the |n〉 conditional Bloch spheres gives a phase to the relevant photon number state. The
progressive sum of the different qubit drives produces a pulse shape shown at the bottom.
In order to have complete control of the cavity, a photon number changing drive, such as the
displacement, indicated in orange, must be added. Figure adapted from Krastanov et al. (2015)

We see that, assuming the transmon starts in the ground state, the correct SNAP operation

is performed on the cavity. While this construction seems awkward and unwieldy at first

glance, this protocol can be drastically simplified by realizing that the various selective pulses

on different photon number states can be performed simultaneously, as shown in figure 2.9.

SNAP is not a true addition to the cQED toolbox, but rather a re-arrangement, with an

eye towards cavity control. It has the important property that, assuming the qubit begins in

the ground state, the qubit remains unentangled with the cavity at the end of the operation.

Krastanov et al. (2015) showed that any operation on the cavity could be approximated by an

alternating sequence of SNAP operations and displacements, following an argument similar to

that in appendix B. One can approximate a target unitary operation U as

U ≈Dα1S(~θ1)Dα2S(~θ2) · · ·DαNS(~θN) (2.34)

In order to find the parameters, {θk} and {αk}, in the construction 2.34, one must turn to a

numerical optimization, using a computer to evaluate the fidelity with which some proposed

parameter set approximates the desired operation, and modifying the parameters to increase

that fidelity. This continues in successive rounds until a desired fidelity is reached.

2.5. OPTIMAL CONTROL 27

2.5 Optimal control

The construction 2.34 has a serious downside when it comes to practical application however.

While some operations can be constructed using a small number of gates, for instance the

construction of Fock state |1〉 as shown in Heeres et al. (2015), in general an operation on n

photons requires O(n2) gates. We can reduce this cost by noting that the form of 2.34 was

motivated primarily by theoretical convenience in terms of analysis, rather than optimality in

terms of performance. Specifically, we can see that the construction consists of alternating

sections of driving the cavity and driving the qubit. Additionally, the qubit drive is designed to

leave the qubit unentangled from the cavity. In this case we have a clear intuitive model for

the system dynamics in each stage. However, there is no technical reason why we cannot drive

both the qubit and cavity at the same time. While the dynamics are more difficult to reason

about without resorting to brute numerical integration, it is clear that the fastest version of an

operation will not arbitrarily enforce the alternating form seen in the 2.34 construction. The

implication is that we should choose driving fields from a much broader set of possibilities. A

drive should be acceptable so long as we can predict in simulation what the result of such a

driving field will be. We will show how the combination of a differentiable quantum simula-

tion algorithm and gradient descent optimization methods results in the ability to numerically

identify suitable driving fields in chapter 4, and demonstrate the efficacy of these techniques as

applied to a particular problem in chapter 6.

2.5. OPTIMAL CONTROL 28

qubit

cavity

qubit

cavity

Figure 2.10: Comparing SNAP and optimal control sequences. This is a (not-to-scale)
schematic comparing the structure of the SNAP and optimal control protocols in the time
domain. The SNAP protocol (top) for universal cavity control designates alternating periods
of driving the transmon and the cavity. The short cavity pulses produce unconditional displace-
ments, and the transmon driving (each step of time O(1/χ)) produces relative phases on the
different photon numbers (equation 2.27). Alternating these components allows any operation
to be well approximated in a number of steps related to the number of photons involved. In
comparison, the optimal control method (bottom) has no such restriction preventing the simul-
taneity of transmon and cavity driving. This particular driving field comes from the experiment
in chapter 6, and produces a Hadamard operation on a cat encoded qubit. This method of
control can in general be much shorter in length than the SNAP protocol. Note that this pulse
is still limited in the sense of having intentionally restricted amplitude and bandwidth.

Chapter 3

Doing more with less: error

correction with harmonic oscillators

In quantum computation, information is no longer binary, or even discrete, but parameterized

by continuously varying amplitudes. Even very small disturbances to these amplitudes can

accumulate and inevitably destroy the result of a computation. The first critics of quantum

computation pointed to this aspect, and suggested that quantum computing might only be

a mathematical curiosity, no more useful than analog computers, which might beat classical

digital computers at solving some problems in an idealized setting, but cannot scale due to the

noise and imperfections that pervade the real world. The development of the first quantum error

correction protocols (Shor, 1995) demonstrated that this is a flawed analogy. While quantum

states are “analog” entities, the errors which can occur are discrete, or more accurately, can be

discretized by the act of measurement. Error correction is the foundation of useful quantum

computation, and without it quantum mechanics is too fragile an edifice for the construction

of useful machines.

In this chapter, I will introduce our approach to performing error correction, by encoding

information in harmonic oscillators. I will begin in section 3.1 by explaining the generic mathe-

matical framework underpinning quantum error correcting codes in all types of systems. Next,

in 3.2 we see how this framework is applied in “typical” two-level system based error correcting

codes, as well as some of the issues which make implementing this approach a daunting task. In

29

3.1. ERROR CORRECTION CRITERIA 30

section 3.4, I will explain how moving from two-level systems to cavities changes the underlying

error model. Subsequently, in 3.5, we see how the error model and error correction criteria

combine to guide our development of oscillator-based encodings. This leads us to consider “cat

codes,” encodings based on superpositions of coherent states (3.6) as well as other types of

codes (3.7).

3.1 Error correction criteria

There are many quantum error correcting codes, but at the heart of all of them, is the satis-

faction of the error correction criteria, first put forward by Knill and Laflamme (1997). In this

model, we imagine we encode quantum information by preparing a “logical” state |ψL〉 which

is a superposition of “code words” {|kL〉}:

|ψL〉 =
∑
k

ck |kL〉 (3.1)

This state is then processed by a noisy quantum channel, denoted in the Kraus operator-sum

representation

ρin = |ψL〉〈ψL| 7→ ρout =
∑
k

Ek |ψL〉〈ψL|E†k (3.2)

The criteria state that the encoded information can be exactly recovered from ρout if and only

if the following conditions are met for all i and j in the dimension of the code space:

〈jL|E†bEa |iL〉 = Cabδij . (3.3)

These criteria can be separated into two parts. The δij indicates that the action of the error

operators cannot make different code words overlap with each other, which would certainly

scramble the encoded information. The Cab part (a matrix independent of i and j), indicates

that the rate of occurrence of the errors must be the same for all code words. We can represent

this in operator notation, as in Nielsen and Chuang (2011), as

PLE
†
bEaPL = CabPL, (3.4)

3.2. ERROR MODELS FOR QUBITS 31

where PL =
∑
k |kL〉〈kL| is the projector on the logical space. In the case of a logical qubit,

with two code words |0L〉 and |1L〉 the criteria reduce to the equations

〈0L|EaEb |1L〉 = 0 (3.5)

〈0L|EaEb |0L〉 = 〈1L|EaEb |1L〉 (3.6)

3.2 Error models for qubits

In general, a quantum channel acting on a d dimensional system has d2(d− 1)2 parameters1.

This gives 12 parameters for a channel on qubits. This gives a very large space of possibilities

for how errors can creep into the system. However, we can collect this entire continuum of

error models under a single umbrella via error discretization. We can achieve this using two

facts. First, it is easy to check, if an error correcting code {|0L〉 , |1L〉} satisfies the criteria 3.3

for a set of errors {Ek}, then it also corrects for a set of errors which is linearly related, i.e.

{Fj = mjkEk}, for some set of coefficients m. Second, any single-qubit error operator can

be represented in the Pauli basis, E = cII + cxσx + cyσy + czσz. Therefore, it is possible to

correct any single qubit error model using a code which targets only single qubit Pauli errors.

To simplify even further, we can imagine that the rate for each Pauli channel is identical, which

results in the standard “depolarizing channel” model of qubit errors.2

ρ→ p

2I + (1− p)ρ (3.7)

This is equivalent to a set of errors given by {(1 − 3p
4)I, p4σx,

p
4σy,

p
4σz}. It should be clear

that there can be no error correcting code satisfying equation 3.3 when our system consists

of a single qubit undergoing depolarizing noise. When we consider multiple qubits undergoing

depolarizing noise, we take the error operators to be any Pauli operator acting on any individual

qubit. This is only approximately correct, since there are error operators corresponding to errors
1This can be derived by starting with the d4 parameters of a hermiticity-preserving linear map on d2-

dimensional operators, and subtracting the d2 constraints imposed by the trace preservation.
2This approximation can be justified via a process of “Clifford twirling” which replaces any error channel with

a depolarizing one. See section C.4.

3.3. MAKING ERROR CORRECTION WORK IN PRACTICE 32

on multiple qubits. We can justify omitting these terms when p is small, since they will have

rates scaling like O(pk), with k ≥ 2. Some simple math shows how many qubits we need.

If we have n qubits there are 3n + 1 error operators, 3 Paulis per qubit, plus the identity

corresponding to the no-error case. In order for each error to be uniquely identifiable, we must

have a two-dimensional subspace corresponding to each error operator, for a total dimension of

2(3n+ 1).3 is not strictly require The dimension of an n qubit system is 2n, so we must have

2n ≥ 2(3n+ 1), which is only possible when n ≥ 5.

There are many examples of codes which have been found to satisfy these properties.

Almost all of these codes are elegantly described by the “stabilizer code” framework presented

in Gottesman (1997). The first of these, and the easiest to understand, was the nine qubit Shor

(1995) code, which concatenates three-qubit bit-flip and phase-flip encodings. The smallest,

a five qubit code, was found by Laflamme et al. (1996). However, the most elegant, for a

variety of reasons, is the seven qubit encoding by Steane (1996). While correction of single-

qubit errors is an attractive place to start, without orders of magnitude reduction in physical

qubit error rates, codes which allow for multiple errors are needed. The “obvious” approach is

concatenation, which stacks error correction protocols, so that the logical qubits of one layer

form the physical qubits of the layer above. While this is the easiest approach to describe on

paper, topological codes are an attractive alternative because they can be realized using only

local interactions between qubits in a lattice (see figure 3.1).

3.3 Making error correction work in practice

There have been experimental implementations of the several of these codes, in trapped ions

Chiaverini et al. (2004); Nigg et al. (2014), nitrogen vacancy centers Cramer et al. (2016), and

superconducting circuits Reed et al. (2012); Kelly et al. (2015); Ristè et al. (2015); Córcoles

et al. (2015). However, none of these demonstrations had the desired effect of producing a

higher quality qubit. Whether measuring the lifetime or the gate fidelity, the encoded qubits
3This property of uniquely identifying every error makes a code “non-degenerate,” and is not strictly required

by equations 3.3. However, it can be shown that no smaller (n ≤ 4) degenerate quantum codes exist which
correct for single qubit errors.

3.3. MAKING ERROR CORRECTION WORK IN PRACTICE 33

Figure 3.1: Steane code & Surface code The Steane code (Steane, 1996)) is the smallest
example of a Calderbank, Rains, Shor, and Sloane (1997) (CSS) code which corrects for any
single qubit error. It consists of 7 physical qubits, and requires the measurement of 6 stabilizer
syndromes, each of weight 4 (left). It is also the smallest example of the “color code” (Bomb́ın,
2015) which is a type of topological error correcting code. The most common topological error
correcting code is the surface code (right). These codes can be extended by tiling of a primitive
unit cell, and are designed to tolerate correlated errors so long as the errors remain “local.”
Figures adapted from Campbell et al. (2012) and Fowler et al. (2012).

end up being worse than the physical qubits, unless errors were deliberately introduced. Why

is this the case? Gate fidelity is a separate beast, which requires a discussion of the issues of

fault-tolerance, which we shall delay until chapter 8. If we focus solely on the simpler case

of storage error rates, the first issue one encounters is that of overhead. The mere act of

increasing the size of the system, say from one qubit to n qubits, has increased the rate of

error occurrence by a factor of n. Now, even adding a single layer of error correction, for an

error rate of γ and a time of δt, we will go from a physical qubit error probability of p = γδt

to a logical qubit error probability pL =
(n

2
)
p2. Therefore, unless p < 1/

(n
2
)
, the final error rate

will be worse. Under this consideration, one wants to minimize δt, that is perform correction

as often as possible, to avoid double error events. However, the problem is not this simple. In

practice one must actually detect and correct the error using some protocol.4 This protocol

generally involves introducing an ancilla qubit, interacting this ancilla with many system qubits,

and finally performing a measurement of the ancilla. Each of these steps can have imperfections
4In many types of codes, as in the cat-code to be described, it is actually possible to get away without

correction, at least until the final stage of decoding.

3.4. ERROR MODELS FOR CAVITIES 34

which add back into the overall error rate, in a way which is independent of the time. Adding

all of these per-round errors into one quantity pper-round, the total effective error rate is

γL ≡
pL
δt
≈
(
n

2

)
γ2δt+ pper-round

δt
. (3.8)

If we choose δt to minimize this quantity γL one finds

δt =
√
pper-round(n

2
)
γ2 (3.9)

γL = 2γ

√√√√(n
2

)
pper-round (3.10)

Now we find improvement only when γL < γ or equivalently,

2

√√√√(n
2

)
pper-round < 1 (3.11)

From this perspective, we see the fundamental issue is both fighting the overhead (here
(n

2
)
)

and the error associated with the detection and correction (pper-round).

3.4 Error models for cavities

In principle, given the infinite dimension of the harmonic oscillator Hilbert space, there could be

an infinite number of error operators to be accounted for. However, in practice it is often the

case that, when compared with most two level systems, there are actually fewer relevant errors

to consider. This comes down mostly to the fact that cavities’ resonant frequencies are defined

almost entirely by their geometry and the speed of light. The stability of these properties leads

to stability of the cavity resonant frequencies, and thus essentially eliminates intrinsic dephasing

noise. In contrast, most two level systems have frequencies which depend on many fluctuating

parameters, such as magnetic or electric fields.

This leaves energy decay. Resonators contain energy very well, but never perfectly. Energy

always leaks from a resonator into its environment. This energy loss can be modelled using a

3.5. ERROR CORRECTION IN DAMPED HARMONIC OSCILLATORS 35

Lindblad-Markov master equation with jump operator a (see appendix A.6):

ρ̇ = i[H,ρ] + κD[a](ρ), (3.12)

where the dissipator Liouvillian is defined as

D[a](ρ) ≡ aρa† − 1
2
{
a†a,ρ

}
. (3.13)

If we integrate this equation for a time δt, we can write the effective quantum channel in the

operator sum notation:

ρ→
∑
n=0

EnρE
†
n (3.14)

where the Kraus operator En corresponds to the loss of n photons (Michael et al., 2016)

En =

√
(1− e−κδt)n

n! e−
κδt

2 a
†aan (3.15)

The part involving e−κδt2 a
†a gives the amplitude damping component, which we will come back

to in section 3.6.2. In the limit of κδt� 1, we can make the approximation

E0 ≈ I (3.16)

E1 ≈
√
κδta (3.17)

En>1 = O(κδt) (3.18)

3.5 Error correction in damped harmonic oscillators

Let us take a look at the error correction criteria 3.5 and 3.6 again from the perspective of

the damped harmonic oscillator error set, {I,a}. In this case, there are eight independent

equations which constitute the error correction criteria, and these equations all have reasonable

interpretations, which one can keep in mind while considering potential codes. To begin with,

our code words must be orthogonal

〈0L|1L〉 = 0 (3.19)

3.5. ERROR CORRECTION IN DAMPED HARMONIC OSCILLATORS 36

Photon loss must not make |1L〉 look like |0L〉 or vice versa.

〈0L|a |1L〉 = 0 (3.20)

〈0L|a† |1L〉 = 0 (3.21)

Our states must remain orthogonal after photon loss.

〈0L|a†a |1L〉 = 0 (3.22)

Our states are normalized.

〈0L|0L〉 = 〈1L|1L〉 (3.23)

Photon loss must not take |+L〉 ∝ |0L〉+ |1L〉 to |−L〉 ∝ |0L〉 − |1L〉, or vice versa.5

〈0L|a |0L〉 = 〈1L|a |1L〉 (3.24)

〈0L|a† |0L〉 = 〈1L|a† |1L〉 (3.25)

The states must have equal average photon number, and thus equal probability of decay oc-

curring.

〈0L|a†a |0L〉 = 〈1L|a†a |1L〉 (3.26)

While not strictly necessary, one convenient way of satisfying equations 3.24 and 3.25 is to

impose the constraint that

〈0L|a |0L〉 = 〈1L|a |1L〉 = 0 (3.27)

This can be interpreted as saying that we should look for codes where the “error space” formed

by the span of a |0L〉 and a |1L〉 should be completely orthogonal to the uncorrupted logical

space. In all of the (functional) codes we will analyze here, this additional constraint will be

satisfied.
5We can see the equivalence of these two statements by looking at 〈+L|a |−L〉 = 0 and making use of 3.20

and 3.21.

3.6. CAT CODES 37

3.6 Cat codes

Given that, for short times, the single dominant error channel for a damped harmonic oscillator

is the application of the photon annihilation operator a, one is naturally led to consider coherent

states, when considering building codes for this channel. This is because coherent states are

eigenstates of a:

a |α〉 = DαD−αaDα |0〉 (3.28)

= Dα(a+ α) |0〉 (3.29)

= α |α〉 (3.30)

Is this sufficient then? Can we protect information by encoding into coherent states? Let’s see

what happens when we do so, with |0L〉 = |α〉 and |1L〉 = |β〉, and with the (approximate)

error operators {I,a}. The error correction orthogonality criteria, 3.5, becomes 4 equations:

〈α|β〉 = e−|α−β|
2/2 ?= 0

〈α|a |β〉 = βe−|α−β|
2/2 ?= 0

〈α|a† |β〉 = α∗e−|α−β|
2/2 ?= 0

〈α|a†a |β〉 = α∗βe−|α−β|
2/2 ?= 0

While these equations can never be exactly satisfied, they can be arbitrarily close to being

satisfied by taking α and β to be sufficiently far apart. So far so good! Our basis states remain

orthogonal under the action of the errors. We proceed to the next criteria, 3.6, where we again

get four equations.

〈α|α〉 = 1 ?= 1 = 〈β|β〉

〈α|a |α〉 = α
?= β = 〈β|a |β〉

〈α|a† |α〉 = α∗
?= β∗ = 〈β|a† |β〉

3.6. CAT CODES 38

〈α|a†a |α〉 = |α|2 ?= |β|2 = 〈β|a†a |β〉

The first is of course satisfied, and we can satisfy the last by choosing β = eiφα. However,

we cannot satisfy middle two. There are several ways we can interpret this failure. The most

clear, however, is to consider the logical superposition states |±L〉 = |0L〉 ± |1L〉:

〈−L|a |+L〉 = (〈α| − 〈β|)a (|α〉+ |β〉) (3.31)

≈ α− β (3.32)

We see that the action of the error takes |+L〉 to at least some part |−L〉. This means that,

while the errors may not induce confusion in the |0/1L〉 basis, it will corrupt superposition

states.

We can solve this problem by recalling that equations 3.20, 3.21 and 3.27 suggest that we

make the “error space” completely orthogonal to the “logical space.” We can do this by noting

that the action of the error changes the photon number parity: if we have an even number of

photons, and then we lose a photon, we now have an odd number of photons. This suggests we

encode our information into states of definite parity, in which case the error space is guaranteed

to be orthogonal to the logical space. While coherent states do not have definite parity (with

the exception of the vacuum), we can easily construct such states with a sparse representation

in the coherent state basis (N is a normalization constant):

1
N

(|α〉 ± |−α〉) = 1
N
∑
n

(
αn√
n!
± (−α)n√

n!

)
|n〉 (3.33)

= 1
N
∑
n

αn√
n!

(1± (−1)n) |n〉 (3.34)

= 1
N

∑
n even/odd

2αn√
n!
|n〉 (3.35)

≡
∣∣C±α 〉 (3.36)

These are the so-called cat states, theoretically described by Leghtas et al. (2013b) and

Mirrahimi et al. (2014), and produced experimentally by Vlastakis et al. (2013). They are

3.6. CAT CODES 39

named by analogy to Schrödinger’s thought experiment, where we imagine that, in the limit

of large amplitudes α, the state is a superposition of what would otherwise be considered

“classical” states.

If we want to choose logical basis states using cat states such that the parity is well defined

in the logical subspace, we must keep the sign fixed (we choose even states for reasons discussed

in section 3.6.1) and differentiate the states by choice of α. Maximizing symmetry leads to the

following encoding6

|0L〉 =
∣∣∣C+

α

〉
(3.37)

|1L〉 =
∣∣∣C+

iα

〉
(3.38)

This encoding satisfies our demand that the photon number parity be well defined and even.

We know then consequentially, that under the action of photon loss (a) the parity will remain

definite, but change from even to odd.

a |0L〉 = a
∣∣∣C+

α

〉
(3.39)

= 1
N

(a |α〉+ a |−α〉) (3.40)

= 1
N

(α |α〉 − α |−α〉) (3.41)

= α
∣∣C−α 〉 ≡ α |1E〉 (3.42)

a |1L〉 = a
∣∣∣C+

iα

〉
(3.43)

= iα
∣∣∣C−iα〉 ≡ iα |1E〉 (3.44)

We see then, that more than just going to the odd parity subspace, the action of photon loss

keeps us in the odd parity cat states, which form the “error space” {|0E〉 , |1E〉}. It is instructive
6This is not the final definition we will be using, which is rather equations 3.56 and 3.57.

3.6. CAT CODES 40

|+L〉

|−L〉|i+L〉

|i−L〉

|0L〉

|1L〉

Figure 3.2: Cat code logical Bloch sphere. Wigner functions for the six stabilizer states of
the logical Bloch sphere using cat states of size α =

√
3. This follows definitions 3.56 and 3.57,

and is the same size cat as is used in the experimental implementation of chapter 6.

to see what happens when we lose a second photons after the first:

a |0E〉 = a
∣∣C−α 〉 (3.45)

= 1
N

(a |α〉 − a |−α〉) (3.46)

= 1
N

(α |α〉+ α |−α〉) (3.47)

= α
∣∣∣C+

α

〉
≡ α |0L〉 (3.48)

a |1E〉 = a
∣∣∣C−iα〉 (3.49)

= iα
∣∣∣C+

iα

〉
≡ iα |1L〉 (3.50)

We see then that photon loss returns us from the error space back to the logical space. We do

3.6. CAT CODES 41

not return without incident, however.

a2 |0L〉 = α2 |0L〉 (3.51)

a2 |1L〉 = −α2 |1L〉 (3.52)

We can remove the factor of α2 via normalization, but the relative sign between |0L〉 and |1L〉

is an σz operation on the logical qubit which switches |+L〉 and |−L〉. In fact, photon loss

forms a 4-cycle on the cat codes

a4 |0L〉 = α4 |0L〉 (3.53)

a4 |1L〉 = α4 |1L〉 (3.54)

However, so long as we know the number of photons lost modulo 4, we know what position

we occupy within the 4-cycle and correspondingly how to recover our quantum information

(figure 3.3).

From the perspective of a quantum memory application, where the only goal is to store and

recover quantum information, the only thing we must do is count photon jumps, in a way which

does not learn information about the encoded qubit, which is possible by measuring specifically

the photon number parity. By repeatedly measuring the photon number parity, we can infer

that, between two parity measurements where the parity remains the same, no photons were

lost, and between parity measurements which differ, a single photon was lost. This is a valid

inference only in the limit where the probability of multiple photons being lost is negligible.

The extent to which this is not negligible represents a failure mode of the encoding.

Over a period of time δt given some uniform photon loss rate κ, and assuming the population

of cavity is kept fixed at n̄, the number of photons lost should follow a Poisson distribution

with rate parameter n̄κδt, i.e. p(n) = (n̄κδt)ne−κδn̄t/n! ≈ (κδt)n/n! in the limit of small κδt.

The action of the error correction can be seen as eliminating the error associated with single

photon loss, pushing the error rates from first to second order, i.e. O(n̄κδt) to O((n̄κδt)2).

In order for cat code error correction to be practical to use in real systems, there are several

3.6. CAT CODES 42

Figure 3.3: The 4 cycle of the cat code under photon loss. The logical subspace (red
Bloch spheres) has definite (even) photon number parity. Losing a photon brings us from the
logical space to the error space (blue Bloch spheres) which has odd photon number parity. If
we lose additional photons, we are taken back to the logical space. However, this process of
losing two photons does not behave as the identity, but rather amounts to the application of a
logical Pauli operator corresponding to the axis associated with the two-legged cat states (in
this figure, σz, but for the code words in equations 3.56 and 3.57 it is σx) This figurew was
adapted from Ofek et al. (2016).

issues we must address. First is the possibility of preparing such states in the first place, an

obvious prerequisite. Next is the detection and correction of photon loss in a way which does

not “learn too much” and destroy the encoded quantum information. Additionally we must

consider other types of errors, both of the coherent control type as well as the dissipative noisy

type, and make sure these errors are either negligible or suppressed. Finally, if we wish to go

beyond information storage, and do actual computation, we will need ways of manipulating the

cat states, preferably in a way which preserves the structure of the errors.

We will address the preparation and manipulation problems head on in chapter 6, since

these issues are tied closely to the particular control scheme employed, specifically using far

detuned, dispersively coupled transmon qubits to allow for universal control of cavity states.

We can discuss the issue of error detection and correction at a much higher level of generality.

3.6. CAT CODES 43

3.6.1 Choosing α

Cat codes are not a single code, but are instead a family of codes parameterized by the coherent

state amplitude α. As α becomes bigger, the average photon number n̄ increases quadratically,

as |α|2. The rate of photon loss is proportional to n̄, and therefore increasing α can increase

the error rate via undetected double photon loss events. However, α cannot be too small either,

because of the non-orthogonality of coherent states.

〈α|β〉 = 〈0|β − α〉 = e−|α−β|
2/2 (3.55)

While this non-orthogonality is the root source of the problem, it is possible to formulate exactly

orthogonal code words for any given value of α by defining our basis states in terms of the

“four-legged cats” instead of the “two-legged cats”:

|0L〉 = 1
N+

(|α〉+ |−α〉+ |iα〉+ |−iα〉) (3.56)

|1L〉 = 1
N−

(|α〉+ |−α〉 − |iα〉 − |−iα〉) (3.57)

Here N± 6= 2 because of the finite overlap of of
∣∣C+

α

〉
and

∣∣∣C+
iα

〉
. However, |0L〉 and |1L〉 are

exactly orthogonal, as can be confirmed via examining their Fock basis representations:

|0L〉 = 4
N+

∑
n

α4n
√

4n!
|4n〉 (3.58)

|1L〉 = 4
N+

∑
n

α4n+2√
(4n+ 2)!

|4n+ 2〉 (3.59)

These states have definite and distinct “super-parity,” defined by the second-least significant

bit of the binary expansion of the photon number. This is orthogonal, no matter the value of

α, so long as α > 0. It is instructive to consider the limit of infinitesimal α, which results in

the following encoding:

|0L〉 = |0〉 (3.60)

|1L〉 = |2〉 (3.61)

3.6. CAT CODES 44

1.0 1.5 2.0 2.5 3.0
α

−1.0

−0.5

0.0

0.5

1.0

1.5

〈a
† a
〉−
|α
|2

|+L〉
|−L〉

Figure 3.4: Expected photon number in cat code vs α. The photon number difference
vanishes at α ≈ 1.54, 2.34 and 2.94. This can make a difference if the cat code is used for
only a single round of error correction. In a more long-term error correction setting, we will
need the code to work equally well in both the even- and odd-parity subspaces. Additionally, if
no mechanism is provided to re-inject photons, α will decline over time (section 3.6.2)

This is obviously not a valid error correction code. While we can certainly detect the presence

of an error here, by measuring the state |1〉, once we do this, there is no way of recovering the

encoded information. For general small values of α, the problem is the difference in photon

number between the two logical states, violating the error correction criteria 3.26. This can be

seen from figure 3.4, which shows this deviation of n̄ from |α|2 as a function of α. There are

particular values of α at which the difference vanishes. These points are the optimal point for

the even encoding. A general examination of these issues involved with selecting α is given by

Li et al. (2017).

3.6.2 “No-jump” errors and autonomous stabilization

While monitoring the parity degree of freedom can track the occurrence of photons escaping

the cavity, there is no point in doing so indefinitely. There are a finite number of photons in

the cavity, and after a sufficiently long time, all of them leak out, and we will inevitably find

ourselves in the vacuum state. This would seem to set a time limit on our ability to perform

error correction. Let’s see how this manifests dynamically by first considering the evolution

3.6. CAT CODES 45

of a coherent state under photon loss. Using the Lindblad equation for a damped harmonic

oscillator (appendix A.6), we have

∂tρ = κ

(
aρa† − 1

2{a
†a,ρ}

)
. (3.62)

There are two parts to this evolution, the “jump” component aρa†, corresponding to the loss

of a a photon, and the “no jump” component {a†a,ρ}, corresponding to the backaction of the

effective weak measurement photon-loss induces. A coherent state is an eigenstate of photon

loss, so it turns out that we can actually ignore the effect of photon jumps, and focus on the

backaction.7 This is effectively a non-Hermitian Hamiltonian evolution (Dalibard et al., 1993),

which being time-independent, has a matrix exponential solution. We can then show that a

coherent state remains a coherent state:

|ψ(t+ δt)〉 = e−
κ
2 δta

†a |α〉 (3.63)

=
∑
k

e−
κ
2 δtk

αk

k! |k〉 (3.64)

=
∣∣∣αe−κ2 δt〉 . (3.65)

A coherent state therefore collapses in amplitude, exponentially, with a timescale of 2
κ . In cat

states, similar behavior will occur. While we cannot ignore the effect of photon loss in the same

way (indeed this is the purpose of the error correction) the amplitude of the cat components

will inevitably shrink in the same way if not counteracted. So long as the coherent states |α〉

and |iα〉 remain sufficiently orthogonal, the induced error is manageable, but this cannot remain

the case over arbitrarily large timescales, without exponentially large cat state amplitudes. One

needs a mechanism for re-introducing photons to the cat code. We note that it is possible to

stabilize a coherent state against the effect of photon loss by providing a drive. This can be

checked by doing the algebra in the full master equation, but it can be more easily seen by

starting from the driven non-Hermitian Hamiltonian H = εa+ ε∗a† − iκ2a
†a, and seeing that

we can make the drive vanish by going to a displaced frame of amplitude 2iε
κ . This process is

7The photon loss component is not zero, but rather proportional to ρ. This term compensates for the loss
of normalization we see when only focusing on the backation.

3.7. ALTERNATE CAVITY ENCODINGS 46

completely analogous to the process of driving with a detuning, as described in appendix A.4.

It turns out that a similar mechanism can be employed to stabilize cat states. The problem

of using a drive like εa+ h.c. is that it necessarily changes parity and thus would immediately

mix the even and odd subspaces. What is needed is actually a parity-conserving drive of the

form εa2 + h.c.. This type of drive was implemented using sideband drives (see chapter 7)

and was shown by Leghtas et al. (2015) to stabilize a cat state in the cavity. More accurately,

it stabilizes not just a cat state, but any state in the manifold spanned by |α〉 and |−α〉.

However, this is not quite enough to stabilize all of the cat-code states spanned by 3.56 and

3.57. For this purpose, we need to go one level higher, and drive four photons at a time,

with a drive of the form εa4 + h.c. (Mirrahimi et al., 2014). Implementing such a drive is a

difficult, demanding task, but progress has recently been made toward this goal (Mundhada

et al., 2018). In addition, it is possible to use optimal control pulses (as discussed in chapter 6)

to perform re-inflation in a stroboscopic manner, rather than a continuous one.

3.7 Alternate cavity encodings

3.7.1 Binomial codes

Cat codes are built from coherent states, and are best integrated with other components geared

toward coherent states, such as those found in the dispersive toolbox described in section 2.3.

However, there are occasions and reasons to prefer states which are sparsely described in the

photon number basis. For this reason, we often turn to the so-called “binomial codes,” described

by Michael et al. (2016). These codes are closely related to the cat code, but are constructed

in such a way that they are supported by a finite number of photon number states. There is an

entire family of such codes which can be constructed to protect against any number of photon

loss (a), photon gain (a†) or dephasing events (a†a). The best known version, however, is the

one which mimics the original cat code (colloquially known as the “kitten code”).

|0L〉 = 1√
2

(|0〉+ |4〉) (3.66)

|1L〉 = |2〉 (3.67)

3.7. ALTERNATE CAVITY ENCODINGS 47

|+L〉

|−L〉|i+L〉

|i−L〉

|0L〉

|1L〉

Figure 3.5: Binomial code logical Bloch sphere. Wigner functions for the six stabilizer states
of the logical Bloch sphere using the lowest order binomial encoding (equation 3.66). These
states clearly resemble the cat-code states (figure 3.2), but are supported by a finite number
of Fock states.

This is in some sense the smallest functioning version of the cat code (although not the smallest

functioning code, see section 3.7.3). In practice it operates in much the same way, requiring

continual monitoring of the parity degree of freedom to catch photon jumps as they occur.

Unlike the cat code, however, photon loss events must be immediately corrected, rather than

simply tracked, as the resulting error space

|0E〉 = |3〉 (3.68)

|1E〉 = |1〉 , (3.69)

is not a valid error correcting code at all. Additionally, the issue of no-jump errors are more

severe, as any decrease in n̄ takes us to an (at least partially) uncorrectable space. However,

because these code words involve such a small number of photons, different methods can be

3.7. ALTERNATE CAVITY ENCODINGS 48

|+L〉

|−L〉|i+L〉

|i−L〉

|0L〉

|1L〉

Figure 3.6: Six-legged cat code logical Bloch sphere. Stabilizer states of a generalized cat
code, which corrects up to two photon loss events. Created from equation 3.70, with d = 3
and α = 4.

used to address and manipulate them, as demonstrated in Rosenblum et al. (2018a).

3.7.2 Cat code generalizations

The cat code as presented consists of superpositions of 4 equally spaced coherent states. We

can easily generalize to 2d equally spaced coherent states, for any value of d (Li et al., 2017).

|0L〉 = 1
N

2d−1∑
k=0

∣∣∣eiπk/dα〉 (3.70)

|1L〉 = 1
N

2d−1∑
k=0

(−)k
∣∣∣eiπk/dα〉 (3.71)

For 2d coherent states in the code words, we can correct up to d − 1 photon loss errors,

essentially by defining code words which occupy only Fock state levels |n〉 with n = 0 mod 2d

or n = d mod 2d Fock state levels. We can see one example of these generalized codes in

3.7. ALTERNATE CAVITY ENCODINGS 49

figure 3.6, where in order to protect against two photon loss events, we can promote the four-

legged cat to a six-legged cat. This maintains a spacing of 3 photons between logical states,

ensuring that single or double photon loss events remain in orthogonal spaces to the code space.

3.7.3 Numerically optimized codes

A more exotic class of codes can be found by a numerical optimization. The code words pro-

duced by this procedure are not known to be generated by any generic analytic representation.

In order to find logical states |ψi〉 for i ∈ {0, 1} which allow for the correction of error operators

Ek for Ek ∈ {I,a}, one can consider the various inner products formed from the range of the

error operators acting on the logical states

fijkl = 〈ψi|E†kEl |ψj〉 . (3.72)

The degree of violation of the error correction criteria fijkl = δi,jck,l is summarized by the cost

function

c1 =
∑
k,l

|f00ij − f11ij |2 + |f01ij |2. (3.73)

In order to prefer lower occupation, the penalty

c2 = λn̄
∑
i

〈ψi|a†a |ψi〉 , (3.74)

is introduced with λn̄ = 10−3. An optimization is considered successful if the value c1 goes to

zero as we relax λn̄ → 0. Code words are produced by numerically optimizing over complex

unit vectors the total cost:

minimize
ψ0,ψ1∈Cd

c1 + c2. (3.75)

3.7. ALTERNATE CAVITY ENCODINGS 50

|+L〉

|−L〉|i+L〉

|i−L〉

|0L〉

|1L〉

Figure 3.7: Numerically optimized
√

17 code logical Bloch sphere. Wigner functions for
the six stabilizer states of the numerically identified “

√
17” code (equation 3.76)

Several of these codes have analytic expressions which have been found.8 One such code is the

“
√

17” code (Michael et al., 2016)

|0L〉 = 1√
6

(√
7−
√

17 |0〉+
√√

17− 1 |3〉
)

(3.76)

|1L〉 = 1√
6

(√
9−
√

17 |1〉 −
√√

17− 3 |4〉
)

(3.77)

The states of this code word are visualized in figure 3.7. It is interesting to note that the

error syndrome for this code is not photon number parity. This set of states manages to

be smaller than the binomial code (3.66) by enforcing condition 3.20 in a more subtle way.

Instead of ensuring that |0L〉 and a |1L〉 have disjoint support in the photon number basis, the

orthogonality relies on the relative signs of the amplitudes. In fact, the use of negative signs

in the relative amplitudes of the photon number states is the only known defining feature of
8These expressions have been found essentially by performing a reverse lookup from the floating-point repre-

sentation

3.7. ALTERNATE CAVITY ENCODINGS 51

these codes.

3.7.4 GKP codes

The oldest of the bosonic encodings is the code named after its authors, Gottesman, Kitaev,

and Preskill (2001), termed the GKP, or “grid” code. The motivation for this code comes from

considering a completely different model for the errors that the system undergoes. Instead

of thinking about photons leaking into the environment, one considers that the basic control

mechanism of an oscillator is displacement. What happens if there is noise on this control line?

The answer is small random displacements. The GKP code is designed so that, if one performs

an unknown displacement on the system which is within a small enough magnitude, then one

can measure some properties of the system which reveals this displacement, without revealing

any information about the encoded qubit. The properties which one needs to measure are

(a+ a†) mod
√

2π and i(a− a†) mod
√

2π. Equivalently, one can measure the eigenvalues of

the displacements D√2π and Di
√

2π. In fact, measuring these two values completely determines

the state of the oscillator, up to the encoded degree of freedom. That means that one can

prepare GKP states simply by measuring the error syndromes. If one did this perfectly, the

result would be seen in the Wigner function as an infinite grid of points in phase space. It

suffices in practice to use finite-precision measurements, which results in a grid tapered by a

Gaussian envelope (figure 3.8). One could perform these measurements in cQED settings using

phase-estimation protocols on the conditional displacement operator (Terhal and Weigand,

2016). One might think that the performance of such codes on the photon loss model would

be inferior to that of codes which were explicitly designed to handle photon loss, rather than

the more general class of errors. However, numerical investigations of photon loss over finite

times, a more realistic error model was analyzed in (Albert et al., 2018), which showed that

GKP codes have an advantage in certain parameter regimes. More recently it was shown that

A variant of the traditional GKP code which uses a hexagonal, rather than square, lattice

can be shown to be “optimal” code for photon loss under average photon number occupation

constraints (Noh et al., 2019). The ability to correct photon loss events in a code which corrects

for displacements, comes from the ability to map photon loss into a linear combination of small

3.7. ALTERNATE CAVITY ENCODINGS 52

|+L〉

|−L〉|i+L〉

|i−L〉

|0L〉

|1L〉

Figure 3.8: Wigner functions for the six stabilizer states of the logical Bloch sphere using GKP
code words having envelope parameter ∆ = 0.25 (see definition from Albert et al. (2018)).

displacements

a = lim
ε→0

1
4ε (Dε + iDiε −D−ε − iD−iε) (3.78)

Chapter 4

Numerical quantum optimal control

In many fields of science we are often faced with two related problems: analysis and synthe-

sis. The former starts from a set of assumptions about a system regarding its structure and

dynamics, and proceeds to calculate some effects, how it will behave, how it transforms inputs

to outputs, etc. The latter starts with desired behavior or desired transformation function,

and proceeds to construct a system or set of assumptions that would produce such effects. In

quantum mechanics the analysis problem is very well known. Typically all one needs to do is

write down the appropriate equation, whether that be one of Schrödinger, Lindblad or Langevin

form, and integrate in order to predict the system dynamics.

What is the “quantum synthesis” problem then? There are many candidates depending on

which parts of the system one considers fixed and which one considers mutable. Here we are

going to consider the synthesis of control fields. We assume we have a quantum system, whose

Hamiltonian can be written in the following form:

H (~ε(t)) = H0 +
∑
k

εk(t)Hk (4.1)

The component we shall ”synthesize” is the time-dependent control field ~ε(t). This is a problem

tailored to the tools we have available. Since the introduction of the arbitrary waveform

generator (AWG) as a control instrument, we have the ability to implement arbitrary drive

fields in order to control our systems, limited only by the amplitude and bandwidth the AWG

53

4.1. DEFINING THE PROBLEM 54

provides. The question of optimal control has become salient, given the unlimited range of

possibilities in terms of feasible control. In order to establish “optimality” we will need a specific

method for evaluating the desirability of any given instance of the control field, i.e. a function

f(~ε(t)) that we seek to maximize.

As has been shown by the rapid rise and development of neural network machine learning

algorithms, even an extremely large number of parameters can be efficiently optimized so long

as two conditions hold: there exists an efficient means of calculating gradients of the target

cost function with respect to the parameters, and that sub-optimal local minima are sufficiently

unlikely, or at least are approximately equivalent to the true global minimum. With quantum

optimal control we face a similar problem when considering the space of all possible control

fields, since the number of parameters representing a technically feasible control field can be

quite large. However, because there are efficient methods of computing the gradient, and

because the quantum control problem in the appropriate limit contains few “traps,” it is in

practice tractable (Rabitz et al., 2005).

This gradient based approach to pulse optimization was first identified by Khaneja et al.

(2005) and called gradient ascent pulse engineering (GRAPE). It was immediately apparent

that this method had many possible applications and extensions which could be achieved by

modifying the cost function while maintaining differentiability. We will discuss the basic GRAPE

problem definition as well as some variants which make the algorithm a flexible tool for designing

control sequences. Initially derived in an NMR context, GRAPE, and related methods, have

found use in a wide variety of quantum systems and applications (Dolde et al., 2014; Anderson

et al., 2015). Since GRAPE crucially depends on the model of the system, its successful

application is powerful evidence that the Hamiltonian used accurately captures the system

dynamics over a broad range of driving conditions.

4.1 Defining the problem

The simplest problem that can be tackled by GRAPE is that of state transfer, i.e. the operation

should take some specified initial state |ψinit〉 to a corresponding target state |ψtarg〉. We need a

4.2. CALCULATING THE GRADIENT 55

differentiable notion of how close any control pulse ~ε is to achieving this goal. For this purpose

we use the fidelity, and set our task to be one of maximizing this fidelity:

maximize
ε(t)

F (ε(t)) (4.2)

F(ε(t)) = |〈ψtarg|U(T, ε(t)) |ψinit〉|2 (4.3)

where the unitary U defined by the waveforms ~ε(t) is given by the time-ordered exponential

of the Hamiltonian up to some final time T ,

U(T, ε(t)) = T exp
(
−
∫ T

0
dtH (ε(t))

)
. (4.4)

To make the problem numerically tractable, ε(t) is represented as a piecewise constant function

with N = T/δt steps of length δt. We denote the vector of parameters describing this piecewise

constant function as ~ε.

U (~ε) = UNUN−1 · · ·U2U1 (4.5)

Uk = exp
(
iδt

~
H(~ε(kδt)

)
(4.6)

The time step δt can be set to the corresponding time resolution of the AWG, or can be set in

accordance with the needed bandwidth (see figure 4.1).

4.2 Calculating the gradient

The calculation of the fidelity itself is a moderately computationally intensive feat. The easiest

way to measure the gradient of a function is via the finite difference method, which is to simply

apply a small perturbation in every direction in control space, and measure the change in the

fidelity. For N control parameters, this would require N evaluations of the fidelity. For a realistic

simulation of a long pulse, N could be extremely large, numbering thousands of parameters.

4.2. CALCULATING THE GRADIENT 56

10−1 100

Time step compared to 1/BW

10−6

10−4

10−2

100

S
im

ul
at

io
n

in
ac

cu
ra

cy

Simulating piecewise-constant
approximation of a π pulse

Figure 4.1: Inaccuracy introduced by piecewise-constant approximation. We consider the
effects of replacing a smooth pulse with a piecewise constant approximation, in this case a
Gaussian π pulse with detuning 5/σ. The error introduced by this approximation is plotted
versus the choice of time step δt. The result indicates that one should have roughly an order of
magnitude separation between the time step and the desired pulse bandwidth in order to avoid
errors introduced by filtering, interpolation or finite output bandwidth.

This overhead is preventable if we use a smarter approach to calculating the gradient.

The operation fidelity will typically break into one or multiple computations of overlap

integrals between some propagated initial state:

c = 〈ψtarg|ψfinal〉 (4.7)

= 〈ψtarg|UN · · ·U1 |ψinit〉 (4.8)

Where each of the U are propagators corresponding to a time slice of width δt where the

Hamiltonian is time independent, and thus can be calculated via simple matrix exponentiation.

Uk = exp
(
iδt

~
H(εk)

)
(4.9)

The derivative with respect to any particular control parameter, say εk, can be found by simply

4.2. CALCULATING THE GRADIENT 57

differentiating the relevant term in equation 4.8 which yields the following expression:1

∂εkc = 〈ψtarg|UN · · ·Uk+1 (∂εkUk)Uk−1 · · ·U1 |ψinit〉 (4.10)

In the limit of small δt, the derivative of the time step propagator can be approximated with

the following:

∂εkUk ≈
iδt

~
(∂εkH)Uk, (4.11)

but in practice we can also use an exact form of the derivative, which is derived in appendix

A.7 as well as by Najfeld and Havel (1995). If we näıvely calculate the cost of calculating ∂εkc

and multiply by the number of independent components (that is indices k), we get our N2 cost

as was the case with a finite-differences approach. However, by examining the expression, we

see that we can get all components together much more cheaply by caching some intermediate

results (Khaneja et al., 2005). Plugging this back into 4.10, we can see that the calculation

can be broken into three components:

∂εkc = iδt

~
〈ψtarg|UN · · ·Uk+1︸ ︷︷ ︸〈

ψ
(k+1)
bwd

∣∣∣
(∂εkH(εk))Uk · · ·U1 |ψinit〉︸ ︷︷ ︸∣∣∣ψ(k)

fwd

〉 , (4.12)

that is to say a matrix element calculation on the derivative of the Hamiltonian ∂εkH. This

calculation involving two states: the forward-propagated initial state
∣∣∣ψ(k)

fwd

〉
as well as the

reverse propagated target state
∣∣∣ψ(k+1)

bwd

〉
. We can compute and store in memory each of these

trajectories using the following rules:

∣∣∣ψ(k)
fwd

〉
=


|ψinit〉 k = 0

Uk
∣∣∣ψ(k−1)

fwd

〉
otherwise

(4.13)

∣∣∣ψ(k)
bwd

〉
=


|ψtarg〉 k = N + 1

U †k

∣∣∣ψ(k+1)
bwd

〉
otherwise

(4.14)

1We treat the case of a single control field, for the purposes of simplicity of notation. The generalization to
multiple control fields is straightforward.

4.2. CALCULATING THE GRADIENT 58

In terms of the basic operation of matrix exponential vector multiplication2, it takes N calls to

evaluate the overlap c and only 2N calls in order to get the entire gradient as well! This is a

drastic improvement over the N2 steps required for a näıve approach.

Once we have a method of computing the cost function (which consists of the fidelities

along with other pulse dependent penalty terms which will be discussed in detail in the following

sections) the next step is to choose an algorithm for actually performing the function minimiza-

tion. Specifically, the algorithm must use the knowledge of the function value and gradient in

order to propose new points in control space to evaluate. Luckily there has been quite a bit

of work done in this area, which allows for use of off-the-shelf function minimization routines.

There are two main classes of minimization routines: Line-search methods and trust-region

methods (Nocedal and Wright, 2000). In line search methods, one alternates between picking

a direction in parameter space, radiating from our current point, and subsequently performing

a 1-d minimization protocol to find the minimum along this line. In trust region methods, we

develop a (usually quadratic) model of the cost function, assume its validity within a “trust

region” consisting of a ball of some radius centered on our current point, and move to the

model’s predicted minimum within this trust region.

The simplest method is basic gradient descent, which is a line search method where the

direction chosen is simply the gradient at the point. However, this is rarely the best choice. The

Newton method chooses directions using not only the gradient, but also the Hessian matrix of

second derivatives of the function. However, we need not invoke the cost of calculating the

Hessian (an inherently O(N2) operation simply by the size of the Hessian). We can get much of

the benefit of the Newton method using so-called quasi-Newton methods, which seek to build

a model of the Hessian using knowledge of the history of the gradient. Out of these algorithms,

the L-BFGS method (Byrd et al., 1995) distinguishes itself by never explicitly constructing the

Hessian, which would be memory intensive, but rather only keeps a long enough history of the

gradient in order to evaluate approximate Hessian-vector products. Detailed comparisons of

these quasi-newton algorithms suggest that BFGS and its limited memory variant are the most

performant on GRAPE style pulse optimization problems (de Fouquieres et al., 2011). There
2This operation is called expm multiply in the scipy linear algebra library, and can be done quicker than

separately computing the matrix exponential and doing matrix-vector multiplication.

4.3. COST FUNCTION VARIATIONS 59

are compelling reasons to believe that even better convergence can be achieved by computing

not only the gradient but the Jacobian of the induced propagator ∇~εU(~ε) in combination

with a trust-region approach (de Fouquieres, 2012), although my attempts at replicating this

performance enhancement were unsuccessful.

4.3 Cost function variations

We can consider many variations on the cost function defined in equation 4.3. The most obvious

of which is to consider the action of the operation not on a single state, but on multiple states.

There are two primary ways we can synthesize the effect on multiple states, coherently (i.e.

enforcing a relative phase between state transfers)

F(~ε) =
∣∣∣∣∣∑
k

〈
ψ

(k)
targ

∣∣∣U(~ε)
∣∣∣ψ(k)

init

〉∣∣∣∣∣
2

, (4.15)

or incoherently (i.e. caring only of the probability for each state to end up in the correct target

state)

F(~ε) =
∑
k

∣∣∣〈ψ(k)
targ

∣∣∣U(~ε)
∣∣∣ψ(k)

init

〉∣∣∣2 . (4.16)

In the limit where the number of states equals the system dimension, the coherent multi-state

fidelity (4.15) is equivalent to the unitary fidelity:

F(~ε) =
∣∣∣Tr
{
U(~ε)U †targ

}∣∣∣2 (4.17)

Optimizing a full unitary operation is sensible for qubits, or systems of a few qubits, but in the

cavity manipulations to be performed in the following sections, this is not usually a sensible

operation, since doing operations involving states at the border of the truncation (i.e. the

maximum photon number state considered in the simulation), would typically require a larger

truncation to simulate accurately (driving |nph〉 will almost always in part bring us partially to

|nph + 1〉).

4.3. COST FUNCTION VARIATIONS 60

4.3.1 Open system GRAPE

We can generalize the problem in a different way, by considering the effect of dissipation and

decoherence. In this case we replace the Schrödinger equation

∂t |ψ〉 = iH(t) |ψ〉 , (4.18)

with the Liouville master equation

∂tρ = L(ρ), (4.19)

where the time evolution is generated by the Liouvillian

L(ρ) = i[H,ρ] +
∑
k

D[Ak](ρ) (4.20)

= i[H,ρ] +
∑
k

AkρA
†
k −

1
2
(
A†kAkρ+ ρA†kAk

)
(4.21)

The Liouvillian can be considered itself to be a simple matrix via vectorization, which uses the

isomorphism between the space of d× d matrices Cd×d and the product space Cd⊗Cd ' Cd2 .

ρ ∈ Cd×d → |ρ〉〉 ∈ Cd ⊗ Cd (4.22)

ρij = 〈〈i, j|ρ〉〉 (4.23)

(AρB)ij =
∑
k,l

AikρklBlj (4.24)

AρB → A⊗BT |ρ〉〉 (4.25)

Putting this together allows us to rewrite the Liouvillian in explicit matrix form:

L→ i
(
H ⊗ I− I⊗HT

)
+
∑
k

Ak ⊗A∗k −
1
2
(
A†kA⊗ I + I⊗A†kAk

)
(4.26)

The point is that we can cast the Liouville equation 4.19 in exactly the same form as the

Schrödinger equation 4.18

∂t|ρ〉〉 = L|ρ〉〉. (4.27)

4.3. COST FUNCTION VARIATIONS 61

The major differences introduced here are first that the Hilbert space has transformed from

Cd to the larger Cd2 , and second that the generator of evolution is no longer skew-Hermitian,

and therefore algorithms that rely on the ability to diagonalize the Hamiltonian by a unitary

transformation will fail. With these caveats aside however, we can compute the evolution under

the master equation as well as its gradient with respect to the control parameters as in the

lossless case.

4.3.2 Robust control

Often times, the control system one is dealing with may have uncertainties in its parameters.

These uncertainties can arise either because it is difficult to characterize these parameters

accurately, or because these parameters are not stable in time, but rather fluctuate. This

uncertainty leads to model inaccuracy, and therefore infidelity in the final operation. However,

we know it is possible to construct protocols that are robust to variations in parameters. Most

famous of these is the “spin echo” experiment first discovered by Hahn (1950), in which a

spin’s Bloch vector under an uncertain precession frequency, can be refocused at time t by

the application of a π pulse at time t/2. This technique has been extended to a variety of

applications under the heading of “dynamical decoupling” (Viola et al., 1999). While these

techniques are powerful and general, numerical optimization is more general still, and requires

fewer assumptions and mathematical finesse.

One can define a robustness metric for a pulse in several ways. If this metric is differentiable,

and efficiently computable, then we can attempt to perform gradient descent. While the global

optimum may be unattainable, we can always at least seek something locally optimal. If the

Hamiltonian depends on some parameter θ, we may attempt to become insensitive to this

parameter by minimizing ∂θF . However, a more pragmatic approach is to sample. Randomly

draw M values θk from the predicted distribution of θ, and optimize simultaneously for all

values:

maximize
ε(t)

M∑
k

F (ε(t), θk) (4.28)

The computational overhead is the factor of M . Random sampling is preferable to drawing

4.3. COST FUNCTION VARIATIONS 62

the points uniformly, as the imposed structure that comes from a regular spacing of θk can be

exploited by the algorithm to produce results that seem robust on the sample set, but are not

valid over the entire region.

4.3.3 Gauge degrees of freedom

Sometimes, rather than add constraints or additional objectives to our problem, we would prefer

to remove unnecessary specifications, to allow the pulse more freedom, and in turn, hopefully

let it be done in the shortest time possible. To take a concrete example, because of the nature

of operating in a rotating frame, the difference between a cavity or qubit operation along one

quadrature or another is only a matter of changing the phase of our pulses. To put it another

way, we can implement phase space rotations (σz for qubits, a†a more generally) “in software”

simply by adjusting the phase of all subsequent pulses (McKay et al., 2017). This means that

we can make our pulse optimization problem easier by specifying the desired final state only up

to a final phase space rotation. We can formalize this as follows:

maximize
~ε,θ

∣∣∣〈ψtarg| eiθa
†aU(~ε) |ψinit〉

∣∣∣2 (4.29)

We introduce the additional parameter θ, which gives the optimization algorithm another degree

of freedom, by which to adjust the target to match the implementation, rather than the other

way around. More generally, we can specify a list of “gauge degrees of freedom,” {Ak}, and

perform the following maximization:

maximize
~ε(t),~θ

∣∣∣〈ψtarg| ei
∑

k
θkAkU(~ε(t)) |ψinit〉

∣∣∣2 (4.30)

Another useful class of degrees of freedom is a “subsystem” degree of freedom. In this case

we have a Hilbert space with a Kronecker product structure H = HA ⊗HB, and we only care

about the state in one part, say in HA. In this case we want to allow the target state in HB

to be whatever makes the task the easiest. To do so, we can use the set of gauge operators

4.4. CONSTRAINTS AND PENALTIES 63

{IA ⊗ |iB〉〈jB|}i,j∈[dimHB].3 This set of operators allows the optimization to set whatever

targets states in subsystem B it would like to make its optimization easiest. This can be useful

when, for instance, we are performing a measurement of some property of the cavity using the

transmon, and have no intention of using the cavity state after the measurement.

4.4 Constraints and penalties

The optimization problem defined by equation 4.2 is generally underdetermined, i.e. there are

many solutions ~ε(t) which achieve equally high fidelities. Therefore, we can add additional

terms to the optimization cost function, such that the resulting solution optimizes against

several other desiderata. For a set of constraints on the solution {gi ≥ 0}, where ideally

gi (ε(t)) = 0, we can associate a Lagrange multiplier λi, and modify our optimization to read:

maximize
~ε

F (~ε)−
∑
i

λigi (~ε) (4.31)

The values λi are chosen by trial-and-error, set to be just large enough that the violation of the

constraint upon termination is within acceptable levels. If the λi are set too large, it is possible

to distort the control landscape significantly enough to introduce inescapable local optima,

preventing the optimization from succeeding. In this case, it can be desirable to perform the

optimization first with a lower value of λi, and only ratcheting it up when the correct “basin”

has been found (Riviello et al., 2015).

4.4.1 Limiting the pulse amplitude

There are several reasons why we might want to limit the pulse amplitude. The first is that,

without introducing additional amplifiers, the output power of our AWG is limited, and thus to

be feasible, we need ε(t) ≤ εmax for all t. In other words, we would like a hard cut-off. We can

achieve this cutoff in one of two ways. We can either employ an optimization algorithm which

naturally allows for such constraints, or we can use an alternate parameterization to represent
3It can be convenient to work with the Hermitian operator basis instead, substituting (|iB〉〈jB | , |jB〉〈iB |)→

(|iB〉〈jB |+ h.c., i(|iB〉〈jB | − h.c.)).

4.4. CONSTRAINTS AND PENALTIES 64

the pulse. The former depends on the availability of a suitable algorithm implementing inequality

constraints4. The latter can be implemented by changing the optimization problem:

maximize
~x

F (~ε(~x)) , (4.32)

where the pulse ~ε is constructed from the parameters ~x as

εk = εmax tanh(xk). (4.33)

In order to make this formulation compatible with gradient descent, we need to transform ∇~εF

into ∇~xF

∂xkF = εmaxF
cosh

(
x2
k

)∂εk (4.34)

. We may also wish to prefer to stay well below the AWG maximum output power for the

majority of the pulse for other reasons. For instance, the active components in the lines, such

as mixers and amplifiers, each of which have non-linearities, which become more relevant, and

difficult to model, at higher powers. While we can try to compensate for this behavior (see

section 4.8), we can also try to minimize its relevance by using lower powers. In this case we

can use a penalty realizing a “soft” cut-off relative to some lower amplitude εsoftmax:

gamp,nonlin(~ε) =
∑
k

(
e|εk|

2/|εsoftmax|2 − 1
)

(4.35)

Finally, because each pulse induces a heat load proportional to its integrated power, we might

wish to minimize this undesired side effect. To address this, a simple penalty will suffice:

gamp,lin (ε(t)) =
∑
k

|εk|2 (4.36)

4.4.2 Limiting the bandwidth

As with amplitude there are a variety of reasons one might want to constrain the bandwidth

of a pulse. We again must consider the maximum available bandwidth of the AWG, the model
4The L-BFGS-B method supplied by scipy.optimize supports these types of constraints

4.4. CONSTRAINTS AND PENALTIES 65

uncertainty at higher detunings from resonance, as well as nonlinearities and dispersion of the

transfer function. We can similarly take a variety of approaches to constraining the bandwidth,

from a hard cutoff, to a soft cutoff, to a linear frequency-dependent penalty. To implement the

hard cutoff, we reparameterize as in equation 4.32, however we write the pulse this time as the

inverse discrete Fourier transform (DFT) of the parameters (Motzoi et al., 2011),

~ε = (DFT)−1 ~x (4.37)

We can constrain certain components of the frequency representation, corresponding to fre-

quencies above the cutoff ωmax to be identically zero in this representation,5

|ωk| > ωmax ⇒ xk = 0 (4.38)

We must similarly propagate the derivative calculation through this reparameterization:

~∇~x = (DFT) ~∇~ε (4.39)

We can allow for penalty formulations as well, by penalizing, in either a linear or non-linear way,

the magnitude of the derivative of the pulse. Since the pulse is piecewise constant, we replace

the derivative with the difference between adjacent points.

gderiv,lin =
∑
k

|εk+1 − εk|2 (4.40)

gderiv,nonlin =
∑
k

e|εk+1−εk|2/δε2softmax − 1 (4.41)

The choice between these two options comes down to whether or not there exists a relevant

frequency scale εsoftmax, or whether it is a general preference for lower bandwidth pulses.
5The hard cutoff in frequency and the hard cutoff in amplitude are incompatible with each other. It is

not known to us whether there exists a representation which guarantees a hard cutoff in both frequency and
amplitude.

4.5. LIMITING THE INTERMEDIATE PHOTON NUMBER 66

4.5 Limiting the intermediate photon number

Since computer memory is finite, we are forced to choose a photon number truncation nph

such that the operator a becomes a nph × nph matrix. When we do this, we are in effect

replacing our infinite-dimensional oscillator with a finite-dimensional qudit. This replacement is

only valid if all of the system dynamics relevant for the desired state transfers occurs within the

{|0〉 , . . . , |nph − 1〉} subspace. For generic applied drives this is not the case. In order to enforce

this property, we modify the optimization problem to find a solution which operates identically

under several different values of nph. Writing the fidelity as computed with a truncation nph

as Fnph , we have:

maximize
ε̃(ω)

(∑
k

Fnph+k (ε(t))
)
−
(∑

i

λigi (ε(t))
)

(4.42)

To enforce that the behavior is identical in the different truncations, we add the penalty term

gdiscrepancy (ε(t)) =
∑
k1 6=k2

(
Fnph+k1 (ε(t))−Fnph+k2 (ε(t))

)2
(4.43)

The choice of nph determines the maximum photon number population that can be populated

during the pulse, and figures in determining the minimum time necessary for the operation

(faster pulses can be achieved with higher nph).

A more recently developed, and more direct, method is to add a penalty term for any

occupation of the final photon state (|nph − 1〉) in the truncated Hilbert space at any time:

gtrajectory =
N∑
k=1

∣∣∣〈nph − 1
∣∣∣ψ(k)

fwd

〉∣∣∣2 (4.44)

A näıve analysis of the complexity of calculating the gradient for this penalty seems to yield a

scaling behavior of N2, as it involves the computation of N terms (each k) where the k-th term

has complexity of k = O(N), as it mirrors the computation of the fidelity itself (equation 4.8).

However, as was shown in Leung et al. (2017), by clever application of the backpropagation

method, it is possible to design an approach with O(N) scaling.

4.6. TROUBLESHOOTING OPTIMIZATION CONVERGENCE 67

4.6 Troubleshooting optimization convergence

One of the first difficulties one might encounter when attempting to prepare optimal control

pulses is difficulties in convergence. This could manifest as a failure of the search algorithm

to find an improvement on the initial guess, or convergence to the zero-amplitude identity

sequence, or perhaps convergence to a trivial operation (such as a single mode rotation or

displacement). In this case there are several things one should check for.

1. Check that the time given T = Nδt is appropriate, and is specified in units that are

consistent with the units specifying the Hamiltonian. For instance, if the Hamiltonian is

specified in GHz, then the time step should be in units of ns.

2. Ensure constraints are not too stringent. If the optimization is failing, a good first step

is to completely remove all constraints and penalties, and make sure that the algorithm

works in this context before re-introducing them.

3. Ensure that the starting guess is sufficiently “random.” If the initial guess is too close

to a special point, such as the identity operation, the gradient can become vanishingly

small, below machine precision. To overcome this, increase the amplitude of one’s initial

guess.

4. Ensure that the algorithm is being patient enough. Gradient based search algorithms

usually have termination conditions specified in terms of the norm of the gradient. It is

often necessary to lower the gradient norm threshold for termination to ensure that it

does not give up 6.

5. Ensure that you are being patient enough. It can often appear that an algorithm is stuck,

as it quickly finds some way to produce partial fidelity and then seems to peter out. It

may take many iterations of low fidelity gain steps in order to find the correct “direction”

in control space to take. Once this direction is found, then the fidelity gain can increase

rapidly, resulting in a characteristic “double-sigmoid” curve shape for fidelity-vs-iteration.
6gtol in scipy.minimize

4.7. DEBUGGING OPTIMAL CONTROL PULSES 68

4.7 What if it doesn’t work?: Debugging optimal control pulses

A frequent objection to the use of optimal control pulses is that they seem impossible to debug.

This is in contrast with constructive approaches, where each component of the pulse sequence

should effect a known operation, which can be tested in isolation. Additionally, each component

typically contains only a few parameters, each of which can be empirically tuned. When the

combined operation fails to perform, we have steps to take in order to try to identify what is

going wrong. Optimal control pulses, on the other hand, have no straightforward decomposition

into component parts, and have far too many parameters to optimize empirically. However, a

methodical approach can still be employed to systematically eliminate potential problems.

It is helpful to consider the task of making optimal control pulses not as a search for any

one particular operation, but as the construction of a system which maps desired operations

to instantiated pulses. Only when this system is approximately correct should one move on to

the particular operation of interest. In order to go from scratch to an approximately correct

optimal control system, one should begin by designing pulses which are as simple as possible to

verify. This allows one to quickly check whether a change to the system improved performance

or not. For instance, in the transmon-cavity system, a simple diagnostic pulse is one which

produces a single photon state:

|0〉 ⊗ |g〉 −→ |1〉 ⊗ |g〉 (4.45)

The verification experiment corresponding to this operation is a pair of measurements: do we

end the operation in the ground state and, given that we do, does a selective pulse on the

transmon detuned by χ bring us to the excited state |e〉?

Cavity
Optimal Control Pulse

•

Qubit R(π)

With such a sequence we can easily check the fidelity of the operation, keeping in mind the

4.7. DEBUGGING OPTIMAL CONTROL PULSES 69

Characterize System
Hamiltonian

Calibrate Drive
Amplitudes

Optimize pulse for
evaluation
experiment

Observe evaluation
experiment

No

Yes

F > 70% Check for frequent
errors

Frequency
sign errors

Missing
Hamiltonian

factors
Truncation

errors

Make robust set of
evaluation pulses

Observe average
performance

Yes

NoDecoherence limited? Tighten Constraints

Decrease
Max

Bandwidth

Decrease
Max

Amplitude

Reduce
intermediate
occupation of
higher levels

Optimize pulses in
final gateset

Evaluate
Performance

Adjust Pulse
Amplitude

NoSatisfactory?

Apply pulse
distortions

Loosen
constraints,

Decrease time

Figure 4.2: Flowchart for bringing an optimal control system online.

4.7. DEBUGGING OPTIMAL CONTROL PULSES 70

fidelity of the readout and selective pulses used to characterize it. Our goal is to proceed

in steps, the first of which is to reach the point where the system is in the vicinity of the

desired operating point, where we can gain increasing trust that modifications which improve

our observed evaluation metric are truly bringing us closer to the optimal point.

Often times, even with a fairly accurate starting characterization of the Hamiltonian, the

fidelity at first will be nil, as there can be major errors in the implementation of the system.

Here are a list of common errors one can check for at this stage:

• Inconsistent use of factors of 2π in the definition of the Hamiltonian. In the pygrape

software package, Hamiltonians should be specified with 2π.

• Incorrect relationship between the AWG amplitude and the effective driving rate. This

can be checked by simulating a simple pulse such as a displacement or qubit rotation.

• Sign error in the definition of the quadrature drive, resulting in frequency inversion i.e.

should the drive term be +i(a − a†) or −i(a − a†)? The answer depends on the

conventions used in realizing the pulse in the control electronics. This can be checked by

negating the sign of the quadrature drive, and seeing if it performs better in practice.

• Use by the pulse of non-linearities which are artifacts of the Hilbert space truncation.

This can be checked by simulating in a larger Hilbert space and verifying that the fidelity

is practically unchanged.

After performing checks for these basic types of errors, the next most crucial step is to identify

the right set of pulse constraints. The motivation behind constraining the pulse is to attempt

to strike the right balance between the underconstrained regime, where coherent control errors

dominate, and the overconstrained regime, where excessive pulse length results in decoherence

dominated errors. If pulses fail to operate “as expected” it can be a sign that the constraints

are not large enough. If pulses are taking too long, it can be a sign that the constraints are

too stringent.

4.8. CLOSED-LOOP OPTIMIZATION METHODS 71

4.8 Closed-loop optimization methods

Finally, there are modifications to the pulse which can be implemented and tested empirically,

without the need to re-optimize via GRAPE. The intention behind these modifications is to

account for an imperfect delivery of the control pulse to the system. There are two main

categories of errors which can be addressed via these methods. The first is distortion due to

reflections and impedance mismatches resulting in frequency dependent transmission between

the AWG and device port. The second is non-linearity of the active components, such as mixers

and amplifiers, resulting in compression. We can model the first process, which takes our pulse,

as played by the AWG f(t) to the drive experienced by the system ε(t), as multiplication in the

frequency domain by the transfer function G(ω):

ε(t) = F−1 [G(ω) ·F [f(t)] (ω)] (t) (4.46)

If we had complete knowledge of G(ω), we could instead play the pre-distorted pulse f̃(t) at

the AWG level:

f̃(t) = F−1
[
G(ω)−1 ·F [f(t)] (ω)

]
(t) (4.47)

The pre-distortion would in this case cancel with the line distortion to produce a pulse for which

ε(t) = f(t). However, in practice, we often do not have a good way of measuring this transfer

function directly. Instead we can assume that G(ω)−1 is well approximated by a low-order

polynomial in both amplitude and phase:

G(ω)−1 ≈
(∑

k

bkω
k

)
ei
∑

k
ckω

k (4.48)

Similarly, regarding compression, we would have the following type of relationship between the

f and ε

ε(t) = z(f(t)), (4.49)

4.8. CLOSED-LOOP OPTIMIZATION METHODS 72

which could be inverted given perfect knowledge of z:

f̃(t) = z−1(ε(t)). (4.50)

Instead, we can model z−1 as a low order polynomial

z−1(x) ≈
∑
k

dkx
k (4.51)

This gives us a handful of parameters {bk}, {ck}, and {dk}, with which to vary the pulse

shape. This is a large reduction over the hundreds or thousands of parameters which comprise

the pulse in its full piecewise-constant representation. With this lower dimensional space in

hand, we can perform a closed-loop optimization which considers the empirical performance of

any given pulse.

Chapter 5

Meet the samples

The experiments which will be described in chapters 6, 8 and 9 were all performed with a similar

experimental apparatus, with a few refinements realized in between. As seen in figure 5.1, the

system is comprised of three principal components, each of which corresponds to an electro-

magnetic mode in our final quantum system. These are the storage cavity, formed by the walls

of the aluminum enclosure, the transmon qubit, defined by a capacitively shunted Josephson

junction, and the readout oscillator, simply formed by a length of open-terminated transmission

line. In this chapter, I will discuss each of these components in turn, explaining the reasons for

adopting these components, and focusing on the methodology for choosing their parameters.

5.1 The seamless storage cavity

In order to motivate the design of the cavity which acts as our storage resonator, which contains

our encoded logical qubit, I will briefly describe the considerations which go into designing high

quality factor cavities.

Any enclosed “box” formed from good conductors can be described by a discrete set of

electromagnetic modes, which describe fields occurring inside of the box, and which do not

couple to the outside world, at least not without “puncturing” the box. Each of these modes

has a particular electric and magnetic field profile within the box. Energy contained by a mode

oscillates between electric and magnetic components at a rate given by the mode’s character-

73

5.1. THE SEAMLESS STORAGE CAVITY 74

Figure 5.1: Cartoon schematic of the cavity-transmon system. A λ/4 coax post cavity
resonator is coupled to a transmon and readout resonator on a sapphire substrate. Input
couplers close to the transmon and cavity deliver the respective time-dependent microwave
control fields εT (t), εc(t) and εRO(t).

istic resonance frequency, ω. The particular details of the geometry of the box determine its

electromagnetic modes. In particular, there is a mode of lowest frequency, and we are typically

concerned only with a few of the lowest frequency modes.

If the box was formed entirely from perfect conductor and vacuum, this would be the entire

story, but since this can never be exactly true, there is also the possibility of dissipation. The

energy contained within a mode can transfer from the mode to other, auxiliary degrees of

freedom, such as phonons, plasmons, or other quasiparticles in the conductor, spins or dangling

bonds in the imperfect layers of dielectric which coat the conductor surface, or out through the

apertures which are inevitable in an experimental device which by necessity has some coupling

to the outside world. We can try to simplify the vast space of possible detailed mechanisms

for energy loss by categorizing them into three groups. The first is conductor loss, which is

associated with current which is forced through an imperfect conductor. The second is dielectric

loss, which arises from electric fields coupling to dipoles in the dielectric which have their own

intrinsic loss mechanisms. The final is radiative loss, in which energy transfers from the box

modes, to propagating external modes. The sum total of theses loss mechanisms induces a

characteristic loss rate κ. We can calculate the number of oscillations per decay time as the

quality factor Q = ω/κ.

5.1. THE SEAMLESS STORAGE CAVITY 75

If we are interested in making the loss rate κ as small as possible, there are broadly two

approaches we can take. We can either change the materials from which we construct the

box, or we can change the geometry of the box. We will have to pursue both avenues in order

to reach the highest possible quality factors. We begin with the choice of conductor, where

superconductors are the obvious choice. However, while superconductors have no resistance

to static, DC currents, they do have resistance to oscillating currents, especially when that

frequency approaches the superconducting gap, so conductor loss cannot be neglected. If

bulk conductor loss was the only concern, we could simply choose the superconductor with

the smallest residual resistivity, but the choice of metal also dictates the choice of oxide which

covers the surface of the metal. The properties of this oxide are not just a property of the metal,

but also the conditions of its formation, which can be manipulated by removing native oxide,

and allowing it to regrow under controlled conditions. For these reasons, (superconductor, high-

quality oxide) high purity (99.999%) aluminum has been our material of choice for constructing

cavity resonators, although similar qualities have been achieved in Niobium as well. In an

attempt to improve the quality of the oxide, which would have normally developed during

the machining process in a dirty environment, a chemical etch is used to remove the existing

oxide and allow for a cleaner oxide to redevelop. However it has been found that extremely

long etches, removing material far beyond the oxide layer has been shown to improve quality

even more, and therefore the underlying mechanism behind the improvement remains obscure

(Reagor, 2015).

The geometry itself plays a very important role in determining the loss rate. While these

calculations are difficult and tedious to perform exactly, some rules of thumb apply. In general,

the more compact the geometry, the more the cavity is susceptible to the surface effects, both

in terms of current and dielectric, and therefore the higher the effective loss. One particularly

pernicious aspect of the geometry is the presence of seams, which are regions where two

separate pieces of conductor are mechanically affixed to one another. These are necessities of

manufacturing with a subtractive process1 and are entirely undesirable by themselves. Seams

introduce a localized region of relatively high resistivity when compared with the superconductor
1Additive processes, such as 3D printing and laser sintering have the potential to bypass this issue, but bring

their own challenges, especially regarding material purity and cleanliness (Creedon et al., 2016)

5.1. THE SEAMLESS STORAGE CAVITY 76

which surrounds it. The mere presence of a seam is not a problem however, but rather the

current which is forced to flow through it. Therefore the location of the seam can be crucial.

For instance, modes with symmetry can have planes bisecting them across which no current

flows. Choosing to put a seam in this place will ideally induce no loss, although in practice

the symmetry is broken by various imperfections, partially reintroducing some seam associated

loss.

In order to overcome the issues associated with seam, one can turn to the magic of under-

cutoff waveguides. When a machining tool such as a drill bit removes material from a piece of

metal, it necessarily leaves an opening to the outside world. This opening forms a waveguide,

i.e. a single-conductor transmission channel for electromagnetic signals. Unlike two-conductor

transmission lines, such as twisted-pair or coaxial transmission lines, waveguides do not allow

signals of arbitrary frequency to pass. They are in effect high-pass filters, with a cutoff frequency

that scales inversely with the radius of the aperture. For a circular waveguide of radius r this

cutoff is2

fc ≈
2.405c

2πr (5.1)

where the 2.405 factor is calculated from the roots of the first Bessel function (Pozar, 2011).

If we can create a mode of resonance frequency f0 using only apertures small enough that the

cutoff frequency fc is larger than f0, then signals from the mode at one end of the waveguide

cannot reach the seam which will necessarily be present at the other end. Now coming up with

designs for mode geometries which can be machined in this way requires a fair bit of ingenuity,

but it is possible as demonstrated by “post cavity” design of Reagor et al. (2016). This is the

design for all of the experiments performed in this thesis, as well as most of the experiments

involving 3D cavities performed recently at Yale. However, there are other designs which are

currently in development using the same methodology, in order to produce seamless multi-mode

cavities and other variations (Naik et al., 2017).

In the post cavity design, we form a section of coaxial transmission line, with one end
2There are actually many modes of circular waveguides which can be excited. The lowest frequency mode

is the TE11 mode, which has a cutoff constant of 1.841. However, the symmetries of the post cavity we are
coupling to means there is zero nominal coupling to the TE11 mode, and therefore we move to the next lowest
frequency mode, the TM01 mode.

5.2. THE ANTENNA TRANSMON 77

shorted and the other end open, as can be seen in figure 5.1. The frequency of the mode with

post length l is approximately f0 ≈ c
4l . The cutoff frequency of the hole needed to create

this post by machining is determined by the outer radius of the coaxial transmission line r.

Therefore, in order to be protected, we need

2.405c
2πr >

c

4l ⇒
l

r
>

2π
4× 2.405 ≈ 0.653 (5.2)

Therefore the aspect ratio needed is actually not too bad. Of course the post must be narrower

than the outer radius, and we should be significantly below the cutoff, but we can achieve

negligible seam participation with aspect ratios of 2-3 in reasonable designs.

We can summarize our cavity design methodology by referring to figure 5.2. We choose

the cavity frequency which gives us the post length 1 as 2πc
4ωc . Note this is only approximate,

and must be adjusted for in a finite element simulation which can account for all of the stray

capacitances and edge effects. For instance, our cavities have a target frequency of 4.5 GHz,

which would näıvely prescribe a post length of 1.67 cm, but given other details of our geometry,

we find we need a length of 1.50 cm. The resonance frequency also determines the maximum

aperture radius 2 as 2.405c
ωc

. We should choose the actual radius r as far below this maximum

as possible. In our case, the maximum radius was 2.55 cm, and the actual radius was 0.53

cm. We can then specify the allowable level of participation in the seam in order to choose the

waveguide length 3 . The current induced as a function of distance along the waveguide (z)

vanishes exponentially as e−βz where β =
√(

2.405
r

)2
−
(
ω
c

)2. The energy density goes as the

square of current and thus vanishes as e−2βz. In order to suppress the seam participation by a

factor of x, the waveguide should be at least of distance lnx
2β . In our case we had 1/β ≈ 2.2 mm.

The depth of 25 mm gives us a factor of e−2(25/3) ≈ 10−10 reduction in participation. See the

work done by Brecht (2017) for a more rigorous treatment of calculating seam losses.

5.2 The antenna transmon

The 3D transmon qubit consists of two antenna-like aluminum pads connected by a single

Josephson junction. It is fabricated on a piece of sapphire 430 microns thick, which it shares

5.2. THE ANTENNA TRANSMON 78

1

2

3

4

5

6
9

8

7

10

12

11

13

Figure 5.2: Schematic of cavity and transmon critical physical dimensions. This cartoon
shows the critical dimensions of the geometry of the cavity-transmon system. The circled
numbers are referenced in the text.

with the readout resonator. This qubit is topologically identical with a “Cooper pair box,”

(Nakamura et al., 1999) which is described using two primary parameters, as can be seen in

the Hamiltonian (Schuster, 2007):

H = 4EC(N −Ng)2 + EJ
2
∑
n

|n〉〈n+ 1|+ h.c. (5.3)

The term Ng describes an offset voltage (Ng = VgC/e) applied between the two pads either

intentionally by a gate, or unintentionally by a noisy environment. First we have the charging

energy EC which is the energy associated with moving moving a single electron from one pad to

the other. It is determined by the capacitance between the pads via EC = e2/2C. Second we

5.2. THE ANTENNA TRANSMON 79

have the Josephson energy EJ , which is the tunnel rate, set by the junction area and thickness.

It is linearly related to the area and is vanishes exponentially with the thickness.3 We can

infer EJ at room temperature by measuring the resistance across the junction (RN), using the

Ambegoakar-Baratoff relationship: (Ambegaokar and Baratoff, 1963):

EJ = ~∆
4e2RN

tanh ∆
2kBT

. (5.4)

The so called transmon4 limit of the Cooper pair box Hamiltonian occurs when EJ � EC .

In this limit the sensitivity to offset gate voltage vanishes ∂Ngωge → 0, (Koch et al., 2007).

We can relate the junction Hamiltonian 5.3 to a diagonalized picture, where we consider the

transmon to be an anharmonic oscillator (essentially, a particle in a cosine potential rather than

a quadratic potential), which for the first few energy levels can be represented as

H = ωgeb
†b+ αT

2 (b†)2b2. (5.5)

We can relate the parameters of 5.3 and 5.5 in the transmon limit:

ωge ≈
√

8EJEC/~ (5.6)

αT ≈ EC/~ (5.7)

Therefore, we have the following prescription for designing a transmon. Given the desired

anharmonicity, we can determine the needed capacitance C = e2/(2αT~) (for 120 MHz this is

about 1 pF). Then we can specify a value for ωge5 which sets our desired Josephson energy as

EJ ≈ ω2/8αT .

Now we need a way of translating C and EJ into geometry. There is obviously no unique

way of performing this translation, and therefore our description of how to proceed here is as

much art as science. When it comes to the geometry of the capacitance there are two major
3For this reason, it is especially important to control the growth of the junction oxide, as small variations can

produce large swings of EJ
4The name “transmon” derives from “transmission line shunted plasma oscillation.” The “plasma oscillation”

part of this is clear: the excitations of the system are not definite charge states, but rather vibrations of the
charge plasma back and forth across the junction. The “transmission line shunted” part remains obscure.

5this must be at least a factor of ∼ 20 larger than αT in order to stay in the transmon regime

5.2. THE ANTENNA TRANSMON 80

concerns we have. First is the mechanical stability, and susceptibility to vibrations. Second is

the quality of the dielectric. Let’s address these concerns one at a time.

If the capacitance is prone to variations induced by mechanical instability, this can lead

to an unstable transmon frequency, and therefore dephasing. The main source of mechanical

instability is the mechanism holding the sapphire substrate on which the transmon is printed.

Movement of the chip within the cavity can vary the distance between the transmon pads and

the sidewalls, and therefore change the capacitance. The closer the pads are to the walls,

the more important this capacitance is, and the larger the change in capacitance for a given

variation in distance. Under this consideration there are two changes we can prescribe. First,

we can increase the distance of the transmon from any side walls present, for instance, by

increasing the radius of the cylindrical cutout in which it is housed. Second, we may bring the

transmon pads closer together, increasing the part of the capacitance which is direct, rather

than mediated by the sidewalls, and making the electric field profile tighter.

One major component of energy loss is imperfect dielectric, with defects and disorder which

can absorb excitations from the transmon. By volume the vast majority of dielectric present in

our system is one of two types: vacuum and sapphire. The vacuum can be considered perfect

and lossless, while the sapphire is merely very high quality. While these parts store the majority

of the electric energy, they are not necessarily the most important contribution to dielectric loss.

The small amounts of dielectric on the interface between two components is often the most

disordered and lossy, by many orders of magnitude, and therefore can be a dominant source

of loss, despite having such a small volume. Each type of interface can contribute, including

metal-vacuum, substrate-vacuum, and metal-substrate. Different geometries will have differing

relative participation in the surface, and therefore different dielectric induced loss rates. For

instance, a very narrow gap between the pads will confine much of the electric field near the

sapphire surface, increasing the substrate-vacuum surface participation. For this reason, larger,

more spread out designs, which decrease the ratio of surface to bulk, have a tendency to have

higher lifetimes (Paik et al., 2011).

With these considerations in mind we can write down a schematic procedure for generating

the transmon geometry features as seen in figure 5.2. We will first choose the transmon

5.3. THE STRIPLINE READOUT 81

enclosure radius 4 as large as possible without allowing field from the cavity mode to propagate

to the seam associated with this opening, i.e. placing the cutoff frequency above the storage

frequency. In our case this was about 0.2 cm. Given that radius, we choose the pad distance

5 as large as possible such that the field will still be primarily directed from one pad to the

other, without being mediated by the side walls of the enclosure. One might also be inclined

to reduce this distance for the sake of keeping the transmon pads relatively compact. In our

case, the distance was kept fixed at 150 micron. Next we take the desired anharmonicity to

determine the length and width of the pads 6 . The capacitance is roughly linear in the width

and logarithmic in the length, so the width is the primary variable. Next take the desired

transmon frequency, calculate the desired EJ , and use this to determine the Junction area 7 .

While a first principles calculation of the needed area is in principle possible, in practice we

use calibration measurements to determine the relationship between junction size and normal-

state resistance RN , and then this calibration lets us pick the desired size via equation 5.4.

Finally, we can determine the coupling χ between the transmon and storage mode using both

the positioning of the transmon, and a “coupler” bulb 8 . We can scale the coupling by

increasing the insertion of the bulb into the cavity. The precise value of χ is determined from

finite-element simulation of the entire geometry via black box quantization (BBQ) (Nigg et al.,

2012). A thorough description of how we use BBQ in practice can be found in Blumoff (2017).

5.3 The stripline readout

In the original version of the post cavity device (Reagor et al., 2016), the readout mode was a

second post cavity. It was soon realized, however, that this was not necessarily economical. A

readout mode has different requirements than a storage mode. A readout mode is intentionally

overcoupled to a transmission line which carries away the readout signal. This means that any

loss rate due to internal mechanisms (such as seam or dielectric losses) which is significantly

smaller than the loss rate due to the transmission line has a negligible effect. As a result,

we prefer to use the “stripline” design (Axline et al., 2016) which has several benefits. First

5.4. COUPLING PINS 82

it is much more compact, taking up a much smaller volume than a post cavity. Second it is

lithographically defined, allowing greater precision in its geometry, and therefore in its frequency

and transmon coupling. Finally, it can be more easily changed, i.e. if a different frequency or

coupling rate is desired, a new chip can be manufactured, as opposed to a new enclosure.

There are only two design steps required. First is choosing the readout frequency. This is

usually done on the basis of the frequency of available quantum limited amplifiers. In our case,

we had a JPC with maximum performance around 9.2 GHz, and therefore we aimed for this as

our readout resonant frequency. This choice determines the length of the readout 9 , which as

a λ/2 mode, is set to πc√
εeffωRO

. The effective dielectric is somewhere between 1 (vacuum) and

≈ 10 (sapphire) given by the exact geometry, and in our case is about 3.37. Finally, we must

choose our desired interaction strength χRO, which in turn determines the spacing between the

transmon and readout 10 . The precise mapping between spacing and χRO is determined via

BBQ, as was done with the storage-transmon χ.

5.4 Coupling pins

The final crucial piece of sample geometry is our means of communicating with it. For this

purpose we have introduced coupling pins, which can be thought of as coax transmission lines

which connect to our control electronics at one end, transitioning to an under-cutoff circular

waveguide at the other end. The length of this under-cutoff waveguide attenuates the coupling

between the pin and the mode at the other side.

Ultimately we must choose the length of under-cutoff waveguide (or equivalently, the length

of pin to insert into a predetermined length of waveguide) to determine the coupling rate κext.

There are two tasks ahead of us: first determining the desired value of κext for each mode to

each coupler, and determining the geometry required to achieve that desired coupling rate. Our

answer for the desired coupling rate is simplest for the readout cavity. We wish to maximize

the “readout rate” for any given amplitude, which for a perfect acquisition chain, is equal to

the dephasing rate (equation 8.18, with Γ → κext). This is maximized when χRO = κext,RO.

For the coupling rates to the transmon and storage modes, we want these to be non-zero

5.4. COUPLING PINS 83

for the purposes of driving the system, but would prefer them to be as small as possible to

avoid the induced energy decay rate. Typically, if we have some other loss rate κint from other

uncontrolled sources, e.g. dielectric loss, we can choose a value κext � κint, where our ultimate

energy decay rate should not be significantly affected by the presence of the coupler.6

In order to compute what geometry is required to implement a desired coupling rate, we

could in principle do an analytic calculation involving under-cutoff waveguide, and aperture or

dipole coupled cavities (Pozar, 2011, §7.6), but more practical is performing a finite-element

simulation. We have used the ANSYS electromagnetic simulation package in its “eigenmode”

method of operation. A matched (50Ω) resistor is added to the distant edge of the pin couplers

to simulate the effect of an arbitrarily long transmission line which allows outgoing radiation.

The eigenmode analysis produces resonant frequencies as well as quality factors which can

be converted to coupling rates. If the only source of loss in the simulation is the resistor

corresponding to a pin of interest, then the simulated loss rate is the pin’s associated coupling

rate.

For the cavity pin, which by virtue of its position couples only to the storage cavity, we can

simply choose a depth 11 such that the storage cavity lifetime is unaffected. However, for the

readout pin, we will necessarily have some coupling to both the transmon and readout modes.

Since we want the readout coupling high and the transmon coupling to be low, the salient

metric is the ratio of κext,T /κext,RO. We can choose the pin’s position along the length of the

chip enclosure 12 in order to maximize this ratio. This can actually be a bit non-intuitive, as

the maximum ratio may not be as far from the transmon as possible (Blumoff, 2017, §3.6.2).

In our geometry and frequency range, it was possible to find a location with a coupling ratio

of approximately 103. This means that for a 500 ns readout lifetime, we limit the transmon

lifetime to 500µs, an acceptable limit at our current stage of technological development. If we

wished to develop a sample with a higher coupling ratio we would need to turn to the method

of Purcell filtering, developed by Reed et al. (2010). One can find a treatment of this method

which is more amenable to the stripline readout in Axline (2018), §4.3. Given that we have

minimized the pin impact on transmon lifetime, we can set the length 13 to achieve a desired
6Interestingly, this implies that as our systems’ intrinsic coherence parameters become better and better, we

will need to weaken our coupling more and more, necessitating larger and larger drive amplitudes.

5.4. COUPLING PINS 84

readout time.

5.4. COUPLING PINS 85

Pa
ra

m
et

er
Na

m
e

Ha
m

ilt
on

ian
Te

rm
Q

uo
te

d
qu

an
tit

y

De
vic

e
1

He
er

es
et

al.
(2

01
7)

Ch
ap

te
r6

De
vic

e
2

Ro
se

nb
lu

m
et

al.
(2

01
8a

)
Ch

ap
te

r8

De
vic

e
3

Ch
ap

te
r9

Tr
an

sm
on

fre
qu

en
cy

ω
g
e
b
† b

ω
g
e
/
2π

5.
66

G
H

z
6.

5
G

H
z

4.
2

G
H

z
O

sc
illa

to
rf

re
qu

en
cy

ω
c
a
† a

ω
c
/2
π

4.
5

G
H

z
4.

5
G

H
z

4.
5

G
H

z
Re

ad
ou

tf
re

qu
en

cy
ω

RO
r
† r

ω
RO
/2
π

9.
33

G
H

z
9.

33
G

H
z

9.
33

G
H

z
Di

sp
er

siv
e

sh
ift

(|e
〉)

χ
e
a
† a
|e
〉〈e
|

χ
e
/2
π

−
21

94
±

3
kH

z
−

93
kH

z
−

90
0

kH
z

Di
sp

er
siv

e
sh

ift
(|f
〉)

χ
f
a
† a
|f
〉〈f
|

χ
f
/2
π

No
tM

ea
su

re
d

−
23

6
kH

z
1.

2
M

H
z

Tr
an

sm
on

an
ha

rm
on

ici
ty

α 2
(b
†)

2 b
2

α
T
/
2π

−
23

6
M

H
z

−
21

0
M

H
z

−
13

7
M

H
z

O
sc

illa
to

ra
nh

ar
m

on
ici

ty
K 2

(a
†)

2 a
2

K
/2
π

−
3.

7
±

0.
1

kH
z

−
10

kH
z

−
2.

2
kH

z
Se

co
nd

or
de

rd
isp

er
siv

e
sh

ift
χ
′ 2
(a
†)

2 a
2 b
† b

χ
′ /

2π
−

19
.0
±

0.
4

kH
z

No
tM

ea
su

re
d

No
tM

ea
su

re
d

Tr
an

sm
on

e
→
g

re
lax

at
io

n
1
T
g
e

1
D

[|g
〉〈e
|]

T
g
e

1
17

0
±

10
µ
s

25
µ
s

50
µ
s

Tr
an

sm
on

f
→
e

re
lax

at
io

n
1
T
ef 1
D

[|e
〉〈f
|]

T
ef 1

No
tm

ea
su

re
d

23
µ
s

50
µ
s

Tr
an

sm
on

de
ph

as
in

g
1 T
φ
D

[b
† b

]
T
φ

43
±

5µ
s

17
µ
s

81
µ
s

O
sc

illa
to

rr
ela

xa
tio

n
1 T
c 1
D

[a
]

T
ca

v
2.

7
±

0.
1

m
s

1.
07

m
s

1.
0

m
s

Tr
an

sm
on

th
er

m
al

po
pu

lat
io

n
n̄
T
g
e

1
D

[|e
〉〈g
|]

n̄
n̄
≈
.0

5
n̄
≈
.0

3
n̄
≈
.0

03

Ta
bl

e
5.

1:
C

om
pa

ris
on

of
Sy

st
em

Pa
ra

m
et

er
s

fo
r

ex
pe

rim
en

ts
pe

rf
or

m
ed

in
th

is
th

es
is

5.5. PUTTING IT ALL TOGETHER 86

5.5 Putting it all together

5.5.1 Fabrication

The fabrication procedure is relatively standard, and well documented in other sources, par-

ticularly Reagor (2015). I will summarize the process for completeness. The cavity enclosure

(figure 5.3) is machined from a block of high-purity (99.999%) aluminum. It is subjected to

two sequential two-hour chemical etches using “aluminum etch A,” a combination of nitric

and phosphoric acid. The cavity design should account for the removal of approximately 150

microns of material uniformly throughout.

The transmon is fabricated on a 430 micron thick 2” wafer of sapphire by a liftoff process. A

MMA/PMMA bilayer is spun on the surface of the wafer, followed by deposition of a thin gold

anti-charging layer using a sputterer. Then a pattern is written via electron beam lithography

(figure 5.4). The junction is defined using the bridge-free method (Lecocq et al., 2011), which

has been shown to allow faster quasiparticle relaxation times than the Dolan bridge method.

After writing, the gold layer is removed by a 15 second potassium iodide (KI) etch. The

e-beam resist is developed by a two-minute immersion in a temperature-controlled IPA/Water

bath which has been shown to perform favorably in comparison with MIBK (Yasin et al., 2002).

After development, the sample is subjected to an Ar/O2 plasma to clean the exposed sapphire

surface, and then undergoes two cycles of aluminum deposition, each followed by controlled

oxidation. After deposition, the excess metal is lifted off by a 2 hour (typically overnight) soak

in NMP kept at 50◦ C. After liftoff, a thick photo-resist (SC1827) is applied for the purpose

of protecting the sample surface during dicing. The chip is diced, and the samples are cleaned

using NMP, acetone, and methanol. The chip is held in place by a clamp and inserted into the

cavity trench resulting in a final geometry similar to that seen in figure 5.5.

5.5.2 Attenuators and filtering

No less crucial than the sample itself is the apparatus we connect it to. To begin with,

we must thermalize the sample, and we have two objectives in this regard. First, we must

bring the sample temperature low enough to reach the superconducting regime, which for

5.5. PUTTING IT ALL TOGETHER 87

Figure 5.3: 3/4-section view of machined cavity component.

aluminum is 1.2K. Second, we must remove all blackbody radiation at the frequency of interest

of approximately 5 GHz, corresponding to a temperature of ~ω
kB
≈ 240 mK.

Bringing the base plate of the refrigerator, to which our sample can be firmly attached, to

a temperature well below these limits (about 20 mK) is a necessary first step to achieving good

thermalization. It would be sufficient too if not for the fact that we need to introduce cables

which attach at one end to our sample, and at another end to our control electronics living at

room temperature. These cables act as a window, and would carry very hot radiation from the

outside world into our sample, preventing it from cooling down. We can overcome this problem

by adding attenuators to our cables. These attenuators remove all but an insignificant fraction

of the thermal photons from the outside. They remove all but a fraction of the signal (driving)

photons as well, but this fraction can be significant if the input drive strength is sufficiently

high. The cost of adding attenuators is that they contribute thermal photons of their own, as a

result of Johnson-Nyquist noise, which itself is a result of the fluctuation-dissipation theorem.

This added component can be made small if the attenuator itself is well thermalized and cold.

5.5. PUTTING IT ALL TOGETHER 88

Figure 5.4: Transmon and readout chip schematic. (top left) The layout of 14 chips on
a 2” wafer. Each chip (top right) contains a transmon and a readout mode, as well as a set
of test junctions. The junction (bottom) has several geometry components with varying levels
of e-beam dosage applied. The pink leads below and above the U-shaped blue regions should
only allow metal to reach the substrate on one orientation of the multi-angle deposition. All
indicated numbers are measurements in units of microns

5.5. PUTTING IT ALL TOGETHER 89

Figure 5.5: Assembled device schematic

For this reason, we add attenuators on the input lines and anchor them to the cold plate of

the fridge. The isolation factor G required to get the thermal photon population at frequency

ω down to a target level n̄ can be found via

n̄ = Gn̄BE(293 K, ω) + (1−G)n̄BE(20 mK, ω), (5.8)

where we use the Bose-Einstein distribution

n̄BE(T, ω) = 1

e
~ω
kBT − 1

. (5.9)

For a target population of n̄ ≈ 10−3 at 5 GHz requires G ≈ −60 dB. About 10 dB of

attenuation is present from just the lines themselves, so we need to add at least 50 dB of

explicit additional attenuation. If we were to put this amount of attenuation at base, however,

for a given amount of power delivered to the sample, we would have to dissipate 105 times

that power. We do not have the cooling power to maintain 20 mK temperatures with this heat

load, and therefore this amount of power would heat up the fridge. We can obtain nearly the

same performance without affecting the base temperature by splitting the attenuation in two

parts, the first of which is attached to a higher temperature stage (here, -20 dB at 4 K), such

that the majority of the heat load is dissipated at this stage, and the remaining attenuation

5.5. PUTTING IT ALL TOGETHER 90

occurs at 20 mK. The logic is that in this scheme, we only need as much attenuation at base

as is required to attenuate the 4 K thermal photons, rather than what is needed to attenuate

the 290 K thermal photons. The equations for this two stage thermalization are then:

n̄4 K = G4 Kn̄BE(293 K, ω) + (1−G4 K)n̄BE(4 K, ω) (5.10)

n̄base = Gbasen̄4 K + (1−Gbase)n̄BE(20 mK, ω). (5.11)

If we say G4 K ≈ −20 dB and Gbase ≈ −40 dB, the final population is about 3 × 10−3, a

relatively small increase in thermal population compared with the single-stage approach. We

can actually avoid the dissipation of any significant amount of heat at the base stage by using

the “direct-tenuator” approach. Instead of using a 20 dB attenuator at base, one can instead

use a directional coupler, with a -20 dB coupled port. The majority of the power goes straight

through the directional coupler, and is carried on a line which goes back up to the 4 K stage,

where it can be dissipated more easily. The downside of this approach is that it sacrifices an

additional line between the base and 4 K stages, which is not always available. In addition,

We must use a similar scheme on the output lines as well, but instead of attenuators, we

use isolators, which are non-reciprocal devices which act as attenuators for signals travelling in

one direction, but have low loss in the other direction, allowing the outgoing signal integrity to

be preserved while simultaneously protecting the sample from incoming radiation.

We care not only about photons at the frequency of our modes, but also at higher fre-

quencies, as these can excite quasiparticles and cause all sorts of other nasty effects. If we

had perfect, infinite bandwidth attenuators, our presently described setup would be sufficient.

However, commercially available attenuators are typically only characterized up to about 20

GHz or so. At higher frequencies these devices can effectively act as passthroughs, allowing

harmful infrared radiation to pass through. For this purpose we introduce additional filters,

formed by replacing the dielectric in a length of coax with a special epoxy (eccosorb) which is

designed to be as absorptive as possible in the infrared. Finally, we can use reflective (lossless)

low-pass filters designed to reject frequencies above 10 GHz in order to cover the range between

20 GHz and the infrared band covered by the eccosorb.

5.5. PUTTING IT ALL TOGETHER 91

We can summarize the attenuation and filters used in our actual experiments via the dia-

gram 5.6.

5.5. PUTTING IT ALL TOGETHER 92

LP 12GHz

LP 10GHz

A
B

LP 10GHz

LP 10GHz

LP 12GHz

LP 10GHz

LN
F

31
3 LP 10GHz

JP
C

18
0-

H

S
S

10dB

Ec
co

FB
09

55

LP 10GHz

30
0K 4K

20
m

K

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

20dB

20dB

20dB

20dB

20dB

20dB

20dB

20dB

20dB

20dB

20dB

20dB

20dB

35
9D

30dB

30dB

30dB

30dB

30dB

30dB

Ec
co

Ec
co

I I

Ec
co 9

Ec
co 2

Ec
co 6

Ec
co 8

20dB

10dB

20dB

20dB

10dB

10dB

10dB

10dB

10dB

Ec
co 7

3
dB

Fi
gu

re
5.

6:
Fr

id
ge

w
iri

ng
di

ag
ra

m

5.5. PUTTING IT ALL TOGETHER 93

It turns out that the ordering of the components is quite critical. Specifically, the eccosorb

should be the last component, and as close to the sample as possible, in order to minimize

the temperature of the transmon mode. It is not known precisely why this is the case, but

one hypothesis is that the cables and connectors of the microwave components are “leaky,”

allowing high-frequency photons in from the environment. The ambient photon temperature

can be much hotter than the base temperature, especially since most fridges do not have cans

which isolate the base plate from the 1 K stage. Additionally, it has been found to be crucial

to thermally anchor all of the components at base as directly as possible. It is not desirable to

rely upon the coaxial microwave cables themselves to conduct heat. Instead, one should use

conductive copper braid, tightly clamped, when direct affixing to the base plate is not possible.

5.5.3 Readout amplification

We are forced to attenuate the signals going to the sample in order to keep the signal to noise

ratio high. For the same reason, we must perform amplification of the outgoing signal, as

the signal sizes coming out of the system will be dwarfed by the thermal noise in the room

temperature acquisition electronics. To do so, we must use a series of low-noise amplifiers,

positioned at different temperature stages.

The most important amplifier is the first, which will largely determine the signal-to-noise

ratio. For this purpose, we use a Josephson Parametric Converter (JPC), which is a quantum

limited amplifier built out of a ring of four Josephson junctions (Bergeal et al., 2010). The

system effectively implements the Hamiltonian

HJPC = ωaa
†a+ ωbb

†b+ ωcc
†c+ g(a+ a†)(b+ b†)(c+ c†), (5.12)

Where the three modes are called the signal, idler, and pump modes. The system is flux tuned

until ωc ≈ ωa + ωb, within the linewidth of the pump mode. By applying a large displacement

ξc to the pump mode we can activate the term ab+a†b† with strength gξc (see chapter 7 for

more discussion of how to analyze “activating” Hamiltonian terms with pumps). The effect of

5.5. PUTTING IT ALL TOGETHER 94

this two-mode squeezing Hamiltonian7 is to transform the ladder operators over the interaction

time t (set by the linewidth) resulting in,

a 7→ a cosh gξct− b† sinh gξct (5.13)

This can be interpreted as adding amplification to the field of the signal mode (on the order

of cosh gξct), while mixing in some component of the field of the idler mode. This idler mode

contribution can be minimized by keeping the idler input to be cold vacuum, in which case the

idler mode contribution is to add a “half-photon” of noise. Amplifiers are a deep and subtle

topic, to which this hand-wavy description does not do justice. See Sliwa (2016) for a rigorous

discussion of how to model the JPC and other types of quantum amplifiers.

JPC amplifiers have a limited dynamic range, meaning that the output begins to saturate

at some input power, which we approach when operating the JPC with 20 dB of gain on

typical readout signals. Therefore a different type of device is required to perform additional

amplification. For this purpose we employ a high electron mobility transistor (HEMT) amplifier.

These devices operate at 4K, and provide about 30 dB of gain, with a very low noise figure

(≈ 0.1 dB). A final room temperature amplifier, provides the final ≈ 20 dB of gain required to

cancel the effect of the attenuators, bringing the total apparent S21 of the input-output lines

close to unity.

5.5.4 Electronics

The role of the electronics is to firstly, generate the signals which we send into the lines to

manipulate the system, and secondly to acquire, interpret, and potentially even act upon the

returning signals which carry the information about the system’s behavior.

We can start with the signal generation. The most straightforward approach to this

problem is to use a so-called “direct-synthesis” approach using a high-speed, high-bandwidth

(∼ 50 GS/s, ∼ 20 GHz) AWG to create the desired signals ex nihilo, as was shown in Raftery

et al. (2017). However, this approach requires very expensive hardware, and the capabilities
7See Walls and Milburn (1995) for a concise description of the action of both single-mode and multi-mode

squeezing operators

5.5. PUTTING IT ALL TOGETHER 95

and limitations of this approach still need to be explored and characterized. For this reason,

we use a more traditional approach involving lower bandwidth (∼ 1 GHz) AWGs together

with microwave signal generators, which can produce high-quality pure tones up to 20 GHz.

With this approach we can produce any signal we want in the same frequency range, with the

constraint that the instantaneous bandwidth is within the AWG bandwidth. We can see an

example setup in figure 5.7. The main performance metric for the signal generation electronics

is phase noise, i.e. how well defined is the phase of a signal, relative to a delayed version of

itself. The phase noise is the power present in the output, at a given offset from the carrier

frequency, relative to the carrier output power. The power spectral density (PSD) can be run

through a “filter-function” analysis to produce the effect of phase noise on the Ramsey decay

curve (Bylander et al., 2011; Green et al., 2013; Soare et al., 2014). Other components we

see in figure 5.7 are amplifiers, which allow us to reach the desired input power, and switches,

filters, and isolators, to ensure that the signal is as clean as possible. The switches are a critical

component which must be placed after any room temperature amplifier, as these amplifiers

increase the apparent noise temperature going into the system. The logic behind the switch

is that this noise is acceptable for the short periods of time when the drive is active (say for

a fast π pulse) but would be very detrimental over longer periods of idling time. DC blocks

are placed around all active components, such as switches, amplifiers, and mixers, to prevent

ground loops whenever possible. Finally, several diagnostic ports are created. We tap off the

AWG outputs before the mixer, in order to allow us to see the pulse sequence playing in the

time domain on an oscilloscope. A small portion of the RF power is diverted to a spectrum

analyzer before going to the fridge, which allows us to perform IQ mixer calibrations without

disrupting the setup.

5.5. PUTTING IT ALL TOGETHER 96

DA0

DA1

LR
I

Q
<LO>

<Mixer>

BLP-300+

BLP-300+ Source
(<LO>, <Mixer>)

Inmet

8039

ZFRSC-42-S+

ZFRSC-42-S+

To Scope

Ditom
D3C4012

Source
LabBrick LMS-802-D
Marki IQ-0307-MXP

DA2

DA3

Source
LabBrick LMS-402-D

Marki IQ-0307-LXP

50Ω 50Ω

AB0

ZFSC2-10G+

DA0

DA2

AD1
AB0

Source
Agilent N5183A

Marki IQ-0307-MXP

ZFSC2-10G+

EF

GE

GFM1

DA0

DA1

Source
LabBrick LMS-402-D
Marki IQ-0307-MXP

EHM1

Ca
rd

 0
X6

-1
00

0M

Ca
rd

 3
X6

-1
00

0M
Ca

rd
 1

X6
-1

00
0M

Mkr0

DA0

DA1

Source
LabBrick LMS-802-D
Marki IQ-0307-MXP

DA2

DA3

Source
Agilent N5183A

Marki IQ-0618-MXP

AB0

Cavity

Readout

Ca
rd

 2
X6

-1
00

0M

ZFSC2-10G+

Agilent N5183A

Inmet

8039

ZVA-183-S+

Inmet

8039

SR 445A

AB0

Inmet

8039

-10 dB

Krytar 4-20

To Spectrum
Analyzer

ZFSC2-10G+

To JPC Pump
Input

VBFZ-4000-S+
3.5G-4.5G

-10 dB

Krytar 4-20

To Spectrum
Analyzer

Split o�
Reference LO

To Cavity
Input

VBF-4440
4.2G-4.7G

-10 dB

Krytar 4-20

To Spectrum
Analyzer

Inmet

8039

Inmet

8039

To Readout
Input

VHF-7150+
8.5G-10.5G\

From
Output

Miteq AMF-5F

RI
L

Marki
IRW0618ZFL 1000-LN+SR 445A

Inmet

8039

Mkr1

LabBrick LMS-163

Inmet

8039

CustomMMIC

CD204

CustomMMIC

CD204

To Transmon
Input

Figure 5.7: Signal generation and acquisition electronics This is the final setup used for the
FT SNAP experiment (chapter 9). Similar setups are used for the previous two experiments.
The “source” block at the top is repeated several times, and is parameterized by the LO
hardware, and the mixer hardware, with other components remaining the same. The GFM1
and EHM1 sectors produce the sideband drives corresponding to the |g, n〉 ↔ |f, n− 1〉 and
|e, n〉 ↔ |h, n− 1〉. These were used for photon preparation (section 7.3) and χ cancellation
(section 8.2), respectively.

Chapter 6

Universal control of a cat-code qubit

Quantum error correction (QEC) aims at the creation of logical qubits whose information

storage and processing capabilities exceed those of its constituent parts. Any logical qubit will

inevitably face difficulties in control, by its very nature. The information is encoded in such a

way that the environment cannot, without great difficulty or coincidence, learn about, measure,

or manipulate it. This means that the designers of operations on a logical qubit must overcome

the control barriers they themselves erected in the first place. This is one more facet of the

fundamental tension of quantum computing, between isolation and control.

In order to perform gates on a logical qubit one must perform operations on the entire system

in such a way that it results in the desired transformation within the two-dimensional logical

subspace. In any encoding scheme the system dynamics are not naturally confined within the

logical subspace. Therefore, implementing operations requires carefully tailored controls which

address each component of the system and manage their mutual interactions.

In encodings based on many entangled two-level systems, which are designed to detect and

correct individual errors on any of the subsystems, such as the 7-qubit Steane code, control

comes in the form of single-qubit drives on each of components, as well as entangling drives

between connected pairs. While this control scheme may seem simple in theory, in practice one

will have to reckon with the presence of many types of deviations from the model, including

cross-talk between the lines and always-on unwanted interactions between adjacent qubits.

These complications will make this task much more difficult in practice.

97

6.1. FIRST THINGS FIRST: CHARACTERIZING THE SYSTEM 98

We have shown in section 2.3 how a dispersively coupled qubit gives universal control

to a cavity, and consequently, in principle, of encoded states within the cavity. While the

control scheme is much less intuitive than that of multiple qubits, it is actually much simpler

to characterize the model deviations, such as Kerr non-linearity. We will begin this chapter

by showing how we perform the necessary system characterization, in section 6.1. With this

characterization in hand, we can proceed in section 6.2 to employ numerical optimal control

techniques detailed in chapter 4, allowing us to demonstrate a contrived, but highly nontrivial

action on the cavity. In 6.3 we move the setting back to the cat code detailed in section 3.6 by

developing pulses which transfer quantum information between the traditional transmon qubit

and the cavity logical qubit. Finally, in 6.4, we can create and test a set of operations on the

logical qubit.

6.1 First things first: Characterizing the system

The model we will use to describe the system is a dispersive model, by which we mean the

static components are entirely diagonal in the photon number basis. We can partition the

Hamiltonian into sectors:

H(t) = Hoscillator +Htransmon +Hinteraction +Hdrive(t) (6.1)

We can begin by characterizing the transmon and oscillator sectors

Htransmon = ωTb
†b+ αT

2 (b†)2b2 (6.2)

Hoscillator = ωCa
†a+ K

2 (a†)2a2 (6.3)

It is absolutely crucial to know the resonant frequencies ωC and ωT , as accurately as possible.

The most precise method for determining this is via Ramsey interferometry. The method and

fit is slightly different for the cavity and transmon (see figure 6.1) but both operate on the same

principle of comparing the phase of the subsystem with that of a local oscillator for varying

times.

6.1. SYSTEM CHARACTERIZATION 99

τ

RX(π/2) RX(π/2)

ge

RO

0 20 40 60 80 100

Time (µs)

0.25

0.50

0.75

1.00

P
(|e
〉)

fit τ ≈ 44µs

(a) Transmon Ramsey sequence

Dα D−α

τ

Cav

ge

RO

0 250 500 750 1000 1250 1500 1750 2000

Time (µs)

0.6

0.7

0.8

0.9

P
(|e
〉)

fit τ ≈ 852µs

(b) Cavity Ramsey sequence

Figure 6.1: Transmon and cavity Ramsey sequences Ramsey sequences are a set of time-
parameterized experiments which directly yield accurate measurements of the system’s resonant
frequency. On the left is a transmon Ramsey sequence, which plays two π/2 qubit rotations
separated by a variable time. On the right, a pair of small cavity displacements is separated by
a variable time. The photon number can be mapped onto the transmon by a selective transmon
rotation. In order to measure the coherence decay constant accurately, it is important to use a
detuned local oscillator (either in hardware, or virtually, in software).

The anharmonicities K and αT differ by many orders of magnitude, and therefore require

very different approaches in order to characterize. One might ask why we would need to

characterize the anharmonicity, if we are not intending on employing the |e〉 ↔ |f〉 transition

in our operation,1 but this term can, especially at large transmon drive amplitudes induce

an effective Stark shift. Therefore including it is essential to achieve the highest level of

performance, but the required precision is lower. To measure this, we can perform simple

spectroscopy (figure 6.2). Accounting for the cavity anharmonicity, also known as the (self-

)Kerr non-linearity K, is no less important. While it may be negligibly small when acting on

states within the cat code manifold, the n2 scaling with respect to photon number means that

any intermediate occupation of higher photon number states will induce sensitivity to the value
1In principle using this transition is possible, and would likely provide a large benefit for doing faster operations,

but would require additional characterization. Extending optimal control to using this resource would be a useful
further direction to explore.

6.1. SYSTEM CHARACTERIZATION 100

ω

ge

ef

RO

Figure 6.2: Transmon EF Spectroscopy The transmon anharmonicity can be found by varying
the frequency of the second pulse in this sequence around the expected location of ωef .

of K. The relevant information for calculating K is contained within an extension of the cavity

Ramsey sequence (figure 6.1b) which, in addition to scanning the delay time τ also scans the

cavity displacement α. After acquiring this data, we can fit the data using the following model

(figure 6.3):

f(ωC ,K, t, α) = | 〈α| eiωCta†a+ iKt
2 (a†)2

a2 |α〉 |2. (6.4)

The next piece of characterization that needs to be carried out is to identify the interaction.

The most important parts of this Hamiltonian are the linear (χ) and quadratic (χ′) photon

number dependent dispersive shifts:

Hinteraction = χa†ab†b+ χ′

2 (a†)2a2b†b (6.5)

We can determine these parameters quite accurately by measuring the transmon frequency

at different photon numbers. While, at this stage of characterization, we might not be able

to prepare individual photon number states deterministically,2 we can prepare large photon

number states via simply driving large displacements in the cavity. Performing spectroscopy of

the transmon reveals a frequency comb (see figure 6.4). By scanning the value of α and fitting
2see sections 6.2 and 7.3 for how this can be done with optimal control or sideband drives, respectively

6.1. SYSTEM CHARACTERIZATION 101

0.0

0.2

0.4

0.6

0.8

1.0

P
e

0 20 40 60

Delay (µs)

Data

0 20 40 60

Delay (µs)

0.5

1.0

1.5

2.0

D
is

pl
ac

em
en

t
α

Model

Figure 6.3: Determining the cavity Kerr non-linearity. This protocol is the same as the cavity
Ramsey sequence seen in figure 6.1b, with the added complication of varying the displacement
amplitude. The Kerr non-linearity can be determined from the “bending” of the curves seen
here. The quantitative fit can be found using equation 6.4

0 5 10 15
Detuning (MHz)

0.1

0.2

0.3

P
e

5 10 15 20 25
Detuning (MHz)

10 15 20 25 30 35
Detuning (MHz)

5 10 15 20 25
Detuning (MHz)

10 15 20 25 30
Detuning (MHz)

0 2 4 6 8 10 12 14 16

n

500

0

500

1000

1500

2000

2500

f−
21

94
.4
n

(k
H

z)

19.0n(n−1)/2

Figure 6.4: Transmon spectroscopy for determining χ and χ′.The dispersive shift χ and its
second order correction term χ′ are determined from transmon spectroscopy experiments with
several different displacements (top). Each peak is fit to a Gaussian and the resulting center
frequencies are fit using a quadratic model. We see in the bottom plot the deviation of the
peak locations from a linear fit, and that a quadratic adjustment is sufficient correction.

6.1. SYSTEM CHARACTERIZATION 102

the comb using a sum of Gaussians, we can extract the transmon frequency for every photon

number, up to the number of photons we are going to allow in our optimal control pulses. We

can then fit this set of numbers to a low order polynomial. In this experiment second order was

sufficient.

Finally we need to characterize the driven sector of the Hamiltonian:

Hdrive(t) = εC(t)a+ εT (t)b+ h.c. (6.6)

In particular, we need to relate the rates εC and εT (in units of Hz) to the AWG amplitude (in

either DAC units or voltage). Given that we have a characterized π pulse or cavity displacement.

For an ideal two-level system, we can calculate the drive rate (εT,max) corresponding to the

peak of a Gaussian pulse of with σ required to perform a pi pulse:

eiθσx = cos(θ) + i sin(θ)σx (6.7)
π

2 = θ (6.8)

= εT,max

∫
dt e−

t2
2σ2 (6.9)

= εT,max
√

2πσ2 (6.10)

εT,max =
√

π

8σ2 (6.11)

Assuming a linear relationship between the DAC setting and the drive rate then gives us a

map from arbitrary DAC settings to drive rates. Similarly, from a unit displacement, we can

calibrate εC .

6.2. CREATING FOCK STATES FROM SCRATCH 103

eiα(a+a†) = Diα (6.12)

1 = α (6.13)

= εC,max

∫
dt e−

t2
2σ2 (6.14)

= εC,max
√

2πσ2 (6.15)

εC,max = 1√
2πσ2

(6.16)

6.2 Showing off a bit: Creating distant Fock states from scratch

After performing the necessary system characterization, resulting in an accurate model of the

cavity-transmon Hamiltonian (see Table 5.1 for the results of this characterization), the next

step is to tune up the optimal control. We do this largely by following the procedure in figure 4.2.

To fill out the details of this protocol, we can specify that the “evaluation pulses” we targeted

for the purposes of getting the pulse constraints correct was a set of operations designed to

create different Fock states in the cavity, and took the form

|0〉 ⊗ |g〉 −→ |n〉 ⊗ |g〉 (6.17)

An example of one of these pulses (specifically for n = 6), and its simulated trajectory in

phase space, is visualized in figure 6.5. Under the action of this 500 ns pulse, we see that the

cavity and transmon quickly become entangled, with the cavity state having little recognizable

or meaningful structure apart from the beginning and end states. We can compare this with

the shortest equivalent sequence constructed via SNAP and displacements, we would require

at least 2 SNAP operations and 3 displacements, which in this experiment, would take at least

3 µs and would be susceptible to control errors via Hamiltonian terms other than χ.

The real test of this pulse is performing it in practice. This is effectively asking the question:

is our model Hamiltonian accurate enough to reliably predict the system evolution within the

6.2. CREATING FOCK STATES FROM SCRATCH 104

0 200 400
−0.25

0.00

0.25

0
qubit drive

0 200 400

cavity drive

−2.5 0.0 2.5

−2

0

2
Tr[ρ|g〉〈g|]

−2.5 0.0 2.5

Tr[ρ|e〉〈e|]

0 200 400
−0.25

0.00

0.25

1
qubit drive

0 200 400

cavity drive

−2.5 0.0 2.5

−2

0

2
Tr[ρ|g〉〈g|]

−2.5 0.0 2.5

Tr[ρ|e〉〈e|]

0 200 400
−0.25

0.00

0.25

2

0 200 400

−2.5 0.0 2.5

−2

0

2
Tr[ρ|g〉〈g|]

−2.5 0.0 2.5

Tr[ρ|e〉〈e|]

0 200 400
−0.25

0.00

0.25

3

0 200 400

−2.5 0.0 2.5

−2

0

2
Tr[ρ|g〉〈g|]

−2.5 0.0 2.5

Tr[ρ|e〉〈e|]

0 200 400
−0.25

0.00

0.25

4

0 200 400

−2.5 0.0 2.5

−2

0

2
Tr[ρ|g〉〈g|]

−2.5 0.0 2.5

Tr[ρ|e〉〈e|]

0 200 400
−0.25

0.00

0.25

5

0 200 400

−2.5 0.0 2.5

−2

0

2
Tr[ρ|g〉〈g|]

−2.5 0.0 2.5

Tr[ρ|e〉〈e|]

Figure 6.5: Phase space trajectory of pulse creating 6 photons. Sub-plots 1-6 are individual
time slices of the cavity-transmon trajectory. For each time slice we characterize the cavity state
conditional on both |g〉 and |e〉 with a Wigner function, which is normalized to the probability of
occupying the respective transmon state. Note that this is not quite tomographically complete,
which would require four Wigner-like functions per time slice (Vlastakis, 2015, §6.3.1). The
trajectory shows how the Fock state is built up in phase space, gradually approaching the
correct form seen in the final panel.

6.3. ALTERNATING HILBERT SPACES: ENCODE AND DECODE 105

a b c

Figure 6.6: Wigner function Fock state |6〉 as created by optimal control Characterization
of the oscillator state using Wigner tomography (bottom) and transmon spectroscopy (top),
where grey dashed lines indicate the transition frequency associated with the first 7 Fock states.
The single peak in the spectroscopy data directly reveals the oscillator’s population due to the
dispersive interaction giving a frequency shift of 6χ/2π ≈ 13 MHz.

bandwidth, amplitude and photon number occupied during the pulse evolution? We can see

in figures 6.7 and 6.6 that it is. In particular, the photon number distribution predicted by the

simulation matches the observed trajectory quite well. While the dissipation-free simulation for

this pulse has a transfer fidelity > 99.9%, accounting for the known sources of decoherence,

mostly transmon dephasing in this sample, reduces the prediction to 98.5%. It is difficult to

confirm the fidelity of this Fock state experimentally to this level of accuracy, due to the issues

of separating state and measurement fidelity in state tomography, but the best estimates from

the transmon spectroscopy indicate a fidelity of 98%, arrived at by comparing the contrast of

the vacuum |0〉 to the prepared state |6〉.

6.3 Alternating Hilbert spaces: Encode and decode

With the optimal control system brought online (see appendix F for the final code which

produced our pulses), we can move on to our more concrete goal of manipulating cat-encoded

quantum bits. Our target encoding is the orthogonal cat code specified in equations 3.56 and

3.57, with α =
√

3. In order work with this code, we will need to be able to prepare and measure

6.3. ENCODE AND DECODE 106

0

5

10

n

Simulated p(n, t|g)

n

Measured p(n, t|g)

-3

3

✏ T
(t

)

0 100 200 300 400 500
t (ns)

-5

5

✏ C
(t

)

Figure 6.7: Photon number trajectory of pulse creating 6 photons, compared with
experiment. Lower panels: optimized transmon and oscillator control waveforms of length
approximately 2π/χ to take the oscillator from vacuum to the 6-photon Fock state. Solid
(dotted) lines represent the in-phase (quadrature) field component. Upper panels: oscillator
photon-number population trajectory versus time conditioned on transmon in |g〉, both in
simulation (top) and experiment (bottom). A complex trajectory occupying a wide range of
photon numbers is taken to perform the intended operation.

its states. We note that we have a very good ability to prepare and characterize states in the

transmon. We can extend this capability to the cavity if we can map quantum information

from one system to the other. For this reason we create the encode (Uenc) and decode (Udec)

pulses (see figure 6.8a)

(α |g〉+ β |e〉)⊗ |0〉 encode−−−−⇀↽−−−−
decode

|g〉 ⊗ (α |0L〉+ β |1L〉) (6.18)

These operations will coherently move quantum information between our easily addressed

transmon and the cavity. These pulses are each 1100 ns ≈ 2.4 × 2π/χ in length, and are

6.3. ENCODE AND DECODE 107

a

b

c

d

T

C

Figure 6.8: Characterization of encoded states. a, Uenc and Udec are operations which
coherently map between two distinct two-dimensional subspaces, represented by Bloch spheres.
The first subspace consists of the transmon |g〉 and |e〉 levels, with the oscillator in the vacuum.
The second is given by the oscillator-encoded states |0L〉 and |1L〉 (equations 3.56 and 3.57),
with the transmon in the ground state. b, Wigner tomography sequence which characterizes the
encoded states. A transmon state is prepared by applying an initial rotation Ui and is mapped
to the oscillator using Uenc. An oscillator displacement Dβ followed by a parity mapping
operation Π (implemented using an optimal control pulse) allows one to measure the oscillator
Wigner function W (β). The transmon can be re-used to measure the oscillator’s parity because
the encoding pulse leaves the transmon in the ground state with high probability (p > 98%).
c, Applying Uenc to the transmon states |g〉 and |e〉 produces states whose Wigner functions
are consistent with the intended encoded basis states . A transmon spectroscopy experiment
(top panel) illustrates that only photon number states with n = 0 mod 4 and n = 2 mod 4
are present for logical state |0L〉 and |1L〉 respectively. d, Applying Uenc to superpositions of
the transmon basis states demonstrates that the relative phase is preserved and that Uenc is
a faithful map between the transmon and logical qubit Bloch spheres. These states, on the
equator of the Bloch sphere, are equally weighted superpositions of |0L〉 and |1L〉 and therefore
contain all even photon numbers present in the basis states.

6.3. ENCODE AND DECODE 108

T

C

Figure 6.9: Process tomography of encode-decode. We perform transmon tomography on
the process UdecUenc, which is ideally the identity. The result of the tomography is shown in
the Pauli transfer representation (appendix C.2.1).

specified with a 2 ns time resolution. About 99% of the spectral content lies within a band-

width of 33 MHz (27 MHz) for the transmon (oscillator) drive. The pulses which implement

these operations can be seen in figure 6.10. In order to validate the encoding, we can perform

Wigner tomography (see section 2.3.2, figure 6.8b), and ensure that the resulting state matches

expectations. Depending on whether transmon state is |g〉 or |e〉 before applying the encode op-

eration, the resulting cavity state could be a four-legged cat state with even or odd superparity.

Because of the linearity of the encoding transformation, superposition states in the transmon

are transformed into the corresponding superposition states in the cavity, producing either hor-

izontal or vertical two-legged cats. In figure 6.8c-d we see the encoded states corresponding to

the 6 cardinal points of the Bloch sphere (c.f. figure 3.2). The encoding pulse is not limited to

these points, and works to produce arbitrary encoded states, given the corresponding transmon

state. Maximum likelihood reconstruction of the density matrix associated with the measured

Wigner functions indicates an average fidelity of 0.96. This metric underestimates the fidelity

of Uenc because it is affected by several sources of error not intrinsic to the encoding operation

itself, including error in the parity mapping and measurement infidelity.

We can test the decode operation by performing encode followed by decode. If these

operations are ideal, the net transformation should be the identity operation. We can test this

property by preparing different states in the transmon, and measuring what transmon state we

end up in (figure 6.9). With this method, we can perform process tomography on the transmon

(see appendix C.2), and calculate a fidelity to the identity of F ≈ 96.4%. Some of this error

6.4. TESTING ENCODED OPERATIONS 109

comes from inaccuracy in the transmon state preparation and measurement (SPAM) errors, as

we will discuss in the next section.

6.4 Testing encoded operations

This brings us to a discussion of the operations manipulating the cat code. Using the same set

of conditions as those which generated the encode and decode, we create a universal set of gates

on our logical qubit, which includes σx and σy rotations by π and π/2, as well as Hadamard

and T gates (see appendix F for the final code which produced our pulses). We include as well

an identity operation, which is as long as the other pulses, which intends to cancel the spurious

evolution of the cavity under its Kerr non-linearity. Looking at these pulses in 6.10 is not too

enlightening. We can note, however, that the T and identity operations, which do not change

photon number, but only impart phases to the cavity, can be implemented with only transmon

drive, as would be done if these operations were implemented in SNAP. This was a result of

the optimization, which in the face of drive amplitude constraints, chose to make the cavity

drive negligibly small, as it was not needed.3

In order to verify these operations, to begin with, we can prepare encoded states in the cavity,

apply the operation, and then characterize the cavity state (figure 6.11). While this is sufficient

to establish qualitative agreement, a more precise evaluation can be determined from process

tomography (figure 6.12). Process tomography provides a full characterization of a quantum

operation, but depends on pre-existing trusted operations and measurements which are not

available for our encoded subspace. However, an indirect characterization of a gate UX on our

logical qubit can be performed using the operation UdecUXUenc, which maps the transmon

subspace onto itself. This allows one to use the trusted state preparations and measurements

on the transmon to perform tomography on the composite process. The reconstructed process

matrices show qualitative agreement with the intended encoded qubit gates. We can break

the calculated infidelity down into 3 parts: transmon preparation and measurement error,

encode-decode error and gate error. Using the experimentally determined process fidelities
3If we had attempted to make these pulses as fast as possible, it is likely that a cavity drive would still be

needed, as the transmon-only approach has a strong speed limit.

6.4. TESTING ENCODED OPERATIONS 110

Figure 6.10: Optimized pulse waveforms. In the first column, we plot the complex waveforms
εT (t) and εC(t). In the second column, we show the Fourier spectrum |ε̃(ω)|2. Blue (red) lines
correspond to drives on the transmon (oscillator). Solid (dotted) lines correspond to the in-
phase (quadrature) component of the drive. Note that the I and the T gate do not have to
change the photon number distribution, but only have to apply different phases to each Fock
state component. This can be done by manipulating the transmon (Heeres et al., 2015) only;
grape finds a solution with a very small oscillator drive amplitude as well.

6.4. TESTING ENCODED OPERATIONS 111

Figure 6.11: Wigner functions demonstrating the action of encoded operations. We see
the in progressive steps the application of Uenc, UXUenc, and UX2UXUenc, resulting in the
states |+L〉 → |−L〉 → |1L〉

both without any operation FPT(No Op.) = 0.982, as well as with the encode and decode

pulses FPT(UdecUenc) = 0.964, we estimate an infidelity contribution of approximately 1.8%

for each of the first two components. To account for these factors to first order, the infidelity of

operations on the encoded qubit are reported relative to FPT(UdecUenc). We find an average

infidelity of 0.75% over our set of 9 gates (see table 6.1).

In order to establish the fidelity of this set of operations more accurately, we perform ran-

domized benchmarking (Magesan et al., 2011) (RB) on our encoded qubit (see appendix C.4).

In this protocol, the encode operation is applied, followed by a random selection of N opera-

tions from our gate set. Then the operation corresponding to the inverse of the product of the

preceding N operations is applied, followed by the decode operation and transmon readout. We

do not repeat the same sequence, but instead draw a new random sequence for each single-shot

measurement. From the resulting data (figure 6.13) we infer an average gate fidelity of 0.991.

The infidelity of each of the individual gates is isolated using interleaved randomized bench-

marking (Magesan et al., 2012) (iRB), which alternates between a single fixed and a random

gate. Comparing the fitted decay constants of the RB and iRB results allows us to extract

the fidelity of the fixed gate. The results are summarized in table 6.1, together with the gate

fidelities based on process tomography (figure 6.12) and Lindblad master equation simulations

accounting for finite T1 and T2 of the transmon and oscillator (see table 5.1). We note that all

6.4. TESTING ENCODED OPERATIONS 112

T

C

Figure 6.12: Process tomography of operations on encoded qubit. In order to charac-
terize a gate UX on the encoded qubit, transmon process tomography is performed on the
operation UdecUXUenc. Process tomography is implemented by performing an initial trans-
mon rotation Ui right after state preparation, as well as a final transmon rotation Uf , right
before measurement of the transmon. We show the process tomography results for selected
operations. The process tomography yields an estimated quantum channel G. We represent
this channel in the Pauli transfer representation. The bar labeled with operators AB represents
Tr (AG(B)) /2. Red and pink bars indicate the experimental and ideal values, respectively. The
infidelity ∆FPT of operation UX is estimated as the difference between FPT(UdecUXUenc) and
FPT(UdecUenc) = 0.964. The selected set of operations, {X180, X90, Y 90, T}, allows univer-
sal control of the logical qubit.

6.5. EMPIRICAL TUNING 113

T

C

T

C

a

b

c

Figure 6.13: Randomized benchmarking of operations on encoded qubit. a, Randomized
benchmarking (RB) sequence. In RB a sequence of Clifford operations of length n is chosen
at random (U{X,Y,...}), followed by the operation which inverts the effect of the sequence
(Ucorr). In order to apply this technique to the operations on the encoded qubit, we begin the
experiment by encoding, and decode before measurement. Our implementation of RB creates
a new random gate sequence for every measurement, and is thus not biased by the distribution
of sequences which are measured. b, Interleaved randomized benchmarking (iRB) sequence:
In order to establish the fidelity of a single operation (here, UX), the operation is interleaved
with random operations, and the benchmarking result is compared with the non-interleaved
case. c, The probability of measuring the correct result versus sequence length n is fit to a
two parameter model pcorrect = 0.5 + Ae−n/τ . The lower panel shows the fit residuals. Each
data point is the result of 2000 averages, with a new sequence realization every shot. The error
averaged over all gates is computed as r = (1 − e−1/τ(RB))/2 (Magesan et al., 2011). The
average error for a single gate X is computed as r(X) = (1 − e1/τ(X)−1/τ(RB))/2 (Magesan
et al., 2012).

gates are implemented with an approximately equal infidelity of 1% and that process tomog-

raphy and iRB yield consistent results. While several sources of decoherence are accounted for

in the master equation simulations, the dominant source of infidelity in the model is transmon

dephasing (T2 ≈ 43 µs). The strong agreement between simulations and experiment indicates

that the infidelity is primarily caused by decoherence and that additional contributions asso-

ciated with imperfections in the model Hamiltonian and the applied pulses are a significantly

smaller effect.

6.5 Empirical tuning

In order to get the maximum amount of performance out of the pulses, it was necessary to

perform compensatory pre-distortions, in order to cancel the effect of a non-ideal transfer

6.5. EMPIRICAL TUNING 114

n Gate 1−FRB (%) ∆FPT (%) 1−Fsim (%)
I 0.78± 0.06 0.51 0.31
X90 1.34± 0.09 0.57 0.78
-X90 1.54± 0.10 0.71 0.83
X180 1.89± 0.12 0.88 1.09
Y90 1.63± 0.11 0.98 0.76
-Y90 1.38± 0.09 0.52 0.75
Y180 2.18± 0.14 0.99 1.67
H 1.58± 0.11 0.86 1.00
average 1.54± 0.10 0.75 0.90
UencUdec 2.89± 0.03 1.39 1.76
T - 0.71 0.40

Table 6.1: Operation fidelities. Measured and simulated gate infidelities. All fidelities reported
are average gate fidelities F(E1, E2) ≡

∫
dψF (E1(ψ), E2(ψ)), where F is the usual quantum

state fidelity F (ρ1, ρ2) = Tr(√ρ1ρ2
√
ρ1). FRB, ∆FPT and Fsim are the values extracted from

interleaved randomized benchmarking, process tomography (see figure 6.12) and simulations
using the Lindblad master equation respectively. The row labeled “average” gives the fidelities
averaged over the first 8 gates, which is the set used in the standard randomized benchmarking
experiment. The T gate is separated since, as a non-Clifford operation, it is incompatible with
standard randomized benchmarking.

function corresponding to the physical lines and components interposing the AWG and device.

We perform the distortions described mathematically in section 4.8, specifically, using a first

order polynomial to model the transfer function, resulting in the five parameter model:

ε̃T = ATF−1 [(1 +BTω)F [εT]] (6.19)

ε̃C = ACF−1
[
(1 +BCω)eiωτF [εC]

]
(6.20)

The overall pulse amplitude correction is captured by AT and AC . The “dispersion” (really,

frequency dependent loss) of the lines is captured by the parameters BT and BC . Finally,

the delay between the two channels is captured by τ . We use the randomized benchmarking

protocol to perform empirical tuning of these five parameters (Egger and Wilhelm, 2014; Kelly

et al., 2014). We optimize the amplitude and dispersion parameters per channel simultaneously,

but otherwise tune the parameters independently, resulting in the three parameter scans seen

in figures 6.14 and 6.15.

6.5. EMPIRICAL TUNING 115

0.86 0.90 0.94 0.98
Transmon drive amplitude

10

20

30

40

50

60

R
B

 d
e
ca

y
 c

o
n
st

a
n
t -1.5%

-1.2%
-1.0%
-0.7%
-0.5%
-0.3%

(a) Transmon line dispersion tune-up

1.00 1.04 1.08 1.12
Cavity drive amplitude

10

20

30

40

50

60

R
B

 d
e
ca

y
 c

o
n
st

a
n
t -1.0%

-0.7%
-0.3%
0.0%
0.3%
0.7%
1.0%

(b) Transmon line dispersion tune-up

Figure 6.14: Dispersion and amplitude optimization The randomized benchmarking decay
constant versus transmon drive amplitude for several different dispersion compensation values
(in % per MHz). The amplitude must be changed in parallel when the dispersion value is
adjusted, necessitating the 2D sweep.

0 1 2 3 4 5 6
Delay (ns)

40

45

50

55

60

R
B

 d
e
ca

y
 c

o
n
st

a
n
t

Figure 6.15: Delay optimization The delay between the transmon and cavity pulses is necessary
to compensate for the varying cables and components which conduct the signals from the AWG
to the sample. The delay is implemented via a linear phase shift in the Fourier domain, allowing
us to use effective delays smaller than the AWG time discretization of 2 ns.

Chapter 7

Venturing forth in frequency space:

sideband drives

Up to this point we have employed a model of a coupled transmon cavity system in the fully

“dispersive” regime. Under the assumption that the various modes of the system are sufficiently

detuned from one another, we can incorporate bilinear coupling terms (i.e. those which are only

second order in the ladder operators) to form a set of normal modes, and model the interactions

and nonlinearities as being diagonal in the photon number basis of these normal modes. This

derivation relied upon a critical assumption however: that the frequencies of the driving fields

would be constrained to a small window in the vicinity of the modes’ resonant frequencies. In

the experiments discussed in chapters 2 and 6, this was a valid assumption, by design. Even in

the general optimal control case, we considered only pulses which were produced by mixing a

narrow bandwidth (< 100 MHz) signal with a local oscillator centered on the cavity or transmon

resonant frequencies. This allowed us to assume that each pulse acted only via the a, a†, σ−

and σ+ operators, in the rotating frame of the local oscillator.

While this is a useful simplifying condition, and as we have seen, allows for in principle

universal control of the system, there are powerful control techniques which are only accessible

via driving outside of these frequency ranges.

116

7.1. FOUR-WAVE MIXING 117

7.1 Four-wave mixing: A cornucopia of terms

We begin by considering a single mode Hamiltonian (the multi-mode generalization is straight-

forward), involving three terms. The first gives the resonant frequency of the mode ωa. The

second is a linear drive, with amplitude ε, applied to that mode, rotating at some other frequency

ωd. The last is “the rest” of the Hamiltonian, some general function of the mode’s ladder

operators.

H1 = ωaa
†a+ ε

(
eiωdta+ h.c.

)
+ f

(
a,a†

)
(7.1)

The goal of the procedure is to eliminate the first two terms, and see how the final term is

transformed. We can begin by going into a frame rotating at frequency ωd to eliminate the

time dependence of the second term (see appendix A.3):

H2 = ∆a†a+ ε
(
a+ a†

)
+ f

(
e−iωdta, eiωdta†

)
, (7.2)

where ∆ = ωa − ωd. Next we can go into a displaced frame with displacement − ε
∆ (see

appendix A.4) to eliminate the second term entirely.

H3 = ∆a†a+ f

(
e−iωdt

(
a− ε

∆

)
, eiωdt

(
a† − ε

∆

))
(7.3)

Finally we can go into a second rotating frame to eliminate the first term.

H4 = f

(
ae−iωat − ε

∆e−iωdt,a†eiωat − ε

∆eiωdt
)

(7.4)

This is our final form. We can summarize this result by saying that, in the interaction picture,

the ladder operators rotate at their resonant frequency, and the drive appears as a scalar term

added to the ladder operator each place it appears. This scalar term has magnitude inversely

proportional to the detuning from resonance, and itself rotates at the drive frequency.

Now we can apply this knowledge to the specific case of the Josephson junction Hamiltonian

to see how 4-wave mixing terms emerge. We take a model of several electromagnetic modes

7.1. FOUR-WAVE MIXING 118

each of which has some coupling to a Josephson junction:

H = H0 +HJJ (7.5)

H0 =
∑
k

ω
(0)
k

(
a

(0)
k

)†
a

(0)
k (7.6)

The superscript (0) indicates that these are the “bare” mode operators and resonant frequencies,

independent of the junction. The Josephson junction Hamiltonian is given by

HJJ = ωJ cos(Φ), (7.7)

Where Φ is the total flux across the junction, in units of the reduced flux quantum φ0 = ~
2e .

This flux is constituted by a linear sum of the fluxes of each of the participating modes,

Φ =
∑
k

φ
(0)
k a

(0)
k + h.c. (7.8)

where the φk are participation factors corresponding to the flux induced across the junction

from the zero-point fluctuations of the corresponding mode k. Assuming the participations are

small, and ignoring the scalar part, the Josephson junction Hamiltonian can be expanded in

powers:

HJJ = ωJ

(
−Φ2

2! + Φ4

4! −
Φ6

6! + · · ·
)

(7.9)

We note that the terms which are second order in the ladder operators, which come from both

H0 and HJJ, can be grouped together and written as

H0 − ωJ
Φ2

2 = (~a(0))TX~a(0). (7.10)

for some matrix1 of coefficients X, and for a vector of ladder operators, defined as

~a(0) =
(
a

(0)
1 · · · a(0)

N

(
a

(0)
1

)†
· · ·

(
a

(0)
N

)†)
. (7.11)

1While X is a matrix, we write X in standard font rather than boldface to emphasize that it is not an operator
on Hilbert space

7.1. FOUR-WAVE MIXING 119

The matrix of coefficients can be diagonalized, the effect of which is to produce a new set of

eigenmodes with ladder operators ak (note no superscript) which are linear combinations of

the {a(0)
j } and {(a†)(0)}. The resulting Hamiltonian can be written

H =
∑
k

ωka
†
kak + ωJ

(
Φ4

4! −
Φ6

6! + · · ·
)

(7.12)

Φ can be represented in the new basis as well as Φ =
∑
k φkak + h.c. where usually, but not

necessarily, we have φk ≈ φ(0)
k .

If we add drives to this system, with amplitudes {Ωk} and frequencies {ωd,k}, we can

go through the process described before of going to a displaced rotating frame, eliminating

the drives and the detuning part ∑k ωka
†
kak, and using the prescription from equation 7.4 to

transform the remaining part.2

H = ωJ
4!

(∑
k

φk(akeiωkt + ξke
iωd,kt) + h.c.

)4

+ · · · (7.13)

Here we have defined the unitless mode displacement amplitude ξk = Ωk/(ωk − ωd,k). For

n modes there are
(4n+3

4
)

unique terms in the expansion of the fourth-order term, one corre-

sponding to every choice of 4 elements from the set {ak,a†kξk, ξ∗k}, with replacement. However,

the vast majority of these terms will be negligible, since they will rotate at a fast frequency.

Barring unintended collisions, only two types of terms will remain. The first is those which are

“diagonal” in that every ak or ξk is matched with a corresponding a† or ξ∗k in the term. These

produce anharmonicities ((a†)2a2), dispersive shifts (a†ab†b), or Stark shifts (|ξ|2a†a). The

second type is terms which we intentionally make resonant by the choice of our drive frequency.

Therefore, we have essentially the ability to pick Hamiltonian terms involving two or three

system excitations (with two or one pump excitations making up the energy difference and

bringing the total up to four) and bring them forth. These observations have been used

extensively in the field of quantum limited amplifiers (Vijay et al., 2009; Bergeal et al., 2010).

More recently these processes have been used to create operations in high-Q cQED experiments.
2Here we assume there is one drive per mode, although it is possible to do the same treatment with multiple

drives per mode, although the notation and indexing becomes more cumbersome

7.2. Q-SWITCHING FOR FASTER SYSTEM RESET 120

In the following sections, we will look at several examples of such processes that this method

enables.

7.2 Q-Switching for faster system reset

Long-lived storage cavities are obviously a boon for the fidelity of storage and manipulation

of quantum information. But at the same time it presents an annoyance to the experimenter.

Before we can perform an experiment, we must prepare the system in a known, low-entropy

state. While there are shortcuts which can be achieved through measurement, or by designing

protocols which allow multiple initial states, in general this is achieved by waiting a period

of time much longer than the system’s lifetime, allowing the system to thermalize with its

environment. As the lifetime becomes longer, this method becomes slower.

What we would like to do is be able to switch the decay rate of the system (and therefore

the quality factor Q, hence Q-switch) from as slow as possible, during the experiment, to as

fast as reasonably possible, during the reset after the experiment. We can achieve this by

exploiting the fast decay rate of the readout mode. We engineer a swap interaction which

allows excitations to jump between the readout and the storage cavity, allowing the cavity to

effectively inherit some of the loss of the readout.

To do this, we introduce two pump tones, one at ωc+∆ and the other at ωRO +∆, for some

detuning value ∆ (figure 7.1). This allows us to make the following Hamiltonian effectively

resonant:

H = g
(
a†r + ar†

)
(7.14)

We can determine g from the prefactors in equation 7.13

g = ωJ
4! φ

2
cφ

2
r

ΩcΩr

∆2 . (7.15)

Given a loss rate on the readout κRO, The effective loss rate of the storage cavity depends on

the relationship between κRO and g. When g � κRO the excitation swaps rapidly back and

forth between the cavity and the readout mode, spending about half of its time, and therefore

7.3. CREATING PHOTONS ONE AT A TIME 121

Figure 7.1: Four wave mixing protocol for Q-Switching The use of two pump photons
allows the conversion of readout photons in storage photons and vice-versa.

ω

Dα

R(0)
π

cav

ge

RO

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20

Detuning (MHz)

0.2

0.4

0.6
P

(|e
〉)

Figure 7.2: Sequence for tuning up a Q-switch pump. After preparing some significant
number of photons in the cavity, we apply the Q-switch by driving both the cavity and readout
modes detuned from resonance. We then probe the probability of having zero photons with
a transmon selective pulse and transmon readout. Nominally the detuning of the two drives
should be the same, but because of Stark shifts, one should scan the frequency of one of the
drives in a small window to identify the ideal driving point.

experiencing about half of the effective decay rate. κc,eff ≈ κRO/2. In the opposite limit,

g � κRO the decay rate is counter-intuitively inversely proportional to κRO as κc,eff ≈ 4g2/κRO

(Axline, 2018, §6.1.3). The optimum (fastest) decay rate3 is achieved with 2g = κRO.

7.3 Creating photons one at a time

While we showed in section 6.2 how it was possible to create Fock states in the storage mode

via optimal control pulses and the dispersive interaction, a constructive approach is possible
3Decay rate is a bit of a misnomer, as the occupation of the readout mode is not exactly an exponential

decay. It has the form of a critical damping curve e−t/τ (a+ tb) for some constants a and b.

7.3. CREATING PHOTONS ONE AT A TIME 122

Figure 7.3: Four wave mixing protocol for photon preparation The use of a single pump
photons allows the conversion of two transmon photons into a single storage photons and
vice-versa.

using sidebands. In the same way that Q-switching allowed us to import the energy decay

properties of the readout to the storage cavity, a different sideband will allow us to import the

single-photon creation ability of the transmon to the storage cavity.

To do so, we will employ drives at frequencies ωge+∆ and ωc+∆ to effect the Hamiltonian

ga† |g〉〈e|+ h.c.. We note that this drive, acting for a time π
2g will take |e, 0〉 to exactly |g, 1〉.

Therefore, by performing a π pulse, followed by a transmon-exchange pulse we can inject a

photon into the cavity. We can inject a second photon by performing a subsequent transmon

π pulse and exchange operation. However, the second exchange operation must be of time
π

2
√

2g , as the exchange interaction has a Bosonic enhancement factor which speeds it up as

more photons are injected. To do |e, n〉 to |g, n+ 1〉 takes time π
2
√
ng

.

We can also do this operation in a faster and simpler way by using the |f〉 state. Using a

single drive of frequency ωd = ωgf −ωc, we can activate the following Hamiltonian (figure 7.3)

H = g
(
a† |g〉〈f |+ a |f〉〈g|

)
(7.16)

Since the rate g is proportional to the junction participation factors φk involved, using more

transmon excitations rather than cavity mode excitations can result in a faster operation for

a given mode displacement4. This method uses one additional transmon excitation (requiring

both ge and ef π pulses as preparation steps), but uses only a single pump tone.
4although generating that displacement may be harder if the needed frequency is very far from resonance

7.4. ENGINEERED DISSIPATION 123

−1 0 1 2 3 4

Detuning (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

P
(|e
〉)

Figure 7.4: Demonstration of deterministic photon preparation via sideband driving.
Here we see the results of preparing photon number states |0〉 through |4〉 via single-pump
sideband driving as described in equation 7.16. This qubit spectroscopy vs preparation number
shows that the prepared state is high fidelity. The main failure mechanism is the transmon
ending in the incorrect state, resulting in the slightly higher background for the higher photon
number states. No postselection was performed in this particular experiment.

7.4 Engineered dissipation

We saw in section 7.2 how sidebands could enable the modification of dissipative properties by

turning on conversion processes to modes with large native dissipation. In section 7.3 we saw

how sidebands could be used to address inherently multi-photon processes, such as creating

or removing two transmon excitations at a time. These two processes can be combined to

allow the creation of multi-photon dissipation, an extremely interesting concept with surprising

application. Most interestingly, we can drive a pump at frequency 2ωc − ωRO to convert two

photons in the storage cavity into a single photon in the readout cavity. The reverse process

is supressed in the limit that the forward rate g2ph is much smaller than the readout loss

rate κRO. This was demonstrated in an experiment by Leghtas et al. (2015) as part of the

autonomous cat code stabilization protocol, discussed previously in section 3.6.2. Multiple

multi-photon dissipation processes can be concatenated together to create even higher-order

effective processes, as shown in the 4-photon dissipation experiment by Mundhada et al. (2018).

In addition to multi-photon processes, it is possible to create engineered transmon dissipa-

7.4. ENGINEERED DISSIPATION 124

tion processes. For instance, one can drive a process at ωef + ∆ and ωRO −∆5 will enable a

process |f〉〈e| r† + h.c.. This effectively creates a dissipation from |e〉 to |f〉. This can create

a type of single error channel qubit in the {|g〉 , |f〉} subspace, as to first order in the ratio of

the pumping rate to the transmon lifetime, decay is converted to dephasing.

5note the change in sign, which changes it from conversion to two-mode squeezing

Chapter 8

A Fault-Tolerant Parity Measurement

One of the crowning achievements of quantum information theory is the theory of fault-tolerance

(DiVincenzo and Shor, 1996; Preskill, 1997). While the error correcting codes put forward by

Shor (1995) and others showed the feasibility of long-term storage of quantum information, it

was the theory of fault-tolerance which made possible the prospect of actually doing computa-

tion. In going from storage to computation one must begin to think of how errors propagate

through the computing circuits. While an error correcting code might be designed to deal with

a certain class of errors (e.g. single qubit errors), the action of doing computation can transform

the errors to a new, larger, potentially uncorrectable set. The prototypical example of this is

the transformation of one bit flip into two by the action of a CNOT gate:

X • = • X

X

(8.1)

If we are dealing with a code which corrects only single qubit errors, then the sudden appearance

of two errors will be uncorrectable, and this problem generalizes to higher-order codes. The

key to avoiding this problem is to design gates which control the spread of errors so that errors

remain correctable. One way of achieving this task is to perform gates “transversally” (Bacon,

2006). This means that you do the gate without performing entangling gates within encoded

qubits. For instance, in the Steane code, one can perform a logical CNOT on a pair of encoded

125

126

qubits as follows

•
•
•
•
•
•
•

In this scheme, one bit flip error in the target logical does become two errors, but each of these

resides in different logical qubits. It can thus be corrected by applying the error correction

procedure to both logical qubits. A fully fault-tolerant system requires all of the components

responsible for operating an error corrected quantum computer to be made fault tolerant (FT).

This includes a universal logical gate set, as well as state preparations, logical measurements,

error syndrome measurements, and error correction. It was shown by Aharonov and Ben-Or

(1997) that if the error rate per component at the physical level is lower than a threshold value,

then the effective error at the logical level is lower, and thus code concatenation provides a

path toward qubits with arbitrarily low error rates. While in the first protocols considered this

threshold was as low as 10−6, theoretical advances have produced codes with thresholds as

high as a few percent (Fowler et al., 2012; Campbell et al., 2017).

In this chapter we will discuss a novel approach to developing fault tolerance which is

realizable with orders of magnitude fewer components, building up to the results shown in

Rosenblum et al. (2018b). We will start in section 8.1 by discussing an approach to creating

fault-tolerance at the Hamiltonian level, by engineering symmetries into our interaction with

knowledge of the structure of the dominant error mechanisms. Next, in section 8.2 we will

discuss a particular mechanism for engineering interactions, using sideband drives which were

discussed in chapter 7. This mechanism will allow us fine grained control of the dispersive

interaction Hamiltonian. Next, in section 8.4 we can show how this technique can reduce the

8.1. ERROR TRANSPARENCY 127

propagation of errors in an idling system by temporarily decoupling the transmon and cavity,

and showing that the driven sideband method is compatible with high-coherence operation. We

will then go beyond idling, and construct an actually useful operation, the parity measurement,

in a protected, fault-tolerant way. In section 8.5 we perform experiments which analyze the

cavity behavior as a function of transmon state, which allows us to separate out the different

error mechanisms and their respective effects on the cavity. In 8.6 we summarize these results

to calculate the net performance enhancement derived from the fault-tolerance modifications,

and conclude by analyzing the dominant residual sources of error.

8.1 Error Transparency: A paradigm for hardware-efficient fault-

tolerance

FT protocols can have an enormous overhead to implement, and for this reason, we should seek

out shortcuts wherever we can. Much like the cat code, which took advantage of the structure

of the errors to produce a parsimonious encoding, one can look for approaches which reach the

goal of preventing the propagation of errors and the development of uncorrected errors using

the fewest additional complications.

For this purpose, we turn to the concept of error transparency of Kapit (2017). In this

approach, the physical Hamiltonian implementing a gate is carefully tailored such that it com-

mutes with the correctable errors when acting on the logical state manifold, at all times during

the gate operation1. In a mathematical language, if we can have some errors {Ak} that we

anticipate occurring and can correct for, we seek to find an interaction Hamiltonian Hint which

implements the gate such that

∀k : [Hint,Ak] = 0 (8.2)

This condition implies that we avoid the type of error propagation exhibited in equation 8. It

in essence enforces a symmetry property of the interaction, which renders it invariant under

the action of the errors. Reaching this type of condition, however, requires that the systems
1Error transparency (ET) can be thought of as the “computing” equivalent of the concept of decoherence

free subspaces (DFS) (Lidar et al., 1998). In some sense the analogy is (FT:QEC)::(ET:DFS)

8.1. ERROR TRANSPARENCY 128

have many internal degrees of freedom, and that the errors have structure, so that not all

transitions are allowed. We need this complexity in order to maintain the properties of the

interaction which give us the desired operation, while simultaneously zeroing the components

of the interaction which would not commute with the errors. This type of interaction is unlikely

to present itself as naturally occurring, and may require us to perform some type of interaction

engineering.

How does this apply to our chosen system of cat-encoded cavity qubits coupled to transmon

ancillae? As we have developed in section 2.3, and seen applied in chapter 6, our workhorse

interaction is the dispersive interaction, Hint = χa†ab†b. There are two primary types of

errors that we need consider when analyzing error propagation through this interaction: energy

decay (a or b) and pure dephasing (a†a or b†b). The latter errors are diagonal, and therefore

commute with the interaction. We should be careful to say now that this does not in itself

mean that dephasing errors are harmless, but rather that the application of this interaction

Hamiltonian does not exacerbate the harm. Decay events are another story.

[
a†ab†b,a

]
= a(b†b) (8.3)[

a†ab†b, b
]

= b(a†a) (8.4)

We can interpret these equations as telling us that the action of the interaction Hamiltonian

is to transform decay of one mode to decay of that mode plus dephasing of the other mode.

This can be seen in a more intuitive way as well. Consider a transmon in the excited state,

interacting with a cavity via this interaction for a time ∆t which is long compared with 1/χ.

The cavity rotates at rate χ (in the interaction picture) so long as the transmon is in the excited

state. If at some point, say time tdecay, during this interaction, the transmon decays to the

ground state, the cavity evolution will stop. The cavity will therefore acquire a phase χtdecay.

The uncertainty we have in the jump time is proportional to ∆t. Therefore the uncertainty in

the acquired phase is χ∆t � 1. A large uncertain acquired phase is exactly a pure dephasing

event.

From this analysis we see that the dispersive interaction is transparent with respect to pure

8.2. CANCELLING χ: THE SIMPLEST USEFUL SYMMETRY 129

dephasing, but not with respect to energy decay of the ancillary transmon. To reach full (or

at least fully first order) error transparency, we will have to engineer our interaction. The next

two sections will develop and demonstrate our preferred method of engineering the dispersive

shift. We will return to error transparency in section 8.4.

8.2 Cancelling χ: The simplest useful symmetry

Our tools for modifying our χ interaction spring from the sideband drives which were discussed

in chapter 7. These drives allow us to implement terms outside of the native dispersive shift.

However, its not immediately clear how we can realize a driven dispersive shift with these

tools. We can find a clue by considering the origin of the native dispersive shift in the Jaynes-

Cummings model (equation 2.11). In this model, the combination of an excitation exchange

term g
(
a†σ− + h.c.

)
and a detuning term ∆a†a, in the regime of ∆ � g, results in a

dispersive shift.

We can create a similar effect using sideband drives. First, note that we can create exactly

the exchange term, g
(
a†σ− + h.c.

)
, this time in the rotating frame, using a pair of drives each

equally detuned from either the cavity and transmon resonance frequency, say at ωge −∆ and

ωc − ∆. Such a pair of drives enables the four-wave mixing process which converts photons

of one frequency to photons of another frequency. Because this process occurs in the rotating

frame, a photon is actually exchanged from one mode to the other as a function of the time

the exchange term is applied. However by applying a detuning to one of the drives, we end up

with exactly the detuned Jaynes-Cummings Hamiltonian which gave the dispersive interaction

in the first place. We can look at this process slightly more rigorously as follows: In the rotating

frame, after discarding quickly oscillating terms, the Hamiltonian can be written as

H = a†aχ(0)
e |e〉〈e|+ g

(
aσ+e

i∆t + h.c.
)

(8.5)

≡H0 +H1e
i∆t +H−1e

−i∆t (8.6)

We can use a Floquet theory analysis (see appendix A.8) which treats general periodic Hamilto-

nians of form 8.6 and produces effective time-independent Hamiltonians, under the assumption

8.2. CANCELLING χ: THE SIMPLEST USEFUL SYMMETRY 130

Figure 8.1: Sideband drive indicated on cavity-ancilla level diagram. An applied microwave
tone (double red arrows) drives the |e, n〉 ↔ |h, n− 1〉 transition frequency with Rabi rate √nΩ
and detuning ∆. The resulting Stark shift changes the effective χe by an amount Ω2/4∆.

that |H0| , |H±1| � ∆. The generic form is then, to first order in g
∆

2,

Heff = H0 + 1
2∆[H1,H−1] (8.7)

= H0 + g2

∆
[
a†σ−,aσ+

]
(8.8)

= H0 + g2

∆a
†aσz (8.9)

This justifies our intuition from before. We see that, (at least in the case that ∆ is much larger

than χ), we can simply add the driven dispersive interaction to the native one to obtain a net

interaction.

We can simplify and strengthen this approach by using a different, but related, sideband

process. Instead of converting one cavity photon into one transmon photon using two pump

photons, we can convert one cavity photon into two transmon photons using a single pump

photon (figure 8.1). For reasons that will become apparent later, we choose to address |e〉 ↔ |h〉

instead of |g〉 ↔ |f〉 as our two-excitation transition. This level of transition selectivity is

possible and necessary because the anharmonicity α which separates the sideband transitions

is much larger than the sideband exchange rate g. The derived exchange term from this new

sideband drive replaces σ− = |g〉〈e| with |e〉〈h|. Now if we apply a detuning to this new drive,
2Since it is not important we have omitted a Stark shift term which also falls out of the commutator.

8.2. CANCELLING χ: THE SIMPLEST USEFUL SYMMETRY 131

the derived interaction replaces σz = |e〉〈e| − |g〉〈g| with |h〉〈h| − |e〉〈e|. This results in a new

driven interaction Hamiltonian

Hdriven = g2

∆ (|h〉〈h| − |e〉〈e|) (8.10)

which can be added to the native interaction to form the total,

Hint = H
(0)
int +Hdriven (8.11)

= a†a

((
χ(0)
e −

g2

∆

)
|e〉〈e|+ χ

(0)
f |f〉〈f |+

(
χ

(0)
h + g2

∆

)
|h〉〈h|

)
. (8.12)

≡ a†a (χe |e〉〈e|+ χf |f〉〈f |+ χh |h〉〈h|) (8.13)

From this formula for the interaction, there are two interesting points we will explore. The first

is the case of

χ(0)
e + g2

∆ = 0, (8.14)

where the cavity does not distinguish between |g〉 and |e〉. With this tool we will be able to

decouple the cavity from transmon thermal population, and improve its idling coherence time

(section 8.3). In the next case, we can choose

χ(0)
e + g2

∆ = χ
(0)
f . (8.15)

Here the cavity does not distinguish between |e〉 and |f〉, and will be protected against decay

from |f〉. We call these cases χeg-cancelling and χfe-cancelling, respectively, where we intro-

duce the notation χab ≡ χa − χb. Note that both χ-cancelling points are possible (albeit

with different drives) because the sign of the induced dispersive shift can change with the sign

of the detuning from sideband resonance. We can see an implementation of both of these

cases in figure 8.2. We can measure this change in χ by applying the drive for varying side-

band detunings, varying the number of photons in the cavity, and characterizing the transmon

frequency, via standard transmon spectroscopy methods. By carefully inspecting the photon

number dependence of the transmon frequency, we find we can completely eliminate the linear

8.2. CANCELLING χ: THE SIMPLEST USEFUL SYMMETRY 132

Figure 8.2: Cancelling the dispersive interaction with a sideband drive Spectroscopy of the
|g〉 to |e〉 (left) and |e〉 to |f〉 (right) transitions performed with a varying number of photons
in the cavity. χeg (χfe), as well as higher order nonlinear dispersive shifts can be extracted from
the spread in transition frequencies with respect to photon number. The indicated crossing
points show where χeg (χfe) is approximately zero, as emphasized by the blue arrows in the
insets depicting the effective driven level diagram. The dotted lines refer to the transition
frequencies when no sideband drive is applied.

dispersive shift, while leaving a residual 5 kHz nonlinear dispersive shift (figure 8.3).

8.2.1 Choosing drive parameters

We note that there are two parameters available to us in order to satisfy either equation 8.14 or 8.15.

Assuming the validity of the model, for any value of pump strength (g) we can find a detuning

(∆) which yields the appropriate χ. How can we break this degeneracy in practice? The first

obvious concern is the validity of the dispersive approximation, which relies on g
∆ being small.

The next lowest order term is a driven χ′ of order g4

∆3 , smaller by a factor of g2

∆2 = χ
(0)
e
∆ . There-

fore, to minimize this concern, we choose ∆ large, and therefore large g. There are additional

reasons to prefer this direction. Firstly, we see decreased hybridization (which is again of order

χ
(0)
e /∆) between the |e〉 and |h〉 states. This hybridization allows for the possibility of unde-

sired transitions, say from |f〉 to |h〉 via T fe1 processes. Additionally, in order to avoid spurious

transitions from |e〉 to |h〉 or vice versa, the pump must be turned on adiabatically, a process

that becomes slower as the detuning is reduced.

A different set of considerations keeps us from putting the drive power (and therefore

detuning) at whatever maximum is supported by the control electronics. Firstly, we have to

balance the gain obtained from the χ cancellation process with the cost of adding a heat load

8.2. CANCELLING χ: THE SIMPLEST USEFUL SYMMETRY 133

Figure 8.3: Measuring the nonlinear component of the driven dispersive shift. We
prepare photon number states |0〉 through |4〉, turn on the pump to the detuning used for χef
cancellation, and perform transmon ef spectroscopy as in figure 8.2. From each trace we extract
the detuning from bare resonance. We fit these frequencies to a quadratic model, from which
we can infer the non-linear frequency shift, χ′ef ≈ 5 kHz. This is largely a driven effect, resulting
from the higher order terms in the perturbative Floquet analysis derived in appendix A.8.

Figure 8.4: Characterizing χ-cancelling pump. Chevron pattern observed in the population
of |h, 0〉 when preparing |e, 1〉 and switching on the sideband drive at a detuning ∆ from
resonance for a varying amount of time.

8.3. EXTENDING THE CAVITY LIFETIME 134

to system in the form of a strong drive. If we heat up components in the transmission lines, or

even the base temperature of the fridge, we will adversely affect the performance of the system.

Even with no added line noise or heat load, however, there may still be issues with high drive

levels. For instance, we can see how a large displacement can combine with native transmon

dephasing to produce heating:

γφD[b†b]→ γφD[(b† + ξ)(b+ ξ∗)] (8.16)

≈ ξγφD[b] + ξγφD[b†] +D[b†b] (8.17)

In addition, higher drive powers enables higher order transitions between levels. The number of

accessible transitions becomes denser and denser in frequency space as drive power increases,

until it is no longer an unlikely coincidence to drive spurious transitions, but rather an inevitabil-

ity. For a more rigorous exploration of this and other issues, see Sank et al. (2016); Zhang

et al. (2019).

8.3 Extending the cavity lifetime by protecting it from the trans-

mon

Dispersive shifts, when combined with thermal population leads to dephasing. The typical

setting for this statement is that of a two level qubit and a dispersively coupled readout cavity

(Gambetta et al., 2006). The exact formula for how much dephasing to expect from a coupled

mode, with dispersive shift χ, decay rate Γ, and equilibrium population n̄th, was calculated in

Rigetti et al. (2012).

1
Tφ

= Γ
2 Re

√(1 + iχ

Γ

)2
+ 4iχn̄th

Γ

 (8.18)

≈ n̄thΓχ2

Γ2 + χ2 (8.19)

≈


n̄thΓ χ� Γ

n̄thχ
2

Γ χ� Γ
(8.20)

8.3. EXTENDING THE CAVITY LIFETIME 135

These formulae apply equally to the case of a readout mode inducing dephasing in a transmon

as to a transmon inducing dephasing in a storage cavity. In this latter case, we are almost

always operating in the photon number resolved regime, allowing us to take the χ� Γ limit of

equation 8.20. This quantity n̄thΓ is (for n̄th � 1) precisely the rate of jumps from the ground

state to the excited state. This has a simple interpretation: In the photon number resolved

limit, any jump from the ground state to the excited state results in dephasing of the coupled

cavity. Removing the transmon from our picture, and viewing only the cavity, it appears that

we have a new error channel n̄thΓD[a†a]. This is an error which is not corrected by the cat

code, and therefore can be a limiting factor if the rate is at all comparable to the rate of cavity

single-photon loss. Indeed, this was one of the issues which limited performance in the cat code

demonstration by Ofek et al. (2016).3

We could avoid this problem if we could decouple the cavity from the transmon, for instance

by setting χ = 0. We need non-zero dispersive shift at certain times, when we are deliberately

interacting the two systems to achieve a goal such as performing a parity measurement, but

during other times, say idling between parity measurements, decoupling would be advantageous.

We can apply the result shown in figure 8.2 which allows us to do just that. What remains to

show is that this actually helps. In order to do this, we zoom in on the region of frequency space

around the χeg-cancelling point. At each point here, in addition to measuring χeg, we measure

the cavity coherence time T c2 , i.e. the characteristic time over which a superposition of |0〉 and

|1〉 Fock state loses coherence. In figure 8.5 we see the improvement in the cavity coherence

time in the region where |χeg| < Γ = 1/T ef1 . We note that the coherence time breaks down

into two contributions, energy decay and pure dephasing as 1/T2 = 1/(2T c1)+1/T cφ. Removing

the dephasing component via χeg-cancelling brings us close to the decay imposed limit of 2T c1 .

In fact at the optimal point, the pure dephasing time was increased from T eg1 /n̄th ≈ 1.1 ms to

14 ms. This demonstration proves two things. Firstly the thermal occupation of the transmon

was indeed was limiting the cavity coherence and this limit can be lifted by turning off the
3One prospective method for addressing the problem of dephasing in the cat code is to employ the driven-

dissipative autonomous stabilization protocols discussed in section 3.6.2. This method protects against pure,
white noise dephasing quite well, but against thermal excitation induced dephasing, we require that the stabi-
lization rate Γ2ph is large not only compared with 1/Tφ, but with χ as well, which can be much larger. This
effect limited the effectiveness of the coherent state stabilization by Leghtas et al. (2015).

8.3. EXTENDING THE CAVITY LIFETIME 136

Figure 8.5: Improving the cavity coherence time by decoupling the cavity from thermal
ancilla excitations. While a bare cavity is nearly completely limited by single photon loss, a
cavity dispersively coupled to an ancilla experiences dephasing because of spontaneous ancilla
excitations. (A) The measured dispersive interaction (blue markers) varies as a function of
sideband drive detuning from resonance ∆ as χeg = χ0

eg + Ω2/4∆ (solid orange line). (B)
Cavity coherence times as a function of the sideband drive frequency obtained from cavity
Ramsey experiments. In the absence of quantum error correction, the cavity coherence time
is limited to 2T c1 ≈ 2.2 ms (red dot-dashed line). Without sideband drive, thermal ancilla
excitations limit the cavity coherence to about 700 µs (dotted black line). Protection against
these excitations starts occurring when |χeg| < Γ/2π (dashed grey lines), where Γ = 1/T eg1 is
the ancilla |e〉 to |g〉 decay rate. This dephasing source is almost entirely removed for χeg = 0,
resulting in a coherence time T c2 (χeg = 0) = 1.9 ms (solid grey line), close to the 2 ms limit set
by second-order thermal excitation from |e〉 to |f〉 (dashed green line). The analytical behavior
of the cavity coherence (orange line, equation 8.18) closely matches the observed values.

8.4. PARITY MEASUREMENT USING |F 〉 137

dispersive interaction. Second, and more critical, is that the negative effects of applying a

strong driving tone continuously do not overwhelm the benefits. Other coherence properties of

the system seem to be largely preserved in the presence of the χ-cancelling drive. One major

reason for this is the fact that the drive is only “active” (in the sense of being close to resonance

with any accessible transition) when the transmon is in the excited state |e〉. Since this is only

the case n̄th ≈ 3% of the time, some of the ill effects of the drive, (e.g. hybridization with |h〉)

are “second order” errors, in the sense of occurring with a rate which is the product of two

small numbers.

8.4 Parity measurement using |f〉

We now return to the task of implementing fault-tolerance via error transparency. We note

that, when dealing with the states in the transmon, we have a separation of scales between

the rates associated with various decoherence processes, with decay (|g〉〈e|, |e〉〈f |, etc.4) and

dephasing (|g〉〈g|, |e〉〈e|, etc.) occurring at a rate of tens to hundreds of microseconds, and

excitation rates (|e〉〈g|, |f〉〈e|, etc) being orders of magnitude slower. Other transition rates,

say those involving a direct two excitation loss such as |g〉〈f | appear to be zero within the error

of measurement, a fact which can be justified by symmetry arguments leading to selection

rules. This does not mean that two-excitation transitions do not happen, but rather that such

transitions are mediated by the single-excitation processes, e.g. |e〉〈f | followed by |g〉〈e|, and

are thus suppressed over timescales short compared to the single-excitation transition rate.

With these facts in mind, we can consider, over short time periods, what are the dominant

transitions which occur starting from the within the subspace spanned by |g〉 and |f〉. These

are decay |e〉〈f | and dephasing |f〉〈f |.5 If these are our relevant errors, how can we satisfy

the error transparency condition (equation 8.2)? Using the form of the interaction given by
4Here we associate processes with the operator found in the corresponding Lindblad dissipator
5Note either a |g〉〈g| or a |f〉〈f | dissipator produce equivalent results when constrained to the two dimensional

subspace.

8.5. POSTSELECTING ON ERRORS 138

equation 8.13:

[Hint, |f〉〈f |] = 0 (8.21)

[Hint, |e〉〈f |] = (χe − χf)a†a |e〉〈f | (8.22)

We have seen in figure 8.2 that we can indeed make χe = χf under the appropriate drive

frequency (a detuning with the opposite sign of that used in section 8.3). Moreover, we can do

this without giving up our productive resource for entangling with the cavity, which within the

{|g〉 , |f〉} subspace is simply χf , the difference between the cavity frequency in the |g〉 and |f〉

states. This is in a sense a fault tolerant dispersive interaction.

We can employ this dispersive interaction towards nearly all of the uses of this interaction

explored in chapter 2. Specifically, here, we will address the creation of a fault-tolerant version

of the parity measurement discussed in section 2.3.1. The required protocol is a straightforward

modification of the traditional parity measurement. Instead of simply preparing a superposi-

tion |g〉 + |e〉, we additionally perform a π pulse on the |e〉 ↔ |f〉 transition, producing the

superposition |g〉+ |f〉. We allow this state to evolve for a time t = π/χf such that the parity

is mapped to the sign of the superposition. The preparation sequence is then reversed, which

maps even parity to |g〉 and odd parity to the |e〉.

In order to make this fault tolerant, in the sense of preventing cavity dephasing arising

from decay from |f〉 to |e〉, we apply a drive at the χfe-cancelling point during this wait time.

In figure 8.6 we see a diagram indicating how one can visualize the fact that the interaction

commutes with the error, and therefore produces no backaction on the cavity.

8.5 Postselecting on errors: Identifying transmon-induced cavity

dephasing

In this protocol the outcome of the parity measurement depends on what, if any, error event

occurs in the transmon. If no errors occur, the transmon will be in |g〉 for even parity, and

|e〉 for odd parity. If a dephasing event occurs, these outcomes will be reversed, with |e〉 for

8.5. POSTSELECTING ON ERRORS 139

Figure 8.6: Schematic circuit diagram of a FT parity measurement. Circuit schematic
showing the effect of ancilla energy relaxation on a Schrödinger cat state (depicted by its Wigner
tomogram, left) during a parity map in both the traditional (A) and FT (B) schemes. In these
circuit diagrams the lines within a bundle represent the individual states of the associated mode.
Cθ = eiθa

†a represents a cavity phase shift of angle θ conditional on the state of the ancilla.
(A) In the non-FT implementation, an error occurring at time t ∈ (0, π/χ) results in a cavity
phase shift of χt. This completely dephases the cavity state when averaged over t. (B) In the
FT implementation, an error occurring at time t is equivalent to the same error occurring at
the end of the parity map, since the error commutes with the interaction.

even parity and |g〉 for odd parity. If a decay event occurs, the final state will be |f〉. If we

can ensure that the cavity is to a high degree of certainty in an even parity state, then the

states |g〉, |e〉, |f〉 cleanly map to the trajectories, of no-error, dephasing error, and decay error,

respectively. This is in contrast with the original protocol for the parity measurement where

the two outcomes cannot separate the three possible error types. In this case the decay error

is folded into both the |g〉 and |e〉 outcomes.

We employ three different parity measurement protocols in order to demonstrate the en-

hancement in cavity coherence obtained from χfe-cancelling:

• Πge: The traditional parity measurement from section 2.3.1

• Πgf: The parity measurement using the |g〉 and |f〉 states

• ΠFT: The fault-tolerant parity measurement, employing the χfe-cancelling drive during

the wait time.

Circuit schematics corresponding to each of these types of protocols can be found on the left

half of figure 8.8. There are two important metrics when it comes to characterizing these

8.5. POSTSELECTING ON ERRORS 140

Figure 8.7: Circuit protocol for characterizing the parity syndrome measurement We
start by initializing the cavity in the cat state

∣∣C+
α

〉
. After every parity map Π (indicated in

blue), we perform a three-outcome ancilla readout, and reset the ancilla using π-pulses (Rπ).
We can repeat the parity map and reset procedures N times before moving on to do cavity
tomography via Wigner measurement. For the results in figure 8.8, we have N = 1, while in
figure 8.9, we have N varying along the x axis. We do two additional parity measurements
before the final Wigner measurement in order to ensure that the cavity parity is even, using the
Πgf protocol.

protocols. First, we are concerned with the assignment fidelity, which is the probability of cor-

rectly learning the cavity parity. Second, we are concerned with non-fault-tolerance, which here

manifests as a probability of cavity dephasing. In order to compare these different parity mea-

surement protocols, and extract both the assignment fidelity and the probability of dephasing,

we employ the sequence depicted in figure 8.7. We perform Wigner tomography (section 2.3.2,

appendix C.1.2) which is postselected on the outcome of the measurement. The results can be

seen in figure 8.8. To begin with, we can determine the parity measurement fidelity from the

outcome probabilities. In the case of Πge, the determination is quite simply the probability of

measuring |g〉, which is approximately 84%, as this is the correct outcome for the even parity

cat state. In the case of three outcomes, however, we must treat the case of measuring |f〉

not as a complete failure. This outcome is rather a heralded failure. Therefore instead of

abandoning hope of learning the parity correctly, we can try again. The probability of success

in this repeated protocol is then pg + pepg + p2
epg + · · · = pg

1−pe . For Πgf this is about 89%,

and for ΠFT it is about 86%.

While we see a modest degradation of the transmon coherence properties under the influence

8.5. POSTSELECTING ON ERRORS 141

Figure 8.8: Cavity Wigner functions, postselected on parity measurement outcomes. The
outcome (shown in the bottom right of each Wigner plot) informs us about ancilla behavior
during the parity mapping (top). The prevalence of this outcome is indicated in the top
right. For each Wigner tomogram, a state fidelity F (shown in the top left) is given, each with
statistical error smaller than 0.01. The fidelity of the initial cat state is 0.95 due to imperfections
in state preparation and tomography. For Πge (B) and Πgf (C), ancilla relaxation results in a
dephased cavity state, whereas for ΠFT (D) the logical qubit is preserved.

8.5. POSTSELECTING ON ERRORS 142

Figure 8.9: Comparing protocols with repeated parity measurements. Fidelity vs. number
of measurements (N) for the three types of parity measurement. The dotted lines are simu-
lated fidelities extracted from Monte-Carlo trajectories (section8.6), and the dashed lines are
exponential fits to the data F (N) = Ae−N/N0 + c with A ≈ 0.56 and c ≈ 0.37 for all curves.

of the χfe-cancelling drive leading to a slight reduction in assignment fidelity, we see a large

improvement in terms of the decay-induced cavity dephasing. Looking at the Wigner functions

in figure 8.8, we can visually confirm the improvement in cavity coherence. While the component

corresponding to either no error or transmon dephasing is coherent regardless (recall that the

dephasing event commutes with the interaction), the coherence of the decay component is

severely degraded unless the χfe-cancelling pump is applied.

In order to quantitatively extract the average coherence reduction per parity measurement,

we repeatedly measure the parity, and estimate the state fidelity as a function of the number

of measurements applied (figure 8.9). The fidelity exponentially approaches the fidelity of a

completely dephased cat state6, with different number constants for each of the protocols which

were considered.

With an exponential fit, we can assign a characteristic number of measurements (N0) in

which the cavity fidelity decays. At this point, we can quantify the improvement offered by

the FT protocol. We see that N0(Πgf)/N0(Πge) = 2.6 ± 0.2, showing that even without

sideband drive, the Πgf protocol offers some advantages compared to Πge. The first reason
6The fidelity would deviate from this in the long time limit as the average photon number drops to zero.

8.6. PERFORMANCE ANALYSIS 143

is that the probability of relaxation is lower for Πgf, since the relaxation time of |f〉 (24 µs)

is nearly equal to that of |e〉 (26 µs), while the parity measurement time of Πgf (as well as

ΠFT) is less than half that of Πge. The second reason is that the cavity is less dephased

given that an ancilla relaxation event occurred, since the cavity angle is distributed between

0 and πχ0
fe/χ

0
fg = 0.6π As evident from the residual coherence after a relaxation event in

figure 8.8C). The FT implementation improves on Πgf by a factor of 2.0 ± 0.1, resulting in a

total fault-tolerance gain of N0(ΠFT)/N0(Πge) = 5.1± 0.3.

We can compare the observed cavity dephasing rates with predictions for residual uncor-

rected errors, the largest of which are thermal excitation during the parity map and decay during

readout. Monte-Carlo simulations (see following section) of how the cavity phase distribution

is affected by these factors produce fidelity decay curves which are in good agreement with the

observed results. The agreement is best in the case of the non-FT measurements, where cavity

dephasing is dominated by a single well-understood mechanism, namely, ancilla decay during

the parity map. The simulation underestimates the decay in the FT case, indicating that there

are additional mechanisms for dephasing which are not captured in our model. Some of these

mechanisms may be explained by ancilla decoherence induced by the strong sideband drive.

8.6 Performance analysis

How should we interpret these results? To start, we can compare the measured performance

to our predictions based on the model provided by the decoherence parameters, and other

known sources of uncorrected error. As we can see in table 8.1, there are three main categories

of failure: unprotected transitions during the parity map, such as heating or double decay,

unprotected transitions during the transmon readout, and readout assignment errors. We also

see that, in this parameter regime, at least for ΠFT none of the error sources are truly dominant

over the others. Heating from |f〉 to |h〉 is the largest predicted issue, but double decay, and

decay during the readout, are all equivalently important. However, these issues do add up to

a substantial error rate. However, this predicted aggregate dephasing probability (1.36%) is

smaller than the corrected component of decay during the parity map (2.84%). If we compare

8.6. PERFORMANCE ANALYSIS 144

Failure mode Probability of
occurrence δχ [t0, t1] Dephasing per

occurrence
Probability

of dephasing

Pa
rit

y
M

ap |f〉 → |e〉 Πgf tmap

2T fe1
= 4.77% χef [0, tmap] 62% 2.84%

ΠFT 0 0% 0%
|f〉 → |e〉 → |g〉 t2map

4T fe1 T eg1
= 0.20% χgf [tmap

3 , tmap] 100% 0.19%

|f〉 → |h〉 3
2
tmapn̄eth
T eg1

= 0.38% χfh [0, tmap] 100% 0.38%
|g〉 → |e〉 1

2
tmapn̄eth
T eg1

= 0.13% χge [0, tmap] 83% 0.11%

Re
ad

ou
t |g〉 → |e〉 pgn̄ethtRO

T eg1
= 0.12% χge [0, tRO] 42% 0.05%

|e〉 → |g〉 petRO
T eg1

= 0.58% χge [0, tRO] 42% 0.25%
|f〉 → |e〉 pf tRO

T fe1
= 0.42% χge [0, tRO] 72% 0.3%

As
sig

nm
en

t Assign |g〉 as |e〉 0.04% χge [tRO, tRO] 100% 0.04%
Assign |e〉 as |g〉 0.01% χge [tRO, tRO] 100% 0.01%
Assign |e〉 as |f〉 0.02% χef [tRO, tRO] 100% 0.02%
Assign |f〉 as |e〉 0.01% χef [tRO, tRO] 100% 0.01%

Total error probability (ΠFT) 1.36%
Total error probability (Πgf) 4.20%

Table 8.1: Error budget for FT parity measurement. In these formulae tmap = π/χfg =
2.1µs is the time required to perform the parity mapping, tRO = 1.2µs is the time required
to perform the readout of the ancilla. {pg, pe, pf} ≈ {0.8, 0.12, 0.08} are the probabilities
of ending the protocol in g, e, f , respectively. The probability of ancilla assignment error is
estimated from the overlap of the Gaussian distributions in the histograms of the readout
outcomes, as well as the prior probability of measuring a given state. Dephasing per occurrence
is calculated from f̃(δχ, t0, t1) as defined in 8.26

the dephasing probabilities to 1/N0(Πgf) ≈ 4.78% and 1/N0(ΠFT) ≈ 2.45%, it seems that

there is some unaccounted for contribution to the error of the ΠFT protocol.

In order to simulate the fidelity of the cavity state after a sequence of parity measure-

ments more accurately, we can employ a Monte Carlo approach to sample from the ultimate

distribution of cavity phases. This produces the dotted lines in figure 8.9. We construct a

Monte Carlo model that takes into account the errors listed in table 8.1. Each of the k errors

has a probability of occurrence (p1, . . . , pk), a change in cavity frequency (δχ(1), . . . , δχ(k)),

and a range of times for which this shift is active ([t(1)
0 , t

(1)
1], . . . , [t(k)

0 , t
(k)
1]). We simulate the

cavity’s trajectory over N parity measurements by sampling the number of each event from

the multinomial distribution n1, . . . , nk ∼ Multinomial(N, p1, . . . , pk). Then, for each event,

we sample the change in cavity phase from a uniform distribution associated with that event

θi,j ∼ Unif(δχ(i)t
(i)
0 , δχ(i)t

(i)
1). Finally, we sum these phases θ =

∑k
i=1

∑ni
j=1 θi,j , and com-

8.6. PERFORMANCE ANALYSIS 145

pute the final fidelity
∣∣∣〈C+

α

∣∣∣C+
αeiθ

〉∣∣∣2 . We repeat this procedure 10,000 times and compute

an average fidelity as a function of N . While the Monte-Carlo simulation should be the most

accurate method of predicting the fidelity decay curve, we would also like to have a mechanism

for assessing the relative importance of each error channel in determining the final dephasing

rate. To do so, we first calculate an effective “dephasing per occurrence” for each event, which

is a number between 0 and 1 indicating the degree of dephasing induced by the error. The

dephasing probability is then the product of the probability of occurrence and dephasing per

occurrence (see table 8.1). We compute the infidelity f per occurrence as follows:

f(δχ, t0, t1) = 1− 1
t1 − t0

∫ t1

t0
dt
∣∣∣〈C+

α

∣∣∣C+
αeiδχt

〉∣∣∣2 (8.23)

= 1− 4
N 2(t1 − t0)

∫ t1

t0
dt
∣∣∣〈α∣∣∣αeiδχt〉+

〈
α
∣∣∣−αeiδχt〉∣∣∣2 (8.24)

= 1− 4
N 2(t1 − t0)

∫ t1

t0
dt
∣∣∣e−α2(1+exp(−iδχt)) + e−α

2(1−exp(−iδχt))
∣∣∣2 (8.25)

Where N = 2
(
1 + e−2|α|2

)
is a normalization factor. The effective dephasing per occurrence

can be found by comparing the fidelity to the fidelity of the completely dephased state:

f̃(δχ, t0, t1) = min
{

1, f(δχ, t0, t1)
f(δχ, 0, 2π/δχ)

}
(8.26)

The sampling results produce very good agreement for the Πge and Πgf cases, while also

similarly modestly underestimating the error in the ΠFT case.

In summary, we have demonstrated the fault-tolerance of the parity measurement, in the

sense of reducing the impact of transmon energy decay on the cavity phase coherence. We

should now return to our original goal of evaluating how this will effect the performance of cat

code error correction, in the style of the experiments shown by Ofek et al. (2016). Unfortunately,

with the sample used in this demonstration, we do not have the capability of applying the parity

measurement to improve the cat code lifetime substantially. This is a result of the very low χ×T2

product which sets the assignment fidelity of the parity measurement. In the complete absence

of any sort of non-fault-tolerance, even very low assignment fidelities are acceptable, because

one can simply repeat the measurement until a sufficient confidence is established. However,

8.6. PERFORMANCE ANALYSIS 146

in this case, we would require about 5 parity measurements to have 99% assignment certainty,

at which point the five-fold reduction in non-fault-tolerance from the improved protocol is

cancelled.

In order to successfully apply this technique in the context of error correction we have

several improvements to seek out. First we should use a sample with state-of-the art coherence

times and thermal populations, as there is nothing intrinsic about our setup which makes this

particularly difficult. Second, we should increase the dispersive shift χ so the parity measurement

can be performed faster. Implementing this requires being able to cancel larger values of χ,

which could be aided by ongoing efforts to reduce the negative effects of strong pumps. Finally,

we should make the readout faster, and more ideal. The cavity is completely exposed to qubit

transitions during the readout, and if we cannot find a way to decouple the storage and qubit

during this time, the best we can do is to make the readout as fast as possible. Order of

magnitude improvements in this area are possible (Heinsoo et al., 2018) and could significantly

reduce the residual non-fault-tolerance of the protocol.

Chapter 9

Fault-tolerant SNAP

In chapter 8, we saw how we could construct an implementation of the photon number parity

measurement, an essential component of cavity-encoded error correction, in a manner which was

fault-tolerant with respect to transmon decoherence. While this is one essential component,

in order to make progress towards a fully fault-tolerant system, we must implement every

component in a protected way. In this chapter, we will see how our previous approach can be

extended to a different task: manipulating the cavity state. While we saw how cavity gates

could be implemented in chapter 6, these implementations left a lot to be desired. While

relatively high fidelity, these operations were limited by both transmon decay and dephasing

processes. Additionally, these operations would not preserve the structure of cavity errors, i.e.

cavity photon loss during the pulse would not be correctable via parity measurement, as it

would be if such an error had occurred during an idling period.

If we compare the SNAP operation and the parity measurement, there are many similarities.

Both rely on the dispersive shift χ acting over a period of time, and both involve direct driving

of the transmon around its resonance frequency with a bandwidth set by n̄χ. The major

difference is the fact that the transmon drive in the SNAP pulse is more or less continuously

engaged. This distinction complicates the simple picture of error transparency (section 8.1)

which gave us fault tolerance before. However, a more subtle set of algebraic criteria can show

how we can still get fault-tolerance in SNAP (Ma and Jiang, in preparation). In practice we

can largely proceed by analogy with the FT parity protocol: we will replace all usages of the

147

9.1. AN INTERACTION PICTURE FOR SNAP 148

excited state |e〉 with the excited state |f〉, and during the χ evolution we will drive the system

so that χe = χf . We will measure the transmon to determine whether any decoherence events

occurred, and to determine if the operation succeeded. There are two large questions to be

addressed, one theoretical, and one practical. Firstly, we must be much more careful about how

transmon dephasing acts on our system, since it will occur during periods where both χ and a

transmon drive are present. Secondly, the SNAP protocol relies on a drive which continuously

takes |g〉 to |e〉; following our prescription, how can we implement a drive which takes |g〉

directly to |f〉?

9.1 An interaction picture for SNAP

We begin by recalling the SNAP operation as discussed in section 2.4. This operation consists

of several simultaneous drives applied to the transmon at frequencies which are detuned from

vacuum resonance by an integer multiple of the dispersive shift χ. Each of these drives has the

same amplitude, but differs in the phase. We can write this as follows:

H = χ

2a
†aσz + Ω

∑
k

ei(kχt+θk)σ− + h.c., (9.1)

Where Ω is the drive rate and θk are the phases associated with each drive. We can modify this

Hamiltonian, following our prescription, adding awareness of the third transmon level |f〉, and

driving transitions directly between |g〉 and |f〉 (discussion of how to do this in section 9.3).

Hint = (χe |e〉〈e|+ χf |f〉〈f |)a†a+ Ω
∑
k

ei(χfkt+θk) |g〉〈f |+ h.c. (9.2)

In order to find a time-independent picture for this operation, we can perform the canonical

transformation (appendix A.1) using the time dependent unitary

U = exp
{
it (χe |e〉〈e|+ χf |f〉〈f |)a†a

}
. (9.3)

9.1. AN INTERACTION PICTURE FOR SNAP 149

Under this transformation, the ladder operators are transformed as follows:

a 7→ ei(χe|e〉〈e|+χf |f〉〈f |)a (9.4)

|g〉〈f | 7→ eiχf ta
†a |g〉〈f | (9.5)

|g〉〈e| 7→ eiχeta
†a |g〉〈e| (9.6)

|e〉〈f | 7→ ei(χf−χe)ta
†a |e〉〈f | (9.7)

It will be important to remember that the jump operators are also transformed in precisely this

way. The resulting interaction Hamiltonian can be written as follows:

Hint = Ω
∑
k

ei(χfkt−χfa
†at+θk) |f〉〈g|+ h.c. (9.8)

≈ Ω
∑
k

eiθk |f, k〉〈f, k|+ h.c. (9.9)

where the rotating wave approximation that we have made in the second line is valid in the

limit where χf � Ω. We can simplify this one more layer by recalling the definition of the

SNAP operation

S(~θ) =
∑
k

eiθk |k〉〈k| (9.10)

We can therefore rewrite 9.9 as:

Hint = Ω
(
S(~θ) |f〉〈g|+ S(−~θ) |g〉〈f |

)
(9.11)

The evolution under this Hamiltonian is trivial to solve due to the simple fact that the Hamil-

tonian, constrained to the {|g〉 , |f〉} subspace, is ’Pauli-like’ in that it squares to the identity

within the subspace:

H2
int = Ω2 (|g〉〈g|+ |f〉〈f |) , (9.12)

and therefore we have

eiHintt = |e〉〈e|+ cos(Ωt) (|g〉〈g|+ |f〉〈f |) + i sin(Ωt)
(
S(~θ) |f〉〈g|+ S(−~θ) |g〉〈f |

)
. (9.13)

9.2. ANALYZING FAULT PROPAGATION IN SNAP 150

In practice, Ω will not be constant, but rather have some Gaussian envelope profile. In this

case, we can replace Ωt with the integrated area under the envelope.

9.2 Analyzing fault propagation in SNAP

The simplest way to see the behavior of the SNAP operation under the action of decoherence

is to consider what happens if a discrete jump happens at some time t in the middle of the

operation lasting time T . Let’s start by considering a decay event |e〉〈f |. Recalling equation 9.7,

in this picture we must write ei(χf−χe)ta†a |e〉〈f |. We assume we start with the transmon in

the ground state, and some state in the cavity |ψcav〉. We analyze the evolution in three

steps, an initial Hamiltonian evolution, the application of a jump operator, and the remaining

Hamiltonian evolution

|ψfinal〉 ∝ eiHint(T−t)
(
ei(χf−χe)ta

†a |e〉〈f |
)
eiHintt (|ψcav〉 ⊗ |g〉) (9.14)

∝ ei(χf−χe)ta†a
(
S(~θ) |ψcav〉

)
⊗ |e〉 (9.15)

So we see that the operation still effectively takes place!1 The intuition here is that, in order to

have a decay event in the first place, we must have made our transit from |g〉 to |f〉. The only

trouble is the unwanted rotation ei(χf−χe)ta
†a, which is not deterministic since it depends on

the random jump time t. We will remove this as before, by the second part of our prescription,

pumping to ensure that χe = χf . Of course the transmon ends up in the incorrect state, but

this is no matter if we can measure and reset the transmon as part of our protocol.

What of transmon dephasing? In this case the operator we wish to consider is |f〉〈f |. In
1This is only the case when we start in the ground state |g〉. We can implement the SNAP operation starting

in |f〉, with very similar results, except that in the case of decay (|e〉〈f |), the effective cavity operation is the
identity, as in the case of dephasing.

9.2. ANALYZING FAULT PROPAGATION IN SNAP 151

this case the rotating frame has no effect on the jump operator: 2

|ψfinal〉 ∝ eiHint(T−t) |f〉〈f | eiHintt (|ψcav〉 ⊗ |g〉) (9.16)

∝ eiHint(T−t)
(
S(~θ) |ψcav〉

)
⊗ |f〉 (9.17)

∝ cos ((Ω(T − t))
(
S(~θ) |ψcav〉

)
⊗ |f〉+ i sin (Ω(T − t)) (|ψcav〉 ⊗ |g〉) (9.18)

This appears complicated, but as before, the act of measuring the transmon at the end of

the protocol makes everything simple. We either measure |f〉 and obtain S(~θ) |ψcav〉, our

desired final state, or we measure |g〉 and obtain |ψcav〉, i.e. our original state with no operation

performed.

The final piece to consider is cavity decay, a. Recalling equation 9.4, this term has an

ei(χe|e〉〈e|+χf |f〉〈f |)t time dependency. This effectively induces a transmon dephasing event,

meaning that as before, we will have some final probability of measuring either |g〉 or |f〉.

|ψfinal〉 ∝ eiHint(T−t)
(
ei(χe|e〉〈e|+χf |f〉〈f |)ta

)
eiHintt (|ψcav〉 ⊗ |g〉) (9.19)

∝ c1 (a |ψcav〉 ⊗ |g〉) + c2
(
aS(~θ) |ψcav〉 ⊗ |f〉

)
+

c3
(
S(~θ)a |ψcav〉 ⊗ |f〉

)
+ c4

(
S(−~θ)aS(~θ) |ψcav〉 ⊗ |g〉

)
, (9.20)

where the unimportant prefactors c1, . . . , c4 can be computed easily, and will in general depend

on the time of the jump t. We see that, in order to be obviously harmless, it would be sufficient

to have
[
a,S(~θ)

]
= 0. However, this is impossible so long as θ 6= 0. We can, however, make

this work if the less restrictive S(~θ)a |ψcav〉 = aS(~θ) |ψcav〉 condition is met. For this purpose,

we will consider that we are in something like a cat code state, where |ψcav〉 only occupies even

photon number parity. We can write our condition in operator form as

S(~θ)aPeven = aS(~θ)Peven, (9.21)
2A similar analysis can be performed for different models of dephasing, say |g〉〈g| or |f〉〈f | − |g〉〈g|, and yield

equivalent results

9.2. ANALYZING FAULT PROPAGATION IN SNAP 152

where Peven is the projector on the even parity subspace. We can expand the definitions above:

S(~θ)aPeven =
(∑

k

eiθk |k〉〈k|
)(∑

n

√
n+ 1 |n〉〈n+ 1|

)(∑
m even

|m〉〈m|
)

(9.22)

=
(∑

k

eiθk |k〉〈k|
)(∑

n odd

√
n+ 1 |n〉〈n+ 1|

)
(9.23)

=
∑
k odd

√
k + 1eiθk |k〉〈k + 1| (9.24)

aS(~θ)Peven =
(∑

n

√
n+ 1 |n〉〈n+ 1|

)(∑
k

eiθk |k〉〈k|
)(∑

m even
|m〉〈m|

)
(9.25)

=
(∑

n

√
n+ 1 |n〉〈n+ 1|

)(∑
k even

eiθk |k〉〈k|
)

(9.26)

=
∑
k odd

√
k + 1eiθk+1 |k〉〈k + 1| (9.27)

Comparing 9.24 with 9.27 we see that this condition can be satisfied by setting θk = θk+1 for

k odd. We can return to equation 9.20 and simplify (using |ψcav〉 = Peven |ψcav〉)

|ψfinal〉 ∝ (c1 + c4) (a |ψcav〉 ⊗ |g〉) + (c2 + c3)
(
aS(~θ) |ψcav〉 ⊗ |f〉

)
. (9.28)

This is quite remarkable: we have a transformation that we can effect on a cavity encoded

qubit which is completely compatible with error correction! We simply need to dial the cavity

phases such that the phases are equivalent in the even and odd parity subspaces. There is

of course some probability of failing to implement the operation (as in the case of transmon

dephasing), but this property is determined by a measurement of the transmon. The intuition

for this fact is the observation that we can make the transmon trajectory identical in the even

and odd subspaces, (assuming we know the starting photon number parity), along with the

knowledge that transmon dephasing (an inevitable result of χ combined with cavity decay) is

not a catastrophic error.

9.3. RAMAN SNAP 153

9.3 Raman SNAP

Let us turn now to the problem of how to implement this drive. The missing piece is the drive

component of equation 9.2, f(t) |g〉〈f |+h.c.. A single drive, applied at frequency ωgf = ωge+ωef

cannot implement this as a result of symmetry: The drive only couples states of differing parity.

This means that we will need another approach to driving this transition. We turn to the method

of stimulated Raman transitions (Linskens et al., 1996; Bateman et al., 2010). In this method,

we apply drives to both the |g〉 ↔ |e〉 and |e〉 ↔ |f〉 transitions. We detune these drives

by an equal and opposite amount: resulting in frequencies ωge − ∆ and ωef + ∆. If ∆ is

sufficiently large compared to the drive amplitude, then the effect of this scheme is to drive

transitions between |g〉 and |f〉 without any intermediate occupation of |e〉. Given individual

drive amplitudes Ω, the effective gf Rabi rate is Ω2

∆ .

We wish to combine stimulated Raman driving with the simultaneous number-selective

driving of SNAP. In order to do this, we must engineer a situation where, for each n up to the

maximum number of addressed photons, there exists a pair of drives with frequencies which

satisfy ω1 +ω2 = ωgf+nχf . In addition, these frequencies must avoid ωge and ωgf individually,

and we must be careful not to drive spurious transitions by other pairs of drives not considered.

One elegant way of satisfying all of these constraints is to adopt the approach shown in

figure 9.1. One strong drive is placed at a given detuning ∆ from ωge. This drive is shared

among all of the photon-number selective transitions. The matching pairs for each of these

transitions is then given by a weaker tone at ωef+∆+nχf . In comparison with schemes where

every Raman transition has a distinct pair of drive tones, this scheme is much simpler, and

avoids the problem of accidentally driving unintended transitions with other tone pairings.

9.4 Some assembly required: The FT SNAP protocol

Implementing a fault-tolerant gate requires more than careful pulse shaping. There are several

components which must be characterized and assembled. Putting these all together results in

the protocol seen in figure 9.2. Here we see the combination transmon drives as well as the

χ-cancelling pump and readout pulses.

9.4. THE FT SNAP PROTOCOL 154

Figure 9.1: Energy level diagram for Raman SNAP scheme. The SNAP protocol is im-
plemented with one strong drive, detuned from ωge by ∆ = 45 MHz, and 3 weaker drives,
allowing the simultaneous driving of |n, g〉 ↔ |n, f〉 for n = 0, 2, 4, as required for the kitten
code (equation 3.66). The SNAP evolution is completed by a fast pulse taking |f〉 to |g〉
unconditionally.

We anticipate that one of the major sources of failure in this operation is transmon decay

during the transmon readout. Since we are unable to effectively cancel χ during the readout

operation3 transitions during the readout will lead to cavity dephasing. In order to minimize

this error, we can exploit the fact that the transmon states have different probabilities of

transitioning, specifically, |f〉 is shorter lived than |e〉, which is shorter lived than |g〉. We can

perform a permutation of the states before measuring (specifically, swapping |f〉 and |g〉) so

that the most likely state ends up in the state least likely to decay.

The transmon readout is a major source of concern, and requires some optimizing in order

to balance the many factors which it influences. There are several desiderata:

• We wish to shorten the length of time, such that the probability of transmon decay is

minimized.

• We wish to decrease the number of photons used, so that the readout does not ac-

cidentally learn the number of photons in the storage cavity via cross-Kerr interaction

(χrsa†ar†r).
3The reason for this is that, while there are many photons in the readout cavity, the transmon frequency

becomes undefined on the scale of n̄χRO by the shot-noise in the readout population. Since this quantity is
comparable to the detuning (∆, in equation 8.15), the chi-cancelling point is also ill-defined.

9.4. THE FT SNAP PROTOCOL 155

1 2 3 4

ge
ef
pump
RO

Figure 9.2: Pulses comprising the FT SNAP protocol. There are five stages to the protocol
(times and amplitudes are not to scale). (1) Apply the (half-)SNAP operation with three drives.
Two are Raman drives, detuned from the ωge and ωef transitions, respectively. The third is the
χef-cancelling pump. (2) Swap the |g〉 and |f〉 states, so that no error is mapped to |g〉, decay
is mapped to |e〉, and dephasing is mapped to |f〉, in accordance with the outcome probabilities
to minimize the probability of decay during the transmon readout. (3) Readout the transmon.
(4) On the basis of the readout result we reset the transmon to the ground state. (5) (not
shown) In the case of measuring |f〉, which corresponds primarily to transmon dephasing, the
logical operation was the identity, so we try again, restarting the procedure at step 1.

• We wish to readout with sufficient length and photon number to completely discriminate

|g〉, |e〉, |f〉, and even potentially |h〉.

These factors cannot be completely eliminated with any choice of readout parameters, and

therefore must be balanced in the final implementation.

Finally we must use the readout result to inform our subsequent actions. There are three

main components to how we use the result. Firstly, we must return the transmon to the ground

state by performing the appropriate set of π pulses. Secondly, we must compensate for the

deterministic rotation of the storage cavity during the readout pulse by an amount χxtRO when

we measure the state |x〉. We can perform this rotation “in software” by simply rotating all

future cavity drives by the appropriate angle. In the characterization experiments we run here,

this includes cavity drives which are either part of optimal control cavity manipulations, or

9.5. TUNEUP PROCEDURE 156

displacements which are part of Wigner tomography. The ability to adjust these phases in

real time on the basis of recorded measurements is a critical capability for our implementation.

Finally, we must determine whether the gate was successful. In our chosen implementation,

starting in the ground state, performing the SNAP, and returning quickly to the ground state,

the cavity gate is implemented in the case of either ‘no error’ (|g〉) or decay (|e〉, and is

not implemented in the case of dephasing |f〉. Therefore, in order to make our operation

deterministic, we must be ready to repeat the entire protocol in the case that we observe |f〉.

9.5 Tuneup procedure

Given the number of components in the protocol, the procedure for arriving at a fully calibrated

operation involves many steps.

1. Perform standard tuneup to identify ωge, ωef, as well as the corresponding π pulses.

Measure χe and χf .

2. Tune up a transmon readout protocol that can distinguish |g〉, |e〉 and |f〉 in a single-shot.

3. Tune up a method of preparing photon number states in the cavity, either directly or by

postselection.

4. Find the rough χe = χf pump driving point as done in figure 8.2.

5. Tune up a direct |f〉〈g| operation using a Raman pair, with the pump on for the duration.

Optimize the detuning parameter ∆. Choose the amplitude so that π pulse time is

significantly smaller than χf .

6. Replace one of the Raman drives with a SNAP comb with frequency separation χf .

Adjust the amplitude and frequency of the SNAP components such that an optimal π

pulse is performed starting from any relevant photon number.

7. Tune the phase offsets by performing Wigner tomography on S(~0), S(~0)2, S(~0)4, etc.

8. Scan the pump detuning in a small range and measure the cavity coherence after a SNAP,

postselecting on decay (|e〉). This is needed because the χ cancelling point during idle

9.5. TUNEUP PROCEDURE 157

operation is not necessarily the same as during SNAP, as a result of various Stark shifts.

Choose the pump frequency and re-perform steps 6 and 7.

9. Measure the cavity phase adjustments which must be performed following a |e〉 or |f〉

result.

There are several “free” parameters which we might vary in an attempt to improve the final

operational fidelity of the protocol. Changing each of these parameters can require different

re-calibration.

• Changing the χ-cancelling pump amplitude or detuning requires performing the calibration

beginning at step 4

• Changing the Raman detuning ∆ requires re-performing all of the calibration steps be-

ginning at step 5

• Changing the readout pulse parameters, such as readout pulse length or amplitude requires

re-performing steps 7 and 9, since the cavity phases coming out of the readout can be

affected.

Some of these steps merit a bit of explanation. In step 6 we prescribe a method for

calibrating the SNAP pulse. In this step, for a pulse targeting n photon levels, we wish to

identify 2n parameters, specifically the amplitude and frequency for each of the components.

To first order, the frequencies are known to be nχf and the amplitudes are simply the amplitude

required for a single selective pulse, as determined in step 5. However in practice these pulses

are not completely independent from each other, especially as we would like to push the pulse

time down, to minimize the error rate, away from the limit where tpulse � 1/χf . Our main goal

is to have an operation which effects a π rotation to the transmon regardless of the number of

photons in the cavity. To do this, we prepare a given photon number n, play the current pulse,

scanning the amplitude and detuning, to determine a correction which enhances the probability

of ending up in |f〉. We apply this correction to the n-th component of the SNAP pulse, and

then proceed to the next photon number n + 1. Because the components are not necessarily

independent, we may need to repeat this entire procedure a few times in order to fully converge.

9.5. TUNEUP PROCEDURE 158

In step 7 we seek to determine the relative phases for each of the n components of the

pulse. Ideally, if we set all of the pulses to the same phase, the result should be the identity

operation, up to an overall cavity rotation of tpulseχf . In practice this is not the case for two

reasons: first the pulses are not acting independently, second the cavity evolves under its own

internal non-linearity K
2 (a†)2a2. In order to compensate for both of these effects (and the

overall cavity rotation if desired, although this is not strictly necessary), we can adjust the

phases of each of the components.

There are many possible methods for tuning the cavity phases. Our approach involves

characterizing a series of states via Wigner tomography. For each state we construct a maximum

likelihood density matrix, the largest eigenvalue eigenvector of which should resemble the desired

state. The argument of each of the amplitudes comprising this eigenvector give us a set of

phases to assign to the state. We begin by preparing a state of interest which is a superposition

of all of the relevant photon number states, in our case the “kitten code” state (|0〉+
√

2 |2〉+

|4〉)/2. We characterize the phases of this state using the above method to establish a baseline.

We then prepare the same state and apply the SNAP operation, with zero nominal phases, such

that the target operation is the identity, and characterize the resulting state. The difference

between the phases inferred from the second state and the first state are used to correct

the phases of the SNAP drive. To get better accuracy we can go on to repeated SNAP

applications: prepare our baseline state and apply the nominal identity operation 2, 4, or 8

times, and characterize the phases of the resulting state. This allows us to exacerbate small

phase offsets and get better calibration accuracy.

Finally, we should discuss how to measure the cavity coherence, as is required in step 8.

The most general method to achieve this result is to perform a Wigner tomography. However,

when we are scanning over many points, and wish to establish the coherence at each point, the

overhead of full state tomography is cumbersome. Instead of this, we construct using optimal

9.6. CHARACTERIZING THE FT SNAP 159

control, an operation which implements the following transformation:

|g,+L〉 7→ |g, ψ1〉 (9.29)

|g,−L〉 7→ |e, ψ2〉 (9.30)

|g,+E〉 7→ |g, ψ1〉 (9.31)

|g,−E〉 7→ |e, ψ2〉 (9.32)

where the cavity logical states are the binomial code words (equation 3.66), and the cavity states

|ψ1〉 , . . . , |ψ4〉 are arbitrary states which are fixed by the gauge choice in the optimal control,

following the methods presented in section 4.3.3. This allows us to map the preservation or

loss of the relative photon number phases, regardless of cavity decay, onto the transmon state.

in a way which maximizes contrast.

9.6 Characterizing the FT SNAP

We proceed now to the actual experimental results, as performed on the sample described in

table 5.1. We can begin by demonstrating the effectiveness of the SNAP pulse in rotating the

transmon state between |g〉 and |f〉 without occupying |e〉. We see the pulse and transmon

population trajectory in figure 9.3. The observed trajectory matches well against the predicted

trajectory, and there is essentially no excited state population except for the slow accumulation

resulting from decay from |f〉. We note that the evolution is not smoothly continuous, but

rather goes in steps. As the number of photons addressed increases, and consequently the

number of frequency components, the pulse times become more and more defined. This does

not drastically change the analysis, although there can be a concern regarding the divergence of

different photon number trajectories. The degree to which the trajectories differ is the degree

to which the time of the jump conveys information about which photon number state we are

in.4 This knowledge of photon number translates directly to cavity dephasing, and therefore

should be avoided by using a long enough pulse.
4It would be an interesting, as of yet unperformed, exercise to bound the difference in trajectories as a function

of the length of the SNAP operation.

9.6. CHARACTERIZING THE FT SNAP 160

Figure 9.3: Measured trajectory of transmon state throughout Raman SNAP. We can
measure the trajectory by stopping the pulse suddenly and measuring the transmon state using
a readout which discriminates between |g〉, |e〉, |f〉 and |h〉. The total pulse has peaks separated
by π

χf
≈ 416 ns as a result of the drives components separated by 2χf in frequency. We see

good agreement with the simulated trajectory (dashed lines).

9.6. CHARACTERIZING THE FT SNAP 161

We can next demonstrate the maintenance of cavity coherence regardless of the transmon

measurement outcome. To do so we will start by preparing an encoded cavity state, in this case,

a binomial state |+L〉 (section 3.7.1). We will then apply a logical Z rotation by angle π/2,

which should ideally result in the state |i+L〉. We implement this operation using the SNAP

protocol, acting on Fock states |0〉, |2〉 and |4〉, with phases 0, π/2 and 0, respectively. In

Figure 9.4: Wigner functions showing cavity state from FT SNAP conditional on trans-
mon. The three transmon states correspond to the three dominant transmon trajectories, no
error (≈ 94%), decay (≈ 3%) and dephasing (≈ 1%). We start the cavity off in the binomial
code word |+L〉, resembling a horizontal cat state. The effect of the operation is a π/2 rotation
about the logical σz, ideally producing the state |i+L〉. We see this state in the |g〉 and |e〉
Wigner functions. In |e〉 there is an additional cavity phase space rotation which can be dealt
with in software by updating the phase of the cavity drives. In the dephasing case, the Wigner
function resembles the input state, with the exception of some Kerr evolution producing a slight
distortion. These states agree well with numerical simulation.

figure 9.4 we can see the cavity state postselected on the outcome of the measurement used in

the FT SNAP protocol. The three outcomes correspond to the three dominant trajectories: no

error, transmon decay, and transmon dephasing. In the no error case, the operation completes

as desired, resulting in the correct final state. In the decay trajectory, we see (and this only holds

when the χ-cancelling pump is applied) that the cavity coherence is preserved and additionally

9.6. CHARACTERIZING THE FT SNAP 162

that the operation completes. There is an overall cavity rotation, which can be compensated

for in software as discussed. Finally the dephasing trajectory maintains coherence as well, and

is close to the original state. The slight modification is due to the Kerr evolution. In principle

this additional evolution could be cancelled in the subsequent SNAP pulse by modifying the

SNAP phases, however because of the limited pulse memory and lack of ability to dynamically

construct the SNAP pulse from its components, this was not performed here.

We can measure the SNAP performance quantitatively by performing randomized bench-

marking. In order to do so, we prepare a set of optimal control pulses implementing the Clifford

operations on the encoded subspace, as was done in chapter 6. We then can string these oper-

ations together (as done in figure 6.13) in sequences of varying length, in order to establish a

baseline fidelity curve. Then, by interleaving the SNAP operation between the optimal control

pulses, and comparing with the baseline, we can establish the operation fidelity (figure 9.5).

We compare the fidelity of the original SNAP protocol (omitting the χ cancelling drive as well

as the transmon measurement and feedback) with that of the full fault-tolerant protocol. The

exponential decay is fit with a number constant of approximately 14 and 20 for the non-FT and

FT protocols respectively. After subtracting the baseline constant of roughly 40, we are left

with error rates of 4.6% and 2.4% for the respective protocols. This is approximately a factor

of two performance gain as a result of the work done to recapture the cavity coherence.

This result indicates that the FT protocol effectively addresses half of the error in the system.

Where is the rest of the error coming from? We can look at the diagram in figure 9.6 to analyze

the ways in which error arises and propagates. Several types of errors are accounted for here,

including first and second order transmon transitions during the SNAP, transitions during the

readout, cavity transitions, and readout induced cavity dephasing. The total predicted 2.1%

error per operation is in moderately good agreement with the measured value of 2.4%. In

this diagram, we can identify which error channels are dominant, and which are negligible.

To start with second order transitions, such as double decay from |f〉 to |g〉, are of small

enough probability to not contribute. Cavity decay however is quite significant, both during

the SNAP (0.4%) and the readout (0.5%). In principle this component can be addressed

by introducing the cavity error correction, since the operation can be made to preserve the

9.6. CHARACTERIZING THE FT SNAP 163

ancilla

cavity

= SNAP
reset

if repeat

(a)

(b)

Figure 9.5: Randomized benchmarking the FT SNAP operation. The interleaved ran-
domized benchmarking (iRB) protocol (Magesan et al., 2012) is similar to the one performed
in the optimal control characterization experiment in figure 6.13. The general logical Clifford
operations (C(

Li)) are again performed by optimal control pulses. The interleaved part is the
SNAP operation, which in the FT variant contains a readout, feedforward reset of transmon,
feedforward update of cavity phase, and potential feedback restarting of the sequence when
measuring |f〉. By comparing the decay number constants of 14 and 20 for the non-FT and
FT iRB to the decay constant of ≈ 40 for the RB, we can extract error rates of 4.6% and 2.4%
for the respective protocols.

9.6. CHARACTERIZING THE FT SNAP 164

g (100.0%, 0.0%)

No Error

96.7%

Cavity Decay

0.4%

Decay

2.5%

Dephasing

0.3%

Excitation

0.1%

g (96.7%, 0.2%)

50.0%

f (0.3%, 0.3%)

50.0%

e (1.9%, 0.3%)

78.0%
Msmt.

backation
12.7%

h (0.0%, 0.3%)

ET Drive
9.3%86.0%

Msmt.
backaction

14.0%
25.0% 75.0%

g (96.7%, 0.2%)

decay
1.2%

e (1.9%, 0.3%)

98.8%

f (0.3%, 0.3%)

decay
1.2%

h (0.0%, 0.3%)

98.8%

g (96.7%, 0.2%) e (1.8%, 0.4%)

95.5%RO error
4.5%

f (0.3%, 0.3%)

94.0% RO error
6.0%

h (0.0%, 0.3%)

Unconditional Errors
 (98.8%, 1.2%)

Finish (97.9%, 2.1%)

99.1% RO cross-kerr
0.5%

Cav decay in RO
0.4%

SN
A

P
1st

 T
ra

ns
iti

on
SN

A
P

2nd

 T
ra

ns
iti

on

A
nc

ill
a

 T
ra

ns
iti

on
du

rin
g

R
O

O
th

er
 E

rr
or

s
du

rin
g

R
O

Figure 9.6: Graph of possible error trajectories in FT SNAP protocol At each node on the
tree, the pair of numbers are probabilities. The first of these is the probability of being in the
labelled state and having the logical qubit retain its coherence. The second is the probability of
being in the labelled state and having the logical qubit dephased. The sum of all the numbers
in a given row of nodes should be 100%. Paths between nodes are colored red if the logical
qubit is effectively dephased. In the non error-corrected protocol (SNC), all paths except the
“No Error” case would lead to loss of logical qubit coherence. The first layer indicates single-
errors occurring the SNAP pulse. The second layer accounts for second-order double ancilla
transition events. The third layer accounts for ancilla decay during the readout. The final step
is accounting for readout errors which do not depend on the ancilla state. Circled in blue are
the primary contributions to the final total, in order, cavity loss (∼ 0.8%), readout cross-Kerr
(∼0.5%), Measurement back-action from path-independence violation (∼0.3%), decay to the
third excited state |h〉 from hybridization induced by the error-transparency drive (∼0.3%) and
decay from |e〉 to |g〉 during readout (∼0.2%).

9.6. CHARACTERIZING THE FT SNAP 165

structure of cavity errors as discussed at the end of section 9.2.5 Therefore the dominant and

concerning unaddressed error components are the readout cross-Kerr (0.5%), transmon decay

during the readout (especially from |e〉, 0.2%), and χ cancelling drive induced hybridization

resulting in population of |h〉 (0.4%).

While we show an improvement over the standard protocol by about a factor of 2, the

presence of the previously discussed errors, against which we are unprotected, limits the gain

without further experimental improvements. In order to demonstrate the degree to which we are

eliminating the error channel associated with transmon dephasing and decay during the SNAP

pulse, we can deliberately increase the rates associated with these processes, and measure the

ratio of the fidelities of the standard and fault-tolerant protocols. Of course both fidelities will

decrease as errors are added, but the rate of fidelity loss should be much faster for the standard

SNAP protocol.

In order to increase the transmon dephasing rate, without affecting its decay rate, we can

add a weak resonant drive to the readout mode, increasing its steady state population, and thus

the dephasing rate (following an analogue to equation 8.18). In order to increase the decay

rate independently of the dephasing rate, we can add a noisy input, with a narrow bandwidth

(∼10 MHz) centered on ωef. For a timescale long compared to the bandwidth (δt� 100 ns)

the effect of this drive appears to be an incoherent transition probability from |f〉 to |e〉 or vice

versa. The fact that we increase the excitation probability from |e〉 to |f〉 is actually acceptable,

since we are tolerant to this transition as well, although now we should interpret the added

rate as a “bit-flip” rate rather than a decay rate. We can see in the top half of figure 9.7 how

the measured final transmon state populations change as a function of injected noise strength.

The fact that only the |e〉 (|f〉) population remains flat for increased dephasing (bit-flip) rates

indicates that our modifications to the decoherence properties are precise. Additionally, these

probabilities agree with a simulation (dotted lines) accounting for the (independently measured)

dephasing and bit flip rates.

We can go on to re-measure the gate infidelity, as measured by interleaved RB, and show

this as a function of injected error rate, which we compared with the predicted infidelity, which
5In this work, however, we only performed the drive on the even photon number peaks. Maintaining the

structure of the errors would require driving on the odd peaks as well.

9.6. CHARACTERIZING THE FT SNAP 166

(a) (b)

(c) (d)

Figure 9.7: Characterizing the effect of injected errors on the FT SNAP operation
Errors are injected into the system in one of two ways. Either the steady state readout mode
occupation is increased by a weak resonant drive at ωRO, inducing an additional phase-flip rate,
or a noise source, with 5 MHz bandwidth, is placed on the ωef mixing chain, producing an
additional bit-flip rate (the noisy drive produces both |f〉 → |e〉 as well as |e〉 → |f〉). We see
in the top two plots that increasing the phase flip rate increases the probability of measuring
|f〉 and that increasing the bit flip rate increases the probability of measuring |e〉. While both
the FT and non-FT protocols’ fidelities suffer as a result of these added errors, the FT protocol
suffers much less, increasing the FT/non-FT performance ratio from 2 (with native errors) to
a factor of 4.9 (with maximal added bit-flip errors).

is calculated as in figure 9.6. In our model, we assume we are completely protected against, the

action of the decay or dephasing event itself, but we still predict increasing infidelity as a result

of both decay during the readout and pump-induced hybridization. The predictions match the

measured infidelities, for the most part, although we moderately underestimate the infidelity

associated with increased transmon dephasing. At maximum the infidelity ratio between the

standard and FT protocols reaches 3.3 for injected phase flips, and 4.9 for injected bit flips.

Chapter 10

Conclusion and Prospects

I would like to conclude by discussing some of the options I see for future projects. Some

of these ideas are further developments of the ideas presented in this thesis, while others are

simply areas I think are promising directions that build on the work done here at Yale.

Optimal control beyond the dispersive regime We have shown how control can be made

faster and higher fidelity by moving from time-disjoint transmon and cavity drives using Gaussian

pulses to a more general class of operations. However there are several “arbitrary” restrictions

which remain. Most notably is our use of drives which are centered on the transmon and cavity

resonant frequencies, with a relatively narrow bandwidth. This restriction prevents us from

using higher states of the transmon, or many of the types of sideband transitions considered

in chapter 7. There are two approaches one could take. The more conservative approach is

to add new frequency ranges one at a time, adding new effective Hamiltonians for drives in

these ranges. More radical would be to move to a “full-bandwidth” Hamiltonian, for instance

of the form 7.5, trying to allow drives which wring the maximal amount of performance from

the system allowed. This would be interesting to try in conjunction with a full-bandwidth AWG,

as was used in Raftery et al. (2017).

Using χ cancellation to improve transmon coherence A very straightforward modification

of the experiment shown in section 8.3 is to apply a χ cancelling drive between the readout

mode and the transmon. In this case, the readout is the “fast” mode and transmon the

167

168

“slow” mode. By decoupling them we can protect the transmon from the finite-temperature

induced transitions in the readout. The value of this proposition would depend on the readout

temperature as well as the strength of the readout-transmon interaction χRO. However, the

prospect for generally applicable performance enhancement is tantalizing. A more desirable

situation would be to go the other way, introducing a drive to turn on the interaction rather

than turn off, although I know of no way to do this currently.

Engineering χ via transmon tunability It is possible to achieve the effect χe = χf without

introducing any drive terms necessarily if one is willing to finely tune the cavity-transmon

detuning.1 One can work out from a second order perturbation theory argument that, in the

limit of the large detuning (∆� g), that we have

χef ≈
g2

∆
αT (αT −∆)

(αT + ∆)(2αT + ∆) . (10.1)

This is can be made zero by choosing ∆ ≡ ωge − ωc = αT . Note that this is a detuning which

puts the cavity above the transmon, as αT is typically negative. This can be seen in a numerical

diagonalization as well (figure 10.1). While it might be possible to reach this point by careful

fabrication, a more robust method would be to use a flux-tunable transmon. Attempting this

would require the further development of methods of introducing flux bias lines which do not

spoil the high quality factors of the seamless aluminum cavities.

Extending error-transparent fault-tolerance to GKP protocols The success of cat code

error correction has reignited interest in the oldest of oscillator based encodings, the GKP code

(Gottesman et al., 2001). As with the cat code, the fundamental task in GKP error correction is

performing error syndrome measurements. Unlike the cat code, the outcome of this syndrome

measurement is not a single bit (i.e. parity) but rather a continuous quantity, namely the position

or momentum modulo some constant. There have been proposals (e.g. (Terhal and Weigand,

2016)) on how this can be implemented in cQED. Much like the parity measurement, the

possibility of decay during the syndrome measurement could limit the performance of the error
1This was pointed out to us by Mostafa Khezri in a private communication

169

−400 −200 0 200 400 600 800 1000

Detuning (MHz)

−3

−2

−1

0

1

2

3

χ
(M

H
z)

χge
χef

Figure 10.1: “Natural” χ matching by setting the detuning. Here a numerical diagonalization
of an anharmonic Jaynes-Cummings Hamiltonian (αT = 130 MHz, g = 20 MHz) has a zero-
crossing in the value of χfe at around αT .

correction. The central component is the conditional displacement, e(αa−h.c.)|e〉〈e|. Making this

component, which is the subject of ongoing work at Yale, fault-tolerant is a simple modification

of the protocols shown in chapter 8 and 9.

Optimal control for fault-tolerance An ultimate synthesis of the methods presented in this

thesis would be to find ways of using numerical optimal control which also maintains some form

of fault-tolerance. It would be desirable to both prevent propagation of transmon errors, and

to maintain the structure of cavity errors, so that cavity error correction could deal with the

errors occuring during the operation. This is a difficult task. The strength of optimal control

comes from its ability to navigate the continuously connected space of unitary transformations.

As soon as we impose fault-tolerance, our landscape could become much more disjointed. We

may ask for a local variation which minimizes error susceptibility, but baking it in from the

beginning would require a different approach to just adding penalty terms.

Improving transmon readout with non-linear filtering Error correction and fault-tolerance

inherently requires performing measurements and acting on that information. These measure-

ments must have high state-discrimination fidelity, but moreover, should produce the measured

170

state as its output. Improving the readout in both of these regards is a crucial ingredient in

realizing error correction protocols which are actually useful in practice. While the theory of

how to best turn a measured signal into a state assignment is well worked out in the ideal

case (Hatridge et al., 2013), the analysis breaks down in the presence of either transmon state

transitions, or of non-linearity of the readout mode. In order to extract the maximum per-

formance of the readout, it would be advantageous to employ a more sophisticated method

of state assignment, using more recently developed machine learning tools as the assignment

algorithm.

Hardware efficient quantum von Neumann architecture The paradigm of “hardware-

efficiency” has led us to the cat code, where a whole array of two level systems is replaced by a

single box, allowing an error corrected logical qubit to be constructed and controlled via a single

Josephson junction. Can we push hardware efficiency further? One way of doing so follows

the approach developed by Naik et al. (2017), where a single multimode resonator can host

many Bosonic modes, each of which could encode a qubit. The advantage of this approach is

that all of these degrees of freedom can be controlled by a single ancillary qubit (in their case,

a parametrically modulated SQUID junction). This architecture mirrors the traditional “von

Neumann architecture” for classical computers, which separates the processing unit from the

memory. From my perspective, this is a natural extension of the types of simplifications which

have been pursued at Yale. If such a device could be made with high-Q cavity resonators, then

it would be in a great position to integrate with cavity encoded logical qubits. As I see it, the

main problem with this approach is the set of always-on dispersive interactions between the

modes. This problem could be alleviated by using the newly designed SNAIL element (Sivak

et al., 2019) which allows one to implement bilinear SWAP operations between modes without

introducing the four-wave mixing which gives rise to the dispersive shift.

Bibliography

S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Phys. Rev. A,
70(5):052328 (2004). doi:10.1103/PhysRevA.70.052328. (Cited on page 209.)

D. Aharonov and M. Ben-Or. Fault-tolerant quantum computation with constant error.
In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing,
STOC ’97, pages 176–188. ACM, New York, NY, USA (1997). ISBN 0-89791-888-6.
doi:10.1145/258533.258579. (Cited on page 126.)

Y. Aharonov and J. Anandan. Phase change during a cyclic quantum evolution. Phys. Rev.
Lett., 58(16):1593–1596 (1987). doi:10.1103/PhysRevLett.58.1593. (Cited on page 23.)

V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T. Brierley, P. Reinhold, C. Vuillot,
L. Li, C. Shen, S. M. Girvin, B. M. Terhal, and L. Jiang. Performance and structure of single-
mode bosonic codes. Phys. Rev. A, 97(3):032346 (2018). doi:10.1103/PhysRevA.97.032346.
(Cited on pages 51 and 52.)

V. Ambegaokar and A. Baratoff. Tunneling Between Superconductors. Phys. Rev. Lett.,
10(11):486–489 (1963). doi:10.1103/PhysRevLett.10.486. (Cited on page 79.)

B. E. Anderson, H. Sosa-Martinez, C. A. Riofŕıo, I. H. Deutsch, and P. S. Jessen. Accurate and
Robust Unitary Transformations of a High-Dimensional Quantum System. Phys. Rev. Lett.,
114(24):240401 (2015). doi:10.1103/PhysRevLett.114.240401. (Cited on page 54.)

C. Axline. Building Blocks for Modular Circuit QED Quantum Computing. Ph.D. thesis, Yale
University (2018). (Cited on pages 8, 83, and 121.)

C. Axline, M. Reagor, R. Heeres, P. Reinhold, C. Wang, K. Shain, W. Pfaff, Y. Chu, L. Frunzio,
and R. J. Schoelkopf. An architecture for integrating planar and 3D cQED devices. Appl.
Phys. Lett., 109(4):042601 (2016). doi:10.1063/1.4959241. (Cited on page 81.)

D. Bacon. Fault-tolerant quantum computation and the threshold theorem. https:
//courses.cs.washington.edu/courses/cse599d/06wi/lecturenotes19.pdf
(2006). (Cited on page 125.)

J. Bateman, A. Xuereb, and T. Freegarde. Stimulated Raman transitions via multiple atomic
levels. Phys. Rev. A, 81(4):043808 (2010). doi:10.1103/PhysRevA.81.043808. (Cited on
page 153.)

N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. E. Manucharyan, L. Frunzio, D. E. Prober,
R. J. Schoelkopf, S. M. Girvin, and M. H. Devoret. Phase-preserving amplification near

171

http://dx.doi.org/10.1103/PhysRevA.70.052328
http://dx.doi.org/10.1145/258533.258579
http://dx.doi.org/10.1103/PhysRevLett.58.1593
http://dx.doi.org/10.1103/PhysRevA.97.032346
http://dx.doi.org/10.1103/PhysRevLett.10.486
http://dx.doi.org/10.1103/PhysRevLett.114.240401
http://dx.doi.org/10.1063/1.4959241
https://courses.cs.washington.edu/courses/cse599d/06wi/lecturenotes19.pdf
https://courses.cs.washington.edu/courses/cse599d/06wi/lecturenotes19.pdf
http://dx.doi.org/10.1103/PhysRevA.81.043808

BIBLIOGRAPHY 172

the quantum limit with a Josephson ring modulator. Nature, 465(7294):64–68 (2010).
doi:10.1038/nature09035. (Cited on pages 93 and 119.)

M. V. Berry. Quantal Phase Factors Accompanying Adiabatic Changes. Proc. R. Soc. A,
392(1802):45–57 (1984). doi:10.1098/rspa.1984.0023. (Cited on page 23.)

L. Bishop. Circuit Quantum Electrodynamics. Ph.D. thesis, Yale University (2010). (Cited on
page 8.)

R. Blume-Kohout, J. K. Gamble, E. Nielsen, J. Mizrahi, J. D. Sterk, and P. Maunz. Robust,
self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit. arXiv
(2013). (Cited on page 207.)

J. Blumoff. Multiqubit experiments in 3D circuit quantum electrodynamics. Ph.D. thesis, Yale
University (2017). (Cited on pages 7, 8, 81, and 83.)

H. Bomb́ın. Gauge color codes: optimal transversal gates and gauge fixing in topological
stabilizer codes. New J. Phys., 17(8):083002 (2015). doi:10.1088/1367-2630/17/8/083002.
(Cited on page 33.)

T. Brecht. Micromachined Quantum Circuits. Ph.D. thesis, Yale University (2017). (Cited on
pages 8 and 77.)

J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D. G. Cory, Y. Nakamura,
J.-S. Tsai, and W. D. Oliver. Noise spectroscopy through dynamical decoupling with a
superconducting flux qubit. Nature Physics, 7(7):565–570 (2011). doi:10.1038/nphys1994.
(Cited on page 95.)

R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A Limited Memory Algorithm for Bound Constrained
Optimization. SIAM J. Sci. Comput., 16(5):1190–1208 (1995). doi:10.1137/0916069. (Cited
on page 58.)

K. Cahill and R. Glauber. Density Operators and Quasiprobability Distributions. Phys. Rev.,
177(5):1882–1902 (1969). doi:10.1103/PhysRev.177.1882. (Cited on pages 20 and 203.)

A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane. Quantum Er-
ror Correction and Orthogonal Geometry. Phys. Rev. Lett., 78(3):405–408 (1997).
doi:10.1103/PhysRevLett.78.405. (Cited on page 33.)

E. T. Campbell, H. Anwar, and D. E. Browne. Magic-state distillation in all prime dimensions
using quantum reed-muller codes. Phys. Rev. X (2012). (Cited on page 33.)

E. T. Campbell, B. M. Terhal, and C. Vuillot. Roads towards fault-tolerant universal quantum
computation. Nature, 549(7671):172–179 (2017). doi:10.1038/nature23460. (Cited on
page 126.)

H. Carmichael. An Open Systems Approach to Quantum Optics. Springer (1993). ISBN
3540566341. (Cited on page 7.)

J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M.
Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland. Realization of quantum
error correction. Nature, 432(7017):602–605 (2004). doi:10.1038/nature03074. (Cited on
page 32.)

http://dx.doi.org/10.1038/nature09035
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1088/1367-2630/17/8/083002
http://dx.doi.org/10.1038/nphys1994
http://dx.doi.org/10.1137/0916069
http://dx.doi.org/10.1103/PhysRev.177.1882
http://dx.doi.org/10.1103/PhysRevLett.78.405
http://dx.doi.org/10.1038/nature23460
http://dx.doi.org/10.1038/nature03074

BIBLIOGRAPHY 173

K. Chou. Teleported operations between logical qubits in circuit quantum electrodynamics.
Ph.D. thesis, Yale University (2018). (Cited on pages 7 and 8.)

J. Chow. Quantum Information Processing with Superconducting Qubits. Ph.D. thesis, Yale
University (2010). (Cited on pages 7 and 8.)

A. D. Córcoles, E. Magesan, S. J. Srinivasan, A. W. Cross, M. Steffen, J. M. Gambetta, and
J. M. Chow. Demonstration of a quantum error detection code using a square lattice of four
superconducting qubits. Nature Communications, 6:6979 (2015). doi:10.1038/ncomms7979.
(Cited on page 32.)

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and
S. S. Somaroo. Experimental quantum error correction. Phys. Rev. Lett., 81(10):2152–2155
(1998). (Cited on page 4.)

J. Cramer, N. Kalb, M. A. Rol, B. Hensen, M. S. Blok, M. Markham, D. J. Twitchen, R. Hanson,
and T. H. Taminiau. Repeated quantum error correction on a continuously encoded qubit by
real-time feedback. Nature Communications, 7:11526 (2016). doi:10.1038/ncomms11526.
(Cited on page 32.)

D. L. Creedon, M. Goryachev, N. Kostylev, T. B. Sercombe, and M. E. Tobar. A 3D printed
superconducting aluminium microwave cavity. Appl. Phys. Lett., 109(3):032601 (2016).
doi:10.1063/1.4958684. (Cited on page 75.)

A. W. Cross, E. Magesan, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Scal-
able randomised benchmarking of non-Clifford gates. npj Quantum Inf., 2:16012 (2016).
doi:10.1038/npjqi.2016.12. (Cited on page 209.)

J. Dalibard, K. Mølmer, and Y. Castin. Monte Carlo wave-function method in quantum optics.
J. Opt. Soc. Am. B, JOSAB, 10(3):524–538 (1993). doi:10.1364/JOSAB.10.000524. (Cited
on page 45.)

P. de Fouquieres. Implementing Quantum Gates by Optimal Control with Dou-
bly Exponential Convergence. Phys. Rev. Lett., 108(11):110504 (2012).
doi:10.1103/PhysRevLett.108.110504. (Cited on page 59.)

P. de Fouquieres, S. G. Schirmer, S. J. Glaser, and I. Kuprov. Second order gradient ascent
pulse engineering. arXiv, (2):412–417 (2011). (Cited on page 58.)

M. H. Devoret. Quantum Fluctuations In Electrical Circuits (1997). (Cited on page 4.)

D. P. DiVincenzo and P. W. Shor. Fault-Tolerant Error Correction with Efficient Quantum
Codes. Phys. Rev. Lett., 77(15):3260–3263 (1996). doi:10.1103/PhysRevLett.77.3260.
(Cited on pages 3 and 125.)

F. Dolde, V. Bergholm, Y. Wang, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer,
F. Jelezko, P. Neumann, T. Schulte-Herbrüggen, J. Biamonte, and J. Wrachtrup. High-
fidelity spin entanglement using optimal control. Nature Communications, 5 (2014).
doi:10.1038/ncomms4371. (Cited on page 54.)

http://dx.doi.org/10.1038/ncomms7979
http://dx.doi.org/10.1038/ncomms11526
http://dx.doi.org/10.1063/1.4958684
http://dx.doi.org/10.1038/npjqi.2016.12
http://dx.doi.org/10.1364/JOSAB.10.000524
http://dx.doi.org/10.1103/PhysRevLett.108.110504
http://dx.doi.org/10.1103/PhysRevLett.77.3260
http://dx.doi.org/10.1038/ncomms4371

BIBLIOGRAPHY 174

D. J. Egger and F. K. Wilhelm. Adaptive Hybrid Optimal Quantum Control
for Imprecisely Characterized Systems. Phys. Rev. Lett., 112(24):240503 (2014).
doi:10.1103/PhysRevLett.112.240503. (Cited on page 114.)

A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. Surface codes:
Towards practical large-scale quantum computation. Phys. Rev. A, 86(3) (2012).
doi:10.1103/PhysRevA.86.032324. (Cited on pages 33 and 126.)

J. M. Gambetta, A. Blais, D. I. Schuster, A. Wallraff, L. Frunzio, J. Majer, M. H.
Devoret, S. M. Girvin, and R. J. Schoelkopf. Qubit-photon interactions in a cavity:
Measurement-induced dephasing and number splitting. Phys. Rev. A, 74(4):042318 (2006).
doi:10.1103/PhysRevA.74.042318. (Cited on page 134.)

D. Gottesman. Stabilizer Codes and Quantum Error Correction. Ph.D. thesis, California Institute
of Technology (1997). (Cited on page 32.)

D. Gottesman. The Heisenberg Representation of Quantum Computers (1998). (Cited on
page 209.)

D. Gottesman, A. Kitaev, and J. Preskill. Encoding a qubit in an oscillator. Phys. Rev. A,
64(1):012310 (2001). doi:10.1103/PhysRevA.64.012310. (Cited on pages 51 and 168.)

T. J. Green, J. Sastrawan, H. Uys, and M. J. Biercuk. Arbitrary quantum control of
qubits in the presence of universal noise. New J. Phys., 15(9) (2013). doi:10.1088/1367-
2630/15/9/095004. (Cited on page 95.)

D. Greenbaum. Introduction to Quantum Gate Set Tomography (2015). (Cited on page 207.)

D. J. Griffiths. Introduction to Quantum Mechanics (2nd Edition). Pearson Prentice Hall
(2004). ISBN 0131118927. (Cited on page 7.)

E. L. Hahn. Spin Echoes. Phys. Rev., 80(4):580–594 (1950). doi:10.1103/PhysRev.80.580.
(Cited on page 61.)

S. Haroche and J.-M. Raimond. Exploring the Quantum (2006). ISBN 9780198509141. (Cited
on page 8.)

M. Hatridge, S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, K. M. Sliwa,
B. Abdo, L. Frunzio, S. M. Girvin, R. J. Schoelkopf, and M. H. Devoret. Quantum Back-
Action of an Individual Variable-Strength Measurement. Science, 339(6116):178–181 (2013).
doi:10.1126/science.1226897. (Cited on page 170.)

R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf.
Implementing a universal gate set on a logical qubit encoded in an oscillator. Nature Com-
munications, 8(1):94 (2017). doi:10.1038/s41467-017-00045-1. (Cited on pages 6 and 85.)

R. W. Heeres, B. Vlastakis, E. Holland, S. Krastanov, V. V. Albert, L. Frunzio, L. Jiang, and
R. J. Schoelkopf. Cavity State Manipulation Using Photon-Number Selective Phase Gates.
Phys. Rev. Lett., 115(13):137002 (2015). doi:10.1103/PhysRevLett.115.137002. (Cited on
pages 27 and 110.)

http://dx.doi.org/10.1103/PhysRevLett.112.240503
http://dx.doi.org/10.1103/PhysRevA.86.032324
http://dx.doi.org/10.1103/PhysRevA.74.042318
http://dx.doi.org/10.1103/PhysRevA.64.012310
http://dx.doi.org/10.1088/1367-2630/15/9/095004
http://dx.doi.org/10.1088/1367-2630/15/9/095004
http://dx.doi.org/10.1103/PhysRev.80.580
http://dx.doi.org/10.1126/science.1226897
http://dx.doi.org/10.1038/s41467-017-00045-1
http://dx.doi.org/10.1103/PhysRevLett.115.137002

BIBLIOGRAPHY 175

J. Heinsoo, C. K. Andersen, A. Remm, S. Krinner, T. Walter, Y. Salathé, S. Gas-
parinetti, J.-C. Besse, A. Potočnik, A. Wallraff, and C. Eichler. Rapid High-fidelity Mul-
tiplexed Readout of Superconducting Qubits. Phys. Rev. Applied, 10(3):034040 (2018).
doi:10.1103/PhysRevApplied.10.034040. (Cited on page 146.)

M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D.
O’Connell, D. Sank, J. Wenner, J. M. Martinis, and A. N. Cleland. Synthesizing arbi-
trary quantum states in a superconducting resonator. Nature, 459(7246):546–549 (2009).
doi:10.1038/nature08005. (Cited on pages 14 and 15.)

E. T. Jaynes and F. W. Cummings. Comparison of quantum and semiclassical radia-
tion theories with application to the beam maser. Proc. IEEE, 51(1):89–109 (1962).
doi:10.1109/PROC.1963.1664. (Cited on page 13.)

E. Kapit. Error-transparent quantum gates for small logical qubit architectures (2017). (Cited
on page 127.)

J. Kelly, R. Barends, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler,
I. C. Hoi, E. Jeffrey, A. Megrant, J. Mutus, C. Neill, P. J. J. O’Malley, C. Quintana,
P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Cleland, and J. M.
Martinis. Optimal Quantum Control Using Randomized Benchmarking. Phys. Rev. Lett.,
112(24):240504 (2014). doi:10.1103/PhysRevLett.112.240504. (Cited on page 114.)

J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus,
B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I. C. Hoi, C. Neill, P. J. J.
O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M.
Martinis. State preservation by repetitive error detection in a superconducting quantum
circuit. Nature, 519(7541):66–69 (2015). doi:10.1038/nature14270. (Cited on page 32.)

N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser. Optimal control
of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms.
Journal of Magnetic Resonance, 172(2):296–305 (2005). doi:10.1016/j.jmr.2004.11.004.
(Cited on pages 54 and 57.)

E. Knill and R. Laflamme. Theory of quantum error-correcting codes. Phys. Rev. A, 55(2):900–
911 (1997). doi:10.1103/PhysRevA.55.900. (Cited on page 30.)

E. Knill, R. Laflamme, and G. J. Milburn. A scheme for efficient quantum computation with
linear optics. Nature, 409(6816):46–52 (2001). doi:10.1038/35051009. (Cited on page 4.)

E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri,
S. Seidelin, and D. J. Wineland. Randomized benchmarking of quantum gates. Phys. Rev.
A, 77(1):012307 (2008). doi:10.1103/PhysRevA.77.012307. (Cited on page 208.)

J. Koch, T. Yu, J. M. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret,
S. M. Girvin, and R. J. Schoelkopf. Charge-insensitive qubit design derived from the Cooper
pair box. Phys. Rev. A, 76(4):042319 (2007). doi:10.1103/PhysRevA.76.042319. (Cited on
page 79.)

http://dx.doi.org/10.1103/PhysRevApplied.10.034040
http://dx.doi.org/10.1038/nature08005
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1103/PhysRevLett.112.240504
http://dx.doi.org/10.1038/nature14270
http://dx.doi.org/10.1016/j.jmr.2004.11.004
http://dx.doi.org/10.1103/PhysRevA.55.900
http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1103/PhysRevA.77.012307
http://dx.doi.org/10.1103/PhysRevA.76.042319

BIBLIOGRAPHY 176

S. Krastanov, V. V. Albert, C. Shen, C.-L. Zou, R. W. Heeres, B. Vlastakis, R. J. Schoelkopf,
and L. Jiang. Universal control of an oscillator with dispersive coupling to a qubit. Phys. Rev.
A, 92(4):040303 (2015). doi:10.1103/PhysRevA.92.040303. (Cited on pages 23 and 26.)

J. Krause, M. O. Scully, T. Walther, and H. Walther. Preparation of a pure number state and
measurement of the photon statistics in a high- Qmicromaser. Phys. Rev. A, 39(4):1915–1921
(1989). doi:10.1103/PhysRevA.39.1915. (Cited on page 14.)

R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek. Perfect Quantum Error Correcting
Code. Phys. Rev. Lett., 77(1):198–201 (1996). doi:10.1103/PhysRevLett.77.198. (Cited on
page 32.)

C. K. Law and J. H. Eberly. Arbitrary Control of a Quantum Electromagnetic Field. Phys.
Rev. Lett., 76(7):1055–1058 (1996). doi:10.1103/PhysRevLett.76.1055. (Cited on pages 14
and 15.)

F. Lecocq, I. M. Pop, Z. Peng, I. Matei, T. Crozes, T. Fournier, C. Naud, W. Guichard,
and O. Buisson. Junction fabrication by shadow evaporation without a suspended bridge.
Nanotechnology, 22(31):315302 (2011). doi:10.1088/0957-4484/22/31/315302. (Cited on
page 86.)

Z. Leghtas, G. Kirchmair, B. Vlastakis, M. H. Devoret, R. J. Schoelkopf, and M. Mirrahimi.
Deterministic protocol for mapping a qubit to coherent state superpositions in a cavity. Phys.
Rev. A, 87(4):042315 (2013a). doi:10.1103/PhysRevA.87.042315. (Cited on page 22.)

Z. Leghtas, G. Kirchmair, B. Vlastakis, R. J. Schoelkopf, M. H. Devoret, and M. Mir-
rahimi. Hardware-Efficient Autonomous Quantum Memory Protection. Phys. Rev. Lett.,
111(12):120501 (2013b). doi:10.1103/PhysRevLett.111.120501. (Cited on page 38.)

Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A. Petrenko, K. M. Sliwa, A. Narla,
S. Shankar, M. J. Hatridge, M. Reagor, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi, and M. H.
Devoret. Confining the state of light to a quantum manifold by engineered two-photon loss.
Science, 347(6224):853–857 (2015). doi:10.1126/science.aaa2085. (Cited on pages 46, 123,
and 135.)

M. Leskes, P. K. Madhu, and S. Vega. Floquet theory in solid-state nuclear magnetic res-
onance. Progress in Nuclear Magnetic Resonance Spectroscopy, 57(4):345–380 (2010).
doi:10.1016/j.pnmrs.2010.06.002. (Cited on pages 194 and 195.)

N. Leung, M. Abdelhafez, J. Koch, and D. Schuster. Speedup for quantum optimal control from
automatic differentiation based on graphics processing units. Phys. Rev. A, 95(4):042318
(2017). doi:10.1103/PhysRevA.95.042318. (Cited on page 66.)

L. Li, C.-L. Zou, V. V. Albert, S. Muralidharan, S. M. Girvin, and L. Jiang. Cat Codes
with Optimal Decoherence Suppression for a Lossy Bosonic Channel. Phys. Rev. Lett.,
119(3):030502 (2017). doi:10.1103/PhysRevLett.119.030502. (Cited on pages 44 and 48.)

D. A. Lidar, I. L. Chuang, and K. B. Whaley. Decoherence-Free Subspaces for Quantum Com-
putation. Phys. Rev. Lett., 81(12):2594–2597 (1998). doi:10.1103/PhysRevLett.81.2594.
(Cited on page 127.)

http://dx.doi.org/10.1103/PhysRevA.92.040303
http://dx.doi.org/10.1103/PhysRevA.39.1915
http://dx.doi.org/10.1103/PhysRevLett.77.198
http://dx.doi.org/10.1103/PhysRevLett.76.1055
http://dx.doi.org/10.1088/0957-4484/22/31/315302
http://dx.doi.org/10.1103/PhysRevA.87.042315
http://dx.doi.org/10.1103/PhysRevLett.111.120501
http://dx.doi.org/10.1126/science.aaa2085
http://dx.doi.org/10.1016/j.pnmrs.2010.06.002
http://dx.doi.org/10.1103/PhysRevA.95.042318
http://dx.doi.org/10.1103/PhysRevLett.119.030502
http://dx.doi.org/10.1103/PhysRevLett.81.2594

BIBLIOGRAPHY 177

A. F. Linskens, I. Holleman, N. Dam, and J. Reuss. Two-photon Rabi oscillations. Phys. Rev.
A, 54(6):4854–4862 (1996). doi:10.1103/PhysRevA.54.4854. (Cited on page 153.)

S. Lloyd and S. L. Braunstein. Quantum computation over continuous variables. Phys. Rev.
Lett., 82(8):1784–1787 (1999). doi:10.1103/PhysRevLett.82.1784. (Cited on page 12.)

D. Loss and D. P. DiVincenzo. Quantum computation with quantum dots. Phys. Rev. A,
57(1):120–126 (1998). doi:10.1103/PhysRevA.57.120. (Cited on page 4.)

W. Ma and L. Jiang. General fault-tolerant quantum gates for markovian ancilla noise (in
preparation). (Cited on page 147.)

E. Magesan, J. M. Gambetta, and J. Emerson. Scalable and Robust Randomized
Benchmarking of Quantum Processes. Phys. Rev. Lett., 106(18):180504 (2011).
doi:10.1103/PhysRevLett.106.180504. (Cited on pages 111, 113, 208, and 209.)

E. Magesan, J. M. Gambetta, B. R. Johnson, C. A. Ryan, J. M. Chow, S. T. Merkel, M. P.
da Silva, G. A. Keefe, M. B. Rothwell, T. A. Ohki, M. B. Ketchen, and M. Steffen. Efficient
Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking. Phys. Rev.
Lett., 109(8):080505 (2012). doi:10.1103/PhysRevLett.109.080505. (Cited on pages 111,
113, 163, and 209.)

W. Magnus. On the exponential solution of differential equations for a linear op-
erator. Communications on Pure and Applied Mathematics, 7(4):649–673 (1954).
doi:10.1002/cpa.3160070404. (Cited on page 11.)

E. S. Mananga and T. Charpentier. Introduction of the Floquet-Magnus expansion in solid-
state nuclear magnetic resonance spectroscopy. J. Chem. Phys., 135(4):044109 (2011).
doi:10.1063/1.3610943. (Cited on page 194.)

D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M. Gambetta. Efficient Z gates for
quantum computing. Phys. Rev. A, 96(2):022330 (2017). doi:10.1103/PhysRevA.96.022330.
(Cited on page 62.)

P. Meystre, J. J. Slosser, and M. Wilkens. Cat in a cold niobium box. Optics Communications,
79(5):300–304 (1990). doi:10.1016/0030-4018(90)90073-3. (Cited on page 14.)

M. H. Michael, M. Silveri, R. T. Brierley, V. V. Albert, J. Salmilehto, L. Jiang, and S. M.
Girvin. New Class of Quantum Error-Correcting Codes for a Bosonic Mode. Phys. Rev. X,
6(3):031006 (2016). doi:10.1103/PhysRevX.6.031006. (Cited on pages 35, 46, and 50.)

M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, and M. H.
Devoret. Dynamically protected cat-qubits: a new paradigm for universal quantum computa-
tion. New J. Phys., 16(4) (2014). doi:10.1088/1367-2630/16/4/045014. (Cited on pages 38
and 46.)

M. Mirrahimi and P. Rouchon. Dynamics and control of open quantum systems. https://who.
rocq.inria.fr/Mazyar.Mirrahimi/QuantSys2015.pdf (2015). (Cited on page 194.)

F. Motzoi, J. M. Gambetta, S. T. Merkel, and F. K. Wilhelm. Optimal control
methods for rapidly time-varying Hamiltonians. Phys. Rev. A, 84(2):022307 (2011).
doi:10.1103/PhysRevA.84.022307. (Cited on page 65.)

http://dx.doi.org/10.1103/PhysRevA.54.4854
http://dx.doi.org/10.1103/PhysRevLett.82.1784
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1103/PhysRevLett.106.180504
http://dx.doi.org/10.1103/PhysRevLett.109.080505
http://dx.doi.org/10.1002/cpa.3160070404
http://dx.doi.org/10.1063/1.3610943
http://dx.doi.org/10.1103/PhysRevA.96.022330
http://dx.doi.org/10.1016/0030-4018(90)90073-3
http://dx.doi.org/10.1103/PhysRevX.6.031006
http://dx.doi.org/10.1088/1367-2630/16/4/045014
https://who.rocq.inria.fr/Mazyar.Mirrahimi/QuantSys2015.pdf
https://who.rocq.inria.fr/Mazyar.Mirrahimi/QuantSys2015.pdf
http://dx.doi.org/10.1103/PhysRevA.84.022307

BIBLIOGRAPHY 178

S. O. Mundhada, A. Grimm, J. Venkatraman, Z. K. Minev, S. Touzard, N. E. Frattini, V. V.
Sivak, K. Sliwa, P. Reinhold, S. Shankar, M. Mirrahimi, and M. H. Devoret. Experimental
implementation of a Raman-assisted six-quanta process (2018). (Cited on pages 46 and 123.)

R. K. Naik, N. Leung, S. Chakram, P. Groszkowski, Y. Lu, N. Earnest, D. C. McKay, J. Koch,
and D. I. Schuster. Random access quantum information processors using multimode circuit
quantum electrodynamics. Nature Communications, 8(1):1904 (2017). doi:10.1038/s41467-
017-02046-6. (Cited on pages 76 and 170.)

I. Najfeld and T. F. Havel. Derivatives of the Matrix Exponential and Their Computation.
Advances in Applied Mathematics, 16(3):321–375 (1995). doi:10.1006/aama.1995.1017.
(Cited on pages 57 and 193.)

Y. Nakamura, Y. A. Pashkin, and J. S. Tsai. Coherent control of macroscopic quantum states
in a single-Cooper-pair box. Nature, 398(6730):786–788 (1999). doi:10.1038/19718. (Cited
on page 78.)

M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge University Press (2011). ISBN 9781107002173. (Cited on
pages 7, 22, and 30.)

D. Nigg, M. Müller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz, M. A. Martin-
Delgado, and R. Blatt. Quantum computations on a topologically encoded qubit. Science,
345(6194):302–305 (2014). doi:10.1126/science.1253742. (Cited on page 32.)

S. E. Nigg, H. Paik, B. Vlastakis, G. Kirchmair, and S. Shankar. Black-box superconducting
circuit quantization. Phys. Rev. Lett. (2012). doi:10.1103/PhysRevLett.108.240502. (Cited
on page 81.)

J. Nocedal and S. J. Wright. Numerical Optimization (Springer Series in Operations Research
and Financial Engineering). Springer (2000). ISBN 0387987932. (Cited on page 58.)

K. Noh, V. V. Albert, and L. Jiang. Quantum Capacity Bounds of Gaussian Thermal Loss
Channels and Achievable Rates With Gottesman-Kitaev-Preskill Codes. IEEE Trans. Inform.
Theory, 65(4):2563–2582 (2019). doi:10.1109/TIT.2018.2873764. (Cited on page 51.)

N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M.
Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf. Extending the lifetime of
a quantum bit with error correction in superconducting circuits. Nature, 536(7617):441–445
(2016). doi:10.1038/nature18949. (Cited on pages 42, 135, and 145.)

H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. John-
son, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, and R. J.
Schoelkopf. Observation of High Coherence in Josephson Junction Qubits Measured in a
Three-Dimensional Circuit QED Architecture. Phys. Rev. Lett., 107(24):240501 (2011).
doi:10.1103/PhysRevLett.107.240501. (Cited on page 80.)

D. M. Pozar. Microwave Engineering. Wiley (2011). ISBN 0470631554. (Cited on pages 76
and 83.)

J. Preskill. Fault-tolerant quantum computation. arXiv (1997). (Cited on pages 3 and 125.)

http://dx.doi.org/10.1038/s41467-017-02046-6
http://dx.doi.org/10.1038/s41467-017-02046-6
http://dx.doi.org/10.1006/aama.1995.1017
http://dx.doi.org/10.1038/19718
http://dx.doi.org/10.1126/science.1253742
http://dx.doi.org/10.1103/PhysRevLett.108.240502
http://dx.doi.org/10.1109/TIT.2018.2873764
http://dx.doi.org/10.1038/nature18949
http://dx.doi.org/10.1103/PhysRevLett.107.240501

BIBLIOGRAPHY 179

J. Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79 (2018).
doi:10.22331/q-2018-08-06-79. (Cited on page 4.)

T. Proctor, K. Rudinger, K. Young, M. Sarovar, and R. Blume-Kohout. What Ran-
domized Benchmarking Actually Measures. Phys. Rev. Lett., 119(13):130502 (2017).
doi:10.1103/PhysRevLett.119.130502. (Cited on page 209.)

H. Rabitz, M. Hsieh, and C. Rosenthal. Landscape for optimal control of
quantum-mechanical unitary transformations. Phys. Rev. A, 72(5):052337 (2005).
doi:10.1103/PhysRevA.72.052337. (Cited on page 54.)

J. Raftery, A. Vrajitoarea, G. Zhang, Z. Leng, S. J. Srinivasan, and A. A. Houck. Direct digital
synthesis of microwave waveforms for quantum computing (2017). (Cited on pages 94
and 167.)

M. Reagor. Superconducting Cavities for Circuit Quantum Electrodynamics. Ph.D. thesis, Yale
University (2015). (Cited on pages 75 and 86.)

M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. M. Sliwa, E. Holland, C. Wang,
J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J.
Schoelkopf. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B,
94(1):014506 (2016). doi:10.1103/PhysRevB.94.014506. (Cited on pages 76 and 81.)

M. Reed. Entanglement and Quantum Error Correction with Superconducting Qubits. Ph.D.
thesis, Yale University (2013). (Cited on pages 7 and 8.)

M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf.
Realization of three-qubit quantum error correction with superconducting circuits. Nature,
482(7385):382–385 (2012). doi:10.1038/nature10786. (Cited on page 32.)

M. D. Reed, B. R. Johnson, A. A. Houck, L. DiCarlo, J. M. Chow, D. I. Schuster, L. Frunzio,
and R. J. Schoelkopf. Fast reset and suppressing spontaneous emission of a superconducting
qubit. Appl. Phys. Lett., 96(20):203110 (2010). doi:10.1063/1.3435463. (Cited on page 83.)

P. Reinhold, S. Rosenblum, wenlong Ma, L. Frunzio, L. Jiang, and R. Schoelkopf. Error-
corrected gates on an encoded qubit (in preparation). (Cited on page 7.)

C. Rigetti, J. M. Gambetta, S. Poletto, B. L. T. Plourde, J. M. Chow, A. D. Córcoles, J. A.
Smolin, S. T. Merkel, J. R. Rozen, G. A. Keefe, M. B. Rothwell, M. B. Ketchen, and
M. Steffen. Superconducting qubit in a waveguide cavity with a coherence time approaching
0.1 ms. Phys. Rev. B, 86(10):100506 (2012). (Cited on page 134.)

D. Ristè, S. Poletto, M. Z. Huang, A. Bruno, V. Vesterinen, O. P. Saira, and L. DiCarlo. Detect-
ing bit-flip errors in a logical qubit using stabilizer measurements. Nature Communications,
6:6983 (2015). doi:10.1038/ncomms7983. (Cited on page 32.)

G. Riviello, K. M. Tibbetts, C. Brif, R. Long, R.-B. Wu, T.-S. Ho, and H. Rabitz. Searching
for quantum optimal controls under severe constraints. Phys. Rev. A, 91(4):043401 (2015).
doi:10.1103/PhysRevA.91.043401. (Cited on page 63.)

http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1103/PhysRevLett.119.130502
http://dx.doi.org/10.1103/PhysRevA.72.052337
http://dx.doi.org/10.1103/PhysRevB.94.014506
http://dx.doi.org/10.1038/nature10786
http://dx.doi.org/10.1063/1.3435463
http://dx.doi.org/10.1038/ncomms7983
http://dx.doi.org/10.1103/PhysRevA.91.043401

BIBLIOGRAPHY 180

S. Rosenblum, Y. Y. Gao, P. Reinhold, C. Wang, C. J. Axline, L. Frunzio, S. M. Girvin,
L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf. A CNOT gate between
multiphoton qubits encoded in two cavities. Nature Communications, 9(1):652 (2018a).
doi:10.1038/s41467-018-03059-5. (Cited on pages 48 and 85.)

S. Rosenblum, P. Reinhold, M. Mirrahimi, L. Jiang, L. Frunzio, and R. J. Schoelkopf.
Fault-tolerant detection of a quantum error. Science, 361(6399):266–270 (2018b).
doi:10.1126/science.aat3996. (Cited on pages 7 and 126.)

D. Sank, Z. Chen, M. Khezri, J. Kelly, R. Barends, B. Campbell, Y. Chen, B. Chiaro,
A. Dunsworth, A. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Mutus, M. Neeley, C. Neill,
P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, T. White, J. Wenner, A. N.
Korotkov, and J. M. Martinis. Measurement-Induced State Transitions in a Superconducting
Qubit: Beyond the Rotating Wave Approximation. Phys. Rev. Lett., 117(19):190503 (2016).
doi:10.1103/PhysRevLett.117.190503. (Cited on page 134.)

I. Scholz, J. D. van Beek, and M. Ernst. Operator-based Floquet theory in
solid-state NMR. Solid State Nuclear Magnetic Resonance, 37(3-4):39–59 (2010).
doi:10.1016/j.ssnmr.2010.04.003. (Cited on page 194.)

D. Schuster. Circuit Quantum Electrodynamics. Ph.D. thesis, Yale University (2007). (Cited
on pages 8 and 78.)

M. O. Scully and M. S. Zubairy. Quantum Optics. Cambridge University Press (1997). ISBN
0521434580. (Cited on page 7.)

R. Shankar. Principles of Quantum Mechanics, 2nd Edition. Plenum Press (2011). ISBN
9780306447907. (Cited on page 7.)

C. Shen, R. W. Heeres, P. Reinhold, L. Jiang, Y.-K. Liu, R. J. Schoelkopf, and L. Jiang.
Optimized tomography of continuous variable systems using excitation counting. Phys. Rev.
A, 94(5):052327 (2016). doi:10.1103/PhysRevA.94.052327. (Cited on page 202.)

P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring.
In SFCS-94, pages 124–134. IEEE Comput. Soc. Press (1994). ISBN 0-8186-6580-7.
doi:10.1109/SFCS.1994.365700. (Cited on page 2.)

P. W. Shor. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A,
52(4):R2493–R2496 (1995). doi:10.1103/PhysRevA.52.R2493. (Cited on pages 3, 29, 32,
and 125.)

V. V. Sivak, N. E. Frattini, V. R. Joshi, A. Lingenfelter, S. Shankar, and M. H. Devoret. Kerr-
free three-wave mixing in superconducting quantum circuits (2019). (Cited on page 170.)

K. Sliwa. Improving the Quality of Heisenberg Back-Action of Qubit Measurements made with
Parametric Amplifiers. Ph.D. thesis, Yale University (2016). (Cited on page 94.)

J. A. Smolin, J. M. Gambetta, and G. Smith. Efficient Method for Computing the Maximum-
Likelihood Quantum State from Measurements with Additive Gaussian Noise. Phys. Rev.
Lett., 108(7):070502 (2012). doi:10.1103/PhysRevLett.108.070502. (Cited on pages 202
and 206.)

http://dx.doi.org/10.1038/s41467-018-03059-5
http://dx.doi.org/10.1126/science.aat3996
http://dx.doi.org/10.1103/PhysRevLett.117.190503
http://dx.doi.org/10.1016/j.ssnmr.2010.04.003
http://dx.doi.org/10.1103/PhysRevA.94.052327
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1103/PhysRevLett.108.070502

BIBLIOGRAPHY 181

A. Soare, H. Ball, D. Hayes, J. Sastrawan, M. C. Jarratt, J. J. McLoughlin, X. Zhen, T. J.
Green, and M. J. Biercuk. Experimental noise filtering by quantum control. Nature Physics,
10(11):825–829 (2014). doi:10.1038/NPHYS3115. (Cited on page 95.)

R. Spekkens. Negativity and Contextuality are Equivalent Notions of Nonclassicality. Phys. Rev.
Lett., 101(2):020401 (2008). doi:10.1103/PhysRevLett.101.020401. (Cited on page 20.)

A. Steane. The ion trap quantum information processor. Appl. Phys. B, 64(6):623–643 (1997).
doi:10.1007/s003400050225. (Cited on page 4.)

A. M. Steane. Error Correcting Codes in Quantum Theory. Phys. Rev. Lett., 77(5):793–797
(1996). doi:10.1103/PhysRevLett.77.793. (Cited on pages 32 and 33.)

A. M. Steane. Space, Time, Parallelism and Noise Requirements for Reliable Quantum
Computing. Fortschritte der Physik, 46(4-5):443–457 (1998). doi:10.1002/(SICI)1521-
3978(199806)46:4/5¡443::AID-PROP443¿3.0.CO;2-8. (Cited on page 3.)

D. Steck. Quantum and atom optics. http://atomoptics-nas.uoregon.edu/˜dsteck/
teaching/quantum-optics/quantum-optics-notes.pdf (2007). (Cited on pages 7
and 9.)

B. M. Terhal and D. Weigand. Encoding a qubit into a cavity mode in circuit QED using phase
estimation. Phys. Rev. A, 93(1):012315 (2016). doi:10.1103/PhysRevA.93.012315. (Cited
on pages 51 and 168.)

W. G. Unruh. Maintaining coherence in quantum computers. Phys. Rev. A, 51(2):992–997
(1995). doi:10.1103/PhysRevA.51.992. (Cited on page 3.)

R. Vijay, M. H. Devoret, and I. Siddiqi. Invited Review Article: The Josephson bifurcation
amplifier. Review of Scientific Instruments, 80(11):111101 (2009). doi:10.1063/1.3224703.
(Cited on page 119.)

L. Viola, E. Knill, and S. Lloyd. Dynamical Decoupling of Open Quantum Systems. Phys. Rev.
Lett., 82(12):2417–2421 (1999). (Cited on page 61.)

B. Vlastakis. Controlling coherent state superpositions with superconducting circuits. Ph.D.
thesis, Yale University (2015). (Cited on pages 7, 16, and 104.)

B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S. M. Girvin, M. Mir-
rahimi, M. H. Devoret, and R. J. Schoelkopf. Deterministically Encoding Quantum In-
formation Using 100-Photon Schrödinger Cat States. Science, 342(6158):607–610 (2013).
doi:10.1126/science.1243289. (Cited on pages 22 and 38.)

K. Vogel, V. M. Akulin, and W. P. Schleich. Quantum state engineering of the radiation field.
Phys. Rev. Lett., 71(12):1816–1819 (1993). doi:10.1103/PhysRevLett.71.1816. (Cited on
page 14.)

D. F. Walls and G. J. Milburn. Quantum optics (1995). ISBN 9783540588313. doi:10.1007/978-
3-642-79504-6. (Cited on pages 7 and 94.)

M. M. Wolf. Quantum channels & operations: Guided tour (2012). (Cited on page 204.)

http://dx.doi.org/10.1038/NPHYS3115
http://dx.doi.org/10.1103/PhysRevLett.101.020401
http://dx.doi.org/10.1007/s003400050225
http://dx.doi.org/10.1103/PhysRevLett.77.793
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<443::AID-PROP443>3.0.CO;2-8
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<443::AID-PROP443>3.0.CO;2-8
http://atomoptics-nas.uoregon.edu/~dsteck/teaching/quantum-optics/quantum-optics-notes.pdf
http://atomoptics-nas.uoregon.edu/~dsteck/teaching/quantum-optics/quantum-optics-notes.pdf
http://dx.doi.org/10.1103/PhysRevA.93.012315
http://dx.doi.org/10.1103/PhysRevA.51.992
http://dx.doi.org/10.1063/1.3224703
http://dx.doi.org/10.1126/science.1243289
http://dx.doi.org/10.1103/PhysRevLett.71.1816
http://dx.doi.org/10.1007/978-3-642-79504-6
http://dx.doi.org/10.1007/978-3-642-79504-6

BIBLIOGRAPHY 182

S. Yasin, D. G. Hasko, and H. Ahmed. Comparison of MIBK/IPA and water/IPA as PMMA
developers for electron beam nanolithography. Microelectronic Engineering, 61-62:745–753
(2002). doi:10.1016/S0167-9317(02)00468-9. (Cited on page 86.)

Y. Zhang, B. J. Lester, Y. Y. Gao, L. Jiang, R. J. Schoelkopf, and S. M. Girvin. Engineering
bilinear mode coupling in circuit QED: Theory and experiment. Phys. Rev. A, 99(1):012314
(2019). doi:10.1103/PhysRevA.99.012314. (Cited on page 134.)

http://dx.doi.org/10.1016/S0167-9317(02)00468-9
http://dx.doi.org/10.1103/PhysRevA.99.012314

Appendix A

Identities and derivations

A.1 Changing frames

A frame change is a way of re-organizing a quantum system by transforming the states and

operators all in such a way that the observable quantities (expectation values) remain unchanged

for all times. The purpose of doing so is to write down a form where the desired effects are

obvious, or at least familiar. A frame change is specified first by identifying how states will

transform, using some unitary operator U .

|ψ̃〉 ≡ U |ψ〉 (A.1)

Density matrices and observable operators transform as well, so as to preserve expectation

values 〈ψ|M |ψ〉 or Tr{ρM}

ρ̃ ≡ UρU † (A.2)

M̃ ≡ UMU † (A.3)

The Hamiltonian changes in the same way if U is time-independent. If the transform is time

dependent, then it is slightly different. We can derive this by looking at the time evolution of

183

A.2. COMMUTATOR RELATIONS 184

|ψ̃〉

∂t |ψ̃〉 = U (∂t |ψ〉) + (∂tU) |ψ〉 (A.4)

= iUH |ψ〉+ (∂tU) |ψ〉 (A.5)

= i
(
UHU † − i (∂tU)U †

)
|ψ̃〉 (A.6)

≡ iH̃ |ψ̃〉 (A.7)

Therefore the final form of the transformed Hamiltonian is

H̃ = UHU † − iU̇U † (A.8)

We will often have Hamiltonians H which are built out of products of a smaller “alphabet”

of operators, most prominently the ladder operators a and a†. In order to calculate the trans-

formed form UHU †, it is sufficient to calculate the effect on each member of the “alphabet.”

For instance, if H = X1X2X3 then

UHU † =
(
UX1U

†
) (
UX2U

†
) (
UX3U

†
)

(A.9)

More generally, for H = f(a,a†)

UHU † = f(UaU †,Ua†U †) (A.10)

A.2 Commutator relations

For ladder operators the most important equation is the base commutation relation

[
a,a†

]
= 1 (A.11)

A.3. ROTATING FRAME 185

It is helpful to be able to compute higher order commutators as well. In particular we can

compute:

[
a, (a†)n

]
= a(a†)n − (a†)na (A.12)

= (a†a+ 1)(a†)n−1 − (a†)na (A.13)

= a†
(
a(a†)n−1 − (a†)n−1a

)
+ (a†)n−1 (A.14)

= a†
[
a, (a†)n−1

]
+ (a†)n−1 (A.15)

Here we have reduced the computation of
[
a, (a†)n

]
to that of

[
a, (a†)n−1

]
, a simple recurrence

relation. This can be solved as

[
a, (a†)n

]
= a†

(
(n− 1)(a†)(n−2)

)
+ (a†)n−1 (A.16)

= n(a†)n−1 (A.17)

(A.18)

We note that this is exactly the form of the “derivative” of (a†)n with respect to a†. Because

of the linearity of the commutator, this extends to any differentiable function f :

[
a, f(a†)

]
= f ′(a†) (A.19)

Similarly, we can compute the action of taking the commutator with a† and find:

[
f(a),a†

]
= f ′(a) (A.20)

A.3 Rotating frame

One common frame change is the so-called rotating frame, which tries to account for a detuning

term ωa†a in the Hamiltonian using the following transformation:

U = e−iωa
†at. (A.21)

A.3. ROTATING FRAME 186

If we start with a Hamiltonian

H = ωa†a+ f(a,a†), (A.22)

we can compute the new Hamiltonian (equation A.8),

H̃ = UHU † − iU̇U † (A.23)

= UHU † − ωa†a (A.24)

In order to understand the UHU † component, let us first see how the ladder operators trans-

form (equation A.10). Using the Baker-Campbell-Hausdorff (BCH) expansion we can see

UaU † = a+ iωt
[
a†a,a

]
− (ωt)2

2
[
a†a,

[
a†a,a

]]
+ · · · (A.25)

=
∑
k=0

(iωt)n

n!
[
a†a, ·

]n
(a) (A.26)

We not that, because a seems to be an “eigenoperator” of the commutator with a†a, the

terms in this expansion simplify:

[
a†a,a

]
= a =⇒

[
a†a, ·

]n
(a) = a (A.27)

Therefore we can write,

UaU † =
∑
k=0

(iωt)n

n! a (A.28)

= eiωta (A.29)

and more generally

Uf(a,a†)U† = f(aeiωt,a†e−iωt). (A.30)

This result gives us the final form for the Hamiltonian in the new frame (from A.24)

H̃ = f(aeiωt,a†e−iωt). (A.31)

A.4. DISPLACED FRAME 187

This is to say, we have eliminated the ωa†a term, at the cost of adding time dependence to

any a and a† operators that remain. Diagonal terms (with equal numbers of a and a†) will

remain unchanged, as the time dependence terms cancel.

A.4 Displaced frame

The next most common transformation is to invoke a displacement operator, with the intent

of simplifying the treatment of a constantly applied drive term.

U = Dα = eαa
†−α∗a (A.32)

We again invoke BCH to see how the ladder operators transform

UaU † =
∑
k=0

1
n!
[
αa† − α∗a, ·

]n
(a) (A.33)

Once again, a trick will allow us to simplify this. we note that the commutator of the first term

produces a scalar value. Therefore all subsequent terms will be zero, since the commutator

with a scalar is zero.

[
αa† − α∗a,a

]
= α =⇒

[
αa† − α∗a, ·

]n>1
(a) = 0 (A.34)

This means the BCH expansion stops after the first term, producing

UaU † = a+ α. (A.35)

This means that general operators transform as

Uf(a,a†)U † = f(a+ α,a† + α∗) (A.36)

A.5. DISPERSIVE HAMILTONIAN FOR A MULTI-LEVEL ANCILLA 188

A.5 Dispersive Hamiltonian for a multi-level ancilla

In order to derive the dispersive (diagonal) Hamiltonian for a resonator coupled to an ancilla, we

will carry out some perturbation theory calculations. Our Hamiltonian is split into a diagonal

part H0 and an off-diagonal perturbation Hint:

H = H0 +Hint (A.37)

We say the resonator is linear, and the ancilla spectrum is arbitrary:

H0 = ωaa
†a+

∑
j

Ej |j〉〈j| (A.38)

The structure of the interaction is to couple some ancilla operator B to one quadrature of the

resonator (a+ a†):

Hint = B
(
a+ a†

)
. (A.39)

Before perturbation, the energy associated with state with n photons and the j-th ancilla state

(|n, j〉) is:

E
(0)
n,j = nωa + Ej . (A.40)

The first order perturbation theory contribution is zero because the interaction is purely off-

diagonal:

E
(1)
n,j = 〈n, j|Hint |n, j〉 = 0. (A.41)

So the first contribution comes from the second order term:

E
(2)
n,j =

∑
(m,k) 6=(n,j)

|〈n, j|Hint |m, k〉|2

E
(0)
n,j − E

(0)
m,k

. (A.42)

A.5. DISPERSIVE HAMILTONIAN FOR A MULTI-LEVEL ANCILLA 189

We can separately calculate the matrix element in the numerator

〈n, j|Hint |m, k〉 = 〈n, j|B
(
a+ a†

)
|m, k〉 (A.43)

= Bjk

(√
mδn,m−1 +

√
m+ 1δn,m+1

)
, (A.44)

as well as the energy difference in the denominator (defining Ejk ≡ Ej − Ek),

E
(0)
n,j − E

(0)
m,k = (nωa + Ej)− (mωa + Ek) (A.45)

≡ (n−m)ωa + Ejk, (A.46)

to produce the final result

E
(2)
n,j =

∑
k 6=j

|Bjk|2(n+ 1)
E

(0)
n,j − E

(0)
n+1,k

+ |Bjk|2n
E

(0)
n,j − E

(0)
n+1,k

(A.47)

=
∑
k 6=j

|Bjk|2(n+ 1)
Ejk + ωa

+ |Bjk|2n
Ejk − ωa

(A.48)

=
∑
k 6=j
|Bjk|2

(2n+ 1)Ejk − ωa
E2
jk − ω2

a

(A.49)

The dispersive shift to the cavity frequency χj is the energy cost of adding a photon when the

ancilla is in the j-th state:

χj = (En+1,j − En,j)− ωa (A.50)

=
∑
k 6=j

2Ejk|Bjk|2

E2
jk − ω2

a

. (A.51)

This is a well defined linear frequency shift since the result does not depend on the number

of photons n. If our ancilla is a two level system (with levels |g〉 and |e〉) and the coupling

operator is B = σx, then we can calculate the change in cavity frequency associated with each

A.5. DISPERSIVE HAMILTONIAN FOR A MULTI-LEVEL ANCILLA 190

state:

χg = −2ωgeg2

ω2
ge − ω2

a

(A.52)

χe = 2ωgeg2

ω2
ge − ω2

a

(A.53)

Typically we will absorb χg into the final value of ωa and therefore we can focus on the change

in cavity frequency between |g〉 and |e〉:

χeg ≡ χe − χg (A.54)

= 4ωgeg2

ω2
ge − ω2

a

(A.55)

= 4ωgeg2

∆(2ωge −∆) (A.56)

≈ 2g2

∆ (A.57)

Here the final approximation assumes that the detuning is small compared with the frequency

of either mode ∆� ωge, ωa. This is the exact form which is obtained if the Jaynes-Cummings

form is assumed from the beginning (Hint = g(a†σ− + aσ+)). In the case of a three-level

ancilla (third state |f〉), we represent the ancilla anharmonicity with Ef = 2ωge + α, and

assume a coupling operator

B = (b+ b†) (A.58)

=
(
|g〉〈e|+

√
2 |e〉〈f |+ h.c.

)
, (A.59)

where the final line assumes that we limit our consideration to the first three levels. In this

case, χg remains unchanged from the two-level case (|g〉 does not directly couple to |f〉) but

we must modify χe as follows:

χe = 2ωgeg2

ω2
ge − ω2

a

− 4ωefg2

ω2
ef− ω2

a

. (A.60)

A.6. DAMPED HARMONIC OSCILLATOR MASTER EQUATION 191

Note the factor of 4 in the numerator of the second term, which arises from the “bosonic

enhancement” of the coupling matrix element. The calculation of the final dispersive shift then

is

χeg = 4ωgeg2

∆(2ωge −∆) −
4(ωge + α)g2

(∆ + α)(2ωge + α−∆) (A.61)

≈ 2g
2

∆

(1
∆ −

1
∆ + α

)
(A.62)

= 2g2α

α(∆ + α) (A.63)

Again we have invoked the approximation that we have a hierarchy of frequency scales ∆, α�

ωge, ωa.

A.6 Damped harmonic oscillator master equation

There are many approaches one can take to deriving the master equation. I’d like to take an

intuitive approach, which starts from the belief that photons will be lost from the system at

rate κ. From this baseline, we can find a continuous equation which models this loss, while

respecting the constraints needed to keep the solutions physical.

We will work in the operator-sum picture, where the evolution of a quantum state ρ is given

by

ρ 7→
∑
k

MkρM
†
k , (A.64)

for some set of linear operators {Mk}The statement that probability is conserved, and that

the density matrix retains its trace-one property, is equivalent to the following restriction

∑
k

M †
kMk = I. (A.65)

For pure unitary evolution, we have the sole operator M0 = U , where U is a solution to

the Schrödinger equation. For sufficiently short time, we can model M0 ≈ I + iHδt, which

satisfies equation A.65 to first order in δt.

We wish to add a term capturing photon loss. Under a sufficiently short amount of time

A.6. DAMPED HARMONIC OSCILLATOR MASTER EQUATION 192

δt� 1/κ, we can neglect the possibility of two or more photons leaking out. The natural way

to model single photon loss is via an operator M1 ∝ a. If we wish to have the term κδtaρa†

in our version of equation A.64, then we need M1 =
√
κδta. However, at this stage, with

M0 as before and M1, we no longer satisfy the probability conservation constraint A.65, as

M0M
†
0 +M1M

†
1 = I + κδta†a+O((κδt)2).

This first model failed because we did not account for the back-action inherent in learning

that no photon was lost. An extreme example is elucidating. Consider that we start with an

equal superposition of |0〉 and |100〉 in the cavity, and that there is no Hamiltonian evolution

(H = 0). We wait some amount of time, and observe that no photon leaks out. Are we

still in the state |0〉 + |100〉? Well, to answer that, we can ask: do we give equal credence

to the possibility that there is zero photons in the cavity as the possibility that there is 100?

To this latter question, the answer is of course not. If there were 100 photons, we would be

exceedingly likely to see one leak out. Therefore the observation that none leaked out increases

the likelihood of |0〉. This is a simple application of Bayes rule. The act of observing photons

leaking or not leaking is a form of partial measurement, which has back-action regardless of

the outcome.

In order to account for this, we must modify our no-jump operator in such a way to restore

conservation of probability.

M0 = I + δt

(
iH − κ

2a
†a

)
(A.66)

It is easy to check that this now satisfies equation A.65 to first order in δt. We can convert

this into a differential equation

ρ(t+ δt) =M0ρ(t)M0 +M1ρ(t)M1 (A.67)

=ρ(t) + δt

(
iH − κ

2a
†a

)
ρ(t) + δtρ(t)

(
−iH − κ

2a
†a

)
+ κδtaρ(t)a† +O((δt)2) (A.68)

∂tρ = i[H,ρ] + κaρa† − 1
2
(
a†aρ+ ρa†a

)
(A.69)

A.7. FRÉCHET DERIVATIVE OF THE MATRIX EXPONENTIAL 193

A.7 Fréchet Derivative of the matrix exponential

In order to compute the maximally accurate derivative of the matrix exponential U = eA with

respect to some parameter x upon which A depends (∂xA 6= 0), which is necessary for the

correct implementation of GRAPE (chapter 4) we can take the following derivation (Najfeld

and Havel, 1995). Eventually, we will take A = iδt
~ H. We begin by employing the following

definition of an exponential function:

eA = lim
N→∞

(
1 + A

N

)N
(A.70)

This form allows us to use the product rule for differentiation to come up with an integral form

for the derivative.

∂xU = ∂xe
A (A.71)

= lim
N→∞

N∑
k=0

(
1 + A

N

)k iδt
~N

(∂xA)
(

1 + A

N

)N−k−1
(A.72)

=
∫ 1

0
ds esA (∂xA) e(1−s)A (A.73)

=
(∫ 1

0
ds esA (∂xA) e−sA

)
U (A.74)

(A.75)

This form can be simplified if we assume that A is normal, and thus diagonalized by some

unitary transformation V .

A = V ΛV † → esA = V esΛV † (A.76)

A.8. APPROXIMATE TIME-INDEPENDENT HAMILTONIANS 194

where Λij = λiδij . We can put this in our above expression, and identify several sub-expressions

which will help us analyze this.

∂xU =
(∫ 1

0
dsV eΛsV † (∂xA)V e−ΛsV †

)
U (A.77)

= V

∫ 1

0
ds eΛs

X︷ ︸︸ ︷
V † (∂xA)V e−Λs


︸ ︷︷ ︸

Z

V †U (A.78)

We can see that Z factorizes into an entrywise product between X and a simple integral

expression dependent only on the eigenvalues of A:

Zij =
∫ 1

0
ds es(λi−λj)︸ ︷︷ ︸

Γij

Xij (A.79)

Γij =


e(λi−λj)−1

(λi−λj) λi 6= λj

1 λi = λj

(A.80)

Z = Γ ◦X (A.81)

The final notation ◦ represents the Hadamard (entrywise) product (A ◦B)ij = AijBij . We

can put this all together for our final expression.

∂xU = V
(
Γ ◦

(
V † (∂xA)V

))
V †U (A.82)

A.8 Approximate time-independent Hamiltonians

There are many equivalent ways of deriving approximate time-independent Hamiltonians. There

is the Floquet-Magnus expansion (Mananga and Charpentier, 2011), which modifies the deriva-

tion of the Magnus series. There are approaches which construct a full Floquet Hamiltonian and

proceed via block diagonalization procedures (Leskes et al., 2010; Scholz et al., 2010)1. Finally,

this procedure is also described as a higher-order rotating wave approximation (Mirrahimi and
1These diagnolization procedures are called the van Vleck transformation in the NMR literature, but is closely

related to the Schrieffer-Wolff transformation in practice

A.8. APPROXIMATE TIME-INDEPENDENT HAMILTONIANS 195

Rouchon, 2015). In my opinion the clearest treatment can be found in Leskes et al. (2010).

The high-level procedure involves three steps. One takes the time-dependent Hamiltonian, and

translates it into a time-independent Hamiltonian via Floquet theory. This procedure involves

expanding the Hilbert space to include a time-sector. The time-dependence manifests as off-

diagonal elements in the time basis. One then wishes to perform block-diagonalization of this

Floquet Hamiltonian. Typically this will be only an approximate form. One then projects this

form back to the non-Floquet space, yielding the effective time-independent form.

A.8.1 Floquet formalism

In the “two-time” version of the Floquet formalism, we introduce a formal time variable t′ which

we will associate with the periodic behavior. We can recover the original behavior by setting

t′ = t. If the period is 2π/ω we can write the Hamiltonian in a Fourier series:

H(t′) =
∑
n

Hne
inωt′ . (A.83)

We write our states as having two time variables

∣∣ψ(t, t′)
〉

=
∑
n

|ψn(t)〉 einωt′ . (A.84)

Finally the Schrödinger equation becomes

i(∂t + ∂t′)
∣∣ψ(t, t′)

〉
= H(t′)

∣∣ψ(t, t′)
〉
. (A.85)

We define the “Floquet Hamiltonian” as HF = H(t′)− i∂t′ , such that

∂t
∣∣ψ(t, t′)

〉
= −iHF

∣∣ψ(t, t′)
〉
. (A.86)

The next step is to think ofHF as an operator on a bigger Hilbert spaceH⊗HF , where the new

sector of Hilbert space is spanned by with states |nF 〉 = einωt
′ , where n is any integer, positive

or negative. We note that the action of multiplying by eimωt′ is to take |nF 〉 to |(n+m)F 〉,

A.8. APPROXIMATE TIME-INDEPENDENT HAMILTONIANS 196

and that the action of −i∂t′ is to take |nF 〉 to n |nF 〉, we can define the operators

Fn ≡
∑
m

|(m+ n)F 〉〈nF | (A.87)

N ≡
∑
m

m |mF 〉〈mF | (A.88)

allowing us to write down our Floquet-space formulation of the periodically driven system:

∣∣ψ(t, t′)
〉

=
∑
n

|ψn(t)〉 ⊗ |nF 〉 (A.89)

H =
∑
n

HnFn + ωN (A.90)

A.8.2 Block Diagonalization

With the Floquet Hamiltonian in hand, we now have a time-independent representation. This

is convenient because it allows us to analyze the system using time-independent perturbation

theory. Our goal will be to perform a transformation (of the form U = eiS) putting the Floquet

Hamiltonian in block-diagonal form:

eiSHF e
−iS = HeffF0 + ωN (A.91)

We can put the left side of this equation into BCH form. We are going to look only at terms

which are second order or lower in any of the Hj , meaning we can truncate at second order

for now.

eiSHF e
−iS = HF + i[S,H]− 1

2[S, [S,H]] +O(|Hj |3) (A.92)

If we take S =
∑
m6=0

iHm
nω Fn, we have

[S,H] =
∑
m6=0

1
mω

(∑
n

[HmFm,HnFn] + ωHm[Fm,N]
)

(A.93)

A.8. APPROXIMATE TIME-INDEPENDENT HAMILTONIANS 197

We can use the easily verified facts [Fn,Fm] = 0 and [Fn,N] = −nFn to then show

[S,H] = i
∑
m6=0

(∑
n

[Hm,Hn]
mω

Fn+m −HmFm

)
(A.94)

We can use this result to find the relevant part of the second order BCH term.

[S, [S,H]] =
∑
k 6=0

∑
m 6=0

[Hk,Hm]
kω

Fk+m +O(|Hj |3) (A.95)

Putting this all back into equation A.92 yields

eiSHF e
−iS = H0F0 +ωN + 1

2
∑

m,n 6= 0[Hm,Hn]
mω

Fm+n+
∑
m 6=0

[Hm,H0]
mω

Fm+O(|Hj |3)

(A.96)

Now this form is not exactly the block-diagonal form we were looking for, but it might be closer.

The size of the off-diagonal elements (i.e. those involving Fm 6=0) have gone from O(|Hj |) to

O(|Hj |2/ω), which is smaller in the limit |H| � ω. In this case, we can take our first-order

answer to Heff (from equation A.91) to be the part proportional to F0, namely:

Heff ≈H0 + 1
2
∑
n6=0

[Hn,H−n]
nω

(A.97)

By carrying this procedure out to one further order we can get the further correction

H
(2)
eff = 1

3
∑

n6=0,n′ 6=0,n 6=n′

[[Hn−n′ ,H−n′],H−n]
nn′ω2 − 1

2
∑
n6=0

[[H0,Hn],H−n]
n2ω2 (A.98)

Appendix B

Construction of unitary operations

from a universal control set

A d-dimensional quantum control system is a Hamiltonian of the form

H(t) =
∑
k

εk(t)Hk, (B.1)

where the control Hamiltonians are elements of the (d2-dimensional) Lie algebra su(d)1. A set

of Lie algebraic operators (G) generates a sub-algebra (span S(G)), which is found by taking

the closure of the set under the Lie bracket (commutator).

S0(G) = G

Si+1(G) = Si(G) ∪ {[a, b] | a, b ∈ Si(G)}

S(G) = Sd2(G)

We can say that G is universal if

span S(G) = su(d). (B.2)
1More accurately iH is a member of the Lie algebra, as traditionally defined. Please forgive my abuse of

terminology

198

199

This is because if G = {Hk} is universal, then for every unitary operation U there is some set

of controls {εk(t)} such that the evolution produces that unitary, i.e.

T exp
(∫

dτ H(τ)
)

= U

While constructing such controls {εk(t)} is difficult exactly, we can easily find controls which

realize an operation approximately, up to a desired level of approximation, using “bang-bang”

controls, i.e. controls which are either on or off at any given time.

To do so, we begin by processing the input to our problem, the unitary operation U , by

taking the matrix logarithm.

A = −i log(U)→ U = eiA (B.3)

A is a member of the Lie algebra, and as such, can be represented as a weighted sum of

components from S(G).

A =
∑
k

ckBk, Bk ∈ S(G) (B.4)

We will begin with the Suzuki-Trotter decomposition, or more colloquially, trotterization:

eX+Y ≈ (eX/NeY/N)N . (B.5)

We can therefore break up the evolution into terms, each of which relies on only a single

member of the set S(G):

U ≈
(∏

k

ei
ckBk
N

)N
(B.6)

What remains is to show how to realize each of the elements eickBk . These elements (Bk)

fall into one of two cases, either they are in G, in which case they are directly realizable, with

piecewise-constant controls, or they are formed by the commutator (Bk = [X,Y]), in which

case they can be approximated using the group commutator:

e[X,Y] ≈
(
e
X
N e

Y
N e
−X
N e

−Y
N

)N
. (B.7)

Appendix C

Tomographies, large and small

In the context of quantum information the word tomography refers to the act of characteri-

zation, i.e. taking a set of measurements, and coming to some conclusion about the numbers

representing the underlying phenomenon. There are, broadly speaking, three types of objects

that we are most often interested in characterizing in quantum information: states, measure-

ments, and processes.

C.1 State tomography

The fundamental equation for state tomography is for computing the expected outcome of a

measurement x, via

x = Tr{Mρ} =
∑
ij

Mijρji. (C.1)

Here ρ represents the underlying state, and M represents the measurement protocol. We can

use the process of vectorization (equation 4.22) to make the structure more apparent.

x = 〈〈M |ρ〉〉 (C.2)

200

C.1. STATE TOMOGRAPHY 201

In order to characterize a quantum state, we can perform a set of measurements {Mi}, to the

state. The resulting set of experimental outcomes ~x ≡∑i xi|i)1 can be related as follows

~x =

Nexp∑
i

|i)〈〈Mi|

 |ρ〉〉 (C.3)

≡M|ρ〉〉 (C.4)

If the number of experiments Nexp is exactly the number of components of ρ (i.e Nexp =

(dimH)2 ≡ d2), then M may be directly invertible and the solution is simply |ρ〉〉 = M−1~x.

If more experiments are performed then (with probability 1) an exact solution does not exist.

The best we can hope to do is minimize the distance between the two2:

minimize
ρ

‖M|ρ〉〉 − ~x‖ (C.5)

The solution to this is found by the Moore-Penrose pseudo-inverse

|ρleast-sq〉〉 =
(
MMT

)−1
MT~x (C.6)

The problem with this approach is that the resulting density matrix does not always obey

physicality constraints, namely being positive semidefinite (all eigenvalues are non-negative) and

probability conservation (Tr{ρ} = 1). We can address these concern with two modifications

to the protocol. First, we note that the trace constraint is a linear constraint, representable as:

〈〈I|ρ〉〉 = 1 (C.7)

We note that, if we want to minimize
∥∥∥A~x−~b∥∥∥ while satisfying C~x = ~d, we can replace this

(by writing the Karush-Kuhn-Tucker conditions and solving) with the expanded, unconstrained
1Here |i) is an abstract basis vector indicating a contribution toward the i-th experimental result
2This is equivalent to maximizing the (log-)likelihood of the data, logL(~x) ∝

∑
i
|〈〈Mi|ρ〉〉 − xi|2 assuming

Gaussian uncertainty on the data, and ignoring physicality constraints, which we will address later

C.1. STATE TOMOGRAPHY 202

minimization problem ATA CT

C 0


~x
~λ

 =

AT~b
~d

 , (C.8)

where ~λ is a set of Lagrangian multipliers. For us then, we set A = M and C = (〈〈I|) is a

1× (dimH)2 matrix for the single constraint, and ~d = (1).

We can use this method to identify a generally non-positive semidefinite matrix ρ̃. We wish

to find the closest matrix to ρ̃ which is also positive semidefinite. For this purpose, we can

turn to the method of Smolin et al. (2012), who prove that the closest (in the sense of the 2-

norm) positive semidefinite matrix with the same trace can be computed by a simple algorithm,

in which ρ̃ is diagonalized. The positive semidefinite output ρ is formed by redistributing

the eigenvalues in such a way that the sum of the eigenvalues is preserved but all are made

non-negative.

C.1.1 Optimizing tomography

So far, there has been no discussion of how to pick the measurements {Mi} to perform. The key

assumption we have made is the invertibility of the matrixM or rather (in the overdetermined

case, equation C.6), MMT . In order for this to be true, we need the set of measurements to

be “complete,” i.e.

span{M1, . . .MNexp} = H. (C.9)

However, not all complete sets of measurements are made equal. In particular, we can

quantify “how invertible” a matrix is by its condition number, κ, defined as the ratio of the

largest (magnitude) and smallest (magnitude) eigenvalues.

κ(M) = |λmax(M)|
|λmin(M)| (C.10)

The condition number provides a bound on the amplification of the relative error. For instance

if there is a certain amount of relative noise in the measurement results ε, then the relative

noise in the inferred density matrix is no bigger than κε. Therefore it is highly desirable to

minimize the condition number to maximize the tomography efficiency (Shen et al., 2016).

C.2. PROCESS TOMOGRAPHY 203

C.1.2 Wigner tomography

Wigner tomography proceeds from the previous analysis. However, it can be a bit tricky to

correctly write down the appropriate form for the matrix M. We need to know how every

component of the density matrix (|n〉m, for Fock states |n〉 and |m〉) affect every experimen-

tal outcome (designated by the corresponding displacement α) to produce the entire Wigner

function Wα(ρ). Typically we actually look at 2
πWα(ρ) as this is more experimentally sensible,

representing the displaced parity. We can follow some math from Cahill and Glauber (1969,

eq. 7.15) in order to arrive at the following:

2
π
Wα(|n〉〈m|) = 〈m|DαΠD−α |n〉 (C.11)

= e−2|α|2
√
m!
n! (−1)m−1(2α)n−mLn−mm (4|α|2), (C.12)

where Lkm represents the generalized Laguerre polynomial.

We can optimize Wigner tomography by minimizing the condition number as discussed

in section C.1.1. In order to do so, one must first choose a photon number cutoff Nph, as

otherwise, no finite number of measurements would ever be invertible. Next, one must choose

a number of displacements Nexp ≥ N2
ph. Then, one can numerically minimize the condition

number. This process can be sped up dramatically by calculating the gradient of the condition

number with respect to the displacements, and using a gradient-aware optimization protocol,

as was used for pulse optimization in chapter 4. An example of this is shown in appendix G. An

example result of this optimization is shown in C.1. The result is characterized by a distribution

of points which is denser closer to the center. It would be an interesting task to try to find

some non-numerical method of generating optimally spaced Wigner displacements.

C.2 Process tomography

Processes in quantum mechanics are linear transformations on the space of density matrices.

In order to be physical, quantum processes must be trace-preserving, that is produce trace-

one density matrices when given trace-one density matrices on their input. Next the must be

C.2. PROCESS TOMOGRAPHY 204

3 2 1 0 1 2 3

3

2

1

0

1

2

3

Condition Number = 3.0

Figure C.1: Numerically optimized displacements for Wigner tomography. These displace-
ments were produced by the code in appendix G, and are targeting Nph = 14 and Nexp = 225,
yielding a condition number κ ≈ 3. For a square lattice with the same number of points, the
minimal condition number is approximately 628 (αmax ≈ 2.08). In order to get a square lattice
with the same condition number, one would need 252 = 625 experiments (αmax ≈ 2.88).

positive, that is produce positive density matrices when given positive density matrices. More

subtly, they must be completely positive, meaning that they must preserve positivity even when

acting within a subspace of a larger Hilbert space. We therefore describe the space of physical

processes as completely positive trace-preserving (CPTP) maps.

There are a few equivalent ways of describing superoperators (Wolf, 2012). The first is the

Kraus operator-sum representation

ρout =
d2∑
k=1

AkρinA
†
k (C.13)

In this case, complete positivity is ensured by the structure of the representation. The process

is trace-preserving when we have ∑
k

A†kAk = I. (C.14)

We also have the superoperator representation, where the process is given by a matrix (U)

C.2. PROCESS TOMOGRAPHY 205

acting on vectorized density matrices.

|ρout〉〉 = U|ρin〉〉 (C.15)

In this case the trace-preserving property is given by the “unitality of the inverse,” i.e.

UT |I〉〉 = |I〉〉 (C.16)

Before discussing positivity, we must introduce a new representation, which exploits the Choi-

Jamiolkowski isomorphism between processes and states. The so-called Choi matrix, which I

will denote ρU is defined as a density matrix on the product Hilbert space H ⊗H. The Choi

matrix is the state which results from applying the process to one half of a completely entangled

state |Ω〉 = 1√
d

∑dimH
k=1 |k〉 ⊗ |k〉

ρU = (U ⊗ I)(|Ω〉〈Ω|) (C.17)

Both U and ρU are d2 × d2 matrices, whose entries are related by a simple reshuffling of their

elements (and rescaling by the dimension d) as follows:

U(ij),(kl) = d× (ρU)(ik),(jl) (C.18)

We have complete positivity when ρU is a positive semidefinite matrix. Finally, we can relate

the Choi representation to the Kraus representation. The Choi matrix can be diagonalized in

terms of vectorized Kraus operators.

ρU =
∑
j

|Ak〉〉〈〈Ak| (C.19)

In reverse, the Kraus operators can be formed by un-vectorizing the eigenvectors of the Choi

matrix and multiplying by the square root of the corresponding eigenvalue.

The way we characterize processes experimentally is by preparing a set of states, applying

the process to those states, and performing state tomography on those states. We can describe

C.2. PROCESS TOMOGRAPHY 206

each experiment as the following

xi = 〈〈Mi|U|ρi〉〉 (C.20)

This is a linear relationship between the Nexp-dimensional experimental result vector ~x and the

d4-dimensional process matrix U . If you will forgive our ridiculous abuse of notation, we can

write this as some operator S relating the experimental result vector and the “process vector”

|U〉〉〉

~x =
(∑

i

|i) (〈〈Mi|∗ ⊗ 〈〈ρi|)
)
|U〉〉〉 ≡ S|U〉〉〉 (C.21)

We can now proceed to perform least squares inversion as was done in the case of state

tomography (equation C.6). We can maintain the trace-preserving aspect by taking the linear

constraints from equation C.16 and using the form from equation C.8. However, if we wish to

maintain complete positivity, we cannot simply perform the process from Smolin et al. (2012)

on ρU as one might like to do, as the process only preserves the trace of the operator, rather

than preserving “trace-preserving.” If we wish to find the actual least-squares CPTP map, our

only recourse is the use of iterative “conic solvers,” i.e. optimization tools which can work

within the cone of positive semidefinite matrices. This is possible, but cumbersome, and for

the results shown in this thesis, we have been content to not force our process matrices to be

completely positive.

C.2.1 Pauli transfer representation

For the purpose of visualizing quantum processes, it is convenient to use a representation with

real parameters. When we are dealing with a system of n qubits, we can do this with the “Pauli

transfer” representation:

Pij(U) = 1
2n tr{XiU(Xj}) = 〈〈Xi|U|Xj〉〉, (C.22)

Where Xi are the elements of the n-qubit Pauli group {I,σx,σy,σz}⊗n. Essentially, this is

the same as the superoperator representation (equation C.15) except the operator basis is the

Paulis, rather than the matrix elements |i〉〈j|. As a result of using a Hermitian operator basis,

C.3. GATE SET TOMOGRAPHY 207

we can get a real representation of the process, which is convenient for visualization.

C.3 Gate set tomography

State and process tomography both rely on crucial assumptions in order to be valid. For state

tomography we must trust that we have a reliable description of the measurements {Mi} we

are performing. In process tomography we must trust both the measurements and the prepared

states {ρi}. This is a valid assumption if we are trying to characterize a state or process which

has a fidelity much lower than that of our states or measurements. In this case the SPAM errors

will not effect the final result too much. But in general this is not the case. What is necessary, is

to develop a model of the entire system which is self-consistent. Gate set tomography (Blume-

Kohout et al., 2013; Greenbaum, 2015) tries to do this by modeling each of the gates, states, and

measurements as full parameterized quantum objects, and using a set of measurements which

determine how these objects interact with each other. In the standard procedure, we imagine

a system with only one initial state ρ and only one (binary) measurement M (although it can

be generalized, this is sufficient for our systems), and an entire set of gates {G1, . . .GK}. We

have d2−1 parameters for the density matrix, d2 parameters for the measurement POVM, and

d2(d2−1) parameters for each of the K gates, for a total of Kd4+(2−K)d2−1 free parameters.

This can be quite large. However, with enough measurements we can begin to constrain

these parameters. The measurements will be determined by the “string” ~i ∈ ⋃n{1, . . . ,K}n
designating which set of gates is applied to the starting state, and in which order, before

measurement:

x~i = 〈〈M |Gik · · · Gi1 |ρ〉〉 (C.23)

The “fitting” procedure is quite generic. We simply write down the (completely non-linear

it should be noted) set of equations relating our parameters and the vector of measurement

results, and we maximize the likelihood of observing the data by minimizing the difference

between the predicted and observed results. We must do this in an iterative way, lacking any

formula. Because of the non-linearity of the cost function, it is possible to end up in a local

minima if one is not careful. This chance can be minimized by using a good initial guess for

C.4. RANDOMIZED BENCHMARKING 208

the parameters.

We note that for any invertible transformation B ∈ Cd2×d2 , the result in equation C.23 will

remain invariant under the following “gauge transformation”:

|ρ〉〉 7→ B−1 (C.24)

〈〈M | 7→ 〈〈M |B (C.25)

Gk 7→ B−1GkB (C.26)

This means that, for whatever result we obtain as a result of the likelihood maximization, we

can get another equally good result by applying this transformation. There are two reasons we

can do this. First, we may wish to make the model “more physical”, say by ensuring positivity

or complete positivity of the model matrices. Second, we can use this to make the model more

reminiscent of our conception of the system. For instance, we are free to perform a permutation

gauge transformation which “relabels” the basis vectors so that they match what we expect.

C.4 Randomized benchmarking

Gate set tomography learns the maximum amount of information to come up with the most

complete consistent model for a quantum system. On the other end of the spectrum is ran-

domized benchmarking (RB) (Knill et al., 2008; Magesan et al., 2011), which measures a very

small set of data to learn one particular aspect of the system, namely the average fidelity of

a particular set of gates. Randomized benchmarking is based on a very simple metric: if we

use a quantum computer to do a thing, how often do we get the correct answer? Of course,

the answer depends on what thing (protocol) we do, but if we wish to get a more generically

applicable answer, we can take the average over a large set of protocols. In quantum comput-

ing, unlike classical (deterministic) computing, verifying that we get the correct result requires

many measurements in general (O(4n/ε2) to do full state tomography of n qubits with additive

error ε). However, if the expected final state is a simultaneous eigenstate of {σ(1)
z , . . . ,σ

(n)
z }

(i.e. a bit string in the σz basis) then we can determine if we got the correct answer in a

C.4. RANDOMIZED BENCHMARKING 209

single shot, simply by measuring. In randomized benchmarking, we measure the probability

of getting the correct answer over a subset of such protocols, constructed by applying gates

from the Clifford group.3 The Clifford group (the group generated by H, S, and CNOT on n

qubits) is a useful setting because the Gottesman-Knill theorem (Gottesman, 1998; Aaronson

and Gottesman, 2004) allows one to efficiently classically simulate the effect of Clifford group

circuits.

In randomized benchmarking we measure the probability of measuring |0〉⊗n, averaged over

all Clifford circuits of length n whose ideal final state is |0〉⊗n. We then vary the parameter n,

and see how the average success probability decays as a function of the sequence length. Under

modest assumptions, this decay is exponential. While the success probability for any given n

depends on the SPAM errors, the decay constant should not. The decay constant should be

related to the “average gate fidelity”:

Fave = 1
|Clif|

|Clif|∑
j=1

∫
dψTr

{
U ideal
j (|ψ〉〈ψ|)Uactual

j (|ψ〉〈ψ|)
}

(C.27)

where |Clif| is the number of elements in the Clifford group. If the RB curve is fit to a model

Apm+B, the value p can be used, under certain assumptions, to compute Fave = p+(1−p)/2n

(Magesan et al., 2011). However, the practicality of these assumptions has been criticized

(Proctor et al., 2017), and the relationship between the RB decay constant and any precise

definition of gate fidelity is murky. When we apply RB to logical qubits, such as cat-code qubits

(as done in sections 6.4 and 9.6) is one such situation in which the assumption providing that

relationship to average state fidelity do not precisely hold. However, the RB constant, by itself,

is still a useful metric for evaluating the performance of a quantum computer, which can be

meaningfully compared to other RB constants.

One way in which RB decay constant comparison is useful is in the case of interleaved

randomized benchmarking (iRB) (Magesan et al., 2012). In this setting, we construct a se-

quence in which we alternate between a given fixed operation and a randomly selected Clifford
3There are proposals which use other groups, allowing for benchmarking of a different set of gates (Cross

et al., 2016). Using a universal set of gates is possible (see e.g. “cross-entropy benchmarking”), but not scalable
to arbitrary numbers, as it requires the ability to classically simulate the entire circuit

C.4. RANDOMIZED BENCHMARKING 210

operation. By comparing the decay constant of the resulting curve to that of standard RB, the

we can determine how the fidelity of the interleaved pulse compares with the average of the

entire gate set. In this way one can identify the proportion of the error which is attributable to

each gate.

Appendix D

Taming the Black Mamba: Structure
and software for the Yngwie FPGA
quantum controller

In this section we will discuss the many components of the quantum control stack. In figure D.1
we see an outline of the components involved. We will go through each of these components,
including the hardware, the input and output processing chains, the execution model, the
instruction sets, higher level sequencing language, experiment organization, and user interface.

D.1 Understanding the hardware

The Yngwie quantum controller is built on top of the Innovative Integration X6-1000M board.
The board provides digital-analog converters (DACs) which create the control signals, analog-
digital converters (ADCs) which record the readout results, and a field-programmable gate
array (FPGA) which synchronizes and orchestrates their operation. On the output side, the
X6-1000M board has four 16-bit DAC channels running at 500 MS/s (or 2 DAC channels at 1
GS/s). These outputs have a maximum output voltage of 2Vpp. On the input side, there are two
12-bit ADC channels running at 1 GS/s, which accepts signals smaller than 1Vpp. The FPGA
controlling them is a Xilinx Virtex 6 SX475T. The FPGA is loaded with the Yngwie “logic,”
a hardware specification which specifies how the FPGA is internally configured. This logic is
specified using VHDL, and will be discussed at length in the following section. In addition to the
analog inputs and outputs there are several 2V digital inputs and outputs as well. These can be
used to trigger additional instruments, to gate RF switches, or to communicate measurement
results.

Up to four X6-1000M cards can be operated synchronously using the VPXI-ePC (colloquially
known as the Black Mamba). This card distributes a clock and trigger signal so that each card
begins its experimental sequence simultaneously, with a trigger jitter smaller than 4 ps.

211

D.1. UNDERSTANDING THE HARDWARE 212

Hardware
X6-1000M

FPGA
Virtex-6

DAC

ADC

Layout (VHDL)
Yngwie­Logic

Card-Computer Communication
Yngwie.Cpp

Generating Tables
YngwieEncoding

Starting, stopping,
Editing Registers

YngwieInterface

Unified experiment
description language
fpga_lib.dsl

"Instrument" Class
Yngwie_FPGA

Generic "experiment" class
fpga_lib.experiment

Graphical Interface
fpga_lib.gui

Figure D.1: Outline of organization of components in FPGA stack. The hardware (red)
was done by Innovative Integration LLC. The logic and low level software (green) was written by
Nissim Ofek. The higher-level software (green) including fpga lib components were written
by Philip Reinhold, with assistance from Reinier Heeres.

D.2. THE YNGWIE VHDL LOGIC 213

Figure D.2: Yngwie analog output chain In this example, the system is configured in four-
mode two output pair operation

D.2 The Yngwie VHDL logic

The architecture of the Yngwie controller is quite complicated. There are several concurrently
executing “threads”1 of execution, several of which have completely different instruction sets
and capabilities. There are up to four analog sequences, whose responsibility it is to schedule
pulses to be sent to the DACs. There are two digital sequences, which schedule turning on and
off digital “marker” pulses. There is a CPU sequence, which contains descriptions of real-time
computations. Finally, there is the master sequence, which manages the acquisition chain and
schedules the CPU computations. Each of these 5-8 threads operates in parallel, on every card
in the system. For a full crate of cards, this is up to 32 simultaneous threads. These threads
have no way of staying synchronized with each other aside from careful design of the programs
which control them. In order to simplify this task, the fpga lib sequencing language and
compiler can be used, in order to write the entire set of instruction sets in a unified way, and
minimizing the chance of unintentional desynchronization.

D.2.1 Analog output chain

The output chain, defined in the logic, connects the waveform memory to the physical DACs on
the board. We can see a block diagram in figure D.2. The first thing to note about the output
chain is that it operates on pairs. The idea is that a pair of physical outputs can be used with
an IQ mixer to achieve single-sideband (SSB) modulation of the carrier tone. There are four
physical outputs of the card, and so it supports up to two pairs. The card can be configured to
use either a single pair (DA0/DA2) or two pairs (DA0/DA1 and DA2/DA3). When using two
pairs, the sample rate is cut from 1 GS/s to 500 MS/s. In addition to configuring the number
of outputs, one can also configure the number of modes. A mode is an independent processing

1I am not invoking the technical definition of thread, as used in an operating systems context

D.2. THE YNGWIE VHDL LOGIC 214

channel which can carry out the tasks of scaling, rotating, modulation, and mixer adjustment.
Each mode produces a pair of streams. If there are more modes than outputs, the modes are
distributed among the outputs and summed together. Since the number of modes can be 1, 2,
or 4 we have five ways of configuring the system

1. 1 mode, 1 output pair

2. 2 modes, 1 output pair. The two modes I and Q outputs are summed before going to
the DAC

3. 4 modes, 1 output pair. All four modes I and Q outputs are summed.

4. 2 modes, 2 outputs: Each mode gets an output (mode 0 to DA0/1, mode 1 to DA2/3)

5. 4 modes, 2 outputs: Two modes to each output. (mode 0 + mode 1 to DA0/1, mode 2
+ mode 3 to DA2/3)

Each mode gets its own segment of wave memory, but since the total amount of memory is
fixed, adding more modes reduces the wave memory available to any given mode, which is why
one might prefer to use fewer modes.

Each mode gets assigned its own analog sequencing table, and therefore can be scheduled
completely independently. When a pulse is played, it generates a stream of sample pairs. We
will denote the samples at the k-th stage as(

I(k)

Q(k)

)
(D.1)

Each mode performs three major processing tasks to the samples requested by the respective
tables. The first is apply its own mixer matrix a two-by-two matrix (MX)(

I(1)

Q(1)

)
=
(

MX[0, 0] MX[0, 1]
MX[1, 0] MX[1, 1]

)(
I(0)

Q(0)

)
(D.2)

The components of this matrix are taken either explicitly from the instruction which plays the
pulse, or from the dynamic mixer values (§D.2.5). The most common use case is to scale the
amplitude of a pulse (for this, a diagonal mixer matrix is used) or to adjust the pulse phase (in
which case a rotation matrix is used).

Next is the SSB modulator.(
I(2)

Q(2)

)
=
(

cosωSSB(t− t0) sinωSSB(t− t0)
− sinωSSB(t− t0) cosωSSB(t− t0)

)(
I(1)

Q(1)

)
(D.3)

Here t is the real time the sample is played and t0 is either the beginning of the experiment, or
the last time the sideband frequency was updated. This is “single-sideband” because assuming
a constant input, the complex-valued output I+iQ ∝ cosωSSBt+i sinωSSBt = eiωSSBt has only
a single frequency component. The final step is to perform an adjustment for imperfections in
the mixer. These values are specified via the registers—accessed by YngwieInterface or the

D.2. THE YNGWIE VHDL LOGIC 215

Figure D.3: Yngwie analog input chain

Yngwie FPGA instrument (§D.4)—and perform the final transformation:(
I(3)

Q(3)

)
=
(
u1/2 cos(φ) u1/2 sin(φ)
u−1/2 sin(φ) u−1/2 cos(φ)

)(
I(2)

Q(2)

)
, (D.4)

where the parameters φ and u correspond directly to the ssbtheta and ssbratio parameters
(§D.4.) Note in this formula is not like a rotation matrix (in which the sin(φ) components
would have opposite sign). The effect of this adjustment is to change the relative phase of the
I and Q components, as well as the relative amplitude.

Next the modes are combined in order to match the number of outputs if necessary. Finally,
the outputs have offsets applied. These offsets, which are used to cancel the mixer leakage,
are on so long as an experiment is running (regardless of whether pulses are being currently
played).

D.2.2 Analog input chain

The analog inputs are processed in a series of steps which refine the acquired data all the way
from an array of raw ADC samples to a final binary value indicating a quantum measurement
result, upon which we can branch the controller’s execution. We have the ability to tap of the
data at any point in this processing chain. We see the chain in figure D.3. We start with
the raw0/1 data, which comes straight from the ADC0/1 inputs, and is 12 bit data with 1
ns resolution. This is first processed by the demodulators to produce the iq0/1 data, each of
which is an 18-bit complex pair.

iq0/1 =
demod period−1∑

k=0
raw0/1[k] (demod table I 0/1[idxk] + idemod table Q 0/1[idxk]) (D.5)

idxk = (k + t) mod demod period (D.6)

The demod period is set by a register and can be either 10, 15, or 20 ns. Here t is the number
of nanoseconds either since the beginning of the experiment (if demod reset mode is True) or

D.2. THE YNGWIE VHDL LOGIC 216

since the beginning of the acquisition (if demod reset mode is False). Typically the values in
the demodulator table are set as follows:

demod table I 0/1[k] = cos(2πk/demod period) (D.7)
demod table Q 0/1[k] = sin(2πk/demod period) (D.8)

This results in a demodulation by 100, 66.7 or 50 MHz depending on the period.

The next step is the “dot product” step, whose behavior depends on the value of dot product mode
(§D.4) which transforms iq0/1 into rel0/1.2 The behavior of this module is trivial unless dot
product mode is enabled, in which case the output is

rel0/1[k] = iq0[k]∗ × iq1[k]. (D.9)

This is useful if one of the inputs is a reference signal which determines what phase at which
to expect the other signal to arrive. If there are fewer values in the iq0 stream than iq1 (i.e.
because the channels acquire for different lengths) then the dot product will continue using
the last recorded value of iq0 (or vice versa). This is often used if the reference signal is only
present for a short time, and because the reference signal is expected to be constant (after
demodulation anyway).

Next comes the “state estimation” component, which consists of integration and thresh-
olding. The integration consumes the rel0/1 streams and for each produces a single 18 bit
real number, called se0/1.

se0/1 = Re
{∑

k

rel0/1[k]× envelope0/1[k]
}

(D.10)

The point is to compare the observed trajectory to some reference trajectory, and yield some sim-
ilarity metric. If both rel0/1 contain the same contents (which they will unless dot product mode
is “pass both”) then we can compare to two reference trajectories, which is useful for assigning
more than two outcomes to a readout. We can access these se values in the CPU (§D.2.5)
but most commonly we will instead access the thresholded binary values

s0/1 = se0/1 > thresh0/1 (D.11)

The thresholds thresh0/1 and envelopes envelope0/1 are specified in the “state estimator
table.” The current address in the state estimator table can be set by the master sequence,
allowing the envelope and thresholds to be changed on the fly.

D.2.3 Digital inputs and outputs

There are many digital (2V) signals which are accessible from the labelled BNC outputs. The
mapping between labels and function is given in table D.1. There are three types of outputs
present on the card, with different functions and control mechanisms:

2Only one rel stream is externally accessible at a time. The default is rel0, but can be switched using the
rel stream selector in YngwieInterface.

D.2. THE YNGWIE VHDL LOGIC 217

Description In/Out PCI-E (single card) Black Mamba
External Function 0 Out P14,P16,P17,P18,P19 N15,N16,N17,N18,N19
External Function 1 Out P15,P20,P21,P22,P23 N14,N20,N21,N22,N23
X0 In N14 P15
X1 In N15 P14
X00 In N16 P17
X01 In N17 P16
X10 In N18 P19
X11 In N19 P18
X20 In N20 P21
X21 In N21 P20
X30 In N22 P23
X31 In N23 P22
Automatic Buffer 0 Out P8,P9 N8,N9
Automatic Buffer 1 Out N8,N9 P8,P9
Automatic Buffer 2 Out P10,P11 N10,N11
Automatic Buffer 3 Out N10,N11 P10,P11
Digital Marker 0 Out P12 N13
Digital Marker 1 Out N12 P13
Digital Marker 2 Out P13 N12
Digital Marker 3 Out N13 P12

Table D.1: Yngwie FPGA digital output mapping

• External functions: These reflect some Boolean function of the signals (§D.3.1). The
exact function can be dynamically set in the master sequence.

• Automatic Buffers: These digital outputs are designed to go high when the pulses are
actively being played, allowing for an RF switch which is normally closed to be opened.
Exactly which modes activate which buffers can be configured with the buffer mask
settings (§D.4).

• Digital Markers: These outputs can be manually controlled and scheduled in a very similar
way to the analog outputs (§D.3.4).

In addition to the outputs there are 10 inputs. These are all functionally identical, in that
they control the value of a named signal (§D.3.1) which goes high or low depending on the
corresponding input voltage.

Setting up intercard communication

In a “Black Mamba” crate of four cards, we may wish for the ability to have each of the
cards branch on a signal generated in any of the other cards. For this purpose we use the
“external function” digital outputs in conjunction with the Xnm digital inputs. While one can
build up the needed physical connections between the cards in a piecemeal way as needed, a
more organized and thorough approach can pay off in the long run. To allow for the maximum

D.2. THE YNGWIE VHDL LOGIC 218

EXT FN0
(N15-N19)

EXT FN1
(N14,N20-N23)

Card 0

X00 (P17)
X01 (P16)
X10 (P19)
X11 (P18)
X20 (P21)
X21 (P20)

AD1

Demod

Integrate

Threshold

“Signals”

S0

S1

EXT FN0
(N15-N19)

EXT FN1
(N14,N20-N23)

Card 1

X00 (P17)
X01 (P16)
X10 (P19)
X11 (P18)
X20 (P21)
X21 (P20)

AD1

Demod

Integrate

Threshold

“Signals”

S0

S1

EXT FN0
(N15-N19)

EXT FN1
(N14,N20-N23)

Card 2

X00 (P17)
X01 (P16)
X10 (P19)
X11 (P18)
X20 (P21)
X21 (P20)

AD1

Demod

Integrate

Threshold

“Signals”

S0

S1

Figure D.4: Inter-card connections to use for multi-card feedback

amount of intercard communication, one should hook up the inputs and outputs as shown in
figure D.4. In this setup, each card distributes a copy of its external functions to each other
card. The naming convention is that input Xnm is connected to a copy of external function m
on card n.

With this connectivity in place, in order for each card to branch on a signal (§D.3.1)
generated in some card (say card n), it is only necessary to first assign that signal to the
external function m on card n, and second, have every card branch on the signal Xnm. In
typical use, the only signal which needs to be distributed are those which cannot be generated
in parallel on all cards, namely the measurement results. In this case, one typically assigns
the external functions to the state estimator signals s0 and s1 to external functions 0 and 1
respectively at the beginning of each sequence, keeping the interpretation of Xnm fixed as “the
m-th readout result on card n.”

D.2.4 Tables

The behavior of the Yngwie controller is determined in two ways. The first is a set of registers
which contain discrete settings. These can be accessed via the YngwieInterface module
(§D.3. This can be integrated with the instrumentserver via the Yngwie FPGA instrument

D.2. THE YNGWIE VHDL LOGIC 219

class (§D.4). The second way the behavior is determined is by the tables. The tables can
be created directly using the YngwieEncoding module. The overhead of managing the large
number of tables can be handled using the fpga lib tools in sections D.5 and D.7.

• Master : Schedules acquisition periods and CPU programs

• Analog : Schedules the analog outputs

• Digital : Schedules the digital marker outputs

• Program: Contains descriptions of CPU programs

• Waves: Contains the waves which are played by the analog outputs

• Memory : Contains the initial contents of the CPU accessible memory

• Demodulation: Contains the waveforms used for demodulation (typically cos and sin)

• Integration: Contains the envelopes used for integrating

• State estimator : Contains the state estimator parameters.

• Arbitrary function: Contains the arbitrary function definitions (§D.2.5).

D.2.5 CPU

The Yngwie controller has a very unique computation model for its so-called “super-CPU”3.
Architecturally, compared with standard CPU implementations, it resembles most a “transport-
triggered architecture.”

In this model, the CPU consists of a set of functional units (adders, multipliers, memory
accessors, etc.) each of whose inputs are connected to a multiplexer, which is in turn connected
to the outputs of many other functional units. On each cycle, the CPU advances to the next
instruction (there is no branching in this model), and each CPU instruction specifies the behavior
for each multiplexer.

This is a difficult model to program to, because one must keep in mind the connectivity
diagram for each of the functional units as well as the processing time. For instance, if one
makes a memory request on instruction N , one must access the result on instruction N + 3,
and only then. However this model also allows for a great deal of parallelism, as each functional
unit can be manually scheduled, and operates in parallel. In addition, each functional unit is
fully pipelined, allowing one to put multiple inputs into a functional unit before the first input
has finished processing, and retrieve the corresponding answers in order from the output.

In what follows I will describe each of the functional units (bold face) as well as their input
operands (italics). The IMM0/1 values are not functional units per se but constant values which
are stored in the CPU instructions.

• MEMk(action, value, address) (3 cycles) for k ∈ 0, . . . , 3
3Named because the previous implementation was a “mini-CPU”

D.2. THE YNGWIE VHDL LOGIC 220

– MEM0/1 and MEM2/3 refer to completely separate banks of memory
– action

∗ read: produce on its output the contents of the memory at the given address.
∗ write: Take the given input value and store it at the given address

– value: one of IMM< kmod 2 >, ADD1. . . 3, MEM0. . . 3
– address: either mem addr< k > (explicit in CPU instruction) or ADD1. . . 3

• ADD1(left op, right op, action) (1 cycle)

– action: The output of the adder depends on the action specified. Here a is the left
op and b is the right op.

∗ a+ b

∗ a− b
∗ a&b (bitwise AND)
∗ b− a
∗ a|b (bitwise OR)
∗ a ∧ b (bitwise XOR)
∗ b >> 1 (divide by two)

– left op: one of 0, ARB, MUH0, MUL0, ADD1, ADD2, IMM0, IMM1

– right op: one of 0, ADD1. . . 3, MUH1, MUL1, SENS, TST

• ADD2(left op, right op, action) (1 cycle)

– action (same as ADD1)
– left op one of 0, ARB, MUH1, MUL1, ADD1, ADD2, IMM0, IMM1

– right op one of 0, ADD1. . . 3, MUH0, MUL0, SENS, TST

• ADD3(left op, right op, action)

– action (same as ADD1)
– left op one of 0, ADD1. . . 3, MEM0. . . 3
– right op (same as left op)

• MUL0/1(left op, right op) (4 cycles).

– Note that multiplication of two n-bit numbers produces a 2n bit number. We
need to take an n-bit part of the answer and throw away the rest. There are two
conventions which are supported. The inputs can be considered integers, in which
case the least significant bits are taken, which is the default behavior. Otherwise,
the inputs can be considered as fixed-point numbers, contained in the range [−2, 2].
In this case the (almost) highest bits are taken. MUH0/1 designates this part of
the answer.

– left op one of IMM0/1, ADD1. . . 3, MEM0. . . 3
– right op one of SE0/1, ADD1. . . 3, MEM0. . . 3

D.3. THE YNGWIE PYTHON LIBRARIES 221

• TST(op) (1 cycle)

– Putting a value x into TST will cause it to update the r0 (x = 0) and r1 (x < 0)
signals which can be used for branching or sending to the external functions. It
presents on its output the value loaded into it, meaning that this is a convenient
way of getting the SE0 and SE1 values into the CPU.

– op: one of TST, ADD1. . . 3, MEM0, MEM2, SE0, SE1

• ARB(op, function) (9 cycles)

– Evaluates one of the 8 “arbitrary functions” which are defined in the arbitrary func-
tion table. Evaluation works by interpolation over 512 points spanning the full
range. Most commonly used to evaluate sin and cos.

– op: one of 0, ADD1. . . ADD3, MEM0. . . MEM3
– function, an integer in 0,. . . ,7

• CPU Outputs(value)

– Assigning to these values changes behavior elsewhere in the FPGA
1. MX00,MX01,MX10,MX11: Dynamic mixer values
2. SSB: dynamic SSB value
3. DYN1. . . 3: Dynamic length
4. GOF0. . . 3: Dynamic goto jump
5. REC0. . . 3: Set value in result record

– value one of ADD1. . . 3, MEM0. . . 3 (MX only)

D.3 The Yngwie python libraries

The primary Yngwie code interface is a C++ package which mediates the communication
between the cards and the host PC. Knowledge of this layer is largely unnecessary. On top of
this is the Python interface, which functionally serves as the documentation of the Yngwie logic.
It is separated into two parts. The first is YngwieEncoding which contains the tools necessary
for building all of the tables (§D.2.4), including python objects corresponding to the various
instruction sets. The second is YngwieInterface, which contains tools for manipulating the
registers—most of which correspond to settings in the Yngwie FPGA instrument (§D.4)—as
well as methods for starting and stopping experiments.

D.3.1 Basic sequencing

Instructions in the master, analog and digital tables share a common execution model. Each
instruction specifies a length as well as a method of deciding what instruction to jump to
next. The length is specified in units of cycles (4 ns), and can be up to 219 cycles (about 2
ms). In addition to the static length, a dynamic length can be added from any of the three
dynamic length CPU outputs (§D.2.5) (‘DYN1’,‘DYN2’ or ‘DYN3’).

D.3. THE YNGWIE PYTHON LIBRARIES 222

In addition to having a length, each instruction carries a mechanism for deciding which
instruction address to go to next. There are four ways of determining the next instruction to
jump to.

• GOTO x: explicitly specifying the instruction to jump to, either absolutely or relatively
to the current instruction. The jump value x has an explicit component written in the
instruction, but to this one can add one of the four dynamically computed “goto offset”
values. The most common instruction is GOTO +1.

• IF x ELSE y: Examine the current value of the internal function (§D.3.2. If the value is
high, go to x, otherwise y.

• GOSUB x RET. TO y: Jump to x, pushing the value y onto a stack which can contain up
to four levels (don’t try to use explicit recursion here)

• RETURN Pop an address y off of the stack and go to that point

D.3.2 Master table

The master table is in charge of data acquisition, scheduling the CPU, and setting the internal
and external functions. Entries in the master table can be created using the MasterInstruction()
object. It has the following properties:

1. trigger levels: Indicates which, if any, oft the two input channels should be acquiring
during this instruction.

2. estimation params addr: The address into the state estimator table which should be
used for the subsequent acquisitions

3. demod reset: Signal to restart the phase of the demodulator (§D.2.2)

4. generate record: Signal to generate a single result record at this point

5. program entry: Starts a CPU program using this address into the program table

6. internal function: Accepts a Boolean function (see below) which is used for branching
IF THEN ELSE instruction address resolution (§D.3.1). item external function0/1:
Accepts a Boolean function (see below) which is used to set the corresponding digital
output (§D.2.3).

Signals

The internal and external functions take values which correspond to an arbitrary Boolean
function of the signals. There are three types of signals:4

• s0/1: Is the state estimator result se0/1 is larger than the corresponding threshold?
4Perusing the code you may find references to a fourth type, c0/1 which corresponds to a “counter” feature

present in an older version of the logic.

D.3. THE YNGWIE PYTHON LIBRARIES 223

• r0: Is the current value in the TST CPU unit (§D.2.5) equal to zero?

• r1: Is the current value in the TST CPU unit less than zero?

• x0/1, xn0/1 for n ∈ 0, . . . , 3: Is the voltage associated digital input (§D.2.3) currently
high?

These signals can be combined using the standard Boolean functions AND (&), OR (|), XOR
(∧), and the unary NOT (). The resulting function can be completely arbitrary, but can have
no more than four variables (signals).

D.3.3 Analog tables

In addition to the common components listed in §D.3.1, each instruction in the analog tables
(created with the AnalogPairInstruction()) has the following properties.

• wave address: Indicates the address in wave memory at which to begin playing

• unique wave: If this is true, the wave address increments every cycle. If false, the wave
address stays the same, repeating the same 4 ns segment of wave memory. This option
allows for a contant pulse with no memory overhead.

• mixer amplitudes: A set of four constants which specify the mixer matrix values
(§D.2.1).

• mixer mask: Specifies which of the mixer matrix values are taken from the mode’s
dynamically determined mixer matrix. Note that these are the values which were in the
CPU outputs (§D.2.5) when the mixer fetch option was used, not the current value in
the CPU outputs.

• mixer fetch: Specifies that the mode should load the dynamic mixer matrix values from
the CPU.

• ssb reload: Specifies that the mode should change its SSB frequency using the value
in the CPU output.

• silent wave: If true, specifies that the wave should not trigger the autobuffers (§D.2.3).

It should be noted that in actuality the I and Q outputs actually run independent threads
of execution. They operate on the same table, but begin their executions at address 0 and 1
respectively. In practice, by using the AnalogPairInstruction objects to build the analog
table, we can ignore this implementation detail, and just consider it to be a single thread which
directs both outputs, but in principle the possibility to manipulate these separately exists.

D.3.4 Digital tables

The digital tables are much simpler than the master and analog tables. There are two digital se-
quences, each of which controls two of the digital marker outputs (§8). The DigitalInstruction()
has ony a single additional field, the marker levels parameters, which contains two bits indi-
cating which of the sequence’s two marker outputs is high for the duration of the instruction.

D.4. THE YNGWIE FPGA INSTRUMENT CLASS 224

D.3.5 Result records

In addition to the output types described in the analog input processing chain (§D.2.2), the
FPGA also has the ability to generate result records (called rec, when considered to be an
output stream). These contain a lot of data about the internal state of the controller at the time
that it was generated. Result records are generated in one of two ways: either when we advance
to an instruction in the master sequence with the generate record flag enabled (§D.3.2) or
if one of the conditions specified in the current value of the rrec generate register is met
(§D.4). The result records can be interpreted using the YngwieDecoding.ResultRecord()
objects, and contain the following fields:

• s0/1, x0/1, r0/1: a Boolean value describing the current value of the indicated signal
(§D.3.2)

• ir, ex0/1: The current (Boolean) value of the internal function or external functions

• time stamp: The time, measured in cycles since the start of the experiment

• addr curr and addr next: The

D.4 The Yngwie FPGA instrument class

• demod reset mode: Confusingly, true indicates that the phase of the demodulator is
never reset, but continues real time. False indicates that the demodulator phase should
be reset every time a new acquisition is started.

• dot product mode: specifies how the “dot product” module in the input chain functions:
(§D.2.2)

– dot product: rel0 = rel1 = iq0× iq1∗

– dup ch0: rel0 = rel1 = iq0

– dup ch0: rel0 = rel1 = iq1

– pass both: rel0 = iq0 and rel1 = iq1.

• dump path: The directory into which the next acquired data blocks should be written.
Typically automatically managed by the fpga lib.experiment class if used (§D.7).

• nmodes: The number of modes to create. Either 1, 2, or 4. Cannot be set dynamically,
but rather must be specified at instrument creation.

• noutputs: How many physical outputs to enable. 2 indicates one pair, and allows for
GS/s operation. 4 indicates two pairs, and allows for 500 MS/s operation.

• rrec generate: Controls when result records are generated. This integer should be con-
sidered as a bit stream indicating which conditions cause result records to be generated.
One can set which conditions one wants by summing a subset of the following terms.

– 20 = 1: When the signal s0 changes

D.4. THE YNGWIE FPGA INSTRUMENT CLASS 225

– 21 = 2: When the signal s1 changes
– 24 = 16: When the signal x0 changes
– 25 = 32: When the signal x1 changes
– 26 = 64: When the signal r0 changes
– 27 = 128: When the signal r1 changes
– 28 = 256: When the internal function result changes
– 29 = 512: When the external function0 result changes
– 210 = 1024: When the external function1 result changes
– 213 = 8192: When the current (master) instruction address changes
– 214 = 16384: When the proposed next (master) instruction address changes
– 216 = 65536: When the state estimator result se0 changes
– 217 = 131072: When the state estimator result se1 changes
– 218 = 262144: When the state estimator result se0 is finalized
– 219 = 524288: When the state estimator result se1 is finalized
– 220 . . . 223: When the CPU output registers REC0...3 change

• run status: Indicates the presence of some sort of initialization error. If this value is
non-zero, then there was a problem. The first bit being high indicates that the attempt
at starting a run failed. The second bit being high (2 or 3) indicates that the system is
waiting for a trigger. The third bit indicates an invalid trigger. The fourth bit indicates
that the trigger is overloaded.

• unlimited: False(/True) means that the FPGA does(/does not) stop running when the
requested amount of data is acquired.

• delay analog: The delay (in units of cycles) applied to all of the analog outputs. For
obscure reasons, this has a minimum value of 13 cycles, and a maximum of 63 cycles.

• delay marker0...3: The delay (in units of cycles) applied to a given digital marker
output. Can take any value between 0 and 63.

• ext fn enabledEXxy: Each of the external functions can be replicated on up to five
outputs. These copies can be enabled or disabled individually for the purpose of reducing
the internal noise and crosstalk.

• buffer mask0...3: Indicates which modes trigger each of the automatic buffers (§D.2.3).
In this four bit number (0-15) each bit (lowest bit gives mode 0, highest bit gives mode
3) indicates whether that mode triggers this automatic buffer.

• buffer combiner0...3: In addition to being triggered by the analog output of a mode
being non-zero, the automatic buffers can also be sensitive to the value of the external
function. This two bit field describes whether or not the buffer should be activated on
external function 0 (bit 0) and/or external function 1 (bit 1).

• buffer gen delay: A delay (in cycles) between 0 and 63 applied to all of the autobuffers

D.4. THE YNGWIE FPGA INSTRUMENT CLASS 226

• buffer gen width: A 32-bit field which is convolved with the “mode non-zero” signal
to produce the autobuffer output. Generally used to pad the width of the autobuffer by
up to 31 cycles. To pad by k cycles set this value to 2k+1− 1. Setting this value to zero
will disable the autobuffer.

• offset0/1: Each of these is a pair of numbers which controls the DC offsets of the two
physical outputs corresponding to each output pair. These are given as integers, where
the full DAC range is [−217,+217].

• ssb resolution: When loading the SSB dynamically, the integer value in the SSB CPU
output is multiplied by this factor to produce the real SSB frequency needed. The options
are 1 kHz, 500 Hz, 250 Hz and 125 Hz.

• ssbfreq0...3: The initial SSB frequency for mode 0. . . 3, in Hz.

• ssbratio0...3: The relative amplitude of I and Q (for modes 0. . . 3) as applied to the
mixer correction matrix (§D.2.1).

• ssbtheta0...3: The relative phase correction between I and Q. Zero indicates that they
should be exactly (nominally) 90◦ out of phase.

D.4.1 Running experiments

The procedure for actually running experiments has a few steps.

1. Compile each of the tables listed in §D.2.4. The output files should be stored in a single
directory

2. Use the Yngwie FPGA instrument instance method load tables() on the directory

3. Calculate the amount of data that the experiment should produce of each type: raw0/1,
iq0/1, rel, se0/1, and rec (result records, §D.3.5). Call the instrument instance
accept stream() method for each type. The result can be split into “blocks” which
will be written to hard drive as soon as they are ready. Typically one will pick a block
size which is small enough to be acquired quickly, and set the number of blocks to be
the full amount of requested data.

4. Call the instrument instance start() method. The success of this method can be
checked using the check trigger() method.

After start() has been called, the FPGA will continue running. If the unlimited option
(§D.4) is false, it will automatically stop running when all of the data has been acquired. While
it is running, it will write blocks to the dump path directory as they become ready. In addition
to the data blocks, one can also find a log file, which can be used to aid debugging a failure to
properly launch.

This summarizes the perspective of running experiments at a low level. In practice, one
can use the tools in the fpga lib.experiment.FPGAExperiment class (§D.7) to aid running
experiments and monitoring the output.

D.5. THE FPGA LIB.DSL SEQUENCING LANGUAGE 227

Figure D.5: fpga lib basic sequencing model

D.5 The fpga lib.dsl sequencing language

In order to alleviate the problem of managing the creation of the many tables required to
operate the FPGA (§D.2.4), one can turn to the fpga lib software package. In this package
we define an domain specific language (DSL) that is used to specify experiment sequences. For
n cards with m analog modes, we have n(m+ 3) tables to fill out, each of which is scheduled
using the format described in §D.3.1. Each of these sequences must be designed to track each
other in parallel. This is a cumbersome task to do by hand, and once done, it becomes difficult
to modify the sequence while preserving the timing synchronization. The approach taken by
fpga lib is to write a single, linear, sequence containing elements of all of the sequenced
tables, which is compiled down into a result accepted by YngwieEncoding.

fpga lib employs a “singleton” pattern, where each of the commands modifies an underly-
ing “sequence” (contained in the implicit state, accessible by fpga lib.dsl.state.get state())
being built, in order to avoid every line containing some version of seq.append(...). After
the sequence is built, it is compiled. The basic underlying method of the compilation can be
seen in figure D.5. We can think of each of the sequencing tables as “bins.” Every element of
the unified sequence corresponds to one of these bins. When we process the unified sequence
we put each item in the corresponding bin until we reach a sync() instruction. At this point
we calculate the duration in each bin (since either the start of the sequence or the last sync())
`k, i.e. the sum of the length field for each instruction in the bin. We are going to “pad”
each bin with blank instructions of total duration (maxn `n)− `k. This way each bin will start
the set of instructions following the sync() command simultaneously. There are four ways of
padding supported

• sync(alignment=’left’): Add the padding to the end of the bins (the default, if
alignment is omitted)

• sync(alignment=’right’): Add the padding to the beginning of the bins, just following
the previous sync().

• sync(alignment=’center’): Split the padding in two components, half goes to the

D.5. THE FPGA LIB.DSL SEQUENCING LANGUAGE 228

beginning, half to the end.

• sync(alignment=’pad inst’): Don’t add a new instruction, but rather increase the
duration of the final instruction. Useful for “jump tables” where the total number of
instructions is critical. Must be used with caution.

D.5.1 Output

The basic way of controlling the output is to play a pulse. There are two ways of doing so,
depending on whether the pulse has constant amplitude or not. For such pulses one can use
the constant pulse() directive, which requires only that one specify the length (in units of
ns, which must be some multiple of 4) and amplitude. For all other pulses, one specifies the
complete array of values, with 1 ns resolution (if four outputs are used, every other point is
simply ignored) using the array pulse() directive. Both accept a set of arguments (amp and
phase) which can specify the value of the mixer matrix as: (§D.2.1)(

amp cos (phase) amp sin (phase)
−amp sin (phase) amp cos (phase)

)
(D.12)

By specifying the argument amp="dynamic", one can instead take the mixer matrix to be the
last value which was loaded from the CPU outputs (§D.5.5). Additionally, the length parameter
can be specified as "DYN1" to, for instance, use the length stored in the DYN1 CPU output
(§D.2.5). This can be used in either constant pulse or array pulse, although in the latter
case, the pulse will be truncated if the dynamic length is short, and play some other pulse in
wave memory if the dynamic length is too long.

There are also convenience arguments, which allow one to modify the pulse as it is stored
in wave memory. The static amp argument allows for the pulse to be scaled in memory,
either in amplitude or phase. The detune argument allows for the pulse to be modulated
in memory, resulting in the center frequency of the resulting waveform to be shifted by the
specified amount.

In addition to the analog outputs, there are also the digital outputs, of which there are
four channels. These can be controlled with the marker pulse() directive, which accepts a
channel (which of the 4 markers) and length parameter (which can be dynamic)

D.5.2 Acquisition

The acquisition periods can be scheduled in nearly an identical way to the digital marker
pulses using the set trigger levels() command, which specifies which of the two analog
inputs are acquiring and for how long. By convention we denote the first input (ADC0) as
“reference” and the second input (ADC1) as “signal” and can refer to the acquisition using
the convenience commands acquire signal(), acquire ref(), and acquire both().5 In
addition to controlling when acquisitions happen, we can also control how they are processed

5Note that a single acquisition can be split across multiple instructions, commonly used if the signal acquisition
is longer, e.g. acquire both(reference length); acquire signal(signal length - reference length).

D.5. THE FPGA LIB.DSL SEQUENCING LANGUAGE 229

to a degree using the estimation params addr keyword argument in any of the previous
commands to specify what address in the state estimator table we want to use.

While this manual level of control exists, it is unfortunately a bit cumbersome. For this
reason, it is prefereable to use the higher-level Readout abstraction (§D.6.2). This automat-
ically performs many of the manipulations needed to add a readout to a sequence including
modifying the data-decoding procedure needed to interpret the results (§D.5.6).

D.5.3 Control flow

By default, the sequencer creates instructions which indicate that the execution should jump
to the instruction which follows, incrementing the instruction address by 1. There are several
ways in which we can deviate from this default behavior.

• goto(‘A’): Unconditionally jump to the location labelled as A

• goto(‘A’, ‘GOF0’): Unconditionally jump to A plus the offset stored in GOF0 (§D.2.5).

• set int func(signal): Update the signal (§D.3.2) used for jumping. This is of-
ten not needed to be called manually, if using higher-level control flow objects like
if then else() or Cond.

• conditional jump(‘A’, ‘B’): Jump to A if the current value of the internal function
is high, otherwise jump to B.

• it then else(signal, ‘A’, ‘B’): Sets the internal function to the given signal, and
then performs the conditional jump

• if then(signal, ‘A’): Same as if then else except if the signal is false, we go to
the subsequent instruction.

• Cond(signal): When used with a python with statement, the indented code is per-
formed only when the signal is high, otherwise the block is skipped.

• CPU comparisons: We can use the CPU to do branching as well. We can use statements
of the form

In a with statement

with expr1 <op> expr2:

...

Alternatively in other places which accept a signal

if then else(expr1 <op> expr2, ’A’, ’B’)

where expr1 and expr2 are arbitrary CPU expressions (§D.5.4) and <op> is any com-
parison operator, such as <, <=, ==, > or >=. This statement compiles down into three
steps. First the CPU computes the quantity expr2 - expr1, and stores it in the TST
functional unit (§D.2.5). Next it assigns the correct combination of the r0 and r1 reg-
isters to the internal function, and finally adds the necessary conditional jumping code.
as necessary

D.5. THE FPGA LIB.DSL SEQUENCING LANGUAGE 230

• subroutine: A python decorator which causes the tables generated by the function body
to be stored as a subroutine (technically, the tables will be appended to the end of the
main experiment sequence). When the function is called the thread of execution will
jump to the function body, and return to the subsequent instruction after finishing the
function body. The purpose of this is to lessen repetition of instructions which could
cause the table lengths to exceed maximum allowed values.

D.5.4 CPU

We discussed the underlying model of the Yngwie CPU in §D.2.5. We saw how complicated
but powerful the programming model is. We can give up some amount of performance in order
to make this functionality accessible, by using the fpga lib.dsl.cpu compiler, which is an
entirely separate compiler from that used for compiling the basic sequences (master, analog,
digital). While not necessarily able to extract the maximum amount of performance, in the
majority of the cases it is preferable to be able to quickly come up with functional, if suboptimal,
programs for achieving basic computational tasks.

The fpga lib.dsl.cpu compiler creates CPU programs corresponding to statements of
the form target <<= expression, meaning store the computed value of the expression in the
location specified by the target.6 The target can be any of the following

• a Register() or FloatRegister() instance, i.e. r = Register(); r <<= expr.

• an indexed Array() instance, i.e. a = Array(); a[idx] = expr. 7 The index can be
either an integer or a register.

• Any of the CPU dynamic outputs

– DynamicSSB[0]

– DynamicLength[idx] for idx in {0, 1, 2}
– DynamicJump[idx] for idx in {0, 1, 2, 3}.
– DynamicMixer[idx0][idx1] for idx0/1 in {0, 1}.
– OutputRec[idx] for idx in {0, 1, 2, 3}.

An expression can be any of the following forms (expr1 and expr2 can be any expressions
themselves, making this definition recursive)

• Integer, in the range [2−17, 217 − 1]

• Float, in the range [-2, 2]

• a Register() or FloatRegister() instance

• an indexed Array() instance, i.e. a = Array(); target <<= a[expr]
6The <<= operator in python technically means “in-place bitwise left shift.”, but in fpga lib we overwrite

this meaning to refer to assignment in the CPU.
7For technical reasons the syntax for array assignment is slightly different, using = rather than <<=.

D.5. THE FPGA LIB.DSL SEQUENCING LANGUAGE 231

• expr1 op expr2 where op can be any of +, -, *, &, |, ∧. Note there is no division.

• expr >> k for k any small integer.8

• f(expr) where f is an “arbitrary function” defined using the arbitrary function
python decorator.

• GetSE0/1() which returns the current value of the state estimator integration results
se0/1 (§D.2.2).

In the preceding definitions we see many references to Register objects. These are objects
which refer to locations in the local memory of the CPU (§D.2.5). There are a total of 2048
available addresses split across the two memory blocks (the first accessible via MEM0/1 and
the second via MEM2/3). When a register object is created, it’s initial value can be specified
as an argument.9 When we create a register, we can specify its “datatype” as either an integer
or float by using either the Register or FloatRegister commands, respectively. This is not
really a property of the underlying object in the CPU memory, but rather one of how we interpret
and manipulate this object. Most importantly is how we treat the object in multiplication (see
the difference between MUL and MUH in §D.2.5). Note that the product of two integers is an
integer, but in all other cases (float/float or float/integer) the result is a float.

The fpga lib.dsl.cpu compiler works essentially via a breadth-first search of the possible
methods of constructing a given expression out of the available functional units, scheduling their
execution and making sure there are no collisions. This works well for most small cases, and
the result is correct if the compilation succeeds, but it is not too hard to come across cases
where the compiler fails to find an implementation. In this case, one can assist the compiler by
breaking the expression down into sub-components by assigning intermediate values to registers.

D.5.5 Sweeping parameters dynamically

One of the most important tools in building experiments is the notion of “scanning” a parameter
and seing how the result varies. This can be implemented on the FPGA in several ways. The
most obvious way is to produce a produce a program in which each step is explicitly written
in the sequence. This is the behavior produced when a python for loop is invoked, as the
subsequent sequence-writing code is executed repeatedly. For a loop involving n steps, each of
which produces m instructions, then the total sequence length becomes n×m. This method
has the most flexibility, but incurs the penalties of requiring longer compilation times, and
being limited in size to a number of steps which can fit within the maximum sequence length.
This limit can be quickly reached if scans are nested. The tools available within the FPGA
allow for scans to be programmed, rather than explicitly written. In this case, instead of using
python’s for statement, we use the python’s with statement, which does not repeatedly call
the sequence-writing code contained, but rather adds statements to the beginning and end of
this code which cause the block to loop on the FPGA. There are several methods which can

8What is implemented at the hardware level is expr >> 1 (i.e. divide by two). In order to make bigger
divisions, we can repeat this many times expr >> 3 = ((expr >> 1) >> 1) >> 1.

9Note that this is the initial value at the start of a run. If many experiments are performed per run (as is
typical). It will need to be re-initialized manually at the start of each experiment.

D.5. THE FPGA LIB.DSL SEQUENCING LANGUAGE 232

be used in this way to scan various properties. In addition to constructing the actual loops,
these methods provide metadata to the decoder (§D.5.6) which allows for it to annotate the
axis created in the resulting data with information about the scanned parameters.

• Repeat(n): Don’t sweep anything, but simply repeat the indented block a given number
of times.

• scan register(min, max, npts) as x: Create a register named x whose value will
be scanned between min and max as the indented block is repeated npts times.

• scan float register(min, max, npts) as x: same as scan register, but the min
and max parameters are treated as floating point values (between -2 and 2). x is an
instance of FloatRegister().

• scan length(min, max, npts) as dynlen: The result dynlen contains the name of
one of the three CPU outputs (§D.2.5) in which dynamic lengths can be stored. This
output will be scanned as the indented block is repeated.

• scan ssb(mode, min, max, npts): Repeat the contained block while sweeping the
SSB frequency of the indicated mode. The frequency range accessible is [−217, 217] ×
ssb resolution, where the resolution is set by the register value, accessible via the
instrument class (§D.4). Note that, even for the largest resolution, the range is limited
to about ±131 MHz.

• scan amplitude(mode, min, max, npts): On the indicated channel, sweep the dy-

namic mixer matrix (§D.2.1). The contents of the mixer matrix are
[
a 0
0 a

]
for a swept

value of a. In order to use the dynamic amplitude on a given pulse, you must specify
amp="dynamic" while calling it.

• scan phase(mode, min, max, npts, rel amp=1): On the indicated channel, sweep
the dynamic mixer matrix (§D.2.1). The contents of the mixer matrix are rel amp ×[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
for a swept value of θ. As with scan amplitude, you must specify

amp="dynamic" on the pulse(s) which should have a swept phase.

D.5.6 Data decoding

The FPGA produces unstructured streams of data (output to the file system as blocks of a
desired size) which must be interpreted to be useful. In order to structure the data it is necessary
to anticipate how much data is produced by a given experiment. When either a Readout object
(§D.6.2) or generate record is called, with the intent of producing recorded data, it modifies
the fpga lib.dsl.results.Results object, stored in the compiler’s implicit state (accessible
by fpga lib.dsl.state.get state()) by calling either the Results.add measurement()
or Results.add rrec() method, respectively. By combining this information with information
from the looping constructs (§D.5.5), the system can build a model of the structure of the
resulting data. This model allows it to interpret the data streams to create structured datasets,
which can be easily processed and visualized.

D.6. THE FPGA LIB.ENTITIES QUANTUM CONTROL ABSTRACTIONS 233

The structure of the resulting data can be quite complicated, especially when multiple
datasets are created (requiring a more complicated restructuring than a simple array reshape),
and when different data streams being accessed, each of which provide different amounts of
data per invocation. While the system can handle many variations, there are a few important
limitations to keep in mind.

First, data cannot be acquired during feedback. In a feedback loop, the number of mea-
surement results cannot be determined at run-time. While it is in principle possible to build a
more sophisticated system which detects feedback and devises measures to structure the data
resulting from feedback measurements, the simplest approach is to omit this data from the
record. Therefore, if a measurement is performed in a feedback loop, it must be called with
the keyword argument log=False. This indicates (by making a modified entry in the state-
estimator table) that the se0/1 values generated by this readout should not be output to the
data stream.

Secondly, as a result of this design, the raw0/1, iq0/1 and rel streams cannot be accessed
when measurement-based feedback is used. These streams are not filtered by the presence of
the log flag. Therefore, if feedback occurs, there is no way to ensure that these listed data
streams will have a consistent structured form.

D.6 The fpga lib.entities quantum control abstractions

The objects provided by fpga lib.entities are designed to group together commonly used
methods together with the data required to operate them. The canonical example is the
π-pulse. One does not wish to specify an array of values to provide to array pulse every
time. Specifically, we wish to have certain properties of this pulse be consistent across each
application, yet also have these properties (the amplitude, length and detuning for instance)
be easily modified without editing every program which uses the pulse. While one could simply
write a function for this purpose, the entities provide the additional benefit of storing their
parameters (using methods from fpga lib.parameters) in a consistent way. This allows the
pulse parameters to be both easily modified from the graphical interface (§D.8) as well as
retrieved and stored along with experimental results.

Most of the entities described are instances of fpga lib.parameters.Calibratable,
which allows their properties to be both easily modifiable and have the modifications be per-
sistent without requiring code changes. In order for this to work, after all of the instances of
Calibratable in are created, one should call the method Calibratable.load all parameters().
In order to keep this behavior consistent, it is preferable to have all calibratable objects defined
in the same location. This location is, by convention, the init script.py file. Typically, one
imports from this file at the beginning of all experiment files (§D.7), in order to set up the
python environment for writing a sequence.

D.6.1 Mode objects

Mode objects are created to correspond to the “modes” present in the architecture of the analog
output system (§D.2.1). Primarily, these objects help by removing the need to recall the trans-

D.6. THE FPGA LIB.ENTITIES QUANTUM CONTROL ABSTRACTIONS 234

lation between physical objects in the system (and the associated LO frequencies) and (card,
mode) pairs specifying outputs of the FPGA. Mode objects have as internal methods many of
the functions which require output pair specification, such as array pulse, constant pulse,
scan amplitude, and scan ssb, among others.

In addition to the base Mode objects, there are domain specific objects such as Qubit and
Cavity objects. These objects have two associated CalibratedPulseObject, one for selective
pulses, and another for unselective pulses, the distinction being the length (and therefore
spectral width) of the pulse. These calibrated pulses have associated properties such as sigma
for the Gaussian pulse width, unit amp for the amplitude corresponding to either a π pulse or
unit displacement, and detuning. Additionally, theses objects can be used to store information
about the associated mode lifetimes, which can be used in determining the appropriate amount
of time required to reset the system to thermal equilibrium.

D.6.2 Readout objects

One of the most important abstractions is the Readout() object and its sub-classes. It’s use
is necessary in order to get the most benefit out of the data decoding system (§D.5.6). The
base Readout() object has several properties which govern its behavior:

• acq len: The amount of time (in ns) to acquire data (by convention from the AD1
input) per readout

• ref len: The amount of time (in ns) to acquire a reference signal (by convention from
the AD0 input) per readout

• thresh0/1: The threshold (in units of se0/1) on which to update the signals s0/1.

• use envelope: If false, the integration weights (§D.2.2) are a constant function of time
(“boxcar” envelope). If true, use the integration from envelope file.

• envelope file: The name of a file produced via numpy.savez(), which should contain
entries named "envelope0/1" corresponding to the envelopes desired. This file can be
created using the set envelope() method.

When a readout instance is called, by default, the action taken is to record the se value
(i.e. se0 + ise1) to a dataset named “default.” Different datasets can be created by passing
keyword arguments of the form <dataset name>="<stream name>" to the readout call. The
dataset name can be any string and the possible streams correspond to the sections of the input
processing pipeline (§D.2.2). The shape of the resulting dataset is inferred in one of two ways.
If there are multiple calls to the readout object (e.g. when called within a for loop) with the
same dataset name, an axis of length equal to the number of calls is formed. Additionally, if a
readout is called within a scan object (§D.5.5) then an axis is formed with length corresponding
to the length of the scan.

The base Readout object performs an acquisition, but without a pulse to stimulate the
readout cavity, the data acquired will be meaningless. Therefore several sub-classes exist which
augment the base readout to perform a pulse as well when called. The TriggeredReadout

D.7. THE FPGA LIB.EXPERIMENT EXPERIMENT CLASS 235

Figure D.6: Schematic depicting two schemes for readout phase-locking. Left, the phase
is locked because the modulation and demodulation both come from the same source, namely
the FPGA. In this method an output pair is consumed but gives flexibility in shaping the readout
pulse. This method uses dot product mode = "dup ch1" (§D.4) as well as a ModeReadout
object. Right, the phase is produced by the beating of two oscillators, detuned by ωIF. In
order to determine the phase, a reference signal must be passed to the FPGA (typically on
input AD0). This method requires an additional RF source, but conserves analog outputs. To
use this method, set dot product mode = "dot product" and use the TriggeredReadout
object.

object plays a marker pulse which can be used to trigger a gated RF source. Alternatively, one
can use an analog output pair (which allows for pulse shaping), by employing the ModeReadout
object, which is itself also a subclass of Mode, and therefore inherits the properties discussed
in §D.6.1. These two approaches require different approaches to phase locking, which are
diagrammed in figure D.6.

D.7 The fpga lib.experiment experiment class

While the fpga lib.dsl sequencing language can be used on its own, in whatever context
python programs can be run, there is some benefit gained by organizing experiment code
using the BaseExperiment class or its subclasses, particularly FPGAExperiment. Using these
classes facilitates the automatic saving of experiment data along with necessary meta-data such
as instrument settings and experiment parameters. In addition, by using the experiment classes,
one can take advantage of the fpga lib.gui (§D.8), which provides automatic visualization
and flexible parameter management.

While not strictly necessary, if one wishes to use the graphical interface, the preferred
organization for experiment classes is to create a new file for each class, and to name the
experiment object contained within the same name. For instance, a typical experiment might
be declared as follows (in a file named my experiment.py)

D.8. THE FPGA LIB.GUI GRAPHICAL INTERFACE 236

from init script import ∗

class my experiment(FPGAExperiment):

def sequence(self):

...

A typical experiment class will declare three things. First, a list of parameters, using methods
from fpga lib.parameters, such as IntParameter() or StringParameter(), which declare
settings for the experiment which can be modified at the GUI level, and which are saved when
the experiment is run. Next, one defines the sequence method. This method when called
should produce the sequence using the functions defined in fpga lib.dsl. Finally one can
declare data-processing properties. A fit function can be declared using the top-level fit func
property which is in general a dictionary mapping names of datasets to names of fit functions.
The available fit functions are defined in the fpga lib.analysis.fit module. In addition,
other analysis can be defined in the process data method. Additionally, if the GUI is being
used, one can define a plot method, which accepts a matplotlib figure, can be used to define
custom plotting behavior. The advantage of writing the analysis and plotting functionality into
the experiment class, is that it allows for these functions to be automatically run as soon as
data becomes available, and re-run as data streams in.

D.8 The fpga lib.gui graphical interface

The graphical interface consists of several components, the arrangement of which can be
seen in figure D.7. Experiments can be selected from the experiment browser. The experi-
ments shown in this window are those found from the modules specified in the list of paths
fpga lib.config.exp directories. In order for experiments to be used from here, each
experiment file must contain an instance of BaseExperiment with the same name as the file.
Selecting experiments from this browser creates an instance of the experiment class, and opens
an experiment widget corresponding to this instance as a tab in the central area.

The experiment widget has several components itself. It has an area for specifying pa-
rameters, where each parameter (defined using the fpga lib.parameters methods) has an
associated widget for data entry in this area. Below the parameter specification area is a set
of buttons which control the experiment:

• Run: Compile the tables and start an acquisition, acquiring as many blocks as are indi-
cated in the experiment n blocks parameter.

• Stop: Halt the execution of the current experiment, stopping the FPGA output.

• Queue: Add the experiment with the current parameter settings to the queue. As soon
as the currently running experiment is finished, the next item in the queue will be started,
loading the settings which were present at the time that the experiment was queued.

• Reload: Close and open the experiment tab, allowing any changes to the experiment code
to be applied. If the experiment code has changed since the experiment was loaded, this
button is highlighted.

D.8. THE FPGA LIB.GUI GRAPHICAL INTERFACE 237

Figure D.7: fpga lib.gui experiment running interface. The sections of the interface are
divided as follows. (1) the experiment browser, listing the available experiment types. (2) The
log, displaying information about the running experiment. (3) The current experiment’s display
widget, currently on the “plot” tab, which displays the most recently created dataset. There are
several other tabs which display other information about the experiment. (4) The parameter
input area for the current experiment. Below this is the buttons used to perform various actions,
such as starting, stopping, and analyzing the experiment. (5) A python interpreter, which has
access to the currently running experiment data, allowing for quick numerical investigations.
(6) The “calibrations” editor, which allows the settings on any Calibratable instance to
have its parameters modified (e.g. pulse unit amplitudes). (7) The instruments widget, which
is connected to the instrumentsserver instance which maintains access to all connected
instruments, e.g. RF sources and Yngwie FPGA instrument objects.

D.8. THE FPGA LIB.GUI GRAPHICAL INTERFACE 238

• Analyze: Run the experiment analyze() method, which in turn, fits the data, and runs
the process data() method.

• Directory: Open the experiment’s data directory in a file browser

• Make Tables: Compile the experiment tables without running the FPGA.

Above the experiment’s parameter input area is a set of widgets accessible via a tabbed
interface.

• plot: Browse and visualize the currently accessible datasets. Can create line plots and
image plots, automatically label and annotate axes, plot data of higher dimension by
adding sliders, plot fit results along with data, among other features.

• code: A full featured python code editor for the code for the selected experiment. After
saving, the experiment can be reloaded to apply the given changes.

• history: A browser for historical data created by this experiment. Data is grouped in
files by day, with different runs per day corresponding to numbered datasets within the
file. A snapshot of the experiment plot widget at the time of experiment completion is
used as a thumbnail for result in the history browser. Once selected, historical datasets
can be visualized, properties such as parameters and calibrations can be viewed, and the
corresponding calibrations and instrument settings can be loaded.

• log: A saved log of the experiment (text) output from all runs of the experiment.

• tables: A set of widgets for reading the compiled tables (§D.2.4) specifically, the master,
analog, digital, and CPU tables.

• rrecs: A widget which allows generated result records to be browsed. When used in
combination with rrec generate = 213, allows for a sort of debugger view of the
FPGA, in which the state of the system can be visualized step by step.

• waves: A widget which visualizes the contents of wave memory, showing the pulses which
can be played by the various analog output modes as well as their associated addresses.

In addition to the main experiment widget, there are several auxiliary widgets not associated
with any experiment. A widget with a python interpreter is provided. In this interpreter, one
can run the command exp() to get a handle on the currently displayed experiment instance.
A “calibrations” widget provides access to all of the parameters associated with instances
of subclasses of fpga lib.parameters.Calibratable, which are typically defined in the
init script.py file (§D.6. Whenever modifications are made to the parameters here, the
values are cached to disk, allowing them to be re-loaded to the changed value upon re-initializing
the system. Finally there is an instruments widget, which provides access to the instruments
hosted by the instrumentsserver. The server needs to be separately created and running
before the experiment GUI is launched. It will attempt to connect to a server running at the
address specified by fpga lib.config.instrumentserver addr. If it cannot be found, it will
attempt to create an instance, however this is only reasonable if the instruments are connected
to the computer running the experiment GUI.

Appendix E

The pygrape optimal control package

The pygrape package was developed in parallel with the experiment discussed in chapter 6.
While there are many other optimal control software packages available including SPINACH1,
DYNAMO2 and QuTiP3, working with pygrape allowed us to easily develop the types of
modifications discussed in chapter 4, and to tailor the application to our use case. Therefore,
the resulting package tries to be flexible, but its flexibility is tailored towards the anticipated
application of controlling cavities coupled to transmons.

E.1 Overview

The pygrape package provides one main point of entry for running GRAPE-style pulse opti-
mizations, namely the run grape command. A typical invocation looks like this:
result = run grape(init controls , setups, penalty fns=None, reporter fns=None,

outdir=None, dt=1, init aux params=None, shape sigma=10,

n proc=1, discrepancy penalty=0, dtype=None,

save data=0, term fid=None, freq range=None, bound amp=None, ∗∗opts):

The returned result object is a report data dictionary (§E.5). The following describes the main
available parameters.

• init controls: A (real) array which has shape n ctrls×pulse len which is the initial
guess for the pulse. Can be created using pygrape.preparations.random waves() if
a suitable initial guess is not known.

• setups: A list of setup objects (§E.2) which describe the quantum optimization problem.

• penalty fns: Either None or a list of penalty functions (§E.3) which constrain the types
of admissible pulses

1http://spindynamics.org/Spinach.php
2https://github.com/shaimach/Dynamo
3http://qutip.org/docs/4.0.2/guide/guide-control.html

239

http://spindynamics.org/Spinach.php
https://github.com/shaimach/Dynamo
http://qutip.org/docs/4.0.2/guide/guide-control.html

E.2. SETUPS 240

• reporter fns: Either None or a list of reporter functions (§E.4) which can be used to
monitor the progress of ongoing optimizations

• outdir: The output directory where results will be stored. Per-run results are stored in
a numbered sub-directory of outdir. If None, use the current directory.

• dt: The time between points in the control array. The total time of the pulse is dt ×
pulse len.

• init aux params: The initial values for auxiliary parameters, i.e. parameters to be opti-
mized which are not time-dependent controls. The current main application of auxiliary
parameters are the coefficients used for gauge degrees of freedom (§E.2.1).

• shape sigma: In order to encourage smooth start and stop to the pulse, the simulated
pulse is actually the product of the control parameters and a “shape function.” The shape
function is defined to be f(t) = 1 − e−t/σ − e−(tmax−t)/σ where σ = shape sigma. If
shape sigma is 0, then f(t) = 1.

• n proc: If multiple setups are being optimized against, the work of simulating each
can be distributed across multiple processes. n proc is an integer specifying how many
processes to use.

• discrepancy penalty: If multiple setups are being used, an extra term to the cost
function can be added which penalizes any (pair-wise) difference between the reported
fidelities of the various setups. The penalty is of the form discrepancy penalty ×∑
i

∑
j > i|Fi −Fj |2, with Fi the fidelity of the i-th setup.

• save data: Specify a period (once every save data iterations) for saving report data
(§E.5) to a file report data.h5 in the output directory.

• term fid: Specifies a fidelity at which to terminate the optimization.

• freq range: If not None, then must be a tuple (min freq, max freq) which specifies the
range of acceptable frequencies for the pulse. This works by effectively re-parameterizing
the pulse in the frequency domain (see 4.4.2).

• bound amp: If not None, put a hard limit the amplitude of the controls being optimized
to be between (-bound amp,+bound amp). Incompatible with the freq range option.

• **opts: Further keyword arguments are passed to the scipy.optimize.minimize,
specifically those options available with the L-BFGS-B solver.4 The most important
option is gtol which specifies when the gradient is small enough to stop optimizing.
Setting this value smaller causes the algorithm to “try harder” before giving up.

E.2 Setups

The first task is to describe the “quantum” problem being solved. We associate to each
quantum problem an object called a Setup(). Each setup contains two main components: a

4https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html

E.3. CONSTRAINING THE RESULT WITH PENALTIES 241

description of the control system, and a description of fidelity metric which we wish to optimize.
For each setup we describe the control system in terms of its “drift” Hamiltonian H0 and a
list of “control” Hamiltonians Hcs. Whenever we describe quantum objects (states, operators,
Hamiltonians, etc.) the interface should accept either a numpy array or a qutip.Qobj object.

In the StateTransferSetup() we seek to optimize the fidelity of several simultaneous
state transfers. We describe the initial states (inits) and the target final states (finals).
Depending on the value of the coherent flag, we use either the metric from equation 4.15
(coherent=True) or equation 4.16 (coherent=False).

In the case that evolution of the entire Hilbert space is to be specified, one can instead use
the UnitarySetup() which requires no input states, but only the final target unitary matrix.

Finally, if one wishes to work in an open-systems context, using the Lindblad-Markov master
equation, instead of the Schrödinger equation, then one can employ the LindbladSetup(). In
addition to the arguments provided to StateTransferSetup(), one can also provide c ops,
a list of “collapse” operators which define the Markovian non-unitary evolution. Going from a
StateTransferSetup to a UnitarySetup squares the dimension of the system of equations,
and therefore is much slower.

E.2.1 Gauge Operators

Each of the setups also has the ability to take in a list of operators (gauge ops) describing
“gauge degrees of freedom.” These operators are described mathematically in section 4.3.3,
specifically equation 4.30. For each gauge operator in the list, a new parameter is added,
in addition to the n ctrls × pulse len parameters associated with the controls themselves.
These controls are added to the “auxiliary parameters” (aux params). The algorithm needs to
compute the gradient with respect to these new parameters as well. Provide an initial guess
for these parameters using the init aux params argument to run grape.

E.3 Constraining the result with penalties

A penalty, as accepted by the penalty fns argument to run grape, can be any function
which accepts a controls array on its input (of shape n ctrls × pulse len) and returns a
tuple consisting of a cost and a gradient, where the gradient has the same shape as the input.

Several penalties are defined in pygrape.penalties. Many of these take the form of a
function which returns a penalty function, specializing it with appropriate parameters.

• make lin amp cost(reg, iq pairs=False): Makes a linear penalty (equation 4.36)
with weighting coefficient reg. If iq pairs is enabled, then the controls will be inter-
preted as n ctrls/2 complex-valued controls, by identifying the controls as being alter-
nating real and imaginary components, i.e. [Re ε1(t), Im ε1(t), . . . ,Re εn ctrls/2, Im εn ctrls/2].

• make amp cost(reg, thresh, iq pairs=False): Makes a non-linear amplitude penalty
in the form of equation 4.35.

E.4. MONITORING THE PROGRESS WITH REPORTERS 242

• make lin deriv cost(reg, iq pairs=False): Makes a linear derivative penalty in
the form of equation 4.40.

• make deriv cost(reg, thresh): Make a nonlinear derivative penalty in the form of
equation 4.41.

• make l1 penalty(reg, alpha): Makes a sparsity-preferring penalty function, using an
approximation to the L1 norm, f(ε) =

∑
k |εk|. In the vicinity of ε > 1/α, the absolute

value is replaced by a smooth continuation, so as to preserve the validity of the cost
function’s Hessian.

• make cplx l1 penalty: A version of make l1 penalty which treats the controls as
pairs corresponding to complex-valued controls.

E.4 Monitoring the progress with reporters

While not strictly contributing to the final result, the ability to monitor the progress of ongoing
optimizations is a crucial step in solving convergence problems, saving time from being wasted,
and generally understanding what is happening within the GRAPE system. For this purpose, one
can create instances of pygrape.reporters.Reporter, and pass them to the reporter fns
argument of run grape. Each instance can take a spacing argument on creation which defines
how often (in units of iterations) the reporter should be called, e.g. spacing=5 dictates that
the reporter will be called once per five iterations.

• print costs(): Print the fidelity associated with each setup as well as the cost associ-
ated with each penalty function

• save waves(wave names): Save the controls into a file (named waves.npz by default)
which can be loaded by numpy.load. The list of strings wave names dictates the name
associated with each control in the file.

• plot waves(wave names, iq pairs=False): Plot the controls using matplotlib. A
separate axis is used for each control array. If iq pairs is enabled, treat the controls as
pairs of values corresponding to complex-valued controls, and plot the complex pair on
a single axis.

• plot fidelity: Create a plot of the fidelity as a function of the number of iterations.

• verify from setup: Simulate the system using a different setup. This is useful to,
for instance, check that the fidelity remains unchanged by increasing the dimension of a
cavity subsystem.

• verify master equation: Simulate the system using the qutip.mesolve master equa-
tion solver. One can provide a list of collapse operators (c ops) to account for decoher-
ence.

E.5. REPORT DATA 243

E.5 Report data

The report data, which is returned from a call to run grape is a dictionary with several
entries containing information about the preceding optimization. In addition, this data can be
periodically saved to a file using the save data option to run grape. The report data contains
the following entries:

• n iter: Number of optimization iterations which have passed.

• sim controls: The “simulated” controls, which are the product of the raw controls
and shape func.

• aux params: The auxiliary parameters, e.g. gauge degree of freedom coefficients.

• dt: The time step

• raw controls: The controls parameters without the shape func applied.

• shape func: The tapering function dictated by the shape sigma parameter to run grape.

• setups: The list of setups being optimized

• props: The final (propagated initial) states for each setup.

• fids: The fidelity associated with each setup.

• fids hist: The fidelity history for each setup, i.e. as a function of iteration number.

• fid grads: The gradient of the fidelity with respect to the controls.

• aux fid grads: The gradient of the fidelity with respect to the auxiliary parameters.

• pen costs: The cost associated with each penalty

• pen grads: The gradient of each penalty with respect to the controls.

• pen hist: The history of each penalty cost as a function of iteration number.

• tot cost: The total cost (infidelity plus penalties)

• tot grad: The gradient of the total cost with respect to the controls.

• outdir: The output directory

Appendix F

Optimal control pulse generation
script

from pygrape import run grape

from pygrape.setups import StateTransferSetup , SubspaceSetup

from pygrape.penalties import make amp cost , make lin deriv cost , make tail cost

from pygrape.preparations import make hmt , make target , random waves , make ops

from pygrape.preparations import unitary to states

from pygrape.reporters import ∗
from pygrape.grape import get impulse response

import numpy as np

import qutip

import sys

import os

import argparse

from glob import glob

from scipy.linalg import expm, eigh

def fourcat(nc, nq, iq, s):

h = (qutip.coherent(nc, ALPHA) + PARITY ∗ qutip.coherent(nc, −ALPHA)).unit()
v = (qutip.coherent(nc, 1j∗ALPHA) + PARITY ∗ qutip.coherent(nc, −1j∗ALPHA)).unit()
if s == 0:

c state = (h + v).unit()

elif s == 1:

c state = (h − v).unit()
return np.squeeze(qutip.tensor(qutip.basis(nq, iq), c state).full())

PLEN = 550

OPNAME = ’H’ # Options are id,x,y,x2,y2,x2m,y2m,H,z,t,map 4cat ,unmap 4cat

ALPHA = np.sqrt(3)

NC = 22

244

245

PARITY = +1

NQ = 3

T1q = 110e3

T2eq = 40e3

CHI = −2.199e−3
CHI PRIME = −17.7e−6
KERR = −3.43e−6
ANHARM = −236.2e−3
QDRIVE = 14.78e−3
CDRIVE = 37.6e−3
MAX AMP = 0.32

MAX ITER = 1200

TERM FID = 0.999

MAX FREQ = 0.04

CNORM = .002

QNORM = .01

T1cav = 2.8e6

outdir = None

def make setup(nc, nq, chi=CHI, delta q=0, delta c=0):

H0, Hcs = make hmt(

nc, nq, chi, CHI PRIME , KERR, ANHARM, QDRIVE, CDRIVE,

delta q=delta q , delta c=delta c

)

if OPNAME == ’map 4cat’:

inits = [np.eye(nc∗nq)[0],np.eye(nc∗nq)[nc]]
finals = [fourcat(nc, nq, 0, 0), fourcat(nc, nq, 0, 1)]

elif OPNAME == ’unmap 4cat’:

finals = [np.eye(nc∗nq)[0],np.eye(nc∗nq)[nc]]
inits = [fourcat(nc, nq, 0, 0), fourcat(nc, nq, 0, 1)]

Register operations

else:

if OPNAME == ’id’:

op = qutip.qeye(2)

elif OPNAME == ’x’:

op = qutip.sigmax()

elif OPNAME == ’y’:

op = qutip.sigmay()

elif OPNAME == ’H’:

op = qutip.hadamard transform()

elif OPNAME == ’x2’:

op = (1j∗np.pi/4∗qutip.sigmax()).expm()
elif OPNAME == ’x2m’:

246

op = (−1j∗np.pi/4∗qutip.sigmax()).expm()
elif OPNAME == ’y2’:

op = (1j∗np.pi/4∗qutip.sigmay()).expm()
elif OPNAME == ’y2m’:

op = (−1j∗np.pi/4∗qutip.sigmay()).expm()
elif OPNAME == ’z’:

op = qutip.sigmaz()

elif OPNAME == ’t’:

op = (1j∗np.pi/8∗qutip.sigmaz()).expm()
else:

raise ValueError(’Unknown pulse: ’ + opname)

inits = np.array([

fourcat(nc, nq, 0, 0),

fourcat(nc, nq, 0, 1),

])

finals = op.full().dot(inits)

setup = StateTransferSetup(H0, Hcs, inits, finals, coherent=True, use taylor=True)

setup.taylor order = 20

return setup

setups = [make setup(NC, NQ), make setup(NC+2, NQ)]

penalties = [

make amp cost(1e−4, np.sqrt(.5)∗MAX AMP , iq pairs=True),
make lin deriv cost(0.2),

]

wave names = ’qI,qQ,cI,cQ’.split(’,’)

reporters = [

print costs(),

save waves(wave names , 10),

plot waves(wave names , 10, iq pairs=True),

plot penalties(10),

plot fidelity(10),

plot states(5),

verify from setup(make setup(NC+3, NQ), 30)

]

init ctrls = random waves(4, PLEN, npoints=15)

init ctrls[2:] ∗= CNORM
init ctrls[:2] ∗= QNORM

ret = run grape(

init ctrls , setups, penalties , reporters , outdir,

iprint=0, maxcor=20, maxiter=MAX ITER , n proc=len(setups), dt=2, save data=5,

247

check grad=25, term fid=TERM FID , discrepancy penalty=1e4,

freq range=(−MAX FREQ , MAX FREQ)
)

Appendix G

Optimal Wigner displacement
generation script

%matplotlib inline

import matplotlib.pyplot as plt

import matplotlib.patches as mpatches

import numpy as np

from scipy.special import genlaguerre

from math import sqrt, factorial

from numpy.linalg import cond, svd

from scipy.optimize import fmin, check grad , minimize

from IPython.display import display, clear output

import time

Number of photons

FD = 14

Number of displacements

n disps = FD∗∗2 + 30

def wigner mat and grad(disps, FD):

ND = len(disps)

wig tens = np.zeros((ND, FD, FD), dtype=np.complex)

grad mat r = np.zeros((ND, FD, FD), dtype=np.complex)

grad mat i = np.zeros((ND, FD, FD), dtype=np.complex)

B = 4 ∗ abs(disps)∗∗2
pf = (2 / np.pi) ∗ np.exp(−B/2)
for m in range(FD):

x = pf ∗ np.real((−1) ∗∗ m ∗ genlaguerre(m, 0)(B))
term r = −4 ∗ disps.real ∗ x
term i = −4 ∗ disps.imag ∗ x

if m > 0:

248

249

y = 8 ∗ pf ∗ (−1)∗∗(m−1) ∗ genlaguerre(m−1, 1)(B)
term r += disps.real ∗ y
term i += disps.imag ∗ y

wig tens[:, m, m] = x

grad mat r[:, m, m] = term r

grad mat i[:, m, m] = term i

for n in range(m+1, FD):

pf nm = sqrt(factorial(m)/float(factorial(n)))

x = pf ∗ pf nm ∗ (−1)∗∗m ∗ 2 ∗ (2∗disps)∗∗(n−m−1) ∗ genlaguerre(m, n−m)(B)
term r = ((n − m) − 4∗disps.real∗disps) ∗ x
term i = (1j ∗ (n − m) − 4∗disps.imag∗disps) ∗ x
if m > 0:

y = 8 ∗ pf ∗ pf nm ∗ (−1)∗∗(m−1) ∗ (2∗disps)∗∗(n−m) ∗\
genlaguerre(m−1, n−m+1)(B)

term r += disps.real ∗ y
term i += disps.imag ∗ y

wig tens[:, m, n] = disps ∗ x
wig tens[:, n, m] = (disps ∗ x).conj()
grad mat r[:, m, n] = term r

grad mat r[:, n, m] = term r.conjugate()

grad mat i[:, m, n] = term i

grad mat i[:, n, m] = term i.conjugate()

return (

wig tens.reshape((ND, FD∗∗2)),
grad mat r.reshape((ND, FD∗∗2)),
grad mat i.reshape((ND, FD∗∗2)

)

def cost and grad(r disps):

N = len(r disps)

c disps = r disps[:N/2] + 1j∗r disps[N/2:]
M, dM rs , dM is = wigner mat and grad(c disps , FD)

U, S, Vd = svd(M)

NS = len(Vd)

cn = S[0] / S[−1]
dS r = np.einsum(’ij,jk,ki−>ij’, U.conj().T[:NS], dM rs , Vd.conj().T).real
dS i = np.einsum(’ij,jk,ki−>ij’, U.conj().T[:NS], dM is , Vd.conj().T).real
grad cn r = (dS r[0]∗S[−1] − S[0]∗dS r[−1]) / (S[−1]∗∗2)
grad cn i = (dS i[0]∗S[−1] − S[0]∗dS i[−1]) / (S[−1]∗∗2)
return cn, np.concatenate((grad cn r , grad cn i))

best cost = float(’inf’)

f, ax = plt.subplots(figsize=(5, 5))

def wrap cost(disps):

global best cost

250

cost, grad = cost and grad(disps)

best cost = min(cost, best cost)

ax.clear()

ax.plot(disps[:n disps], disps[n disps:], ’k.’)

ax.set title(’Condition Number = %.1f’ % (cost,))

clear output(wait=True)

display(f)

#print ’\r%s (%s)’ % (cost, best cost),
return cost, grad

init disps = np.random.normal(0, 1, 2∗n disps)
init disps[0] = init disps[n disps] = 0

ret = minimize(wrap cost , init disps , method=’L−BFGS−B’, jac=True, options=dict(ftol=1e−6))
print ret.message

new disps = ret.x[:n disps] + 1j∗ret.x[n disps:]
new disps = np.concatenate(([0], new disps))

	Contents
	List of Figures
	List of Tables
	List of Abbreviations and Symbols
	Acknowledgments
	Introduction
	Outline of thesis
	Background and suggested reading

	Controlling cavities
	The limits of control in linear cavities
	Control in the Jaynes-Cummings model
	Control in the dispersive regime
	Applications: Parity map
	Applications: Wigner tomography
	Applications: qcMAP

	SNAP and universality
	Optimal control

	Doing more with less: error correction with harmonic oscillators
	Error correction criteria
	Error models for qubits
	Making error correction work in practice
	Error models for cavities
	Error correction in damped harmonic oscillators
	Cat codes
	Choosing
	``No-jump'' errors and autonomous stabilization

	Alternate cavity encodings
	Binomial codes
	Cat code generalizations
	Numerically optimized codes
	GKP codes

	Numerical quantum optimal control
	Defining the problem
	Calculating the gradient
	Cost function variations
	Open system GRAPE
	Robust control
	Gauge degrees of freedom

	Constraints and penalties
	Limiting the pulse amplitude
	Limiting the bandwidth

	Limiting the intermediate photon number
	Troubleshooting optimization convergence
	What if it doesn't work?: Debugging optimal control pulses
	Closed-loop optimization methods

	Meet the samples
	The seamless storage cavity
	The antenna transmon
	The stripline readout
	Coupling pins
	Putting it all together
	Fabrication
	Attenuators and filtering
	Readout amplification
	Electronics

	Universal control of a cat-code qubit
	First things first: Characterizing the system
	Showing off a bit: Creating distant Fock states from scratch
	Alternating Hilbert spaces: Encode and decode
	Testing encoded operations
	Empirical tuning

	Venturing forth in frequency space: sideband drives
	Four-wave mixing: A cornucopia of terms
	Q-Switching for faster system reset
	Creating photons one at a time
	Engineered dissipation

	A Fault-Tolerant Parity Measurement
	Error Transparency: A paradigm for hardware-efficient fault-tolerance
	Cancelling : The simplest useful symmetry
	Choosing drive parameters

	Extending the cavity lifetime by protecting it from the transmon
	Parity measurement using f
	Postselecting on errors: Identifying transmon-induced cavity dephasing
	Performance analysis

	Fault-tolerant SNAP
	An interaction picture for SNAP
	Analyzing fault propagation in SNAP
	Raman SNAP
	Some assembly required: The FT SNAP protocol
	Tuneup procedure
	Characterizing the FT SNAP

	Conclusion and Prospects
	Bibliography
	Identities and derivations
	Changing frames
	Commutator relations
	Rotating frame
	Displaced frame
	Dispersive Hamiltonian for a multi-level ancilla
	Damped harmonic oscillator master equation
	Fréchet Derivative of the matrix exponential
	Approximate time-independent Hamiltonians
	Floquet formalism
	Block Diagonalization

	Construction of unitary operations from a universal control set
	Tomographies, large and small
	State tomography
	Optimizing tomography
	Wigner tomography

	Process tomography
	Pauli transfer representation

	Gate set tomography
	Randomized benchmarking

	Taming the Black Mamba: Structure and software for the Yngwie FPGA quantum controller
	Understanding the hardware
	The Yngwie VHDL logic
	Analog output chain
	Analog input chain
	Digital inputs and outputs
	Tables
	CPU

	The Yngwie python libraries
	Basic sequencing
	Master table
	Analog tables
	Digital tables
	Result records

	The Yngwie_FPGA instrument class
	Running experiments

	The fpga_lib.dsl sequencing language
	Output
	Acquisition
	Control flow
	CPU
	Sweeping parameters dynamically
	Data decoding

	The fpga_lib.entities quantum control abstractions
	Mode objects
	Readout objects

	The fpga_lib.experiment experiment class
	The fpga_lib.gui graphical interface

	The pygrape optimal control package
	Overview
	Setups
	Gauge Operators

	Constraining the result with penalties
	Monitoring the progress with reporters
	Report data

	Optimal control pulse generation script
	Optimal Wigner displacement generation script

