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Abstract

Muti-Cavity Operations in Circuit Quantum Electrodynamics

Yvonne Y. Gao

2018

The eventual success of a quantum computer relies on our ability to robustly initialise,

manipulate, and measure quantum bits, or qubits, in the presence of the inevitable occur-

rence of errors. This requires us to encode quantum information redundantly in systems

that are suitable for Quantum Error Correction (QEC). One promising implementation is

to use three dimensional (3D) superconducting microwave cavities coupled to one or more

non-linear ancillae in the circuit quantum electrodynamics (cQED) framework. Such sys-

tems have the advantage of good intrinsic coherence properties and large Hilbert space,

making them ideal for storing redundantly encoded quantum bits. Recent progress has

demonstrated the universal control and realisation of QEC beyond the break-even point on

a logical qubit encoded in a mulit-photon state of a single cavity. This thesis presents the

first experiments in implementing quantum operations between multi-photon states stored

in two separate cavities. We first explore the ability to create complex two-mode entangled

states and perform full characterisation in a novel multi-cavity architecture. Subsequently,

we demonstrate the capability to implement conditional quantum gates between two cavity

modes, assisted by a single ancilla. In addition, we develop a direct, tunable coupling be-

tween two spectrally separated cavities and use it to study complex multiphoton interference

between stationary bosonic states. Combining this with robust single cavity controls, we

construct a universal entangling gate between multi-photon states. The results presented in

this thesis demonstrate the vast potential of 3D superconducting systems as robust, error-

correctable quantum modules and the techniques developed constitute an important toolset

towards realising universal quantum computing on error-corrected qubits.
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Chapter 1

Introduction

The idea of using the unique characteristics of quantum mechanics to perform computational

tasks is first brought forth by Richard Feynman [1]. In his vision, a quantum computer will

not only provide significant speed-ups over its classical counterparts but more crucially, will

allow us to simulate quantum mechanical phenomena in nature that cannot be captured by

classical machines. In less than three decades since Feynman’s thought experiment, the field

of quantum computing and quantum information science is abuzz with amazing new ideas

and developments. The rapid progress both our understanding of the fundamental features

of quantum mechanics and the ability to verify these concepts experimentally has made the

realisation of a quantum computer closer than ever.

In order to fully comprehend the concepts of quantum computing, one must be willing to

relinquish the familiar, and comforting, principles that govern the operations of a classical

computer. This is because the inner workings of a quantum computer are fundamentally

different from the usual modus operandi of computation in the classical world. In contrast

to the deterministic nature of classical mechanics, the outcome of a quantum measurement

is intrinsically probablistic. Further, the ‘spooky’ effects of quantum mechanics, such as

supersposition and entanglement, are exploited as a feature rather than a bug. David

Deutsch summed up these unusual characteristics and the resulting computational potential

of a quantum computer using a concept he called ‘quantum parallelism’. It highlights

that a quantum machine could provide the ability to act on superpositions and therefore

the global properties of a large system can be extracted efficiently with a single round of

5



1.1. A QUANTUM BIT 6

computation. This gives a quantum computer superior computational power over its classical

counterparts and makes it ideal for solving highly demanding problems such as factorisation

and simulations involving a large ensemble of particles.

In this brief introductory chapter, I will touch on some of the most basic building blocks

of a quantum computer. My goal is to provide a brief overview of some key ideas that

have shaped the direction of my experimental work, rather than providing an extensive

review of the field. We will look into three main topics: the properties of a quantum bit

(section 1.1), the mechanisms that could degrade the quantum information (section 1.2), and

the remedy against them (section 1.3). The discussion will then be followed by a synopsis

of the forthcoming chapters in the rest of this thesis.

1.1 A quantum bit

Just as a bit is a fundamental concept of classical information, a quantum bit, or ‘qubit’

for short, is an elementary building block of quantum information and quantum computing.

However, unlike its classical counterpart, a qubit has more than two possible states. A

general state of a qubit can be described by its wavefunction,

|ψ〉 = α|0〉+ β|1〉 (1.1)

where α, β can be complex numbers and |α|2+ |β|2 = 1. In other words, the state of a qubit

is a vector in a two-dimensional complex vector space span by the basis states {|0〉, |1〉}.
In fact, any pure state state can be represented by a state vector in this space. While |ψ〉
contains the full information about a pure state, it is insufficient if we want to describe

quantum systems in mixed states, which are statistical ensembles of several quantum states.

Instead, we can use the density matrix, ρ, as a more general description of the quantum

system. It is defined as

ρ =
∑
j

pj |ψj〉〈ψj | (1.2)
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where the coefficient pj is the probability of being in a state |ψj〉. The density matrix

formalism offers a convenient tool to describe a general quantum system and its dynamics.

ϕ

θ

|0〉

|1〉

Figure 1.1: The Bloch sphere representation of a qubit. It allows a geometric in-
terpretation of the qubit state which can be expressed by a complex vector on the sphere.
It can be characterised by two numbers that corresponds to the equatorial and azimuthal
angles, θ and ϕ

A qubit can be implemented in many different physical forms. In fact, any quantum

state with two well-defined levels, such as the orientation of a nuclear spin in a magnetic

field or the energy levels of an atom, can be used to realise a qubit. A useful geometrical

representation for a two-level quantum systems is the Bloch sphere, as illustrated in Fig 1.1,

where the two poles correspond to the two orthogonal basis states, denoted as |0〉 and |1〉.
Any arbitrary qubit state can be visualised as a point on this unit three-dimensional sphere

defined by

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (1.3)

where θ, ϕ are real numbers. All pure states of two-level the system can be simple described

as a point lying on the surface of the sphere, whereas the interior points correspond to

the mixed states associated to the density operator ρ. One can, in principle, store an

infinite amount of information within a single Bloch sphere. However, due to the quantum

mechanical nature of the system, only a single bit of information about the state of the qubit

can be obtained from each measurement.

We can fully control these quantum bits and their superpositions using quantum gates.
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Since any single qubit state can be represented by a two-component complex vector on the

Bloch sphere, we can also express the gates as simple 2 × 2 Hermitian matrices (M = M †).

One particularly useful set of M is given by the Pauli matrices, which can be written as

σz =

⎛⎜⎝1 0

0 −1

⎞⎟⎠ , σx =

⎛⎜⎝0 1

1 0

⎞⎟⎠ , σy =

⎛⎜⎝0 −i

i 0

⎞⎟⎠ , σi = I =

⎛⎜⎝1 0

0 1

⎞⎟⎠ (1.4)

We can visualise the action of these operations on the Bloch sphere of a qubit, where σx,y,z is

simply a rotation by π about each respective axis. In other words, σz imparts a differential

phase of π between |0〉 and |1〉 and σx flips their populations, σy performs both of these

operations together, and σi is equivalent to the identity operation. They provide a complete

set gates to perform arbitrary manipulations of a qubit.

The appeal of a quantum computing over classical systems becomes apparent when we

bring together multiple quantum bits. Thanks to the ability of a single qubit to be in

a superposition state, a two-qubit state can now exist in a superposition of 2N , (N = 2)

different states.

|ψ〉 = |ψ〉Q1 ⊗ |ψ〉Q2

=
1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)

=
1

2
(|00〉+ |01〉+ |10〉+ |11〉) (1.5)

Taking advantage of the nature of quantum mechanics, a quantum computer is able to

operate on all possible configurations of the state simultaneously. This feature is called

quantum parallelism. With the help of clever transformations [2, 3], it allows us to extract

the global property of the system efficiently with a single round of calculation. In other

words, we can consider a system with N qubits as a function, f(x), which contains 2N

arguments. If we were to compute a complete table of the values of f(x) on a classical

computer, 2N calculations are required. The problem quickly becomes intractable due to

this hefty scaling. In contrast, a quantum computer, thanks to quantum parallelism, is



1.1. A QUANTUM BIT 9

able to compute f(x) once and extract the global properties of the system. This allows

the quantum computer to achieve exponential speed-ups and hence, significant boost of its

computational power.

|A 〉 |A 〉

|A ⊕B〉|B 〉
ÛCNOT =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠

Figure 1.2: A CNOT gate. The circuit representation of a CNOT gate between A and B
with its corresponding unitary matrix

Another uniquely quantum mechanical resource that can be harnessed for quantum com-

puting is entanglement. When systems are entangled with one another, the resulting mea-

surement correlations are stronger than the bounds set by classical physics. When such

non-classical correlations exist among the parts of a system, we can no longer fully decipher

the state of the system by dividing it up and studying the individual parts separately. An

example of maximally entangled state of two qubits is defined as

|φ±〉 = 1√
2
(|00〉 ± |11〉) (1.6)

In such a state, local measurement of the first bit along any chosen axis yields a completely

random outcome. This type of entangled state can be generated using the controlled-NOT

(CNOT) gate. Similar to single qubit manipulations, the CNOT gate can be expressed as

a unitary matrix UCNOT (Fig 1.2). It is a transformation that flips the second (Target) bit

if the first (Control) is ‘1’, and acts trivially if the first is ‘0’. Therefore, by initialising the

Control in a superposition state, we can generate an entangled pair of qubits, which is often

referred to as an EPR pair or a Bell state. Their highly non-classical correlations provide

valuable resources for a wide range applications such as quantum teleportation and quantum

key distribution.
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1.2 Fragility of a quantum bit

Unique features of quantum mechanics such as superposition and entanglement allow a

quantum computer to have superior computational potential over any classical machine.

However, these very features also make quantum information much more fragile. Let us

consider a simple comparison between a classical and quantum switch as shown in Fig 1.3.

In a classical system, the state of a switch is determined by some control parameter (e.g

the applied voltage). Since a classical bit is only binary, i.e. it can take one of two possible

outcomes, we can choose a threshold value to divide the response of the system to either ‘0’

or ‘1’. As a result, there is no direct one-to-one mapping between the value of the control

parameter to the final state of the switch and hence, a small fluctuation in the control signal

by ±ε does not lead to an incorrect response of the switch.

ϕ

θ

|0〉

|1〉

+ ε− ε

Figure 1.3: Cartoon description of the different nature of classical and quantum
errors. (a) The state of a classical bit, such as whether a switch is open or closed, is
governed by a control signal with a well-defined threshold (purple dashed line). Any value
below the threshold counts as a ‘0’ and any value above it, a ‘1’. When a small amount of
noise (error) with amplitude ε occurs in the control signal, it will not affect the state value
assigned. (b) In contrast to this, a quantum bit lives on the surface of a Bloch sphere and
hence, its parameters are no longer discrete numbers. Any small amount of noise would
affect the state of the qubit and corrupt the information it carries.

Physically, errors can occur in a quantum system due to either imperfect operations

(unitary errors) on the state or environmental decoherence. The former is usually associ-

ated with incorrect knowledge of the full system dynamics. This results in errors in the

unitary manipulations we perform on the qubits and causes the operation to deviate from
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ϕ

θ

|0〉

|1〉

E0 =
√
p

(
1 0
0 1

)

E0 =
√
p

(
1 0
0 1

)

E1 =
√
1− p

(
0 1
1 0

)

E1 =
√

1− p

(
0 −1
1 0

)

Figure 1.4: Effects of two types of errors on a qubit. A bit flip error causes the state
of a qubit to be flipped from |0〉 to |1〉 (and vice versa) with probability 1−p. This causes a
contraction of the Bloch sphere in the ŷ − ẑ plane, while leaving the x-axis unharmed. The
phase flip error modifies the phase of the quantum superposition. This causes an contraction
in the x̂− ŷ plane while leaving the z-components intact

the intended unitary transformation. However, even if we can somehow achieve perfect

knowledge of our quantum system, we still face the challenge of decoherence. It is generally

defined as a process in which the environment continually measures the quantum system,

collapsing it into one of its basis states. Despite our best efforts in isolating the delicate

quantum information from its noisy environment, it always has some finite interaction with

the outside world. There are three main types of decoherence mechanisms in a two-level

system. Consider a state |ψ〉 = c0|g〉 + c1|e〉. It can experience amplitude damping, which

can be thought of as a loss of excitation, at rate Γ↓. This is the undesired change of the

qubit’s state from |e〉 to |g〉 due to the an exchange of energy between the qubit and the

environment which has an equilibrium population of nth. The second type of decoherence

is dephasing, occurring at the timescale Tφ. It is a unique quantum error channel which

leads to a modification of the phase relationship between c0 and c1 without any energy loss.

Additionally, the upward transition from |g〉 to |e〉 at rate Γ↑ will also degrade the coherence

of the quantum state. Overall, these processes will cause the state of the qubit to decay

exponentially in time, t, towards a thermal equilibrium with its environment and completely

corrupt the quantum information. As a result of these decoherence processes, quantum in-

formation is subjected to two types of errors: bit flip and phase flip, as illustrated by the two
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deformed Bloch spheres in Fig 1.4. We can quantify the associated time scales with a single

decoherence time T2, where 1/T2 = 1/2T1 +1/Tφ, where 1/T1 = Γ↑ +Γ↓. Finite T2 in most

quantum systems poses a major limitation to quality of quantum gates and complexity of

the operations. The investigation of the various mechanisms that causes qubit decoherence

is an extensive research area on its own. While we will not go into the details of these topics,

one must recognise that in order to design a robust quantum computer, we must overcome

these decoherence penalties. This demands both better coherence properties of our quantum

system as well as clever quantum error correction schemes that will eventually allow us to

detect and rectify both unitary and naturally-occurring errors in the quantum computer.

1.3 Towards operations on error-corrected logical qubits

Despite the seemingly insurmountable challenge of preserving quantum information in pres-

ence of the above-mentioned error channels, there is still hope for the quantum computer!

Sophisticated quantum error correction (QEC) schemes have been developed to combat both

unitary errors and decoherence. Central to these algorithms is the familiar idea of redun-

dancy, which is used to provide protection against bit flip errors in classical error correction.

In the quantum regime, instead of putting quantum information in single a two-level system,

henceforth referred to as a physical qubit, we can redundantly encode the same informa-

tion in a higher dimensional Hilbert space. When such an encoded bit of information is

exposed to the ravages of a noisy environment or actions of a flawed quantum gate, we can

now exploit certain symmetry properties associated with the particular encoding to detect

and correct errors and recover the information without any corruption. We define this type

of quantum entity as a logical qubit. Regardless of the specific physical implementation,

quantum computation must ultimately be carried out on these error-protected logical qubits

rather than directly on two-level systems.

The ability to implement robust logical qubits is no doubt an important milestone in

quantum computing and a culmination of the continual efforts in various other aspects. I

find it very instructive to think about the requirements of a successful quantum computer
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Figure 1.5: A roadmap for quantum computing. Figure reproduced from Ref. [4]
describing the key stages in the development of robust quantum computation. While each
advancement is built upon the mastery of the preceding steps, every individual component
is aw continuing task that needs to perfected in parallel with the others.

as a set overlapping and interconnecting stages (Fig 1.5) as discussed in Ref. [4]. The

most fundamental requirement is the ability to have a robust physical qubit with sufficient

coherence to allow its quantum state to be robustly manipulated and measured. Having

established that, one must then control multiple physical qubits and implement high-quality

quantum gates between them. Naturally, we must also be able to faithfully obtain the

information without destroying it through the quantum non-demolition measurements. All

of these steps are pivotal for the realisation of logical qubits which can be protected against

quantum errors and have more robust performance than its uncorrected constituent parts.

This is no easy feat but absolutely critical. The ability to attain this milestone will allow

us to tackle the final hurdles of manipulating a collection of such logicals in order achieve

the eventual realisation of a robust quantum machine. Although many of these topics will

not discussed in detail in the scope of this writing, I must emphasise that eventual success

of our efforts will depend on continual research and improvements in each and every area

mentioned above.
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1.4 A précis of the chapters to come

The overarching theme of my Ph.D work is the development of essential tools required for

implementing complex quantum operations on multiple logical qubits. This is very much

motivated by the need for efficient quantum error correction as mentioned in introductory

remarks above. In chapter two, I will describe the basics of our physical system, namely,

superconducting circuit Quantum Electrodynamics (cQED) and aim to provide an overview

of some of the exciting experimental progress made in this framework. In particular, I

will introduce 3D superconducting cavities and highlight the reasons why it has become

an increasingly attractive candidate for encoding quantum information. Needless to say,

we will also devote time to discuss the Josephson junction and the transmon qubit, both

are indispensable components for quantum operations in cQED. We will then proceed to

discuss the control and measurement of single logical qubits encoded in cavities before ending

chapter two with a brief discussion of how we can expand our information capacity by going

to multi-cavity architectures.

In chapter three, I will elaborate on the idea of building a 3D multi-cavity structure

where we can encode several logical qubits and implement operations amongst them using

nonlinearities provided by transmon ancillae. I will describe in detail the design principles

of the very first copy of a two-cavity system, bridged by a Y-shaped transmon which we

call the ‘Ymon’. Following this, we will dwell into some techniques used to characterise this

sample and highlight the its properties. In the last section of the chapter, we will introduce

some of the upgrades introduced in the next generation of multi-cavity devices to facilitate

the increasing complexity of the experiments. The devices described in this chapter form

the cornerstone of all my major experimental works, which are discussed in the following

four chapters.

Chapter four provides the details of the very first two-cavity experiment where we created

and characterised a two-mode entangled cat state living in two spatially and spectrally

separated boxes. In section 4.1, I will describe the entanglement generation between the two

cavity modes via their dispersive interaction with the transmon ancilla. Following this, we
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will explore the challenges of characterising the two-mode entangled cat state and how we

can use additional levels in the transmon to perform joint Wigner measurements. In the final

section of the chapter, I will show that this state is both an elegant demonstration of non-

local mesoscopic entanglement and a useful resource for quantum information processing.

The next experiment carried out using this architecture goes beyond state creation and

measurement; it aims to implement an entangling operation between multi-photon states

stored in two separate cavities. This work is documented in chapter five, where I will start

by describing an driven sideband transition that allows the transfer of excitation between a

cavity and a transmon. In the subsequent section, I will explain how we combine this type

of engineered interaction with the natural Hamiltonian to implement a CNOT gate between

two cavity modes. Finally, we characterise the performance of this operation using quantum

process tomography (QPT) as discussed in the section 5.3. In the concluding section of this

chapter, I will have a discussion about the limitations of this implementation and how we

can overcome them in future experiments.

Chapter six will present a different strategy to enable cavity-cavity interactions. I will

describe the method used to directly couple two cavity modes without physically populating

the excited levels of the transmon. We will study this type of engineered bilinear coupling

in depth and quantify the imperfections present in our particular implementation. We will

then proceed to show that this type of coupling alone can accomplish a variety of operations

between two cavities such a 50:50 beamsplitter and a SWAP gate. Finally, we employ this

type of coupling to implement a series of bosonic interference experiments between two

detuned cavities using the 3D multi-cavity device.

In the final experiment, we will delve into the details of how we utilise this bilinear

coupling to construct the exponential-SWAP (e-SWAP) unitary. It is a particularly useful

operation because it provides a universal entangling capability between two bosonic modes.

We will present a robust protocol to realise this unitary in cQED that suppresses the penalty

of transmon T1 and T2 errors. I will then demonstrate this operation in action using different

types of encodings. Last but not least, I will explore the future extensions of this experiment

and some modifications to the system that would overcome some of the current limitations.
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Finally, in the closing chapter, I aim to provide a holistic overview of my experiments

and their relevance to our vision of modular quantum computer. I hope that the ideas and

experimental progress documented in the preceding chapters of this thesis will inspire the

readers to continue to push the frontiers of quantum computing with both great stoicism

and optimism, and very importantly, have fun during the process.



Chapter 2

Logical qubits in Circuit QED

Over the past decade, quantum computing and quantum information science have gathered

tremendous momentum from both academic and commercial research entities alike. With

this comes the relentless progress in both the theoretical and experimental front, making such

quantum machines no longer merely mathematical curiosities. In fact, the field has brought

together a diverse, inter-disciplinary assembly of scientists and engineers who are working

towards realising a robust and scalable quantum computer in various different physical

systems. In general, any physical implementation of quantum information processing must

satisfy a few basic prerequisites as outlined in [5]. These requirements include the ability to

robustly represent quantum information and perform a universal set of unitary operations

on them. Furthermore, we must also be able to both prepare fiducial initial states and

faithfully measure the outcomes after quantum operations.

While many physical systems have shown outstanding capabilities in a particular aspect

of these criteria, it remains a rather difficult balancing act to meet all the requirements. For

example, optical photons, with their two orthogonal polarisations, are an attractive system

to represent a quantum bit because they are chargeless particles that interact weakly with

one another, as well as the environment. Consequently, they can also be easily transmitted

over long distances with low loss in optical fibres, delayed with phase shifters, and combined

using beamsplitters. However, the same properties that make photons appealing quantum

systems also mean that it is highly challenging to both produce high-quality non-classical

initial states and implement deterministic, non-linear operations between individual photons.

17
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Such trade-offs are generally present in other physical implementations as well and the ability

to achieve an optimised balance between these aspects is often key to designing an effective

system for quantum computing.

The system that we focus on essentially consists of quantised superconducting electrical

circuits where some non-linear elements, sometimes referred to as ‘artificial atoms’, interact

with linear oscillators in the quantum regime. This general framework is referred to as circuit

quantum electrodynamics (cQED) by analogy to cavity QED where photons interact with

real atoms. cQED systems have an intrinsic advantage in achieving the balance between

the above-mentioned aspects of quantum computing, which makes them ideal platform for

quantum computing. Some of the merits of superconducting cQED implementations are

highlighted here:

- Ultra-low dissipation due to superconductivity. Superconductors can carry

electric signals without energy loss. This is a crucial condition for preservation of

quantum coherence of this system.

- Low noise as a result of low temperature. Superconducting devices are gen-

erally operated at 10-20 mK inside commercially-built dilution refrigerators. At this

temperature, the typical energy, kT , associated with thermal fluctuations is insignifi-

cant compare to the transition energy, �ω01 of a two-level system, usually designed to

have ω01 ∼ 5-10 GHz. This ensures that any thermal occupation is negligible and the

system can truly remain in its quantum ground state.

- Availability of non-dissipative nonlinear element. Quantum computing cannot

be performed using purely linear components. In cQED devices, the nonlinearity is

provided by Josephson tunnel junctions, which are non-dissipative quantum elements

at the operating temperatures of superconducting devices. They are also relatively

straightforward to fabricate and can be easily integrated with other superconducting

structures.

- Highly engineerable and lithographically defined Hamiltonians. The exact

parameters for each individual circuit can be simulated and optimised a priori to
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produce the most suitable device for the intended task. The fabrication process is rel-

atively fast and reliable, thanks to the highly mature electron-beam and photo lithog-

raphy technologies. This makes it possible for us to achieve target system parameters

with good precision.

- Low noise classical controls. Such systems are typically probed with microwave

signals which have much more favourable noise properties compared to those associated

with DC controls and better stability than most lasers.

Taking advantages of these favourable properties, superconducting cQED systems have

shown outstanding progress in recent years and emerged as one of the most promising con-

tenders for the realisation of robust quantum computation. Numerous breakthroughs, from

the continual improvements of coherence properties to the rapid developments in high qual-

ity manipulations and characterisation of complex quantum states, have been demonstrated

over the past decade.

The experiments covered in thesis are all carried out in the cQED playground with

3D superconducting systems and this chapter is dedicated to provide an overview of this

framework. Since the physics of cQED have been discussed extensively in many excellent

articles [6, 7, 8] and textbooks [9, 10, 11], I will not attempt to present an exhaustive

account in this thesis. Rather, I will summarise the basic concepts with a focus on the

specific knowledge necessary for understanding the experimental works described in the

later chapters.

In section 2.1, I will start by describing one of the simplest cQED components: the

quantum harmonic oscillator. We will outline the derivation of its quantised energy levels

and briefly discuss the physical realisations of such quantum oscillators in superconducting

systems. Then, in section 2.2, we will discuss the coupling of such linear modes to artificial

atoms constructed using Josephson junctions. The specific type of artificial atom developed

and most commonly studied in our team is the transmon [12]. It is the preferred nonlinear

element in our systems for its good coherence properties and well-understood system Hamil-

tonian. Subsequently, section 2.3 will provide details about the Hamiltonian that described
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the transmon-resonator system. In particular, we will consider the dispersive coupling which

is responsible for the efficient readout of the transmon state and also allows us to implement

conditional operations on a cavity state. In section 2.5, I will present the techniques used to

manipulate and measure quantum information encoded in a cavity via its dispersive coupling

to a transmon ancilla. We will conclude this chapter by discussing how we can use such

systems to store quantum information in a manner that offers protection against errors in

section 2.6.

2.1 Quantum LC oscillators

An LC oscillator, illustrated in Fig. 2.1(a), is one of the simplest circuit elements where the

total energy of the system oscillates between the inductor and the capacitor. We can model

the dynamics of such an oscillator by considering the Lagrangian in terms of the capacitor

charge, Q, and inductor current, I:

L =
1

2
LI2 − 1

2

Q2

C
(2.1)

In the lumped element limit where the physical size of the oscillator is much smaller than the

wavelength of the electromagnetic waves at the frequency of the oscillator, we can assume

that the current flow in the wires of the inductor does not build up charges anywhere except

on the plates of the capacitor. Therefore, using charge conservation, I = Q̇, we can write

L =
L

2
Q̇2 − 1

2C
Q2 (2.2)

We now have reduced the system’s dynamics to a single degree of freedom, which corresponds

to the collective motion of all the electrons sloshing back and forth, charging and discharging

the capacitor. Using Eq. 2.2, we derive the Euler-Lagrange equation of motion for the LC

oscillator as

Q̈ = −ω2Q (2.3)
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|2〉

U =
Φ2

2L

Figure 2.1: Quantised harmonic oscillator (a) A harmonic oscillator in the form of a
resonant LC circuit, where L is the inductance C the capacitance and Φ a time-dependent
flux that is analogous to the position variable in a classical oscillator such as pendulum.
Similarly, just the momentum is conjugate variable to position, the charge, Q, here is the
conjugate to Φ. (b) The equally-spaced energy levels of a quantised LC oscillator. The
wavefunctions corresponding to the first four energy levels are sketched in red, yellow, green,
and blue, respectively.

with ω being the resonance frequency of the resonator given by ω = 1/
√
LC. This is akin

to the treatment of a simple system of mass on a spring where frequency of the oscillation,

ω, is only a function of the ‘mass’ (L) and the ‘spring constant’ (1/C).

Now we can write the Hamiltonian of the system as

H =
δL
δQ̇

Q̇− L =
Φ2

2L
+

1

2C
Q2 (2.4)

where Φ = δL
δQ̇

, is the node flux and the conjugate variable to Q. We can consider Φ

as the position coordinate of the system and Q the conjugate momentum, or vice versa.

Following the usual treatment, Φ and Q can be promoted to quantum operators by obeying

the canonical commutation relation:

[Φ̂, Q̂] = −i� (2.5)

and we can write the Hamiltonian of quantum LC oscillator:

Ĥ = �ω(â†â+
1

2
) (2.6)



2.1. QUANTUM LC OSCILLATORS 22

with the raising and lowering operators â†, â:

â = i
1√

2L�ω
Φ̂ +

1√
2C�ω

Q̂ (2.7)

â† = −i
1√

2L�ω
Φ̂ +

1√
2C�ω

Q̂ (2.8)

This recovers the familiar dynamics of particle in a parabolic potential well and the wavefunc-

tion associated with each energy level describes the probability amplitudes that a particle

can be found at certain positions within the well as sketched in Fig. 2.1(b). The energy

eigenstates of the Hamiltonian, |n〉, are known as Fock states. Since (â†)m|n〉 are also eigen-

states for any integer m, there are infinite number of energy eigenstates with energies evenly

separated by �ω.

We can also express the charge and phase operators in terms of â, â†:

Φ̂ = ΦZPF(â+ â†) (2.9)

Q̂ = −iQZPF(â− â†) (2.10)

where ΦZPF =
√
�Z/2, QZPF =

√
�/2Z are the zero-point fluctuations of the phase and

charge of the oscillator’s ground state, and Z =
√
L/C the characteristic impedance of the

circuit. From this, we note that ΦZPF and QZPF are two conjugate variables that obey the

Heisenberg’s uncertainty relation.

This simple calculation reveals an interesting feature of the quantum LC oscillator: its

fully quantum mechanical dynamics are shaped by two classical, macroscopic observables L

and C. Both of these quantities can be designed and fabricated with good precision using

standard lithographical or machining techniques. This entails that we now have at our

disposal a fully quantum mechanical device whose characteristics can be engineered reliably

and reproducibly. In particular, we can design the resonance frequency of the oscillator

such that it can be cooled to its ground state, |0〉, at the operating temperatures of a

commercial dilution refrigerator ( T ∼ 10 mK ) in order to suppress undesired population

in the higher energy levels. This requirements puts a lower bound on the frequency given
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by ω/2π � 5 GHz for a vanishingly small population in |1〉 suppressed by the Boltzmann

factor e−�ω/kBT � e−20.

λ/4

e−βz
e−βz

Figure 2.2: Planar and 3D superconducting resonators (a) Schematic illustration of a
typical coplanar waveguide (CPW) resonator used in cQED. It consists of a superconducting
wire evaporated on an insulating substrate with the ground planes on the same surface.
The resonance frequency is determined by the length of the centre conductor and can be
fabricated with high precision using standard lithographic methods. (b) Another physical
implementation of such an LC oscillator in a 3D architecture where the energy resides
primarily in vacuum, allowing superior coherence properties compared to planar structures.

There are many ways to realise a quantum LC oscillator in cQED. Broadly speaking,

they can be constructed using any structure with well-defined electromagnetic modes such

as transmission lines or cavities. Mathematically, a cavity can be treated as the continuum

limit of a chain of the simple LC oscillators described above plus some additional resistive

component reflect the losses present in the physical realisation. Two examples of quantum

resonators commonly used in our experiments are illustrated in Fig. 2.2. The coplanar

waveguide (CPW) resonator shown in Fig. 2.2(a) is composed of a centre conductor of

length, ‘L’, width, ‘w’, separated by a gap, ‘g’, from the ground plane [13, 8]. These values

are chosen to achieve a certain characteristic impedance, usually Z0 = 50Ω. The structure is

patterned on a dielectric wafer with thin-film superconducting material, usually aluminium,

deposited on the surface using either photo lithography or electron-beam lithography. It

has been shown that the state-of-the-art CPW resonators can reach internal quality factors

of Qint ∼ 106 [14]. Such planar structures are compact and easy to fabricate, making them

a staple in many cQED experiements. However, it is understood that their coherence will

ultimately be limited by the material imperfections as most of the electric energy of such a

resonator is stored in the substrate. To further prolong the lifetime of these resonators, it
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is desirable to devise an alternative structure in which the electric energy of the resonator

is predominantly stored in materials with low loss.

This leads us to a different design of quantum oscillators using 3D structures, in which

the electric field resides primarily in vacuum, which is lossless. In Fig. 2.2(b), we highlight a

particular design that has demonstrated outstanding coherence properties with Qint ∼ 108.

In this design, a quarter-wave coaxial resonator is defined by short circuiting the inner and

outer conductors of the coaxial transmission line at the bottom of the cylindrical structure

and open circuiting the line at a distance λ/4 away. The top of the centre conductor and

the sidewalls of the cylinder form a waveguide with a cutoff frequency much higher than the

resonance of the coaxial resonator in order to suppress energy dissipation. The quality factor

is further enhanced by the lack of seams as the entire structure is machined out of a single

block of high-purity (4N) aluminium. With these features, this type of 3D stub cavity has

become an increasingly popular candidate for microwave quantum memories with storage

times exceeding milliseconds [15]. They are in fact featured prominently in the experimental

work discussed chapters 4 - 7.

2.2 Adding non-linearity with the Josephson junction

Having described the quantum mechanical properties of superconducting LC oscillators in

the previous section, we now consider how they can be employed in quantum computation.

Unfortunately, due to the degeneracy of their energy spectrum, such systems do not provide

us a suitable two-level system to represent a quantum bit. In order to lift the degeneracy, we

must introduce some form of non-linearity to the system without sacrificing the long storage

times provided by these high-Q cavities.

This goal is accomplished by a remarkably simple and lossless quantum element called the

Josephson junction [16, 17]. A cartoon of a junction is shown in Fig. 2.3(a). It consists of two

superconducting islands separated by a thin insulating barrier. Although such a structure is

made up of millions of electrons, we can represent their collective state by a single degree of

freedom. This is because pairs of electrons, known as Cooper pairs, can be condensed into
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a single collective ground state as we cool the device below the critical temperature of the

superconductor. They can also coherently tunnel through the thin insulating barrier, which

leads to a phase difference, φ, between the macroscopic wavefunctions on each side of the

barrier. This yields a new current-flux relationship described by the Josephon relation:

I(t) = Ic sinφ(t) (2.11)

where I(t) is the tunneling supercurrent; φ(t) = Φ/Φ0 the phase across the junction with

Φ0 = h/2e. The characteristics of the junction is determined by Ic, which is the critical

current of the superconductor and is usually set by the fabrication parameters of the junction.

By replacing the linear inductor in a LC oscillator with the non-linear Josephson junction, we

have essentially modified the quadratic potential of the linear oscillator to a cosine function

as shown in Fig. 2.3b. This lifts the degeneracy between the different energy levels and

therefore, making it possible for them to be addressed individually.

�ω

U = EJ cosΦ

�ω − α

|g〉

|f〉
|e〉

Figure 2.3: An anharmonic quantum oscillator. (a) A Josephson junction can be
modeled as an oscillator with a non-linear inductance. Physically, this element (represented
by the green box with a cross within) is composed of two superconductors separated by a
thin insulating layer that allows the tunneling of electrons in pairs (Cooper pairs). When
cooled far below the critical temperature of the superconductor, the tunneling events cause
no significant dissipation, making the junction essentially a lossless non-linear inductor. (b)
Due to the presence of the junction, the oscillator’s potential is no longer quadratic (grey
dashed line). Instead, it becomes a cosine function (green) of the node flux, Φ. As a result,
the degeneracy is lifted and the energy eigenstates can now be addressed individually

There are many different types of superconducting circuits which exploit the non-linearity

that the Josephson junction offers. Traditionally, they employ either the flux [18, 19, 20],

phase [21, 22] or charge [23, 24, 25] as the quantum degree of freedom. In the scope of
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this work, we will focus on a particular type of Josephson junction based device called the

transmon [26]. Its design was motivated by the need to suppress the sensitivity to charge

noise which was a significant source of decoherence for superconducting charge qubits. The

design of the transmon is simple: it is only composed of a single junction shunted by a

large capacitance. Following the treatment in Ref. [26] and Ref. [27], we can describe the

transmon circuit by the simple Hamiltonian:

Ĥ = 4EC(n̂− n0)
2 − EJ cos Φ̂ (2.12)

where n̂, Φ̂ are the normalised operators for the charge and phase difference across the

junction, n0 is the offset charge. EC, EJ are design parameters that determine the key

features of transmon. In particular, the transition frequency between the ground, |g〉, and

first excited state, |e〉, scales as ωge ∼
√
8EJEC. The charge noise refers to the fluctuations

of n0, which cause a change in the transition frequency of the circuit and induce dephasing.

The protection against charge noise is achieved by choosing the parameters of the transmon

such that 1 	 EJ/EC < 104.

Another key parameter in the transmon design is its anharmonicity, α. It is defined as

the difference in transition energies of the a particular level, m, with its two neighbouring

ones,m ± 1 (also referred to as absolute anharmonicity). From the exact diagonalisation

of the transmon Hamiltonian in Ref. [26], we find that in the limit of large EJ/EC, the

anharmonicity simply scales with EC:

α = Em+1,m − Em,m−1 � −EC (2.13)

This indicates that as we increase EJ/EC for reduced charge noise, we are also inadvertently

lowering the anharmonicity of the transmon. A small anharmonicity undermines our ability

to selectively address individual transitions with fast microwave controls. Fortunately, while

the charge dispersion scales exponentially with EJ/EC, the α only scales polynomially.

Therefore, in the transmon regime, it is possible to design devices with both good coherence

times (∼ 50− 100μs) and large anharmonicity (α ∼ 200 MHz) by choosing the appropriate
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design parameters EJ and EC.

All the relevant design parameters can be simulate accurately thanks to the simplicity

of the transmon circuit. Another advantage of the transmon is its easy fabrication pro-

cess, which involves well-established electron-beam and photo lithographic procedures. This

makes it possible for us to engineer and fabricate precise device parameters that are opti-

mised for the particular study. These favourable traits make the transmon a highly robust

and versatile resource that is becoming the staple of many cQED experiments.

2.3 Combining transmons with harmonic oscillators

The two quantum systems introduced above, namely, superconducting cavities and trans-

mons, are the two of the simplest and yet most crucial elements of cQED. We can engineer

complex quantum structures by coupling them together in different configurations.

As an example, let us consider the case of a single transmon capacitively coupled to

a simple resonator. The general Hamiltonian that describes such a system consists of the

transmon Hamiltonian (Eq 2.12), that of the resonator (Eq 2.6), and a dipole coupling

term that relates the voltage in the resonator, proportional to â† + â, to the charge of the

transmon, proportional to n̂. When the detuning between the two modes is far larger than

their coupling strength, we can derive the familiar Hamiltonian in the dispersive coupling

regime between an effective two-level system (transmon) and a superconducting resonator

as detailed in many prior works [10, 28]:

Ĥdisp/� = ωâ†â+ (ωge − χâ†â)|e〉〈e| − K

2
â†â†aâ (2.14)

where â, â† are the ladder operators of the resonator mode, ωr the resonator frequency, χ the

dispersive coupling, and K the inherited non-linearity of the resonator due to its coupling

to the transmon.

However, the transmon is not simply a two-level system. Personally, I find it more

intuitive to consider it as an anharmonic oscillator and its coupling to other modes as a

hybridisation between the two modes. To treat the transmon as an anharmonic oscillator,



2.3. COMBINING TRANSMONS WITH HARMONIC OSCILLATORS 28

let us return to Eq. 2.12. We can expand the cosine and combine the quadratic terms such

that it resembles the Hamiltonian of a harmonic oscillator (Eq. 2.6) with some higher order

perturbations:

Ĥ = 4EC(n̂− n0)
2 +

EJ

2
Φ̂2 − EJ

{
cos Φ̂− Φ̂2

2

}
(2.15)

Now we are able to diagonalise the quadratic parts to find the lowest order energy levels.

Subsequently, we expand the argument of the cosine using Eq. 2.9 and write the higher order

terms as:

Ĥ = −EJ

{
cos [Φb

ZPF(B̂ + B̂†)]− Φ̂2

2

}
(2.16)

where B̂, B̂† are the ladder operators of the bare transmon mode.

Following this treatment, the coupling of a trasmon to other modes can simply be con-

sidered as additional contributions to the flux. In a hybridised quantum system, excitations

in other modes necessarily result in some current flow through the junction, which can be

represented by a additional contributions to the argument of the cosine Hamiltonian. There-

fore, in the case of a transmon coupled to a resonator in a Jaynes-Cummings interaction,

we can write the re-diagonalised Hamiltonian of the system as:

Ĥ = −EJ

{
cos [Φb

ZPF(b̂+ b̂†) + Φa
ZPF(â+ â†)]− Φ̂2

2

}
(2.17)

where â and b̂ are the dressed operators associated with the resonator and transmon re-

spectively. This is a particularly useful framework for systems where a single transmon is

coupled to multiple resonator modes. Each additional linear mode can simply be modeled

as additional components of the flux.

We can recover the more familiar form of the dispersive coupling Hamiltonian by Tay-

lor expanding the full system Hamiltonian given by Eq. 2.17 in addition to the resonance

frequencies associated with mode â and b̂. We then take the rotating wave approximation

(RWA) [29] and keep all the non-rotating terms up to 4th order:

Ĥ/� ≈ ωaâ
†â+ ωbb̂

†b̂− χabâ
†âb̂†b̂− Kb

2
b̂†b̂†b̂b̂− Ka

2
â†â†ââ (2.18)



2.3. COMBINING TRANSMONS WITH HARMONIC OSCILLATORS 29

where ωa and ωb are the modified resonance frequencies of the resonator and transmon re-

spectively due to the non-linear coupling between them, χab denotes the dispersive coupling

between the two modes, Kb is the anharmonicity of the transmon mode, also referred to as

α, and Ka is the anharmonicity of the resonator mode inherited from the transmon. In the

limit of mode b̂ being a simple two-level system, Eq. 2.18 becomes Eq. 2.14.

Let us now have a closer look at each term in Eq. 2.18. First of all, the resonance fre-

quencies of each mode are now ‘dressed’ due to mode hybridisation. The dressed frequencies

can be accurately predicted using standard simulations and do not depend on the number

excitations in other modes. Apart from this, the generally more important term is the state-

dependent frequency shift. When operated in the strong dispersive regime, where χ is much

larger than the linewidth of the modes [13], the dispersive shift offers us a convenient tool to

implement conditional operations between a transmon and a resonator mode. One example

is the well-known dispersive readout where the frequency shift of a low-Q resonator is used

to detect the state of the transmon [6, 7]. Conversely, we can also use the the same type

of frequency shift to perform conditional gates [30] on a resonator mode controlled by the

transmon state. The remaining terms are the anharmonicities associated with each mode.

Typically, the transmon is the most non-linear element in the system with α ∼ 200 MHz.

The resonator that couples to it will inherit a small amount of non-linearity that roughly

scales as K ∼ χ2/α � 1 − 10 kHz. This small inherited nonlinearity is sufficient to lift

the degeneracy of energy levels in superconducting cavities and allow each transition to be

addressed individually.

With these useful tools afforded by the Hamiltonian, we can couple a transmon to one or

more resonators capacitively and perform quantum operations between them. Furthermore,

by engineering the resonance frequencies and coupling strengths of each mode to the envi-

ronment, we can achieve a separation of coherence times over 3 orders of magnitude between

different components in the same system. For example, in a typical system, a transmon can

simultaneously couple to a low-Q (Q ∼ 1000) resonator adapted for fast readout and a 3D

high-Q cavity (Q � 108) that is ideal for information storage.
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|e〉|g〉

Figure 2.4: Efficient readout of transmon state. (a) An example of a 2D histogram
showing the demodulated and integrated readout signal after quantum limited amplification
through a JPC. The the in-phase (I) and quadrature (Q) values are an accumulation from
1000 shots on a logarithmic scale (base 2). We achieve a good discrimination between the
transmon ground and excited state with a separation roughly 4 times the linewidth of their
respective gaussian distribution. This allows accurate determination of transmon state from
a single shot. (b) Projection of the accumulated readout signal to the I-axis. The two
Gaussian peaks are well-separated with a small overlap ≤ 0.1%. (c) Rabi measurement
of a transmon to determine the drive amplitude corresponding to a π and/or π/2 pulses.
The two red dashed lines show the Rabi contrast of ≈ 96% due to the non-zero excited
state population. This can be improved with transmon cooling either through feedback or
post-selection.

2.4 Transmon readout and characterisation

In this section, we will examine in more detail the capabilities of transmon-resonator sys-

tems provided by the dispersive Hamiltonian Eq. 2.18. We will first focus on the quantum

non-demolition (QND) measurement of a transmon state using a low-Q superconducting

resonator. This is extremely important since we often need to learn about the state of a

transmon without destroying it. Under the strong dispersive Hamiltonian, the transition fre-

quency of the resonator is dependent on the transmon state. Thus, by probing the transition

frequency with a weak microwave drive, we can infer the state of qubit without perturbing

it significantly.

An important consideration for this readout method to be effective is the relative rate at
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which the information leaks out of the system (κ) and the interaction strength (χ) between

the transmon and the resonator. The lifetime (1/κ) of the resonator can be controlled by

simply varying its coupling to a transmission line. In a typical design, we can achieve a

high-quality readout by optimising the design parameters such that χ/κ ∼ 1. Finally, we

can further enhance the readout by amplifying the outgoing signal at the quantum limit

using a Josephson parametric amplifier which can be either phase-sensitive (JBA) [31] or

phase-preserving (JPC) [32]. With this, we can efficiently determine the state of a transmon

in a single shot while preserving its quantum properties. A typical readout histogram with

the transmon initialised in a superposition of |g〉 and |e〉 is shown in Fig. 2.4(a). Here, the

transmitted signal from the resonator is shown in logarithmic scale. The two well-separated

gaussian blobs correspond to the transmon in |g〉 or |e〉 respectively.

Figure 2.5: Measurement of transmon T1 and T2 (a) T1 measurement implemented
by first exciting the transmon to |e〉 and monitor its decay back to ground state after a
variable delay time. A single exponential fit (grey) is used to extract the decay constant.
For typical devices, we expect T1 ∼ 50− 100 μs. (b) A Ramsey experiment to measure T2 of
the transmon. The experimental sequence consists of two π/2 pulses separated by a variable
delay time. The envelope of the measured oscillations indicates the T2 and the its frequency
provides us information on the detuning from the transmon |g〉 − |e〉 resonance frequency.
In this case, we intentionally introduced a 200 kHz detuning to highlight this feature.

With the ability to efficiently and accurately determine the state of a transmon, we can

now perform a series of simple measurements to determine the key parameters associated

with the transmon mode. For example, we can implement a Rabi-flopping experiment to

extract the power required to flip the transmon from |g〉 to |e〉 and vice versa. An example
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of the Rabi experiment is shown in Fig. 2.4(c) where the state of the transmon oscillates as

a function of the drive amplitude. The measured minima indicates the equilibrium thermal

population of the transmon. In this case, the device has ≤ 2% excited state population,

significantly higher than what the Boltzman statistics predict for the base temperature of

the dilution refrigerator. The source of this thermal population is not yet known, but can

sometimes be further suppressed through additional shielding and filtering. Practically, we

prepare the ground state with high fidelity by performing an initial measurement of the

transmon state and only proceed if the outcome is |g〉. We then characterise the coherence

properties of the transmon in a series of time-domain measurements.

ωgf/2
ωge

ωef

π π

Figure 2.6: Manipulation of transmon |f〉 level. (a) The protocol for manipulating the
|e〉 − |f〉 transition of a transmon using a two-step procedure. The transmon is first fully
flipped to |e〉. This followed by a pulse at ωef with variable drive amplitude and a final
π pulse at ωge before the readout. (b) The sequence for implementing a direct transition
between |g〉 and |f〉. Since it is a two-photon process, the drive is typically much stronger
than that of a regular π pulse. (c) The measured Rabi flops between |e〉 and |f〉 fitted to
a sine function. (d). The measured Rabi between |g〉 and |f〉 fitted to a a functional form
y ∝ sin 2πfx2

Another useful feature of a transmon is the potential to use its third energy level for

certain manipulations. Therefore, it would be useful to also calibrate the |f〉 state properties.

We show that since the |e〉 → |f〉 transition occurs at a different frequency from that of

|g〉 → |e〉, we can simply use the same techniques but with the drive frequency centred
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around the |e〉 − |f〉 transition instead. For example, we can perform a π pulse between the

|e〉 and |f〉 state of the transmon using the protocol described in Fig. 2.6(a). In fact, we

can manipulate any superspositions of the transmon’s |g〉, |e〉, and |f〉 levels. For example,

we can directly flip the transmon from its ground state to |f〉 by driving at the frequency

ωgf ≈ (ωge + ωef )/2.

With the ability to Rabi flop the transmon between its first three energy levels, we can

now probe the coherence time scales associated with the |f〉 state. First, we can perform

a T1 measurement to calibrate the relaxation rate of |f〉. This is done by first flipping the

transmon to |f〉 and then measure the probability of it having relaxed to either |g〉 or |e〉
after a variable delay time. An example of this measurement is shown in Fig. 2.7(a), where

the probability of remaining in |f〉 exponentially decays over time. From this, we extract a

Tef
1 ≈ 40μs, which is roughly half of the decay time of |e〉.

Figure 2.7: Coherence measurements of transmon |f〉 level. (a) T1 measurement
implemented by first exciting the transmon to |f〉 and monitor its decay back to ground
state after a variable delay time. A single exponential fit (grey) is used to extract the
decay constant. For typical devices, we expect T ef

1 ∼ 20 − 40μs, about half of that of the
|e〉 − |g〉 relaxation time. (b) A Ramsey experiment to measure T ef

2 of the transmon. The
measurement monitors coherence of the |e〉 − |f〉 superposition, which is typically half that
of the |g〉 − |e〉 superposition.

In order to measure the decoherence of the |f〉 state, we use a Ramsey interference exper-

iment with the initial transmon state being (|e〉+ |f〉)/√2 and (|g〉+ |f〉)/√2 respectively.

As expected, T2,ef and T2,gf are very similar and roughly half of that of T2,ge. This goes

to show that the transmon is an atom with at least three well-defined energy levels and we
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can use any chosen pair of these energy levels to implement conditional operations on the

cavity state. This additional degree of freedom that comes without any increased hardware

requirements is highly advantageous. We will exploit it in the entangled cat experiment

described in Chapter 4.

2.5 Control and measurement of a cavity state

Another component in our cQED toolbox is the transmon-controlled cavity state manipu-

lation. We again exploit the dispersive coupling between the transmon and the cavity to

perform non-linear operations on the cavity mode. We treat the effect of the coupling as a

shift of the transmon’s transition frequency dependent on the number of excitations present

in the cavity. We use this frequency shift to individually address a specific energy level

and perform a measurement of the cavity state using the transmon as an meter. A simple

example is the number-splitting experiment where we can probe the population in each Fock

state using a spectrally selective π pulse on the transmon (Fig. 2.8). However, this type of

measurement does not reveal any phase information of the state stored in the cavity. To

do so, we must develop new tomographic techniques that are more suitable for cavity states

which occupy a much larger Hilbert space compared to the transmons.

n̄ ≈ 0

n̄ = |α|2 ≈ 1

Figure 2.8: Ancilla spectroscopy as probe for cavity population Spectroscopy mea-
surement of the transmon in presence of zero (violet) and one average (blue) photon in the
cavity. Without any displacement, the cavity state is very close to being in vacuum, with a
small residual photon popuation ≤ 0.2%. In presence of cavity photons, dispersive coupling
shifts the |g〉 → |e〉 transition frequency down by integer multiple of χ, as shown by the blue
trace
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Due to the small inherited non-linearity, we cannot address single energy eigenstates

(Fock states) of a cavity and cause level transitions between them with just a classical drive.

Rather, we can only create coherent state of a certain amplitude and phase. Mathematically,

we can describe a coherent state α as a infinite superposition of Fock states weighted by a

Poisson distribution:

|α〉 = e−|α|2/2
∞∑
n=0

αn

√
n!
|n〉 (2.19)

Conceptually, they are the most similar to a classical state such as that of a simple oscillating

pendulum. Its state at any specific point in time has some instantaneous mean position and

velocity that have minimal and symmetric uncertainties. The evolution of such states can be

visualised as a periodic oscillation about a circular trajectory in the phase space with radius

|α|. We can characterise the action of a classical electromagnetic drive on the resonator by

a displacement operator D(α):

D̂(α) = eα
∗â−αâ† (2.20)

where α is the magnitude of the displacement in phase space. When acting on the vacuum,

which is also a coherent state, D̂(α) displaces |0〉 into a coherent state with amplitude α.

A particularly useful and illustrative measurement of the cavity state is the Wigner func-

tion. It is defined as a quasi-probability distribution of a state, ρ, or the Fourier transform

of the density matrix in the position coordinates. Therefore, the Wigner function contains

the full information of a quantum state in a cavity.

However, a more convenient way to think about the Wigner function is through its

relation to the parity operator of a system [33, 29]:

W (β) =
2

π
Tr[D̂(β)†ρD̂(β)P̂ ] (2.21)

This relates the Wigner function to the expectation values of the photon number parity

operator, P̂ = eiπâ
†â, of a cavity state after it is displaced coherently with amplitude β. It

contains complete information of the quantum state [34] and thus, we can reconstruct its

density matrix using a Wigner tomogram [35] within a certain truncated Hilbert space. It
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is also well adapted to display non-classical correlations present in the cavity state. In fact,

we can assert that the presence of negativity a state’s Wigner function is sufficient evidence

for its non-classical nature.

|e〉

|e〉 |e〉

|g〉

|g〉|g〉

|g〉

|Ψ〉

|0〉

D(β)

R y
π/2 R y

π/2

Cπ

P

Figure 2.9: Photon number parity measurement protocol. The experimental protocol
to measure the Wigner function of a cavity state in a typical module. It consists of a high-Q
storage cavity (orange) coupled to a transmon (green), which is read out by a quasiplanar
resonator (purple). All components are housed in a single high-purity aluminium package
and couples to the microwave drives via SMA couplers (yellow). The protocol maps displaced
parity onto the transmon state via two π/2 pulses separated by a wait time π/χ. The cartoon
Bloch spheres indicate the precession of Bloch vectors at different times.

The connection between the photon number parity and Wigner function is a very power-

ful tool for cQED systems because we can measure the parity of a cavity state rather easily

via its dispersive coupling with a transmon. Eigenstates of parity operator are simply states

of cavity with only even- or odd-numberd Fock states are present,

P̂ |even〉 = + |even〉 (2.22)

P̂ |odd〉 = − |odd〉 (2.23)

with eigenvalues ±1. By measuring the Wigner function, or the parity at various points in

the phase space, we are able to fully characterise a cavity state without directly probing the

exact photon number occupations and their relative phases.
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Experimentally, a parity measurement is implemented by a simple Ramsey pulse se-

quence on the transmon as depicted in Fig.2.9(a). Starting with a π/2 pulse that brings

the transmon to a superposition of |g〉 and |e〉, we simply let the system evolve for a

time corresponding to π/χ before performing another π/2. During the evolution, the cav-

ity and transmon becomes entangled at a rate χ, resulting in a precession of each Fock

state |n〉 around the Bloch sphere at rate proportional to nχ. This essentially performs

contolled-phase gate on each cavity photon conditioned on the transmon state, described

by Cπ = Î ⊗ |g〉〈g| + e−iπn̂ ⊗ |e〉〈e|. Therefore, at the time π/χ, all even photon states

would acquire a phase 2nπ while the odd states acquire (2N + 1)π, pointing them along

opposite directions on the equator of the Bloch sphere. Finally, the second π/2 pulse maps

the parity information onto either the ground and excited state of the transmon respectively.

Combing this measurement with the displacement operation, we can now perform Wigner

tomography to fully characterise a cavity state.
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Figure 2.10: Wigner representation of a cavity state. (a) Simulated Wigner function
of a Fock state |n〉 = 3. It has value -1 at the origin since |n〉 = 3 is an odd parity state.
Its radial symmetrical arises from the lack of a well-defined phase for single Fock states. (b)
Simulated Wigner function of a cat state which is an even superposition of two coherent
state |ψ〉 = (|α〉 + | − α〉)/N , with α = 2. The fringes indicate the phase coherence of the
superposition.

Another powerful feature of the dispersive coupling is that a single transmon is sufficient

to prepare any quantum states in a superconducting cavity and perform universal control on

it. This is accomplished by considering a full model of the time-dependent drift Hamiltonian

in the presence of classical control fields. It has been demonstrated [36] that for our cavity-

transmon system, numerical optimisation procedures can reliably solve the inversion problem
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of finding the control fields to implement an intended operation. In our case, the Gradient

Ascent Pulse Engineering (GRAPE) [37] method is used to efficiently compute the control

pulses, ε(t). We also impose a set of amplitude and derivative (bandwidth) penalties in the

optimisation routine in order to make that the solutions are limited to what our DACs can

physically implement.

The optimised control signals are implemented through full in-phase/quadrature (IQ)

modulated microwave fields centred on the transmon (cavity) frequencies. Using this method,

we achieve a universal set of controls on multi-photon states in a superconducting cavity

as shown in Ref.[36]. In the scope of this work, we simply use such numerically optimised

controls to create initial states. An example is shown in Fig.2.11. Here, we start with the

cavity in vacuum and transmon in its ground state. We apply the computed pulse sequence

via the coupling pins to the two modes simultaneously. This brings us to the desired state

of a coherent superposition of |0〉 and |2〉 while bringing the transmon back to its grounds

state. In most case, the duration necessary to perform an operation scales with 1/χ and

the fidelity of these sequences are ultimately limited by the coherence times of the transmon

ancillae.

Im
[β
]

Re[β] Re[β]

|0〉 1√
2
(|0〉+ |2〉)

Figure 2.11: Example of an OCT pulse. An sample of the optimal control pulse that
implements a non-trivial state transfer from vacuum (a) to a superposition of Fock states
(c). The operation is accomplished by the numerically optimised control signals on both
the transmon (green) and cavity (blue) modes. The transmon is driven to its excited state
during the sequence but ends in the ground state at the end of the operation.

Putting these capabilities together, we assemble a simple cavity-transmon system in

which we control and measure cavity states using a transmon ancilla whose state is extracted

efficiently via a another resonator. A typical design is shown in Fig. 2.9 where we couple a
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standard transmon (green) to a long-lived stub cavity (orange) where quantum information

can be coherently stored, as well as a low-Q quais-plannar resonator (purple) fabricated on

the same sapphire chip for fast readout [38]. It is a simple yet versatile quantum system

that provides a robust platform for a wide range of possibility in cQED experiments. Most

importantly, it inspires a different paradigm of hardware efficient quantum error correction

schemes.

2.6 Cavity-based QEC schemes

As discussed in the introductory remarks, quantum information is fragile and it is prone

to both bit-flip and phase-flips errors. However, the fundamental concepts of quantum

mechanics render the familiar classical error correction techniques ineffective. Therefore, in

order to eventually be able to perform faithful quantum computation, we must develop more

sophisticated quantum error correction (QEC) schemes that respect the features of quantum

mechanics. Ultimately, quantum algorithms must be performed on components that can be

made robust against errors due to decoherence and imperfection operations. At this point,

I would like to remind the reader an important distinction of physical vs logical qubits. A

physical qubit is simply a quantum object with two well-defined states. It could be a single

transmon, a electron spin or the first two levels of a slightly anharmonic resonator. On the

other hand, a logical qubit is a register or a system where a quantum bit is redundantly

encoded. It must possess a symmetry property that can be used to detect and correct errors.

So how can we construct logical qubits using available technologies in our cQED toolbox?

There are a few key considerations. First, the physical system that we choose to redundantly

encode the information must have relatively favourable coherence properties. The next

question is how one can achieve redundant encoding in an efficient manner. In the more

traditional approach to QEC schemes, a logical qubit is often composed of a collection of

physical qubits. The simplest code is the three-qubit bit flip code where the logical states

|0〉0 = |000〉 and |1〉0 = |111〉. The error syndromes are measured by mapping the parities

of the logical state onto two ancillae. While this is sufficient to detect and correct a single
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Figure 2.12: 7-Qubit error correction code. The Steane code is a first order code
is capable of correcting both phase and bit flip errors in one of the seven physical qubits
within one round of QEC. This requires a series controlled-NOT (CNOT) operations to map
joint parities of multiple qubits onto a number of ancillae, which are read out to determine
if any of the 7 physical qubits experienced an error. On top of the staggering complexity,
there are also a variety of different failure modes, a few of which are illustrated in red.

bit flip error, it fails when two of the physical qubits are flipped and is not capable of

detecting phase flips without introducing further redundancy. In order to correct both bit

and phase flip errors, we can expand the code space to incorporate 7 physical bits for the

logical encoding such as in the Steane code (Fig.2.12). It consists of 7 two-level systems as

the logical qubit and a further 6 ancillae for syndrome measurements for a single round of

QEC. Despite the significant overhead required, it can only handle errors on a single physical

qubit within the code space per round. The large number of physical qubits needed also

introduces additional decoherence penalties that leads to seven-fold increase in the logical

error rate. Despite the improvements in qubit coherence and the increasingly more robust

two-qubit operations demonstrated in recent cQED experiments, it still remains a daunting

task to implement such QEC schemes due to the highly penalising hardware overhead and

operational complexity.

Many previous works have demonstrated some elements of QEC in cQED systems [39, 40,

41, 42] as well as on other plaftorms such as NMR [43, 44], ions [45, 46], and photons [47, 48].

However, these experiments have yet been able to shown an extension of the lifetimes of the

quantum information in presence of naturally-occurring errors. In fact, the lifetime of the

logical bit is usually worse compared to a simple, uncorrectable encoding using the most
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coherent physical components in the system. This is because by using a collections of two-

level systems to redundantly represent a quantum bit, the system now is susceptible to

new error channels and an enhanced rates of decoherence. Although such imperfections can

be corrected, it inevitably requires additional physical qubits and drastically increases the

complexity. This poses a daunting task for experimentalists due to the colossal amount of

hardware overhead required for such operations

Is there an alternative approach to QEC that is more tractable and less resource-

intensive? It would be highly desirable to construct logical qubits in systems where we

can harness a larger Hilbert space without imposing too much hardware overhead. One par-

ticular quantum system that has this capability is the harmonic oscillator, where an infinite

number of energy levels are permitted within a single structure. This led to the development

of a QEC scheme that exploits the large Hilbert space of superconducting cavities instead.

in this framework, we can utilise the higher energy levels of the same cavity to redundantly

encode a quantum bit.

The cavity-based approach is a powerful tactic for QEC, offering potential protection

against various imperfections, including dephasing, loss of excitation, and thermal heating,

etc. The advantage of this strategy is two-fold. Firstly, coherence times for 3D super-

conducting cavities have exceeded that of transmons by two orders of magnitude. This

effectively reduces the rate of decoherence induced errors. Secondly, we can expand infor-

mation capacity without an insurmountable hardware requirement by using the the large

size of a cavity’s Hilbert space. Furthermore, it has been demonstrated that a logical qubit

encoded in a single cavity has only one dominant type error [49, 15], namely, single photon

loss. Therefore, we can essentially achieve redundant encoding in cavities without increasing

the error channels that the quantum bit is exposed to. In the long run, this scheme also

makes it more tractable to scale up to systems with multiple logical qubits as shown in the

experiments described later in this writing.

The governing strategy for constructing such cavity-based bosonic codes is to provide a

symmetry property that can track the occurrence of single photon jumps. Mathematically,

a loss of excitation in a resonator is equivalent to the application of the lowering operation,
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â, on the cavity field. Conveniently, another consequence associated with this is the change

of the photon number parity:

â|even〉 = |odd〉, â|odd〉 = |even〉 (2.24)

This makes the parity of a cavity state a natural syndrome for the dominant error channel.

Additionally, coherent states are an attractive option for a logical encoding since they are

eigenstates of â. Further, the overlap between two coherent states is suppressed exponentially

in the difference of their amplitudes. As a result, we can get two almost orthogonal basis

states to encode a quantum bit by simply choosing two sufficiently large coherence states.

For example, one possible choice is the ‘two-legged cat’ states where

|0〉L = |C+
α 〉 = 1√

2
(|α〉+ | − α〉) (2.25)

|1〉L = |C−
α 〉 = 1√

2
(|α〉 − | − α〉) (2.26)

The two basis states are also even (+) and odd (-) eigenstates of the number parity operator:

〈C±
α |P̂ |C±

α 〉 = ±1. This can be effectively measured as a syndrome using the Ramsey-type

experiment discussed int the previous section. However, not all states on the Bloch sphere

in this encoding have well-defined parity. For example, the state that lies along the logical

Y axis is cat with no parity, |0〉L + i|1〉L = |α〉 + i| − α〉, and hence does not possess a

measurable symmetry property to indicate the occurrence of an error.

To overcome this shortcoming, we can tap into a larger part of the cavity’s Hilbert space

such that all individual basis states are eigenstates of the parity operator. This is commonly

referred to as the ‘four-legged’ cat code where the logical space is span by superpositions of

the ‘two-legged’ cats along the real and imaginary axes in the phase space:

|0〉L = |C±
α 〉 = N±

α (|α〉 ± | − α〉); |1〉L|C±
iα〉 = N±

α (|iα〉 ± | − iα〉) (2.27)

where N±
α = 1/

√
2(1± exp(−2|α|2) and N±

α → 1/
√
2 for large α. In order to preserve

sufficient orthogonality, we must choose |α|2 � 2. It has been shown that using this encoding,
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Figure 2.13: The cycle depicting a code word in the ‘four-legged’ cat encoding
undergoing four successive photon jump events. The initial state is an even super-
position of |C+

α 〉, |C+
iα〉. Its parity switches after each photon loss and the original state is

recovered after the 4th event. Between the stochastic applications of â, the cat states also
deterministically decay towards vacuum (not shown here).

we can now directly use parity as the error syndrome corresponding to single photon loss,

which is the dominant error channel for a logical qubit stored in a cavity [50]. We can

illustrate this symmetry by considering the action of â on a logical state:

c0|C+
α 〉+ c1|C+

iα〉 â−→ c0|C−
α 〉+ ic1|C−

iα〉 â−→ c0|C+
α 〉 − c1|C+

iα〉 (2.28)

This implies that each photon loss event effectively leads to a π/2 rotation about the logical

Z axis, with the recovery of the initial logical state after 4 jumps. In other words, we have

discretised the continuous error due to decoherence. Therefore, by monitoring the parity

through single-shot measurements and repeatedly updating our knowledge of the cavity state

we keep track of the stochastic evolution of the logical qubit. Equipped with this knowledge,

we now have the capability to account for the errors and hence maintain the coherence of

the logical states beyond the coherence times of the best physical components in the system

as shown in Ref.[49]. This is a powerful scheme that has demonstrated the ability to protect

the coherence of the logical qubit against the dominant naturally occurring error. It can, in
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principal, also be corrected for dephasing errors [50].

One of the trade-offs for using continuous variable encoding schemes is the non-orthogonanlity

of the basis states. Photon loss from the cavities causes the coherent states to decay towards

vacuum and increases their overlaps. In direct competition to this effect is the increased

rate of energy loss at n̄κ from the cavity at larger photon numbers. Taking both of these

constraints into account, we choose α ≈ 2 for most of the operations described in this work.

At this amplitude, the non-orthogonality is suppressed exponentially by 4|α|2 such that

|〈α|iα〉|2 < 10−3.

|0〉L =
1√
2

( |0〉+ |4〉√
2

+ |2〉
)

|0〉L + |1〉L

|0〉L + i|1〉L

|1〉L =
1√
2

( |0〉+ |4〉√
2

− |2〉
)

Figure 2.14: Logical Bloch sphere in the Binomial encoding. The logical |0〉 and |1〉
are simply superspositions of even photon number Fock states. All code words have the
same mean photon number. A photon loss event results in a change of parity, which can be
detected as the error syndrome. The four Wigners are measurements on four of the basis
states prepared using OCT pulses

Another possible choice of bosonic encoding uses discrete variables, i.e Fock state, instead

of coherent states. As discussed in Ref. [51], we can use a finite superposition of Fock state to

construct code words that offers protection against both dephasing and amplitude damping.

One particular example is the binomial code where even Fock state superpositions, weighted
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with binomial coefficients, are used to encode a logical qubit:

|0〉L =
1√
2

( |0〉+ |4〉√
2

+ |2〉
)
; |1〉L =

1√
2

( |0〉+ |4〉√
2

− |2〉
)

(2.29)

As shown in Fig. 2.14, the logical Bloch sphere under this encoding is span by even super-

positions of Fock states with the same mean photon number. Similar to the cat code, a

photon loss even brings the logical code words to a subspace of odd photon numbers, which

is orthogonal to the even manifold. Further, with the same mean photon number in each

code words, an error does not impose any asymmetry in the logical Bloch sphere.

The advantage of this encoding scheme is that it operates in a restricted Hilbert space.

Therefore, it can be less demanding to prepare and implement unitary operations on these

code words compared to cat states. Additionally, the smaller mean photon number required

in this code also alleviates the complications due to higher order non-linearities in the system.

We can prepare these states using OCT pulses [36] and measure their Wigner functions with

high fidelity. In light of these advantages, this particular encoding is frequently adopted in

experimental works described in the later chapters.

2.7 Toward operations on multiple logical qubits

Using such bosonic encodings, we can now construct a logical qubit in a superconducting

cavity and use the transmon as an ancilla to assist the manipulation and measurement of the

cavity state. Rapid progress has been made in this cavity-based scheme. In 2016, Ofek and

Petrenko et al. demonstrated for the first time the extension a logical qubit’s lifetime beyond

the coherence times of the best physical component in the system [49]. Subsequently, both

theoretical and experimental advancements have been shown in the high-fidelity control of

a single logical qubit [36, 52, 53] in similar 3D cQED architectures. Going beyond systems

with a single logical qubit is both a natural scientific progression from these remarkable

achievements and an important component in realising robust algorithms on multipartite

quantum system.

We can approach the challenge of scaling up to more logical qubits in a modular ar-
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chitecture. In this framework, individual quantum systems are combined into a complex

quantum network. We can envision that each module will consist of single or several logical

qubits which can be error-corrected and debugged easily individually. In the world of su-

perconducting circuits, we can construct these modules using superconducting cavities and

transmons, where logical qubits can be encoded in the large Hilbert space of cavities and

controlled via the nonlinearity provided by the transmon ancillae. Within each module, we

must also have the ability to implement robust quantum operations between logical qubits.

This requires an architecture consisting of several high-Q cavities. Furthermore, we need

to expand our cQED toolbox and develop techniques to introduce non-linear interactions

between them while maintaining minimal always-on couplings. In the following chapter,

we will discuss the design considerations and the characterisation of a double-cavity sample

built for this purpose. Together with the capabilities to connect individual cQED modules

to one another, which have been shown in recent works [54, 55], the increased complexity in

each module would allow us to realise a scalable network of quantum systems.



Chapter 3

Multi-cavity cQED architecture

Rapid progress in controlling individual quantum systems over the past twenty years [56, 57]

has opened up a wide range of possibilities of quantum information processing. Potential

applications ranging from universal quantum computation to long-distance quantum commu-

nication share the central theme of exploiting quantum superpositions within a large Hilbert

space. Additionally, cat states, which span a Hilbert space whose dimension grows linearly

with the number of photons, have been proven to be an attractive candidate for redundantly

encoding quantum information in an error-correctable manner [58, 50, 49]. Superconducting

cavities coupled to transmon ancillae provide us a system with large Hilbert space that can

be controlled and characterised efficiently. Moreover, with the recent improvement in the

coherence properties of superconducting cavities, we can now store quantum information

coherently for miliseconds [15]. Therefore, it is highly advantageous for us to expand the

information capacity of cQED systems by designing a scalable architecture consisting of

multiple long-lived superconducting cavities.

In this chapter, I will discuss the design and characterisation of multi-cavity devices that

have been developed at Yale over the past three years. In section 3.1, I will present in detail

the design of the first double-cavity system. In this minimalist design, the two-cavities are

controlled and characterised using a single transmon ancilla. Their Hamiltonian parameters

are calibrated and presented in section 3.2. Subsequently, we show in section 3.3 that such a

device exhibits excellent coherence properties. Here, I also will describe the typical system

Hamiltonian parameters and highlight the key design considerations for this type of devices.

47
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In section 3.4, I will present a second generation design which allows the addition of more

ancillary modes when necessary. The modification aims to provide more robust single-cavity

control and measurement capabilities. These systems are the playground where all the games

of multi-cavity operations described in chapters 4-7 take place.

3.1 Design of multi-cavity devices

Figure 3.1: External details of the double-cavity system. The device consists of two
3D stub cavities that simultaneously couple to a Y-shaped transmon housed in the tunnel
with its antenna protruding into each cavity. The tunnel has up to two SMA connectors
that provide coupling to the transmon and its λ/2 readout resonator. Each stub cavity
also has two SMA couplers, intended for cavity drives as well as direct readout if necessary.
A top lid is fastened with both screws and a indium seal to ensure light-tightness. The
whole structure can be mounted on regular copper brackets with 6 screws, providing direct
thermalisation of the device.

The first multi-cavity system borrows many key ingredients from recent experimental

progress on the improvement of cavity coherence times [59] as well as integrated packages

for 3D cQED devices [38]. Each of the two cavities are considered as a 3D version of a λ/4

transmission line resonator between a centre stub 3.2 mm in diameter and a cylindrical wall
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(outer conductor) 9.5 mm in diameter. The heights of the stubs determine the respective

resonance frequencies of the stub cavities. The large volume to surface ratio of this structure

ensures that the electric field resides predominantly in vacuum to reduce the loss in the

imperfect surface.

Experimentally, we primarily use the fundamental mode of these coaxial cavities. It

is important to ensure that the higher order resonances are sufficiently far from any other

components in the system. Because the cavity is a λ/4 resonator, the frequency of the next

TEM harmonic is simply given by 3λ/4. In a typical design, the fundamental mode is placed

around 5 GHz. Therefore, the next mode is far detuned from it by ∼ 10 GHz, which gives

the cavity a very clean spectrum and ensures that the undesired coupling of higher order

modes to the other components are insignificant.

For the purpose of our experiments, its is key to ensure minimal direct inter-cavity

coupling. Therefore, the two modes are typically spectrally separated by � 1GHz. This

corresponds to a difference in the heights of the centre stubs of ∼ 0.8 inches. Both cavities

continue for � 1 inch above the top of the stubs to provide a � e−10 attenuation of the

E-field at the respective resonance frequencies. Microwave control signals are evanescently

coupled to these cavities via a coaxial pin coupler through a hole in the sidewall. The

coupling strength is simply controlled by the length of the pin, which is typically chosen

such that they are extremely under-coupled. These parameters can be accurately simulated

a priori and optimised to ensure high quality factors.

The device is typically machined out of high purity aluminium (4N). However, there

usually are various imperfections on the inner surfaces of the cavities and tunnels in this

structure due to the machining process. In order to achieve millisecond lifetimes consis-

tently, we must chemically treat the surfaces such that the machining damages and residual

mechanical grease are thoroughly removed. For this device, the whole package is chemically

etched by about 80 μm over a 4 hour period. The etch rate and quality depends on the flow

rate across each surface. Due to the aspect ratio of the tunnel in this design, it is important

to ensure that there is sufficient flow through the structure so that the inner walls of the

tunnel can are adequately etched.
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Figure 3.2: Overview of the 3D architecture. (a) A photograph of the full assembly of
the device used in the entangled cat experiment. The machined aluminium package contains
two coaxial stub cavities. A sapphire chip hosting the transmon ancilla is inserted through
a tunnel. The extra strip of aluminium patterned on the same chip as the transmon forms a
strip line resonator the tunnel walls. (b) A photograph of the Y-shape transmon deposited
on a sapphire chip. (c) A schematic depicting the effective circuit of the cQED systems with
three LC oscillators capacitively coupled to a single artificial atom (transmon)

Nonlinearity is introduced to the system by coupling a tranmon device to both cavities.

It is inserted through an elliptical tunnel opened from the outside towards the middle wall

between the two cavities, therefore, creating a three way intersection between the tunnel and

the two stub cavities. The vertical position of the tunnel is chosen to maximise the coupling

to the high-Q cavities. Typically, the transmon is positioned to be near the top of the stubs

where the electric field is maximal. This type of transmon, now often referred to as the

‘Y-mon’, contains a standard Josephson junction connected to three antenna pads in order

to provide simultaneous coupling to multiple modes (Fig. 3.3(a)). The device is patterned on

a 5.5 mm × 27.5 mm chip, which is diced from a 430 μm thick c-plane sapphire wafer after

fabrication. The Al/AlOx/Al junction is fabricated using the bridge-free process, which
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Figure 3.3: The Y-shaped transmon containing a bridge-free Josephson junction.
(a) A Y-shaped transmon device fabricated on a sapphire substrate together with a quasi-
planar resonator for independent readout. The circular pads provide the capacitive coupling
to the other modes. This chip protrudes into the double-cavity device, allowing simultaneous
coupling to both high-Q cavities. (b) Cartoon of a Josephson junction fabricated using the
bridge-free technique. Two layers of thin-film Al are separated by an insulating barrier
formed by aluminium oxide.

uses electron-beam lithography and the standard shadow-mask evaporation. A cartoon of

the junction area is depicted in Fig. 3.3(b), where two layers of thin-film Al are evaporated

with an oxide layer in between. The oxidation is done in a controlled environment which is

calibrated to achieve the desired resistance-area (RA) product. The resonance frequency of

this mode is determined by the design parameters EC and EJ. In practice, EJ is inferred

from room temperature resistance of the device which can be easily measured. EC must be

simulated numerically for each particular type of transmon design. In this geometry, the

circular pads are the dominant contributions to EC and provide the capacitive couplings

to other modes. Their size and position are determined via HFSS simulations in order

to achieve the desired frequency and coupling strength. The pads are connected to the

junction by leads which are roughly 100 μm×600 μm. Furthermore, we have also avoided

excessively narrow features in the design, especially in the near junction area, in order to

prevent quasiparticle induced relaxation. It has been shown [60] that quasiparticles can

limit the T1 of transmons if they are not evacuated quickly. They can decay either through

recombination with another quasiparticle, or single particle processes such as trapping by

a vortex. It is generally more favourable to have large features with equal aspect-ratios to

facilitate the evacuation of quasiparticles. Additionally, the exact dimensions of design are

also optimised to reduce the surface participation, which has been shown to be a leading
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Figure 3.4: Schematic of the clamps used to affix a sapphire chip to the double-
cavity device. The two halves are bolted together with the chip secured in between with
indium wires placed in the Indium pocket. The clamps are made out of 6061 aluminium.
The design can be easily adapted to work with chips of different dimensions.

source of loss for transmons [61] fabricated on dielectric substrates.

Another strip of aluminium is also deposited during the same process on the sapphire

chip. This metal strip and wall of the tunnel form a planar-3D hybrid λ/2 resonator,

capactively coupled to the Y-mon. The resonance frequency of this mode is determined by

the length of the aluminium trace and its capacitance to the sidewalls of the tunnel. The

dispersive coupling strength is controlled by distance between the Y-mon pad and the planar

structure.

The coupling of each mode to the classical drives is done via a copper pin affixed to a

SMA connector. The length of the pin and the position of the coupler determine the coupling

strength for each mode. Alice and Bob are very weakly coupled to the outside world, with

coupling Q’s � 100× 106. The transmon drive is also weakly coupled to to ensure relatively

good coherence times of the ancilla. We strongly couple the readout resonator mode to

a transmission line to provide fast readout for the transmon state without limiting the

transmon’s quality factor. We can typically achieve a ratio � 100 between the Q’s by

optimising the position of the coupling pin according to the field structure of the device.

The chip is mechanically held at one end with an aluminium fixture with an indium seal

to ensure secure fastening of the chip. This design is based on the previous work done by

M. Reagor. The clamps are made out of regular instead of high purity aluminium so that

the screws can be tightened sufficiently without deforming the features. The chip is held
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on one end by mechanically bolting together the two halves of the clamp, with additional

indium wires to ensure that it is firmly held in place. Typically, a mounting mark is also

patterned on the chip to indicate the desired lateral placement of the chip. The clamps are

then attached to the main package with four screws and a gasket of 10 mil diameter indium

wire in between the contact. The indium gasket aims to both enhance the light-tightness as

well as the mechanical stability of the contact.

The full system is simulated in HFSS and the parameters are extracted from the simu-

lation using standard Black Box Quantisation (BBQ) method described in Ref. [62]. In the

next section, I will discuss the measurement of the realised Hamiltonian parameters of such

a device which is used in two subsequent entangled cat and CNOT experiments described

in Chapter 4 and 5 respectively.

3.2 Measurement of Hamiltonian parameters

There are four modes involved in such a system: two 3D cavities, a transmon ancilla, and

a readout resonantor. The transmon is an LC oscillator with much larger anharmonicity

compared with the other modes, and is treated explicitly as a three-level artificial atom in

this case. The reason for this treatment will become apparent in the subsequent chapters.

Using well-establised BBQ protocols, the other cavity/resonator modes are modeled as near-

harmonic oscillators with weak nonlinearity inherited from their coupling to the Josephson

junction.

The full system Hamiltonian can then be written in the following form up to the fourth
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order in the coupling of the resonators to the transmon:

H/� = ωA(a
†a+

1

2
) + ωB(b

†b+
1

2
) + ωR(r

†r +
1

2
) + ωge|e〉〈e|+ (ωge + ωef )|f〉〈f |

− χge
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The first row represents the excitation energy of all the modes, explicitly including the

transmon anharmonicity of ωge − ωef = 115.17MHz. The next two rows are second order

terms (∼ 1MHz) representing the dispersive interactions (χ’s) between the transmon and

each of the three resonators. The last two rows are the fourth order terms (∼ 10 kHz),

including the self-Kerr energies (KA,KB,KR) of the resonators and the cross-Kerr inter-

actions between any pairs of resonators (KAB,KAR,KBR). All Hamiltonian parameters of

our device are listed in Table 3.1.

Figure 3.5: Characterization of transmon-cavity dispersive coupling (a) Photon-
number-splitting of the transmon |g〉-|e〉 transition frequency for a coherent state in Alice
(blue) or Bob (red). The vertical axis represents the probability of exciting the |g〉-|e〉
transition with a microwave tone at a frequency marked by the horizontal axis. (b) Photon-
number-splitting of the transmon |e〉-|f〉 transition frequency for a coherent state in Alice
(blue) or Bob (red)

The key Hamiltonian terms that enable both the single and joint manipulation of the

cavities are the dispersive shifts χge
A , χef

A , χge
B , χef

B . Since the readout resonator is always

kept in the vacuum state until a final measurement is needed, its Hamiltonian terms do not
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affect the quantum control and quantum state evolution in this experiment. The fourth-

order Hamiltonian terms of Alice and Bob give a minor contribution to the infidelity of the

experiment.

The dispersive frequency shifts (χ’s) are measured both in the time domain by a Ramsey-

type qubit state revival experiment as described in Ref. [63] and in the frequency domain by

spectroscopy techniques, shown in Fig. 3.5. Although the transmon couples to both cavities

simultaneously, its dispersive shifts to them differ sufficiently for us to be able spectrally

distinguish photons from each cavity. Furthermore, for any single cavity characterisation

routine, we can neglect the other mode by ensuring that it remains in the vacuum state

throughout the measurement. Here, we simply require a spectrally selective π pulse whose

full width at half maximum (FWHM) is narrower than that of the dispersive coupling [13].

This allows us to distinguish the transmon resonance peaks corresponding to different photon

number states in the cavity. We use the same technique to calibrate χef
A,B as well. Instead

of applying the selective π pulse on the |g〉 − |e〉 transition, we simply tune its frequency to

be close to that of the |e〉− |f〉 transition as shown in Fig. 3.5(b). The precision of this type

of spectroscopy measurements is limited by the spectral width of the selective pulses, which

in turn, is ultimately governed by the coherence times of the transmon. In this particular

case, the transmon coherence is sufficient for us to perform a highly selective pulse.

Frequency Nonlinear interactions versus:
ω/2π Alice Bob Readout

|e〉 → |g〉 4.87805 GHz 0.71 MHz 1.41 MHz 1.74MHz
|f〉 → |e〉 4.76288 GHz 1.54 MHz 0.93 MHz 1.63MHz

Alice 4.2196612 GHz 0.83 kHz -9 kHz 5 kHz
Bob 5.4467677 GHz -9 kHz 5.6 kHz 12 kHz

Readout 7.6970 GHz 5 kHz 12 kHz 7 kHz

Table 3.1: Hamiltonian parameters. Measured Hamiltonian parameters of all cQED
components, including the transmon ancilla, the two cavity resonators (Alice and Bob) and
the readout resonator. The measured parameters include all transition frequencies (ω/2π),
dispersive shifts between each resonator and each transmon transition (χ/2π), the self-Kerr
of Alice (KA/2π) and Bob (KB/2π), and the cross-Kerr interaction between Alice and
Bob (KAB/2π). The Kerr parameters and χef associated with the readout resonator are
theoretical estimates based on the other measured parameters.
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It is also worth noting that the Y-shaped transmon here has a relatively small anhar-

monicity with α/2π ≈ 115 MHz. This arises from the choice of the transmon frequency and

its special geometry. Because of the need to simultaneously couple to both cavities, the

transmon is spectrally positioned to be in between the frequencies of Alice and Bob, with

roughly equal detuning from each of them. Further, the length of the leads and size of the

pads are chosen to provide sufficient capacitive coupling to the cavities. This results in a

larger overall capacitance in the device. Thus, the anharmonicity is typically lower in this

type of Y-shaped transmon compared to standard designs with only two antenna pads. This

puts the device in a more favourable regime of the charge-noise dispersion but reduces the

spectral selectivity in transmon manipulation pulses. In this case, the fastest |g〉 → |e〉 π

pulse we could perform without significantly driving the |e〉 → |f〉 transition has a standard

deviation σ = 8 ns. Apart from this trade-off, the coherence properties of such a device are

comparable to the state-of-the-art transmons.

The self-Kerr terms (KA and KB) induce distortion of the Gaussian probability distri-

bution of the coherent state components of the cat state, and will cause state collapse and

revival at long time scales [35]. There are a few different techniques for measuring the Kerr

nonlinearity. Thanks to the good coherence times of the cavities, it is possible to perform a

highly selective pulse and measure the frequency of each photon number peak with ∼ 1 kHz

precision. But more efficiently, we can translate this inherited nonlinearity into a frequency

shift of the system dependent of the different photon numbers in the cavity. This can be

probed using a Ramsey-type experiment.

The cross-Kerr interaction KAB induces spontaneous entanglement/disentanglement be-

tween Alice and Bob over long time scales. This type of undesired always-on coupling causes

unintended interactions between two modes during idle times, which could limit the on-off

ratio of any gate we hope to engineer between Alice and Bob. To calibrate it, we consider

the cross-Kerr coupling as a frequency shift of one cavity that depends on the photon num-

ber present in the other. Therefore, it can be calibrated in a similar fashion using Ramsey

experiments. The measurement of cross-Kerr between Alice and Bob is shown in Fig. 3.6.

We observe a shift of the revival time on Alice as a result of a higher photon population in
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Figure 3.6: Cross-Kerr coupling between Alice and Bob (a) Measurement of Ramsey
revival with α0 = 1 in Bob as a function of time and the photon numbers in Alice, α. A shift
in the frequency of Bob is observed as larger α. (b) 1D cut for several different displacements
in Alice. The fitted revival time allow us to infer a cross-Kerr coupling on of 8 - 10 kHz.

Bob. The amount of the shift gives us KAB of this system, which is ∼ 9 kHz. In general,

it is beneficial to minimise this coupling by maintaining a large spectral separation between

Alice and Bob.

3.3 Characterisation of cavity coherence

In order for this type of multi-cavity design to be relevant to future cQED experiments,

we must be able to realise the non-linear couplings described above while maintaining the

excellent coherent properties of the cavities. To demonstrate this, we measure the energy

relaxation time, T1, of the cavities by observing the decay of a coherent state in the cavity.
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In this experiment, we first displace the cavity state by a coherent state |α0|2 � 1 and probe

the probability of it being in vacuum after a variable delay time. This is measured by a

spectrally selective π pulse that only excites the transmon if the cavity has relaxed back to

vacuum. The sequence is presented in Fig. 3.7(a). The energy decay can be visualised in

the phase space in a cartoon shown in Fig. 3.7(b) and has the following functional form:

Pe(t) ∝ e−|α0|2exp(−κt) (3.2)

where κ is the characteristic decay constant associated with the energy relaxation of the

cavity state. In the sample, the two cavities have κ/2π ∼ 200 Hz, corresponding to a

lifetime T1 ∼ 2 ms (Fig. 3.7(c)).

D(β)

X 0
π

Δ t

Figure 3.7: T1 measurement of cavities (a) Experimental protocol for measuring the
cavity T1. It consists of a large displacement of the cavity state followed by a variable delay.
The final state is probed using a selective π pulse on the transmon conditioned on having
zero photon in the cavity. (b) Phase space representation of the experiment which monitors
the probability of a displaced coherent state relaxing back to vacuum after a certain delay.
(c) The measured decay of coherent states in Alice and Bob respectively. The data (open
circles) are fitted to Eq. 3.2 to give the cavity T1.

Apart from having a low photon loss rate, the cavities must also be able to preserve

the phase coherence of the quantum state in order for it to be a suitable memory to store

superposition states. Similar to the case of two-level systems, we can characterise this
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property using a Ramsey-type experiment and extract the decoherence time, T2. To do so,

we first prepare the cavity in a superposition of |0〉 and |1〉 Fock states using either SNAP

or OCT pulses. Subsequently, we allow the system to evolve for a variable amount of time

before probing the cavity state [15]. The result of such a measurement is shown in Fig. 3.8.

X 0
π

Δ t

X 0
2π

D(β2)D(β1)

Figure 3.8: T2 measurement of cavities. (a) Experimental protocol for cavity T2

measurement. We use the SNAP [64, 15] sequence to prepare the superposition state
|ψ〉 = 1√

2
(|0〉 + |1〉) (b), (c) Ramsey interference experiments of 1√

2
(|0〉 + |1〉) in Alice

and Bob, which determines their T2. (c) Cavity resonance frequency of Bob extracted from
Ramsey interference experiments done over the course of eight months. The data indicate
remarkable long-term frequency stability of the 3D cavities.

This type of interference experiment, as described in Ref. [15], faithfully extracts the T2
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without being affected by high-order nonlinearities. Together with the measurement of the

cavity T1, we find the cavity pure dephasing time Tφ = 1/( 1
T2

− 1
2T1

) = 1.1±0.2 ms for Alice

and 0.9± 0.2 ms for Bob.

The dephasing times are fully explained by the frequency shifts of the cavities due to the

thermal excitation of the transmon ancilla [15]. The rate of the |g〉 → |e〉 transition of the

transmon, Γ↑, can be determined from its T1 and thermal population of the |e〉 state, Pe:

Γ↑ = Pe/T1 = 7.5%/(70 μs) = 1/(0.9ms). The sources causing this type of upward transition

are not yet well-known but it can sometimes be suppressed through careful shielding and

filtering.

In addition, the cavity Ramsey experiment also allows the extraction of the precise

resonance frequency of the cavity (∼ 1 kHz). In the measurements shown in Fig. 3.8(b) and

(c), an intentional detuning (10 kHz) is introduced in software. This allows us to fit the

oscillation frequency and extract small deviations from the resonance frequency. Over the

course of 8 months while the device was continuously operated at 20 mK, we observed no

slow drift of cavity frequency exceeding its linewidth (≈ 200 Hz) as shown Fig. 3.8(d).

T1 T2 Pe

Alice 2.2-3.3 ms 0.8-1.1 ms 1-2%
Bob 1.2-1.7 ms 0.6-0.8 ms 2-3%

Ancilla |e〉 65-75 μs 30-45 μs 7.5%
Ancilla |f〉 26-32 μs 12-24 μs a 0.5%
Readout 260-290 ns N/A <0.2%

Table 3.2: Coherence properties of double-cavity system. Energy relaxation time
(T1), Ramsey coherence time (T2) , coherence time with Hahn echo (T2E), and thermal
population of the excited state (Pe) of all components when applicable.

aT2=11-19 μs for |f〉 vs. |g〉

The coherence properties of the cavities are summarised in Table 3.2. Both cavities have

coherences on par with the best single cavity system in similar designs. This demonstrates

that such multi-cavity architecture can be constructed without adversely affecting the stabil-

ity or the coherence properties individual high-Q cavities. Therefore, such systems provide a

robust and attractive platform for storing and manipulating multiple bosonic logical qubits.
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3.4 Extension to incorporate multiple ancillae

The design introduced in the beginning of this chapter provides a highly versatile systems

for many different multi-cavity studies. With its single transmon, we already have universal

control on both Alice and Bob, in theory. However, it does pose certain challenges when

it comes to preparing more complex states and doing tomography on them. Therefore, we

would like to build on this existing design to allow more experimental flexibility. The next

generation of double-cavity device is shown in Fig. 3.9. In this system, additional ancillary

modes, accompanied by their respectively on-chip readout resonators, are introduced to each

stub cavity. This is accomplished simply by incorporating two more tunnels that protrudes

into each of the stub cavities respectively. Since each additional transmons only couple to a

single storage cavity, they assume a more traditional form with only two antenna pads. As

a result, the substrate is not narrow and can be attached to the package using the a slightly

modified version of the clamping fixture described in Fig. 3.4.

Figure 3.9: Cartoon of a modified double-cavity cQED system. The device consists
of two high-Q cavities, 3 transmon ancillae and their respective readout resonators. Such a
configuration provides more flexibility in both the individual and joint control of Alice and
Bob.

This modification, albeit straightforward in implementation, does require some careful

optimisation. First, by introducing additional non-linear elements into the system, each stub

cavity now inherits Kerr nonlinearities from two transmons. This could become a serious
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complication for experiments that involve high photon number occupations in the cavity

modes. As a rule of thumb, the inherited nonlinearity scales as K ∼ χ2/α. Therefore,

for the two side transmons, it is beneficial to choose a relatively large anharmonicity while

remain protected against charge noise. In this case, α ∼ 200 MHz appears fairly optimal.

We also ensure that the χ between each transmon to the cavity is limited to ∼ 1 MHz, which

is sufficient to offer efficient cavity control and measurement while still allowing us to keep

the K � 10 kHz.

Figure 3.10: Simultaneous Rabi experiment. (a) Measurement of qA while we sweep
the drive amplitudes on both qA and qC. The 1D projections show that the marginals along
each axis. (b) The same measurement preformed on qC while sweeping the drive amplitudes.
The data show that the Rabi frequency of each qubit has negligible dependence on the state
of the other mode.

The second key consideration is the spectral distribution of all the components in the

system. It is crucial to minimise unwanted cross-coupling between the modes so that we can

address them precisely and independently. In particular, we want to ensure centre and side

ancillae do not couple to each other. This is achieved by optimising both their respective

frequencies as well as their coupling to the cavity mode. We can confirm that the the

two transmon modes have negligible cross talk by performing a two mode Rabi experiment

between two transmons, qA and qC. We drive them with variable amplitude simultaneously

and perform readout on both in a two-dimensional measurement (Fig. 3.10). The data show
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that the state of qA has very little impact on the Rabi frequency of qC and vice versa. This

verifies that the two transmons do not have any measurable direct coupling.

We choose to position the three readout resonators at frequencies above all the other

modes, between 7.5 GHz and 8.1 GHz. Due to the filtering process of the transmon and

cavity modes between them, there is no measurable coupling between these independent

readouts despite their spectral proximity. The output from each resonator is connected

to a JPC, which allows efficient readout with high fidelity in a single shot. This provides

the capability to perform both individual and joint readouts across all three output modes.

Such devices are used in the bosonic interference study (Chapter 6) and entangling gate

experiment (Chapter7). Typical parameters for this type of devices are given in Table 3.3.

Here, the parameters associated with transmon |f〉 level are omitted since they are not

exploited in the experiment that this sample is designed for.

Frequency Nonlinear interactions:
ω/2π Alice Bob qA qB qC

Alice 5.4821GHz 4 kHz (∼1 kHz) 0.77 MHz N.A 0.27 MHz
Bob 6.5631 GHz (∼1 kHz) 2 kHz N. A 1.24 MHz 0.36 MHz
q(A) 4.4423 GHz 0.32 MHz (∼ 0 kHz) 176 MHz N.A � 1 kHz
q(B) 4.7931 GHz (∼ 0 kHz) 1.24 MHz N.A 182 MHz � 1 kHz
q(C) 6.0512 GHz 0.27 MHz 0.36 MHz N.A � 1 kHz 74MHz

RO(A) 7.7245 GHz (4 kHz (∼ 0 kHz) 1.2MHz N.A (∼ 0)
RO(B) 7.7219GHz (∼ 0 kHz) 4 kHz N.A 0.8 MHz (∼ 0)
RO(C) 8.0627GHz (∼ 0 kHz) (∼ 0 kHz) N.A N.A 1MHz

Table 3.3: Hamiltonian parameters of new system. Values that are within a parenthesis
are estimated/simulated parameters. Some non-linear couplings, such as χ between qA and
Bob, are omitted because they are too small to be simulated.

Despite the increased complexity in the system, we can still quite reliably simulate and

predict its key Hamiltonian parameters as shown in the comparison in Table 3.4. With

multiple non-linear elements in the device, the simulation process becomes considerably

slower. To get around this, we take advantage of the weak coupling between the transmons

and break the simulation into three independent parts. We first simulate each individual

cavity and the transmon ancilla it couples to independently. It is important to note that
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while we do not consider the second transmon mode that each cavity couples to, we must

include the sapphire chip that contains the transmon. This is because the intrusion of the

chip causes quite a significant shift in the cavity frequencies. Based on the single cavity

and single transmon simulations, we can get a fairly accurate prediction on the resonance

frequencies of each modes and the anharmonicities of the ancillae. We then simulate the

centre system which consists of a Y-mon dispersively coupled to both Alice and Bob to get

the parameters associated with qC. An example of this simulation is shown in Fig. 3.11

where we only consider one of the side transmons. The field distribution from this mode is

well-confined to the single cavity it couples to and have negligible overlap with the mode of

the other components in the system.

Figure 3.11: Field distribution in HFSS simulation. The device consists of two high-
Q cavities, 3 transmon ancillae and their respective readout resonators are simulated in
the HFSS eigenmode solver. The resulting field on each component due to the Josephson
junction in the transmon on the right hand side is plotted. We observe highly localised field
concentrated around the transmon with little excursion into other modes in the system.

The full simulation of the two cavity, three transmon system is very computationally

demanding. It is carried out once to provide a comparison to the simplified procedure. As

shown in Table 3.4, the predictions obtained from both simulation procedures show good

agreement with the measured values. The dispersive couplings seem to show the largest

discrepancies. This can be attributed to the variations in the chip position relative to the

cavities due to imprecisions in the mounting. Since the chips are designed to protrude into

the cavities near the maxima of the electric field, a small change in its position can lead to

a significant deviation from the intended coupling strength. Based on our simulations, the

discrepancy of χ between qA and Alice can be accounted for by a 100 μm lateral shift in
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Simulated Simulated Measured
(single JJ) (full system)

ωge/2π (qA) 4.472 GHz 4.562 GHz 4.4423 GHz
ωge/2π (qB) 4.983 GHz 4.998 GHz 4.7931GHz
ωge/2π (qC) 5.914 GHz 5.962 GHz 6.051 GHz
α/2π (qA) 175 MHz 172MHz 178MHz
α/2π (qB) 177 MHz 181 MHz 182 MHz
α/2π (qC) 75.7 MHz 79.4 MHz 74 MHz

Alice 5.471GHz 5.424 GHz 5.482 GHz
χqA
A /2π 0.98 MHz 0.75 MHz 0.76 MHz

χqC
A /2π 0.166 MHz 0.248 MHz 0.28 MHz
Bob 6.550 GHz 6.575 GHz 6.5631 GHz

χqB
B /2π 1.19 MHz 1.32 MHz 1.24 MHz

χqC
B /2π 0.249 MHz 0.295 MHz 0.36 MHz

Table 3.4: Simulated vs measured Hamiltonian parameters Comparison between the
predicted Hamiltonian parameters from a combination of three single-junction simulations,
the full system simulation and the measured values. The two types of simulations give very
close predictions. Both are consistent with the measured values.

the chip position.

We use the same characterisation techniques described earlier to measure the Hamilto-

nian parameters and the coherence properties for each mode in this type of systems. We

summarise the results for a typical device in this architecture in Table 3.5.

In this particular system, the T2 of the three transmons seem to show rather drastic fluc-

tuations. We attribute this to the mechanical vibrations that introduce low frequency noise

to the device and lead a degradation of the transmons’ frequency stability. We attempted to

ameliorate this effect by enhancing the stability of the clamping. In particular, we fully affix

the chip to the clamps using both stycast and indium seals. A handful of samples in this

configuration have been cooled down in the same 3D package and characterised. The result

seems to show that such a modification could improve the frequency stability of the trans-

mon over the course of a few thermal cycles. Three out of the five devices measured showed

significant improvements in their T2 from ∼ 15 μs to ∼ 40 μs. However, more systematic

investigations are needed before a conclusive statement can be made.

It is also worth noting that the coherence times of Alice and Bob in this sample are
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slightly inferior compared to the previous device. This could be due to the presence of two

transmons in each cavity mode, introducing additional reverse-purcell limit on the cavity T1.

Furthermore, the dephasing due to upward transitions of the transmons will also be more

severe since due to cavity’s coupling to a second ancilla. Additionally, the vibration issues

that degrade the transmon’s T2 could also lead to a fluctuation of the cavity’s frequencies

due to the vibration of the sapphire chip. Depending on the frequency of the vibration, it

could result in a deterioration of cavity’s dephasing time scale.

T1 T2 T2E Pe

Ancilla qA 65-75 μs 15-45 μs 60-80 μs 3%
Ancilla qB 60-80 μs 10-30 μs 40-70 μs 1.5%
Ancilla qC 20-40 μs 10-30 μs 20-35 μs 0.5%

Alice 0.5-1 ms 0.4-0.6 ms N/A <1%
Bob 0.5-1 ms 0.4-0.6 ms N/A <1%

RO (A) 300-600 ns N/A N/A <0.2%
RO (B) 500-800 ns N/A N/A <0.2%
RO (A) 1000-1200 ns N/A N/A <0.2%

Table 3.5: Coherence properties of double-cavity with three ancillae. Energy relax-
ation time (T1), Ramsey coherence time (T2) , coherence time with Hahn echo (T2E), and
thermal population of the excited state (Pe) of all components when applicable. RO refers
to the planar readout resonators for each ancilla.

3.5 Experimental configurations

In this section, we will discuss the cryogenic configurations and room temperature microwave

control chains used for the subsequent experiments. These are crucial aspects that must be

handled with careful considerations in order to create a stable, coherent quantum system.

Here, we show two examples of the controls lines from room temperature to a double-cavity

sample mounted on the base plate of the dilution refrigerator.

Shown in Fig. 3.12 is the set-up employed in the very first double-cavity experiment in

2015. Due to the limited availability of field-programmable gate array (FPGA) cards at that

moment, we decided to use a combination of a single FPGA card and a Tektronix 5014C

Arbitrary Waveform Generator (AWG) to provide the IQ controls for the experiment. The
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AWG IQ outputs are triggered by a digital marker signal from the FPGA. The waveforms

are pre-loaded to the AWG with the appropriate delay times corresponding to when a pulse

is played from the FPGA card. While this configuration is perfectly capable of implementing

the control sequences required for the experiment, the lack of easy synchronisation and fast

feedback capabilities made it difficult to extend beyond this simple system with only 4

modes.

The configuration described in Fig. 3.13 is used to control our new device that contains

more than one transmon ancillae. Due to the need to simultaneously control multiple IQ

channels and fast feedback, we upgraded our system so that four FPGA cards are used to

provide both the ADCs and DACs necessary for the experiment. The IF signals generated by

the FPGA, ran at 500 mega sample in our experiments, passes through a 370MHz commer-

cial low-pass filter (Minicircuits BLP-300+) to eliminate high frequency noise. Subsequently,

the signals are attenuated by 6-10 dB before passing through the double-balanced mixers

from Marki Microwaves. The attenuations reduce DAC power (∼ 0.5 V peak-to-peak) to

be below the 1dB compression point of the mixer. Furthermore, this also attenuates any

added noises from the DAC and allows us to access a greater dynamic range. The modulated

signals from the mixer are subsequently amplified by low-noise amplifier (ZVA-183+) with

a gain of roughly 25 dBm around our operation frequencies.

In the experiments described in chapters 5, 6, and 7, RF pumps are used to engineer

new Hamiltonian terms in the system. For this type of drives, special amplification chains

are set up in order to supply sufficient RF power. We use a minicircuit amplifier (ZVE-

8G+) which has a large gain of 35 dB and relatively low noise figure of 4 dB. This is then

filtered with commercial bandpass filters to reduce the spectral width of the input signal to

reduce the power dissipation in the fridge. All amplified input signals also pass through a

RF switch before going into the fridge. The switches are triggered by digital markers from

the FPGA cards and have a fast switching time of ∼ 10 ns. This ensures that no RF power

is transmitted into the fridge during idle times and suppress spurious thermal populations

in the system.

Microwave control tones, together with added noise from the room temperature amplifi-
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Figure 3.12: RF and fridge configurations for entangled cat and CNOT experiment

cation processes, are then sent from room temperature to the sample at 20 mK. They must

be appropriately attenuated and filtered to suppress the thermal and RF noise reaching the

sample. It has been well-established that with 20 dB attenuation at the 4K stage and an

additional 30 dB at 20 mK, we can ensure only 	 10−2 photons reach the sample near the

relevant frequencies (typically around 6 GHz). In addition, we also use low-pass filters to

selectively attenuate high frequency noise that could excite the higher order modes in the

systems. This typically includes a K&L Microwave low-pass filter with a cut-off frequency
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between 8-12 GHz as well as a home-made broadband Eccosorb filter which is filled with an

infrared-absorbing material capable of exponentially suppressing the noise at and beyond

the IR frequencies. All filters are clamped either directly or via a copper braid to the base

plate to ensure good thermalisation.

Apart from careful shielding from thermal and RF noise, we must also protect the system

against stray magnetic field. In one of my earlier experiments [60], it has been shown that

when cooled in an effective magnetic field of 200 mG, a transmon’s T1 and T2 could be

reduced appreciably due to vortex-flow loss. Therefore, we house the sample in a Cryoperm

shield to protect it from the magnetic fields of other RF components. Additionally, we must

also make sure that all components inside the shield (screws, RF connectors, and cables etc)

are made from non-magnetic materials. It is also becoming a common practice to include an

additional Eccosorb filter in the Cryoperm shield, directly before the coupling port to the

device. Measurements on a few samples tested with and without this additional filter seem to

indicate that its presence strongly correlates with the low thermal population of transmons.

All input lines are set up in this configuration, except an optional line that is attenuated

by only 10 dB attenuation at base. It is used to drive multi-photon conversion processes

necessary for the experiments described in chapter 6 and 7. This line is shown in purple on

the wiring diagram (Fig. 3.13) and it is typically combined at base with the regular input

line to that particular mode through a directional coupler with 6 dB additional attentuation.

In addition, the 10 dB attenuation is provided by a special reflective attenuator that does

not dissipate energy at base. This allows us to send a larger amount of microwave power

into the system without causing excessive heating.

The outgoing signal from the device must also be attenuated and amplified appropriately

to ensure clean, stable readout. Loss is very important since the signal from the measurement

typically only consists of a few photons. We pass the signal through a single Eccosorb filter,

located inside the Cryoperm, and a low-loss K&L filter. This typically incurs a 1-2 dB

insertion loss on the signal before it passes through two cryogenic circulators (QuinStar)

which provide ∼20 dB of isolation with an additional 0.3 dB loss. The signal is routed by the

two circulators to the JPC which is typically tuned to operate at 20 dB again and a bandwith
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of 4-8 MHz. The amplified microwave signals then pass through two isolators to prevent

unwanted reflection into the system. Subsequently, they travel along a superconducting

coaxial cable from the base plate to the 4K stage where they are further amplified by a

wideband HEMT amplifer before exiting the fridge to the room temperature interferometry.

This signal, now containing the information about the qubit state, is mixed with a local

oscillator (LO) tone to an intermediate frequency (IF) of 50MHz in a heterodyne detection

chain. Since the FPGA cards have both DAC’s and ADC’s built in, we can perform a

simple readout process using a single LO. This is achieved by splitting the output of the LO

generator, now set at 50MHz below the resonant frequency of the readout resonator, and

performing single-sideband modulation on half of it using the FPGA. This passes through

into the experiment and the returning signal is mixed with the unmodulated half of the LO

output. As a result, the final signal recorded by the FPGA is demodulated in the same

frame as the original modulation, making it insensitive to any added phase noise in the

measurement process.

Using this type of room temperature configuration, we have the capability to efficiently

modulate and demodulate RF signals over a large number of IQ channels. This is crucial

for the success of the experiment as we work towards harnessing an increasing number of

quantum components. Thanks to the clever logic developed by N. Ofek in our lab and the

hardware developments in better FPGAs, we are able to robustly control two cavities, three

transmons and three independent readouts in our most recent experiment.
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Figure 3.13: RF and fridge configurations for bosonic interference and eSWAP
experiment Input lines for only two transmon ancillae are included here due to space
constraints.





Chapter 4

Putting a Schrödinger cat in two boxes

Since the birth of quantum mechanics, its many seemingly paradoxical predictions have

piqued the interest of many experts and laypeople alike. Amongst these enigmas is the

famous Schrödinger’s gedankenexperiment of an unfortunate cat inside a closed box being

simultaneously dead and alive. It highlights the peculiar consequences of extending the con-

cept of superposition to macroscopically distinguishable objects. Over the years, exploiting

quantum superpositions within a large Hilbert space has been a common theme for many

experimental efforts aimed at probing the quantum-classical boundary. Also, such superpo-

sitions of “macroscopically-distinguishable" states that are far apart in phase space can be

a valuable resource for the redundantly encoding of quantum information. The canonical

example of such a state is the superpositions of coherent states of a harmonic oscillator,

i.e N (|α〉 + | − α〉) with N ≈ 1/
√
2 at large |α|, commonly referred to as “cat states".

The two components correspond to distinct quasi-classical wave-packets with well-defined

average amplitude and phase.

While we are able to explain Schrödinger’s ‘paradox’ theoretically with increasing confi-

dence, such exotic states are still hard to realise physically. This is because the superposition

is highly delicate. Its non-classical correlations can be washed out easily as it inevitably gets

in contact with the environment, which continually measures the state and projects it onto

either dead (|α〉) or alive (| −α〉). Thanks to the rapid scientific and technological advance-

ments over the recent decades, the coherence properties of quantum systems have improved

by leaps and bounds. As a result, such cat states are no longer mere thought experiments.

73
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They have been realised with single-mode optical photons [65] and microwave fields [56, 66].

These results offer more than just confirmation of the fundamental theories of quantum

mechanics; they are also increasingly being recognised as key ingredients for new quantum

technologies [67].

Existing cQED systems have demonstrated capabilities of creating and characterising

single mode cat states with up to about 100 photons [63]. However, as the cat state occupies

higher levels in the cavity, they are increasingly susceptible to decoherence effects, thus,

limiting the accessible Hilbert space suitable for robust storage of quantum information.

An alternative to expanding the available Hilbert space without sacrificing the coherence

properties is to exploit several cavity modes simultaneously. The idea of creating a multi-

mode cat state that lives in more than one harmonic oscillators has been conceived in early

days of CQED [34] but experimental demonstrations have remained a challenge.

In this chapter, I will describe the first experimental realisation of a two-mode entangled

cat state living in two superconducting cavities. We use the double-cavity system shown

in Fig. 3.1 in this experiment, where two cavities, Alice and Bob, dispersively couple to a

single transmon ancilla. I will start by introducing the protocol used to deterministically

create a two-mode cat state using such a system in section 4.1. Subsequently, in section 4.2,

we will examine the joint Wigner measurement and demonstrate full characterisation of the

entangled state using the single transmon ancilla. Specifically, I will highlight the usage

of the third level of transmon to achieve this efficiently without sacrificing the versatility

of the system. Section 4.3, I will show that such two-mode cat states are equivalent to a

bell-pair of qubits encoded in the coherent state basis. We will discuss the measurement

of the two-qubit Pauli operators using joint parity mapping and also perform a simple Bell

test to demonstrate that state we have created is indeed highly entangled.

4.1 Deterministic state creation

In our double-cavity cQED system, the transmon provides all the necessary non-linearity

to implement a full set of controls over the cavity states. The two cavities, Alice and
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Bob, are detuned from one another by � 1 GHz. This strongly suppresses their intrinsic

coupling and hence, the entanglement between Alice and Bob can only be achieved through

their respective interactions with the ancilla. It has been proposed [68], and experimentally

demonstrated [63], that we can directly map the transmon state onto a superposition of two

quasiorthogonal coherent states of a single resonator. We can also deterministically create

a two-mode cat state of microwave fields in two superconducting cavities using the same

technique, typically referred to as qcMAP. In this case, we must first create a three-way

entanglement between the ancilla and both cavities using their strong dispersive interaction

with the Y-mon. Subsequently, we can disentangle the ancilla from the cavities, leaving

them in the two-mode entangled state, |ψ±〉:

|ψ±〉 = N (|α〉A|α〉B ± | − α〉A| − α〉B
)

(4.1)

where | ± α〉A and | ± α〉B are coherent states of two microwave eigenmodes (Alice and

Bob) at different frequencies, whose amplitudes are chosen to be equal for simplicity. Each

mode predominantly localised in one of the two cavities that are weakly connected. Despite

a non-zero (but small) spatial overlap of the two modes, we will refer for convenience to

the state of each mode as the state of the individual cavity. Quantum superpositions of

the form |ψ±〉 have been previously realised in the optical domain [69] but were limited to

small and non-orthogonal coherent states (|α|2 = 0.65). For larger |α| (i.e. |α|2 � 2), |ψ±〉
can be considered a single cat state living in two boxes whose superposed components are

coherent states in a hybridised mode involving both Alice and Bob. Alternatively, in the

more natural eigenmode basis, |ψ±〉 has been known as the entangled coherent states in

theoretical studies [70], and may also be understood as two single-cavity cat states that are

entangled with each other.

The qcMAP protocol [68] consists of a series of conditional operations between the

transmon and each cavity, as shown in Fig. 4.1. In this particular protocol, the key op-

eration is one that realises a three-way entanglement, Dg
2α. It is an effective displacement

by 2α conditional on the transmon being in its ground state. Under this gate, we can
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-

-

|g〉 ⊗ |ψ±〉|g〉

Figure 4.1: qcMAP Protocol for deterministic creation of two-mode cat state.
(a) Pulse sequence for state creation, written in a general form that accommodates different
photon numbers in each cavity. (b) Cartoon depicting the state evolution of Alice and Bob in
their respective IQ planes. Blue and red indicate the cavity photon probability distribution
associated with the ancilla |g〉 and |e〉 respectively. The rotation of the phase space during
the protocol can be accounted by an independently calibrated rotation of the tomography
angle such that the final state lies on the real axis in both Alice and Bob.

fully entangle the transmon excitation with both of the cavity states simultaneously, i.e.

1
2(|g〉+ |e〉)|0〉A|0〉B → N ((|g〉|0〉A|0〉B + |e〉|2α〉A|2α〉B). In principle, this operation can be

implemented directly using sufficiently spectrally selective cavity drives (FWHM 	 χge
i , i =

A, B). However, this requires an extremely long pulse duration, leading to more imperfections

arising from transmon decoherence and Kerr effects. Therefore, we choose to implement this

three-way entangling operation using two unconditional displacements separated by a wait

time Δt, which can be independently calibrated. During this time, the cavities states both

accumulate a conditional phase φi = χge
i Δt, as described by this following unitary:

U(Δt) = ÎA ⊗ ÎB ⊗ |g〉〈g|+ eiφAâ†â ⊗ eiφB b̂†b̂ ⊗ |e〉〈e| (4.2)

We can visualise this process in the IQ plane of each cavity mode as shown in Fig. 4.1. The

Guassian blobs describe the photon probability distribution in the rotating frame which

stays stationary when the ancilla is |g〉 but starts rotating at an angular velocity ∝ χi when
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the ancilla is excited. Therefore, when we prepare the transmon in a superposition state

1√
2
(|g〉+|e〉), the initial coherent state is split with equal probability to accumulate a phase of

zero or φi. Hence, this effectively implements the conditional displacement operation, Dg
2α.

Subsequently, the transmon is disentangled from the cavities by a π-rotation conditional

on both cavities being in vacuum. A final displacement then brings the cavities into the

two-mode cat state. As shown in the cartoon, the final state may lie along a different axis

in the IQ plane of each cavity. This is due to a deterministic phase accumulation over

the preparation sequence which can be calibrated independently. We account for it by a

introducing a rotation of the tomography axis in software such that the state in each cavity

lie along either the real or imaginary axis.

Overall, all the operations required in this implementation are fast compared to the

decoherence time scales and can be independently calibrated with good precision. A simple

simulation that takes into account the decoherence in both the ancilla and the two cavities

during this protocol indicates that the it is possible to create a two-mode cat state with high

fidelity (� 95%) in our system.

It is important to note that while we chose to express the state in the form Eq. 4.1, it can

also be viewed as a larger cat state residing in a hybridised mode denoted by ĉ† = 1√
2
(â†+b̂†):

|ψ±〉 = N|
√
2(|α〉C ±

√
2|α〉C) (4.3)

In this basis, it is easy to see that we create single-mode cat state in Alice (or Bob) in the

same system by simply omitting all the pulses on Bob (or Alice) and keep it in vacuum.

Furthermore, it is also straightforward to create a two-mode cat in the basis 1√
2
(â† + b̂†)

as it only requires a reversal of the displacements in either Alice or Bob. In fact, we can

generate such states in an arbitrary basis spanned by two modes. It has been shown that

with individual classical drives on each cavity and the transmon ancilla, it is sufficient to

implement universal control of such two-cavity systems [51].
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4.2 Joint parity measurement

After the creation of the two-mode cat, we now probe the state of each cavity using the

standard Wigner tomography, Wi(βi) =
2
πTr

[
ρDβi

PiD
†
βi

]
(i=A or B) [71, 72]. The Wigner

function is a standard method to fully determine the quantum state of a single continuous-

variable system, which represents the quasi-probability distribution of photons in the quadra-

ture space defined by Re(β)-Im(β). It is measured using the established techniques described

in section 2.5. Our measured individual Wigner functions, WA and WB, for a two-mode cat

state |ψ−〉 with α = 1.92 are shown in Fig. 4.2. We observe that the quantum state of

Alice or Bob on its own is a statistical mixture of two clearly-separated coherent states.

The absence of the interference fringes indicates that there is no coherence between the two

coherent state components. In other words, each cavity does not contain a regular (single-

mode) cat state, which would contain characteristic fringes in the Wigner function [63]. This

is not surprising; rather it is a unique signature of an entangled state. We can consider the

single-cavity Wigner tomography as a partial trace operation on the two-mode entanglement

state which eases the coherence and leaves both modes in a statistical mixture. In fact, we

can generalise this property and state that it is sufficient [73] to prove the presence of en-

tanglement by showing that each subsystem (ρA and ρB) is less pure than the full system

(ρAB), i.e

Tr(ρ2A) < Tr(ρ2AB); Tr(ρ2B) < Tr(ρ2AB) (4.4)

In this case, it is obvious from the measured Wigner function of each cavity that the sub-

systems are fully mixed. This already hints that we have indeed created an entangled state

between two modes. In order to faithfully and quantitatively characterise such an entan-

gled cat state, we must implement joint Wigner tomography such that the non-classical

correlations between the two modes can be directly demonstrated.

Just as a cat state is an eigenstate of the parity operator, this particular two-mode cat

state is an eigenstate of the joint photon number parity operator PJ :

PJ = PAPB = eiπa
†aeiπb

†b = eiπ(nA+nB) (4.5)
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Figure 4.2: Wigner tomography of individual cavities. Measured single-cavity scaled
Wigner function of (a) Alice (π2WA(βA)) and (b) Bob (π2WB(βB)) respectively for the two-
mode cats state |ψ−〉, each plotted in the complex plane of Re(βi) and Im(βi) (i=A or B).
For either cavity, no interference fringes are observed int its Wigner function, indicating
a statistical mixture of two coherent states, as opposed to a single-cavity cat state, after
tracing out the quantum state of the other cavity. The distortion of the coherent states is
due to Kerr nonlinearity in the cavities. The photon number parity within each cavity is
close to 0, reflected by the value of respective Wigner functions near the origin.

where â(â†) and b̂(b̂†) are the annihilation (creation) operators of photons in Alice and Bob,

and PA and PB are the photon number parity operators in individual cavities. Remarkably,

|ψ+〉 (or |ψ−〉) has definitively an even (or odd) number of photons in the two cavities

combined, while the photon number parity in each cavity separately is maximally uncertain.

This again echoes the observation of the mixed state in the individual Wigner measurements

shown in earlier. In order to faithfully characterise the state, we must perform a joint parity

measurement which only learns about the parity of the total number of photons in both Alice

and Bob. Additionally, photon loss in either of the cavities, which tend to be the dominant

error mechanisms in such systems, translates into a change of the joint parity. Therefore

quantum non-demolition measurements of the joint parity operators not only illustrate the

highly non-classical properties of the state, but also are instrumental for quantum error

correction in general.

Before I proceed to discuss the details of measuring the joint parity, let us first briefly

review the underlying principle of the single parity measurement of a single cavity [33, 71].

Such measurements use a dispersively coupled ancilla [71, 74] to impart a conditional cavity

phase shift[66], Cφ = I⊗|g〉〈g|+eiφa
†a⊗|e〉〈e|, of φ = π and therefore allow the cavity states
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with even or odd photon numbers to be mapped to |g〉 or |e〉 of the qubit for subsequent

readout. By extension, in our multi-cavity architecture, measuring the joint photon number

parity requires Cπ in both Alice and Bob, which is difficult to achieve simultaneously with

existing techniques [74] unless χge
A = χge

B . In this case, in a wait time Δt = π/χge
A (= π/χge

B ),

we get:

U(π/χge
i ) = CA

π C
B
π

= I⊗ |g〉〈g|+ P̂AP̂B ⊗ |e〉〈e| (4.6)

This χ-matching can be realised in hardware with a precise set of design parameters.

However, it is often extremely challenging to satisfy this requirement in presence of fluc-

tuations in fabrication conditions. Without strictly identical χge
A and χge

B , the phase accu-

mulation in one cavity is faster than the other, and it is in general not possible to realise

parity operators in both cavities simultaneously using this simple protocol. Moreover, for

a general two-cavity quantum state, this sequence can not measure a single-cavity parity

operator (P̂A or P̂B) due to inevitable entanglement between the ancilla and the photons in

the other cavity during the process and therefore, limit the controllability of the system.

We overcome this challenge and avoid the stringent requirements on Hamiltonian pa-

rameters by exploiting the |f〉 level of the transmon. As we have shown in section 3.3, the

|f〉 level of the transmon has perfectly satisfactory coherence properties and can be easily

controlled using standard pulses. Therefore, we simply use the third transmon level as an

additional degree of freedom to engineer an effective χ that is matched. This method is

most helpful when the |e〉 → |g〉 transition of the ancilla shows stronger interaction with

Bob (χge
B > χge

A ), while the |f〉 → |e〉 transition shows stronger interaction with Alice

(χef
A > χef

B ). This is physically realised by engineering the ancilla frequency to lie between

those of the two cavities, i.e.ωA < ωef < ωge < ωB. Considering the quantum state with

two cavities and three ancilla levels in general, the unitary evolution for any wait time Δt
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is:

U(Δt) =IA ⊗ IB ⊗ |g〉〈g|+ eiφAâ†â ⊗ eiφB b̂†b̂ ⊗ |e〉〈e|

+ eiφ
′
Aâ†â ⊗ eiφ

′
B b̂†b̂ ⊗ |f〉〈f | (4.7)

where

φA = χge
A Δt, φB = χge

BΔt

φ′
A = χgf

A Δt, φ′
B = χgf

B Δt (4.8)

where χgf
A ≡ χge

A +χef
A and χgf

B ≡ χge
B +χef

B . Therefore, the two cavities simultaneously can

acquire conditional phases in their coherent state components at relative rates that differ

for |e〉 and |f〉. In light of this, we can now manipulate the ancilla in different superposition

states among the three levels to concatenate conditional phase gates associated with χge
i ,

χi
eg, and χef

i with arbitrary weights. This additional degree of freedom not only allows

for joint parity measurement PJ (applying Cπ to both cavities), but also enables parity

measurement of each cavity PA or PB individually without affecting the other (applying Cπ

and C2π to the two cavities respectively).

Two possible pulse sequences for such P̂J measurement using three ancilla levels are

shown in Fig. 4.3. In the first case, we exploit the |g〉 − |f〉 superposition of the ancilla to

realise the joint measurement. For a given two-cavity quantum state ΨAB, we first use a

Rge
π/2 rotation to prepare the ancilla in 1√

2
(|g〉+ |e〉). Then a wait time Δt1 imparts phases

φA1 = χge
A Δt1 and φB1 = χge

BΔt1 to the two cavities for the |e〉 component of the state:

ΨAB ⊗ 1√
2
(|g〉+ |e〉)

⇒ 1√
2

[
ΨAB ⊗ |g〉+ eiφA1â

†âeiφB1b̂
†âΨAB ⊗ |e〉] (4.9)

Next, the |e〉 component in this intermediate state is converted to |f〉 by a π rotation in

the |e〉-|f〉 space, Ref
π . Subsequently a second wait time Δt2 leads to a second simultaneous
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-

-

-

Δt1 Δt2

Δt1 Δt2

-

Figure 4.3: Two experimental protocols for joint parity measurement]. (a) Pulse
sequence for using the |g〉 − |f〉 supersposition to map joint photon number parity of Alice
and Bob to the ancilla. Dβ represents a displacement of cavity state by amplitude β. The
additional of superscript indicates that the displacement operation is conditional on a certain
transmon state. Rge

θ or Rge
θ represents an ancilla rotation by angle θ in the |g〉−|e〉 or |e〉−|f〉

Bloch sphere. R00
π is a π-rotation on |g〉−|e〉 conditional on both cavities in the vacuum state.

The conditional phase gates are realised by the wait time Δt1 and Δt2 while the ancilla is
in a superposition state. Here φA = χge

A Δt, φB = χge
BΔt, φ′

A = χgf
A Δt, φ′

B = χgf
B Δt. (b) An

alternative parity measurement sequence involving the |e〉-|f〉 superposition of the ancilla,
where φA = χef

A Δt, φB = χef
B Δt instead. We use Δt1 = 28 ns, and Δt2 = 168 ns for P̂J

measurements presented in Fig. S10. This method reduces the parity mapping phase error
at the cost of more ancilla pulse errors.

conditional phase gate, imparting phases φA2 = χgf
A Δt2 and φB2 = χgf

B Δt2 to the two

cavities for the now |f〉 component of the state:

1√
2

[
ΨAB ⊗ |g〉+ eiφA1â

†âeiφB1b̂
†b̂ΨAB ⊗ |f〉] ⇒

1√
2

[
ΨAB ⊗ |g〉+ ei(φA1+φA2)â

†âei(φB1+φB2)â
†âΨAB ⊗ |f〉] (4.10)

The |f〉 component is then converted back to |e〉 by another Ref
π pulse. If we can find Δt1
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and Δt2 so that:

φA1 + φA2 = χge
A Δt1 + χgf

A Δt2 = π

φB1 + φB2 = χge
BΔt1 + χgf

B Δt2 = π (4.11)

the obtained quantum state is:

|Ψ〉final = 1√
2

[
ΨAB ⊗ |g〉+ P̂JΨAB ⊗ |e〉] (4.12)

effectively realising the simultaneous controlled π-phase gate (CA
π C

B
π ) in Eq. 4.6. Finally a

Rge
π/2 pulse completes the projection of joint parity to the ancilla |g〉, |e〉 levels, ready for

readout through the readout resonator.

The condition for finding non-negative solutions for Δt1 and Δt2 in Eq 4.11 is that

χge
A − χge

B and χgf
A − χgf

B have opposite signs. In essence, the cavity that acquires phase

slower than the other at |e〉 due to smaller χge
i is allowed to catch up at |f〉 using its

larger χgf
i . It should be noted that such relative relation of the χ’s is just a practically

preferred condition rather than an absolute mathematical requirement. This is because

parity mapping can be achieved whenever both cavities acquire a conditional phase of π

modulo 2π. It is always possible to allow extra multiples of 2π phases applied to the cavity

with stronger dispersive coupling to the ancilla, although it increases the total gate time

and incurs more decoherence. The essential ingredient in engineering the P̂J operator is the

extra tuning parameter Δt2 (in addition to Δt1) that allows two equations such as Eq 4.11

to be simultaneously satisfied.

This extra degree of freedom also enables measurement of the photon number parity of

a single cavity, P̂A or P̂B, for an arbitrary two-cavity quantum state. This is realised with

the same control sequences (Fig. 4.3A), choosing wait times such that one cavity acquires a

conditional π phase (modulo 2π) while the other acquires 0 phase (modulo 2π). For example,
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to measure P̂A we use Δt1 and Δt2 satisfying:

φA1 + φA2 = χge
A Δt1 + χgf

A Δt2 = π (mod 2π)

φB1 + φB2 = χge
BΔt1 + χgf

B Δt2 = 0 (mod 2π) (4.13)

Fig 4.3(b) shows an alternative version of joint parity mapping protocol, which uses

more ancilla operations, but is better adapted to to a larger parameter space of χ’s. In

this protocol, the ancilla spends time at the |e〉-|f〉 superposition so that conditional phases

proportional to χef
i are applied to the cavities. To achieve joint parity mapping, the two

time intervals Δt1 and Δt2 should satisfy:

φA1 + φA2 = χef
A Δt1 + χgf

A Δt2 = π (mod 2π)

φB1 + φB2 = χef
B Δt1 + χgf

B Δt2 = π (mod 2π) (4.14)

which avoids the use of extra 2π phases to χef
A − χef

B has opposite sign versus χgf
A − χgf

B .

Experimentally, choices of the parity mapping sequence and gate times involve trade-offs

in various aspects such as pulse speed/bandwidth and coherence time. We have measured

joint parity (and subsequently Wigner functions) using both protocols. For the sequence of

Fig 4.3(a), Δt1 = 0, Δt2 = 184 ns was experimentally implemented. For the sequence of

Fig 4.3(b), Δt1 = 28 ns, Δt2 = 168 ns was used. The actual effective wait time was longer

due to the non-zero duration (16 ns) of each ancilla rotation. Also, small deviations from

the ideal timing is introduced due to 4 ns resolution of the FPGA output. The first protocol,

with this choice of wait times, does not yield the exact π phases required for exact parity

mapping (We estimate φA1 + φA2 = 0.97π and φB1 + φB2 = 1.03π).

These phase errors lead to an estimated infidelity of the joint parity measurement of

about 3% for the two-cavity states in this study. Exact phases can be achieved with longer

wait times so that φA1+φA2 = 3π and φB1+φB2 = 5π, but the infidelity due to decoherence

and high-order Hamiltonian terms outweighs the benefits. In principle, the second protocol

that achieves exact π phases at relatively short total gate time should be more advantageous.
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However, using the second protocol, we observe visibly identical results of joint Wigner

tomography of the two-mode cat states with fidelity nearly equal to the first protocol. This

is attributed to the extra infidelity from the more complicated ancilla rotations involved in

the second protocol, due to pulse bandwidth limitations and unwanted ancilla population

mixing. Details of the different contributions to the reduced contrast are provided in the

section 4.4.
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Figure 4.4: Scaled joint Wigner tomography (a, b) Two-dimensional plane-cut along
(a) axes Re(βA)-Re(βB) and (b) axes Im(βA)-Im(βB) of the calculated 4D scaled joint
Wigner function 〈PJ(βA, βB)〉 of the ideal odd-parity two-mode cat state |ψ−〉 with α = 1.92.
The red features in (A) represent the probability distribution of the two coherent states
components. The central blue feature in (A) and fringes in (B) demonstrate quantum
interference between the two components. (c,vd) The corresponding Re(βA)-Re(βB) and
Im(βA)-Im(βB) plane-cuts of the measured joint Wigner function of |ψ−〉, to be compared
with the ideal results in (A) and (B) respectively. Data are taken in a 81×81 grid, where
every point represents an average of about 2000 binary joint parity measurements. (e)
Diagonal line-cuts of the data shown in (A) and (C), corresponding to 1D plots of the
calculated (black) and measured (red) scaled joint Wigner function along Re(βA) = Re(βB)
with Im(βA) = Im(βB) = 0. (f) Diagonal line-cuts of the data shown in (B) and (D),
corresponding to 1D plots of the calculated (black) and measured (red) scaled joint Wigner
function along Im(βA) = Im(βB) with Re(βA) = Re(βB) = 0.
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WJ is a function in the four-dimensional (4D) phase space, whose value at each point

(Re(βA), Im(βA), Re(βB), Im(βB)), after rescaling by π2/4, is equal to the expectation value

of the joint parity after independent displacements in Alice and Bob [75].

WJ(βA, βB) =
4

π2
〈PJ(βA, βB)〉

=
4

π2
Tr

[
ρDβA

DβB
PJD

†
βB

D†
βA

]
(4.15)

For simplicity, we will therefore use the scaled joint Wigner function, or “displaced joint

parity" 〈PJ(βA, βB)〉 to represent the cavity state. 〈PJ〉 at any given point (βA, βB) is di-

rectly measured by averaging single-shot readout outcomes and takes values between -1 and

+1. To illustrate the core features in this 4D Wigner function of the state |ψ−〉, we show

its two-dimensional (2D) cuts along the Re(βA)-Re(βB) plane and Im(βA)-Im(βB) plane

for both the calculated ideal state (Fig 4.4(a), (b), also see Ref [75]) and the measured

data Fig 4.4(c), (d). The Wigner function contains two positively-valued Gaussian hyper-

spheres representing the probability distribution of the two coherent-state components, and

an interference structure around the origin with strong negativity corresponding to an odd

joint parity state, as expected. Excellent agreement is achieved between measurement and

theory, with the raw data showing an overall 81% contrast of the ideal Wigner function.

Comprehensive measurements of 〈PJ〉 in the entire 4D parameter space further allow us to

reconstruct the density matrix of the quantum state, which shows a total fidelity of also

about 81% against the ideal |ψ−〉 state. The actual state fidelity may be significantly higher

if various errors associated with tomography are removed. We will have a more detailed

discussion about the sources of imperfections in section 4.4.

We can also measure the joint Wigner function along other planes. For example, we

present the data obtained for the Re(βA)-Im(βA) and Re(βB)-Im(βB) planes in Fig. 4.6.

The measurement indicates, not surprisingly, that only interference fringes are present on

these planes, consistently with the results shown in Fig 4.4. Single cavity Wigner tomography

is also performed using the protocol of Fig 4.3(a), with Δt1 = 688 ns, Δt2 = 0 for P̂A, and

Δt1 = 660 ns, Δt2 = 204 ns for P̂B. Moreover, for P̂A measurement the Ref
π pulses were
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Figure 4.5: Coherence of larger two-mode cat states. Measured fringes in the Im(βA)−
Im(βB) plane for two-mode cat states with photon numbers being (a) αA = 2.7, αB = 3.1
and αA = 3.0, αB = 3.3.

skipped, taking advantage of the fact that χge
B ≈ 2χge

A .

〈PJ〉

Figure 4.6: Joint Wigner function of the two-mode cat state along single cavity
I-Q planes. Measured fringes in the Im(βA)− Im(βB) plane for two-mode cat states with
photon numbers being (a) αA = 2.7, αB = 3.1 and αA = 3.0, αB = 3.3.

Both the state creation and tomography method described so far can in principle be

applicable to arbitrary photon numbers in the two cavities. We briefly measured the co-

herence features that lie in the Im(βA) − Im(βB) plane of the joint Wigner functions of

two-mode cat states with larger and differing number of photons. The number of fringes

increases with the total photon number, proportional to
√
α2
A + α2

B. The largest state we

measured (Fig. 4.5(b)) contains roughly 80 photons across the two cavities. While the inter-

ference patterns remain intact, the contrast of the measured joint Wigner function decreases

quite significantly with increasing photon numbers. This corresponds to the increase in

the non-idealities of joint parity measurement due to both stronger decoherence as well as
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imperfections in ancilla rotations due to limited bandwidth.

Furthermore, we can also monitor the joint parity of the two-mode cat in the time domain

to shine light on the decoherence time scales of the state after it has been created. Using a

simple model that takes into account of both the photon loss rate of the two superconducting

cavities, we can describe the decay of joint parity by

PJ(t) = PJ(t = 0)exp[−2α2(2− e−t/τA − e−t/τB )] (4.16)

This model is only applicable when the total photon number is far from zero as all the

photons decay from the cavities, joint parity will eventually approach +1. Since the initial

decay is twice the photon loss rate, it is informative to consider a characteristic time scale

during a span much shorter than the cavity lifetimes such that the photon populations in

each cavity remains nominally constant.

Figure 4.7: Decay of joint parity. The measured joint parity as a function of variable
delay time after state creation. Green curve is a fit to a simple exponential function, which
yields a time constant of 150 μs. Blue dashed line shows the plot according to the theoretical
model described in Eq. 4.16

For an even two-mode cat, we observe a decay time about 150 μs with α = 1.92 using

a simple single exponential fit. This is consistent with the average photon number over a

duration of 600 μs after state creation given the independently measured cavity lifetimes

of τA = 2.6 ms and τB = 1.5 ms. This time scale is on par with, if not slightly superior

to, the relaxation times of the state-of-the-art transmons. The result strongly echoes our

motivation to use superconducting cavities to coherently store quantum information.
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This particular measurement is not sensitive to other decoherence mechanisms such as

the dephasing of the cat state due to a transmon thermal jump. However, given the thermal

population of the device (≤ 8%) and its T1, this dephasing time is ∼1ms, which far exceeds

the loss of joint parity due to photon loss. Therefore, it is not currently the limiting timescale

and we believe it can be further improved with better thermalisation of the device to suppress

the transmon thermal population.

4.3 A bell pair of encoded qubits

Compared with other reported quantum states of two harmonic oscillators, a striking prop-

erty of the two-mode cat state is that its underlying compositions are highly distinguishable.

Two-mode squeezed states [76, 77, 78, 79] have shown strong entanglement, but are Gaus-

sian states without the Wigner negativity and the phase space separation as in a cat state.

The “N00N" state, an entangled state in the discrete Fock state basis, typically requires

quantum operations of N photons one by one and so far has been realised with up to 5 pho-

tons [80, 81]. The two components of the cat state in Fig. 3 have a phase space separation of

|α−(−α)| = √
15 in each cavity, giving an action distance of

√
30 in the 4D phase space, or a

cat size [72] of 30 photons. Our technique in principle allows the generation of two-mode cat

states with arbitrary size using the same operation. So far we have measured cat sizes of up

to 80 photons, and more macroscopic states can be achieved by implementing numerically

optimised control pulses [37] and engineering more favourable Hamiltonian parameters.

Compared with single-cavity quantum states, the addition of the second cavity mode

increases the quantum information capacity significantly. Despite the modest mean photon

numbers, a full tomography of the two-mode cat state (partly shown in Fig. 3) requires a

Hilbert space of at least 100 dimensions to be described (capturing 99% of the population),

comparable to a 6 or 7 qubit GHZ state.

Our conservatively estimated quantum state fidelity is comparable to that reported for

an 8-qubit GHZ state in trapped ions [82] and the largest GHZ state in superconducting cir-

cuits [40] (5 qubits). In addition, a great advantage of continuous-variable quantum control
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is illustrated by our hardware-efficient quantum state tomography protocol that covers an

enormous Hilbert space by simply varying two complex variables of cavity displacements.

An important motivation for creating multi-cavity cat states is to implement a promising

paradigm towards fault-tolerant quantum computation [83, 50], where information is redun-

dantly encoded in the coherent state basis [63]. Another advantage of this coherence-state

based encoding is that we can perform a highly efficient tomography without accumulating

a large grid of displaced parity measurements. In fact, it has been shown that 4 values of a

cavity’s the Wigner function is sufficient to reconstruct the state [84], an example of direct

fidelity estimation (DFE) [85, 86].

〈X〉

〈Z〉

〈Y 〉

〈I〉

Re[β]

Im
[β
]

Figure 4.8: Direct fidelity estimation of a cat state Instead of performing full Wigner
tomography, we can restrict ourselves to the encoded space and reconstruct the full density
matrix of a cat state from 4 independent measurements. The Pauli set can be directly
mapped to the displaced parity measurements.

In this context, our experiment realises an architecture of two encoded qubits entan-

gled with each other. The two-mode cat state can be considered as a two-qubit Bell state

1√
2

(|0〉|0〉 ± |1〉|1〉), where the quasi-orthogonal coherent states | ± α〉 in each of the two

cavities represent |0〉 and |1〉 of a logical qubit. In this encoding, the single-qubit Pauli

operators can be written as:

Xj ≈ | − α〉j〈α|j + |α〉j〈−α|j
Yj ≈ i| − α〉j〈α|j − i|α〉j〈−α|j
Zj ≈ |α〉j〈α|j − | − α〉j〈−α|j
Ij ≈ |α〉j〈α|j + | − α〉j〈−α|j (4.17)
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For a cat state with sufficiently large α (〈α| − α〉 	 1), we can directly map the encoded

state observables to the cavity observables, which are the displaced parity operators of a

cavity (P̂j(β) ≡ D̂βj
P̂jD

†
βj

):

Xj ≈ P̂j(0)

Yj ≈ P̂j

( iπ
8α

)
Zj ≈ P̂j(α)− P̂j(−α)

Ij ≈ P̂j(α) + P̂j(−α) (4.18)

The approximate sign is to reflect the non-zero overlap between the coherent states. Based

on this, we can simply perform four independent parity measurements after the appropriate

displacement in order to extract the set of Pauli operations {I,X, Y, Z}. As shown in Fig. 4.8,

the observables I and Z require a comparison between two different measurements at the

centre of each blob, while the observables X and Y are simply a single parity measurement

after a particular displacement. We can directly extend this analysis to the two-mode cat

and use it to implement an efficient tomography of the state in the two-qubit encoded states.

Based on this, the 16 two-qubit observables are products of single-qubit Pauli operators,

and can all be expressed in the form of displaced joint parities. Since operators in different

cavities commute,

P̂A(βA)P̂B(βB) = D̂βA
D̂βB

P̂JD
†
βA

D†
βB

≡ P̂J(βA, βB) (4.19)

With this, we can fully characterise the Pauli operators using 16 independent measurements

of displaced joint parity in the 4D phase space. This provides a direct, single-shot mea-

surement of the expectation value of each two-qubit correlators and hence, another way to

estimate the fidelity of the entangled state. Using the above-mentioned mapping, we can
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map out the 16 two-qubit Pauli correlators as:

IAIB = P̂J(α, α) + P̂J(α,−α) + P̂J(−α, α) + P̂J(−α,−α)

IAXB = P̂J(α, 0) + P̂J(−α, 0)

IAYB = P̂J

(
α,

iπ

8α

)
+ P̂J

(− α,
iπ

8α

)
IAZB = P̂J(α, α)− P̂J(α,−α) + P̂J(−α, α)− P̂J(−α,−α)

XAIB = P̂J(0, α, ) + P̂J(0,−α)

YAIB = P̂J

( iπ
8α

, α
)
+ P̂J

( iπ
8α

,−α
)

ZAIB = P̂J(α, α) + P̂J(α,−α)− P̂J(−α, α)− P̂J(−α,−α)

XAXB = P̂J(0, 0)

XAYB = P̂J

(
0,

iπ

8α

)
XAZB = P̂J(0, α)− P̂J(0,−α)

YAXB = P̂J

( iπ
8α

, 0
)

YAYB = P̂J

( iπ
8α

,
iπ

8α

)
YAZB = P̂J

( iπ
8α

, α
)− P̂J

( iπ
8α

,−α
)

ZAXB = P̂J(α, 0)− P̂J(−α, 0)

ZAYB = P̂J

(
α,

iπ

8α

)− P̂J

(− α,
iπ

8α

)
ZAZB = P̂J(α, α)− P̂J(α,−α)− P̂J(−α, α) + P̂J(−α,−α)

(4.20)

Therefore, for any two-qubit state encoded in this subspace, we can perform efficient tomog-

raphy without extensive measurement of the joint Wigner function. The encoded two-qubit

tomography of a state |ψ+〉 with α = 1.92 is shown in Fig. ??, providing a direct fidelity

estimation [86] of 1
4

(〈II〉+ 〈XX〉 − 〈Y Y 〉+ 〈ZZ〉) = 78% against the ideal Bell state, sur-

passing the 50% bound for classical correlation. The two-qubit tomography suggests that

errors within the encoded space are quite small. The reduced contrast compared to the ideal
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Figure 4.9: Two-qubit Pauli correlators. Red bars show tomography of two logical
qubits encoded in the coherent state basis of two cavities, with the prepared state being an
even-parity two-mode cat state, |ψ+〉 with α = 1.92. Gray bars represent the ideal state.
Insets show the Re(βA)-Re(βB) and Im(βA)-Im(βB) plane-cuts of the measured scaled joint
Wigner function of the same state. The measured identity operator differs from 1 as a result
of the parity measurement infidelity and leakage out of the code space.

state is mostly due to infidelity of the joint parity measurement and leakage out of the code

space (due to higher-order Hamiltonian terms).

To further demonstrate this, we implement a more direct assessment similar to the Bell

test. The two-mode cat state is a quantum mechanical system consisting of two continuous-

variable subsystems. In general, for two continuous-variable systems, the correlation between

their individual parities after independent displacements has a classical upper bound, which

can be described by a CHSH-type Bell’s inequality using the formulation proposed in Ref. [87]

and discussed in Ref. [75]. Arbitrarily choosing two test displacements βA, β
′
A in Alice and

two test displacements βB, β
′
B in Bob, the Bell signal B can be constructed from parity

correlations after all four combinations of displacements in the two cavities:

B =
∣∣〈P̂A(βA)P̂B(βB)〉+ 〈P̂A(β

′
A)P̂B(βB)〉

+ 〈P̂A(βA)P̂B(β
′
B)〉 − 〈P̂A(β

′
A)P̂B(β

′
B)〉

∣∣ ≤ 2 (4.21)

where P̂i(β) ≡ D̂βi
P̂iD

†
βi

(i =A, B) is the displaced parity operator. Here measuring parity
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Figure 4.10: Bell signal of an odd two-mode cat state. Red bars show the amplitude
of scaled joint Wigner function at the selected sampling points in the phase space defined by
the imaginary amplitudes of βA, βB. Inset shows the location of the chosen sampling points
in phase space

after different displacements is analogous to measuring σz of a spin-12 system after different

rotations.

Equivalently, this Bell signal is represented by the values of joint Wigner function (or

displaced joint parity) at the four vertices of a rectangle:

B =
π2

4

∣∣WJ(βA, βB) +WJ(β
′
A, βB) +WJ(βA, β

′
B)

−WJ(β
′
A, β

′
B)

∣∣ ≤ 2 (4.22)

For a quantum state with entanglement between the two subsystems, this Bell’s inequal-

ity can be violated. For near-optimal violation, we choose a square in the Im(βA)-Im(βB)

plane with prominent interference fringes. The square is positioned to have three of the

vertices close to the minimum of the central negative fringe and one in the vicinity of the

maximum of the adjacent positive fringe, using βA = βB = −iπ/(16β) = −0.102 and

β′
A = β′

B = 3iπ/(16β) = 0.307 (Fig. 5.5). Given these sampling points, the measured ampli-

tude gives a Bell signal B = 2.17± 0.01, surpassing the classical threshold by more than 10

standard deviations. This indicates the non-classical nature of the two-mode cat state and

the presence of quantum correlations between the two modes. This also demonstrates the

robustness of our experimental technique in both the creation of the quantum mechanical
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two-mode cat state as well as the joint parity measurement procedure. Without complete

spatial separation and fully independent readout of the two modes, the violation should be

considered a demonstration of the fidelity of the entanglement and the measurement rather

than a true test of non-locality. Nevertheless, various schemes exist to further separate

the two modes such as converting the cavity fields into itinerant microwave signals and/or

optical photons [88].

4.4 Understanding imperfections

Although features of the measured joint Wigner function on the Re-Re and Im-Im planes

can be compared to that of the ideal state for a qualitative gauge of the quality of the

two-mode cat state, a full density matrix reconstruction would be required to rigorously

evaluate the quantum state fidelity. The reconstruction requires a sufficiently large data set

of WJ(β
(A)
k , β

(B)
k ), k ∈ (1, ..., Ndisp) at Ndisp unique displacements in the 4D phase space.

The measured joint Wigner function at each of these points is simply a measurement of the

scaled displaced joint parity

WJ(ρ, β
(A)
k , β

(B)
k ) =

4

π2
Tr[ρDkP̂JDk] (4.23)

where Dk = DA(β
A
k )DB(β

B
k ). This measurement, albeit lengthy, can be done easily using

methods described in section 4.2.

In order to find the density matrix ρ from the measured set of WJ , we must find a matrix

that relates the two such that ρ can be reconstructed from WJ by a simple matrix inversion.

To establish this relation, we can write down ρ in the Fock state basis, truncated to some

maximum photon number Ncutoff :

ρ =

Ncutoff∑
i,j,k,l=1

ρijkl|ij〉〈kl| (4.24)

Next, we use the linearity of WJ in ρ to indentify the contributions from each of its
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components

WJ(ρ, β
(A)
k , β

(B)
k ) =

4

π2
Tr[ρDkP̂AP̂BDk]

=
4

π2

∑
i,j,m,n

ρi,j,m,n〈mn|ρDkP̂AP̂BD
†
k|ij〉

=
4

π2

∑
i,j,m,n

ρi,j,m,nKmi(β
(A)
k )Knj(β

(B)
k ) (4.25)

Now the matrix elements Kmn(β) ≡ 〈m|D(β)P̂D(β)†|n〉 are computed using the same

method developed for standard Wigner state tomography [89].In short, we find

Kmn(β) = e−|β|2(−1)m(2β)n−m

√
m!

n!
Ln−m
m (β) (4.26)

where Ln−m
m is a generalised Laguerre polynomial.

Now we compute independently each Kmn(β) and use them to reconstruct the density

matrix from the measured joint Wigners. In order to ensure that the derived ρ has real eigen-

values and unity trace, we construct an optimisation problem to find ρML that maximises the

likelihood of agreeing with the measured data with the constraint that Tr(ρ) = 1. As an ex-

ample, let us consider the state |ψ+〉 with n̄ = |α|2 ≈ 3.7. In order to solve the optimisation

problem, we must first determine an appropriate truncation based on the expected state. In

this case, we choose to use Ncutoff = 12, which truncates ≤ 0.1% of the photons accordingly

to Poisson statistics. This results in a system dimension of d = N2
cutoff = 144 and therefore

d2 = 20736 real parameters in ρ. This makes the computation rather demanding, but can

be implemented with some clever routines such as the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) algorithm.

After performing the reconstruction, we find that the largest pure state that overlaps with

the ideal state is given by the largest eigenvalue λmax(ρ) ≈ 0.824, with a purity Tr(ρ2) = 0.68.

The highest fidelity for the state of the specific form |ψ〉 = |α, α〉+|−α〉,−α〉 with α = 1.905

is F = 〈ψ|ρ|ψ〉 = 0.803. This is consistent with the fidelity inferred from the peak contrast of

the joint parity measurement (F ≈ 0.81). Small perturbations on the relative size and phase
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Assessment Estimated infidelity

ancilla initialisation ∼ 0.5% probability not in |g〉 ∼ 1%
cavity initialisation ∼ 0.5% probability not in |0〉A|0〉B ∼ 1%
readout infidelity 1.0-1.5% error rate 2.5%

ancilla decoherence in state creation |g〉-|e〉 superposition for 0.65 μs 2.2%
pulse error in state creation imperfect spectral selectivity of R00

π ∼ 1%
ancilla decoherence in parity map |g〉-|e〉 & |g〉-|f〉 superposition for 0.25 μs 2.2%
timing (phase) error in parity map ±3% phase error in CA

π and CB
π ∼ 3%

pulse error in parity map population mixing in |g〉-|e〉-|f〉 rotations ∼ 5%
photon loss in two cavities 3.7-7.3 photons in each cavity for 0.9 μs 0.9%

Total ∼ 19%

Table 4.1: Contributions to the reduction of contrast in joint Wigner measure-
ments. The loss of contrast in the measured joint parity of the two-mode cat state, |ψ±〉
(α = 1.92), can be accounted for by these error channels. The estimated contribution is
either measured in control experiments or inferred from simulations.

of the two coherent state components do not cause any insignificant variation of this state

fidelity. Our reconstruction also finds that the joint parity of the largest eigenvector is 0.97

and that of the next few eigenvectors to be small and positive. This indicates that single-

photon loss, which causes a change of joint parity from even to odd, is not the dominant

error mechanism impacting the fidelity of the state preparation. In order to understand the

different contributions to the state fidelity, we make a detailed error budget for both state

generation and tomography.

The factors causing imperfections in the measured state can mostly be estimated di-

rectly from system parameters and tested in independent control experiments. The limited

coherent times of the transmon and the cavities account for about 5% given the total time

required to prepare and measure the two-mode cat state. Readout errors, calibrated to be

roughly 1%, result in a 2% reduction in the measured joint parity since two rounds of readout

are performed for each measurement. Moreover, we infer from the Rabi oscillations of the

ancilla that there is a 2% chance of it starting from the wrong state despite the initialisation

process. Additionally, further imperfections can arise from the joint parity measurement.

This is primarily a result of incorrect mapping of the joint parity to the transmon state. For

example, slight miscalibrations of Δt1,Δt2 can lead to a discrepancy in the accumulated

phase by ±3%.

Another source of non-ideality is from the limited bandwidth of the transmon drives. In
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order to correctly map the joint parity to the transmon state, we must implement rotations

that are blind to the photon numbers of the cavities. This requires the Gaussian pulses to

have sufficiently large spectral width (FWHW � χNcutoff). On the flip side, a broadband

pulse causes a spectral overlap with the higher level transitions of the transmon. Constrained

by these two conflicting requirements, we choose to use a pulse with σ = 2π × 40 MHz (16

ns pulse duration) as a compromise. Furthermore, we implement derivative removal via

adiabatic gate (DRAG) [90] corrections on the transmon |g〉 − |e〉 rotation pulses to correct

for the undesired effects of the |f〉 level. However, our joint parity measurement requires

high fidelity manipulations in the |e〉 − |f〉 manifold, often in presence of both |g〉 and |h〉.
Full correction protocols for such operations have not yet been proposed. The detailed

break-down of the known sources of errors are presented in Table 4.1, with roughly 6%

coming from the state creation and 13% from the measurement. This is consistent with our

measurement of |0〉A|0〉B using the same joint parity mapping sequence, which yields a peak

contrast of roughly 88%.

It is worth noting that there is not a dominant source of error. In order to improve the

overall contrast, we must improve our system both in hardware and software. In particular,

better precision in the microwave control sequence, and more sophisticated pulses on the

ancilla would allow us to perform more robust joint parity measurements in the presence of

large photon populations. The continual improvement of the transmon and cavity coherence

is also indispensable.

4.5 Discussion

In this chapter, we have presented the first experimental realisation of a Schrödinger cat

state that lives in two cavities. This two-mode cat is not only a beautiful manisfestation

of superposition and entanglement between macroscopically distinguishable, quasi-classical

states [70], but also a highly valuable resource for new technologies such as quantum metrol-

ogy [91], quantum networks, and teleportation [92].

The results described here are also powerful demonstrations of our ability to perform
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high-fidelity quantum control over large two-cavity Hilbert space. This is a crucial ingredient

for continuous-variable quantum computing schemes. The measurement of joint photon

number parity of multiple harmonic modes is QND in nature and can be a useful tool in

cavity-based quantum error correction schemes. It would also facilitate concurrent remote

entanglement generation [93] in the modular architecture.

This experiment is also a verification that our cavity-transmon systems can be scaled to

include multiple high-Q modes without sacrificing coherence or controllability. The scope of

this work focuses on the creation of complex quantum states and joint tomography of two

cavity modes. It paves the way towards performing quantum gates between states encoded in

multiple superconducting cavities, which are investigated with the subsequent experiments.

Finally, results from this work offer valuable insight for the design and optimisation of the

next generation of multi-cavity quantum devices.



Chapter 5

A CNOT gate between two multi-photon qubits

In traditional approaches to quantum error correction, bits of quantum information are re-

dundantly encoded in a register of two-level systems [94, 95]. Over the past years, elements

of quantum error correction have been implemented in a variety of platforms, ranging from

nuclear spins [43], photons [48] and atoms [96], to crystal defects [46] and superconducting

devices [41, 49, 40]. However, for performing actual algorithms with an error-protected de-

vice, it is necessary not only to create and manipulate separate logical qubits, but also to

perform entangling quantum gates between them. To date, a gate between logical qubits

has yet been demonstrated, in part due to the large number of operations required for im-

plementing such a gate. For example, in the Steane code [95, 97], which protects against bit

and phase flip errors, a standard logical CNOT gate would consist of seven pairwise CNOT

gates between two seven-qubit registers [5]. Previous experiments have demonstrated an ef-

fective gate between two-qubit registers that are protected against correlated dephasing [98].

In that case, an entangling gate could be implemented using just a single pairwise CNOT

gate between the registers.

We choose to pursue a different strategy by encoding qubits in the higher-dimensional

Hilbert space of a single harmonic oscillator [99], or more concretely in multi-photon states

of a microwave cavity mode [50, 68]. This approach has the advantage of having photon

loss as the single dominant error channel, with photon-number parity as the associated

error syndrome. Codes whose basis states have definite parity, such as the Schrödinger cat

code [63] or the binomial kitten code [51], can then be used to actively protect quantum

101
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information against this error [74, 49]. In the previous chapter, we have presented in first

experiment that prepares an entangled state between two modes [100] in a double-cavity

cQED architecture. Now, we aim to implement a quantum gate between two multi-photon

qubits in the same architecture. In contrast to gates between two-level systems, which can be

coupled by a linear element such as a cavity bus [101], harmonic oscillators can non-trivially

interact only if they are coupled by a nonlinear ancillary element. However, the requirement

for fast interaction between the cavities without inheriting large undesired nonlinearities and

decoherence from the ancilla, presents a challenge to the cavity-based approach to quantum

error correction.

In the chapter, I will discuss the proof-of-principle experiment to demonstrate an engi-

neered entangling gate between two cavity states in the same double-cavity system discussed

previously. In section 5.1, I will provide the details of how we can enable cavity-cavity inter-

actions using driven operations without establishing appreciable coupling between the two

modes. Subsequently, we will look into how we can use this type of frequency-converting

process to perform an effective conditional gate between multi-photon states stored in the

two cavities. Next, I will discuss how we can quantify the gate performance using quantum

process tomography and repeated gate applications. Finally, I will provide some concluding

remarks on the merits and limitations of this type of inter-cavity operation.

5.1 RF controlled sideband transitions

In the discussions so far, we have only been using the transmon as a non-linear element to

prepare, manipulate and read out cavity states. Here, we will exploit not just its properties

as a two-level artificial atom, but also tap into the intrinsic four-wave mixing capabilities of

the Josephson junction. In essence, the entangling operation relies on two distinct types of

nonlinearity interactions. The first is the naturally occurring dispersive interaction, which

can be understood as a rotation of the cavity phase space conditioned on the ancilla state.

Here, we consider the ancilla ground and second excited states |g〉 and |f〉 only, since the

first excited state |e〉 is ideally not populated during the gate operation. In this case, the
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effective Hamiltonian is

Ĥdisp/� = −χ̃T â
†
T
âT |f〉〈f | − χ̃C â

†
C
âC |f〉〈f |, (5.1)

where â
C(T )

is the control (target) annihilation operator. This is an simplification of Eq. 2.16,

where the transmon ancilla is treated as a three-level atom. As a result of this interaction,

the target (control) cavity phase space rotates at χ̃
T (C)

/2π = 1.9 MHz (3.3 MHz) when the

ancilla is in |f〉, but remains unchanged when the ancilla is in |g〉.

ωgf/2

ωgf/2ωpump

ωc ωgf/2

ωgf/2 ωpump

ωc

Figure 5.1: Four-wave mixing process that enables a non-linear coupling between
the ancilla and the control cavity. (a) Process that extracts a photon from the control
cavity and doubly excites the ancilla with the absorption of a pump photon. (b) The reverse
process that brings the ancilla back to its ground state and transfers a photon back to the
control cavity with the emission of a pump photon.

The second type of nonlinearity interaction is a frequency-converting coupling enabled

through four-wave-mixing. Following the general framework for a single cavity-transmon

system, we can write down the Hamiltonian for this particular system:

ĤJ = −EJ cos
[
φq(q̂ + q̂† + ξ(t) + ξ∗(t)) + φC(âC + â†

C
) + φT (âT + â†

T
)
]

(5.2)

where EJ/� = 21 GHz is the Josephson energy of the ancilla; q̂, âC , âT are annihilation

operator associated with the transmon ancilla, control, and target cavity mode respectively,

and φk (k = q, C, T) are the normalised zero point fluctuation across the junction due to

each mode. ξ(t) ≈ g(t)
Δ corresponds to the displacement of the ancilla mode in the presence of

a pump tone with strength g(t) and detuning Δ from its resonance. In the limit that the flux

through the junction is small, this Hamiltonian can be approximated by the fourth order

expansion of the cosine function. Therefore, different four-wave mixing processes can be
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enabled by choosing appropriate pump frequencies, allowing previously non-resonant terms

to be accessible. In this particular application, our aim is to engineer an interaction between

the control cavity and the ancilla that allows energy exchange. This is commonly referred

to as a sideband transition described by:

ĤSB = −1

2
EJφ

3
qφCξ(t)

[
âCq̂

†q̂† + â†Cq̂q̂
]

(5.3)

This transition is enabled with a pump tone that satisfies the frequency matching con-

dition ωp = ωgf −ωC − (nC −1)χ̃C , with ωgf/2π = 9.46 GHz the ancilla |g〉− |f〉 transition,

nC the number of control photons, and χ̃C the effective dispersive coupling between the

ancilla and the control cavity. The process can in general be made insensitive to nC if the

coupling rate is much faster (nC − 1)χ̃C . Through this interaction, we achieve an exchange

of a single photon from the control cavity and two excitations from the ancilla in presence

of a single pump photon. A cartoon depicting the two reciprocal mixing processes is shown

in Fig 5.1. Here, the RF drive initiates a process that extracts a photon from the control

cavity and populates the |f〉 level of the ancilla while simultaneously enables the reverse

operation. Therefore, when the |f〉 state is occupied, the photon can be transferred back to

the control cavity (with a deterministic phase change) accompanied by a the emission of a

pump photon.

It is important to note that this process relies on the junction being a good four-wave

mixer. In other words, we must ensure |ξ|φq 	 1 so that the cosine expansion remains valid.

The pump strength can be calibrated independently through Stark shift measurements on

the ancilla |g〉 → |e〉 transition, which scales as −EJφ
4|ξ|2. The zero point fluctuations

associated with each mode can be inferred from other system parameters like the anhar-

monicity and Kerr. For the particular configuration used in this experiment, we use a pump

strength of ξ ∼ 0.5, which predicts a single photon oscillation rate of ΩC ∼ 2π × 8MHz.

By exploiting two excitations from the transmon, this Hamiltonian allows a relatively fast

nonlinear interaction. This is because the ancilla mode, being the most non-linear one, has

the largest contribution to the junction’s zero point flux fluctuation (φq ≈ 0.32 � φC, ξ).
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Figure 5.2: Drive sideband transition. (a) Measurement of the pumped sideband tran-
sition as a function of pump frequency and duration. The z-axis is an indication of the
ancilla population. The resonant pump frequency deviates from the calculated frequency
matching condition due to small amounts of AC Stark shifts on each mode in presence of
the pump tone. The ancilla is initialised in its |f〉 state. (b) 1D cut along the time axis to
show the periodic oscillations of the ancilla population from |g〉 to |f〉. The fitted frequency,
f = 7.85MHz corresponds to the effective coupling strength of the pumped interaction.

The resultant interaction, described by the effective Hamiltonian

Ĥsb/� =
ΩC (t)

2

(
âC |f〉〈g|+ â†

C
|g〉〈f |

)
, (5.4)

leads to sideband oscillations[102] between the states |nC , g〉 and |nC − 1, f〉 [103, 104, 105].

The rate of this oscillation is measured directly by monitoring the population of the ancilla

|f〉 population in presence of the pump and a single control cavity photon. In Fig. 5.2, we

vary both the frequency of the pump near the predicted value according to the frequency

matching condition, and the duration of the tone with system initialised in |1〉C|0〉T|g〉.
The data reveal that the actual resonance condition differs slightly from the theoretical

prediction. This is attributed to the Stark shifts incurred on each mode in presence of the

strong pump. Moreover, in the time domain we observe the periodic |g〉 − |f〉 oscillations

as expected from Eq. 5.4. We quantify the rate the oscillation by fitting the 1D cut along

the time axis to a decaying sinusoid and this yields Ω = 2π× 7.85 MHz, consistent with the
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theoretical prediction.

This type of driven sideband transition is in principle compatible with different photon

numbers in both the control and target cavities. It is useful to keep in mind that this

interaction speed can be enhanced by a factor
√
nC, where nC is the population of the control

cavity. When multiple photons are present in the target cavity, the sideband transition is

in competition with the always-on dispersive coupling between the cavity and the ancilla.

Figure 5.3: Drive sideband transition with multiple photons in the target cavity
Measurement of the pumped sideband transition as a function of pump frequency and du-
ration. Due to the dispersive shift between the target cavity and the ancilla, the resonance
frequency is now shifted by an amount ∝ nχT

gf for each photon number state present.

We illustrate the effect of having multiple excitations in the target cavity in Fig. 5.3.

Here, we measure same |g〉 − |f〉 oscillations as a function of pump duration and frequency,

with the target cavity initialised in a kitten state N (|0〉+|2〉+|4〉). As a result of the different

photon number states present in the target cavity, the |g〉−|f〉 transition frequency is shifted

by different amount of ∝ nχT
gf . Consequently, the resonance condition for the sideband drive

is now split as shown by the distorted chevron peaks in Fig. 5.3. In this case, the sideband

transition rate is comparable to the spread in the resonance frequencies and therefore, we

can still implement operation by centering the pump frequency in the middle of the three

resonance conditions. This does, however, introduce some additional imperfections and

causes the oscillations to have slightly reduced contrast. In order to make the operation

truly independently of the target state, we can either increase the pump strength such that

the engineered sideband transition is much faster than the spread of frequencies due to χ,
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or design a protocol to turn off the dispersive coupling during the sideband transition. Both

would require certain modifications of the existing hardware and were not explored in this

experiment. However, they are being actively investigated by other members of the lab as we

continue to improve our ability to engineer fast and coherent non-linear operations between

high-Q modes.

5.2 Implementation of CNOT gate

Let us look at how the driven sideband transition is utlilised to perform an effective condi-

tional operation between the two cavity modes. The basic mechanism behind the gate is to

make the cavities interact sequentially with the ancilla, enabling an effective nonlinear in-

teraction between the cavities without requiring a significant direct cavity-cavity coupling.

This method is similar to the one used in a recent experiment on a gate between single

optical photons [106].

We start by preparing the desired initial state using optimal control pulses on the ancilla

and on the cavitie [107, 36] simultaneously. The gate sequence is then performed in three

steps. First, we apply the sideband pump tone for a time π/(
√
2ΩC ), exciting the ancilla from

|g〉 to |f〉 conditioned on the control being in |1L〉C with ΩC being the pumped transition

rate. We then turn off the pump for a time δt, which corresponds π/χ̃, where χ̃ is the effective

dispersive coupling between the ancilla and the target cavity in presence of the pump. During

this wait time, the ancilla dispersively interacts with the target cavity, rotating its phase

space by a π-phase. This essentially implements a logical π-pulse that flips |0L〉T into |1L〉T
and vice versa, conditioned on the ancilla being in |f〉. We then apply the sideband pump

pulse a second time to disentangle the ancilla from the cavities, thereby effectively achieving

a CNOT gate between the two cavities. Finally, we use the ancilla to perform joint Wigner

tomography on the two-cavity state [100, 33], from which we reconstruct the density matrix.

To demonstrate the action of the gate, we first use the simplest possible encoding com-

patible with the protocol, i.e using {|0〉, |1〉} encoding for both the control and target cavity.

In this basis, the gate is accomplished by first applying the pump tone for 128 ns, which
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Figure 5.4: Protocol to implement CNOT using sideband drives. (a) The full ex-
perimental pulse sequence to perform the operation. It starts with the preparation of the
desired initial states using OCT pulses. It is important to ensure that the ancilla is left
in its ground state at the end of the state preparation pulse. The gate (black dashed box)
itself consists of two entangling operations between the ancilla and the Control (blue dashed
boxes), interleaved by a CNOT gate between the ancilla and target. The final state after the
gate is characterised via joint Wigner measurements [100]. (b) The schematic level diagram
illustrating the RF driven sideband transition between the ancilla and Control that realises
an entangling process between them. A single photon from the control cavity, together with
one from the RF pump, doubly excites the ancilla from its ground to |f〉 level (solid blue
lines). However, when no photons are present in the Control, the ancilla transition becomes
forbidden and the pump has no impact on the system.

fully converts a control photon and drive photon to double excitations of the ancilla . If

the ancilla is excited to |f〉, the dispersive interaction between the target and the ancilla

imparts a π-phase to the target cavity state in ∼ 212 ns. This is then followed by another

128 ns pump pulse to restore the control cavity state and disentangle the ancilla from the

cavity modes. In total, the gate time is 468 ns, corresponding to ≤ 4% of the coherence

time of the ancilla. While this encoding cannot be used for either error detection or error

correction, it fully capitalises on the good coherence times of the cavities and provides an

intuitive illustration of the operation.

The hallmark of a CNOT gate is its ability to entangle two initially separable systems.

As a demonstration of this capability, we apply the gate to |ψin〉 = (|0〉C + |1〉C) ⊗ |0〉T .

Ideally, this should result in a logical Bell state |ψideal〉 = |0〉C |0〉T + |1〉C |1〉T . Using the raw

measured Wigner function, we reconstruct the output density matrix ρmeas. The real part

of the density matrix is shown in Fig. 5.5. It shows excellent qualitative agreement with the

ideal output state. The imaginary components are omitted here since they are very close to

zero as expected and hence contain no significant information. From these results, we deduce
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sign

Figure 5.5: Generation of an entangled Bell pair in the single-photon encoding.
Real parts of the reconstructed density matrix (solid bars) of (a), the initial separable state
(|0〉C + |1〉C) ⊗ (|0〉T + |1〉T ), and (b), the final state after the CNOT operation which is
an entangled state |0〉C(|0〉T + |0〉T ) + |1〉C(|0〉T + |0〉T ). The results are shown the basis
|X±〉 for clarity. The ideal states are shown in transparent bars. The imaginary components
are omitted as they are indistinguishable from noise and contain no meaningful information
about the state

a state fidelity in the single photon encoding of FBell ≡ 〈ψideal|ρmeas|ψideal〉 = (95± 2)%.

This is within the measurement uncertainty of the input state fidelity Fin = (97± 2)%.

Based on these observations, we infer that the operation itself is fairly close to ideal, with

its imperfections causing a slight reduction in the Bell state fidelity. However, the details

of these nonidealities are obscured by imperfections in state preparation and joint Wigner

measurement.

Another important figure of merit for an entangling gate is the ability to turn off the inter-

action, to prevent unwanted entanglement between the cavities. In practice, the cross-Kerr

interaction between the cavities, described by the Hamiltonian ĤCT /� = χCT â
†
C
âC â

†
T
aT ,

induces entanglement even when the gate operation is not applied. We use the Bell state in

the single-photon encoding to demonstrate the on-off ratio of this entangling operation. This

is essentially a competition between the engineer gate and the natural cross-talk between

Alice and Bob. When starting with a Bell state, the cross-Kerr interaction first disentan-

gles, and then re-entangles the two cavities. To examine this effect, we parametrise the

amount of entanglement present in the system by its concurrenc [108] and monitor it over

a variable delay time. We show in Fig. 5.6, the decay of concurrence for an entangled state

(blue) created by the engineered CNOT operation and a separable state (red). As expected,

the cavity dephasing times of ∼ 500 μs leads to a gradual overall loss of entanglement in
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Figure 5.6: Undesired entanglement induced by the coupling ancilla. Concurrence
vs. wait time for an initially separable state (red) using single-photon encoding, and for an
initial Bell state (blue) obtained by applying the gate to the separable state. The presence of
the cross-Kerr interaction between the two cavities is responsible for the observed oscillatory
behavior, whereas dephasing due to thermal excitations in the ancilla results in a gradual
decay of the entanglement. By fitting simulations (solid black curves) to the measured data,
we determine a cross-Kerr interaction rate of χCT /2π=2 kHz.

both cases. From the measured curves, we infer a cross-Kerr interaction rate of χCT /2π=

2 kHz. However, the residual entanglement rate for the multi-photon encoding is increased

to Ωres = nC n̄TχCT = 2π×8 kHz, where n̄T = 2 is the average number of photons in the

target cavity. We can therefore infer the on/off ratio of the entangling rate, defined by the

ratio of the times to generate maximal entanglement without and with gate application, to

be π/(Ωrestg) ∼ 300.

A crucial advantage of this implementation of CNOT is that it is by design compatible

with more complex bosonic states. To highlight its potential, we extend the operation to

two multi-photon states that are compatible with error detection and error correction. In

this experiment, we choose a basis of even-parity Fock states

|0L〉C = |0〉C , |1L〉C = |2〉C (5.5)

for the control cavity, and Schrödinger kitten states [51]

|0L/1L〉T =
1√
2

( |0〉T + |4〉T√
2

± |2〉T
)

(5.6)

for the target cavity (henceforth omitting normalization). These encodings allows error

detection of a photon loss event in both cavities, as well as error correction in the target
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cavity as discussed in Ref. [51].

To implement the entangling gate between the two modes in this encoding, we simply

use the same CNOT protocol introduced earlier for the single Fock state encoding with

minor adaptations. The two types of nonlinear interactions necessary for the implementa-

tion, namely, the pumped ancilla-control coupling and the ancilla-target dispersive couping,

can both be photon-number independently. It is straightforward to see that the dispersive

Hamiltonian allows conditional rotation of the target cavity’s phase space regardless of its

encoding. For these particular code words (Eq. 5.6), a flip between |0L〉 and |1L〉 is simply

a rotation of the phase-space by π.

The sideband transition, as we have mentioned in the previous section, can also be made

photon-number insensitive if the coupling is strong, or spectrally broad, to remain unselective

to all the dispersively shifted photon number peaks. In this case, the pump transition occurs

at ΩC/2π = 7.85 MHz when the control cavity contains a single photon. In this encoding,

the control is prepared in the Fock state |2〉. This provides bosonic enhancement to the

pumped sideband transition, allowing a stronger ancilla-control coupling with Ω′
C/2π =

√
2 × 7.85 = 11.2 MHz, which is large compare to the spread in the transmon frequencies.

Therefore, we can indeed drive the sideband transition in this multi-photon encoding.

Now, we modify the gate protocol to work with this new multi-photon encoding. First,

in light of the bosonic enhancement in the sideband transition, we apply for the pump tones

for a shorter period of 64 ns. If the control is in |0L〉C = |2〉, a photon will be extracted

together with a pump photon, doubly exciting the ancilla to |f〉. The ancilla now dispersively

interacts with the target cavity, bringing it from |0L〉T to |1L〉T or vice versa by imparting

a π/2 phase. This process takes roughly 100 ns. Subsequently, we apply the pump tones

again for 45 ns to disentangle the ancilla. This completes the operation with a total gate

time of tg ∼ 190 ns. The shorter gate time is favourable since its performance is ultimately

limited by the ratio of tg to the coherence time of the ancilla. We will have a more in-depth

discussion of this point in the later section.

In order to demonstrate the action of the gate between multi-photon states, we first use

it on a simple example, |ψ〉 = |1L〉C ⊗ |0L〉T , where both the initial and final states are
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Re[ ρ ]

Figure 5.7: Example of reconstructed density matrices in Binomial encoding The
CNOT gate is applied to the initial state |1L〉C ⊗|0L〉T . (a) The initial and final Wigners of
the control and target cavity. (c), (d) The ideal density matrices of the initial and final joint-
cavity states. (e), (f) The density matrices reconstructed from joint Wigner tomography.

separable. This allows us to directly characterise the initial and final states using single

cavity Wigner measurements as shown in Fig. 5.7(a) and (b). The data indicate that after

the operation, the control cavity remains in |1L〉C while the target state has been rotated by

π, which indicates a flip between |0L〉T to |1L〉T . We also perform joint Wigner tomography

and reconstruct the full density matrices of the state using the same method described in

section 4.4. Our result, presented in Fig. 5.7(e) and (f), show that the reconstructed density

matrix are in a good agreement with the ideal states. Further, we can also carry out the

same experiment as in the single photon case to demonstrate the ability of the gate to
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. . .

. . .

Figure 5.8: Entangled state generation in the Binomial encoding. (a) The recon-
structed density matrix for the separable state (|0〉C + |2〉C) ⊗ ( |0〉T+|4〉T√

2
+ |2〉T ). (b) The

reconstructed density matrix of the state after the CNOT. We use a truncated Hilbert space
for the reconstruction, with maximum 3 and 5 photons in the control and target respec-
tively. The absence of higher excitations are confirmed via other control experiments. The
imaginary parts are omitted since they are indistinguishable from noise. The density matrix
corresponding to the ideal initial and final states are shown in transparent bars

entangle two multi-photon states. The final entangled state, shown in Fig 5.8, exhibits good

agreement with the ideal Bell state. The state fidelity are calculated in the same manner

as for the single photon encoding and yields a fidelity of (90 ± 2)%. Although this seems

lower than the single photon case, we can deduce that the imperfections are mainly due to

the more complex state preparation pulses and the joint Wigner tomography. This can be

verified by the (92± 2)% state fidelity extracted from the input state. We will discuss in a

bit more detail about the sources of imperfections in the operation.

5.3 Analysis of gate fidelity

To fully characterize the CNOT gate, we next perform quantum process tomography[58]

(QPT). We achieve this by applying the gate to sixteen logical input states that together

span the entire code space. By performing quantum state tomography on the resulting

output states we can reconstruct the quantum process ε(ρin), which captures the action of

the gate on an arbitrary input state ρin.



5.3. ANALYSIS OF GATE FIDELITY 114

The results are expanded in a basis of two-qubit generalized Pauli operators Ei on the

code space as ε(ρin) =
∑15

m,n=0 χm,nEmρinEn, where χ is the process matrix. Using the

measured χ (Fig 5.9), we determine a process fidelity of FCNOT ≡ Tr {χidealχ} = (89± 2)%

for the binomial encoding. We estimate the effect of non-ideal state preparation and mea-

surement by performing QPT on the process consisting of encoding and measurement only,

yielding a fidelity with the identity operator of Fidentity = (92± 2)%. The same procedure

is carried out for the Fock encoding as well. The results indicate a very similar process

fidelity. For the following discussion, we will focus on the Binomial encoding since it is more

relevant for the future application of this operation on fully error-correctable logical states.

To more accurately determine the performance of the gate and highlight specific error

mechanisms, we apply it repeatedly to various input states (Fig. 4b). We then measure

how the state fidelity decreases with the number of gate applications. A first observation is

that no appreciable degradation in state fidelity occurs when the control qubit is in |0L〉C .

Indeed, the control cavity contains no photon in this case, and as a result the ancilla remains

in its ground state at all times. When the initial two-cavity state is |1L〉C |X−
L 〉T (introducing

|X±
L 〉 ≡ (|0L〉 ± |1L〉) and |Y ±

L 〉 ≡ (|0L〉 ± i|1L〉)), corresponding to |2〉C |2〉T in the Fock-

state basis, the ancilla does get excited to the |f〉-state, and we measure a small decay in

fidelity of (0.6 ± 0.3)% per gate application. This is consistent with the ancilla decay time

from |f〉 to |e〉, measured to be 40 μs. While the qubit is irreversibly lost when a decay

occurs, the final ancilla state is outside the code space, and therefore this is a detectable

error. If the control qubit is initially in a superposition state, the first sideband pump pulse

will entangle the control cavity with the ancilla, making the state prone to both ancilla

decay and dephasing (T f
2 = 17 μs). For example, for |X+

L 〉C |X−
L 〉T , we measure a decay in

fidelity of (0.9 ± 0.2)% per gate.When the target cavity state is not rotationally invariant

(i.e. not a Fock state), we observe larger decay rates ((2.0 ± 0.3)% for |1L〉C |0L/1L〉T , and

(2.1 ± 0.2)% for |Y +
L 〉C |Y +

L 〉T ). While an accurate determination of the gate fidelity would

require randomised benchmarking [109], the data presented in Fig. 5.9(b) are sufficient to

indicate an average degradation in state fidelity of approximately 1% per gate application,

close to the ∼ 0.5% limit set by ancilla decoherence.
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Figure 5.9: Characterization of the CNOT gate. a, Quantum process tomography.
The solid (transparent) bars represent the measured (ideal) elements of the process matrix
χ. The corresponding process fidelity is FCNOT = (89± 2)%. For clarity, only the corners of
the process matrix are presented. State fidelity under repeated gate applications for various
input states, chosen to highlight different error mechanisms of the gate (the dashed lines are
linear fits). The solid gray line depicts the simulated average slope of state fidelity imposed
by ancilla decoherence.

5.4 Discussion

In this chapter, we reviewed the experimental demonstration of a CNOT gate between two

multi-photon qubits encoded in two high-Q (T1 ∼ 0.002 s) superconducting cavities. This

implementation uses a single ancilla transmon, driven by off-resonant RF pump pulses, to

provide the strong nonlinear interaction for the operation. We have shown the ability to

generate high-fidelity multi-photon Bell state in two different bosonic encodings using the

gate. Further, we also perform quantum process tomography of the operation, and use

repeated gate application to quantify imperfections in the operation. Our results show that

the decoherence of the ancilla limits the number of coherent CNOT operations to ∼ 102,

bringing this gate within the regime required for practical quantum operations [110, 111].

In addition, we also measure the undesired entangling rate between the cavities during idle

times, and infer a high on/off ratio of the entangling rate[112, 113] of ∼ 300. This figure of

merit is important since undesired cross-talk is often a major hurdle when trying to scale

up to a larger number of qubits.

However, there are a few downsides associated with this particular technique to imple-
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ment the entangling gate. First, by directly using the ancilla excited states, the system

experiences an excursion out of the code space during the protocol. As a result, neither

the parity nor the joint parity of the system is preserved. This makes it incompatible with

existing error-tracking and error correction protocols that use parity (or joint parity) as the

dominant error syndrome. Further, since the cavity states are fully entangled with the an-

cilla |f〉 level during the gate, the encoded quantum bit is exposed to both energy relaxation

and dephasing errors of the ancilla. While a relaxation event can be detected, dephasing of

the ancilla causes an uncorrectable error to the encoded state. Lastly, this technique is only

compatible with a certain type of encoding. For example, a more generalised form of the

Binomial code with basis states |0L〉 = 1√
2
(
√
3|0〉+|8〉

2 + |2〉) and |1L〉 = 1√
2
(
√
3|0〉+|8〉

2 −|2〉) can

be used for both the control and target encoding. This provides error-correction capabilities

but the presence of higher photon numbers subjects the system to more non-idealities due to

higher order Hamiltonian terms. More crucially, the sideband transition must be efficiently

fast to address all photon number states in the control cavity. This requires stronger pumps

which can in turn result in adverse effects due to more significant heating and the probability

of driving other unwanted transitions.

Going forward, it is desirable to design protocols that directly couple the two cavity

states and preserve the code space during the operation. Ideally, it gate should be per-

formed without physically populating any excited levels of the ancilla, or in other words,

ancilla-cavity entanglement should be avoided or minimised during the operation. With

this in mind, let us now move on to the next chapter in which I will explore a different

implementation of an entangling gate between cavities that has the potential to meet these

requirements.



Chapter 6

Programmable interference between two microwave

quantum memories

We have established that superconducting cavities, with their excellent coherence properties

and large available Hilbert space, are a great resource for redundantly encoding quantum

information. The information is stored in the form of multi-photon states with a certain

symmetric property that can be exploited as the error syndrome. The success of a quantum

computing scheme that builds on a network of such logical qubits encoded in superconducting

cavities relies on the ability to switch on and off robust, tunable couplings between them.

Furthermore, such a coupling will also provide us the capability to study complex bosonic

interactions between multi-photon states stored in the cavities. In particular, it would be

interesting to engineer inter-cavity couplings that could implement quantum interference

experiments between these stationary photons.

Interference experiments are one of the simplest probes into many of the riveting facets

of quantum mechanics, from wave-particle duality to non-classical correlations. The sem-

inal work by Hong, Ou, and Mandel (HOM) is an elegant manifestation of two-particle

quantum interference arising from bosonic quantum statistics [114]. In their experiment,

two photons incident on a 50:50 beamsplitter always exit in pairs from the same, albeit

random, output port. Central to such interference experiments is the unitary operation

ÛBS = exp[iπ4 (âb̂
† + â†b̂)]. For propagating particles, this is simply realized with a 50:50

beamsplitter, but more generally, it can be implemented by engineering a time-dependent

117
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coupling of the form Ĥint(t)/� = g(t)âb̂†+ g∗(t)â†b̂. Recent experiments have demonstrated

this type of coupling in different physical systems, enabling interference of both bosonic and

fermionic particles [115, 116, 117, 118]. These results have shed light on the concept of

entanglement [119, 120] and enabled fundamental tests of quantum mechanics like the viola-

tion of Bell’s inequalities [121]. They also have profound technological implications,with new

applications in areas such as quantum metrology [122], simulation [123], and information

processing [124, 125].

Our cQED systems have been proposed as a promising platform to study bosonic in-

terference and implementation of scalable boson sampling [126]. So far, interference be-

tween harmonic oscillator modes has been demonstrated in cQED using flux tunable ele-

ments [127, 128, 129]. However, such systems tend to suffer from the unfavorable coherence

properties, limiting the complexity of the experiment to single photons. We can overcome

this by using the 3D multi-cavity architecture introduced in Chapter 3, where complex

bosonic states can be stored coherently in superconducting cavities. In this chapter, we will

focus on a series of quantum interference experiments performed on such a device.

In section 6.1, I will introduce the frequency-converting, bilinear coupling that effectively

implements a beamsplitter (BS) operation between two cavity modes. Subsequently, we will

examine sources of imperfections present in such an operation in section 6.2. We will also

study the effects of the microwave drives on the system and discuss the key considerations in

determining the optimal configurations. From there, we will highlight three sets of interfer-

ence experiments using this engineered BS in section 6.3. These results serve to demonstrate

how the cQED implementation can be applied to boson sampling and linear optical quan-

tum computing (LOQC). Finally, in section 6.4, we will consider the several alternative drive

configurations we have tested during this experiment and discuss the potential limitations

of this type of driven interactions.
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6.1 Bilinear coupling between two cavity modes

In the previous chapter, we have discussed that a non-linear cavity-cavity coupling can be

achieved by allowing them to sequentially interacting with the transmon ancilla. Although

this method is enables fast interactions, it necessarily populates the higher excited levels of

the ancilla. Here, we aim to explore an alternative method to engineer a coupling between

Alice and Bob while allowing the ancilla to remain in its ground state.

ωa ωb

ω1ω2

Figure 6.1: RF driven direct coupling between two cavities. Effective circuit of the
cQED system consisting of two 3D stub cavities (Alice and Bob), three transmon ancillae,
and their respective readout resonators. The centre Ymon (green) allows nonlinear coupling
between Alice and Bob without incurring a large direct, always-on coupling. The driven
bilinear coupling mediated by the transmon is analogous to the tunnel coupling between
particles trapped in two separate potential wells. The two transmons on the side are op-
tional but are introduced here to provide more flexible single-cavity control and tomography
capabilities.

This is accomplished by driving the Josephson junction at frequencies that allow direct

conversion between Alice and Bob without spectrally overlapping with any ancilla transi-

tions. In particular, we introduce a robust and tunable coupling of the form Ĥint using the

four-wave mixing capability of qC. Physically, this allows direct energy transfer between

Alice and Bob in spite of their frequency difference. Hence, we have the capability to design

the two cavities with a large detuning � 1 GHz to suppress undesired cross-talk while still

be able turn on a bilinear coupling. This type of coupling has been shown between a mem-

ory and a propagating mode [130] to enable the on-demand generation of complex itinerant
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quantum states. Here, we engineer such a coupling between two long-lived memory modes,

Alice and Bob. This coupling allows us to perform a variety of different operations between

bosonic states stored in Alice and Bob. In particular, we will realise the unitary operation

U(θ) = exp[− i
�

∫ T
0 Hint(t)dt] while only virtually populating the excited levels of qC.

|A〉

|B〉

|C〉

Figure 6.2: A three-level lambda system. A schematic showing a simple Lambda system
where a coupling between |A〉 and |B〉 can be achieved by driving two separate transitions
to a third level |C〉 from |A〉 and |B〉 respectively. When they are driven off-resonantly, the
population in |C〉 can be suppressed by ∼ (Ω/Δ)2.

This type of driven transitions that do not physically populate the higher levels of the

transmon provides a variety of advantages. Most importantly, it eliminates errors due to

transmon decoherence, which tends to be far less favourable than that of 3D superconducting

cavities. We can gain some insight into such a process by considering a simple three level

Λ-system depicted in Fig. 6.2. The effective coupling between |A〉 and |B〉 can be established

via the transitions between |A〉 - |C〉 and |B〉 - |A〉, which are driven off resonantly with

a detuning Δ. In such a configuration, the effective coupling scales as ∼ √
ΩAΩB with an

occupation of state |C〉 is given by (Ω/Δ)2. In the regime where Ω/Δ 	 1, we can say that

the process only virtually involves |C〉, and therefore, inherits negligible properties from

this state. The case of the driven bilinear coupling involves more than three levels and is

conceptually more complex than this simple picture portrayed here. Theoretical works are

underway to model this process in a similar framework [131].

Another way to approach the problem is to consider the cosine treatment of the Hamil-

tonian. Similar to the methods used in [132], the full Hamiltonian describing the system
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consisting of Alice, Bob, qC, and two RF drive tones on qC is written as

Ĥ/� =ω̃aâ
†â+ ω̃bb̂

†b̂+ ω̃cĉ
†ĉ− EJ

�
(cos ϕ̂+ ϕ̂2)

+ 2Re[ε1e
−iω1t+ ε2e

−iω2t](ĉ† + ĉ) (6.1)

where ω̃k is the bare frequency of each mode and ϕ̂ is the flux across the junction, which

can be decomposed into a linear combination of the phase across each mode:

ϕ̂ =
∑

k=a,b,c

φk(k̂
† + k̂) (6.2)

This Hamiltonian captures the behavior of the system when irradiated by two drives with

complex amplitude ε1 and ε2, and frequencies ω1, ω2, respectively. In our particular config-

uration, the drive tones are predominantly coupled to qC.

We eliminate the fastest time scales corresponding to the resonance frequencies of each

mode using the following unitary transformation

Û = e−iωgetĉ†ĉe−iωatâ†âe−iωbtb̂
†b̂ (6.3)

Then we make a displacement transformation for qC such that ĉ → ĉ+ξ1e
−iω1t+ξ2e

−iω2t. In

this new frame, we express the amplitudes of the drives, ξ1(2), as a function of the amplitudes

of the drive tones and their respective detunings from the |g〉 − |e〉 transition frequency of

qC, ωge:

ξ1(2) = − iε1(2)

(iκ̃+ i(ωge − ω1(2))
(6.4)

where κ̃ is the effective decay rate of the mode to which the drives couple to primarily.

In this case, it is the decay associated with qC, which is at least an order of magnitude

smaller than the coupling rates associated with the driven interaction. Now we simplify the

Hamiltonian to

Ĥ/� = −EJ cos (φa(â+ â†) + φb(b̂+ b̂†) + φc(ĉ+ ĉ† + ξ1 + ξ∗1 + ξ2 + ξ∗2)) (6.5)
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From this, we derive the effective Hamiltonian, Hint, discussed in the main text by

expanding the Hamiltonian in the new frame to the 4th order and perform the standard

rotating wave approximations (RWA). As the frequency matching condition is satisfied when

ω2 − ω1 = ωb − ωa, the only 4th order, non-rotating terms are:

Ĥ = Ĥ1(2)
ss + ĤKerr + Ĥint (6.6)

Ĥint = −EJφ
2
cφaφb(ξ1ξ

∗
2 â

†b̂+ ξ∗1ξ2âb̂
†) (6.7)

Ĥ1(2)
ss = −EJφ

4
c |ξ1(2)|2ĉ†ĉ = −2α|ξ1(2)|2ĉ†ĉ (6.8)

ĤKerr = −
∑

k=a,b,c

EJφ
4
k

4
k̂†k̂†k̂k̂ − EJφ

2
aφ

2
b â

†â†b̂b̂ (6.9)

− EJφ
2
aφ

2
c â

†â†ĉĉ− EJφ
2
bφ

2
c b̂

†b̂†ĉĉ (6.10)

where Hint is the desired interaction term. ĤKerr describes the self-Kerr and cross-Kerr

coupling terms [62], which do not depend on the microwave drives. They are calibrated

independently using methods developed in Ref. [35]. Finally, H1(2)
ss captures the Stark shift

of the resonance frequency of qC (ω̃c) in the presence of each RF drive. It is also worth

noting that the drives are applied adiabatically with a smooth ring-up and ring down time

of ∼ 100 ns to ensure that no additional spectral components are present in the drive tones.

We further simplify Ĥint and express it as a function of system parameters that we

measure independently, i.e.

Ĥint = −EJφaφbφ
2
q

(
ξ1ξ

∗
2 âb̂

† + ξ∗1ξ2â
†b̂
)
= g(t)âb̂† + g∗(t)â†b̂ (6.11)

g(t) = EJφaφbφ
2
cξ1(t)ξ

∗
2(t) =

√
χacχbcξ1(t)ξ

∗
2(t) (6.12)

where the effective coupling strength is geff =
√
χacχbc|ξ1||ξ2|. The dispersive couplings are

calibrated using standard Ramsey or number-splitting experiments (section 2.3) and the

strength of each drive tone |ξ1,2| can be calibrated independently by measuring the Stark

shift of the resonance frequency of qC.
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Δ
1/2π =

0.158 GHz

Δ2/2π = 1.458 GHz

Figure 6.3: Stark shift due to drives. The measured Stark shifts on qC in the presence of
each drive are shown in open face markers. The solid line is a fit including 6th order terms
from the cosine expansion. This provides an independent calibration of the drive strength,
shown in the second vertical axis (right). The black cross indicates the typical drive strength
used in this series of expeirments

To do so, let us re-write the stark shift in terms of α and the drive strength ξk:

Δk = −2α|ξk|2 (6.13)

Both α and the Δk can be measured accurately using simple spectroscopy experiments.

Therefore, we now have an independent calibration for each individual ξk. In Fig. 6.3, the

measured Stark shift for each drive tone is presented as a function of the input DAC power.

Both drives are positioned above the transition frequency of qC with drive 1 (red triangles)

having a much smaller detuning compared to drive 2 (violet squares). As a result, drive 2

causes a much smaller Stark shift which is well-described by a linear dependence on power.

In contrast, the drive tone at ω1, due to its spectral proximity to the qC frequency, leads to

a greater frequency shift for nominally the same input power. It also exhibits fairly obvious

deviations from the linear dependence as predicted by the model. Rather, a quadratic

dependence on power is necessary to describe the behaviour. This arises from the 6th order

expansion of the cosine Hamiltonian, which is no longer negligible at large ξ.

In order to demonstrate the action of Ĥint, we first implement it on the simplest case with

only a single excitation in Alice and Bob. The general technique used in our investigation

is described by the pulse sequence in Fig. 6.4(a). To begin with, we initialise the memories
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ξ2(t)ξ1(t)|n〉A|n〉B |n〉A|n〉B

Figure 6.4: Characterisation of bilinear coupling. (a) Pulse sequence used to char-
acterise the engineered bilinear interaction. The experiment starts with the preparation of
desired initial states using single cavity drives. Subsequently two drive tones are introduced
to initiate the four-wave mixing process that provides the frequency-converting coupling be-
tween Alice and Bob. The system evolves in presence of the drives with a variable amount
time before we probe the joint photon population distribution in Alice and Bob using trans-
mon C as the metre. (b) Example of the measured oscillations of a single photon from Alice
to Bob at a particular drive strength. Data are shown in circles and solid line is a fit to the
functional form P = Ae−t/τ1 [1 + e−t/τφ sin (2πtf0 + φ0))], with τ1 the single photon lifetime
and τφ the dephasing time of the cavity mode, and f0 the frequency of the oscillation.

in |1〉A|0〉B using numerically optimised pulses, as described in [36] while ensuring that qC

remains in its ground state. We then apply the drive tones, tuned to satisfy the frequency-

matching condition, for a variable amount of time before measuring the joint population

distribution in the two memories using a photon-number selective π pulse on qC. This

allows us to monitor the evolution of the single photon as it coherently oscillates between A

and B over the duration of the drives.

We show here in Fig. 6.4(b) the behaviour of a single excitation undergoing the interac-

tion at a coupling strength g/2π = 34 kHz with |ξ1ξ2| ≈ 0.1. We observe coherent oscillations

of the photon between Alice and Bob as the system evolves under the engineered unitary
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operaton. By varying the duration of the drives, we can achieve a few different types of

useful operations between the two memories. We define θ =
∫ T
0 g(t)dt as the effective mix-

ing angle of the process. It is fully tunable by varying the duration of the two microwave

drives. For θ = π
2 (mod π), the unitary performs a SWAP operation that exchanges the

states between the two memories, while for θ = π/4 (mod π/2) it corresponds to a 50:50

BS operation (ÛBS). Since g(t) is fully tunable parameter and can be made fast compared

to the natural direct coupling (� 1 kHz) between Alice and Bob, these operations can be

implemented with a large on-off ratio. Furthermore, we observe that the oscillations persist

far beyond the transmon T1 (� 50 μs) and the decay timescale is consistent with the natural

photon loss rate in Alice (Bob) with time constant τ � 400 μs in the absence of the coupling.

This demonstrates that at this amplitude, the microwave drives themselves do not introduce

any significant decoherence to the system.

6.2 Coherence of BS operations

Figure 6.5: Decoherence of single photon oscillation. (a) The envelope given P =
P01+P10 for two different effective drive powers. The decay of the envelopes corresponds to
photon loss from the system and allows us to extract a decay constant for a single photon
living between Alice and Bob. The data exhibit linear behaviour on the Log scale, indicating
that the the single photon decay from the system can be described by a single exponential.
(b) The measured single photon oscillations after removing the effects of photon loss by
dividing the raw data with the envelops at each drive power. This provides indication of
the single photon dephasing time which is well described by a decaying sinusoidal fit (solid
lines).

We assess the fidelity of the BS operation by analyzing the decoherence time associated



6.2. COHERENCE OF BS OPERATIONS 126

with the evolution of a single excitation under Ûθ. There are two mechanisms which can

decoherence in the single photon evolution, namely, photon loss from the memories, at rate

τ1, and dephasing process that prohibits the photon from constructively interfering with

itself, at rate τφ. To estimate the effective photon loss rate, we sum the measure P10 and

P01. This yields the envelope which describes the decay of the probability of having a single

photon in the system. The time constant of this exponential decay is the effective τ1 of the

single photon living between the two memories, as shown in Fig. 6.5(a). We then divide the

measured P10 by this envelope to extract the pure dephasing time from a decaying sinusoidal

function (Fig. 6.5(b). For the more weakly driven process (red), we extract an effective

τ1 � 400 μs and τφ � 800 μs at the effective drive strength ξ1ξ2 � 0.1. Combining these, we

infer an effective decoherence time T2 = 400 μs for the operation. This is consistent with the

intrinsic coherence times of Alice and Bob, indicating that the engineered BS operation dose

not introduce additional sources of decoherence. However, we clearly observe a deterioration

of both τ1 and τφ when we operate the drives at a higher power (dark purple).

Another metric that indicates the coherence of the operation is the qC excited state

population due to the drives in addition to its equilibrium thermal population of � 1%. Ap-

preciably higher population can arise from the increasing direct participation of the transmon

mode as well as direct heating of the microwave components due to the large incoming drive

power. When this occurs, the damage to our system is two fold. First, since qC is also used

as a metre to monitor the photon number distributions in Alice and Bob, an elevated excited

state population causes wrong readings in the measurement. Furthermore, the undesired

|g〉 → |e〉 transition also results in additional dephasing of the cavity states, introducing fur-

ther imperfections in the operation. In practice, we can mitigate this effect by implementing

a simple post-selection process that only considers the data if qC is measured in its ground

state after the operation.

We present these nonidealities of the engineered operation at different drive powers in

Fig. 6.6. Naively, one might think that the fixed coupling to the environment and the

associated imperfections become less important as operation speeds up. However, as the

coupling strength increases so does the participation of the transmon excited levels, which
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Figure 6.6: Extracted τ1 and τφ. (a), (b) Extracted τ1 and τφ for a range of effective
drive powers |ξ1||ξ2| starting with the system in |1〉A|0〉B. (c) The independently measured
excited state population of qC after a drive duration corresponding to a single BS operation.

are measured independently after each BS. We observe that the probability of qC departing

from its ground state 1− Pg increases from 0.6% to 2% as we increase the drive strengths.

We observe both an apparent reduction in the readout contrast as well as faster decoherence

during ÛBS. The former can be mitigated by performing post-selection: data are discarded

if qC does not remain in |g〉 after the operation. This ensures that qC is a faithful metre for

the joint photon population of Alice and Bob. We attribute the degradation of the coherence

to the greater participation of qC. This causes the system to inherit less favorable coherence

times from qC during the operation.

Additionally, we extract the coupling coefficient, geff , for a particular drive configuration
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Figure 6.7: Tunability of bilinear coupling. (a) The coupling strength of the engineered
bilinear coupling as a function of effective drive powers extracted from single photon dynam-
ics (green circles). The solid black line is the theoretical prediction given the drive powers
and the system parameters, χac, χbc. (b) The infidelity of a single BS operation computed
by comparing the driven coupling rate to the decoherence rate of the system. Black squares
are extracted from data after post-selecting on the transmon remaining in its ground state
after the operation and grey crosses are computed without post-selection.

from the frequency of the decaying sinusoidal. The coupling strength is fully tunable and we

show that it scales linearly with the effective drive powers as shown in Fig. 6.7(a), consistent

with that predicted by a simple model that uses the 4th order expansion of the cosine

Hamiltonian. However, as the drive powers increase, we start to deviate from the prediction

due to the increasing effects of higher order terms. Using these measured coupling coefficients

and the extracted decoherence time scales shown in Fig. 6.6(a), we compute a measure of

the infidelity for each drive power defined as

1−F = τBS/TBS (6.14)

where TBS is the operation time required to implement an effective BS and 1/τBS = 1/2τ1+

1/τφ is the decoherence time of a single photon undergoing the process. Combining the

faster operations and the penalty of increased qC participation, the overall infidelity ends

up roughly constant over different drive powers as shown in Fig. 6.7(b). At the chosen

operation power, we show that the BS operation has an infidelity of (99 ± 0.5)%. When

post-selection on qC is not implemented, we do observe an increase of infidelity as the
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coupling becomes stronger. This, however, is most likely to be a result of mistakes in the

measurement due to the incorrect initial state of our metre, qC.

Re[β] Re[β]

Im
[β
]

Im
[β
]

U = ei
π
2 (âb̂†−â†b̂) ≡ SWAP

|0〉

|0〉

1

2
(|0〉+ |2〉)

1

2
(|0〉+ |2〉)

Figure 6.8: SWAP operation between two cavities. The bilinear coupling is tuned to
implement a SWAP operation between Alice and Bob. In this example, we transfer a small
kitten state from Alice to Bob, which is initialised in vacuum. The raw Wigner functions
are shown for each mode, before and after the operation. By computing the overlap with
the ideal states, we extract a transfer fidelity of 98± 1%.

Finally, we illustrate the phase coherence of the operation by preparing Alice in a su-

perposition state and then turn on the coupling. In particular, we implement a full transfer

of the state in Alice to Bob by choosing a drive duration corresponding to θ = π/2 radians,

which effectively performs a SWAP gate between Alice and Bob. As shown in Fig. 6.8, the

system is initialised in the state 1
2(|0〉 + |2〉)A ⊗ |0〉B. It then evolves under the bilinear

coupling Hamiltonian for 6 μs, which is twice of what is required for a single BS operation.

We then perform Wigner tomography on each cavity using their respective transmon ancilla.

We find that Alice is now in vacuum while Bob contains the superposition state, with the

same relative phase between the two Fock states. Visually, the operation allows excellent

preservation of the coherence of the initial states. More quantitatively, we compute the state

fidelities of the initial and final state using the measured Wigner functions. From this, we

infer an infidelity of ∼ 2.5% for the SWAP operation, which roughly doubles that of the

BS because it takes twice as long to implement. This demonstrates that the engineered
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unitary is capable of preserving the phase coherence of quantum superpositions and is fully

compatible with highly non-classical states.

6.3 Bosonic interference and its applications in cQED

In this section, we will now employ the engineered BS operation to study bosonic interfer-

ence between two stationary photons stored in Alice and Bob. Importantly, we exploit the

frequency-converting capability of the BS to enable such experiments between photons that

are far detuned from each other.

+

Figure 6.9: HOM interference between two spectrally-separated cavity modes
using the frequency-converting BS. (a) Measurement of the joint photon number dis-
tribution of Alice and Bob as a function of drive duration using qC as the probe. The vertical
axis indicates the probability of successfully exciting qC conditioned with a spectrally nar-
row pulse. The three frequencies at which this occurs correspond to the dispersively shifted
resonance of qC with state |0〉A|2〉B, |2〉A|0〉B, and |1〉A|1〉B respectively. 1D cuts along the
time axis are shown in (b) and (c) for the region inside the red box. In (b), we present the
dynamics of |1〉A|1〉B (brown circles), which oscillations with near full contrast. (c) shows
the behaviour of P20+P02 (violet circles), which oscillates exactly out of phase compared to
P11. The grey dashed lines are simulated behaviour of distinguishable particles undergoing
HOM interference

The hallmark of indistinguishable bosonic modes interacting through a BS is the HOM

interference. Here we demonstrate that HOM interference can be achieved using the engi-

neered frequency-converting BS between two photons at different frequencies. We start by

preparing |1〉A|1〉B and monitor the population across the two memories after the application
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|g〉

〈P̂A〉

Figure 6.10: Statistics of bosonic interference. (a) Quantum statistic of bosonic inter-
ference that only allows even outcomes when the input states are identical since the odd
probability amplitudes fully destructively interference. Using this fundamental feature of
quantum interference, we extract the overlap between two arbitrary quantum states by mea-
suring the parity of one of the output ports of a 50:50 BS. (b) We use a simple experimental
protocol to demonstrate this capability with coherent states in Alice and Bob. We prepare
the two states with equal amplitude and a variable relative phase, then allow them to inter-
fere though the frequency-converting BS and finally measure the photon number parity of
Alice using the standard protocol.

of the drive tones. We observe the near complete destruction of the |1〉A|1〉B signal after

the BS. At this point, we measure an equal probability of finding the system in the state

|2〉A|0〉B and |0〉A|2〉B. This is an intrinsically quantum mechanical phenomena that relies

on the two incident photons being fully indistinguishable such that probability amplitudes

of being in |1〉A|1〉B after the BS destructively interfere. If the two photons are distinguish-

able, classical interference would be observed and the measured P11 would not fall below

� 0.5. Here, we measure a contrast of 98± 1% in the oscillations of P11, indicating that the

engineered frequency conversion process fully compensates the energy difference between the

two initial photons and allows them to interact as indistinguishable particles.

Further, the near complete refocusing of P11 and the full extinction of Psuperposition =

P20 ± P02 at θ = π/2 also implies that there is a well-defined phase between |2〉A|0〉B and

|0〉A|2〉B. The exact relative phase between the two states is determined by the relative

phase of the two drives used to realise ÛBS. In this study, the exact phase is unimportant as
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〈P̂
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〉

〈P̂A〉

φA − φB

Figure 6.11: Overlap measurement of two coherent states. (a) Measured quantum
state overlap between two cavity states |ψ〉A = eiφA |α〉 and |ψ〉B = eiφB |α〉. The measure-
ment is done as a function of the relative phase as well as the displacement amplitudes in
both cavities. The vertical axis is the averaged parity of Alice. (b) The average parity of
Alice at n̄ = 2 as a function of the relative phase. The data (brown dashed line) show
excellent agreement with the overlap computed for the ideal states (solid grey line) except
an overall reduction in contrast. The expected contrast with the decoherence of the cavities
and the ancilla taken into account is given by the dashed grey line.

long as it remains constant over the course of the experiment. The HOM experiment verifies

this since a statistical mixture consisting of these two states would only partially interfere

at the next BS and results in a contrast of 0.5 for both Psuperposition and P11.

The HOM experiment also reveals an intrinsic property of bosonic systems: when the two

identical Fock states interfere through a 50:50 BS, the photon number parities of the output

ports are always even because all the odd outcomes interfere destructively as illustrated in

Fig. 6.10(a). In fact, the average parity measured on one of the output ports of a BS is

a direct probe of the overlap between the two incident states, i.e 〈P̂ 〉 = Tr(ρAρB) [120,

133, 134]. This establishes a connection between the state overlap and a single observable

that is the photon number parity of one of the output modes regardless of the input states.

An alternative method to obtain the overlap information is to perform full tomography

on the two states, which is significantly more resource-intensive. Therefore, this property

of quantum interference provides us with a very efficient probe to compare two complex

quantum states.
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As discussed in Chapter 3, we can perform robust parity measurements by simply using

the dispersive coupling between the transmon ancilla and the memory mode. Combining it

with the engineered BS, we perform the overlap measurement between two states |ψ〉A =

eiφA |α〉 and |ψ〉B = eiφB |α〉 (Fig. 6.10(b)). With φA fixed, we measure the parity of mode

A as a function of φB for different displacements in both modes. The parity of Alice is

measured in this experiment because of the slightly more favourable parameters of ancilla

qA, which permits a higher overall contrast. As expected, the maximum overlap is measured

when φA = φB (mod 2π). As the displacement increases, the overlap becomes more sharply

peaked. Here, we observe a reduction in the overall contrast at higher photon numbers due to

the imperfections of the parity measurement. It mainly arises from the incomplete spectral

unselectivity of the π/2 pulse in presence of high photon number states in the cavities. This

can be mitigated with a spectrally broader ancilla pulse in future measurement. This type

of efficient comparison of quantum states is a very useful tool since full tomography becomes

increasingly demanding with larger, more complex states.

In addition to the engineered BS operation, we can also implement on-demand DPS

to Alice via its natural dispersive coupling (χ1) to qA. This is governed by the unitary

ÛDPS(t) = |g〉〈g| ⊗ Î + |e〉〈e| ⊗ eiφâ
†â, where φ = χ1t. This implementation has two major

advantages. First, it is fully programmable: the resulting differential phase, φ ∈ [0, 2π], is

simply controlled by the evolution time, t, which can be tuned on the fly. Furthermore, it

is photon-number independent. ÛDPS allows us to impart the same phase to each individ-

ual photon in Alice. Therefore, it is naturally compatible with more complex interference

experiments involving multi-photon states.

Combining the BS and DPS capabilities, we construct cascaded MZ interferometers

and program them to perform different interference experiments on the fly (Fig. 6.12(a)).

As a simple example, we initialise the system in |1〉A|1〉B. After a single BS, the system

reaches the superposition state |Ψ〉 = 1√
2
(|0〉A|2〉B + eiϕ|2〉A|0〉B). Subsequently, we impart

a phase on Alice by exciting qA for a time π/χ1 ∼ 600 ns. This operation changes the

relative phase between Alice and Bob, leaving the system in the state |Φ〉 = 1√
2
(|0〉A|2〉B +

ei(ϕ+π)|2〉A|0〉B). This is now a ‘dark state’ of UBS because the probability amplitudes
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......

Figure 6.12: Cascaded microwave Mach-Zehnder interferometers. (a) Conceptual
depiction of cascaded Mach-Zehnder (MZ) interferometers composed of 50:50 beamsplit-
ters and differential phase shifters. Since the engineered BS operation allows frequency-
conversion, we implement this on two modes (orange and blue) that are detuned from each
other. (b) The spectroscopy measurement of joint photon distribution after each BS in the
cascaded MZ interferometer, starting with the system in |1〉A|1〉B. A different phase of φ = π
is imparted after the first BS to change the relative phase of the two paths. This results
in a complete destructive interference of all subsequent probability amplitudes of |1〉A|1〉B.
An additional π phase is introduced after 8 beamsplitters, reversing the relative phase of
|0〉A|2〉B and |2〉A|0〉B to allow the refocusing to |1〉A|1〉B.

of |1〉A|1〉B always interfere destructively, forcing the system to remain in |Ψ〉 through all

subsequent beamsplitters. We recover the HOM-type interference by implementing a second

DPS of π on Alice. This experiment provides a great illustration of our ability to program

the system to generate different types of bosonic interference. We can manipulate the

signatures of interference on-the-fly with in-situ DPS performed by the transmon ancillae.

Such cascaded interferometers, similar to the optical implementation in [135], can be scaled

up to simulate complex bosonic interference in cQED.

Since the engineered BS is agnostic to the photon number in the memories, we extend

these interference studies to multi-photon states. As a simple example, we show the evolution
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Figure 6.13: Interference of multiphotn states. (a) Spectroscopy measurement of joint
photon distributions in Alice and Bob after a series of beamsplitters with the system ini-
tialised |2〉A|1〉B. (b) 1D cuts along the time axis for each outcome. Data (circles) show
good agreement with simulation, which takes into account of the decoherence of both the
cavities and the transmon ancilla.

of |2〉A|1〉B going through a series of beamsplitters in Fig. 6.13. Due to the absence of

an independent ancilla that couples to Bob, it is rather cumbersome to prepare a Fock

state in it directly using OCT pulses. To overcome this, we instead first initialise the

system in |1〉A|0〉B. Subsequently, we use the engineered bilinear coupling to perform a

SWAP operation and transfer this excitation from Alice to Bob. Finally, we complete the

preparation by putting two photons in Alice using another numerically optimized OCT

pulse. The entire process takes ∼ 5 μs and produces the desired state with ∼ 85% fidelity

with some spurious populations in |0〉A|0〉B, |1〉A|0〉B, and |2〉A|0〉B. However, since the

interference conserves the total photon number and the joint parity, the spurious populations

do not change the statistics of the outcomes of |2〉A|1〉B undergoing Û(θ). Instead, they will

result in a deterministic reduction in the measurement contrast. The measured interference
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pattern is in good agreement with the simulated behaviour, indicating that the operation

is robust irrespective of the state stored in Alice and Bob. As shown by this measurement,

the number of possible outcomes increases quickly with the photon number in the system

even with just two modes. With this implementation, we can efficiently probe the resulting

quantum statistics despite the increasing complexity. It opens up a wide range of possibilities

to perform bosonic sampling in this type of cQED architecture, which can be scaled up to

more than two modes relatively easily.

6.4 Alternative drive configurations

Our ability to scale up towards more complex interferometers between multiple modes with

potentially multiple excitations depends directly on the quality of the beamsplitter oper-

ations. Ideally, we would like to realise the beamsplitter quickly so that the operation is

fast compare to both decoherence mechanisms and higher order nonlinearities such as Kerr.

Furthermore, it is also crucial to ensure that the BS does not introduce additional noise

to the system and degrade the coherence of the bosonic states stored in the high-Q modes.

This requires us to implement a strong and yet precise bilinear coupling, with minimal par-

ticipation of the transmon excited states. In order to do so, we must choose the frequencies

and powers of the drives with caution.

We have chosen to drive the bilinear coupling with two separate microwave drives in order

to have more flexibility in frequency configurations. Since only the detuning between the two

tones must be fixed, the frequency matching condition can be satisfied with different spectral

arrangements. Broadly speaking, we can separate them into three categories according to

their detunings to the transition frequencies of qC as depicted in Fig. 6.14. The side ancillae

are omitted in this discussion as their frequencies are placed far below Alice, Bob, and qC.

Further, the spatial separation between the side ancillae and the drive modes, which are

coupled to the system through a drive port above qC, also suppresses their sensitivity to

the drives. We verify this by measuring the Stark shift on qA and qB in presence of the

pump tones. Our measurements show that there is no measurable shift of their resonance
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frequencies. Thus, we will omit the ancilla modes in this discussion.
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Figure 6.14: Different frequency configurations of pumps Three choices of drive fre-
quencies relative to both the |g〉− |e〉 (green) and |e〉− |f〉 (yellow) frequencies of qC. In our
designs, the resonance frequencies of Alice (orange) and Bob (blue) are roughly symmetric
around ωge. (a) Both drives are positioned at higher frequencies compared to the transition
frequencies of qC. (b) The drives are placed above and below qC frequency. (c) Both drives
are below the transition frequencies of qC

In our designs, the frequencies of Alice and Bob are typically placed to be roughly

symmetric around ωge such that χac and χbc are similar in magnitude (200 - 400 kHz). Apart

from the |g〉 − |e〉 transition, at ωge, there are also higher order resonances at frequencies

below it at ωef = ωge − α, ωfh ≈ ωge − 2α etc. In the first drive configuration, we place

both tones above ωge. This allows us to avoid spectrally overlapping with any transitions

of qC. The trade-off for this choice is the large detuning (� 1.5GHz) between one of the

drive tones ω2 and our non-linear mode. As a result, the effective strength of this drive is

diminished and a large amount of RF power is required to drive the desired coupling. We

can typically achieve a relatively clean BS operation, with minimal qC participation and

additional decoherence with a coupling strength on the order of 50 kHz.

It is important to note that the quality of the operation can be highly dependent on
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PeP01

Figure 6.15: Drives above the nonlinear mode (a) Measurement of the probability
of successfully transferring a single excitation from Alice to Bob using the driven bilinear
coupling as a function of the frequencies of both drives. The black cross indicated the
chosen set of frequencies at which the experiments in the earlier sections are implemented.
(b) Corresponding independent measurement of qC population. (c) Measured decay a single
excitation (orange) oscillating back and forth between Alice and Bob using this configuration.
It is in good agreement with the natural decay timescale (grey dashed line) of a single photon
in absence of the operation. The oscillation persists far beyond the transmon relaxation
(green dashed line) timescale.

the exact frequencies of the drives. To demonstrate this, we monitor the probability of

successfully transferring a single photon from Alice to Bob while simultaneously sweeping

the detunings of both drive tones from a certain set of matched frequencies at moderate drive

powers. We show in Fig. 6.15(a) that in general, the operation is successfully implemented

when the frequency matching condition is satisfied, i.e. along the diagonal line. However,

within ± 0.5 MHz from the initial frequencies we do observe regions where the operation fails,

as indicated by the spurious features and the loss of contrast. We also independently measure

the population of qC over the same range of detunings (Fig. 6.15(b)). Ideally, qC should

remain in its ground state during the operation. However, we observe that the probability of

it being excited to a higher level increases in the same regions where the operation fails. Our
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data demonstrate that there is a strong correlation between the rising qC population and

the degradation of the BS operation, both of which are extremely sensitive to the frequency

of the drives. The interference experiments described above are performed in this drive

configuration with the operation frequency indicated by the black cross, where qC remains

predominantly in |g〉 (>98%). This allows us to realise a high quality BS with its coherence

limited by the intrinsic energy decay of the cavities, as shown in Fig. 6.15(c).
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Figure 6.16: Effects of the drives when placed symmetrically around nonlinear
mode In this configuration, the two drive tones are detuned by a similar amount above
and below ωge. (a) The resulting Stark shift due to each drive tone. This can be mapped
to an effective drive power as shown in the secondary y-axis. The two drives now have a
comparable impact on ωge, in contrast to the case shown in Fig. 6.3. (b) We also monitor the
population of qC as a function of the powers of each drive in this frequency configuration.
We observe significant heating of the nonlinear mode at higher drive powers.

An alternative configuration is to shift both drives down in frequency such that they are

placed roughly symmetrically around qC. This has the advantage of having more balanced

effective drive strength from each tone and permits a potentially stronger coupling. We

show in Fig. 6.16(a) that when the drives are arranged this way, we indeed observe a similar

amount of Stark shift on qC. However, as shown in Fig. 6.16(b), we are more likely to excite

the transmon to its higher levels with this configuration. In particular, the power of drive

1, which is below ωge causes significant transmon heating and must be kept at a relatively

low power. The presence of these spurious features are likely to be due to higher order

transitions of qC. Tracking down the exact causes for them is not a trivial task as they

tend to be multi-photon effects. An additional complication is the Stark shift of each mode.

As a result, the frequencies and powers of the drives are no longer independent from each
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other, making it even more challenging to compute all the possible multi-photon processes.

One potential culprit that we have managed to identify is a process that takes one of each

drive photons and converts them into a double excitation of qC, i.e. ω1 + ω2 = ω̃gf , where

ω̃gf (ω1, ω2, ξ1, ξ2) is the Stark shifted frequencies of the |g〉 − |f〉 transition. In order to

avoid this, we must sweep the frequencies of each drive carefully at the chosen amplitude.

In practice, we typically operate at ξ1 ∼ 0.3, ξ2 ∼ 0.6 in order to achieve a relatively coherent

and fast BS operation with g ∼ 100 kHz.

These two examples suggest that strong drive tones placed below the frequencies of the

nonlinear mode is generally not undesirable due to the presence of higher order transitions.

Indeed, when we attempted to implement the third drive configuration (Fig. 6.14(c)) we find

that the qC is highly susceptible to heating even at relatively low drive powers. Therefore,

we have generally avoided operating in this regime.

6.5 Discussion

To the best of our knowledge, the three experiments presented in this chapter are the

first examples of interference between long-lived, stationary bosonic states in cQED. The

engineered BS provides the advantage of allowing such interference between two detuned

modes, enabling low cross-talk and good intrinsic coherence of each mode. More importantly,

they also pave the way for a large variety of interference-based experiments in cQED systems.

For example, with the robust BS and the simple different phase shifters, we now have a

complete set of tools to implement LOQC with microwave photons. [136]. This approach

has a competitive edge over the linear optical implementations since we can easily prepare

single photon states with high fidelity and probe them in quantum non-demolition (QND)

measurements.

Additionally, this ability to prepare and measure complex bosonic states, together with

the robust BS operation, also makes cQED systems attractive for boson sampling. Boson

statistics arising from multimode interference process have been studied extensively theoret-

ically [137, 138] and become increasingly complex with more larger number of excitations, or
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modes. In this system, we can quite easily increase both the number of interfering photons

and the participating modes to realistically simulate the problem. In fact, a device consisting

of four such 3D stub cavities has recently been tested in our group [55] and exhibits good

coherence properties on par with single-cavity system. Four transmon ancillae (Y-mons) are

used in this system to provide pair-wise couplings between the cavity modes. Such systems

can be easily adapted (with slight changes in design parameters) to implement a multimode

boson sampling experiment in the future.

Most importantly though, the implementation of this type of engineered BS operation

between the two cavities is a crucial step towards constructing universal entangling oper-

ations between two logical qubits in the cavity-based quantum computing scheme. The

calibrations and decoherence analysis described in this chapter provide a great foundation

for establishing the more complex quantum operations that we are going to discuss in the

following chapter.



Chapter 7

Building a universal entangler in cQED

The cavity-based quantum computing scheme has shown tremendous promise, with rapid

progress in many different key aspects. In the previous chapters, we have looked at how

some of the recent experiments have pushed beyond the control and measurement of single

logical qubits encoded in multi-photon states of superconducting microwave cavities. With

the multi-cavity architecture introduced in chapter 3, we have successfully demonstrated

that we can efficiently manipulate and faithfully characterise complex joint cavity states.

Moreover, we have also performed a CNOT gate between two multi-photon states, a first

display our capability to implement robust inter-cavity gates without sacrificing favourable

coherence properties of superconducting cavities.

In this final set of experiments, we will continue to develop the necessary components

in our cQED toolbox and work towards realising a universal entangling operation between

logical qubits encoded in two superconducting cavities. In particular, we aim to implement

this operation in a way that is compatible with established error-correction schemes. The

unitary that is capable of realising such a gate between two logicals qubits, regardless of their

encoding, is the exponential-SWAP (eSWAP) operation [139]. It operates on two bosonic

modes with the evolution UeSWAP(θ) = cos θ · Î + i sin θ · SWAP, where θ is a variable angle

controlled by a third ancillary mode. When θ = π/4, UeSWAP = 1√
2
(Î+iSWAP) is a coherent

combination of the identity and SWAP operator. It is sometimes denoted as the
√
SWAP

gate, which together with single qubit rotations forms a set of universal quantum gate [140].

In general, the eSWAP unitary enables us to achieve universal computing with any bosonic

142



7.1. THE EXPONENTIAL-SWAP UNITARY OPERATION 143

systems, compatible with all single-mode bosonic encodings. It can also be extended to

higher-order QEC in a more complex quad-rail logical schemes [139]. In addition, it is a

key component in quantum machine learning and quantum principal component analysis

[141, 142]. However, due to the complexity of the operation, such a unitary has so far only

been studied theoretically [139, 143] but has not demonstrated experimentally at the time

of this writing.

In this chapter, we will look into the essential ingredients required for the realisation of

this operation in the cQED setting. In the previous chapter, I have introduced the concept

of engineering inter-cavity operations without explicitly involving the higher excited levels

of the transmon ancilla. I have also highlighted that one particular type of such two-cavity

interactions that is fully tunable and can effectively implement a beamsplitter operation

between two stationary cavity states. This provides an essential tool for performing the

eSWAP unitary between two high-Q bosonic modes. We will explore the details of how to

implement it based on the protocol proposed by L. Jiang and S. M. Girvin in section 7.1.

Here, we again utilise the double-cavity device with three separate transmon ancillae and

three independent readouts as described in section 3.4. With this system, I will show the

first realisation of the eSWAP unitary using cQED systems in a single Fock encoding in

section 7.2. Further, I will present in section 7.3 some recent data on the generation of a

parityless two-mode cat state through the unitary UeSWAP(
π
4 ). At the time of this writing,

we have also performed the operation using the Binomial encoding but have yet implemented

full quantum process tomography to quantify the fidelity of the operation. Finally, I will

conclude this chapter by outlining the potential improvements we aim accomplish in the

near future using the same set tools developed in this work.

7.1 The exponential-SWAP unitary operation

The eSWAP unitary has been studied theoretically by Lau and collaborators [139, 143].

In their proposal, it is performed between two continuous-variable quantum modes using a

two-level ancilla.
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Figure 7.1: Proposed circuit to implement UeSWA(θ) (a) Proposed implementation con-
sisting of single transmon rotations and the controlled-SWAP operation. (b) Decomposition
of the controlled-SWAP gate into two 50:50 beamsplitters and controlled phase shift (CPS).
It can be viewed as Mach-Zehnder interferometer with the phase shift on one arm, controlled
by the transmon ancilla [144].

The proposed scheme is by design capable of having logical qubits with different encod-

ings interact with one another without decoding; thus, the strength of different encodings can

be utilized in the same computation. The physical implementation consists of the following

operations in a protocol shown in Fig. 7.1(a):

1. prepare the ancilla in the superposition state |+〉 = 1√
2
(|g〉+ |e〉)

2. perform an X-rotation by an angle 2θ (Xθ = eθσx)

3. implement a controlled-SWAP (cSWAP) gate described by the unitary:

UcSWAP = |g〉〈g| · Î + |e〉〈e| · SWAP (7.1)

The cSWAP operation also referred to as the Fredkin gate, which is a reversible three-

bit quantum operation.

In this scheme, the cSWAP is the only missing piece of the puzzle in our double-cavity cQED

systems. In Fig. 7.1(b), we show that it can be decomposed into two 50:50 beamsplitter

operations with opposite phases separated by a CPS [144]. In the previous chapter, we

introduced the frequency-converting bilinear coupling that allows us to perform a robust
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beamsplitter between two detuned cavity modes. We also have full amplitude and phase

control of the RF drives used to activate the operation. Therefore, it is straightforward

to realise the two beamsplitters with opposite phases. The CPS can be interpreted as a

phase accumulation on each cavity photon conditioned on the state of the ancilla, which is

performed using the dispersive coupling between the ancilla and the cavity.

However, this proposed circuit has a crippling flaw in practice. This is because of the

requirement of the ancilla remaining in coherent superpositions state through the entire

routine. This makes it susceptible to both T1 and T2 errors of the ancilla. While the CPS

can be completed in ∼ 1/χ � 1 μs, the BS operations typically requires 2-5 μs in our system.

This means a total gate time of several microseconds, which is not a negligible timescale

compared to the T2 of the ancilla. In a typical 3D cQED system, the transmon’s T2 tends

to be more vulnerable to external perturbations such as mechanical vibrations or thermal

noise. Hence, we expect significant imperfections to arise in this eSWAP implementation

due to ancilla’s T2 limitations.

To overcome this problem, it would be desirable to construct a protocol that will only

require the ancilla to be in |+〉 for short periods of time. Fortunately, due to the properties

of the beamsplitter operations, we can indeed devise an alternative circuit. Two crucial

simplifications make this possible:

1. The ancilla rotations (Hadarmard and Xθ) both commute with the BS operations.

2. Two sequential beamsplitters effectively produce the identify operation

Based on this, we can reduce the decomposed eSWAP circuit (Fig. 7.2(a)) by first exchanging

the order of Xθ and the subsequent BS. This puts two beamsplitters in sequence and thus,

allows us to remove them from the protocol. Furthermore, instead of preparing the ancilla in

the superposition state at the very beginning of the experiment, we now perform a Hadamard

gate after the first BS. As a results, we arrive at the simplified protocol depicted in Fig. 7.2(b)

where the ancilla is only in |+〉 for a short duration of ∼ 1/χ (red box).

With these modifications, we now have a more robust circuit for the eSWAP operation

in cQED. These changes are highly advantageous because the beamsplitter operations are
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Figure 7.2: (a) The decomposed circuit describing the implementation of eSWAP with
ancilla rotation, beamsplitter and CPS gates. (b) Simplified quantum circuit to a more
robust eSWAP. The ancilla now remains in |g〉 during the relatively slow BS operations and
the system is only susceptible to its T1, T2 errors over a short duration indicated by the red
box.

relatively slow compared to the other gates. By eliminating two of them, the total gate

time for the new protocol is now appreciably shorter. This reduces the probability of errors

due to cavity decoherence as well as higher order terms such as the Kerr nonlinearity. More

importantly, it significantly shortens the time over which the ancilla is in its excited state

to only the CPS and Xθ operations. Since the CPS is implemented via the dispersive

coupling, i.e. CPS = |g〉〈g|⊗ Î+ |e〉〈e|⊗ (−1)n̂, its duration is relatively short (∼ π/χ). The

single transmon rotations are also typically fast (∼ 20 ns). Therefore, we can suppress the

transmon’s T1 and T2 effects since it now remains in the ground state during the relatively

slow BS operations.

7.2 eSWAP operation in single photon encoding

In order to see the eSWAP unitary in action, we first use the simplest encoding as an

illustration. We initialise Alice and Bob in the four basis states of the {|0〉, |1〉} encoding

and probe the outcomes after the operation using a spectroscopy measurement. In this

particular example, we realise a 50:50 beamsplitter in ≈ 2 μs with every transmon rotations
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Figure 7.3: eSWAP in single photon encoding. The probabilities of measuring each
basis state in {|0〉, |1〉} encoding after eSWAP with a variable control angle, θ. P00 (grey
square) and P11 (brown diamond) remain unchanged as a function of θ. When starting from
|0〉A|1〉B, we observe a periodic oscillation of P01 (blue circle). It is exactly out of phase
with P10(orange circle). They have equal amplitudes at θ = π/4 which corresponds to the
entangling gate where a single excitation is equally split between Alice and Bob. All data
shown in here are normalised by the selective π-pulse contrast of qA and qB.

taking 24-40 ns and CPS ∼ 320 ns each. This results in a total gate time of ≈ 4 μs, roughly 1 %

of the cavity coherence times and at least an order of magnitude faster than the timescales

associated with higher order non-linearities such as self-Kerr and cross-Kerr.

As shown in Fig. 7.3, we implement the experiment as a continuous function of the

control angle. This allows us to explore the different gates performed by the eSWAP unitary.

Using joint spectroscopy of qA and qB, we measure a near unity probability of being in

|0〉A|0〉B regardless of θ. When starting from |0〉A|1〉B, we observe periodic oscillations of

P01 with high contrast while P10 oscillates exactly out of phase. In particular, the result

indicates that at θ = ±π/2, the excitation is fully transferred from Bob to Alice. Moreover,

at θ = π/4, both probabilities have the same amplitude, indicating an even split of the

excitation between the two cavities as a result of the entangling operation. The measurement

outcome with the initial state |1〉A|0〉B is not shown in Fig. 7.3 since it is identical to that

of |0〉A|1〉B, as expected. Another key observation is that P11 remains constant over all θ

with a slightly diminished contrast compared to P00. This reduction (∼5 %) is primarily

due to the imperfect preparation of |1〉A|1〉B, as shown by independent calibrations of the

state preparation process. The lack of oscillations in P11 attests to the preservation of the

code space under the eSWAP unitary. We can contrast this with the simple beamsplitter
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operation, under which the same initial state evolves out of the code space to a superposition

of |2〉A|0〉B and |0〉A|2〉B. We can characterise the leakage by independently probing the

probabilities of occupying Fock state |2〉 in Alice and Bob. Here, our measurement shows a

constant value of P20 ≈ 2% and P02 ≈ 1% respectively.

This simple measurement provides an intuitive illustration of the behaviour of the system

under the eSWAP unitary. Further, it is also a useful calibration procedure to tune up the

full sequence. Since the protocol is compatible with any bosonic encodings, the calibrated

parameters can be directly applied to more complex code words. It is important to minimise

non-idealities from each individual step to avoid compounded errors in the full sequence.

Here, let us discuss a few details related to the tune-up process that are crucial to the faithful

construction of the operation.

Transmon rotations are the most straightforward to calibrate since it only involves a

single two-level system. We use established techniques to tune the precise pulse amplitudes

to perform π/2 pulses using a pulse train experiment. By repeating the pulse, the effects of

small imperfections in the amplitudes can be exaggerated and hence corrected. In practice,

we can perform π/2 pulses with > 99 % fidelity using such calibration procedure.

The effective mixing angle of the two beamsplitters are tuned independently by adjusting

the pump duration. In this experiment, we aim to perform a robust 50:50 BS. To do so,

we adopt a similar strategy as in the pulse train experiment where we repeatedly apply the

beamsplitters to amplify the sensitivity to small mis-calibrations in the pump length. With

this, we can precisely tune the duration, up to the 4 ns resolution of the FPGA, to perform

a balanced beamsplitter with fidelity � 98%.

CPS can typically be tuned using standard Ramsey revival experiments. However, in

the presence of the additional Xθ gate separating the two CPS gates and its finite pulse

duration, additional care must be taken to ensure a precise π phase is imparted to each

photon if the ancilla is excited, regardless of θ. The exact CPS times are tuned using the

interference of a single photon in a Mach-Zehnder interferometer at different control angles.

We initialise the system in |0〉A|1〉B and implement the eSWAP protocol while sweeping the

delay times used to realise the two CPS operations. We measure the probability of both P10
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and P01 after the protocol at a θ = 0, π/4, π/2 respectively. This provides us with a easy

way to fine-tune the CPS gates and impart the appropriate phase to the cavity state with

the effects of finite pulse durations taken in account.

7.3 Generating a two-mode cat state using eSWAP

Using these calibration tools, we apply the eSWAP unitary to more complex cavity states.

In this section, we will revisit the two-mode cat state first introduced in Chapter 4. However,

rather than creating it using the qcMAP protocol, we now can generate the highly entangled

state using a eSWAP quantum gate with the control angle tuned to π/4. To demonstrate

this capability, let us consider an initially separable state |ψ〉0 = 1
N (|α〉A| − α〉B), where

N =
√
2α is the normalisation constant (omitted in the subsequent description).

With the control angle adjusted to θ = π/4, we can implement the entangling gate to |ψ〉0
and perform joint Wigner tomography to characterise the output state. Since UeSWAP(θ = π

4 )

is simply a coherent superposition of swapping the cavity states or identity, we expect the

outcome of the experiment to be:

|ψ〉 = N (|α〉A| − α〉B + i| − α〉A|α〉B) (7.2)

where N is the normalisation constant and will be omitted in the subsequent discussions.

This is an entangled state of Alice and Bob but without joint parity, i.e 〈P̂AP̂B〉 = 0.

This is not surprising as the initial state does not have a joint parity either and the operation

preserves the joint photon number parity. We can capture the features of this parity-less

two-mode cat state by considering the joint Wigner function in selected 2D planes in the

4D phase space it resides in.

With this new experimental flexibilities provided by this multi-ancillae device, we can

now measure the joint Wigner without relying on the Y-mon. Rather, we can monitor the

joint Wigner function of Alice and Bob individually using their respective transmon ancilla

and their independent single shot readout. The joint parity is inferred from the shot-to-shot

correlated single Wigner measurements since PAB(β1, β2) = PA(β1, β2)PB(β1, β2). In prac-
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Figure 7.4: Joint Wigner measurement from correlated single Wigner functinons.
(a), (b) The individual averaged Wigner tomography of Alice and Bob in Im[β1] - Im[β2]
plane. They do not exhibit any negativity as the subsystems of an entangled state do not
contain any quantum coherence. However, when we correlate the two measurement shot by
shot by taking a product of the measured parities at a particular point in phase space, the
coherence of the entangled state is recovered.

tice, we perform single-shot displaced parity measurement on Alice and Bob simultaneously

and compute the resulting joint displaced parity by multiplying the two outcomes. Just as

we discussed in section 4.2, the average single Wigner functions do not contain any quantum

coherence since the other subsystem of the entangled state has been traced out as shown in

Fig. 7.4 (a) and (b). In contrast, the joint Wigner averaged over all the measurement con-

tains the fringes that indicate the presence of non-classical correlations (Fig. 7.4(c)). This

method of measuring the joint Wigner function is in principle more robust than that pre-

sented in section 4.2 since we no longer need to manipulate superpositions of the transmons

|g〉, |e〉, and |f〉 state to achieve the effectively matched χ. This reduces the errors due to

imperfect transmon manipulations and imprecise joint parity mapping time. However, by

doing two individual measurements, we are now susceptible to the decoherence effects and

readout errors of both transmons. In this particular device, the transmon T2s are embarrass-

ingly low and rather unstable (5-20 μs). As a result, the individual parity contrast of Alice

and Bob are each ∼ 90%. This means that the maximum contrast we are able to obtain

in the joint Wigner functions, assuming perfect state preparation, is roughly 80%, which is

experimentally verified by the joint Wigner tomography of |0〉A|0〉B.

Having introduced our method to measure the joint Wigner function of Alice and Bob

in this set-up, we now proceed to present the data taken on two plane cuts that contains
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Figure 7.5: Joint Wigner tomography of a two-mode cat state. Data are taken along
the Re−Re (a) and Im− Im (b) axes of Alice and Bob respectively. Each point corresponds
to a displaced joint parity in a four-dimensional phase space. The features in (a) indicates
the probability distribution of the two coherent state components in both cavities. The
quantum coherence is shown by the interference fringes in (b). The origin in both planes
corresponds to the measured joint parity. In this case, the state has zero joint parity.

the main features of this parityless entangled cat state. In Fig. 7.5(a)-(b), we show the

calculated ideal Wigners on two selected planes defined by the real (imaginary) axis of

Alice and Bob respectively with both the two orthogonal axes fixed at the origin. The

measured joint Wigners on the same planes are shown in (c) and (d). They show remarkable

qualitative agreement with the ideal state. In the Re-Re plane, we observe two postively-

valued Gaussian hyperspheres, at β = [
√
2,−√

2] and β = [−√
2,
√
2]. They correspond

to the probability distributions of the two coherent state components of |ψ〉. The origin,

which corresponds to the joint parity of Alice and Bob, is very close to zero. It is consist

with the expected outcome as the initial state has 〈P̂AP̂B〉 = 0. Therefore, the output must

remain parity-less since the entangling operation preserves joint parity. In the orthogonal
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plane defined by the two imaginary axes, we observe an interference structure with no joint

parity. This is in good agreement with the simulated behaviour. The raw data show an

overall ≈ 72% contrast of the ideal Wigner function.

The additional features on the Re-Re plane (Fig. 7.5(c)) can be accounted for by the

self-Kerr nonlinearities of Alice and Bob. In the absence of the microwave drives, we have

independently measured them to be small (�4 kHz) and have negligible effects on the joint

Wigner tomography. However, due to the application of strong pump tones during the

eSWAP protocol, Kerr effects can be enhanced. This is because the strong drive tones

are likely exciting higher order terms in addition to enabling the bilinear coupling that

performs the beamsplitters, and result in a larger non-linearity in the cavity. We can verify

this by calculating the ideal Wigners with the enhanced Kerr taken into account. Indeed,

with Kerr ≈10 kHz the calculated joint Wigner functions exhibit the same features as the

data. Additionally, if the stronger self-Kerr stems from higher order terms from the cosine

expansion, the effect must be frequency-dependently. We verify this by moving the two drive

frequencies together while maintaining the same effective coupling strength. We have found

that indeed, the effects of pump-induced self-Kerr can be further magnified or suppressed

depending on the exact frequencies of the two drives.

We compare this with the action of a simple beamsplitter on coherent states, which are

semi-classical. The engineered unitary ÛBS we presented in section 6.1 is a linear operation.

It does not generate any entanglement between Alice and Bob when they are encoded in the

coherent basis. This is shown in Fig. 7.6 where we have performed a simple BS operation

on the initial state |0〉A|α〉B, with α ≈ √
3.5. The output remains a separable state with no

quantum correlations between Alice and Bob. Non-classical states can be created, such as

the familiar NOON states, using simple beamsplitters. However, that relies on the quantum

nature of the input states, i.e. Fock states, rather than the operation itself. When a cat

state, |α〉±|−α〉, is prepared in Alice or Bob, an entangled state can be generated simply by

the action of ÛBS. However, this brings the system out of its initial code space to a two-mode

cat with α′ = α/
√
2. Based on Ref. [50], the encoding can be preserved if we combine the

beamsplitter operation with a two-photon dissipation process that stablises the manifold of
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Figure 7.6: Coherent state under UBS. We initialise the system in |0〉A|α〉B, with α ≈√
3.5. After a simple BS operation, we measure the Wigner function of Alice and Bob

independently. The resulting result is a separable state of two smaller coherent states each
with amplitude α′ ≈ α/

√
2. This is in stark contrast to the action of the eSWAP gate,

which creates an entangled two-mode cat state.

the initial code words [132]. However, this requires additional drives that could introduce

other types of imperfections. The eSWAP unitary, on the other hand, only requires the

beamsplitter operation and the intrinsic dispersive coupling.

Another way to characterise this entangled state is to consider it as an entangled pair

of qubits encoded in the coherent state basis. In this picture, we can probe the full set of

two-qubit joint Pauli operations effectively without doing full tomography over the entire

4D phase space. The 16 two-qubit correlators are mapped out directly by performing 16

independent measurements of 〈P̂J(β1, β2)〉 as described in section 4.3.

The measured outcomes for state |ψ〉, created by the universal entangling gate, is shown

in Fig. 7.7. It is in excellent agreement with the ideal case with an overall reduction in

contrast but no significant spurious correlations. It is important to note that with α =
√
2,

the two coherent state components are not fully orthogonal. Therefore, the calculated

outcomes for the ideal states also contains some non-zero elements which would vanish as

we increase the size of the coherent states. This provides a direct fidelity estimation [86] of

1
4(〈II〉 − 〈XY 〉+ 〈Y X〉+ 〈ZZ〉) ≈ 70% compared to the ideal Bell state. This comfortably
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Figure 7.7: Joint Pauli correlators after UeSWAP(θ = π
4 ). Tomography of a parityless

two-mode cat state generated by the universal entangling operation with α =
√
2. The raw

data is overlaid on top of simulated outcomes (translucent) from an ideal state with the same
excitation. The ideal bars do not fully reach unity due to presence of Kerr nonlinearities
in each cavity and the small overlap due to the relatively small value of α. The measured
outcomes show good agreement with prediction except some overall reduction in amplitude
due to inefficiencies in the joint Wigner tomography. Despite these non-idealities, the result
shows clear indication of entanglement.

surpasses the 50% bound for classical correlations. It is also consistent with the contrast of

the joint Wigner measurements, indicating that the reduced contrast is most likely due to

the imperfections in the measurement rather than the entangling operation itself.

We also verify that the eSWAP unitary performs as expected at other control angles.

While we have the capability to continuously tune the control angle as shown in Fig. 7.3,

two of these angles are particularly illustrative: eSWAP(θ = 0) ≡ Î and eSWAP(θ = π
2 ) ≡

SWAP. They are tested in the coherent basis using the same joint Wigner measurement as

shown in Fig. 7.8. We initialise the system in | − α〉A|α〉B and perform the same eSWAP

protocol at these two chosen control angles. Despite the rather coarse sampling, it is clear

that the final states are | −α〉A|α〉B and |α〉A| −α〉B respectively with no spurious features,

except a small distortion due to Kerr. These results show that the engineered eSWAP

unitary indeed performs the identity and SWAP operation at θ = 0, π/2 respectively.
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Figure 7.8: Joint Wigner function after eSWAP unitary Data taken on the plane
defined by the Re − Re axes for an initial state of | − α〉A|α〉B. (a) The final state after
eSWAP(θ = 0). (b) The final state after eSWAP(θ = π

2 ). The distortion of the blob is again
due to self Kerr effect of the cavities.

7.4 Discussion

The joint Wigner tomography and the Pauli correlator measurements show conclusively that

we have successfully engineered the eSWAP unitary between two microwave cavity modes.

Its action on both the Fock and coherent state encoding further shows that this unitary is

capable of performing an entangling operation between the two modes irrespective of the

code words used. These results are still fairly preliminary and yet, it is indisputable that

highly non-classical correlations are present in the final state after the entangling gate. In

order to more precisely and quantitatively characterise the performance of the gate, we need

to implement full quantum process tomography. This can be done using the same techniques

described in section 5.3. The experimental implementation of full process tomography is

underway at the time of this writing. We intend to perform it on several different encodings

to verify that the operation is truly compatible with different types of bosonic codes.

As we move towards applying this universal entangler between logical qubits encoded in

multi-photon states, we must pay more attention to the effects of higher order terms. Our

preliminary results indicate that the effective Kerr nonlinearity, and potentially other 6th

order terms, tend to increase due to the presence of strong pumps used in the beamsplitter



7.4. DISCUSSION 156

operation. It would be desirable to explore other possibilities to enable the beamsplitter

between two cavities which do not introduce additional higher order effects. For example, a

three-wave mixing process through a SNAIL-type device [145] can potentially alleviate this

problem. Experimental work is in progress to integrate such devices with 3D cavities in a

way that does not limit their intrinsic coherence properties.

The unitary operation implemented in the scope of this work is not yet fault-tolerant:

errors in the gate can propagate and degrade the information encoded in the cavities. This

is mainly due to the entanglement of the transmon ancilla and the cavity state during the

sequence, which makes the system susceptible to both transmon decay and dephasing errors.

It can, however, be made fault-tolerant by using multiple levels of the transmon [144] to

perform the CPS and Xθ operations. This is, of course, more challenging experimentally

but with the continual improvements of the coherence times of the devices and the control

capabilities of each individual component, such fault-tolerant entangling operations can

be realised in the foreseeable future. Combining this gate with active error tracking and

error correction will allow us to perform universal quantum computing between two error-

protected bosonic qubits [139]. The eSWAP gate is an extremely powerful tool because

its action does not depend on the details of the choice of orthogonal basis |0〉L and |1〉L.

Therefore, it can be used as a robust entangling gate on any single-mode bosonic encoding,

such as cat code [146, 50], binomial code [51], GKP code [99], etc.

In summary, the results shown in this chapter are a proof-of-principle demonstration of

an universal entangling gate between states stored in two high-Q superconducting cavities.

Together with single qubit rotations, it forms a universal set of quantum gates for the

cavity-based quantum computing framework. Its potential to be made fault-tolerate and

compatibility with bosonic QEC schemes also makes it a crucial ingredient in the future

implementation of more complex quantum algorithms on a network of logical qubits.





Chapter 8

Conclusion and future directions

It is a truly amazing time to be in the field of quantum computing and quantum information

science. With the profound scientific and technological impacts it entails, this subject has

become not only the focal point of academic research, but also the interest of tech giants

such as Google and IBM. Instead of focusing on the integration of large numbers of two-level

systems, our team at Yale have chosen to pursue a more modular architecture where each

individual module can be error-corrected. The results shown by N. Ofek and A. Petrenko [49]

mark the first time that quantum information has been preserved for a longer time than the

coherence of the best physical component through QEC. Furthermore, recent experimental

progress in the coherent transfer of multi-photon quantum states, compatible with existing

QEC schemes, between two separate modules [54] now allows us to effectively connect distant

quantum modules and eventually form a larger quantum network. The experimental work

described in this thesis is an integral part of this effort. The results we have highlighted have

far-reaching implications in the future design and control of more complex quantum modules.

Moreover, the various techniques developed during these experiments, such as joint Wigner

tomography and the engineered beamsplitter operation between high-Q modes, are valuable

and versatile tools for the ensuing experimental endeavors in superconducting circuits.

In the final chapter of this thesis, I would like to look ahead and highlight some of the

exciting new scientific pursuits that are now within reach. I will also briefly discuss my

personal take on the key challenges ahead in our efforts of building a robust superconduct-

ing quantum computer. I would also like to emphasise that although realising a quantum

158
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computer is the ultimate goal of many of the research efforts, we must not forget to revel in

the spectacular scientific discoveries we are making along the way.

The design and full characterisation of the first double-cavity system used to create the

two-mode cat state (chapter 4) has convincingly demonstrated the potential of such devices

where two or more high-Q modes can be jointly manipulated. It has also introduced a

viable strategy towards effectively harnessing a larger Hilbert space without sacrificing the

favourable coherence characteristics or drastically increasing the error channels. The device

has since inspired a variety of other multi-cavity designs, such as the four-cylinder quantum

machine, shown in Fig. 8.1, which enabled the recent demonstration of a teleported gate

between two logical qubits [55]. In this device, each pair of high-Q cavities are coupled

through Y-mos which can be used for both individual and joint cavity manipulations. Using

the same design strategies, we can in principle continue to increase the power of these

modules by incorporating even more cavities in the system. Such multi-cavity, multi-ancillae

systems provide an excellent platform for future experimental explorations in cQED.

Another development showcased in this work is the driven bilinear coupling between

two cavities. While the four-wave mixing process through the Josephson junction has long

been a staple of cQED experiments, we have demonstrated that it can be used as a robust

frequency-converting, bilinear coupling between two high-Q modes in chapter 6. This is a

valuable tool for implementing both bosonic interference experiments, as well as engineering

new inter-cavity quantum gates. In particular, this type of driven operation only virtually

involves the nonlinear element. In other words, the excited levels of the transmon ancilla are

not populated during the operation, making the system immune to decoherence mechanisms

of the transmon which are typically far less favourable than that of the cavities.

Combining this capability with the multi-cavity modules, we now have a playground

for a large variety of interesting experiments. For example, the four-cylinder device where

pairs of cavities modes can interact through the driven bilinear coupling will allow us to

implement more nested quantum interferometers and simulate the highly non-trivial boson

statistics in a generalised HOM experiment [147]. This type of boson sampling problems

become quickly intractable for classical machines as we scale up to more modes and more
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10 mm

Figure 8.1: Photograph of a quantum module consisting of 4 high-Q cavities. (a)
The machined Al package contains four coaxial λ/4 3D cavities, three of which are used in
this work. The cavities that serve as data qubits and bus are outlined in pink and black,
respectively. A detailed photograph of the cavities is shown in (b). Two clamps anchor each
sapphire chip, one is highlighted in blue and is detailed in (c). The visible connectors are
input ports for each cavity; the input/output ports for the transmon and readout resonators
are on the underside of the device and thus not visible. (b) Top-down photograph of cavities.
We illustrate the three cavities using the same colour scheme in a; the inner circle represents
the inner conductor that defines the cavity mode. The orange outline shows the sapphire
chip inserted into the device package. Also visible are the antenna pads of the transmon that
enable the coupling to each cavity. (c) Photograph of sapphire chip on which the transmon
and readout resonators are fabricated. The sapphire chip is outlined in orange and contains
several elements: from the top of the figure moving down, the Y-mon, the readout resonator,
and the Purcell filter. Figure reproduced from Ref. [55] with permission

excitations. There have been many theoretical studies [138, 137, 148] but experimental

realisations remain challenging due to practical challenges such as difficulty in preparing

coherent multi-photon quantum states. In cQED systems, we can more easily scale up to

several bosonic modes while still maintaining precise quantum control over each of them in

this multi-cavity architecture. Facilitated by the large nonlinearity of transmons, we can also

efficiently prepare quantum states with larger number of excitations. Therefore, it would

be extremely advantageous to realise multi-mode and multi-excitation interference between

stationary bosonic modes in cQED architecture.
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Additionally, with more cavities and the ability to implement entangling operations

between them at our disposal, we can also realise higher-order encoding schemes. One

protocol for level-two encoding between logical qubits using a quad-rail scheme has been

proposed in Ref. [139], where four logical qubits can be error-corrected and all logical gates

between them can be implemented coherently in a fault-tolerant manner. The schematic

for realising the proposed scheme using cQED systems is shown in Fig. 8.2. This provides a

hardware efficient platform to implement robust logical operations between protected logical

qubits.

Figure 8.2: Quad-rail encoding in cQED using a four-cavity architecture. Logical
qubits are encoded in the multiphoton states in each superconducting cavity. The cavities are
coupled through some general non-linear elements, which we call the Josephson Frequency
Converters (JFC), that can be driven to introduce either three or four wave mixing processes.
Each memories mode can have its independent ancilla dn readout resonator for the purpose
of robust single-cavity manipulations and tomography. Figure reproduced from Liang Jiang’s
presentation with permission.

While there is no fundamental limit on scaling up to larger number of modes in this type

of 3D structures, we fairly quickly run into a number of practical challenges in realising it

experimentally. Although the modules, even with several mode cavities incorporated, do

not themselves have a particularly large volume, the accompanying filtering and microwave

drive lines do take up a significant portion of the available fridge space. Furthermore,
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as we introduce more modes in the system, it becomes increasingly crucial to achieve the

target design parameters precisely and reliably. These are the challenges that we hope to

overcome by developing micro-machined cQED components, each of which is more compact

and defined with lithographic precision. Such micro-machined quantum elements are part

of the multilayer microwave integrated quantum circuit (MMIQC) architecture developed at

Yale. Recent progress on MMIQC has shown that the quality factor of such micro-machined

cavities have exceeded ∼ 106 [149] and can be readily integrated with a standard transmon

ancilla [150]. I personally find these developments extremely exciting as this architecture

combines the scalability of 2D structures and the coherence properties of 3D systems. With

the rapid progress shown in this area in the recent years, it will not be long before we

can perform these complex multi-cavity operations on a compact stack of integrated micro-

machined resonators.

Another aspect of superconducting circuits that I find immensely exciting is its poten-

tial to be integrated with other types of quantum elements in hybrid systems. In particular,

the marriage between atoms and spins to superconducting circuits is quickly emerging as a

strong candidate for implementing scalable quantum information processing machines [151].

Recent experimental progress has shown that by coupling a spin ensemble to a supercon-

ducting resonator, it is now possible to control the relaxation of the spin systems on-demand

through Purcell effects [152]. This provides a useful tool for the efficient initialisation and

measurement of the spin systems. These types of hybrid devices combine the outstanding

coherence properties, scalability, and compactness of the spin system and the controllability

of superconducting circuits. I think that such hybrid devices which harness the advan-

tages and strengths of the different systems hold tremendous promise for the exploration

of new quantum phenomena and bring about novel technologies for quantum information

processing.

Although there are still numerous challenges ahead, the rapid progress in quantum com-

puting in the cQED framework certainly inspires a strong sense of optimism. In less than

two decades since the first demonstration of a Rabi oscillation of a Cooper pair box [23],

there has been an abundance of incredible developments in superconducting circuits. The
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storage time of quantum information in cQED components have increased by near 6 orders

of magnitude from ns to ms. Moreover, the infidelities of quantum operations on one or

two registers have been pushed to a fraction of a percent over the recent years. We have

not only successfully constructed an error-corrected logical qubit but also developed means

to implement robust quantum operations between several of them. With the tremendous

momentum it has garnered, superconducting circuits are undoubtably one of most promising

systems to ultimately realise a practical quantum computer. I am truly fortunate to be part

of this effort during these exciting times.
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