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The ability to couple isolated quantum systems demonstrates precise and powerful control over natural

phenomena. It can be of use in quantum information by connecting systems in a modular network to real-

ize distributed, fault-tolerant quantum computing. This requires highly performing modules and efficient

communication channels. We have developed or integrated state-of-the-art hardware in circuit quantum

electrodynamics to produce such an elementary module. We explore the dissipation mechanisms that limit

their fundamental performance; by reducing overall loss, we can increase the efficiency of a scaled modular

network. Further, we demonstrate a method to transmit quantum information from a module, via prop-

agating photons, into another module. Transmitting quantum information requires that locally stored

states are converted into propagating fields. Using RF-controlled four-wave mixing, we experimentally

demonstrate parametric conversion of quantum states from a superconducting microwave cavity, preserv-

ing the quantum information in a propagating form with high fidelity. This process operates identically

in either direction, allowing release and capture of the propagating mode by temporal control over the

conversion. Such control also permits entanglement, simply by “half-release” of a state, which we con-

firm by observing non-classical correlations. Thus, state transfer and entanglement are both realized with

high fidelity and without compensating by conditioning. This fundamentally deterministic strategy sets

new limits on the rate of communication and entanglement generation. By encoding quantum states in

multi-photon fields, we show how one can overcome signal transmission loss in such a quantum network,

further improving efficiency through the prospect of quantum error correction. These results establish a

compelling approach for deterministic, network-based quantum computation, and may serve as the basis

for how superconducting quantum circuits can be scaled to even greater numbers.
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1
Introduction

The notion of human interaction with a quantum mechanical world, much less our control over it, is a

bizarre one. The first experiments to unveil the quantum mechanical nature of our world were performed

only within the past century. With silicon fabrication techniques, laser optics, superconducting circuits,

and Josephson junctions (among other technology developed in the past half-century), we have finally

begun to exert control over the quantum world.

Solving the problem of “quantum control” opens up access to new areas of research, but also a host of

tangible applications that can be pursued. Recognizing the overlap of fundamental physics with applied

research, interdisciplinary programs naturally spawned during this time. They study of “applied physics”

formed at the intersection of physics and engineering. In our field of circuit quantum electrodynamics, in

particular, concepts from electrical engineering and computer science mix heavily with quantum mechan-

ics.

These disciplines provide the framework in which to use quantum systems for information storage and

processing, and ultimately to construct a quantum computer [1]. We choose quantum systems comprising

artificial atoms, made from superconducting structures, to store quantum information. To preserve the

quantum nature of such a system, our probing must be careful and indirect; strong interaction between a

classical measurement apparatus and a quantum system does not easily permit many sequential operations

[2].

This kind of interaction with the classical world is critical for learning information about the state of

a quantum system. Such control also permits data input (system initialization) and control signals, which

1
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guide the execution of algorithms [3]. An equally important aspect of our treatment of a quantum system,

however, is “environmental control”: what happens when these external interactions are turned off.

The experimenter and the “environment” (external parts of the greater system that are off-limits to

the experimenter) are both coupled to a quantum system. When the experimenter relinquishes control,

environmental interaction persists. Naturally, since the information it learns is inaccessible, we hope that

the environment interacts with our quantum system minimally. Successful control is possible only when

the the rate of user-driven operation greatly exceeds the rate at which the environment imposes uncertain

effects [4, 5].

However, realistic coupling to quantum systems introduces both channels, more or less proportion-

ally. A circuit may be capacitively coupled to a transmission line, which carries control signals, but will

also carry noise. If the coupling is designed to more rapidly control the system, the decoherence rate from

the noise source may increase proportionally. Further, some sources of decoherence are independent of

this coupling, and set hard limits on the timescales within which operations may be performed (before all

information is lost). These elements combined require careful consideration of how quantum systems are

constructed and interfaced with the classical world.

More powerful machines, quantum or otherwise, require more elements and more operations on and

between these elements [6]. For practical devices, interacting with a single quantum system is insufficient.

Even if control over a single quantum system can be mastered, interfacing multiple systems will present

new challenges. Environmental interaction that may have influenced the one system may now influence

multiple components; added control channels will further increase the likelihood of losses. If we cannot

control one system at a meaningful rate, relative to environmental loss, then multiple systems will only

scale unfavorably in difficultly.

This work will introduce ideas useful for taking control of quantum systems, back from the hands

of Nature and into those of the experimenter. One can endow a quantum system with such protection

on several scales. First, individual systems must be shielded from environmental noise and loss. Then,

we must determine how to couple to these systems without compromising this built-in protection [7].

Invariably, direct coupling between trivial systems will not suffice. Finally, following the path to construct

a functional machine [8, 9, 10], these systems must be coupled together. This system-to-system coupling
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must also not compromise its performance.

The essence of maintaining control is to use intermediate systems, or “ancillas”, to mediate interactions

[11]. In this way, some elements may be strongly protected against sources of decoherence, while ancillas

handle fast operations like those exchanging information between multiple systems, or reading out their

states. The overall system can thus equipped with the best features of each component. Now, to reach the

protected elements, noise introduced through couplings much first traverse the ancilla.

Our requirements for control over quantum systems have seemed, at first, to present a conundrum —

the simultaneous need to have long-lived and quick-response elements. Through careful design of the ele-

ments comprising our quantum mechanical system, however, we show in the following work that control

can be established to a very high degree. Through design choices, filtering, and natural isolation, we build

a quantum system that satisfies these requirements. Further, these concepts are preserved when many ele-

ments are coupled. We will show that the control problem can be solved.

The divide between classical and quantum may appear large, even unsurmountable. Regardless, we

live in a world that is fundamentally quantum mechanical. If we choose to believe the meaningfulness of

this non-intuitive, wacky behavior, then Nature is willing to grant us a concession: for a time, however

brief, we may wrest control of a part of the quantum world, and use it for our mortal purposes.

1.1 Overview of this thesis

This thesis discusses several aspects of the effort to build a scalable quantum computer using circuit quan-

tum electrodynamics (cQED). They fit into a framework of scalable, interacting systems called “the modu-

lar architecture”. Such an architecture has the benefit of using well-isolated modules that can, in principle,

be very high-quality. This work first characterizes a new architecture that can used to construct a single,

simple module. Then, it will discuss the principle by which one system can be interfaced with another.

It will allude to related, ongoing studies that fill the gaps that remain, ultimately allowing more complex

modules, and networks thereof, to be constructed.

Before presenting the results of these recent experiments, I begin Chapter 2 by describing, in greater

detail, how these components mesh with a our long-term vision for building a quantum computer using
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general quantum computing platforms. I introduce the goals and tasks of engineered quantum systems.

I discuss the forms in which information can be encoded, including some that protect it against system

imperfections. Finally, I extend these concepts to the modular architecture introduced above.

In Chapter 3, I detail the layout of a cQED network based on these concepts. I introduce the physics

necessary to implement these ideas in cQED. This includes the type of system elements, control hardware,

and operations that must be implemented. I introduce the elements required for a simple module, and sep-

arate the elements that are available from those that have yet to be fully developed. We will need elements

and techniques for constructing and interfacing the desired modules; I will examine several candidates.

By this point, it should become apparent that while elements of circuit QED have demonstrated many

useful purposes, they have not yet been combined to into a simple module with the purpose of assembling

a modular architecture. I will introduce a hardware architecture in Chapter 4 that allows for straight-

forward integration of a module’s necessary elements—a combination of integrable quasi-planar and 3D

structures—and perform characterization to show that their behavior is exceptionally robust. This char-

acterization will include the development of a suite of tools that I hope to be considered useful in con-

structing complex, integrated systems.

Not yet satisfied with the lifetimes possible in such an integrated module, I will investigate the sources

of loss that limit them in Chapter 5. I will use some of these new quasi-planar elements, in addition to

recently embraced cavity geometries, as testbeds to evaluate limiting dissipation mechanisms. This is ac-

complished through systematic variation of parameters and many, many, many experiments. To aid with

this multitude of sample testing, I will use variants of the designs in Chapter 4 that permit multiplexing.

At the end of this chapter, I summarize the limits that these experiments place on the quality of various

materials in planar, quasi-planar, and 3D systems we might use.

With an improved understanding of the factors that limit us, we can design an assembled module

accordingly. In Chapter 6, I conscript these integrated modules to demonstrate a basic task that will be

critical in the modular architecture: quantum communication. In this case, an experiment is performed

that converts stationary states (stored within a quantum memory) into propagating ones. This process

can be performed very coherently, meaning that quantum information is preserved through this ‘change

of character’. This satisfies a goal established in our introduction of modular networks: the ability to
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communicate between modules.

Such communication is not complete, however, without a module on the other end of such a com-

munication channel ‘picking up the phone’, or catching the flying information smoothly and efficiently.

This challenge is addressed in Chapter 7. Here, we perform an experiment that shapes the form of the

flying information—in particular, its wavepacket—so as to enable this receipt to occur. We use this pro-

cess to learn about the form of loss that likely dominates the transfer. Furthermore, we choose a form

of information encoding and propose how it can be used to protect against this type of loss. Combined

with the efforts in Chapter 5 to reduce intrinsic loss, this error correction protocol will further benefit the

robustness of such a modular interface scheme.

I conclude by taking a step back and looking at this work in the context of the larger goal. Building a

quantum computer using the modular architecture will require an extensive effort on many fronts. Much

recent and ongoing work will be directly compatible with the experiments shown in this thesis. Their

combination has to potential to produce exceptionally powerful quantum machines.



2
A Quantum Information Roadmap

In this chapter, I will introduce the concept of quantum information generally, and as it pertains to the

long-term aim of this field of research: building a quantum computer. I will draw parallels to classical

computing, both in the operation of a computer and in the progression of research. This progression must

follow a path that meets certain broad milestones, regardless of the platform used to construct the system.

Since this thesis will address several of steps along this path, I introduce them in more detail, although in

general, platform-independent terms. Finally, I conduct a brief survey of the methodologies pursued in

scaling quantum systems to much larger sizes. No quantum computing platform has yet to master these

remaining challenges, and this is where the forefront of research lies.

2.1 Quantum computers

The concept of a quantum computer carries a certain ambiguity, in part imbued by its prevalence as a “buzz

word” in popular media. Some even argue that quantum computers have already been built.1 If this is the

case, why do we continue to seek this fabled goal? First, a true quantum computer, which we will attempt

to define below, is still perhaps decades off. But even if this were a reasonable characterization, we would

still have much to learn. The “quantum machines” that are presently built in research labs around the

world, striving towards the greater goal of a quantum computer, produce valuable scientific knowledge and

1. Those who claim to have built a quantum computer are using a different term than that used by the majority of the com-
munity. The only kind of “quantum computer” that has been built to date is more appropriately called an “adiabatic quantum
annealing machine”, and does not meet the DiVincenzo criteria that are discussed below. Without individual control over quan-
tum elements in the system, this machine instead probes ensemble behavior of a many-element quantum system.

6



2.1. Quantum computers 7

technologies that can be used in many fields. They offer researchers understanding of natural phenomena

in the quantum realm, not just a way to build a fancier quantum machine.

So what is a quantum computer, and what must it be able to do? The concept of a quantum com-

puter was proposed and popularized by Deutsch, Manin, Feynman, Shor, Grover, and others, and initially

couched as a natural way to simulate natural systems—which, fundamentally, are also governed by the laws

of quantum mechanics [12, 13, 14, 15]. Like many massive undertakings in physics, a singular long-term

purpose is difficult to state. Much like a classical computer, the quantum computer should be able to

solve mathematical problems of broad interest. These may include such things as protein folding, genetic

mapping, machine learning, or, naturally, simulating other quantum systems [16]. Of particular interest

to security professionals is the prospect of encoding information in an unbreakable manner, by taking ad-

vantage of fundamental properties of quantum mechanical systems such as the no-cloning theorem [17].

This falls under the category of “quantum cryptography”, which has somewhat different needs than those

of a quantum computer for, for example, simulation. Cryptography necessarily involves the transmission

of information, focusing more heavily on principles of quantum communication than quantum processing.

The ensemble of techniques and pursuits of the manipulation of information stored and transmitted to,

from, and within quantum systems forms the basis of “quantum information”.

Quantum computers and communication systems must meet certain requirements—the DiVincenzo

criteria—in order to fulfill at least some of the set of tasks laid out in Section 2.2.1 [18]. They are guidelines,

largely generalisms found to be consistent with all the experimental platforms of the day. They state that

a quantum computer must be scalable, contain identifiable quantum bits (information carriers), and that

these quantum bits can be controlled to the extent that they can be “initialized” in a known state at some

point. They must store this information for long-enough time compared to the operations that will be

performed. It must be possible to implement a “universal” set of quantum gates, or operations on and

between them, that can be composed to form any possible operation [19]. Finally, it must be possible

to measure the resulting state of such quantum bits after the desired operations. These criteria are each

satisfied to a certain extent in true quantum computing platforms. The more detailed steps that must be

taken to satisfy them will be given in Section 2.2.

The DiVincenzo criteria further lay out two requirements for quantum communication. The com-
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munication of quantum information between distant systems requires conversion between “stationary”

quantum bits, and “flying” ones that carry the information between systems. Then, we must develop the

ability to let the flying quantum bit “fly” without destroy the information it contains. We will present our

realization of these criteria in Chapters 6 and 7.

A quantum computer fitting this definition does not yet exist, largely because of the first criterion,

“scalability”, in combination with the ability to control and measure. Some groups claim to be nearing

the point where quantum simulations of a (relatively small, though inaccessible to classical simulators)

number of particles can be simulated [6, 20, 21]. Classical simulators, however, are also catching up, thus

obscuring this cross-over threshold sometimes called the point of “quantum supremacy”. To understand

these claims, we must delve into the details of how these various tasks will be accomplished: the “roadmap”

to constructing a quantum computer.

2.2 The research roadmap

The research effort in quantum computing must follow a similar path to that of classical computing: ad-

vancements are cumulative. Development of new classical hardware and technologies continues, as ev-

idenced (on a grand scale) by the paradigm shift to distributed “cloud” computing and storage services.

Yet, at the same time, semiconductor foundries continue to improve the process for fabricating the most

basic computing elements—transistors—reducing feature sizes from 10 µm to 10 nm between 1971 and

2017, increasing transistor density and computing power, and drawing out the trend characterized by the

popular Moore’s Law [22]. Developments occur at all the levels in between, too, improving CPU and

integrated circuit architectures, inter-element communication protocols, and the firmware and software

that takes control of it all. Connectivity across the globe has become faster and higher-bandwidth, allow-

ing users to take advantage of distributed computing protocols. This growth faces some constraints and

challenges, and while it is not likely to become obsolete for many, many generations, there are applica-

tions that even scaled-up classical computers could not support. Quantum computers could thus feasibly

complement classical ones, by filling these gaps.

Quantum computing also begins with its canonical “transistor”, the qubit. The qubit must be built
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as robustly as possible, since it will carry the weight of all that follows. Next, control must be introduced

by adding input and output connections. Control hardware allows operations using the qubit, and ulti-

mately using multiple qubits. A measurement probe is also required to observe the result of these manip-

ulations. Quantum “software” will control the qubits and execute the required algorithms. The greater

the number of qubits, the more complex algorithms can be performed.

At some point, adding more qubits will produce diminishing returns. This is because the qubits them-

selves have imperfections, the results of which are amplified by the engineering that facilitates their inter-

actions. The next step must then be to define a “logical qubit”, wherein information can be redundantly

encoded, following guidelines set forth by classical information processing. In classical computing, “logi-

cal bits” take the form of an array of physical bits, encoding information in 0 or 1. A logical bit could, for

example, redundantly encode 0 as 000 and 1 as 111. If a single error occurred on one of the physical bits,

for example 000 ! 010, the error could be caught by “majority voting”, noting that two of the physical

bits remained 0 and the likelihood of a double or triple flip is 3p2 � 2p3 (for the likelihood of a single

flip p). For p < 0.5, this triple-redundancy produces a favorable encoding. (Typical per-bit ‘soft’ error

rates are 100–1000 per billion hours.) Once identified, the error could then be corrected by flipping the

offending bit back.

Similarly, with qubits, information can be redundantly encoded in an array thereof. (This progression

is shown in Figure 2.1.) With the right choice of logical encoding, this array can form a logical qubit

(Section 2.3). Error-correction procedures, such as analogues to the majority voting pertaining to classical

bits, can be performed (Section 2.3.3). This can extend the lifetime of information stored in the logical

qubit beyond that of any single physical qubit. More complex systems can then be built using logical qubits

as the basic building block, sweeping the details of physical qubits beneath a veil of abstraction.

The same kinds of operations that are developed for physical qubits will need to be performed on

and between logical qubits. This will extend to larger arrays of logical qubits, enabling more powerful

algorithms. Eventually, even logical qubits will suffer from combined imperfections, whether based in the

physical imperfections of their constituent elements, or from the operations performed on them. This

will demand increasingly complex redundant encoding schemes, essentially wrapping the information in

layer upon layer of protection. At some point, a desired algorithm can be performed without an error.
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Single qubit operations Multi-qubit operations

Logical qubit connection

Logical qubit operations Logical qubits’ interface

Figure 2.1 | A research roadmap. General guidelines that researchers must follow to build a quantum
computer capable of meeting the criteria listed in Section 2.1. This diagram includes a suggestion of how
a modular architecture, in particular, could be addressed; the logical qubits here are treated as separable
modules. (Figure reproduced from [23]; see Copyright Permissions.)

When the chance of a “quantum blue screen of death” (qBSOD) is as infrequent as a BSOD for classical

computers, we will be satisfied. Somewhere around this level is called the “fault-tolerant” threshold for

quantum computing, a more explicit definition of which will be given in Section 2.3.3.

This thesis tours several landmarks along the route suggested by this research roadmap. I investigate the

mechanisms limiting the performance of qubits at the most basic level, discuss methods in which to encode

information in a logical qubit that supports error correction, and propose guidelines for the construction

of housings and communication pathways in scaled-up systems.

2.2.1 Algorithms

Certain tasks are well-suited to a quantum computer, and some considerably more so than for classical

computers. They can be characterized by the relative “speedup” that a quantum computer would provide

to them [24]. Further still, some of these tasks convey practical significance on a broader, more worldly

scale. Ambitious persons prognosticate that quantum computing will find solutions to world hunger,

medicine, climate change, and data security [25, 26].

Beginning at a relatively low level, however, these tasks involve such things as running search algo-

rithms, factoring large prime numbers, computing quantum Fourier transforms, and performing quan-

tum walks [27]. In schemes like quantum key distribution (QKD), some of these concepts of quantum
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mechanics have already been applied to cryptography; factoring of small numbers has been demonstrated

in relatively simple quantum systems [28, 29]. On a mesoscopic scale, quantum computers are increasingly

the platform used in research into quantum machine learning and quantum simulations [30]. Quantum

simulations could have broad-reaching effects, such as in quantum chemistry [31]. Using quantum com-

puters to effectively solve for the energy of certain chemical system configurations, one can exactly describe

molecules and materials that cannot be simulated classically. At face value, this approach—using quantum

systems to simulate other quantum systems—seems like it could be a tenable pursuit.

Control over the energy landscape (the Hamiltonian) of superconducting circuits in cQED and other

atomic systems makes them suitable to be conscripted for these purposes. The other important factor

to many algorithms, naturally, is raw computing power. The simplest algorithms require a few quantum

bits. Current estimates demand something like ⇠ 100 logical, error-corrected qubits in order to reach a

point where classical computers can no longer compete [28, 32]. If one qubit is a challenge to create and

to control, then surely many qubits will not be any easier. The challenge of scaling will be discussed later,

in Section 2.4. The form and design of these quantum bits will be critical to this pursuit.

2.3 Encoding and protecting quantum information

Choosing a quantum system suitable for information storage and processing is only half of the battle. One

must also weigh the options for information encoding within that system.

Information encodings can be characterized in many ways; one is whether they use a few discrete en-

ergy levels of a system, or whether they are spread across many in a continuous fashion. Two- or few-level

systems are generally easy to control and address, but they are limited in complexity and can be more sus-

ceptible to errors than distributed, many-level schemes. Many-level or continuous-variable encodings of-

ten take advantage of systems like harmonic oscillators. While these can be physically simple and are often

highly coherent, special tools must be developed to interface quantum states with systems that are typically

treated classically.
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Figure 2.2 | TheBloch sphere. A Bloch sphere representation of the quantum state of a two-level system.
A pure state lives on the surface of the sphere; we define the eigenstates of�z , |0i and |1i, to be at the poles.

2.3.1 Encoding in few-level systems

In the same way as bits are defined to be the fundamental information storage mechanism in so-called

“classical computers”, qubits can be thought of as the fundamental element of a quantum computer.

Information encoded in the two-level quantum bit, the ‘qubit’, can provide some computational ben-

efit compared to information encoded in a classical bit (when considering certain problems or algorithms).

This is because information can be encoded in an arbitrary state that is the superposition between the two

basis states, |0i and |1i, such as ↵ |0i + � |1i (where |↵|2 + |�|2 = 1). This encoding is often repre-

sented in the Bloch sphere (Figure 2.2), an unmistakable reminder that qubits are distinct from classical

bits (which take discrete values confined to one of the poles of the sphere). While qubits are also projected

to a particular value when, by measurement, they are interfaced with the classical world, their residence in

a quantum world gives them freedom to behave differently at other times.

A qubit’s position on the Bloch sphere, given by the Bloch vector r, relates to its quantum state ⇢ as

⇢ =
1

2
(I+ r · �), (2.1)
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where � represents the Pauli matrices, �x,�y,�z given by[33]

�x = |1i h0|+ |0i h1| (2.2a)

�y = i |1i h0|� i |0i h1| (2.2b)

�z = |0i h0|� |1i h1| . (2.2c)

(2.2d)

This representation is convenient because it compactly describes any location on the Bloch sphere, and

can also be used to represent operations and gates.

For example, the unitary that must be applied to ‘flip’ the qubit from |0i $ |1i is given by

Ûx(⇡) = e�i✓�̂x/2|✓=⇡ = e�i�̂x⇡/2, (2.3)

where �̂x is the operator form of the matrix �x. The Hadamard gate, which plays an important role in

implementing a controlled-NOT gate, can be expressed as Ĥ = (�̂x + �̂z)/
p
2.

Our choice of qubit for many purposes in this work will be the transmon, further detailed in Section

3.4.2. As an anharmonic oscillator, the lowest two energy levels of the transmon can be used as the ground

and excited states of a qubit. Hundreds or thousands of gates can be performed on transmons before

their energy is lost. They can be conveniently initialized and measured. In many ways, they satisfy all the

necessary criteria for the basic element in a quantum computer.

One qubit cannot build a quantum computer alone. The feasibility of an encoding scheme can only

truly be evaluated when considering the storage or processing of more than one bit of quantum informa-

tion. In most schemes with transmons, this requires coupling more physical devices in order to scale to

larger and larger arrays. The rate of information leakage will increase accordingly, mostly under the influ-

ence of environmental influences and cross-talk as discussed in Chapter 4. Effective scaling systems with

this kind of information encoding will require specially developed error correction schemes (Section 2.3.3)

along with very robust engineering and many, many devices.
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...(a) ...

(b)

...

Figure 2.3 | Two forms of informationmedia. a Energy levels of a two-level system (left, approximated
as spanning the lowest two energy levels of an anharmonic oscillator) and a harmonic oscillator (right). b
A qubit that is a two-level system can be represented within the Bloch sphere; the Hermitian operator
�̂x connects the two states. States of the harmonic oscillator are accessed by applying raising or lowering
operators (â†, â). Energy eigenstates are those of the operators �̂z (qubit) or â†â (oscillator). In these
common representations, operations are not directly comparable, and it is not immediately clear how a
qubit can be encoded.

2.3.2 Encoding in many-level systems

Alternative, non-binary classical computation schemes for information encoding have been studied, but

never caught on. Ternary bits can encode information in three levels, potentially increasing information

density per device. Naturally, operations in ternary computing are more complicated, though in some

cases more efficient.

Depending on the quantum system, encoding in higher levels can be more or less difficult. Natural

atoms, for example, are often most easily addressed as true qubits or few-level ‘qudits’. Artificial atoms

or anharmonic oscillators, however, can be more easily, flexibly addressed in a variety of ways. Storage

of information within continuous variable (CV) states of a harmonic oscillator [34] is one popular way

of encoding information in cavities. This choice of encoding offers natural, physics-based benefits, but

also comes from practical considerations: long-lived, macroscopic harmonic oscillators are often easier to

make than many atomic systems. They potentially fill the role of multiple two-level systems in a “hardware-

efficient” fashion [35, 36].

Quantum CVs allow versatile and robust encoding of quantum information in high-dimensional
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Hilbert spaces. For instance, encoding quantum bits in CV systems can provide the redundancy required

to enable quantum error correction (see Section 2.3.3). Non-Gaussian CV states that could be used as

quantum-information-processing-enabling resources have been created experimentally in the states of ion

motion [37] and atomic spins [38, 39], as well as optical [40, 41] and microwave photons [42, 43, 44, 45].

In particular, microwave cavities in superconducting circuits have recently further enabled the storage [46]

and protection [47] of quantum information encoded in non-Gaussian oscillator states.

While many systems are naturally quantum harmonic oscillators, a classically-addressed oscillator does

not satisfy the criterion of being a distinct qubit. This is because the spacing between energy levels in a

harmonic oscillator is equal; trying to address one energy level will enable excitation movement between

them all. To produce distinctly “quantum” states within oscillators, they require a dose of anharmonicity

[48]. This is often provided by nonlinear media or elements, which aid in the preparation of quantum

states. Without such an element, only classical (coherent) states could be prepared in the cavity.

The chosen form of the encoding is flexible and will depend on the purpose of the device. It can be

convenient to encode information in the photon number (Fock) basis of the cavity, in which simple states

take the form of, for example, “having one photon” or “having no photons”. More complex encodings,

such as in the “even parity” or “odd parity” of a coherent state superposition, can be designated for purposes

like error correction. CV encodings are highly compatible with our choice of storage element, the 3D

cavity, introduced in Chapter 4.

Result of measurement The way in which information is encoded will determine the kind of measure-

ment that must be performed to access it. Among these and other considerations, the measurement tools

available to a particular platform will guide the choice encoding.

Superconducting circuits have access to a number of tools that permit either form of encoding (Sec-

tion 3.5). The measurement of information stored in qubits can be easily obtained using an appropriately

coupled resonator, connected to a standard microwave amplification and measurement chain. Extraction

of cavity information typically requires an ancilla qubit and readout resonator; tools like parity measure-

ments and cavity tomography are commonplace [49]. Other platforms may find, depending on the avail-
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able tools, that one system or another is best.2

2.3.3 Error correction

Error correction is a concept defined in classical computing and was introduced, in that context, earlier in

Section 2.2. Effectively, it requires some redundant encoding of information that, as a whole, will nomi-

nally remain impervious to the dominant sources of information loss throughout the computation. Since

no system will be perfect, eliminating errors completely is unfeasible. Rather, we strive for a threshold

called “fault tolerance,” past which error rates are made tolerable, and the corrective procedure does min-

imal harm of its own. More explicitly, the fault-tolerant threshold pth depends on a given system and

correction procedure. It is said to have been crossed if the combined error rate of many systems can be

improved when concatenated.

Error correction, if not autonomous, must begin with detection of the error. Since direct detection can

be destructive in nature, auxiliary “ancilla” systems are often used to probe an error syndrome. A choice

of encoding depends on the targeted form(s) of dissipation. Typical sources of decoherence are amplitude

damping (energy relaxation) and phase damping (dephasing). Since these are orthogonal effects, any qubit

error can be broken up into these components. The repetition code, suitable for classical bits, cannot be

directly imported for use in qubits because known quantum states cannot be cloned [50]. Using qubits

to redundantly encode information, then, such as the arbitrary state | 0i = ↵ |0i + � |1i, requires a

modification to the repetition code.

What we can make, following the rules of quantum mechanics, is an entangled state such as | 3i =

↵ |0i
A
|0i

B
|0i

C
+ � |1i

A
|1i

B
|1i

C
. This may seem like a subtle distinction, and appears at first glance

as if the state | 0i has, in fact, been cloned. But a cloned state over three physical qubits A, B, and C

would appear as

(↵ |0i
A
+ � |1i

A
)⌦ (↵ |0i

B
+ � |1i

B
)⌦ (↵ |0i

C
+ � |1i

C
), (2.4)

2. For example, hybrid quantum systems often mix mechanical, optical, and microwave resonators, often with purpose of
building conversion elements. These systems make it clear, however, that some elements are much easier to interact with than
others. If one element is ideally suited for storing a quantum state, but it cannot be directly, easily read out, then storage of
information there will be contingent on the existence of a suitable converter.
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a fundamentally different state. If one of the physical qubits in | 3i undergoes a bit-flip error, it has the

effect |0i $ |1i. By measuring each of the resulting qubit states, and assuming no more than one qubit

underwent a bit flip, one can identify the offending qubit and back out the original state. The matter is

complicated by the existence of many more types of errors, a desire to non-perturbatively measure the sys-

tem to check for errors, and errors propagated by this detection process itself. Codes of varying complexity

exist to address these challenges, like the Shor code and the Steane code, which can correct for both bit-flip

and phase-flip errors [5, 51]. Even the simple bit-flip repetition code presented here spotlights the inherent

power of entanglement as a resource in quantum circuits.

In cavity CV encodings, the approach to error correction and chosen logical encodings can be quite

different. Instead of multiple physical qubits used to increase redundancy, multiple modes of a single

physical cavity can be used [34]. The discussion of loss in single qubits made use of simple operators,

tied to particular loss syndromes; bosonic modes can have an unlimited set of errors: one-photon loss,

two-photon loss, etc. In principle, corrective codes could be constructed to target one or many of the

errors thought to be dominant [52]. Seemingly odd constructions may result; for example, bosonic logical

encodings can take the form of states not confined to a finite Hilbert space, like superpositions of coherent

states in the “cat code” [53]. Some logical codewords are not even strictly orthogonal, such as the cat code

in the limit of small photon number. In codes such as the binomial code, encodings can be simply defined

in terms of Fock state superpositions; in ones like the GKP code, they are distributed among phononic

quadratures [54]. Despite their differences, CV encodings still function to produce a logical qubit, with

basis states designated as |0i
L

and |1i
L

.

2.4 Scaling up computing power

To satisfy the voracious appetite of quantum information algorithm designers, we must scale up our sys-

tems to control and interact hundreds of logical qubits, if not more. Further, from our discussion of error

correction, it is clear that logical qubits must be composed of many physical ones. In this section, we will

detail some of the approaches to achieve this using superconducting circuits.

One challenge is that scaling schemes, intended to protect imperfect qubits or other elements, tend to
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add more imperfect elements. In order for this approach to succeed, the benefit of having more elements

must outweigh the additional overhead, a threshold that is sometimes called the “break-even” point. So

far, we have only made a comparison based on “quantum hardware”. But particularly resource-intensive

applications of scaling will also levy demands on classical hardware and computational power [6, 55].

Scaling represents a complex form of a simple, canonical problem in the control of quantum systems.

Quantum scientists and engineers seek to couple many more elements together, enabling new function-

ality and to ability to perform more powerful algorithms. Each new coupling introduces more noise to

that element—whether via cross-talk, external coupling, or resistive dissipation from more material, more

layers, or more complex processing. This often counteracts the intended improvement in function.

Many elements thus conspire to make scaling a difficult matter. But many scaling approaches are also

underway to tackle this challenge.

2.4.1 A brief survey of approaches

Quantum systems have been sufficiently developed to the point where tens of qubits, each under indi-

vidual control, can be interfaced and manipulated. In an effort to scale to even larger numbers, error-

correcting codes and architectures have been developed.

The surface code [56, 57], a planar extension of the toric code [58], uses ancilla qubits and a series of

stabilizer measurements to form a logical qubit that is protected against certain types of errors. It consti-

tutes another style of correction code that is considered feasible for large-scale scaling approaches. These

codes can be used in conjunction with repeated superconducting circuit arrays. Many physical qubits can

form a protected plaquette, and thus, one logical qubit. The exact details of many of the steps noted in

Section 2.2, such as error correction and logical gates, are still works in progress. Similar schemes have been

proposed for arrays with trapped ions [59].

Topologically protected qubits constitute another promising vision for scaling [60, 61, 62]. A topo-

logical quantum computer is based on non-abelian anyons that can be “braided” and remain insensitive

to perturbations over a certain scale. The challenge for this technology right now comes from low-level

tasks, like creating a qubit that can be measured and controlled. Once a qubit is built, then the natural

topological protection afforded to it can make the task of scaling much less onerous.
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Superconducting circuits, as a platform for scaling, certainly benefit from the experience of the semi-

conductor industry. Technologies for wafer-scale processing, patterning, and even interconnection can

potentially be harnessed for quantum computing. Once qubit and algorithm designs have reached a cer-

tain level, a path to scaling circuits can be more readily hewn. Compared to technologies like trapped ions,

neutral atoms, and spin qubits, methods to achieve the required higher-level interactions—like assembling

and interacting logical qubits—are far more clear. In these platforms, the approach to full-blown scaling

remains more vaguely defined, since details are harder to apply without having chosen the technology with

which to optimally scale.

2.4.2 A modular scaling architecture

One way to manage the complexity of scaling a quantum computation platform is by employing a modular

architecture [8, 10, 63]. This architecture, which seeks to separate computing modules into nodes con-

nected reconfigurably within a network, will be discussed more extensively in Chapter 3. In the context of

error correction, and with respect to alternative approaches, however, it is worth briefly highlighting this

scheme. Like the error-protected logical qubit of the surface code, a modular node would ideally consist

of layers of data protection. Nodes could be identical, and connected in arrays, or could serve unique and

specialized purposes.

The modular architecture is effectively a quantum network, but by another name and with a few dis-

tinctions in purpose. This means that the communication criteria posed in Section 2.2 will be of greater

importance than for more ‘traditional’ schemes. Of the many viable pathways to our ultimate goal—a

quantum machine with vast computational power—we will choose to pursue this option in the following

chapters. They will introduce the components of a modular quantum network in greater detail, includ-

ing hardware that will serve as a model for how systems can be scaled, and the techniques that can enable

communication between nodes of a modular array.
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Circuit QED for Modular Quantum

Networks

Circuit quantum electrodynamics (cQED) is a relatively modern field of research stemming from a his-

toried parent, cavity quantum electrodynamics (CQED). It makes use of circuits, clearly, and in our case

those circuits are constructed from superconducting materials that reduce dissipation as much as possible.

The ‘quantum’ in cQED is achieved by freezing out most uncontrolled degrees of freedom so as to pro-

duce a system that can be placed into its lowest-energy, quantum ‘ground state’. The remaining degrees

manifest as quantized charge or flux in the circuit.

At its heart, though, cavity and circuit QED both deal with the coupling of confined light, quantized

in photons, and its interaction with particles of matter, like atoms. The electrodynamics of cQED are, in

many ways, very similar to those of CQED; however, separate technologies are used to interface photons

that generally exist on differing energy scales between the two. Another way in which cQED can distin-

guish itself is in the degree and ease of coupling that can be achieved. Electric and magnetic fields (light)

can be made to couple very strongly to circuit elements (matter) [64, 65], and the addition of 3D cavities

does not hinder that fact [66, 67]. The goal on the horizon—the quantum computer—requires systems

that can be decisively and powerfully controlled. Circuit QED offers facilities that satisfy this requirement.

In this chapter, I will briefly discuss one present vision for how a quantum computer can be con-

structed. Then, I will detail the tools available to us in circuit QED that can be used to make strides towards

that goal.

20
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Superconductivity As mentioned above, circuit QED makes use of superconducting circuits, in which

the primary charge carriers are not electrons, but Cooper pairs [68]. (Cooper pairs lend their name to the

grandfather of our superstar qubit, the transmon.) The primary superconductor of choice is aluminum,

which is relatively inexpensive and easy to work with. Bulk aluminum begins to superconduct below ⇠

1.2 K (colder than the temperature of outer space), which leads us to cool our circuits down in a closed-

cycle dilution refrigerator for them to become superconducting. Similar devices have been made from

alternative superconductors, such as niobium [69], niobium titanium nitride [70], and titanium nitride

[71]. Each presents benefits and drawbacks, in terms of dissipation and convenience. Throughout this

work, with few exceptions, we will choose to use aluminum in our circuits.

3.1 A computation framework inspired by networks

The modular approach, first introduced briefly in Section 2.4, is based on a decomposable network of

computational nodes. It serves as a powerful way to tame complexity while scaling up a quantum system.

We use the term ‘network’ in the sense of a ‘local area network’ (LAN), to describe a kind of structured

connectivity between computational qubits. Separately, ‘networks’ are used in the context of quantum

computation to describe the transmission of quantum information for such purposes as quantum key

distribution and quantum cryptography [17, 72].

In this sense, the interconnection of modules that send information back and forth would imply a

natural analogue to the Internet. Many of the ideas, and some technologies, are indeed transferable to

both kinds of quantum network. The purpose of the Internet is the transfer of information between

nodes; often, additional processing occurs at one node or another. For example, say that a client wants to

retrieve a piece of information. They submit their request, perhaps a search query or phrase. The request

is transmitted across the Internet and reaches a server node. The server processes the request and returns a

message.

The path may be more complex, however. The message, addressed to a particular server, will pass

through nodes that route the signal. Classical signals will be attenuated over long distances; repeaters will

boost their strength. Sometimes, the information will be lost or garbled entirely. Classical error correction
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can help to protect against this. Finally, the bandwidth of the transoceanic cables that carry much of the

world’s high-speed communication is limited. Such communication channels must be shared; informa-

tion must be encoded densely and cleverly so as to use available resources efficiently.

A quantum Internet or a quantum LAN will face many of these challenges, and others that the In-

ternet does not face at all. But quantum networks, using resources such as entanglement, also have their

benefits. If an entangled pair of qubits can be distributed across the network, interesting quantum opera-

tions can be performed. Because such entanglement exemplifies a nonlocal correlation, operations on one

of the pair of qubits can translate to an operation on the opposite pair (effectively, teleportation) without

having to send quantum states along the original path (which might have detrimental effects). This trick

can be very powerful, but not so powerful as to violate the universal speed limit—the speed of light. This

is because classical communication is still required to interpret the result.

One example of such a transaction is quantum key distribution (QKD). In one such scheme involving

entanglement [73], a pair of entangled qubits is generated, split, and transmitted to two parties, Alice and

Bob. For each incoming qubit, Alice and Bob measure in a basis from a set of selected bases that differ

between the two of them. Once the measurements are complete, the parties can share their choice of

bases, and further share the results from the measurements where the bases were different. This group of

results detects eavesdropping; the remainder can form the cryptographic secret key. QKD based on similar

protocols has been implemented in practice [74, 75].

Entanglement between nonlocal states is also the basis of quantum teleportation [76]. In this applica-

tion, a pair of entangled qubits (A and B) is again split and transmitted to the two communicating parties,

Alice and Bob, establishing a quantum link. Alice wishes to transfer the information contained in a re-

maining qubit (C). By measuring her system of entangled-and-information qubits (A and C) in the basis

of a maximally-entangled state, the Bell basis, she entangles the information qubit with the entangled pair.

By sharing the result of this measurement with Bob via a classical channel, Bob will learn the form of the

entanglement of the information qubit with his half of the entangled pair (B and C). This amounts to

“teleporting” the information contained in C.

Both of these processes rely on a quantum network to distribute quantum information, and a classical

network (like the Internet) to support it. For long-distance communication, quantum repeater networks
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will be required to support this transmission [77]. Though we have not discussed their exact form, these

protocols typically make use of optical networks, in practice, which are less susceptible to loss and better

suited for communication over long distances. (Recall that fiber optic networks are the backbone of the

telecommunications industry.)

Microwave networks for computation (quantum LANs) will differ from these quantum communica-

tion networks (the quantum Internet) in a few ways. Because they are lossier, they will be constrained to a

smaller scale than optical networks. Still, computation networks will borrow ideas from quantum repeater

schemes, key distribution, and so forth. But in the end, a modular computation network is intended to

achieve the computational goals laid out in the DiVincenzo criteria. The essence of such a scheme is the

ability to interface quantum states stored and processed in network nodes with propagating states that

connect the nodes (Figure 3.1). It should be able to implement the same universal gate set and perform

the same algorithms as other proposed architectures. Its very nature is to address the issue of “scalability”;

if certain elements exist and criteria are met, then there exist no hard limits to the number of modules that

can be integrated. Its correspondence to a long-range quantum communication network is only partly

coincidental, and should not be surprising.

In recent years, quantum networks are being recognized as more and more suitable for quantum infor-

mation processing (QIP) [78, 79]. It has been shown theoretically that there are favorable thresholds for

quantum error correction in such modular architectures, even with noisy quantum communication chan-

nels [63]. Experiments with multiple platforms are currently underway to realize prototypes of quantum

networks that may be used for either purpose [10, 80, 81]. By examining the field of quantum communi-

cation, we can learn from existing conversion processes and borrow technologies and algorithms that will

be just as important for modular quantum computation networks.

3.2 Distributed computing techniques and advantages

The distribution of modules across a network for computing provides many advantages compared to

direct-coupling approaches [8, 10, 63]. In this section, we will explore some these practical benefits, as

well as the algorithms that may be well-adapted to such a scheme.
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Figure 3.1 | Connected quantum modules. A vision of [a subset of] the “quantum Internet” is sup-
posed, wherein interconnected modules constitute representative cavity QED devices.

3.2.1 Independence of modules

Direct-coupling schemes require that many elements are fabricated or assembled simultaneously. If one

element does not have the desired parameters or functionality, then all or a portion of the computational

fabric cannot be used. Sometimes, this non-functioning element can be ignored, and the rest of the ele-

ments utilized. In other cases, the entire fabric must be discarded and recreated.

Modules, like fuses in a circuit, can be easily replaced if one does not function as desired, without hav-

ing to destructively access other parts of the network. Further, their independence means that each can be

constructed separately from the network and assigned as nodes of the network on an ad-hoc basis. Breaking

up the whole into small, testable modules that are connected through well-defined communication chan-

nels reduces undesired crosstalk and minimizes the spreading of errors through the system. For example, if

a system element has failed catastrophically, it may broadcast harmful noise to its neighbors. In a modular

architecture, this module could simply be isolated and ignored by disabling its communication links, and

replaced when feasible. In the meantime, information could follow alternate routings—detours—between

nodes of the network.

Module independence means that hardware “patches” can be rolled out if necessary, perhaps improv-

ing the functionality or even reducing physical footprint (an important, practical requirement for scaling).

In this “prototyping” kind of stage of a quantum computer, we work with modularity each and every day.
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(Simply put, our refrigerators are not hard-wired to permit exactly one kind of experiment.) We cannot be

certain that one type of device will function optimally; with the flexibility that modules provide, we can

iteratively and efficiently optimize a modular design without slowing the course of science.

3.2.2 Entanglement distribution

Section 3.1 described the relation of communication networks to the computational network we are try-

ing to build here. Entanglement is a precious resource in any quantum computer, and even more so in a

modular, network-based one where the dominant loss will likely reside in the links between modules. If

entanglement can be generated and distributed among nodes the network, this loss can possibly be cir-

cumvented. Entangled states can be more fragile than a single photon; thus, the challenge will arise from

how to distribute the entanglement without destroying it.

Two methods are commonly used to generate entanglement between distant elements in a quantum

system like ours. The first, a nominally probabilistic method1 , generates two qubits and entangles them

using a beamsplitter, and then detects them on one output arm or another [83, 84, 85]. The second, which

will be discussed in Chapter 6 and 7, combines generation and transmission into one step [86, 87, 88].

Partial conversion from a nodal stationary state to a flying one can generate entanglement between the two;

the latter is “caught” by another node to become stationary once more, thus entangling the two nodes.

Just as in classical computers, certain schemes are well-adapted to parallel processing techniques, or

simultaneous use of multiple modules. In one recent example [89], a method for performing gates between

distant modules was demonstrated. This achievement satisfies a critical requirement for scalable quantum

computation (Section 2.1), the ability to implement a universal gate set, in the context of gates between

modules. The first requirement in this scheme is generation of an entangled state between two qubits. In

ref. [89], entanglement was generated and managed locally; if robust state transfer were developed between

nodes, this procedure could have been demonstrated between two truly remote modules. This comes in

the midst of a convergence of contemporary efforts in similar tasks and goals [87, 88, 90], which provide a

prime example of the readiness of a modular architecture to accomplish the tasks formerly considered only

1. Probabilistic generation methods can be made to immediately try again until successful entanglement is heralded [82]. While
still distinct from some fundamentally deterministic schemes, this kind of heralding can have an indistinguishable end result with
high enough fidelity and generation rates.
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in directly coupled systems.

3.3 Construction of a module

In order to achieve the alluring goal of modular computation, we must identify the necessary ingredients

and figure out how to put them together. At first glance, forming a modular “network” in circuit QED

sounds more formidable than in optics, a field that has long since succeeded in connecting remote systems

at great distances [91]. Undaunted, I will introduce in this section a primitive module that fits into our

concept of modular computing and networking. I will also suggest how this module might become more

complex in time. In the following section, the elements that fulfill the construction blueprint for a module

will be identified and introduced.

3.3.1 Required elements

Modules that can perform the tasks set out by the DiVincenzo criteria must take one of several particu-

lar forms. One way in which physical elements can be scaled and molded into a logical fabric is by directly

connecting them (Figure 3.2a). In this approach, physical qubits are directly connected or in close physical

proximity to one another (within the extent of a single package). Resonators and qubits generally consti-

tute the elements within a directly coupled device. The lack of isolation between adjacent elements leaves

them susceptible to noise and cross-talk. (Some schemes, like those using flux-tunable coupling elements

[92], do provide higher amounts of isolation.) Logic constructed in this way does not enjoy the benefits

of modularity, including node independence, easy element replacement, and network extensibility. The

physical elements that form a logical qubit are treated with equal significance.

A basic modular node, however, begins by considering two very different kinds of elements: those

dedicated to data storage, and those tasked with interfacing with, or processing, that data (Figure 3.2b).

This distinction is based on the elements’ available coherence times, and the recognition that certain el-

ements perform a specialized function better than others. It manifests in their degree of coupling to the

environment, and may be built on radically different hardware. (In our implementation of such a mod-

ule in Chapter 7, as an example, the disparity in coupling rates between these two elements is roughly

three orders of magnitude.) The data storage, or “quantum memory” element, is shown in Figure 3.2b as
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Figure 3.2 | Configurations of scalable devices. a An alternative means to scaling that does not take a
modular approach. Logical elements (red) are composed of many identical physical elements, represented
here as qubits (blue), connected within a single physical device (gray). b A basic, connected quantum
module for information storage must contain a few critical elements. The data storage element is shown as
a red circle; it may be, for example, a cavity mode. A layer that facilitates interactions with the environment
is a concentric blue circle; its ability to manage communication is indicated by switches along the possible
pathways. The physical extent (gray box) of a single module is shown. Communication links (purple)
connect separate modular nodes within a network.

nested within the communication element. This indicates its increased isolation from the environment

(the space beyond the physical device). The communication element facilitates use of the communication

link, coupling separate physical devices. To preserve the independence of the modules, it is critical that

communication can be enacted on demand. If the link is effectively ‘connected’ at all times, the isolation

is spoiled.

While some small amount of loss can be tolerated through error correction, the communication ele-

ment must generally facilitate coherent transmission of information from within the quantum memory

out through the communication path (and the reverse process). It best serves the purpose of a module, in

fact, if all elements are chosen to be maximally coherent and compatible with error correction schemes,

and scalable within a module. An elementary module without redundancy or scaling can demonstrate key

aspects of a modular network, but must eventually be made more complex.

3.3.2 Additional layers

Scalability must be addressed on multiple levels. A basic module that is lossless will still suffer from loss

in the communication path. A lossy module connected within a network of lossless links will also suffer.

Our real-world modules will suffer both afflictions.
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Therefore, more developed modules will have many layers in which to redundantly encode informa-

tion; the “data storage element” of the simple model will take a more complex form. These devices may

feature concatenated layers of error correction. (A single layer of error correction of a memory cavity has

already been demonstrated [47].) As one looks outward from the lowest level of the hierarchy, the protec-

tion of data relative to the communication link grows. At the same time, these outer layers will be more

and more directly coupled to the communication element(s).

The complexity of the communication structure may increase as well. Any-to-any connectivity can

be made possible within such a network, given enough routing elements, and the communication layer

can support this. Control and processing layers, to perform algorithmic tasks not strictly related to error

correction or communication, may also appear more numerously. Beginning in Chapter 6, we will con-

struct the most elementary form of a module by following the requirements of this section. We will use

the circuit QED components outlined in the following section, and choose them to permit future growth

of complexity.

3.4 State-of-the-art circuit QED components

In this section, I will introduce the principal elements that can be used in, and in association with, a circuit

QED module. They include 3D cavities, Josephson-junction-based qubits like the transmon, ancillary

resonators, and elements that can be used for parametric conversion and amplification at relevant energy

scales. In Chapter 4, I will introduce a few new tools to bolster this arsenal.

3.4.1 Quantum memory cavities

An element for quantum information storage must be long-lived, and also easy to incorporate into more

complex designs. The important figure of merit is not simply the lifetime, but this time relative to op-

erational (gate and algorithm) times. Furthermore, the energy lifetime of a microwave resonator can be

highly power-dependent, probably due to surface and material imperfections (Section 3.4.3). Thus, the

“single-photon” decay rate is the most relevant metric, since quantum circuits will generally operate at en-

ergy scales from less than one photon up to several photons. Circuit QED boasts exceptional information

storage lifetimes, particularly when 3D cavities are used [67].
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Since the advent of 3D cQED, several microwave cavity designs have been used extensively. The first

of these 3D cavities, the rectangular cavity [66], propelled lifetimes from hundreds of nanoseconds to

tens or hundreds of microseconds (for reasons that will be analyzed in Chapters 4 and 5). Even higher-Q

cavities followed, with the cylindrical cavity capable of single-photon lifetimes around 10 ms [93]. The

cylindrical cavity, however, required significant engineering to be integrated with a transmon qubit. The

qubit frequency would have to be chosen to avoid other modes in the crowded cavity spectrum, and to be

sufficiently far from these modes to permit wide-bandwidth control pulses. The large cavity volume and

central field concentration of the low-loss TE011 mode means that coupling a transmon would be highly

perturbative (see [67], Section 4.5.4). As a compromise, the coaxial stub cavity then emerged as the state

of the art [46]. The stub cavity still offered many-millisecond lifetimes, but also easy and flexible coupling

to other elements, including transmon qubits.

Cavities have become so long-lived (at the single-photon powers suitable for quantum information

processing) that they have flipped the paradigm for quantum information storage. Before transmons were

coupled to 3D cavities, their lifetimes were comparable. The transmon was designated as the qubit, and

the cavity was used for readout. With the latest generation of 3D cavities, however, cavity lifetime began

to surpass that of transmons. This motivated development of bosonic encodings and measurement tech-

niques to take advantage of cavity modes as memory elements (descriptions of which will follow in this

section). The coupling between transmon and cavity modes allows hybridization and inherited loss from

one to another (the so-called “Purcell effect”; see Section 4.3.1). Whereas earlier generation cavities typi-

cally imposed this loss on transmons, the direction has reversed. The loss from transmons now sometimes

limits 3D cavities to which they are strongly coupled. Still, the transmon qubit plays an important role in

systems where cavities dominate information lifetimes.

3.4.2 Transmon qubits

As discussed in Section 2.3.2, a system of linearly coupled harmonic oscillators is insufficient to perform

complex quantum tasks, such as creating and manipulating interesting, non-Gaussian states. Some source

of nonlinearity is required to interface with our quantum memory. An “original” qubit, a two-level quan-

tum system, can introduce this nonlinearity, and allow convenient control and measurement of a cavity
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mode. Such a nonlinear medium can also facilitate many-photon conversion processes and execute certain

operations more efficiently than with oscillator modes.

A natural choice in circuit QED is a Josephson-junction-based qubit, like the transmon. The trans-

mon can begun to be understood by quantizing a parallel LC circuit, a problem which has been extensively

treated [94, 95, 96]. This circuit is extended to include the Josephson junction, which acts so as to add a

nonlinear inductance (Figure 3.3a).

The transmon qubit is a type of charge qubit operated in a regime particularly insensitive to charge

noise. In this work, our transmons will be of the “fixed-frequency” variety; in other designs, the frequency

can be tuned by replacing the junction with two junctions enclosing a flux-capturing loop [97, 98]. The

transmon evolved from the Cooper-pair box, in which the number of Cooper pairs crossing the junction

is quantized [99], and has a Hamiltonian of the form [100]

Ĥ = 4EC(n̂� ng)
2 � EJ cos('̂). (3.1)

The circuit representation of the transmon qubit in Figure 3.3a relates the circuit elements to the Hamil-

tonian parameters EC and EJ . The charging energy EC = e
2/(2C⌃) is associated with the transfer of

an electron between capacitor pads (though, in reality, only Cooper pairs will cross). The junction (in-

ductor) energy is given by EJ = (h/(2e))2/LJ . The equation-of-motion coordinate for the circuit is

chosen to be the flux, �, which is elevated to a quantum operator by quantizing it such that its commu-

tator with the conjugate variable, capacitor charge Q, is given by [�̂, Q̂] = �i~. It is related to the phase

across the Josephson junction as '̂ = 2⇡�̂/�0. In transmons, the ratio of EJ to EC is large, on the

order of 50–100. This places transmons in a regime where ' does not deviate significantly from zero. In

this regime, the offset charge ng = �CpadsV /(2e) can be removed from the equation (at the expense of

a slight shift in the energy spectrum) by applying a unitary gauge transformation [94]. Finally, the flux

operator can be expressed in terms of the second-quantization lowering operator t̂ as �̂ = �ZPF(t̂+ t̂
†),

where�ZPF =
q

~Zc
2 for the characteristic oscillator impedance Zc. This means that the Hamiltonian of
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(a) (b)

(c)

Figure 3.3 | The transmon qubit. a A circuit representation of the transmon, where the boxed cross
represents the Josephson junction. In the transmon design, the junction is shunted with a large capaci-
tance and has EJ/EC ⇠ 50. It is effectively equivalent to a nonlinear inductor (with some small junction
capacitance). b The energy levels of the transmon are sketched (not to scale). The shapes of each wave-
function’s squared-probability amplitude are drawn in red. When used as a qubit, the transition between
the transmon’s lowest levels, |gi and |ei, can be uniquely addressed. c Optical micrographs of a fabricated
transmon (center), dominated by the capacitor pads. The exact shape of the junction differs (inset) de-
pending on fabrication technique. Scanning electron micrographs are of the bridge-free technique (left)
[103] or the Dolan bridge technique (right) [104].

the transmon can now take the form

H = ~!tt̂
†
t̂� EJ

✓
cos('̂) +

'̂
2

2

◆
, (3.2)

where the lower-order terms have been moved out of the cosine to form the harmonic energy term.2 One

can analytically solve for the eigenstates and eigenenergies using the original Hamiltonian (Figure 3.3b)

[101], or expand the cosine to the desired order, truncate the basis dimension, and diagonalize this Hamil-

tonian to obtain mode frequencies [102]. This latter evaluation is particularly useful when we include

terms corresponding with a coupled cavity, for example.

The Hamiltonian of a transmon coupled to a linear resonant mode r̂ in the so-called dispersive regime,

2. From the transformation n̂ = �i@/@'̂, the EC term in Equation 3.1 and the second-order term in ' when the cosine is
Taylor-expanded combine to take the form of an oscillator Hamiltonian with ~! =

p
8EJEC . Offset energy is ignored.
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taken to the fourth order in '̂, is given as

H/~ = !
0
rr̂

†
r̂ + !

0
tt̂
†
t̂� �rtr̂

†
r̂t̂

†
t̂� Kr

2
r̂
†
r̂
†
r̂r̂ � Kt

2
t̂
†
t̂
†
t̂t̂, (3.3)

where it is clear which terms couple, and to which order. Here, the frequencies have been “dressed” by the

mixing of the coupled eigenstates. By comparing to Equation 3.2, one can relate the self-Kerr terms (Kr,

Kt) and cross-Kerr term (�rt) to the transmon parameters; this process will be further detailed in Chapter

6.

Jaynes-Cummings model approximation An alternate picture through which to understand this be-

gins by approximating the transmon as a two-level system, so that it can be treated as a spin-1/2 particle.

Then, the coupling between the transmon and r̂ is described by the Jaynes-Cummings Hamiltonian [105]

in the rotating wave approximation,

HJC/~ = !rr̂
†
r̂ + !t

�̂z

2
+ g(r̂�̂+ + r̂

†
�̂�). (3.4)

The operator �̂z is one of the Pauli operators of a two-level system described in Section 2.3.1, while �̂± are

combinations of the orthogonal operators, �̂x ± i�̂y . In the dispersive limit, the coupling rate g is small

compared to the detuning between modes, and HJC can be further approximated as

H/~ = !rr̂
†
r̂ + !t

�̂z

2
� �rt�̂z t̂

†
t̂ (3.5)

where �rt =
g
2

� .

Physically, transmons can be simply interfaced with 3D cavities, such as those used as a quantum mem-

ory in Section 3.5.5. To do this, a transmon can be inserted into the spatial mode volume of the cavity. For

the strongest coupling, the dipole moment of the transmon must be oriented so as to overlap with the

field pattern of the desired cavity mode. The shape of the transmon capacitor pads can be designed as an

antenna accordingly.
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Typical parameters Many parameters can measured or simulated before the transmon is even inte-

grated into an experiment. Following the Ambegaokar-Baratoff relation [106],

EJ =
h�

8e2RN

, (3.6)

one can take a measurement of resistance at room temperature (RN ) to predict the inductance of the junc-

tion (LJ , related to EJ above) when the device operates in its superconducting state. The relationship in

our thin-film aluminum, where the superconducting gap is 2� ⇡ 84 GHz [107], gives approximately

LJ ⇠ 1.27 nH per k⌦ of measured junction resistance. We typically measure junction resistances corre-

sponding with 1 < LJ < 10 nH. The charging energy EC = e
2/(2C⌃), where the total capacitance

C⌃ is approximately that of the capacitor pads. This capacitance can be extracted from an electrostatic

simulation, and typically produces values Cpads ⇠ 100 fF. From these values, the full energy spectrum can

be estimated using simulations and black-box modeling techniques [102].

3.4.3 Operational modes

So far, we have introduced two critical types of elements that can be used to construct a cQED module:

the memory cavity, and the transmon qubit. Additional elements are still required to fill supporting roles

and, later, to facilitate communication between remote modules. Even more elements will be required for

complex, error-correctable modules. But though their purposes may differ, and their number may increase,

the ingredients remain the same—resonators and transmons will form the basis of these additional circuit

elements.

One of the necessary tasks in a module and in a quantum computer is to be able to perform “readout”,

or measure the state of, the transmon, storage cavity, and logical components. The dispersive coupling

regime of a transmon–resonator system permits readout of the transmon or cavity states. The details of

this measurement process will be described in Section 3.4.3. The process begins with a resonator.

The exact form of the readout resonator changes the physics very little. Since the transmon is a struc-

ture that is lithographically patterned on a substrate, it may seem natural to use a planar resonator to couple

to it and read it out. Compact, lumped-element resonators [108] as well as distributed, coplanar waveguide
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(CPW) resonators [109] are available for this purpose. However, a 3D cavity, like those available to serve

as quantum memories, can also be tasked with readout. In each of these cases, the nature of the dispersive

coupling (Section 3.4.2) can be used to couple them and read out [64, 66].

Measuring resonators

Transmon readout Direct measurement of a transmon is difficult to perform. For qubits that are part

of superconducting circuits, direct coupling to an external element is too weak to be useful, or would

introduce error channels. Further, if the transmon state were ‘released’ to become incident on a homodyne

or heterodyne detector (as it will be in Chapter 6), the nature of such detectors would impose limitations

based on quantum uncertainty [110].

Instead, we circumvent the limitations of direct-measurement techniques and read out using a disper-

sively coupled resonator as a proxy for the transmon state. The dispersive coupling between a transmon

t̂ and a readout resonator â, �atâ
†
ât̂

†
t̂, allows high-fidelity measurement of the state of the transmon

qubit. Because the frequency of the output depends on the transmon state, the phase of a transmitted

signal differs when the transmon is in its ground (|gi) or excited state (|ei). Measuring this phase thus cor-

responds to a measurement of the transmon state. Longer readout pulses and higher powers correspond

with stronger, more projective measurements [111]. Depending on the application, various strengths and

techniques may be used [96, 112].

Representative trajectories of the demodulated ‘IQ’ signal are shown in Figure 3.4. Each one of these

trajectories can be excised and then integrated or averaged to obtain a single measurement shot. By his-

togramming the resulting IQ-values, we can establish a threshold between the two distributions (Figure

3.5). If this threshold sufficiently distinguishes between the two states, the qubit can be read out on a

shot-by-shot basis. Single-shot measurement enables feedback and conditional operations, which can be

important for tasks like error correction [47]. Readout of more than one transmon at once is also possible,

and will be useful in Chapter 7; an example of this operation is given in Appendix A.4.

Resonator characterization The measurement of a microwave resonator will be useful in other cir-

cumstances too, such as to establish its coupling strength and internal quality factor. To fully characterize
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Figure 3.4 | Dispersive readout trajectories of a transmon. Frequency arrangement and trajectories
of an excited readout resonator that is coupled to a qubit in the dispersive limit. The qubit is prepared in
its ground or excited state, and the readout resonator is probed at the frequency corresponding with the
qubit in its ground state (!(g)

a ). The insets show the duration of the square probe pulse. The trajectories
have been rotated in IQ-space to minimize the Q-quadrature signal contrast.
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Figure 3.5 | Readout histograms. a IQ histogram of repeated measurements of a transmon prepared
in its ground state, its excited state, or a superposition state. b The histograms in a averaged along Q
to obtain a 1D distribution. This shows that a small population remains in |gi or |ei, even when the
opposite state is prepared. These distributions permit selection of a threshold (dashed line) that supports
state determination on a shot-by-shot basis.
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Figure 3.6 | Basic resonatormeasurement configurations. In each panel, the nomenclature associated
with the equations in the text is introduced. Direction of the signal is indicated with black arrows. a
Transmission through a parallel RLC resonator from port 1 to port 2. b Reflection uses a circulator to
route the reflected signal to the output port. c The hanger configuration replaces the circulator in b with
an unbalanced power divider. Half of the input and reflected power is lost with respect to the desired ports
(red arrows).

a resonance, we must measure the complex transmission parameter S21. Fitting this data to a circuit model

of the resonance allows extraction of the resonant frequency, “loaded” and “unloaded” quality factors, and

other parameters modeled in the circuit.

We typically arrange resonant circuits in one of three ways, designated “transmission”, “reflection”, or

“hanger” (Figure 3.6). For the same resonator characteristics, each produces a slightly different response;

reflection and hanger offer the additional benefit of being, in some sense, “self-calibrating”. An uncali-

brated measurement of these circuits will incorporate the gain and attenuation of all other circuit elements

along the signal path; these are difficult to calibrate out in a measurement that passes through a dilution

refrigerator and contains active and directional components. The overall “gain factor” in a transmission

measurement must be calibrated independently, whereas the gain factor in a reflection or hanger measure-

ment can be treated as a dependent fit parameter.

The response of a resonant circuit in each of these configurations can be easily described by input–

output theory, among other means [113]. (Classical models can also describe these circuits [114, 115, 116].)

Transmission measurements (Figure 3.6a) are common in cavity–qubit experiments because the two ports

of the circuit can be asymmetrically coupled, thus directing emission preferentially. Reflection measure-

ment (Figure 3.6b), in combination with a circulator, can be used to appropriately direct the input and

output signals, with signal loss dominated by insertion loss of the circulators. However, since this singular
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port will be coupled relatively strongly, care must be taken to avoid thermal and dissipative loading of el-

ements that would normally be driven from a weakly-coupled input port. Hanger measurements (Figure

3.6c) are known for their simplicity, wherein an unbalanced tee (25⌦ impedance seen from any one port,

compared to a matched 50⌦) replaces the circulator of the reflection circuit. In this way, half of the inci-

dent energy never makes it to the cavity; similarly, half of the emitted energy travels away from the output

port (red signals in Figure 3.6c). However, the hanger configuration requires no special circuit elements

and allows for many elements to be multiplexed using the same feedline. It has been a mainstay in the mea-

surement of planar resonators for a long time [116]. The characteristic behavior of each of these circuits

is described in Figure 3.7.

Using input–output theory, we derive here the measured signal in the three canonical cases of Figure

3.6. In the case of transmission, there are two external ports, in and out ⌘ c . We introduce the signal

via in , which we assume to be weakly coupled compared to the other port. We also model an internal loss

port, with decay rate i . The total loss will then be tot ⇡ i + c , and the transmission will be

S
(tx)
21 (!) =

p
cin

(i(! � !0)� tot/2)
(3.7)

where!0 is the resonant frequency. The absolute value of the transmission depends on the input coupling.

The phase rolls through ⇡ radians across the resonance. The insertion loss is set by in and c , whereas the

total loss determines the bandwidth of the resonance. To extricate the internal loss from the total loss rate,

the two coupling rates must be known well. In practical cases, these values within a closed measurement

setup are only known within several decibels (dB). In these situations, transmission measurements can be

more difficult to accurately calibrate.

Measurement in reflection produces a response

S
(refl)
21 (!) =

i(! � !0) + c � tot/2

i(! � !0)� tot/2
. (3.8)

The diameter of the circle when Im[S21] is plotted against Re[S21] is Q/Qc = c/tot . The phase of S21

rolls through 2⇡ across the resonance.

By considering the fact that the hanger circuit is identical to the reflection one, when viewed from the



3.4. State-of-the-art circuit QED components 38

lower port of the tee, we can model the hanger resonator as a combination of half of the unperturbed input

signal with the response from the remaining incident half. A hanger resonator’s symmetric response then

goes as

S
(hgr)
21 (!) =

1

2

⇣
1 + S

(refl)
21 (!)

⌘
. (3.9)

The circle diameter represents Q/(2Qc). The total quality factor can be obtained from the “circle phase”,

which parameterizes phase around the S21 circle in terms of frequency, and encompasses 2⇡ in all cases.

The circle phase obeys a function of the form tan�1(2(!�!0)
tot

). From this, and the measurement of the

circle diameter (or a multi-dimensional fit to S21(!)), one can extract both Qi and Qc .

In these last two cases, our simplified model excludes any asymmetry from transmission line impedance

mismatches, which rotates and scales these circles about S21 = 1. By considering the complete model,

such asymmetry can be accounted for [115]. In practice, particularly in planar resonators, asymmetry can

be very significant.

The data and fits shown in Figure 3.7 are for complex data as a function of frequency. The values of

S21 are plotted in complex space, forming a circle that is characteristic of a microwave resonance. For the

most accurate results, it is critical to fit the complex data, rather than the magnitude or phase alone. In

the unfortunate case where one intends to extract information about Qi of resonator, but the resonator

is “overcoupled” (Qc ⌧ Qi), then fitting the inverse of the complex data, S�1
21 , which also forms a circle

in complex space, can produce better results [109].

The internal (“unloaded”) quality factor represents the lossiness of a resonator, and will be described

further in Chapters 4 and 5. It is, however, not the quantity measured at face value; other elements of the

resonator measurement circuit “load” the measured resonance bandwidth, permitting only direct mea-

surement of the “total” quality factor,

Q
�1
tot = Q

�1
c +Q

�1
i

(3.10)

where Qi and Qc represent the internal (or “unloaded”) and coupling (or “external”) quality factors, re-

spectively. The values of two contributions can be inferred using the circuit models given above. Since the

coupling quality factor is a value largely determined by the measurement taker, it behooves one to make this
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Figure 3.7 | Response in different resonator configurations. In each panel, simulated responses
(gold) are plotted for Qc = 10Qi , Qc = Qi , and Qi = 10Qc . a The complex transmission parameter S21

signal from a measurement of a resonant circuit in each configuration, correcting for gain, attenuation,
electrical delay, and asymmetry in the cases of reflection and hanger. In transmission, the size of the circle
grows as c increases; its actual size depends on in . In reflection, an undercoupled resonator’s signal will
be centered near unity, a critically coupled resonator’s signal will pass through the origin, and a strongly
overcoupled resonator will intercept (�1, 0). In hanger, the reduction in contrast and mixing with the
input signal means that a critically coupled resonance circle will pass through (0.5, 0) and an overcoupled
signal will pass through the origin. Both reflection and hanger are subject to asymmetries in impedance as
viewed from one direction or the other, which can be included in their models. b The raw magnitude (left
axis) and phase response (pink, right axis) of the data in a.
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value relatively large compared to Qi. In this way, the measured value Qtot ⇡ Qi, thus allowing extraction

of Qi with increased accuracy (by reducing the dependence on other parameters). This “undercoupled”

regime of Qc � Qi also benefits a resonator designated for information storage, so that information

does not externally decay unnecessarily. Thus, such measurement is proof-of-concept demonstration of a

practical regime. However, a Qc that is too large will reduce measurement signal-to-noise ratio. A healthy

undercoupling (for example, Qc = 10Qi means the above approximation has < 10% inaccuracy) can

balance trustworthiness with ease of measurement.

Circulating photon number in a hanger configuration is given by

n̄ =
Q

2
i
Qc

~!2
0(Qi +Qc)2

Pin, (3.11)

which allows the experimenter to calibrate the approximate photon number to within a typical factor of

2–5 using the fit resonance data and information about the input lines leading up to the device. Circuit

QED typically operates in the regime of ⇠ 1 photon in resonators. By comparison, the highest-Q 3D

cavities are niobium-surface cavities used in particle accelerators with Q > 1010; these are operated at

very high circulating power [117]. Similar cavity designs operated at or below powers corresponding with

single-photon occupancy have remained below Q = 109.

The presiding theory for this behavior is the presence of the two-level systems (TLSs) at, or near, the

surface of the cavity [118, 119]. In this model, some density of polarizable TLSs is present in a location

that can be excited by the intracavity electric field. At high powers, an RF drive will immediately “saturate”

the TLSs to a mixed state; they rapidly cycle between their two energy levels. At weak powers, the TLSs can

decay and decohere, according to their internal dynamics, long before they are likely to be re-excited. When

TLSs are unfortunate enough to interact appreciably with our resonant mode of interest (by virtue of a

small frequency detuning), this adds dissipation to the system. This power-dependent behavior manifests

in the measured Qi of a resonator as

Qi =

p
1 + P/Pc

pTLS · tan �TLS · tanh
⇣

~!
2kBT

⌘ (3.12)
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Figure 3.8 | Resonator power dependence. Measured resonator quality factor as a function of calcu-
lated circulating photon number for two representative resonators. The amount by which Qi changes
from low to high power is well-described by a model of sampling two-level systems in a surface dielectric
layer. The lower data corresponds with a quasi-planar design, while the upper is a voluminous 3D cavity.
In the quasi-planar design, the drop in Qi at higher powers is likely due to a breakdown of the supercon-
ductivity of the thin film. (Both designs are discussed in Chapter 4.) TLSs generally have a larger fractional
effect on planar or quasi-planar structures.

and can be used to determine the loss tangent tan �TLS and saturation power Pc of the TLS ensemble,

where pTLS is the difficult-to-predict participation ratio of the ensemble. Because the participation of all

surface loss mechanisms tends to scale generally with the field surface-to-volume ratio, this behavior is often

more strongly manifested in planar resonators (Figure 3.8).

3.4.4 Parametric conversion elements

Some additional, Josephson-junction-based circuit elements will be helpful to include in our circuit QED

toolbox. First, quantum-limited parametric amplifiers can allow amplification of a qubit readout signal

while adding just the minimum noise required by fundamental quantum mechanical vacuum fluctua-

tions. These amplifiers, which include the Josephson parametric converter (JPC), are versatile and can be

operated to facilitate more than just amplification [120, 121]. They can be envisioned as a critical commu-

nication or conversion element that routes or mediates signals between modules, for example.

Other junction-based conversion and coupling elements have also been developed [122]. The Super-

conducting Nonlinear Asymmetric Inductive eLement (SNAIL) is an intriguing choice for such a con-

verter, in that it can be tuned to reduce conversion imperfections induced by some higher-order nonlinear

terms. Hybrid designs of one or many junctions and resonators have been considered. The desired re-
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quirements for a modular conversion element will be discussed further in Chapter 6.

Our cQED toolbox This section has introduced a powerful set of tools that will support this thesis, and

many more to come. While there is insufficient space to detail the many others of which this toolbox forms

of a small subset, it should be noted that Josephson-junction-based elements and harmonic oscillators

constitute the basis of most of these circuit constructs. Next, I will discuss the important operations that

can be done using these elements—particularly those that aid us in our goal of building a network of

computational nodes.

3.5 Useful cQED operations

In describing the operations enabled by circuit QED elements, we also consider the criteria that a module

or a scalable quantum computer must satisfy. We will address how each element can be initialized, con-

trolled, and measured. We will also introduce tools that enable more complex operations, such as those

required to detect and correct errors, or perform state tomography on the large Hilbert space of cavities.

This serves not as a broad overview of all possible operations—for there are many—but rather an overview

of tools that will be frequency referenced in the coming chapters.

3.5.1 System initialization

Ideal resonators and cavities made out of aluminum (Tc ⇠ 1.2 K), and cooled to the base temperature of

a dilution refrigerator (⇠ 20 mK), should have negligible populations beyond the zero-excitation ground

or zero-photon states. Broken Cooper pairs of the superconductor form electron quasiparticles that obey

Fermi–Dirac statistics; at 10 GHz and 20 mK the probability of finding a quasiparticle in thermal equilib-

rium goes as (1 + eh⌫/(kBT ))�1 ⇡ e�24 ⇡ 10�10 [68]. Realistic superconducting circuits, however, are

often measured to have anomalously high populations of non-equilibrium quasiparticles [123, 124]. Pos-

sible reasons for this population include poor experiment-stage filtering, an uncontrolled magnetic field

environment, or weak thermalization of elements such as circulators that comprise part of the measure-

ment chain. Therefore, the initial state of the system is not always guaranteed to be in its collective ground

state.
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Greater certainty of the initial state can be achieved in two ways. The first, which requires no spe-

cial hardware except the ability to measure, is by postselection. Postselection enables conditioning of later

data based on the state in which the system was measured to have begun. The downside of postselection

comes from the resultant measurement and repetition rates—if the system is frequently found not to be

initialized, then most of the resulting data is thrown away. In extreme cases, operations that require mul-

tiple successive steps to be successful can never be realized through postselection; the probabilities of an

occurrence will simply be too low to be useful.

A feedback scheme, on the other hand, uses the result of the initialization measurement to implement

a conditional initialization pulse. If the measurement produced a successful result, then the measurement

can proceed as normal. If it was unsuccessful, then a “cooling” procedure can be performed to try to remove

the excitation from the offending element (Figure 3.9).

In our experiments, we utilize a field-programmable-array-based hardware platform to enable this

rapid feedback loop [125]. Whereas typical thermal populations might be as high as p¬0 ⇠ 0.1, we are

able to use quantum non-demolition (QND) measurements [111], cavity-photon-number-discriminating

(“selective”) ⇡-pulses to invert qubit populations, and rapid pump-based evacuation sequences on cavities

(Chapter 6) to reduce this population to one that is . 0.02.
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State preparation

To prepare complex cavity states, we can apply pulses at qubit and cavity frequencies that are designed

using a numerically optimized control technique [126]. This state preparation technique can produce

non-Gaussian cavity states, like cat (coherent state superposition) states, individual Fock states, or Fock

state superpositions, with typical fidelities above 95 %.

This form of state creation only requires the linear control drives, the means of application of which

are detailed in the following section, and carefully calibrated Hamiltonian parameters. As detailed in Sec-

tion 3.4.2, the Hamiltonian of our systems includes nonlinear terms provided by the transmon, such as

“Kerr” terms. Such “higher-order” terms can be shown, in combination with linear operations, to allow

universal control over a continuous-variable system, in finite time and to arbitrary accuracy [127]. We

implement this by modeling the Hamiltonian (by measuring coefficients of arbitrarily high orders of the

transmon–cavity system) and determining the drives that are required to produce a desired unitary oper-

ation. This system thus contains all the elements to perform universal computation, as long as the proper

calibrations have been performed (though for particularly high-order terms, effects like frequency disper-

sion and mismatched delay lengths will likely dominate). As a result, various efficient ways to implement

a universal set of operations have been developed for our cavity–qubit systems [19, 126].

3.5.2 Transmon and cavity control

Transmons and cavities can be driven with microwave pulses, often via weakly-coupled ports. In 3D

cQED, these ports can be included easily and non-intrusively (see Section 4.3.1). Parametric processes

(which will be introduced in Chapter 6) can use the same lines and ports to drive these modes.

Control over a transmon qubit is achieved with coherent, zero-detuning shaped drives that are cali-

brated to rotate the state by a defined amount with the qubit’s Bloch sphere. The shape of the pulse deter-

mines its spectral content. A pulse with a temporal Gaussian profile, for example, will also deliver spectral

content shaped by a Gaussian about the carrier frequency [128]. For the transmon, the anharmonicity (in

addition to the pulse power that must be delivered) determines the necessary length of a pulse [129]. A

pulse that is too lengthy will be spectrally narrow, but limit the number of performable operations in the
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coherence time of the transmon. Sometimes, in spite of this, we must use narrow pulses to select transmon

transitions that are dependent on a particular number state of the cavity.

A similar pulse at the cavity frequency has a very different effect, because it is a nearly-harmonic oscil-

lator and one individual transition is not being addressed (at least, the relevant experimental parameters

will not allow it). This pulse has the effect of shuffling energy up the photon-number ladder as time goes

on, and can only create classical (coherent) states that have a Poisson distribution. Thermal effects, as an

example, may perturb this distribution by introducing competing decay rates. In general, however, this

process is described by the unitary D̂(↵) = exp
�
↵â

† � ↵
⇤
â
�

, where ↵ relates to the strength of the drive

[94].

3.5.3 Cavity measurement

The readout scheme described in Section 3.4.3 allows us to interrogate the state of the readout resonator in

order to learn about the state of the cavity. But how does one learn about the state of a storage cavity—that

is, a resonator that is coupled to a transmon but not directly coupled to the readout resonator?

One basis in which the cavity state can be described is the Fock, or photon number, basis. In this

description, the cavity state wavefunction is given by

| i = N
X

n

cn |ni (3.13)

where the Fock states {|ni} are weighted by amplitudes cn such that the cavity has the probability |cn|2

of being found to contain n photons. By knowing all these coefficients, one can reconstruct the full wave-

function of the cavity.

The dispersive coupling between transmon and storage cavity causes a photon-number-dependent fre-

quency shift of the transmon, in the same way that it does between the transmon and the readout resonator

[130]. If this coupling is strong enough to discriminate between different frequencies, then the probabil-

ities |cn|2 can be directly measured via a transmon spectroscopy experiment. We can probe whether the

cavity contains n photons by first applying a ⇡-pulse, selective on the transition for the cavity containing

n photons, followed by measuring the transmon state. The fidelity of the positive readout result (cavity
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Figure 3.10 | Number peak resolution of the cavity state. a The pulse sequence of a selective spec-
troscopy experiment to measure population of a cavity coupled to a transmon. Steps (1), (2), and (3) are
state preparation, selective transmon⇡-pulse, and readout, respectively. b Results of spectroscopy produce
resolvable number peaks. This information reveals, in part, the cavity state.

containing n photons) is simply the transmon readout fidelity for finding the transmon in its excited state

|ei. The negative result (cavity not containing n photons) is determined by the fidelity for |gi as well as

the probability with which the n-photon state has not been mapped successfully onto |ei; the combined

fidelity for the negative results can thus be limited by qubit decoherence.

The result will be a convolution of Gaussian peaks, according to the dispersive shift, appearing at

positions in frequency space parameterized as a function of cavity photon number

f0(n) = n�at + n(n� 1)�0
at/2 (3.14)

where �0
at is the next-order term coupling the cavity and the transmon in the expanded cosine Hamilto-

nian.

Figure 3.10 shows the number-state-dependent mapping of a large coherent state |↵ =
p
14i onto

the qubit state. The Gaussian peaks are distributed according to Equation 3.14, with their amplitudes

given by a Poisson distribution, and their widths by the selectiveness (spectral narrowness) of the ⇡-pulse

in step (2). We can also directly measure probe the cavity on a single number peak, as in Figure 3.11.
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Figure 3.11 | Direct spectroscopy of a storage cavity. a The pulse sequence of a selective spectroscopy
experiment to measure the frequency response of a single cavity number-peak. b Results of spectroscopy
produces an inverted behavior compared to Figure 3.10 because of the transmon mapping dependent on
n = 0.

3.5.4 Cavity state tomography

The spectroscopy experiment described above allows access to the photon number probabilities of the

cavity state. However, it does not constitute full state tomography, since the phases between the Fock basis

states cannot be known.

The same kind of state tomography as is done on a qubit, by measuring the positive operator-valued

measure (POVM) associated with the Pauli operators [131], is prohibitively difficult on a cavity due to its

massive Hilbert space. However, one can construct more general POVMs to implement measurements

that are optimally suited to the detector and the system, including continuous-variable representations

[132]. Wigner tomography, a task that is experimentally accessible in our systems, is akin to full state

tomography on a cavity. It can be done through a series of displaced parity measurements [105, 133].

This is possible because measuring the Wigner function is as simple as measuring the expectation value

of displaced parity and scaling it by a 2/⇡, [134, 135]

hŴ i =
*
2

⇡

1X

n=0

(�1)nD̂(↵) |ni hn| D̂†(↵)

+
, (3.15)

which is a combination of straight-forward operations (displacement and parity measurement) in our sys-

tem.



3.5. Useful cQED operations 48

Wigner quasiprobability

The Wigner function is one form of a generalized (parameterized by s) quasiprobability function, Ws, in

term of measured quadratures x and p:

Ws(x, p) =
1

⇡(s0 � s)

Z +1

�1

Z +1

�1
Ws0(x

0
, p

0)⇥ exp
⇢

�(x� x
0)2 + (p� p

0)2

s0 � s

��
dx0dp0 (3.16)

with s < s
0. The most common forms of this quasiprobability distribution include the Glauber P-

function (W1), the Wigner function (W0), and Husimi Q-function (W�1). This phase-space transfor-

mation allows us to define more “physical” (lower-s) distributions from ones that are more “abstracted”

[136, 137]. However, this self-referencing definition requires a representation of Ws0(x0, p0) from which

to begin.

As a quasiprobability distribution that can actually be constructed from measurements, the Wigner

function is one such useful representation of non-classical electromagnetic fields. One way it can be ex-

pressed is in terms of the Wigner transform of the density matrix ⇢̂,

W (x, p) = W�1(x, p) =
1

2⇡

Z +1

�1
eipu hx� u/2|⇢̂|x+ u/2i du, (3.17)

in terms of conjugate variables x and p. The parity at a displaced location in phase space is effectively

sampled. Importantly, this implies that the density matrix can be reconstructed from the Wigner function.

Husimi-Q quasiprobability

The Q-function is obtained by Equation 3.16 with s
0 = 0, s = �1, and is equivalent to convolving the

Wigner function with a Gaussian as

Q(x, p) = W0(x, p) =
1

⇡

Z +1

�1

Z +1

�1
W (x0, p0)e�(x�x

0)2�(p�p
0)2 dx0dp0. (3.18)

The convolution smooths the Wigner function by adding additional noise and removing all distinct non-

classical features, like negativity, and suppressing interference fringes [105]. This will be useful in Chap-

ter 6 when describing states represented by measurements using a phase-preserving amplifier, which adds
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noise by sampling both quadratures, yielding the Q-function. (Any additional loss will further obscure

the resulting distribution in Equation 3.18 according to Equation 6.27.) Alternative measurement tech-

niques, such as use of a phase-sensitive amplifier, can instead yield the Wigner function [135, 138].

Displaced parity

State tomography begins by preparing or otherwise transferring a state of interest into the chosen cavity.

Then, the cavity is displaced by a variable, complex-valued displacement �. At each displacement, the

average parity is measured. A best-case measurement then produces the Wigner function (worse measure-

ments add noise, reducing contrast and any negativity). As described above, the cavity density matrix state

description can be reconstructed from the Wigner function.

There are several straight-forward measurement methods that can produce the values of displaced par-

ity of a cavity state [138]. In the systems in this work, we will select a somewhat less conventional way—the

parity is mapped onto the transmon by applying a set of selective ⇡-pulses simultaneously, on either the

even or odd number-peaks, up to n̄ = 25. Then, taking the difference of the even and odd mapping

sequences, we obtain a value proportional to parity (and therefore to the Wigner function), independent

of the initial transmon state. This method is equivalent to other representations of the Wigner function

[134].

To compensate for finite ⇡-pulse and measurement contrast, we must then normalize the resulting

data so that it integrates to unity over all phase space, leading to a physical Wigner function. Displacements

are typically performed up to � = 2.5, a value corresponding with a photon number up to 12.5 photons,

and results in Wigner functions that should capture > 99 % of the energy contained in typical relevant

cavity states, wherein n̄  2.

3.5.5 Mapping and encoding/decoding

The cavity measurements described above are a form of mapping, of the cavity state, onto the transmon

state. More complex mappings can be also be performed, like the qcMAP [139]. Such encoding remap-

ping can take advantage of the processing capability of the transmon, for example, while moving that in-

formation to the cavity for long-term storage, or to take advantage of error correction protocols [47].
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In our system, the same tools that allow us to prepare arbitrary states in a cavity or a qubit [126] also

enable straight-forward construction of conditional, arbitrary unitaries. These can enable control over

logical states. In addition, we will use such unitaries to, as one example, perform a cavity basis rotation

(e.g. |0i 7! |0 + 1i) and allow straight-forward measurement in other bases.

The tools discussed here constitute only a handful of those available. The convenient control knobs

provided by circuit QED, hand in hand with a rich catalog of microwave-frequency technologies, enrich

this toolbox. By selecting and assembling these state-of-the-art elements, we intend to produce a highly

coherent module. The following chapter will begin this process, introducing an element that is compatible

with high-Q 3D cavities, and completing and evaluating an elementary module. Chapters 6 and 7 will then

develop and implement a procedure for using this module as a node within a modular quantum network.



4
Seamless Hardware for Scalable

Integration

In this chapter, I discuss the fundamental quest to improve to coherence of the elements that make up our

quantum systems. Superconducting microwave cavities and transmon qubits are critical members of this

contingent. At this time of this writing, their coherence times are long enough to perform many useful

tasks and permit research for years to come. Techniques are being developed to address their limited coher-

ence times, by storing information redundantly and performing error-correction. Hand-in-hand with this

effort, however, must be a push to improve the basic performance of cavities and qubits. Fundamentally

improved coherence times are complementary to these efforts, reducing the number of resources required

to achieve the final goal. Even with the best recipe, the resulting cooked meal can only be as good as the

ingredients you begin with. Here, we strive to improve both ingredients and recipes.

4.1 Challenges of many-element system coherence

Scaling presents challenges that are not apparent in small systems of one or two qubits. The first, most

obvious challenge comes from fabricating the devices required for such a system. Imagine there is some

success probability associated with slightly imperfect fabrication of a qubit with the desired parameters, say

p ⇠ 0.90. In addition to the likelihood of measuring proper post-fabrication parameters, this may also in-

clude survival rate and performance within limits once tested under operating conditions, or repeatability

between cycles of an experiment. If only seven qubits are required to be fabricated simultaneously within

51



4.2. Microwave hygiene 52

these limits, the chance of success is already worse than flipping a single coin.

Perfecting a fabrication process is certainly not out of reach, however, as evidenced by the massively

successful semiconductor fabrication industry. We consider this largely an engineering challenge that will

be solved in due course, and seek only briefly to identify present limitations of qubit and resonator coher-

ence properties in this chapter to follow. Near-term improvements will facilitate current research. In the

mean time, we focus on less obvious challenges faced by many-element systems.

One canonical problem that exists in controlled quantum systems is that more elements demand more

couplings between elements and more control signals (external couplings). If not carefully controlled,

these inter-element couplings can lead to unwanted behavior. External couplings allow for the introduc-

tion of environmental noise. Therefore, it tends to be the case that increased complexity does not directly

translate to increased usability (such as the ability for greater computing power or information storage).

At some point, determined by engineering prowess (and at some point fundamental limits), a larger, scaled

system will perform more poorly than a smaller one. One of a handful of problems endemic to microwave

circuits will likely be the cause.

4.2 Microwave hygiene

The problem of unwanted couplings falls into the domain of “microwave hygiene”, the electromagnetic

“cleanliness” of the environment in which a system is designed. Since we work with systems that are

nominally engineered on every level—from the superconducting box to the Hamiltonian guiding element

interactions—full knowledge of the system is paramount. Poor microwave hygiene is characterized by the

presence of unwanted, unexpected (spurious) resonant modes, or broadband “leakage” of field from one

section of a device to another (Figure 4.1). It has been the focus of classical studies in microwave electron-

ics, and has recently found special importance in the design of experiments with superconducting circuits.

Superconducting circuits, which rely on high-quality material performance, are more susceptible to

many of these losses; in normal metal circuits, conductor loss may dominate over these effects, rendering

them unnoticeable. These loss mechanisms include unwanted propagation/emission channels, such as

slotline or box modes. They may also include physical dissipation, such as PCB circuit board material or
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~λ

Figure 4.1 | Possible hazards in planar architectures. An illustration of the difficulties that can be
present in a microwave circuit when trying to maintain a low-loss environment. Here, a lithographically
patterned chip is positioned within a circuit board holder, which in turn sits within a metal enclosure (one
half shown). In addition to the desired coupling paths (black arrows), unwanted couplings or losses such as
cross-talk/parasitic coupling (green dashed lines), slotline/box modes (yellow arrows), material dissipation
(red lines), and radiation (pink arrows) may be present.

adhesives that may be present. Circuit properties may be modified by parasitic capacitance to grounded

elements or parasitic inductance from the presence of wirebonds.

Some of these effects can be mitigated through careful microwave engineering and design. Box/pack-

age modes may be suppressed by “shimming” circuits, or covering them in tightly fitting metal shields.

Slotline modes might be suppressed by cross-over elements coupling ground planes within a circuit, such

as “air bridge” structures. Circuit elements (like filters) can be introduced to compensate for coupling to

predictable modes. Materials can be carefully selected—and even etched and removed—and the system

constructed so as to reduce the spatial concentration of energy susceptible to dissipation (Section 5.1). Fi-

nally, precise multilayer interconnects can be designed so as to mitigate the unwanted effects of connections

like wirebonds.

Still, planar circuits are difficult to fully protect from environmental losses. Many of these “fixes”

result in smaller, more isolated circuits and more concentrated electric fields. A more robust response

follows the trend toward larger, more dilute 3D resonant modes. Using waveguide structures, a “hygienic”

environment can be constructed from the ground up (Section 4.3). Beginning with a blanket suppression

of propagating modes and the presence of only superconducting materials and ultra-low-loss dielectrics,
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losses can be considered one-by-one as every element is added (Chapter 5). In this way, simple 3D systems

allow losses to begin to be reliably modeled.

Despite their relative cleanliness, traditional 3D modes have some fundamental limitations due to their

typically seam-based construction, as the following section will show. These design types also face some

capability limitations; for example, omitting seams in superconducting cavities makes it difficult to in-

troduce flux necessary for tuning certain elements. The most hygienic and broadly capable designs must

ultimately address both the challenges of planar designs and 3D cavities, while incorporating features from

both (Section 4.3.1).

4.2.1 The effect of seams in 3D cavities

Seams, for example at the joint between two halves of a cavity shell, are generally a design necessity when

traditional machining is used to produce 3D cavities with well-behaved TE or TM resonant modes. Sub-

tractive machining processes, where grooves and holes are milled in metal, are simply incompatible with the

requirement of cavities to form a light-tight box for microwave photons. Some processes, such as electron-

beam welding, may be used to join the halves of a cavity together. Additive processes like 3D printing might

even be able to avoid a seam altogether. However, the effects of these processes on materials used in super-

conducting quantum information systems can be detrimental and is not fully understood.1 Therefore, it

became important to understand the effect of seams on the performance of superconducting microwave

cavity resonators.

The design of these two shells containing cavity halves, and thus the location of the seam, can be en-

gineered so as to reduce (or even eliminate) the presence of current that would cross it. One can even play

tricks, such as by using a microwave choke, to create the appearance of a short or open circuit at certain

frequencies. However, no machined structure is ideal. Inaccuracy in design and fabrication will lead to

an electric field structure of resonant modes that drives current across the seam. “Loading” of a resonant

mode can perturb not only its resonant frequency, but also the spatial distribution of its electromagnetic

field. In our systems, the tunnels for recessed coupling connectors alone can cause this effect. Often,

1. Both of these processes were investigated as part of this thesis work. The resulting cavities did not present coherence prop-
erties exceeding those of traditionally processed materials.
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coupling to planar elements such as transmons requires the introduction of a high-permittivity dielectric

substrate, such as sapphire, into the cavity. According to simulations, these structures tend to perturb the

distribution of the electric current far more than by non-idealities alone. In this way, some current will

always find its way across a seam.

So why is current necessarily bad? If two bulk superconductors are connected, what is the mecha-

nism by which dissipation should occur? As with many matters in experimental physics, the practical

system does not match the ideal one. Common bulk superconducting materials, such as aluminum or

indium, are quick to oxidize under normal atmospheric conditions. This produces a layer of dielectric ox-

ide, which dissipates energy at microwave frequencies, at the surfaces and thus the seam between the two

superconducting shells. Even if a mechanical or chemical process is used to remove this oxide, exposure to

an oxygen-rich environment will almost immediately cause it to regrow. Avoiding this is difficult without

significant investment in new experimental procedures.

Some early designs involving cavities with seams are now thought to have been limited by seam loss.

For example, the “vertical transmon” design produced low transmon coherence that was not explained

by traditional decoherence channels [35]. Rectangular cavities—even those made from chemically etched

high-purity aluminum—have demonstrated lifetimes worse than those consistent with conductor or di-

electric loss alone [67, 93].

Recent studies have sought to develop a model based on experimental observations of seam-based per-

formance degradation [140]. This model enables an estimation of the seam loss based on mode and mate-

rial properties. Finite-element modeling can simulate the current density of the resonant mode. Systematic

experiments with controlled seam participation can establish bounds on the magnitude of dissipation (the

resistivity) produced by joining different materials of interest. Together, these guidelines can allow cavity

designers to predict the effect of current flowing across dissipative seams, influencing design decisions.

There is a possible solution to eliminate lossy joints, however. If seams must be present in a particular

designs, the superconducting cavity shells can be plated in (or constructed out of) a malleable supercon-

ductor like indium, stripped of oxide within an inert environment, and immediately bonded together.

This procedure applied to seamed rectangular cavities was shown to produce significantly higher quality

factors [141]. Naturally, this process can be difficult to reverse, thus limiting its practicality. An easier solu-
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tion, in some cases, is to pursue a seamless cavity design. We will find these come with additional benefits,

such as strong control over the electromagnetic environment to which a circuit is exposed.

4.3 Hardware for coherent 3D integration

4.3.1 A seamless architecture for system integration

One way in which the geometric requirements of 3D cavities can be reconciled with traditional machin-

ing techniques is by engineering a “seamless” structure that supports resonant TEM modes. Such a struc-

ture seeks to strictly obey the requirements of proper microwave hygiene, avoiding the need for additional

structures or filtering [142]. At the same time, it should allow the controlled integration of many elements.

Ideally, there should exist a path towards miniaturization and scaling.

Package design

Our response to these requirements is to carefully engineer a 3D waveguide package that we call the “coax-

line”2 . Circuits formed from select, low-loss materials and placed in 3D enclosures can avoid many com-

mon forms of loss found in planar cQED systems (discussed further in Section 4.3.1). Our design begins

with a seamless circular waveguide that forms the package enclosure and acts as a ground plane (Section

4.3.1). Circuit elements are patterned on a substrate, usually sapphire, to define each mode of the device.

The deposited and machined conductors are typically chosen to be aluminum. Where no conductor is

present on-chip, the waveguide attenuates signals below its cutoff frequency (typically around 40 GHz).

The chip is suspended within the enclosure by far-removed clamps at one or each end, where the fields

from critical circuit elements are exponentially attenuated.

The clamps are made from two pieces tightening against the chip from both sides, often with soft

indium wire or freshly mixed epoxy adhesive (Stycast 2850FT) in between. Either the broad side or the

narrow side (within a slot) can be directly clamped. Once the chip is properly positioned, the clamp is fully

tightened and the apparatus mounted to the end of the package. Since these enclosures are prone to long

2. It is a quasi-coaxial transmission stripline with strong similarity to a coaxial transmission line, sometimes also called the
coax-line or the co-Axline.
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Figure 4.2 | The coaxline architecture. a A diagram of the coaxline with a section of the bulk enclosure
removed for visibility. The stripline (gold; electric field pattern shown) is patterned on a sapphire substrate
(turquoise). The substrate is suspended in the enclosure by clamps (shown opened) at either end. The
transmission signal S21 is introduced via the coupling pin (port 1) and measured through the output pin
(port 2). b The center conductor of a coaxial transmission line “floating” in vacuum. c In the coaxline,
the stripline conductor plays the role of the center pin in b. (Figure adapted from [7]; see Copyright
Permissions.)

chip aspect ratios (with dimensions 0.5 x 1 x 40 mm or more), vibrational coupling is a concern (Section

5.6.3). Therefore, the opposite end of the chip is often clamped by identical means.

In this architecture, complex, many-element designs should be possible. We will first evaluate the per-

formance of this design, however, by considering a simple, illuminating test structure on the chip: a single

resonator. We will choose the form of a�/2 stripline-like resonator and pattern it on the substrate (Section

4.3.1). The lowest resonance frequency is primarily determined by the length of the conducting strip, but

also depends on chip size, chip placement, and enclosure diameter. These dependences are studied in the

following sections. Like all cQED elements, this kind of device performs best when the highest-quality

superconducting materials are used and the system is cooled into its superconducting state.
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The enclosed �/2 stripline resonator will act like a section of a transmission line with each end termi-

nated with an open circuit. Without the stripline, the enclosure is simply a dielectric-loaded circular waveg-

uide. The stripline is a TEM mode, and supports propagation with no cutoff frequency. The waveguide

alone supports only TE and TM modes, and thus has a finite cutoff frequency. Importantly, the cutoff

frequency will determine the level of isolation between operational modes as well as from the environment.

Waveguide enclosure

Looking at a cross section of this system, one encounters a partly dielectric-filled circular tunnel near the

ends where no patterned conductor is present. The substrate must be held at some point, so the presence

of some dielectric is unavoidable when using conventional machining and assembly techniques. For this

design to preserve an electromagnetic environment in which spurious coupling are suppressed, the cutoff

frequency of this structure must be sufficiently high.

The cutoff frequency can be determined analytically for some geometries, and by simulation for oth-

ers. The propagation constant �, which describes the propagation of the electric field according to E /

e�j�z , can always be expressed in terms of a cutoff wavenumber kc as � =
p

k2 � k2c . Above the cut-

off wavenumber, and therefore above the cutoff frequency, the square root operand is positive and � is

real, and thus the wave freely propagates. Below the cutoff frequency, the operand becomes negative, the

exponential gains another imaginary factor, and the electric field decays exponentially. This is called the

evanescent, rather than propagating, regime of the EM wave behavior. The strength of electric field decay

depends on how far beneath the cutoff frequency a particular operating frequency is.

The cutoff frequency of a partially loaded waveguide can be calculated exactly for some simple geome-

tries. We can gain some intuition for the effect of dielectric loading by (1) exact simulations of exemplary

structures, and (2) a rough analytic approximation. We find it analytically in the approximate geometry

shown in Figure 4.3a, the details of which are solved in Appendix A.1.

This analytical behavior can be compared to that of a numerical finite-element simulation of this ap-

proximate geometries, as well as the exact coaxline geometry shown in Figure 4.3b. The simulation mea-

sures the transmission per unit length as a function of frequency for different diameters of the enclosure

(behavior for the coaxline shown in Figure 4.3c). The frequency above which transmission becomes loss-
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Figure 4.3 | Behavior of a dielectric-loaded waveguide. a An approximate, analytically solvable ge-
ometry representing the loaded coaxline enclosure. A chip of width w, thickness t, and relative dielectric
constant ✏r is suspended by distance a from the top and bottom walls. The enclosure width is set equal to
2a+ t so as to not limit the cutoff frequency. b A cross-section of the enclosure in Figure 4.2a in a section
without the stripline. The enclosure diameter is given by 2a+t. c The behavior of transmission parameter
S21 per length of dielectric-loaded coaxline enclosure of different diameters. A thickness t = 0.43 mm
and dielectric constant ✏r = 10 are assumed. d Cutoff frequencies in different geometries, extracted in
part from the data in c.
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less is identified as the cutoff frequency. Values of the cutoff frequency for the analytical treatment as well

as the two simulated geometries are shown in Figure 4.3d.

As a practical exercise, we also vary the width and thickness of the substrate and calculate the change in

cutoff frequency for the coaxline (Figure 4.4). In this case, the cutoff frequency nears 20 GHz (a reasonable

bound on the typical operational range) only for relatively thick substrates that nearly fill the tunnel.

Quasi-stripline resonators

The strip of metal patterned on the substrate (Figure 4.5a) is similar in placement and field profile to the

inner conductor of a coaxial transmission line (Figure 4.5b), and also that of a traditional stripline (Figure

4.5c). It can be treated as a general transmission line with characteristic impedance Z0 and the condition

of an open circuit at either end, as represented by the circuit diagram in Figure 4.5d. A transmission line

frozen in time appears to have the following voltage dependence on distance along it, z:

V (z) = V
+
0

⇣
e�j�z + �ej�z

⌘
. (4.1)

where the reflection coefficient � = 1 in our case of an open circuit.

The first resonant mode (�/2) that can be supported by such a structure will occur at �l = ⇡, and
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Figure 4.5 | Coaxline as a quasi-stripline geometry. a A cross-section of the coaxline in a section
where the stripline is present. The stripline has width s, and is simulated as an infinitesimally thin sheet.
The ~E field vectors (red) and contours of ~H (green, dashed) are also plotted. b A coaxial line bears strong
resemblance to the coaxline, as does c a traditional stripline geometry. d The stripline and coaxline can
be modeled as a transmission line, with impedance Z0 and length l, terminated in an open circuit. e The
equivalent circuit model for the transmission line at its resonant frequency !0.
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Figure 4.6 | Coaxline electric field profile. Simulated electric field magnitude on resonance for a a
lengthwise cross-section, and b a crosswise cross-section at a location �/8 from the end of the stripline.
c–d: Simulated transverse electric field along the length of a coaxline-style 10.7 mm-long stripline in a
4 mm-diameter tunnel, with varied stripline width (0.1–0.5 mm in 0.1 mm steps) on a sapphire chip with
1.95 mm x 0.43 mm cross-section. The electric field is calculated at a height h directly above the center of
the stripline c or 1.0 mm above the stripline d. Electric field measured very close to the stripline is sensitive
to width and edge-dependent effects, and does not follow the expect cosine behavior (dashed line). At the
position roughly halfway between the substrate and the outer wall, the behavior is width-independent and
matches the cosine expectation to a much greater degree.

the voltage profile along the line can thus be expressed (in terms of the amplitude V +
0 )

V (z)

2V +
0

= cos(⇡z/l), (4.2)

showing that the voltage, runs over half of a cosine period from end to end. This voltage will be approx-

imately proportional to the magnitude of the radial electric field in our quasi-stripline, quasi-coaxial ge-

ometry, which is simulated throughout the system in Figure 4.6a,b. In reality, the exact geometry of the

system will perturb this ideal behavior (Figure 4.6c,d).

Characteristic impedance (Z0) is an important parameter for describing a transmission channel. Here,

for one, it will determine how easily the coaxline couples to the external 50⌦ environment. The character-
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istic impedance of the coaxline depends strongly on the stripline width s, and somewhat less strongly on

the substrate width w (Figure 4.7). Compared to a coaxial line, it is quite difficult to achieve Z0 = 50⌦

except at large s and w.

Hygienic coupling

In coupling to this device, we intend to preserve its seamless, hygienic nature. Inspired by the standard,

robust coupling method used in 3D cavities, we introduce input and probe output signals using two

evanescently-coupled pins within sub-cutoff waveguides that intersect the primary waveguide enclosure

(Figure 4.2a). Pins are recessed to an adjustable depth within each coupling enclosure, located above each

end of the stripline (Figure 4.8a). These provide variable capacitive coupling Cc to the resonant circuit,

“loading” it externally. One or more pins can be arrayed along the extent of the device.

With one pin, reflection or feedline-coupled transmission (“hanger”) measurements are possible using

a tee-style circuit (see Figure 4.8b inset). Hanger measurements, where circuit simplicity comes at the cost

of abandoning some reflected power, can be transformed into a reflection measurement by replacing the

unbalanced tee with a circulator or directional coupler. With two pins or more, transmission measure-

ments can be taken directly between ports (Section 3.4.3). A typical measurement setup often includes

two pins, one coupled weakly and one coupled strongly. The asymmetric nature of the coupling helps

to naturally direct emission from the system. The weakly coupled port can be used to introduce control
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Figure 4.8 | Evanescent coupling to 3D enclosures. a A diagram showing the coupling mechanism
at each port in detail. An SMA flange connector transitions into a cylindrical pin within the coupling
waveguide, emulating a 50⌦ coaxial cable. The pin extends so far into the tunnel as to leave a gap z up
to the primary enclosure waveguide. b The distance z is varied ex situ, thus adjusting Cc, and the cou-
pling quality factor of the measured fundamental resonant mode is extracted by measuring transmission
between port 1 and 2. Several diameters of the primary enclosure are tested, all for 12 mm long striplines.
Fits (dashed) have only one free parameter; their slopes are fixed to the calculated propagation constant.
(Figure adapted from [7]; see Copyright Permissions.)

signals, while the strongly coupled port can be connected to the output amplification-and-measurement

chain. This approach yields predictable couplings that can be varied over a wide dynamic range without

compromising package integrity.

As a first check, we can demonstrate that external coupling can be made arbitrarily weak. By varying

the coupling attenuation distance and measuring Qc , we see good agreement with the expected exponential

scaling over six decades, with no observed upper limit (Figure 4.8b). Due to the natural waveguide decay,

this large dynamic range in coupling strength can be achieved simply by modifying the length of a pin.

This flexibility is a powerful tool when integration to multiple elements is required: we can achieve very

strong coupling (Qc ⇠ 103) to some elements (used for measurement or readout), while at the same time

using weak couplings (Qc ⇠ 108) to excite and control long-lived memory elements.

We must also be certain that our coupling pins, which are composed of normal metal for conve-

nience, do not induce a large amount of dissipation. Figure 4.9 simulates this effect for copper coupling

pins. The ratio of dissipative coupling strength to external coupling strength, given by 1/(Qd/Qtot) =

Qc/(Qd + Qc), reaches a maximum of 0.3% in the case of strong coupling. In weakly coupled cases, in-

ternal dissipation is observed to limit the system. Therefore, coupling strength Qc can safely be used as a
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Figure 4.9 |Effect of a dissipative coupler. a The height of the pin z is adjusted to change its capacitance
to the stripline and, indirectly, the coupling quality factor Qc. Qc can be measured by simulating the
coupler port to introduce the only dissipation in the system, the 50⌦ characteristic impedance of the
transmission line. b The quality factor Qd caused by dissipation in a copper coupling pin is simulated for
varied pin insertion. Its effect on the total quality factor is more than two orders of magnitude reduced as
compared to the coupling Qc. (Figure adapted from [7]; see Copyright Permissions.)

proxy for a limiting effect from the coupler apparatus on the total quality factor Qtot .

Just as in the coupling tunnels, we have restricted wave propagation in the primary enclosure to seam-

less waveguides with cutoff frequencies far greater than operating frequencies. If the system has been prop-

erly designed, then there should exist strong isolation between elements that is in agreement with simulated

values. If no other modes exist, then, in additional to reliable couplings, the background spectrum should

reveal no unexpected features. The transmission parameter S21 can be measured over a wide frequency

range using a vector network analyzer (VNA), thus capturing both the response of the resonator as well as

the background spectrum (Figure 4.10). It reveals a clean resonance and background ripples isolated by at

least 60 dB.

Even though the enclosure body is seam-free, we can evaluate whether seams at each end introduce

dissipation, spoiling our otherwise hygienic system. We predict their effect using a model of seam loss as a

distributed admittance (Section 4.2.1) applied to simulation. The simulation places a conservative bound,

Qi � 108, on typical designs removed at least 7 mm from the waveguide end. These simulations assume

a conservative value for seam conductance gseam , and so it is likely that seams have an even smaller effect

in reality than predicted. Since typical devices see significantly greater isolation from end seams than the

7 mm in this case, seams seem unlikely to affect performance in devices of this form. Their modeling, at
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Figure 4.10 |Coaxline transmission measurement. a The transmission-type coupling scheme used to
measure resonator transmission from port 1 to port 2. b Measurements show only the expected resonant
modes, here at 7.7 GHz and 15.5 GHz (insets have 300 kHz span). The fundamental mode sees isolation
of > 60 dB. The noise floor is due to the frequency dependence of the readout system and amplifier noise.
(Figure adapted from [7]; see Copyright Permissions.)

the very least, establishes a known bound.

Performance metrics

By enclosing chip-based circuit elements in such a package, the resulting coaxial-transmission-line-like de-

vice can be highly coherent and extendable. Addressing a host of likely losses within the package, including

coupling, seams, and materials, we hope to produce chip-based element single photon relaxation rates at

the level of the state of the art (⇠ 50µs). Good performance will also be important if the package is to be

used as a design testbed (Chapter 5).

To verify that these kinds of devices are suited to such complex experiments and further integration,

we measure the coherence times of the resonators within. For resonators, this requires achieving a high

internal quality factor (Qi ) at sufficiently weak coupling (high coupling quality factor Qc ). This weak

coupling serves two purposes: reducing experimental error, since Qi is extracted from a measurement

of Qtot , and demonstrating that these devices can be measured in a practically useful regime, for use as

quantum memories (Section 3.4.1). We measure these parameters by cooling coaxline resonators to ⇠

20 mK and exciting circulating powers between ⇠ 1 and ⇠ 106 photons. The devices are connected in

a feedline-coupled configuration and transmission (S21) is measured using a VNA. Coupling parameters
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are extracted from fits to S21 (see Section 3.4.3). Measurements are usually performed in an undercoupled

configuration (Qc � Qi , with Qc up to 109) so that the total quality factor Q (1/Q = 1/Qi + 1/Qc ) is

a direct measure of the internal losses.

We observe Qi as high as (8.0 ± 0.5) ⇥ 106 at single-photon power3 . In designs where the lifetime

of an undercoupled stripline resonator is measured using a partner transmon (Section 4.3.1), lifetimes up

to T1 = 250µs, or an equivalent Qi = 11.2 million, can be reached. This suggests that quality factors in

lithographic devices are not solely dependent on materials or fabrication methods, but are also affected by

package contributions. This hygienic package evidently sets new, higher limits on the performance of its

contents. Therefore, coaxline devices are well-positioned to act as a testbed for alternative loss mechanisms.

Further studies are performed in Chapter 5 to pinpoint the dominant sources of loss. Regardless, the

coherence levels achieved here situate the coaxline as a promising element for modular integration. Section

4.3.1 will demonstrate how this integration can be useful.

Space-saving modifications

The quasi-stripline design can be modified to reduce the footprint of a resonator, foremost increasing its

prospects for integration or scaling. To do so, the path of the stripline is shortened and bent into a me-

andering, serpentine path (Figure 4.11a). For reasons that will be examined, simulations show that these

modifications can leave impedance and frequency relatively unchanged as the length is shortened (Figure

4.11b). Since this takes the device towards the parameter regime of lumped-element planar resonators

[108], energy density increases (Section 5.5). The practical result is that, while space is conserved, the mag-

nitude of dissipation due to dielectric and conductor imperfections (discussed in greater detail in Chapter

5) is increased. Therefore, this approach may only be desirable if the resonator is used in a strongly cou-

pled configuration. Furthermore, the resonance behavior becomes more difficult to analytically predict

and intuitively understand as the extremity of meandering increases.

We can understand the effects of this design by examining the nature of the transmission line resonator.

The stripline is characterized by a characteristic impedance, which on resonance is given by a capacitance

3. The best reported Qi at the time of writing for lithographically-defined aluminum-on-sapphire resonators fabricated under
similar conditions (e-beam evaporation, no substrate annealing) has been ⇠1 million [109].
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Figure 4.11 | Serpentine stripline properties. a The structure of a serpentine stripline transmission
line resonator. We probe the characteristic impedance Z0 from a simulated port along a segment of the
resonator (dashed lines), simulating a segment of transmission line. b Impedance is calculated for a ser-
pentine design of varied conductor width. The distance between strips�x is kept at a constant 0.24 mm,
and the structure rests on a sapphire substrate with 1.95 mm x 0.43 mm cross section in a 4.25 mm diam-
eter enclosure. The serpentine line (�y = 1.4 mm) becomes straight as �y ! 0, producing a relative
change in impedance  2%. c The frequency of a serpentine stripline resonator is calculated for fixed
length (6 mm), fixed�x (0.39 mm), and varied�y.
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and inductance per unit length as Z0 =
p

L/C . As a straight length of fixed-width transmission line

is raveled into a serpentine shape, the inductance per unit length will increase. (Here, it is important to

specify that “length” refers to linear distance along the substrate, whereas “arc length” will refer to distance

along the winding metal path.) The capacitance per unit length will also increase. The increases both

contribute to lowering the resonant frequency !0 (Figure 4.11c). Compared to a straight stripline, this

will require a shorter linear distance and produce a more spatially confined mode.

Just as in the straight stripline, the conductor width should affect impedance but not resonant fre-

quency. This structure has a strong likeness to a coaxial transmission line, which has L / ln(b/a) and

C / 1/ ln(b/a) (where a and b are in the inner and outer conductor diameters). Changing the stripline

width is roughly equivalent to changing the inner diameter of the coaxial transmission line, a. The de-

pendence on ln(b/a) cancels in the expression for the resonant frequency, !0 = 1/
p
LC ; !0 should not

depend (to first order) on a. The impedance, however, is expected to vary as Z0 / ln2(b/a), and it follows

the proper behavior in Figure 4.11.

Coupling sensitivity Besides making resonators more compact, this modification can be used in hybrid

form to tailor the sensitivity of resonator coupling relative to an element positioned along the enclosure.

Figure 4.12 compares a straight and hybrid straight-serpentine geometry. The hybrid geometry produces a

change in the gradient of the electric field midway along the extent of the structure. To satisfy the resonance

boundary condition, the field varies more significantly in the serpentine region, while remaining nearly

constant over the straight region. In fact, the ~E-field variation occurs over a 35% longer distance compared

to the straight stripline, even though the hybrid stripline is shorter overall. If a pin were inserted into

the enclosure at a particular position, intended to couple to the stripline with a particular strength, this

strength would be more readily achieved using the hybrid geometry (given some inevitable imprecision in

aligning the stripline and pin).

These benefits come with a trade-off: the possibility of increased dissipation (Section 5.5). In addi-

tion to the capacitance and inductance between the stripline conductor and the ground plane, there also

exists some “self-capacitance” (and inductance) that arises from the proximity of charges and currents be-

tween distributed segments of the stripline. The ac driving field redistributes charges along the conductor
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Figure 4.12 | Serpentine stripline electric field profile. a A straight stripline with length l1 =
10.7 mm and resonant frequency !0/(2⇡) = 7.8 GHz in a 4.25 mm diameter enclosure on a 1.95 mm x
0.43 mm sapphire substrate. b A hybrid resonator with l2 = 6 mm (4 mm straight and 2 mm serpentine)
has the same resonant frequency. Distance can be measured linearly (l) or as arc length along the stripline
(s). The stripline has total arc length S from end to end. c The radial component of the electric field is
simulated immediately above (blue) and 1 mm above (red) the hybrid resonator structure as a function of
‘linear’ length (left) or ‘unraveled’ arc length (right). The serpentine region is shaded. The cosine behavior
expected for a straight stripline is plotted for comparison on the right. The large straight region (*) has
3.4 mm length and slowly changing Ez . By comparison, Ez changes by this factor in the straight stripline
over just 2.5 mm. The ripples in the right panel reflect the non-uniform distribution of field across the
cross-section of a segment of serpentine stripline.
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throughout the cycle of a resonance. In a narrow tunnel with a long stripline, charges from one end of

the stripline are strongly screened from the other end, so the capacitance to ground will dominate. As the

stripline becomes serpentine, however, the relevant distance between unscreened areas of the stripline de-

creases. This effect can also be thought to contribute to increased participation ratio, as ~E and ~H fields will

be more concentrated between areas of the stripline, lingering with greater energy density in the substrate

and its surface layers, and less in the vacuum between the stripline and the ground plane. Simulations of

the form discussed in Chapter 5 can reveal the likely magnitude of this effect, providing design guidance.

Transmon integration

One benefit of this coaxline design is that resonators, qubits, and even filters can be fabricated on a single

chip. Consistent with the waveguide design form, we find that coupling between these elements can be

engineered, well-controlled, and adjusted by changes in circuit parameters set with lithographic precision.

In the first step of this integration, we pattern a transmon qubit alongside a resonator (Figure 4.13a)

[143]. We characterize the system’s coherence and compare measured parameters to simulation. We con-

trol the qubit using a weakly coupled input port—the same port used to drive the resonator. The system is

read out via a resonator transmission measurement, using the asymmetric coupling setup described in Sec-

tion 4.3.1. Transmons patterned and coupled in this fashion exhibit 30–80 µs lifetimes, near to the state-

of-the-art values for transmon T1’s. This is equivalent to quality factors as high as 3 million (by Q = !T1),

not far from those of the resonators measured in Section 4.3.1.

These coaxline resonator-transmon systems are generally well-behaved. Undercoupled resonators were

observed to produce equally high Qi with and without transmons. Important system parameters, such as

mode frequencies and qubit anharmonicity, are found to agree well with predictions from finite-element

simulations of the design. Limitations thereof tend to arise from inaccuracy in assembly, rather than in

fabrication (Section 4.3.1); this limitations can be overcome with greater care. All told, this increase in

complexity does not appear to reduce coherence values or parameter control.

In particular, with a lithographic resonator-qubit system, one can test whether on-chip element cou-

pling obeys the same waveguide-attenuated behavior as external coupling. We expect that by varying the

distance z between element ends, the chip enclosure should exponentially attenuate electric field | ~E| /
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cated on the same substrate. At a fixed frequency detuning, their lithographically determined linear sepa-
ration z controls the coupling strength. b The coupling strength is measured for transmon-resonator sys-
tems fabricated with different separations z. The data are fit using an exponential function Ae��z with
single free parameter A. The calculated attenuation constant, 8.5 dB/mm, comes from simulation (Figure
4.3c) of a 2.8 mm-diameter waveguide with bare substrate. A full system finite-element simulation using
black-box quantization predicts similar scaling. (Figure adapted from [7]; see Copyright Permissions.)

e��z as it does for the pin couplers in Section 4.3.1. The resonator-qubit dispersive shift � should scale

as � ⇠ | ~E|2. Accuracy of coupling parameters like this one is important in nearly every aspect of system

control.

To test this scaling, chips with different separations z were prepared. However, since detuning and

physical separation both affect coupling, different resonator-qubit detunings � between samples makes

direct comparison difficult. To relate them consistently to z, we calculate an effective coupling g defined

by the relation � = 2g2/�, related to the detuned Jaynes-Cummings model [64]. When z is varied

experimentally, we find that the measured change in g is consistent with a calculated waveguide attenuation

scale length 1/� ⇡ 1.02 mm, as well as with simulations (Figure 4.13b). This suggests that no unintended

coupling is present, and that reasonably small separations between elements can produce a range of qubit-

resonator couplings useful for typical cQED applications.

The lifetimes of resonators and transmons in this system can be understood by examining the spatial

participation of each mode in dissipative dielectrics and conductors, discussed further in Section 5.1. The

large resonator mode volume dilutes lossy material participation—the same effect that increases coherence

of 3D cavities relative to traditional planar circuits (Chapter 5). By measuring resonators in waveguide
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enclosures with different diameters, we find that higher Qi generally corresponds with larger diameter

(Section 5.4). This scaling behavior is consistent with loss originating from waveguide surface resistance, a

waveguide dielectric layer, or on-chip dielectric layers, but does not distinguish between these mechanisms.

Bandpass Purcell filters

The Purcell effect, in the context of circuit or cavity QED, modifies the rate of spontaneous emission

from one mode via another. The practical importance of a filter is easiest to understand with an example

that demonstrates the Purcell effect in a typical transmon-resonator system. Imagine that two modes are

present, a transmon (mode ĉ) and a readout resonator (mode b̂). The transmon and readout resonator are

detuned by � and are coupled with a dispersive coupling strength �bc = 5 MHz. To efficiently read out

information about the mode ĉ via mode b̂, an output coupling rateout ⇠ 5 MHz from the mode b̂ is then

desired. Because the two modes are coupled, the Purcell effect will limit the lifetime of ĉ from the strong

environmental, nominally 50⌦-coupling of b̂. This adds a spontaneous emission channel in parallel (for

the single, fundamental mode of b̂) with rate

�
Pur
1 ⇡ out�bc

2�
. (4.3)

More accurately, the mode ĉ with capacitance C is coupled to a generalized admittance Y (!) that captures

the behavior of all of the modes of b̂ to which it couples:

�
Pur
1 =

Re[Yin(!)]

C
. (4.4)

Typical frequencies might produce a 1 GHz detuning, thus leading to a limiting T1 = 2⇡/�Pur
1 =

80µs from the single mode alone. This is a common transmon lifetime in the absence of a strong Purcell

effect; independent losses in parallel would then produce at best a 40 µs lifetime. Reducing coupling or

increasing detuning is one way to mitigate the Purcell effect, but may have unwanted side effects. One

reasonable response, then, is to add a Purcell filter with the goal of maintaining coupling strength and

reducing spontaneous emission due to the Purcell effect.

So far, we have established that the enclosure provides good isolation over a wide band of frequencies
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beneath its cutoff frequency. Stripline elements interrupt this isolation, allowing resonant modes and a

region where the field decay is halted. By strategically patterning particular circuit elements, these concepts

can be used to control the spectrum to which elements couple, thus engineering filters. The design of filters

can be guided by calculation of the multi-mode Purcell effect using either lumped element circuit models

or finite element simulations.

In planar circuits architectures, Purcell filters of various types are frequently used to isolate, for exam-

ple, the transmon from a strongly coupled readout cavity mode [144, 145, 146]. In a �/4-type filter, for

example, a suppressed mode can be positioned a distance �/4 (referring to that mode’s wavelength) from

a lossy mode, thus creating an impedance transformation that causes that mode to appear significantly iso-

lated. In 3D cavities, waveguide segments can act as high-pass Purcell filters. In the quasi-planar coaxline

structure, the geometry restricts the kinds of filters that can be used for this purpose. Difficult access to a

“ground plane”, for example, rules out the possibility of �/4 filters. A natural choice for a filter design is

that of a bandpass filter.

A series bandpass stripline Purcell filter is a natural choice in our geometry. A single-pole bandpass

filter possesses the same transfer function and behavior as our �/2 stripline resonators. Inserting a sec-

ond resonator (mode â) in series with the other modes acts like a frequency-dependent transmission line,

extending the spatial propagation of modes at that frequency, while allowing the waveguide isolation to

persist at a relatively high level at other frequencies.

Figure 4.14 shows this circuit arranged in the coaxline architecture, using stripline resonators. Using

finite-element simulations, we can adjust coupling strengths by varying the gaps and the filter detuning (via

filter length). Changing the gap zab adjusts the linear coupling between the resonators gab. Varying the

resonator–transmon gap zbc adjusts the dispersive coupling, which has rate �bc. A combination of both

gaps, as well as frequencies of the elements, will set the transmon’s dispersive shift from the filter, �ab.

More filter elements (a repetition of the boxed elements in Figure 4.14a) further isolate the transmon.

By changing all of these filter parameters, we can manipulate and probe the protective behavior of the

bandpass Purcell filter element.

It is helpful to divide our analysis into two regimes of filter parameters. In one, the filter frequency

fa = !a/2⇡ is adjusted such that it hybridizes strongly with the readout mode (fa = fb). Here, the
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Figure 4.14 | Coaxline Purcell filter. a Circuit schematic for a transmon–readout system with added
Purcell filter (dashed box). Couplings are determined by impedance seen from virtual port 2 to the cou-
pling port 1 in a reflection measurement configuration, which is shown (normalized) for zero, one, and
four-pole filters. b The circuit is realized with a series bandpass stripline filter in the coaxline architecture.
Capacitive couplings Cb (Cc) are set by adjusting the distances zab (zbc) in lithography. c Filter length la is
swept in simulation; an avoided crossing reveals resonator coupling gab set by zab (shown in d). e For one
gab, dispersive couplings between transmon and filter (�ac) or readout (�bc) show strong hybridization
near fa = fb. With filter removed, � = �

⇤
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Figure 4.15 | Purcell filter Q-ratio (a–b) Filter parameters varied in Figure 4.14 alter readout coupling
(Qb) and transmon–readout Q-ratio (Qc/Qb). c Higher Q-ratios can be obtained in the filtered case (at
practical values of Qb).

hybridization extends to produce equal coupling quality factors (Qa, Qb) and dispersive coupling rates

(�ab,�bc) to the transmon. This arises from the geometry: each degenerate mode shows the same ~E-field

behavior at the ends of the joint structure, which largely determines these coupling strengths. The assign-

ment of ‘readout’ and ‘filter’ to each mode is blurred; either can be used to read out the transmon.

Importantly, this regime can also produce the lowest Qb and highest Q-ratio (Figure 4.15). This

Q-ratio represents the protection of the transmon with respect to an output coupling strength. Decou-

pling by increasing Ca by moving structures away from the coupling pin has the effect of increasing all Q

values without adjust their ratio. Adjusting the filter parameters, however, can increase Q of the transmon

mode while maintaining the strength of the readout coupling. From ref. [147], the expected suppression

Q-ratio should be
Qc

Qb

=
1 + [2(!c � !a)/a]

2

1 + [2(!b � !a)/a]
2 . (4.5)

We find ratios that qualitatively match this expected behavior.

This behavior is most easily understood from the perspective of the transmon, which in this case is well

detuned from both modes. At this transmon frequency, the act of adding a filter resonator in-line with

readout resonator mostly serves to add many factors of waveguide attenuation length, thus increasing isola-

tion from the coupling port. At the readout frequency, the mode extends with minimal added attenuation

across the additional length of the filter, maintaining the output coupling readout of the readout, b.

For clarity in discriminating the modes and reduced sensitivity to parameters, it can also be useful to
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operate in a detuned-filter regime. Here, the modes â and b̂ are detuned slightly from one another to lift

their degeneracy and avoid their full hybridization (Figure 4.14c). Conveniently, the notion of a ‘readout’

and ‘filter’ mode is clear. The output coupling rates of the filter and readout will be different, with a

generally ⇠10 times faster than b. Similarly, the spatial separation and additional frequency detuning

ensures that the dispersive coupling between the transmon and the readout mode will be much greater than

for the filter mode (Figure 4.14e). Thus, the system is most efficiently read out at the readout frequency

!b, as normal.

While the strong hybridization regime shows the highestQ-ratios and the fastest output coupling rates,

other factors may cause one to prefer the detuned regime. In the hybrid regime, both modes convey equal

information about the quantum state of the transmon. An equilibrium photon number population (n̄)

in either of the resonators could thus lead to effects similar to measurement-induced dephasing, which

depends on n̄, , and � in a way that may differ between the regimes. In some designs with crowded

frequency spectra, considerations of higher modes may further complicate this picture.

In practice, Purcell filters have been implemented in both straight stripline and serpentine stripline

geometries. The energy lifetimes of filtered systems appear to be protected from Purcell emission, as pre-

dicted by circuit and finite-element simulations. Tunable-frequency transmons, however—which allow

circuit response to be probed as a function of frequency—would permit more systematic study of circuit

behavior and system loss sources.

Coaxial stub cavity integration

Another powerful tool in the circuit QED architecture has been the 3D coaxial stub cavity. The stub

cavity [46] shares features similar to the coaxline, namely, its seamless nature and the TEM resonant mode

structure. It is thus naturally integrable; the coaxline and stub cavity enclosures can be formed within the

same block of high-purity aluminum. The interface of the two intersecting enclosures will be seamless

and straightforward. From a standpoint of microwave hygiene, the only new consideration (besides the

added resonant modes) of this integrated system is that the stub cavity enclosure is generally wider than

that of the coaxline, and will present a lower cutoff frequency. As a result, the stub cavity enclosure must

be terminated (usually with a lid) far away from the resonant structures.
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The Hamiltonian of the system consisting of the cavity (â) and transmon (t̂) is given by [102]

H = ~!aâ
†
â+ ~!tt̂

†
t̂� EJ

✓
cos('̂) +

'̂
2

2

◆
. (4.6)

The flux across the junction is given by

'̂ =
X

k=a,t

'k(k̂ + k̂
†), (4.7)

where 'k are magnitudes of the normalized zero-point fluctuations of flux across the junction, 'k ⌘

�k/'0, and �k is given by
p
~Z/2, where Z is the characteristic impedance of the k̂ in the black-box

formalism [94]. Transforming into the rotating frame of all modes (Appendix A.2) and expanding the

cosine to '̂4 gives

H/~ =
X

k 6=l

�klk̂
†
k̂l̂

†
l̂ +

X

k

�kk

2
k̂
†2
k̂
2
, (4.8)

where we have introduced the cross-Kerr coefficient (or dispersive shift)�kl = �EJ�
2
k
�
2
l

and the self-Kerr

coefficient (or anharmonicity) �kk = �EJ�
4
k
/2. Examples of how these parameters can be measured can

be found in refs. [35, 44].

Besides those in the Hamiltonian, another important parameter is the cavity’s single-photon energy

lifetime. Due to its extraordinary lifetime, the coaxial stub cavity typically fulfills a special role in the chal-

lenge of scaling: the need for a long-lifetime quantum memory (Section 3.4.1). The resulting basic inte-

grated module combines a stripline resonator, transmon qubit, and this new stub cavity. The capacitor

pads of the transmon are positioned to bridge the modes of the two structures (Figure 4.16). This allows

the transmon to couple the modes easily, mediating their interaction (Section 3.4.2). The large transmon

nonlinearity and linear enclosure attenuation will create much stronger coupling between adjacent modes

than between next-nearest neighbors.

We characterize parameters of this significantly integrated system, including coupling and coherence

values. Both the qubit and the high-Q cavity can perform well, with one system showing qubit T1 =

110µs, qubit Ramsey decay time T
⇤
2 = 40µs, cavity T1 = 2.8 ms, and cavity T

⇤
2 = 1.5 ms4 . These

4. T1 decay for a cavity is measured by preparing the single-photon Fock |1i state. The cavity T2 is measured by performing a
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transmon

Figure 4.16 | Coaxline integrated with coaxial stub cavity. a A schematic of a coaxline enclosure
terminating into a coaxial stub cavity. Here, a coaxline and transmon are clamped only at one end (not
shown) so as to be a suspended bridge between the two structures. b Images of the entire device (left)
and coaxial stab cavity (right) overlaid with an outline of the features in a. (Figure adapted from [7]; see
Copyright Permissions.)

qubit lifetimes are among the highest measured generally in 3D cavities, and in this case the coaxial stub

resonator T1 in the presence of the transmon was the same as its equivalent T1 without (calculated from its

internal quality factor). This suggests that no additional sources of dissipation are introduced when these

elements are combined into a single, seamless package. Such integrated systems will form the basis of the

experiments to follow in this work, particularly those in Chapters 6 and 7.

In the near-term, this kind of coupling allows for significantly more complex many-resonator, many-

qubit circuits. When combined with more advanced techniques for fabricating 3D enclosures using lithog-

raphy and multi-wafer bonding [141, 148], it even offers an attractive route towards long-term scaling. In

the near term, however, one way in which scaling of complexity can be immediately beneficial is by increas-

ing experimental throughput by creating multiplexed systems.

4.3.2 Multiplexed measurement with seamless designs

Experiments investigating loss often rely on varying many parameters over a wide range. Therefore, many

samples must be tested, and even more to obtain statistically significant results. It is imperative, there-

Ramsey experiment with an effective ⇡/2 rotation applied using a pulse that maps |0i $ (|0i+|1i)/
p
2 within the one-photon

Bloch sphere.
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Figure 4.17 |Multiplexed coaxline enclosure. a A top-down view of multiple chips and enclosures in
the same package. A common feedline accesses all of the enclosures. Additional enclosures would extend
to the left and right; more enclosures and feedlines in a single package could also be stacked into a 2D array
(in/out of the page). b A cross-sectional view from the side at the location indicated by the dashed arrow
in a. c An equivalent circuit model of this “hanger” feedline configuration.

fore, that measurement techniques allowing for high sample throughput are used. Multiplexed sample

measurement setups involving many samples within a single “package” not only permit high-throughput

measurement, but also promote a common, controlled environment. Care must be taken, however, such

that the effect of multiplexing does not introduce cross-talk or any means by which the quality of one

sample can interfere with another.

Using the seamless coaxline architecture, we designed a system (the “coaxmux”) such that elements

designed upon a single chip could be measured in a multiplexed fashion. Each enclosure for a single de-

vice appears nearly identical to that in Section 4.3.1, albeit with a change in the coupler design. In this

multiplexed case, the seamless enclosures are repeated at regular intervals. A common feedline intersects

all of the enclosures (Figure 4.17). This feedline is made from a metal wire (which can be high-purity su-

perconductor), suspended in “vacuum dielectric”, forming what is essentially a 50⌦ coaxial transmission

line. The wire inserts into standard SMA flange couplers at either end. In the standard coaxmux, feedline

reflections are generally suppressed beneath 20 dB, forming quite a good transmission line.
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Coupling is determined by lithography and assembly. If chip placement were fixed and guaranteed,

then the distance from the feedline (the position of which is not adjustable) to each element on every chip

would determine its coupling. In reality, the means of assembly allow the axial position of the chip to be

adjusted. A desired coupling is typically achieved by careful simulation and accurate assembly; after one

measurement, the coupling can be altered by adjusting the axial position of the chip. This can be repeated

in an iterative fashion as necessary. Precise assembly will forgo the need for iteration, but possibly reduce

the flexibility in case a device needs to be measured with differing coupling strengths.

In order to use the same signal lines and hardware to read out multiple devices, we choose to multiplex

them in frequency. We can do this for a transmon-readout system by patterning a wafer of chips with

chips that are identical except for stripline readout resonators of slightly different lengths. The lithographic

precision with which stripline resonant frequencies can be set means that many devices can be multiplexed

in the same device. Since inter-transmon coupling is filtered by the readout modes in individual enclosures,

it should be small as long as readout frequencies are sufficiently separated.

In a package with five devices, we established a bound on the inter-transmon coupling by applying a

fractional ⇡-pulse to one transmon, and then performing a Ramsey or spectroscopy experiment to deter-

mine the resulting frequency shift in a second transmon (Figure 4.18). We performed this experiment on

all pairs of transmons within the five transmon system, bounding the coupling strength g/(2⇡)  1 kHz.

The modes most likely to strongly couple had readout frequencies at 8.75 and 8.78 GHz, with transmon

frequencies at 6.52 and 5.81 GHz, respectively. The other three enclosures contained Purcell filters in series

(Section 4.3.1), with other frequencies otherwise similar; thus, we expect additional isolation to protect

those transmons and for the coupling to be more difficult to measure.

In this multiplexed architecture, assembly is more difficult because—due to space constraints—a com-

mon clamp holds all the chips together at each end of the package. This means that some chips may be

held more firmly than others. As a result, vibration often plagues the system (Section 5.6.3). This assem-

bly scheme can be altered, and vibration potentially suppressed, at the cost of adding loss: by splitting the

cavity into two parts, end clamps can be replaced by internal clamps. Now, unfortunately, this introduces

seams back into our seamless design.
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transmon A

transmon B

readout B

Figure 4.18 | Experimental scheme for testing cross-coupling. A scheme for measuring the response
of transmon B to the excitation of transmon A in a separate enclosure. Transmon A is excited and a Ram-
sey experiment is performed on transmon B, with a variable inter-pulse spacing ⌧ . The detuning of the
resulting signal indicates the frequency shift of the mode and is related to the coupling strength g between
them.

The seammux: a compromise

The “seammux” is a two-piece design with a body and a lid, creating a seam that runs along the length

of the enclosure (Figure 4.19). The chip is placed on raised pedestals near the end that are integral to the

body. Identical pedestals extend from the lid. Soft indium wire of varying diameter is placed between the

chip and one or both pedestals to apply variable pressure or accommodate variable chip thicknesses. Like

the coaxmux, the pattern of enclosures can be repeated.

The lid can be secured to the body by fasteners along the length of and between enclosures, as well

as around the border. This encourages flatness of the joint, and could provide more even pressure from

multiple fastening points if compared to the coaxmux. Furthermore, the absence of external clamps means

that fewer parts must be relied upon to maintain intended alignment and interface pressure through the

course of thermal contraction. For these reasons, possibly, the symptoms of acoustic resonances are not

measurable in devices in this package.5

The vibrational response of chips measured in the coaxline or coaxmux geometries is consistent with

a mechanical flexural mode of the substrate (Section 5.6.3). The frequency of this mechanical resonance,

typically ⇠ 10 kHz for our chips with dimension 0.5 x 2 x 40 mm, analogous to the EM resonance of the

stripline itself, is largely determined by the length of the chip. If the observed resonance is driven by its

proximity to a particular driving frequency inherent to the experimental apparatus, such as the dilution

5. This claim is based on about forty measurements of 0.43 mm-thick, 1.5–1.95 mm-wide sapphire chips.
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Figure 4.19 | A coaxline variation with seams. a The seammux is similar to the coaxmux except that
the chip rests on internally constructed pedestals at each end of the enclosure instead of external clamps.
b A cross-sectional cut at the location of the dashed arrow in a. A separate lid (red) forms the other half of
the clamp. The seam formed by the lid joining the body is maximally distant from the chip, instead of in
the middle. c An image of the device without a lid. A single unit is outlined in yellow.

refrigerator’s turbomolecular pump, then by adjusting the length of the chip, the response should fall

away sharply. When much shorter chips were measured in the coaxline geometry, the vibrational behavior

did not significantly change (although the resonance frequency increased, as expected). Therefore, it is

reasonable to hypothesize that the resonance is broadly driven, and is a feature of the coupling rather than a

particularly unfortunate driving frequency within the apparatus. This is consistent with typical transmon

chips in 3D rectangular cavities, which have a markedly similar clamping mechanism compared to the

seammux. While these chips are much shorter, acoustic vibration has never been directly attributed to loss

in these systems.

Care must be taken to avoid seam loss in the seammux, naturally. The model of seam loss discussed

in Section 4.2.1 can be applied to this geometry. Simulations can place bounds on the lifetimes of ele-

ments within as a function of distance to the seam (Figure 4.20). Of note, however, is that the longest-

lived elements measured in a coaxline-like geometry have come from undercoupled resonators measured

in seammux packages. By carefully considering the effect of the seam on a typically seamless package de-
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Figure 4.20 | Seam loss in the seammux. Simulation of seam current as the position of the seam is
varied in simulation. The nominal height is 6.5 mm; the nominal width is 2.9 mm. The simulated Qi data
is shown for a conservative value of seam conductance (per unit length), gseam = 103/⌦m. The fit line is
shown for this gseam as well as more optimistic values.

sign, the seammux can overcome the complexity of end-clamping and enable highly coherent integrated

quasi-planar devices.

4.3.3 Scalable systems in circuit QED

Scalability, as discussed in Chapter 3, refers to the concept of increasing the computational power towards

a quantum computer that is capable of performing more complex algorithms. This is accomplished by

adding logical (and thereby physical) qubits, as well as the necessary error-correction mechanisms that

protect these new elements and the added interactions and couplings they bring. In our hygienic systems,

we hope to introduce this protection naturally, to a large extent.

Seamless modules The seamless or near-seamless package designs discussed so far have already demon-

strated “clean” integrability, either by multiplexing through use of a common feedline, or combining many

elements on a single chip. The feedline-coupled designs, which seek to isolate the separate systems, can also

regulate interactions between them if replaced with a bus resonator or bus cavity (Figure 4.21). Single-chip

designs also can form the basis of quantum modules, which would require (at the very least) transmon,

readout, and memory capabilities. With a particular vision of module in mind, we can combine these tools

to enable the necessary interactions.
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Figure 4.21 | Ideas for complex planar–3D integration. There exist natural extensions of the scal-
ability for systems described in this chapter. In the near term, at least, elements could be interleaved and
multiplexed to produce a denser connectivity graph that is useful for many experiments in quantum in-
formation. A top view (a) and side view (b) of two multiplexed coaxline resonators that are coupled via a
third, perpendicular transmon chip on another layer. This idea could be naturally extended to multiple
interconnects, multiple layers, and multiple unit cells.

The relatively large coaxline enclosure size and rudimentary external wiring design sets an ultimate

limit on the number of systems that can be interconnected. Particularly when integrated with 3D cavi-

ties, so as to enable, for example, a long-lived quantum memory, the size of an individual system will be

large. Therefore, these systems are probably suitable for scaling in the near- to mid-term; modifications

will probably need to be made to scale to thousands of devices.

Future modifications might not simply increase device density, or reduce element footprints, but also

add features that assist in scaling. These capabilities could include the integration of on-chip amplifiers, en-

abling single-shot multiplexing. Switching, routing, or conversion elements could become critical aspects

of devices that would serve as modules within a quantum network (Section 3.3).

The MMIQC A longer-term scaling solution will look similar but will probably be composed of dif-

ferent hardware—hardware that is not only lithographically patterned, but assembled with lithographic

precision as well. One such candidate is the multilayer microwave integrated quantum circuit (MMIQC)

architecture. The ability to create 3D cavities [140] and transmons [149] with reasonably high coherence

has been demonstrated in this architecture. Using fabrication schemes similar to those used to create the

3D MMIQC cavities, trenches could be formed to act like coaxline enclosures. Circuits might be pat-
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terned on thin membranes, minimizing dielectric participation and allowing large spatial extents of the

mode fields.

A wafer-based solution to scaling like the MMIQC could also address the complexity of interconnec-

tion. Coupling pins and tunnels would take an analogous form in the MMIQC, but in a stripline archi-

tecture in trench enclosures. With proper seam loss mitigation and ground plane connections between

layers, the MMIQC could offer a vastly greater level of complexity and integrability while affording the

benefits of lithographic precision and assembly.

This vision for an ultimate scalable architecture serves as valuable motivation for designing, under-

standing, and making our near-to-mid-term coaxline-style prototype modules robust.



5
Identifying Dissipation Sources in cQED

Modules

The previous chapter introduced new, high-performance devices that could be incorporated into a module

that satisfies our vision for modular quantum computing. We also emphasized the importance of main-

taining coherence, through careful engineering, as coaxline enclosures, striplines, and 3D cavities are com-

bined within this modular architecture. One outstanding challenge in scaling the number of elements

(and modules) further, then, will be to minimize the dissipation and thereby extend the coherence times

of individual cavities and qubits.

In engineered quantum circuits such as ours, dissipation can take the form of the conversion of mi-

crowave electric field phonons into phonons in dielectric materials (heat and vibration), resistive heating

in conductive materials, or by electrically or photonically coupling to external paths from which it cannot

be recovered. Stray electric coupling can be modeled, simulated, and controlled by microwave engineering

and common hygiene practices (many of which were discussed in Section 4.3.1). The presence of dielec-

tric materials in an ac electric field, however, automatically introduces a means for dissipation via phonon

excitation, and is difficult to isolate or avoid.

Some amount of dielectric material has so far proven to be necessary in cQED, serving as the support

substrate on which circuits are patterned. In the presence of a dielectric substrate, thin surface layers will

often also form in which electric field energy can reside and dissipate. Metals, whether deposited into thin

layer or in bulk, are also necessary in circuit QED systems. These metals can either host oxides or impurities

87
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that impede conduction.

One or more of these loss mechanisms will limit our systems at any point. That is to say that while all

channels of loss contribute to some extent, one or a few will dominate and the others will be inconsequential—

at least until those limited sources are removed, and one of the others begins to dominate. Only a system

constructed of perfect dielectric (vacuum) and perfect superconducting walls (at 0 K) is fully immune

from these losses.1 Therefore, it is advantageous to design systems such that as much electric energy field

energy resides in vacuum as is possible, and that currents are confined to high-quality materials. In or-

der to move forward in the absence of perfect systems, these loss mechanisms must be understood and

characterized. The relative spatial energy concentration in different materials and regions, called energy

participation ratio, is a useful way to analyze these likely sources of loss.

Two classes of devices are of interest in this study. The first consists of 3D structures and cavities that

are largely formed by traditional machining (Section 5.3). The second class consists of planar or quasi-

planar devices that are characterized by thin, patterned metal layers on a dielectric substrate that is generally

shaped by dicing or cleaving (Section 5.4). These layers are patterned by lithography and may undergo ad-

ditional processing, such as treatment in solvents or by plasma etching. Both machining and lithography-

related processes may alter the intrinsic properties of these materials. Natural exposure to an oxygen-rich

environment may also alter interface properties through oxidation. Both of these types of device will be

incorporated into a cQED module, and so it is important to understand the loss mechanisms that limit

each.

In this chapter, I will introduce the formalism of participation ratios required to treat this problem

(Section 5.1). Various forms of potential loss will be identified and studied. Testbed systems are needed to

identify the materials and interfaces contributing to the largest dissipation in our cQED systems, as well as

1. A superconductor well below its critical temperature, Tc, is perfect only to a very good approximation, however. The
surface resistance, and thus the quality factor of a superconducting cavity resonator, depends on the fraction of quasiparticles in
the conductor and their response to oscillating electromagnetic fields. Mattis-Bardeen theory gives the dependence of the surface
impedance on frequency and normal-state material quality [67]; it can be expressed in terms of a complex surface impedance �1+
i�2 that both depend on temperature. The ratio of the components determines the significance of the resistive channel, which is
proportional to

�
(~!)2/(kBT )

�
ln (4kBT/(~!)) e��/(kBT ), where � is the superconducting gap energy in the BCS theory

and ! is the frequency of the fields [68, 150]. At an achievable temperature T ⇡ 20 mK, the dimensionless part of this factor
evaluates to about 10�46. This should produce cavity quality factors much greater than 1010 at microwave frequencies, and
yet no such devices have been measured. The temperature-dependence of this behavior can be shown to agree with expectations
before saturating at low temperature due to other mechanisms [67, 151].
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evaluate them after measures are taken to mitigate the offending losses. The seamless systems discussed in

Section 4.3 are well-suited for such studies, which will involve both simulation and measurement of many

varied systems within these testbed structures. An understanding of these limitations will be critical to the

task of constructing the best possible cQED module.

5.1 Energy participation ratios

Energy participation ratios constitute an intuitive way to characterize and compare the spatial and material-

based division of electromagnetic (EM) energy in a system. The participation ratio is indexed by each

mode, or configuration of electric and magnetic fields. Single structures, like resonators, for example, will

have different arrangements of EM fields at different frequencies.

In a microwave circuit, where EM fields exist in structures that can be more capacitor-like or inductor-

like, it can be useful to consider two separate participation quantities. The first, the electric field participa-

tion ratio, is defined as pk = U
(E)
k

/U (E)
tot , the ratio of electric field energy in a material indexed by k to the

total electric field energy. The second, the conductor participation ratio, is defined as↵k = U
(H)
k

/U (H)
tot —

a similar comparison, but for magnetic field energy.

It is important to note that on resonance, the electric and magnetic energies are equal: U (E)
tot = U

(H)
tot .

This means that we must be conscientious of sources of dissipation that arise in conductors as well as

dielectrics.

5.1.1 Mechanism-dependent quality factor bounds

Among candidate interfaces, bounds can be set based on system coherence over all previous experiments

involving this interface. The most stringent, meaningful bounds are set by the experiments in which the

interface in question participates strongly, and yet the system demonstrates high coherence. Therefore, a

suitable testbed must (1) isolate the desired interface as well as possible, reducing the possibility of another

interface participating with equal or greater value, (2) generally retain high coherence, and (3) ideally, allow

a parameter to be varied so as to observe a clear dependence related to the interface in question.

The first two requirements become clear from the general expression for the quality factor arising from
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1

Figure 5.1 | Resonant circuit with many losses. The total quality factor comes from a combination
of the internal quality factor Qi which encompass “environmental” loss rates �i that lower the measured
quality factor. Additionally, the coupling quality factor Qc also “loads” the total measured Q.

a single dominant loss mechanism, Qmaterial , where the participation is given by pmaterial :

Qmaterial � pmaterial ⇥Qmeasured. (5.1)

The third requirement becomes evident through practice, since contributions of many sources obscure

the search for a single effect (Section 5.1.2). These individual sources combine in the fashion indicated in

Figure 5.1. Loss rates �k are related to quality factors by the definition of the quality factor,

Qmaterial,k =
!Utot

�material,k
(5.2)

which relates the energy stored, Utot to the rate of dissipation. Since loss rates adds, this means that quality

factors attributed to N loss mechanisms must be combined in reciprocal and accordingly weighted by their

participation ratios, pmaterial,k:

1

Qi

=
NX

k=1

pmaterial,k

Qmaterial,k
=

NX

k=1

1

Qk

. (5.3)

In Figure 5.1, the coupling quality factor Qc is treated separately, leading to a “total” measured quality

factor

Qmeasured =
1

Q
�1
c +

NP
k=1

Q
�1
k

=
1

Q
�1
c +Q

�1
i

. (5.4)

Our candidate testbed, the seamless coaxline architecture, offers high coherence and tunable partici-
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pation of modes through geometric modification. It is well suited to evaluate the performance and limi-

tations of planar devices. The seamless coaxial stub cavity also demonstrates high coherence (millisecond

lifetimes), and along with other 3D cavities is thus positioned to place bounds on the quality of bulk con-

ductors and their surfaces. Transmons, which localize fields strongly near bulk dielectric, can also reveal

insight into the quality of dielectric surfaces. Therefore, tests can be performed in many similar systems

differing slightly in parameters affecting the participation ratios of loss mechanisms suspected of limiting

these systems. With enough variations, and of course, proper statistical sampling, bounds on many of

these suspected sources will arise.

5.1.2 Limits and combined losses

Many of the analyses performed in this chapter will use the assumption of a single loss mechanism to

set a limiting bound on the quality of the mechanism in question. But what if N sources contribute,

particularly at a similar level? Since we have established that Qs add in reciprocal, so will the participation-

weighted Qmaterial s (Equation 5.3). The more sources contributing at equal level, the less stringent our

bound will become on any particular source’s Qmaterial .

If more than one mechanism is likely present in a loss survey, then the participation of all N should be

estimated by simulation for each of the tested variations. Bounds can be evaluated in the normal fashion

for each source. However, a multi-parameter fit can also be performed, obtaining best-fit values for each

of the parameters {Qmaterial,1, · · · , Qmaterial,N}. For more than one parameter, it is difficult to intuitively

evaluate the goodness of this fit, which falls within an N -dimensional space. The accuracy of this proce-

dure depends on the accuracy of the model used to produce the contributions, potentially leading to large

uncertainty. Furthermore, the number of measurements required to produce constraining fits increases

exponentially with N . Finally, any variability in sources of competing magnitude that are unaccounted

for in the model will obscure all other correlations (Section 5.6).

5.2 Modeling and simulating bulk dielectric participation

We first consider the dissipation induced by macroscopic (or “bulk”) dielectrics that serve as substrates for

our circuits. The dissipation of a dielectric material at microwave frequencies is given by its loss tangent,
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Table 5.1 | Bulk dielectric loss tangents. Best-case loss tangent bounds for dielectrics common in
cQED, adapted from ref. [152].

material tan �(⇥10�6) Qmaterial source
sapphire 0.02–0.3 (3–50)⇥106 [153, 154]

AlOx 1500–4000 250–700 [155, 156, 157]
AlN 1100–1800 550–900 [158]

silicon 0.15–200 5⇥ 103–7⇥ 106 [152, 159]
SiO2 320 3000 [158]
SiNx 100–200 5000–10,000 [158]

tan �, which relates the real and imaginary parts of the dielectric permittivity, ✏ = ✏1 + i✏2:

tan �material = ✏2/✏1 = 1/Qmaterial. (5.5)

The value of tan � is frequency dependent and can even be anisotropic (orientation dependent). Loss tan-

gents for materials common in cQED are presented in Table 5.1. Note that these values are representative

of single samples; the loss tangent measured for any one sample may depend on the source material quality,

growth type, doping or impurities, and additional processing.

Energy participation fractions can be obtained by simulating the electromagnetic field profile of a

resonant structure, for example in a finite element modeling software like Ansys HFSS, COMSOL, or

Sonnet. These macroscopic (mm-to-cm-size) dielectric objects can be simulated exactly within the model

geometry. An eigenmode-type simulation produces electric and magnetic fields at the resonant frequency,

from which the energy density can be evaluated:

UE =
1

2

ZZZ
(E ·D)dV =

1

2

ZZZ
✏|E|2dV, (5.6)

where ✏ is the electric permittivity of the material. In the case of a resonant cavity partially filled with

dielectric (region 1) and vacuum (region 2), the energy participation ratio in the dielectric can be expressed

as:

pdielectric =
UE,1

UE,1 + UE,2
=

✏r

R

1
|E|2dV

✏r

R

1
|E|2dV +

R

2
|E|2dV

. (5.7)
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In practice this quantity easily converges in simulation and is simple to compute. These will be com-

pared to measured values in designs containing dielectrics in Section 5.8. As an approximate point of

comparison, though, the coaxline resonators introduced in Section 4.3.1 typically have psapphire ⇠ 0.4,

whereas transmon qubits participate around psapphire ⇠ 0.9. The discrepancy between these structures

can also be easily understood by conforming each geometry to that of a simple, analytically addressable toy

geometry discussed below.

5.2.1 Model of a parallel-plate capacitor

An idealized structure, a toy parallel-plate capacitor, can be a helpful concept in modeling the electric field

participation in surface dielectrics among a variety of geometries. In the case of a rectangular cavity, this

model is related in a straightforward way and can be simply understood (see also Section 5.3.3). The TE101

mode of a rectangular cavity has nonzero electric field on just two faces, and so the surface fields can be

represented by a parallel-plate capacitor (a cross-section of top and bottom plates is shown in Figure 5.2a).

A lossy dielectric layer (green) is modeled on top of the surface (black), and has a thickness t (typically

assumed to be 3 nm) much less than the cavity height d (usually ⇠ 7 mm). The distributed energy density

along the width of a wall will scale as sin2(⇡x/w), but a parallel plate capacitor in electrostatics produces

a constant value across the width. In the cavity, the ratio of energy in the dielectric layer to total energy

also has a constant distribution, making the parallel-plate model a suitable representation. This surface

dielectric participation ratio in this model is then given by

pdielectric =
2UE,d

UE,all
=

2(t/✏d)E2
0A/4

dE
2
0A/4

=
2t

✏dd
(5.8)

where A = w⇥L is the area of the three-dimensional capacitor plate. Clearly, d serves as the characteristic

distance that sets the participation ratio in this model (for the rectangular cavity TE101 mode).

This model can be extended to characterize 3D cavities fully filled with a dielectric medium, by chang-

ing the filling dielectric in the capacitor model. Planar structures, like transmons or striplines, however,

contain conductors that produce fields partly living in regions with varying dielectric permittivity. These

can also be modeled as parallel plate capacitors, though partly filled with substrate dielectric. This model
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allows the energy to be calculated in all volumes, thereby obtaining an electric energy participation ratio.

All structures will have an effective parallel plate distance d0, permitting convenient comparisons.

As an example, the coplanar waveguide (CPW) geometry (Figure 5.2b) features a center conductor

and two flanking ground planes. It sits on a dielectric substrate that is assumed to be significantly more

extensive than all other dimensions. To model the thin layer of lossy dielectric (✏d), a half-filled parallel plate

capacitor represents the division of energy between the two regions. The plates are coated with the lossy

layer in question. The capacitance of a CPW (on the boundary of ideal, infinite half-spaces of dielectric

and vacuum) is given semi-analytically by

C ⇡ 2(1 + ✏sub)✏0L
K( w

w+2g )

K

 r
1�

⇣
w

w+2g

⌘2
! (5.9)

where K(x) is the elliptical integral of the first kind ([160], Equation 2.29). Because the capacitance of

the structure in Figure 5.2c is given by

C = (1 + ✏sub)✏0L
w

0

2d0
(5.10)

the two capacitances can be related to find e.g. w0 ⇡ 2.44d0 for the case where w = g.

The goal is to formulate a metric d
0 that is independent of platform or geometry. Thus, an absolute

w
0 must be determined that appropriately represents pdielectric . This is found by noting that in the partially

filled capacitor,

pdielectric =
4t

d0✏d

✓
✏sub

1 + ✏sub

◆
(5.11)

where t is the dielectric layer thickness. By performing a single 2D electrostatic simulation of the realistic

geometry and explicitly calculating pdielectric , the value for w0 can be found. We find that interdigitated

capacitor (IDC) structures with w = g typically produce w0 ⇠ g, whereas coplanar waveguide (CPW)

and coplanar capacitor (CPC) structures with w = g typically produce w0 ⇠ 1.3g.

In transmons, E-field energy is localized between capacitor pads, which have an effective parallel plate

distance that is approximately the distance from the closest edges of the two pads. This distance is typically
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(a) (c)

(b) MS dielectric
layer conductor

surfacesubstrate

Figure 5.2 | Effective parallel-plate capacitor model for planar structures. a A rectangular cavity
(cross-sectional dimensions d,w) with a metal–air surface dielectric layers (of thickness t ⌧ d, relative
permittivity ✏d) can be treated exactly as a parallel plate capacitor to obtain the participation ratio of the
dielectric layer. b Cross section of a CPW geometry. The conductor has thickness h and a metal–substrate
dielectric layer thickness t (not drawn to scale). c Structures on the surface of a dielectric substrate (relative
permittivity ✏sub), including the CPW, can be effectively represented as a half-filled parallel plate capacitor.
The ratio of w0 to d

0 is set by the geometry (such as g and w) and easily determined analytically, whereas
either individual value depends on h and t, and is most easily determined by electrostatic simulation.

much smaller than the distance to the outer cavity or enclosure wall; thus, this capacitance dominates. En-

ergy between the pads would divide equally between upper and lower half-spaces, if not for the dielectric

constant of the substrate. (Or, the displacement electric field is continuous across the substrate–vacuum

boundary.) The dielectric produces an apparent increase in effective ‘electrical’ volume, so an even distri-

bution of energy in this effective space (where the speed of light remains that in vacuum) will produce a

participation ratio that is approximately

psubstrate =
U(E),dielectric

U(E),vacuum + U(E),dielectric
⇡ ✏r

1 + ✏r
(5.12)

which for sapphire is ⇠ 0.9. Stripline structures are much more distributed, however; their capacitance

is defined between center conductor and the ground plane. Depending on the structure’s aspect ratio,

therefore, the energy is no longer equally divided between two electrical half-spaces. Specifically, more

energy is expected to exist in vacuum, reducing the bulk substrate participation ratio.
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5.3 Evaluating loss in 3D structures

Bare 3D cavities (that is, cavities absent of substrate chips or any other materials except readout couplers)

appear to consist of only the bulk material from which they are fabricated. (Planar structures, such as

those patterned on substrates, will be treated in Section 5.4). Losses may therefore arise from defects,

lattice vacancies, or magnetic impurities within the conductor [161, 162], microscopic layers of oxide that

have grown on their surfaces [119, 156, 163, 164], or from gases that condense and “cryo-plate” (adsorb

at cold temperatures) on surfaces of the cavity [165, 166].

We have systematically navigated a fraction of the parameter space necessary to identify the source of

limiting losses in several 3D geometries. This pursuit was made difficult by the variability between samples

that was sometimes present (Section 5.3.6), perhaps due to changing ‘environmental’ conditions. This may

be the manifestation of additional, uncontrolled sources of loss, which complicate the interpretation of

an incomplete model (Section 5.1.2).

5.3.1 Origin of bulk surface losses

The first step in a study of a loss mechanism is to formulate a model that can be compared to measurable

data. In the case of energy dissipation in surface layers of bulk conductors, exact knowledge of the compo-

sition and properties of these materials is still unclear. However, a model that assumes certain properties—

such as the thickness of a layer, or the permittivity of a material—serves as a basis with which to perform

meaningful comparisons. Here, we seek to inform these guesses so that our comparisons using this model

will depict the physical relations as accurately as possible.

Two forms of surface loss are typically attributed to bare cavities formed from bulk metal, such as our

3D high-purity aluminum cavities: dielectric oxide, and conductor loss. When these are assumed to be the

only contributions, they are characterized by their participation ratios and material quality factors as

1

Q(from surfaces)
=

pdiel

Qdiel
+

pcond

Qcond
. (5.13)

The nature of these contributions can be understood as follows.
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When exposed to air, aluminum grows an oxide. While the exact scale of this surface layer is not known

exactly, the growth process is understood to be self-limiting, typically at thickness levels of several nanome-

ters [164, 167]. The chemical composition of this aluminum oxide, Al2O3, is similar to sapphire. This

suggests that it is likely to have a comparable value of electrical permittivity, ✏r ⇠ 10. The structure of

the crystal is likely much more amorphous, disordered, and inclusive of impurities, however; higher loss

tangents are therefore to be expected [168]. Not all surface oxides will grow alike, and may depend highly

on the type of substrate. In particular, the nature of surface oxides grown on deposited metals will be

discussed further in Section 5.4.1.

Conductor loss is another important form of loss associated with surfaces. Since the current within the

superconductor is largely relegated to within a characteristic length scale from the surface, the penetration

depth�—the equivalent of the skin depth in a normal metal—the quality of the surface is more important

than the bulk quality, generally. In thick aluminum in the ‘dirty limit’, this depth has been found to be

just � ⇠ 50 nm [67]. (The penetration depth � in this limit will exceed the London length �L slightly, by

a factor related to the coherence length ⇠0 as (⇠0/�L)1/3. [68]) Conductor loss can therefore be classified

as a surface effect, extant on a scale similar to that of oxide growth. Studies of conductor surface loss for

for varying surface preparation have shown that the highest-quality microwave cavities are made by using

high-purity aluminum and preparing the surface by chemical etching [93].

5.3.2 Simulating surface losses

From our basic understanding of the sources of material dissipation gleaned in Section 5.3.1, we can

ascertain reasonable estimates of surfaces losses in thin surfaces simulated with a conventional, finite-

element, high-frequency electromagnetic field solver. On the scale of millimeters, a superconductor with

nanometer-scale penetration depth can be simulated as a perfect conductor (in which fields will imme-

diately decay). A thin dielectric layer will only minimally perturb the energy distribution. Electric and

magnetic field surface energy can be obtained and compared to the energy stored in all system objects to

obtain the surface layer participation ratios.

It would be difficult to directly simulate both nanometer-scale surface layers as well as the large, centimeter-

scale mode volume of a 3D cavity. At the same time, however, the approximation that resolves this conundrum—
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taking the electric field to be constant throughout the layer—should be relatively accurate. Therefore, we

proceed to perform simulations in this simple and direct fashion, bypassing the tricks required for more

complex features (Section 5.4.1).

5.3.3 Variation of energy participations

Due to the simplicity of 3D cavities, the principal way in which pdiel or pcond can be adjusted is by geo-

metric variations. This proves difficult, however, for two reasons. First, while seamed rectangular cavities

can be machined with many different dimensions, Section 4.2 explains why they are not likely to set ma-

terial quality limits compared to other designs. Seam loss can vary from assembly to assembly and run to

run, increasing uncertainty. On the other hand, to explorable a range of participation ratios in seamless

designs that would produce noticeable effects, geometries would have to change significantly. Such dras-

tic changes would task machining capabilities, particularly for designs like the coaxial stub cavity (Section

4.3.1), with aspect ratios that are already difficult to manage. Some geometries have higher-order modes

with frequencies within the measurement bandwidth and with a different arrangement of E and B that

will participate differently. In practice, however, the coupling to these higher modes can be very different

than the fundamental mode, making them difficult to measure during the same experimental run.

We can provide analytical expressions for the change in participation ratio for some designs, and per-

form simulations for others. In rectangular cavities, we expect a very simple relationship for the TE101

mode, where the participation ratios

pdiel = 2t/(✏rc) (5.14a)

pcond = 2�L/c (5.14b)

depend only on the narrow dimension c (Figure 5.3). In coaxial stub cavities with inner and outer radii a

and b, respectively, we expect the participation ratios to be approximately

pdiel ⇡
tdiel

✏r

✓
a
�1 + b

�1

ln(b/a)

◆
(5.15a)

pcond ⇡ �L

✓
a
�1 + b

�1

ln(b/a)

◆
(5.15b)
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(a) (b)

conduction layer

dielectric layer

vacuum

(c)

Figure 5.3 | Typical 3D cavity geometries. Definitions of the geometry of rectangular cavities (a) and
coaxial stub cavities (b) that will be measured in this chapter. c The surface layers of interest for participa-
tion ratio calculation in both geometries are a dielectric layer (green) and conduction layer (orange). The
black layer contains no volume, merely indicating a boundary.
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Figure 5.4 | Coaxial stub participation simulations. a–b Simulated (left) and analytically calculated
(right) values of dielectric participation (a) and conductor participation (b) in a coaxial stub cavity with
dimensions defined in Figure 5.3. All dielectric interfaces are taken to have ✏d = 10 and t = 3 nm.

where the coefficients of this equation can be understood through the discussion in Section 5.3.4. The

geometric similarity between the bulk surfaces of coaxline enclosures and the coaxial stub cavity make this

a useful first approximation for that geometry.

We compare these analytic expressions to calculated ones for exact coaxial stub cavity geometries in

Figure 5.4. They match very closely except where a approaches b, where increased significance of fringing

effects is not captured in the analytic expression. Similar simulations can be done for the rectangular cavity,

where the dependence only on c holds very strongly. (The curved ends of realistic rectangular cavities,

located along at end locations b apart, produce a deviation in pcond and only when b ⇠ a.)

Bare cavities are natural testbeds for measuring dissipation from bare cavity surfaces, of course. But

more complicated systems can be used, such as those containing additional dielectrics and resonant struc-

tures described in Section 5.4. Since the losses in these structures will be evaluated anyway, they can also

be used to obtain comparable bounds on the contribution of bulk surfaces.

This combination of challenges makes it difficult to perform a simple sweep in geometric parameters
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that can lead to an identifiable change in loss (Figure 5.4). Furthermore, the inability to change any pa-

rameters (except mode number, which even then can be limited by the range of accessible measurement

frequencies) in situ means that measurement variability will play a role in obscuring already-shallow trends.

Nevertheless, we press forward by simulating the participation ratios in common designs, measuring them,

and compiling the results to try to place the highest bounds on surface material qualities.

Choosing appropriate external coupling strengths

This chapter will present the internal quality factor Qi, which will often be shortened to Q, for many

resonant devices. Though the total loaded quality factor is more directly measured, the internal Q can be

extracted from the loaded quality factor through the fitting procedure discussed in Section 3.4.3. We will

strive to measure in an undercoupled regime, where Qi ⇡ Qtot . Measuring in a regime that is too over-

coupled can be misleading for several reasons. First, it can distort this extracted value, making the internal

quality factor appear higher due to noise. Second, a weak coupling is less likely to introduce external radia-

tion or harmful effects that are difficult to model. Third, resonators used as memory cavities will be used in

a weakly coupled regime; thus, testing them in this regime is more representative of actual use conditions.

Therefore, we try to avoid this regime as much as possible throughout these measurements.

5.3.4 Bounding surface dielectric and conductor losses

Dielectric loss is evaluated by calculating the energy in a thin layer of thickness tdiel and permittivity ✏r,

and comparing it to the total energy. This is almost always used in the regime where the relative dielectric

energy is less than 1% of the total energy; therefore, the denominator in the expression for participation

ratio omits the energy in this layer. The continuity of the electric displacement field D across the dielectric

boundary mandates that E?,diel = D?,vac/✏r = E?,vac/✏r, so from Equation 5.6 a calculation of the

ratio of electric energies becomes

pdiel =

1
2✏r

RRR

diel
|Ediel|2dV

U(E),all
⇡

1
2✏rtdiel

RR

diel
(1/✏2r)|Evac|2dA

U(E),vac
=

tdiel
RR

diel
|Evac|2dA

✏r

RRR
vac

|Evac|2dV
(5.16)
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Figure 5.5 | Bulk metal surface participations. The relationship between dielectric and conductor
participation follows the analytic curve (lines) in Section 5.3.3, with deviations from differences between
the realistic geometries and the analytical ones. The range of simulated data (points) includes the space
of all reasonably producible variations (including those in Figure 5.4). Arrows indicate the direction in
{pdiel, pcond}-space towards other devices that have been used to measure participation, such as cylindrical
cavities [67, 93] and fully planar resonators [169].

where dA represents a patch of the surface that separates dielectric from vacuum (and the approximation

holds for pdiel ⌧ 1).

Conductor loss is evaluated in simulation for bulk cavities in a fashion similar to dielectric losses, since

UB =
1

2

ZZZ

V

H · B dV =
µ0

2

ZZZ

V

|H|2 dV (5.17)

in our case. The quantity of interest is the surface layer magnetic field energy as it compares to the total

magnetic field energy. Here, the concept of a ‘layer’ is less concrete. The relevant ‘thickness’ that gives

us energy in the proper units is �, the penetration depth of the superconductor (as discussed in Section

5.3.1). Therefore, the conductor participation ratio becomes

↵ ⌘ pdiel =

1
2

RRR

cond
|Hcond|2dV

U(H),all
⇡
�L

RR

cond
|Hvac|2dA

RRR
vac

|Hvac|2dV
(5.18)

where, like the dielectric, the area integral is performed over the H-field as simulated at the surface bound-

ary.

The results of simulated aluminum and niobium cavity measured internal quality factors are plotted
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Figure 5.6 | Best-in-class 3D cavity measurements. Outer conductor and dielectric for the combi-
nation of materials and geometries of bare 3D cavities measured. The lines are bounds for each of the
materials, for which the associated loss tangents are marked. The legend lists the material type, quality,
cavity geometry, measured mode, and any additional processing.

in Figure 5.6 against surface dielectric and conductor losses. Lines of bounded Qmaterial help to identify

which experiments set the highest bounds on the material quality factor for each material. Three types are

aluminum are distinguished: the aluminum alloy 6061, aluminum 5N5 (99.995% pure), and aluminum

4N (99.99% pure). In the case of the electron-beam welded niobium cavity, different processing steps that

may affect surface quality are also indicated. They consist of combinations of buffered chemical polish

(BCP) etches and annealing, which is done by heating the cavity to 800 �C in ultra-high vacuum for two

hours. The bounding potential of these measured values will be compared to those in literature and to the

quasi-planar resonators and transmons measured later in Section 5.8.

5.3.5 Adsorption losses

Few studies have considered that a surface dissipative layer may not be ‘permanent’. If air or moisture is

present in a cavity when it is cooled down from room temperature and ultimately below its superconduct-
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Figure 5.7 | Experiment testing adverse effects of moisture. a A picture of the package and diagram
of the experiment performed, where frozen water fills the cavity up to a height indicated by the arrow. b
The simulated frequencies of the two modes are drawn as solid lines; the two frequencies measured in an
experiment without water are plotted as points. The dashed lines are the measured frequencies with ice,
and both agree well with a filling level of 11.6 mm.

ing transition temperature, that gas and moisture will freeze if it cannot escape. Experiments in which

cavities were intentionally filled with water showed that our typical process of assembling cavities does not

seal them hermetically. The competing processes of a refrigerator cooldown—simultaneous pumping and

freezing—means that a significant quantity of moisture can remain, however.2

Frozen moisture will probably collect as either a bulk volume (thick layer sitting at the bottom of a

cavity) or surface dielectric layer (adsorbed evenly on the walls), displacing vacuum and introducing dissi-

pation. We performed an experiment to determine the effect of frozen water on the surfaces of a cavity by

attempting to measure its dielectric loss tangent in a seamless coax stub cavity resonator (Figure 5.7a).

Coaxial stub cavities were filled with filtered, deionized water to represent condensed atmospheric

moisture. The cavities were “sealed” normally. A turbomolecular pump struggled much more than usual

to evacuate the outer vacuum chamber, until the pulse tube cooler was turned on and the dilution refriger-

2. In this experiment, the pressure of the chamber in which the cavity resides drops below 100 nanobar well before its temper-
ature drops below 0 �C. Any liquid water will thus quickly become vapor, skirting the triple point and eventually desublimating
into ice around �100 �C if it still remains.
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Table 5.2 |Results of water ice measurement. Characterization of water ice microwave loss properties
by resonator measurements. Mode A suffered from significant vibration, which may have reduced the
measured Qi with respect to Mode B.

mode f0 (GHz) pice Qi Qice bound
A 3.025 0.665 2.7⇥ 106 1.8⇥ 106

B 8.080 0.455 5.8⇥ 106 2.6⇥ 106

ator began to cool. This struggle was indicative of pumping on water at its liquid–vapor phase transition,

causing it to slowly evaporate. The refrigerator eventually cooled to reach usual temperatures near 20 mK.

The resonators were measured normally. They were found to have significantly reduced frequencies,

consistent with strong dielectric loading in the form of a bulk solid. Assuming water filling the cavity from

the bottom up and a dielectric constant ✏ice = 3.15 [170], the level of water was estimated based on the

frequency (Figure 5.7b) and was found to have decreased from the room temperature quantity. When the

refrigerator was warm and opened, approximately this quantity of water was observed to remain in the

cavities.

The measurements and bounds in Table 5.2 suggest that frozen water is, in some form, not detrimental

to the present level of performance of 3D cavities. We were able to place an upper bound on the loss tangent

of this form of ice to be tan �  3.8 ⇥ 10�7 at 20 mK and 8 GHz. This is contrary to the reports of the

loss tangent of ice at atmospheric pressures, extrapolated to be tan � = 5⇥10�4 at 255 K and 9.4 GHz, at

best [170, 171, 172]. It seems likely that water ice cooled to cryogenic temperatures, probably forming the

orthorhombic ice phase XI, may have very different electrical properties than normal hexagonal crystalline

ice. Realistic adsorbed amounts of water or atmospheric gas, like nitrogen, will be much smaller than

those tested here. Thus, the combination of small participation ratio and high material quality factor

bound should make the effect of such gases negligible as a source of bulk dielectric loss for many orders of

magnitude to come. (However, atmospheric moisture has been shown to have an effect on the surfaces and

edges of patterned structures [173].) If these results can be confirmed with further studies, frozen liquids

or gases could even be incorporated in cavity designs intentionally.
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5.3.6 Repeated thermal cycling

Degradation to the quality factor can occur if a sample is subjected to repeated cooling and warming be-

tween room temperature and millikelvin temperatures (Figure 5.8). This behavior has previously been

observed in some high-Q 3D cavities [151], though not in others [174]. While the cause is not definitively

known, and it does not always occur, there exist some theories based on the loss mechanisms discussed pre-

viously. Material impurities may not be static over many cycles of thermal contraction, and may migrate

or concentrate near the surface where conductor participation is highest. For example, hydrogen diffusion

may form hydrides at the surface of the metal or cause surface oxide to rearrange, positioning two-level

systems in sensitive locations [175]. Contact with solvents or air containing dirt or dust may form a thin

layer of dielectric. The material may also face mechanical damage, altering surface roughness.

Stripping the oxide and/or an outer layer of aluminum by chemical etching may return the surface to

close to its original condition. Control over the experimental environment can protect against changes

in magnetic field, for example, that might produce variability from thermal cycle to thermal cycle. These

remain to be examined further; by identifying and removing sources of variability, we can aid in our iden-

tification of the other loss sources discussed throughout this chapter.

5.4 Loss in planar structures

Planar structures typically involve additional processing, different materials, and more complication com-

pared with bare cavities. Therefore, we treat them separately, and primarily to survey the properties of

these added materials. The same analyses discussed in Section 5.3 can be applied to the enclosures binding

these structures; however, the plethora of possible parallel loss mechanisms will likely inhibit the setting

of bounds in this manner.

Similarly to bulk surfaces, loss in planar or quasi-planar structures can come from the dielectric oxides

on the surface of metals (Figure 5.9); an extensive review can be found in ref. [176]. Additionally, however,

the substrates on which conductors rest and the interfaces between materials contribute, depending on

the fabrication procedure. Generally, a single conductor layer (or multiple layers formed in situ without

atmospheric exposure) is thought to have three possible interfaces. The metal–substrate (MS) interface is
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Figure 5.8 | Performance of a coaxial stub cavity over repeated cooldowns. a Quality factors of the
same two coaxial stub resonators, part of the same aluminum piece, measured over successive cooldowns.
The state of the cavity prior to each cooldown is listed. “Vented” means that the cavities were fitted with an
air-permeable lid; “humidified” indicates that the cavity was not stored in a dry environment in between
cooldowns; “ice” means that the cavity was subjected to the conditions described in Section 5.3.5; “baked”
indicates that the cavity was heated above 100�C while under vacuum in an attempt to remove moisture.
b–c The relative frequency shift of each device. Data from cooldown 5 onward is plotted separately, since
Cooldown 4.5 induces a large jump in frequency.
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Figure 5.9 |Candidate dissipative surface layers. Interfaces that may contribute to loss in the coaxline
geometry. MS: metal–substrate, MA: metal–air (metal–vacuum), SA: substrate–air (substrate–vacuum).
Like bare cavities, the outer surface can also give rise to dissipation. Additionally, the bulk loss tangent of
the substrate can participate.

wedged between the metal and its supporting substrate; the metal–air (MA) interface, which will be metal–

vacuum during measurement, forms on top of the metal; the substrate–air (SA) interface may form before,

during, or after the metal deposition and might be similar to the MS or MA materials.3 The properties of

thin-film conductors can also differ from their bulk counterparts, even if they consist of the same material.

In this section, we will investigate the nature of materials-based loss in transmons, stripline resonators,

and comparable structures. Quasi-planar structures are evaluated using the packages introduced in Section

4.3.1, whereas transmons are measured in more traditional enclosures (the rectangular geometry of Figure

5.3). I will discuss our model of loss mechanisms, the extent to which approximations can be made in this

analysis, and what conclusions about geometry can be deduced.

5.4.1 Accurate planar structure simulations

Simulation of energy participation in electromagnetic resonant structures formed by thin-film conduc-

tors, such as stripline resonators, brings special challenges. This is due to a combination of two factors:

the wide range of feature sizes in a typical device (from hundreds of nanometers near a Josephson junction,

up to cavity sizes of centimeters), and approximations of thin-film metals that prevent simulation conver-

gence. Exact simulation of thin metal or dielectric layers is computationally challenging, and so they are

approximated as two-dimensional sheets. This produces diverging electric field at feature edges, for which

3. In some references, “air” is replaced with “vacuum” when labeling these interfaces. We retain the “air” notation since, with-
out exposure to oxygen at some point, these interfaces would probably not exist.
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a finite mesh will systematically under-represent the energy fraction stored in interface dielectrics.

We have developed a multi-stage, physically robust approach to address these complications and simu-

late arbitrary structures. Once appropriate parameter ranges have been determined, such simulations can

be applied to a variety of geometries with minimal human supervision. These simulation strategies en-

able our desired study of designs that vary participation ratios, placing bounds on the properties of surface

materials in planar structures. This approach separates and independently simulates nanometer-scale and

centimeter-scale features. Structures like the coaxlines of Chapter 4 require one additional electrostatic

simulation to accomplish this. When applied to the transmon (Section 5.7.1), however, the junction and

shunting capacitors must be treated differently, requiring multiple energy-extraction and scaling steps.

To avoid unphysical divergence, we first divide the lithographically patterned structure and its associ-

ated (assumed) MS and MA surfaces into “perimeter regions” and “interior regions” (Figure 5.10) with

their boundary fixed at a constant distance (x0, typically 1 µm) from the edge.4 In a global coarse 3D

simulation, electric field in the interior regions does not vary sharply, and therefore converges easily to a

trusted value that we may immediately record as EMA(x, y) or EMS(x, y) at the top and bottom surfaces

of the planar structure, respectively. We use these field distributions to calculate the surface participation

associated with the interior region of the structure (denoted by the subscript “int”):

pi,int = t

ZZ

int

✏

2
|Ei(x, y)|2dxdy/UE,tot (5.19)

where i = MS or MA, and UE,tot is the total electric field energy in the entire space (dominated by energy

in the substrate and vacuum). Here we have multiplied the field integral by the assumed thickness of the

surface layer, t = 3 nm, further assuming that the electric field is uniform across that thickness.

Critically, the field given by simulation of a 2D sheet is not exactly Ei. In the simulation, the field will

be physically sampled just above (where ✏ = 1, the relative vacuum permittivity) or just below (where

✏ = ✏sub , the relative substrate permittivity) the sheet. If we denote the sampled field as E0
i

, where i = MS

4. The SA surface can be similarly divided by a contour at a constant distance x0 from the outside of the edge. The treatment
of the SA surface is otherwise analogous to that of MS.
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Figure 5.10 | Dividing a 3D simulation into parts. a The “global” high-frequency 3D simulation
includes millimeter-to-centimeter-scale features within the cavity, such as the substrate and lithographic
geometry. Here, a transmon stands in for any planar structure; the junction geometry is treated as a lumped
element. All conductors are simulated as perfectly conducting sheets, and interface layers are omitted. The
inner (orange) and perimeter (gray) regions are separated (dashed green contour). The red window identi-
fies the cross section in b. b A cross section of edge of the lithographic structure, which is faithfully created
within a 2D electrostatic simulation that supplements the global simulation. The three interfaces of inter-
est with thickness t are shown are MS (red), MA (purple), and SA (blue), while the divided regions of the
superconductor (thickness h) are shown in orange ( A�, “interior region”) and gray (“perimeter region”)
and are separated at position x0. The perimeter region is further divided into a cross-hatched region C�,
that converges only in this 2D simulation, and a region B� that is convergent in both simulations. When
simulated, symmetric boundaries are established to represent an interdigitated capacitor (IDC) style de-
vice with conductor width w and gap width g (w, g ⌧ x0). Drawing is not to scale. (Figure adapted from
[163]; see Copyright Permissions.)
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is below, and i = MA is above, then the extrapolated field is given by

EMS =
✏sub

✏
E0MS (5.20a)

EMA =
1

✏
E0MA. (5.20b)

The perimeter regions can be described by a spatial coordinate (x, y, z) as shown in Figure 5.10, where

the y-axis winds around the edges of the pads of a transmon, remaining tangent to the perimeter. We fur-

ther divide the perimeter regions into two halves. Energy in the half adjacent to the edge (0 < x < x0/2)

fails to converge, regardless of initial mesh parameters, following the adaptive mesh refinement process.

The other half (x0/2 < x < x0) can be made to converge using a mesh configuration that is computa-

tionally accessible. The key concept to this strategy is to employ a constant ratio, or “scaling factor” Fi, to

convert the integrated field energy in the convergent half into that of the entire perimeter regions, so that

pi,per = Fi t

x0Z

x0/2

dx

I

y

✏

2
|Ei(x, y)|2dy/UE,tot (5.21)

The spatial distribution of electric field in the perimeter region (“per”) can be written using separa-

tion of variables as |E(x, y, z)| = C(y)f(x, z) in the limit of x, z ! 0. This is because the electric field

near a metal edge should have a local scaling property independent of distant electromagnetic boundary

conditions. Here f(x, z) describes the edge scaling that can be applied to any cross section, independent

of y. The actual form of f(x, z) depends on material thicknesses and dielectric constants, and is difficult

to derive analytically. However, we can compute f(x, z) in a 2D cross-sectional electrostatic simulation

of the conducting structure in question, which accounts for the actual thicknesses of each material (Fig-

ure 5.10b). The reduced dimensionality allows for accurate computation of the field inside the interface

layer with sub-nanometer spatial resolution. We choose boundary conditions representative of the width

of the pad (w) and the separation of opposing electrodes g (for a transmon), or the separation between

the ground plane (for a stripline). Although such a cross-sectional simulation may not perfectly reflect

the boundary condition in 3D space, as we already noted, f(x, z) is independent of the distant boundary

conditions as long as x, z ⌧ g, w. As an illustration, f(x,�t/2) is shown in Figure 5.11a for a few very
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Figure 5.11 | Using 2D electrostatics to scale 3D simulations. a Normalized distribution of electric
field within a cross section of the MS interface near the conductor’s edge, f(x,�t/2). It is calculated
from the edge inward along a line that bisects the MS interface (Figure 5.10b. Values are plotted for simu-
lations of three sets of boundary conditions, where the first number represents the width of the conductor,
w, in micrometers, and the second number is the distance between features, g, in micrometers, as in Fig-
ure 5.10b. b A selection of MS scaling factors FMS (Equation 5.22a) for varied perimeter region width
assignments (x0), simulated with various boundary conditions and following the labeling convention of
a. We typically choose x0 = 1 µm, indicated by the dashed black line. This value strikes a balance be-
tween boundary condition insensitivity and computational ease (indicated by arrows and the diverging
lines). (Figure adapted from [163]; see Copyright Permissions.)
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different values of g and w.

For striplines and transmons with feature sizes typically 10–500 µm in their smallest dimension (still

ignoring the junction and its leads), and separations on about the same scale, the edge scaling function

f(x, z) correctly extrapolates the field within the perimeter region for properly chosen x0. From f(x, z)

we can calculate the scaling factor Fi based on the ratios of integrated field energy within the cross section:

FMS =

x0R

0
dx

0R

�t

f
2(x, z)dz

x0R

x0/2

dx

0R

�t

f2(x, z)dz

(5.22a)

FMA =

x0R

0
dx

h+tR

h

f
2(x, z)dz +

0R

�t

dx

h+tR

0
f
2(x, z)dz

x0R

x0/2

dx

h+tR

h

f2(x, z)dz

(5.22b)

Scaling factors FMS for various extents of the perimeter region are shown in Figure 5.11b. We limit

our method to the regime where x0 ⌧ g, w, where FMS is insensitive to the values of g and w. In practice,

we use x0 = 1 µm for typical structures (which are at least 10 µm in width and separation). Inserting

these simulated scaling factors into Equation (5.21) allows one to arrive at pi,per .

Surface–air scaling factors The scaling factors for the remaining surface, SA, can be determined in

almost exactly the same way. The factor FSA references an energy in the SA layer, within 0  x  �x0/2,

to the MS region beneath B�. Much like the interior region of the conductor, where simulations converge

easily, energy from the remainder of the SA region can be extracted explicitly. In our simulations, this

includes the side and rear faces of the substrate chip.

In coaxlines, it is helpful to have pre-compiled a library of scaling factors for many variations. These

simulated factors and their dependences on geometric variation are shown in Figure 5.12. The magnitude

of the MA scaling factor depends on whether a dielectric layer covering the sides of the conductor is in-

cluded in the 2D simulation. Omitting this layer reduces FMA by a factor of ⇠ 10. All factors depend

somewhat critically on conductor thickness, and in particular the ratio t/h.
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Figure 5.12 | Perimeter energy scaling factors in the coaxline. Scaling factors for MS, MA, and
SA (rows) as they are calculated to change with selected variations in coaxline geometry (columns). The
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0.43 mm thickness. Conductor thickness h = 80 nm and dielectrics have t = 3 nm and ✏d = 10. The
lines represent cubic splines that are used to interpolate.
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5.5 Varying participation ratios in coaxlines

The effects in Section 5.3, as well as those introduced above for planar devices, can be probed by measuring

many striplines fabricated with different parameters. Our coaxline devices, consisting of a single layer of

superconductor (aluminum) patterned far from the edges of a diced substrate—typically sapphire—are

among the simplest planar devices that can be measured. To simplify matters and compare devices more

consistently, a multiplexed design like that in Section 4.3.2 can be used to measure many variations at once.

Whereas participation ratios are difficult to vary over a wide range in bare 3D cavities (Section 5.3.3),

planar structures offer more flexibility. Compared to transmons, striplines feature more straightforward

fabrication and a simpler loss model. A stripline resonator can be made short, long, straight, serpentine

(adjusting all losses), or even thick or thin (adjusting effective penetration depth). By altering the patterned

design, a matter easily accomplished through lithography, loss-determining parameters can be varied, as

observed in Figure 5.13.

Multiple stripline structures can be patterned on a substrate (Section 5.5.2), creating multiple inter-

acting modes that do not just scale monotonically together, but can vary participations vastly in a diverg-

ing fashion. In devices with multiple substrates, the concentration of energy in dielectric or in vacuum

depends on the arrangement of these chips. It is thus apparent that many options exist for varying partic-

ipation ratios; we will survey a number of such variations here.

Some variations have the effect of scaling the expected behavior of multiple mechanisms in more or less

the same way. For example, bringing transmon capacitor pads closer increases the participation of metal–

substrate, metal–air, and substrate–air interface layers. Increasing the diameter of the coaxline enclosure

dilutes nearly all volume participations (but reduces isolation between elements). This behavior should be

expected; the same participation ratio model explains the increase in lifetime between coplanar waveguide

cavities and 3D cavities. While these multi-mechanism trends are important to identify and implement, it

means that geometric variations can be less useful in distinguishing particular sources and setting bounds

on their magnitudes.
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Figure 5.13 | Simulated coaxline surface layer losses. Simulated dielectric and conductor participa-
tion ratios of a coaxline stripline resonator for (a) variations in length, (b) variations in width, (c) vari-
ations in substrate width, and (d) variations of the enclosure diameter. Labels are nearest the the axes
they represent. Each sweep of an individual variable holds the others fixed at their nominal values (length
12 mm, width 0.3 mm, substrate 1 mm by 0.43 mm, enclosure 3.34 mm). MS (blue) and MA (green) are
metal–substrate or metal–air dielectric interface participations, respectively. “Inner” (red) and “outer”
(brown) refer to the conductor participation for inner (stripline) or outer (package) conductors, assuming
�L = (50 nm, 250 nm), respectively. “Outer” (pink) refers to the package oxide layer. Solid lines rep-
resent data obtained through an exhaustive multi-stage simulation (Section 5.4.1); dashed lines are con-
ventional simulation results. (For the package surfaces, they agree.) All conductors are assumed to be
aluminum, with a sapphire substrate. Throughout this chapter, all dielectric interfaces are taken to have
✏d = 10 and t = 3 nm.
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5.5.1 Geometry of a single stripline

Any chosen pattern can be inserted into the coaxline enclosure, with different designs determined by

lithography (or even adjusted through post-processing). In particular, one can simply vary the substrate

width, thickness and positioning, as well as the conductor width, length, and shape. Varying the diameter

of the enclosure itself also turns the knob on nearly all participations within the coaxline enclosure (Figure

5.13).

In Figure 5.14, we show the measured internal quality factors of around 60 measurements of coaxlines

compared to their simulated values of various layer participations. The bounds that can be set on the

loss tangents associated with each of these sources’ materials are plotted as lines, and are determined by

the highest product of quality factor and participation. Numerous experiments fall beneath, rather than

coincident with, these lines. In these cases, a single source of loss does not describe the observed behavior

well.

If more than one mechanism contributes at a near-equal level, then the bounds derived from these

devices alone will predict a quality factor that is much lower than the one measured. This results in some

of the data of Figure 5.15a sitting below the line of equal expected and measured Q. The remaining data,

which sits above the line, suffers from loss that is lower than predicted by all bounds combined. Another

way to visualize this data dependent on many dimensions is to admit uncertainty, treating the bounds as

guesses. The data can then be fit using a many-dimensional model to produce a best-fit loss tangent for

each mechanism (Figure 5.15b). This approach is accurate only if the set of loss mechanisms we model is

complete.

While the resultant fit does a better job of drawing the line through the data than the bound val-

ues do, it cannot account for the fact that nominally identical devices were sometimes measured to have

vastly different quality factors. This observation confirms that our loss model is incomplete. Further, the

minimal improvement from Figure 5.15a to Figure 5.15b suggests these unknown effects often dominate.

(Alternatively, to some extent, material or interface quality may actually differ between samples.) We pro-

pose some ideas for what these unaccounted mechanisms may be towards the end of Section 5.5. In the

meantime, however, it can be fruitful to try to learn about “best-case” bounding mechanisms by analyzing
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Figure 5.14 | Aggregate coaxline measurements compared to participations. Measured inter-
nal quality factors are compared with the simulated participation ratios stemming from (a) the metal–
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Figure 5.15 | Coaxline performance from combined loss. a Expected internal quality factors (Q)
are determined from the bounds set by the highest-Q and largest-participation samples when compared to
each participation type. The bounded loss tangents here are (6⇥10�3

, 9⇥10�2
, 5⇥10�3

, 2⇥10�5
, 5⇥

10�3
, 8 ⇥ 10�1

, 2 ⇥ 10�7) for MS, MA, SA, inner conductor, outer conductor, outer dielectric layers,
and bulk dielectric, respectively. b Expected Qs are determined based on least-square fitting that minimizes
the distance from the dashed line. The loss tangents from this fit are approximately (0, 0, 5⇥ 10�7

, 3⇥
10�5

, 5⇥ 10�3
, 0, 0).

measurements that appear least affected by variable mechanisms.

Enclosure diameter One variation that can be performed is that of enclosure diameter. To produce

controlled conditions, we constructed a single-piece multiplexed enclosure in which identical chips were

measured in tunnels of varying diameter. In Figure 5.16, we plot the data of these specially controlled

experiments (square datapoints), as well as the compilation of all other data, as a function of enclosure

diameter.

The best Qs in these devices are measured for intermediate enclosure size, which supports none of the

predicted loss mechanisms, nor any fixed combination of them. From the few experiments in controlled,

multiplexed devices, however, the rise in Q seems sharper than that predicted by the inner, substrate-based

mechanisms. It is possible that, in these cases, losses from the enclosure walls dominated. This scenario

would require that the material quality factors of these layers was lower than the best-known bounds.

Stripline width In one experiment, devices from the same chip and fabrication run were produced to

have different widths. Referring to Figure 5.13, this varies the participation of surface layers associated with

the substrate and patterned features differently that those of the enclosure. Therefore, it can be useful to

distinguish the limiting cause of loss.
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Figure 5.16 | Variations in coaxline diameter. Measured quality factors versus enclosure diameter.
Dotted lines represent the calculated behavior of a loss mechanism associated with a substrate layer or
stripline conductor (“inner” effects); dashed lines are for the enclosure losses (“outer” effects). The dotted
and dashed black lines are the combination of inner and outer effects, respectively. Square datapoints come
from experiments where four identical devices were measured simultaneously in a multiplexed package.
The test values of loss tangents used here are (10�2
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Figure 5.17 | Variations in coaxline stripline width. Measured quality factors versus stripline width.
Dotted lines represent the calculated behavior of loss mechanisms associated with a substrate layer or
stripline conductor (“inner” effects); dashed lines are for the enclosure losses (“outer” effects). Square
datapoints come from an experiment where five devices with varied width were measured simultane-
ously in a multiplexed package with identical enclosures. The test values of loss tangents used here are
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Figure 5.18 |Variations in coaxline substrate width. Measured quality factors versus stripline width.
Dotted lines represent the calculated behavior of loss mechanisms associated with a substrate layer or
stripline conductor (“inner” effects); dashed lines are for the enclosure losses (“outer” effects). Square
datapoints come from an experiment where four devices with varied substrate width were measured si-
multaneously in a multiplexed package with identical enclosures. The test values of loss tangents used
here are (10�2
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, 1.3) for MS, MA, SA, inner conductor, outer conductor, and
outer dielectric layers, respectively.

Figure 5.17 shows the measured quality factors arranged as a function of stripline width. We observe

stronger dependence on surface effects at smaller widths, with increasing quality factor as width increases.

This is consistent with substrate surface conductor or dielectric loss, and corresponds well with the simu-

lations in Figure 5.13. However, as width increases, the quality factor in this controlled experiment begins

to level off. This could indicate the sudden dominance of effects of the wall of the enclosure. The dashed

lines in Figure 5.17 roughly follow this behavior. Together, the combination of all the predicted loss mech-

anisms might explain these observations.

Substrate size Varying substrate size has the effect of changing dielectric participation more than con-

ductor participation. In one experiment, we prepared identical samples on a single chip, but diced the chip

to make the substrate wider or narrower. The measured Qs of the resulting experiment are highlighted in

Figure 5.18.

This figure shows that the controlled experiment agrees well with the trend of the best values in the

combined data from all experiments: Q increases with increased substrate width. The dotted and dashed

lines show that, for all else fixed, the electric-field-based losses should display the opposite behavior. Con-

ductor losses, on the other hand, are not predicted to change as a function of substrate width, since no

energy in the magnetic field is being repositioned. Therefore, it seems like the best values in each cate-
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Table 5.3 | Serpentine resonator simulated surface losses. Simulated dielectric and conductor losses
for a serpentine resonator of three different pitches, compared to a typical non-serpentine coaxline device
(one with length matched to the serpentine device, and one with frequency matched to the serpentine
device). The “pitch” here is defined as�x�w in Figure 4.11, where w is the conductor width. Simulations
are done in a 4 mm-diameter tunnel with w = 0.1 mm and a 1.95 mm by 0.43 mm sapphire substrate.

pitch
(mm)

length
(mm)

pMS
(⇥10�6)

pMA
(⇥10�6)

pSA
(⇥10�6)

pcond,strip
(⇥10�3)

pcond,encl
(⇥10�3)

pdiel,encl
(⇥10�9)

psubstrate

- 5.7 30 2.0 23 1.6 7.4 62 0.735
- 12.0 21 1.5 18 1.5 7.4 84 0.517

0.05 5.7 17 2.5 30 1.5 1.6 37 0.557
0.15 5.7 19 2.0 33 1.4 1.5 41 0.513
0.25 5.7 11 2.1 18 0.8 1.6 54 0.462

gory of substrate width are not limited by dielectric losses, but by a combination of conductor losses and

another yet-unknown effect.

Serpentine striplines An alternative coaxline structure introduced in Section 4.3.1 is that with serpen-

tine leads. The narrow “pitch” between the meandering segments of conductor causes the resonant mode

energy to reside near interfaces and surfaces to a greater extend than the “unraveled” form of the coaxline.

Therefore, they should experience higher loss. In practice, serpentine striplines are typically not used as

memories, and are instead strongly overcoupled and used as readout resonators. In the interest of evaluat-

ing their possible performance, however, the results of a participation ratio simulation are shown in Table

5.3.

5.5.2 Multi-mode stripline patterns

The most extreme variations in participation ratio often come from a drastic design variation, rather than

adjustment of a continuous variable. One such variation that can be probed in situ is that of multiple

modes. End-to-end coupled stripline modes, such as those in Section 4.3.1, are more or less independent

and will not produce differing participation ratios. If two striplines are coupled side-by-side, however,

two vastly different fundamental modes appear (Figure 5.19). These can be characterized as common or

differential modes; the common mode appears most like the mode of one stripline.

From its likeness to a single stripline, the common mode will have moderate bulk dielectric partic-
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(a) (b)adjacent opposite (c)

Figure 5.19 | Geometry of multiple-stripline devices. Electric field contours are also shown. a Adja-
cent striplines feature a common mode (green), where both resonate in a fashion similar to that of a single
stripline. Their differential mode (red) concentrates more field between them and through the substrate. b
Opposite striplines have a common mode (green), similar to the adjacent striplines, as well as a differential
mode (red) that heavily focuses field through the substrate. c Optical micrograph of a device with opposite
striplines.

ipation (⇠ 25–40%). The proximity of the differential mode, however, produces significantly higher,

transmon-like participation in the bulk dielectric (⇠ 90%) and surface layers. One can also pattern the

two striplines on opposite sides of the chip. This creates two modes, again, but where one participates

strongly in the bulk substrate (akin to the transmon). The other acts more like a standard stripline mode

on either side.

We calculate the expected participation ratio of such modes of such devices, and measure several. The

results of these measurements are shown in Figure 5.20. While this small sample size produces results

not as statistically significant as the compilation of measurements above, it does indicate some consistent

trends. Further, the range of participation ratios spanned by modes of the same physical device (thus reduc-

ing measurement variation) is much larger than for standard coaxline devices, which helps to distinguish

trends from other sources.

Looking at the participation ratio trends, devices again seem more consistently limited by MS, MA,

and SA interface layers. Comparing the loss tangent bounds that can be set with this experiment to those

in the coaxline devices, only the quality of the enclosure dielectric layer is bounded at a higher value. A

seven-parameter fit of the form

Q
�1
measured =

X

k

pk,simulated tan �k (5.23)
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Figure 5.20 |Quality factors frommultiple-stripline devicemeasurements. Measured internal qual-
ity factors of multi-mode samples are compared with the simulated participation ratios stemming from (a)
the metal–substrate and substrate–air layers, (b) the metal–air layer, (c) the bulk substrate, (d) the stripline
conductor quality, (e) the enclosure conductor quality, and (f) a dielectric layer coating the enclosure.
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Figure 5.21 | Multiple-stripline performance from combined loss. A multi-source loss model for
double-strips. a Expected internal quality factors (Q) are determined from the bounds set by the highest-Q
and largest-participation samples when compared to each participation type. The bounded loss tangents
used to construct these “expected Qs” are (1.6 ⇥ 10�2

, 2.8 ⇥ 10�1
, 1.2 ⇥ 10�2

, 1.2 ⇥ 10�4
, 3.9 ⇥

10�3
, 2.7⇥10�1

, 5.4⇥10�7) for MS, MA, SA, inner conductor, outer conductor, outer dielectric, and
bulk dielectric, respectively. b Expected Qs are determined based on least-square fitting that minimizes the
distance from the dashed line. The loss tangents from this fit are (1⇥ 10�9

, 3⇥ 10�9
, 2⇥ 10�9

, 1.6⇥
10�4

, 2 ⇥ 10�10
, 0, 0) for MS, MA, SA, inner conductor, outer conductor, outer dielectric, and bulk

dielectric, respectively.

allowing the loss tangents {tan �k} to vary produces more reasonable agreement than for the coaxlines

(Figure 5.21). This fit suggests that dominant inner conductor loss best explains the data. Normalized

to the smaller sample size, this kind of experiment is far more effective at reaching new regimes of energy

participation ratio and setting material quality bounds.

5.5.3 Direct measurement of kinetic inductance

Using the methods described in refs. [67, 93], we can directly measure the kinetic inductance fraction↵ by

varying the temperature of the sample. The model we use is derived by calculating the surface impedance

(Zs = Rs + i�Xs) of a superconductor using BCS theory. Varying temperature will cause both the real

and imaginary parts of the impedance to change. The change in Rs will change the quality factor of our

microwave resonator to change, whereas a change in the differential reactance �Xs will shift the frequency.

We can fit the change in frequency according to

f(T )� f(T ⇡ 0)

f(T ⇡ 0)
= ↵

�Xs(T )

Xs(T ⇡ 0)
(5.24)
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where the surface reactance at low temperature is given by !µ0� and � is the penetration depth. From

this analysis, we can extract ↵ directly from measurements. We can also compare this value to a simulated

value to obtain �, the penetration depth, and learn about the quality of the conductor.

This analysis in coaxlines is complicated somewhat by the fact that the inner and outer conductors

may have different kinetic inductances and possibly different material properties. Since the inner and outer

conductors of many of the devices surveyed here are both aluminum, they will have similar critical super-

conducting temperatures. This makes it difficult to disassociate their kinetic inductances without carefully

tracking the resonator through both superconducting transitions, or making assumptions about the rela-

tive scale of the two effects. One way they can be easily separated, however, is to switch the inner or outer

conductors to materials with significantly different critical temperatures.

We performed a measurement using deposited niobium, with a thin-film critical temperature Tc ⇠

9 K, as the center conductor for a coaxline device in an aluminum enclosure. The resonator was tracked

through Tc of the enclosure, and the frequency and quality factor were recorded. In Figure 5.22 the data

were fit to the model of BCS complex surface impedance to obtain the kinetic inductance fraction and the

critical temperature. Since the critical temperature of our bulk aluminum is well known from prior mea-

surements, we can fix the Tc as necessary to aid the fit. Here, we show data passing through Tc, allowing

for extraction of the outer conductor Tc = 1.168(2) K with high certainty. This also returns a reason-

ably bounded value on the kinetic inductance fraction, ↵ = 1.81(2) ⇥ 10�5, of our outer enclosure.

(Because Tc of the niobium is so much larger here, we dismiss its effect on the changing frequency of the

resonator. We justify this decision by observing the clear and expected behavior of a singular aluminum

superconductor, exhibiting negligible deviance up to at least 2 K.)

This measured value for the enclosure ↵ alone can be used to calibrate/verify simulations and ex-

tract information about the center conductor ↵ in other measurements (Figure 5.23). We repeat this

temperature-dependence measurement to extract ↵ in several other aluminum/aluminum devices. These

devices include those with different enclosure sizes, different substrate widths, and even coaxlines pat-

terned with multiple modes. The variation in kinetic inductance is small among them, and does not con-

clusively make conductor loss culpable.



5.5. Varying participation ratios in coaxlines 127

0 1 2
T (K)

0

5

10

¡
±f
=f
0
(£
10
¡
6
)

Figure 5.22 | Varying temperature to extract enclosure kinetic inductance fraction. Differential
frequency shift measured as a package containing a niobium stripline resonator in an aluminum coaxline
enclosure is heated up. From this, we can extract the kinetic inductance fraction and critical temperature
of the enclosure package.
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Figure 5.23 |Measured and simulated values of kinetic inductance fraction. a Comparison of the
simulated expectation of the kinetic inductance fraction of the stripline to the measured values. Agreement
in the slope is good, indicating a reasonable assumption of penetration depth, but the simulation appears
to maintain an offset participation that may not be realistic. b The measured quality factors as a function of
the measured kinetic inductance fractions. The line depicts the value obtained from the simulated bound.
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5.5.4 Fabrication methods

The suspicion of substrate-based loss mechanisms prompts the question: can special processing be done

to remove these layers entirely? [109] Other works have shown that process changes can be made to adjust

the presence of harmful interface layers [164, 173]. To this end, we experimented with different fabrication

processes.

In a departure from the norm of a standard “additive” liftoff process, where photoresist or e-beam

resist is first patterned on the wafer before metal deposition, we performed “subtractive” lithography on

select samples. Here, the aluminum was first deposited on sapphire under conditions that could be more

stringently controlled and varied than for the additive process. Then, to remove the aluminum and to

form the desired pattern, dry plasma etching or wet chemical etching was performed. In some cases, an

oxygen plasma “descum” step was also done.

One can also vary the conditions in which the metal is grown. Depending on growth conditions, one

can form epitaxial or amorphous aluminum with small or large grains. Our typical fabrication process

makes use of an e-beam deposition tool, which is generally regarded to produce higher-quality aluminum

films than by sputtering. We measured a number of devices grown at relatively low temperature (near room

temperature) using a molecular beam epitaxy tool. The performance of the specially processed devices is

shown in Figure 5.24 are compared to the normally processed ones.

5.5.5 Substrate and conductor materials

In a more drastic departure from normal fabrication processes, we can also consider changing our substrate

or conductor materials to find ones of a better quality.

Sapphire is known to be one of the lowest-loss materials available to use as a substrate in our frequency

and temperature regime (Table 5.1). In addition, using sapphire can be preferable because it is an excel-

lent conductor of heat at low temperatures [177]. Silicon, however, sports the advantage of greater ease

of processing, and the knowledge and backing of a vast semiconductor industry. It is versatile as it can

be etched used to form useful microwave structures such as vias and cross-overs. Thus, in recent years,

properly treated silicon has become a viable rival substrate to sapphire for superconducting circuits.
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Figure 5.24 | Quality factor histogram, comparing processes. Histograms of measured quality fac-
tors for stripline resonators in coaxline packages. These measurements correspond with variations in (a)
substrate growth type, (b) processing steps, (c) the inner conductor growth method, or (d) the outer con-
ductor material purity. The substrate is edge-defined, film-fed growth (EFG) or heat exchanger method
(HEM) sapphire, which in one case has been annealed at ⇠ 800 �C overnight prior to deposition. The
patterning process is done with photoresist and liftoff, followed by an optional oxygen plasma “descum”
step (including a dip in hydrofluoric acid). An alternative patterning process involves deposition of the
conductor followed by resist patterning and a wet etch (using MF319) or a “dry” plasma etch (using Cl in
an Oxford 100 plasma etcher). Double-layer deposition follows the recipe for bridge-free transmon fabri-
cation, whereas MBE growth refers to the low-temperature growth of an amorphous aluminum film on
sapphire. 5N5 aluminum is 99.9995% pure, while 4N aluminum is only 99.99% pure; aluminum 6061 is
a common alloy.
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Table 5.4 | Results from silicon devices. Results of the best coaxline devices on a silicon substrate for
any given process and material combination. Process 1 corresponds with a standard silicon liftoff fabrica-
tion, with an added HF vapor etch between each step [179]. Process 2 is a plasma etch using SF6, with
etch parameters 10 sccm, 13 mTorr, 100 W power and -390 V bias. Process 3 uses a SiO2 hardmask (later
stripped with HF vapor) and a wet etch using NH4O4. Process 4 uses an SF6 plasma etch with 50 sccm
flow, 80 W power, and 95 mTorr pressure. Process 5 is a dry etch of 80 nm NbTiN using a mix of SF6 and
O2 (flow rates 20 sccm and 13.5 sccm, respectively) at 30 mTorr.

Device Conductor Process f0 (GHz) Qi(n̄ ⇠ 1) (M) Qc (M)
CT2a Al 1 7.51 0.738 1.1

CT2b Al 1 7.39 0.690 19.8
FU14a2 TiN 2 8.392 0.49 0.77

NIST TiN 3 8.859 0.20 7.0
FV14b1 TiN 4 7.833 0.14 0.6

BX15b NbTiN 5 8.015 0.64 42

Silicon, however, has generally produced lower lifetimes in microwave resonators and transmons than

for sapphire. A study of the lifetime of transmons fabricated on silicon (data reproduced for comparison

later in Section 5.8) found that the bulk loss tangent was probably a dominant source in most regimes [97].

This would mark a notable difference from sapphire devices.

In this study, we also fabricated coaxlines with aluminum conductors on a silicon substrate. Silicon de-

vices mimicked the geometry and processing of sapphire ones, but performed more poorly. We also tested

different metals, such as niobium, niobium titanium nitride, and titanium nitride. These required differ-

ent (subtractive) fabrication processes, and could not be compared one-to-one with the sapphire devices.

However, they also performed poorly, in general, as shown in Table 5.4—possibly due to the generation

and redistribution of lossy materials when etching using the processes that are non-standard for sapphire

devices [178].

Since these materials are widely used in other regimes, it should be possible to make them high quality.

We failed to develop a successful fabrication recipe except in one case of aluminum-on-silicon devices,

discussed in the following section.

Etching for substrate removal Compared to sapphire, silicon can be easily etched. Etching can sig-

nificantly reduce the influence of loss mechanisms associated with the bulk substrate and metal–substrate

layer, while increasing those of the substrate–air and metal–air interfaces. (Changes to geometry alone
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Figure 5.25 | Profile of an etched coaxline a A cross section of an aluminum stripline on a silicon
substrate, before and after undergoing the DRIE process. b A scanning electron microscope image of the
end of the resulting stripline structure.

Table 5.5 | Results from etched silicon devices. Results of several aluminum-on-silicon coaxline res-
onators after undergoing the BOSCH process.

Device a (µm) b (mm) Q(n̄ ⇠ 1) (M) Q(n̄ � 1) (M)
control A 0 0 0.58 0.74

A1 20–40 0.110 0.5 0.5
A2 0.7 0.105 5.2 7.3

control B 0 0 0.20 0.30
B1 0.7 0.03 7.2 12
B2 0.7 0.03 5.9 9.6
B3 0.7 0.03 4.2 >6

would scale these participations together, as shown in Figure 5.13.) Following the procedure in ref. [97],

we perform a one-step deep reactive ion etching (DRIE) BOSCH process on aluminum striplines on a

silicon substrate, producing the profile seen in Figure 5.25a. We then measured the devices in the same

fashion as all the other resonators in this chapter; the results are shown in Table 5.5.

Device A1 performed no better than the control device. Though device A1 had a large undercut,

microscopy revealed that this undercut was not uniform around the perimeter of the device, and led to

significant overhangs and folding in places. In some locations, the etch produced a curved wall as opposed

to the intended straight profile. We attribute this behavior to poor substrate cooling due to the long aspect

ratio of the chip; temperature variability is known to critically affect the BOSCH process [180].

Device A2 fared better according to electron microscopy (Figure 5.25b). In this device, we measured a

single-photon quality factor much larger than for other unetched silicon-based devices in this study. It also

showed a strong improvement in quality factor at higher powers, a characteristic of limitation by TLSes
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in a surface dielectric layer.

The devices in the B family were etched with a shallower aspect ratio and better temperature control,

and also showed good improvement compared to the control device. This drastic jump in performance to

the same level as sapphire devices suggests that silicon devices offer a promising way forward if fabrication

difficulties are mastered and material properties carefully controlled. It also suggests that the silicon devices

in this study were limited by the bulk silicon loss tangent and/or the metal–substrate layer, consistent with

the findings in ref. [97].

5.5.6 Substrate processing

The device processing workflow usually ends with dicing or cleaving the patterned substrate to produce

a desired shape. The typical method of dicing, which uses a rapidly spinning saw to cut through the ma-

terial in a method akin to traditional machining, causes rough, chipped edges. This kind of dicing clearly

damages the edges, creating chips and fractures. It is unclear exactly how, but reasonable to assume, that

stressed and fractured substrate edges could influence the loss mechanisms discussed in this section.

We experimented with other dicing techniques, both involving lasers instead of blades. Our chips,

which contain resonators, should not be at as significant of a risk from local heating and other potential

ill effects of lasers. Two forms of laser ablation were used: “stealth dicing” (a process that internally mod-

ifies the crystal structure and then uses tape expansion to cleave), and a process called “LEAF dicing” (a

low-temperature ablation process that sublimes and evaporates material and is rasterized across the cuts

before mechanical cleaving) [181]. Figure 5.26 shows microscope images of the edges of chips subjected

to different forms of dicing, as well as the result of measured resonators in each case. As with many of the

other process alterations discussed in this section, dicing could not be identified as a ‘smoking gun’ in this

case. While it is certainly possible that saw-based dicing could, or does, limit us in some instances, it does

not seem consistent with being a dominant effect. If that were the case, anyhow, these experiments have

shown that alternative dicing techniques are available.
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Figure 5.26 | Comparing substrate diced edge quality. a–b Optical micrographs of sapphire sample
chips following (a) traditional blade dicing and (b) LEAF dicing (which appears qualitatively similar to
the stealth-cut chips). c Histogram of device performance, highlighting the devices that have undergone
different dicing processes. Both blade-free dicing processes produced quality factors within the standard
distribution, thereby not pinpointing blade damage as a certain limiting source of loss.

5.6 Measurement variability

Throughout this chapter, we have lamented the fact that measured quality factors do not seem to be well-

described by an all-encompassing model of consistently contributing loss mechanisms. Here, we provide

examples of these observations and touch upon a few of the difficult-to-quantify mechanisms that may

contribute.

5.6.1 Repeated thermal cycling of transmons and resonators

Much like with 3D cavities, degradation of the quality factor or changes in device parameters can occur in

quasi-planar resonators and qubits through repeated cooling and warming [182, 183]. This may arise from

changes to material and interface properties, or possibly due to changes in compression of the clamping

mechanism, for example via stiffening of compliant indium. Though rare with sapphire, tightly clamped

chips can sometimes crack or break entirely.

We performed a series of experiments, repeatedly cooling down the same samples in the same package.

They were not cleaned or repackaged between experiments. We measured the resonant frequency and

quality factor over time (Figure 5.27). The Qi of most devices followed a general downward trend, and did

not strongly correlate with the conditions in which the device was cooled. The frequencies also decreased
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Figure 5.27 | Coaxline quality factors over repeated cooldowns. a Quality factors of the same
five coaxline devices over successive cooldowns measured in a single multiplexed coaxmux package. In
cooldown 1, the package is treated normally. In cooldown 2, it is baked (see Figure 5.8 caption). In
cooldown 3, it is vented. In cooldown 4, the sample is directly and extensively evacuated. In cooldown
5, the sample is baked and then cooled without breaking vacuum. b The relative frequency shift of each
device.

as compared to the frequencies of the first cooldown. While variation in frequency could suggest a shift

or settling of chips within their mounts and relative to the enclosures, a downward trend may be more

suggestive of an added loss, such as growth of dielectric oxide or accumulation of debris, from repeated

atmospheric exposure.

We also repeated this repetition experiment for transmons mounted in seammux packages (Figure

5.28). Here, the transmons are cooled down in identical conditions each time. Again, while there is some

cooldown-to-cooldown variation, the general trend of all coherence values is downward. This is not neces-

sarily representative of all transmons; some characteristic “gold standard” devices have retained high coher-

ence when tested on a roughly annual basis. Such fluctuation may be more indicative of the measurement

apparatus, such as cable and filtering parameters, than device surfaces and interfaces. However, it high-

lights the variability that makes the evaluation of loss in planar devices challenging.

5.6.2 Assembly imprecision

Since the capacitance of a distributed quasi-planar element depends on its position within the coaxline

enclosure, a mispositioned stripline or transmon can produce undesired results. Furthermore, a change

in position in situ, such as that stimulated by mechanical vibration, can cause a variable frequency and

broadened linewidth that may limit its performance (Section 5.6.3). To determine the coaxline’s robust-
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Figure 5.28 | Transmon coherence properties over repeated cooldowns. The T1 (a) and Ramsey
and echo T2 coherence times (b–c) of five transmons measured in a multiplexed seammux package over
successive cooldowns.

ness to misalignment during assembly, we simulate the resulting frequency with respect to perturbations

in different directions (Figure 5.29). Adjustments to chip placement and orientation will also change the

participation ratios of various interfaces. Therefore, unexpected variability in assembly can lead to vari-

ability in measured Qs.

5.6.3 Effect of acoustic vibration

Throughout these measurements, kHz-level vibrations were observed in measurement signals, particu-

larly near the microwave resonance frequency of planar devices. This has the effect of reducing measured

performance of resonators, setting lower bounds on material qualities than might otherwise be achieved.

Since the magnitude of the effect depends on a number of variables that are not tightly controlled, such as

the manner in which the chips are held, it also leads to measurement inconsistency. In this subsection, I

discuss observations and likely causes and solutions to this undesirable behavior.

The spectrum of the vibration can be determined by taking a Fourier transform of a time-series mea-

surement of the magnitude or phase of resonator transmission (Figure 5.30). For rapid sampling of the

resonance peak at a rate much faster than the kHz noise, the movement of the peak as a function of time

is resolvable. When the movement is stimulated by an acoustic tone that is largely sinusoidal (peaked at

one frequency), sufficiently slow sampling has the effect of producing an seemingly broadened resonance

peak.

Frequency-sensitive measurements, such as those performed on a vector network analyzer, are thus
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Figure 5.29 | Coaxline sensitivity to perturbations in placement. Fractional change in frequency
and quality factor, referenced to a nominal frequency f0 and quality factor Q0 at zero displacement, for
(a) a displacement along the axis of the enclosure, (b) parallel to the substrate face, or (c) perpendicular to
the substrate face. (Figure adapted from [7]; see Copyright Permissions.)
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Figure 5.30 | Symptoms of mechanical vibration. a Power spectral density of arg(I + iQ) of the
demodulated steady-state transmission response for a coaxline device that is clamped at both ends. b The
same type of device is measured in a package where it is only clamped at one end. Significant response in
magnitude and phase is observed at very low frequencies and near 4 kHz.
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Figure 5.31 |Modeling mechanical vibration. a A model of a coaxmux device susceptible to vibration,
where sapphire chips are colored in green and clamped at both ends. b This model is input into a mechan-
ical finite element simulation, which identifies the mechanical resonant modes and their shapes. Here, we
see one such mode corresponding with the flexing of one of the sapphire chips (exaggerated). A second
chip flexes slightly because it has a nearby mechanical resonant frequency.

sensitive to this effect. A broadened linewidth will translate to reduced quality factor, which is representa-

tive of the energy lifetime of the device. Measurements of the energy ring-down can potentially differen-

tiate between energy and phase stability of the resonator. This measurement method, however, can only

extract the resonator’s loaded quality factor. Further, any power-dependent effects will be folded into the

time dynamics and become more difficult to discern, compared to steady-state measurements. Therefore,

only undercoupled resonators with particularly power-independent behavior can be used to extract infor-

mation about the low-power unloaded quality factors of vibrating resonators.

A suite of mechanical simulations and corresponding tests, wherein different device assembly meth-

ods were explored, were performed to identify the mechanism through which resonator frequency changes

(Figure 5.31). Using the finite element modeler COMSOL, eigenmode simulations of the exact device ge-

ometry (using boundary conditions that allowed the ends of the beam-like substrate chip to pivot) repro-

duced the measured acoustic resonance frequencies very closely. Alternate suspicions, such as vibration

of the package as a whole, or resonance of normal or feedline coupler pins, did not produce simulated

resonant frequencies anywhere near the observed ones.

Ultimately, these resonators are to be used in conjunction with a transmon. So how will a proximal

transmon, or even one patterned alongside on the same chip, react to this kind of noise? Here, the con-

finement of the transmon field reduces its sensitivity to changing capacitance-to-ground, say, by vibrating

on a suspended chip, at least in comparison to distributed lithographic transmission line structures. The
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Figure 5.32 |Quality factor histogram, comparing packages. A histogram of device performance for
stripline resonators in coaxline and coaxmux packages (gray) as well as those in seammux packages (orange).

coupling strength of the transmon to a nearby feature should also vary little, particularly if they are already

widely detuned.

Acoustic noise can potentially cause more potent problems, however. Vibration can heat the substrate

or the conductor. It could also induce bulk or surface piezoelectricity, which may reduce lifetimes in trans-

mons [184]. Clearly, it preferable to avoid uncontrolled vibrations, no matter the method through which

they inflict loss. This will require improved precision and careful engineering of assembly and clamping

techniques.

5.6.4 A seamed, vibration-free alternative enclosure

As we just saw, samples measured in coaxline or coaxmux packages often suffer from significant vibration.

Vibration can reduce the signal-to-noise ratio and broaden the resonance curve (depending on measure-

ment bandwidth), and will be discussed further in Section 5.6.3. The seammux package, introduced in

Section 4.3.2, does not appear to induce or allow vibrational broadening. We measured a number of de-

vices in this package, the data for which is included among the other plots in this chapter. For clarity,

however, we highlight the devices measured in this package in Figure 5.32.

While the best individual Q was, in fact, measured in a seammux package, these packages seem to

enable the same general distribution of quality factors as is provided by the coaxline and coaxmux packages.

The presence of a seam in the seammux package may introduce variability in measurement that is removed

when vibrations are suppressed—an unfortunate trade-off that can be mitigated as shown in Figure 4.20.
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It offers a hopeful outlook, however: that by understanding which element is key in suppressing vibration

in the seammux, we may inform our construction of improved coaxline and coaxmux packages as well.

5.7 Varying participation ratios in transmons

In addition to a layer of deposited aluminum, transmons consists of a Josephson junction, which could

possibly contribute losses through other mechanisms. Therefore, we treat our studies of the transmon sep-

arately, including by addressing the Josephson junction and the surrounding features explicitly (described

in section 5.4.1). In transmons, the ratio of perimeter to surface area of the shunt capacitor pads is the

primary method by which participations are adjusted.

To investigate the relationship between transmon loss mechanisms and their measured performance,

we will first calculate the values of MS, MA, and SA interface participation ratios. Then, by performing

variations in the geometry that change these simulated values, the lifetime of the transmon will be measured

and its relationship to interface energy participation characterized.

5.7.1 Simulating transmon junction leads

The same technique introduced in Section 5.4.1 is applied to the capacitor pad structures of the transmon.

The lead and junction area, however, must be treated somewhat differently.

A schematic of the Josephson junction and the leads is shown in Figure 5.33a, where x-axis and y-axis

are defined perpendicular and parallel to the leads, respectively. We divide the surfaces associated with the

junction leads into three regions based on distance from the junction: the near region (|y| < 1 µm), the

intermediate region (1 µm < |y| < 10 µm), and the far region (|y| > 10 µm). The surface participation

ratios for these regions are denoted by pi,near , pi,mid and pi,far respectively, where i = MS, MA or SA. The

near region of the leads is not explicitly included in the global simulation. The intermediate and far regions

are included in the global simulation, but the surface integration of field energy does not converge due to

the influence of edges. A scaling factor solution akin to that in Section 5.4.1 demands x, z ⌧ g, w, but

the lead is too narrow and too close to the junction to satisfy this. We use a supplemental “local” 3D

simulation of the junction leads as shown in Figure 5.33a, which includes the thicknesses of all materials,

to compute the surface participation of all three regions surrounding the leads.
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Figure 5.33 |Reconciling 2D and 3D simulations of transmon leads. a A local, near-junction simula-
tion. Energy is integrated within cross-sections of the MS interface layer (red). Separately, energy measured
along the bisector (yellow) is used for “stitching”: comparing local and global simulations in convergent
areas to establish a common energy scale. b A top-view of the local simulation. The junction (black) is
explicitly simulated with thickness t. The “accurate” area here (dashed) includes near and intermediate
regions, and some adjacent SA dielectric; the far-region field is too sensitive to boundary conditions. The
stitching region (hatching) marks the edge of this area. c A top view of the global simulation. The inter-
mediate and far regions are explicit; the near area (extent d) is taken as a lumped element. The accurate
portion of the leads (dashed) is near their center; energy near edges or the lumped element diverges. The
comparison of stitching extent (hatched) along the bisector (yellow) to that of b establishes the constant
local–global electric field scaling. Within the stitching region, the cross-sectional energy density is normal-
ized by the bisector energy density to obtain an energy ratio f(x, z) independent of y, useful for finding
pi,far from Equation 5.26. (Figure adapted from [163]; see Copyright Permissions.)
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This high-resolution local simulation is performed by applying a static voltage potential between the

pair of leads across the junction. The boundary of the local simulation is set sufficiently far (typically

25 µm) to ensure the calculated field distribution Eloc(x, y, z) in the near and intermediate regions is not

affected by the type of boundary condition used. The absolute electric field magnitude in this local sim-

ulation is set by the imposed voltage, and must be rescaled by a constant C to be consistent with the field

scale of the global simulation from which Utot is obtained.

This constant C can be determined by comparing Eloc(x, y, z) with the field distribution in the global

simulation Egbl(x, y, z) in a selected overlapping region (“stitching extent”) where both simulations are

reliable. In particular, we choose the stitching extent as the center line of the leads in the 5 µm < |y| < 10

µm region (Figure 5.33b). Such a choice avoids the numerical imprecision of the global simulation in areas

close to the junction or the edges. It also avoids any artificial boundary effects of the local simulation by

remaining distant from the boundary. We have confirmed the two simulations show consistent spatial

dependence over this stitching extent, Egbl(0, y, 0) / Eloc(0, y, 0), and the constant C is computed from

the ratio of the two.

Surface participation ratios for the near and intermediate regions of the leads can then be immediately

calculated by integrating Eloc(x, y, z) over the volume of interest. For example,

pi,near = C
2
ZZZ

i,near

✏

2
|Eloc(x, y, z)|2dx dy dz/Utot (5.25)

The surface participation ratios from the near and intermediate regions are expected to be independent of

the design of the electrodes.

On the other hand, Equation 5.25 does not apply to lead energies in the far region, which is not fully

included in the local simulation. To calculate pi,far we adopt a separation-of-variables approach by not-

ing that |Eglb(x, y, z)| = |Eglb(0, y, 0)|f(x, z). Here f(x, z) describes the cross-sectional distribution of

electric field in dimensionless units (normalized by the field magnitude at the center line of the lead) (Fig-

ure 5.33a). It can be obtained from the local simulation of the junction leads discussed above, which also
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Figure 5.34 | Energy participation from junction outward. Cumulative energy participation in the
MS layer for transmon junctions. While capacitor pad design (selections of extremal geometries shown) al-
ters participation ratio, the near-junction participation is unaffected by distant features. We choose a region
< 1µm (shaded) in which to disregard energy participation. (Figure adapted from [163]; see Copyright
Permissions.)

confirms that f(x, z) is independent of y for y � 1 µm. Therefore,

pi,far =

yfarZ

10µm

✏

2
|Eglb(0, y, 0)|2dy/UE,tot

ZZ

i

|f(x, z)|2dx dz (5.26)

where the second integral effectively produces a constant factor that converts the electric field at a single

point of the center line into energy per unit length along y. This factor is equal to 7.5⇥ 10�15 m2 for the

typical lead width of 1 µm.

Ignoring the junction For typical transmon junction-lead geometries, the calculated energy participa-

tion within several µm of the junction (1) is smaller than that across the capacitor pads, usually contribut-

ing at most half of the total participation, and (2) varies negligibly across geometric variations of the larger

structure. In fact, the largest portion of this contribution comes from the region up to ⇠ 10 nm from the

junction. The cumulative MS participation is plotted in Figure 5.34 as a function of distance from the

Josephson junction. Because of its geometric invariance, adding this contribution would only reduce the

transmon lifetimes of all designs equally.

But what physical argument justifies the dismissal of a possible contribution to loss? One can expect
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Figure 5.35 | Transmon lifetime for varied geometry Measured transmon T1 (normalized to 6 GHz)
for four different transmon geometries. Each is measured in a ‘V2’ rectangular 3D cavity and coupled
weakly enough to avoid Purcell limitation. Transmon type A is of the standard 3D variety. Transmon type
B is of the ‘spidermon’ type, which maximizes pad perimeter. Transmon type C is a lengthy ‘tiltmon’, with
pads distributed across ⇠2 mm and tilted so as to fit on the chip. Transmon type D, the ‘gapmon’, derives
most of its capacitance from coplanar-style pads with a varied gap width g. (Figure adapted from [163];
see Copyright Permissions.)

the defects that form two-level systems, thought to dominate dissipation in our oxides, occur with some

regular distribution and density. This oxide should be similar in many respects to the oxide that forms

the Josephson junction dielectric barrier. Former studies, however, have demonstrated that this junction

dielectric (for small junctions, like ours) has a very high quality [124, 185]. These observations help to

justify why participation from the hundred-nanometer-scale segment nearest the junction can be ignored

at present performance levels.

5.7.2 Transmon performance with geometric variations

To evaluate the loss tangent limitations of transmon interfaces, and compare them with those of quasi-

planar coaxline resonators, we probe the energy relaxation times of four geometric designs of transmons,

shown in Figure 5.35. The participation ratios in the assumed interfaces (where we also take ✏d = 10, t =

3 nm for consistency) are simulated according to the above procedure. The measured T1 values display a

strong correlation to the simulated participation ratio of the metal–substrate interface layer, pMS . How-

ever, Figure 5.36 shows that other interface and surface layers vary similarly with geometry. However,

participation of the bulk substrate dielectric (in this case, sapphire), as well as participation of the package

conductor and dielectric layers, does not vary with the observed dependence. In this study [163] and others
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Figure 5.36 | Comparative scaling of surface losses with geometry With the variations in transmon
geometry from Figure 5.35, metal–air and substrate–air participations scale with metal–substrate partici-
pation, while bulk substrate participation does not show this dependence. This suggests that performance
limitations in transmons is not limited by bulk, but makes it difficult to immediately determine which
interface layer dominates the observed loss. (Figure adapted from [163]; see Copyright Permissions.)

[97, 154, 186, 187, 188, 189], it can be difficult to determine which of the three surfaces are the dominant

contributors based on these data alone, because the three loss tangents cannot be extricated from the total

measured loss that changes with transmon geometry. However, we can use ancillary observations to help

pinpoint the primary culprit.

First, one might assume that the chemistry associated with the aluminum film could lead to similar

composition (and thus material quality) of the MA and MS layers. However, the MA layer is naturally

inclined to have a participation ratio between ✏d and ✏2
d

times smaller than that of the MS layer. For the

MA to dominate the loss, or at least contribute equally, it would have to have tan �MA & ✏d tan �MS .

Further, one would expect the MA layer to be particularly dependent on the post-fabrication environment.

However, repeated measurements of transmons, which would reflect degradation over time, do not vary

significantly. More directly, special processing designed to remove the MS interface layer has shown an

improvement that was not designed to improve the other layers [109, 164].

Conductor participation, which cannot be accurately simulated using this two-step method (because

the 2D simulation of exact edge geometry is an electrostatic one), can still be approximately simulated to

obtain its dependence on geometry. From geometric considerations, we expect it to vary similarly to the

other interface layers; simulations confirm that it does. The kinetic inductance fraction of the junction

(the geometry of which remains fixed), however, dominates significantly over that of the pads (the geom-
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etry of which changes) [67, 190, 191]. Further, one study that varied the geometric inductance of planar

structures found no difference in performance at the level of Q = 105 � 106 [108]. The magnitudes of

change in transmon T1 can thus not satisfactorily be explained by changing pad kinetic inductance alone.

The SA layer is calculated to have a participation ratio similar to that of the MS layer, and could be

thought to contribute equally (Figure 5.36). The same dielectric arguments apply, however: surface qual-

ity is much more likely to degrade after fabrication than the MS interface quality. This remains to be tested

more rigorously, perhaps by processing designed to target and worsen the material quality of the SA layer.

In fact, producing disparate scaling relationships between the different layers is difficult to do with

geometric variations alone. To adequately separate the layers, significant changes in processing or device

topology will be required. For example, processes like silicon deep reactive-ion etching (DRIE) can scale

the MS and MA participation disproportionately compared to bulk and SA participation (Section 5.5.5).

Multi-mode designs can also serve to adjust participation in a non-uniform manner (Section 5.5.2). Finally,

special chemistry and processing steps, such as annealing, passivation layers, or changes of material, can be

used to directly test the effect on resonator and transmon performance (Section 5.5.4). Future studies like

these in controlled environments will be the best way to disentangle these related loss mechanisms.

5.7.3 Quasiparticle sensitivity

Discussion of the transmon’s sensitivity to conductor loss has so far been omitted. Much like the surface

of 3D cavities and quasi-planar resonators, the transmon structure sees dissipation related to its kinetic

inductance fraction. Unlike the other structures, however, the transmon has a Josephson junction. The

Josephson junction confers additional sensitivity to the transmon, leading to decoherence or energy relax-

ation [192]. This added relaxation rate is roughly proportional to the fraction of quasiparticles present

(which, in our system, will be all non-equilibrium quasiparticles) [193].

The expected quasiparticle fraction does not depend significantly on geometry (compared to the ef-

fect derived from the junction), a fact that helps to justify our focus on dielectric layers in this section.

It also supports an interesting assumption: if the non-equilibrium quasiparticle densities are similar in

transmons and striplines, then the relatively long lifetimes of transmons should translate to lifetimes in

striplines enhanced by a factor of ⇠ ↵transmon/↵stripline . The absence of this correspondence in coaxline
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Table 5.6 | Summary of material bounds. Simulated and measured values for system dissipation
sources. Values of Qmaterial are lower bounds and are obtained from single-photon measurements of similar
systems. Our set of participations {pk} are obtained from simulation, except for conductor participation
(where pk = ↵, kinetic inductance fraction), which is directly measured (Section 5.5.3). The calculation
of our Qmaterial comes largely from the best measured values of Qi. (Table adapted from [7]; see Copyright
Permissions.)

Participation
of region

Established
Qmaterial bound

Established
source

Our Qmaterial
bound

Our
bounding

device

psapphire 1–5⇥ 106
3D transmons [66, 169],

WGMR [153] (5.3± 0.5)⇥ 106 coaxline

psilicon 0.13–2.7⇥ 106 3D transmons [97, 187] (0.16± 0.02)⇥ 106 coaxline
pMS 380 3D transmons [163] 160± 20 coaxline
pMA 38 3D transmons [163] 115± 25 coaxline
pSA 460 3D transmons [163] 190± 40 coaxline

pcond,strip 4,800–110,000 Al WGMR [194, 195] 63,000 ± 20,000 coaxline

pcond,encl 4,400 cylindrical cavity [93],
coaxial stub cavity [67] 195± 30 coaxline

pdiel,encl 22 coaxial stub cavity [67] 360± 70
two-strip

coaxline

devices supports our conclusions throughout this chapter: more than one source of dissipation is likely

responsible for the variable Q in quasi-planar devices housed in 3D enclosures.

5.8 Summary of loss mechanisms and bounds

In this section, I analyze and compare the results from all studies performed and reviewed in this chapter.

Discussion of the results is divided according to the categories of loss mechanisms that have been modeled,

most of which are summarized in Table 5.6. The experiments producing the highest bound in this study,

as well as in the literature, are identified for each mechanism.

Bulk dielectric The transmon mode participates strongly in the bulk dielectric substrate, typically at a

level around 0.9 for our substrates, as discussed in Section 5.2.1. The coaxline, with its sapphire participa-

tion generally < 0.5, is still able to set quite a high bound on Qsapphire compared to contemporary work

in similar systems, due to its performance more than a factor of two greater than the best transmons.

We investigated the effect of different types of sapphire substrate, and found little correspondence in
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general (Figure 5.24). Other studies have drawn more certain conclusions [154]; if bulk substrate quality

does play a role here, it is probably obscured by other effects. We suspect that the type of silicon used is of

great importance, however. Silicon is more sensitive to doping via handling and processing, and can vary

drastically from batch to batch. Other groups have shown significantly higher performance for transmons

on silicon [187].

Studies are underway to set even higher bounds on bulk dielectric loss tangents. By inserting a large

quantity of raw dielectric into a high-Q cavity using a movable stage, its participation ratio can be adjusted

in situ. This technique shows the potential for measuring loss tangents of materials like sapphire in the

range of tan � < 10�10. Such resolution would much more definitively bound loss tangents, perhaps

even as a useful tool on a wafer-by-wafer basis.

Deposited conductor quality The quality of deposited aluminum is generally bounded at a higher

value than the bulk aluminum from which cavities are machined. This likely indicates high material purity

and careful treatment of the growth conditions, generally within an electron beam deposition tool.

The coaxline sets among one of the highest bounds for this conductor quality. Since the kinetic in-

ductance fractions here can be directly extracted from swept temperature measurements, limits set by such

means are especially robust.

Bulk conductor quality Coaxline resonators do not “sample” the bulk conductor much more than

dielectric-free 3D cavities, but their quality factors are significantly more limited—almost an order of mag-

nitude difference between best-case values. Therefore, we do not expect to set new limits using these de-

vices. Likewise, we did not observe any change in distribution of quality factors based on the purity of the

package material (Figure 5.24).

Dielectric interface layers Loss induced by dissipative dielectric interface layers has been established as

a dominant source in many of our planar systems, particularly transmons. Useful comparisons between

designs and materials by plotting (in Figure 5.37) their energy lifetimes compared to simulated participa-

tion of a metal-substrate interface layer. In the limit where this contribution is singular, the bounds set

from this analysis become accurate values for the quality of the interface material.
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Figure 5.37 |Measured lifetimes of assorted devices, compared to metal–substrate interface par-
ticipations. A comparison of transmon device performance from literature, including those in this work.
All of the devices in “this work” are stripline resonators measured in coaxline, coaxmux or seammux pack-
ages. (Figure adapted from [163]; see Copyright Permissions.)

In Figure 5.37, we include simulated participations for numerous past and present planar devices,

including transmons, CPW, IDC, and CPC structures. Structures in literature are simulated as well as

possible given the provided dimensions. We mostly plot “best-in-class” devices from this chapter, which

maximize the product of Q and p. We include some devices that deviate from the norm of aluminum

deposited on a sapphire substrate. For comparison, then, we provide devices in literature made with similar

techniques.

While transmons still produce the most stringent bounds on dielectric interface layers, the coaxline

architecture allows for some strategic adjustments to help differentiate the layers. Multiple striplines pat-

terned adjacent to or opposite one another, or etching enabled by silicon, allow for adjustments to partici-

pation ratio that are not accessible through continuous changes to geometry. As a result, coaxlines are able

to place a slightly higher (but unsurprising5 ) bound on the metal–air interface layer.

5. It is unsurprising because we should expect these materials to be similar, and thus their loss tangent bounds to be related
within much less than an order of magnitude.
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5.8.1 Consensus

It is difficult to state with certainty that one loss mechanism should be the target of our corrective efforts.

Rather, it seems that most of the mechanisms modeled here, as well as some that were not, can play a role

in various circumstances.

It is important to be constantly vigilant and aware of the mechanisms that may be present. Even if

materials or interfaces are improved, their bounds only recede somewhat into the shadows. Improvements

will continue, and these monsters will rear their ugly heads again, in time.



6
Letting Schrödinger’s Cat Out of the Bag

A modular quantum network architecture requires communication between the nodes of the network.

Before two-way communication is established, however, we must address the more fundamental task: con-

version between stationary information, retained in the storage mode of the node, and a propagating form

of that information. Using these locally stored states as resources in an error-protected, network-based

quantum information processing architecture hinges on the ability to interface them with traveling sig-

nals.

In this chapter, we will develop a parametric process to transmit these local states. To maintain gener-

ality, this transfer must be faithful for arbitrary states. This will later permit non-classical, multi-photon

encodings—like Schrödinger cat states—to be used for error-correction schemes. Furthermore, temporal

control over the process could allow states to be simultaneously launched and not-launched—yet another

Schrödinger cat-style superposition. Our real-life node will also suffer from losses, imbuing the conversion

timescale with particular significance.

Quantum entanglement is a valuable resource, particularly in a modular quantum network. Another

goal, beyond complete transmission of a quantum state, will be to distribute entanglement throughout a

network. Since this chapter focuses on the conversion between stationary and propagating modes, we will

show the natural realization of this idea for our pre-network system: entanglement between stationary and

propagating qubits.

In the sections that follow, we will outline the hardware and physics required to permit this conversion.

Then, we will characterize the result, using many of the state-of-the-art circuit QED tools introduced in

150
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Chapters 3 and 4. We will show that this conversion process is the first step of a computational, module-

based network in circuit QED, an idea that will segue into a demonstration of a completed, elementary

network in Chapter 7.

6.1 Parametric pumping

To convert stationary memory states to propagating ones, we propose a parametric, four-wave-mixing-

based pumping scheme using the transmon as a conversion element. Understanding the required modes

and classical drives will inform our choice of hardware to be included in our basic module.

Several approaches have been used so far to map stationary onto traveling states in superconducting

quantum circuits. Tuning the coupling between a superconducting artificial atom and an output mode al-

lows the generation and shaping of single photons [110, 196, 197, 198]. However, the controlled mapping

of general multi-photon states between a CV quantum memory and traveling signals has so far remained

an outstanding challenge.

Quasi-classical oscillator states have been successfully mapped using dedicated coupling elements such

as flux-tunable couplers [199, 200] or parametric converters [201], which require tuning by external mag-

netic flux. However, to date, we have not yet integrated flux-tuning methods with the kind of high-Q

storage cavities we intend to use for synthesizing, storing, and protecting complex quantum states. For

the duration of this work, we hold fast to the philosophy endorsed in Section 4.3.1, and avoid coupling

elements that may damage the hard-won coherence of elements in our system.

Instead, we aim to couple a storage cavity mode, â, and an output mode, b̂, using a nonlinear element

that enables photon conversion between them. Since the fixed-frequency transmons in our toolbox are

a relatively long-lived and powerful type of qubit, we spurn a flux-tunable design and choose to couple

modes â and b̂ using only the transmon “artificial atom” in the strongly dispersive regime of cavity QED

[130]. The single Josephson junction of the transmon provides the required nonlinearity for such conver-

sion, while preserving cavity coherence on the order of milliseconds [46]. These three elements—cavity,

transmon, and output mode—thus form the basis for a module capable of this kind of conversion. They

will be further detailed in Section 6.2.



6.1. Parametric pumping 152

6.1.1 Classical driving

We will use classical pumps to invoke the desired parametric interaction. First, let us examine the effect of

a single classical drive on the transmon.

We begin with the Hamiltonian of the transmon, given by the quantized LC oscillator including the

Josephson junction,

Ĥ = ~!tt̂
†
t̂� EJ(cos('̂t)� �̂lin) = ~!tt̂

†
t̂� EJ(cos

⇣
't(t̂

† + t̂)
⌘
� �̂lin) (6.1)

where 't is the flux through the junction in the transmon mode t̂ (Equation 4.7). Since the linear part of

the Ĥ is already captured by ~!tt̂
†
t̂, we remove this portion from the cosine (�̂lin = 1� '̂

2/2). Though

it appears convoluted, this separation of terms is particularly useful for characterization in the black-box

formalism [102].

Without the influence of dissipation, the Hamiltonian of a driven transmon is

Ĥ = ~!tt̂
†
t̂� EJ(cos

⇣
't(t̂

† + t̂)
⌘
� �̂lin) + ✏(t)(t̂† + t̂), (6.2)

where ✏(t) is the time-dependent amplitude of an external drive that is coupled in via flux across the junc-

tion. To cast this into a form that describes the drive-based mixing behavior of the transmon, we will

transform this expression into a rotating, displaced frame [202]. This transformation explicitly seeks to

eliminate the driving term ✏(t)(t̂† + t̂).

The transformation of the state ⇢̂ ! ˜̂⇢ is achieved by defining a unitary Û = Û2Û1 that satisfies

˜̂⇢ = Û ⇢̂Û
† and acts as Û | i ! | ̃i. By putting the transformed state through the time-dependent

Schrödinger equation, its Hamiltonian ˜̂
H is related to the original Hamiltonian Ĥ as

˜̂
H = i~ ˙̂

UÛ
† + ÛĤÛ

†
. (6.3)

The two unitaries are are Û1, a displacement transformation of the form D̂(⇠(t)) introduced in Sec-

tion 3.5.2, and Û2, a rotation transformation, given by exp
�

i!tt t̂
†
t̂
�

. Importantly, we treat the drive ⇠

classically and in the ‘stiff pump’ regime, such that it is not subject to zero-point fluctuations and can be
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taken as a complex scalar variable (rather than an operator). To satisfy the purpose of the transformation,

we choose ⇠(t) such that the driving term in the resulting transformed Hamiltonian disappears (Appendix

A.2).

Applying the displaced frame transformation leaves us with an ordinary differential equation for ⇠,

⇠̇ = �i✏(t)� i!t⇠, (6.4)

which is evidently a driven harmonic oscillator. Since the solution depends on the drive, we can gain some

intuition in the simplest case, a constant ✏(t) = ✏ exp(�i!dt), turned on at t = 0. Solving Equation 6.4

gives us

⇠(t) =
✏
�
�e�i!tt + e�i!dt

�

�
, (6.5)

where� = |!d�!t| is the detuning of the drive from resonance. Still as a function of our time-dependent

drive ⇠(t) from Equation 6.4, our transformed Hamiltonian appears as

Ĥ1 = ~!tt̂
†
t̂� EJ cos

⇣
't(t̂

† + t̂� ⇠(t)� ⇠
⇤(t))

⌘
; (6.6)

if desired, the definition of ⇠ can be reversed so as to make all coefficients positive.

A realistic system will suffer from dissipation, altering these equations of motion. In particular, such

drives are typically introduced via some dissipative resonant mode. Therefore, we safely choose to model

this dissipation as pure photon loss, the dominant error source in a harmonic oscillator [53]. This behavior

will be crucial in accurately modeling any conversion process. One way of including dissipation, in partic-

ular the decay rateb of an oscillator mode, is to use the Lindblad equation instead of simply transforming

the Hamiltonian as above [203].

The time dynamics in the displaced frame are given by ˙̂⇢1 =
˙̂
U1⇢̂Û

†
1 + Û1

˙̂⇢Û †
1 + Û1⇢̂

˙̂
U

†
1 , where the

Lindblad equation specifies ˙̂⇢ = �i[Ĥ, ⇢̂]+ t
2 D[t̂](⇢̂). The resulting expression for the drive should not

be surprising, as it is similar to Equation 6.4 except for now incorporating dissipation:

⇠̇ = �i✏(t)�
⇣
t

2
+ i!t

⌘
⇠. (6.7)
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In the case, again, of a constant drive, the solution to Equation 6.7 is

⇠(t) =
✏
�
�e�i!tt�tt/2 + e�i!t�

it/2 +�
. (6.8)

Finally, we apply the rotating drive transformation, Û2. With respect to our rotated mode, t̃ = t̂e�i!tt,

the driven–dissipative, rotated, displaced form of the Hamiltonian becomes

H̃12 = �EJ cos
⇣
't(t̃+ t̃

† � ⇠(t)� ⇠
⇤(t))

⌘
. (6.9)

Expanding the cosine within this Hamiltonian produces

H̃ = �EJ cos
⇣
't(t̃

† + t̃+ ⇠ + ⇠
⇤)
⌘

⇡ �EJ
X

k,l,m,n

(�1)(k+l+m+n)/2
'
k+l+m+n

t

k!l!m!n!
⇠
k
⇠
⇤l
t̃
†m

t̃
n
, (6.10)

where the sum is taken over all (k + l + m + n) mod 2 = 0. The frequency at which any given term

in the expansion oscillates is given by (�k + l)!d + (m � n)!t. We can make the usual rotating wave

approximating by neglecting all terms for which this frequency is non-zero.

6.1.2 Four-wave mixing and memory–output conversion

We will use this formalism of a classical drive on a transmon—namely, Equation 6.10—to select terms

of the expansion that produce a desired effect. Because the cosine-coupling enables all four-wave mixing

processes that conserve energy, we can create interactions between the strongly detuned resonator modes

by applying pump tones. We wish to implement a conversion Hamiltonian of the form

H/~ = gâb̂
† + g

⇤
â
†
b̂, (6.11)

which will convert photons between mode â and mode b̂, with rateg. In our experimental realization, these

will be the memory and output modes, respectively (Figure 6.1). To ensure that the state swapped from

the memory to the output mode does not return to the memory, the output mode is strongly coupled
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Figure 6.1 | Launching a quantum state from a node. A schematic of two modular network node
modes, â and b̂, that are interfaced using a nonlinear conversion element t̂ with temporally controlled rate
g(t). The mode b̂ is connected to an external transmission line mode b̂out with rate out . (Figure adapted
from [86]; see Copyright Permissions.)

to a transmission line. In the parlance of cavity QED, this module can be understood to contain two

orthogonal Fabry-Perot cavities that are coupled by an (artificial) atom.

This coupling naturally effects conversion of the state from a “stationary” resonant mode to a propa-

gating wavepacket. In addition to the two modes a and b, two driving modes will be necessary to produce

this interaction. The full Hamiltonian, including these two drives, is

H =~!aâ
†
â+ ~!bb̂

†
b̂+ ~!ct̂

†
t̂� EJ

✓
cos('̂)� '̂

2

2

◆

+ ✏1(t)e�i!1t(â† + â) + ✏2(t)e�i!2t(b̂† + b̂),

(6.12)

where ✏1,2 are the drive amplitudes. Moving into a displaced, rotating frame as was done above for the

single drive, and choosing the convention in which the drives have positive sign, we can rewrite this as

H = �EJ cos
�
�a(ã

† + ã+ ⇠̃
⇤
1(t) + ⇠̃1(t))

+ �b(b̃
† + b̃+ ⇠̃

⇤
2(t) + ⇠̃2(t))

+ �c(t̃
† + t̃)

�
.

(6.13)

The rotating drives ⇠̃i for modes i = a, b are related to the non-rotating drives (Equation 6.8) and their

classical displacement amplitudes according to

⇠̃i(t) = ⇠i(t)e�i!it =
✏i(t)e�i!it

ii/2 +�i

⇡ ✏i(t)e�i!it

�i

. (6.14)
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(a)

(b)

(c)

Figure 6.2 | Frequency ordering in a conversion experiment. a The mode and pump arrangement in
frequency space. b The nonlinear element “mixes” four waves, preserving the energy conservation relation
|!1�!2| = |!a�!b|. c This mixing can also be shown in a form akin to a Raman transition, although it
does not make use of a real or virtual transition of a higher mode of the system. The detuning� indicates
the frequency difference !a � !1 = !b � !2, as indicated in the text; detunings here are exaggerated for
effect and do not represent true frequencies. (Figure adapted from [23]; see Copyright Permissions.)

Here, we have separated the slowly varying envelope of the displacement, ⇠i(t), from its rapidly oscillating

component. The detuning �i is given by the detuning of the drive frequency with respect to the closest

mode to which the drive is applied, i.e., �1 = !1 � !a and �2 = !2 � !b. i is the damping rate of

the mode to which the pump is applied. A complete representation of the drives would include the fact

that the classical drives excite the transmon through many modes simultaneously. However, the relative

detuning of a drive from its “host” mode is small compared to the overall detuning between the mode

frequencies; therefore, this effect can largely be ignored. The frequency ordering, relative spacing of modes,

and how they mix is shown in Figure 6.2.

To obtain a more intuitive form of the conversion Hamiltonian containing parameters that can be

directly measured, we apply the rotating wave approximation (RWA) to Equation 6.14 by expanding the

cosine up to orders of '4
k

and retaining all terms that conserve energy. Besides the terms that are already

present in the undriven case, this reveals the additional terms

H1/~ =|⇠1|2
⇣
2�aaâ

†
â+ �abb̂

†
b̂+ �att̂

†
t̂

⌘

+ |⇠2|2
⇣
2�bbb̂

†
b̂+ �abâ

†
â+ �btt̂

†
t̂

⌘

+ gâb̂
†e�i�t + g

⇤
â
†
b̂ei�t

.

(6.15)

The first two lines in this expression correspond to Stark shifts that will influence the resonant condition of
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the conversion process. However, we can compensate for them by detuning the drives. The last line is the

desired conversion Hamiltonian, whereg = �ab⇠
⇤
1⇠2. The variable � = �1��2 denotes a relatively small

detuning from the conversion resonance. This derivation assumes that the pumps are tuned such that the

conversion process is close to resonant, and that all other terms are fast-oscillating, vanishing within the

RWA.

6.1.3 Stationary-to-propagating conversion and Q-switching

Using input–output theory [113], we approximate the coupling to be constant within the bandwidth of

our process and use the Heisenberg equation of motion (EOM) on the field operator for mode â, as

@tâ = �i [â, H] = �igb̂, (6.16a)

@tb̂ = �i
h
b̂, H

i
� out

2
b̂ = �igâ� out

2
b̂, (6.16b)

b̂out =
p
outb̂ (6.16c)

where out represents the coupling of b̂ to the transmission line. Since b̂in = 0, the output field b̂out is

determined simply by b̂out =
p
outb̂. In solving the EOM, we consider a Hamiltonian that includes only

the conversion term in Equation 6.15,

H = g(â†b̂e�i�t + âb̂
†ei�t). (6.17)

We ignore any internal loss, retaining only coupling to the transmission line, and we disregard input modes

âin, b̂in because they are in the vacuum state during the release. For simplicity, we take g to be real; however,

it can be shown that the phase of this coupling term is simply mapped onto the output field. We also

assume that the g-moderated coupling rate dominates over the intrinsic cavity loss rate 0, as well as any

off-resonant cross-coupling between â and b̂.

Our ultimate goal is to establish conversion rate between the storage cavity, â, and a propagating

wavepacket in b̂out . This should appear like an effectively enhanced decay rate from â. Because this has

the ability to dynamically “switch” the quality factor (Q) of the cavity from ‘high’ to ‘low’, this process is
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sometimes termed a “Q-switch”. Beyond conversion, it can also be used to deterministically reinitialize a

cavity state to vacuum in a much shorter time than the intrinsic Q would typically allow.

To understand the behavior of an effective Q-switch, we can analytically solve the equations of motion

in Equation 6.16, assuming some initial condition â(0):

â(t) =
â(0)

�
e�

�t
4

✓
� cosh

✓
t�

4

◆
+ � sinh

✓
t�

4

◆◆
, (6.18a)

b̂(t) = �i
4gâ(0)

�
e�

t
4 (out�2i�) sinh

✓
t�

4

◆
, (6.18b)

where we have introduced

� = out + 2i�, (6.19a)

� =
p
�2 � (4g)2. (6.19b)

We first consider the case � = 0; i.e., the conversion drives make the process resonant. We are mostly

concerned with the case g ⌧ out ; in this regime the coupling produces exponential damping of the

cavity, which can be seen by approximating

â(t) ⇡ â(0)e�2g2t/out , (6.20a)

b̂(t) ⇡ �iâ(0)
2g

out

⇣
e�t/2 � e�outt/2

⌘
, (6.20b)

b̂out(t) =
p
outb̂(t) ⇡ �i



2
â(t), (6.20c)

where  = 4g2/out , a value we can now identify as our effective damping rate. We find that this is

equivalent to the Purcell (spontaneous emission) rate for a resonant Jaynes-Cummings interaction enabled

by the pumps.

It would be interesting to know by how much this rate changes if, say, experimental uncertainties or

higher-order Hamiltonian terms detuned this process from resonance. In this case, we retain the term �.
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cavity
drive

Figure 6.3 | Realization of a basic circuit QED module. Our architecture consists of a storage cavity
mode â, an output mode b̂ coupled to a transmission channel b̂out with a rateout , and a transmon (green)
that allows for a tunable coupling g(t) between a and b. The drives ⇠1, ⇠2 can be introduced via the input
couplers of their respective modes. This enables the desired conversion process, producing an effective
decay rate of â via out . (Figure adapted from [23]; see Copyright Permissions.)

For � 6= 0 we can approximate � ⇡ � � 8g2/�. The evolution of â is then

â(t) ⇡ â(0)e�
t
2

4g2

� ⌘ â(0)e�
t
2�conv . (6.21)

Since �conv is complex, we must evaluate its real part to obtain the line width of the conversion resonance.

We have

�conv =
4g2

out + 2i�
=

4g2(out � 2i�)
2out + (2�)2

, (6.22)

the real part of which is a Lorentzian with full-width half-maximumout as a function of detuning. Figure

6.4a shows the decay of the cavity versus detuning, and behaves as expected with linewidth out .

Using the apparatus shown in Figure 6.3, we can measure (�) by fixing� for one of the pumps and

sweeping the detuning �, thus affecting only one pump frequency. (Further experimental details will be

given in Section 6.2.) At each point we measure the decay of the storage mode and extract  via a single

exponential fit. The data for two different values of g are shown in Figure 6.4a.

The excellent agreement of the data with a Lorentzian line shape indicates a resonant process. If this

process is indeed the predicted conversion, we expect that its damping rate is given by the difference be-

tween the maximum of the Lorentzian fit and its offset,  � ofs . ofs = loss is the damping due to any

other losses, intrinsic or pump-induced. Hence, we expect that the inefficiency of the conversion is given

by ⇠ loss/. For g/2⇡ & 100 kHz we find loss/ between 0.01 and 0.015.

If the condition g ⌧ out is not fulfilled, the decay of the storage mode is no longer exponential and



6.1. Parametric pumping 160

0 2 4
Time (μs)

0.0

0.5

1.0

0.0
Detuning (MHz)

0

5

10

15

∙
=2
¼

 (k
H

z)

−1.5 0.0 1.5
Detuning (MHz)

0

100

200

300
∙
=2
¼

 (k
H

z)
(a) (b)

(c) (d)

1 2 3 4 5
0

20

40

60

80
∙
n
=2
¼

 (k
H

z)

Figure 6.4 | Cavity damping analysis. a Cavity damping as function of relative pump detuning �.
The two data sets represent g/2⇡ = 54 and 207 kHz. Each point is obtained by fitting individual decay
curves with a single exponential, / exp(�t). Solid lines are Lorentzian fits. The resonance condition
for the conversion process is offset from 0 because the pumps induce a Stark shift on the resonators. Note
that for the larger g the decay rate  is not a very good approximation because the damping is not purely
exponential in time. b Non-exponential decay for large g, with pump frequencies on resonance with the
conversion process. Solid lines: complete model, based on independent calibration of g. Dashed lines:
4g2/out approximation. c Reduction of n due to the Kerr effect. Data and fit are for g/2⇡ = 54 kHz.
Orange and blue lines mark the resonance condition for one and five photon Fock states, respectively. Even
relatively detuned from conversion resonance, the effective decay rate is much larger than the intrinsic loss
rate 0. The width of this resonance is out , as given in Equation 6.22. d Decay of the Fock states |ni.
Dashed line: extrapolation from1. Solid line: Correction accounting for Kerr and the Lorentzian profile
of the resonance. The deviation between the measured5 (arrow) and 5⇥1 is 6%. (Figure adapted from
[23]; see Copyright Permissions.)
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can no longer be described accurately by a single decay rate . This can be seen in Figure 6.4b, where we

show the damping of the storage mode for g/2⇡ = 54 kHz and 207 kHz. At 207 kHz there is a clear

deviation between the exact model and the approximation.

6.1.4 Conversion as a beamsplitter

The release from the storage cavity into the transmission line mode can also be described by an effective

beam splitter interaction that does not explicitly take the output mode into account. This interaction is

given by the unitary transformation

Urelease = exp
✓
✓

2
(â†b̂out � âb̂

†
out)

◆
(6.23)

that acts on the cavity and propagating mode. For g ⌧ out , the cavity decays exponentially with a rate

 = 4g2/out . In that case, the mixing angle ✓ is given by

✓ = 2 arccos (exp(�t/2)) . (6.24)

Stopping the conversion process at a finite time T , some portion of the original state would remain. For

example, a 50:50 beam splitter interaction can then be achieved by a pump duration T1/2 = ln 2/,

corresponding with ✓ = ⇡/2. This has the effect of maximally entangling the remainder of the stationary

state with propagating one, and will be import in demonstrating entanglement distribution later in this

chapter. The next chapter will go far beyond this basic demonstration of temporal control.

6.2 Experimental setup

So far, we have only introduced a schematic of the hardware elements required for conversion in Figure 6.3.

Our precise experimental scheme and hardware elements are shown in Figure 6.5a. Our hardware platform

consists of the same few state-of-the-art elements introduced in Chapter 4: a 3D memory cavity (â), a trans-

mon qubit (t̂), and an output mode (b̂) that doubles as a readout resonator. Our 3D memory mode is an

99.99%-pure aluminum superconducting coaxial stub cavity, of which we use the fundamental �/4 mode



6.2. Experimental setup 162

(here, !a/2⇡ = 4.1 GHz), and a the output mode is an overcoupled �/2 stripline resonator (here, !b/2⇡

= 10.0 GHz). The stripline and transmon are fabricated on the same chip. The chip is inserted through

a waveguide tunnel. Strongly undercoupled input pins (left and middle couplers) allow application of

RF control and measurement tones, while signals leave b̂ to the transmission line (not shown) through

an output coupler pin (rightmost coupler). The output mode is coupled with rate out = 1/240 ns to

a propagating transmission line mode, b̂out , where the emitted signals are amplified and recorded.1 This

configuration uses the hardware and integration schemes discussed in Chapter 4 to produce a long mem-

ory lifetime, 0 = 1/450µs, while still allowing for fast readout and control of arbitrary quantum states.

Parameters of each mode, including frequencies and coherence times, are included in Table 6.1.

The sample is cooled to the base temperature Tbase ⇡ 15 mK of a dilution refrigerator. A wiring di-

agram that shows how signals are introduced to the device is depicted in Figure 6.5b. Each mode of the

system is addressed by a separate microwave generator acting as a local oscillator (LO) (cavity and output:

Agilent E8275D; transmon: Vaunix LabBrick LMS-103-13); pulses are generated by IQ modulation (us-

ing MarkiMicrowave IQ0618LXP IQ-mixers). Importantly, we generate the pump tones using the same

generators used for the (near-)resonant control pulses of the cavity and output mode. Given the conver-

sion Hamiltonian, this guarantees that the signal emitted from the output mode is phase-locked to the

output mode LO, which is used for mixing the signal down to low frequencies before digitizing.

Phase-locking is further assured in the following way: each driven mode is accompanied by a phase,

which is determined by the quasi-random phase of the generator used to apply each drive. The local os-

cillator (LO) of the cavity mode â is shared between drives and pumps, and the LO of the output mode

b̂ is shared between drives, pumps, and signal demodulation. We apply the initial state phase �a, and the

phase of the pumps, �⇠,1 and �⇠,2, to their respective operators in the Hamiltonian, described in further

detail in the following section, as

H = g(⇠⇤1e
i�1⇠2e�i�2 âe�i�a

b̂
†) + h.c., (6.25)

1. Although the decay lifetime due to internal sources is difficult to directly measure in this overcoupled configuration, the
analysis in Chapter 4 suggests the coaxline resonator should have an internal quality factor greater than one million. This gives a
decay rate ratio between output and internal decay channels out/i ⇡ 400, such that internal dissipation contributes < 1% to
overall dissipation in the module.
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Hamiltonian term Value (MHz)
Mode frequency !b/2⇡ 9.999⇥ 103

!a/2⇡ 4.073⇥ 103

!t/2⇡ 6.674⇥ 103

Cross-Kerr �ab/2⇡ �0.013± 0.001
�at/2⇡ �3.825± 0.001
�bt/2⇡ �1.3± 0.1

Self-Kerr �aa/2⇡ �0.022± 0.002
�bb/2⇡ �0.001± 0.001
�tt/2⇡ �144.0± 0.5

Damping term Value (µs)
Cavity energy decay 1/0 450± 50
Output energy decay 1/out 0.24± 0.02
Transmon qubit relaxation T1 50± 10
Transmon Ramsey decay T2R 25± 5
Transmon Hahn echo decay T2E 35± 5

Table 6.1 | Conversion system Hamiltonian parameters. Measured system parameters. See text for
explanation. For the cavity and transmon qubit decay times, the uncertainties given are the typical fluctu-
ations observed in the course of a day.

where âe�i�a represents the phase that has been gained during the state creation in â. Since �a = �⇠,1

and �b = �⇠,2 and the output field is detected and demodulated using the b̂ generator, the phase becomes

locked, and any phase difference from run to run has no effect.

The output signal is processed by a Josephson parametric converter (JPC) operated in amplification

mode [204] (Section 3.5). The amplifier is configured to provide approximately 25 dB of gain with a band-

width of approximately 15 MHz and a noise visibility ratio around 6 dB. This allows us to detect signals

emitted at the frequency of the output mode with a detection efficiency of ⇠ 45 % (details follow).

As depicted in Figure 6.5, an FPGA controls every aspect of an experimental run, and we take advan-

tage of the tools introduced in Section 3.5. The FPGA performs feedback cooling to initialize the cavity

and transmon as well as possible (in this case, we achieve a qubit population not in |gi of ⇠ 0.02, and a

cavity population of n̄ < 0.01). It decodes and thresholds results of transmon readout, allowing addi-

tional branching and postselection if necessary. This experimental setup also permits simple preparation

of arbitrary states in the transmon and cavity using numerical optimization techniques (Section 3.5.1).
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Figure 6.5 | Experimental setup. a Sample. The locations of the stub cavity as well as the coupler and
chip tunnels are indicated by dashed lines; the position of the sapphire chip is indicated by the hatched
rectangle. Cavity signals are applied through the SMA connector visible on the left, output mode signals
enter and leave through the connectors at the front. The chip is held in place by a clamp on the right
side. The inset shows a top-down view into the cavity, with the inserted chip false-colored in green. b
Wiring diagram (schematic). Each mode has a microwave generator as local oscillator (LO). IQ modula-
tion tones are synthesized by an integrated FPGA system with digital-to-analog converter (DAC) outputs
(Innovative Integration VPXI-ePC), and mixed with the LO (LOs A, B, and C). Signals are amplified at
room temperature (AMP A and B, MiniCircuits ZVA-183-S+) and sent into the refrigerator (Oxford Tri-
ton 200) where the sample is cooled to Tbase ⇡ 15 mK. Input signals are applied through weakly coupled
pins (depicted as small capacitors). Signals leave the output resonator through a strongly coupled pin (de-
picted as large capacitor) and is amplified by a JPC that is pumped continuously by a microwave generator
(LO D, AgilentN5183A). The signal is further amplified at 4 K (AMP C1, CaltechCIT1-4254-065) and at
room temperature (AMP C2, MiteqAFS3-00101200-35-ULN), mixed down with the output LO (LO C,
MarkiMicrowave IQ0618LXP), and recorded and demodulated by the FPGA system via analog-to-digital
converters (ADC). (Figure adapted from [23]; see Copyright Permissions.)
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6.2.1 Calibrations

Before the system can be characterized in earnest, a number of calibrations must be performed. These will

determine (1) the strength of our pumps, in photon number, as a function of the DAC amplitude we have

control over, (2) the strength and detuning of the conversion process with all pumps applied, and (3) the

efficiency of our detector.

Stark shifts

The conversion rate is given by the product of the dispersive shift between storage and output modes and

the pump strength, g = �ab⇠
⇤
1⇠2. To calibrate this rate, we need to determine the number of pump

photons |⇠1(2)|2 in the storage (output) mode when applying the drives. This can be done by measuring

the Stark shift of the transmon mode: when applying the pump tone on the storage (output) resonator,

the Stark shift is given by �! = �at(bt)|⇠1(2)|2. Since �at and �bc can be determined independently,

measuring the Stark shift is a calibration for ⇠1, ⇠2. For �/2⇡ = �30 MHz and �40 MHz we show

the Stark shift calibration in Figure 6.6. We then use this pump calibration to obtain �ab. Applying a

pump tone on the output mode b̂ results in a Stark shift of mode â with magnitude �ab|⇠2|2. Since ⇠2 is

known, measuring the Stark shift yields�ab, and the value of g can then be calculated. We find that we can

induce appreciable coupling for pump detunings |�|/2⇡ . 50 MHz with our experimental setup. As the

coupling strength scales as g / 1/�2 (cf. (6.15)), larger detunings do not allow us to achieve the desired

magnitude of g. To avoid resonant driving of the modes, we generally choose the maximal detuning with

which we can achieve a given value of g. However, due to non-idealities in the system, larger detunings

and stronger power may sometimes be more favorable (Appendix A.3).

Conversion rate

Though�ab⇠
⇤
1⇠2 predicts our conversion strength on resonance, identifying the exact resonance condition

requires a separate experiment. Because the pump-induced Stark shifts are variable, they modify the fre-

quency at which the conversion process is resonant. To probe this, we vary one pump detuning � (within

a range small compared to absolute pump detuning�) to identify the center and shape of the conversion

process resonance. At each pair of pump amplitudes, we identify the maximum conversion rate g(⇠1, ⇠2),
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Figure 6.6 | Calibration of Stark shifts. Pump strength calibration using the transmon’s Stark shift.
Applying pump tones, controlled by a DAC voltage, on storage (a) and output modes (b) results in a Stark
shift of the transmon mode, measured by spectroscopy while applying the pump. Since the Stark shift is
proportional to the photon number in the pump (which is proportional to the drive amplitude squared),
we obtain a calibration for ⇠1,2. Solid lines are linear fits. (Figure adapted from [23]; see Copyright Per-
missions.)

as shown in Figure 6.7. We fit these values to the expected form in Equation 6.22 to ultimately predict a

rate g(⇠1, ⇠2) for any two pump strengths. This constitutes an extension of the procedure shown in Figure

6.4.

Detector efficiency

In order to later calibrate the efficiency of a propagating signal incident on our detector, we must under-

stand how our type of measurement is affected by detector inefficiency. We will use a heterodyne detector

to probe the outgoing field b̂out .

Our heterodyne detector intercepts the two quadratures of our signal, I and Q. We use the conven-

tion such that these are defined as I = 1
2hâ+ â

†i and Q = �i
2 hâ� â

†i, such that a complex displacement

amplitude in this phase space is given by ↵ = (I + iQ)/2, and the value of ↵2 corresponds with a pho-

ton number. Linear loss scales quasiprobability functions in this phase space (like the Wigner function,

introduced in Section 3.5), adding additional fluctuations. Linear loss can be modeled as a fictitious beam

splitter that operates on our signal mode, â, and injects a variable amount of the vacuum state, âv , such

that

â
0 =

p
⌘â+

p
1� ⌘âv. (6.26)

Here, ⌘ is the loss coefficient (or the transmissivity of the beam splitter). Quasiprobability distributions
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Figure 6.7 | Calibration of conversion rate. a An example measurement of cavity decay rate versus the
frequency of one pump. Each point is from an exponential fit to the decay of the n = 1 population of the
cavity. Solid line is a fit which gives the maximum decay rate. The conversion rate is then g =

p
out/2.

b Extracted g for various pump amplitudes (in fraction of the maximum amplitude sourced by the DAC).
Pump 1 amplitude is varied from 0.25 to 0.77 in linear steps. Lines are a 2D linear fit to the entire data set
with one fit parameter.

are transformed like

W (I,Q; s) 7�! 1

⌘
W (

I
p
⌘
,
Q
p
⌘
;
s+ ⌘ � 1

⌘
), (6.27)

in terms of the generalized quasiprobability expression given in Equation 3.16. Working out this transfor-

mation applied to an incoming Wigner function undergoing such loss, we find that the resulting Wigner

function is given by the convolution of the original quasiprobability function W (I,Q) with the Gaussian

parameterized as exp
�
�(I2 +Q

2)
�
/⇡.

If the whole measurement apparatus has less than unit efficiency, ⌘ < 1, this clearly produces a

smoothed quadrature distribution, and thus a smoothed Wigner function [137]. The measurement is the

result of loss and added noise from the vacuum fluctuations mandated by quantum mechanics. A portion

of this noise (half a quantum) comes from our heterodyne detection scheme and use of a phase-preserving

amplifier.

We can determine the amount of noise introduced by our detector by first calibrating the axes of the

quadratures it measures, by sampling vacuum (Figure 6.8). Next, we direct an independently-calibrated

coherent state, with |↵ = 1i, to intercept the detector. The measured displacement then corresponds

with the detector efficiency, ⌘det . The means by which the quadrature measurements are assembled and

understood is described further in Section 6.3.3.

Having established a conversion efficiency of close to unity, the details of which will be discussed later,
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Figure 6.8 | Calibration of detector efficiency. a Reconstruction of the Q-function of an incident
vacuum state. The width of the expected 2D Gaussian profile of vacuum is used to calibrate both axes.
b A single-photon coherent state is prepared and released from the output mode, becoming incident on
the detector. As a reconstructed Q-function, it displays a sub-unity displacement; the best-case expected
distribution would be centered at I = 1. The displacement on this scale of the square root of photon
number thus corresponds with p

⌘det . (Figure adapted from [23]; see Copyright Permissions.)

the position of the coherent state population in the Q-function is a direct measure of our detection effi-

ciency. Assuming no loss in the conversion, we obtain ⌘det = 0.44 ± 0.03, consistent with the expected

performance of our parametric amplifier [204].

6.3 Quantifying conversion performance

To enable communication between network nodes with single or multi-photon states, a coherent release

must meet several important criteria. First, in order to enable distribution of quantum information with

high fidelity, we require a large ‘on–off ratio’. In the ‘off’-state the coherence of the memory must be

preserved, while the ‘on’-state should allow fast, on-demand release. Further, successful communication

requires faithful state mapping, independent of the number of photons. This means that the conversion

Hamiltonian, introduced in Section 6.1, cannot discriminate against photon number (at least, within some

operational range of interest). Finally, shaping the wave packet is required to enable capture by a receiving

node [205] and to generate entanglement. While explicit, optimized, “impedance-matched” shaping will

be instituted in Chapter 7, we only require here that our release process is capable of precise temporal

control.
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6.3.1 Evaluating evacuation completeness, on–off ratio

We first explore the maximum damping rate we can induce with pump tones of varying strength (Figure

6.9a). We prepare the Fock state |1i in the cavity, and then monitor the cavity population over time while

applying the pumps with frequencies !1 and !2. The pump frequencies are tuned on resonance with the

conversion process of Equation 6.17 using !a � !1 = !b � !2 = 2⇡⇥ (30� 50) MHz. Increasing the

pump strength allows us to tune the cavity energy decay rate from its intrinsic value of 0 = 1/0.45 ms

to  ⇡ 1/0.5µs for g/2⇡ = 207 kHz, the maximum conversion rate achievable with the available pump

power (Figure 6.9b). At this point, g ⇡ 0.3 ⇥ out , and the decay becomes limited by the bandwidth of

the output mode.

This ‘Q-switch’ is very close to an ideal damping of the memory. It cools the cavity close to the vacuum,

with a residual population of n̄ . 0.01, the noise floor of our measurement. We can therefore use the

conversion as a fast reset, which is a useful tool for experiments with long-lived quantum memories [126,

206]. Further, the measured decay of the cavity population is in excellent agreement with predictions

based on theory and independent calibrations of the pump strengths. This agreement, together with the

absence of any significant heating in the system, suggests a very high conversion efficiency from the storage

to the output mode. We estimate that the loss rate into undesired channels, loss , is about 0.01 ⇥ ,

corresponding to an expected inefficiency of the conversion of 1� ⌘conv ⇡ 0.01.

In order to preserve the independence and coherence of our module when the conversion process is

not active, we require the conversion to demonstrate a large on–off ratio. The fastest achievable damping

is given by the bandwidth of the output mode, out . The data in Figure 6.9 show that we can achieve a

maximum on–off ratio of the decay that exceeds 103.

6.3.2 Evacuating many photons

We also wish to verify that the cavity evacuation is independent of the input state. Using the same exper-

imental pumping scheme as in Figure 6.9, we prepare larger Fock states and monitor the population of

the input Fock state, P (n). For state-independent damping of a harmonic oscillator, with only a single-
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Figure 6.9 | Cavity damping by mode-conversion. a After preparing the cavity in an n-photon Fock
state, we monitor the population as a function of time for different pump strengths. The pump tones have
constant amplitude in time, with a smooth ring-up and ring-down. b Decay of the single-photon state |1i.
g/2⇡ = 0 (circles), 25 kHz (squares), 54 kHz (diamonds), and 207 kHz (triangles). Solid lines: for g = 0,
exponential fit, yielding the natural decay time; for g > 0, theoretical prediction based on independently
calibrated pump parameters. For large g the decay is not simply described by a single exponential (Section
6.1.3). The last datapoint for the fastest decay shows the average and standard deviation for the residual
cavity population, consistent with the vacuum state (P(1) = 0.01 ± 0.01). For small or vanishing g

(. 30 kHz), the equilibrium state of the cavity is a small thermal state. The background n 6= 1 population
at T = 0 comes from sub-unity measurement contrast and initialization. (Figure adapted from [23]; see
Copyright Permissions.)
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Figure 6.10 | Cavity damping for higher Fock states. a Decay of number states |ni, with n ranging
from 1 to 5; g/2⇡ = 54 kHz. Solid lines are single-exponential fits P (n) / exp(�nt). b Extracted decay
rates n. Solid line is a linear fit to 0 + n, where 0 is the independently measured loss rate. (Figure
adapted from [23]; see Copyright Permissions.)

photon decay operator â, we expect the state |ni to decay with a rate

n = n. (6.28)

This is equivalent to saying that states with more photons, which obey boson statistics, are more likely to

suffer from a loss of one of them since there are more to lose. From exponential fits to the decay of P (n)

we find very good agreement with this linear behavior (Figure 6.10). For larger n we expect that n will

gradually decrease due to the Kerr effect [44]. For n  5 we find a deviation of n from n1 of  6%,

and therefore state independence is a good approximation (Section 6.1.3). As described earlier, Kerr and

the bandwidth of the process begin to alter this linearity; this can be improved further by reducing the

magnitude of the Kerr effect by adjustment of sample parameters.

Further, successful communication requires faithful state mapping, independent of the number of

photons. Thus, each photon in the memory should be removed, described by the annihilation operator

â, while creating an outgoing photon, described by the creation operator b̂†. We analyze this next.
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6.3.3 Faithful stationary–propagating conversion

A crucial requirement for our interface is that non-classical states are preserved faithfully in the conversion

process. To determine whether this is the case, we must characterize states before and after conversion. So

far, we have only measured the remaining cavity population by performing cavity measurements. Now,

we must understand how to analyze the propagating field that is output from the conversion process.

Measuring propagating photons

Reconstructing the state of a cavity via Wigner tomography is relatively straight-forward. Extracting the

state of a propagating mode incident on a lossy detector, however, is more complicated. In the following,

we will describe the process necessary to obtain the quantum state from this kind of measured signal.

Achieving quantitative accuracy will require calibration of the detector efficiency, as in Section 6.2.1.

Because our detector performs a measurement of the form ha + âi, the averaged signal vanishes for

most states of interest. To visualize this data, then, we compute a probability distribution in phase space.

We can integrate the signal incident on our detector, which provides a time series of I and Q data points

for each shot. This contains an “(I,Q)-bit” of information, essentially, and can be integrated against the

expected exponential envelope of cavity decay to obtain it. Repeating this for many shots accumulates an

ensemble average measurement of the outgoing state. Assembling a histogram of these shots is equivalent

to producing a discretized quasiprobability function, the Husimi Q-function, which is defined for the

basis of coherent states as

P (z) =
1

⇡
|h↵ = z| i|2. (6.29)

Then, as discussed in Section 3.5.4, the Q-function can be used to reconstruct the state and the density ma-

trix ⇢ of the propagating signal. The “fidelity” of the resultant state is given by its overlap on the expected

state, ⇢expect , as

F =
⇣

Tr
qp

⇢ ⇢expect
p
⇢

⌘2
. (6.30)
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Converting quantum states

We prepare a cavity state and record the field using our heterodyne detection and quantum-limited am-

plifier (Figure 6.11a). The averaged in-phase signal, hI(t)i, from releasing a coherent state with average

photon number n̄ = 1 is shown in Figure 6.11b. Because the output mode has a finite bandwidth, we

observe an exponential rise of the signal at rate out , followed by an exponential decay with the induced

decay rate . The emitted signal clearly retains coherence with the cavity state, made visible as an oscil-

lation by demodulating with a small detuning from the output frequency. Importantly, the amplitude

of the oscillations is consistent with a high conversion efficiency from the cavity to the output mode. By

calibrating the signal amplitude in terms of the number of photons emitted by the output resonator, we

estimate that the propagating field contains 1± 0.15 photons.

This calibration, and its associated uncertainty, are determined through the following process. First,

we prepare a reference signal Sref that makes no use of the conversion process. This is done by calibrating

the strength of a drive required to release a one-photon coherent state, |↵ = 1i, from mode b̂ by measuring

the imposed Stark shift (6.2.1). When this state is naturally emitted, the detector registers a steady-state

amplitude S
0

ref enclosed in ring-up and ring-down profiles with rate ref = out . A state prepared and

released for the purpose of evaluating the conversion efficiency will lack this steady-state component, in-

stead following the shape of the natural exponential emission with effective decay rate  depending on the

strength of the conversion process. The efficiency, given by the energy released compared to that prepared,

is proportional to the ratio of integrated detector signals; that is,

⌘ =
hbpitch

out i
hbref

outi
=

R
S

pitch(t) dtR
Sref(t) dt

(6.31)

since hbouti /
R
S(t)dt. Specifically, the input–output relation and the quantum Langevin equation

dictation that

bout = b(0)
p
e�t/2 (6.32)

for an emitted wavepacket in the rotating frame of the resonator. Thus, our total expression for efficiency
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Figure 6.11 | Measuring the field of converted, propagating states. a After preparing a cavity state,
we monitor the output field in heterodyne detection while applying the pump tones. b Averaged in-phase
signal for two coherent states with n̄ = 1 and opposite phases. g/2⇡ = 125 kHz for this data. Solid lines:
fit to a sum of two exponentials with sinusoidal oscillation, hI(t)i / (exp(�t)� exp(�outt)) ⇥
cos(2⇡ft+ �±). f is the finite difference between the signal and demodulation frequencies, and �± are
the phases of the resulting signals, corresponding to prepared states |±↵i; here, �� = ⇡ � �+. (Figure
adapted from [23]; see Copyright Permissions.)

becomes

⌘ =
hbpitch

out (0)iSpitch
0

hbref
out(0)iSref

0

r
out


, (6.33)

where S0 is the initial amplitude of the decay curve measured at the detector. For our reference pulse,

we use a coherent state |↵ = 1i. For our calibration pulse (the one that is converted), we prepare a Fock

state superposition, | i = (|0i+ |1i) /
p
2. Our ratio of expectation values is thus hbpitch

out (0)
hbref

out(0)
= 1/2.

We measure and fit the decay of the calibration signal, bpitch
out , allowing us to evaluate this expression. We

do so for many conversion strengths, finding ⌘ > 0.9. Uncertainty arises from many sources, beginning

with our measurement of the Hamiltonian parameter�bt, which affects the error bar on S
ref
0 . Uncertainty

associated with the time at which the ring-down begins in S
pitch
0 affects its uncertainty, since the signal is

oscillating. Additional uncertainty is associated with . Within these uncertainties, and from our former

measurement of detector efficiency, this is in agreement with our expectation of a small inefficiency in the

conversion.

By sending a classical state like |↵ = 1i that we have the ability to directly measure, we can extract and

retain the envelope of the decay. This envelope is then used to integrate the field from each shot and and

extract and histogram shot-by-shot (I,Q) values for any arbitrary state (Section 6.3.3). Although non-

classical features are thus blurred by the detector, state-essential signatures are preserved in the raw data;
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knowledge of the detection efficiency allows us to quantitatively confirm the faithful release of quantum

states. We illustrate this using two classes of non-Gaussian oscillator states.

The first class are Fock state superpositions of the form (|0i + |ni)/
p
2, which display an n-fold

symmetry in their quasiprobability distributions. For a set of such states we show the Wigner function

of the cavity state, measured directly after preparation (Section 3.5), and the Q-function of the released

field (Figure 6.12; from comparison it is clear that the two distributions share the same symmetry. For

additional clarity, we integrate the Q-function radially to obtain a probability distribution as a function

of angle, Pr(�). In this representation it can be seen that the symmetry is fully preserved; the contrast is as

expected, given our detection efficiency.

A second class of states of particular interest for CV quantum information processing are “Schrödinger

cat” states of the form |C±
↵ i = N (|↵i± |�↵i), which are eigenstates of photon number parity. We cre-

ate and release the even (+) and odd (�) parity coherent-state superpositions |C±p
2
i with average photon

number |↵|2 = n̄ = 2 (Figure 6.13). Because in heterodyne detection only the Q-function is directly

accessible, the characteristic coherence fringes are strongly suppressed in the traveling field data (Section

3.5.4); as a result, the distributions appear fairly similar. However, subtracting the marginals — obtained

by integrating the Q-function along one axis — clearly reveals a difference, with a magnitude that is con-

sistent with our detection efficiency and a high degree of state preservation. The heterodyne detection

used in this experiment limits the number of photons accessible to about ⇠ 5; from the analysis of Section

6.3.3, we estimate that in this regime the fidelities with the ideal states exceed 90%.

The release of the cavity states shown can enable error-correctable transmission of quantum infor-

mation. Because we have temporal control over the pump tones, we can shape the wave packet, which

enables capture of emitted fields by a receiving module [205]. An inherent challenge for this direct quan-

tum state transmission is that inevitable photon loss in the transmission channel will corrupt the received

state. However, by choosing an appropriate encoding, the receiver will be able to detect and correct this

error. For example, the states |2i and (|0i+ |4i)/
p
2 are codewords of a binomial code [52] that can read-

ily be sent by our system. Single photon loss in the transmission channel will result in a change of parity,

which can be detected and corrected by a receiver. These concepts will be detailed further in Chapter 7.
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Figure 6.12 | Traveling multi-photon quantum states. Fock state superpositions (|0i + |ni)/
p
2,

arranged in columns and labeled as insets. a The measured Wigner functions of the prepared cavity states
(not corrected for imperfect readout). b The measured Q-function of the traveling signal, not corrected
for detection loss. c The radially integrated Q-function, Pr(�) =

R
rQ(r,�)dr, is compared with the

expected contrast for the ideal state (solid), taking into account the detection efficiency. The symmetry
of Pr(�) let us intuitively compare to the expected state symmetry. All Q-function data have been taken
with g/2⇡ = 164 kHz. Fock state superposition Q-functions were taken with 107 samples; Cat state Q-
functions with 106 samples. (Figure adapted from [23]; see Copyright Permissions.)
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Figure 6.13 | Traveling cat states. a Wigner and b Q-functions of even and odd cat states, |C±p
2
i. c

Marginals Pr(Q), obtained by integrating over I . The long arrow in b depicts an integrated slice; slices
are taken for all values of Q. d Difference between the marginals (odd subtracted from even). Solid lines:
expected signals for the ideal states, taking into account the detection efficiency. (Figure adapted from
[23]; see Copyright Permissions.)



6.3. Quantifying conversion performance 178

Effect of cavity Kerr on multi-photon states

By analyzing how well the process preserves quantum information, we have established that the conversion

is faithful within the bounds of our measurement error. Further, multiple photons can be transmitted in

a state-independent fashion. This value will be limited by the process bandwidth, arising from variable

Stark shifts, as well as the cavity Kerr. It is worth exploring what effect Kerr has, and at what point it will

be limiting.

The relatively large self-Kerr of our particular cavity leads to a slight deviation from state-independent

decay around n � 5, as well as a ‘smearing’ of some of the prepared states in Figures 6.12 and 6.13. Here

we briefly describe the origin of the term and what parameter alterations could reduce these effects.

The self-Kerr of any mode within the system is given by the fourth-order expansion term of the trans-

mon cosine Hamiltonian (Section 3.4.2) and is independent of the drive. The single-photon Kerr-effect

in the cavity [105] is described by the Hamiltonian

HKerr =
�aa

2
â
†2
â
2
. (6.34)

Comparison with the cosine expansion yields a relation to the junction energy EJ as �kk/2 = �EJ�
4
k/4.

A state prepared in a cavity with significant self-Kerr will experience dephasing over time. The char-

acteristic state collapse time (at which point the information becomes highly “smeared”) can be expressed

as [44]

Tcollapse =
⇡

2
p
n̄�aa

(6.35)

for a state in e.g. â with average photon number n̄. In our system, �aa = 2⇡ ⇥ 22 kHz. With a cavity

evacuation rate , the product Tcollapse must be much greater than 1 for this Kerr effect to be negligible.

Given our experimental parameters, this product can be as low as

Tcollapse = (2⇡ ⇥ 18.2⇥ 103 Hz)⇥ (11.4⇥ 10�6 s) = 1.3 (6.36)

for states containing n̄ ⇠ 1 and for g = 2⇡ ⇥ 54 kHz. Also, the construction of the Kerr Hamiltonian

term dictates that this effect will only be visible when particular multi-photon states are used.
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Figure 6.14 | Kerr effect during half-release of a cat-state. a Cavity state after creating |C+p
2
i followed

by 3 µs of delay, for the experiments in Section 6.4. While the state maintains its purity, the Kerr effect
leads to a rotation and a ‘smearing’ of the populations. b Cavity state after half-release of |C+p

2
i. The state

now appears fully mixed due to the entanglement with the traveling mode; the additional rotation with
respect to the case of a comes from the Stark shifts induced by the pumps. Mapping onto the transmon
is achieved by displacing one of the ‘blobs’ to the vacuum followed by mapping the vacuum onto the
transmon excited state. This is indicated by the circle and arrow; the radius of the circle is 1/2, which is
the standard deviation of a coherent state in the Wigner function. It can readily be seen that the smearing
leads to a small imperfection in the mapping because the blob will not be confined to the vacuum after the
displacement. (Figure adapted from [23]; see Copyright Permissions.)

In particular, we should see an effect when releasing, for example, (|0i+|4i)/
p
2 or C±p

2
(Figure 6.14).

While this value of Tcollapse may appear to be prohibitive for the slow release of complex multi-photon

cavity states, simple parameter changes (notably in the pump strengths,out , and�aa) can greatly enhance

this factor and make the Kerr collapse time irrelevant to future experiments. In fact, the experiment in

Chapter 7 will show that such modifications are readily achievable.

6.4 Entanglement with flying photons

We can also show that temporal control over the pumps allows us to generate entanglement between cavity

and traveling modes by partial conversion. We use the large on–off ratio over the release process to convert

only a part of the energy stored in the cavity (Figure 6.15). This is the analogue of a partially reflective

beam splitter, and can thus generate entanglement between the reflected (remaining in the cavity) and

transmitted field (in the transmission line). We prepare an input state in the cavity and then release half

of its energy while recording the output field. This ‘half-release’ corresponds to a 50:50 beam splitter, for

which we expect maximally entangled states (Section 6.1.4). After switching off the conversion process, we

immediately perform a single-shot, high-fidelity (& 0.95) measurement on the cavity. The non-classical
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Figure 6.15 | Generating entanglement between stationary and traveling fields. a We partially
release the cavity field by applying the pumps for a reduced amount of time, T . We condition the recorded
field on the outcome of a subsequent measurement of the cavity—as having m photons in the rotated
basis—to obtain correlations. b Partial release is analogous to a field impinging on a partially transmitting
mirror, where the transmittance t is set by the pump time T . (Figure adapted from [23]; see Copyright
Permissions.)

correlations between recorded field and cavity outcomes measured in different bases are indicative of the

generation of entanglement. We demonstrate this using two different state encodings: single photons

(Figure 6.16) and cat states (Figure 6.19).

We start in the state |1i |0i; the first ket denotes the state of the cavity, and the second that of the

traveling mode. Half-conversion using the operation in Equation 6.23 maps this state onto the Bell state

1p
2
(|1i |0i+ |0i |1i) = 1p

2
(|+i |+i � |�i |�i), (6.37)

where we have defined |±i = (|0i± |1i)/
p
2. When we measure the cavity in the number basis and find

it to be in the state |0i (|1i), we expect to find the traveling state in |1i (|0i). To perform this measurement,

we apply a transmon ⇡-pulse that is selective on either |0i or |1i and then measure in a single shot if the

transmon is in the excited state (Section 3.5); due to the asymmetry of the readout errors, we discard the

outcomes in which the transmon is found in the ground state (⇠ 50 % of the cases). This behavior is

confirmed by the near-ideal contrast in the Q-functions from the traveling field, conditioned on cavity

outcomes (Figure 6.16a, left column).

To show non-classicality in the correlations, we measure the cavity also in a rotated basis: that span-

ning the (|0i ± |1i)/
p
2 or |+i , |�i basis states. We first map |+i , |�i onto |0i , |1i by an optimized

control pulse (Section 3.5.5), followed by a measurement in the number basis. Conditioning on the these

outcomes, we find that the Q-functions closely resemble those of (|0i⌥ |1i)/
p
2, consistent with a high-
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Figure 6.16 | Entanglement between a stationary and flying photon. Half-release of |1i. a Q-
functions conditioned on finding the cavity in either |0i or |1i (left), or finding the cavity in either |0i+|1i
or |0i � |1i (right). b Marginals, obtained by integration along Q. Data have been taken with g/2⇡ =
164 kHz and 106 samples per state and basis. (Figure adapted from [23]; see Copyright Permissions.)
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fidelity entangled state. This data allows us to further confirm the presence of entanglement through a

simple witness.

Using a simple model of the detector we can place a lower bound on the fidelity of the entangled

state by measuring an entanglement witness [207]. An entanglement witness sets a threshold that can

distinguish separable states from entangled ones [208, 209]. For a two-qubit Bell state of the form (6.37)

a strict lower bound on the entangled state fidelity is given by [210]

F � 1

2
(⇢22 + ⇢33 + ⇢̃11 + ⇢̃44 � ⇢̃22 � ⇢̃33 � 2

p
⇢11⇢44) , (6.38)

where ⇢ is the density matrix of the joint state in the number basis, and ⇢̃ is the density matrix in the

|+i , |�i basis. This lower bound can be evaluated with the data shown in Figure 6.16. The diagonal

density matrix elements in the above expression can be found from the probabilities with which we find

the cavity and propagating modes in a particular state, i.e.,

F � 1

2
(Pa(0)Pb(1|0a) + Pa(1)Pb(0|1a)� 2

p
Pa(0)Pb(0|0a)Pa(1)Pb(1|1a)

+ Pa(+)Pb(+|+a) + Pa(�)Pb(�|�a)� Pa(�)Pb(+|�a)� Pa(+)Pb(�|+a)).

(6.39)

Here, Pa(i) is the probability to find the cavity in state |ii in a measurement in the |ii , |̄ii basis, and

Pb(j|ia) is the conditional probability to find the propagating state in |ji after having found the cavity in

|ii.

The probabilities Pa(·) follow directly from the statistics of the cavity measurements, which leaves

us with the task to find the conditional probabilities for the traveling state. We compute these by fitting

the measured marginals Pr(I) (Figure 6.17). With known detection efficiency, we can compute the ideal

marginals, D0,1 in the number basis, and D+,� in the rotated basis. Assuming our detector is linear, we

can then fit the conditioned field data in the |ii , |̄ii basis to ↵Di + (1 � ↵)Dī, with 0  ↵  1. The

conditional probabilities are then determined by the single fit parameter, Pb(i|ia) = ↵. Assuming again

that the conversion is lossless and we can reliably determine the detection efficiency, we find a lower bound

for the entangled state fidelity of F � 0.91 ± 0.02, uncorrected for any inefficiency in the preparation

or measurement of the cavity state. This clearly exceeds the classical bound of 0.5 and confirms that the
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Figure 6.17 | Entanglement bound by witness. Estimating the fidelity of the entangled state from
half-releasing a single photon. a Ideal marginals, assuming only the detection efficiency of 0.40 ± 0.01
we have recorded during the half-release experiment. b Marginal data conditioned on the cavity outcomes
(same as shown in Figure 6.16b). Dashed black lines are fits to the model described in the text. Data have
not been corrected for initialization or the conditioning cavity measurement fidelity. (Figure adapted from
[23]; see Copyright Permissions.)

half-release generates quantifiable entanglement.

6.4.1 Entanglement of two photons

While entanglement with single traveling photons can also be observed with two-level systems [196], the

conversion method presented here can generate entanglement between non-classical multi-photon states.

One such state is the two-photon Fock state, |2i.

The entangled states arising from half-releasing Fock states larger than |1i cannot be maximally entan-

gled states in the number basis, but still display non-classical correlations. We illustrate this by half-releasing

the Fock state |2i, which is mapped onto

1p
2
|1i |1i+ 1

2
(|2i |0i+ |0i |2i) = 1p

2
|1i |1i+ 1

2
(|+i2 |+i2 � |�i2 |�i2), (6.40)
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where now |±i2 = (|0i± |2i)/
p
2. To reveal correlations we can thus probe the states |0i , |1i , |2i (by

number-selective⇡-pulses and transmon measurement), and |+i2 , |1i , |�i2 (mapping onto |0i , |1i , |2i

by a single combined transmon/cavity pulse, followed by number-selective ⇡-pulses) (Figure 6.18).

6.4.2 Entanglement with flying cats: Schrödinger’s cat-apult

Another interesting state to entangle (particularly for its connection to error correction schemes) is a cat

state, or coherent state superposition. While such two-mode entangled cat states have been created previ-

ously in locally coupled oscillators [206], and with itinerant optical photons [211], our scheme can real-

ize an interface between stationary and flying cats. We demonstrate this “Schrödinger catapult” by half-

releasing the cat state |C+p
2
i. To show non-classical correlations we measure the cavity in the coherent state

basis, finding it in either |±↵i, or in the parity basis, thus finding it in either the even or odd cat state |C±
1 i.

The conditioned Q-functions of the flying field are shown in Figure 6.19a. Again, the correlations are

consistent with a high-fidelity entangled state. A slight reduction of contrast in the coherent state basis

results from state evolution due to the Kerr effect, which reduces the fidelity of the cavity measurement

(Section 6.3.3).

Because a coherent state |
p
2↵i |0i is mapped onto |↵i |↵i, we can readily see that the cat state |C+p

2
i |0i

results in a two-mode entangled cat state

N↵(|1i↵ |1i↵ + |�1i
↵
|�1i

↵
) = Nc(|C+

1 i |C
+
1 i+ |C�

1 i |C
�
1 i). (6.41)

Here, N↵,c are normalization factors, and we use the notation |�i
↵

to denote a coherent state with complex

amplitude �. We expect correlations in the coherent state phase and photon number parity bases, because

the cat states |C±
1 i are eigenstates of even (+) and odd (�) parity, respectively. To measure in the coherent

state basis, we displace the cavity state by ↵ = 1, followed by a transmon ⇡-pulse that is selective on the

vacuum; |�1i
↵

is thus mapped onto the the transmon excited state, while |1i
↵

is mapped onto the ground

state. Subsequent transmon measurement thus gives the result in the |↵i , |↵̄i basis. To measure parity we

apply a series of ⇡-pulses that are selective on the even photon numbers on the transmon; this maps even

parity onto the excited state, and odd parity onto the ground state.



6.4. Entanglement with flying photons 185

−2 0 2
I (photon1=2)

−2

0

2

Q
 (p

ho
to

n1
=2

)

0

1/2¼

1/¼

Q
(®)

−2 0 2
I (photon1=2)

0.0

0.3

0.6

P
r(

I)

−2 0 2
I (photon1=2)

basis:

basis:

(a)

(b)

Figure 6.18 | Conditioned Q-functions after half-release of |2i. a Left column: Q-functions con-
ditioned on finding in the cavity in either |0i, |1i, or |2i; for these case we expect the field to be in either
|2i, |1i, or |0i, respectively. Right column: conditioned on finding the cavity in |+i2, |1i, or |�i

a
. b

Marginal probability in each basis. Solid lines: ideal case, with only detection efficiency for the traveling
field taken into account. (Figure adapted from [23]; see Copyright Permissions.)
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Figure 6.19 | Entanglement between a stationary and flying cat state. Half-release of |C+p
2
i. a

Left column: Q-functions conditioned on finding the cavity in either |�↵i or |+↵i. Right column: Q-
functions conditioned on finding either an even or odd number of photons in the cavity. b Marginals,
obtained by integration along I . c For the parity-conditioned data, we show the difference in the marginals.
Solid lines: ideal case (perfect entangled state and perfect cavity measurement), taking into account only
the detection efficiency in the Q-functions. Data have been taken with g/2⇡ = 164 kHz and 106 samples
per state and basis. (Figure adapted from [23]; see Copyright Permissions.)
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We note that the states |↵ = ±1i have a non-zero overlap (⇠ 4 %). This means that the coherent state

basis is not perfectly orthogonal for cat states like |C±
1 i with small photon number. This overlap, along

with the Kerr effect acting during the 3 µs it takes to create the cat state and map it onto the transmon

for measurement (Section 6.3.3), explains why the conditioned Q-functions are slightly asymmetric af-

ter measuring the cavity in the |↵i , |↵̄i basis. It also prevents us from using the simple method we have

employed to bound the entangled state fidelity in the single-Fock-state case.

This entanglement between stationary and traveling cats can enable error-correctable distribution of

entanglement. Capture of the wave packet emitted by half-release enables the creation of remote entangle-

ment between stationary parties. For the cat states used in this work, any photon loss in the transmission

channel will corrupt the state because it results in change of parity. However, photon loss becomes de-

tectable when we half-release a cat state of the form |↵i + |i↵i + |�↵i + |�i↵i [212]. Such states are

eigenstates of ‘superparity’ with modulo 4 photons, and even/odd (modulo 2) parity measurements can be

used to detect and correct single-photon loss [47]. Thus, measuring and comparing the parity between the

remote parties will allow for detection and correction of single-photon loss in the transmission line during

remote entanglement generation. This proposed scheme will be analyzed further in the next chapter.

6.5 Conclusion

We have shown the deterministic, coherent release of quantum states from a microwave cavity memory.

This release is enabled by parametric up-conversion utilizing the non-linearity of our single Josephson

junction transmon. This conversion scheme fulfills the requirements we set out for an interface between

stationary and traveling oscillator states in a microwave quantum network—we can dynamically control

the conversion rate, releasing cavity states almost 1,000 times faster than the intrinsic lifetime; the inter-

face maintains a large on–off ratio; it is parametrically and temporally controllable. Further, and of great

importance to error correction, this conversion rate is state-independent for states containing up to a few

photons (extendable to up to tens of photons by simple hardware adjustments). The release process is

equivalent to a beam splitter interaction, and cavity states are mapped faithfully onto traveling states. This

interaction can be controlled precisely and rapidly, enabling the generation of entanglement between cav-
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ity and traveling modes.

Our interface can serve as the backbone in a microwave quantum network in which quantum infor-

mation is stored in cavities. Since the conversion process is controllable in amplitude and phase, we will

next show that it allows quantum state transfer and entanglement between remote cavities.



7
Putting Schrödinger’s Cat Back in the

Bag: Direct Quantum State Transfer and

Entanglement Distribution

In 2004, a panel of quantum computing experts met to discuss progress in the field, comparing milestones

reached using various platforms. On considering the two DiVincenzo criteria for off-chip quantum com-

munication, they rated superconducting quantum computation as showing “no viable approach” [213].

Much has changed and advanced in just over a decade. Though it remains true that optical-frequency

light suffers lower attenuation than that at microwave frequencies, recent experiments [86, 87, 214] defini-

tively show that superconducting circuits can satisfy the DiVincenzo communication criteria—and well

enough so as to be of practical use, as we will show in this chapter.

This process has been given many colloquial names, among them being ‘send and receive’, ‘pitch and

catch’, or ‘release and capture’. They all share the same goal: to directly and deterministically transfer

arbitrary states sent between distant modules. This “distance” will be short by standards of light. The

modules will be connected with less than a meter of cable, and sit even closer to one another in physical

space. We will show, however, that it highly unlikely that direct interactions produce the results we observe,

and that we do realize the protocol we set out to.

189



7.1. Extending conversion to two nodes of a network 190

sender receiver

30 cm 30 cm

output

Figure 7.1 | Connecting two modules for on-demand state transfer. Identically-constructed circuit
quantum electrodynamics (QED) sender and receiver modules are connected with transmission line and
a circulator, allowing straight-forward measurement of both systems. Each module contains a high-Q
memory cavity (â), transmon qubit (t̂), and communication mode (b̂) with strong output coupling out .
Parametric drives (purple waveforms, ⇠) enable conversion between memory and communication modes.
Below each module is a schematic showing the parametric conversion process, enabled by the transmon
nonlinearity, which runs left-to-right in the sender and right-to-left in the receiver. (Figure adapted from
[86]; see Copyright Permissions.)

7.1 Extending conversion to two nodes of a network

In this chapter, we set out to fully implement the deterministic state transfer protocol by Cirac et al. [205],

employing the same hardware in Chapter 6 to serve as remote quantum memory endpoints in a simple

network (Figure 7.1). The work in ref. [205] is a prescription for what is possible: under the right cir-

cumstances, complete and deterministic state transfer can be achieved. The “circumstances” include the

conversion process detailed in Chapter 6. They also include the right system, or hardware platform, that

must be highly coherent. Luckily, we have demonstrated this as well.

Each module can be understood to contain two orthogonal cavity modes (memory and communica-

tion) that are coupled by an artificial atom (Figure 6.1). The communication modes—implemented as

on-chip stripline resonators, as before—are strongly coupled to either end of a transmission line. Real-

izing on-demand state transfer requires tunable conversion between memory and communication modes

within each module, such that (i) the sender emits the state contained in the memory into the transmission
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sender

receiver

in situ tuning

Figure 7.2 | Mode frequencies and alignment. Frequency ordering of the modes (!a,b,t) and pumps
(!1,2) in each module. Pumps are detuned � from each mode and an additional relative detuning � be-
tween them to account for Stark shifts. (Figure adapted from [86]; see Copyright Permissions.)

line as a wavepacket with a specified temporal profile, and (ii) the receiver absorbs this wavepacket (Section

7.2). The layout of mode frequencies here (Figure 7.2) is similar to that in Figure 6.2. In this case, notably,

the communication frequencies must be matched. The details of this additional layer of complexity are

described in Section 7.1.2.

7.1.1 Experimental details

The experimental setup (Figure 7.3) is very similar to that in Chapter 6, with a few notable exceptions.

The first is that instead of a direct connection to the amplification chain and measurement/digitization

hardware, the output signal from each node must pass through a circulator at least once. This circulator

connects the two nodes, ensuring directionality, but also permitting a hardware-efficient means to read

out each module without adding further modes.

Parameters of each mode within the two devices, including frequencies and coherence times, are in-

cluded in Table 7.1. Both samples are within a magnetic shield, while all circulators are outside of the

shield. Images of the parts of the device are shown in Figure 7.4.

7.1.2 Mechanical tuning

One stark difference in the composition of measurement hardware between this experiment and that of

the last chapter is determined by the requirement that the output signal (b̂out ) is frequency-matched to the
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Figure 7.3 | Schematic of the experimentwiring for a full pitch-and-catch experiment. Microwave
signals are IQ-modulated, amplified, and transmitted to the cold stage of the dilution refrigerator (Oxford
Instruments Triton 200) where the sample is cooled to Tbase ⇡ 20 mK. IQ modulation is performed
with an integrated FPGA system with digital-to-analog converter (DAC) outputs (Innovative Integration
VPXI-ePC), and mixed with the LO (MarkiMicrowave IQ0307LXP and IQ0618LXP IQ-mixers). Inset
shows filtering on low-frequency IQ channels. The generators acting as local oscillators (LOs) are Ag-
ilent N5183A (LOs A and B) and Vaunix LabBrick LMS-103-13 (LOs C1 and C2). Tones with simi-
lar frequencies share IQ channels. Cavity and readout input signals are amplified at room temperature
(MiniCircuits ZVA-183-S+). Input amplifiers are followed by switches (Hittite HMC-C019) except for
(*) in the diagram. Input signals are introduced via weakly, capacitively-coupled pins. Signals leave the
output resonators through strongly coupled pins (large capacitors) and are amplified by a Josephson para-
metric converter (JPC) that is pumped by a microwave generator (“JPC pump”, Agilent N5183A). The
signal is further amplified at 4 K (Low Noise Factory LNF-LNC7_10A) and at room temperature (Miteq
AMF-5F-04001200-15-10P), mixed down with the output LO (Marki Microwave IQ0618LXP), and
recorded and demodulated by the FPGA system with an analog-to-digital converter (ADC). Lines entering
or leaving the refrigerator carry the following signals: (1) the JPC pump tone, (2–5) sample input tones,
(6) a diagnostic tone with which to probe samples in reflection and tune the JPC, and (7) the measurement
output line. Inset shows attenuation and filtering on lines 2–5, including a low-pass filter below 12 GHz
(LP) and an Eccosorb filter (E). Line 6 is similar but with an additional -20 dB of attenuation at the 20 mK
stage, while line 1 omits the low-pass filter. (Figure adapted from [86]; see Copyright Permissions.)
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Hamiltonian parameter Sender value (MHz) Receiver value (MHz)
Frequency !a/2⇡ 4219.3 4269.6

!b/2⇡ 10031.5 10031.5⇤

!t/2⇡ 6156.1 6417.6
Cross-Kerr �ab/2⇡ �16⇥ 10�3 �12⇥ 10�3

�at/2⇡ �2.86 �2.29
�bt/2⇡ �2.4 �2.18

Self-Kerr �aa/2⇡ �8⇥ 10�3 �5⇥ 10�3

�bb/2⇡ �8⇥ 10�3 �6⇥ 10�3

�tt/2⇡ �183.43 �196.17
Damping parameter Sender value (µs) Receiver value (µs)
Cavity single-photon

energy decay time T
a

1 460± 10 770± 10

Cavity Ramsey decay time T
a

2R 102± 3 130± 4
Output mode energy decay time T

b

1 0.14± 0.01 0.11± 0.01
Transmon relaxation time T

t

1 26± 3 27± 3
Transmon Ramsey decay time T

t

2R 12± 2 12± 2
Transmon Hahn echo decay time T

t

2E 15± 2 15± 2
Steady-state excitation Sender value Receiver value
Transmon 1� P (g) 0.195 0.209
Cavity n̄ 0.166 0.172

Table 7.1 | Measured pitch-and-catch system parameters. Uncertainties of measured Hamiltonian
parameters are < 0.1% except when indicated by fewer significant digits. For the cavity and transmon
decay times, the uncertainties given are the typical fluctuations observed over the course of one day. ⇤This
is the frequency set by tuning and is used during all phases of the experiment.
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transmon
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intersystem
connection

Figure 7.4 | Images of device used in pitch-and-catch experiment. Left: the two systems are packaged
and assembled in close proximity. The circulator and lines connecting the two systems are outside of the
field of the image. Upper right: inside the package, dashed lines depict the cavity and tunnel housing the
communication mode and transmon. Lower right: Close-up view of the chip, which is held by a clamp
that is affixed to the package. (Figure adapted from [86]; see Copyright Permissions.)

receiving cavity. To facilitate this, a tuning mechanism is implement to match the output (or ‘communi-

cation’) modes. A low-temperature mechanical micropositioning stage (Attocube ANPz101-A4) is used to

introduce a small superconducting pin through a hole in the side of the device. The pin perturbs the field

of the output mode, lowering that mode’s frequency at greater pin insertion. The pin can be inserted over

a range of 5 mm and the mode frequency can be tuned by ⇠ 300 MHz.

We measure the devices individually and outfit the tuning mechanism on the system with the higher

(unperturbed) output mode frequency (in order to guarantee that the output modes can be tuned into

resonance). Once the resonance condition is met, we disconnect the positioning controller to maintain

frequency stability. We expect that in future versions of modules, fabrication and mounting errors can be

minimized such that in situ tuning will not be necessary.

Meanwhile, the cavity and transmon modes of the sender system are far-detuned (relative to their

linewidths) from the respective modes in the receiver system, since there is no special requirement that

relates them. The combined, measured frequency spectra are shown in Figure 7.5.
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Figure 7.5 | Mode spectroscopy. Cavity spectroscopy is performed by applying a displacement at vari-
able modulation frequency and measuring whether the transmon is in the cavity-number-state-dependent
state corresponding with photon number peak n = 0. Qubit spectroscopy is performed by applying
a selective (spectrally narrow) ⇡-pulse at variable frequency near the transmon mode, and reading out.
Output mode spectroscopy for System A is performed using a vector network analyzer (VNA) to mea-
sure the transmission parameter (S21) between the readout/transmon input port and the measurement
line. The dotted lines indicate data taken while the output frequency has been purposefully detuned.
Output mode spectroscopy for System B is done by stepping the spectroscopy frequency and reading out
normally. The vertical dashed line indicates the on-resonance value. Secondary peaks in transmon and
readout spectroscopy arise from finite thermal population in the cavity and transmon, respectively. All
results are expressed in normalized logarithmic units.
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7.1.3 Cavity state tomography

Wigner tomography on a single cavity will be done through a series of displaced parity measurements

[105, 133], and follows Section 3.5.4. As a reminder, in this particular system, the parity is mapped onto

the transmon by applying a set of selective ⇡-pulses simultaneously, on either the even or odd number-

peaks, up to n̄ = 25. Taking the difference of the even and odd mapping sequences, we obtain a value

proportional to parity (and therefore to the Wigner function), independent of the initial transmon state.

To compensate for finite ⇡-pulse and measurement contrast, we then normalize the resulting data so that

it integrates to unity over all phase space, leading to a physical Wigner function. Displacements are typi-

cally performed up to � = 2.5, resulting in Wigner functions that should capture > 99 % of the energy

contained in the mode for our states with n̄  2. We have determined a maximum error associated with

this normalization and reconstruction process to be ⇠ 6%.

7.1.4 Two-system calibrations

Before proceeding with the experiment, we must again calibrate and characterize our conversion process

— this time, at both ends.

We verify the independence of the transmon state assignment by performing a simultaneous Rabi

experiment: we apply a variable rotation on both transmons, followed by joint measurement of the whole

system. The results (Figure 7.6) show that the assigned state of one transmon depends only very weakly

on the rotation applied to the other, and that there is minimal crosstalk between transmon control pulses.

To verify that the pump tones applied to one system do not produce unwanted effects on the opposite

system, we measure leakage by applying one pump at a constant amplitude and measuring each trans-

mon’s Stark shift (Figure 7.7). We find that measurable leakage occurs only in the direction permitted

by the circulator (from sender to receiver), and only between communication modes (since their frequen-

cies are very nearly matched). Based on these measurements, we estimate that this leakage contributes to

“miscalibration” error on each system at the level of . 1%.
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are  2.5%. (Figure adapted from [86]; see Copyright Permissions.)
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7.2. Wavepacket shaping 199

7.2 Wavepacket shaping

Using an unshaped pulse as we did in Chapter 6 is, unfortunately, not an option by which to capture all

of the released energy. The natural cavity decay profile, a falling exponential in time, is not “temporally

impedance-matched” to an unshaped conversion process at the receiver. One can make sense of this by

“recording”, as a thought experiment, the outgoing field as a time series E(�t) / e�t for 0 < t < t0.

If allowed to run to infinite time, this process will release all of the cavity energy perfectly. By symmetry,

running this process in reverse—directing a field with a rising exponential profile E(t) / et�t0 into an

empty cavity—will cause this state to be perfectly absorbed. Unfortunately, we have no way to easily im-

plement this time-reversal on the propagating, falling-exponential wavepacket. With constant coupling at

the receiver, attempting to capture a falling exponential will succeed in capturing only a fraction of the

energy.

One way to solve this using our control abilities, particularly if identical systems are present at both

ends, is to implement a shaped conversion process g(t) = g(�t) at either end. This will mandate a

time-symmetric propagating wavepacket form. However, as the following sections will show, the time-

symmetry of this wavepacket shape is not strictly necessary; optimizations can be performed to transfer a

fraction of the energy that quickly approaches unity.

7.2.1 Calculating waveforms

In the rotating frame of the pumps, the Hamiltonian enabling conversion between memory and output

modes a and b is

Hconv(t) = i(g(t)âb̂† � g
⇤(t)â†b̂) (7.1)

with

g(t) = g(⇠1(t), ⇠2). (7.2)

The correspondence producing the conversion rate g(t) as a function of the two applied pump amplitudes

⇠1 and ⇠2 is calibrated experimentally (Section 6.2.1). The phase convention of the conversion Hamilto-

nian is chosen to make later computation easier. In the lowest-order approximation, gj / ⇠
j

1⇠
j

2 for System
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j.

Because the conversion always depends on both pumps, only one of the two pumps needs to vary in

time to produce any particular g(t). For experimental convenience, we designate ⇠1 to vary in time. The

pump ⇠2 is held constant in time, with a smooth (⇠ 200 ns) ring-up and ring-down profile.

One significant effect of the application of pumps are ac-Stark shifts that shift the frequency of the

modes. The Stark shifts during the transfer process are a function of both pump amplitudes:

HStark(t) = �a(t)â
†
â+ �b(t)b̂

†
b̂ (7.3)

Each Stark shift depends on each pump amplitude:

�a(t) = �a(⇠1(t), ⇠2) �b(t) = �b(⇠1(t), ⇠2) (7.4)

This shift is calibrated independently. We find very good agreement with the expected dependence, which

is linear in the sum of the pump powers:

�a(t) = 2�aa|⇠1(t)|2 + �ab|⇠2|2

�b(t) = 2�bb|⇠2(t)|2 + �ab|⇠1|2
(7.5)

Having established the dependence of both the conversion rate g(t) and the Stark shifts �a, �b , we can

write down the equations of motion for the modes â and b̂ of the sender:

ȧ(t) = �g(⇠1(t), ⇠2)b(t)� i�a(⇠1(t), ⇠2)a(t) (7.6a)

ḃ(t) = g
⇤(⇠1(t), ⇠2)a(t)� i�b(⇠1(t), ⇠2)b(t)�

out

2
b(t) (7.6b)

b(t) = bout(t)/out (7.6c)

Because these equations are linear, we can consider the evolution of the expectation values of the field

operators â and b̂, so we have dropped the operator notation. This will also allow us to solve the problem

classically, which is computationally simpler compared to a full quantum simulation.
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Equation 7.6c is the input–output relation, taking as an assumption that there is no incoming field.

In this case, for a chosen bout(t) and ⇠2, the only undetermined quantities are a(t) and ⇠1(t). In what

follows we suppress the time dependence and the explicit dependence on the static ⇠2 for simplicity.

The goal is to eliminate a, leaving an equation for g in terms of b that can be solved numerically. We

first note that Equation 7.6b can be written

g
⇤(⇠1)a = ḃ+ i�b(⇠1)b+

out

2
b (7.7)

with derivative

ġ
⇤(⇠1)a+ g

⇤(⇠1)ȧ = b̈+ i�̇b(⇠1)b+ i�b(⇠1)ḃ+
out

2
ḃ (7.8)

We can multiply Equation 7.6a by g
⇤(⇠1) and substitute it into Equation 7.8 to write

ġ
⇤(⇠1)a� |g(⇠1)|2b� i�a(⇠1)g

⇤(⇠1)a = b̈+ i�̇b(⇠1)b+ i�b(⇠1)ḃ+
out

2
ḃ (7.9)

Finally, multiplying Equation 7.9 by g
⇤(⇠1) and substituting in Equation 7.7 yields

[ġ⇤(⇠1)� i�a(⇠1)g
⇤(⇠1)]

h
ḃ+ i�b(⇠1)b+

out

2
b

i
� g

⇤(⇠1)|g(⇠1)|2b

= g
⇤(⇠1)b̈+ i�̇b(⇠1)g

⇤(⇠1)b+ i�b(⇠1)g
⇤(⇠1)ḃ+

out

2
g
⇤(⇠1)ḃ (7.10)

Equation 7.10 is solved numerically to give the correct ⇠1(t) for a given bout(t). The initial condition

⇠1(t = 0) comes from Equation 7.7. This approach has a few important features.

The first is that it inherently accounts for the Stark shifts, in two ways. First, ⇠1(t) will have a phase

that varies in time. This dynamic frequency control ensures that bout(t) can have a fixed frequency, even

when the mode a does not. Secondly, the amplitude of ⇠1(t) will change in time in a way that accounts

for the frequency shift of the output mode b: the amplitude will increase to compensate for the fact that

the conversion process is effectively off-resonant.

By scaling the output field bout(t) to specify the amount of energy contained therein, we calculate dif-

ferent pump waveforms for full and partial release via the same procedure. While the equations of motion
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are linear in a and b, Equation 7.10 is clearly nonlinear in ⇠1. This is why the pulses for full and partial

releases are not simply scaled versions of one another, even though the released wavepackets bout(t) are.

For this reason, the capture pulse will remain unchanged and independent of the release pulse.

Wavepacket capture

The calculation of the pump waveform required to capture the propagating wavepacket is very similar to

the above. The equations of motion for the receiver are

ȧ(t) = �g(⇠1(t), ⇠2)b(t)� i�a(⇠1(t), ⇠2)a(t) (7.11a)

ḃ(t) = g
⇤(⇠1(t), ⇠2)a(t)� i�b(⇠1(t), ⇠2)b(t)�


r
out
2

b(t) +
p
routb

r

in(t) (7.11b)

b(t) = b
r

out(t)/
r

out + b
r

in(t)/
r

out (7.11c)

which is identical to Equation 7.6, with the difference than there now exists an input field term b
r
in(t). For

clarity we now restore the superscripts s and r for sender and receiver, respectively. To calculate the capture

waveform, we specify that this input field has the shape of the released wavepacket: brin(t) = b
s
out(t), and

that the field reflected off the receiver is zero: brout(t) = 0, which corresponds to perfect absorption. Taken

together, these constrains imply

ȧ(t) = �g(⇠1(t), ⇠2)b(t)� i�a(⇠1(t), ⇠2)a(t) (7.12a)

ḃ(t) = g
⇤(⇠1(t), ⇠2)a(t)� i�b(⇠1(t), ⇠2)b(t) +


r
out
2

b(t) (7.12b)

b(t) = b
s

out(t)/
r

out (7.12c)

which looks just like Equation 7.6, but with the sign of out changed. The procedure for obtaining ⇠1(t)

is the same as for the sender. The only major difference is that this equation is solved in reverse, with the

final condition specifying the occupation of a at the end of the protocol. This corresponds to the fraction

of incoming energy that is absorbed, ⌘(r)
trunc (to be further detailed in Section 7.5.2). Increasing this fraction

corresponds to increasing the pump strength beyond what is achievable in our system.

Importantly, the capture waveform is the same for both full and partial release; this is due to the linear-
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ity of the equations of motion (Equation 7.11) on b
r
in(t); in other words, the capture is state-independent.

Therefore, the capture waveform depends only on the shape of the incoming wavepacket, not its ampli-

tude.

Choice of wavepacket shape

The envelope of the wavepacket |bout(t)| is an arbitrary choice, up to constraints on the bandwidth of the

conversion process. For experimental convenience, we choose |bout(t)| / 1 � cos2
�
⇡t

T

�
, where T =

6µs is the total transfer time. We find empirically that this smooth shape reduces the maximum pump

amplitudes required for a given transfer time as compared to other shapes tested. The frequency of the

wavepacket is also free to be varied. We choose a frequency ⇠ 1 MHz below the static frequencies of

the communication modes, to account for Stark shifts (which are always negative) while the pumps are

applied.

7.2.2 Parameter measurement and refinement

For the computation of the correct waveforms we need to supply empirical values of g(t) and the Stark

shifts, both as a function of the pump strengths and frequencies that are applied. The value of g is esti-

mated from the rate with which photons leave the storage cavity when pumps are applied. The Stark shifts

can be measured directly from spectroscopy while applying the pumps, as in Figure 7.7. We generally fol-

low the protocols introduced in Chapter 6 to perform these calibrations.

7.3 State transfer

Following the derivation of Section 7.2, we compute the shape of the pumps used in this process so as

to best match the temporal profile of the traveling wavepacket. System parameters enable the effective

coupling strengths between memories and the transmission line, s,r(t)/2⇡, to be tuned dynamically up

to 400 kHz—much larger than the intrinsic single photon decay rates of the memories,s,r
0 /2⇡ < 0.4 kHz.

Following the original proposal [205], we insert a circulator into the transmission channel, which

enforces the directionality of emission from the sender. The circulator also directs signals reflected off the

receiver into an output port, which allows readout of both systems using a single parametric amplifier and



7.3. State transfer 204

heterodyne detection chain. Omission of the circulator would present different physics; depending on

the length of line and resultant mode spacing, the propagating wavepacket could be envisioned as being

swapped through an intermediate real or virtual resonant mode at either end [215]. While the memory

resonance frequencies need not match, efficient transfer requires that the communication modes be close

to resonant compared to their bandwidths (s,r
out/2⇡ ⇠1 MHz). The tuning mechanism from Section

7.1.2 compensates for a small offset in resonance frequency between the communication modes.

7.3.1 Quantifying energy transfer

We begin by characterizing the process by which photons in the sender are emitted, transferred, and ab-

sorbed into the receiver memory. First, we quantify the efficiency of absorption alone by preparing a small

coherent state in the sender memory, and then executing the protocol under one of two conditions (Figure

7.8a). In one case, we omit the capture pulses and monitor reflection from the receiver. Here, the emitted

wavepacket is fully reflected and recorded by our heterodyne detector (Figure 7.8b,c). In contrast, if we ap-

ply the complete set of pulses, this reflection is strongly suppressed. By measuring the relative photon flux

at the detector, we determine that the receiver absorbs (93± 1)% of the energy contained in the incident

wavepacket (details in Section 7.5).

Cavity spectroscopy

Before or after the transfer process, the relative population of each cavity number peak can be obtained

directly from the transmon spectrum, which depends on the photon number in the cavity (Section 3.5).

The spectrum is fit to a series of Gaussians (with total area normalized to one), which directly yields the

relative photon number occupations when the transmon is in its ground state. The spectroscopy data

from a typical experiment are shown in Figure 7.9.

Energy transfer efficiency

To measure the overall transfer efficiency, we prepare few-photon states and apply both release and capture

pulses. We measure cavity populations before and after the transfer using the photon number-dependent

transmon spectroscopy technique just described, which directly provides the relative populations of the
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cavity number states [130]. We define the transfer efficiency ⌘ as the average photon number received

divided by the average photon number prepared in the sender. Figure 7.10a presents the populations of

both memories after transferring states with mean photon number n̄ = 1, which are obtained from the

raw data in Section 7.3.1. From this, we calculate an efficiency ⌘ = 0.74± 0.03.

Our experimental scheme is designed to be independent of input state. We can verify this by prepar-

ing a selection of Fock states (|ni), Fock state superpositions ((|n1i + |n2i)/
p
2, and coherent states

(|↵ = ni), with photon number up to n̄ = 4. By transferring these states and performing the same anal-

ysis of cavity populations, we are assured that this single-photon efficiency is, in fact, a photon-number-

independent efficiency (Figure 7.10b). (There is no explicit limitation to states with n̄ = 4; rather, it

becomes inconvenient to prepare them using our optimal control techniques, in the case of Fock states,

or it becomes difficult to perform spectroscopy on large coherent states because of the large spread in fre-

quency.)

While this transfer efficiency is high, understanding the origin of process imperfections is critical to se-

lect optimal error correction protocols and to correct imperfections in future experiments. We can identify
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Figure 7.11 | Cavity populations over time. We prepare and transfer the Fock state with n = 1.
Populations P(n) for the lowest two cavity number states (n = 0, 1) are measured in both cavities as
a function of time. The measured shape of the trajectory in the receiver reflects the inefficiency of the
transfer. (Figure adapted from [86]; see Copyright Permissions.)

several factors that contribute significantly to transfer inefficiency: undesired transmon excitation, imper-

fectly shaped pump pulses, and loss in the transmission path. Each will be addressed in greater detail in

Section 7.5.

7.3.2 Time-dependent populations

We can verify that we understand the dynamics of the system by also measuring the cavity population as a

function of time.

Through the numerical calculation of pulse shapes ⇠1 and ⇠2 on the sender and receiver (Section 7.2),

we know the ideal intracavity field expectation values â, b̂ in each system as a function of time. These are

directly related to the average photon number we would expect to measure at that time, n̄ = a
2.

We measure the photon number present in the sender and the receiver by truncating the protocol pre-

maturely: the non-dynamic pulses, ⇠(s)2 and ⇠(r)2 , are turned off over 200 ns at a swept measurement time

T . We then measure the population a
(s)(T ) and compare with the calculated value. Similarly, for the

receiver population, the full complement of pulses is played on the sender system. At the desired measure-

ment time T , the normally-constant pulse ⇠(r)2 is set to ring down, thereby obtaining a(r)(T ). The results

from these measurements are in good agreement with the expected values (Figure 7.11).



7.3. State transfer 209

7.3.3 Quantum communication: coherent state transfer

The demonstrated transfer efficiency should allow for quantum communication between the sender and

the receiver memories. This means, more precisely, that should be able to prove that we have established

a channel capable of transmitting quantum information, not simply a partial reconstruction via classical

means. Measurements of cavity population so far, which amount to measurements of energy, are not yet

sufficient to show that our prepared states have survived the transmission intact and with their quantum

properties retained.

We confirm this explicitly by transferring an overcomplete set of qubit states in the manifold spanned

by the Fock states |0i and |1i, and by then performing Wigner tomography on the receiver. Maximum-

likelihood estimation (MLE) reconstruction is performed on measured Wigner tomography data to re-

turn the density matrix found to have most probably produced the data. We use a numerical, iterative,

convex optimization algorithm. The algorithm is supplied with normalized (physical) Wigner tomogra-

phy data, and the optimal reconstructed density matrix is constrained to remain physical throughout the

minimization procedure.1 In this way, we are able to reconstruct the density matrix from each prepared

and measured Wigner function (Figure 7.12).

Another useful representation of the reconstructed density matrices, consist with the transfer of a

qubit of information, is as vectors on the Bloch sphere (Figure 7.13). In the ideal, lossless case, the cardinal

points of the manifold should have Bloch vectors corresponding with |�Zi, |+Zi, |+Xi, |�Xi, |+Y i,

and |�Y i. In the case of our lossy channel, they will fall short; we institute a model to explain this.

Our model assumes a loss channel  that suffers from pure photon loss only, and is characterized by

the single-photon efficiency ⌘ = 0.74. In the experiment, this loss potentially occurs throughout the

transfer process, distributed spatially and temporally. We can generate density matrices expected in the

presence of  in the following way. First, we apply a beamsplitter operation to the product of two states,

our ideal state and an ancillary vacuum state, at a variable beamsplitter incidence angle ✓. This angle is

1. Through systematic simulation as well as comparison with other reconstruction methods, we find that this reconstruction
technique misrepresents the collected data < 1 %.
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Figure 7.12 | Reconstructing Fock manifold Wigner functions. Ideal and measured Wigner func-
tions of the six cardinal states encoded in the single-photon manifold {|0i , |1i} as prepared in the sender
and received and reconstructed following the transfer protocol. (Figure adapted from [86]; see Copyright
Permissions.)
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Figure 7.13 | Bloch sphere representation of Fock manifold transfer. The prepared (red) and mea-
sured (orange) points correspond with six cardinal states in the single-photon encoding, and are connected
to form an octahedron representative of the manifold. The green lines extending from each prepared-state
point towards |0i are loss trajectories for varying transfer efficiency from ⌘ = 0 to ⌘ = 1. A three-
dimensional perspective (shaded yellow) as well as third-angle projections (centered on the XZ plane) are
all representations of the same data. (Figure adapted from [86]; see Copyright Permissions.)
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related to our measured inefficiency, ploss = 1� ⌘, as

✓ = 2 arccos
p
1� ploss. (7.13)

The beamsplitter partly entangles our Hilbert space of interest with an environmental degree of freedom.

By tracing over the ancillary system, we then obtain a lossy mixed state that should represent the effect of

photon loss. In Figure 7.13, the path predicted by this model for each Bloch vector is plotted in green. In

the Fock encoding, photon loss has the effect of reducing all cardinal states to |0i monotonically.

Comparing each received state to the corresponding ideal prepared state, we obtain a fidelity related

to the overlap of the ideal and received-and-reconstructed density matrices. From these, we determine an

average fidelity Favg = 0.87 ± 0.04. In general, the arrows in the 3D representation of the Bloch sphere

in Figure 7.13 indicate that this process is consistent with the measured fidelity. (We should expect Favg =

0.91±0.03 from pure loss alone.) Some of the measurement entires comprising these data, however, lack

any useful information, due to a stochastic failure of the detector (the receiver transmon). This sub-unity

“success probability” lowers our “fully deterministic” fidelity to a level Favg,d � ps ⇥ Favg = 0.76 ±

0.04. The origin of this behavior will be discussed extensively in Section 7.5.1. Both the conditioned

and deterministic fidelities significantly exceed the classical bound of 2
3 , the maximum attainable fidelity

with which one can reconstruct an unknown qubit state using only classical communication [216]. In

the remaining measurements, conditioned data (discounting this effect) will be shown, while for metrics,

both values will be given.

More quantitatively, we find that the measured transfer has a process fidelity of 0.95 to this single-

source model, bounding the errors not described by photon loss at the 5% level. We can test the accuracy

of our photon loss model by reconstructing a process matrix. The process matrix � defines the mapping

from the ideal state density matrix ⇢i to the final, received density matrix ⇢f . In this definition, ⇢i is a two-

dimensional logical qubit state in the manifold {|0iL, |1iL}, while ⇢f is in the high-dimensional physical

Hilbert space of the cavity: {|0i, |1i, ...|d � 1i}. For our purposes, we truncate this space at dimension

d = 5; for the Fock encoding, no significant population is found outside this space upon reconstruction.

The process matrix is then defined as the map from 2 ⇥ 2 logical density matrices to d ⇥ d phys-
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Figure 7.14 | Photon loss process matrix. Top: Reconstructed process matrix for state transfer in the
Fock encoding. The subscript L denotes the logical qubit space, while the kets with no subscript reside in
the physical space of the cavity. Bottom: Ideal process matrix assuming transmission loss of the measured
⌘ = 0.74. (Figure adapted from [86]; see Copyright Permissions.)

ical density matrices. The reconstructed process matrix �m is visualized in Figure 7.14 and compared

to the ideal process �i assuming only the measured loss ⌘ = 0.74. The process fidelity Fprocess =

1
4 Tr(

pp
�i�m

p
�i)2 = 0.95, implying very close agreement with our model of photon loss alone. We

believe the source of this 0.05 infidelity also produces the ⇠ 0.05 average state infidelity (relative to what is

expected from the measured inefficiency; as stated previously, Favg = 0.87±0.04, while we expect 0.91.)

7.3.4 Multi-photon state transfer

Because it appears that our infidelity of our state transfer protocol is dominated by errors of a single type—

photon loss—the scheme can be improved by selecting an appropriate error-correcting code. The use of
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cavity memories grants access to tools already developed for correcting loss in stationary states, such as

redundantly encoding a qubit within a larger Hilbert space and using photon number parity as an error

syndrome [47].

We choose a simple error-correctable code with minimal overhead, the L = 1 binomial encoding,

which has logical basis states
�
|0i

L
= |2i , |1i

L
= (|0i+ |4i)/

p
2
 

[52]. Our transfer scheme is number-

state independent, and so with no other modifications we prepare and transmit the cardinal states of this

encoding, again measuring the received state with Wigner tomography (Figure 7.15). However, in this case

where multi-photon states are used, the results are skewed by a higher-order nonlinearity pertaining only

to these states, the Kerr effect.

Kerr effect on binomial code states

The Kerr effect, first observed in the conversion experiment of Chapter 6, was introduced in detail in

Section 6.3.3. It only manifests in the Wigner function for states that are not radially symmetric (and

contain more than one photon number). Because the Kerr evolution is deterministic2 , it does not in and of

itself lead to a loss of information, so long as its value is known. In order to produce a fidelity representative

of the effect of the transfer protocol on the prepared states, and not merely the effect of Kerr at one end or

the other, we compare the reconstructed density matrix of the prepared state with a reconstructed density

matrix of the received state to which an in-software correction has been applied. The Wigner functions of

the resulting ‘de-Kerred’ state are shown in the rightmost column of Figure 7.15.

This operation is simply the Kerr unitary associated with HKerr in Equation 6.34, with an effective

Kerr �eff
aa , equal to approximately the average of �aa in each system. In order to determine the nominal

value of �eff
aa to use for the software correction unitary, we perform a global minimization of the average

infidelity over all six states prepared in the manifold with respect to a single Kerr evolution applied to each

state. We find �eff
aa = 2⇡ ⇥ 10.8 kHz for our transfer time of 6µs.

2. Since Kerr evolution does not commute with photon loss, the uncertainty in exactly when the loss occurred does lead to a
small unrecoverable loss of information, which manifests as dephasing of the cavity state. Because the Kerr is fairly small and the
transfer time quite short, this produces a small effect on the measured average fidelity, around 1–2%.
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Figure 7.15 | Reconstructing binomial manifold Wigner functions. Ideal and measured Wigner
functions of the six cardinal states encoded in the binomial code manifold {|0i

L
, |1i

L
} as prepared in the

sender and received and reconstructed following the transfer protocol. Kerr evolution during the transfer
results in a distortion in the received state Wigner functions, an effect that is accounted for by “de-Kerring”
the reconstructed received state. (Figure adapted from [86]; see Copyright Permissions.)
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Figure 7.16 | Binomial encoding loss trajectories. The prepared (red) and measured (orange) points
correspond with six cardinal states in the binomial encoding, and are connected to form an octahedron rep-
resentative of the manifold. The green lines extending from each prepared-state point towards (0, 0, 0.5)
are loss trajectories for varying transfer efficiency from ⌘ = 0 to ⌘ = 1. In the three-dimensional perspec-
tive (shaded yellow), green dotted arrows indicate the expected shrinkage given the measured efficiency.
Third-angle projections (centered on the XZ plane) reflect the same data. (Figure adapted from [86]; see
Copyright Permissions.)

Binomial states within the Bloch sphere

We can also depict the prepared and de-Kerred data on the Bloch sphere (Figure 7.16). This time, the Bloch

sphere represents the logical qubit, rather than the two-level system of a single photon. In the binomial

encoding, photon loss reduces cardinal points towards the center of the Bloch sphere uniformly, because

single-photon errors cause a portion of the state to leave the even-parity codespace. For larger⌘, the cardinal

points begin to turn towards the point (0, 0, 0.5) on the Bloch sphere, since the |1i
L
= (|0i+ |4i) /

p
2

state overlaps with the vacuum state and |0i
L
= |2i does not. Note that our received states appear in the

uniform-shrinkage regime, which corresponds to loss small enough that single photon loss errors dominate

over higher-order effects.

The states of the binomial code have larger average photon number (n̄ = 2) relative to the single-

photon encoding (n̄ = 0.5), representing an additional “overhead”. From this increased sensitivity to



7.3. State transfer 217

0.02 0.10 0.50
Transfer inefficiency, 1¡ ´

0.01

0.10

1.00

A
ve

ra
ge

 in
fid

el
ity

Fock

Binomial

Binomial w
ith

co
rre

ctio
n

Figure 7.17 | Comparison of trivial and error-corrected fidelities. Projected performance of the
two demonstrated encodings as a function of transfer efficiency. Calculated average infidelity (lines) of
Fock and binomial encodings, and measured values (circles) at the present inefficiency (arrow). The per-
formance of an ideal parity detection-and-correction scheme is simulated for the binomial encoding. The
resulting infidelities are shown for perfectly prepared states subjected to varying transfer inefficiency (line),
and for the measured received states (diamond). Points lie above their respective lines due to small addi-
tional infidelity not described by photon loss. The shaded region indicates the regime beyond the break-
even point, displaying the growing improvement between the encodings as efficiency improves. Elimi-
nation of either transmission loss or release and capture inefficiency would push the corrected infidelity
further into this regime (⌘ ⇠ 0.86, dotted line). (Figure adapted from [86]; see Copyright Permissions.)

photon loss we predict a mean fidelity of 0.60 and measure Favg = 0.54±0.04 in this manifold (Favg,d �

0.47 ± 0.04) relative to the ideal states. Though its mean fidelity is lower than that of the single-photon

encoding, the binomial encoding permits the use of parity as an error syndrome measurement.

7.3.5 Using binomial states to protect against photon loss

This feature can enable detection and deterministic correction of single-photon loss errors. Above some

transfer efficiency threshold, an error-corrected qubit would be transmitted with higher average fidelity

than a qubit encoded in the single-photon manifold. Our efficiency (⌘ = 0.74) exceeds that of this “break-

even” threshold (⌘ ⇠ 0.67), defined as the crossing of simulated mean fidelities in each case (Figure 7.17.

The green line in Figure 7.17 is calculated by applying our photon-loss-only model to the six cardinal

states of the binomial encoding. At each efficiency value, the fidelity of the resulting (partially mixed) den-

sity matrices are compared to those of each original ideal state, and the average infidelity is reported. The

dashed green line is then calculated from these density matrices by applying the error-correction procedure

described in Section 7.3.5.

Beyond break-even, error correction can overcome the overhead associated with the binomial state
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Figure 7.18 | Conditioned spectroscopy of transfered binomial codewords. Spectroscopy is per-
formed following three conditioning measurements on even parity and transmon state.

encoding. Error correction is possible using high-fidelity quantum non-demolition (QND) parity mea-

surements [47], which could be effectively realized by adding a dedicated readout channel to each module.

Following this measurement, fast feedback could be used to apply a conditional correction pulse. Along

with modest improvements to the release and capture efficiencies, error correction should place the trans-

fer firmly within this advantageous regime. Optimization over a wider set of bosonic codes could produce

even larger improvement. These error correction concepts can also be extended to improve entanglement

fidelity without sacrificing the determinism of the protocol.

Testing and improving error correction

We can attempt to perform the first step of error correction — error detection — using the system in

this experiment. We perform a parity measurement, preceded and succeeded by additional conditioning

measurements that verify the transmon remains in the ground state, since our parity measurement critically

relies on this being the case. We perform spectroscopy on the received cavity following transmission of each

of the binomial codewords; data that has been post-selected on these conditions is shown in Figure 7.18

and is compared to unconditioned data.

The conditioned data shows lower background, indicative of the exclusion of background transmon

excitations. In both cases, it also shows a significant reduction in the height of the odd-number peaks, like

|1i and |3i. In the case of the |2i state, the height at n = 2 actually increases; this suggests that fidelity of
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the state may have improved.

To be certain of the effect on state coherence, we perform the same test but now measure the condi-

tioned and unconditioned Wigner functions of the two states. Figure 7.19a shows the Wigner functions of

non-conditioned data from an experiment where the conditioning measurement has not been performed.

The absence of three additional measurements appears to preserve the shape of the Wigner functions. In

Figure 7.19b, conditioned data is compared to what is expected by simulating the effect of post-selection.

Consistent with the spectroscopy results in Figure 7.18, the |0i
L

state improves its contrast; the |1i
L

state

becomes shrunken and smeared. Neither agree fully with the predicted conditioning result, indicating

that our measurements are less than perfect. Notably, the radial symmetry of the |0i
L

state means that it

is more impervious to the cavity dephasing that the conditioning measurements may induce.

We conclude that error correction of the transfer cannot be performed effectively in the current exper-

imental sample. Because a single transmon simultaneously provides the functions of state preparation and

cavity tomography as well as supplying the nonlinearity needed for the conversion process, it is not possi-

ble to optimize the hardware parameters for all of these essential features. Most notably, a large conversion

rate between each memory and output mode requires a large cross-Kerr �ab .

However, this means that resonantly driving the output mode into a coherent state (as is done dur-

ing transmon readout) dephases the cavity due to the dispersive shift combined with uncertainty in the

occupation of the output mode [217]. Therefore, parity measurement without significant dephasing of

the cavity is impossible in the current configuration. As indicated in Figure 7.20, the addition of a dedi-

cated, separate chip with ancilla transmon and readout mode, also with small cross-Kerr between readout

and cavity, would allow for high-fidelity QND parity measurement [47], while maintaining the ability

to rapidly convert between memory and propagating modes. This modular distribution of functionality

may also allow modifications to the conversion side of the device to mitigate some of the non-idealities

discussed above; for example, some nonlinear element other than a transmon can be used to facilitate con-

version [122, 201].
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Figure 7.19 | Conditioned tomography of transfered binomial codewords. a Ideal, simulated lossy,
and non-conditioned Wigner functions of the two binomial codewords. b The simulated results of lossy
and parity-measurement-conditioned data, compared to the actual conditioned data. c Line cuts of ideal,
predicted lossy, and predicted lossy-and-conditioned Wigner functions compared to data. The data gen-
erally falls between the lossy and conditioned simulations.
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Figure 7.20 | Modified design to permit error correction. In this modified design of the experimen-
tal apparatus, an independent transmon and readout chip performs the tasks of state preparation, cavity
tomography, and parity measurements. The communication chip features a dedicated conversion element
and communication mode. Parameters can be designed to suit each set of tasks appropriately.

Implementation of binomial code error correction

To implement this error-correction procedure, the density matrix for a given state is split into two com-

ponents: the even and odd photon number parity subspaces. A different correction unitary is applied to

each subspace. To correct for photon loss, the odd-parity subspace is corrected via the operation:

|1i ! |2i, |3i ! 1p
2
(|0i+ |4i) (7.14)

The correction in the even-parity subspace takes the form of a rotation that adjusts the relative weights of

the |0i and |4i states:

|2i ! |2i,

|0i ! cos ✓c|0i+ sin ✓c|4i,

|4i ! � sin ✓c|0i+ cos ✓c|4i

(7.15)

This is to account for the fact that the no-parity-jump event alters the relative probability amplitude of

the state (|0i+ |4i) /
p
2 (essentially, Bayesian interference [218]). The two components of the density

matrix are then recombined with their respective probabilities unchanged, resulting in a higher-purity

corrected density matrix. The optimum rotation angle ✓c depends on the probability of loss, and thus on
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inefficiency. For each value of the transfer inefficiency, we calculate the angle of rotation that minimizes

the mean infidelity over the manifold. (Ignoring this optimization is simulated to produce a 1% reduction

in mean fidelity at ⌘ = 0.85, a 3% reduction at ⌘ = 0.74, and a 9% reduction at ⌘ = 0.5.) This mean

infidelity is that which is reported in Figure 7.17.

This procedure is identical to the experimental implementation that will be needed to perform this

correction in hardware: measure parity; apply one of two correction unitaries, conditioned on the result

of the measurement; and perform unconditional tomography. This process would follow [47] closely, only

with the substitution of the appropriate unitaries specific to this correction scheme. Other photon-loss-

robust encodings may be more optimal under certain conditions, including at different values of efficiency,

and those encodings and corrective unitaries could be substituted in a similar manner [54].

Code optimization

There exist a number of reasonable photon-loss-robust encodings, besides the L = 1 binomial code, at

our present value of inefficiency [54]. Depending on several system parameters, higher-level bosonic codes

might improve correction performance. As an example, the cat code performance can exceed that of the

L = 1 binomial code at particular values of efficiency. Since the continuous variable nature of the code

means that there will be an optimal photon number (↵2), one must compare using the photon number

that will maximize the error-corrected mean fidelity. The effect of photon-number-dependent cavity self-

Kerr will also be a factor to consider. These encoding optimizations will become important when physical

optimizations have been exhausted.

7.4 Half-release, full-catch, and entanglement

Our experimental scheme readily enables us to generate on-demand remote entanglement by applying a

pump sequence on the sender that releases half of its stored energy (Figure 7.21a). If the initial state is a

single photon, this results in entanglement between the memory and the emitted radiation (Section 6.4).

The interaction between the cavity and the transmission line can be described by an effective beam

splitter interaction (Equation 7.16), where the conversion strength and time determine the coupling ✓



7.4. Half-release, full-catch, and entanglement 223

+X

IX IY IZ XI YI ZI XXXYXZYXYYYZZXZYZZ

Measurement operator

-1.0

0.0

1.0

E
xp

ec
ta

tio
n 

va
lu

e

cavity
transmon

pump 1

pump 2

cavity
transmon

pump 1

pump 2

prepare

measure
correlations

6 µs

Q

I

Q I

cavity
rotation

Se
nd
er

R
ec
ei
ve
r

(a) (b)

0.0

1.0

Figure 7.21 | Entangling a photon between remote cavities. a Single-photon entanglement is gen-
erated with a half-release of |1i, followed by unchanged capture pulses (shown in the same style as Fig-
ure 7.8a). The absolute-valued enveloped (shaded) is shown along with in-phase (dashed) and quadra-
ture (solid) components. The capture pulse is state-independent and is thus unchanged. Cavity photon
number correlations are measured following rotations into the appropriate measurement basis. b Recon-
structed expectation values (shaded) of two-qubit Pauli operators compared to those of the maximally-
entangled Bell state |01i+ |10i (dashed). This measurement, like the others in this chapter, is effectively
conditioned by renormalizing data where either transmon did not remain in the ground state (Section
7.5.1). Scaling these Pauli bars by the value of ps,ent approximates unconditioned data; details are given in
the following two sections. (Figure adapted from [86]; see Copyright Permissions.)

between the modes (Section 6.1.4),

Hbs =
�i✓

2
(â†1â2 � â1â

†
2) (7.16)

In particular, releasing half the energy stored in the cavity initially corresponds to a ‘50:50 beam splitter’

with ✓ = ⇡/2. As specified in Section 7.2, the pulse required to realize this can be calculated precisely by

specifying that one-half of the prepared state remains. This leads to a release pulse with a different shape

and a lower amplitude. The capture pulse remains the same, because the temporal shape of the traveling

wavepacket is the same.

Absorption of the wavepacket by the receiver ideally results in the Bell state (|10i+ |01i) /
p
2 shared

between the memories. Immediately after switching off the pumps, we apply a mapping pulse that rotates

the state of one or both cavities into a particular basis. Within that basis, we then measure the likelihood
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of finding the cavities in a particular joint photon-number state by applying selective-⇡ pulses on each

transmon and reading out.

In particular, for each module we perform number-selective measurements on n = 0 and n = 1, as

well as n = �1 (a background measurement that evokes no cavity response). These 3⇥3 = 9 probabilities

are combined to produce four values for each rotation: the probability of finding joint photon numbers

00, 01, 10, or 11 (the diagonal elements of the density matrix in this joint basis). We choose three basis

rotations for each cavity: {I, Y (⇡2 ), X(⇡2 )}, leading to measurements in the {z, x, y} bases, respectively.

This produces correlation probabilities in 3⇥3 = 9 joint bases, enough to reconstruct the full joint state.

The data for each rotation are then supplied to a maximum likelihood estimation (MLE) reconstruction

program to produce the density matrix describing the joint system with the largest likelihood. From this

reconstructed density matrix, we than assemble the Pauli bars in Figure 7.21b, which reveal non-classical

correlations between sender and receiver.

Success rate conditioning

The measurement of joint cavity operators is affected by the success probability of each transmon in a

way similar to that of spectroscopy and Wigner tomography measurements (Section 7.5.1). Our density

matrix and Pauli bars are thus naturally conditioned on the case where both transmons remain in the

ground state following the half-transfer and before the measurement is performed. The unconditioned

values (and resulting entanglement metrics) can be determined by accounting for the probability with

which each transmon becomes excited or the system leaves the observed Hilbert space. While they cannot

be directly measured, they can be approximated by scaling the data in Figure 7.21b by the value of ps,ent .

(As ps,ent ! 1, the approximate unconditioned data would begin to equal the conditioned data.)

As opposed to other measurements throughout this work, the excitation of both systems factors in.

To estimate the unconditioned entanglement measurement operator expectation values, we add a extra

dimension to the reconstructed density matrix representing the measured joint cavity state. This dimen-

sion represents a space outside of the observable space. It is populated according to the product of the two

transmon excitation probabilities. The density matrix is then renormalized and truncated to exclude the

‘unobservable’ dimension, producing a density matrix reasonably estimating what we believe an uncondi-
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tioned measurement would produce.

Entanglement fidelity

The resulting entanglement success probability ps,ent = 0.78±0.04 is lower than for the state transfer for

the same reason—that both system losses are sampled. The fidelity of the joint state to the ideal Bell state

is FBell = 0.77± 0.02 (deterministic: FBell,d � ps,ent ⇥FBell = 0.61± 0.02), confirming the successful

generation of entanglement.

One important metric is the entanglement generation rate R, the rate of experimental repetition. In

the conditioned case, this omits additional time required to avoid failed runs (which could in principle be

heralded against), and is inclusive of all experimental runs in the fully deterministic case. We are able to

achieve a net entanglement generation rate of (140µs)�1 (for fidelity 0.77; equivalently (110µs)�1 for

fidelity 0.61, fully deterministic), limited by the average time it takes to reset the system (⇠ 100µs). This

rate exceeds the single-photon loss in either memory (< (450µs)�1), a strict requirement for scaling up

the network size. We note that memory lifetimes about five times higher have been measured with identical

hardware [126]; we should not yet be limited by this particular rate.

More entanglement metrics

Using the reconstructed density matrix, we are able to calculate a number of additional metrics to describe

the entangled state. Values “unconditioned” and “conditioned” on success probability are shown in Ta-

ble 7.2. Some of these are useful for comparison with other experiments or when considering, for example,

choices among purification schemes. Entanglement fidelity, concurrence, and purity have been calculated

according to standard definitions [219]. The generation rate of maximally entangled qubit pairs, the ebit

rate, represents the rate at which an optimal purification scheme [220] could generate a maximally entan-

gled pair from many pairs identical to ours, and can be calculated using the logarithmic negativity [221],

EN :

Re = ps,ent ·R · EN . (7.17)

Success probability ps,ent enters in both the logarithmic negativity (where lower EN demands more pairs in

the unconditioned case) and the generation rate (where overall generation of higher-fidelity entanglement
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Value Conditioned (measured) Unconditioned (estimated)
Success probability ps,ent 0.78± 0.04 1
Fidelity FBell 0.77± 0.02 0.61± 0.04
Concurrence C 0.66± 0.03 0.51± 0.04
Purity � 0.66± 0.03 0.40± 0.04
Generation rate (µs�1) R 1/(140± 10) 1/(110± 10)
Logarithmic negativity EN 0.66± 0.03 0.30± 0.04
ebit rate (kebit/s) Re 4.7± 0.5 2.7± 0.4

Table 7.2 | Measures of entanglement. All comparison values are with respect the maximally-entangled
Bell state, (|10i+ |01i) /

p
2. “Unconditioned” values are those metrics taken for the estimated uncon-

ditioned density matrix reconstructed according to the process in Section 7.4.

is slower).

7.4.1 Error correction of entangled states

Error correction of entangled states will be slightly different from the correction of states fully transfered

in the binomial code, as an example. When given the option of using many-photon states to generate en-

tanglement, we are not confined to using one scheme in particular. As a convenient and intuitive example,

let us examine the process of detecting and correcting photon losses during distribution of a four-legged

cat state.

Entanglement distribution in this case would begin with the state

| 0i = N (|↵i+ |�↵i+ |i↵i+ |�i↵i)
A
|0i

B
, (7.18)

a four-legged Schrödinger cat state with information encoded in the even parity subspace, and, further-

more, in a subspace that is modulo-4 parity.

Applying the conversion Hamiltonian results in entanglement between states in the sender (A) and
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receiver (B) that is of the form

|0 mod 4i
A
|0 mod 4i

B
+ |2 mod 4i

A
|2 mod 4i

B

+ |1 mod 4i
A
|3 mod 4i

B
+ |3 mod 4i

A
|1 mod 4i

B

(7.19a)

|0 mod 4i
A
|3 mod 4i

B
+ |2 mod 4i

A
|1 mod 4i

B

+ |1 mod 4i
A
|2 mod 4i

B
+ |3 mod 4i

A
|0 mod 4i

B

(7.19b)

in the case of a zero or one photon loss, respectively. Note that, for each state, the total photon number

between A and B adds up to a multiple of 4. Further, in the lossless case, measurement of parity (to clarify,

standard 2-parity) on A or B will produce a result (P(A),P(B)) = (0, 0) or (1, 1).

After a photon loss, the states in B are all lowered by one. If we measured parity on either side it will

now produce (0, 1) or (1, 0) — a mismatch. Depending on having measured the former or the latter,

respectively, the projected state remains entangled in either of

|0 mod 4i
A
|3 mod 4i

B
+ |2 mod 4i

A
|1 mod 4i

B
, or (7.20a)

|1 mod 4i
A
|2 mod 4i

B
+ |3 mod 4i

A
|0 mod 4i

B
. (7.20b)

As in ref. [47], it can be sufficient to track which of these two states has been established, or one can

apply a conditional corrective unitary to transfer the state into a more desirable form.

7.5 System imperfections

While our transfer efficiency in this experiment (⌘ = 0.74) is high, understanding the origin of process

imperfections is critical to select optimal error correction protocols and to correct imperfections in future

experiments. We can identify several factors that contribute significantly to transfer inefficiency: undesired

transmon excitation, imperfectly shaped pump pulses, and loss in the transmission path.
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7.5.1 Heralding and determinism

For ideal operation of our protocol, the transmons would remain in their ground states during the transfer.

However, we observe non-negligible stochastic excitation during the transfer process due to thermalization

and pump-induced transitions to higher levels [222, 223].

Unwanted transmon excitation has two important consequences. For one, an excitation leads to a shift

of the resonator frequencies due to their dispersive couplings to the transmon. This abruptly changes the

transfer frequency-matching conditions, manifesting as off-resonant emission by the sender, or imperfect

wavepacket absorption by the receiver. We estimate these effects to lead to an inefficiency of about 2% for

emission, and 6% for absorption. This effect is thus likely the dominant cause of the measured absorption

inefficiency.

Secondly, transmon excitation precludes effective measurement of the cavity state. In this case, cavity

measurement indiscriminately returns ‘yes’ to a query of any photon number. Excitations thus have the

effect of reducing average measurement contrast. By normalizing our measurement data to correct for

this, cavity tomography is implicitly conditioned on the transmon having remained in its ground state. It

is therefore useful to view the transmon excitation probability as a “failure probability” of the protocol, i.e,

we make the conservative assumption that each excitation masks an unsuccessful transfer. The efficiency

⌘ quoted throughout this chapter is then, if not stated otherwise, conditioned on the receiver transmon

remaining in the ground state, with success probability ps = 0.87± 0.03. The conditioned value can be

interpreted as the efficiency that would be measured (i) with a perfectly cold transmon or (ii) by heralding

on a transmon measurement after the protocol. The “deterministic efficiency” given the transmon temper-

ature observed here is estimated by the product of the conditioned efficiency and the success probability,

⌘d � ps ⇥ ⌘ = 0.87 ⇥ 0.74 = 0.64 ± 0.03. This deterministic value represents a lower bound on the

quantity; since these failure events are assumed to be maximally destructive, this is the worst-case scenario.

Another way to think about transmon excitations “reducing measurement contrast” is that data that

is effectively ignored by normalization conveys no information. We confirm this by performing a spec-

troscopy experiment, measuring the transmon state after the transfer process. We post-select on the mea-

surement results in each system when the transmon is found in the ground state. Within fit and mea-
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surement error, we find identical photon number content in the unselected (including all data) and post-

selected cases (Figure 7.22). In other words, the average efficiency ⌘ does not change whether a measure-

ment to detect transmon state is performed, and the discarded measurements contain no relevant infor-

mation. Therefore, a measurement of the transmon ground state can be thought of as heralding on a

successful state transfer (a transfer not precluded by an endpoint failure, yet still subject to miscalibrations

and intermediate photon loss).

These deterministic fidelity quantities, however, are only lower bounds. In our calculation of the

efficiency, we assume that no energy was captured in the event that the transmon is found excited. In reality,

some energy was likely absorbed in the time before the transmon became excited. For each fidelity bound,

we take the worst-case assumption: that the entire system has left the codespace entirely in an unrecoverable

way, and these events contribute zero fidelity to the average. In fact, if the failure completely destroys the

information, but leaves the system in a state which can be detected and reset (for example, the transmon

in |ei), then these events can result in an average fidelity 0.5 by resetting the system to an arbitrary state

within the codespace. The same is true for the entanglement (but with fidelity 0.25, which is the best that

can be prepared with local resources). Because some of the failure events are in principle recoverable in

this fashion, we therefore state our worst-case deterministic fidelities with the caveat that they are lower

bounds.

7.5.2 Release and capture efficiency

Reductions to transfer inefficiency come from photon loss in the transmission path, which we estimate

adds 15%, as well as imperfect pulse shapes affecting state release and capture, each with an effect around

2%. We note that the bulk of the described imperfections are not fundamental; in particular, improve-

ments to the transmon equilibrium temperature and thermalization rate as well as parameter engineering

to avoid pump-induced higher order transitions (Appendix A.3) can substantially reduce the inefficiencies

resulting from transmon excitation.

The efficiency of the transfer process can be obtained directly by measurements before and after the

transfer protocol. Its origin is investigated here, by breaking down the “total process efficiency” ⌘ into seg-

ments of the process, such that future incarnations of the experiment may be more improved. A summary
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Figure 7.22 | Comparison with post-selected efficiency. Transmon spectroscopy is performed with
an added measurement of transmon state following the transfer process. All of the data (left column)
or only data post-selected on the conditioning measurement (right column) are shown after preparation
(top row) or after release and capture (bottom row). Black lines indicate fits from which relative photon
number populations are obtained. While background offsets are clearly lower in the post-selected data, the
extracted ratio between prepared and received populations change by < 1 % (within uncertainty). (Figure
adapted from [86]; see Copyright Permissions.)
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Category Value Uncertainty Notes
Measured values
Unreleased energy fraction n

(s)
remain 0.033 0.005

Uncaught energy fraction n
(r)
reflect 0.068 0.005

Transmission loss ⌘tx,meas 0.80 0.15
Total efficiency ⌘ 0.74 0.03

Modeled values

Truncation of sender pulse ⌘
(s)
trunc 0.99 - specified in

pulse creation
Sender transmon excitation ⌘

(s)
excite 0.98 0.01

Calibration of sender pulse ⌘
(s)
miscal 0.98 0.005

Release efficiency ⌘release 0.95 0.01

Transmission line loss ⌘tx 0.85 0.04
estimation from
“missing energy”

Truncation of receiver pulse ⌘
(r)
trunc 0.95 - specified in

pulse creation
Truncation of receiver pulse, revised ⌘

(r)
trunc,corr 0.99 0.005

Receiver transmon excitation ⌘
(r)
excite 0.94 0.02

Calibration of receiver pulse ⌘
(r)
miscal � 0.99

Capture efficiency ⌘capture 0.92 0.02

Table 7.3 | Summary of transfer losses. A break-down of loss mechanisms thought to contribute to
the transfer efficiency. For some categories the individual constituent efficiencies are measurable, while for
others only the total loss can be measured, and the components must be deduced. The model is designed
such that the product of the three category subtotals, ⌘release ⇥ ⌘tx ⇥ ⌘capture , equals the measured total
efficiency ⌘.

of the different sources of inefficiency can be found in Table 7.3.

Truncation

Amplitude and time constraints of the transfer process drives are imposed by the physical implementation

of the experimental hardware. With finite time and amplitude constraints on the conversion rate g(t),

releasing and capturing the entirety of the energy in the sender is not possible. To limit the applied pump

power (and thus the amount of heating induced to the system), we implemented the full transfer process

specifying waveforms that are expected to release the fraction⌘(s)
trunc = 0.99 of the sender state, and capture

⌘
(r)
trunc = 0.95 of the energy in the receiver.

The release pulse calculated by the method described has several constraints imposed on it by hardware
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and by the protocol itself. The pulse amplitude and its derivative must reach zero at the endpoints, and

the maximum amplitude must remain below some threshold. These impositions produce a remaining

energy in the sending cavity, a2s (t), that decays asymptotically in time, towards zero. We choose to truncate

this decay such that 1% of the energy will remain in the sending cavity (⌘(s)
trunc = 0.99). If more pump

power were applied, or more time were taken, a larger fraction of the prepared state’s energy would be

released. However, these adjustments would also affect the prevalence of other errors (such as transmon

excitation or readout infidelity). Similarly, the receiving pulse is constrained in time and amplitude such

that ⌘(r)
trunc = 0.95 (a fact visible in the predicted populations over time in Figure 7.11).

Sender transmon excitation

During the transfer, we observe the sender transmon excitation from 3.1% to 9.6%, a process from which

we approximate a worst-case transfer inefficiency of ⇠ 6%. This accounts for varying failure-probability-

per-photon, since both transmon excitation and photon population change in the cavity over time as it

empties. We perform a control experiment, populating the sender transmon with known probability P(e)

into a superposition state between |gi and |ei before executing the transfer, which allows us to refine

our approximation. A fully-excited sender transmon still transfers somewhat successfully (Figure 7.23),

introducing an inefficiency of only ⇠ 39%. The failure rate varies linearly with transmon polarization—

from which we calculate that a total efficiency of only ⇠ 0.46 could be reached if the sender transmon

began in |ei. The efficiency particular to the sender transmon excitation alone, excluding all other sources

of loss, is thus ⌘(s)
fully-excited = 0.61. We can use this value to correct the worst-case assumption of release

efficiency above,

⌘
(s)
excite = 1� (1� ⌘

(s)
excite,worst)⇥ (1� ⌘

(s)
fully-excited) = 0.976. (7.21)

Our understanding of the effect of transmon excitation on shape/frequency mismatch is improved by

monitoring the emitted wavepacket as a function of excitation (Figure 7.24). If the transmon in the sender

leaves its ground state during the protocol, this will change the resonance condition of the transfer. De-

pending on the parameters of each system, this will produce different effects. Near resonance, a waveform

will be produced with a shape and/or frequency that are unmatched with respect to the receiving pulse.

Far from resonance, the prepared state will be converted into a propagating one at a much slower rate than
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Figure 7.23 | Transmission inefficiency from sender transmon excitation. We measure both cavities
as a function of sender transmon excitation probability P(e). Left: The measured remaining photon
number in the sender cavity is inherently conditioned on the sender transmon being in its ground state.
The energy remaining appears therefore unaffected. Right: The received number of photons decreases
with sender transmon excitation, reflecting that the state has not been released with proper conditions
for capture. The line is a linear fit to the data, from which the total efficiency for a completely excited
receiver transmon is extracted (cross). Removing the excitation-independent portion then produces the
excitation-dependent inefficiency ⇡ 39%. (Figure adapted from [86]; see Copyright Permissions.)

expected. These inefficiencies will manifest in the sender either as unreleased energy or unmatched (“un-

catchable”) propagating energy. The particular manifestation of an excitation-induced error is dependent

on system parameters. In our case, the values are �at and �bt in each system are similar, leading to Stark

shifts that enable a conversion resonance at a different absolute detuning from the communication mode.

With alternate system parameters, however, the failure may have resulted in a failure to release the energy

at all.

Receiver transmon excitation

From the data in Figure 7.24 we infer that full excitation of the receiver transmon leads to reflection of

⇠ 69% of the incident energy. Combining this with the excitation of the transmon—increasing from

4.5% to 13.5% during the transfer—yields a worst-case efficiency associated with transmon excitation of the

receiver, ⌘(r)
excite,worst ⇡ 0.912. We infer the value of ⌘(r)

fully-excited ⇡ 0.3 from the data in Figure 7.24, where

we find that the integrated reflected energy in this case was 69% of the maximum. Parameters between the

sender and receiver are very similar, so we expect this value to be near that of the sender. Combining these

two values as for the sender, we obtain

⌘
(r)
excite = 1� (1� ⌘

(r)
excite,worst)⇥ (1� ⌘

(r)
fully-excited) = 0.938. (7.22)
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Figure 7.24 | Effect of transmon excitation on the wavepacket. To gain insight on how the propagat-
ing wavepacket is affected by transmon excitation, we measure the emitted field when the sender transmon
is prepared in |gi or |ei and the cavity state |1i is subsequently released. The magnitude of the Fourier
transform (FT) is shown. Left: The capture pulse is omitted to monitor the released wavepacket. A cut
taken at the nominal propagating frequency (dashed line) indicates a decrease in emitted field at the trans-
mission frequency. At large excitations, field appears to be emitted around 3.5 MHz above the nominal
frequency. Right: The capture pulses are played, and the reflected field is observed. At the nominal prop-
agating frequency, a line cut (dashed) shows that reflected field intensity increases with increased receiver
excitation probability (lower). The reflected energy received at maximal receiver excitation is 69% of that
received from a normal release with no capture attempt. (Figure adapted from [86]; see Copyright Permis-
sions.)
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Taking into account pulse truncation (Section 7.5.2) gives an expected capture efficiency of 0.89. This

is in reasonable agreement with the observed reflection of n(r)
reflect = 6.8% ± 0.5% (obtained by integrat-

ing the photon flux of the incident wavepacket shown in Figure 7.8c). The remaining mismatch could

be explained by a better value of truncation efficiency than expected due to experimental fine-tuning,

⌘
(r)
trunc,corr = 0.994; this quantity cannot be directly measured in our experiment.

This comparison of two energies does not depend on sender or transmission loss values, since signals

with or without the capture pulses are affected by those losses equally. Therefore we expect this value to

agree closely with our model, which predicts

⌘
(r)
trunc ⇥ ⌘

(r)
excite = 0.89,

leaving a reflected energy fraction of 0.11.

Miscalibrations

Any unidentified source of inefficiency could be due to imperfectly calibrated pulses or uncertainty in

the system parameters. Effective pulses require that accurate system parameters are supplied during the

generation process. These parameters come from many calibration measurements, and the error from

these calibration values can propagate into errors in the amplitude and frequency of a pulse. Assuming

that missing factors in the capture or release error budgets arise from miscalibration error, we estimate an

upper bound.

We can estimate the miscalibration efficiency associated with the sender or the receiver based on the

measured fraction of energy remaining in the sender, n(s)
remain , or reflected from the receiver, n(r)

reflect , as well

as the other efficiencies. In the sender, we calculate the efficiency due to miscalibration as

⌘
(s)
miscal =

⇣
1� n

(s)
remain

⌘
/⌘(s)trunc = 0.98

since we observe a remaining population fraction n
(s)
remain = 0.032 ± 0.005. Note that ⌘(s)

excite does not

appear as a contribution to the remaining population, since n(s)
remain reflects a conditioned measurement.

For the receiver, miscalibrations seem to yield a slightly better capture efficiency than expected (see
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above); this leaves no gap in the error budget for miscalibration. We conclude that ⌘(r)
miscal is immeasurably

close to unity. Given the uncertainty in the reflection measurement, we place a bound, ⌘(r)
miscal � 0.99.

Other possible sources of uncertainty include higher-order nonlinearities and frequency-dependent dissi-

pation, which we have not considered in our model. (For example, parametric drives can excite the trans-

mon beyond just |ei, for example, and the transmon T1 process can cause relaxation when steady-state

excitation has been assumed.)

We can define the total release inefficiency from all components in our model to be

⌘release = ⌘
(s)
miscal ⇥ ⌘

(s)
trunc ⇥ ⌘

(s)
excite = 0.945 (7.23)

and similarly for the receiver as

⌘capture = ⌘
(r)
miscal ⇥ ⌘

(r)
trunc,corr ⇥ ⌘

(r)
excite = 0.924. (7.24)

7.5.3 Transmission loss

The energy dissipated in the transmission line is difficult to measure directly in our experiment. We can,

however, assume that any ‘missing’ energy comes from loss; this gives a value for the transmission line

efficiency of ⌘tx = 0.85± 0.04. We perform the following control experiment to corroborate this value:

we apply a constant tone detuned from the output resonator of the sender, and measure the Stark shift of

both sending and receiving communication modes (b̂s,r ) at variable amplitudes of the tone (Figure 7.25).

From these Stark shifts and knowledge of the readout-transmon cross-Kerr �bt and output rate out , one

can calculate the loss between systems in a way that is independent of the sending and receiving portions

of the transfer protocol.

One expects to receive

n̄r = n̄ssr⌘tx,meas/((r/2)
2 + �

2
r ) (7.25)

for a transmission loss ⌘tx,meas between the two communication resonators, and a detuning �r of mode b̂r

relative to the drive. We perform these measurements at several detunings and extract a value of ⌘tx,meas =

0.80± 0.15. This agrees well with the “missing energy” estimation of ⌘tx above.
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Figure 7.25 | Estimation of transmission loss. We prepare a steady-state population of photons in the
sender and measure the resulting population in the receiver by means of the Stark shift. This measurement
allows us to estimate the fraction of photons transmitted from sender to receiver. The line is a linear fit.
(Figure adapted from [86]; see Copyright Permissions.)

Reduction of physical loss

The physical losses (such as coaxial cable attenuation, circulator insertion loss, and connector reflections)

that we associate with “transmission loss” may be mitigated in part by obtaining higher-quality circulators

(probably in more narrow frequency bands), or by omitting the circulator completely. Omitting the cir-

culator would require alternate means of measuring the system or characterizing state transfer. It would

also prompt us to consider the resonant modes of the terminated transmission line, which the circulator

currently allows us to ignore. Connectors and the presence of reflections could be carefully evaluated to

determine whether they contribute dominantly, for example by adding cold switch arrays and reference

lines. Such analysis could also be applied in situ by identifying optimal frequencies at which to perform

the transfer.

7.5.4 Expanding the model beyond photon loss

While our model of photon loss agrees significantly with the measured process (Section 7.3.3), other error

mechanisms may explain the remaining uncharacterized infidelity. We have investigated two such mecha-

nisms: decoherence and thermalization.

For simplicity, we chose to apply our models for decoherence and thermalization to the single-photon

encoding. To test decoherence, we construct a model for a completely positive and trace-preserving (CPTP)

map that includes the action of both photon loss and decoherence. In this representation of a quantum
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channel, we express decoherence using the Pauli operator �z and photon loss using �+ = �x+ i�y . Each

loss term is weighted by a variable probability of occurrence, and the weighted model is numerically com-

pared to the measured data. We minimize the average infidelity between the measured states and states

resulting from this model, over the probability space of these two mechanisms. This routine returns a

minimum corresponding with a small amount of decoherence that changes the average fidelity (and the fi-

delity of any single state) by < 1%. Therefore, this effect alone does not account for the ⇠ 5% unexplained

by the non-unity process fidelity.

The potential effect of thermalization or “photon gain” (equilibrating, with some probability, to a

thermal state at an unspecified point during the transfer process) is evaluated using a similar comparison.

Much like the model of photon loss imposes a beamsplitter on the transmitted state with vacuum at the

opposite input port, the thermalization process is modeled using a thermal state as the joining state. In-

cluding photon gain in the loss model would likely require a reduction in the assumed efficiency due to

photon loss, since the same measured states must be ultimately matched. The model we construct allows

for a uniform photon number of the thermal bath, n̄, as well as some weight with which the process acts.

Minimizing under this model to best match the measured states, we find an improvement in mean fidelity

< 1%. Again, the effect of photon gain alone cannot account for the infidelity of the transfer to a pure

photon loss process.

7.6 The future of state transfer and stationary–propagating conversion

In stark contrast to contemporary state transfer implementations, the scheme presented in this chapter

supports many-dimensional Hilbert spaces, thus providing a clear route towards error-correctable distri-

bution of quantum information and entanglement. The on-demand generation of arbitrary, traveling

multi-photon quantum states further provides exciting new opportunities for hybrid quantum systems.

For instance, the efficient capture of traveling microwave fields by mechanical oscillators has been demon-

strated experimentally [224]. An extension of this system could be used to transmit and receive highly

non-classical mechanical states. Mechanical systems can act as transducers with radically different degrees

of freedom, such as light in the optical domain [225, 226]. The combination of our system with such a
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transducer would thus enable the distribution of exotic continuous variable quantum states in heteroge-

neous networks. The compatibility of multi-photon states with powerful bosonic error correction codes

offers to protect the transmission and distribution of such states.

Using this device and conversion scheme, we have realized a high-fidelity, deterministic quantum state

transfer protocol between remote microwave cavity memories using tools available in superconducting

cavity QED. Importantly, our implementation is capable of transferring both single- and multi-photon

quantum states. This allows use of a multi-photon qubit encoding that, while initially producing larger

overhead and reducing mean fidelity, extends the techniques of quantum error correction to enable the

mitigation of photon loss in transmission. This achievement taps into the body of work already developed

for correcting errors in stationary memories [47, 53, 96, 227] to address the challenge of scalable quantum

communication. The demonstration of remote entanglement generation at a rate exceeding the memory

loss rates satisfies an essential requirement for scalable quantum communication and distributed com-

putation [228]. Entanglement is a critical resource in quantum networks, and its rapid and on-demand

generation will enable high-level operations between remote modules such as non-local gates [229] and

entanglement distillation [230, 231]. Our experimental results thus demonstrate precise and tunable cou-

pling of modular superconducting circuit systems that can be used to develop large-scale fault-tolerant

quantum computing and communication networks.



8
Conclusion

In the chapters of this thesis, we have discussed and addressed limitations to scaling, both at the founda-

tional level, with devices and materials, and at the much higher level, where we employed these devices to

accomplish a critical task in scaling quantum information devices. Just a decade ago, state transfer with

such high fidelity would probably not have been foreseen using superconducting circuits. Extensive con-

trol over couplings in circuit QED, however, gives us access to versatile parametric operations. We have

been lucky to harness powerful tools that form the foundation on which this work is built. As hard-

ware has become more coherent and reliable, algorithms have been developed to make complex operations

straight-forward. If these algorithms demonstrated in this work are still relevant to devices a decade from

now, they will likely have been enshrouded in many more layers of complexity.

8.1 Perspectives

8.1.1 Scaling

So what comes next? We have demonstrated communication between two modules; that primitive net-

work must be expanded. A major requirement for error correction in this channel was satisfied by trans-

mitting multi-photon states, but error detection or correction was not explicitly performed. As described

in Chapter 7, relatively simple modifications to the hardware and conversion element should make this

possible with high fidelity. These changes should improve uncorrected fidelity, too, allowing error correc-

tion to push fidelities even higher. Understanding the source of pump-induced heating, which may also be

240
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linked to the conversion element, could increase our success probability the remaining distance to unity.

These improvements would boost state transfer fidelity and entanglement generation rate; if the memory

modes also became longer-lived, the scaling of the comparative times would enable many more operations

in the lifetime of the system.

Now that proof-of-concept transfer between cQED modules has been established, the modules must

be outfitted with all the ‘bells and whistles’ required to scale the network. We must incorporate the facilities

for stationary error correction, which will probably share those required to perform correction of the cap-

tured state. Coupling memory modes within a module would satisfy the need for local logical operations.

Using a scheme such as that referenced in Section 3.2.2 would allow remote gates to be performed. Dis-

tributed entanglement will also need to be error-corrected or purified, mandating the need for additional

elements in each module [229, 230].

In the meantime, the basic hardware modules, and the transmon qubits that reside in them, should

continue to improve. As coherence times increase, more limiting loss mechanisms will be identified. Whereas

at shorter coherence times single sources might have dominated, it seems that multiple mechanisms may

now play near-equal roles. This added challenge will require doing multiple things correctly, carefully con-

sidering materials, assembly, processing, and more. Before that, though, these remaining limitations will

need to be identified. The process outlined in Chapter 5 will hopefully serve as a starting point from which

to conduct these tests.

One major benefit of a modular architecture is that these challenges can continue to be addressed in

parallel, even as modules are connected together into increasingly complex networks. Identical modules or

classes of modules will all benefit. Improved modules could be substituted into existing networks when-

ever appropriate.

8.1.2 Integrating and adapting

As promising technologies like the multilayer microwave integrated quantum circuit (MMIQC) improve,

we will likely see modules decrease in size and increase in robustness and reproducibility (as fabrication

techniques play a greater role) [148]. While the form of modules will change, they will manifest the same

basic elements and techniques required by a network for quantum computation: storage elements, con-
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version elements, and elements for control and measurement.

But if bespoke 3D cavities are ever abandoned, it will not be for some time yet. Before that happens,

new technologies that change our paradigm of measurement and control may already have been adapted.

To reduce the number of RF drive and readout lines, input and outputs may be multiplexed using planar

or 3D structures as in Chapter 4. If flux could be safely introduced without spoiling coherence times, then

wide-bandwidth amplifiers could be incorporated on-chip [204, 232]. These adaptations demonstrate just

a few possible ways to take advantage of the scalable nature of the cQED elements at our disposal.

The immense control that is possible over cQED systems, combined with the high quality of elements

available, makes using these tools a quantum engineer’s dream. It should be especially revealing that the

experiments in this work made use of relatively simple elements in our arsenal. Far more complex exper-

iments are easy to envision. Many subsequent and supporting steps are already being studied, and will

form the basis of future theses. Circuit QED can be a flexible field, and it can and will adapt and apply this

knowledge as necessary. The end goal is a fascinating one; but we can not underestimate the physics to be

learned, and the technologies and applications developed, along the way.
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A.1 Analytical approximation of partially loaded coaxline waveguide

The lowest supported mode in the analytical geometry of Figure 4.3a, used to approximate the partially

loaded waveguide of our coaxline design, will be the TE10 mode. This mode has EZ = 0, and thus we

express the wave equations hz , where HZ(x, y, z) = hz(x, y, z)e�j�z , as follows:

(
@
2

@x2
+ k

2
L)hz = 0, 0  x  a (A.1a)

(
@
2

@x2
+ k

2
D)hz = 0, a  x  a+ t (A.1b)

(
@
2

@x2
+ k

2
R)hz = 0, a+ t  x  2a+ t. (A.1c)

The propagation constant � must be phase-matched in each region, thus requiring

� =
q
✏rk

2 � k
2
D
=
q
k2 � k

2
L
=
q
k2 � k

2
R
. (A.2)

Equations A.1 have solutions of the form A cos(k0x� x0) + B sin(k0x� x0) to which we apply

the boundary conditions ey(x = 0) = 0 and ey(x = 2a + t) = 0 (for the y-component electric field

Ey = eye�j�z , where ey = j!µ

k
2
i

@hz
@x

) to obtain the following form for hz :

hz = A cos(kLx), 0  x  a (A.3a)

hz = C cos(kD(x� a)) +D sin(kD(x� a)), a  x  a+ t (A.3b)

hz = E cos(kR(2a+ t� x)), a+ t  x  2a+ t. (A.3c)

Applying the condition of continuity of tangential fields, we match the two equations valid at each of

the boundaries for both hz and ey . This means setting Equation A.1a equal to Equation A.1b, the same

with Equations A.1b and A.1c, as well as both of the related expressions for ey . This gives four expressions

for the four variables (A,C,D,E) in Equation A.3, and by noting that kL = kR the resulting relation
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appears:

tan kRa = �(kR/kD) sin kDt+ tan kRa cos kDt
cos kDt� (kD/kR) tan kRa sin kDt

, (A.4)

a transcendental equation that must be solved numerically. We express kD and kR in terms of � and

the chosen wavenumber k. The cutoff for this mode occurs where � = 0, and so we can numerically solve

for the wavenumber k and resulting cutoff frequency, 2⇡fc = ck.

A.2 Driven transmon Hamiltonian transformation

Section 6.1.1 makes use of the Hamiltonian of a driven transmon qubit, transformed in a displaced, rotat-

ing frame. Here we work out the details of this transformation that were omitted in that discussion.

Our displacement unitary Û = Û1 = D̂(⇠(t)) will transform our Hamiltonian

Ĥ = ~!tt̂
†
t̂� EJ cos

⇣
't(t̂

† + t̂)
⌘
+ EJ

✓
1� �

2
t

2
(t̂† + t̂)2

◆
+ ✏(t)(t̂† + t̂), (A.5)

as
˜̂
H = i~ ˙̂

UÛ
† + ÛĤÛ

†
. (A.6)

We treat each term in Ĥ separately, beginning with ~!tt̂
†
t̂. Here we use the Hadamard lemma, which

states

ex̂ŷe�x̂ = ŷ + [x̂, ŷ] +
1

2!
[x̂, [x̂, ŷ]] + ... (A.7)

In our case, x̂ = ⇠t̂
† � ⇠

⇤
t̂. We will establish the values of several useful commutators that will make the

calculation easier:

[t̂, t̂†] = 1 (A.8)

[x̂, t̂†t̂] = �⇠t̂† � ⇠
⇤
t̂ (A.9)

[x̂, t̂†] = �⇠⇤ (A.10)

[x̂, t̂] = �⇠ (A.11)
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The second term of the transformation in Equation A.6 applied to this Hamiltonian term then gives

~!t(t̂
† � ⇠

⇤)(t̂� ⇠). (A.12)

The Hadamard lemma can similarly be applied to the third and fourth terms of Equation A.5. The

third term gives

Û1EJ

✓
1� �

2
t

2
(t̂† + t̂)2

◆
Û

†
1 = EJ �

EJ

2
�
2
t

⇣
1 + ((⇠ + ⇠

⇤)� (t̂† + t̂))2
⌘
. (A.13)

The fourth term gives

Û1✏(t)(t̂
† + t̂)Û †

1 = ✏(t)(t̂† + t̂� ⇠
† � ⇠). (A.14)

The second term (the cosine term) can be evaluated by multiple applications of the Baker–Campbell–

Hausdorff (BCH) formula, which states that

ex̂+ŷ = ex̂eŷe�[x̂,ŷ]/2 (A.15)

in particular cases like ours, where the next commutator [x̂, [x̂, ŷ]] evaluates to zero. We will be interested

in particular in the three-operator case,

ex̂eŷeẑ (A.16)

which simplifies to

e[x̂,ŷ]/2e[x̂,ẑ]/2e[ŷ,ẑ]/2ex̂+ŷ+ẑ (A.17)

upon multiple applications of BCH. We are interested in the special case where x̂ = �ẑ, simplifying

further to

e[x̂,ŷ]ex̂+ŷ+ẑ
. (A.18)
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In the case of the cosine term, this gives

Û1(�EJ cos
⇣
't(t̂

† + t̂)
⌘
)Û †

1 =
�EJ

2
Û1

⇣
ei�t(t̂†+t̂) + e�i�t(t̂†+t̂)

⌘
Û

†
1 (A.19)

=
�EJ

2

⇣
ei�t(t̂†+t̂)e�i�t(⇠⇤+⇠) + h.c.

⌘
(A.20)

=
�EJ

2

⇣
ei�t(t̂†+t̂�⇠

⇤�⇠) + e�i�t(t̂†+t̂�⇠
⇤�⇠)

⌘
(A.21)

=
�EJ

2
2 cos�t(t̂† + t̂� ⇠

⇤ � ⇠). (A.22)

With all four terms of the Hamiltonian processed, we evaluate the first term in Equation A.6:

i~ ˙̂
U1Û

†
1 = i~( d

dt
ex̂)e�x̂ = i~ ˙̂xex̂e�x̂

. (A.23)

We again use Baker–Campbell–Hausdorff to show that ex̂e�x̂ = 1. We also calculate

˙̂x = ⇠̇t̂
† � ⇠̇

⇤
t̂� 1

2

d

dt
|⇠|2. (A.24)

These five terms thus complete the transformation of Equation A.5 according to Equation A.6. We

wish to express the drive ⇠(t) in a form that leaves only the cosine term. To do this, we will select (among

those in Ĥ1) only the terms that operate between neighboring transmon levels, neglecting energy offsets

and higher-order terms. This reduces Ĥ1 to

Ĥ1 = i~(⇠̇t̂† � ⇠̇
⇤
t̂) + ~!t(�t̂⇠

⇤ � t̂
†
⇠) (A.25)

+ ✏(t)(t̂† + t̂)� EJ cos
⇣
�t(t̂

† + t̂� ⇠
⇤ � ⇠)

⌘
(A.26)

and then mandates that

i~(⇠̇t̂† � ⇠̇
⇤
t̂) + ~!t(�t̂⇠

⇤ � t̂
†
⇠) = �✏(t)(t̂† + t̂). (A.27)

By selecting the coefficients associated with t̂
† or t̂, we arrive at the equation of motion in Equation 6.4.
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Our displaced Hamiltonian has become

Ĥ1 = ~!tt̂
†
t̂� EJ cos

⇣
't(t̂

† + t̂� ⇠(t)� ⇠
⇤(t))

⌘
, (A.28)

to which we wish to apply the rotating transformation Û2 = exp
�

i!tt t̂
†
t̂
�

. The first term is left un-

touched (which can be confirmed using the Hadamard lemma). The cosine term is not explicitly time-

dependent, and thus we have is the very definition of the interaction picture. This means that, equivalently,

we can transform the operators according to

˜̂
t(t) = Û2t̂Û

†
2 (A.29)

which in our case can be solved in a brute-force way by applying the Hadamard lemma (there are surely

cleverer ways):

ei!ttt̂
†
t̂
t̂e�i!ttt̂

†
t̂ = t̂+ [i!tt t̂

†
t̂, t̂] +

1

2
[i!tt t̂

†
t̂, [i!tt t̂

†
t̂, t̂]] + ... (A.30)

= t̂+ (i!tt)t̂+
1

2!
(i!tt)

2
t̂+ ... (A.31)

= t̂ei!tt = ˜̂
t(t) (A.32)

since we can recognize this pattern as an exponential series. The same analysis for the raising operator gives
˜̂
t
† = t̂

†e�i!tt. Substituting these into the cosine term in the Hamiltonian gives

� EJ cos
⇣
't(

˜̂
t
† + ˜̂

t� ⇠(t)� ⇠
⇤(t))

⌘
(A.33)

whereas ⇠, not being an operator, is unaffected.

The first (time-derivative) term in the Hamiltonian transformation becomes

i~ d

dt
(i!tt̂

†
t̂) = �~!tt̂

†
t̂. (A.34)

This conveniently cancels with the untouched first term of Ĥ1, as a rotational transformation is intended
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to do, thus resulting in only the cosine Hamiltonian term, given in Equation 6.9.

A.3 Detrimental effects of pumped processes

Pump-induced transmon heating or break-down (often measured as nonzero ‘background’ signal) has

been observed at high pump photon numbers [86]. Depending on detuning from the resonator modes,

and nearness to other less obvious frequency collisions, either heating of the qubit or readout bright-stating

may occur with some probability. It is not yet clear which parameter of merit serves as a threshold for this

obtrusive behavior, though we of course wish to maximize the pumped conversion rate gbs with respect to

this effect.

In this section, we will generally conform to the model given by refs. [233, 234], wherein heating from

a driven Jaynes-Cummings system in the dispersive regime can provoke qubit excitation. This model may

not be accurate in the strongly pumped regime of our work, but serves as a basis for our understanding

until more advanced models are developed. In fact, recent work may be closer to describing the limitations

we may face [235, 236]. We will present references to analyses of this phenomenon in related systems, and

describe how we may try to reconfigure our experiments to avoid its consequences.

Bishop et al. [222] address the bright-stating behavior and introduce a critical photon number thresh-

old, Ncrit = �2/4g2JC , above which the perturbative expansion (in photon number) of the driven Jaynes-

Cummings Hamiltonian fails to converge. (Here, gJC is the coupling rate described in the undriven form

of the Jaynes-Cummings Hamiltonian, as given in Equation 3.4.) This corresponds with a large intracav-

ity intensity and bifurcation behavior and is where the dispersive approximation breaks down. (See also

ref. [65].)

Mavrogordatos et al. [237] discuss this somewhat more quantitatively and show experimental agree-

ment throughout the intermediate-power regime. The dependence of Ncrit remains the same. The dis-

cussion of Sank et al. [223] speaks to the origin of these transitions as non-photon-number-conserving

transitions that are typically excluded by the rotating wave approximation. This sets a framework by which

such effects can be simulated (although it proves to be very computationally challenging given the many

degrees of freedom in the system).
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Another related explanation for this effect is that the transmon wavefunction is no longer confined to

a single well of the cosine potential, and begins to tunnel between them. Simply, the device may no longer

act like a transmon. In this case, a more linear conversion element that could handle more photons might

provide an appealing solution.

In the following, we consider the beamsplitter coupling strength gbs as defined in Equation 7.16 more

explicitly and look at its scaling behavior with quantities (namely � and gJC ) that affect Ncrit . Though

Ncrit may not be the figure of merit most relevant to our choice of conversion element here (the transmon),

since it is derived from the Jaynes-Cummings Hamiltonian, we can use it as a guide to evaluate whether

the expected scalings match observed behaviors. For example, we might wish to maximize gbs and Ncrit

within the constraints of a chosen sample design.

A.3.1 Critical photon number scaling

The critical photon number can be expressed in terms of � = |!x � !t|, the detuning of the mode

in question from the transmon, and the dispersive coupling of mode x. In the strong dispersive limit,

gJC =
p
�xt� and so (ignoring factors of two)

Ncrit / �/�xt (A.35)

for a drive that is resonant with the cavity mode. In this limit, it is advantageous for modes to be more

widely separated from the qubit. Other factors like the desire for large conversion strength will drive the

desire to maintain �.

A.3.2 Conversion strength

The beamsplitter Hamiltonian in Equation 6.13 can be generalized, in the presence of two pumps 1 and

2, and nearest modes x and y, respectively, to take the form

gbs = EJ�a�b�x�y⇠
(1)
x ⇠

(2)⇤
y (A.36)
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which can be expressed in terms of transmon anharmonicity ↵ and dispersive shifts �it (for mode i) as

gbs =
1

2↵
p
�at�bt�xt�yt⇠

(1)
x ⇠

(2)⇤
y . (A.37)

Harmonic transmon

By making the transmon more harmonic,↵ can be decreased while having no effect on Ncrit . Alternatively,

we can hold gbs fixed by reducing both ↵ and each �. By reducing �, we increase Ncrit . Reducing anhar-

monicity below about 60 or 70 MHz may be problematic due to the junction capacitance, although mov-

ing away from the transmon design entirely (and towards an amplifier-style, low-anharmonicity, junction-

based device) may bypass this constraint.

Reordering modes

By moving the qubit to have the lowest frequency among the storage, qubit and readout modes, we could

double the detuning to the readout mode and increase Ncrit , potentially driving it more strongly. The

trade-off in this case arises via reduction of Purcell filtering provided to the storage cavity. Careful engi-

neering could balance the need for filtering.

Dump modes

By pumping on alternative modes x and y very far detuned from the junction, so-called photon “dump

modes”, Ncrit increases with �. We wish to at least maintain our conversion strength gbs , and therefore

maintain �xt and �yt near the level previously held by �at and �bt . (There is no reason �at and �bt should

have to change.) For a fixed � = g
2
JC/�, the coupling strength gJC must be increased with a square-root

dependence to hold � fixed. Both terms scale with the same power in the expression for Ncrit , such that

Ncrit will still increase even for � held fixed.

Another advantage of using far-detuned modes to load photons is that they can be made to couple

very strongly to the pump without Purcell-limiting high-Q elements. The Purcell limit,

lim =
g
2
JC

�2
x =

x

Ncrit
(A.38)
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actually scales with the inverse relation as to the critical photon number.

So how will the mean photon number in mode x look for a CW drive labeled (1)? It will scale as

n̄
(1)
x =

✏
2
x

2x +�2
x

(A.39)

where�x = |!1�!x|. A dump mode could be almost-resonantly driven. For more photons to enter the

mode given the same drive strength,  would have to remain quite small—on the order of�, in fact. This

seems non-intuitive. In this resonant limit, however, we have an understanding for n̄ should scale based

on total and coupling Q and incident power, particularly

n̄
(!1=!x)
x = 4PinQ

2
tot/Qc~!2

x. (A.40)

Measurement-induced dephasing

Measurement-induced dephasing [217, 238] describes the process of the environment learning informa-

tion about the qubit state via quantum fluctuations of excitations in the readout (or some other) resonator.

The more populated the resonator is, and the more distinguishable (number-split) those photons are, pro-

duces greater dephasing. In the case of dump modes, we are concerned with population in the dump

modes or the readout resonator dephasing the qubits. Dephasing rate due to a drive near mode x with

decay rate  scales as

�m =
n̄xx�xt

2x/4 + �2
xt +�

2
r

(A.41)

where�r is the detuning between the drive and mode x. The dump modes would see a change in regime

such that�r ⇡ �xt ⌧ x , such that dephasing rate simplifies to

�m ⇡ 4n̄x�xt/x. (A.42)
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For fixed �xt , n̄ must scale with (or slower than)  to remain safe. Any reduction in � is beneficial. If we

raise n̄ up as Ncrit increases, then dephasing scales as

�m / �xt/x, (A.43)

a small number since � will increase by a small factor and  likely by many orders of magnitude. Note

that x is the dominant rate throughout because of the scale ordering established above.

The readout resonator is unlikely to be affected by measurement dephasing for such a large-detuned

pump because factors of �2 appear in both the denominator of �m as well as in the denominator of the

expression for n̄r . Both �bt and b are small compared to �b , which will dominate. In fact, the relative

rates scale as

�(b)
m /�(x)

m /

3
bx

�4
b

�bt

�xt
(A.44)

which is about 10�7 for tentative dump mode parameters. As expected, the large relative detuning dom-

inates, even in the case of extremely small �xq , and is aided by the fact that the gain in pump photons

compares prior qubit input coupling (Qin ⇠ 106) with the new coupling Qx , whereas the readout de-

phasing was always limited by the already-low value of Qout ⇠ 103.

Estimates

In the devices of Chapters 6 (A) and 7 (B), a typical photon number product of 60 and above should be

achievable. Device B has mode frequencies at 4.3 GHz, 5.5–6.1 GHz, and 7.5 GHz. This seems mostly

limited, and should scale by, Ncrit . A dump mode approach should increase the detuning from (at most)

2 GHz to 4 GHz (placing mode x at 9.5 GHz). To maintain �, we must increase gJC by a factor of
p
2,

but Ncrit still increases by a factor of 1.4. In this case, gbs does not change, save for the 1.4 times photon

number increase that should be possible.

If we are not so lucky, however, and can’t maintain �, let’s see what happens. If � is ten times smaller

to the x and y modes, then gbs is ten times smaller (total). This implies that g2JC has been reduced by 22/10.

The overall increase in Ncrit is larger than for fixed �, by ten times, in fact. The only gain will be in the

increased mean mode photon number than can be applied with the drives, which would actually be quite
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Figure A.1 | Transmon heating from applied pumps. Different devices are measured, labeled A–F,
for which the parameters are shown in Table A.1. The measurement of transmon excited state probability
P(e) after the application of both pumps on â (storage) and b̂ (readout), with variable amplitude and for
10 µs.

substantial.

So can we compensate for a reduction in p
�xt with an increase in

q
✏2x

2
x +�2

x
? Unfortunately, no.

While it is true that Ncrit will increase proportionally to ��1
xt , the rate g is proportional to p

�xt�yt as well

as ⇠1⇠2 ⇠
p
Ncrit,x

p
Ncrit,y . Therefore, the � does not seem to matter in the case where one increases the

drive strength proportionally with the increase in Ncrit . A small � can still be beneficial to tune Ncrit to

within a regime where driving is practical at normal excitation powers, however, and also to control Purcell

and other linearity-sensitive effects.

A.3.3 Experimental results

We wanted to probe the nature of this pump-induced break-down, since its origin is still opaque. We

measured devices with many different sets of parameters, including one experiment with “dump modes”.

Though the behavior did not change overwhelmingly from one device to another, there were some differ-

ences; none matched definitively with any of the proposed behavior. The results are summarized in Figure

A.1 and Table A.1.
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Device �at
2⇡ (MHz) �bt

2⇡ (MHz) out
2⇡ (MHz) Best n̄an̄b

g

2⇡ (kHz) eff
2⇡ (kHz)

A 8.3 0.9 1.9 500 460 450
B 2.8 0.5 1.1 1500 150 80
C 2.3 2.5 0.7 290 270 420
D 2.5 1.9 1.0 150 160 100
E 1.2 0.6 3.0 3500 101 14
F 2.8 2.0 2.5 540 340 180

Table A.1 | Pump strengths at varied device couplings. Separate devices are cooled down, with the
frequencies of transmon and readout elements, and the chip position relative to the storage mode, varied
so as to alter�at and�bt . The labeling of these devices follows that of Figure A.1. For each of these devices,
different pump detunings were used to enact the conversion Hamiltonian of Chapters 6–7. The detuning
that and pump settings that produced the best product of n̄, while keeping transmon excitation probably
below 20%, were identified. From this, the maximum conversion rate g and the effective decay rate eff of
â is calculated at this detuning.

A.4 Input-output theory for multi-system readout

The device in Chapter 7 can be read out in several ways. The na ive way is sequential — the sender is

measured, and then the receiver is measured. Each measurement result is thresholded to provide a single bit

of information: the state in |gi or |ei. A faster and more clever way, however, is to use two excitation pulses,

applied to the readout resonator of each device, with variable amplitude and phase so as to discriminate

between four states: {|ggi , |gei , |egi , |eei}.

Here, we outline the input–output theory analysis that can be used to simulate the expected trajec-

tories (and resulting “blobs”, or histograms of IQ values) in IQ space. Contrary to Equation 3.7, where

steady-state transmission is analyzed, we will want to perform this analysis in the time domain. We will do

so by integrating the quantum Langevin equation and applying the input–output relation.

A transmission cavity with two ports (neglecting internal loss, over which all coupling rates will dom-

inate) will have two incoming and two outgoing signals: a(pulse)
in , a

(sig)
in and a

(pulse)
out , a

(sig)
out , respectively. This
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is representative of our ‘sender’ system in Chapter 7. The intracavity field will obey

a(t) = e�(tot/2+i!)t

0

@�
tZ

0

dse(tot/2+i!)s(
p
ca

(pulse)
in +

p
a

(sig)
in )

1

A (A.45)

= �
tZ

�1

dse(tot/2+i!)(s�t)(
p
ca

(pulse)
in (s) +

p
a

(sig)
in (s)) (A.46)

where tot = c + , the sum of the coupling-in-port and signal-port decay rates.

From the input–output relation a
(sig)
out � a

(sig)
in =

p
a(t),

a
(sig)
out = a

(sig)
in �

p


tZ

�1

dse(tot/2+i!)(s�t)(
p
ca

(pulse)
in (s) +

p
a

(sig)
in (s)). (A.47)

For the sender cavity, a(sig)
in = 0. If the receiver cavity is driven, then it will also obey this equation (with

different parameters, possibly), but a(sig,receiver)
in will be the output of the first cavity, a(sig,sender)

out .

The effect of a transmon in either cavity can be taken so as to change the cavity frequency !. The

trajectory of the readout resonator can be simulated under the set of four conditions possible in a two-

cavity configuration: |ggi , |gei , |egi , |eei, where the first and second letter refer the state of the sender

and receiver transmon, respectively. By numerically integrating and cascading the output of the first cavity

onto the input of the second in all four cases, we can produce these trajectories (Figure A.2). The relative

drive amplitudes, phases, and absolute detuning can all be adjusted. Such simulations can be a useful tool

in optimizing the separation of the response of readout resonators, particularly in the case where we intend

to readout multiple systems simultaneously.
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Figure A.2 | Two-cavity readout trajectories. a The sender–receiver system in Chapter 7 is prepared
with all four combinations of each system’s transmon in |gi or |ei. IQ-histograms are taken for many
repeated measurements, for each preparation. b Simulation of trajectories in time of two driven readout
resonators in a cascaded system. The four lines represent the same prepared states as in a, but with some-
what different drive and system parameters. The lightly shaded regions of each trajectory are the ring-up
and ring-down of each resonator; this captures 30% of the total time.
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