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Coupling isolated quantum systems through propagating  
photons is a central theme in quantum science1,2, with the 
potential for groundbreaking applications such as distributed, 
fault-tolerant quantum computing3–5. To date, photons have 
been used widely to realize high-fidelity remote entangle-
ment6–12 and state transfer13–15 by compensating for inefficiency 
with conditioning, a fundamentally probabilistic strategy 
that places limits on the rate of communication. In contrast, 
here we experimentally realize a long-standing proposal for 
deterministic, direct quantum state transfer16. Using efficient, 
parametrically controlled emission and absorption of micro-
wave photons, we show on-demand, high-fidelity state trans-
fer and entanglement between two isolated superconducting 
cavity quantum memories. The transfer rate is faster than the 
rate of photon loss in either memory, an essential requirement 
for complex networks. By transferring states in a multiphoton 
encoding, we further show that the use of cavity memories 
and state-independent transfer creates the striking oppor-
tunity to deterministically mitigate transmission loss with 
quantum error correction. Our results establish a compelling 
approach for deterministic quantum communication across 
networks, and will enable modular scaling of superconducting 
quantum circuits.

Direct quantum state transfer is a rapid and deterministic 
scheme for quantum communication with propagating photons 
in a quantum network16. In this protocol, a sending node emits 
a quantum state as a shaped photonic wavepacket that is then 
absorbed by a receiving node. This requires strong, tunable cou-
pling between light and matter, as well as efficient transfer of pho-
tons at a shared communication frequency; so far, state transfer 
in optical networks has been highly probabilistic due to ineffi-
ciencies in photon coupling and transfer8. In contrast, supercon-
ducting microwave circuits can combine low loss with strong 
coupling. This platform is well suited to realize on-demand state 
transfer, and thus to scale quantum devices in a modular fashion. 
To this end, superconducting microwave memories and propagat-
ing modes have successfully been interfaced to realize controlled 
photon emission17–20 and absorption21–23 independently. Due to 
the difficulty posed by the need for efficient, frequency-matched 
photon transfer, however, the goal of deterministic quantum com-
munication at a distance has so far remained elusive.

We implement the deterministic state transfer protocol in ref. 16, 
employing high-Q superconducting microwave cavities24 to serve as 
remote quantum memory endpoints in a simple network (Fig. 1a). 
Each module can be understood to contain two orthogonal cavity 
modes (memory and communication) that are coupled by an arti-
ficial atom (Fig. 1b). The communication modes—implemented 
as on-chip stripline resonators—are strongly coupled to either end 
of a transmission line. Realizing on-demand state transfer requires 
tunable conversion between memory and communication modes 
within each module, such that the sender emits the state contained 
in the memory into the transmission line as a wavepacket with a 
specified temporal profile, and the receiver absorbs this wavepacket. 
Amplitude- and phase-controlled coupling are realized using a 
highly efficient radiofrequency-controlled parametric pumping 
process, via a single transmon dispersively coupled to both modes 
(Fig. 1c,d)20. In particular, we compute the shape of the pumps used 
in this process so as to best match the temporal profile of the trav-
elling wavepacket (Supplementary Information). System param-
eters enable the effective coupling strengths between memories 
and the transmission line, κs,r(t)/2π , to be tuned dynamically up to 
400 kHz—much larger than the intrinsic single-photon decay rates 
of the memories, κ ∕ π20

s,r  <  0.4 kHz (Supplementary Information).
Following the original proposal, we insert a circulator into the 

transmission channel, which enforces the directionality of emission 
from the sender. The circulator also directs signals reflected off the 
receiver into an output port, which allows readout of both systems 
using a single parametric amplifier and heterodyne detection chain. 
While the memory resonance frequencies need not match, efficient 
transfer requires that the communication modes be close to reso-
nant compared to their bandwidths (κ ∕ π2out

s,r  ~ 1 MHz). To com-
pensate for a small offset in resonance frequency due to variation in 
sample assembly, we equip the receiver with an in situ mechanical 
frequency tuning mechanism (Supplementary Information).

We begin by characterizing the process by which photons in 
the sender are emitted, transferred and absorbed into the receiver 
memory. First, we quantify the efficiency of absorption alone by 
preparing a small coherent state in the sender memory, and then 
executing the protocol under one of two conditions (Fig. 2a). In 
one case, we omit the capture pulses and monitor reflection from 
the receiver. Here, the emitted wavepacket is fully reflected and 
recorded by our heterodyne detector (Fig. 2b). In contrast, if we 
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To measure the overall transfer efficiency, we prepare few-
photon states and apply both release and capture pulses. We mea-
sure cavity populations before and after the transfer using photon  
number-dependent spectroscopy on the transmon, which directly 

apply the complete set of pulses, this reflection is strongly sup-
pressed. By measuring the relative photon flux at the detector, we 
determine that the receiver absorbs (93 ±  1)% of the energy con-
tained in the incident wavepacket.
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Fig. 1 | On-demand state transfer by parametric conversion. a, Identically constructed circuit quantum electrodynamics sender and receiver modules 
are connected with a transmission line and a circulator, allowing straightforward measurement of both systems. Each module contains a high-Q memory 
cavity (â) , a transmon qubit ̂t( )  and a communication mode ̂b( )  with strong output coupling κout. Parametric drives (purple waveforms, ξ) enable 
conversion between memory and communication modes. b, This is equivalent in principle to the memory (red) and communication (blue) modes 
constituting orthogonal resonant modes whose interaction is mediated by driving an atom (in this case, an artificial atom, the transmon, green).  
c, Frequency ordering of the modes (ωa,b,t) and pumps (ω1,2) in each module. Pumps are applied with a detuning Δ from each mode and an additional 
relative detuning δ between them to account for Stark shifts. d, The parametric conversion process, enabled by the transmon nonlinearity, schematically 
runs left-to-right in the sender, and right-to-left in the receiver.
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Fig. 2 | temporal mode-matching of the sender and the receiver. a, The transfer protocol consists of state preparation, pumping and measurement.  
The sender and the receiver are pumped simultaneously because the propagating wavepacket’s time-of-flight (< 3 ns) is negligible compared to its 
width (6 μ s). The in-phase (I) and quadrature (Q) components as well as the absolute value (shaded) of the pump modulation tones are shown. b, Left: 
measured field-emission components (I, Q) and envelope (shaded) on release of an α =  1 coherent state from the sender. Right: photon flux with receiver 
pumps omitted (‘No catch’) or applied (‘Catch’), demonstrating absorption of the wavepacket. Detector photon flux calibration is inferred by measuring 
cavity population after release of a one-photon state. The ‘Ideal’ lines mark the shape and amplitude expected for a complete, uncaught release. c, Photon 
number state occupations of the sender (left) and receiver (right) memory cavities after transfer of an =̄n 1 coherent state (upper) or n =  1 Fock state 
(lower). ‘Expected’ occupations in the receiver are those measured in the sender after substituting the transfer process with a delay of the same length.  
d, States with >̄n 1 are transferred with efficiency near those of single-photon states. The line corresponds with the efficiency η =  0.74 measured for single-
photon states.
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provides the relative populations of the cavity number states25. We 
define the transfer efficiency η as the average photon number received 
divided by the average photon number prepared in the sender.  
Figure 2c presents the populations of both memories after transfer-
ring states with mean photon number ̄=n 1, from which we calculate 
an efficiency η =  0.74 ±  0.03. Our experimental scheme is indepen-
dent of input state, verified by measuring the transfer efficiency of 
a selection of Fock and coherent states with up to ̄=n 4 (Fig. 2d).

While this transfer efficiency is high, understanding the origin 
of process imperfections is critical to select optimal error correction 
protocols and to correct imperfections in future experiments. We 
can identify several factors that contribute significantly to transfer 
inefficiency: undesired transmon excitation, imperfectly shaped 
pump pulses and loss in the transmission path.

For ideal operation of our protocol, the transmons would remain 
in their ground states during the transfer. However, we observe non-
negligible stochastic excitation during the transfer process due to 
thermalization and pump-induced transitions to higher levels26,27. 
Unwanted transmon excitation has two important consequences. 
First, an excitation leads to a shift of the resonator frequencies 
due to their dispersive couplings to the transmon. This abruptly 
changes the transfer frequency-matching conditions, manifesting 
as off-resonant emission by the sender, or imperfect wavepacket 
absorption by the receiver. We estimate these effects to lead to an  
inefficiency of about 2% for emission, and 6% for absorption 

(Supplementary Information). This effect is thus likely to be the 
dominant cause of the measured absorption inefficiency.

Second, transmon excitation precludes effective measurement of 
the cavity state. In this case, cavity measurement indiscriminately 
returns ‘yes’ to a query of any photon number. Excitations thus have 
the effect of reducing average measurement contrast. By normal-
izing our measurement data to correct for this, cavity tomography 
is implicitly conditioned on the transmon having remained in its 
ground state. It is therefore useful to view the transmon excitation 
probability as a ‘failure probability’ of the protocol; that is, we make 
the conservative assumption that each excitation masks an unsuc-
cessful transfer. The efficiency η quoted above is then conditioned 
on the receiver transmon remaining in the ground state, with suc-
cess probability ps =  0.87 ±  0.03. The conditioned value can be inter-
preted as the efficiency that would be measured with a perfectly 
cold transmon or by heralding on a transmon measurement after 
the protocol (Supplementary Information). The ‘deterministic effi-
ciency’ given the transmon temperature observed here is estimated 
by the product of the conditioned efficiency and the success proba-
bility, ηd ≥  ps ×  η =  0.87 ×  0.74 =  0.64 ±  0.03. In the transfer character-
ization to follow, we present both the directly measured (implicitly 
conditioned) quantities and the estimated deterministic ones. This 
deterministic value represents a lower bound on the quantity; since 
these failure events are assumed to be maximally destructive, this is 
the worst-case scenario (Supplementary Information).
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Fig. 3 | establishing a quantum communication channel. a, Measured Wigner functions of two states encoded in the single-photon manifold {∣ ⟩0 , ∣ ⟩1 } 
as prepared in the sender (left) and received following the transfer protocol (right). b, The manifold’s six cardinal states are visualized in the Bloch sphere 
as prepared (red, dashed) and received (orange, solid). The green line indicates the position of each prepared state subject to a model of pure photon loss 
(the tip of the arrowhead denotes an efficiency of 0.74). The octahedron shrinks towards the ∣ ⟩0  state as predicted by the loss model. c, Single-photon 
entanglement is generated with a half-release of ∣ ⟩1 , followed by unchanged capture pulses (shown in the same style as Fig. 2a). Cavity photon number 
correlations are measured following rotations into the appropriate measurement basis. d, Reconstructed expectation values (shaded) of two-qubit Pauli 
operators compared to those of the maximally entangled Bell state ∣ ⟩01  +  ∣ ⟩10  (dashed). The ‘II’ operator takes the value of unity here, signifying that the 
data are conditioned on both transmons remaining in the ground state (Supplementary Information).
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Additional contributions to transfer inefficiency come from 
photon loss in the transmission path, which we estimate adds 15%, 
as well as imperfect pulse shapes affecting state release and cap-
ture, each with an effect around 2% (Supplementary Information).  
We note that the bulk of the described imperfections are not funda-
mental; in particular, improvements to the transmon equilibrium 
temperature and thermalization rate as well as parameter engineer-
ing to avoid pump-induced higher order transitions27 can substan-
tially reduce the inefficiencies resulting from transmon excitation.

The achieved transfer efficiency allows for quantum communi-
cation between the sender and the receiver memories. We confirm 
this explicitly by transferring an overcomplete set of qubit states in 
the manifold spanned by the Fock states ∣ ⟩0  and ∣ ⟩1 , and perform-
ing Wigner tomography on the receiver (Fig. 3a). Comparing each 
received state to the ideal state, we determine an average fidelity 
Favg =  0.87 ±  0.04 (deterministic: ≥ ×F Fpavg,d s avg =  0.76 ±  0.04). 
Both the conditioned and deterministic fidelities significantly 
exceed the classical bound of ∕2 3, the maximum attainable fidelity 
with which one can reconstruct an unknown qubit state using only 
classical communication28.

Importantly, the measured fidelity Favg is consistent with that 
expected (0.91 ±  0.03) from a pure photon loss model using the mea-
sured transfer efficiency. A representation of prepared and received  
states as vertices of an octahedron on the Bloch sphere (Fig. 3b) reveals 

a systematic shrinkage towards ∣ ⟩0  that also appears consistent with 
photon loss. More quantitatively, we find that the measured transfer 
has a process fidelity of 0.95 to this single-source model, bounding the 
errors not described by photon loss at the 5% level (Supplementary 
Information).

Our experimental scheme readily enables us to generate on-demand 
remote entanglement by applying a pump sequence on the sender that 
releases half of its stored energy (Fig. 3c). If the initial state is a single 
photon, this results in entanglement between the memory and the emit-
ted radiation20. Subsequent absorption of the wavepacket by the receiver 
ideally results in the Bell state ∣ ⟩ + ∣ ⟩ ∕( 10 01 ) 2  shared between 
the memories. We perform joint tomography following this protocol, 
revealing non-classical correlations between the sender and the receiver 
(Fig. 3d). Here, the entanglement success probability ps,ent =  0.78 ±  0.04 
is lower than for the state transfer, as success depends on both trans-
mons remaining in the ground state (Supplementary Information). The 
fidelity of the joint state to the ideal Bell state is FBell =  0.77 ±  0.02 (deter-
ministic: ≥ ×F FpBell,d s,ent Bell =  0.61 ±  0.02), confirming the successful 
generation of entanglement. We are able to achieve a net entanglement 
generation rate of (140 μ s)−1 (for fidelity 0.77; equivalently (110 μ s)−1  
for fidelity 0.61, fully deterministic), limited by the average time it takes 
to reset the system (~ 100 μ s). This rate exceeds the single-photon loss 
in either memory (< (450 μ s)−1), a strict requirement for scaling up the 
network size.
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As the infidelity of our state transfer protocol is dominated by 
errors of a single type—photon loss—the scheme can be improved 
by selecting an appropriate error-correcting code. The use of cav-
ity memories grants access to tools already developed for correct-
ing loss in stationary states, such as redundantly encoding a qubit 
within a larger Hilbert space and using photon number parity as 
an error syndrome29. We choose a simple error-correctable code 
with minimal overhead, the L =  1 binomial encoding, which has 
logical basis states ∣ ⟩ = ∣ ⟩ ∣ ⟩{ 0 2 , 1L L =  ∣ ⟩ + ∣ ⟩ ∕( 0 4 ) 2 }  (ref. 30). 
Our transfer scheme is number-state independent, and so with no 
other modifications, we prepare and transmit the cardinal states 
of this encoding, again measuring the received state with Wigner 
tomography (Fig. 4a,b). These states have a larger average photon 
number ̄=n( 2)  relative to the single-photon encoding ̄= .n( 0 5) , 
representing an additional ‘overhead’. From this increased sensitiv-
ity to photon loss, we predict a mean fidelity of 0.60 and measure 
Favg =  0.54 ±  0.04 in this manifold (Favg,d ≥  0.47 ±  0.04) relative to 
the ideal states. Although its mean fidelity is lower than that of the 
single-photon encoding, the binomial encoding permits the use of 
parity as an error syndrome measurement.

This feature will enable detection and deterministic correction of 
single-photon loss errors. Above some transfer efficiency threshold, an 
error-corrected qubit would be transmitted with higher average fidel-
ity than a qubit encoded in the single-photon manifold. Our efficiency 
(η =  0.74) exceeds that of this ‘break-even’ threshold (η ~ 0.67), defined 
as the crossing of simulated mean fidelities in each case (Fig. 3c). 
Beyond break-even, error correction can overcome the overhead asso-
ciated with the binomial state encoding. Error correction is possible 
using high-fidelity quantum non-demolition parity measurements29, 
which could be effectively realized by adding a dedicated readout 
channel to each module. Following this measurement, fast feedback 
could be used to apply a conditional correction pulse. Along with 
modest improvements to the release and capture efficiencies, error 
correction should place the transfer firmly within this advantageous 
regime. Optimization over a wider set of bosonic codes could produce 
even larger improvement (Supplementary Information). These error 
correction concepts can also be extended to improve entanglement 
fidelity without sacrificing the determinism of the protocol.

In summary, we have realized a high-fidelity, deterministic 
quantum state transfer protocol between remote microwave cavity 
memories using tools available in superconducting cavity circuit 
quantum electrodynamics. This protocol can also be performed 
between other systems, such as transmon qubits31,32. Importantly, 
our implementation is capable of transferring both single- and mul-
tiphoton quantum states. This allows use of a multiphoton qubit 
encoding that, while initially producing larger overhead and reduc-
ing mean fidelity, extends the techniques of quantum error correc-
tion to enable the mitigation of photon loss in transmission. The 
demonstration of remote entanglement generation at a rate exceed-
ing the memory loss rates satisfies an essential requirement for 
scalable quantum communication and distributed computation33. 
Entanglement is a critical resource in quantum networks, and its 
rapid and on-demand generation will enable high-level operations 
between remote modules such as non-local gates34 and entangle-
ment distillation35,36. Our experimental results thus demonstrate 
precise and tunable coupling of modular superconducting circuit 
systems that can be used to develop large-scale fault-tolerant quan-
tum computing and communication networks.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0115-y.
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Methods
Samples and set-up. Devices are assembled using a shared-chip transmon qubit 
and stripline readout resonator, inserted into a high-Q three-dimensional coaxial 
stub cavity. The system is cooled to T ≈  20 mK in a dilution refrigerator. Signals are 
introduced and IQ-modulated using microwave generators as local oscillators and 
a field-programmable gate array (FPGA) system with integrated analog-to-digital 
converter and digital-to-analog converter, and remain phase-locked. Output signals 
are amplified with a Josephson parametric converter, high-electron-mobility 
transistor (HEMT) amplifier and room-temperature amplifiers, permitting single-
shot readout with fidelity ≥ 0.93. Communication frequencies are tuned to match 
by adjusting a mechanical micropositioning stage, which drives a superconducting 
pin near the stripline resonator to adjust the capacitance, and thus the frequency. 
The system is initialized before each measurement by an active-feedback cooling 
sequence. State manipulation pulses aside from qubit rotations and cavity 
displacements are generated using optimal control techniques.

Measurements. Cavity spectroscopy is performed by selectively mapping cavity 
excitation number ̄n( )  onto the qubit state, and is used to calculate efficiency 
values. Wigner tomography is performed by a displaced parity measurement, and 
is reconstructed using a maximum-likelihood estimation algorithm to calculate 
state fidelities. Both measurement types are normalized and constrained to be 
physical to produce the ‘conditioned’ data presented.

Wavepacket shaping. The temporal shape of the pulses modulating the conversion 
process pump are calculated numerically. Accounting for dynamic Stark shifts and 
imposing the prescribed shape of the travelling wavepacket, we solve the set of 
differential equations of motion between the memory and communication modes 
in each module. We thus obtain the coupling gs,r(t) and convert this into a pump 
strength using independent calibration of the pumps’ Stark shifts by transmon 
spectroscopy.

To allow the propagating wavepacket to be absorbed by a receiving cavity, 
both the sender and receiver systems must expect the same temporal wavepacket 
shape. To separate the problem into two parts, we first specify the shape of this 
wavepacket, bout(t), and then calculate the pump amplitudes needed at the sender 
and the receiver to match the coupling rate gj(t) to this wavepacket, where the 
system subscript j =  s (r) denotes the sender (receiver). When correctly calculated, 
energy will transfer between the sender, the propagating mode, and the receiver at 
matching rates. Here we detail the calculation of the drive amplitudes that make 
this possible. Since we treat the two systems individually, the system subscript j will 
be omitted for clarity wherever possible.

Shaping the released wavepacket. In the rotating frame of the pumps, the 
Hamiltonian enabling conversion between memory and output modes a and b is

= â − â
† †� �H t i g t b g t b( ) ( ( ) *( ) ) (1)

conv

with

ξ ξ=g t g t( ) ( ( ), ) (2)1 2

The correspondence producing the conversion rate g(t) as a function of the two 
applied pump amplitudes ξ1 and ξ2 is calibrated experimentally (Supplementary 
Information). In the lowest-order approximation, ξ ξ∝gj

j j
1 2 .

As the conversion always depends on both pumps, only one of the two pumps 
needs to vary in time to produce any particular g(t). For experimental convenience, 
we designate ξ1 to vary in time. The pump ξ2 is held constant in time, with a 
smooth (~ 200 ns) ring-up and ring-down profile.

One significant effect of the application of pumps is ac-Stark shifts that shift the 
frequency of the modes. The Stark shifts during the transfer process are a function 
of both pump amplitudes:

δ δ= â â +† †� �H t t t b b( ) ( ) ( ) (3)
Stark a b

Each Stark shift depends on each pump amplitude:

δ δ ξ ξ δ δ ξ ξ= =t t t t( ) ( ( ), ) ( ) ( ( ), ) (4)a a 1 2 b b 1 2

This shift is calibrated independently (Supplementary Information). We find very 
good agreement with the expected dependence, which is linear in the sum of the 
pump powers:

δ χ ξ χ ξ

δ χ ξ χ ξ

= ∣ ∣ + ∣ ∣

= ∣ ∣ + ∣ ∣

t t

t t

( ) 2 ( )

( ) 2 ( )
(5)

a aa 1
2

ab 2
2

b bb 2
2

ab 1
2

Having established the dependence of both the conversion rate g(t) and the Stark 
shifts δa, δb, we can write down the equations of motion for the modes â and �b  of 
the sender:

ξ ξ δ ξ ξ̇ = − −a t g t b t i t a t( ) ( ( ), ) ( ) ( ( ), ) ( ) (6a)1 2 a 1 2

ξ ξ δ ξ ξ
κ̇ = − −b t g t a t i t b t b t( ) *( ( ), ) ( ) ( ( ), ) ( )

2
( ) (6b)1 2 b 1 2

out

κ= ∕b t b t( ) ( ) (6c)out out

As these equations are linear, we can consider the evolution of the expectation 
values of the field operators â and �b , so we have dropped the operator notation. 
This will also allow us to solve the problem classically, which is computationally 
simpler compared to a full quantum simulation.

Equation (6c) is the input–output relation, taking as an assumption that there 
is no incoming field. In this case, for a chosen bout(t) and ξ2, the only undetermined 
quantities are a(t) and ξ1(t). In what follows, we suppress the time dependence and 
the explicit dependence on the static ξ2 for simplicity.

The goal is to eliminate a, leaving an equation for g in terms of b that can be 
solved numerically. We first note that equation (6b) can be written as

ξ δ ξ
κ

= ̇+ +g a b i b b*( ) ( )
2

(7)1 b 1
out

with the derivative

ġ ξ ξ ξ δ ξ
κ

+ ̇= ¨ + δ
.

+ ̇+ ̇a g a b i b i b b*( ) *( ) ( ) ( )
2

(8)b1 1 1 b 1
out

We can multiply equation (6a) by g*(ξ1) and substitute it into equation (8) to write

ġ ξ ξ δ ξ ξ ξ δ ξ
κ

−∣ ∣ − = ¨ + δ
.

+ ̇+ ̇a g b i g a b i b i b b*( ) ( ) ( ) *( ) ( ) ( )
2

(9)b1 1
2

a 1 1 1 b 1
out

Finally, multiplying equation (9) by g*(ξ1), which is given by equation (7), yields

ġ ξ δ ξ ξ δ ξ
κ

ξ ξ

ξ ξ ξ δ ξ ξ
κ

ξ

−
.

+ + − ∣ ∣

= ¨ + δ
.

+ ̇+ ̇











i g i b b g g b

g b i g b i g b g b

[ *( ) ( ) *( )] b ( )
2

*( ) ( )

*( ) ( ) *( ) ( ) *( )
2

*( )
(10)

b

1 a 1 1 b 1
out

1 1
2

1 1 1 b 1 1
out

1

Equation (10) is solved numerically to give the correct ξ1(t) for a given bout(t). 
The initial condition ξ1(t =  0) comes from equation (7). This process inherently 
accounts for the Stark shifts in two ways. First, ξ1(t) will have a phase that 
varies in time. This dynamic frequency control ensures that bout(t) can have 
a fixed frequency, even when the mode a does not. Second, the amplitude of 
ξ1(t) will change in time in a way that accounts for the frequency shift of the 
output mode b: the amplitude will increase to compensate for the fact that 
the conversion process is effectively off-resonant. By scaling the output field 
bout(t) to specify the amount of energy contained therein, we calculate different 
pump waveforms for full and partial release via the same procedure. While the 
equations of motion are linear in a and b, equation (10) is clearly nonlinear 
in ξ1. This is why the pulses for full and partial releases are not simply scaled 
versions of one another, even though the released wavepackets bout(t) are. For 
this reason, the capture pulse will remain unchanged and independent of the 
release pulse.

Wavepacket capture. The calculation of the pump waveform required to capture the 
propagating wavepacket is very similar to the above. The equations of motion for 
the receiver are

ξ ξ δ ξ ξ̇ = − −a t g t b t i t a t( ) ( ( ), ) ( ) ( ( ), ) ( ) (11a)1 2 a 1 2

ξ ξ δ ξ ξ
κ

κ̇ = − − +b t g t a t i t b t b t b t( ) *( ( ), ) ( ) ( ( ), ) ( )
2

( ) ( ) (11b)
r

r r
1 2 b 1 2

out
out in

κ κ= ∕ + ∕b t b t b t( ) ( ) ( ) (11c)r r r r
out out in out

which are identical to equations (6a), (6b) and (6c), with the difference that 
there now exists an input field term b t( )r

in . For clarity, we now restore the 
superscripts s and r for the sender and the receiver, respectively. To calculate the 
capture waveform, we specify that this input field has the shape of the released 
wavepacket: =b t b t( ) ( )r s

in out , and that the field reflected off the receiver is zero: 
=b t( ) 0r

out , which corresponds to perfect absorption. Taken together, these 
constraints imply

ξ ξ δ ξ ξ̇ = − −a t g t b t i t a t( ) ( ( ), ) ( ) ( ( ), ) ( ) (12a)1 2 a 1 2
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ξ ξ δ ξ ξ
κ̇ = − +b t g t a t i t b t b t( ) *( ( ), ) ( ) ( ( ), ) ( )

2
( ) (12b)

r

1 2 b 1 2
out

κ= ∕b t b t( ) ( ) (12c)s r
out out

which look just like equations (6a), (6b) and (6c), but with the sign of κout changed. 
The procedure for obtaining ξ1(t) is the same as for the sender. The only major 
difference is that this equation is solved in reverse, with the final condition 
specifying the occupation of a at the end of the protocol. This corresponds to the 
fraction of incoming energy that is absorbed, ηtrunc

(r)  (Supplementary Information). 
Increasing this fraction corresponds to increasing the pump strength beyond what 
is achievable in our system.

Importantly, the capture waveform is the same for both full and partial release; this 
is due to the linearity of the equations of motion (equations (11a), (11b) and (11c)) 
on b t( )r

in ; in other words, the capture is state-independent. Therefore, the capture 
waveform depends only on the shape of the incoming wavepacket, not its amplitude.

Choice of wavepacket shape. The envelope of the wavepacket ∣ ∣b t( )out  is an 
arbitrary choice, up to constraints on the bandwidth of the conversion process. 
For experimental convenience, we choose ∣ ∣ ∝ − π( )b t( ) 1 cos t

Tout
2 , where T =  6 μ s 

is the total transfer time. We find empirically that this smooth shape reduces the 
maximum pump amplitudes required for a given transfer time as compared to 
other shapes tested. The frequency of the wavepacket is also free to be varied. We 
choose a frequency ~ 1 MHz below the static frequencies of the communication 
modes, to account for Stark shifts (which are always negative) while the pumps  
are applied.

Supplementary methods. For more details including those regarding operations, 
analysis and determination of uncertainties, see the Supplementary Information. 
‘Unconditioned’ and supplementary data are also presented.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon  
reasonable request.
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