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The components of a circuit Quantum Electrodynamics (cQED) system are mesoscopic
and engineered. As a consequence, strong interactions are nearly automatic, making cQED
a viable platform for quantum information processing. However, strong interactions also
persist to the unintended elements that originate from the engineering of any device. These
spurious interactions decohere a cQED system and will ultimately limit the performance of
future superconducting quantum processors. This thesis explores novel architectures for
cQED that eliminate decoherence. We leverage three-dimensional (3D) microwave cavities
to shape resonant fields into low-loss configurations. Previously, such techniques have
resulted in highly coherent superconducting qubits. We extend this approach to realize a
novel quantum memory for qubits based on superconducting cavity resonators. Our cavity
memory architecture exceeds millisecond lifetimes for superpositions that are written by
a superconducting qubit to the memory. This type of device will enable future studies
of fault-tolerant quantum information processing with highly coherent, resource efficient
memory systems, as well as fundamental tests of quantum optical dynamics.
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CHAPTER 1

Introduction

Heike Kamerlingh Onnes began seeking applications for superconductivity soon after
he discovered the effect. Kamerlingh Onnes believed that his coils, which carried

electrical currents without resistance, could act as permanent magnets of arbitrarily large
strength [1]. Such magnets could in turn spawn new discoveries and technologies. When
Kamerlingh Onnes’s coils were looped on themselves, they could sustain currents at near-
Ampere levels long after their generation. For a demonstration at London’s Royal Society,
Kamerlingh Onnes’s coils were shown to be strongly magnetic after being transported by
plane (in liquid helium) from Kamerlingh Onnes’s Leiden laboratory, where the currents
had been generated [2]. Yet, Onnes’s magnets would always decay, eventually. To his
frustration, Kamerlingh Onnes found that his superconducting coils had finite current-
carrying capacity too, breaking-down sharply at some threshold currents. For the remainder
of his career, Kamerlingh Onnes made incremental progress with increasingly pure samples
and new superconductors toward his goal of more powerful superconducting magnets [1].

We celebrated the 100th anniversary of Kamerlingh Onnes’s discovery in 2011. We
recognize now that Kamerlingh Onnes’s threshold currents were critical magnetic field
effects. These would only be explained after World War I, and Kamerlingh Onnes’s
retirement. The vision of useful superconducting magnets was eventually fulfilled though:
they are now found in most hospitals, where they enable life-saving MRI scans.

1



CHAPTER 1. INTRODUCTION 2

Superconductivity is a great example of a quantum mechanical phenomenon that
can be used for improving a classical technology. The effect’s quantum description
can be completely ignored in most applications. Engineers can swap copper wire for
superconducting wire with minor woes. Indeed, Onnes was ignorant of, but confident in, the
quantum mechanical description of supercurrents [2]. For emerging quantum technologies,
such as quantum-enhanced metrology, cryptography, or computational systems, the end-
user must purposefully control the quantum evolution of system.

In many ways, makers of quantum technologies benefit from more than a century
of quantum mechanics. We take for granted that the ‘spookiness’ [3] has largely been
removed from the conversation. However, the path to universal quantum computation
traverses untested physics∗. No experiment has yet shown that the fundamental tenets
quantum error correction are correct [4], and further, that they will persist to the logical
error levels required for large quantum algorithms [5]. Already though, the pursuit of
quantum information science has inspired new ways of thinking about other physical
systems, such as the interplay of quantum error correction and black holes [6].

In many ways, this thesis continues in Kamerlingh Onnes’s tradition. We are still
fabricating superconducting circuits and finding new techniques to extend the persistence
of their currents. There are a few key differences though. For one, Kamerlingh Onnes coils
had an inductance of nearly 10 mH. They thus sustained flux of approximately 10 mWb, or
twelve orders of magnitude larger than the magnetic flux quantum (h/2e ≈2 fWb), which
sets the scale of most experiments on quantum circuits. A second, crucial difference here
is that at these small excitation levels, circuits can oscillate with many phases at once,
quantum mechanically.

This thesis concerns the onset of quantum effects in circuits and how they may be
leveraged to take precision measurements of quantum processes and for performing quantum
computation. In particular, we argue that harmonic oscillators can be remarkable objects
and demonstrate their application as coherent quantum memories for superconducting
circuits.

∗ Though, perhaps it is encouraging that Helium was only discovered on Earth a decade after Kamerlingh
Onnes began his pursuit of absolute zero.
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1.1 Overview of this thesis

We see how circuits can behave quantum mechanically in Chapter 2. We find that purely
linear circuit elements are relatively boring objects, beyond the existence of a noisy ground
state in these systems. However, adding nonlinearity to a resonant circuit gives it color [7].
Superconducting circuits can acquire strong nonlinearities from the Josephson effect [8].
We present a modern, detailed description of the arguably simplest Josephson quantum
circuit, the transmon [9, 10]. By examining the response of this circuit to resonant and
detuned drives, we show how a transmon can be treated as an artificial atom. Finally, we
show how coupled Josephson circuits can lead to an interesting conditional nonlinearity
that is also a hallmark of Cavity Quantum Electrodynamics (CQED) [11].

Motivated by the existence of nonlinear coupling, we show how otherwise-linear circuits
can be remarkable quantum objects in Chapter 3. Linearity provides the means to excite
many degrees of freedom in these systems at once, and each quanta of energy in the circuit
adds new capacity for quantum information [12, 13]. We describe how such systems can
be measured and controlled via a conditional nonlinearity. The consequence of decoherence
mechanisms in these systems is also important. We argue that particular states of linear
circuits could be used to defeat these loss mechanisms with an oscillator-based scheme for
quantum error correction.

Next, we study the physical realization of these circuits in Chapter 4, considering
four types of linear resonators in detail: coplanar transmission line resonators, rectangular
waveguide cavities, cylindrical waveguide cavities, and coaxial λ/4 cavities. We present
each resonant mode structures and sensitivity to various loss mechanisms to understand
its dissipation. As architectures for implementing circuit QED, we weigh the benefits and
trade-offs of each system. We conclude the chapter with the design of a robust cavity
quantum memory, based on one of these resonators.

In Chapter 5, we discuss the experimental techniques for the individual design, fab-
rication, and characterization of these circuit elements. We provide details on how
superconducting cavity resonators are prepared in order to minimize their dissipation. Then,
we describe the techniques for extracting the resonator’s quality from circuit-network
analysis. Finally, we present an overview of how transmons are fabricated and measured.

Putting all of these ideas together, this thesis culminates in the experimental realization
of a transmon strongly coupled to a highly coherent cavity quantum memory, Chapter 6.
We describe the calibration and characterization of the coupled system. The chapter
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includes measurement techniques for extracting of the cavity’s lifetime and coherence. In
particular, we trace two important decoherence effects in the cavity to the transmon. The
results in this chapter pave the way for implementing many of the ideas in Chapter 3.

We conclude this thesis, Chapter 7, with an outlook on coherence in cQED and future
experiments with these systems. In particular, we consider leveraging the full atom-like
capabilities of transmons, as described in Chapter 2, as an opportunity to achieve more
precise control over nearly-linear, highly coherent quantum circuits.



CHAPTER 2

Circuit QED

Circuit Quantum Electrodynamics (cQED) is a toolbox for implementing nontrivial
quantum circuits that can be precisely designed and controlled. We begin this chapter

by putting the quantum mechanics of circuits on solid theoretical footing. We first describe
how the circuit operators of voltage and flux can be quantized. Then, the theoretical
framework of the Josephson effect and its realization as a nonlinear circuit element is
introduced. Finally, we show how circuits coupled with Josephson elements can achieve
QED effects.

This chapter benefits from a long history of excellent theses and pedagogical reviews
on the subject of Josephson quantum circuits. In particular, the beginning of this chapter
closely follows the seminal work by Devoret [7] and especially the recent treatment by
Girvin [14]. We rely on this foundation to advance a modern description of QED as a
natural consequence the Josephson effect beginning in Section 2.3.2. By treating our
cQED system as a ‘Black Box’ [10], we are able to describe driven, coupled, nonlinear,
quantum circuits with a single framework. The consequence (Section 2.4) is an intuitive
set of quantum behaviors and ‘selection rules’ for a circuit that can potentially possess
many degrees of freedom.

In order to explore the rich behavior of a single cQED system (an otherwise-linear
circuit with one Josephson element), this chapter does not review the many other types of

5
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quantum circuits or superconducting qubits in detail. For this purpose, we refer the reader
to the reviews by Clarke and Wilhelm [15] and also the review by Devoret and Schoelkopf
[16].

2.1 Building blocks of cQED

Circuits made of capacitors and inductors have equivalent descriptions in mechanical
systems of masses and springs. We use that analogy throughout this section to justify our
intuition and make connections to other experimental techniques. For instance, voltage
(V ) and flux (Φ) are collective phenomena. Typically in a circuit, a countless number of
charge carriers generate our measured V or Φ. Fortunately, we are able to abstract away
the microscopic forces that act on these solid-state charge carriers. This is analogous to
treating a many-atom chunk of material as a single mass with a single momentum: as long
as the inter-mass dynamics (lattice vibrations) occur at a sufficiently high frequency, we
can approximate these modes to be their ground state. Indeed, for aluminum circuits, the
equivalent modes (plasma oscillations of free charge carriers) occur at frequencies above
ω/2π & 1015 Hz [17], five orders of magnitude higher frequencies than we consider here in
this thesis. The collective motion approximation is therefore well justified.

Superconductivity plays the vital role of suppressing dissipation in our circuits. Perhaps
more importantly, an ideal superconductor also gives us access to a dissipationless nonlinear
circuit element, which we describe in Section 2.2. In both of these cases, the gap of the
superconductor (∆) gives us another ground state to consider, allowing more rigor to the
collective motion approximation [18]. The gap of our circuit’s superconductor also sets a
limit to the temperatures and excitation energies that can be used [18]. The frequencies
associated with the break down of superconductivity are much smaller than the onset of
plasma oscillations considered above. When working with aluminum for instance, drives
above ω/2π & 2∆/h (≈ 80− 100GHz for aluminum) can efficiently excite quasiparticles
above the gap.

Our operating frequencies are bounded below by the requirement that our resonant
circuits be in their quantum mechanical ground states. To achieve a Boltzmann factor
suppression of the first excited state to approximately one percent, we require then that
ω/2π & 5kBT . At the operating temperatures of a commercial dilution refrigerator
(T ∼ 20mK), that requirement translates to ω/2π & 2GHz. These considerations
therefore place our quantum circuits squarely in the microwave domain.
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Figure 2.1: Quantum harmonic oscillators. (a) An electrical harmonic oscillator is
constructed by placing a capacitor (C) in parallel with an inductor (L). The conjugate
variables that describe the resulting oscillation are the charge on the capacitor Q̂ and flux
through the inductor Φ̂. The natural frequency of this oscillator is related to these two circuit
elements by ω = 1/

√
LC. (b) The analogous mechanical circuit to the LC oscillator is a

simple mass-spring system with mass m and inverse-spring constant k−1. In this oscillator,
the displacement of the spring x̂ and the momentum of the mass p̂ form the equivalent
conjugate variables to the system as charge and flux in the electrical circuit. The mechanical
oscillator has the resonant frequency ω =

√
k/m.

2.1.1 The quantized circuit

To quantize a circuit we proceed in the canonical fashion [7, 14] by finding a Hamiltonian
for the system and its conjugate variables, which will become our quantum operators.
The foundational circuit to this thesis is the linear oscillator (Fig. 2.1). This circuit
combines a capacitor (C) in parallel with an inductor (L). On resonance, energy sloshes
between a charging energy (EC = Q2/2C) and an inductive energy (EL = Φ2/2L). For
the mass-spring system, energy likewise oscillates between kinetic energy (p2/2m) and
potential energy (x2/2k−1). Combining the circuit’s kinetic energy (EC) and potential
energy (EL) terms to form a Lagrangian [14] gives

L =
Q2

2C
− Φ2

2L
. (2.1)



2.1. BUILDING BLOCKS OF CQED 8

Because these elements share a node in the circuit, we can use the flux-voltage relation [7]

Φ(t) ≡
∫ t

−∞
V (τ)dτ =

∫
Q(τ)

C
dτ (2.2)

to rewrite the charging energy as

L =
CΦ̇2

2
− Φ2

2L
. (2.3)

We recognize that flux through the inductor (Φ = LQ̇) is the conjugate variable of charge
[14], since

δL
δΦ̇

= LQ̇ = Φ. (2.4)

Therefore, we have a classical Hamiltonian for this circuit that is

H = ΦQ̇− L =
Φ2

2L
+
Q2

2C
. (2.5)

Now, we are now ready convert these variables to quantum mechanical operators (e.g.
Φ⇒ Φ̂) and the Hamiltonian as well (H ⇒ Ĥ). Additionally, we can factor Equation 2.5,
using

x̂2 + ŷ2 = (x̂+ ıŷ)(x̂− ıŷ)− ı [x̂, ŷ] (2.6)

to eventually simplify our circuit’s description, now giving

Ĥ =

(
Φ̂√
2L

+ ı
Q̂√
2C

)(
Φ̂√
2L
− ı Q̂√

2C

)
− ı

2
√
LC

[
Q̂, Φ̂

]
. (2.7)

The conjugate relationship between flux and charge in Equation 2.4 gives us the commu-
tation rules for free as

[
Q̂, Φ̂

]
= −ı~ [7]. The symmetric form of Equation 2.7 suggests

defining a simpler operator â such that

â =
1√
~ω

(
Φ̂√
2L
− ı Q̂√

2C

)
, (2.8)

where ω ≡ 1/
√
LC. This substitution wonderfully allows us to recast the Hamiltonian

[14] as
Ĥ = ~ω

(
â†â+ ½

)
. (2.9)

We recognize this Hamiltonian as a simple harmonic oscillator with a frequency ω, and
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Figure 2.2: Energy levels of the quantum harmonic oscillator. The quadratic potential
yields evenly spaced energy eigenstates (∆E = ~ω). The ground state of the system is
Gaussian distributed in the conjugate variables of motion, e.g. charge Q̂ and flux Φ̂. Note
that the circuit has finite probability |ψ|2 of being detected at a nonzero value of Q̂ or Φ̂ for
the ground state. This phenomenon is known as zero-point fluctuations of the circuit and
leads to a number of important consequences as we see in this chapter.

where the operator â is the annihilation operator and â†â = n̂, the number operator.
Further, we can invert Equation 2.8 and its Hermitian conjugate [14] to rewrite the flux
through the inductor and charge on the capacitor as

Φ̂ =

√
~Z
2

(
â† + â

)
(2.10a)

Q̂ = −ı
√

~
2Z

(
â† − â

)
, (2.10b)

where Z =
√
L/C is the impedance of the circuit.

It is worth pointing out that the relationship between circuits and mechanical degrees
of freedom is more than an analogy. The first experiments to explore the ideas of Quantum
Non-Demolition (QND) measurements were attempts to observe gravitational waves in
the excitation of massive mechanical oscillators, transduced by LC oscillators [19] as

Ĥ =
p̂2

2m
+

1

2
mx̂2 +

Φ̂2

2L
+
Q̂2

2C
+ ~gx̂Q̂. (2.11)
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where the term interaction term Ĥint = ~gx̂Q̂ is created by the mass being suspended
between two plates of a capacitor; displacing the mass changes the capacitor’s charge
distribution. Today, electromechanical systems are exploiting this coupling term in to
explore the quantum dynamics of massive objects [20].

We now turn to solving for the ground state of the LC oscillator, which will prepare us
for studying driven circuits in Section 2.1.3 and nonlinear LC systems in Section 2.3.

2.1.2 Gaussian states in an LC oscillator

As for all harmonic oscillators, our circuit acquires non-zero variance of charge and flux,
even in its ground state, i.e.

〈0|Φ̂2|0〉 ≡ Φ2
ZPF 6= 0. (2.12)

These zero-point fluctuations can be related to the flux quantum (Φ0 ≡ h/2e) and the
resistance quantum (RQ ≡ h/2e2) [7] as

ΦZPF = Φ0

√
Z

2πRQ
(2.13a)

QZPF = e

√
RQ

2πZ
. (2.13b)

The circuit’s impedance therefore determines the relative strength of these fluctuations.
We recognize in Equation 2.13 that a low impedance circuit has less flux noise but more
charge noise.

The shape of ground state wave function (|ψ0〉) is interesting as well [21]. If we make
use of the differential operator in quantum mechanics, e.g. Q̂ = −ı~ (∂/∂Φ), then the
statement â|ψ0〉 = 0 can be written as(

Φ√
2L

+
~√
2C

∂

∂Φ

)
|ψ0(Φ, Q)〉 = 0. (2.14)

A similar expression holds for Q, and both of these equations have a Gaussian solution.
When normalized, this gives for the ground state

|ψ0(Φ, Q)〉 =
1√

2πΦZPFQZPF
× e−(Φ2/4Φ2

ZPF+Q2/4Q2
ZPF) (2.15)

Because the Gaussian distribution is normalized by the zero-point fluctuations, it is often



2.1. BUILDING BLOCKS OF CQED 11

convenient to describe the circuit in a dimensionless quadrature representation as

X̂ ≡ 1√
~Z
× Φ̂ =

1√
2

(
â+ â†

)
(2.16a)

Ŷ ≡
√
Z

~
× Q̂ = −ı 1√

2

(
â− â†

)
, (2.16b)

such that which simplifies the wave function of the ground state to a highly symmetric
two-dimensional Gaussian form

|ψ0(X, Y )〉 =
1√
2π
× e−(X2+Y 2)/4. (2.17)

The ground state is only one eigenvector of â. Actually, there are infinitely many such
solutions of the form

â |ψ〉 = α |ψ〉 (2.18)

where α is a complex number. All of these wavefunctions are Gaussian distributed in (X,Y)
with the same standard deviation as the ground state, but have some displaced centroid
(X0, Y0) = (<(α),=(α)) as

|ψ(X, Y )〉 =
1√
2π
× e−((X−X0)2+(Y−Y0)2)/4. (2.19)

These states are given the name coherent states [22], and such states play a number of
important roles in this thesis.

We can use the eigenvector relation (Eq. 2.18) to learn about the photon statistics of
a coherent state. In particular, knowing the complex eigenvalue α gives us the ability to
exactly describe the distribution of the state across the entire Hilbert space of the mode.
To see how, we begin by stating the eigenvalue relationship more precisely in Fock-space
[21],

â |α〉 = â
∑
n

Cn |n〉 = α |α〉 . (2.20)

Using the definition of the annihilation operator, â |n〉 =
√
n |n− 1〉, we have that

Cn =
α√
n
Cn−1 =

α2√
n(n− 1)

Cn−2 = ... =
αn√
n!
C0. (2.21)
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Figure 2.3: Photon number statistics of coherent states. The probability of the
oscillator to contain exactly n photons (Pn) for coherent states of amplitude β is a discrete
Poisson distribution, truncated here for visibility at N = 10. The distribution broadens at
larger displacements since the variance is equal to the mean number of photons |β|2.

Then, we can express the coherent state in the Fock basis as

|α〉 = exp(−|α|2/2)
∑
n

αn√
n!
|n〉, (2.22)

where the normalization factor is found by the constraint that
∑
|Cn|2 = 1Equation 2.22

can be used to calculate any expectation value of the field quadratures. For instance,
the probability of detecting a coherent state in a specific Fock state |m〉 (Pm) is Poisson
distributed as

|Cm|2 = exp(−|α|2)
|α|2m

m!
. (2.23)

The mean photon number n̄ can also be calculated from the distribution of Pm to be

n̄ ≡ 〈α|â†â|α〉 = |α|2. (2.24)

Equation 2.20 can further be used to show that two coherent states also have a variance
of their number distribution ∆n2 = n̄; that such states minimize quadrature uncertainties
(∆X2∆Y 2 = 1/4); and that they form an overcomplete set of states on the Hilbert space
of the mode.

In the next subsection, we describe how these states are the natural consequence of
classical drives.
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2.1.3 Arbitrary classical drives on linear circuits

In this section, we consider the effect of an arbitrary, but linear, classical drive on an LC
oscillator. Such a drive can only take a coherent state in the oscillator, e.g. its ground
state, to another coherent state [23]. That transformation be can described by a unitary
operator, called the displacement operator [22],

D̂(α)|0〉 = |α〉, (2.25)

where α is the amplitude of the displacement and |α|2 is the resulting average photon
occupancy.

A derivation for the form of the displacement operator that is particularly useful for
our purposes is given by Girvin [14]. Consider that, as discussed in Section 2.1.2, any
coherent state is equivalent to the vacuum state up to a transformation of coordinate
systems. Therefore, a finite amplitude coherent state is at the origin of some X ′, Y ′ plane.
We have confidence then that we can obtain a precise description of D̂(α) by requiring
that this operator offsets the coordinate system of a state by −α but otherwise leaves it
unaffected. Following Girvin, for this type of transformation, we can use Taylor’s theorem
that for a function of one variable

f(x) = f(a) + f ′(a) (x− a) +
f ′′(a)

2
(x− a)2 + ... (2.26)

Furthermore, we can express this infinite series equivalently as an exponentiated differential
operator, a form attributed to Lorentz, as

f(x) = e(x−a) d
dxf(x)

∣∣∣∣
x=a

. (2.27)

For a given initial state wave function, |β〉, transforming the coordinates by X̂ ⇒ X̂ − α
can be written explicitly [14] as

D̂(α)|β〉 = exp(−α d

dX
)|ψ(X)〉

∣∣∣∣
X=β

. (2.28)

We use that Y = (ı/2)(d/dX) to write the displacement operator as

D̂(α)|β〉 = exp(−2ıαŶ )|β〉 = exp(−α(â− â†))|β〉. (2.29)
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We can show a number of interesting properties about D̂, but perhaps the most important is
to check that D̂ on the vacuum state produces the correct coherent state. We rewrite the dis-
placement operator in a more convenient form D̂(α) = exp(−|α|2) exp(+αâ†) exp(−αâ)

[22]. Since â|0〉 = 0, we only have to keep the â† terms:

D̂(α)|0〉 = exp(−|α|2) exp(+αâ†)|0〉, (2.30)

and we use a Taylor series in the exponentiated operator [21] to yield

D̂(α)|0〉 = exp(−|α|2)
∑
n

(
+αâ†

)n
n!

|0〉

= exp(−|α|2)
∑
n

αn√
n!
|n〉

(2.31)

which is indeed the same form for |α〉 as Equation 2.22.
A formal proof that Gaussian states of circuits are only trivially affected by an arbitrary

drive is adapted from [23] in Appendix A. However, an intuitive toy model is as follows.
Consider an arbitrary current source coupled to the flux of our inductor as shown in
Figure 2.4. The evolution of the circuit will be governed by

Ĥ(t) = ~ωâ†â− I(t)Φ̂ = ~ε(t)Φ̂ (2.32)

where we have introduced ε in order to work with more convenient units. We proceed by
taking a rotating frame to remove the harmonic oscillator term [11], leaving

Ĥ1(t) = ~ε(t)Φ̃, (2.33)

where now Φ̃ has rotating ladder operators ã = âe−ıωt.
Any physical drive, i.e. presenting finite dissipation to the circuit, will result in a drive

that is a differentiable function. Therefore, we can find an infinitesimally small time δt
over which the Hamiltonian is approximately time independent. The circuit, initialized in
some coherent state |β0〉, will therefore evolve via the unitary propagator

|βδt〉 = Ûdrive|β0〉 ≈ e−ıĤδt/~|β0〉 = e−ıε0δΦ̃|β0〉 (2.34)

Under these conditions, the propagator is cast as a displacement operator with δα = ε0δt.
Then, the tilde on Φ̂ simply determines the angle of the displacement. Taking many
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Figure 2.4: Effect of an arbitrary drive on a damped oscillator. (a) An LC oscillator
is biased with a time-dependent current drive. Here, damping is provided by the finite input
impedance of the current source. The driving current couples to the conjugate flux variable
to add a potential to the system as Ĥdrive(t) = −I(t)Φ̂. The resulting state of the resonator
can be shown to be a coherent state for all times. (b) The probability of detecting the
oscillator at a given displacement (X̂,Ŷ ) is shown (red) for a given trajectory of I(t). The
linear bias pushes the oscillator from its ground state (grey) to some coherent state |β〉.
However, at all times this trajectory can be equally described by displacing the origin of the
resonator along the dashed line. The oscillator remains in its ground state while the axes
X̂, Ŷ are translated. Nonlinearity is needed in the system to create more interesting states.

snapshots of this process, we can build up the trajectory of an arbitrary drive. Furthermore,
we will always be stuck in a minimum uncertainty Gaussian state that resembles the
quantum vacuum.

In the next section, we meet our first nonlinear circuit element, the Josephson junction.
Such an element allows for even simple drives to generate states of our circuit that exhibit
striking quantum mechanical properties, markedly different than the simple noise addition
of the uncertainty principle.

2.2 Josephson junctions

A Josephson tunnel junction is created by sandwiching a thin insulating layer between two
superconductors [8]. Supercurrents tunneling between the two superconductors obey the
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Josephson equations [18, 24]. In particular, the current and voltage across the barrier is
related to the phase difference between the two superconductors (δ) as

I = I0 sinϕ (2.35a)
dϕ

dt
=

2πV

Φ0

(2.35b)

where the constant of proportionality I0 is the critical current of the junction. We will
describe later how such tunnel junctions are made in the practice (Section 5.2.1). For now,
we focus on the new types of circuits we can make with this element.

2.2.1 Nonlinear inductance

Clearly, the Josephson relations are nonlinear. To see how such a junction can act like an
inductor, consider the definition of inductance, L ≡ V/İ. Taking the time-derivative of
the current-phase relation (Eq. 2.35a) gives

dI

dt
= I0 cosφ× dϕ

dt
=

2πI0V

Φ0

cosϕ (2.36)

where we have used the second Josephson relation (Eq. 2.35b) to compute the time-
derivative of the phase [7]. These simple calculations allow us to define the Josephson
inductance LJ as

LJ =
Φ0

2πI0 cosϕ
. (2.37)

Often, the cosϕ term is ignored to quote a ‘Josephson inductance’ value for a given tunnel
junction (L0) in nH. For the typical devices we will discuss in this chapter, L0 ≈ 1−10 nH.

Many quantum circuits make use of the full sinusoidal capabilities provided by the
Josephson effect [25, e.g. and references therein]. However, we restrict ourselves in this
thesis to the small phase (ϕ � 1) limit. In that limit, we have an inductance that is
approximately

LJ ≈
Φ0

2πI0

(
1 +

ϕ2

2
+O(φ4)

)
. (2.38)

The effective inductance of a Josephson junction increases at higher phase bias. This is
shown schematically in Figure 2.5. We could imagine constructing an LC oscillator using
such a circuit element as the inductor. Then, the resonant frequency of the circuit should
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Figure 2.5: Josephson effect as a circuit element. (a) A Josephson junction is formed
by separating two superconducting electrodes by a small layer of insulating material. The
resulting junction serves as a nonlinear circuit element. (b) The current-flux relationship of
the Josephson effect is sinusoidal. We can ascribe an inductance to our new circuit element
as LJ ≡ Φ/I, which is linear to first order (purple). At larger values of Φ the linear term
over-estimates the inductance of the junction. (c) The basic sinusoidal potential leads to
low-lying energy states that have an anharmonic spectrum. The successive approximations
to this potential are a quadratic V2(Φ̂) and quartic V4(Φ̂) Hamiltonian terms described in
this chapter.

depend on amount of energy circulating in it. Remarkably, that intuition describes the
quantum properties of such a circuit, as we will see next.
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2.2.2 Quantized Josephson effects

It is often more convenient to work in the flux basis when evaluating the behavior of the
Josephson element [7]. We can equally describe the phase across the junction as a flux

Φ = Φ0ϕ. (2.39)

We can then quantize phase on an equal footing to charge and flux as before, i.e. ϕ̂ = Φ̂/Φ0

[7]. Furthermore, the energy added to our system by a current and voltage at a junction is
given by Φ0I, or

ĤJ = −EJ cos
(

Φ̂/Φ0

)
, (2.40)

where
EJ =

Φ2
0

2πL0

(2.41)

is the Josephson energy. In the small flux limit limit (|〈Φ̂〉| � Φ0), we can expand the
cosine Hamiltonian of the Josephson junction in higher order operator terms with rapidly
decreasing magnitude [10], as

ĤJ ≈ EJ

1− 1

2

(
Φ̂

Φ0

)2

+
1

4!

(
Φ̂

Φ0

)4

+ ...

 (2.42)

The small flux limit is satisfied for

n̄
ΦZPF

Φ0

� 1. (2.43)

Recalling that ΦZPF ∝
√
Z (Eq. 2.13), we see that this limit can be satisfied for small

impedances in addition to small n̄.
In the next section, we will see that the fourth order term in this expansion is sufficient

to give an LC oscillator full Hilbert state addressability [10], alleviating the problems of
simple harmonic circuits.

2.3 Quantum Josephson circuits

This thesis relies on the nonlinearity of Josephson elements to address individual transitions
of quantized circuits as if they were artificial atoms [26, e.g. and references therein] . The
many other uses of Josephson junction circuits for quantum mechanical applications, such
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as quantum limited amplifiers [27, e.g.], lossless frequency converters [28], or reconfigurable
circulators [29], is beyond the scope of this chapter.

In addition, we will describe a single type of Josephson atom, the transmon, in detail.
However, there are many other realizations of artificial atoms using Josephson circuits. We
refer the reader to the reviews in [15, 16, and references therein] for information about
these devices.

2.3.1 Black Box Quantization of a Josephson circuit

One of the simplest Josephson circuits is shown in Figure 2.6. A clever scheme to
approximately diagonalize this circuit by leveraging the small-phase limit was introduced by
Nigg [10] and is called Black Box Quantization (BBQ). For the circuit in Figure 2.6, the
small-phase limit is equivalent to the large-capacitance limit since Z ∝ C−1/2. The idea in
[10] is to treat the linear part of the junction and accompanying circuit (Ĥ0) separately
from the nonlinear part of the junction (Ĥnl). We proceed by finding the normal modes
of the circuit (ω0‘s) and then introducing the nonlinearity later as a perturbation. More
precisely,

Ĥ =
Φ̂2

2L
+
Q̂2

2C
+ Ĥnl = ~ω0â

†â+ Ĥnl, (2.44)

where the nonlinear part of the Hamiltonian (Ĥnl) is given by

Ĥnl = EJ [1− cos(ϕ̂)]− EJ
2
ϕ2. (2.45)

It is important to note that up to charging effects (see Section 2.3.2), Equation 2.44 is
still exact. From here, treating the nonlinearity as a perturbation will be a powerful tool
to solving the dynamics of our circuit. In particular, Equation 2.43 gives a prescription
for how many terms in this expansion we need to keep. The majority of thesis, and also
the majority of cQED, concerns the lowest order terms in the nonlinear Hamiltonian [9],
terms proportional to ϕ4. However, at the conclusion of this chapter, we show how the
neglected terms can be enhanced.

The circuit in Figure 2.6 is an ideal transmon artificial atom [30]. In the next section,
we show show how the nonlinearity of the Josephson junction allows us to address its
individual levels and later, how to operate the transmon as a qubit [9, 31].
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LC

(a)

JJ LtotC nl

(b)

Figure 2.6: Quantizing the Josephson LC oscillator. (a) A parallel LC oscillator is
shunted by the nonlinear admittance of a Josephson junction (box element). (b) The effect
of the Josephson junction is separated into two components, the linear term is absorbed
into the the total inductance of the LC oscillator, and a new element is introduced (spider
element) that contains only the nonlinear terms of the junction’s response to flux (Ĥnl) [10].
The solution to the Hamiltonian is determined, up to a scaling term EJ , by the magnitude of
zero point fluctuations in the flux variable, or equivalently, the impedance of the LC resonator,
provided that the charging energy is negligible.

2.3.2 Transmon artificial atoms

The circuit in Fig. 2.6 is susceptible to low-frequency charge offsets since the junction
presents a high impedance tunnel barrier to unpaired electrons. This offset charge shifts
the total charge operator by Q̂⇒ Q̂+Qofs in Equation 2.44. The perturbation (ĤQ) on
the Hamiltonian is two new terms

ĤQ =
(Q̂+Qofs)

2

2C
− Q̂2

2C
=

(
Qofs

C

)
Q̂+

(Qofs)
2

2C
. (2.46)

The first term on the right hand side of the final expression accounts for the static voltage
induced by the offset charge. The second is a renormalization of the energy that could be
discarded, unless the offset charge is fluctuating, which is always observed experimentally
[32, e.g.]. Charge fluctuations cause dephasing for our circuit. These effects can be solved
for analytically, as discussed in detail [30], but, by working in the large capacitance limit,
we become exponentially insensitive to these charge offsets. This limit, where

EJ � Q2
ofs/2C ∼ e2/2C ≡ EC , (2.47)
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is called the transmon limit. For EJ . EC , this is known as a Cooper Pair Box (CPB)
charge qubit [33] and is sensitive to charge noise.

2.3.3 Driving a transmon atom

What is the fate of our nonlinear circuit under the drive we considered for the LC oscillator
in Section 2.1.3? The total Hamiltonian for the driven transmon atom is similar to original
expression (Eq.2.32), except with the addition of an Ĥnl term (Eq. 2.45) of the junction.
Now, the driven system evolves under

Ĥ = ~ωâ†â− ~ε(t)(â+ â†) + EJ [1− cos(ϕ̂)]− EJ
2
ϕ̂2, (2.48)

where the driving term is equivalent to Equation 2.32. Because of the cosine term, this
system evolves in a nontrivial manner.

Let us proceed by assuming a sinusoidal drive at ωd. To calculate the effect of this
drive, let us perform the following transformations (for details, see for instance [34]). First,
we go into a rotating frame of the transmon ω. This is accomplished by the unitary
operator [11],

Û = exp(+ıωtâ†â), (2.49)

which transforms our Hamiltonian as

H̃ = ÛĤÛ † + Û

[
−ı d
dt
, Û

]
. (2.50)

The resulting Hamiltonian is
H̃ = Ĥ1 + ÛĤnlÛ

† (2.51)

where Ĥ1 is our previous driven LC oscillator Hamiltonian (Eq. 2.33). Therefore, we have
only to calculate the evolution of the nonlinear part of the Hamiltonian,

H̃nl = eıωtâ
†âĤnle

−ıωtâ†â. (2.52)

We can rewrite the cosine term as

cos ϕ̂ =
1

2

(
eıϕ̂ + e−ıϕ̂

)
. (2.53)

Note that each of these exponential functions resembles a displacement operator, such
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that
eıϕ̂ = eıϕ0(â+â†), (2.54)

which has the same form as D̂(ıϕ0) for a real number ϕ0. Working with the exponential
form simplifies calculations significantly since a displacement about any angle θ is still a
displacement. More explicitly,

eiθâ
†âD̂(α)e−iθâ

†â = D̂(αe−iθ). (2.55)

For θ = ωt, then, we see that our rotating frame has the effect of bringing the time
dependence of the rotating frame into the cosine. Defining a rotating ϕ operator as

ϕ̃ = ϕ0

(
ã+ ã†

)
, (2.56)

we then have
H̃J = EJ cos(ϕ̃). (2.57)

Combining these terms, we are left with the rotating frame Hamiltonian

H̃(t) = ~ε(t)
(
ã+ ã†

)
+ EJ [1− cos (ϕ̃)]− EJ

2
ϕ̃2, (2.58)

We can use another unitary transformation to enter into the displaced frame of the
drive [34]. This unitary has the form

ÛD = e−ξ(t)â
†+ξ∗(t)â (2.59)

where ξ(t) is a displacement amplitude. If the displaced mode has an energy decay rate κ,
there is a clever choice of ξ such that the frame becomes stationary [35]. That condition
is satisfied for the differential equation

dξ

dt
= −

(κ
2

+ ıω0

)
ξ − ıε(t) (2.60)

If our drive is a simple, continuous wave (CW) drive at frequency ωd, the solution to this
differential equation is

ξ = − ıε0e
−ıωdt

κ0 + ı|ωd − ω0|
. (2.61)

The squared-amplitude |ξ|2 is effectively the number of drive photons. However, the
amplitude ξ itself is quickly rotating.
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By choosing our displaced frame as Equation 2.60 we are left with a displaced, rotating
Hamiltonian that has a readily simplified form. Without any further approximations, the
driven transmon atom Hamiltonian is

H̃ = EJ
[
1− cos

(
ϕ0(ã+ ã† + ξ + ξ∗)

)]
− EJϕ

2
0

2
(ã+ ã† + ξ + ξ∗)2 (2.62)

To see the utility of the above expression, we again work in the small ϕ0 limit. Now, we
can expand Equation 2.62 in powers of ϕ and examine the allowed transitions of the circuit,
as well as other ‘real atom’-like effects. We expand the cosine using the Taylor series

cosϑ =
∑
k=0

(−1)k

(2k)!
ϑ2k. (2.63)

When expanding the Hamiltonain (Eq. 2.62), the zeroth and second order terms will drop
from our expression. We are left with

H̃ = −EJ
∞∑
k=2

(−1)kϕ2k
0

(2k)!

(
ã+ ã† + ξ + ξ∗

)2k
. (2.64)

To make further progress, we need make a few approximations. The first is that we will
in practice only want to keep a finite number of terms. In fact, the lowest order (fourth
order) already provides a rich set of physics to explore [34].

H̃ ≈ −EJϕ
4
0

4!

(
ã+ ã† + ξ + ξ∗

)4
(2.65)

The binomial theorem has useful generalizations for non-commuting operators, in particular
Weyl operators

[
Â, B̂

]
= 1, such as â and â†. We can normal-order a polynomial of two

Weyl operators [36] using

(
Â+ B̂

)n
=

n∑
m=0

Min[n,n−m]∑
k

CnmkB̂
m−kÂn−m−k (2.66)

where Cnmk is a combinatorial coefficient, given by

Cnmk =
n!

2kk!(m− k)!(n−m− k)!
. (2.67)

Because ξ(t) is a complex number as opposed to an operator (representing the location
of the displaced frame), ξ will commute with the other Hamiltonian terms. However,
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by ignoring the noise terms associated with the drive, we are working in the limit of an
infinitely stiff pump.

We make our second approximation before trying to solve the resulting dynamics. In
the expansion, we will only keep energy conserving terms like ã†ã or ξ∗ξ, since, for these
terms, the quickly rotating parts (e.g. eıωt) cancel, making these terms stationary. In the
absence of drives (ξ = 0), our transmon Hamiltonian reduces to

H̃ ≈ −EJϕ
4
0

4
â†â†ââ ≡ −K

2
â†â†ââ. (2.68)

This is a Kerr-type nonlinearity [37, 38], where the energy spectrum of the system depends
quadratically on the transition level. If we look at the difference between neighboring Fock
states, the splitting increases linearly as

En+1 − En = −K
2

(n(n+ 1)− n(n− 1)) = −nK (2.69)

Right away, we can see that if we have narrow enough frequency resolution, we may be
able to resolve such an intrinsic energy splitting in spectroscopy. In later subsections, we
will show that this intuition is correct but incomplete: spectroscopy on a Kerr-medium will
turn out to be much richer than Equation 2.69 would suggest.

Another way to think of the Kerr nonlinearity is to consider a mean field frame about
〈n̂〉 ≈ n̄ [11]. We can reorder the nonlinearity as

H̃ =
K

2

(
(â†â)2 − â†â

)
(2.70)

Going into another rotating frame, at ωn̄, will remove the second term on the right hand
side. Another way to say that is that an oscillator with a Kerr-type nonlinearity has
mean-field frequency that is proportional to the energy stored in the oscillator.

In the next subsections, we consider the effects of resonant and detuned drives ωd 6= ω0

on the transmon. We will see how our transmon atom can be excited or acquire an AC
stark shift from drives.

2.3.4 Exciting a transmon atom

While the displaced frame treated us well when we were considering steady-states of the
transmon, we abandon that transformation for the moment to consider a weak (|ε0| � K),
resonant drive (ωd = ω0). We are particularly interested in how this drive affects the atom
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to lowest level approximations. In the rotating frame of the ground state and drive, we
have

H̃ ≈ −~K
2

(
â†â†ââ

)
+ ~ε0

(
â† + â

)
. (2.71)

In the case of the linear LC oscillator, the drive term would displace the system until
reaching equilibrium with the oscillator’s decay rate. However, now higher states of the
transmon are detuned from the drive, i.e.

|ε0| � |∆1→2| = K, (2.72)

where ∆1→2 is the detuning between the drive frequency and the 1→ 2 transition. Because
of this detuning, the drive only dresses the higher states of the transmon virtually, giving
them an AC Stark shift (as we will see in section 2.3.4). Our weak drive cannot actually
excite these higher states at all.

The result is that transmon will undergo Rabi oscillations [39], where the population
cycles between the ground and first excited state of the transmon. If we ignore the dressing
effects of the higher-states, we can truncate our consideration to the lowest two levels of
the transmon, treating it a qubit. Indeed, working with this reduced Hilbert space allows
us to recover all of the simple Pauli matrix descriptions of qubits [39]. We can define Pauli
operators

σ̂x ∼= X̂ (2.73a)

σ̂y ∼= Ŷ (2.73b)

σ̂z ∼= 2â†â, (2.73c)

where the congruency (∼=) is used to call attention to the crucial exception that the
creation and annihilation operators are taken to only act on the lowest two states of the
Hilbert space, i.e. â†|1〉 ≡ 0.

We can recast the truncated, resonantly driven Hamiltonian in a familiar form [39], as

Ĥ =
~ε0
2
σ̂x. (2.74)

This effect is well described as a continuous rotation about the two-level system’s Bloch
sphere about the x-axis. The drive takes |g〉 to |e〉 in a time

TRabi =
2π

ε0
(2.75)
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Changing the phase of |ε|eıθ changes the Bloch-sphere angle that the procession will follow,
e.g. along σ̂y for θ = π/2. Therefore, any point on the Bloch-sphere can be reached with
this simple treatment. We will examine more of the consequences of this procession later
(Section 3.3.2). First though, there are a few more striking physical consequences that
occur beyond the two-level atom description that are worth exploring.

Climbing the ladder

If we initialize the transmon in an excited Fock state, say the N th Fock state, a choice of
drive frequency can force Rabi oscillations between the |N〉 and |N ± 1〉 states, allowing
us to ‘climb the ladder’ of the transmon [40]. To see this, let us go into the rotating frame
of given by

ωN = ω0 −
K

2
N(N − 1). (2.76)

If we consider just the nearest laying states we can write the undriven Hamiltonian as

H̃0 = K
[
(N − 1)Π̂N−1 −NΠ̂N+1

]
, (2.77)

where we have introduced the projection operator ΠN for simplicity, defined as

Π̂N = |N〉〈N |. (2.78)

Now, if we drive the transmon that detuned from our reference frame by ∆d = ωd − ωN ,
our driven Hamiltonian now has quickly oscillating terms. But, if we detune the drive by
∆d = (N − 1)K or ∆d = −NK then we recover the two-level system description with the
selected Fock state acting as |g〉 or |e〉. For example, taking ∆d = −NK yields a similar
expression to Equation 2.74 except now the Pauli matrix converts population between |N〉
and |N + 1〉:

σ̃x = |N〉〈N + 1|+ |N + 1〉〈N | (2.79)

It is clear by induction (0⇒ 1 and N ⇒ N + 1) that all transmon levels can be reached
in this fashion. In addition, because we can halt the Rabi oscillation at any point on a
Bloch sphere, population can be spread across many levels of the transmon’s Hilbert space,
which can have arbitrary phase. The resulting state will be of the form

|ψ〉 =
∑
n

Cn|n〉. (2.80)
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However, for large states (spanning hundreds of excitations) with high symmetry, this
process is cumbersome because each Fock state must be prepared individually. Later, we
will see how another nonlinearity can provide some amount of parallelization to our toolbox
(Section 3.3.2).

AC Stark effect in a transmon atom

The AC Stark effect describes the response of an atom to a rapidly rotating external field
[41]. In this process, the atom acquires a dressing due to the detuned drive (∆ = ωd−ω0),
causing the spectrum of the atom to change. Dressed-state splitting has deep connections
to nonlinearity. Recall that the ‘spectrum’ of the harmonic LC oscillator was unaffected by
any drive. Observing that a circuit exhibits the AC Stark effect, as in Schuster et al. [42],
is evidence that the system interacts with light in a highly nontrivial manner.

Consider Equation 2.65 with a very detuned drive (∆� K), such that the only terms
valid in the Rotating Wave Approximation (RWA) [39] are â†â and ξ∗ξ. We use the
expansion coefficients (Eq. 2.67) to write down that

H̃stark(t) ≈ −
K

2

(
â†â†ââ+ â†â|ξ(t)|2

)
. (2.81)

Thus, the transmon has acquired a new dressed frequency that is proportional to the power
contained in the AC drive. The new frequency is detuned by

∆stark(t) = −K
2
|ξ(t)|2 (2.82)

For a CW drive, we can use Equation 2.61 to write

∆stark = −K̄
2
×
(

ε20
κ2

0 + (ωd − ω0)2

)
. (2.83)

Essentially, even virtual photons (i.e. |ξ(t)|2 � 0 but |â†â| ≈ 0) can load the Kerr
nonlinearity.

AC Stark effect in a two-level atom

In the weak driving (ε � K), small detuning (∆ � K) limit, wherein the transmon is
well-approximated as a two level system, we can solve for the AC Stark effect as commonly
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done for qubits [39]. The Hamiltonian is thus

Ĥ =
~∆

2
σz −

~ε0
2
σx (2.84)

The new, dressed eigenstates have energies

E± = −~ε0
2
± ~

2

√
ε20 + ∆2. (2.85)

For ∆� ε0 we have shifted the ground state energy by

δE− ≈
~ε20
4∆2

+O
(ε0

∆

)4

(2.86)

2.3.5 Selection rules and multi-photon transitions

It turns out that we can take short cuts on our way up the ladder too. At higher order
approximations, multi-photon transitions become allowed at certain drive frequencies
[9]. For fourth-order approximations to our transmon atom, we will show explicitly that
two-photon transitions between second-nearest neighbors is allowed. We then give a recipe
for extending these ideas to arbitrary transitions, allowing us to define selection rules for
our artifical atom.

For a second-order transition, we need terms in the Hamiltonian which connect second-
nearest neighbors like

Ĥtwo-photon = ~ε0
(
(â†)2 + â2

)
. (2.87)

To see how these can come about, we start from the rotating, displaced picture at fourth-
order (Eq. 2.65). There will always be terms in the binomial expansion of this Hamiltonain
which have the form

Ĥ2 ∝
(
ξ2(â†)2 + (ξ∗)2â2

)
. (2.88)

These terms are usually thrown out by the RWA. However, consider a drive at a frequency
halfway between a given Fock state and its second-nearest neighbor, ωd = ½(ωN+2 +ωN ) =

½(ωN −N2K). Then, two-photon terms like the above rotate at

ξ2(t)(ã†)2 = ξ2(â2)e2ı(ωd−ωN )t = ξ2(â2)e−ıN
2Kt (2.89)

But, we see that since the |N + 2〉 state has an energy difference with the |N〉 state
of δE = −N2K, that time dependence is actually the correct rotating frame for the
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N → N + 2 transition! Importantly, the selection rule is proportional to |ξ|2, meaning
that the Rabi rate now given by the square of the drive strength, now a function of ε20.

In practice, this is a useful way to characterize the anharmonicity of a transmon circuit
in spectroscopy [9]. At sufficiently large drive strengths (enough that ε20 can saturate the
transition), the detuning between a two-photon transition and a single-photon transition
gives us value of K directly (∆f = K/2). Furthermore, this type of transition is easily
distinguished from the single-photon transition because the |ε0|2 dependence reduces
line-broadening. Thus, the higher-order terms tend to be more narrow in spectroscopy, as
shown in Section 5.2.6.

Sixth order expansion will give terms that are of the form ξ3(â3) and that a drive at
the appropriately chosen frequency can drive this term proportional to |ε0|3, and these
transitions can be observed as well [43]. Indeed, all transitions of the transmon atom would
be accessible by continuing this pattern. However, an Oth order transition is exponentially
hard to drive. Therefore, at some high order, we will break the approximation that ε0 � K.
Hence, these processes will no longer be selective. We will essentially start driving many
transitions at once, instead of driving single Rabi-like oscillations in Fock-space.

2.4 Coupling quantum circuits

Adding more degrees of freedom to our circuit, in the form of additional components,
can enable new functionality. For instance, circuits with multiple superconducting qubits
can be used to execute quantum algorithms [44] or quantum error correction [45–48].
Moreover, circuits with dissimilar types of components [49] can be useful for applications
such as quantum memory [50–52] or quantum communication [53].

One particularly important class of coupled circuits is a superconducting qubit coupled
to a linear resonator. This is a scheme known as circuit QED (cQED) [54, 55] for its
close analogues with Cavity QED (CQED) [11]. A cQED-type architecture protects
superconducting qubits from spontaneous emission [56], allows for multi-qubit gates
[57, 58], and enables high fidelity, QND measurements of qubit states [59, 60]. In this
section, we describe the theory of coupled transmon-resonator circuits, closely following
the approach used in Section 2.3.1 to describe a single transmon.
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Figure 2.7: Classical dressing of a linear circuit. (a) Two parallel LC resonators are
joined by a capacitor to form a simple coupled-circuit. Because of their interaction, neither
mode preserves its independence. This effect can revealed by sweeping any circuit element,
e.g. mode two’s inductor L2, and observing the new eigenmodes of the system. (b) The
linear circuit can be exactly diagonalized. The spectrum is shown as a function of L2, with
shading representing the behavior of the two modes in the absence of coupling. The resulting
eigenmodes are ω± = (ω1 + ω2 ±

√
g2 + ∆2)/2, where ∆ is the detuning and g is the

coupling strength. Near resonance (∆ = 0), a level repulsion of ω+ − ω− = 2g is caused
by the interaction. The techniques in this chapter that diagonalize linear parts of more
complicated systems capture effects such as this mode-splitting. The splitting between these
two LC modes is a classical effect and can be observed with standard circuit elements on
printed circuit boards. (c) Spectroscopy data of the realization of avoided crossings in cQED.
A flux-tunable transmon qubit is tuned through resonance of several other modes. The size
of the avoided crossings is a classical parameter, although the evolution of the system at
any of these bias points is highly quantum. (Figure used with permission from [45]. See
Copyright Permissions.)
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2.4.1 Black Box Quantization for many modes

The techniques for treating the Josephson nonlinearity as a perturbation can be extended
to systems with many coupled elements [10]. Before (Section 2.3.1), we proceeded by
diagonalizing the linear Hamiltonian, then introducing a term Ĥnl to account for a nonlinear
inductance of the junction. For coupled circuits, we must solve a system of many hybridized
LC modes. However, the result will always be expressible as some number of resonant
modes [61], although the frequencies and characteristic impedances for an LC resonance
may be altered by the coupling. The linear Hamiltonian, after this diagonalization, can
therefore be written as

Ĥtot = ~
∑
n

ω̃nÂ†nÂn (2.90)

where Ân represents the annihilation operator of the n-th, re-diagonalized mode. Because
these new eigenmodes are the same as their classical counterparts (Fig. 2.7), classical
circuit analysis is sufficient to solve this part of the system.

All we need now to treat the effects of our Josephson junction is the dressing of these
modes as seen at the ‘port’ of the junction. Essentially, each mode will contribute some
amount of flux toward the junction, as

Φ̂ =
∑
n

Φn
ZPF

(
Â†n + Ân

)
(2.91)

Luckily, we already know how to find the required Φn
ZPF parameters too!

We saw earlier that the magnitude of the zero-point fluctuations was simply related to
the effective impedance of the circuit by Equation 2.10a. We now see that the relevant
characteristic impedance is the mode’s impedance as seen by the junction. To find these
zero-point fluctuation values, we simply need to determine impedance of each mode.

Imagine that we had an impedance-probe at the junction looking out, which could
measure across a wide-range of frequencies. At each normal mode of the circuit, our
admittance would cross zero (giving us ω̃n). Further, the slope of the admittance trace at
that zero-crossing is related to the mode’s effective characteristic impedance [10], as(

dY

dω

) ∣∣∣
ω=ω̃n

=
2j

ω̃nZeff
≡ Y ′n (2.92)

By rearranging Equation 2.92, we find a simple way relate the effective impedance that
sets the scale of the zero-point fluctuations to a measurable, at least in theory, circuit
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Figure 2.8: Black box quantization of many modes. (a) The most basic circuit QED
schematic is a mostly-linear LC oscillator (resonator) coupled to a strongly nonlinear LC
oscillator (transmon). Both acquire their nonlinearity from a single Josephson element,
which also provides the cross mode-mode nonlinearity (such as cross-Kerr term χ) to the
system. (b) To simplify the quantum mechanical treatment of the coupled system, first the
classical circuit is diagonalized and lumped into a ‘black box’ admittance term Y (ω). (c)
The characteristic impedance of each resonant mode in the black box, as viewed from the
junction, sets the participation of that mode in the junction’s nonlinearity. That impedance
can be predicted from studying the classical circuit model of the system. The problem reduces
to finding the zero-crossings of the imaginary part of the admittance and the slope of the
function there (circles).
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parameter. Now, the magnitude of the zero-point fluctuations are given by

Φn
ZPF =

Φ0√
2πRQω̃nY ′n

, (2.93)

where RQ is the resistance quantum. Because Y ′n is a classical, linear circuit parameter,
traditional circuit simulators are also able predict Φn

ZPF natively, even for complex circuits
[10].

Our total Hamiltonian now reads

Ĥ = ~
∑
n

ω̃nÂ†nÂn + Ĥnl (2.94)

where Ĥnl is defined equivalently to before (Eq. 2.45), except we replace the simple flux
operator by our new expression for total flux across the junction (Eq. 2.91) [10], giving
the full Hamiltonian as

Ĥnl = EJ

[
1− cos

(∑
n

ϕn

(
Â†n + Ân

))]
− EJ

2

[∑
n

ϕn

(
Â†n + Ân

)]2

(2.95)

where again, we will find it simpler to work in a unitless parameter ϕn ≡ Φn
ZPF/Φ0. Indeed,

the sum over all fluxes shows up as the operator ϕ̂tot, including for the quadratic term on
the right hand side.

The real utility of this total Hamiltonian becomes clear when we consider the fact
that distinct modes commute:

[
Ân, Âm

]
= δn,m. Therefore, our frame transformations

from before can be done in parallel on this potentially massive Hamiltonian right away.
Going into the co-rotating frame, such that Ãn = Âneıω̃n , allows us to expand the total
Hamiltonian like before.

For simplicity, let us treat in some detail the simple case of two modes, truncated at
the fourth order. We can write the truncated Hamiltonian (similar to Eq. 2.65) as

H̃ ≈ ~EJ
24

[
ϕa
(
ã† + ã

)4
+ ϕb

(
b̃† + b̃

)]4

(2.96)

We use the RWA to find the dominant terms of this Hamiltonian [11]. In particular,
because our modes are detuned, we can discard terms like ã†b̃ in the expansion of the
quartic Hamiltonian. Collecting terms like ã†ã and b̃†b̃, we see that each mode will acquire



2.4. COUPLING QUANTUM CIRCUITS 34

Frequency

Sp
ec

tru
m

  (
ω

1)

Re(α1)

Im
(α

1)

(c)

(a)

⏐0〉2

⏐3〉2

⏐2〉2⏐1〉2

⏐0〉2 ...

⏐1〉2⏐2〉2⏐3〉2
β2=0
β2=0.5
β2=1

(b)

mode 1
mode 2

χ

Kerr-
nonlinear
medium

Fabry-perot cavities

χ

Figure 2.9: Cross-Kerr nonlinear effects. (a) Two prototypical oscillators, modes one and
two (shown as Fabry Perot-type resonators), store energy in a Kerr nonlinear medium. In that
nonlinear medium, the phase velocity of resonant light depends on the total energy stored,
leading to an effective length for the resonators which is dependent on the energy stored in
the other. A strongly nonlinear version of this system is realized in cQED architectures with
remarkable consequences. (b) If mode two is in a superposition of several Fock states, for
instance as a coherent state |β〉2, any state in mode one, shown as a single Gaussian state,
acquires a differential phase for each Fock state |m〉2 at a rate χ, where χ is the strength of
the cross-Kerr nonlinearity. (c) With strong nonlinearity (χ� κ, where κ is the linewidth of
the modes), the system enters the number-split regime of cross-Kerr interaction. Each energy
eigenstate of mode two |m〉2 is associated with its own transition frequency in mode one.
Shown are frequency spectra of mode one for three different coherent states in mode two.



2.4. COUPLING QUANTUM CIRCUITS 35

a Kerr term proportional to

Kk =
EJϕ

4
k

4
(2.97)

This is a little strange. Our circuit under consideration began as a transmon sub-circuit
coupled to many LC oscillators, but somehow, we ended up with just a bunch of transmons!
In retrospect, this might not be too surprising since a transmon, in our treatment, has
been a nonlinearly-shunted LC oscillator. Surely then, by introducing the same nonlinearity
to the other LC oscillators, they might be expected to dress with the Josephson effect in a
similar manner.

At fourth order, we acquire a new type of Hamiltonian term as well that has interesting
consequences for our circuit. We now find terms in the expansion that are a cross-Kerr
type nonlinearity [62], as

H̃int = −EJϕ2
aϕ

2
b â
†âb̂†b̂. (2.98)

We define the cross-Kerr interaction strength as χab ≡ EJϕ
2
aϕ

2
b . Note that χ is related to

the geometric mean of the two Kerr terms as

χab = 2
√
KaKb. (2.99)

This makes intuitive sense since this nonlinear interaction is set by how hybridized each
mode is to the single Josephson junction in the problem. That same hybridization also
sets Kn.

For two modes with a large detuning, χab is the dominant coupling term. This regime
is known as the dispersive regime of cQED [62], a Hamiltonian that has also obtained with
CQED [11]. Now, if mode a is excited, for example in the Fock state |1〉a, our dispersive
Hamiltonian indicates that the frequency of mode b will shift downward by exactly χ, since
〈â†â〉 = 1 for Equation 2.98. A more interesting behavior is achieved whenever one of
the modes is in a superposition of Fock states. Then, an entangling interaction occurs
[11], whereby a superposition of Fock states in one mode forces the other mode to be in a
conditional superposition of many frequencies, as we will discuss in detail in Chapter 3. In
the next section, we show how this conditional frequency shift can be used to devise a
QND measurement of the qubit state.
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2.5 Detecting the state of a transmon

It might be interesting to probe a transmon directly with a Vector Network Analyzer
(VNA), for instance, measuring the atom in reflection, similar to the scheme of Hoi et
al. [63]. In this case, when the VNA (at weak probe powers) sweeps through a transition
frequency of an occupied level of our transmon, a single probe photon (at most) will be
exchanged with the transmon. Detecting a missing photon (absorption) or an extra photon
(emission) would inform us of the former state of the transmon. However, practically this
is a demanding requirement. Additionally, the real impedance of the VNA would introduce
unnecessary dissipation to the transmon, as we will discuss later in Section 4.2.1.

Instead, we will couple our simple transmon circuit to a filter element, an ancillary LC
oscillator [54, 55], and probe the response of the oscillator to infer information about the
state of the transmon [14, 64]. To detect the state of mode a, we need to determine mode
b’s frequency with sufficient precision to determine whether it is ωb or ωb − χ. There are
some nice properties of this proposal. First, if we can drive mode b with many photons,
our frequency detector does not need to be sensitive to fluorescence-like signal levels as
considered before. Also, this detection can be QND to good approximation [59, 60]. This
is opposed to schemes which rely on absorption or fluorescence, which detect a change of
state. Finally, if the readout mode is more strongly coupled to the detection apparatus, it
will filter real impedance of the detector from the transmon atom, extending the possible
lifetimes in the transmon mode [56].

Now, however, our readout mode has acquired some transmon-like behavior as shown in
the previous section. However, for a carefully designed circuit, we can largely ignore these
effects, and pretend that our filter retains its linearity. This is a reasonable approximation
for the readout mode whenever

Kb|〈b̂†b̂〉|2 � 1/Texp (2.100)

where Texp is the timescale for the experiment. Essentially, for a weak nonlinearity, the
number-state dependent phase accumulation by the Kerr effect may take more time to
acquire than we are sensitive to.

To use the conditional frequency shift of the readout mode (δω = χ) as a detection
mechanism, sufficient frequency precision is required. Therefore, the measurement time
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will be on the order of Texp ≈ 1/χ. By Equation 2.100, we then require that

χab � Kb〈b̂†b̂〉. (2.101)

Therefore, we must design circuits that have a large χab/Kb ratio. Using Equation 2.99,
we find that these requirements can be distilled to working with a transmon having high
anharmonicity, such that

Ka � Kb|〈b̂†b̂〉|2. (2.102)

Essentially, the above constraint is the extent to which we can assign the label ‘transmon’
to one mode and ‘resonator’ to the other. In practice, this inequality is easily satisfied
because usually only the transmon mode is galvanically connected to the junction. For
instance, we will study a sample in detail in Chapter 6 that fulfills this requirement up to
〈b̂†b̂〉 ≈ 500.

To show how the simplest readout schemes operate, consider our coupled Hamiltonian,
with the transmon truncated at its lowest two levels (Eq. 2.73), and ignoring the resonator’s
nonlinearity [54]. In the interaction picture, the Hamiltonian is given by

H̃disp =
χab
2
b̂†b̂σ̂z. (2.103)

This expression is equivalent to the dispersive limit of the Jaynes-Cummings model for
CQED [11], albeit derived with a different set of systems, assumptions and approximations.

A typical technique for measuring the frequency of a resonator is to measure the
reflection coefficient of signals from the device [14, 64]. That coefficient is given by

r =
∆b − ıκ/2
∆b + ıκ/2

(2.104)

where ∆b is the detuning between the probe and the resonator. For a probe tone tuned
halfway between the response of mode b to the transmon (ωd = ωb − χ/2), r can be
rewritten to account for the state-dependent shift [14] as

r =
χσ̂z − ıκ/2
χσ̂z + ıκ/2

. (2.105)

If we define a the angle θ = κ/χ we can simplify the reflection as a rotation in the IQ
plane as

r = e−ıθσ̂z . (2.106)
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Figure 2.10: Reading out the state of a transmon. (a) The frequency of the readout
resonator depends strongly on the state of the transmon qubit. The frequency shift χ can
be much greater than the linewidth of the mode κ. To probe the state of the transmon, a
common technique is to drive halfway between these two frequencies (purple arrow). Then,
the state of the transmon is encoded in the phase of the outgoing signal. (b) A readout
pulse builds up energy in the resonator that is leaked out to the measurement chain. For the
readout probe frequency shown in (a), the two states of the transmon yield identical ring-up
type envelopes. c) The amplitude and phase of these signals are digitized, via techniques
described in a later chapter, and the measurement results are histogrammed. The relative
counts between the two distributions gives the probability the qubit was detected in the
ground or excited state (Pg and Pe).
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For a coherent input state, in the absence of the resonator’s Kerr nonlinearity, this
phase angle is independent of the displacement size [14]. Therefore, phase contrast,
our measurement signal, will increase with larger displacements. We can quantify the
information contained in the reflected signal as the orthogonality of the resultant coherent
states. If the two states of the transmon (|0〉a, |1〉a, or equivalently |g〉, |e〉) are mapped
onto a phase difference θ, the coherent states can be detected in unique states to the
extent that

〈αe+ıθ|αe−ıθ〉 = 0 (2.107)

We give the practical details of this detection scheme later in Section 5.2.4.

2.5.1 Selection rules for many-wave mixing

We conclude our study of the simplest coupled-oscillator Josephson circuits with some
striking effects that can be observed by stimulating otherwise negligible processes in the
circuit with pumps.

We rely on the commutativity of our different modes in order to go into a co-rotating,
co-displaced frame [34], such that all modes can be driven by some field, transforming our
operators as

Ãn → Ãn + ξn. (2.108)

Our total Hamiltonian recovers a generalized form of Equation 2.62. A remarkable set of
interactions can be driven between the elements of our many-transmon artificial molecule.

If we take the simplest experiment, driving a single mode off resonantly, the χ interaction
at fourth order approximation ends up every mode an AC Stark shift [34]. Driving the
n-th mode shifts the m-th mode by an amount

∆m = −χnm|ξn|2. (2.109)

Also, similar the multi-photon transitions of a single transmon, strong pumps can drive
multi-photon processes in the coupled circuit [34]. For example, a pump on mode n at a
frequency ωd = ½(ωm − ωn) would make stationary any terms in the Hamiltonian of the
form

Ĥswap = −χnm
[
ξ2Ãn

†Ãm + (ξ∗)2ÃnÃm
†
]

(2.110)

We see that this Hamiltonian term can be used to swap single photons between modes, such
as the transmon and resonator, by exchanging energy with two probe photons (four-wave
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Figure 2.11: Josephson junction as a scattering site. Many Hamiltonian terms are dis-
carded by energy conservation considerations during the polynomial treatment of a Josephson
junction’s cosine potential. However, in the presence of drives, these otherwise neglected
terms can dominant the evolution of the system. Pumping a single junction at multiple
frequencies can lead to a versatile set of mode conversions via many-wave mixing.

mixing). For a cold resonator with fast decay constant, this technique can be used for
to reset another mode [34]. Or, driven between two coherent modes, this pump can be
used for SWAP-based quantum logic [65]. Interestingly, these SWAP interactions typically
require resonant operation [65] (and thus frequency tunability), which can complicate
circuit implementations. Here, we get that physics ‘for free’ from the quartic term of our
cosine expansion.

As another example, take the pump frequency ωd = (2ωm − ωn). Energy-conserving
terms now include

Ĥswap = −χnm
[
ξ
(
Ãn
†
)2

Ãm + ξ∗
(
Ãn
)2

Ãm
†
]

(2.111)

Just by changing the frequency of the pump, we have altered the four wave mixing such
that now one photon from mode m is converted to two photons in mode n and vice-versa,
by exchanging energy with a single pump photon. This parametric process was used in
Leghtas et al. [34] to drive an oscillator directly to a cat state.

There is an infinite number of interesting processes we can stimulate with many-wave
mixing [37]. The recipe is simple enough to be extended to even higher order terms beyond
quartic. These experiments will push the cosine expansion in new ways. Single Josephson
junction circuits seem to be an endless playing field for fundamental quantum optics.

Before diving into the physical implementation of these systems, the next chapter
explores the consequences of quantum information in resonators. Future chapters will
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discuss the specifics of transmon-resonator design Chapter 4 as well as techniques for their
fabrication and measurement Chapter 5. Then we will combine these ideas to describe a
novel type of quantum memory that has state-of-the-art coherence for cQED, in Chapter 6.



CHAPTER 3

Quantum information in harmonic oscillators

Harmonic oscillators are very simplest quantum mechanical objects, as we saw in
Chapter 2. However, the infinite Hilbert space of a harmonic oscillator can be

leveraged for powerful applications in quantum information processing [66, and references
therein]. We begin this chapter by motivating oscillator-based quantum information
schemes with an example from modern classical communication techniques [67]. We then
turn our attention to quantum states in oscillators, describing how to characterize such
states [11] and how to create them using the ideas from Chapter 2 [68, 69]. Finally, we
review recent progress toward one exciting application for qubit-coupled resonators, the
so-called cat-codes for quantum error correction. [70].

Many of the concepts throughout this chapter are general to the control and measure-
ment of oscillators. Whenever possible, we show how the dispersive interaction described
in the previous chapter enables the particular process at hand. Many other qubit-resonator
interactions are possible and have their own set of advantages and disadvantages [26, and
references therein]. In particular, resonant SWAP gates between qubits and resonators,
in which single excitations are swapped or manipulated, have been used to demonstrate
a remarkable set of experiments [71]. Side-band pulses can also be used to create non-
classical qubit-resonator states [72–74] and mediate quantum information storage in an
oscillator [75].

42
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3.1 Photons carrying classical bits

This chapter is influenced by the modern signal processing techniques of digital phase-
shift-keying (PSK) [67], which is reviewed here to highlight its similarities to quantum
schemes, as pointed out in [68].

Fiber optic cables are ideal transmission channels for long distance communication
because they are low-distortion and low-loss. However, installing fiber optics cables and
repeaters is an expensive endeavor. Techniques that maximize the capacity of each signal
channel are crucial to enabling modern high speed communication at large scale. PSK
relies on the fact that telecommunications signals are carried by waves. By comparing the
phase-difference (φ0) between an incoming signal and a reference clock, we can determine
φ0 to some, potentially high, precision. That precision sets the number of points in phase
space that can be used as classical bits.

An additional benefit of phase encoding is that it is naturally robust against small
amounts of signal loss, as compared to amplitude encoding which is maximally sensitive to
loss. As long as the signal remains above the noise floor such that φ0 can be determined
to the requisite precision, PSK is robust against dissipation. This idea is analogous and
important for quantum mechanical versions of PSK, as we will see later in this chapter.

As shown in Figure 3.1, quadrature-PSK encoding (QPSK) is one example of such
an encoding scheme. The sender of a QPSK message chooses one of four offset-phases
φ0 ∈ [±π/4,±3π/4], such that the sent message is

s(t) = V0 cos(ωt+ φ0). (3.1)

The receiver mixes down the message against two orthogonal basis functions (sine and
cosine) to recover the phase symbol

Im =

∫ Ts

0

cos(ωt)× V0 cos(ωt+ φ0)dt (3.2a)

Qm =

∫ Ts

0

sin(ωt)× V0 cos(ωt+ φ0)dt (3.2b)

It simplifies demodulation to choose the integration time to be a full period Ts = 2π/ω,
though this is not a requirement of QPSK. Then,

(Im, Qm) ∈ V0Ts

2
√

2
{(−1, 1), (1, 1), (1,−1), (−1,−1)} (3.3)
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Figure 3.1: Phase shift-keying (PSK) of classical signals. (a) In transmit mode, a local
oscillator (LO) is mixed with two sinusoidal voltages Im and Qm that carry a four-bit message
encoded in the phase of these oscillating voltages for a predetermined amount of time. The
modulated output signal (RF) is sent across a channel to the receive party. The receiver
works in reverse. There, the RF chain carries a modulated input signal that is down-converted
to phase-information containing components (Im,Qm) by a local oscillator. (b) Four bits
are encoded in a single time channel by setting the initial phase of independent sinusoidal
functions as φ0 ∈ {0, 2π}, which relies on the orthogonality of the cosine and sine functions.
(c) Each transmitted symbol will be modulated or demodulated to a location on the IQ plane
that falls on the PSK constellation shown. For signal strengths greater than the noise of the
system, many bits can be encoded in each symbol, provided that the constellation points do
not overlap to the precision of a given error threshold.



3.2. STATE TOMOGRAPHY OF AN OSCILLATOR 45

where we enumerated the results for phases increasing from φ0 = −3π/4. Noise sets the
limit on the density of phase-space at our disposal. A common PSK constellation can
include between 16 and 32 bins for φ0. Therefore, in one integration window, the symbol
contains up to 32 bits of information.

A subtle issue with PSK is that the rapid switching of the phases between symbols can
cause issues if any of the components, such as optical repeaters and amplifiers, have finite
bandwidth or linearity [67]. To combat these problems, only certain transitions between
symbols are allowed and information becomes encoded in the pattern of symbols, rather
than single symbols themselves. Indeed, this idea indeed has also been considered for
finite-nonlinearity PSK analogues in the quantum domain.

If we had quantum control over a PSK-type communication channel, it is not too hard
to imagine one could encode a similar number of quantum bits of information for each
symbol. The sender only needs a component which can phase-shift a coherent state into a
superposition, i.e. modulate a signal to phase multiple phases at once. Remarkably, such
control has already been demonstrated. At the conclusion of this chapter, we will review
an experiment that has achieved the quantum version of QPSK, and we examine some
important applications of such an encoding.

First however, we need a more sophisticated suite of tools to describe quantum states
in continuous variables systems.

3.2 State tomography of an oscillator

For an infinite-level system, full state tomography [39] is impossible [21]. In practice, we
will truncate any oscillator under study at some N -th level [11]. We require that any
population in higher levels is negligible to sufficiently describe the state. To see why this is
justified, consider a coherent state of amplitude |β〉 , the probability of finding population
at a high Fock state (N � |β|2) is given by Equation 2.21, which falls off precipitately.
For instance, for the coherent state |β|2 = 9, if we truncate our tomography at N = 18,
the total population in higher states is only 0.5%.

Further, coherent states are an overcomplete decomposition of the oscillator’s Hilbert
space [21]. Zurek showed that for state tomography, the minimum grid-size for a given
precision is related to the size of the allowed N -th level truncation of the Hilbert space [76].
Essentially, any features in state tomography will be required to have slower variation than
some δα [76]. Therefore, most tomography schemes proceed by gridding the Hilbert space
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into a series of IQ-blocks of size δα× δα that are accessed with a displaced measurement
operator [11], examples of which we will describe starting in Section 3.2.2.

3.2.1 Fock state distribution

The simplest, but potentially incomplete, tomography that can be conducted on the state
of a resonator is obtained by measuring the probability distribution of Fock states, each Pn,
up to some truncation. Such a tomography scheme is useful for detecting non-Gaussian
statistics in a resonator state [62] and for calibrating control drives [38] as we discuss in
Section 6.2.1.

In the strong dispersive regime of cQED, spectroscopy on the qubit reveals the Pn
distribution automatically [62]. Essentially, because the qubit acquires a large frequency
shift for each resonator Fock state χ � γ2 (where γ2 is the full qubit linewidth), the
relative area of the n-th number-state resolved transition line (the ‘nth number-peak’)
gives Pn. Assuming a sufficiently weak drive on the qubit and assuming that the linewidth
of the qubit is γ2 ≈ 1/T1, the spectrum of the qubit is given by [64]

S[ω] =
C

2π

∑
n

(
Pnγ2

(1
2
γ2)2 + (ω − ω0 − nχ)2

)
(3.4)

where C is a scaling term to account for the readout efficiency and ω0 is the frequency of the
transmon conditioned on zero photons in the resonator, i.e. the transition |g, 0〉 → |e, 0〉.
We use this technique to confirm the preparation of non-classical states in Chapter 6.

We caution the reader that pulsed spectroscopy is recommended for this tomography
technique. The alternative, which would seek to quantify the statistics of a steady-state
resonator drive by measuring the spectroscopy signal of a transmon in parallel, leads to
several complications [64]. First, the presence the resonator drive will Stark shift the
transmon spectrum (Section 2.3.4), shifting the observed resonator and qubit spectra as

∆stark,r = −Kr|ξr|2

∆stark,q = −χ|ξr|2
(3.5)

where |ξr|2 is the resonator drive intensity, Kr is the Kerr of the resonator, χ is the
dispersive coupling strength between the qubit and resonator. Importantly, this is a
different term in the Hamiltonian than χâ†âb̂†b̂ that provides number splitting (i.e. is
quantized). As soon as the drive, ξ is turned off (as for pulsed spectroscopy) this term
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will disappear. Furthermore, as described in Section 2.5.1, drive terms in the Hamiltonian
can stimulate previously discarded conversion terms. This can yield additional features in
spectroscopy, making interpretation difficult. Yet, as long as the experiment is conducted
carefully and pulsed, the protocol for determining χ in spectroscopy is straightforward.

By measuring the transmon’s spectrum then, we can determine whether the distribution
of Pn is Poissonian (coherent states), super-Poissonian (e.g. thermal states), or sub-
Poissonian (e.g. Fock states) [62]. Examples of ideal distributions are given in Figure 3.2.
Since a single Fock state carries no phase information, a Pn distribution is sufficient to
completely characterize such states. However, for states that lack rotational symmetry in
the IQ plane, additional information is needed to characterize the system.

3.2.2 Husimi Q functions

The Husimi Q function [77] is a quasiprobability distribution that quantifies the oscillator’s
population at a given point in IQ grid (R(α), I(α)) as the overlap between the input
oscillator state and a coherent state of amplitude |α〉. More precisely, for the input state
|ψ〉, the Q function at grid-point α can be written as

Q(α) ≡ 1

π
|〈α|ψ〉|2 (3.6)

To see how this quantity is extracted experimentally, we can rearrange the above as [21]

Q(α) =
1

π
|〈0|D†(α)|ψ〉|2 =

1

π
|〈0|D(−α)|ψ〉|2. (3.7)

We see that, by symmetry, the task of measuring the overlap of |ψ〉 with a finite amplitude
coherent state reduces to measuring the overlap of |ψ′〉 = D(−α)|ψ〉 with the zeroth Fock
state (P0), which we saw in the previous subsection was possible. Examples of Husimi Q
functions are given in Figure 3.3.

Rather than spectroscopy, we can measure P0 more efficiently [38] by driving the
transmon with a number-selective π pulse that is narrow frequency (FWHM � χ) and
resonant on the |g, 0〉 → |e, 0〉 transition, followed by a measurement of the qubit state.
This technique can be quantum non-demolition (QND) [78, 79], meaning that regardless
of the input state, a measurement of the transmon in the excited state |e, 0〉 will herald
the preparation of a zeroth Fock state. Measuring the resulting transmon state in |g〉 will
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Figure 3.2: Quantifying the statistics of a resonator state. (left) Examples are
given of various qubit spectra under different preparations of resonator states. (right) The
corresponding probability distribution of resonator Fock states (Pn) that would be inferred
from the associated qubit spectrum. (a) The resonator is in a coherent state of β = 1.0
and obeys Poissonian number statistics. (b) The resonator is in a single Fock state |3〉 and
displays sub-Poissonain number statistics (the variance in n̂ of zero is less than the mean
value of three). (c) The resonator is either in a superposition of |0〉 and |3〉 or in a statistical
mixture of the two states. A simple probability distribution Pn is not sufficient to distinguish
these two cases.
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project the state into a vacuum subtracted version of the input state [79], i.e.

|ψ〉final = N (|ψ〉input − C0|0〉) (3.8)

where C0 is the initial state’s amplitude in |0〉. The N accounts for the renormalization of
the state to maintain

∑∞
n=1 |Cn|2 = 1, where the new amplitudes are scaled to account

for the missing population the vacuum.
In general, more information can be extracted about the oscillator state if the qubit is

found to be in |g〉 since some other Cm remains nonzero with statistics that are directly
related to the input state [79]. However, for tomography protocols which only seek to
measure the state of an oscillator, it is more accurate to instead recycle the system, waiting
for it to return to equilibrium before preparing another input state and measuring it. The
trade off for discarding additional information is that the resulting tomography can be
interpreted without concern for uncontrolled measurement backaction, such as qubit decay
during measurement [80].

The Husimi Q function can also be generalized to extract a more sensitive set of
information about an oscillator input state [11]. Instead of probing just the overlap with a
coherent state (equivalently a displaced |0〉 Fock state), one can measure the overlap with
any displaced Fock state as

Qn(α) =
1

π
|〈n|D(−α)|ψ〉|2 (3.9)

It follows that Qm of the m-th Fock state is identical to the Gaussian profile of the Q0 of
the vacuum.

Any one of the generalized Qn functions is a complete representation of the input
state’s density matrix [21]. However, some quantum features tend to be suppressed in
this type of tomography. Figure 3.4 shows that a way of recovering that sensitivity is to
combine many Qn distributions into a single observable across an oscillator’s Hilbert space,
such as the parity operator [38, 71], defined as

P̂ ≡ eıπn̂. (3.10)

Measuring the expectation of some operator 〈Ô〉 at a location in IQ space α is equivalent
to

〈Ô〉α = Tr
(
D†(α)ρD(α)Ô

)
, (3.11)
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Figure 3.3: Husimi Q distribution of resonator states. (a) Experimental sequence to
perform Husimi Q tomography on a resonator state. The tomography is performed after some
arbitrary preparation step, which leaves the qubit unentangled with the resonator. To measure
the Q function at a displacement α, a displacement of D†(α) = D(−α) is used to bring
that region of the state to the origin. Then, a number selective qubit rotation is performed
that flips the qubit to the excited state only if zero photons are present. Measurements are
repeated to acquire the quasiprobability distribution across many values of the displaced
mode. (b) Graphical representation of Q function measurement. The IQ plane of the
resonator is broken up into grids, where each block represents a displacement value used in
the experimental sequence. (c) Examples of Q functions. The Husimi Q representation of
the resonator states previously considered in Figure 3.2 can reveal more information. (i) A
coherent state of β = 1ı is distinguishable from β = −1ı. (ii) The Q function of the |3〉
Fock state has no further information since the state has complete phase uncertainty. (iii)
The superposition of |0〉 and |3〉 is distinguished from a statistical mixture by the existence
of a rotational asymmetry in the state’s Q function.
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which can be expanded as

〈Ô〉α =
∑
n

〈n|
(
D†(α)ρD(α)Ô

)
|n〉. (3.12)

Fock states are eigenstates of the parity operator: P̂ |n〉 = (−1)n|n〉. So the above
expansion reduces [21] to

〈P̂ 〉α =
∑
n

(−1)n〈n|
(
D†(α)ρD(α)

)
|n〉. (3.13)

Rearranging the density matrix gives a simple form for this expectation value as

〈P̂ 〉α =
∑
n

(−1)n|〈n|D†(α)|ψ〉|2 (3.14)

which we recognize as a sum over Qn as defined in Equation 3.9. We finally have that

〈P̂ 〉α = π
∑
n

(−1)nQn(α) (3.15)

Again, we truncate this series at some N above which QN tends to zero at small displace-
ments (|α|2 . N). By measuring many generalized Qn functions, we are able to extract
directly a useful quantity to describe our state. In fact this particular observable is directly
related to another type of tomography, the Wigner function. In the next subsection, we
meet the Wigner function and a more direct measurement technique for 〈P̂ 〉α.

3.2.3 Wigner tomography

The Wigner function [21] is a quasiprobability distribution that is formally defined as

W (α) =
2

π
〈P̂ 〉α. (3.16)

The function takes values in the range of W (α) ∈ [−2/π, 2/π], and it is normalized such
that ∫

W (α)dα2 = π. (3.17)
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Figure 3.4: Two techniques for measuring parity. (a) Parity can be determined by
an alternating sum of generalized Qn functions [21]. This is a graphical representation of
Equation 3.15 for an even superposition of coherent states |ψ〉 = |β〉+ |−β〉. The first panel,
which is Q0, does not contain noticeable information about the superposition. However, the
higher even functions Q2, Q4 have weight at the center, whereas the odd functions Q1, Q3

have zeros at the center, indicating that the state has a strong positive parity at the origin.
This shows explicitly what is meant by parity having more quantum phase sensitivity. (b) An
alternative method for measuring parity in a ‘single-shot’ is shown [68, 81]. An initial π/2
pulse puts the qubit on the equator of the Bloch sphere. If the resonator state has many
photons (colored Bloch vectors), the qubit will dephase by the dispersive interaction. At a
revival time t = π/χ, the Bloch vectors associated with odd photon numbers (blue) will have
acquired a π phase shift, while the evens (red) will have acquired 2πn of phase. At this time,
a final π/2 maps the parity information onto the qubit state. A measurement of the qubit
state thus makes a projective parity measurement of the resonator state.
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With these conventions, a number of useful relations hold. Most importantly, the density
matrix of a given state is given by an integral over the Wigner function [21] as

ρ =
2

π

∫
W (α)D(α)P̂D†(α)dα2 (3.18)

Thus by probing the Wigner function experimentally, we gain direct insight into the density
matrix of the oscillator’s state. It can further be shown that the Q0 function is related to
the Wigner function as

Q0(α) =
2

π

∫
W (β)e−2|α−β|2dβ2. (3.19)

This convolution is simply a Gaussian filter over W . Therefore, we expect the Wigner
function is more sensitive to detecting structure in the IQ plane. Indeed, the Wigner
function has an additional, useful detection property for quantum states: no oscillator
classical state can have negativity in its Wigner function [82]. It has also been demonstrated
theoretically that a negative Wigner function can be a resource for a quantum information
processing speed-up [83, 84].

In order to assemble a state’s Wigner function, we could in principle measure each Qn

and compute Equation 3.15. However, this requires tens of Pn’s to be measured at each
point on the IQ grid which is burdensome. Instead, the dispersive interaction gives us the
opportunity to make projective measurements of P̂ directly [81].

Figure 3.5 shows how a projective parity measurement is conducted with the dispersive
Hamiltonian, used for Rydberg atoms with CQED [81] and for transmon atoms with cQED
[68]. The goal of the protocol is to flip the qubit if and only if the resonator is in an
even (or odd) parity state. The measurement begins with an unselective π/2 pulse on the
qubit (FWHM � Nχ) that brings the qubit’s Bloch vector to the equator. As we saw
earlier, if many Fock states in the resonator are populated, the qubit no longer has a well
defined frequency. Consequently, each Bloch vector associated with a different Fock state
will acquire phase a different rate, φ = n̂χt [85]. A second π/2 pulse will become more
ineffective as these states spread out, appearing as a Gaussian T2 decay. Yet, this system
revives in a very special way after a characteristic time Tp = π/χ [68]. Examining the
total state at t = Tp, we have

|ψ(t = Tp)〉 =
∑
n

Cn
(
|g, n〉+ eıπn̂|e, n〉

)
. (3.20)
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We see that at the time Tp, each odd Fock state acquires a π phase shift, while each
even Fock state returns to the initial point on the Bloch equator (2π phase). Therefore,
a second π/2 pulse, along the same axis will bring the even subspace to the excited
state, while the odd subspace is rotated to the ground state. To summarize, this protocol
transforms the system as∑

n

Cn|g, n〉 ⇒
∑
n∈odds

Cn|g, n〉+
∑

n∈evens

Cn|e, n〉. (3.21)

Now, the probability of detecting the qubit in the excited state (Pe) is directly related to
the probability that the resonator had an even parity. So the expectation of the parity
operator is simply now

〈P̂ 〉 ∝ Pe − Pg. (3.22)

The lack of equality in the above expression arises from our inability to conduct this
parity mapping and qubit readout with unit efficiency. However, we can calibrate out
these inefficiencies by taking tomography of a known state, such as the vacuum state,
and normalizing our tomography to the visibility of this signal [68]. While this lacks the
robustness required for claiming violating quantum measurement inequalities [79], it is
often useful to separate out state preparation fidelity from tomographic errors.

As shown in Figure 3.5, the full protocol for performing Wigner tomography in the
dispersive regime of cQED is a combination of parity measurements and displacements on
the resonator. It is illustrative to compare the distributions across Figure 3.2, Figure 3.3,
and Figure 3.5 to see how the same resonator state can be described in many ways.

3.2.4 Flying state tomography

An important class of techniques have been developed to perform tomography on photonic
states that are not confined to resonators but rather traveling down a measurement chain
[86, 87]. Once a state is ‘flying’, the experimentalist may lack many of the tools we
previously took for granted, including coherent control over the mode (access to D(α)), a
photon-number resolving detector (access to Pn), or a direct parity meter (access to 〈P̂ 〉).
Instead, the complete density matrix of a propagating field can be reconstructed using a
technique known as optical homodyne tomography.

Homodyne detection is implemented by combining a field under study (Es) with a
strong local oscillator (ELOe

−ıωt+ıφ) at a beam splitter [87], which produces two outputs
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Figure 3.5: Wigner tomography in cQED. (a) Experimental sequence to perform Wigner
tomography on a resonator state. As in the sequence for Husimi-Q functions, we begin with
some arbitrary state in the resonator that is unentangled with the qubit. Like Q-functions,
Wigner tomography is measured across different displacement values α. A displacement of
D†(α) = D(−α) brings a section of the Hilbert space interest to the origin. Then, two
unselective qubit π/2 pulses, separated by a delay time t = π/χ, maps the parity of the
resonator to the qubit state. Measurements are repeated to acquire the quasiprobability
distribution across many values of the displaced mode. (b) Examples of Wigner functions.
The Wigner representation of the resonator states previously considered in Figure 3.2 and
Figure 3.3. The Wigner function can reveal more information than either of these techniques.
(i) A coherent state of β = 1ı has a smaller Gaussian width in a Wigner function as compared
to the Husimi Q distribution, making Wigner a more sensitive technique for resolving small
differences in amplitude or phase. (ii) The Wigner function of the |3〉 Fock state again has
no further information compared to Pn or the Q function. However, an important feature of
negativity in the Wigner function clearly distinguishes this state from a classical one. (iii)
The superposition of |0〉 and |3〉 is distinguished from a statistical mixture by the existence of
a rotational asymmetry and distinct regions of negativity in the quasiprobability distribution.
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that, for balanced detection (using a 50/50 beam splitter), are given by

E± =
1√
2

(ELOe
−ıωt+ıφ ± Es). (3.23)

In optical detection schemes, these arms are measured by sensitive square-law detectors.
If the field under study has quadratures that oscillate at ω, the time dependence is
averaged out from the signals. Subtracting the outputs from the two detectors gives the
experimentalist access to

|E−|2 − |E+|2 = 2ELOEs(φ). (3.24)

Varying the phase of the LO traces out the statistics of the field under study across the IQ
plane [87]. Alternatively, performing a heterodyne measurement (ωs 6= ωLO) reveals both
quadratures in parallel, at the cost of a quanta of added noise.

To be more precise, we can define a set of scaled, rotated quadratures [87], as

x̂φ =
1√

2n̄LO

(
X̂ cosφ+ Ŷ sinφ

)
ŷφ =

1√
2n̄LO

(
−X̂ sinφ+ Ŷ cosφ

) (3.25)

where X̂, Ŷ are defined as in Equation 2.16. Our homodyne protocol consists of a series
of measurements to obtain a distribution at each φ that is a histogram of amplitudes
Pφ(Xφ). Because the probability distribution of any observable is given by an integral over
the state’s Wigner function, we have that

Pφ(xφ) =

∫ ∞
−∞

W (−xφ cosφ+ yφ, xφ sinφ+ yφ cosφ)dyφ. (3.26)

The Wigner function can be obtained by inverting the above integral with a Radon transform
[88]. Treating noise, detector inefficiencies, and finite numbers of measurements can also
be treated by approximate inversion techniques [87] such as the maximum likelihood
method [89].

For detectors that are linear, as opposed to square-law, a similar set techniques are
available [90]. If we count the number of integrated measurements that fall in an IQ-bin,
e.g. [R(αi + ε), I(αi + ε)], we have essentially measured the overlap of the signal under
study with a coherent state with amplitude αi. By the definition of the Husimi Q function
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(Eq. 3.7), we recognize that this measurement probes Q0 for a traveling wave. Next, we
consider an important type of linear detector-based flying state tomography, the dispersive
readout scheme of cQED [64].

Dispersive readout as tomography

Performing a measurement of the qubit state in the dispersive regime of cQED can be
accomplished by interrogating a strongly-coupled, harmonic readout mode. As described
in Section 2.5, we analyze the output field of the readout mode in order to discriminate
the qubit state-dependent phase imparted during the interaction time. In the following
discussion, we relate this concept to the types of tomography considered here.

We can write the input-output relations [91] for a resonator populated with some state
A(t) as

aout(t) =
√
κA(t)− ain(t), (3.27)

where ain and aout are input and output modes, respectively (for details, see for in-
stance [90]). We integrate that signal with a Heaviside step windowed function f(t) =
√
κe−κt/2Θ(t) to obtain our signal mode [92] as

a =

∫
f(t)aout(t)dt. (3.28)

Our linear amplification chain provides gain (G) to our signal and introduces a noise mode
ĥ that acts as a noise term so that our final complex amplitude signal operator is given by

Ŝ =
√
G(a+ ĥ) (3.29)

The resulting histograms are a Husimi Q function on Ŝ which are scaled from the original
signal quasiprobability distribution as Qout(S) [90], so that

Qout(
√
Gα) =

1

G
Qin(α) (3.30)

The added noise from the vacuum mode can be shown to enter as a convolution, which
for the Gaussian states typically used for readout, only results in in a broadening of the
Gaussian distribution, as a thermal field. For signal chains that contain low-noise HEMT
amplifiers, the full added thermal field corresponds to ∼ 20K, while for chains that include
near-quantum limited parametric amplifiers, it can be below 1K [93].
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To perform a dispersive measurements on a transmon qubit, we require that the two
measurement distributions Qout(Sg) and Qout(Se) are well separated. As the resonator is
displaced to some coherent state |β〉, we rely on the dispersive interaction to impart a
relative phase shift conditional on the state of the qubit [64]. The resu broadened Gaussian
histograms as δφ ∼ χτ where τ is some the effective signal decay time on the order of
n̄/κ. Two coherent states of equal amplitude, but rotated by δφ have the separation

|〈βeıδφ|β〉|2 = e−|β−βe
ıδφ|2 = e−2|β|2 sin2(φ/2) (3.31)

Importantly, for strong projective measurements, we see that for a given phase shift, a
larger amplitude coherent tone will be a more effective measurement. However, if the
system has nonlinearity in the readout chain, either in the readout resonator or in the
saturation of the amplifier, there will be some optimal strength that is difficult to predict
a priori.

3.3 Dispersive control

Now that we have several methods for quantifying non-classical fields within a resonator,
we turn our attention to creating such states. We review a few recent ideas for creating
target states in a harmonic oscillator by leveraging the dispersive interaction. First, we
present a method for mapping the superposition state of a qubit onto the phase of a
displaced oscillator state, the so-called QCMap gate [94]. QCMap is a powerful technique
to create a superposition of many Fock states in a single gate application [68]. Next, we
show how individual Fock states can be manipulated with a Selective-on Number Arbitrary
Phase (SNAP) gate [69, 95]. SNAP can be used to build arbitrary states in a stepwise
fashion, similar to the SWAP gates discussed in Section 2.5.1.

3.3.1 QCMap gate

Essentially, the QCMap works in the reverse of the parity measurement we presented in
Section 3.2.3. Rather than map the parity of the resonator onto the state of the qubit for
detection, we map the state of the qubit onto the parity of a displaced resonator state [94].
In particular, QCMap can be used to put qubit states of the form |ψ〉q = Cg|g〉+Ce|e〉 onto
superpositions of coherent states |ψ〉r = Cg|β〉+Ce|−β〉. If the qubit had been in a equal
superposition, Cg = ±Ce, the resonator is taken to a parity eigenstate, having a either
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all even photons (+) or odd photons (−), while preserving Poissonian statistics centered
around |β|2. Such a state is commonly referred to as a cat state [11], since the phase of
a large coherent state approaches a classical variable. Indeed, the size of the resulting
superposition is arbitrary in the gate’s functionality and is only set by system imperfections.
Therefore, QCMap is an interesting testbed for quantum to classical transitions [68], in
addition to being a potentially useful quantum memory operation [70], as we consider at
the conclusion of this chapter.

To perform a QCMap operation, we initialize the system with the qubit in |ψ〉q and
the resonator in a coherent state |β〉, such that the total system state vector is

|ψ〉 = (Cg|g〉+ Ce|e〉)⊗ |β〉 (3.32)

The dispersive interaction will evolve the ground and excited states of the combined system
with a frequency difference χ that we can absorb into the definition of the coherent state

|ψ(t)〉 = Cg|g, β〉+ Ce|e, βeıχt〉. (3.33)

After a time Tp = π/χ, again the dispersive Hamiltonian will yield a π phase shift between
the two subspaces, leaving

|ψ(t = Tp)〉 = Cg|g, β〉+ Ce|e,−β〉. (3.34)

At this point, the system is in a Schrödinger cat state [11], since measuring the two-level
state of the qubit would provide complete information over the nearly-classical coherent
state phase variable. In analogy to the famous Gedanken experiment, the qubit acts as a
spontaneously decaying atom which determines the fate of our feline-like phase.

We complete the QCMap gate by removing the entanglement between qubit and
resonator. This is done in two steps. First, a non-selective displacement D(β) is performed
on the resonator to yield

|ψ〉 = Cg|g, 2β〉+ Ce|e, 0〉. (3.35)

Then, a qubit rotation that is selective on the zeroth Fock state, as in Section 3.2.2, takes
|e, 0〉 → |g, 0〉, leaving

|ψ〉 = |g〉 ⊗ (Cg|2β〉+ eıφCe|0〉), (3.36)

where the phase term accounts for a Berry phase that can be acquired depending on the
relative trajectory of the qubit rotation. The resonator is left in a state that is commonly
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referred to as an amplitude-cat [11] for obvious reasons. A final displacement D(−β)

restores the symmetry to the system, and, fixing the Berry phase at φ = 0, gives

|ψ〉 = |g〉 ⊗ (Cg|β〉+ Ce| − β〉). (3.37)

In a pioneering experiment [68], this procedure was confirmed to take an arbitrary qubit
state to an arbitrary resonator state of the above form. Additionally, extensions of the
simple QCMap gate can be constructed for evolution times t = Tp/m, which can be used
to create m-legged cat states. We discuss the connection between these states and error
correction in the final section of this chapter.

3.3.2 SNAP gate

The Selective-on Number Arbitrary Phase (SNAP) gate allows for universal quantum
control over a harmonic oscillator by making active use of the dispersive interaction
[69, 95]. A SNAP gate is constructed by driving the qubit on a closed trajectory on its
Bloch sphere. The backaction of the enclosed area imparts a Barry phase on the system
|g〉 → eıφ|g〉 [96]. The key observation for SNAP is that the qubit only undergoes such
an evolution conditionally on a Fock state in the resonator, taking |g,m〉 → eıφ|g,m〉.
This phase accumulation is differential between the selected Fock state and the rest of the
resonator’s state vector [95]. Classical drives on the resonator can be used to interfere
these differential phases. By interleaving displacements with SNAP rotations then, one
can build up complex quantum sates in the resonator. For instance, a single SNAP gate
and two displacements on the resonator is sufficient to generate an N = 1 Fock state
in the resonator [69]. We present this example in detail to get an understanding of the
SNAP framework.

An intuition for the protocol can be gained by considering a qubit trajectory that is
along a single axis, e.g. a 2π-pulse along the qubit’s x-axis. This great-circle trajectory
accumulates a π phase shift on the state [96]. Therefore, if the pulse is selective on
the mth Fock state, the amplitude Cm will acquire a sign flip [69]. An additional small
displacement can be thought of as a mixing of neighboring Fock states, which might now
be out of phase and therefore interfere in a nontrivial way. In practice, the size of the
displacement operations are numerically optimized to maximize the fidelity of the final
state [95].
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We show how these operations can be combined explicitly for the creation of a Fock
state. First, a displacement of D(1.14) on the resonator generates a coherent state in the
resonator that has

|ψ〉r =0.522|0〉+ 0.595|1〉+ 0.480|2〉

+ 0.316|3〉+ 0.180|4〉+O(0.1)[≥ |5〉].
(3.38)

The qubit rotation imparts a Barry phase of φ = 2π on the |0〉 state, leaving the resonator
in

|ψ〉r =− 0.522|0〉+ 0.595|1〉+ 0.480|2〉

+ 0.316|3〉+ 0.180|4〉+O(0.1)[≥ |5〉].
(3.39)

A final displacement operation D(−0.56) takes the resonator to

|ψ〉r =− 0.048|0〉+ 0.990|1〉+ 0.003|2〉

+ 0.133|3〉+ 0.002|4〉+O(0.01)[≥ |5〉].
(3.40)

Indeed, a perfect set of operations can prepare the N = 1 Fock state with P1 = 0.98

[95]. This preparation fidelity can be further improved by additional SNAP operations.
Unfortunately, as we discuss in Chapter 6, system imperfections can limit the resulting
state fidelity before the fundamental limits of these operator-level considerations. It
is worth remarking too that the nontrivial statistics of the small remaining population
P3 �

∑
n6=1 Pn arises from the interference effects inherent in the SNAP gate.

For a full proof of the universality of this protocol, we refer the reader to [95]. However,
we present a simpler argument here based on continuous variables quantum computation
[97]. Because it is straightforward to impart an infinitesimal phase on each number state,
we can scale the imparted phases such that they are polynomial in n. We can thus
generate an artificial nth-order nonlinearity. This was actually demonstrated with SNAP
experimentally for a fourth-order nonlinearity in [69]. Because such a nonlinearity causes
increasing orders of operators by commutation [97], e.g.[

K(X̂2 + Ŷ 2)2, X̂
]

=
1

2

(
X̂2Ŷ + Ŷ X̂2 − 2Ŷ 3

)
, (3.41)

we simply need to alternate SNAP gates will classical drives to synthesize an arbitrarily
high order Hamiltonian [97].

So far, we have seen how to characterize and control the Hilbert space of our linear,
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Figure 3.6: Creating nonclassical states via SNAP. (a) An experimental sequence for
arbitrary state preparation in a resonator via SNAP. This technique interleaves classical
displacements on the resonator with number-selective Berry phases on the qubit. Because
the Berry phase is number-selective, resonator Fock states can be interfered by applications
of the displacement operator, which can leave the resonator in a highly nonclassical state.
(b) Step-by-step creation of a Fock state via two displacements and a single qubit rotation.
A coherent state is generated from driving the resonator with classical drives. By rotating
the phase on the vacuum state by π, the resonator is left in a displaced |1〉 Fock state. A
final displacement returns the Fock state to the origin.

continuous variables resonator. To explore the utility of such a resource, in Section 3.5,
we review a proposal for quantum error correction for oscillators [70] and experimental
progress towards its realization. First though, we put on solid footing why such schemes
are necessary.

3.4 Decoherence in an oscillator

Quantum states in resonators are always eventually spoiled by interactions with the
environment. For instance, resonator photons can be exchanged with a thermal bath,
or the phase of a quantum superposition can be randomized by unitary evolution. The
cost of relying on the large Hilbert space of an oscillator is that the sensitivity to these
interactions increases rapidly for macroscopic superposition states [11].

In this section, the effect of energy exchange between a general resonator density matrix
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and a thermal bath is considered, treating the resonator as an open quantum system.
Phase noise is treated in a similar manner, introducing a phase scattering process with the
bath to compute its effects.

Previously, we evoked terms like an energy decay rate κ without a rigorous quantum
mechanical description. In order to recover that description, we rely on the Lindblad form
of the quantum master equation (QME) [35]. This allows us to solve for the evolution of
the density matrix of the resonator given some spurious process. The model assumes the
existence of a bath system whose degrees of freedom are sufficiently numerous that the
evolution of the bath is not greatly affected by its interaction with the resonator (Markov
approximation) [35]. Under this condition, the generic Lindblad form of the QME gives
the evolution of the resonator density matrix as

dρ

dt
=
−ı
~

[
Ĥ, ρ

]
+
∑
k 6=0

(
L̂kρL̂

†
k −

1

2
L̂†kL̂kρ−

1

2
ρL̂†kL̂k

)
, (3.42)

where Lk are jump operators which describe the interaction with the bath. Specific
examples of these decoherence mechanisms are given next.

3.4.1 Energy decay

The basic form of energy damping is an exchange interaction between the resonator and a
bath [35] as

Ĥint =
∑
k

Ω∗kĉ
†
kâ+ Ωkĉkâ

†, (3.43)

where the rates Ωk determine the amount energy exchange. We can define a set of jump
operators L̂↑, L̂↓ that account for the resonator gaining or losing a photon from a bath
[35]. These are

L̂↑ =
√
κ↑â

† (3.44a)

L̂↓ =
√
κ↓â. (3.44b)

If the bath reservoir is a temperature T , Boltzmann’s Law requires that these rates are
related by a Boltzmann factor

κ↑
κ↓

= e−~ω0/kbT (3.45)
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where ω0 is the frequency of the resonator and kb is Boltzmann’s constant. By Planck’s
Law, the thermal state should have an average number of photons in each mode as

nth =
1

e~ω0/kbT − 1
=

1

κ↓/κ↑ − 1
. (3.46)

Rearranging this expression gives

κ↓ = (1 + nth)κ (3.47a)

κ↑ = nthκ, (3.47b)

where a single decay rate κ is used to normalize the up and down rates. We recognize the
n̄κ terms to account for the hopping of a (thermally) displaced field.

We can write down a Lindblad equation to describe this evolution of the resonator
under this interaction [35] as

dρ

dt
=− ı

~
[
~ω0â

†â, ρ
]

− (1 + nth)κ

2

(
â†âρ+ ρâ†â− 2âρâ†

)
− nthκ

2

(
ââ†ρ+ ρââ† − 2â†ρâ

)
.

(3.48)

To go further, we can consider the populations of individual Fock states, essentially
sandwiching the above expression as

dPn
dt

= 〈n|dρ
dt
|n〉, (3.49)

which gives a rate equation for Pn [35] as

dPn
dt

= Γ↑Pn+1(t) + Γ↓Pn−1(t)−
[(

n

n+ 1

)
Γ↑ +

(
n+ 1

n

)
Γ↓

]
Pn(t). (3.50)

The rates are calculated to be

Γ↑ = (1 + nth)(n+ 1)κ (3.51a)

Γ↓ = nthnκ. (3.51b)

In equilibrium, we require that the probabilities are stationary (dPn/dt ≡ 0), which
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immediately gives us a condition on the probabilities as a function of the thermal field

Pn
Pn−1

=
nth

1 + nth
(3.52)

which is again a simple Boltzmann factor as one would naively expect.
Importantly though, Equation 3.50 allows us to consider states out of equilibrium [35].

If some state in the resonator has a mean number of photons n̄ 6= nth, the state will evolve
towards equilibrium as

dn̄

dt
=
∑
k

k
dPk
dt

(t) = −(n̄− nth)κ. (3.53)

This is a quite remarkable result, meaning that any excited state of the resonator will
have an expected energy that decays as an exponential [20]

E(t) = ~ω0n̄(t) = ~ω0((n̄0 − nth)e−κt + nth), (3.54)

where n̄0 is the initial mean field in the state.
The exponential shape of Equation 3.54 is reminiscent of two-level system T1 decays

with T1 = 1/κ [39]. In fact, we can immediately conclude that if the resonator has n̄0 = 1,
regardless of the actual distribution of Pn, the averaged energy decay will be equivalent to
a T1 experiment, provided that n̄(t) is the extracted quantity experimentally.

In general, the off diagonal components of ρ, which contain the coherences between
Fock states, decay in a highly nontrivial manner under amplitude damping [11]. As an
example, we consider the effect of energy decay on an equal superposition cat-state of the
form |ψ〉 = N (|β〉+ | − β〉), the initial density matrix is

ρ(t = 0) =
1

2
[|β〉〈β|+ | − β〉〈−β|+ |β〉〈−β|+ | − β〉〈β|] (3.55)

Here, the cross terms (ρ[β,−β] and ρ[−β,β]) contain the coherences between the two coherent
states. Under the action of Equation 3.61, the coherent state amplitudes acquire a trivial
decay term [11]

|β(t)〉 = |βe−κt/2〉 ≡ |β̃〉. (3.56)

However, the coherence between the coherent states decays much more rapidly [11], as

ρ[β,−β](t) = e−2n̄(1−exp(−κt))ρ[β̃,−β̃](0). (3.57)
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Therefore, the true ‘T2’ of the state, i.e. the rate of phase information loss, is for short
times (κt� 1) given by

T2 ≈
1

2n̄κ
. (3.58)

For macroscopic superpositions, n̄� 1. Therefore, T2 � T1, even though energy decay is
the only decoherence mechanism present!

3.4.2 Phase noise

The Lindblad formalism is applicable to phase noise as well [35]. In this case, the interaction
with the bath does not exchange resonator photons between the modes (as in the case of
energy decay). Instead, the effect is a modification of the resonator’s resonant frequency as
a scattering process, in which a bath quantum is created or destroyed while the resonator
photon number is conserved,

Ĥint =
∑
k

Ω∗kĉ
†â†â+ Ωkĉâ

†â (3.59)

where the rates Ωk determine the amount of frequency perturbation by the reservoir. We
can define a pair of jump operators that account for emitting and absorbing bath quanta
in order to acquire exchange energy, but at zero temperature, we are left with a single
operator

L̂φ =
√

2Γφâ
†â. (3.60a)

(3.60b)

Here, the QME is given by [35]

dρ

dt
=− ı

~
[
~ω0â

†â, ρ
]

− Γφ
(
ρ(â†â)2 + (â†â)2ρ− 2â†âρâ†â

)
.

(3.61)

We are particularly interested in the evolution of off-diagonal elements of the form

dρnm
dt

=
(
−ıω0(n−m)− Γφ(n−m)2

)
ρnm. (3.62)

Again, we find an exponential damping of our solution. Here,

ρnm(t) = e−ıω0(n−m)te−Γφ(n−m)2t (3.63)
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We find that random modulations of the resonator frequency washes out coherence rapidly
for distant coherences (|n−m| � 1). Therefore, macroscopic superpositions will be highly
susceptible to dephasing. We can define a pure dephasing time Tφ = 1/Γφ, such that the
total ‘T2’ of the resonator is then

1

T2

=
1

2T1

+
1

Tφ
(3.64)

However, we caution the reader that the simple decay of two level systems is only applicable
to resonators when we truncate the Hilbert space of the resonator to the same number of
levels as we will do in Chapter 6.

3.5 Quantum error correction on cat-codes

All quantum error correction schemes rely on storing quantum information across redundant
degrees of freedom and accessing joint properties of the system to correct errors [98, e.g.].
It was recognized by Leghtas et al. [99] that because the Hilbert space of a resonator is
infinite, a single resonator could provide a resource-efficient subspace for storing redundant
quantum information. In this section, we present a code that corrects for photon-loss in
cat states of a cQED resonator [70, 99]. These so-called cat-codes are the basis for a
logical quantum computing scheme.

3.5.1 Cyclic photon-loss

Photon-loss is a dominant error channel in circuits [9, 100]. However, coherent states
are eigenstates of the annihilation operator [21]. If a photon is lost from a resonator in a
coherent state, nothing happens. Instead, the state deterministically loses amplitude at
rate κ/2, which can be corrected after some time dt with a displacement of amplitude
ε = κdt/2. Certainly, for a classical bit of information, this is an appealing property.

It turns out that superpositions of coherent states have an interesting consequence for
photon-loss mechanisms too [99]. Consider the even parity eigenstate

|ψ〉 =
1√
2

(|β〉+ | − β〉) . (3.65)
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Losing a photon in this state results in a phase flip,

â|ψ〉 =
1√
2

(|β〉 − | − β〉) . (3.66)

This phase flip takes us to the odd parity subspace. Parity measurements therefore, can
act as a photon-loss error detector, without collapsing the state since |ψ〉 remains always
in a parity eigenstate [99]. Remarkably, this error tracking scheme has been experimentally
demonstrated in cQED [80]. However, the two-legged cat [11] can only encode a classical
bit of information (whether the parity is +1 or -1). To encode a quantum bit, each parity
subspace needs to contain an entire logical Bloch sphere [99].

One basis that can encode superpositions within a parity subspace are four-legged cats.
Two pairs of orthogonal coherent states form a PSK-like constellation to provides logical
states |0〉L and |1〉L as

|0〉L = N (|β〉+ | − β〉)

|1〉L = N (|ıβ〉+ | − ıβ〉) ,
(3.67)

where N ≈ 1/
√

2 since the states that form the basis are only approximately orthogonal.
Now, a full quantum bit of information can be encoded in the state

|ψ〉L = C0|0〉L + C1|1〉L. (3.68)

This logical state is a four-legged cat, with phases and weights of each leg determining the
projected vector on the logical Bloch sphere [70]. Because our logical states are chosen in
the even parity subspace, all logical states have only even Fock weights [11], as

|ψ〉L =
∑

n∈evens

Cn|n〉 (3.69)

Therefore the loss of a single photon will leave us in an odd parity basis. It is convenient
to define logical error states [70] as

|0̃〉L = N (|β〉 − | − β〉)

|1̃〉L = N (|ıβ〉 − | − ıβ〉) .
(3.70)

Detecting any of these error states will indicate that an error has occurred in the memory.
To see how errors can be decoded, consider the action of the annihilation operator
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Figure 3.7: Cat-code logical qubit encoding. (a) The cardinal points on a logical Bloch
sphere are taken to be the even superposition of real valued coherent states | ± beta〉 and
imaginary valued coherent states |± ıbeta〉, as defined in Equation 3.70. The Wigner function
of the logical states |0〉L (blue star) and |1〉L are shown for |β| = 3. (b) The effect of
repeated photon loss events on an encoded qubit state. At the origin, we see that every
photon loss event flips the parity of the state at the origin. After one loss, the negative parity
here indicates an error state. However, a second photon loss even leads to an undetected
error, since the state is back in the logical basis but at a new point on the logical Bloch
sphere.
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on the logical qubit state. We define a counter state |ψ(k)〉L in order to keep track of
successive photon loss events:

|ψ(k)〉L ≡ (â)k|ψ〉L. (3.71)

Remembering that for coherent states â|α〉 = α|α〉, we encounter a series of phase flips
for the logical qubit

|ψ(0)〉L = C0|0〉L + C1|1〉L (3.72a)

|ψ(1)〉L = C0|0̃〉L + ıC1|1̃〉L (3.72b)

|ψ(2)〉L = C0|0〉L − C1|1〉L (3.72c)

|ψ(3)〉L = C0|0̃〉L − ıC1|1̃〉L (3.72d)

|ψ(4)〉L = C0|0〉L + C1|1〉L (3.72e)

We recognize immediately that |ψ(0)〉L = |ψ(4)〉L. Therefore, the photon-loss process is
cyclic in our basis [70]. Consequently, our state is never destroyed by photon loss, though
the deterministic energy loss still occurs at rate κ. Techniques for overcoming energy
decay are under active investigation [34]. These schemes rely on parametrically driving the
system (Section 2.5.1) to ‘re-pump’ the energy back into the resonator deterministically.

Major milestones still remain for the nascent cat-codes. Although encoding a qubit
state onto a four-legged cat has been achieved [68], universal control over a logical
cat-qubit, for instance using the techniques in [69], is an important next step for the
scheme. Additionally, extending the QND error-tracking scheme [80] to a full quantum
bit in a four-legged cat will be a significant accomplishment. Furthermore, building on
the parametric drives already demonstrated for cat-codes [34] to demonstrate four-photon
processes will be essential for the long-term success of oscillator-based QEC schemes.
Finally, putting all of these pieces together, and showing overall gains in qubit performance,
will be an incredible triumph.



CHAPTER 4

Photon boxes for cQED

Microwave resonators are an enabling technology in circuit QED. On their own, res-
onators can serve as a test bed for studying material losses [101–104]. The lessons

gained from these measurements guide the development of cQED devices [105, 106].
Coupled to superconducting qubits, low-loss resonators can act as quantum memories
[52, 75, 107] or as buses for exchanging quantum information between qubits [57, 58].
Resonators are also implemented to enable high fidelity measurements of qubit states [64]
and to protect superconducting qubits from radiative losses [56].

This thesis is primarily concerned with one of these applications in particular, the
quantum memory performance of a resonator. Therefore, we begin this chapter by
presenting a generalized framework for to describe how loss mechanisms affect resonators.
With that context, we present the design and development of a suite of low-loss microwave
resonators and discuss the challenges and opportunities of a number of resonator geometries.
This chapter culminates in the discovery of a viable technique for achieving state-of-the-art
quantum memory performance for a superconducting-qubit-coupled device [52].

4.1 Quantizing a distributed mode

In earlier chapters, our circuits were compiled from discrete components such as inductors
and capacitors. We showed how such elements could lead to a quantized Hamiltonian

71
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which governed their quantum behavior. However, such lumped-element components do
not exist in reality [108]. ‘Inductors’ and ‘capacitors’ are only approximate reactances,
appropriate whenever the size of the component is much less than a wavelength. In
practice, all circuit elements have some complex impedance that is neither completely
capacitive nor inductive. (nor even purely reactive for that matter). Further, the concept
of electromagnetic resonance is much more general than parallel or series circuits. We
will see in this chapter that even with the same frequency and impedance, two microwave
oscillators can have very different physical properties, influencing their utility for cQED.

We are left with the need to generalize our Hamiltonian description from before. While
a careful treatment is possible for any specific arrangement of metal and dielectric, we use
two observations to simplify our work here, which are derived explicitly for a transmission
line in [14]. The first observation is that our electromagnetic mode should be well described
by a wave velocity νp = 1/

√
`c, where ` and c are the inductance and capacitance per

unit length along some propagation axis (usually taken as ẑ). Then, our circuit has well
defined flux and charge that oscillate at frequency ω as

Φ̂(x, t) = Φ̂(x, y)ej(ωt+βz) (4.1a)

Q̂(x, t) = Q̂(x, y)ej(ωt+βz), (4.1b)

where β = ω/νp is the propagation constant. The second observation that allows us to
write down the quantum mechanical description of such a system is the treatment of
boundary conditions [14]. Each resonator has a particular set of boundary conditions that
forces these wave equations to a set of discrete eigenmodes. Otherwise, the system would
lack a meaningful, discrete resonance.

These distinct eigenmodes form a complete, orthogonal set of functions for flux and
charge in a closed geometry. A given distribution of electromagnetic energy can be written
as a sum over these modes [14], such that

Φ̂(x, t) =
∑
n

CnΦ̂n(x, y)ej(ωnt+βnz) (4.2a)

Q̂(x, t) =
∑
n

CnQn(x, y)ej(ωnt+βnz). (4.2b)

The boundary conditions and geometry of the resonator determine the frequency and
spatial distribution of each eigenmode. We have a Hamiltonian for this generalized photon
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Figure 4.1: Black box quantization of a distributed mode. The LC oscillator circuits in
Chapter 2 are useful toy models that capture the physics of QED. In reality however, only the
Josephson element can usually be treated as a lumped element. Distributed resonators can
have complicated mode structures, but once the eigenmodes of the linear system are known,
we recover the equations of motion that would otherwise describe simple LC elements.

box as
Ĥ = ~

∑
n

ωnâ
†
nân, (4.3)

where each eigenmode has a distinct, commuting set of creation and annihilation operators.
We can also generalize a circuit’s coupling to a lumped-element Josephson junction in

this language [109]. The linear part of the Josephson inductance may add another set of
eigenmodes to the system and perturb the existing ones, but we can account for this using
similar techniques as before [10]. We just need to re-diagonalize the modes. After the
linear system has been solved, we only need to know the location of the junction (x = xJ)
to find the flux across the junction (i.e. the difference in flux at +ε), as

Φ̂J =
∑
n

Cn

(
Φ̂n(xJ)− Φ̂n(xJ + ε)

)
. (4.4)

It is this quantity that we use the for nonlinear part of the Hamiltonian (Eq. 2.45) that
gives us the rich physics we saw in the previous chapter. We see in later chapters explicitly
how this term is calculated by full 3D simulations.
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4.2 Quality factors and participation ratios

The quality factor of a resonator (Q) sets the ultimate limit for the resonator’s performance
as a quantum memory or bus. The quality factor is defined as

Q ≡ ω
Total energy stored

Total power dissipated
= ωT1, (4.5)

where T1 is the energy decay time and is inversely related to the energy decay rate
(T1 = 1/κ). Therefore, the ultimate quantum coherence that a resonator can posses is
T2 = 2T1 = 2Q/ω. If a full circuit model is available, the quality factor can be calculated
by

Q =
1

Z0ReY
∣∣
ω=ω0

, (4.6)

where Z0 is the characteristic impedance of the resonator (defined in Eq. 2.92).
As shown in Figure 4.2, many sources of loss can contribute to a total quality factor.

The power dissipated in each of these loss mechanisms combines to make the the total
power dissipated in the circuit equal to

Γtot =
∑
n

Γn, (4.7)

where each loss mechanism consumes power at rate Γn. Because the average total energy
stored in the resonator is a single quantity, we can write the quality factor as

1

Q
=

1

ωEtot

∑
n

Γn. (4.8)

A more convenient way to express the phenomenology of many sources of loss adding to
the total quality factor is to work in unitless quality factors defined as Qn = ωEtot/Γn, so
that the total quality factor can be expressed [110, e.g.] as

1

Q
=
∑
n

1

Qn

. (4.9)

Note that Qn is represents net result of source of loss, combining both the lossiness of the
source and the sensitivity of the resonator to the loss mechanism. Changing geometries
while holding all of the materials properties constant will change Qn. Clearly, there is a need
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Figure 4.2: General loss mechanisms for a resonator. For a physical circuit, many loss
mechanisms can contribute to the damping of energy in the system. The dissipation of each
of these elements adds to the total dissipation rate of the circuit. We can make progress in
understanding a given total dissipation rate through experiments which selectively probe one
such mechanism, such as conductor loss.

to express the sensitivity of a given resonator to a certain loss mechanism independently
of the lossiness of the given mechanism.

This notion is already common for cavity resonators limited by conductor loss, where
a geometrical factor G is expressed in Ohms such that the observed quality factors are
Q ≈ G/R� [111], where R� is the sheet resistance of the conductor used to fabricate
the resonator. For typical waveguide cavity geometries and frequencies, G ≈ 100 Ω such
that typical room temperature conductors, e.g. copper with R� ≈ 0.1 Ω/�, gives room
temperature quality factors of Q ≈ 1000. Designs with higher G achieve a higher Q for a
given metal. We generalize this notion to generic loss mechanisms next, as participation
ratios.

Participation ratios are a useful framework for quantifying loss in any device [112]. The
idea is to use straightforward accounting to interpret decay rates in a way that educates
a circuit designer about the losses in the system. These ratios can lead to surprising
conclusions about what limits a given performance [105, 106]. Comparing many variations
of one main geometry can test scaling hypotheses about certain loss mechanisms [104].
In addition, comparing results from two entirely different geometries can inform a circuit
designer about different types of loss present in both.

To accomplish this accounting, we simply re-express Qn to tease apart the geometry
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dependence from the loss tangent of a mechanism, as a participation ratio

pn =
Energy stored in mechanism

Total energy stored
. (4.10)

Now, if the loss mechanism has a loss tangent tan δn, then

Qn =
1

pn tan δn
=
qn
pn
. (4.11)

If the resonator stores all of its energy in a single degree of freedom its participation ratio
is unity, px = 1, which implies that Q = qx. The key to designing a low-loss circuit is to
know what systems have high qn and store as much of the energy there as possible. In
subsection 4.2.3, we will see how G is explicitly connected to one of these ratios.

Let us look at a few classic loss mechanisms for a superconducting microwave resonator,
using the language of participation ratios.

4.2.1 External loss

All resonators share a loss mechanism that is a direct consequence of coupling signals
into and out-of such circuits [111]. If a circuit is coupled to a port, the real part of the
port’s admittance will damp the mode to some degree. In fact, it is a common technique
to actually over-couple a cQED resonator for readout purposes. Here, we show how this
arises for a simple toy model.

In Figure 4.3, an LC oscillator is capacitively coupled to a 50Ω load, which can be an
access channel for drives or a path for signal to leak into the measurement chain. Following
Schuster [62], the coupling capacitor transforms the real impedance of the load, which we
can recast as a parallel admittance as

Yext =
1

R + 1/jωCext
=

jωCext
1 + jωCextR

. (4.12)

For weak coupling (ωCext � R), Yext can be approximated as

Yext ≈ jωCext + ω2C2
extR. (4.13)

The total admittance of the circuit is then

Ytot =
1

jωL
+ jωCtot + ω2C2

extR, (4.14)
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Figure 4.3: Treating external dissipation. (a)All systems which are probed by an external
port are damped in the process. We introduce the toy model of an LC oscillator capacitively
coupled to a 50Ω load to capture this effect. (b) In order to solve for the induced dissipation
rate on the resonator, we recast the series coupling impedance to a parallel admittance,
whose real part enters the calculation for Qtot as shown in this section.

where Ctot = C + Cc. To use Equation 4.6, we need the characteristic impedance

Z0 ≡ ωImY ′
∣∣
ω=ω0

=

√
L

Ctot
, (4.15)

since ω0 = 1/
√
LCtot. Then, we are ready to express a quality factor for the circuit

Qext ≈
1

ω2
0C

2
extZ0R

. (4.16)

When coupling to distributed modes, the same idea from this toy model holds. Introducing
a real impedance to the circuit for control or readout purposes will be associated with
some external dissipation.

4.2.2 Dielectric loss

On resonance, a circuit stores an equal part of its energy in the mode’s electric and
magnetic fields [111]. Let us first quantify loss mechanisms which dissipate energy in the
electrical quadrature in the form of lossy dielectrics. A good room temperature PCB has a
dielectric loss of tan δ ≈ 2× 10−3 [113], while crystalline sapphire might have loss lower
than tan δ . 1× 10−6 [114, 115].

There are two main channels for dielectric loss in a cQED experiment. First, energy
is stored in the substrate that holds the artificial atom itself [115]. In addition, electrical
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energy is stored at the surface of the superconducting metals, e.g. an oxide layer ALOx

and at the surface of the substrate [105, 106]. Both of these electrical surfaces can be
lossy.

These mechanisms are well described by participation ratios, albeit at very different
scales. We compute the dielectric participation ratio as

pdiel =

∫
diel ε|E|

2dV∫
tot ε|E|2dV

(4.17)

where the numerator integrates over the dielectric of interest, while the denominator
accounts for all of the electrical energy stored in the device. Bulk dielectric participation
ratios tend to be in the range of pdiel ≈ 0.01− 1, as we will enumerate in later sections
for various geometries. Surface dielectrics, on the other hand, tend to have smaller
participation by virtue of their significantly smaller physical volume.

It is often to useful to compute a simplified integral for surface participation. At a
superconducting surface, the tangential component of the electric field must go to zero
(so that no voltage builds up on the conducting surface). Therefore, we only need to
consider the behavior of the perpendicular electric field at these interfaces. To calculate
the electric field inside of the surface layer (Esurf), we rely on the continuity of the D-field
to find Esurf = Evol(εvol/εsurf), where Evol is the electric field in the vacuum. We can
approximate the integral in Equation 4.18 for this type of surface interface, considering a
thin oxide layer, as

pdiel ≈
tox
∫
surf |Evol|2dA

εr,ox
∫
tot |Evol|2dV

(4.18)

where tox is the surface oxide thickness, εr,ox is the relative dielectric constant, and E0 is
the field strength in the vacuum. We point out that if the interface had been different,
e.g. metal-dielectric-metal, the above expression would require modifying the ratio of
Esurf/Evol accordingly.

We can estimate the magnitude of the surface participation ratio for a generic resonator
geometry by considering that the determining contribution is the ratio of volumes repre-
sented by toxA and V , where A is the surface area of the resonator’s conductor, and V is
the total volume of the device. Therefore, a common rule-of-thumb estimation for pdiel of
surface oxide is pdiel ∼ toxA/εr,oxV . For an infinite parallel plate capacitor, this expression
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is exact, and pdiel reduces to a ratio of the oxide thickness to the plate separation L, as

pdiel = 2tox/L. (4.19)

These rules of thumb are useful for estimating the performance of very different types
of microwave resonators. We can see immediately for instance, if a resonator stores all
of its electrical energy in a parallel plate-like element, a larger separation of electrodes
will likely exhibit smaller participation and thus a smaller dissipation or a higher Q for the
same materials properties.

Next, we will look at loss in the other quadrature (magnetic fields), with conductor
loss. We will compare participation ratios for a number of different geometries in a later
section.

4.2.3 Conductor loss

Conductor loss dominates the Q of most microwave resonators made with normal metal
[111]. However, because we have access to superconductors for cQED experiments,
we expect many orders of magnitude higher Q should be attainable [116]. Still, if our
superconducting resonators have finite temperature [18, 117], contain non-equilibrium
quasiparticles [118–120], or contain vortices [18], these devices will have some finite
conductivity. Therefore, it is hard to exclude a limited conductivity of our resonators as a
main source of dissipation in some situations.

We have already met the geometrical factor for cavity resonators G. The definition of
G in Ohms makes it difficult to treat on equal footing with other participation ratios. We
define it here [111] to show how closely related the two concepts are

G ≡
ωµ0

∫
tot |H|

2dV∫
surf |H|2dA

. (4.20)

We recognize that there is again a surface to volume ratio at the core of this expression.
The total magnetic quality factor is given by Qm = G/R�, and we can rearrange the above
integral into unitless pieces as,

Qm =

(
ωµ0δ

R�

) ∫
tot |H|

2dV

δ
∫
surf |H|2dA

, (4.21)

where we have introduced a generic skin depth δ to the numerator and denominator that
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represents the exponential decay of magnetic field into our conductor. In the parenthesis,
we have a term ωµ0δ which can be interpreted as a surface reactance XS [121], since µ0

has units of inductance per meter. Then, the quantity in the parenthesis is a unitless ratio
of XS/R� which we can understand as an effective conductor quality factor qcond for the
metal [100]. For normal metals, qcond = 1 [111]. In fact, switching to a more conductive
normal metal increases Q by reducing the δ in the denominator of the integral-ratio. That
unitless ratio of integrals is pcond, as

pcond =
δ
∫
surf |H|

2dA∫
tot |H|2dV

, (4.22)

which we will explore in detail next.
The conductor participation ratio has a long history in superconducting circuits, where

it also known as the kinetic inductance fraction (α) [122]. For a superconducting resonator,
the correct δ is the penetration depth λ [121]. Because this parameter defines a circuit’s
sensitivity to conductor loss, it also describes the circuit’s sensitivity to quasiparticles.
Circuits with large pmag are used as detectors for astronomy, called Microwave Kinetic
Inductance Detectors (MKID’s) [122], where quasiparticle signals are used to detect a
photon flux.

Unlike dielectric participation ratios, pcond can be revealed experimentally for a super-
conductor through direct means [121, 122], as we describe in detail in Chapter 5.

4.2.4 Contact resistance

Any cQED experiment is assembled from parts that are individually fabricated, for instance
SMA connectors that route signals between devices and cabling [62]. The connections
between components which carry RF energy can introduce dissipation in the form of
spurious contact resistance at seams [123]. Seam loss is especially important whenever
bolting two halves of a cavity together to form a high Q resonator [100, 124] or whenever
assembling and introducing wire bonds to planar circuitry [125].

Following Brecht et al. [123], we model this loss as a generic conductance G whose
loss-profile is constant as g∅ = G/L along a seam of length L. The conductance dG of a
small section dl along the seam is

dG = g∅dl. (4.23)
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The incremental power dissipated by a small amount of current along dl by dG will be

dP =
1

2

(dI)2

dG
=

1

2

(J⊥dl)
2

g∅dl
=
J2
⊥dl

2g∅
, (4.24)

where dI is the current flowing across dl, and the surface current J⊥ is given by a magnetic
field tangential to the current H‖ as

J⊥ = n̂×H‖. (4.25)

Therefore, the total dissipated power can be written as

P∅ =

∫
dP =

1

2g∅

∫
H2
‖dl. (4.26)

Then, the quality factor of the mode due to this loss mechanism [123] is

Q∅ =
ωµ0

∫
H2dV

P∅
= ωµ0g∅

∫
H2dV∫
H2
‖dl

=
g∅
y∅
. (4.27)

The above expression has a very similar form as the participation ratios discussed earlier.
However, allowing units in the dissipation term g∅, unlike tan δ for example, prevents
us from having to make further assumptions about the dissipation. Additionally, we can
define an effective admittance per unit length for the seam as

y∅ ≡
∫
H2
‖dl

ωµ0

∫
H2dV

. (4.28)

The term y∅ acts like the participation ratio for seam loss, giving a quality factor that is
inversely proportional to y∅ as

Q∅ =
g∅
y∅
. (4.29)

We observe that locating cavity joints at regions of small magnetic field, or at least small
current density across the seam (small y∅), is important for maximizing Q∅ and thus Qtot

[123].

4.2.5 Summary of loss mechanisms

The examples in this section have not exhausted all of the possible dissipation mechanisms in
cQED devices. However, participation-ratio accounting techniques are a general framework.
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If a new loss mechanism is encountered, it can likely be described as an effective lossy
capacitor (pdiel), lossy inductor (pcond), or discrete conductance element g∅.

In the remainder of this chapter, we present four types of resonator that have applications
to cQED. For each resonator, we provide derivations and estimates for the participation
ratios studied here. In addition, we also explicitly state how Qext is calculated and
understood for each device. Finally, we discuss how transmon-type qubits can be coupled
to each type of photon box to realize cQED devices.

4.3 Planar resonators

Planar, thin-film resonators begin life as a bare dielectric wafer. Then, the conducting circuit
is patterned on the wafer through either photolithography or electron-beam lithography.
These steps are similar to the ones reviewed in a later chapter for transmon lithography.
For now, let us consider the electrodynamics of one popular type of planar resonator, the
CPW transmission line resonator [126, 127].

4.3.1 Resonant modes of a CPW

A transmission line is constructed from two conductors, where one acts as a ground plane
and the other as a signal-carrying center-pin [111]. The impedance of the line Z0 is
determined by the inductance and capacitance per unit length as

Z0 =

√
`

c
. (4.30)

Electromagnetic radiation traveling down such a transmission line a length z acquires
phase as ejβz. Upon encountering an impedance discontinuity (Z 6= Z0), the signal is
reflected with a complex reflection coefficient [111]

V −

V +
=
Z − Z0

Z + Z0

. (4.31)

where V +, V − are the incoming, outgoing waves. If the discontinuity is an short circuit
(Z = 0) or an open circuit (Z =∞) the magnitude of this reflection coefficient is unity,
meaning that the boundary is equivalent to an infinitely sharp potential well.

Not surprisingly then, two such reflections (open-open, open-short, etc.) are sufficient
to create a standing wave [62]. For the case of an open-open line, the fundamental
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Figure 4.4: Planar resonators and transmons. (a) Cartoon of planar device. (i) Side
view. Metal (silver), typically niobium or aluminum, is patterned on a substrate (green),
typically silicon or sapphire. The impedance of resulting circuits is determined by the ratio of
the width w of metal traces to the gap g separating the trace from the ground plane. The
impact of lossy material (red outline) is also determined by the dimensions of the circuit. (ii)
Top view. A gap in the center trace (yellow box) acts as a coupling capacitor and creates the
conditions for resonance. The bend in the CPW line achieves a smaller physical package with
negligible effect in the microwave domain. A transmon (red) is located between the center
trace and ground plane. (b) Zoom of the transmon-resonator integration. The dynamics
are mediated by the dipole coupling of the transmon element (p) and the fields of the CPW
mode (E). The nonlinearity of the Josephson junction is shunted by the capacitance of the
transmon (CΣ).

resonance has a wavelength λ0 = 2L, where L is the length of transmission line. If the
boundary condition was instead open-short, the fundamental resonance occurs for λ0 = 4L.
Most planar resonators are one of these types.

For CPW resonators, a transmission line is formed by a central conductor of width w,
separated by a gap g from a ground plane [127]. These values are chosen to achieve a
certain characteristic impedance for the transmission line, usually Z0 ≈ 50 Ω. Typical values
for CPW design parameters are w ∼ 10− 100µm and g ∼ 1− 50µm. State-of-the-art
CPW resonators reach internal quality factors of Qint ∼ 106 [103].
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4.3.2 Input-output coupling

We treated reflections from a resonator’s open boundary condition as an infinite potential
well in the previous subsection to aide in our quantization of planar circuits. However, to get
microwave signals into and out-of CPW resonators, the impedance only ever approximates
infinite. A common technique is to implement a small break in the center conductor
[62, 128], introducing a gap between the resonator and the signal carrying transmission
line. Then, the termination impedance is given by a coupling capacitance,

Zc = 1/jωCc. (4.32)

We see that as Cc is reduced to zero, Zc tends to infinity, and the reflection coefficient
will return to unity. A full circuit model can predict an external quality factor Qext from
the dimensions of the discontinuity [62]. However, because the two-dimensional treatment
of planar circuits is an approximation, fringing fields may lead to spurious, unintended loss
if not treated properly [128].

4.3.3 Planar transmons

Transmons on planar circuity tend to have dimensions that are much smaller than a
wavelength (50µm� λ ∼ 5mm) [129]. Therefore, a lumped-element approximation is
well-suited to evaluate the Hamiltonian parameters, e.g. χij, Ki. As shown in Figure 4.4,
a capacitance network is typically used to calculate parameters [62, op. cit. Section 3.3],
such as the transmon anharmonicity

Kq ≈
e2

2CΣ

, (4.33)

where CΣ is the capacitance of the total network given by

CΣ = Cg + C||, (4.34)

and Cg the gate capacitance is from the center trace to the ground plane across the
transmon and C|| is the capacitance directly between the two transmon antenna pads.
Additionally, the self-capacitance of the resonator Cr must be known in order to properly
normalize the coupling strength.

The capacitance network can also be used to predict the magnitude of the cross-Kerr
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coupling strength between qubit and resonator (χrq) and next order Hamiltonian terms
[62, op. cit. Section 3.3]. For instance, the strength of the dispersive interaction is

χrq ≈
g2ωq

4∆(∆−Kq)
, (4.35)

where
g ≡ e

Cg
CΣ

√
ωr

2Cr
. (4.36)

The two-dimensional circuit approximation allows even complicated, many-transmon circuits
to be designed. There has been a steady increase in the number of transmons on a planar
circuit [16, and references therein], with current state-of-the-art circuits having nine
individual transmon elements [46].

The performance of planar transmons has steadily improved too [16, and references
therein]. Recent experiments have shown many transmon circuits where all of the transmons
had T1 & 20µs [46]. Continued development of materials and designs for these circuits
promises even more exciting physics results from this architecture.

4.3.4 Losses

Loss mechanisms in planar resonators and transmons have been the subject of many
experimental investigations [103, 104, 130–133]. A common trend from these results is
that larger features yield lower loss devices until a radiation limit [134] is reached. Careful
participation ratio accounting allows different experimental groups to compare materials
with a common set of explicit assumptions about a given loss mechanism [105, 131]. We
give such a table at the end of this chapter (Table 4.2).

To approximate participation ratios for planar circuits, we can apply our rule-of-thumb
estimates for a CPW’s pdiel and pcond. Consider the case of surface dielectric loss at the
interface between the metal of the planar circuit and the vacuum between conductors. We
can roughly approximate the capacitance of the CPW as a parallel plate capacitor. Then,
for a CPW with gap size g (as Fig. 4.4), the interface would participate (Eq. 4.19) as
pdiel ∼ 2tox/εrg, where tox = 3 nm, g = 10µm and εr = 10 [105], gives pdiel ≈ 3× 10−5.
If instead, we consider the interface between the metal of the CPW and the substrate of
the circuit, the boundary conditions give a factor of εr larger pdiel, indicating that this
interface is particularly important for achieving high quality circuits.
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Figure 4.5: Experimental realization of planar circuit elements. (a) A schematic of a
two-transmon cQED device. Control and measurement signals are input through the left,
weak port, and measurement results are demodulated in transmission. (b) (i) Optical image
of the physical circuit. (ii) A planar transmon is defined with an interdigitated capacitor.
(iii) The output capacitor is also interdigitated to achieve sufficiently fast signal acquisition.
(Figure used with permission from [58]. See Copyright Permissions.)

For a more accurate calculation, edge effects need to be treated carefully with a
two-step technique [135]. The fields of larger features (δx & 10µm) are numerically
calculated independently of smaller features, such as edges. An interpolation is used based
on local scaling arguments to arrive at a global participation ratio [135].

4.4 Rectangular cavity resonators

Since the pioneering experiments that demonstrated strong, dispersive coupling between a
transmon and a three-dimensional (3D) rectangular cavity resonator [114], these cavities
have become a staple of cQED, an architecture that has become known as ‘3D cQED.’
We give an overview of these devices here.
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One of the contributions made in this thesis has been the careful treatment of coupling
signals to these devices as described in Section 4.4.2. Other important implementation
details can be found in [43].

4.4.1 Resonant modes

Rectangular waveguides can be treated exactly in their three-dimensional propagating
field profiles [111], unlike the two-dimensional transmission line circuits whose modes are
treated by approximation. Given a single conductor with rectangular cross-section and
dimensions (a, b), the fundamental propagating mode is the TE10. The non-zero field
components are

Ey = E0 sin
πx

a
e−jβz (4.37a)

Hz = H0 cos
πx

a
e−jβz (4.37b)

Hx =
jβa

π
H0 sin

πx

a
e−jβz, (4.37c)

where the wave impedance

ZTE ≡ −
Ey
Hx

=
ωµ

β
(4.38)

relates the two fields such that the scaling between the electric and magnetic fields is

|E0| =
ωµa

π
|H0|. (4.39)

Like the planar transmission line, boundary conditions can establish resonances in the
rectangular waveguide. If the waveguide is shorted on two planes, separated by a distance
d, the frequency of the fundamental mode (TE101) is

f0 =
c

2π
√
µrεr

√(π
a

)2

+
(π
d

)2

. (4.40)

For standard cQED frequencies (f0 ∼ 10GHz), this corresponds to cavity dimensions of
a, d ∼ 20mm [114]. The fields of the mode are obtained from Equation 4.37 by mapping
the ẑ dependence into a sinusoid.



4.4. RECTANGULAR CAVITY RESONATORS 88

(a)

(b) (c)

0.
5 

m
m

10 mm

a

d
b

Figure 4.6: Rectangular cavities and the 3D transmon. (a) The dimensions of a
rectangular cavity (a× b× d) determine the spectrum of resonant modes. A cartoon of the
electric field of the fundamental TE011 mode is shown in red arrows. The transmon (silver) is
located on a substrate (green). (b) Image of a 3D cQED device. An SMA connector delivers
signals as described in Section 4.4.2. The sapphire chip that holds a transmon qubit is visible
in the center of the cavity. (c) Optical microscope image of a 3D transmon. (Figure used
with permission from [120]. See Copyright Permissions.)

4.4.2 Input-output coupling

A contribution to the understanding of the coupling mechanism for rectangular cavities was
developed for this thesis. The scheme is shown in Figure 4.7 [114]. Coaxial transmission
line (TL) carries signals between room-temperature and the device. At the device, an
abrupt transition is made between the TL and a narrow section of circular waveguide of
radius r0 ≈ 1mm, which delivers the signal to the cavity. Many waveguide modes are
excited by the abrupt TL-waveguide transition. In particular, azimuthal symmetry allows
any TM0m mode of the waveguide to participate [136].
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Figure 4.7: Input-output coupling for rectangular cavities. (a) Coupling to the rectan-
gular cavity is achieved by transforming signals from the coaxial line (TEM) to a propagating
circular waveguide mode (TM01), which has a decay length given by the cutoff propagation
constant β. (b) Coupling between the circular waveguide and the rectangular cavity is
well-described by a circular aperture since the radius of the circular waveguide is small r0 � λ.
Then, the coupling is treated as a dipole excitation problem as shown in Equation 4.44.

Importantly, these TM0m modes have propagation constants [111] given by

βTM0m =

√
k2 −

(
p0m

r0

)2

, (4.41)

where p0m is the mth zero of the zeroth Bessel function J0(x) (for instance, the first zero
of this function occurs at x = p01 ≈ 2.41). The propagation constants become imaginary
when

ω <
p0mc

r0

, (4.42)

with c the speed of light. Below this cutoff frequency for a given mode, the corresponding
signal component is exponentially attenuated in the length of the waveguide section.
Because the TM01 mode has the lowest cutoff frequency, it dominates the transport of our
signals. For the radius of sub-cutoff waveguide used for such cavities (r0 = 1.2mm), the
dominant mode has |βTM01| ≈ 2mm−1, meaning that the propagating fields lose a factor
of e in their amplitude every 0.5mm of waveguide, or equivalently, that the propagating
energy is reduced a factor of e every 0.25mm of waveguide.
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The external quality factor then should be expected to scale exponentially in the length
of the waveguide section L as

Qext ∝ e−2βTM01L. (4.43)

Indeed, measurements confirm this scaling, as we show in Appendix C. To go further than
a scaling-law argument, we need to consider the coupling between the circular waveguide
and the rectangular cavity.

Bethe introduced a technique for describing coupling via aperture as a dipole radiation
problem [137]. We recognize that our circular waveguide impinging on the rectangular
waveguide resembles this problem closely [138]. For Bethe, the aperture was an infinitely
thin sheet of metal separating two waveguides. This concept has been extended to the
case of thick walls by considering the waveguide effects within the aperture [139]. We
approximate the field of the TM01 waveguide at the cavity (y = 0) as the result of a
circular aperture, which has the electric dipole moment [138] as

P ≈ 2

3
ε0r

3
0Eδ3(x− x0)ŷ, (4.44)

where x0 is the location of the aperture, and E is the amplitude of the electric field of the
TM01 mode with units of V/m. By treating the waveguide mode as a infinitesimal dipole
element, we require that r0 � λ.

To see how this dipole radiation affects our resonator, consider the expansion of the
electric field in the cavity as

E =
∑
i

eiEi, (4.45)

where the convenient normalization is introduced [138] so that∫
Ei · EjdV = δi,j. (4.46)

Then, at the resonance frequency of mode i, the stored energy is

Wtot = 2We = 2ε0|ei|2. (4.47)

We point out that the amplitude e0 has units of V
√

m in order for the above relations to
be valid. For the fundamental TE101 mode, we have

E0 =
2√
abd

sin
πx

a
sin

πz

d
ŷ. (4.48)
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Now, let us consider driving the cavity on resonance with the fundamental mode
(ω0) with our dipole. An arbitrary current distribution in the cavity J (oscillating at ω0)
generates a field in the cavity dominated by the amplitude e0 [138, op. cit. Eq. 7.132],
given by

e0 ≈ −jωµ0

∫
J · E0dV

k2
0

(
1−j
Q

) , (4.49)

where Q is the total quality factor of the resonator. The presence of a finite quality factor
prevents the fields from diverging in the presence of our drive. Although, we have already
seen that any real drive necessitates damping anyway: Q = Qext if there are no other
losses present.

Our dipole radiation is equivalent to the current J = jω0P [138]. Therefore, we can
readily compute∫

J · E0dV = jω0

∫
V

(
2

3
ε0r

3
0Eδ3(x− x0)

)(
2√
abd

sin
πx

a
sin

πz

d

)
dV, (4.50)

which gives an excitation amplitude for the mode of

|e0| ≈
ω2

0µ0Q√
2k2

0

(
2

3
ε0r

3
0E
)(

2√
abd

sin
πx0

a
sin

πz0

d

)
. (4.51)

We can simplify the above expression using k0 = ω0
√
ε0µ0 to cancel a few terms, leaving

|e0| ≈
4r3

0QE
3
√

2abd
sin

πx0

a
sin

πz0

d
. (4.52)

It is easily verified that our expression has the right units for the mode amplitude.
To finish the derivation, let us calculate the power radiated into the circular waveguide

from the resonator. We can calculate this power via the Poynting vector [138] as

Prad = 2

∫
(E×H) · ŷdS. (4.53)

The fields of the TM01 that contribute to the Poynting vector are

Eρ = −jβ
kc
EJ ′0(kcρ)ρ̂ (4.54a)

Hφ = −jω0ε0
kc
EJ ′0(kcρ)φ̂, (4.54b)
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where β is βTM01 ≈ ıkc = ıp01/r0. We can make use of the fact that J ′0(x) = −J1(cx)

and the useful identity for Bessel functions∫ a

0

(
Jn(

pnmx

a
)
)2

xdx =
a2

2
J2
n+1(pnm). (4.55)

The power radiated into the waveguide is then

Prad = ı

(
2πω0ε0r

3
0E2

p01

)
J2

2 (p01). (4.56)

Here though, the Poynting vector is imaginary [111]. This means that terminating the
cavity in a waveguide below cutoff only introduces reactance to the mode! None of the
energy is actually dissipated, but the effective volume of the mode has increased. We can
make sense of this result by remembering that an infinite transmission line is equivalent
to a discrete termination by the characteristic impedance of the line. Below cutoff, the
waveguide has an imaginary impedance as shown by Equation 4.56. Introducing an infinite
sub-cutoff waveguide introduces no dissipation since all of the mode is eventually reflected.

In reality, it is the real impedance of our terminated coaxial line (R = 50 Ω) that
introduces the dissipation to the system as

Pdis =
V 2

0

2R
, (4.57)

where V0 is the voltage on the transmission line, given by

V0 = E%2πR

η0

(1− Γ), (4.58)

and where % is the radius of the inner conductor of the coax, η0 =
√
µ0/ε0 is the vacuum

impedance, and Γ is a reflection coefficient that we leave unevaluated for the time being.
We point out that an analytical treatment of the fringing field can yield a value for Γ, as
in [136].

Now, we have an external quality factor given by

Qext ≈
2ωε0|e0|2

Pdis
= 2ωε0

[
4r3

0QextE
3
√

2abd
sin

πx0

a
sin

πz0

d

]2 [
η0

2πE%R(1− Γ)

]2

(2R) (4.59)
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Solving for Qext, simplifying the expression, and grouping terms, gives us

Qext ≈
3

8
π2

[
R(1− Γ)2

ωµ0r0

](
abd

r3
0

)(
%2

r2
0

)[
sin

πx0

a
sin

πz0

d

]−1

(4.60)

Let us walk through these terms one at a time. We observe that the term in the first
bracket is a ratio of the termination resistance to an effective impedance of the dipole.
The next term is a ratio of ‘volumes’ between the cavity and dipole. Then, we have a
transformer term that accounts for the transformation to the coaxial line. Finally, all of
these effects are modulated by the location of the aperture in the cavity.

Collecting all of the aperture radius terms in the denominator of Equation 4.60 gives
Qext ∝ r−6

0 . This is the scaling observed experimentally and in simulation, as reported in
[123].

To evaluate our expression Qext, we use the values of the standard rectangular devices
(abd ≈ 3 × 103 mm3) and apertures (r0 ≈ 1m) and coaxial lines (% ≈ 0.4mm) [114].
We expect then that the strongest coupling obtainable via this type of aperture coupling,
for (x0 = a/2, z0 = d/2, Γ = 0), is Qext & 1000. For the design shown in Figure 4.6,
the coupler is actually offset from the maximum, centered at x0 = 0.12 in, which gives
another factor of approximately four in Qext. Additionally, we expect some mismatch due
to the the coaxial TL-waveguide. The observed maximum Qext, for the coaxial probe still
within the circular waveguide, is Qext ≈ 104. This suggests that discontinuity of the coax
transition reflects approximately half the signal (Γ ≈ 1/2).

An advantage of this coupling scheme is that the exponential nature of the scaling
allows for a wide range of Qext to be achieved [140]. Additionally, the exactness of the
TM01 mode, e.g. no breaks in the waveguide, prevents crosstalk and unwanted dissipation
channels [134]. Therefore, large ratios of Qext can be designed into a single experiment,
which is an enabling technique for many cQED experiments [80, e.g.].

4.4.3 3D transmon

By moving to a waveguide cavity, the effective mode volume is greatly increased. This
gives the Q performance gain by decreasing the participation ratios [105, 106]. That larger
volume necessitates a larger transmon in order to conserve the dipole coupling element g
between resonator and qubit [114]. Unlike planar transmons though, ‘radiation’ losses are
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suppressed by the fact that the ‘package’ of the 3D cavity is the resonator itself. Therefore,
only the Hamiltonian dictates the size constraints on the device.

The 3D transmon has longer coherence (T1 ∼ T2 ∼ 100µs) than other superconducting
qubits, likely for several reasons [114, 141]. First, rectangular waveguide cavities present
a relatively a ‘clean’ RF environment for the transmon. In comparison to the packaging
for planar transmons, the qubit sees no wirebonds, epoxy, or circuit board, all of which
could present dissipation to planar transmons [62]. In addition, the larger dimensions of
the 3D transmon are beneficial to the participation ratios of the mode [105, 106]. Precise
calculations show that 3D transmons can be less sensitive to surface dielectric loss and
to quasiparticles by an order of magnitude [105]. If these loss mechanisms are the root
cause of dissipation in planar transmons, a similar factor for an improvement in lifetime
should accompany the 3D transmon. Finally, the two transmon regimes store energy in
their substrates at approximately equal proportions. Encouragingly, the high coherence
obtained in 3D transmons effectively rules out bulk dielectric loss as a limiting factor for
planar devices at their observed values.

‘Scaling-up’ 3D transmon circuits is one sense as easy as for planar circuits. For
instance, [Sears APS] has shown preliminary results from an 3D architecture which has
48 transmon elements coupled to a single 3D cavity [142]. Implementing individual qubit
control and readout with this architecture might be more of a challenge since the ‘empty
box’ approach of rectangular cavities lends itself mostly to always-on couplings. Yet, clever
proposals exist for leveraging that type of coupling for tailoring subsets of multi-qubit
measurements as well as constructing many-qubit gates [143]. The 3D transmon thus poses
a viable architecture for next-generation experiments with multi-qubit parity eigenstates
and error correction [144].

Moreover, the flexibility of the 3D architecture lends itself to creativity in experimental
implementation. For instance, waveguide Purcell filters have been integrated in such devices
and exhibit fundamentally new spectral filtering [60]. These filters have led to record
fidelities for QND measurements on cQED systems [60]. Having access to a 3D-distributed
mode has made it possible to couple 3D transmons to new degrees of freedom, such
as ferromagnetic magnons [145], opening the door to using new, coherent systems as
quantum memories of transmon qubits [49, and references therein].

Finally, the 3D transmon can also be taken as a proof-of-principle demonstration that
solid state qubits can be coupled to waveguide cavities, which themselves are interesting
objects. Superconducting cavities can be significantly longer lived that state-of-the-art
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superconducting qubits [116], reaching single photon lifetimes as long as 100ms [146]. If
these lifetimes can be combined with the strong coupling of cQED, a number of fascinating
consequences will immediately follow, the first likely being the realization of extremely
effective quantum memories [49]. However, as we show in the next subsection, the
rectangular waveguide architecture might not be sufficiently robust for this vision.

4.4.4 Losses

Because the fields of a rectangular waveguide are analytically solvable, we can determine
what dissipation is introduced to a rectangular cavity by a given loss mechanism. To simplify
our discussion, we take the rectangular cavity dimensions (a = 17.8mm, b = 5.1mm,
d = 35.6mm) [114] for this discussion.

Dielectric loss

Consider a layer of lossy dielectric on the walls of our cavity. For the TE101 mode, the
field is constant in ŷ. Therefore, the (x, z) integrals in the definition of pdiel drop, leaving
simply

pdiel =
2tox
εrb

(4.61)

where tox and εr are the thickness and relative dielectric constant of the dielectric layer.
For typical assumptions [105], tox = 3 nm, εr = 10 and resonator size b = 5mm, we find
pdiel ∼ 10−7. Therefore, a bad dielectric qdiel ∼ 10 will limit these devices at the Q ∼ 108

level.

Conductor loss

Similarly, the sensitivity to quasiparticles is readily available [100]. The integrals in pmag

are straightforward to evaluate using the definitions for Hx and Hz in Equation 4.37 giving

pmag =
ω0µ0λ

η

2π2(2a3b+ 2bd3 + a3d+ ad3)

(kad)3b
. (4.62)

For a penetration depth of 50 nm [100], we have a magnetic participation ratio of pmag =

3× 10−5.
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Figure 4.8: Perturbation of surface currents induced by substrate. The otherwise-
sinusoidal surface currents acquire a sharp kink by the perturbation of the substrate. The slope
of this curve is essentially the sensitivity to asymmetry for seam dissipation as Equation 4.64,
which is significantly steeper than the unperturbed resonant mode.

Seam loss

Finally, the sensitivity of rectangular cavities to dissipative seams can be calculated as well
[123]. Let us first assume that the two halves of the cavity are joined together in the ŷ− ẑ
plane as shown in Figure 4.6 [114]. The magnetic field terms that contribute to y∅ are
those parallel to the seam. Along the seam at z = 0, d however, this component would be
Hy, which is zero for the TE101 mode. Therefore, the relevant integral is only along the
n̂ = ŷ plane, where Hz is nonzero. We have then that

y∅ =
1

ωµ0

2
∫
|Hz|2dl∫
|H|2dV

=
1

ωµ0

2
(

π
kηa

cos πx∅
a

)2
2d
π

(abd/(16η2))

=
1

ωµ0

(
64π

k2a3b

)[
cos
(πx∅

a

)]2

(4.63)

For the choice of seam location x∅ = a/2 (as we do in practice) the seam admittance
goes to zero. Therefore, the design of the rectangular cavity is ideally such that no
surface currents flow across the seam. However, we expect a machining accuracy of up
to δx ∼50µm for these parts as the result with careful machining techniques. We can
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approximate that the seam is located at x∅ = a/2 + δx. The resulting seam participation
is

y∅ ≈
1

ωµ0

(
64π3

k2a3b

)(
δx∅
a

)2

. (4.64)

With the expected machining accuracy, we find that y∅ ≈ 1.8 /Ωm.
This result is actually quite alarming. For the rectangular geometry and aluminum

cavity assembly process, we have ‘calibrated’ our gseam by taking several measurements of
quality factors at different, intentional δx values [123]. We find there that for aluminum
gseam ≈ 104 /Ωm. Therefore, asymmetry at the level of machining tolerance may play a
dominant role in rectangular cavities at the Q∅ ≈ 5× 107. Strikingly, this is average value
for measured Qtot in high purity aluminum, indicating that assembly may so far be the
ultimate limit of these cavities.

An observation that made a substantial impact on the direction of this thesis is that
the effect of seam loss is enhanced, as shown in Figure 4.8, by the presence of the dielectric
substrate of the 3D transmon. This perturbation concentrates the surface currents at
the location of the substrate, which is also usually also the location of the seam. The
concentrated currents account for a factor of approximately ten in the slope of the cosine
of Hz locally, which is equivalent to a factor of 100 in y∅. For a fixed seam quality, a
machining tolerance of δx ∼50µm would therefore be expected to limit cavities at the
level of Q∅ ≈ 5 × 105, which is near the observed values for Qtot for sapphire-loaded
cavities. Simulations suggest that factors of two in Q∅ are possible for smaller pieces of
dielectric. Rethinking the mode structure is therefore important for extending Qtot > 107

in the presence of dielectric and seams.

4.5 Cylindrical cavity resonators

In order to avoid the issues of assembly, a new type of cavity was explored for cQED
applications in this thesis [100]. We point out that is no coincidence that the long history
of high quality factor cavity resonators began with measurements on cylindrical [147, and
references therein]. In particular, it was recognized that one mode of these boxes, the
TE011 mode [148], has no dielectric participation pdiel = 0 and zero currents flowing across
the corners of the geometry. The latter observation allows the cylindrical cavity to be
assembled as in Figure 4.9, with joints at the corners of the cylinder, such that pseam=0.
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By design, we are left with only conductor loss to limit the internal quality factor of the
resonator [148].

With the rectangular cavities, we found that working with higher purity aluminum, and
treating the surfaces before measurement, higher quality factors can be achieved [100].
Cylindrical cavities were developed during this thesis to probe what materials properties
were improved via this technique, and moreover, if the extremely high quality factors
Q > 108 were achievable in a standard cQED experimental setup. These type of resonators
may eventually provide access to very long-lived resources in full cQED experiments.
However, their primary purpose here is a platform for materials testing. At the conclusion
of this section, we present a number of challenges that a cQED experimentalist faces
toward qubit-integration.

4.5.1 Resonant modes

The fields of the TE011 mode are [111, op. cit. Eq. 6.54]

Hz = H0J0(
p11ρ

a
) sin

πz

d
(4.65a)

Hρ = −βaH0

p11

J1(
p11ρ

a
) cos

πz

d
(4.65b)

Eφ = −jkηaH0

p11

J1(
p11ρ

a
) sin

πz

d
, (4.65c)

where a is the radius, d is the height, and as before pnm is the mth zero of Jn(x)

(p11 ≈ 3.83). Immediately, we recognize that at the side walls (ρ = a), J1(p11) = 0

implies that the electric field is zero there. In addition, on the lid (z = 0, d), sin(0) = 0 or
sin π = 0 gives zero electric field there, too. Therefore, the electric field vanishes at all
cavity surfaces. Hence,

pdiel = 0. (4.66)

Furthermore, at the corners of the geometry, (z = 0, d) and (ρ = a), we have that

Hz

∣∣∣
corner

= Hρ

∣∣∣
corner

= 0. (4.67)

Therefore, a joint located at the corners of this cavity has y∅ = 0 for this special mode.
Combining these two ideas we thus expect the TE011 mode to be solely limited by conductor
loss [148]. Furthermore, because of the large volume to surface ratio of the mode, we
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expect pmag to be quite small. For all of these reasons, we expect that the TE011 mode
should indeed achieve high Qtot.

Additionally, the cylindrical geometry supports a diversity of modes whose ordering can
be altered by the ratio of the cavity diameter to its height [111]. However, at best, the
TE011 mode is the sixth lowest mode [111, op. cit. Fig. 6.9]. The frequency of the mode
is given by

f0 =
c

2π

√(p11

a

)2

+
(πz
d

)2

(4.68)

Since J ′0(x) = −J1(x) though p11 is essentially double-counted in the ordering of modes
[148]. Therefore, the TE011 is degenerate with pair of TM111 modes for all aspect ratios
of cavity.

We use a shape perturbation to split this degeneracy [100]. We introduce a ring-shaped
extrusion to the mode at the corners (visible in Fig. 4.9). There, the TE011 mode is largely
unaffected, while the TM111 experiences an effectively smaller volume. We can calculate
the expected shift for small perturbations [111, op. cit. Eq. 6.103] as

δω0

ω0

≈ δWm − δWe

Wtot

. (4.69)

Our ring has a rectangular cross section (w × w) so that

δWm ≈ 2µ0w
3

∫
|Hφ(ρ = a, z = 0, φ)|2dφ

=
2πµ0a

2w3

(p11)2
[ω0ε0E0J2(p11)]2 .

(4.70)

Whereas, the total energy is

Wtot =
πµ0a

4d

8(p11)2
[ω0ε0E0J2(p11)]2 . (4.71)

The ratio therefore gives
δω0

ω0

≈ 16w3

a2d
. (4.72)

We seek to perturb the modes only modestly (δω0/ω0 ∼ 0.1%) and therefore, choose
w = 0.032 in. The above expression would predict an induced detuning of the modes
of δω0/2π ≈ 10MHz for a = 0.75 in, d = 0.95 in, and ω0/2π = 11.5GHz. However,
other effects, such as asymmetry introduced by machining imprecision, can further split
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Figure 4.9: Cylindrical TE011 resonator. (a) Field distribution of the TE011 mode. The
electric field is concentrated in a torus about the cylindrical ẑaxis, and the electric field
vectors point along φ̂. It is visible on the plot that the electric field goes to zero on all the
cavity wall. The magnetic field is zero at the the corners of the cavity and a maximum at the
center. (b) Physical realization of the cylindrical cavity. Two lids close the cylindrical cavity
along the region of minimum magnetic field. Additionally, the small ring perturbation on the
lids, which detunes the degenerate TM111 modes, is visible. An SMA tee allows this cavity
to be measured with the shunt technique. The coupling from SMA to cavity is accomplished
via a loop coupler as described in Section 4.5.2. (Figure used with permission from [100].
See Copyright Permissions.)

degeneracies at this small of a limit. The above estimates serve as a lower bound then for
the splitting between modes. Experimentally, we observe a detuning between TE011 and
TM111 modes of δω/2π ≈ 30MHz.

The other modes of the cylinder are useful to study many dissipation mechanisms at
once, since they will all have various sensitivities to materials and assembly. For instance,
if the TE011 mode is significantly higher Q than any of these other modes, we require loss
mechanisms beyond conductor loss to explain the other modes (see Table 4.2) [100].

4.5.2 Input-output coupling

As shown in Figure 4.10, coupling to the cylindrical cavity is achieved in a similar manner
as before (see Sec. 4.4.2). However, due to the special configuration of the TE011 mode,
magnetic dipole coupling is required here. Additionally, several other considerations are
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Figure 4.10: Input-output coupling for cylindrical cavities. (a) Coupling to the cylin-
drical TE011 is accomplished in an analogous manner to the rectangular cavity geometry.
The center pin of a coaxial cable is soldered to the outer shield, forming a loop. The dipole
moment of the loop is aligned to the local orientation of the magnetic field of the cavity.
A propagating circulating waveguide mode (TE11) translates this dipole moment to the
resonator with an exponentially reduced amplitude. (b) A circular aperture acts as magnetic
dipole in the cavity.

taken into account when implementing a coupling scheme for the cylindrical cavity. In
particular, the presence of the TM111 modes necessitates caution. This section provides
an overview of these choices.

In general, the coupling design problem begins with selecting which field component of
the resonator to excite. For the TE011 mode, only Hρ is remains nonzero at the lids of
the cavity, where machining is easiest. Furthermore, Hρ has its maximum at ρ/a = 0.48,
making this location particularly attractive.

To couple to the cavity’s Hρ, we must choose which sub-cutoff waveguide mode to
excite. We treat the cavity’s field as a constant vector across the face of our sub-cutoff
waveguide (magnetic dipole approximation) [137]. In the cylindrical coordinate frame of
the sub-cutoff waveguide, the magnetic field therefore actually reverses polarity under (φ′

⇒ -ρ′). Therefore, only those propagating modes with Hρ′ that changes polarity under
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this transformation will contribute to this coupling scheme. Looking at the Hρ′ component
of our propagating modes, we have

Hρ′,TE =
−jβ
kc

cos(nφ)J ′n(kcρ
′) (4.73)

Hρ′,TM =
−jωεn
k2
cρ

sin(nφ)Jn(kcρ
′) (4.74)

A loop or iris has a magnetic moment that is constant in the direction of its orientation
(surface area n̂ for the loop) as pictured in [138, op. cit. Fig. 4.32]. Therefore, we align
the coupling loop to the ρ̂ vector of the cavity [100]. Actually, this orientation couples to
both TEnm and TMnm modes. Therefore, we need to consider all propagating modes.

In the experimental realization, the sub-cutoff waveguide has a radius r= 1.8mm,
which sets a propagation constant for each mode (calculated explicitly in Appendix C).
As for the rectangular cavity (Section 4.4.2), we expect the lowest mode to dominate
the transport. We observe that the propagation constant for the TE11 mode is about a
factor of two smaller than that of the next-lowest mode, the TM11 mode. Therefore, we
expect the TE11 mode to propagate signals in and out of the cavity. Thus for the cavity’s
resonant TE011 mode, the scaling of Qext should be

Qext ∝ e2βTE11L, (4.75)

which is the scaling observed experimentally (Appendix C).

4.5.3 Losses

The formulas for three main participation ratios for general TEnml and TMnml modes are
given in Appendix D. We give the specific expressions for the TE011 here for completeness.
We calculate the losses for a resonator with radius a and height d.

Dielectric loss

The dielectric participation ratio is exactly zero for a TE011 mode. Introducing the shape
perturbation to the cavity causes some electric field to reach the walls of the geometry.
Finite element techniques are the most accurate method for determining the resulting pdiel.
For the implemented geometry, we have pdiel ≈ 4 × 10−11. Therefore, an unphysically
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low qdiel would be necessary to damp the TE011 mode at the levels we observe (Q . 109)
[100].

Conductor loss

The magnetic participation ratio is [138, op. cit. Eq 7.55]

pmag =
2ωµ0λ

η

[
(p11)2 + 2π2a3

d3

]
[
(p11)2 +

(
πa
d

)2
]3/2

(4.76)

which gives pmag = 6× 10−6 [100]. A measured Qtot = 7× 108 for this mode puts our
best bound on qcond & 4× 103.

Seam loss

We do not rely on stringent machining tolerances to achieve zero surface currents at
the seams for the TE011 mode. However, other modes in the cylindrical resonator do
participate with this loss mechanism. We give expressions for the seam-admittances of
these modes in Appendix D since these also shed light on other geometries which rely on
small g∅.

4.5.4 Hurdles to transmon integration

Despite the high quality factors achieved for the TE011 mode, several obstacles must be
overcome in order to successfully integrate this mode with a transmon. The first of these
issues is the frequency spectrum of cylindrical cavities [111]. As previously described, the
TE011 mode is not the fundamental mode of the cylindrical cavity. Therefore, any cQED
experiment must deal with multi-mode dynamics, and these modes will lie below any low
pass filtering. Moreover, the degenerate TM111 modes, which are lower Q, will always be
a nuisance for large-bandwidth pulses that are typically used to control resonators.

Beyond the spectral concerns, the field pattern of the TE011 is not obviously beneficial for
cQED. The geometry has a larger mode-volume than the rectangular cavities, necessitating
a larger transmon to maintain strong coupling. Also, the toroidal electric fields, with field
vectors along φ̂, makes the standard electric-dipole coupling difficult in the limit of large
dipoles. The location of the field maxima in the interior of the cavity further requires a
large amount of sapphire to be loaded into the cavity for strong coupling.
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Finally, as we consider in Chapter 6, coupling the transmon to a resonator causes
the resonator to acquire new dissipation channels. If the same transmon dissipation and
coupling strength as used for Chapter 6 had been used to realize a quantum memory with
the cylindrical TE011 mode, the resulting T2 of the memory would at most have been
improved by ∼ 30%, despite the massive undertaking required. With better qubits though
[106, 114], the cylindrical resonator may eventually prove a useful resource.

4.6 Coaxial λ/4 resonators

We developed a new type of resonator for cQED [52] in order to avoid the integration
issues faced by the rectangular cavity design as discussed in subsection 4.4.4. We present
the design and realization of the architecture here, and a detailed analysis of the coherent
dynamics of the system is presented in Chapter 6.

4.6.1 Resonant modes

The coaxial transmission line (TL) supports a TEM mode [111] with fields

E =
V0e

−γz

ρ ln b/a
ρ̂ (4.77a)

H =
V0e

−γz

2πηρ
φ̂ (4.77b)

where a = 1.6mm and b = 4.8mm are the radii of the inner and outer conductors, Our
coaxial λ/4 resonator (Fig. 4.11) is formed by such a TL that is short-circuited on one
end and open-circuited on the other by virtue of a narrow circular waveguide [136]. The
fundamental resonance frequency, f0, is determined by the length of the transmission line,
` ≈ λ/4 (for instance, `=20mm results in f0 = 4.25GHz).

We rely on a length L of circular waveguide, located between the λ/4 section and our
light-tight seal, to protect the λ/4 mode from contact resistance at that joint. Because
we design the resonator to be well below the waveguide’s cutoff frequency (f0 < fc), the
fundamental mode’s energy density decreases exponentially into the waveguide section,
at a rate determined by the radius of the outer conductor, as discussed in detail in
subsection 4.6.4. This is one of the key innovations that enables long lifetimes while
integrating a transmon qubit [52].
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Figure 4.11: Coaxial λ/4 resonator. (a) A quarter-wave coaxial resonator is defined
by shorting a coaxial transmission line’s inner and outer conductors at one location on the
transmission line (bottom) and open-circuiting the line a distance λ/4 away (upward). A
superconducting transmon qubit (green) can be coupled to the λ/4 mode by aligning the
electric dipole moment of the transmon −→p to the electric field of the resonator

−→
E . In the

section above the coaxial resonator, the outer conductor’s cylindrical waveguide TE/TM
modes are well below cutoff. Placing a light-tight seam a distance L away from the resonator
thus allows the perturbation to be exponentially eliminated. This is the same effect as
described in Section 4.4.2. (b) A superconducting transmon qubit on sapphire (green) is
inserted through a 1.5 mm hole. The qubit is also coupled to a second cavity used for
readout that is not shown here. (c) Electron beam microscopy image of a Josephson junction
that provides the nonlinearity to the system. (Figure used with permission from [52]. See
Copyright Permissions.)

Because the cavity is a λ/4 resonator, we expect the next transmission line mode at
f0 ≈ 3λ/4. The separation in frequency between the fundamental mode and the next TEM
harmonic is actually double the fundamental frequency itself, which provides a remarkably
‘clean’ spectrum. In fact, waveguide modes of the coax, in particular the TE11 mode, can
be lower-lying than the second TEM harmonic. The TE11 mode begins to play a role when
ω ≈ 2c/(a + b) = (2π) × 15GHz. Simulations show that these box modes do indeed
appear at ω0/2π ≈ 18GHz.
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4.6.2 Input-output coupling

This cavity is driven in a nearly-identical manner to the rectangular cavities (Sec. 4.4.2),
via a coaxial pin coupler through a hole in the side wall of the cavity [114]. We have
measured coaxial λ/4 modes strongly under-coupled at the levels of κext/2π ≈ 1Hz, as
well as strongly over-coupled at the levels of κext/2π ≈ 1MHz.

4.6.3 Integrating a transmon

The small mode volume makes this quarter-wave resonator particularly attractive for
integration with transmon qubits. By inserting a sapphire chip holding the qubit as shown
in Figure 4.11, we are able to achieve strong coupling between the qubit and the resonator
[52]. For the memory experiment, the qubit is also coupled to a second, over-coupled
cavity used for qubit control and readout. We set the coupling strength between the
transmon and each resonator by the location, orientation, and size of the antenna pads of
the transmon.

The sapphire chip that contains the transmon device is diced to a narrow width (1mm).
That chip is inserted into the resonant cavity via a small diameter hole, in a manner that
is analogous to the coaxial signal probes. Indeed, the strength of the qubit-resonator
coupling is set by the depth of this insertion.

We estimate how the position of the qubit affects the qubit-resonator coupling through
simulations that solve the full BBQ model [10, 149] at several insertion locations. The
results of those simulations are given in Figure 4.12. For small deviations from the target
junction location, the coupling strength can be approximated as linear in the distance
(dashed line). An uncertainty in position at the 100µm level is determined to be an
uncertainty in dispersive coupling strength χ of δχ/χ = 20%. Therefore, a technique for
the careful assembly of this package is necessary to achieve reasonable predictive power
over the system Hamiltonian.

To align the sapphire chip to such a precise location, we monitor the frequency of
the cavity as we insert the chip. The high dielectric of the sapphire pulls the resonant
frequency of the mode downward as more material is added to the cavity. The fractional
frequency change of the mode is [111, op. cit. Eq. 6.95]

δω0

ω0

≈ −
∫
δεr|E0|2dV∫
|E0|2dV

, (4.78)
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Figure 4.12: Assembling a coaxial quarter-wave cQED device. (a) Simulations provide
a means for estimating how the system’s degree of freedom in transmon location affect the
dispersive coupling strength χ between the transmon and resonator. For small deviations
(δx0 . 0.2mm), we find a linear approximation (dashed line) for the change in χ as
δχ/χ ≈ δx0/(0.5 mm). (b) To achieve this precision in the transmon location, we rely
on the frequency pull of the sapphire dielectric on the resonator. We monitor the center
frequency of the resonator empty (i), with the sapphire fully inserted (iii), and for the final
assembled device (iii). Equation 4.79 is used to solve for the resulting transmon location.
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where δεr = 9.4 for sapphire. We evaluate the above integral assuming that the field is
constant across a width w and thickness t of the substrate, giving

δω0

ω0

≈ − δεrwt

π`(ln(b/a))2

(
1

x
− 1

b

)
. (4.79)

where x is the extent of the sapphire into the cavity. This expression holds whenever the
mode is not significantly distorted by the presence of the dielectric. Remarkably though,
Equation 4.79 predicts the correct frequency shift for the sapphire fully inserted in the
resonator (x = a), with the above expression giving δω0/2π ≈ 107MHz as compared
the observed value δω0/2π = 93MHz. In fact, the 15% frequency difference equates to
approximately 50µm of location uncertainty, a difference that may arise from chipping
and kerf uncertainty of the sapphire chip itself.

Table 4.1: Predicted and extracted parameters for the full device device Hamiltonian.

H/~ Experiment (Hz) Simulation (Hz) Deviation (%)
ωs/2π 4.250 ×109 4.246 ×109 < 1
ωq/2π 7.906 ×109 7.878 ×109 < 1
ωr/2π 9.777 ×109 9.653 ×109 1
χsq/2π 4.99 ×105 5.56 ×105 11
χrq/2π 8.25 ×105 7.77 ×105 6
χsr/2π - 1.60 ×103 -
Ks/2π 4.50 ×102 5.20 ×102 16
Kq/2π 1.46 ×108 1.41 ×108 3
Kr/2π - 1.20 ×103 -

As shown in Figure 4.12, we can use Equation 4.79 to solve for the sapphire location
for a given assembly. This process can be done iteratively at room-temperature. However,
we caution the reader that low VNA powers (. −40 dB) should be used for this technique
to avoid breaking the AlOx tunnel junction. The achieved transmon parameters are listed
in Table 4.2.
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4.6.4 Losses

The dimensions for the inner and outer conductors for the coax resonator are a = 1.6mm
and b = 4.8mm respectively [52]. We calculate the participation ratios for the fundamental
mode here.

Dielectric loss

The dielectric participation ratio for the coaxial cavity is

pdiel ≈
tox
εr,ox

(
1

a ln(b/a)

)
(4.80)

For the standard assumptions, tox = 3 nm and εr,ox = 10 and our geometry we have
pdiel ≈ 2× 10−7.

Conductor loss

The magnetic participation ratio for the coaxial cavity is

pdiel ≈ λ

(
1

a ln(b/a)

)
(4.81)

For the standard λ = 50 nm and our geometry we have pmag ≈ 4× 10−7.

Seam loss

If the ‘open-circuit’ termination of this resonator was exact, placing the seam location
anywhere above the center conductor of the coax would have zero seam-participation.
However, the waveguide coupling weakens this effect. We use finite element techniques to
evaluate y∅ numerically, finding y∅ = 1.3× 10−3 /Ωm at the interface of the transmission
line and waveguide sections. We expect y∅ to decay exactly as Qext, as described in
section 4.4.2, except with a different e-folding length.

The TM01 mode sets the λ/4 mode’s propagation into the waveguide. The evanescent
TM01 mode has a propagation constant β =

√
k2 − (2.41/a)2, where k = 2π/λ is the

wavenumber, and a = 5mm is the radius of the circular waveguide section. At our
transmission line’s fundamental resonance frequency of 4.25 GHz, the propagation constant
is β = ı/2.03mm, below cutoff. Therefore, the λ/4 mode’s current-energy density falls
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as |H|2 ∝ e−2|β|z into the waveguide section. Finite element simulations, which take into
account all possible waveguide modes, confirm these simple predictions to within 5%.

We seal the cavity for light-tightness after a length of waveguide section that is
L ≈ 10/|β|. The resonator’s energy has been suppressed at this location by a factor
of about e−20. We therefore rule out assembly defects such as contact resistance as a
potentially limiting dissipation mechanism at internal quality factors of Qint ∼ 109.

4.7 Summary of modes and quality factors

In Table 4.2, we provide a compiled list of the different types of resonators presented in
this chapter and the observed quality factors of each mode. As is clear from the table,
the TE011 has essentially no sensitivity to dielectrics and seams. Conductor loss is the
main culprit for the dissipation of this mode. Therefore, the bound on qmag obtained
from these experiments is potentially a real measure of the conductivity of our high purity,
machined aluminum. It is interesting then that the coaxial λ/4 cavities achieve very similar
bounds for qmag. We can deduce by this comparison that the λ/4 cavities are likely also
limited by conductor loss. Vortices and nonequilibrium quasiparticles are known to cause
conductor loss in superconductors. Investigating these loss mechanisms could be a fruitful
path forward for improving these devices further.
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Table 4.2: Resonant modes and quality factors for high purity aluminum.. Results
for rectangular cavities (R), cylindrical cavities (C), and coaxial λ/4 cavities (Q). All cavities
have undergone the surface preparation described in Chapter 5. Material bounds (q ≥ or
g∅ ≥) are under the assumptions provided in Section 4.2. We use bold font to denote the
best bounds obtained. Unphysical bounds are left as a dash.

Device Mode f0 (GHz) Qint qdiel qmag g∅(/Ωm) cite
R1 TE101 9.455 4.2×107 5.0 1.3×103 7.8×103 [100]
R2 TE101 9.481 4.3×107 5.1 1.3×103 7.9×103 [100]
R2 TE101 9.481 6.9×107 8.1 2.1×103 1.3×104 [100]
C1 TE111 7.700 3.1×107 - 3.4×102 1.0× 106 [100]
C1 TM111 11.448 1.4×107 - 2.3×102 1.4×105 [100]
C1 TE011 11.417 6.1×108 - 3.7×103 - [100]
C2 TE011 11.440 7.4×108 - 4.5×103 - [100]
C2 TE011 11.442 5.2×108 - 3.2×103 - [100]
Q1 λ/4 7.881 8.7×107 20. 3.3×103 -
Q2 λ/4 7.858 8.6×107 20. 3.3×103 -
Q3 λ/4 7.992 8.0×107 18. 3.0×103 -
Q4 λ/4 4.280 7.0×107 16. 2.7×103 - [52]



CHAPTER 5

Measuring resonators and transmons

This chapter presents the core cQED techniques used throughout this thesis. Two basic
types of measurements are considered. First, we present the characterization of linear

resonators that are intended for use in full cQED devices. How to achieve high quality
factors, as well as how to extract Q from measurements, is presented in detail. Then, we
discuss methods for transmon experiments. We focus here on experiments that illuminate
properties of a transmon as an individual circuit element. The next chapter concerns the
coupling between a transmon and a resonator, as well as new experiments enabled by the
coupling (besides qubit readout), in detail.

Many of the techniques in this chapter have a long history in cQED. For a complimentary
review of techniques for resonator measurements, we refer the reader to Geerlings’s thesis
[110]. A step-by-step manual for transmon characterization can be found in Sears’s thesis
[43], and many transmon control techniques are presented in detail in Reed’s thesis [144].
However, a number of new techniques are also explored here.

5.1 Linear resonator experiments

Being able to fabricate and probe high quality bare resonators (Q > 108) is an important
step toward using such objects as coherent quantum memories for cQED [100]. Moreover,
their existence in standard cQED setups (dilution refrigerator, coaxial input-output lines,

112
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etc.), shows that there are not fundamental barriers to these long lifetimes using the
technology already common for cQED experiments. Additionally, resonators can be
sensitive to the same dissipation mechanisms that may limit qubits. Optimizing resonator
performance can therefore be a powerful path forward for improving qubits [104].

In this section, we describe the methods to prepare, measure, and analyze superconduct-
ing aluminum cavity resonators [100]. Preparing these cavities for cryogenic measurement
involves a surface etching step, calibrating the microwave couplers, and finally, integrating
the cavities into a dilution refrigerator measurement setup. The central technique for
vetting the performance of a superconducting cavity is via measurements with a Vector
Network Analyzer (VNA) in a quasi-reflection mode. Fully interpreting these measurements
is only possible by repeating them across a range of circulating RF energies and elevated
temperatures since a resonator’s sensitivity to loss mechanisms, such as quasiparticle loss,
can be revealed through these schemes.

5.1.1 Surface preparation

In order to achieve the highest quality factors in superconducting niobium cavity resonators,
it has been commonly observed that 100-200µm of surface layer should be removed prior
to those measurements [147]. Preparing superconducting surfaces via etching has been a
well-established technique for niobium cavities used in particle accelerators [147]. There, a
combination of buffered chemical polishing (BCP) and electro-polishing (EP) is used to
mitigate a damaged surface layer.

For high purity aluminum (& 99.99% pure), we have found that chemically etching
cavities is essential to realize their optimum performance [100]. The commercially available
Aluminum Etch A by Transene Co is a combination of nitric and phosphoric acid that
has an etch rate of pure aluminum of 100 Å/s at 50·C [150]. The nitric acid attacks
the aluminum directly, which results in an aluminum oxide layer that is dissolved by the
phosphoric acid [151], as

7A + 5HNO3 + 21H3PO4 ⇒ +7Al(H2PO4)3 + 13H2O + 2N2 + NO2. (5.1)

These alternating processes should remove 150µm of material in approximately four hours.
However, the etch rate for is highly dependent on temperature (550 Å/s at 75◦C) and the
process is exothermal [151]. Therefore, care must be taken to measure the total etch rate
for a given setup.
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(a) (b)

(c) (d)

Figure 5.1: Surface preparation of superconducting cavities. (a) A high purity alu-
minum cavity is placed in a bath of Aluminum Etch A to remove the damaged surface layer.
This process is conducted on a hot plate in the vented acid bench of the Becton cleanroom.
Nested beakers with an additional lid prevents overflow and contamination. (b) High purity
aluminum sample before etching. Clear signs of machining scratches are visible. (c) The
acid bath at the end of a two-hour cycle. The liquid has been turned green by aluminum
phosphate salt. Between the liquid and lid, nitrous oxide is trapped and vents in bursts
whenever the pressure exceeds the weight of the lid. If the process is left to continue, the
bath may eventually run clear again as a runaway reaction will begin to attack the salt itself.
Unreliable etch rates and surface impedance results follow this runaway effect. (d) After
two cycles of the two-hour process, the high purity sample is highly reflective with grain
boundaries that are easily visible in the picture.
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Figure 5.2: Calibrating the etch rate of Aluminum Etch A. Several samples are mea-
sured during the etching process to calibrate the etch rate of our process. The manufacturer-
specified value of 100Å/s is indeed met on average, indicating that our process is well-regulated
despite the large total volume of pure aluminum in the bath.

Rectangular cavities turn out to be a useful mechanism for extracting an etch rate. We
perform room temperature VNA measurements to find the resonant frequency of cavities
before and after a surface preparation step. While the etch is an isotropic process, only
one dimension that is etched causes a frequency shift. Therefore, for the TE101 mode, we
get

δf0

δt
=

c

2π

δ

δt

√(π
a

)2

+

(
π

d(t)

)2

(5.2)

which can be evaluated to solve for the etch rate as

δd

δt
≈ 4f0d

3

c2

(
δf0

δt

)
. (5.3)

A histogram of etch-rate measurements performed on aluminum in the Becton clean-
room is given in Figure 5.2. We start the etching process at room temperature and bring
the bath up to 50◦C to avoid the run-away process from the exothermal heat load. During
the process, a teflon stirring bean to agitate the bath at 175 RPM. We replace the bath
with fresh acid after two hours in the four-hour process. The resulting surface finishes are
mirror-like, and the highest purity samples have visible centimeter-sized grain boundaries.
Cryogenic measurements on the penetration depths of these samples, as detailed in a later
section, indicate that the microscopic description of the superconducting condensate has
also been affected by the acid treatment. After surface preparation, a shift toward the
‘clean’ limit of superconductivity is observed [100], as we discuss later in Section 5.1.5.
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5.1.2 Resonator measurement setup

As pictured in Figure 5.3, the cavity quality factor measurements in this thesis and in [100]
were performed with the resonators attached to the base (T ≈ 15 mK) cooling stage of
a dilution refrigerator. Stainless steel cables carry signals from room temperature to the
base stage. Physical attenuation of 20 dB and 30 dB is located on the 4K and base stages
to thermalize the input signals. The impedance of the device under study is introduced to
the signal chain by an SMA tee. The third port of the tee continues through two isolators
and through superconducting coaxial cable to the 4K stage. At 4K, the signal passes
through a low noise HEMT amplifier. Stainless steel cable carriers the signal to room
temperature, where the output passes through two low noise Miteq amplifiers. The input
and output ports of this signal chain are measured in transmission via a vector network
analyzer (VNA). This setup is similar to other quasi-transmission techniques as described
in Section 5.1.3.

The cavities are mounted on copper brackets that are bolted to the base plate of the
refrigerator. These samples are housed in mu-metal shielding (Amuneal 4K) [62], and only
nonmagnetic components are used within the mu-metal shield to maintain low magnetic
fields. Probing the magnetic field near the sample with a calibrated magnetometer, we
detect field strengths of milligauss in the full measurement setup.

5.1.3 Extracting quality factors

The resonator measurement setup described in the previous subsection allows us to measure
in the quasi-transmission method referred to as the shunt, hanger, or notch technique
[104, 130, 133, 152]. Essentially, the signal-carrying transmission line is shunted by the
impedance of a resonator under study as shown in Figure 5.5. The scattering matrix can
be calculated taking into account imperfections, such as cable delay and reflections, that
arise from a lack of calibration in the cryogenic environment. The far off-resonant behavior
of these measurements serve as an in-situ calibration. Importantly, this calibration allows
us to extract the external and internal quality factors independently.

Several derivations for this technique have been presented in papers [130, 133, 152]
and theses [110, 112]. We provide the main results here, beginning with the ideal shunt
resonant circuit (Fig. 5.5). If it has no internal dissipation, the resonant circuit simply
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Figure 5.3: Experimental schematic for resonator testing. To extract the quality factor
of a resonator, phase-resolved (vector) network analysis is performed on a transmission line
circuit that includes the resonator. The analysis compares the full circuit response (large
loop) to a reference branch. Two generators are used to bring the measurement frequency
down to match an ADC digitizing rate. Cryogenic attenuators reduce the blackbody radiation
from 300K. An SMA-tee is used to introduce the impedance of the resonator to the coaxial
transmission line. A low noise amplifier boosts the signal before the room temperature
amplification and demodulation.
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Figure 5.4: Picture of resonator payload. Three high purity aluminum coaxial resonators
and two niobium TM010 cavities. Thermalization is provided by bolting each resonator to
a copper bracket, which itself will be bolted to the mixing chamber. This payload will be
inserted into a magnetic shield for measurement. Copper inner-outer coaxial cable is used
inside the shield, and non-magnetic RF and mechanical assembly components are used to
maintain milligauss fields inside the shield.

creates a phase interference effect in the transmitted signal that is a Lorentzian as

S21 = 1− κext
κext + 2ı(ω − ω0)

(5.4)

Note that on resonance the phase inversion leads to complete destructive interference for
the outgoing signal (S21 = 0), regardless of the coupling strength κext. Essentially, this
resonator is always infinitely over coupled. If instead the resonator has a finite internal
energy decay rate (κint), the resonance frequency acquires an imaginary component [110],
ω̃ = ω0 + ıκint/2, to account for its lack of a natural frequency response. Now, the
transmitted signal is given by

S21 = 1− κext
κext + κint + 2ı(ω − ω0)

, (5.5)

or using quality factors to re-parameterize the expression (Qtot ≡ ω/κtot), we have

S21 = 1− Qtot

Qext + 2ıQtotQext(ω/ω0 − 1)
. (5.6)



5.1. LINEAR RESONATOR EXPERIMENTS 119

(a)

Y1 Y2
Port 1 Port 2

Re S21

Im
 S

21

0.0 1.00.5

0.0

-0.5

0.5

(b)

Re S21

Im
 S

21

0.0 0.5-0.5

0.0

-0.5

0.5

(c)

ω

Figure 5.5: Shunt resonances along a transmission line. (a). The two-port circuit
of a resonator measured via the shunt-technique. For an ideal transmission line that has
no additional reflections or crosstalk, the other shunt impedances Y1, Y2 would be infinite.
However, the response of the resonant circuit can be extracted for nearly-arbitrary Y1, Y2. (b)
The transmission response of the ideal circuit. Far detuned from resonance, the transmission
is unaffected by the resonator (S21 = 1). Resonance traces out a circle on the complex plane
of the transmitted signal (Re(S21, Im(S21)), the rate at which phase is acquired along this
circle (θ[ω]) gives the total quality factor of the resonance. The distance from the origin at
resonance gives the ratio of internal to external quality factors. For completely over-coupled
resonators, the transmission approaches zero on resonance (purple). Critically coupled
(Qint = Qext) gives transmission of one-half on resonance (blue). Finally, under-coupled
resonances give transmission closer to unity (red). (c) Imperfections in the transmission
line Y1, Y2 cause displacements and rotations of the resonant circle. However importantly,
the environmental admittances do not alter the rate of θ[ω], which gives the total quality
factor. Moreover, these effects can be calibrated out by taking into account the far detuned
transmission, which gives access to the ratio of Qtot/Qext.
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In the complex transmitted voltages, the transmitted signal traces out a circle in the IQ
plane. To see why this is a circle, it is useful to define an angle [152]

θ(ω) = tan−1 [2Qtot(ω/ω0 − 1)] , (5.7)

so that the transmission signal is given by

S21 = 1− Qtot

Qext

(
1

1− ı tan θ

)
. (5.8)

Bringing the imaginary component to the numerator and using the trigonometric identity
1 + tan2 θ = sec2 θ, we have

S21 = 1− Qtot

Qext

(
cos2 θ + ı cos θ sin θ

)
. (5.9)

Finally, using the double-angle identities,

cos2 θ =
1

2
(1 + cos 2θ)

cos θ sin θ =
1

2
sin 2θ,

(5.10)

we obtain a simple form for S21 as

S21 = 1− Qtot

2Qext

(
1 + e2ıθ

)
. (5.11)

We recognize the diameter of the circle to be 2Qtot/Qext and from the transmission circle’s
progression along θ as a function of frequency, we obtain Qtot independently from Qext

[152]. Thus, we can completely determine our internal and external dissipation.
Impedance mismatches, crosstalk and other imperfections in our measurement chain

can be accounted for by allowing an imaginary component of the external quality factor
Q̃ext = Qexte

ıε [152]. Additionally, loss and the electric phase-delay accumulated through
the meters of coaxial cable can be lumped into a single complex scaling term Gejωτ , where
τ is the electrical delay time and G is a complex gain term. These perturbation have the
effect of scaling, rotating, and displacing the resonant transmission circle while preserving
the separation of Qint and Qext. The imperfections can be combined [152] as

S21 = Gejωτ
[
1− Qtot

2Qext

(
1 + e2ıθ

)
e−ıε

]
. (5.12)
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Figure 5.6: Fitting quality factors on the complex plane. (a). Raw data for the
transmitted signal through a shunt resonator. Because the VNA cannot be calibrated directly
at the device, we must transform the signal in post-processing by the far detuned signal
levels. (b) A convenient representation for the signal is to evaluate the best-fit circle along
the parametric angle θ[ω]. The phase wraps at a rate given by Qtot alone.

As shown in Figure 5.6, resonator data is fit to Equation 5.12 by taking a best-fit circle
to the data in the IQ plane of (R(S21), I(S21)), which gives the ratio of Qtot/Qext. Then
the data is parametrized by θ(ω) and fit to an arctangent function to obtain Qtot.

5.1.4 Power dependence

While the loss mechanisms that dominate planar resonators are often observe to have
loss tangents which depend on the field energy circulating in the device [153, 154, e.g.],
most of the 3D cavities presented in this thesis do not show this behavior to a measurable
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degree [100]. A notable exception is the coaxial λ/4 resonator. These resonators can have
higher quality factors (by a factor of two or four) at large circulating energies (n̄ ∼ 106),
compared to the single-photon level [52].

To conduct these measurements, vanishingly small drive powers must be used since the
circulating energy is directly proportional to the resonator’s quality factor for a given drive
power, n̄ ≈ PinQtot/~ω2. To see how this comes about, consider the simplest case of the
resonator being measured in reflection with Pin. This is equivalent to a shunt measurement
if Pin is referenced after the microwave tee. Following Aspelmeyer [20], the input power is
equivalent to an incoming photon flux,

Pin = ~ω〈â†inâin〉 (5.13)

This provides an input-output relation for the resonator as

˙̂a = −κtot
2
â+
√
κextâin +

√
κintĥ, (5.14)

where ĥ is a noise term that we can ignore for calculating the expectation of 〈â†â〉. In
steady state we require that ˙̂a ≡ 0 which reduces the above equations of motion to

â =
2
√
κext
κtot

âin, (5.15)

so that the expectation value is

〈â†â〉 =
4κext
κ2
tot
〈â†inâin〉. (5.16)

Using the definition of Equation 5.13, we have then that for this measurement setup, the
average circulating photon number is

n̄ =
4Q2

totPin

Qext~ω2
. (5.17)

For nearly critically coupled measurements (Qtot = Qext/2) at 10GHz, the achieved
quality factors of Qtot ≈ 7 × 108 require an input power of Pin ≈ −175 dBm at the
port. We typically have approximately 70 dB of attenuation in a dilution refrigerator setup
(Section 5.1.2). Therefore, drive powers on the order of -100 dBm are required at room
temperature. The resulting output signal at these exceedingly low drive levels demands
more than 24Hr of integration for a single trace [100].
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Figure 5.7: Power dependence of two cavity resonators. (a). The cylindrical TE011

resonator shows no measurable power dependence. Shown in blue is the transmission at
single-photon levels, while the black trace is not a fit, but rather the transmission through
the same circuit at circulating energies equivalent to 109 photons. This stability could be
associated with the lack of dielectric sensitivity in the mode. (b) The coaxial λ/4 resonator,
however, is observed here to have a degraded Q by approximately a factor of two at low
powers as compared to high powers. Data from the two regimes of powers, low and high, are
shown in blue and black, respectively. These saturable defects are a natural consequence of
the coax resonator’s increased sensitivity to materials.

We present data at high and low powers for the coaxial λ/4 resonator. The change in
the observed Qint corresponds to a saturable loss mechanism that changes the effective
decay rate as

κtot(Pin) = κ0 + κx(Pin) (5.18)

If the unknown loss mechanism completely staturates (κx = 0) at high powers, the above
indicates that κx/2π ≈ 50Hz would limit the otherwise lossless mode to Qtot ≈ 108.

Dielectric loss is a central suspect for this behavior since the bound on qmag obtained for
the coaxial λ/4 resonators is similar to the bound obtained for cylindrical TE011 resonators.
Therefore, we do not expect this device to probe the conductive properties of our aluminum
cavities in qualitatively new ways. However, the TE011 modes have essentially no dielectric
sensitivity. Therefore, the new power dependence for the coaxial λ/4 device might be
attributable to dissipation in the amorphous aluminum-oxide layer of the device.
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5.1.5 Temperature dependence

The response of superconducting resonators to a thermal bias reveals a number of important
clues about the microscopic description of the BCS state [121] as well as the device’s
sensitivity to quasiparticle dissipation (pmag from Section 4.2.3) [100, 122]. Similarly,
temperature dependent measurements also provide a means to extract a direct bound on
the density of nonequilibrium quasiparticles [114].

In general, a superconducting resonator is a sensitive probe to the complex surface
impedance (Zs = Rs + jδXs) [121], where the differential surface reactance δXs is used
because the exact cavity volume is not accessible. Measurements on the cavity provide
access to the superconducting surface impedance Zs as

Zs =
ωµ0λ

pmag

(
1

Qmag
+ 2j

δf

f

)
(5.19)

where λ is the penetration depth, pmag is the magnetic participation ratio, Qmag is the
quality of the surface conductor, and the δf/f term is the frequency shift of the resonator
from the λ = 0 limit (i.e. the physical dimensions of the cavity) or, with an offset, the
zero temperature value λ(T = 0).

To extract useful information about the BCS state of our resonators from these
measurements, Gianluigi Catelani translated fundamental formulas to an applied notebook
found in Appendix []. That tool set was developed by Catelani and Glazman following the
theory of Nam [155, 156], which we review here.

The behavior of BCS superconductors can be classified into two limits, comparing
the mean free path (`) to to the coherence length (ξ) [18]. Our aluminum samples are
strongly in the Pippard, or dirty-superconductor, limit (` � ξ), which we determine by
comparing the observed behavior to predictions of the dirty and clean (or London) limits
of BCS predictions [100]. In the dirty and clean limits of superconductors, this impedance
is related to the normal state impedance Zn by a pair of conductivities σ1, σ2 (which we
define later) such that the superconducting surface impedance can be written

Zs ∝ Zn × (σ1 − ıσ2)ν , (5.20)

where ν = −1/2 for the dirty limit and ν = −1/3 for the clean limit [155, 156]. Determining
the proper exponent in Equation 5.20 is equivalent to determining the correct limit of BCS
for a given material. We point out that a normal state conductor has Xn/Rn = 1 in the
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Figure 5.8: BCS theory for surface impedance of a superconductor. (a) The energy
gap between free quasiparticles and bound pairs rolls off at the transition temperature Tc with
a characteristic shape for all BCS superconductors. (b) The real and imaginary conductivity
components (σ1, σ2 respectively) for the AC response of superconductors depends only on
the frequency of the AC field and the gap of the superconductor. However because the
gap is temperature dependent, these conductivities must be evaluated at each value of gap
(implicitly, temperature) to capture the full behavior of the superconductor. The decreasing
σ2 is equivalent to an increasing kinetic inductance.

dirty limit and Xn/Rn =
√

3 for the clean limit due to the anomalous skin depth [111].
Yet, we will see that for superconductors the surface reactance can be much larger than
the surface resistance.

At low temperatures, we can make the following useful approximation. For supercon-
ductors of both types, we will have σ2 � σ1 [18]. Therefore, we can factor Equation 5.20
to prepare for an expansion

Zs ∝ Znσ
ν
2

∣∣1 + s2
∣∣ν/2 eıArg(s−ı), (5.21)

where we have introduced s = σ1/σ2 for convenience in the following calculations. Using



5.1. LINEAR RESONATOR EXPERIMENTS 126

the definition of Arg(z) [157] with z 6∈ reals

Arg(z) = 2 arctan

[
I(z)

|z|+R(z)

]
. (5.22)

Expanding the Arg function in s� 1 reduces to expanding an arctangent function, giving

Arg(s− ı) ≈ −π
2

+ s+O(s3). (5.23)

Then, expanding the polynomial

(1 + s)ν/2 ≈ 1 +
νs2

2
+O(s4), (5.24)

we have for the full surface impedance

Zs ∝ Znσ
ν
2

(
1 +

νs2

2
+O(s4)

)
(−ı)

(
1 + ıs− s2

2
+O(s3)

)
. (5.25)

Keeping the leading order terms, we have that

Rs ∝ Rnσ1σ
ν−1
2 (5.26a)

Xs ∝ Rnσ
ν
2 . (5.26b)

Equation 5.26b allows us to define a penetration depth λ ≡ Xs/(ωµ0).
The surface Qmag (as Section 4.2.3) can now be written as Qmag ≈ σ2/σ1, which is

evaluated by calculating σ1, σ2 explicitly. For a superconductor with gap E = ~∆(T ), at
reduced temperature T = kBT/~, and operated in low-frequency limit (ω � 2∆), the
dimensionless conductivities are given in [18] as

σ1 =
1

ω

∫ ∞
∆

dε
(ε+ ω)ε+ ∆2√

(ε+ ω)2 −∆2
√
ε2 −∆2

[
tanh

ε+ ω

2T
− tanh

ε

2T

]
(5.27a)

σ2 =
1

ω

∫ ∆

∆−ω
dε

(ε+ ω)ε+ ∆2√
(ε+ ω)2 −∆2

√
∆2 − ε2

[
tanh

ε+ ω

2T

]
(5.27b)

These equations are readily integrated numerically. Remarkably within BCS theory, we
find that the general response of a superconductor to an RF field only depends on the
temperature and frequency of operation with respect to the gap and not any materials
properties [18]. The specific choice of materials affects the realization of σi by providing
particular gap and scaling these with the normal state impedance as Equation 5.26.
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Figure 5.9: Temperature dependence of two superconducting resonators. The res-
onant frequencies of two superconducting aluminum resonators depend strongly on the
temperature of the system. The physical realization of the two resonators are considerably
different. One is a cylindrical TE011 cavity resonator, while the other is a traditional CPW
planar resonator. These two devices share a similar transition temperature since they are
both aluminum. That temperature response of the resonators is related by only a scaling
factor demonstrates the universality of the BCS predictions. The factor of 105 difference
between the two frequency shifts indicates the significantly smaller magnetic participation of
the cavity resonator.

The BCS gap itself has a temperature dependence that is universal with respect to the
reduced temperature (t̄ = T/Tc). It can be numerically solved [18, op. cit. Sec. 3.6.2]
using

1

N(0)V
=

∫ ωc

0

tanh
(

1
2
β
√
ξ2 + ∆2

)
√
ξ2 + ∆2

dξ. (5.28)

where β = 1/T , N(0) is the number of Cooper pairs at zero temperature and V is the
BCS interaction strength.

We can use Equation 5.28 to tabulate values of ∆(t̄) (Appendix []) and plug these
values in Equation 5.27 with the frequency of interest to obtain a universal description
for the complex impedance of a superconductor across a wide range of temperatures.
A small modification to Equation 5.27 needs to be taken into account when ω & ∆(t̄)

(Appendix []), which will always occur for finite frequency since ∆(t̄ = 1) = 0. Because
everything in this treatment has been universal thus far, the temperature dependence
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Figure 5.10: Fitting temperature dependence to BCS theory. The frequency of an
aluminum cavity resonator can be tracked from base temperatures across the transition
temperature of approximately 1.2K. The BCS integrals allow the accurate and independent
determination of Tc and the magnetic participation ratio pmag. Knowing the field distribution
of the mode allows us to extract the penetration depth λ from the scaling.

of a superconducting resonator reduces to scaling the temperature axis to find Tc and
determining the proper clean/dirty limit by the exponent ν.

An example of such a fitting process is shown in Figure 5.10. Moreover, because we can
calculate pmag independently (see Section 4.2.3), scaling the magnitude of the frequency
shift gives us the penetration depth immediately

δf(T )

f
=

1

λ

(
pmag

ωµ0

)
δXs(T ). (5.29)

Before and after etching, we find for a high purity aluminum cavity resonator λ = 65±2 nm
and λ = 52± 2 nm [52]. While both data sets are better described by the dirty-limit BCS
description, the decreased penetration depth indicates that etching has increased the mean
free path [155, 156]. Additionally, the real part of the superconducting surface can be
extracted from quality factor measurements (Fig. 5.11).
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Figure 5.11: Observed quality factors compared to BCS theory. Temperature depen-
dence of the internal quality factors for the cylindrical TE011 resonator (red diamonds) and
the coax resonator (blue circles). The behavior of the imaginary conductivity allows us to
predict the shape of the quality factor roll-off (grey) accounting for a residual Q0 that is
of unknown origin. Without an additional loss mechanism, the upward trend of the theory
line at low temperatures would continue. We observe a maximum Q for the coax resonator
at an elevated temperature (T ≈ 180mK), which is consistent with the power-dependent
behavior of the mode, as these defects may be saturable via thermal energy in addition to
RF excitation.

5.2 Transmon measurements

Measuring transmon qubits in the dispersive limit of cQED has been the focus of several
theses at Yale and elsewhere. A recent development for these techniques has been the
introduction of FPGA controllers as specialized tools for cQED experiments [48]. A
dedicated undertaking by Shoelkopf and Devoret group members Nissim Ofek, Yehan Liu,
Reinier Heeres, and many others has resulted in a stable set of FPGA hardware and software
interface that has refined the capabilities of the Yale cQED team. These developments
have made possible a new set of experiments [158]. The central impact of that work for
this thesis has been enabling more efficient and stable experiments.

Here, we briefly review the experimental techniques used to fabricate, measure, and
control a transmon qubit.
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5.2.1 Fabrication

The transmon qubit is fabricated on a 430µm thick sapphire wafer with a standard Dolan
bridge process [159]. A bilayer of resists (MMA/PMMA) support a suspended structure at
the Josephson tunnel junction location and are completely stripped where the antenna is to
be deposited. Both exposures are completed in a single step of electron-beam lithography.
Before deposition, the sapphire surface is cleaned with ion etching, an Ar/O2 descum at
250 V and 160 mA for 30 s. We deposit aluminum with double-angle evaporation (±28◦)
with thicknesses of 20 nm and 60 nm, exposing the chamber to oxygen in between these
depositions (720 seconds in 2000 Pa static pressure of a gaseous mixture of 85% argon
and 15% oxygen) and again before removing the sample (600 seconds, 400 Pa). We liftoff
the aluminum that is deposited on undeveloped resist. The full recipe is given in [129].

For the memory experiment, our tunnel junction has a normal-state resistance of
Rn =3.5 kΩ at room temperature. We use the Ambegaokar Baratoff relations [160] to
translate this junction resistance to a predicted Josephson energy, as

EJ =
Φ0π∆

2eR′n
= 150µeV (5.30)

where R′n = 1.17Rn is the equivalent low temperature value of the tunnel resistance.
Applying Equation 2.41, we can translate the normal state resistance to a predicted
Josephson inductance of L0 = 4.5 nH.

5.2.2 Measurement setup

Figure 5.12 shows the experimental setup for qubit measurements. These measurements
require two new types of low pass filtering at the base temperature stage [43] in addition to
the attenuation chain in Section 5.1.2. These are necessary to remove for residual thermal
radiation, which is detrimental for cQED experiments while being difficult to detect for
bare resonator experiments. However, the setup presented here has also been used for
resonator measurements to no effect.

The first additional filter is a multi-stage cavity low pass filter sourced for this thesis
through K&L Microwave Inc [43]. They are constructed by concatenated sections of
waveguide cavity resonators. The K&L filters have a rapid roll-off above cutoff (ωc/2π =

10 or 12GHz). Their purpose is to shield the cQED device from intermediate radiation
frequencies (ωrad/2π . 20GHz) which cause can T2 degradation via photon-shot noise
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[140]. However, because the K&L filters are based on resonant techniques, these devices
will have unspecified transmission at very high frequencies (ωrad & 2ωc). Their metallic
construction suggests that these filters will actually be good transmitters of infrared
radiation, which could be leaking from higher temperatures stages of the dilution refrigerator
or generated by the amplification chain.

Eccosorb filters are used to ‘clean up’ the high frequency spectrum [110]. These
filters are fabricated in house via coaxial sections that have purposefully lossy dielectric.
The dielectric of choice is Eccosorb CR-110 by Emerson & Cumming. The material is
commonly used for making waveguide terminations and for anti-reflection coatings in radar
applications. For our purposes, eccosorb imbues these filters with a slow, mostly linear
roll-off that is provided by the conductivity of the activated carbon loading the dielectric
[110]. These type of filters are important because they do not have a fundamental high
frequency limit. Therefore, any infrared leakage will likely be absorbed by these sections.

Another modification to the measurement chain is the addition of a nearly quantum
limited parametric amplifier to boost qubit readout [27]. We discuss its operation in
Section 5.2.5.

5.2.3 Control signals

As we showed in Chapter 2, the transmon qubit is a strongly nonlinear Kerr resonator. To
address its first Fock state, which we label |e〉, without populating the higher states of the
transmon, we must use a frequency selective pulse. For universal control, the phase of
that drive must be programmable. Single-sideband (SSB) modulation fulfills both of these
requirements [62]. SSB is a technique developed a century ago to shape the amplitude and
phase of a local oscillator (LO) signal without the penalty of spurious signal bands [67].

To realize a control signal, we play two envelopes on the FPGA DAC output that are
modulated at some frequency ωIF and having some phase φ0 at t=0 defined as the start
of the experiment. Those signals are

I(t) = i(t) sin(ωt+ φ0) (5.31a)

Q(t) = q(t) cos(ωt+ φ0) (5.31b)

Usually, the two envelope functions are chosen to be Gaussians to minimize distortion
[144], i.e.

i(t) = q(t) = Ae−(t−t0)2/2σt , for t ∈ [t0 ± 2σt], (5.32)
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Figure 5.12: Low-temperature schematic for cQED device testing. The schematic for
the memory experiment includes a number of important components in dilution refrigerator.
Three input control lines (1,2,3) are heavily filtered to reduce thermal population and
dephasing in any of our cQED modes. Circulators are used to introduce the output signal to
the JPA amplifier, which amplifies the signal in reflection. The signal is further amplified by a
low-noise HEMT amplifier and continues to the room-temperature demodulation chain (4).
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Figure 5.13: Room-temperature schematic for modulation and demodulation. The
scheme for generating control signals and performing measurements is shown. The control
chain (blue) depends on IQ modulating carrier tones for full phase and amplitude control,
which are delivered to the cryogenic setup via lines (1,2). The resulting signal channel (4) is
down converted by a phase-resolving, phase-stable interferometer, which compares the signal
to a reference branch. The similarity of the measurement block to the VNA schematic is not
a coincidence, since its primary function here too is to determine the resonant frequency of a
circuit.

which is a pulse centered on some time t0 and has width σt. These signals are often
truncated to have 4σt duration to save DAC memory. This pulse has a frequency bandwidth
of σf = 1/(2πσt).

The conjugate signals are delivered to an IQ mixer on the I and Q ports respectively.
For a mixer driven on the LO port at ω the resulting tone on the RF output will be
delivered at ω − ωIF . Additionally, tuning DC voltage offsets and phase unbalance can be
used to account for imperfections in the IQ mixer that cause spurious sidebands [129].

5.2.4 Readout signals

A pulse is delivered to the readout mode in order to probe its frequency as discussed
in Section 2.5 [64]. While techniques for pulse-shaping this tone can yield enhanced
functionality [161], a square pulse is sufficient for most readout schemes. Therefore, a
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Figure 5.14: Picture of cQED setup. The assembled experiment in a cryogen-free dilution
refrigerator. In the foreground, an input line, with two of its key filters, is visible. The third
filter (eccosorb) is inside the device magnetic shield. Also visible is the magnetic shield of the
experiments JPC. The two coaxial cables into this shield carry the pump and signal tones.
Thermalization via copper braid and OHFC copper brackets is visible throughout the image.
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digital marker from the FPGA is used to trigger a readout generator whenever the state of
the qubit is to be determined.

For the memory experiment, the readout resonator was relatively long-lived (κ/2π =

30 kHz� χ/2π = 1MHz) [52]. Therefore, driving at the bias point halfway between
the ground and excited state transitions required impractically large driving amplitudes.
Instead, the readout was biased at the frequency resonant with readout mode conditioned
on the ground state of the qubit (ωr/2π = 9.78GHz). The readout signal was therefore
mostly an amplitude response. However, phase-resolving techniques still allowed for the
most accurate state discrimination.

The readout mode in [52] was strongly over-coupled via the output port of the device.
Therefore, signal leaked into our integration chain much faster than it was lost to the
dissipation of the system. Our heterodyne interferometer (Fig. 5.13) mixed the readout
signal with a detuned local oscillator (ωLO/2π = 9.78GHz+50MHz) so that the signal
could be digitized by our FPGA’s gigasample-per-second DAC. The trajectory of the
digitized signal, conditioned on preparing the state |g〉 or |e〉 is shown in Figure 5.15.

We generate an optimal filter by taking the difference of these two trajectories. That
filter is applied to each qubit measurement by integrating the associated trajectory with
the difference filter to obtain a single complex voltage (Im, Qm). Many such measurements
allow a histogram to be assembled (Fig. 5.15). With a nearly quantum-limited JPC
amplifier in the signal chain, we observe a large separation of the two distributions. This
bimodal distribution can be thresholded at the bisection of the two Gaussians, so that
each measurement record is converted into a binary result (g or e). Summing up these
records gives us the probability that the qubit was detected in the excited state Pe, which
we use throughout this thesis as our main detection mechanism.

5.2.5 JPC-backed dispersive readout

The memory experiment benefited immensely from a JPC pre-amplification stage [93].
The JPC is a nearly quantum-limited, phase-insensitive parametric amplifier. It provides
a large gain (18 dB) to the readout chain, while introducing significantly less noise than
the following HEMT amplifier at the 4K temperature stage. Katrina Sliwa designed and
fabricated the JPC used in this experiment.

A Wheatsone bridge of Josephson junctions at the center of the JPC allows for frequency
tuning of the linear resonators that determine the amplification frequency of the device
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Figure 5.15: Dispersive readout signal. Many single-shot trajectories are averaged for
the qubit initially prepared in the ground or excited state. Here, the readout frequency is
resonant with the ground-state transition, which causes a large amplitude response of the
readout signal. An optimal filter for detecting the qubit state is constructed by taking the
vector difference between these two signals. (b)Many measurements of a prepared qubit
state, here σx, are conducted by integrating the resulting signals through the optimal filter
to obtain many single measurement records Im, Qm which can be plotted as a histogram.
The separation of the distributions gives an indication of the measurement fidelity, boosted
here by a JPC.

[93]. The bridge is biased with a magnetic field coil. Before tuning up the gain of the
amplifier, the current bias that puts the linear mode of the JPC on resonance with the
readout tone must be found. This is done by taking a flux curve of the amplifier that
traces out the linear frequency of JPC as a function of current (Fig. 5.16).

After the desired current-bias point is found ωs = ωr. The frequency of the idler mode
of the JPC needs to be determined ωi. Then the condition on the pump ωp = ωs + ωi is
approximately known. The tune-up process involves small deviations about the ideal ωp
while increasing the pump strength. We operated the JPC at a gain point of G = 18 dB
with a bandwidth of approximately B = 7MHz, which provided the high signal to noise
ratio shown in Figure 5.15.
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Figure 5.16: JPC tuneup and gain curve. (a) A flux curve is taken of a JPC’s signal
mode during the experiment to find a conversion between current bias and JPC frequency. The
goal is to put the JPC on the resonance frequency of the readout mode. Because we operate
the JPC at the ‘bottom’ of the flux curve (star), our JPC parameters are highly susceptible
to fluctuating flux offsets. A cryoperm magnetic shield is crucial for stable operation. (b)
After finding the correct bias current, the pump is tuned to drive the signal-plus-idler mode
of the circuit at a power which gives the correct gain and bandwidth for optimum readout.
In practice, this is an iterative process with single-shot readout histograms, although the gain
provides a good indication of performance.

5.2.6 Spectroscopy

Without knowing the qubit parameters, a precise tune up of the readout signal is impossible.
But if the device is in the strong-dispersive limit of cQED, the result of an otherwise-
resonance drive of the readout mode will be mostly ineffective whenever the transmon
is populated. We rely on this key observation to perform transmon spectroscopy and
determine its frequency [43].

A pulsed generator is swept across the frequency region that the transmon is expected
to occupy. The pulse duration and amplitude determine of this pulse determine the spectral
content of the probe. For precise determination of the fundamental transmission frequency
of the transmon, a relatively long, weak pulse is required σt ≈ T2. As shown in Figure 5.17,
at higher powers, additional transmission peaks emerge as discussed at the conclusion of
Chapter 2. These spectral lines allow the determination of other Hamiltonian parameters,
such as the Kerr nonlinearity of the transmon [9].
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Figure 5.17: Transmon spectroscopy. The fundamental transition frequency of the
transmon is determined by the large signal response of the readout signal whenever the
spectroscopy generator is resonant with the |0〉 → |1〉 transition (used as |g〉 → |e〉 when
operating the transmon as a qubit). At high powers, the two-photon transition |0〉 → |2〉 is
also clearly visible and provides a direct measurement of the transmon’s nonlinearity.

5.2.7 Rabi oscillations

After the frequency of the transmon is determined, we can selectively drive its fundamental
transition frequency, thereby treating the transmon as a two-level qubit system. The most
basic experiment that one can perform on such a system is Rabi-type experiment [39].
In a Rabi experiment (Fig. 5.18), a resonant drive causes the qubit to rotate around the
Bloch sphere. The rate at which the Bloch vector rotates is given by the amplitude of the
driving field, while the final location on the Bloch sphere is also affected by the duration
of the drive. Measuring the final Bloch vector angle gives a calibration for the π pulses
used throughout this thesis [144].

There are two main classes of Rabi-type experiments, ‘power-Rabi’ and ‘time-Rabi’
that are associated with the two main parameters for any family of drives, amplitude and
duration [39]. Each experiment varies a single pulse parameter, e.g. duration, and equates
the maximum Pe location to a π pulse. Usually the ‘power’-type experiments are preferred
since the experiment may already have timing constraints.

A few complications to these experiments warrant mention. A detuned drive will result
in a slightly deformed shape to the Rabi oscillations. This can cause an experimentalist to
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locate a local maximum of Pe, rather than the global. Therefore, the calibration of the π
pulse will not take the qubit to the excited state, but rather some state which is mostly
the |e〉 with some coherent superposition remaining in |g〉. If the drive is resonant instead
with the two-photon transition, the resulting oscillations will be non-sinusoidal. In fact,
the measurements (which are now indicative of population in the second-excited state)
will oscillate at frequency that is dependent on the amplitude of the drive.

5.2.8 Lifetime

Once a π pulse is calibrated, a T1-style experiment is readily possible [39]. We simply put
the qubit in the excited state and monitor its population as a function of time (Fig. 5.18).
If the qubit is experiencing a single decay rate, the decay will be a single exponential with
time constant T1.

5.2.9 Coherence

The coherence time of the qubit can be revealed by performing a Ramsey-type measurement
with the qubit [39]. We put the qubit in a superposition state |ψ〉 = (|g〉 + |e〉)/

√
2

with a calibrated π/2 pulse. After some time, another π/2 pulse puts the qubit to the
excited state if the phase angle between the generator and qubit is maintained (Fig. 5.18).
In practice, we use a detuning between the generator and qubit to create an oscillatory
signal. This prevents small-detuning effects that can lead to an incorrect exponential time
constant. The resulting decay is an exponential envelope on the oscillations, with the
exponential envelope decaying as T2.
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Figure 5.18: Transmon qubit characterization measurements. Operating the transmon
as a two-level system, we can perform the standard suite of qubit experiments that enable
tuneup and characterization. (a) Rabi oscillations are driven in the qubit for a fixed amplitude
tone of variable duration (dt). This technique, colloquially the ‘time-Rabi’ experiment,
converts a digitization parameter dt to a π pulse by the location of the maximum of the
sinusoid. Alternatively, a ‘power-Rabi’ could be used, which fixes dt and varies the amplitude
of the pulse. The Rabi experiments serve as a basic calibration of qubit control pulses. b
The lifetime T1 is measured by performing a calibrated π pulse and measuring the decay of
the resulting signal. (c) The coherence time T2 is performed by two π/2 pulses separated
by a delay and, preferably, a digital phase that makes the experiment less susceptible to
small-detuning effects.



CHAPTER 6

Characterizing near-millisecond coherence in a cQED

oscillator

We have now seen several architectures for cQED, as well as the potential for resonators
to act as quantum memories in these systems. In this chapter, we review a central

result of this thesis, the realization of near-millisecond coherence times in a resonator that
is strongly coupled to a transmon qubit [52]. We present the experimental techniques that
allow for the characterization and utilization of such a quantum memory.

6.1 Dispersive coupling

In our coupled system of detuned modes, the interaction Hamiltonian (see Section 2.4.1)
is given by

Ĥint/~ ≈ χâ†âb̂†b̂. (6.1)

The dispersive interaction strength χ constrains many of the cQED experiments that utilize
qubit-mediated control or readout of resonators. Therefore, knowing χ to the highest
precision is of paramount importance for the results in this thesis. Here, we review how χ

is measured, as well as the resonator-drive calibration techniques enabled by the dispersive
measurements.

141
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6.1.1 Number-splitting spectroscopy

As shown in Figure 6.1, for strong-dispersive interactions, the qubit acquires a discrete set
of transitions in its spectrum that are dependent on the state of the coupled resonator,
as |g,m〉 → |e,m〉 [62]. In addition, the resonator spectrum is split by an equal amount
for states of the transmon, as |g,m〉 → |g,m ± 1〉. When no drives are present, these
transitions are separated by χ. Therefore, precise measurements of the qubit or resonator
spectrum allows a straightforward extraction of χ [62].

We stress however that if another drive is present, and particularly if it is at a frequency
close to a transition of the system, the observed spectrum can be difficult to interpret
[34, 64]. Therefore, pulsed spectroscopy is the preferred method for extracting χ in the
frequency domain. The experimental sequence is shown in Figure 6.1. First, a resonant
drive populates one of the modes (the ith mode). If a short pulse is used for this purpose
(σf � Ki), we expect that a coherent state should result. Then, a second pulse of
variable frequency scans the spectrum of the jth mode. To achieve a discrete spectrum,
this pulse should be long so that σf � χ and of sufficiently weak amplitude to avoid
power broadening the jth mode (FWHMj � χ). A form of spectroscopy known as π-pulse
spectroscopy sweeps the frequency of a pulse calibrated to take the qubit |g〉 → |e〉 to
achieve these goals while maximizing the population of the transmon in |e〉, thus increasing
signal levels. The resulting spectrum can be fit to a sum of Gaussians or Lorentzian
functions depending on the amplitude of the probe tone and the phase noise of the jth

mode.
We also point out that there are always higher order interaction Hamiltonian terms of

the form
Ĥ ′int/~ = χ′abâ

†â†ââb̂†b̂† + χ′baâ
†âb̂†b̂†b̂b̂, (6.2)

which yield a dispersive shift which itself is number dependent [69], i.e. there is no longer a
single χab that describes all dynamics. However, these higher terms can often be neglected
because

χ′ab
χab
≈ ϕ2

a � 1 (6.3)

where ϕa is the zero point fluctuations of the resonator mode. While the magnitude of χ′ba
is not small, the transmon is typically operated with 〈b̂†b̂〉 ≤ 1. Therefore, this term does
not contribute to our dynamics. However, measurements of χ′ are possible [69]. These
techniques allow confirmation of our Hamiltonian model.
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Figure 6.1: Number-splitting spectroscopy. (top) With the qubit in an equal superposi-
tion of |g〉 and |e〉 the cavity has an equal probability of being detected at two frequencies
detuned by the dispersive shift χ/2π. (bottom) A small displacement on the cavity causes
the qubit to acquire multiple transition frequencies whose weights are proportional to Pn.
Either of these techniques therefore provides a straightforward measurement of χ.

6.1.2 Time-domain techniques

While the frequency domain allows a simple extraction of χ, the fine tuning of the drive
amplitudes and frequency spans can become onerous for large amplitude states. Measuring
in the time domain can provide an arguably simpler experiment, involving only resonant
drives, at the cost of a highly nonlinear output [11, 68]. Further, because many of the
techniques for cQED operations involve essentially time domain modulation of excitation
numbers [68], performing time domain measurements of χ is crucial. For instance, such
a measurement is nearly equivalent to the calibration of the QND parity measurement
scheme [80].

The measurement, shown in Figure 6.2, requires only a small modification to the
basic qubit T2 protocol. Essentially, the resonator is displaced to some, potentially
unknown, amplitude. Then, a T2,q experiment is performed on the qubit. In the strong-
dispersive regime, the qubit’s coherence will decay much more rapidly than the the bare
T2,q [68]. However, this extra decay is only caused by entanglement with the resonator.
Measuring solely the qubit mode traces out the information in the resonator, causing
a false decoherence signal [79]. In fact, at some time later, t = 2π/χ, the state will
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Figure 6.2: Time-domain χ measurement. (a) Experimental sequence to extract the
dispersive interaction strength via time-domain techniques. A displacement pulse on the
cavity puts the cavity state in a superposition of many Fock states. With the qubit on the
equator of the Bloch sphere, the superposition of cavity Fock states causes a frequency
dispersion of the qubit, which revives at times t = 2π/χ. A second π pulse on the qubit maps
the oscillating phase coherence back onto the qubit state. (b) Experimental results from the
time-domain technique. The fully-coherent evolution of Equation 6.4 (grey) over-predicts the
revival strength then the delay becomes comparable to the lowest T2 of the system.

completely revive (although reduced by at least a factor of e−χT2). Locating the period of
these revivals then is equivalent to determining χ.

The form of these oscillations with a coherent state in the cavity [68] is

Pe =
1

2

[
1 + Re

(
〈β|βeıχt〉

)]
=

1

2

[
1 + e|β|

2(cos(χt)−1) cos(|β|2 sinχt)
] (6.4)

One advantage of the time domain technique is that many different displacements
on the resonator can be performed with a single protocol, rather than for the frequency
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domain which requires several different frequency spans to be stitched together. This
allows for rapid assessment of χ′ effects.

6.2 Classical energy decay rate

6.2.1 Calibrating control pulses

Once χ is well understood, we immediately know how to perform selective drives on the
system which act as effective CNOT operations between different system observables
[38]. The most straightforward of these is the detection of individual Fock states. This
same technique turns out to also be a calibration tool for making displacement pulses of
known amplitude [38].

In the number-splitting spectroscopy measurement (Section 6.1.1), we have already
seen the selective drive in action, resulting in an increased signal whenever the drive was
resonant with an allowed |g,m〉 → |e,m〉 transition, provided σf � χ/2π. However,
spectroscopy is an over-complete measurement. Essentially, each of the peak-widths will
be equal. Therefore, the height of each peak, or equivalently, the effectiveness of each
selective π-pulse, is sufficient to determine the Pn distribution [38].

Remarkably, that tool gives us the ability to convert DAC voltages for a pulse to a
coherent state displacement amplitude β for drives on the resonator. Because the statistics
of the photon number distribution is a well known set of Poissonian functions, those
statistics should provide a linear scaling term between the DAC voltage (VDAC) and β,
[38] i.e.

Pn(β) ∝ Pn(cVDAC), (6.5)

where c has units of inverse-Volts. The proportionality relation is used instead of equality
to acknowledge finite measurement fidelity, which provides false counts (mainly in |g〉〈g|
due to T1,q) but does so equally along each number state. While each Fock state can be
measured, again this provides over-complete information since only a single scaling term is
required.

A subtle effect in these measurements can arise from direct resonator-resonator interac-
tions. For large displacements, typically α & 2, an upward quadratic signal can be observed
in dispersive measurement signals [38]. This arises from Hamiltonain terms like χr1r2|β|2,
where the readout mode is shifted in frequency by the population of the resonator under
calibration. This effect was dramatic in [162], which observed number-splitting directly



6.2. CLASSICAL ENERGY DECAY RATE 146

0 80 160 240 320 400
DAC voltage (mV)

0.0
0.2
0.4
0.6
0.8

Si
gn

al
 (P

e)

(a)

cavity

qubit
β

π
0

measurementamplitude

(b)

β=1

Figure 6.3: Calibrating cavity displacement pulses. (a) Experimental sequence to
convert classical pulse strengths to displacement amplitudes. Variable amplitude pulses
displace the cavity from the origin. Then, a number-selective π pulse on the qubit measures
the remaining population in the vacuum. (b) The signal falls as a Gaussian, whose width
serves as a conversion from DAC units to photons. The height of the curve being lower than
unity indicates that the long qubit pulse acts on a timescale comparable to the decoherence of
the system. This procedure is identical to measuring the Husimi-Q function of the resonator
along an axis on the IQ plane.

between two cavities. For small perturbations, a background subtraction (retaking the
data without the qubit π pulse and subtracting the two signals) is used to remove this
artifact and restore a signal proportional to simply Pn.

6.2.2 Coherent state κ experiment

In order to determine the classical energy decay rate that bounds the coherence of our
resonator memory we perform the experiment shown in Figure 6.4. This experiment
essentially repeats the coherent state calibration, but includes a delay between state
generation and detection. Since the coherent state preserves its statistics during the decay,
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Figure 6.4: Energy decay of a qubit-coupled resonator. (a) Schematic representation
of the experiment to extract the energy decay rate of a cavity. A calibrated displacement
pulse on the cavity puts it in a state with average photon number n̄ = |β|2 � 1. This state
falls to the origin with a characteristic rate κ, which is probed by measuring the population of
the vacuum P0. (b) Experimental results from the coherent state κ technique. At first, the
signal is flat because the state is still far from the origin |β(1− κdt/2)|2 � 1. At the end of
the experiment, the curve is again flat since the vacuum state is equilibrium. The duration of
time that separates these two flat regions gives κ for any sufficiently large amplitude input
coherent state. We find in this experiment that κ = 120± 5Hz.

we can even use the same description for Pn. After displacing the resonator, we probe the
population of the vacuum state [52], giving

Pn(β(t)) = Pn(β0e
−κt/2) = e−|β0|

2 exp(−κt) (6.6)

The double exponential form requires some care for choosing β0. It is important to
displace the resonator sufficiently high β0 & 3 that P0 remains approximately zero for
some time. Then, one can more easily separate the two distinct curvatures. While the ring
down appears quite different than qubit T1,q decays, we can gain additional confidence in
our work by using calibrating displacements, reducing the problem to essentially three fit
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parameters, an offset, a scaling, and κ. Of these, only κ causes nontrivial behavior in the
decay curve.

In Figure 6.4 [52], we extract κ/2π = 120± 5Hz, corresponding to a quality factor of
Q = 3.5± 0.1× 107. We expect from this classical decay rate that a single excitation in
the mode would have a lifetime T1 = 1/κ = 1.33± 0.06ms.

6.3 Coherence experiments

The coherence of the resonator is directly accessible if one can create and measure the decay
of non-classical photonic states in the mode [39]. Fortunately, techniques for preparing
arbitrary quantum states in resonators were recently developed for the dispersive cQED
Hamiltonian at our disposal [69, 95]. This section provides an overview of how input
states, analogous to those commonly used for experiments on two-level system coherence,
are generated and how their decay is recorded. We then recover the simple exponential
decays of T1 and T2.

6.3.1 Oscillator T1

A two-level system T1 experiment begins with a complete inversion of the qubit’s population
from ground to excited state. At zero-temperature, the qubit population will be left in the
excited state with probability that is simply Pe = e−t/T1 . State-of-the-art superconducting
qubits have reached T1 ≈ 1ms for fluxonioum-type qubits at a flux bias point of Φ = Φ0/2

[119]. Transmon-type qubits have been observed at the T1 ≈ 0.1ms level [106, 114, 141].
If an oscillator is prepared in the first Fock state |1〉, a similar description follows.

The energy decay is given by a simple exponential P1 = e−t/T1 [52]. Alternatively, the
probability of detecting the resonator in its ground state is P0 = 1 − e−t/T1 . We have
already shown how SNAP can be used to generate such an input state for a dispersively-
coupled resonator (Section 3.3.2). In addition, the selective qubit rotations described in
Pn complete the required control and measurement channels. The protocol for conducting
a T1-type experiment on a resonator is therefore readily available with these elements.
First, we use SNAP to generate |ψ0〉 = |1〉, then we monitor P0 as a function of delay,
which we expect to yield a single exponential term.

In practice, SNAP does not prepare a perfect |1〉 Fock state. Because the photon
number selective qubit rotation has duration ∼ 1/χ, the cavity and qubit are completely
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entangled for some finite time [79], which can be comparable to the decay rates of the
system. In particular, the qubit’s coherence time in the memory experiment was observed to
be T2,q = 6µs, while the Gaussian sigma of the SNAP gate was chosen to be Tgate ≈ 1.5µs.
A naive estimation of fidelity F ∼ e−Tgate/T2,q would predict that approximately 80% of
the resonator should be prepared in the target state.

We indeed confirm a similar result experimentally (Fig. 6.5). By performing qubit
spectroscopy we measure the distribution of Pn after the SNAP preparation step. We
point out that a complication to this spectroscopy technique can arise for coherent SNAP
gate errors. Essentially, if the qubit does not return to the ground state upon completion
of the SNAP gate, the nth Fock state undergoing the SNAP rotation may be mistakenly
found to have excess Pn. Resetting the qubit between preparing the cavity state and
detecting its probability distribution can avoid this source of error. Luckily, for the memory
experiment [52], the ratio of lifetimes between qubit and cavity was approximately 100.
We are therefore able to reset the qubit passively before measuring Pn to reset. A delay of
three qubit lifetimes changes the cavity statistics by only 3%. Therefore, we include this
delay before extracting the distribution Pn. We find the resonator state to be a distribution
of Fock states as P0 = 0.21± 0.02, P1 = 0.75± 0.02, P2 = 0.0.04± 0.02, and all other
states below the noise of our detection. Any off-diagonal matrix elements are not resolved
by this method. However, for the purposes of a T1 experiment, this characterization is
sufficient.

The T1 decay is obtained by incrementing a delay between preparation and measuring
the population of P0 or P1. As expected, a single exponential is observed in the signal,
with a time constant that is within the uncertainty of measurements on coherent states.
The two measurement techniques trade ease of state preparation (Fock states are harder
to generate than coherent states) for ease of decay signal interpretation (decay of coherent
states is a double exponential). Therefore, it is reassuring to obtain the two types of
measurements. Indeed, in Figure 6.6 [52], we extract T1 = 1.22± 0.06ms, in agreement
with the classical energy decay rate extracted from coherent states.
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Figure 6.5: Preparation of nonclassical states via SNAP. (a) Experimental sequence
to characterize the resulting photon statistics of a resonator state prepared by SNAP. Two
displacement pulses on the resonator are separated by a single number-selective qubit 2π
rotation that takes |g, 0〉 ⇒ eıπ|g, 0〉 via a geometric phase. This phase rotation causes a
nontrivial interference effect between the displacement operators. (b) Spectroscopy on the
qubit reveals the results of this preparation step. When the cavity is mostly in the first Fock
state, |1〉, the qubit’s frequency distribution reflects these statistics. By the normalized area
under each peak, we determine that the population of each Fock state (Pn) is P0 = 0.21±0.02,
P1 = 0.75± 0.02, P2 = 0.04± 0.02 (c) After preparing a superposition of |0〉 and |1〉, we
find the distribution to be P0 = 0.49 ± 0.02, P1 = 0.41 ± 0.02, P2 = 0.10 ± 0.02. This
experiment alone is not sufficient to distinguish between a statistical mixture of these states
and a coherent superposition. However, the phase coherence is revealed in the sinusoidal
oscillations of the subsequent T2 experiment.
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Figure 6.6: T1 decay of an |1〉 Fock state. (a) Experimental sequence to measure T1

of a resonator via SNAP. After the |1〉 state is prepared, a delay is incremented. Then, a
selective qubit rotation is used to probe the population of the vacuum as the first Fock state
decays. b We observe a single exponential with T1 = 1.22± 0.06ms.

6.3.2 Oscillator T2

A typical T2-type coherence measurement on a two-level system [39] begins with a π/2
pulse that takes the state to a superposition along the equator of the Bloch sphere like

|ψ0〉 =
1√
2

(|g〉+ |e〉). (6.7)

After some time, the state has evolved with some phase to a state

|ψ(t)〉 = (|g〉+ e−ıθ(t)|e〉)/
√

2. (6.8)

Without decoherence, a second π/2 pulse along the same axis on the Bloch sphere will
restore the state whenever θ = 2π. For a frequency detuning between the pulse and
two-level system (∆), the revival will be sinusoidal with period Trev = 2π/∆. The decay
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of the phase coherence (T2) leads to an envelope on this oscillatory signal that is related
to the energy decay and phase noise of the system.

With SNAP, we can prepare a state along the equator of the pseudo-Bloch sphere of
the resonator’s subspace spanned by {|0〉, |1〉} [95], such as

|ψ0〉 ≈
1√
2

(|0〉+ |1〉). (6.9)

The detailed calculation of how SNAP accomplishes this state preparation is included in
Appendix B for completeness. This resonator state will evolve analogously to the two-level
system (Eq. 6.8). Then, we are left with the task of detecting the phase coherence between
the two states. A displacement pulse on the resonator accomplishes just this [69], as
shown in the theoretical results of Figure 6.8.

Because the SNAP gate is similar here to the one used for the creation of a single Fock
state, we expect similar over all fidelities to the target superposition state. Experimentally,
we can reconstruct the statistics of the prepared state of the resonator. Again, we use the
frequency spectrum on the qubit to reveal the Pn distribution after a reset time. We find
for the distribution that P0 = 0.49± 0.02, P1 = 0.44± 0.02, P2 = 0.1± 0.02, and the
remainder of the Fock states having populations below the noise level of our detection [52].
However, the off-diagonal components of the density matrix, which contain the coherences
between individual Fock states, are not captured by this characterization. That coherence
is revealed by the application of the final displacement pulse at varying phase angles.

Using this state as an input to our T2 experiment, we observe an exponentially decaying
envelope with time constant T2 = 0.72 ± 0.03ms [52]. The resonator exhibits some
excess phase noise such that T2 < 2T1. We can parameterize this excess noise by a pure
dephasing time Tφ such that

1

T2

=
1

2T1

+
1

Tφ
. (6.10)

Using our observed T1 for this expression, we conclude that Tφ = 0.98 ± 0.05ms, or a
pure dephasing rate Γφ = 1/Tφ = (2π)× 1 kHz. This is a surprising result for the memory
since VNA measurements on empty resonators [100], which probe frequency stability (T2),
have agreed with pulsed ring-down energy decay measurements (T1) for the same devices.

The source of the excess dephasing can be traced to the qubit, as we show in the next
section.
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Figure 6.7: Theoretical analysis of pure dephasing in a resonator. (a) Simulated
Wigner functions for a superposition state |ψ〉 = (|0〉+ |1〉)/

√
2 undergoing pure dephasing

as described by Section 3.4.2. Across the panel, the initial state (i) has a large negativity
in the Wigner function, but after a few pure dephasing times (iv), the negativity has been
completely washed out. The radial asymmetry in the state also decays in this process. (b)
We simulate the process used experimentally to probe the phase coherence of the cavity state.
The same state shown in (a) is displaced by an amplitude βeı∆t. The resulting population
in the vacuum state is plotted as a function of time. The oscillations damp as the state
becomes more radially symmetric.

6.4 Qubit-induced decoherence

To understand how imperfections in the qubit mode can affect the performance of our
cavity memory, we study two processes in detail. First, we examine how energy decay
in the qubit can damp the strongly coupled cavity mode. Next, we show how thermal
excitations in the qubit mode can dephase cavity states. Both of these processes have
been subject to detailed study in the opposite limit. Low-Q resonators have been ‘usual
suspects’ for inducing short qubit lifetimes [56]. Additionally, thermal excitations in low-Q
resonator modes have been shown to cause pure dephasing of qubits [140, 141]. The
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Figure 6.8: T2 decay of an |0〉 and |1〉 superposition state. (a) Experimental sequence
to measure T2 of a resonator via SNAP and a final displacement. After the superposition
state is prepared, a delay is incremented. Then, a final displacement pulse is used to measure
the remaining phase coherence of the state via interference. A selective qubit rotation is
used to measure the resulting interference by probing the population of the vacuum. b We
observe an exponentially decaying sinusoid with T1 = 0.72± 0.03ms. This indicates a pure
dephasing time Tφ = 0.98± 0.05ms

symmetry of cQED suggests that both of these effects become important in the reverse
when we find ourselves in the low-Q qubit limit.

6.4.1 Reverse-Purcell effects

Black box quantization [10], as we discussed in Chapter 2 gives a framework for predicting
the behavior of coupled QED circuits by first solving the linear system. If one of the
coupled modes suffers from (linear) damping then, the dynamics of the linear system
should exactly translate to the decay rates observed in the quantum regime [163]. The
quantum memory experiment is a good test system for these predictions because the qubit
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Figure 6.9: Capturing Purcell effects with linear LC circuits. (a) Two modes a and b
are capacitively coupled, identically to the circuit considered in Chapter 2. Here however,
mode b is damped with a resistor R. (b) To solve this circuit, we recast the admittance of
mode b through the coupling capacitor. The real part of this admittance will show up as a
damping term in mode a

mode has an energy decay rate of approximately one hundred times that of the cavity. We
expect that the qubit’s damping could influence observed lifetime of the memory.

Consider the following model (Fig. 6.11) to show how that cross-damping should
behave. Two parallel LC oscillators (ωa, ωb) are coupled via a capacitor (Cext). In addition,
mode b is explicitly damped via a resistor R. The following calculation is similar to the
one used to solve damping from ports (Qext) in Section 4.2.1. Here however, the real
impedance R is transformed by mode b in a nontrivial way.

We saw earlier that the quality factor of a generic resonant circuit, like mode a, can
be written (Eq. 4.6) as

Qa =
1

Z0
aReY [ω = ωa]

, (6.11)

where Z0
a =

√
La/Ca is the characteristic impedance of the mode. In order to solve for

the effect of R on mode a, we again recast the admittance of the coupling capacitor and
load impedance as

Yext =
1

1
jωCext

+ Zb[ω]
, (6.12)

where Zb is the impedance of mode b,

Zb = R + jωLb +
1

jωCb
. (6.13)

The imaginary component of Yext will shift the resonant frequency of mode a, but in the
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detuned limit, we expect this effect to be negligible and concern ourselves with the real
part of the admittance. Expanding Equation 6.12 in the high Q limit (R� Z0

a,b) gives

ReY [ω = ωa] ≈
ω4
aL

2
bC

2
ext

R (1− ω2
aLb(Cb + Cext))

2 . (6.14)

We introduce a detuning ∆ such that ωa = ωb −∆ and constrain our model such that
∆� ω. By expanding to lowest order in ∆/ω, we get that

ReY [ω = ωa] ≈
C2
extL

2
bω

4
a(

4R∆2

ω2
b

) . (6.15)

We have now that the quality factor of mode a due to R is

Qa =
1

Za

(
4R∆2

ω2
b

)
C2
extL

2
bω

4
a

. (6.16)

The resulting expression for Qa can be made considerably more intuitive by grouping terms,

Qa ≈ 4

(
1

Z0
aω

4
aC

2
extωbLb

)
∆2 R

ωbLb
, (6.17)

which we recognize as

Qa ≈
∆2

g2
Qb. (6.18)

where
g2 =

ω2
a

4

(
Z0
aω

2
aC

2
extZ

0
b

)
. (6.19)

This coupling strength g is similar to the splitting term of two resonant LC oscillators [110].
We also point out the similarities between Equation 6.19 and the expression for Qext.

In practice, this circuit model does not allow us to make predictions for our distributed
resonant modes. However, we do have access to a fully three-dimensional finite element
solver which can handle dissipation natively (HFSS). The Eigenmode-type solutions can
diagonalize the linear system and report quality factors for each resonant mode if there is
dissipation in the simulation. To get a prediction for the cross-damping between qubit
and cavity, we add a lumped element resistor in parallel to the Josephson junction - in an
otherwise lossless simulation - generating some generic Qq. The output of the simulation
reports some value for the resonator Qr which is caused only by the linear hybridization
between the two modes. If the simulation is accurate, i.e. predicts the correct dispersive
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coupling strength, we expect this ratio of quality factors to be the maximum possible
separation between resonator and qubit lifetimes. For the device in the memory experiment,
this ratio was Qr/Qq = 590

6.4.2 Testing the reverse Purcell effect

If an experimentalist has in situ control to any parameter in g, e.g. Cext, or frequency
tunability over one of the modes (∆), there are well established techniques to test for
Purcell effects in a coupled system [56]. However, for 3D transmons and in the memory
experiment, we lack either of these knobs. Instead, we seek to tune Qb (here, the qubit’s
lifetime) and monitor the effect on the coupled-cavity [52].

In order to perform this measurement, we rely on the high sensitivity to quasiparticles
in the qubit mode [114]. Essentially, the qubit has near unity kinetic inductance fraction
since most of its inductance comes from the Josephson junction [164], while the distributed
nature of cavity surface currents gives the cavity orders of magnitude smaller participation
[100]. Therefore, at elevated temperatures, thermally excited quasiparticles will be a
nearly-selective damping mechanism. The total decay rate for the resonator is then

κ = κq(T ) + κ0 (6.20)

where κq is the g2/∆2 like Purcell term under study, which is strongly temperature
dependent, and κ0 is the intrinsic decay of the resonator, which should ideally be equal to
the bare cavity results.

Previous measurements would suggest this is feasible for our experiment. Temperature
dependent measurements of the T1,q of other 3D transmons have observed that the lifetime
can be greatly reduced at temperatures as low as 120mK [114], while indeed resonator
measurements like those in Section 5.1.5 typically show no quality factor degradation until
150-180mK.

First, we performed temperature dependent quality factor measurements on a nominally
identical, empty resonator. We find that its lifetime monotonically increases on the range
of 50-180mK (dashed line in Fig. 6.10). We also monitored the lifetimes of the qubit and
qubit-coupled resonator across the same temperature range. All three modes show a trend
toward improved lifetime at slightly elevated temperatures (below 150mK). However, the
qubit and qubit-coupled cavity lifetimes sharply decrease above this threshold.
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Figure 6.10: Temperature dependence of a cQED system. We monitor the decay rates
of the qubit (green diamonds), qubit-coupled memory resonator (blue circles), and an empty
resonator (purple squares) as a function of temperature. We present the relative change in
those decay rates, offset to aide visualization. Decreases in the decay rates (improvements
in lifetime) are observed for all three modes at elevated temperatures below 150 mK. The
dashed line is a best linear fit to the bare resonator’s temperature dependence in this range.
Above 150mK, the quasiparticle sensitivity of the qubit causes at a sharp increase in the decay
rate for both the qubit and the qubit-coupled resonator, while the bare resonator continues
its trend toward improvement. Figure 6.11 is an unnormalized, parameterized version of this
plot, with the qubit-coupled resonator decay rates plotted against the qubit decay rates.
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Figure 6.11: Revealing reverse-Purcell effects in a resonator. (inset) We expect the
cavity to inherit a photon-loss channel from coupling to the lossy qubit. This effect can be
revealed by tuning the decay rate of the qubit in situ. (main) We measure the decay rates
of the cavity and qubit across a temperature range of 20-180 mK. The observed correlation
agrees with the predicted qubit-induced loss channel from a three-dimensional electromagnetic
simulation of the device

The qualitative difference between the bare cavity and the qubit-coupled cavity in this
range is due to the reverse-Purcell effects that we are seeking to elucidate. We correlate the
decay rates of the qubit and cavity and indeed observe a linear relationship (Fig. 6.11). The
best-fit slope between the two modes is κq = (650± 200)−1γ, where the large uncertainty
is caused by the somewhat small range of observed lifetime variation, since we required
that γ > χ during the procedure. However, the scaling between the two modes agrees
quite well with our predicted scaling of κq ≈ γ/600.

We note however that the bare resonator’s lifetime improves up to 15% at these
elevated temperatures. To estimate how this behavior affects the extracted qubit-induced
decay rate of the qubit-coupled resonator, we re-express the total decay rate for this
coupled resonator as

κtot(T ) = κq(T ) + κ0(T ) (6.21)

where the internal resonator dissipation (κ0(T )) is taken to be the temperature-dependent
behavior of an empty resonator. We subtract the best fit linear trend that is obtained from
empty resonator measurements, κ0(T ) (dashed line in Fig. 6.10), from the observed decay
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rate of the qubit-coupled resonator, κtot(T ). Finally, we correlate the qubit’s decay rate to
this scaled resonator decay rate for all recorded temperatures. The more thorough analysis
changes the best fit result from the main text for κq = (650± 200)−1γ by only 2%, well
within the 30% uncertainty in the value from our measurements. Our approximation was
therefore well-justified.

We can also conclude from these measurements that with the qubit lifetime of this
sample T1,q ≈ 6 − 10µs, the maximum memory lifetime obtainable due to our system
Hamiltonian is T1 . 4 − 6ms. Therefore, an otherwise-perfect resonator would only
have been able to achieve a factor of three or four longer lifetime in this setup. We
conclude that an optimal quantity of graduate student resources has thus been put into
the development of this cavity. For the optimist, improvements in qubit lifetime should be
readily available by implementing 3D transmons in this architecture. This strategy could
push the obtainable cavity lifetimes to as much as T1 . 60ms.

The correlation between decay rates also reveals the intrinsic dissipation of the resonator
κ0/2π = 80Hz via the y-intercept of the best-fit. This corresponds to a quality factor
of Qr ≈ 5 × 107, in good agreement with the measurements conducted on empty
resonators. Therefore, no significant, unexplained dissipation was likely introduced by the
qubit-integration process.

6.4.3 Shot-noise dephasing in cQED

Pure dephasing, as we saw in Section 3.4.2, is caused by environmental interactions that
shift the frequency of a mode without exchanging energy directly. As shown in Figure 6.12,
our dispersive interaction can become a dephasing channel when the excitation of a
coupled mode is stochastic [140, 141, 165]. An exact model for the pure-dephasing of a
qubit due to thermal photons in strongly coupled, lossy resonators has been developed
for the dispersive regime of cQED in which we operate [141, 165]. Because the cQED
Hamiltonian is symmetric, this model is directly applicable to resonators being subjected
to the reverse process of thermal shot-noise in the qubit mode. The dephasing rate Γφ

derived in [141, 165], can thus be used for our case of a resonator coupled to a single,
thermally populated qubit as

Γφ =
γ

2
Re

√(1 +
2ıχ

γ

)2

+
8ıχPe
γ
− 1

 , (6.22)
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Figure 6.12: Shot-noise dephasing in cQED. (a) In the strong dispersive limit of QED,
the presence of a single quantum of energy in one mode shifts the other by more than a
linewidth. If one of these modes is thermally excited (at a rate Γ↑), the corresponding
frequency shift will lead to a rapid phase accumulation for the other mode. Because this
process is stochastic and uncorrected, it leads to a pure dephasing channel. (b) A histogram
of qubit measurement records for the system in equilibrium. The relative weights of the two
distributions give the thermal population of the qubit to be Pe = 0.008, which corresponds
to a thermal hopping rate of Γ↑ ≈ kHz.

where Pe is the excited state population of the qubit and γ is the decay rate of the qubit.
Expanding this expression in the strong dispersive limit (χ� γ) gives

Γφ ≈ Peγ

[
1−O

(
γ

χ

)2
]
. (6.23)

The quadratic term is of order 1×10−4 and thus neglected in our analysis here.
To get an estimate for the size of this effect on our resonator, we perform measurements

on the steady-state population of the qubit (Fig. 6.12). We detect the qubit in the excited
state in equilibrium 0.8% of the measurement records corresponding to an effective
temperature of 80mK. For our observed qubit decay rate γ/2π = 27± 2 kHz, we therefore
expect a pure dephasing rate for the cavity of Γφ/2π ≈ 216± 16Hz. The dephasing rate
we extract for the cavity via T1 and T2 measurements is Γφ/2π = 162± 8Hz. These two
rates are suspiciously close.

In order to test the shot-model more precisely, we follow Sears et al. [140] by populating
the spurious mode (in our case, the qubit) intentionally with a calibrated thermal field and
monitoring the induced dephasing. As shown in Figure 6.13, we use a resonant drive on
the qubit of weak amplitude Ω� γ to cause a new equilibrium state of the qubit which is
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Figure 6.13: Increasing qubit population with weak drives. (a) To test the shot-noise
dephasing model, we drive the qubit weakly (Ω� γ), which results in an incoherent mixture
of ground and excited state (green region). (b) The resulting Pe population as a function of
drive amplitude. Each population is measured via readout histograms as shown in Figure 6.12.
We find that we are well within the quadratic drive limit (fit in black is Ω2).

an incoherent mixture of ground and excited states with

Pe ≈
Ω2

γ2
. (6.24)

We can essentially calibrate Ω by performing repeated measurements of the qubit state
after the driven system has reached equilibrium at many drive powers. As expected, we
observe a quadratic rise in Pe for weak drive amplitudes, indicating that a thermal jump
rate of Γ↑ = Peγ has been achieved.

Finally, we create this enhanced thermal state of the qubit while performing Ramsey-
type measurements on the cavity (Fig. 6.14). We find a decreasing T2 of the cavity for
increasing Ω, indicating enhanced pure dephasing. Further, by using our calibration for
Pe(Ω) we can correlate the dephasing rate directly with the shot-noise of the qubit mode.
The total dephasing rate should follow

Γφ = Peγ + Γ0
φ (6.25)

where Γ0
φ is an intrinsic dephasing of the cavity not explained by the shot-noise model.

To obtain a bound on Γ0
φ, we fit the observed data to a linear model while constraining

the slope to be given by γ. The best-fit y-intercept then would be Γ0
φ. In fact, the error on

Γ0
φ for this data set overwhelms the actual value [52]. Therefore, we cite the uncertainty
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Figure 6.14: Revealing shot-noise dephasing of a cQED resonator. (a) A cavity T2

measurement is performed for each qubit drive amplitude. The qubit drive is left on for the
duration of the T2 experiment. (b) We use the calibration Pe experiments to correlate the
observed pure dephasing rate Γφ versus Pe. Because we also know the qubit decay rate γ
from independent measurements, we include the theory line for shot-noise dephasing in the
strong dispersive limit Γφ = Peγ (black). The grey shading represents the uncertainty in
qubit decay rate, γ/2π = 27± 2 kHz

on Γ0
φ as the bound. We find that the data is consistent with the resonator undergoing

intrinsic dephasing at only the level of Γ0
φ/2π . 40Hz.

Reducing Peγ will therefore result in a more coherent quantum memory. These results
are particularly encouraging because the shot-noise of the qubit mode is a potentially
solvable challenge. Several groups have made progress on improvements in qubit ther-
malization [110, 166, 167]. The current record for thermalized transmons is T1,q = 80µs
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and Pe = 0.1% [168]. This same device would only weakly dephase our cavity memory
Γφ ≈ 2Hz.

In addition, during storage operation of the cavity memory, coupling to the qubit may
be unnecessary. Therefore, schemes which involve decoupling the qubit could be used
turn off dephasing during storage operation [107, 169]. These techniques could be just as
useful as physically thermalizing the device for improving the performance of the memory.

6.5 Outlook for resonator quantum memories

Putting this architecture to use is exciting prospect. Besides the types of coherent quantum
optics experiments that such a device could enable [170], we consider two applications
for quantum information here. These provide an outlook on the future impact of highly
coherent cavities for cQED.

One potential application is to use the cavity itself as a qubit, rather than as simply a
quantum memory. The timescale at which we can apply gates to this resource is on the
order of Tgate ≈ 2π/χ [68, 95]. Therefore, the maximum fidelities one would expect for
controlling the cavity on this timescale are on the order of F ∼ 1− 2T1/Tgate ≈ 8× 103.
This is a respectable gate operation [39], comparable to a qubit with Tgate = 20 ns and
2T1,q = 80µs. However, the dispersive control schemes presented in this thesis rely
on complete entanglement with the transmon qubit. Therefore, equivalently coherent
transmons would be needed to reach these optimal values (at which point gates on the
transmon would still outperform those on the resonator by a ratio of ∼ Kq/χ ≈ 103). In
the absence of new controls, the cavity is doomed to always be a worse qubit, though
potentially better quantum memory, than the transmon.

Using this architecture for experiments on an error-correctable quantum memory is a
potential win for system performance (see Section 3.5). To see how this comes about,
consider the decay of the two-cat under QND parity measurements as in [80]. With
monitoring, the effective decay of the state is

κeff =

[
(n̄κ)2(τm + τw)2

2
+

τm
T1,q

]
1

τm + τw
, (6.26)

where τm is the time of a single-shot parity measurement, τw is a wait time between
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measurements. The minimum of this expression occurs for a waiting time

τw =
1

n̄κ

√
2τm
T1,q

− τm, (6.27)

which gives

κeff = n̄κ

√
2τm
T1,q

. (6.28)

Clearly, if we take the ratio of κeff/κ as the only metric, the resulting improvement is
independent of the intrinsic energy decay rate of the resonator. However, in order for the
optimal wait time to be physical, we require that τw � τm in order for the system to reset
between measurements. This gives an additional constraint on κ as

κ� 1

n̄τm

√
2τm
T1,q

. (6.29)

Working with smaller κ resonators is thus more forgiving to the experimentalist who seeks
to work with distinguishable (large n̄) cat states for a fixed parity measurement time and
qubit performance [80].

Another important goal of logical cat-qubit operation are the so-called cat-pumping
schemes [34]. There, parametric processes restore the deterministic energy decay rate
of coherent states. The important metric for these schemes are κ↑/κ, where κ↑ is the
restorative pumping rate. These parametric processes have strengths that are independent
of κ [70]. Therefore implementing a long lived cavity could provide a potentially large gain
for these systems.



CHAPTER 7

Conclusion

In this chapter, we conclude with an outlook on two fundamental concepts that have
been touched on throughout this thesis. The first concerns the scaling-law for the

coherence of cQED devices, known as Schoelkopf’s Law. Building off the arguments from
this section, we suggest radically re-thinking how the most coherent objects in cQED are
controlled today.

7.1 Continuing Schoelkopf’s Law

Gordon Moore predicted in 1965 that the number of transistors patterned on a production
integrated circuit would double about every two years [171]. That prediction heralded the
semiconductor industry’s sustained, rapid progress in developing new ways of extending the
computational power available on chip, keeping pace with Moore’s Law [172]. Unbelievably
insightful, Moore made his prediction when, only three years earlier, state-of-the-art
integrated circuits had only ten components.

Today, quantum circuits are on a similar trajectory. As pointed out in previous theses
and in the review [16], the coherence of circuits has doubled approximately every nine
months. The ‘one-figure’ summary of this thesis is shown in Figure 7.1, as the quantum
memory presented here can be thought of as the state-of-the-art in circuit coherence at
T2 ≈ 1ms level [52].

166
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Figure 7.1: Schoelkopf’s Law for the coherence times of circuits. The coherence of
state-of-the-art superconducting quantum circuits has doubled approximately every nine
months. Maintaining this trend is a continuing challenge for the field. (Figure used with
permission from [16]. See Copyright Permissions.)

An important corollary to Schoelkopf’s Law was pointed out by Bishop [173]. It was
observed that each improvement on the way up the coherence trajectory was accompanied
by a sacrifice of some access channel to the circuit. The step from Cooper-Pair-Box [33] to
Quantronium [174] sacrificed always-on charge-sensor readout [174]. The change to cQED
devices gave up charge-sensor readout altogether [55]. Transmon qubits are accompanied
by finite anharmonicity [9]. Finally, the pristine environment of 3D transmons sacrifices
fast-flux control [114]. Perhaps including cQED resonators on Figure 7.1 is the extreme
limit of Bishop’s Corollary - these devices are nearly-harmonic oscillators after all.

Finally, there is strong hope that these cQED resonators will be improved upon by
future experiments. The coaxial λ/4 resonator places our best bound on the loss properties
of bulk aluminum. On the other hand, planar, thin-film aluminum resonators require
significantly better materials performance to achieve their observed lifetimes [103, 104].
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Understanding the key differences between these two types of devices will potentially
unlock huge gains for cavity based quantum memories in cQED.

Coherence is only as important as what we can do with it however. For that matter,
we consider an extension to the control schemes in this thesis and comment on the desired
tool set for controlling cQED resonators.

7.2 Controlling quantum states in resonators

With the dispersive interaction, many resonator Fock states can be manipulated in parallel
[68]. Gates like QCMap can create very complex resonator states with only simple pulses
because of the high symmetry of this scheme. However, there are two intrinsic limitations
to dispersive control.

The first is that the rate of the control applications (∼MHz) is necessarily slower than
qubit control (∼ 100MHz). This constraint arises because the dispersive interaction
strength is the geometric mean of the control rate of the qubit (∼ 100MHz) and the
direct-control rate of the cavity (∼1 kHz). These relatively slow gates diminish the gains
of highly coherent cavities.

Driving other terms in the dispersive Hamiltonian may speed up the gates on resonators.
Consider the sideband pulses described at the conclusion of Chapter 2. There, individual
excitations are swapped between qubit and resonator. In particular, the choice of pump
frequency 2ωp = ωq + ωr enhances the Hamiltonian term

Hsb = ~g
(
âb̂† + â†b̂

)
, (7.1)

where the exchange rate g is proportional to the pump power. This resonant-like exchange
interaction can likely be made quite large (g � χ) if other side-effects of the pump are
avoided. Equation 7.1 is sufficient for Law-Eberly type arbitrary control via SWAP gates
[175], the type used to prepare cQED resonators in [71]. To use this interaction, on would
sacrifice parallel control for rapid single Fock state addressability for speed.

Yet, a more subtle issue fundamentally limits the fidelity of both dispersive and Law-
Eberly type controls. When exciting the qubit for control, the decoherence of the qubit
enters into the limit for gate fidelities. For instance, during the evolution time of the
QCMap gate, the resonator and qubit become completely entangled. Any phase or quantum
jumps of the qubit will completely scramble the resulting resonator state. It is an intriguing
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question whether schemes can be implemented which control quantum states of resonators
without suffering from qubit decoherence.

At least one such gate has been already proposed. The idea is essentially to use a pump
to create a trapping potential for cavity states (in X̂, Ŷ ) [70]. Then, applying classical
drives on the cavity can rotate the state. This type of nonlinearity-by-driving is related to
the ideas of Quantum-Zeno-Dynamics (QZD) [170], except, importantly, the qubit here is
left nominally in the ground state throughout the protocol, whereas for QZD protocols we
are again forced to excite the qubit. The challenge for this scheme is the complex potential
well that needs to be created. Methods for creating simpler potentials, for instance in n̂
instead (as in QZD), might lessen the system-constraints and allow for gate fidelities that
exceed the qubit-limited performance in a qudit-like subspace of a resonator.

Indeed, if any system has the flexibility and coherence to explore these important ideas,
it is likely cQED.

"
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APPENDIX A

Arbitrary classical drives on linear circuits

In this appendix we adapt the proof from Itano et al. [23] that an arbitrary force on
a damped mechanical oscillator F̂ (t) = k(t)x̂ always results in a coherent state. In

particular, we are interested in the equivalent description for circuits.

Consider the effect of a time-dependent current bias on a simple LC circuit. This bias
will couple to the flux through the inductor as V (t) = −I(t)Φ̂ = −~ε(t)(â+ â†), where
we have expressed the drive in convenient units. That now gives us a Hamiltonian of the
driven circuit as

Ĥ = ~ωâ†â− ~ε(t)(â+ â†). (A.1)

We change to a rotating frame to simplify our derivation. This can be done with a unitary
operator [11] as

Û = exp(+ıωtâ†â), (A.2)

which transforms our Hamiltonian as

Ĥ ′ = ÛĤÛ † + Û

[
−ı d
dt
, Û

]
. (A.3)
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Clearly, Û commutes with â†â. However, as a result of the lack of free-commutation
between the number operator and single ladder operators, the time-evolution of the bare
Hamiltonian gets acquired by the ladder operators as

Ĥ1(t) = ~ε(t)
(
â exp(−ıωt) + â† exp(ıωt)

)
. (A.4)

We are interested in the time-evolution of states that begin as coherent states. Do they
remain coherent states under arbitrary ε(t)? If we assume that they do, then at any time
we can write the resulting state, including a global phase [23], as

|ψ(t)〉 = eıθ(t)|α(t)〉. (A.5)

From the Schrödigner equation, we can write out the time-dependence explicitly as

ı~
d

dt
|ψ(t)〉 = Ĥ1(t)|α(t)〉. (A.6)

Our problem thus reduces to finding a coherent state amplitude α(t) that satisfies the
Schrödinger equation [23]. Following Itano, we expand out the left hand side of this
expression by using our Fock-state enumeration of Equation 2.22, as

ı~
d

dt
|α(t)〉 = ı~

(
d

dt
e−|α(t)|2/2

)∑
n

α(t)n√
n!
|n〉

+ ı~e−|α|2/2
d

dt

∑
n

α(t)n√
n!
|n〉.

(A.7)

The time derivative in the first term on the right hand side can be written as

d

dt
e−|α(t)|2/2 = −1

2

(
dα

dt
α∗(t) +

dα∗

dt
α(t)

)
(A.8)

We also point out that the time derivative in second term on the right hand of Equation A.7
side will bring down an n from the exponent on α(t) in the summation as

d

dt

∑
n

α(t)n√
n!
|n〉 =

∑
n

nα(t)n−1

√
n!

dα

dt
|n〉 (A.9)

Now, we need to solve the right hand side of Equation A.6 so that we can find the correct
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description of α(t)

Ĥ1(t)|α(t)〉 = ~ε(t)
(
âe−ıωt + â†eıωt

)
|α(t)〉. (A.10)

Again, we rely on the Fock-state representation of coherent states in Equation 2.22 to
write out the right hand side

Ĥ1(t)|α(t)〉 = ~ε(t)

(
e−ıωt

∑
n

α(t)n+1

√
n!
|n〉+ eıωt

∑
n

α(t)n−1n√
n!

|n〉

)
. (A.11)

Finally, we equation Equation A.7 to Equation A.11 and solve for α(t). Because Fock
states are orthogonal, these relations must hold for each n in the summations independently.
Furthermore, for this equality to hold for all n simultaneously, the summation terms with
an explicit n dependence must cancel out [23]. Gathering these terms gives

dα

dt
− ıε(t)e+ıωt = 0 (A.12)

which can be solved as

α(t) = α(0) + ı

∫ t

0

ε(t′)eıωt
′
dt′. (A.13)

One can plug this solution into Schrödinger equation to verify that it is indeed satisfied at
all times, which provides another constraint for the global reference phase θ(t).



APPENDIX B

Superpositions with SNAP

In this appendix, we present the calculations and QuTiP code [176] for the series of
SNAP gates that allow us to create a superposition of Fock states in a resonator.

First, a displacement of amplitude β1 = 0.56 creates a small coherent state in the
resonator. Then, the phase on the zeroth Fock state of the resonator is rotated by π via a
selective rotation on the qubit. Finally, a displacement of β2 = −0.26 centers the Fock
state superposition, leaving the state mostly in |ψ〉 = (1/

√
2)(|0〉+ |1〉).

We can simulate this process in QuTip with a few simple commands. From the code in
Figure B.1, we can inspect the state vector at each of these steps. Note that this model
assumes perfect gate operations. We find a final state vector of

|ψ〉 = −0.711|0〉+ 0.703|1〉+ 0.001|2〉+ 0.022|3〉+ ... (B.1)

The probability of detecting the resonator in the first excited state is P1 = 0.494 and the
ground state with P0 = 0.505. Furthermore, this is a coherent superposition, satisfying
our requirement for the T2-type experiment.
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import qutip as qt
# initialize the ground state of a N=20 dim. Hilbert space
psi0 = qt.fock(20,0) 
print psi0

# displace the resonator
beta1 = 0.56
psi1 = qt.
displace(20,beta) * psi0 
print psi1

# flip the |0> state
psi1_SNAP = (qt.qeye(20)-2*qt.fock_dm(20,0)) * psi1
print psi1_SNAP

# final dislacement
beta2 = -0.26
psi2 = qt.displace(20,beta2) * psi1_SNAP
print psi2

Figure B.1: Python code for simulating SNAP processes. We use the open source
QuTiP package [176] to calculate the evolution of a resonator under a sequence of gates.
After two displacements and a single SNAP rotation, we achieve the desired superposition of
Fock states.



APPENDIX C

Evanescent coupling to resonators

In this appendix, we present measurements and simulations of the coupling techniques
used with the three dimensional cavity resonators discussed in Chapter 4.

Rectangular cavities

In Section 4.4.2, we showed that coupling to our rectangular cavities is mediated by a
circular waveguide’s TM0m modes. The propagation constants of these propagating waves
are imaginary, leading to the exponential decay we exploit for tunable coupling. We have
for these modes a propagation constant

βTM0m =

√
k2 −

(
p0m

r0

)2

, (C.1)

where k is the wave vector, p0m is the m-th zero of the zeroth Bessel function, and
r0 = 1.2mm is the radius of the sub-cutoff waveguide. In Table C.1, we tabulate the
propagation constant for the first three modes at 10 GHz. We further expect that the
dominant propagation constant will be that corresponding to the lowest cutoff mode. This
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Mode Propagation constant β (mm−1)
TM01 2.05 ı
TM02 4.74 ı
TM03 7.41 ı

Table C.1: Propagation constants for the lowest three sub-cutoff modes of a pin coupled
circular waveguide.

mode will determine the scaling of Qext ∝ e−2jβTM01
L, where βTM01 is the propagation

constant for the lowest cutoff mode and L is the length of sub-cutoff waveguide.
In Figure C.1, we show the extracted external quality factor versus length of sub-cutoff

waveguide. On a log scale, the best-fit slope gives the evanescent coupling scaling as |β|
= 1.83mm−1. This is in good agreement with the dominant waveguide mode, the TM01

mode (|β| = 2.05mm−1). The fact that the best-fit |β| is smaller than expected indicates
that higher waveguide modes are contributing to the power transmitted from the cavity at
the 10% level.

Best Fit

2Β = 0.093Ι

TM01

2Β = 0.104Ι

-1130 -1120 -1110 -1100 -1090 -1080 -1070 -1060

16

18

20

22

Pin location HmilsL- arb zero

L
nHQ

co
up

L

Figure C.1: Measured scaling of external coupling for rectangular cavity. Measured
values of Qext versus length of evanescent circular waveguide shown in thousandths of an
inch (mils). On a log scale, the propagation constant of the dominant waveguide mode is
given by the best linear fit (|β| = 1.83mm−1).

Cylindrical Cavity

Figure C.2 shows a constructed loop coupler of the type used to excite the cylindrical
TE011 cavities through a section of narrow circular waveguide (see Section 4.5.2). With
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Mode Propagation constant β (mm−1)
TE11 1.02 ı
TM11 2.13 ı
TE12 2.99 ı
TM12 3.94 ı

Table C.2: Propagation constants for for the lowest three sub-cutoff modes of a loop coupled
circular waveguide.

this method, both TE and TM types of circular waveguide contribute to the evanescent
coupling. In Table C.2, we calculate the propagation constant for the four lowest modes
at 10 GHz. We find that, here, the TE11 mode likely dominates the transport.

In Figure C.3, we show the scaling of the external coupling as a function of the length of
sub-cutoff waveguide. To avoid issues with coupler-fabrication repeatability, we investigate
the dependence with a single semi-rigid loop coupler (2.5mm x 1.3mm) (see Fig. C.2).
Then, the length of sub-cutoff waveguide was varied by the addition of No. 8 washers
(≈1mm thick) and a No. 8 hex nut (2.5mm thick). These spacers were inserted between
the SMA panel mount jack and the endcap (see Fig. C.2). The best linear fit to the log
of Qext gives a propagation constant of |β|=0.94mm−1), which is in agreement with the
predicted value of (|β|=1.02mm−1). Again, the observed propagation constant is smaller
than the single-mode approximation due to the participation of higher modes.

Figure C.2: Loop coupling scheme for cylindrical cavities. (Left) Soldered semi-rigid
loop coupler attached to SMA panel mount jack. (Right) Coupling investigation set up -
shown with two No.8 washers and a sanded No.8 hex nut.
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Figure C.3: Measured scaling of external coupling for cylindrical cavity. Measured
values of Qext versus length of evanescent circular waveguide shown in thousandths of an
inch (mils). On a log scale, the propagation constant of the dominant waveguide mode is
given by the best linear fit (β=0.94mm−1).



APPENDIX D

Integrals and participation ratios for cylindrical cavities

In this appendix, we compute the sensitivity of the cylindrical geometry to various loss
mechanisms. We consider a cavity with radius a and height d.

D.1 TMnml modes

The fields of the TMnml modes are

Eρ = E0
β

kc
cos(nφ)J ′n(kcρ) sin

(
lπz

d

)
Eφ = E0

βn

k2
cρ

sin(nφ)Jn(kcρ) sin

(
lπz

d

)
Ez = E0 cos(nφ)Jn(kcρ) cos

(
lπz

d

)
Hρ = −E0

jωεn

k2
cρ

sin(nφ)Jn(kcρ) cos

(
lπz

d

)
Hφ = −E0

jωε

kc
cos(nφ)J ′n(kcρ) cos

(
lπz

d

)
Hz = 0,

(D.1)
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where k = ω
√
µε is the wave vector, and β is the propagation constant of the TMnm

mode given by

β =

√
k2 −

(pnm
a

)2

=
√
k2 − k2

c .

(D.2)

The resonance frequency of a TMnml mode is

fnml =
c

√
µrεr

√(
lπ

d

)2

+
(pnm
a

)2

(D.3)

Conductor loss

To obtain the quality factor due to the conductor loss, we must calculate the stored
electromagnetic energy W and the power loss Pc in the conducting walls on resonance.
It is convenient to calculate W from the magnetic energy Wm for the TM mode since
W = 2Wm = 2We at resonance, as

Wm =
µ

2

∫ a

0

ρdρ

∫ 2π

0

dφ

∫ d

0

dz(|Hρ|2 + |Hφ|2) (D.4)

and

|Hρ|2 = E2
0

(
ωεn

k2
cρ

)2

sin2(nφ)J2
n(kcρ) cos2

(
lπz

d

)
|Hφ|2 = E2

0

(
ωε

kc

)2

cos2(nφ)J ′2n (kcρ) cos2

(
lπz

d

)
.

(D.5)

We have that ∫ 2π

0

sin2(nφ)dφ =

∫ 2π

0

1

2
(1− cos(2nφ)) dφ = π(1− δ0,n)∫ 2π

0

cos2(nφ)dφ =

∫ 2π

0

1

2
(1 + cos(2nφ)) dφ = π(1 + δ0,n)∫ d

0

cos2

(
lπz

d

)
dz =

d

2
(1 + δ0,l),

(D.6)
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where δ0,n is the Dirac delta function. Then, Equation D.4 becomes

Wm =
πµd(1 + δ0,l)

4

(
E0ωε

kc

)2 ∫ a

0

ρdρ

[(
n

kcρ

)2

J2
n(kcρ) + J ′2n (kcρ)

]

=
πµd(1 + δ0,l)

4

(
E0ωε

kc

)2 ∫ pnm

0

xdx

k2
c

[(n
x

)2

J2
n(x) + J ′2n (x)

]
=
πµd(1 + δ0,l)

8

(
E0ωε

k2
c

)2

p2
nmJ

′2
n (pnm).

(D.7)

The conductor loss on the cavity wall is given by

Pc =
Rs

2

[∫ d

0

dz

∫ 2π

0

dφ|Hφ(ρ = a)|2 + 2

∫ a

0

ρdρ

∫ 2π

0

dφ
(
|Hρ(z = 0)|2 + |Hφ(z = 0)|2

)]
=
Rs

2

(
E0ωε

kc

)2

J ′2n (pnm)

[
adπ

2
(1 + δ0,l) + πa2

]
.

(D.8)

Therefore, the quality factor is

Qm =
ωπµd(1 + δ0,l)a

2

4Rs((adπ/2)(1 + δ0,l) + πa2)

=
η

2Rs

√
p2
nm + (lπa/d)2

(1 + (a/d)(2− δ0,l))

(D.9)

Further, keeping track of the side wall (|Hφ(ρ = a)|2) and end cap (|Hρ(z = 0)|2 + |Hφ(z = 0)|2)

contributions to Pc separately, we can distinguish between conductive losses in the two
locations.

Qm,walls =
η

2Rs

√
p2
nm + (lπa/d)2

Qm,caps =
η

2Rs

√
p2
nm + (lπa/d)2

(a/d)(2− δl,o)

(D.10)

We recognize the magnetic participation ratio from Chapter 4 in these expressions since

pmag =
1

ωµλ

Rs

Qm

. (D.11)



D.1. TMNML MODES 200

Dielectric loss

It useful to rewrite the total energy calculated previously (Eq. D.7) as

Wtotal =
πµd

8

(
E0ωε0
kc

)2

p2
nmJ

′2
n (pnm)(1 + δn,0)

=
πd

8
ε0

[(pnm
a

)2

+

(
lπ

d

)2
]
E2

0

a4

p2
nm

J ′2n (pnm)(1 + δn,0).

(D.12)

To proceed with calculating the dielectric participation ratios, we must consider the cavity
side walls and caps separately. On the side walls, Eρ is the only non-vanishing field
component, leaving for a dielectric film of thickness t and relative dielectric constant εr,

Wwalls =
t

2εr

(
E0alπ

(pnm)d

)2 ∫ d

0

∫ 2π

0

[
J ′2n (pnm) cos2(nφ) sin2(

lπz

d
)

]
adφdz

=
E2

0a
3tπ3l2

4εrp2
nmd

J ′2n (pnm)(1 + δn,0).

(D.13)

Taking the ratio between Wwalls and Wtotal we find for TM modes

pwalls =
t

εra

(
2π2l2

p2
nm

(
d
a

)2
+ (lπ)2

)
. (D.14)

The numerical term in the parenthesis is of order unity for our aspect ratio.
Finally, we turn our attention to the end caps of TM modes. Here, Eρ and Eφ will go

to zero, leaving Ez as the only contributor.

Wcaps =
εcaps2t

2
E2

0

∫ a

0

∫ 2π

0

[
J2
n(
pnmρ

a
) cos2(nφ)

]
ρdρdφ. (D.15)

Using the Bessel identity ∫ pnm

0

J2
n(x)xdx =

p2
nm

2
J2
n+1(pnm), (D.16)

we have that
Wcaps =

E2
0a

2t

εr2
J2
n+1(pnm)π(1 + δn,0), (D.17)
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which gives us the end caps participation ratio for TM modes

pcaps =
t

εrd

 4p2
nmJ

2
n+1(pnm)

J ′2nm(pnm)
(
p2
nm + (lπ)2

(
a
d

)2
)
 , (D.18)

Again, the term in the parenthesis is of order unity for our aspect ratio. Intuitively, the
TM mode’s pcaps depends on the ratio of cavity height to surface thickness, rather than
the ratio of thickness to radius like in the side wall calculation.

Seam loss

We assemble the cylindrical geometry as a tube with end caps. We are therefore sensitive
to currents flowing in the ẑ direction across the resuling seam. For TM modes,

|Hφ(z0)|2 =

(
E0
ωε

kc
cos(nφ)J ′n(kcρ)

)2

cos2

(
lπz0

d

)
(D.19)

where kc = pnm/a. The power dissipated is

P∅ =
1

2g∅

(
ωεaE0J

′
n(pnm)

pnm

)2(
cos

`πz0

d

)2 ∫ 2π

0

cos2 nφadφ

=
1

2g∅

(
ωεaE0J

′
n(pnm)

pnm

)2(
cos

`πz0

d

)2

aπ(1 + δn,0),

(D.20)

and the quality factor due to this dissipation is

Q∅ =

πdε
8

[(
pnm
a

)2
+
(
`π
d

)2
]
E2

0
a4

p2nm
J ′2n (pnm)

1
2g∅

(
ωεaE0J ′n(pnm)

pnm

)2

cos2
(
`πz0
d

)
aπ

=
ηag∅

[(
pnmd
a

)2
+ (`π)2

]1/2

4 cos2
(
`πz0
d

)
(D.21)

which gives us the total admittance for the seam as

y∅ = g∅/Q∅. (D.22)
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D.2 TEnml modes

The fields of the TEnml modes are

Eρ =
jkηa2nH0

p′2nmρ
sin(nφ)Jn

(
p′nmρ

a

)
sin

(
lπz

d

)
Eφ =

jkηa2H0
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(
p′nmρ

a

)
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(
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d

)
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βaH0
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(
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d
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−βa2nH0
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(
p′nmρ

a

)
cos

(
lπz

d
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(
lπz

d
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(D.23)

Conductor loss

From similar calculations to the previous section (also see [111, op. cit. Eq. 6.56]), we
have

Qm =

η

[
1−

(
n
p′nm

)2
] [

(p′nm)2 +
(
lπa
d

)2
]3/2

2Rs

[
(p′nm)2 + 2a

d

(
lπa
d

)2
+
(
1− 2a

d

) (
nlπa
p′nmd

)2
] . (D.24)

We can further separate the contributions from the walls and end caps for these modes.

Qm,walls =

η

[
1−

(
n
p′nm

)2
] [

(p′nm)2 +
(
lπa
d

)2
]3/2

2Rs

[
(p′nm)2 +

(
nlπa
p′nmd

)2
]

Qm,caps =

η
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n
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] [

(p′nm)2 +
(
lπa
d
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]3/2

2Rs

[
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d

(
lπa
d

)2 −
(

2a
d

) (
nlπa
p′nmd

)2
]

(D.25)

Dielectric loss

For the case of the TEnml end caps, we see that both Eρ and Eφ go to zero at (z=0) and
(z=d) due to the sin( lπz

d
) term. Thus, the TE modes have zero participation of end cap
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dielectric. Therefore, calculating the dielectric participation ratio reduces to solving for the
fields on the walls. Following similar calculations to the previous section, we have

pdiel =
t

εra

(
n2

(p′nm)2 − n2

)
(1− δn,0). (D.26)

Note that the Dirac delta function nulls this expression exactly for n = 0, as for the TE011

mode.

Seam loss

For TE modes, the relevant surface current is

|Jz(z0)|2 =

(
`πanH0Jn(p′nm)

d(p′nm)2

)2(
cos

`πz0

d

)2

sin2 nφ (D.27)

and the dissipated power is

P∅ =
1

2g∅

(
`πanH0Jn(p′nm)

d(p′nm)2

)2(
cos

`πz0

d

)2 ∫ 2π

0

sin2 nφadφ

=
1

2g∅

(
`πanH0Jn(p′nm)

d(p′nm)2

)2(
cos

`πz0

d

)2

aπ(1− δn,0).

(D.28)

The quality factor due to the loss from the contact resistance at the seam is then

Q∅ = ω

εk2η2a4H2
0πd

8(p′nm)2
[1− (n/p′nm)2] J2

n(p′nm)

1
2g∅

(
`πanH0Jn(p′nm)

d(p′nm)2

)2 (
cos `πz0

d

)2
aπ

=
ηag∅ [(p′nm)2 − n2] [(p′nmd/a)2 − (`π)2]

3/2

4`2π2n2 cos2
(
`πz0
d

) .

(D.29)

From which we recover y∅ for TE modes.



APPENDIX E

BCS Calculations

In this appendix, we include calculations by Gianluigi Catelani for evaluating the surface
impedance of a BCS superconductor. Mathematica is used to numerically evaluate the

integrals in Chapter 5.
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(* BCS Gap *)
dt = {{0.05,1.},{0.35,0.992},{0.4,0.985},{0.5,0.957}, 
{0.55,0.935},{0.575,0.921},{0.6,0.906},{0.625,0.890}, 
{0.65,0.871},{0.675,0.851},{0.7,0.828},{0.725,0.803}, 
{0.75,0.775},{0.775,0.745},{0.8,0.711},{0.825,0.673}, 
{0.85,0.630},{0.875,0.581},{0.9,0.526},{0.925,0.460}, 
{0.95,0.380},{0.975,0.272063},{1., 0.}};
dtf = Interpolation[dt,InterpolationOrder 
  -> 5, Method -> "Spline"];

(* BCS Conductivity Integrals *)
st1[o_, t_] := 
  NIntegrate[(x (x + o) + 1)/Sqrt[x^2 - 1]/
     Sqrt[(x + o)^2 - 1] (Tanh[(x + o)/(2 tc t)] - 
     Tanh[x/(2 tc t)]), {x, 1, Infinity}, 
 WorkingPrecision -> 18]/ Pi + If[o < 2, 0, 
  NIntegrate[(x (x + o) + 1)/Sqrt[x^2 - 1]/
     Sqrt[(x + o)^2 - 1]*Tanh[x/(2 tc t)], 
     {x, 1 - o, -1}, WorkingPrecision -> 18, 
     MaxRecursion -> 13]/Pi];

st2[o_, t_] := 
  NIntegrate[(x (x + o) + 1)/Sqrt[1 - x^2]/
     Sqrt[(x + o)^2 - 1] Tanh[(x + o)/(2 tc t)], 
     {x, Max[{-1, 1 - o}],1}]/Pi;

(* BCS Surface Impedance *)
xsf[o1_, t1_, n_] := 
  Im[-Exp[-I Pi/2 (1 - n)] 
     ((st1f[t1/dtf[t1], o1/dtf[t1]] - 
     I st2f[t1/dtf[t1], o1/dtf[t1]]) Pi*dtf[t1]/o1)^n]

rsf[o1_, t1_, n_] := 
  Re[-Exp[-I Pi/2 (1 - n)] 
     ((st1f[t1/dtf[t1], o1/dtf[t1]] - 
     I st2f[t1/dtf[t1], o1/dtf[t1]]) Pi*dtf[t1]/o1)^n]

Figure E.1: Mathematica code for evaluating the BCS surface impedance. The
temperature dependence of the BCS gap (Eq. 5.28) is given as a table for convenience.
This table is interpolated for fitting purposes. We numerically evaluate the expressions BCS
conductivities (Eq. 5.27) to calculate the surface impedance (Eq. 5.20).
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