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The field of quantum computation faces a central challenge that has thus far impeded the full-

scale realization of quantum computing machines: decoherence. Decoherence is a general process

by which quantum bits, or qubits, interact in unknown ways with their environment and thereby

corrupt the information encoded within them. Remarkably, however, protocols for Quantum Error

Correction (QEC) exist, and their discovery was a critical advance in the pursuit to build practical

quantum computers. To implement QEC, one redundantly encodes a qubit in a higher dimensional

space using quantum states with carefully tailored symmetry properties. Projective measurements of

these parity-type observables provide error syndrome information with which errors can be corrected

via simple operations. Reaching the “break-even” point, at which a logical qubit’s lifetime exceeds

the lifetime of the system’s qubit constituents, has thus far remained an outstanding goal. In

this work, we implement QEC within a superconducting cavity Quantum Electrodynamics (cQED)

architecture that exploits the advantages of encoding quantum information in superpositions of

coherent states, or cat states, in highly coherent superconducting cavities. This hardware-e�cient

approach, termed the cat code, simplifies the encoding scheme and requires the extraction of just one

error syndrome via single-shot photon number parity measurements. By implementing the cat code

within a full QEC system, we demonstrate for the first time quantum computing that reaches the

break-even point. Beyond applications to error correction, logical qubit encodings based on the cat

code paradigm can be used to probe more fundamental questions of quantum entanglement between

physical qubits and coherent states. Specifically, we demonstrate the violation of a Bell inequality

in such a setup, which underscores our ability to e�ciently extract information from continuous

variables encodings. These results highlight the power of novel, hardware-e�cient qubit encodings

over traditional QEC schemes. Furthermore, they advance the field of experimental error correction

from confirming the basic concepts to exploring the metrics that drive system performance and the

challenges in implementing a fault-tolerant system.
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1 – Introduction

Today’s transistors, physical implementations of the bits 0 and 1, can no longer be appreciably

reduced in size while preserving the simple classical properties that make them such e↵ective and re-

liable foundational elements in classical computation [Devoret and Glattli, 1998]. As a consequence,

rates of improvement in computational capability have begun to level o↵, setting limits on the speed

and e�ciency with which algorithms can be performed. Thus, in recent decades substantial resources

have been devoted to exploring the viability of processing information on hardware platforms that

deliberately aim to exploit the exotic e↵ects of quantum mechanics rather than avoid them. In fact,

fundamental features of quantum systems can enable one to design and implement algorithms within

a new paradigm called quantum computation.

Quantum computers were initially proposed to simulate quantum systems themselves [Feynman,

1982]. Over the years, however, a number of other potential applications have been developed that

today spur investment from the federal government and the private sector. This expanded library

of algorithms includes the breaking of RSA encryption [Shor, 1997] and enhanced search capabil-

ity [Grover, 1997], both of which have clear implications for national security and modern commerce.

General theoretical questions surrounding the inherent computational capabilities of quantum versus

classical architectures comprise a vibrant field of study [Aaronson, 2005], but practically speaking,

quantum computers are typically envisioned as a supplement rather than a replacement for classical

machines. In this brief, introductory chapter we discuss the fundamentals that underpin the body

of experiments to be discussed in this work and indeed the entire field. We then conclude with a

summary of forthcoming chapters.

1.1 The quantum bit

The paradigm of quantum computation is founded upon the quantum bit of information, or qubit,

which unlike its classical counterpart can not only take on the values of 0 and 1, but also anything
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in-between. This property is known as superposition:

| qi = c
0

|0i + c
1

|1i , (1.1)

where | qi is the state vector, c
0

and c
1

are complex amplitudes with the requirement that |c
0

|2 +

|c
1

|2 = 1, and |0i and |1i are the qubit’s basis states along a logical Z axis defined by the Pauli

operator �̂z (Fig. 1.1). A single qubit by definition stores one bit of quantum information. There

are, however, infinitely many possible superpositions of 0 and 1, which can be visualized in the Bloch

sphere representation. Such an expanded space of possible states per single piece of hardware already

suggests that these quantum analogs of classical transistors o↵er new possibilities in computational

capability.

Qubit Bloch Sphere

| qi = cos

✓
✓

2

◆
|0i + ei� sin

✓
✓

2

◆
|1i

⇢q = | qi h q|
=

1

2
(Î + rx�̂x + ry�̂y + rz�̂z)

�̂x =

✓
0 1
1 0

◆
, �̂y =

✓
0 �i
i 0

◆
, �̂z =

✓
1 0
0 �1

◆
�

✓ {rx, ry, rz}

Figure 1.1: The qubit Bloch sphere. A pure qubit state | 
q

i can be represented by a vector on the
Bloch sphere with an orientation determined by angles ✓ and �. More generally, the density matrix ⇢

q

describes any qubit, where the coordinates {r
x

, r
y

, r
z

} associated with Pauli operators {�̂
x

, �̂
y

, �̂
z

} satisfy
the relation

p
r2
x

+ r2
y

+ r2
z

 1; equality holds for a pure state, while the vector length is less than one for a

state that contains some amount of mixture. A completely mixed state is simply given by ⇢
q

= Î/2, where
Î is the identity operator.

The power of a quantum computer becomes clear when multiple qubits are brought together to

perform some calculation. For example, if one has two qubits, each can be initialized in an equal

superposition of |0i and |1i (e.g. c
0

= c
1

= 1/
p

2):

| qqi = | q1i | q2i (1.2)

=
1p
2
(|0i + |1i) ⌦ 1p

2
(|0i + |1i) (1.3)

=
1

2
(|00i + |01i + |10i + |11i). (1.4)
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A quantum computer can be understood as a machine that operates on all possible configurations of

inputs simultaneously, a feature known as quantum parallelism. So with the simple “product” state

of two qubits (Eq. 1.4), one already has four di↵erent possible inputs. Of course measuring any one

of the output qubits, which may be in some unknown superposition at the end of the calculation,

projects it onto one of the basis states, which may initially suggest that nothing is gained since

the calculation has to be repeated in order to build up statistics on the final answer. However,

parallelism becomes useful when clever transformations allow for a global property of the system

to be determined much more quickly than would be possible with classical means. A simple and

elegant example is the Deutch-Jozsa algorithm [Deutsch and Jozsa, 1992], which although of little

practical use, demonstrates the speedups possible with quantum versus classical computation.

Adding the final resource of entanglement, which results in correlations between the states of

multiple qubits that exceed classically permissible bounds, one can perform calculations on inter-

esting states that cannot simply be decomposed into a product of two individual qubits. One can

realize multi-qubit entangling operations with a controlled-NOT (CNOT) gate, for example. If one

has again two qubits, but now only one of them is in an equal superposition and the other is simply

in | q2i = |0i, a CNOT gate with | q1i as the control and as | q2i the target produces a maximally

entangled two-qubit state, known as an EPR pair or a Bell state:

| qqi = | q1i | q2i (1.5)

=
1p
2
(|0i + |1i) ⌦ |0i (1.6)

CNOT����! 1p
2
(|00i + |11i). (1.7)

Note that this final state in Eq. 1.7 cannot be decomposed into a product state as in Eq. 1.4.

Bell states can be a vital resource in a quantum computing algorithm, enabling protocols such as

quantum teleportation (Fig. 1.2).

It can in fact be shown that single-qubit and CNOT gates alone are su�cient to implement

any unitary operation on a collection of qubits, enabling what is known as universal quantum

computation [Chuang and Gottesman, 1999; Nielsen and Chuang, 2010]. The quantum computing

community, however, has not yet converged on what the final physical implementation of a qubit

should be. Practically speaking, we search for physical quantum systems in which two stable energy

levels can be isolated and well-approximated as a two-level system, with the ground state |gi corre-

sponding to a logical |0i and the excited state |ei corresponding to a logical |1i. We would also like

to have the ability to couple these systems together, and likewise to control knobs in the lab that
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Figure 1.2: Qubit teleportation. This example includes many of the gates and features that will be
explored in detail throughout this work. If Alice wishes to send an unknown state | 

q

i to Bob, she can use
the quantum teleportation protocol shown here, which employs the various single and two-qubit operations
central to quantum computing algorithms, shown in this circuit diagram representation. To start, Alice
and Bob share a Bell state, | 

B

i = (|00i + |11i /p2. To transfer | 
q

i to Bob, Alice must apply a CNOT
operation between | 

q

i and her half of the Bell pair, where the former is the control and the latter is the
target. She must next apply a Hadamard gate (H) to | 

q

i and then projectively measure both in the Z-basis
(meter symbol) to obtain one of four measurement results {M

1

M
2

}: {00, 01, 10, 11}. She sends her result
over a classical channel (double-lines) to Bob, who then uses this record to apply one of four single-qubit
operations to his half of the Bell pair: {Î , X, Z,XZ}, respectively. Bob is now in possession of | 

q

i.

will allow for single and multi-qubit operations. Such qubit manipulation would be achieved through

the application of electromagnetic pulses at or near the resonance frequency of the chosen physical

system. Two-level systems are ubiquitous in nature, and physical systems that have been studied ex-

tensively over the past decades include nuclear magnetic resonance (NMR), single photons, ions, and

Nitrogen-vacancy (NV) centers. Likewise, qubits can also be artificially engineered through careful

fabrication techniques in quantum dots and superconducting circuits, for example. Each platform

has its own advantages and drawbacks [Ladd et al., 2010], which can broadly be summarized by the

tradeo↵s between qubit reliability and controllability, as expanded upon presently. Henceforth, we

will also adhere to the convention that the abstract concept of an arbitrary superposition of |0i and

|1i will be called a “quantum bit,” while physical implementations will be referred to as “physical

qubits,” “ancilla qubits,” “transmon qubits,” “logical qubits,” or any similar variation.1

1The terms “ancilla,” “transmon,” and “logical” will be defined shortly.
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1.2 The need for quantum error correction

A central concern that any platform must deal with is that physical qubits, and all quantum systems

in general, are frequently quite sensitive to their surroundings. When physically designing a quantum

computer, one becomes acutely aware of the di�culty in a isolating physical qubit from its noisy

environment. An example might be that the physical qubit, initially in its excited state |ei, decays

to the energetically favorable ground state |gi through the spontaneous emission of a photon, or

couples to a di↵erent and unknown mode in the system that unexpectedly changes the resonance

frequency and thus the phase relationship between c
0

and c
1

. As a consequence of the expanded

computational space, even small deviations from the desired superposition of |0i and |1i result in

a loss of information. This process is called decoherence, and it is characterized by terms in the

density matrix of the quantum bit exponentially decaying in time (t) towards a thermal equilibrium

with the surrounding environment:

⇢q(0) = | qi h q| (1.8)

⇢q(t) =

0

@|c
0

|2(t) c
1

c⇤
0

(t)

c
0

c⇤
1

(t) |c
1

|2(t),

1

A (1.9)

|c
0

|2(t) = 1 � |c
1

|2(t) (1.10)

|c
1

|2(t) = |c
1

|2(0)e�t/T
1 + nth(1 � e�t/T

1) (1.11)

c
1

c⇤
0

(t) = c
0

c⇤
1

(t) = c
0

(0)c⇤
1

(0)e�t/T
2 , (1.12)

where nth is the equilibrium thermal population, 1/T
2

= 1/2T
1

+ 1/T�, and as in NMR the time

scales T
1

and T� quantify the rates of amplitude and phase damping [Nielsen and Chuang, 2010],

respectively. The previously mentioned tradeo↵ between physical qubit reliability and controllabil-

ity becomes clear when considering the fact that coherence times T
1

and T� improve with better

system isolation from the environment. This poses a problem, however, since isolation also results in

weaker interaction strengths and coupling to ancillary modes that make physical qubit manipulation

possible. Thus, highly coherent systems such as NV centers, for example, often face the challenges

of slow gates and measurement infidelities that serve to nullify the gains from higher T
1

and T�. In

addition to these figures of merit, the viability of a platform also depends strongly on its predis-

position to scaling, or reproducibly engineering the large multi-physical qubit systems necessary to

perform calculations of interest with minimal supporting classical electronics and infrastructure.
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Regardless of the platform of choice, decoherence is a major impediment to successfully de-

signing a robust quantum computer and therefore necessitates schemes of quantum error correction

(QEC) [Calderbank and Shor, 1996; Gottesman, 1997; Shor, 1995; Steane, 1996]. QEC o↵ers a

remarkable means of correcting errors through clever redundant encoding techniques of a quantum

bit of information in multiple physical qubits, called a logical qubit. The logical qubit is designed

to have symmetry properties that allow one to extract error syndromes using a collection of an-

cillary qubits, or ancillae, in a quantum non-demolition (QND) way. By increasing the number of

physical qubits to store one logical quantum bit of information, however, one inevitably introduces

new error channels into the system. We refer to this as the “decoherence penalty.” Moreover, the

complexity of logical operations such as a logical CNOT, which can now require complex sequences

of pulses and entangling procedures on the multiple physical qubits, can contribute to an overall

degradation of performance. In designing a QEC code, besides factoring in the e↵ects of enhanced

rates of decoherence, one must therefore also take into account the e�ciency with which the encoded

state can be created, manipulated, and measured when assessing its feasibility. Finally, the greater

resources necessary to perform computations results in an overall “hardware overhead” that must

be considered when assessing the cost of operating the quantum computer.

The decoherence penalty must always be overcome before QEC can actually yield any advantages

over simply encoding the quantum bit in the system’s most coherent and uncorrected constituent.

This is known as the break-even point, wherein a corrected manifold of states performs no worse

than the best manifold of the system; it is the first hurdle one must overcome when implementing

QEC. Crucially, the system is understood to be the entire collection of hardware involved, including

ancillary elements that may be employed to extract error information from some logically encoded

qubit.

In fairly judging whether the error corrected code operates beyond break-even, the system must

be exposed to naturally occurring decoherence, and no post-processing of data can be employed.

When operating beyond break-even and suppressing errors in a quantum computer in a way that

enhances the lifetime of quantum information, QEC enables one to perform larger and more complex

algorithms than would be possible with uncorrected physical qubits. Moreover, operating beyond

break-even opens the door to schemes of concatenation, in which the physical qubits that com-

prise the logical qubit are now each replaced by corrected logical qubits, further increasing the code

redundancy and consequent ability to suppress higher order errors. The ability to repeat this con-

catenation procedure indefinitely while realizing gains in coherence is characteristic of an architecture

that operates in a fault-tolerant way [Gottesman, 1998; Nielsen and Chuang, 2010; Preskill, 1999],
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wherein the size of the computation can be scaled exponentially with just a polynomial overhead in

hardware.

It isn’t always clear, however, to what extent the break-even point must be surpassed in order

to demonstrate the path toward fault-tolerance. For instance, although a single error-corrected

logical qubit may be out-performing the system’s best component, one round of concatenation could

in fact degrade performance again for the same simple reasons that larger architectures introduce

new and unexpected sources of loss. Thus, although threshold theorems exist for traditional QEC

codes [Fowler et al., 2009; Knill et al., 1998; Nielsen and Chuang, 2010], which provide estimates

as to the permissible error rates per round of error correction for fault-tolerance, in this work we

would like to convey the central point that simply demonstrating scaling properties isn’t su�cient;

one must really build the full error correction system and see how it performs.

When we take all of this together, superconducting circuits o↵er one of the best options for

realizing universal quantum computation. They allow a straightforward tailoring of Hamiltonian

parameters, they are fabricated with established and reliable recipes on well-characterized substrates

like sapphire or silicon, and they are manipulated with readily available and high quality electronics

that operate at microwave frequencies. Indeed, with current levels of performance in coherence and

gate reliability, it should be possible to realize a fault-tolerant architecture based on superconducting

circuits [Devoret and Schoelkopf, 2013]. We stress, however, that the plethora of proposed quantum

computing-related technologies means that no one architecture will solve every problem. Most

palpably, transmitting quantum information over long distances certainly necessitates the use of

physical qubits at optical frequencies as well. Perhaps more accurately, a challenge the community

faces is not choosing one system above all others, but understanding to what application each system

is best suited.

1.3 A brief synopsis of chapters to come

This work focuses on the challenge of implementing a quantum error correction system in an archi-

tecture built on superconducting circuits. It is organized in the same manner as the introductory

remarks above. In chapter two we describe our physical system, superconducting cavity Quantum

Electrodynamics (cQED), in greater depth. We introduce superconducting qubits based on Joseph-

son junctions, describe how one manipulates and measures them, and discuss the properties that

make them a fantastic core constituent of a future quantum computer. We equally devote time to

discussing the superconducting cavity, how we couple it to superconducting qubits, and the prop-

erties that make it such an attractive option for storing quantum information. In chapter three we
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immediately dive into the error correction code that forms the core of all following chapters, the cat

code. This QEC paradigm proposes encoding quantum information in superpositions of coherent

states, or cat states, of a microwave field in a cavity. We stress the numerous advantages it o↵ers

in terms of hardware e�ciency, the reduction of dominant error channels, and the ease of error

syndrome extraction. In chapter four we present the first of three main experimental works in this

thesis, in which we realize a redundant encoding scheme of a quantum bit in a cavity and the ease

with which we e�ciently extract information from the cavity state by entangling it with an ancillary

transmon qubit, or ancilla. We underscore this e�ciency by demonstrating that just a handful of

measurements is necessary to characterize this composite system, e↵ectively compressing the large

size of the cavity’s Hilbert space down to simply that of another two-level system. This allows us

to violate a Bell inequality between the physical qubit and a cat state in the cavity. In chapter

five, we build o↵ of the work on ancilla-cavity entanglement to demonstrate that we monitor the

occurrence of single photon jumps in the cavity with repeated, single-shot measurements of photon

number parity in real-time. As photon jumps are the dominant source of error, we thus show that

we monitor the very error syndrome that the cat code requires with high fidelity and in a QND way.

We furthermore investigate the limits on performance and uncover that quantum back-action on the

state in the cavity due to ancilla energy decay presents a central hurdle to achieving fault-tolerance.

The next three chapters focus on the culmination of previous e↵orts, wherein we bring together

many of the experimental techniques and lessons learned from previous investigations to implement

a full quantum error correction system that uses real-time feedback to enhance the coherence of a

quantum bit of information. Chapter six describes the details of this system and the essential role

of real-time feedback in maximizing QEC performance. It presents the first experimental data of

storing a quantum bit over time in superpositions of cat states following the prescription laid out

by the cat code, and demonstrates the high degree to which we understand the behavior of the

system while knowing just a few key properties about the Hamiltonian and the coherence times. In

chapter seven we present the central result, in which we show that by implementing an optimal error

monitoring scheme, we surpass the break-even point of QEC. The system is exposed to naturally

occurring sources of error, both in the cavity and in the ancilla, and no data is excluded from

the analysis. This is the first time such performance has ever been achieved, and experimentally

proves that QEC can in fact yield advantages over doing nothing. Chapter eight presents a thorough

analysis of what limits the levels of performance we observe, and pinpoints the dominant limitation

to be that of forward propagation of errors due to ancilla T
1

decay. This important result indicates
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that primarily one source of non-fault-tolerance must be addressed before much more substantial

gains in lifetime can be achieved.

Finally, in chapter nine we discuss the future directions of this research. In particular, we con-

centrate on several sources of decoherence besides photon loss that are known to degrade the fidelity

of a quantum bit. More specifically, as we work with a continuous variables architecture, devia-

tions from the code space present a real challenge and must be addressed with pumping techniques

such as engineered two-photon dissipation. This not only corrects for cat state distortions due to

higher-order Hamiltonian terms, but furthermore stabilizes their amplitudes to prevent the over-

lap of coherent states, which without any intervention decay toward the cavity’s vacuum. We also

discuss the immense progress being made in coupling multiple cavities together to entangle logical

states and necessary issues we must address in realizing fault-tolerant operations.

The common thread throughout this thesis will be to convey the guiding strategy of simplicity

that permeates the core thrust of research in quantum computing at Yale. The idea will be to build

from the bottom up, heavily emphasizing an understanding of just a single logical qubit stored in a

cavity. Only by thoroughly investigating all performance metrics, limitations, and error correction

strategies do we stand to confidently scale up our architecture in the future to perform more complex

operations. Each chapter can be succinctly summarized with just a few points, necessary parcels of

evidence that we strap to our tool belt as we continue to converge upon a realization of a quantum

computer, built using the cat code, that can actually perform meaningful tasks. Although numerous

challenges have yet to be overcome, we hope that this body of results only inspires the reader with

optimism that the future of quantum computation is bright and near.
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2 – Cavity Quantum Electrodynamics

A challenge one faces in designing a quantum computer is deciding upon the architecture, the ac-

tual pieces that will comprise the physical qubits, mediate their couplings, and enable controlled

operations and measurements. This is a tall order; in discussing the possibilities o↵ered by quantum

computation and the schemes necessary for complex tasks such as quantum error correction (QEC),

a number of requirements must be satisfied. Most fundamentally, one must have reliable physical

qubits. These physical qubits must be designed in such a way as to allow one to measure their state,

implement gates, and realize entangling operations before information is lost to the environment

through decoherence. Indeed, the tradeo↵s between the strength of coupling to a quantum system

and good coherence times must be faced by any platform [Schoelkopf and Girvin, 2008]. Practi-

cally speaking, additional considerations such as the eventual desire to scale up an architecture to

mass production demand device reproducibility and control electronics that are reasonably priced.

Satisfying such a long list of requirements in the real world is clearly di�cult, and leads to the

expected result that any implementation of a quantum computing platform will rely to some extent

on approximations and compromise.

In this chapter, we elaborate upon superconducting circuit quantum electrodynamics (QED) and

how it o↵ers a particularly promising platform for quantum computation. We will begin by focusing

on the the so-called “mesoscopic” treatment of electrical circuits in a quantum way [Devoret, 1997;

Girvin, 2011], which enables a fascinating and rich exploration of systems in which the Hamiltonian

can be engineered to realize electromagnetic components that can be treated as “artificial atoms.”

Josephson junctions [Josephson, 1962, 1965] are at the heart of this approach. They are comprised

of two superconductors that are separated by a thin insulating layer that allows paired electrons, or

Cooper pairs [Cooper, 1956; Tinkham, 2004], to tunnel through with very low dissipation when the

junction is cooled far below its superconducting transition temperature. In addition to an expected

capacitance, such junctions introduce a crucial non-linear inductance to the circuit. Exploiting this

attribute, experimental work with Josephson junctions has demonstrated that macroscopic quantities

such as voltage can remarkably exhibit quantum properties [Devoret et al., 1985]. Moreover, modern
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nano-fabrication techniques [Dolan, 1977; Lecocq et al., 2011] enable one to produce anharmonic

junction-based LC oscillators1, wherein the discretized energy levels are unequally spaced [Clarke

et al., 1988]. We will show that by isolating two levels of such artificial atoms, one can realize a

two-level system that has the capacity to store one quantum bit of information.

With the theoretical underpinnings laid, we will continue by describing how we use this artificial

atom as a physical qubit that can be coherently manipulated and coupled to other physical qubits,

either directly or with microwave cavities that coherently transmit quantum information [Majer

et al., 2007; Schoelkopf and Girvin, 2008]. In fact, we will heavily focus on cavities, as they o↵er

an indispensable resource by not only mediating entanglement between physical qubits, but also by

o↵ering a means to measure a physical qubit’s state in a quantum non-demolition (QND) way and in

fact storing quantum information themselves. We will further study this range of applications with

a discussion of cavity QED (cQED) [Blais et al., 2004b; Hood et al., 2000; Mabuchi and Doherty,

2002; Raimond et al., 2001], where carefully engineered interactions between physical qubits and

cavities o↵er a truly attractive architecture for quantum computing. The flexibility of this approach,

a consequence of the ease in designing and fabricating Josephson junctions and superconducting

cavities, opens the door to immediate applications like successful demonstrations of QEC and the

future goals of reproducibly scaling up in pursuit of universal quantum computation.

2.1 Circuit QED

Quantizing charge and flux in an LC oscillator

As the point of departure, we study the quantization of the excitations in a linear harmonic oscillator.

Harmonic oscillators in classical mechanics can be simply described by a linear di↵erential equation

of the form:

ẍ = �⌦2x, (2.1)

where x is understood to be some time dependent variable, for example the position of a mass on

a spring, and ⌦ =
p

k/m is the resonance frequency (m is the mass and k is the spring constant).

Similarly, with an LC oscillator, we know from Kirchho↵’s laws that:

Q̈ = �!2Q, (2.2)

1An LC oscillator is comprised of an inductor (inductance L) and a capacitor (capacitance C).
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where Q is the charge and ! is now the usual resonance frequency of an LC oscillator: ! = 1/
p

LC

(C is the capacitance and L is the inductance).

Just as with Hamilton’s equations of motion for the conjugate variables for position and mo-

mentum, we can pursue writing down an actual Hamiltonian for the LC oscillator [Devoret, 1997;

Girvin, 2011]. To do so, we write down a time-dependent node flux (Fig. 2.1a):

�(t) =

Z t

V (t0)dt0, (2.3)

where just as before the voltage and flux through the inductor follow the relation V (t) = �̇. Again

following what we know from basic circuit laws, the potential energy T (t) stored in a capacitor is:

T =
1

2
CV 2 (2.4)

=
1

2
C�̇2 (2.5)

Although this is the potential energy, in form it looks like a kinetic energy stored in the capacitor

if an analogy between � and a classical position x is drawn. We could of course equally choose the

charge to play the role of the position coordinate, but as the non-linearity of our potential will be in

�, writing down the Lagrangian as a function of � and �̇ will capture the dynamics of the system

more intuitively. Following this convention, the inductor can be understood to play the role of an

inverse spring constant k in a term that looks like the potential energy:

U =
1

2L
�2. (2.6)

With the terms T and U , we now write down the Lagrangian for the circuit with � as the position

coordinate:

L =
1

2
C�̇2 � 1

2L
�2. (2.7)

The coordinate conjugate to the flux is of course the charge:

@L
@�̇

= Q (2.8)

Finally, we arrive at the Hamiltonian for the circuit:

H =
Q2

2C
+

�2

2L
(2.9)
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We thus have our conjugate variable Q and �, which obey Hamilton’s equations of motion:

�̇ = +
@H

@Q
= +

Q

C
(2.10)

Q̇ = �@H

@�
= ��

L
(2.11)

�

CL
�Q

+Q
I

(a) (b)

|0if

|1if

|2if

|3if

|4if

|nif

Figure 2.1: Quantized LC harmonic oscillator. (a) An LC oscillator, where L is the inductance, C
is the capacitance, and � a time-dependent node flux that is akin to a position in a classical mechanical
harmonic oscillator. The charge, Q, is the conjugate variable to �. (b) When � and Q are promoted to
quantum operators that satisfy the commutation relation [Q̂, �̂] = �i~, the energy levels of the harmonic
LC oscillator become quantized, with the energy di↵erence between Fock states |ni

f

equal to ~!.

Just as in the case of a mechanical oscillator with conjugate variables x and momentum p, we

can promote Q and � to quantum operators that obey the following commutation relation:

[�̂, Q̂] = i~. (2.12)

Similarly, we write down the raising and lowering operators for this oscillator, â† and â:

â =
1p

2L!~
�̂ + i

1p
2C!~

Q̂ (2.13)

â† =
1p

2L!~
�̂ � i

1p
2C!~

Q̂. (2.14)

These of course obey the commutation relation [â, â†] = 1. With these ladder operators, we return

to the familiar Hamiltonian of a quantum harmonic oscillator:

Ĥ = ~!(â†â +
1

2
), (2.15)

where again ! = 1/
p

LC. The energy eigenstates of this Hamiltonian are known as Fock states |nif ,

and â |nif =
p

n |n � 1if (Fig. 2.1a). We can also rewrite the charge and phase operators in terms
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of â and â†:

�̂ = +�ZPF (â + â†) (2.16)

Q̂ = �iQZPF (â � â†), (2.17)

where

QZPF =

r
C!~

2
=

r
~

2Z
(2.18)

�ZPF =

r
L!~

2
=

r
~Z
2

(2.19)

Z =

r
L

C
. (2.20)

Here, Z is the characteristic impedance of the circuit. The zero-point fluctuations, QZPF and �ZPF ,

are the uncertainties in charge and phase of the oscillator’s ground state:

h0|f Q̂2 |0if = Q2

ZPF (2.21)

h0|f �̂2 |0if = �2

ZPF (2.22)

QZPF �ZPF =
~
2
. (2.23)

One may benefit from pausing here to take stock of where these calculations have led us. We

started with a simple, lossless circuit in the form of an LC oscillator, an element that is ubiquitous

in any electronics textbook and application. The realization that this circuit can be described by

two conjugate variables, Q and �, led to a formulation of the oscillator’s dynamics in terms of

Hamilton’s equations of motion. The canonical quantization of these variables led to the ladder

operators (Eq. 2.13), the consequent Hamiltonian (Eq. 2.15), and Heisenberg’s uncertainty relation

(Eq. 2.23). The fascinating aspect of this approach is that inherent to the quantum mechanical nature

of this circuit are the original quantities L and C, which can be designed to have specific values and

fabricated as solid-state devices on semiconductor chips using established lithographic techniques.

In other words, at our disposal now we have a means of making quantum harmonic oscillators in

a controlled and reproducible way. Moreover, by designing them with properties that make them

easily addressable at GHz frequencies, we conveniently obtain systems that are both straightforward

to cool to the ground state |0if using commercially available dilution refrigerators, and can be

controlled with very stable microwave electronics. For example, at a temperature T ⇠ 10 mK

and an oscillator frequency !/2⇡ = 5 GHz, ~!/kBT > 20 and the Boltzmann factor e�~!/kBT is
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incredibly small, indicating that in this regime any thermal occupation in |1if and above should be

completely negligible.

The challenge of addressing specific energy levels

Experimentally, when driving a harmonic oscillator with a classical source of radiation, rather than

addressing single Fock states one instead creates a coherent state, an excitation of the oscillator that

has a well-defined amplitude and phase (to within the limits imposed by Heisenberg’s uncertainty

relation). A coherent state is described by a complex amplitude ↵, the real and imaginary compo-

nents of which are given by the conjugate variables of the system. For example, returning to position

(x) and momentum (p), we can write: ↵ = x+ ip. Quantum mechanically, one can define a coherent

state as the application of a unitary displacement operator D̂(↵) on the oscillator’s vacuum, or the

Fock state |0if [Glauber, 1963; Haroche and Raimond, 2006]:

D̂(↵) = e(↵â†�↵⇤â) (2.24)

|↵i = D̂(↵) |0if (2.25)

= e�|↵|2/2

1X

n=0

↵n

p
n!

|nif . (2.26)

A coherent state is thus a superposition of the oscillator’s Fock states weighted by a Poisson dis-

tribution, where the average photon number n̄ = |↵|2 equals its variance. In addition, a coherent

state is in fact an eigenstate of the lowering operator: â |↵i = ↵ |↵i, as can be verified with a simple

calculation.

We can represent a state of the oscillator in phase-space with a Husimi-Q function Q[⇢](�)

[Haroche and Raimond, 2006]:

Q[⇢](�) =
1

⇡
h�| ⇢ |�i (2.27)

=
1

⇡
h0|f D̂(��)⇢D̂(�) |0if , (2.28)

where ⇢ is the density matrix of the the oscillator. The Q function returns the average projection

of the oscillator state coherently displaced by � onto |0if for all points in phase space. The Q

function for |↵i (Fig. 2.2a) is therefore a 2D Gaussian centered at ↵ with a finite width (a result of

the uncertainty relations). The oscillator’s vacuum, |0if , is a Gaussian with a variance in the two

quadratures given by �ZPF and QZPF . A single Fock state has a Q function that underscores the

absence of any phase information: a ring peaked at ↵ that is weighted by a Gaussian envelope and
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symmetric about the origin (Fig. 2.2b). Although linear oscillators can exhibit quantum mechanical

properties, they nonetheless do not provide us with the two-level system we seek. We must introduce

a non-linearity into the system in order to lift the degeneracy of the energy spectrum.

Figure 2.2: Husimi-Q function of coherent states and Fock states. (a) This Q function shows that
displacing the oscillator vacuum creates a coherent state of amplitude ↵ (D̂(↵) |0i

f

= |↵i), where the average
photon number n̄ = |↵|2. In this example, we are in the rotating reference frame, and so the coherent state
stands still in phase space. Experimentally, this requires tuning the the classical source of radiation that
performs the displacements to measure the Q function to the oscillator’s resonance frequency !. (b) The Q
function of a single Fock state, a ring centered about the origin, contains no phase information, as expected.
In this example, the Fock state |ni

f

= n̄ is depicted.

Introducing anharmonicity with the Josephson junction

We introduce an anharmonicity into the oscillator by replacing the linear inductor with a Josephson

junction, a structure that is comprised of two superconducting islands separated by a thin insulating

layer (Fig. 2.3a). One can show that the Josephson junction behaves as a non-linear inductor by

invoking the two remarkable Josephson relations [Josephson, 1962, 1965; Tinkham, 2004]:

I(�) = Ic sin� (2.29)

~@�
@t

= 2eV, (2.30)

where I(�) is the current through the junction; � is the phase di↵erence between the wave functions

on either side of the barrier; Ic is the superconductor’s critical current; e is the electron charge; and

V is an applied voltage across the junction from some external source.
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Figure 2.3: The Josephson junction. (a) The Josephson junction is comprised of two superconductors
that are separated by a thin insulating layer that allows the tunneling of Cooper pairs. When cooled far below
the temperature at which the superconducting phase transition occurs, this element (depicted as a square
with a cross inside) behaves as a nearly lossless non-linear inductor. (b) The non-linear inductance changes
the quadratic potential (dotted gray line) to a cosine potential (blue) that scales with the Josephson energy
E

J

. This has the e↵ect of lifting the degeneracy of the energy spectrum, introducing an anharmonicity
(A) that allows us to isolate the first two energy levels (ground state |gi; first excited state |ei) as our
physical qubit. In a real experimental implementation, unwanted excitations to higher excited states (e.g.
|fi) break the two-level approximation, resulting in code-space leakage. (c) The transmon circuit consists
of a Josephson junction shunted by a large capacitance C

shunt

, which lowers the charging energy and thus
decreases the sensitivity of the transmon frequency to charge noise.

We first recall the relation shown in Eq. 2.3, and see that in conjunction with Eq. 2.30 the phase

� and the node flux � are simply related:

� = 2⇡
�

�
0

, (2.31)
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where �
0

= h/2e is the superconducting flux quantum. The junction inductance can then simply

be shown to be a non-linear function of �:

V = L
d�

dt
(2.32)

= L
dI(�)

d�

d�

dt
(2.33)

L(�) =
�

0

2⇡Ic cos(2⇡ �

�

0

)
(2.34)

Likewise, the resulting energy stored in the junction can be calculated from the two Josephson

relations as well [Devoret and Martinis, 2004]:

E(t) =

Z t

�1
I(t0)V (t0)dt0 (2.35)

= EJ cos(2⇡
�

�
0

) (2.36)

where EJ = �
0

Ic/2⇡ is the Josephson energy. We see that now the oscillator potential is no longer

quadratic, but rather a cosine function of � (Fig. 2.3b), lifting the degeneracy of the energy spectrum

that makes linear LC oscillators di�cult to manipulate in a non-classical way.

With the Josephson junction characterized, we can finally move on to the specific realization

of the physical qubit that we will heavily focus on for the remainder of this work: the transmon.

By introducing a large shunting capacitance in parallel with the junction (Fig. 2.3c), we lower the

charging energy and transform the device into an anharmonic oscillator that is highly insensitive to

charge noise [Houck et al., 2009; Koch et al., 2007; Schreier et al., 2008]. There are a number of

other superconducting qubit flavors, such as the Cooper pair box [Bouchiat et al., 1998; Nakamura

et al., 1999], the flux qubit [Mooij et al., 1999], the phase qubit [Martinis et al., 2002], and the

fluxonium qubit [Manucharyan et al., 2009]. The transmon, however, o↵ers an excellent resource

for strong coupling to cavities for the purposes of state readout and entangling operations, all while

maintaining good coherence properties and large anharmonicities that enable the use of fast gates.

Their hamiltonians are well understood and can be custom-tailored by changes in the fabrication

recipes. Moreover, they are reproducible, easy to package, and have the straightforward path toward

scalability. In the next section, we introduce a cavity QED (cQED) architecture that couples a single

transmon to two cavities at the same time, and begin to explore the enormous capacity such a flexible

setup o↵ers for studying numerous quantum optics phenomena in the microwave frequency domain.
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2.2 Coupling a transmon to two cavities

Cavities are structures that support standing electromagnetic waves at certain indexed frequencies,

or modes, which are set by the cavity geometry. A cavity can be understood as an infinite series of

parallel LCR oscillators, where the inductances and capacitances are chosen to match the frequencies

and characteristic impedances of the resonant modes, and the resistances reflect the finite quality

factors of each mode [Pozar, 1998]. They can take on numerous di↵erent forms, including Fabry-

Perot cavities, transmission lines, and in the context of transmons and the research goals outlined

previously, superconducting 3D cavities. By coupling a transmon to a superconducting cavity, we

first gain the ability to inhibit spontaneous emission by designing the transmon to have a resonance

frequency that is far detuned from that of any cavity. Assuming no other sources of decay a✏ict

the system, for example, the coherence times of the transmon and cavity are related through the

Purcell e↵ect [Purcell, 1946]. Indeed, it has been shown in 2D geometries that coherence times can

be enhanced [Houck et al., 2008] by tuning a transmon out of resonance with a cavity mode to

which it is capacitively coupled, thereby indicating the suppression of Purcell-induced spontaneous

emission into multiple lossy cavity modes. Furthermore, we can use the cavity as an e↵ective device

to read out the state of a superconducting qubit in a QND way, as was shown first in a 2D geometry

with the Cooper pair box [Blais et al., 2004a; Wallra↵ et al., 2004, 2005]. Finally, by o↵-resonantly

coupling the transmon to the cavity, we can apply the dispersive and rotating wave approximations

to the Jaynes-Cummings Hamiltonian [Haroche and Raimond, 2006; Jaynes and Cummings, 1963]

to place our system into the strong dispersive regime of cQED [Schuster et al., 2007], wherein due

to the a.c. Stark shift the transmon frequency depends (to first order) linearly on the number of

photons in the cavity, and vice-versa. This regime, for example, allows us to entangle the transmon

and cavity for the purpose of using the former to probe the photon number in the latter in a QND

way [Johnson et al., 2010].

Despite the advantages of precise fabrication and a small form factor, 2D geometries in cQED

systems with transmons and superconducting cavities su↵er from low coherence times, typically

on the order of several microseconds2. Although no one source of loss seems to be responsible

for this performance [Martinis and Megrant, 2014], there is strong evidence that dielectric losses

arising from interfaces between the superconductors and their substrates contribute substantially

to the degradation of T
1

times [Martinis et al., 2005; Wang et al., 2015]3. The change to a 3D

2Although T
1

times can be several tens of microseconds [Barends et al., 2013], T
�

has not been shown to
be as high.

3Although the latter study was carried out in a 3D geometry, its conclusions are nonetheless valid for 2D
systems as well.
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geometry, wherein the majority of the electric field of every mode in the system resides in vacuum,

thus presented a major leap forward in terms of both transmon and cavity lifetimes [Paik et al.,

2011; Reagor et al., 2013]. Further advances in understanding how to diagonalize Hamiltonians with

arbitrary numbers of physical qubits and cavities with a so-called “black box quantization” (BBQ)

approach opened the door to building complex multi-physical qubit and multi-cavity systems in

which the coupling strengths and anharmonicities could be predicted with great accuracy [Nigg

et al., 2012]. In particular, by using BBQ to understand how to design an architecture in which two

3D cavities are bridged by a single transmon (Fig. 2.4), numerous experiments have demonstrated

unprecedented control over manipulating coherent states and understanding the stochastic evolution

of cavity electromagnetic fields in time [Blumo↵ et al., 2016; Heeres et al., 2015; Holland et al., 2015;

Kirchmair et al., 2013; Leghtas et al., 2015a; Reagor et al., 2016; Vlastakis et al., 2013; Wang et al.,

2016]. In this work, we will expand on three results in particular [Ofek et al., 2016; Sun et al., 2013;

Vlastakis et al., 2015]. Before doing so, however, we first explore in detail the full Hamiltonian of

this architecture and simple examples of how the transmon and cavities are characterized.

Storage

Input/
Output

Transmon

Readout

(a) (b)

Transmon

Figure 2.4: System hardware. (a) The two-cavity, single transmon architecture that sits in a 10 mK
environment inside a dilution refrigerator. The storage cavity has a high quality factor, the transmon
physical qubit is used as an ancillary system (ancilla) to probe and manipulate the storage cavity, and the
readout cavity is used to perform projective measurements of the ancilla state. Coupling pins are used to
apply pulses to each component from microwave electronics at room temperature. (b) Zoom-in images of
the trench region between the two cavities, which show the two coupling antennas of the transmon and the
Josephson junction that separates them.
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Building the system Hamiltonian

Earlier we arrived at the result that the energy of a Josephson junction is the cosine of the node

flux, scaled by the Josephson energy (Eq. 2.36). As shown in sec. 2.1, this flux can be promoted to

a quantum operator, which allows us to write down the Hamiltonian for the circuit:

H = �EJ cos[�̂] (2.37)

= �EJ cos[�ZPF (â + â†)], (2.38)

where we have used the result in Eq. 2.16. When coupling other oscillators to this circuit, or cavities

in this case, the modes of the system become hybridized, and therefore an excitation in any of the

modes necessarily results in some current flowing through the junction and thus some contribution to

the flux. For a two-cavity, single transmon architecture, we can thus write down the full Hamiltonian

as:

H = �EJ cos[�a
ZPF (b̂ + b̂†) + �s

ZPF (âs + â†
s) + �r

ZPF (âr + â†
r)] (2.39)

With this Hamiltonian we introduce some new notation. With the architecture shown in Fig. 2.4,

both cavities are designed to have high quality factors, with single-photon lifetimes ranging from

⇠ 100 µs to ⇠ 1 ms. One of these cavities, the “storage” (subscripts “s”), will be kept high-Q, while

the second, referred to as the “readout” (subscripts “r”) will be intentionally over-coupled to a 50 ⌦

output line and used to quickly probe the state of the transmon. Finally, the transmon will be used

as an ancillary system, or ancilla (subscripts “a”), to aid in the manipulation of the storage cavity

in ideally a QND way. To understand how these functions can be performed, we Taylor expand the

Hamiltonian (Eq. 2.39), and invoking the rotating wave approximation (RWA) [Cohen-Tannoudji

et al., 1992; Haroche and Raimond, 2006] we keep only non-rotating terms:

Ĥ/~ ⇡ !̃ab̂†b̂ + !̃sâ
†
sâs + !̃râ

†
râr (2.40)

� �sab̂†b̂ â†
sâs � �rab̂†b̂ â†

râr � �srâ
†
sâs â†

râr

� Ka

2
b̂†2b̂2 � Ks

2
â†2

s â2

s � Kr

2
â†2

r â2

r.

In this expression, the !̃ are the modified resonance frequencies when the storage, readout, and ancilla

are coupled together. This coupling comes about due to the transmon antennae that protrude into

the interior of each cavity (Fig. 2.4b), resulting in a dipole coupling strength g that is typically on the
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Figure 2.5: Dispersive Hamiltonian energy level diagram. (a) This diagram shows the total energy
in the system. An uncoupled cavity and transmon have independent energy level ladders. The resonance
frequency of the cavity !

s

is independent of the number of excitations in the transmon (resonance frequency
!
a

), and vice versa. (b) When the transmon and cavity are coupled and the detuning between the two is
large, not only do the bare resonance frequencies shift (!

s

! !̃
s

, !
a

! !̃
a

) due to the interaction, but the
resonance frequency of each depends linearly (to first order) on the number of excitations in the other, with
a di↵erence in frequency of ��

sa

per excitation. (c) This diagram can also be represented in a spectroscopy-
like depiction, which shows the shift in the resonance frequency of the cavity when the transmon is in |ei
versus |gi, and likewise an example of transmon qubit spectroscopy with a coherent state of light in the
cavity, which shows in this case about ten di↵erent peaks with Poisson-weighted heights, each shifted down
in frequency by the product of �

sa

and the Fock state number.

order of 100�200 MHz. If the cavity and ancilla are on resonance with one another, the parameter

g sets the frequency of vacuum Rabi oscillations [Schoelkopf and Girvin, 2008]. The dispersive

shift in the resonance frequencies for a large detuning � � g between the cavity and transmon is

second order in (g/�)2 [Schuster et al., 2007]. As a result, the bare mode frequencies are modified

(!s ! !̃s, !a ! !̃a) and the frequency of each mode depends linearly (to first order) on the number

of excitations in the other (Fig. 2.5), resulting in Hamiltonian terms such as ��sab̂†b̂ â†
sâs above.
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Crucially, we can use these terms in the Hamiltonian to perform conditional operations in our

system. Namely, we use the frequency shift of the readout cavity �ra to detect the ancilla state [Blais

et al., 2004a; Wallra↵ et al., 2004, 2005], and likewise use the shift �sa to perform conditional gates

between the ancilla and the storage [Johnson et al., 2010]. For example, we can flip the state of the

ancilla if and only if there are 0 photons in the cavity by driving the ancilla at !̃a with a long pulse

with a narrow spectral content.

The remaining terms in the third row of Eq. 2.40 are the anharmonicities, or Kerrs, of each

component. As discussed, when the cavities and transmon are coupled together, all modes become

hybridized. As a result, they have non-zero participation in the energy stored in the junction, and

so an excitation in any mode always causes some current to flow in the junction. The degree of this

participation is set by the magnitude of the zero-point fluctuations and the Josephson energy, and

so the transmon has the highest anharmonicity of the three by upwards five orders of magnitude;

typically Ka ⇡ 200 MHz while Ks, Kr ⇡ 1�10 kHz. The anharmonicity of the transmon is essential,

as it allows us to isolate two levels of the physical qubit and perform the operations necessary for

quantum computation. For example, if Ka ⇡ 200 MHz, microwave pulses (e.g. with a Gaussian

envelope) as short as 10 ns can be used to pulse the transmon from the ground to excited state

(|gi ! |ei) with minimal spectral content at the next transition from the excited to second excited

state4 (|ei ! |fi). The anharmonicities of the modes that ideally should remain harmonic, in

particular those of the storage cavity, are one of the prices we pay for incorporating the Josephson

junction. The greater the non-linearity, the larger the dispersive shifts and faster the operations,

but also the larger the cavity Kerrs. As discussed later in this work, Ks in particular leads to

some degradation of stored information. Indeed, the expansion of the cosine has infinitely many

terms, and so as coherence times increase and durations of experiments become long enough, small

corrections that include terms on the order of hundreds of hertz or less become important as well,

and significantly, can be understood and corrected [Nigg et al., 2012; Reagor et al., 2015].

For many of the experiments we perform, we make the approximation that the transmon really

is a two-level system, replacing the operators b̂, b̂† with simply the projector |ei he| onto the excited

state. In addition, the readout cavity is also typically in vacuum5 during most of the pulse sequence,

except during the measurement of the transmon state, which can in many instances be treated

as simply an ideal projective measurement onto |gi hg|; and so we exclude any Hamiltonian term

containing âr, â†
r. Thus, the final simplified Hamiltonian that well-approximates the dynamics of

4In practice, corrections such as DRAG [Chow et al., 2010a; Motzoi et al., 2009] are necessary for fast
pulses to prevent leakage to |fi.

5The small finite thermal population of the readout cavity always contributes to some degree of transmon
dephasing. This is discussed in detail in [Sears et al., 2012].
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the two-cavity, one ancilla transmon system is given by the following expression:

Ĥ/~ = !̃sâ
†
sâs + (!̃a � �saâ†

sâs) |ei he| � Ks

2
â†2

s â2

s, (2.41)

where we keep the Kerr of the storage cavity due to its importance in the QEC experiments to be

described in later chapters.

Characterizing a transmon and storage cavity

|0if

No
rm

. P
ro

b.

|0if
|1if

|2if|3if

No
rm

. P
ro

b.

|ei |gi0

0

Transmon readout histogram

I

Q

7.5

0

(a) (b)

Figure 2.6: Ancilla spectroscopy with a coherent state in the cavity. (a) This 2D histogram
shows an example of demodulated and integrated in-phase (I) and quadrature (Q) values of readout pulses.
Note the logarithmic scale (base 2). This demonstrates our ability to learn the state of the ancilla transmon
in a singleshot way using a parametric amplifier (here a JPC), achieving discrimination fidelities of over
99%. (b) (Top) When the storage cavity is in the vacuum (|0i

f

), ensemble-averaged ancilla spectroscopy
returns a single peak at the frequency !̃

a

⇡ 6.097 GHz. (Bottom) When the storage is displaced with a
coherent state of amplitude ↵ ⇡ 1, resulting in an average photon number of n̄ = |↵|2 ⇡ 1, the resulting
spectroscopy shows that the ancilla is dispersively shifted down in frequency in increments of �

sa

⇡ 2 MHz
per Fock state. This “number splitting” spectroscopy is a vivid example of the uncertainty in photon number
associated with coherent states. The noisiness of the traces is a result of a finite integration length of the
readout signal and the number of averaged traces. There is a trade-o↵: longer integration lengths result
in better signal-to-noise, but increase the risk of transmon decay during the readout, while averaging more
risks broadening the spectroscopy peaks if the transmon frequency drifts. The width of the peak is set by
the transmon’s T

2

, corresponding essentially to the quality factor of the transmon mode.

Any experiment begins with device characterization. Although the BBQ procedure accurately

predicts the frequencies and couplings between the transmon and the cavities, it is our job to have
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Figure 2.7: Typical Bloch vector rotations. In most experiments we perform predominantly a small
set of pulses that take the Bloch vector to and from the equator (“⇡/2” pulses: left, middle), or flip the
physical qubit (“⇡” pulse: right). The images show examples of these pulses in action on a physical qubit
initialized in |gi. Note that we can imprint a phase between |gi and |ei by changing the phase of the
microwave drive at specific points in a given experimental sequence.

a good estimate of EJ , which sets the Hamiltonian energy scale. To do so without cooling down

the device, we use the Ambegaokar-Barato↵ formula [Ambegaokar and Barato↵, 1963], which to a

good approximation relates the junction conductance at room temperature and energy gap of the

superconductor to EJ :

EJ =
1

2

h

(2e)2
GN�, (2.42)

where GN is the normal state conductance and � is the gap6. For aluminum, the material of choice

for our junctions, GN is in fact about 15% lower at base as opposed to room temperature, and

2�/h ⇡ 100 GHz. Having cooled down the setup with an accurate estimate of parameters in hand,

we first test the quality of the readout signal. Crucial to the success of all the QEC results to follow

is the ability to learn the state of the ancilla in a single shot [Hatridge et al., 2013; Vijay et al.,

2011], which requires excellent signal amplification at the quantum limit. We accomplish this by

using a Josephson parametric amplifier, either a phase-sensitive (JBA) [Kamal et al., 2009; Murch

et al., 2013; Vijay et al., 2009] or a phase-preserving (JPC) [Bergeal et al., 2010], as the first stage

of amplification. The resulting histogram shows a clear bimodal distribution between (Fig. 2.6a)

ancilla ground |gi and excited |ei states.

6We stress the di↵erence between the choice of symbol (�) for the superconducting energy gap and the
detuning used above. These are, perhaps unfortunately, the standard notations, but should clearly not be
confused here.
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Figure 2.8: Characterizing experimental components. (a) We perform power Rabi experiments to
determine the DAC values on our AWGs that correspond to ⇡ and ⇡/2 pulses. (b) Using this information,
we perform T

1

experiments by ⇡ pulsing the ancilla from |gi ! |ei, varying a delay time, and then reading
out the state. In this case, T

1

⇡ 30 µs. The exponential curve has an amplitude A that is ideally +1 and
is set by the initial conditions of the transmon state before the ⇡ pulse. The curve asymptotes to a value
B, which gives the equilibrium thermal population of the transmon. (c) We also perform T

2

experiments,
which are comprised of a Ramsey sequence of two ⇡/2 pulses separated by a varying delay time. In addition
to providing us with a coherence time, this experiment also indicates how far detuned we are from the
transmon mode. In this example, we purposely introduced a � ⇠ 250 kHz detuning, and see that the T

2

is
roughly 10 µs. There may also additionally be some phase o↵set �. (d) We can also find the single-photon
lifetime ⌧

s

of the storage cavity by displacing the cavity with a coherent state of amplitude ↵
0

, waiting
varying lengths of time, applying a number-selective ⇡ pulse on the ancilla such that it is flipped from |gi
to |ei only if there are 0 photons remaining, and then performing a projective readout of the ancilla. As the
coherent state decays toward vacuum, the probability of ancilla excitation increases. The amplitude A is
set by how e↵ective the long, number-selective ⇡ pulse is. With a finite T

2

, the transmon dephasing during
this pulse is non-negligible, limiting the maximum signal. The o↵set B is in fact determined by both the
thermal population of the cavity and the transmon. In this example, ⌧

s

⇡ 250 µs.

Using this readout capability, we can then perform a series of spectroscopy measurements to

find the various resonant modes of the system. Figure 2.6b, for example, shows transmon spec-

troscopy with and without a coherent state in the storage cavity, which demonstrates that we can

find the |gi ! |ei transition in the presence of many photons in the storage, thus extracting �sa.

With the resonant frequencies known, we can proceed to manipulate the transmon in various ways

(Figs. 2.7, 2.8), including performing Rabi-flopping experiments to determine the power needed to
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flip the transmon from |gi to |ei; T
1

experiments to extract the average rate of amplitude decay; and

T
2

experiments to extract the frequency detuning and also the average rate of dephasing �� = 1/T�.

We again note the relationship: T�1

2

= (2T
1

)�1 + T�1

� . Additionally we perform an experiment

to extract the average single-photon lifetime of the storage cavity, ⌧s, which involves performing

conditional pulses on the ancilla that reveal whether there are any photons remaining in the cavity

after a coherent displacement and a varying delay time. This is of course identical to measuring the

Q function at the origin of phase space as a function of time. The exact sources of decoherence that

limit T
1

, T
2

, and ⌧s cannot be pinpointed with full certainty, but likely candidates include photon

shot-noise dephasing through finite residual thermal population in the low-Q readout cavity [Sears

et al., 2012], dielectric surface and interface losses [Wang et al., 2015], and quasi-particles [Pop et al.,

2014], among others.

2.3 A cavity’s photon number parity

Eigenstates of photon number parity can be understood as states of the quantum harmonic oscillator

in which only either even-numbered or odd-numbered Fock states are occupied (Fig. 2.9):

| ie =
1X

n

ce
n |2nif (2.43)

| io =
1X

n

co
n |2n + 1if . (2.44)

Although perhaps trivial to see, the loss of single excitations from these states changes the even

states to odd states and vice-versa:

â | ie =
1X

n

co0
n |2n + 1if (2.45)

= | i0
o (2.46)

â | io =
1X

n

ce0
n |2nif (2.47)

= | i0
e . (2.48)
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Furthermore, we can define a parity operator P̂ = ei⇡â†â, of which any | ie or | io are eigenstates

with eigenvalues +1 or �1, respectively:

P̂ | ie = + | ie (2.49)

P̂ | io = � | io . (2.50)

We note, however, that in general mixed states can also satisfy the property Tr(P̂⇢e) = +1 and

Tr(P̂⇢o) = �1, where ⇢e (⇢o) is an incoherent mixture of even (odd) Fock states. These simple yet

important properties of the quantum harmonic oscillator will in fact play an important role in the

quantum error correction code we will be investigating in later chapters.

(a) (b)

|1if

|3if

|nif

|0if

|2if

|4if

|nif

Figure 2.9: Cavity photon number parity. (a) An arbitrary cavity state that is comprised of only
even Fock states is said to be of even parity (red disks). The wave functions are symmetric about 0 in
the position coordinate �. (d) Conversely, a cavity state with only odd Fock states is of odd parity (blue
disks). The wave functions are anti-symmetric about 0 in the position coordinate �. Note that applying the
lowering operator â on an odd parity state transforms it to an even parity state and vice-versa.

A parity measurement can be realized in the experiment with a simple Ramsey pulse sequence.

It consists of two ⇡/2 pulses on the ancilla separated by a waiting time of t = ⇡/�sa. In order to

calibrate this waiting time, a Ramsey experiment is performed, wherein the two pulses are separated

by varying delays (Fig. 2.10). Assuming the rotating reference frame of the ancilla is set at its

resonance frequency when the storage cavity is in vacuum, with no displacement the Ramsey contrast

decays with a time constant given by T
2

of the transmon. Increasing displacements at first result in a

more rapid decay of the signal as the state in the ancilla and the storage cavity become entangled at

rate �sa, where due to the dispersive interaction ancilla Bloch vectors associated with di↵erent Fock

states |nif precess at rates proportional to n�sa. After a time of 2⇡/�sa one witnesses a revival in

the Ramsey signal as the ancilla and cavity become disentangled; each Bloch vector acquires a phase

proportional to 2⇡. This demonstrates the coherent nature of the interaction. At a time t = ⇡/�sa,

opposite parities (even: red, odd: blue) refocus individually and point in opposite directions as all
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Bloch vectors associated with odd photon numbers acquire a phase (2n+1)⇡. Likewise, in the cavity

picture, by waiting for t = ⇡/�sa, one realizes a controlled-phase gate C⇡ = Î⌦|gi hg|+ei⇡â†
sâs⌦|ei he|,

adding a ⇡ phase shift per photon on the cavity state conditioned on the ancilla state [Bertet et al.,

2002; Vlastakis et al., 2013]. A ⇡/2 pulse at this point in time maps opposite parities to di↵erent

ancilla states. In the example shown in Fig. 2.10, even maps to excited state |ei and odd maps to

ground state |gi.
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Figure 2.10: Calibrating a parity mapping. The five di↵erent plots show the resulting Ramsey
contrast for five di↵erent initial displacements of the storage cavity: D̂(↵ = 0, 0.75, 1.5, 1.75, 2). Cartoon
Bloch spheres at di↵erent points in time show the distribution of even (red) and odd (blue) Bloch vectors
precessing at multiples of �

sa

as dictated by the dispersive interaction in the Hamiltonian, where the rotating
frame has been set at the ancilla frequency when the cavity is in vacuum. For large enough displacements,
note that at t = ⇡/�

sa

the average signal becomes flat, indicating that the average parity is zero. At
t = 2⇡/�

sa

, we witness the characteristic revival of the Ramsey signal as the ancilla and cavity momentarily
return to a product state.

The Husimi-Q function o↵ers us a good way to understand the distribution of photons in phase

space, but poorly characterizes coherence between Fock state components, since interference fringes

in the Q function tomograms are exponentially suppressed with increasing state size [Haroche and

Raimond, 2006]. For the remainder of this work, we will instead concentrate on the Wigner function,
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which quantifies the average photon number parity of the cavity at every point in phase space [Cahill

and Glauber, 1969; Haroche and Raimond, 2006; Lutterbach and Davidovich, 1997]. In addition to

providing information as to the distribution of Fock states, the Wigner function has the capability

to depict interference fringes, the hallmark of a quantum state, with high contrast. This will be

an indispensable tool for characterizing not only the levels of entanglement we can see between the

storage cavity and ancilla, but extracting an error syndrome from a logical qubit encoded in a cavity

state.

Quantitatively, the Wigner function is the expectation value of the parity operator after the

cavity state ⇢s is coherently displaced with an amplitude �:

W (�) =
2

⇡
Tr[D̂(�)†⇢sD̂(�)P̂ ] (2.51)

Knowing the Wigner function is equivalent to knowing the density matrix of the cavity state ⇢s [Cahill

and Glauber, 1969; Haroche and Raimond, 2006] (up to a maximum photon number set by the largest

value of the displacement used to characterize the state in the IQ plane) and reconstructions may be

performed to determine ⇢s from a Wigner tomogram [Kirchmair et al., 2013]. As in the Q function,

coherent states look like disks in phase space with a (more narrow) Gaussian envelope (Fig. 2.11).

Unlike the Q function, however, the Wigner function can be negative, a feature that indicates the

non-classical nature of a particular state. In this sense, it is a quasi-probability distribution, and

thus just as the trace of ⇢s must be +1, the integral of the Wigner function over both position, dx

(equivalently, along the I axis), and momentum, dp (equivalently, along the Q axis), must equal +1.

In fact, one can also use the Wigner function to determine the marginal probability distribution

along x or p by integrating W (x, p) along the conjugate variable. For example, if the cavity is in a

pure state (⇢s = | si h s|):

| s(x)|2 =

Z
dp W (x, p) (2.52)

| s(p)|2 =

Z
dx W (x, p) (2.53)

The negativity of the Wigner function is clear if one looks at the tomogram of a Fock state; as with the

Q function, the circular symmetry arises due to the lack of phase information, while the oscillations

into regions of negative average parity demonstrate that Fock states are quantum in nature. Note

that the origin of the Wigner function simply reveals the actual photon number parity of the state

itself, with no displacements applied. Thus, the Fock state shown in Fig. 2.11 shows the greatest

negativity precisely at the origin, since the parity of |3if = �1. A number of other works have
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demonstrated excellent control of photon states and Wigner tomography in cQED systems [Bertet

et al., 2002; Brune et al., 1992; Deléglise et al., 2008; Hofheinz et al., 2009; Kirchmair et al., 2013;

Vlastakis et al., 2013].

� �

�

hP�i

|nif |nif

Figure 2.11: Wigner functions of a coherent state and Fock state. (a) A measured Wigner function
of a coherent state |↵i where ↵ =

p
3. The photon number distribution shows the expected Poisson envelope.

The color scale shows the average parity:
D
P̂
�

E
=

D
D̂(�)P̂ D̂(�)†

E
. (b) The measured Wigner function of

a 3-photon Fock state. The photon number distribution is dominated by |ni
f

= 3, with experimental
non-idealities such as photon loss contributing to other spurious components.

Although Fock states may on the surface be easier to understand in terms of applications to

quantum computation, given their discrete nature, as described earlier they aren’t easy to create in

a real experimental setting with the cQED setup introduced above. Coherent states, on the other

hand, require a simple and short pulse of a microwave generator. The work of [Vlastakis et al., 2013]

demonstrated how a quantum bit of information can be mapped onto superpositions of coherent

states, or cat states:

| i±
2cat ⇡ 1p

2
(|↵i ± |�↵i) (2.54)

These coherent superpositions are in fact eigenstates of photon number parity (Fig. 2.12). Fur-

thermore, since coherent states are eigenstates of âs, these cat states are in fact eigenstates of â2

s,

a suggestive feature useful to QEC and to which we will return in the next chapter. Figure 2.12
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Figure 2.12: Ancilla spectroscopy with cat states in the cavity. The Wigner functions in the top
panel are cartoons; the spectroscopy in the bottom panel is actual data from [Vlastakis et al., 2013]. With
a coherent state in the cavity (left), the ancilla transmon spectroscopy shows the number splitting that is
characteristic of the dispersive interaction. The height of each peak matches the Poisson coe�cient for the
corresponding Fock state component of the coherent state expansion in the Fock basis. When even and odd
(middle, right) cat states are in the cavity, however, the spectroscopy shows that only even (red) or only
odd (blue) Fock state components are detected. Weak signals of opposite parity are due to single photon
loss during the measurement. The cartoons of the cat states illustrate the expected fringe pattern for the
cat states. Note that the fringes are ⇡ out of phase between even and odd cats, and furthermore that the

origin of the Wigner function indicates the parity of the state (even: bright red,
D
P̂
0

E
= +1; odd: bright

blue,
D
P̂
0

E
= �1).

shows the spectroscopy of the ancilla transmon when cat states of opposite parity are created in

the storage cavity. As we will show, the highly coherent nature of cavities makes them a natural

choice for quantum computation applications beyond reading out the state of a physical qubit. Their

structural simplicity cuts down on the complexity, and thus the number of potential decoherence

channels in the setup. Such attributes are often under-appreciated in the field, leading to unrealistic

expectations and predictions as to future scalability and performance of large multi-physical qubit

systems. In this work, we instead strive to convince the reader of the virtues of hardware e�ciency.

In cavity QED with Josephson junction-based physical qubits we find an excellent platform

to pursue our goal of realizing quantum computation. This architecture o↵ers a clear physical

element that can be well-approximated as a two level system, the transmon; through single-shot

measurements we can learn the transmon state with high fidelity and then proceed to apply arbitrary

pulses to prepare this physical qubit in any state we desire; gates can be tuned to excellent accuracy;

and the coherence properties range from tens of microseconds to upwards of milliseconds in the case

of cavities, o↵ering ample time for gate operations that can be performed on time scales of tens

of nanoseconds. These five DiVincenzo criteria must be satisfied by a system before it can be
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scaled up to perform meaningful calculations as a quantum computer [Nielsen and Chuang, 2010].

Current physical qubit performance in cQED is indeed approaching levels where scaling to larger

multi-physical qubit architectures, which can perform quantum error correction in a fault-tolerant

manner, can be explored [Barends et al., 2014]. These results, although promising and exciting,

however, must be interpreted with caution. The architectures in which they were demonstrated

were modest in size and complexity. As will be shown and emphasized throughout this work, the

true metric of performance is only obtained when the entire system is up and running. For example,

while illustrating how bit-flip error correction ostensibly suppresses transmon decay from |ei to |gi
when the number of physical qubits increases from five to nine [Kelly et al., 2015], one cannot

simply assume that one will continue to gain with greater physical qubit numbers. One must prove

it experimentally. The following chapters lay the groundwork for what is the culmination of the

work presented here: using the simple two-cavity, single transmon setup introduced previously to

implement a full QEC system that protects an arbitrary bit of quantum information while exposed

to every possible source of decoherence. It is an exciting time for the field of cQED. The results

we describe here present a real step forward toward the ultimate goal of building the first practical

quantum computer.
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3 – The Cat Code

The basic principles of quantum mechanics prevent the application of classical schemes of error

correction to a quantum system in order to restore the integrity of the information. Indeed, by

simply measuring a quantum state to check for the occurrence of errors, one necessarily projects it

out of a possible superposition in which it may be, thereby losing any information encoded in relative

quantum amplitudes and phases. Furthermore, the no-cloning theorem [Wootters and Zurek, 1982]

prevents one from making copies of an unknown quantum state. Overcoming these hurdles requires

more sophisticated techniques in quantum error correction (QEC), ones which borrow from the basic

classical strategies of measurement and code redundancy while at the same time adhering to the core

constraint that in the process nothing must be learned about the actual quantum bit of information.

Redundantly encoding quantum information need not require copying; by using the capability

of entangling gates as a resource, one can encode a quantum bit in a higher dimensional space

while still maintaining the quantum amplitudes of the initial state. The challenge is to devise an

encoding scheme that transfers information from a single physical qubit onto a collection of physical

qubits, or logical qubit, which is endowed with cleverly chosen symmetry properties that allow one

to extract an error syndrome without disturbing the original information. Implementing QEC in

the laboratory is challenging, requiring a complex system with many physical qubits. Even for a

perfectly realized QEC system of finite size, there will always be unrecoverable errors or failure

modes, resulting in an exponential decay of the information over time. In fact, error correction first

introduces a decoherence penalty, since an uncorrected logical qubit consisting of n physical qubits

(for typical first order codes n ⇠ 5 � 10 [Steane, 1996]) will experience decoherence that is of order

n times faster. A central goal of QEC is to suppress the naturally occurring errors and surpass the

break-even point, where the lifetime gain due to error correction is larger than this penalty. These

considerations motivate exploring a hardware-e�cient approach to QEC, with which it may be more

tractable to not only overcome the decoherence penalty, but furthermore to pinpoint the leading

limitations to fault-tolerance.
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In this chapter, we provide an overview of the traditional error correction codes that require

many physical qubits to realize. In so doing, we will motivate the need for a hardware-e�cient

approach to QEC, one that exploits many of the properties of superconducting cavities that make

them attractive candidates for a quantum memory. We will then conclude with a particular QEC

scheme called the cat code, which proposes a logical encoding of a quantum bit in superpositions of

coherent states in a cavity and calls for measuring just one error syndrome in the system: changes

in photon number parity.

3.1 Constructing a quantum error correcting code
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Figure 3.1: E↵ects of amplitude and phase damping on a quantum bit. Cartoon Bloch spheres
show the e↵ects of the two dominant error channels on a quantum bit. The initial Bloch sphere shaded in
green represents any pure state, where the length of the Bloch vector is 1. Under the action of amplitude
damping, with some probability p = e�t/T

1 the environment measures the loss of a photon due to spontaneous
emission, modeled by the error channel Ê

1

. Not detecting photon loss constitutes a measurement as well,
and so the probability of the quantum bit occupying the excited state decreases in time, as modeled by Ê

0

.
The time t is chosen to allow for appreciable decay. In the case of phase damping, where p = e�t/T� , every
vector shrinks towards the Z-axis; only the ground and excited states |gi and |ei remain pure.

The remarkable discovery of QEC protocols [Shor, 1995] was a critical advance that gives hope for

eventually realizing useful quantum computers. These protocols are predicated on the understanding

that physical two-level systems (e.g. the transmon, to a good approximation), are generally suscep-

tible to two sources of decoherence: amplitude damping and pure dephasing [Nielsen and Chuang,
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2010]. The former can be thought of as resulting from the spontaneous emission of a photon1, or the

application of the lowering operator �̂� = �̂x + i�̂y on the Bloch vector with a probability charac-

terized by T
1

. The latter, although describing a continuous process, can nonetheless be modeled by

the probabilistic occurrence of phase-flips, where the discrete error channel is instead the stochastic

application of �̂z with a probability characterized by T�. The evolution of a state exposed to these

error channels can be visualized as a shrinking of the Bloch sphere toward the energetically prefer-

ential ground state for amplitude damping, or toward the Z-axis for phase damping (Fig. 3.1). The

crucial point is that by discretizing the continuous errors to the probabilistic occurrence of either

bit-flips (�̂x), phase-flips (�̂z), or both (�̂y = i�̂x�̂z), the challenge of implementing QEC to protect

a quantum bit from any error in principle becomes tractable.

In designing an error correction code, the logical encoding must be chosen carefully. One must

first ensure that di↵erent errors in the code are mapped to orthogonal subspaces to allow for error

detection, and second that no measurement back-action occurs from the occurrence of an error,

where the measurement is performed by the environment. These requirements are formalized by the

Knill-Laflamme condition [Knill and Laflamme, 1997], which states:

hLk| E†
nEn0 |Lk0i = �n�nn0�kk0 , (3.1)

where |Lki is one of K logical states, Ên is one of N possible errors, and �n is proportional to

the probability of that error occurring. In the case of a logical qubit, K = 2 (|0Li ⌘ |L
0

i and

|1Li ⌘ |L
1

i) and for the physical qubits considered in this work N = 4 for the four di↵erent

possible error operators: Î, �̂x, �̂y, �̂z. Assuming for the moment that k = k0 in Eq. 3.1 so that

�kk0 = 1, the term �nn0 requires that each error operator takes the same state |Lki to orthogonal

subspaces, satisfying the first requirement. Now assuming that �nn0 = 1, not only are di↵erent

logical states taken to orthogonal subspaces when acted upon with the same error operator, but

also that the probability of error, proportional to �n, is independent of the logical state chosen. For

example, if Ên = �̂L
x (some logical bit flip |0Li $ |1Li), and h0L| Ê†

nÊn |0Li 6= h1L| Ê†
nÊn |1Li, then

�̂L
x (c

0

|0Li + c
1

|1Li) = c0
0

|0Li + c0
1

|1Li; the changes c
0

! c0
0

and c
1

! c0
1

are the consequences of

measurement back-action and result in code failure since information about the logical qubit has

been gained.

1In a realistic experimental setting, the finite temperature of the physical qubit additionally results in a
probability of excitation, or the application of the raising operator �̂

+

= �̂
x

� i�̂
y

. Additionally, when the
two-level approximation breaks down, code-space leakage occurs. This e↵ect is not included in the discussion
here.
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Figure 3.2: Three-qubit bit flip code protocol. Encoding consists of two CNOT operations between
the first physical qubit and two additional physical qubits, which maps the state | 

q

i into a larger Hilbert
space where the logical basis states become |000i and |111i. Error syndromes are measured by mapping the
parities of the encoding onto two ancilla qubits (|0i

a

). Measurements of the ancillae project the code either
back into the initial code space or into one of three error spaces; each space is associated with a unique
measurement pattern. This code can be modified to detect phase flips as well, but needs greater redundancy
in order to correct for bit and phase flips together.

The example of a three-qubit bit flip code illustrates the basic idea [Nielsen and Chuang, 2010].

Let’s assume a state | iinit = c
0

|0i + c
1

|1i is encoded in a single physical qubit, and that this

physical qubit can only experience continuous errors that rotate the Bloch vector about an unknown

axis in the xy plane of the Bloch sphere. Cloning is not allowed, and measurement destroys the

superposition, so a redundant encoding is necessary to allow one to discretize the continuous space

of errors into errors correctable by unitary operations. As shown in Fig. 3.2, the redundant encoding

can be realized by entangling the first physical qubit with two extra physical qubits using two CNOT

gates:

| iinit = c
0

|0i + c
1

|1i ! c
0

|000i + c
1

|111i , (3.2)

where the logical qubits are: |0Li ⌘ |000i and |1Li ⌘ |111i. This redundancy and ability to correct

comes with two related “costs:” an increased complexity, or “resource overhead,” and a “decoherence
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penalty.” The resource overhead is related to the number of physical qubits required per logical qubit;

it characterizes the di�culty of the experimenter’s task to realize a certain calculation. The greater

the resource overhead, the more hardware is required to operate the quantum computer and thus

the greater the cost. The decoherence penalty is the enhanced rate of decoherence the experimenter

faces within the logical space due to the increased size of the redundant encoding. It is a ubiquitous

facet of any QEC code. For example, assuming the three physical qubits in the bit flip code above

are identical, the error rate experienced by | iinit is three times greater than with a single physical

qubit. The advantage of course is that error correction is possible in principle, given that | iinit

now has symmetry properties, or parities, that allow error syndrome extraction without learning

anything about c
0

and c
1

.

Returning to the bit flip code, we complete the example by working through how the error

syndromes can be extracted. Assuming that each physical qubit has the same probability p of

deviation from its original state, the following eight projectors show all possible error permutations

with measurement probabilities given in Fig. 3.3:

P
0

⌘ |000i h000| + |111i h111| no error (3.3)

P
1

⌘ |100i h100| + |011i h011| bit flip on first physical qubit (3.4)

P
2

⌘ |010i h010| + |101i h101| bit flip on second physical qubit (3.5)

P
3

⌘ |001i h001| + |110i h110| bit flip on third physical qubit (3.6)

P
4

⌘ |110i h110| + |100i h100| bit flips on first and second physical qubits (3.7)

P
5

⌘ |101i h101| + |010i h010| bit flips on first and third physical qubits (3.8)

P
6

⌘ |011i h011| + |100i h100| bit flips on second and third physical qubits (3.9)

P
7

⌘ |111i h111| + |000i h000| bit flips on all physical qubits. (3.10)

Concentrating on P
0

through P
3

for the moment, note that with two bits of information one can

learn uniquely which of the three physical qubits had a bit flip. For example, these bits can be

the outcomes Z
1

Z
3

and Z
2

Z
3

of measuring the operators �̂z,1�̂z,3 and �̂z,2�̂z,3 respectively, where

the indices refer to the three physical qubits in the encoding. If one could measure these parities,

with probability ⇡ 1 � 3p (assuming p is small) the state would be projected back to the original

| iinit = c
0

|000i + c
1

|111i, while with a probability ⇡ p the state would be projected into one of

three error spaces given by a bit flip on one of the three physical qubits in the logical encoding.

In fact, these parities Z
1

Z
3

and Z
2

Z
3

can be mapped onto two ancillary physical qubits, or

ancillae, again using CNOT gates, as shown in Fig. 3.2. By projectively measuring the states of the
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Figure 3.3: Correcting bit flips with the three-qubit code. This plot shows an example logical
encoding in which the probability of a bit flip on each of the three physical qubits the comprise the logical
is 20%. With about 90% probability, the state either remains in the initial code space (black bar), or in one
of three error spaces in which one of the three physical qubits flipped (red bars). With the remaining 10%,
however, multiple errors occur and result in code failure.

ancillae one can use the resulting measurement pattern to learn which of the code physical qubits,

if any, had an error; one thus forces the system to choose whether an error has occurred. These

error syndrome measurements are QND on the encoded information as they reveal nothing about

the amplitudes c
0

and c
1

and serve only to project the state either back into the code space or

into one of three unique error spaces. One can check easily that the Knill-Laflamme condition in

Eq. 3.1 is satisfied for this encoding. In principle, the error need not be corrected either, as the

basis of the code space can be redefined to take into account that a bit flip has occurred. This

further simplifies the task of error correction to monitoring changes in the parity with repeated error

syndrome measurements in time.

The approximation that p is small of course means that with some small probability that scales

initially like p2 this code will fail; it can be quickly seen that bit flips on two of the physical qubits

cannot be distinguished from a single bit flip on the third with the parity measurement scheme

above. This code is therefore known as a first-order error correcting code as it can handle only

one bit flip per round of correction. Further redundancy, and thus a larger hardware overhead, is

necessary to promote this code to higher orders. The e↵ect of this quadratic behavior is evident
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in a number of QEC experiments, including those on cQED platforms [Reed et al., 2012]. From

these results we can already glean the following key points: for QEC to be successful, a single round

of error correction must be fast compared to the average error rate of the logical to keep p low; in

addition, the gates and measurements must be high-fidelity so that error syndromes faithfully reflect

the true error trajectory of the quantum bit. However, one must be prepared for the fact that there

will still always be a finite probability that an error will be missed. As a result, the fidelity of the

state is destined to decay exponentially in time if this probability is constant per round of correction.

3.2 The challenges facing traditional QEC schemes

With the three-qubit code above, which just corrects for bit flips,2 we already see that fast error

syndrome measurements may not be so easy to implement experimentally. Although the four CNOT

operations may be implemented quickly and even with the requisite fidelity [Barends et al., 2014;

Chow et al., 2012, 2013], the entire error correction step may still be challenging to realize quickly

compared to T
1

times in typical cQED systems. In particular, dispersive ancilla readout durations,

ancilla resets, and any necessary calculations that may need to be done in real-time quickly add

up. Furthermore, in order to suppress both bit and phase flips, traditional quantum error correction

schemes [Fowler et al., 2012; Steane, 1996] in fact require an even greater overhead than in the

example presented above. In the case of the Steane code shown in Fig. 3.4, the encoding consists of

seven physical qubits and two quite complicated logical states:

|0Li =
1p
8
(|0000000i + |1010101i + |0110011i + |1100110i (3.11)

+ |0001111i + |1011010i + |0111100i + |1101001i)

|1Li =
1p
8
(|1111111i + |0101010i + |1001100i + |0011001i (3.12)

+ |1110000i + |0100101i + |1000011i + |0010110i).

Furthermore, the Steane code calls for six ancillae to measure six di↵erent parities all within a

single round of correction. This first order code can handle errors only on one physical qubit in the

code space per round of correction. This of course renders the task of realizing gains from using

QEC challenging, as the extra decoherence penalty introduced by the larger encoding increases

the logical error rate within the code by at least a factor of seven. This means that to begin

2This code can also be easily modified to correct phase flips instead of bit flips, but it cannot correct
both bit and phase flips at the same time.
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with the coherence times of the constituent physical qubits must be high enough such that all six

syndrome measurements can be performed before multiple errors start to degrade the integrity of the

information. Higher coherence times, however, are a result of weaker couplings of a physical qubit

to its environment, which unfortunately means that the strength with which one can intentionally

couple this physical qubit to other quantum systems (e.g. cavities) or experimental control lines

may also be reduced. As a result, the ratio of coherence times to the speed with which single

and multi-physical qubit gates can be performed is more di�cult to increase than each property

independently, rendering six fast parity measurements in one round of correction quite challenging

in typical quantum information architectures.
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HBit-flip detection Phase-flip detection

|+i
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Figure 3.4: The Steane code. This first order code can correct both bit and phase flips in one of
the seven code physical qubits within one round of QEC. Using a series of controlled-NOT (CNOT) gates,
multi-physical qubit parities are mapped onto a number of ancillae, projective readouts of which are used
to determine which, if any, of the code physical qubits (|q

1

i through |q
7

i) needs to be corrected and with
which operation. Here, |+i = H |0i.

Compounding this challenge is that multiple errors within a single round of correction are by

no means the only source of infidelity in any real experimental implementation. When looking at

how such a code can fail (Fig. 3.5), other general mechanisms include uncorrectable errors, such

as code space leakage to states that nullify the assumption that the physical implementation of a

physical qubit is a true two-level system; readout and ancilla preparation errors that provide the

wrong syndrome information; undesired couplings between physical qubits in the codespace and

indeed any other component in the architecture that can induce unknown phases; and perhaps most

destructively of all is the forward propagation of errors, where by the very action of measuring

the error syndrome new errors are introduced into the code that one cannot correct. This is a
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central vehicle of non-fault-tolerance in a code such as this and requires yet further code redundancy

to suppress. Note that the first five sources can in principle be suppressed by faster syndrome

measurement rates, whereas the sixth favors less frequent interrogation due to the probability of

propagating errors from the ancillae into the code. This will be a central consideration for an

implementation the error correction system discussed in later chapters.
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H

H

Phase-flip detection
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�
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4 Ancilla prep. errors

5 Undesired couplings

6 Forward propagation

Figure 3.5: Failure modes in a QEC code. This zoom-in of a portion of the Steane code from
Fig. 3.4 depicts six di↵erent possible failure modes that can result in physical qubit decoherence. These
general mechanisms are applicable to any measurement-based error correction scheme and must be carefully
considered when implementing an actual QEC system experimentally.

In principle, a system that implements QEC can actually pass a“break-even” point, overcoming

the decoherence penalty and thereby preserving quantum information for longer than the lifetime

of its constituent parts. Returning to the example of the Steane code, however, certain estimates

predict that the error rate per gate must be on the order of 1 ⇥ 10�4 [Nielsen and Chuang, 2010].

Given that current QEC implementations in superconducting cQED experiments can optimistically

measure the six parities in 1�10 µs, the coherence times also need to be upwards of milliseconds to

prevent the accumulation of multiple errors, a feat that has been achieved only in fluxonium qubits

with T
1

(although not yet T�) [Pop et al., 2014], but not yet in transmons, which have typically

been the physical qubit of choice in recent QEC experiments [Córcoles et al., 2015; Kelly et al.,

2015; Reed et al., 2012; Ristè et al., 2015]. Reaching the break-even point and demonstrating the
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extension of a physical qubit’s lifetime with such multi-physical qubit paradigms has thus remained

an outstanding and challenging goal [Devoret and Schoelkopf, 2013].

Several previous works have demonstrated elements of QEC on platforms such as NMR [Cory

et al., 1998; Knill et al., 2001a; Leung et al., 1999; Moussa et al., 2011], ions [Chiaverini et al.,

2004; Nigg et al., 2014; Schindler et al., 2011], nitrogen vacancy (NV) centers [Cramer et al., 2016;

Taminiau et al., 2014; Waldherr et al., 2014], photons [Aoki et al., 2009; Pittman et al., 2005],

and superconducting transmons [Córcoles et al., 2015; Kelly et al., 2015; Reed et al., 2012; Ristè

et al., 2015]. These works, however, primarily illustrate the signatures or scaling properties of QEC

codes rather than test the capacity of the system to extend the lifetime of quantum information

over time. Far from suggesting any shortcomings or a lack of sophistication in the experimental

techniques employed in those experiments, their inability to preserve a quantum bit of information

over time from natural errors underscores the pivotal role played by all failure modes shown in

Fig. 3.5 in contributing to decoherence. Indeed, practically speaking, in each implementation it

was in fact more advantageous to simply store the quantum bit in the system’s most coherent

element, realizing just a passive and uncorrectable quantum memory. What we learn from such

endeavors is that system complexity that leads to large decoherence penalties necessitates physical

qubit performance levels that simply cannot be currently achieved. Furthermore, it remains unclear

whether the reported high fidelities of the universal gate set can be sustained with ever larger and

more complex microwave connectivity schemes. We thus strive to find a hardware-e�cient solution,

one that circumvents paradigms akin to the Steane code by cutting down on the overhead involved,

and reduces the impact of each error channel listed in Fig. 3.5 on QEC performance.

3.3 The cat code: a hardware-e�cient approach

Although typically used for the purposes of measurement [Blais et al., 2004a; Wallra↵ et al., 2005]

or to mediate interactions between physical qubits [Majer et al., 2007], cavities in superconducting

cQED architectures can be a valuable resource for storing a logical qubit in a continuous-variable

system [Braunstein, 2005]. It has been shown, in fact, that universal quantum computation with

continuous-variable encoding schemes is possible [Gottesman et al., 2001; Lloyd and Braunstein,

1999; Menicucci et al., 2006] and can in fact o↵er advantages over those employing collections of

discrete physical qubits. Although a continuous-variable quantum computer formally has the same

power as a discrete-variable system, there are regimes in which it could be more e�cient. For exam-

ple, a single oscillator can in principle accommodate an unlimited amount of information, owing to

the infinite size of its Hilbert space. The hardware requirements can be more favorable as well, call-
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ing for linear elements and photon detectors in the optical platforms [Knill et al., 2001b], or simple

microwave cavities with long coherence times that are easy to assemble in superconducting cQED

systems [Reagor et al., 2013, 2016]. Furthermore, the natural relation between continuous variables

and communication can in principle simplify the transmission of quantum information for the pur-

poses of teleportation [Braunstein and Kimble, 1998; Lloyd and Slotine, 1998], cryptography [Ralph,

1999], and dense coding [Braunstein and Kimble, 2000], to name a few.

There are trade-o↵s as well, however, which include challenges resulting from possible non-

orthogonality of basis states in experimental realizations, the possibility of continuous excursions

from a logical sub-space, and manipulating encoded states with high fidelity. Nonetheless, several

promising continuous variable QEC protocols exist [Braunstein, 1998; Leghtas et al., 2013; Lund

et al., 2008; Michael et al., 2016; Mirrahimi et al., 2014; Ralph, 2011], and substantial progress has

been made in demonstrating that continuous-variable encodings can be a powerful resource for the

storage, control, and measurement of quantum information [Aoki et al., 2009; Deléglise et al., 2008;

Heeres et al., 2015; Hofheinz et al., 2009; Jensen et al., 2011; Leghtas et al., 2015a; Pittman et al.,

2005; Sun et al., 2013; Vlastakis et al., 2013, 2015]. Moreover, with recent progress in demonstrating

cQED architectures that o↵er a natural path toward scalability [Brecht et al., 2015, 2016; Minev

et al., 2016], we see continuous variables systems as a promising platform for realizing a practical

quantum computer.

A cavity’s one dominant error channel

The time evolution of the density matrix ⇢s of a field in a cavity, which has some equilibrium

thermal photon population ns
th, a rate s associated with single photon creation and annihilation

operators â†
s and âs, is well-modeled by the following Lindblad operators in the master equation

formalism [Haroche and Raimond, 2006]:

L� =
q
s(1 + ns

th)âs (3.13)

L
+

=
p
sns

thâ†
s, (3.14)

where the master equation reads:

d⇢s

dt
= �i!̃s[â

†
sâs, ⇢s] � s(1 + ns

th)

2
(â†

sâs⇢s + ⇢sâ
†
sâs � 2âs⇢sâ

†
s) (3.15)

� sns
th

2
(âsâ

†
s⇢s + ⇢sâsâ

†
s � 2â†

s⇢sâs)
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One can show that such a formulation returns the expected prediction that on average the occupation

of the cavity mode n̄ = Tr[⇢sâ†
sâs] simply decays exponentially in time to thermal equilibrium with

a characteristic time constant ⌧s = 1/s:

n̄(t) = n
0

e�t/⌧s + ns
th(1 � e�t/⌧s) (3.16)

Treating ns
th as negligible for the remainder of this discussion, one may conclude that the evolution of

the density matrix ⇢s can be simply described by the stochastic application of the lowering operator

âs on the cavity field. This assertion, that there are essentially just two dominant processes within

the cavity, the application of e�s
2

â†
sâs�t (for time steps �t) and the stochastic application of âs,

is a powerful incentive to consider storing quantum information in a superconducting cavity rather

than a two level system, such as a transmon, which is susceptible to both amplitude (��) and phase

damping (�z).

One may raise the concern that in a real experiment, if the cavity is coupled to a transmon

for example, fluctuations in the the critical current of the Josephson junction may result in some

frequency jitter of the cavity mode. The current that runs across the junction when this mode is

excited, however, is much smaller than in the case of excitations in the transmon. In other words,

the cavity inherits a much smaller non-linearity from the junction than does the transmon, where

the anharmonicity of the former is typically four orders of magnitude smaller than that of the latter.

Indeed, it has been experimentally demonstrated [Reagor et al., 2016] that 3D superconducting cav-

ities have no currently measurable source of inherent dephasing arising from a Lindblad operator of

the form L� =
p
�â†

sâs or higher order photon loss mechanisms such as L
2ph =

p


2phâ2

s [Sun et al.,

2013]. In practice, some dephasing is induced by its dispersive coupling to occupation fluctuations

of other modes in the system, particularly to that of the transmon; this is a central concern that

will be discussed in later chapters.

The governing goal is to thus construct a code that can track the occurrence of single photon

jumps, as this would correct for the dominant error channel in the system. In implementing a QEC

system to realize this goal, we look to translate the discretized energy dissipation of the cavity

field into a unitary operation on an encoded state, the occurrence of which can be deduced from

an appropriate error syndrome measurement. It turns out that the simple symmetry property of

cavities introduced in chapter 2, photon number parity, is naturally suited to play the role of an

error syndrome in such an architecture. As will be described presently, the remarkable feature that

cavities have just one dominant error channel in the form a single photon loss allows for a clever

encoding scheme that uses coherent states, which are eigenstates of âs. The task is to construct a
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logical encoding using these states that satisfies the requirements for quantum error correction as

outlined above while minimizing the necessary decoherence penalty. In the remaining chapters we

concentrate on one particular QEC proposal called the cat code [Leghtas et al., 2013; Mirrahimi

et al., 2014]. We use the experimental system shown in Fig. 2.4 and described in greater detail

in A.3. The result is a substantially simplified proposal for a quantum memory that suppresses the

one dominant source of natural decoherence in the system. Although facing the set of challenges

that comes with moving from a discrete to a continuous-variables system, it nonetheless opens the

door to realizing error correction at the break-even point.

A logical basis of cat states

Coherent states |↵i are an attractive option for a logical encoding scheme (Fig. 3.6) as they are

eigenstates of âs, where |↵i = e�|↵|2/2

P1
n=0

↵n
p

n!

|nif for a complex amplitude ↵, and âs |↵i = ↵ |↵i.
This feature suggests that one could try encoding a quantum bit in a superposition of coherent

states: | qi = c
0

|0i + c
1

|1i ! c
0

|↵i + c
1

|�↵i. As the overlap between two coherent states falls

o↵ exponentially in the di↵erence of their amplitudes [Haroche and Raimond, 2006], choosing an

|↵|2 = n̄ & 1.5 would be su�cient for basis states |↵i and |�↵i to be almost completely orthogonal,

with an overlap of ⇠ 0.2%. The penalty we pay is that the rate of photon jumps � scales with

the mean photon number n̄ = |↵|2 [Haroche and Raimond, 2006]. This is the QEC decoherence

penalty in such a scheme. When c
0

= c
1

= ±1/
p

2, | qi ! 1/
p

2(|↵i ± |�↵i), the logical encoding

is an equal superposition of coherent states that we refer to in this work as “2-cat” states, which are

eigenstates of the even (+) or odd (�) photon number parity operator P̂ = ei⇡â†
sâs :

|C+

↵ i =
1p
2
(|↵i + |�↵i) =

p
2e�|↵|2/2

1X

n=0

↵2n

p
(2n)!

|2nif (3.17)

|C�
↵ i =

1p
2
(|↵i � |�↵i) =

p
2e�|↵|2/2

1X

n=0

↵2n+1

p
(2n + 1)!

|2n + 1if , (3.18)

where hC±
↵ | P̂ |C±

↵ i = ±1. This parity is a quantity that can be measured with high fidelity in our

system with a simple Ramsey-style pulse sequence [Bertet et al., 2002; Haroche et al., 2007], as was

first shown in chapter 2 and will be used extensively in chapters 4 and 5. The problem with this

encoding, however, is that aside from the special case of a “2-cat,” for arbitrary c
0

and c
1

there is

no parity symmetry and no other measurable symmetry property that would indicate the loss of a

photon. For example, as seen in Fig. 3.6a, the cardinal point along +Yc is a cat state of zero parity.

This requires us to move on to the cat code [Leghtas et al., 2013; Mirrahimi et al., 2014], wherein

we access a larger part of the cavity’s Hilbert space in order to accommodate an encoding scheme
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Figure 3.6: Logical encodings with coherent states. (a) The logical |0i and logical |1i are defined
by coherent states |↵i and |�↵i, respectively. Note that while the superposition of the two along +X

c

is
an even parity “2-cat,” any other state in this encoding lacks such a symmetry property. (b) In order to
have any arbitrary state on the Bloch sphere an eigenstate of photon number parity, the cat code uses this
“2-cat” itself as the logical |0i and the same “2-cat” ⇡/2 out of phase as the logical |1i. Superpositions of
these states are called “4-cats.”

where the individual basis states are themselves “2-cats” along the real and imaginary axes in phase

space (Fig. 3.6b): |C±
↵ i ⌘ N ±

↵ (|↵i ± |�↵i) and |C±
i↵i ⌘ N ±

↵ (|i↵i ± |�i↵i), where

N ±
↵

(t) =
1p

2(1 ± e�2|↵(t)|2)
, (3.19)

and N ±
↵ ! 1/

p
2 for large ↵. To prevent appreciable basis overlap, one must now have |↵|2 = n̄ & 2

and thus � & 2s, a slightly larger penalty than in the previous scheme, but still substantially smaller

than the factor of seven in the Steane code. Such a modification allows us to encode a quantum

state with arbitrary c
0

and c
1

in an eigenstate of photon number parity:

| iinit =c
0

|0i + c
1

|1i ! c
0

|C+

↵ i + c
1

|C+

i↵i . (3.20)

This in turn allows changes in parity to serve as the error syndrome for the loss of a photon in a

logical qubit (Fig. 3.7). After the first photon jump we have:

âs(c0

|C+

↵ i + c
1

|C+

i↵i) =N �
↵ [c

0

(|↵i � |�↵i) + ic
1

(|i↵i � |�i↵i)] (3.21)

=c
0

|C�
↵ i + ic

1

|C�
i↵i ,
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and similarly after the second photon jump:

âs(c0

|C�
↵ i + ic

1

|C�
i↵i) =N+

↵ [c
0

(|↵i + |�↵i) � c
1

(|i↵i + |�i↵i)] (3.22)

=c
0

|C+

↵ i � c
1

|C+

i↵i

Figure 3.7: The cat code cycle. In the logical encoding of |0±
L

i ⌘ |C±
↵

i = |↵i ± |�↵i and |1±
L

i ⌘
|C±

i↵

i = |i↵i ± |�i↵i (normalizations omitted), the two “2-cats” |C±
↵

i and |C±
i↵

i are eigenstates of either
even (+) or odd (�) photon number parity (an “n-cat” is a superposition of n coherent states). For large
enough |↵| they are e↵ectively orthogonal to one another. In this basis, the states along +X

c

and +Y
c

are
both “4-cats” of even or odd parity as well. The di↵erent patterns in the fringes of their cartoon Wigner
functions signify the di↵erent phase relationship between the basis states. These features allow one to store
a quantum bit in a superposition of “2-cats,” | i

init

= c
0

|C±
↵

i + c
1

|C±
i↵

i, and at the same time monitor
the parity as the error syndrome without learning anything about c

0

or c
1

. In this example, we choose to
encode in the even parity basis (|0+

L

i and |1+
L

i), although the odd basis can equally be chosen. The loss of
a single photon changes not just the parity of the basis states (red shading: even; blue shading: odd), but
the phase relationship between them by a factor of i as well: â

s

(c
0

|C+

↵

i + c
1

|C+

i↵

i) = c
0

|C�
↵

i + ic
1

|C�
i↵

i.
Thus, after one photon jump, one finds the initial quantum bit rotated by ⇡/2 about the Z

c

axis. With each
subsequent application of â

s

, the encoded state cycles between the even and odd parity subspaces, while
due to each consequent multiplication of the coe�cient c

1

by i, the encoded information rotates about the
Z

c

axis by ⇡/2, as indicated by the rotation of the green shaded slice. Between the stochastic applications
of â

s

, the cat states deterministically decay toward vacuum: ↵ ! ↵e�st/2 (not depicted here), indicating
that the logical basis changes in time.
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Equations 3.20-3.22 show that the cat code maps a photon loss error in the cavity field onto a

rotation by ⇡/2 about the logical Z axis, as seen from the factor of i that comes out in front of

c
1

. With each successive error the parity of the basis states cycles between even and odd, while

the encoded information continues to rotate about Z in increments of ⇡/2, returning to the initial

state after four errors. This modulo-four behavior can also be understood from the perspective of

a Fock state expansion, shown in Fig. 3.8. For example, due to destructive interference, an equal

superposition of the basis states of the form |C+

↵ i + |C+

i↵i has non-zero Fock state components |0if ,

|4if , |8if , ... with the appropriate Poisson coe�cients. One can see that after four applications of

âs, |0if disappears while |4if ! |0if , |8if ! |4if , etc. The relation âs |nif =
p

n |n � 1if ensures

that the resulting state still has the proper Poisson coe�cients to be the original superposition of

|C+

↵ i and |C+

i↵i. One thus returns to the original state |C+

↵ i + |C+

i↵i.
Left uncorrected, an encoded state devolves into a mixture of cat states at the enhanced rate �.

By performing single-shot parity measurements, however, we will repeatedly update our knowledge

as to the parity of the state and infer the occurrence of an error when the parity changes [Sun et al.,

2013]. We will thereby follow the stochastic evolution of the cavity state through the cat code cycle,

maintaining the coherence of the quantum bit despite errors in the encoding. Note that the cat code

also satisfies the Knill-Laflamme condition for QEC. The two dominant operators that act within

the logical code space are either Î or âs, and so one can check that for these two errors and the

logical states |0±
L i ⌘ |C±

↵ i and |1±
L i ⌘ |C±

i↵i Eq. 3.1 is satisfied.

Figure 3.8: A “4-cat” expanded in the Fock state basis. The modulo-four behavior of the cat code
can be seen by writing out the “4-cat” in this example in the Fock state basis. This superposition of two
“2-cats” ⇡/2 out of phase results in the destructive interference of all Fock state components except for those
that are multiples of four: |0i

f

, |4i
f

, |8i
f

, .... Applying â
s

on this state takes |X+

L

i =
P1

n=0

c
4n

|4ni
f

!P1
n=0

c
4n+3

|4n+ 3i
f

, where the c
n

are the Poisson coe�cients for a coherent state of amplitude |↵|. After

three more applications of â
s

, the state returns to |X+

L

i.
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Basis orthogonality

In addition to the stochastic loss of single photons, as shown in Eq. 3.16, the energy of the cavity field

decays deterministically to vacuum at a rate s, ↵(t) = ↵e�st/2, as shown in Fig. 3.9. Therefore,

in the experimental implementation of the cat code, we must always take into account the decay

of the cat state amplitude after a finite time of monitoring t in order to keep track of the evolving

basis states:

|C±
↵ i ! |C±

↵e�st/2i = N ±
↵

(t)(|↵(t)i ± |�↵(t)i) (3.23)

Of course, without any intervention the state stored in the cavity eventually decays to vacuum,

thereby erasing any stored information. This e↵ect is not irreversible, however, as energy can

be periodically re-pumped into the cavity using dissipative Hamiltonian engineering schemes, for

example, wherein the application of o↵-resonant pumps at carefully chosen frequencies stabilizes the

superpositions of coherent states in phase-space [Leghtas et al., 2015a]. Perhaps surprisingly, the

loss of a photon has no e↵ect on the amplitude of a coherent state, as can be seen from a simple

argument in [Haroche and Raimond, 2006], section 4.4.4. The authors explain that losing single

photons simply updates one’s knowledge that there must have been more photons in the cavity

immediately prior to the jump. By virtue of this curious property of coherent states, the amplitude

of our logical states is independent of the number of photon jumps detected.

The non-orthogonality of the basis states in the cat code is an important consideration in deciding

the initial amplitude of the encoded state. Larger cat states mean that the cat code can be employed

for longer periods of time without applying any unitary gates or dissipative pumps [Leghtas et al.,

2015a] to restore the amplitude. As this is largely a technical point that has been demonstrated

not to be a fundamental limitation, the more salient question is at what point does increasing the

cat state amplitude begin to adversely a↵ect the performance of the code due to the increased rate

of errors. The trade-o↵ between non-orthogonality and average error rate is in fact very generous,

however, since the overlap between two coherent states falls o↵ exponentially with the di↵erence

between them in a cavity’s phase space [Haroche and Raimond, 2006] while the error rate increases

linearly in n̄:

h↵|�i = e�|↵|2/2e�|�|2/2e�↵⇤� (3.24)

| h↵|�i |2 = e�|↵��|2 (3.25)
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p
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p

1

↵ =
p

2↵ =
p

3

| i =
1

2
(|↵i + |�↵i + |i↵i + |�i↵i)

Figure 3.9: Coherent state amplitude decay. Regardless of the number of photon jumps, the amplitude
of the cat states always decays toward vacuum at the rate 

s

/2, eventually becoming so small that the overlap
between constituent states of the encoding becomes non-negligible and results in a loss of fidelity. Shown
here is one particular “4-cat” with di↵erent amplitudes, starting from ↵ =

p
3 when the overlap between

the nearest coherent states is much less than 1% all the way to vacuum, where all the information is lost.

Using Eq. 3.24, one can perform a similar calculation for the cat code basis states to obtain the

following overlaps:

| ⌦C+

↵ |C+

i↵

↵ |2 =

 
2e�↵2

cos(↵2)

1 + e�2↵2

!
2

(3.26)

| ⌦C�
↵ |C�

i↵

↵ |2 =

 
2e�↵2

sin(↵2)

1 � e�2↵2

!
2

, (3.27)
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Figure 3.10: Overlap of cat code basis states with decaying amplitude. This plot shows the
overlap between the even basis states |C+

↵
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i; the odd basis states |C�
↵

i, |C�
i↵

i; and as a reference two
coherent states at |↵i and |�↵i. The overlap between |C�

↵

i and |C�
i↵

i increases more rapidly with decreasing
↵ since |1i

f

is the lowest odd parity Fock state available, rather than |0i
f

as in the case of even parity states.
These curves are plotted for a 

s

= 1/250 µs, and green dotted lines indicate a window in time wherein the
basis states decay starting from n̄

0

= 2.

where ↵ is understood to be a real number here. The trigonometric terms are a result of the

interference changing with ↵, or equivalently, with time. Figure 3.10 shows how the overlap of the

basis states in equations 3.26 and 3.27 changes as ↵ decays. One can see that at an n̄
0

= 2 (↵ ⇠ 1.4),

the overlap of the even parity basis states in particular is quite low, thus making it advantageous in

this case to encode the quantum bit in a superposition of |C+

↵ i and |C+

i↵i. The overlap continues to

be only on the order of a couple percent as time elapses, in fact decreasing at first for even parity

states due to the aforementioned interference phenomenon.

The cat code versus traditional QEC

Comparing traditional QEC schemes to the cat code, the former typically protect a physical qubit

from decoherence by projecting components of the redundant encoding into spaces defined by four

unitary operators: identity Î, and the Pauli operators �̂x, �̂y and �̂z. In the latter, however, within

the logical encoding of the cat code there are only two such operators: Î (no photon loss and

amplitude decay |↵i ! |↵e�s�t/2i) and (Î + i�̂z)/
p

2 (application of â). Furthermore, given that
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the overlap between coherent states | h↵|i↵i | falls o↵ exponentially with increasing |↵| [Haroche and

Raimond, 2006], we can use basis states of average photon number n̄ ⇡ 2, which increases the error

rate within the encoding by only a factor of ⇠ 2 [Haroche and Raimond, 2006] rather than by orders

of magnitude as in the traditional schemes presented earlier [Fowler et al., 2012; Steane, 1996].

Having described the details of how the cat code works in theory, how do we realize it in

experiment? We will simply use the two-cavity, single transmon setup first introduced in chapter 2.

We stand to benefit enormously from the sheer simplicity of such an architecture; 3D cavities are

simple to build, provide excellent isolation for physical qubits from their environments, have the

best coherence properties to date in cQED systems, and require only one ancilla to measure their

dominant error syndrome. Furthermore, for a dispersive shift on the order of several MHz, the parity

mapping time takes just a few hundred nanoseconds, upwards of four orders of magnitude faster

than the single photon lifetime of recent 3D cavities. As will be seen in later chapters, the speed of

this single e↵ective CNOT gate between the ancilla and the logical qubit allows for very high error

syndrome measurement fidelities, performance that current implementations of error correction in

multi-physical qubit systems aiming to implement the Steane or surface codes cannot currently

match.

Beyond o↵ering a correctable quantum memory that suppresses the decoherence of a quantum

bit, the cat code can be used to implement universal quantum computing as well [Mirrahimi et al.,

2014]. Crucial to the viability of this paradigm must be a successful demonstration that super-

positions of cat states can be manipulated in order to realize single and multi-logical qubit gates.

This goal is currently a substantial focus of current research and indeed impressive progress has

already been made [Leghtas et al., 2015a; Wang et al., 2016] in demonstrating key aspects of the

proposal in [Mirrahimi et al., 2014]. For the remainder of this work we will concentrate primarily on

demonstrating that information stored in the quantum state in the cavity can be extracted e�ciently

and furthermore used to enhance the lifetime of quantum information. Interspersed throughout the

experimental demonstrations and discussions thereof, however, we will remark upon a number of

capabilities we already have at our disposal to create and manipulate states in a cavity, thereby

primarily introducing some key concepts that future works will tackle in a rigorous way. In so doing,

we hope to present a cohesive story on the current capabilities we have in realizing QEC systems

and the necessary future steps for moving towards fault-tolerant architectures.
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4 – Putting the Bell on Schrödinger’s Cat

The cat code o↵ers a scheme to store quantum information in superpositions of coherent states

and to protect the system from decoherence through the measurement of a single error syndrome

with a single ancilla qubit. The success of this proposal hinges on the expectation that redundantly

encoding a quantum bit in a cavity can be done with high fidelity and that extracting information

(e.g. photon number parity) from the state can be accomplished e�ciently. As this cavity is

intentionally decoupled from every component of the system aside from the ancilla, at our disposal

we essentially have just the dispersive interaction, gates on the ancilla, and the application of coherent

displacements as the only tools with which to demonstrate these necessary capabilities. Using such

means, the work on deterministically mapping a quantum bit onto cat states through a protocol

called qcMAP [Leghtas et al., 2013; Vlastakis et al., 2013] quantified the fidelity of a possible encoding

protocol.

In this chapter, however, we would like to go further and characterize the entanglement between

the ancilla and a logical qubit comprised of coherent states with various entanglement metrics, or

witnesses, that include a CHSH version [Clauser et al., 1969] of the Bell inequality [Bell, 1964]. We

will assess the extent to which the logical state continuously deviates from the code-space and how

e�ciently we can measure the density matrix of the joint ancilla-cavity system. Furthermore, by

using coherent states in this composite system, we will show the e↵ects of decoherence by contin-

uously varying the size of prepared entangled states [Brune et al., 1996], something unachievable

with discrete systems. The degree to which the resulting data conforms with the assumption that

single photon loss is the dominant error channel will dictate future strategies for implementing a

quantum error correction system with this architecture. The techniques we propose here provide an

important set of analytical tools for quantum systems comprised of entangled physical qubits and

cavities [Deléglise et al., 2008; Hofheinz et al., 2009; Jeong and Kim, 2002; Leibfried et al., 1996; Sun

et al., 2013], and serve to benchmark the suitability of storing quantum information redundantly in

cavities as opposed to large collections of coupled two-level systems.
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4.1 The Bell-cat

In this chapter we focus on the simple logical encoding where the basis states along the logical Z

axis are defined by coherent states of opposite phase, |↵i and |�↵i, introduced in sec. 3.3 and shown

again in Fig. 4.1a. This logical qubit has the following Pauli operators:

Xs = |�↵i h↵| + |↵i h�↵| (4.1)

Ys = j |�↵i h↵| � j |↵i h�↵|

Zs = |↵i h↵| � |�↵i h�↵|

Is = |↵i h↵| + |�↵i h�↵| .

Before moving on to the encoding and measurement schemes, we must first confront the issue of

non-orthogonality within the code when the overlap between |↵i and |�↵i is non-negligible. In this

regime the system deviates from the two-level system approximation, resulting in a loss of fidelity of

any encoded information. Seeking to identify a figure of merit for su�cient basis orthogonality, we

can calculate the maximum Von-Neumann entropy of the encoded space to determine its capacity

to store information:

S = �Tr [⇢
max

log
2

⇢
max

]

= �
X

i

⌘i log
2

⌘i (4.2)

where ⇢
max

= 1

2

(|↵i h↵| + |�↵i h�↵|) is the density matrix for a complete mixture of the logical

subspace and ⌘ is its set of eigenvalues. Rewriting ⇢
max

in the even/odd cat state basis:

⇢
max

= 1

2

(1 + e�2|↵|2) |Ei hE| + 1

2

(1 � e�2|↵|2) |Oi hO| (4.3)

where |Ei , |Oi = 1p
2(1±e�2|↵|2

)

(|↵i ± |�↵i). Recall that hE|Oi = 0 for all coherent state amplitudes

↵. This gives the following entropy relation:

S = � 1

2

(1+e�2|↵|2) log
2

⇣
1

2

(1 + e�2|↵|2)
⌘

(4.4)

� 1

2

(1 � e�2|↵|2) log
2

⇣
1

2

(1 � e�2|↵|2)
⌘

The entropy varies from zero bits to a value asymptotically approaching a single bit with increas-

ing coherent state amplitudes ↵, as seen in Fig. 4.1b. The orthogonality between logical states
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Figure 4.1: Logical encoding using coherent states. (a) The space spanned by the superposition
of quasi-orthogonal coherent states |↵i , |�↵i constitutes an encoded quantum bit in the cavity. While
the cavity state can be represented by its Wigner function, this logical state is also described by a vector
within its encoded Bloch sphere. Shown is the logical qubit Bloch sphere denoting the +X

c

, +Y
c

, and +Z
c

encoded states; a diagram of the cavity Wigner function accompanies each of these three states. (b) The
capacity to store information in a cat state is determined by the orthogonality of its logical states |↵i , |�↵i.
Shown is a comparison between the coherent state overlap (gray, left axis) and the maximum Von Neumann
entropy Eq. 4.4 (red, right axis) for this logical encoding. Notice that the entropy rapidly approaches one
bit for ↵ > 1, ensuring that information can be reliably encoded into the coherent states with manageable
separations.

| h↵| � ↵i |2 is directly related to this information capacity and serves as a proxy for validating the

two-level system approximation of the cavity state. We see that for amplitudes ↵ & 1, the entropy is

very nearly equal to one, indicating that one quantum bit of information can be stored in encodings
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of at least this size. This conclusion is of course consistent with the numerical result presented in

Fig. 3.10.

Having decided upon the minimal size of a reliable logical encoding, the next step is to actually

create the entangled ancilla-cavity state we aim to characterize, called the Bell-cat. The experiment

utilizes the same setup introduced in chapter 2, namely a circuit QED architecture [Paik et al., 2011;

Wallra↵ et al., 2004] consisting of two waveguide cavities coupled to a single transmon ancilla [Sun

et al., 2013; Vlastakis et al., 2013], where the hardware is identical to that shown in Fig. 2.4.

One long-lived cavity, with a relaxation time ⌧s = 55 µs, is used for quantum information storage,

while the second cavity, strongly over-coupled to a 50⌦ transmission line to allow fast field decay

(⌧r = 30 ns) into the measurement chain is used to realize repeated projective measurements of the

ancilla. The transmon ancilla, with relaxation and decoherence times T
1

, T
2

⇡ 10 µs is coupled to

both cavity modes and mediates entanglement and measurement of the state in the storage. All

modes have transition frequencies between 5–8 GHz and are o↵-resonantly coupled (see A.1 for more

details). We use a Josephson bifurcation amplifier (JBA) [Vijay et al., 2009] in a double-pumped

configuration in combination [Kamal et al., 2009; Murch et al., 2013] with a dispersive readout to

perform repeated ancilla measurements with a detection fidelity of 98.0% at a minimum of 800 ns

between measurements.

The storage cavity and ancilla modes are well-described by the dispersive Hamiltonian:

Ĥ/~ = !̃sâ
†
sâs + (!̃a � �saâ†

sâs) |ei he| , (4.5)

where âs is the storage cavity ladder operator, |ei he| is the excited state ancilla projector, !̃s, !̃a are

the storage cavity and ancilla transition frequencies, and �sa is the dispersive interaction strength

between the two modes (1.4 MHz). This interaction creates a shift in the transition frequency of

one mode dependent on the other’s excitation number, enabling ancilla-cavity entanglement [Brune

et al., 1992]. As described in Fig. 4.2a, the system is first prepared in a product state | i =

1p
2

(|gi + |ei) ⌦ |↵i, where |gi , |ei are the ground and excited states of the ancilla and |↵i is a

coherent state of the cavity mode. Under the dispersive interaction we allow the system to evolve

for a time t = ⇡/�sa, creating a state that mirrors the form of an EPR pair [Einstein et al., 1935],

or Bell state (e.g. | Bi = 1p
2

(|ggi + |eei)):

| BCi = 1p
2

(|g,↵i + |e, �↵i). (4.6)

We call | BCi the Bell-cat [Brune et al., 1992; Vlastakis et al., 2013].
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If one recalls a typical introductory quantum mechanics textbook, the ‘Schrödinger’s cat’ thought

experiment highlights the counterintuitive concept of entanglement in macroscopically distinguish-

able systems: an atom in an excited state and a cat are in a box; if the atom decays, it uncorks

a vial of poison that kills the cat, while if it does not decay, the cat lives. Does this mean that

the state of the atom and the cat are actually entangled to the extent that they can violate a Bell

inequality? Intuitively we of course know that this cannot be the case, as enormous objects such as

cats are not well-represented quantum mechanically. Yet we also know that a loophole-free Bell test

has been performed in NV centers to prove that entanglement beyond classical bounds can only be

explained with a quantum physical theory [Hensen et al., 2015], so where do we draw the line? At

what point does a quantum mechanical system devolve into a classical one?

The Bell-cat o↵ers us the perfect platform to explore the answers to this question. The transmon

of course plays the role of the atom, and the coherent state plays the role of the cat. We can make this

coherent state as small or as large as we wish. For very small amplitudes ↵, when the coherent states

are largely dominated by a few Fock states, with su�cient measurement e�ciency we should expect

(or hope) to witness entanglement. For very large ↵, we expect no entanglement. Additionally,

we have the capability to explore the fascinating regime in which ↵ is of some intermediate size –

macroscopically distinguishable, yet still exhibiting signatures of quantum behavior. By continuously

varying ↵, a capability unique to our system, we will show how the Bell-cat straddles the quantum-

to-classical regime, and conclude that decoherence resolves the ‘Schrödinger’s cat’ paradox.

In the typical Bell state | Bi, quantum measurement back-action is a clear manifestation of the

entanglement between the quantum bits, demonstrating correlations between measurement outcomes

that can be reformulated into entanglement witness metrics. Likewise, after preparing | BCi we

can measure along one of the three ancilla axes M
a

2 {Xa, Ya, Za} and obtain one of two possible

outcomes, either |gi or |ei; due to measurement back-action, we expect the state in the cavity | 
s

i to

depend on the outcome of this measurement according to the following prescription (normalizations

omitted):

M
a

Pre-meas. state | 
s

i if result |gi | 
s

i if result |ei

Xa |gi (|↵i + |↵i) + |ei (|↵i � |↵i) +Xs �Xs

Ya |gi (|↵i � j |↵i) + |ei (|↵i + j |↵i) �Ys +Ys

Za |gi |↵i + |ei |�↵i +Zs �Zs

(4.7)

In the first step in the sequential detection scheme, the value of the ancilla tomography measurement

(Fig. 4.2b) is recorded and the ancilla is reset to |gi using real-time feedback (see A.1). The displaced
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Figure 4.2: Sequential detection for entanglement characterization. (a) A quantum circuit out-
lines the method to prepare and measure entanglement between the ancilla and cavity state using sequential
detection. State preparation is performed by first creating a product state | i = 1p

2

(|gi+|ei)⌦|↵i with a cav-

ity displacement D̂(↵) of amplitude ↵ and an ancilla gateRŷ

⇡
2

corresponding to a ⇡

2

rotation around the ŷ-axis.

A conditional gate using the dispersive interaction produces the entangled state | 
BC

i = 1p
2

(|g,↵i+|e,�↵i).
(b), (c) Tomography is performed by measuring an observable of both the ancilla and cavity with sequential
QND measurements. A pre-rotation R

i

allows ancilla detection along one of three basis vectors X, Y , and
Z. The ancilla is reset and a cavity observable P̂

�

is mapped to the ancilla for a subsequent measurement,
where P̂

�

= D̂(�)P̂ D̂(�)† is the displaced photon number parity operator. Sequential detections are binary
results compared shot-by-shot to determine ancilla-cavity correlations.

photon-number parity observable P̂� of the cavity is subsequently mapped onto the ancilla using

Ramsey interferometry [Bertet et al., 2002], followed by a second ancilla state detection (Fig. 4.2c);

here, P̂� = D̂(�)P̂ D̂(�)†, where D̂(�) is the displacement operator (D̂(�) |0if = |�i) and P̂ the

photon number parity operator, the eigenvalue of which is detected with 95.5% fidelity (see A.1).

The Wigner function W (�) = 2

⇡ hP̂�i is constructed from an ensemble of such measurements with

di↵erent displacement amplitudes �.

Wigner tomography (Fig. 4.2c) demonstrates the quantum back-action. Indeed, we see the

expected superpositions of coherent states in the cavity conditioned on the result of the ancilla

measurement (Fig. 4.3)1. Moreover, qualitatively these cavity states appear to largely remain in the

code-space defined above (Fig. 4.1a) given the locations of the coherent states and the patterns of the

interference fringes. With these results we are now in the position to benchmark the entanglement

in the system by quantifying the correlations that we observe.

4.2 Joint Wigner tomography

As the density matrix of a cavity state can be completely described by direct measurements in

the continuous-variable basis with the Wigner function [Lutterbach and Davidovich, 1997], we can

1The method of using strong projective measurements for the create of cat states has been demonstrated
in previous works [Deléglise et al., 2008] as well.
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a a a

a a a

Figure 4.3: Measurement back-action of a Bell-cat state. Shown are the resulting projections of the
cavity state when preparing | 

BC

i and measuring the ancilla along one of its three axes M
a

2 {X
a

, Y
a

, Z
a

}.
The initial coherent state amplitude is ↵ =

p
3. While a measurement along Z

a

results in a projected
coherent state with opposite phases |±↵i, measuring along the X

a

and Y
a

axes results in a projected cat
state each with di↵erent inference fringe phases. Combining these measurements with the probability to
obtain each result allows us to construct the state of the entire system and is used to create the joint Wigner
function representation in Fig. 4.4.

use the outcomes of the sequential detection scheme to express an entangled ancilla-cavity state

in what we call the joint Wigner representation. We construct this representation by correlating

ancilla observables �̂i 2 {Îa, �̂x, �̂y, �̂z} with the displaced photon number parity at every point in

the cavity’s phase space:

Wi(�) = 2

⇡ h�̂iP̂�i (4.8)

These four distributions are a complete representation of the combined ancilla-cavity quantum state

(Fig. 4.4a). While other representations exist for similar systems [Eichler et al., 2012; Jeong et al.,

2014; LinPeng et al., 2013; Morin et al., 2014], Wi(�) is directly measured with this detection scheme

and does not require a density matrix reconstruction.

The e�ciency of our detection scheme can be quantified with the visibility V of the unnormalized

joint Wigner measurements. We determine V by tracing over both the ancilla and cavity states and
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comparing this to its ideal value
R

W ideal

I (↵)d2� = 1:

V =

Z
WI(�)d2� (4.9)

=
2

⇡

Z
hÎP̂�id2�

= 0.85 ± 0.01.

The visibility is primarily limited by measurement fidelity and ancilla decoherence between detection

events. We postpone the discussion of ancilla decoherence to later chapters in which its e↵ects on

quantum error correction are described in detail.

We are also interested in finding the fidelity of the ancilla-cavity density matrix to the ideal

Bell-cat. To do so, we first note that an ancilla operator A can be written in the Pauli basis as

A =
P

i Ai�̂i where Ai = 1

2

Tr[A�̂i]. Likewise, a bounded cavity observable can be represented in

the continuous variables basis as B = 1

⇡

R
B(�)P̂�d2�, where B(�) = Tr[BP̂� ] [Cahill and Glauber,

1969]. Finally, the composite ancilla-cavity density matrix can be written as:

⇢ = ⇡
X

i

Z
Wi(�)�̂iP̂�d2� (4.10)

Note that for separable states ⇢ = ⇢a ⌦ ⇢s, this relation can be split up into discrete and continuous

components:

⇢ =
1

2

X

i

Tr[⇢a�̂i]�̂i ⌦ 2⇡

Z
2

⇡
Tr[⇢

s

P̂� ]P̂�d2� (4.11)

For any state ⇢, we can write the mean value of an observable for the combined system with the

following relation:

hABi = Tr [AB⇢]

= 1

2

Tr

2

4
X

i,j

Z
AiB(�)Wj(�

0)�̂i�̂jP̂�P̂�0d2�d2�0

3

5 (4.12)

Using the following operator rules Tr[�̂i�̂j ] = 2�ij and Tr[P̂�P̂�0 ] = �2(� � �0) we can simplify

Eq. 4.12:

hABi =
X

i

Z
AiB(�)Wi(�)d2� (4.13)

61



The overlap integral used in this calculation is similar to descriptions of the standard Wigner function

[Cahill and Glauber, 1969; Haroche and Raimond, 2006]. We use the result of the derivation above to

determine the fidelity to a target state F = Tr [⇢BC⇢] = ⇡
2

P
i

R
WBC

i (�)Wi(�)d2�, where WBC
i (�)

are the joint Wigner functions of the ideal state ⇢BC = | BCi h BC | and Wi(�) are the measured

joint Wigner functions (normalized by V). We obtain a state fidelity F = 87±2% for a displacement

amplitude ↵ =
p

3. This amplitude was chosen not just to ensure orthogonality between logical states

(|h↵|�↵i|2 = 6⇥ 10�5 ⌧ 1), but also to highlight the interference fringes in the Wigner tomograms,

which increase in frequency with larger amplitudes [Haroche and Raimond, 2006].

Figure 4.4: Joint Wigner tomography of a Bell-cat state. (a) The set of joint Wigner functions
W

i

(�) = 2

⇡

h�̂
i

P̂
�

i represents the state of an ancilla-cavity system with correlations between the ancilla

observables �̂
i

= {Î
a

, �̂
x

, �̂
y

, �̂
z

} and cavity observable P̂
�

reported for a state | 
BC

i and displacement
amplitude ↵ =

p
3. Shown are measurements comprised of four panels hI

a

P̂
�

i, hX
a

P̂
�

i, hY
a

P̂
�

i, hZ
a

P̂
�

i
of 6500 correlations each between the ancilla and cavity states. Interference fringes in hX

a

P̂
�

i and hY
a

P̂
�

i
reveal quantum coherence in the entangled state. (b) From the set of joint Wigner functions we perform
a density matrix reconstruction to show the combined ancilla-cavity state ⇢ in the Fock state basis. (c)
Projecting ⇢ onto the logical basis � = |↵i h↵| + |�↵i h�↵| produces the reduced, unnormalized density
matrix ⇢0 = �⇢�† in the form of a traditional Bell state. The reduction in contrast of the o↵-diagonal
components in ⇢0 is due to decoherence in the physical system during preparation and measurement.

In Fig. 4.4b, we show the reconstructed density matrix of a target Bell-cat state. We perform

this reconstruction with a-priori assumptions that the cavity state is truncated to twelve occupied

photon number states N
max

= 12, the resulting noise of each averaged measurement is Gaussian-

distributed (Fig. 4.5), and the reconstructed density matrix is positive semidefinite with trace equal
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to one. Under these constraints, we perform a least squares regression using a Maximum likelihood

estimation [Smolin et al., 2012]. We can go one step further and project ⇢ onto our logical basis

� = |↵i h↵|+ |�↵i h�↵|. We obtain an unnormalized matrix ⇢0 = �⇢�†, which clearly resembles the

density matrix of a Bell state ⇢B = | Bi h�B | (Fig. 4.4c).

Figure 4.5: Histogram of reconstruction residuals. Plotted are the residuals corresponding to the
density matrix reconstruction of the Bell-cat state shown in Fig. 4.4. This Histogram shows the distribution
of the 25, 000 residuals from the joint Wigner function which gives a Gaussian distribution (mean value
µ = 7.0 ⇥ 10�4, standard deviation � = 0.015), which agree with our expectation for statistical error
�
est

= 1p
N

⇡ 0.015.

These results demonstrate the possibility of understanding the joint entangled state of the ancilla

and cavity in a simple four dimensional, rather than infinite dimensional, space. Such a dramatic

simplification is exactly what we require in looking to encode a quantum bit in a cavity. Although we

work with a continuous variables system, we have nonetheless shown that one can simply understand

the logical encoding in coherent states of opposite phase as just another two-level system, much like

the ancilla with which it is entangled. A key di↵erence, however, is that the trace of ⇢0 does not

equal 1. Rather than implying that something in our analysis has led to an unphysical state, this

discrepancy instead reveals that the composite system must be a✏icted by code-space leakage, a

result of decoherence during the conditional gate in particular2. We will return to this important

point in later chapters. Having quantified what we surmised earlier and see in Fig. 4.3, that the

cavity state primarily remains in the code space after ancilla measurement back-action, we learn

the following key piece of information: the majority of the information provided by the Wigner

tomogram is in fact concentrated only in a few locations in the cavity’s phase space: around the

origin and at |↵i and |�↵i; these are the points we must focus on measuring with high fidelity in

order to extract the necessary information about the entangled Bell-cat state.

2Code-space leakage is of course a problem in any experimental implementation of a two-level system; in
the case of the transmon, this takes the form of excitations to higher states (e.g. |fi).
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4.3 E�cient measurement of cavity observables

The number of measurement settings required to perform cavity state tomography can be resource

intensive. State tomography of the ancilla requires just four pre-rotations followed by a projective

measurement. With the cavity, on the other hand, we have thus far required a large grid of photon

number parity measurements after varying displacements to construct the full Wigner tomogram.

Each tomogram, however, clearly contains useful information in only a small portion of phase space,

as seen in Fig. 4.3 where the value of
D
P̂�

E
is approximately zero outside of the regions near

� = {0,↵, �↵}. This suggests that complete cavity state tomography need not be required, and in

fact many fewer measurements could be used to characterize a state when operating in a smaller,

encoded subspace.

Restricting ourselves to the logical qubit subspace shown in Fig. 4.1, in fact only four values of

the cavity Wigner function W (�) are required to reconstruct the state, an example of direct fidelity

estimation (DFE) [da Silva et al., 2011; Flammia and Liu, 2011]. For large cat states | h↵|�↵i |2 ⌧ 1,

the encoded state observables map to cavity observables as:

Xs = P̂
0

Is = P̂↵ + P̂�↵ (4.14)

Ys = P̂ j⇡
8↵

Zs = P̂↵ � P̂�↵

where {Is, Xs, Ys, Zs} form the Pauli set for the logical qubit in the cavity. We justify such a choice

by writing down the following photon-number parity P̂ relations:

h↵| P̂
0

|↵i = h↵|�↵i ⌧ 1 (4.15)

h↵| P̂
0

|�↵i = h↵|↵i = 1

h↵| P̂↵ |↵i = h↵� ↵|↵� ↵i ⌧ 1

h↵| P̂↵ |�↵i = e2(↵↵⇤�↵⇤↵) h↵|�↵i ,

where again P̂↵ = D̂(↵)P̂ D̂(↵)† for some displacement amplitude ↵ and | h↵|�↵i | ⌧ 1. Now taking

the projector M = |↵i h↵|+ |�↵i h�↵|, we derive the encoded state’s Pauli operators from the cavity
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state observables reported in Eq. 4.15:

MP̂
0

M† ⇡ |�↵i h↵| + |↵i h�↵| (4.16)

MP̂↵M† ⇡ |↵i h↵|

MP̂�↵M† ⇡ |�↵i h�↵|

MP̂ j⇡
8↵

M† ⇡ j |�↵i h↵| � j |↵i h�↵|

Putting these relationships together builds the encoded state observables {Is, Xs, Ys, Zs} and reveals

that these observables can be e�ciently measured using Wigner tomography. Observables Is and

Zs require a comparison between two di↵erent observables. For true single-shot readout of these

logical observable Zs, measuring a single value in the cavity state Husimi-Q distribution Q(↵) =

1

⇡ h↵|⇢|↵i [Haroche and Raimond, 2006] can be employed where Zs = 2⇡Q(↵) � 1. This is being

explored in future experiments.

Cuts in the joint Wigner function (Fig. 4.6) show these observables and their correlations to the

ancilla as a function of cat state size. As the superposition state is made larger, interference fringe

oscillations increase while fringe amplitude decreases due to photon loss. For a state | BCi with

|↵| =
p

3, we estimate the direct fidelity F
DFE

:

F
DFE

=
1

4
(hIaIsi + hXaXsi � hYaYsi + hZaZsi) (4.17)

= 0.72 ± 0.02,

putting a fidelity bound on the target state with no corrections for visibility (Fig. 4.7). This estimate

is related to the benchmarks reported above F
DFE

⇡ V ⇥ F and far surpasses the 50% threshold for

a classically correlated state. This indicates both high fidelity state-preparation and measurement,

and demonstrates that strong correlations are directly detectable using joint Wigner tomography.

We see that by choosing an encoding scheme where states of a quantum bit are mapped onto

a superposition of coherent states |↵i and |�↵i, we can condense the joint Wigner representation

down to just sixteen correlations, equivalent to a two-quantum bit measurement set that constitutes

the permutation of {I, X, Y, Z} for each quantum bit. We can determine this Pauli set from the

reconstructed ancilla-cavity state by projecting onto the encoded basis of {Is, Xs, Ys, Zs}. Fig. 4.8

shows the resulting two-quantum bit Pauli set for the ancilla and an logical qubit in the cavity mode,

a variant of the reduced density matrix representation shown in Fig. 4.4. These results highlight our
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Figure 4.6: Ancilla-cavity correlations. (a) Correlations are measured for entangled states | 
BC

i
with cat state amplitudes ranging from ↵ = 0 to 2. Cuts in joint Wigner functions hIP̂

�

i and hZP̂
�

i at
Im(�) = 0 show the increasing separation of the coherent state superpositions. Cuts in the joint Wigner
functions hXP̂

�

i and hY P̂
�

i at Re(�) = 0 reveal the interference fringe oscillations dependence on cat state
size, which increase in frequency with increasing cat state amplitude. (b) By viewing just single cuts at
↵ =

p
3, we see single-shot correlations (crosses) as compared to what is expected from an ideal system

with perfect preparation and measurement (solid line). From the cuts we see the individual measurement
settings used to determine joint encoded observables {II

s

, XX
s

, Y Y
s

, ZZ
s

}. While hXX
s

i and hY Y
s

i can be
determined from a single measurement setting, hII

s

i and hZZ
s

i are determined from the sum and di↵erence
of two di↵erent settings. From these four correlations we immediately find a fidelity to an entangled state
F

DFE

= 1

4

(hII
s

i+ hXX
s

i � hY Y
s

i+ hZZ
s

i) = (72± 2)%.
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Figure 4.7: Entanglement witnesses with cat states. An entanglement witness and direct fidelity
estimation (DFE) are determined by measuring four correlations between the ancilla and logical qubit. (a)
The entanglement witness W = II � ZZ � XX + Y Y shows entanglement for all negative values (gray
shading). (b) DFE to a target Bell state F = II +XX � Y Y + ZZ is also shown where entanglement can
be confirmed for values above F > 0.5. Error bars show the standard deviation due to random error limited
by the total number of samples N taken at each displacement (N > 4000).

Figure 4.8: Reconstructed Pauli sets. The set of sixteen joint Pauli operators spans the Hilbert space
of the ancilla and the logical qubit. Shown is the Pauli set for the entangled target state | 

B

i obtained in
two ways. (Red) is the reconstructed Pauli set using a density matrix reconstruction of the full quantum
state with no normalization constraint, then projecting onto the encoded subspace. (Blue) shows the values
discerned from an overlap integral of the measured joint-Wigner functions (Eq. 4.12). These measurements
agree with each other within statistical errors.

ability to recast the state encoded in the cavity as one that has a small, simple set of observables

that directly mirrors that of a physical qubit.

In characterizing the entanglement between the ancilla and the cavity, the compression of the

cavity’s phase space down to just four points demonstrates the e�ciency with which information

can be encoded within and extracted from such a large Hilbert space. These two points are crucial

to the success of the cat code, and once more highlight the advantages of a redundant encoding in
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superpositions of coherent states. Indeed, recalling the example of the bit-flip code (Fig. 3.2) or

the Steane code (Fig. 3.4), creating an analog of the Bell-cat and benchmarking the entanglement

between code and ancillae would require many more operations and tomography measurements.

With the ability to extract correlations in a single-shot way, we can in fact go one step further

and test to what extent, if any, the Bell-cat violates the Bell inequality, which sets the most stringent

bound for benchmarking entanglement. In so doing, we will be able to directly evaluate the e↵ect

of code size on the levels of entanglement we can detect by continuously varying the size of the cat

states. This will allow us to identify a regime in which we both maintain the orthogonality between

the coherent states in the logical basis and observe a Bell inequality violation, an important piece

of information we will use when designing an error correction system that uses the cat code.

4.4 Violating Bell’s inequality

The hallmark of entanglement is the detection of strong correlations between systems, most starkly

demonstrated by the violation of a Bell inequality. Although originally proposed to investigate

local hidden variable theory [Bell, 1987], a Bell inequality can be used to benchmark the ability to

entangle and extract information from an entangled two-quantum bit system [van Enk et al., 2007].

Using the Clauser-Horne-Shimony-Holt (CHSH) variant [Clauser et al., 1969] of the Bell test, this

violation has been demonstrated with photons [Aspect et al., 1981; Freedman and Clauser, 1972],

atoms [Hofmann et al., 2012; Rowe et al., 2001], solid-state spins [Hensen et al., 2015; Pfa↵ et al.,

2012], and artificial atoms in superconducting circuits [Ansmann et al., 2009; Chow et al., 2010b].

Here, we use the CHSH formulation of a Bell test to characterize entanglement between the ancilla

and a cat state. Although Bell tests using homodyne measurements have been proposed [Gilchrist

et al., 1998; Leonhardt and Vaccaro, 1995], here we instead choose the CHSH Bell test that states

that the sum of four classical correlations will be bounded such that:

� 2  O = hAaAsi + hAaBsi � hBaAsi + hBaBsi  2 (4.18)

where, in this experiment, Aa, Ba are two ancilla observables and As, Bs are two cavity observables.

We perform two Bell tests (Fig. 4.9) with correlations taken shot-by-shot with no post-selection or

compensation for detector ine�ciencies.
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Test 1

In the first test we choose cavity observables Zs, Xs and ancilla observables Za(✓), Xa(✓) where:

Za(✓) = Za cos ✓
2

� Xa sin ✓
2

Xa(✓) = Xa cos ✓
2

+ Za sin ✓
2

(4.19)

The angle ✓ corresponds to a rotation of the ancilla state before detection. In Fig. 4.9a, we plot O
for each of the four permutations of the joint observables and find a maximum Bell violation for an

angle ✓ = �⇡/4 as expected [Clauser et al., 1969] with the observables:

Aa = Xa+Zap
2

; Ba = Xa�Zap
2

As = Zs; Bs = Xs

(4.20)

We investigate this system’s susceptibility to decoherence by continuously increasing the cat state

amplitude ↵ and observe a Bell signal with a maximal value O
1

= 2.30±0.04 for ↵ = 1 (Fig. 4.9b). We

see a Bell signal surpassing bounded values up to cat states of size |↵�(�↵)|2 = 16 photons [Deléglise

et al., 2008; Vlastakis et al., 2013].

We can model the e↵ects of photon loss and measurement ine�ciency on the maximum vio-

lation, as shown in Fig. 4.9c. For the ideal case without decoherence, an overlap of the coherent

state superposition decreases the contrast in hAaZsi and hBaZsi, limiting the maximum Bell signal

following the relation:

O
ideal

=
p

2(2 � e�8|↵|2)

Now first introducing measurement ine�ciency, the contrast of this maximum Bell signal is expected

to scale with the visibility V as:

O
vis

=
p

2V(2 � e�8|↵|2)

Next, photon loss will also have an e↵ect on the maximum Bell signal by reducing the measured con-

trast of all correlations for hAaXsi and hBaXsi. This produces an amplitude-dependent maximum

Bell Signal:

O
loss

=
p

2(1 � e�8|↵|2 � e�2|↵|2teff/⌧s)

where ⌧s is the photon decay time constant and teff is the e↵ective time to create and measure the

Bell-cat state. Finally taking into account both visibility and photon loss produces the expected

maximum Bell signal for this first test:

O
pred

=
p

2V(1 � e�8|↵|2 � e�2teff/⌧s|↵|2)

69



This predicted Bell signal is shown in Fig. 4.9b using the measured joint-Wigner contrast V = 0.85

and time between cavity state creation and detection teff = 1.24µs. As is evident, the agreement

between the data and this simple analytical treatment is excellent.
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Figure 4.9: Bell tests with a cat state. A CHSH Bell test between an ancilla and cavity is the sum
of four correlations O = hAA

s

i + hAB
s

i � hBA
s

i + hBB
s

i, where A,B are observables of the ancilla and
A

s

, B
s

are observables of the cavity. (a) We use correlations between ancilla state observables X(✓) =
X cos (✓/2) + Z sin (✓/2) and Z(✓) = Z cos (✓/2) � X sin (✓/2) and encoded state observables X

s

, Z
s

to
perform a CHSH Bell test as a function of ancilla detector angle ✓. Shown in (a) are four traces that are
the result of every possible combination of X,Z,X

s

, Z
s

. A maximum Bell signal is found at ✓ = �⇡

4

. (b)
We report this maximum Bell signal for di↵erent cat state amplitudes ↵. Plotted points (black) are the
average Bell signal for a given amplitude and show the dependence of the entangled state with photon loss
and detector visibility. Error bars denote the standard deviation of the average signal due to random error
as a consequence of a limited sample size (N = 4, 000). Solid lines describe the predicted trends given
the measured cavity decay rate and detection visibility. While the ideal behavior (red) for an entangled
state approaches O = 2

p
2, photon loss (green), detector visibility (blue), and their combined e↵ects (black)

ultimately limit the maximum Bell signal achieved. (c),(d) Furthermore, we realize a second Bell test using
ancilla observables X, Y and cavity state observables X

s

(↵) = D̂(j↵)X
s

D̂(j↵)†, Y
s

(↵) = D̂(j↵)Y
s

D̂(j↵)†,
where ↵ corresponds to a tomography displacement amplitude serving as a rotation of the e↵ective cavity
detector angle. There is a mismatch in the maxima obtained in the two di↵erent Bell tests due to increased
susceptibility to photon loss in the second test. Both, however, show a violation at least four standard
deviations beyond the classical limit defined by the CHSH Bell inequality.
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Test 2

Measurements along Zs require assumptions of the symmetry of the prepared state. The Bell

violations demonstrated with the first test are not single-shot, strictly speaking, as a di↵erence

between the signals at � = ↵ and � = �↵ is used to calculate Zs. The CHSH inequality does not

constrain one to pick specific observables, however, and so we can instead employ an alternative

Bell test (using a scheme similar to Ref. [Park et al., 2012]), in which we choose ancilla observables

Xa, Ya and cavity observables Xs(�), Ys(�):

Xs(�) = D̂(j�)P̂
0

D̂(j�)† ⇡ Xs cos �
4� + Ys sin �

4� (4.21)

Ys(�) = D̂(j�)P̂ j⇡
8�

D̂(j�)† ⇡ Ys cos �
4� � Xs sin �

4� .

The displacement amplitude � corresponds to an approximate rotation of the encoded cavity state

before detection. In Fig. 4.9c, we plot O
2

for each of the four permutations of the joint observables

and find a maximum Bell violation O
2

= 2.14 ± 0.03 for a displacement � = 0.15 and ↵ = 1

(Fig. 4.9d), which produces the approximate observables:

Aa = Xa; Ba = Ya

As = Xs+Ysp
2

Bs = Xs�Ysp
2

(4.22)

Eq. 4.15 describes the ideal observables that e�ciently determine a logical qubit observable, using

a superposition state with |↵| � 1. For smaller coherent displacements, a modification must be

introduced in order to observe the maximum Bell signal in this second CHSH experiment. The

optimal observable P̂±j�
0

⇠ 1p
2

(X̂c ± Ŷc) in fact follows the relation:

↵� �
0

↵+ �
0

= tan 4�
0

↵, (4.23)

as shown in [Park et al., 2012], sec. III; here, �
0

is the amplitude for a coherent displacement D̂(j�
0

)

to perform the measurement P̂j�
0

given ↵. In the large ↵ limit, the observable corresponds to the

logical qubit state observable 1p
2

(X̂c + Ŷc) and follows the relationship P̂↵=

j⇡
16�

, the analog of a ⇡/4

rotation in the cavity’s phase space. The predicted and chosen optimal values for a maximum CHSH

Bell signal in the second test are shown in Fig. 4.10.

As with the first test, we can similarly model the e↵ects of photon loss and measurement ine�-

ciency for the second test, as shown in Fig. 4.9d. The ideal case is the result of four summed joint
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Wigner values represented as:

O
ideal

= 2(cos 4↵
0

↵+ sin 4↵
0

↵)e�2|↵
0

|2 , (4.24)

where �
0

is an optimal displacement for maximum violation which can be calculated from Eq. 4.23

and in detail in Ref. [Park et al., 2012]. Taking into account photon loss and measurement ine�ciency

produces the following relationship:

O
pred

= 2Ve�2teff/⌧s|↵|2(cos 4↵
0

↵+ sin 4↵
0

↵)e�2|↵
0

|2 (4.25)

This predicted Bell signal is shown in Fig. 4.9d using the measured joint-Wigner contrast V = 0.85

and an e↵ective time teff = 1.24 µs, and again demonstrates excellent agreement with the measured

data.

Figure 4.10: Optimal displacement for a Bell violation. For performing the second Bell test, the
optimal observables to measure maximum correlations depend on the size of the Bell-cat state Eq. 4.23.
The dashed black line shows numerically calculated optimal displacement points as a function of coherent
state amplitude ↵. Shown in circles are the experimentally determined optimal displacement values used
to measure a maximum Bell violation. Di↵erences between chosen and ideal values are a result of the
discretization of our measurement settings. The dashed green line is the approximate trend |↵

opt

| = | j⇡

16↵

|
for large cat states, which diverge at small ↵.

A lower Bell signal is observed in the second test due to its greater sensitivity to photon loss, yet

in both tests two regimes are evident. For small cat state amplitudes, the initial Bell signal is lim-

ited by the non-orthogonality of the coherent state superpositions, while for large displacements the

system’s sensitivity to photon loss results in a reduction of the Bell signal. Larger, more distinguish-

able states quickly devolve into a classical mixture due to the onset of decoherence, corresponding

to the resolution of Schrödinger’s thought experiment. However, for intermediate cat state sizes,

we observe Bell signals surpassing classical predictions larger than statistical uncertainties in both

tests. The results provide direct evidence that no dominant error processes in the composite system

besides single photon loss in the cavity and ancilla decoherence due to T
1

and T
2

limit the degree of
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entanglement we can observe. Although perhaps not surprising, this result is certainly reassuring,

and provides the first indication of the strong grasp we have in understanding the dynamics of our

hardware-e�cient system.

Scrutinizing detector bias

(a) (b)

Figure 4.11: Observables from each detector setting. (a) To ensure that a particular detector
setting is not producing systematic errors we have not taken into account, we report a Bell test for each
detector setting used to observe our maximum violation in the second test. The expectation value of each
observable used in that Bell test is shown for the four detector settings used. Significant deviations due
to unexpected systematic errors are not observed. (b) A Bell test is analyzed for each detector setting to
determine the e↵ects of possible systematic errors. Each of these subtests violate Bell’s inequality by more
than three standard deviations of their statistical error.

The sequential detection protocol in this experiment uses the same detector to perform first an

ancilla measurement followed by a cavity measurement. To minimize unwanted systematic errors

due to detector cross-talk between measurements, we perform each experiment under four detector

setting permutations (Fig. 4.11). Two settings are used for the ancilla measurement: a pre-rotation

which maps an ancilla eigenstate |±i to detector values ±Ma
1

and another which maps |±i to

⌥Ma
1

. Two settings are used for the cavity measurement: a Ramsey experiment that maps a cavity

eigenstate |±i to detector values ±Ms
2

and another which maps |±i to ⌥Ms
2

. Each detector setting

is performed an equal number of times3 and results are combined to remove unwanted correlations

between detector readings and measured quantum observables. Systematic errors are shown to be

3By not randomly selecting detector orientations, we close a freedom-of-choice loophole.
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Potential
ancilla decay

Measurement 1 Measurement 2

Figure 4.12: Measurement trajectories given ancilla decoherence. We can model the behavior of
ancilla decoherence in a single measurement trajectory. Ancilla decay (which occurs with a probability p)
can lead to an improper initialization of the second detection and in turn produces an incorrect measurement
result. This form of detector cross-talk can lead to a reduction in visibility and potential systematic o↵set
of the measured ancilla-cavity observable: hABi ! (1� p

s

) hABi � p
s

hBi.

within statistical bounds of the experiment and each detector setting violates Bell’s inequality by at

least three standard deviations.

The dominant form of cross-talk for this experiment is due to ancilla state decoherence between

measurements. To realize the cavity state measurement, the ancilla must be initialized in |gi, which

we perform using active feedback (see A.1). Ancilla decay can occur during this reset process causing

an incorrect initialization for cavity state detection. We can model this error by observing the pos-

sible trajectories of each measurement outcome (Fig. 4.12). This modifies the average measurement
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of the observable AaBs where Aa, Bs are ancilla and cavity operators respectively, which can be

decomposed into ancilla projectors AaBs = (Aa+

� Aa�)Bs, where Aa+

+ Aa� = I. Due to ancilla

decay, the measured value hAa+

Bsi will be modified to (1�2ps)hAa+

Bsi where pc is the probability

of ancilla decay in the time between the first measurement and the feedback rotation. This relation

changes the measurement into:

hABi !(1 � 2ps) hA
+

Bi � hA�Bi (4.26)

=(1 � ps) hA
+

B � A�Bi � ps hA
+

B + A�Bi

=(1 � ps) hABi � ps hBi

For measuring B = Xs, Ys, Zs of the Bell-cat state | BCi, we expect hBi = 0, which gives merely a

reduction in the visibility of the observable hABi by a factor(1 � ps) without systematic o↵sets. We

estimate in this experiment that ps = 1�e� ⌧
wait

T
1 ⇡ 0.06, where ⌧

wait

⇡ 740 ns, the total length of the

readout, starting from when photons first enter the readout cavity to when the feedback resets the

ancilla to |gi. With this justification we can predict the additional loss in visibility V mentioned in

the previous section which gives a visibility V
pred

= (1 � ps)V = 82%. The experimentally obtained

visibility V is 85%; we believe the discrepancy between predicted and measured values is due to an

overestimate in the time the ancilla is susceptible to energy decay during measurement.

4.5 What we learn from studying the Bell-cat

Besides characterizing the high degree of entanglement in our Bell-cat, the tests detailed above

demonstrate that simple encoding techniques allow for the e�cient extraction of information from

states stored in a cavity, illustrating the viability of measuring redundantly encoded states in multi-

level systems [Gottesman et al., 2001]. Furthermore, this implementation provides a resource for

quantum state tomography and quantum process tomography of continuous-variable systems and

creates a platform for measurement-based quantum computation and quantum error correction using

superconducting cavities [Leghtas et al., 2013]. Finally, these features can be extended to multi-

cavity systems [Milman et al., 2004], which will require entanglement detection between continuous

variable degrees of freedom and entanglement distribution of complex oscillator states.

From a physical perspective, the series of experiments described in this chapter o↵ers a unique

perspective on the ‘Schrödinger’s cat’ thought experiment. The artificial atom is entangled with a

macroscopically distinguishable state in the cavity, the coherent state of finite amplitude. With the

understanding that the degree to which the system violates the Bell inequality is dictated primarily
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by the atom’s decoherence and photon loss, we can imagine a situation in which the quality factor of

both components becomes arbitrarily large, wherein entanglement would be confirmed for coherent

states large enough to blur the boundary between what is quantum and what is classical.

From a more practical point of view, we have already demonstrated clear advantages of hardware

e�ciency without even exploring error correction in detail. In contrast to large multi-physical qubit

systems, e�cient encodings and measurements of information redundantly stored in a cavity can be

performed with two simple operations: conditional gates comprised of just a standard Ramsey-type

pulse sequence and displacements of the cavity field. Furthermore, the good agreement between the

data and models of entanglement witness decay with increasing encoding size confirms the assertion

that single photon loss is the primary source of decoherence in the cavity. Thus demonstrating

key requirements laid out in the cat code proposal with simple and straightforward experimental

techniques engenders the confidence that motivates us to continue exploring its feasibility.

Yet the logical encoding used in this study of ancilla-cavity entanglement (Fig. 4.1) does not

lend itself naturally to quantum error correction. As described in 3.3, a basis in which the Zs axis

is defined by coherent states of opposite phase lacks an inherent symmetry property that can be

exploited to measure an error syndrome to correct for single photon loss. Indeed, the only two

states that are left unchanged by photon number parity measurements are those that lie along ±Xs.

However, these are of course the very same states that are used to build even and odd parity bases

for a logical qubit encoded in “4-cats.” So another noteworthy conclusion we draw from the study of

Bell-cat entanglement is that measurements of X̂s, or the very error syndrome the cat code requires,

can be extracted from our system with high fidelity and in a single-shot way without projecting

the state out of the code space. This motivates the following question: what will we learn by now

repeating this measurement in time?
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5 – Tracking the Cat Code’s One Error Syndrome

The cat code lays forth a protocol to measure the occurrence of photon jumps through a mapping

of the logical qubit’s symmetry property, photon number parity, onto an ancilla whose state can be

projectively measured. The system that can be used to realize such a scheme is hardware-e�cient,

and requires just two cavities bridged by a single transmon ancilla in a superconducting cQED

architecture. The Hamiltonian is well understood and the parity mapping scheme requires just a

simple Ramsey-style pulse sequence. So in principle, all the ingredients are there to measure the

parity in real-time with repeated single-shot measurements in order to protect a quantum bit of

information from the cavity’s dominant source of decoherence, single photon loss.

The question, however, is not whether the parity can be measured. By showing a violation of

a Bell inequality in the previous chapter we clearly demonstrate that the parity information of the

cavity state can be extracted e�ciently. Yet that demonstration employs just one such measurement

and thus leaves several questions outstanding, answers to which are crucial in determining the

feasibility of the cat code for future experiments. Namely, we would first like to know how quickly

and with what fidelity the parity can be extracted from the system. In any practical implementation,

one will require an accumulation of measurement statistics to acquire a best estimate of the cavity

state, and an approach to learn this information in lieu of experimental imperfections must be

developed. Secondly, we must know what e↵ect the syndrome measurement has on the logical qubit

to see if by the very act of checking for photon jumps do we induce them to occur with greater

frequency. In this chapter, we will quantify to what degree the parity monitoring scheme is quantum

non-demolition (QND), or to what extent a parity measurement leaves the parity unchanged.

Along the same lines, maintaining the coherence of the superposition of cat states requires not

just knowing the parity with high confidence, but also maintaining the correct phase of the coherent

states in phase space. Thus, in a more general sense, we will introduce the importance of quantifying

to what extent ancilla errors during syndrome measurements propagate to errors in the cavity state.

This last consideration in particular will be a recurring theme throughout the remaining chapters

due to its integral role in determining a host of strategies meant to maximize the performance of an
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error correcting system. This chapter primarily focuses on the first two questions: understanding

the speed and fidelity with which we extract the error syndrome, and how QND is our measurement

scheme. We will then conclude with a brief discussion of the third: what factors must be taken

into account to minimize the back-action on the field in the cavity from errors in the ancilla. Our

conclusions lay the groundwork for the subsequent three chapters, in which we demonstrate an

application of repeated single-shot parity measurements in a full quantum error correction system

that is capable of enhancing the lifetime of a quantum bit of information.

5.1 Observing jumps of photon parity in real-time

Besides their necessity in quantum error correction and quantum information, QND measurements

play a central role in quantum mechanics. The application of an ideal projective QND measurement

yields a result corresponding to an eigenvalue of the measured operator, and projects the system

onto the eigenstate associated with that eigenvalue. Moreover, the measurement must leave the

system in that state, so that subsequent measurements always return the same result. The hallmark

of a continuously repeated high fidelity QND measurement is that it demonstrates a canonical

Gedankenexperiment : individual quantum jumps between eigenstates are resolved in time on a

single quantum system. This ideal measurement capability has only been experimentally realized

in the last few decades. The jumps of a two-level system between its energy eigenstates were first

observed for single trapped ions [Bergquist et al., 1986; Nagourney et al., 1986; Sauter et al., 1986],

and later in single NV centers in diamond [Jelezko et al., 2002; Neumann et al., 2010; Robledo et al.,

2011]. The jumps of an oscillator between eigenstates with di↵erent numbers of excitations (Fock

states), were first observed for the motion of an electron in a Penning trap [Peil and Gabrielse,

1999]. More recently, the observation of quantum jumps of light in cavity QED [Gleyzes et al., 2007;

Guerlin et al., 2007], where the number of microwave photons in a cavity is probed with Rydberg

atoms, has enabled a range of new experiments in quantum feedback and control [Deléglise et al.,

2008; Sayrin et al., 2011]. With the advent of quantum-limited parametric amplifiers [Bergeal et al.,

2010; Castellanos-Beltran et al., 2008], measurement techniques for superconducting devices have

rapidly advanced as well. For instance, the frequency shift of a cavity has been used to observe the

quantum jumps of an ancilla between energy eigenstates [Hatridge et al., 2013; Vijay et al., 2011].

In this work, we demonstrate the first observation of quantum jumps of an error syndrome rather

than an energy eigenstate. In our system, the error syndrome is a change in the photon number

parity of the cavity field, which indicates the occurrence of single photon loss. With each change

of parity, we only learn that the photon number changes between even and odd, but not how many
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photons there are. This is a crucial distinction from projecting a cavity, or any other quantum

system, onto a definite energy eigenstate. The measurements maintain the field in a superposition

of coherent states, and the jumps of the error syndrome simply indicate a known change in the

phase relationship between them. As described in chapter 3, this feature is exactly what quantum

error correction, and in particular the cat code, requires. What we will find is that even in the

presence of rapidly repeated measurements the field in the cavity is on average largely unperturbed,

exhibiting the same time constant of decay toward vacuum as when it is left to evolve freely with

no outside intervention. At the same time, when examining individual single-shot time records of

the measurement, we will see clear signatures of parity jumps that with high fidelity reveal the

occurrence of single photon loss in real-time.

Setting the measurement strategy

In this experiment, we employ the same three-dimensional circuit QED architecture [Paik et al., 2011;

Wallra↵ et al., 2004] as introduced previously (Fig. 2.4), with a single superconducting transmon an-

cilla coupled to two waveguide cavities [Kirchmair et al., 2013; Vlastakis et al., 2013]. The transmon

ancilla has a transition frequency of !̃a/2⇡ = 5.938 GHz, an energy relaxation time T
1

= 8 µs, a

Ramsey time T
2

= 5 µs, and is found to be in the ground state |gi 86% of the time when in thermal

equilibrium with the environment. The high frequency cavity, with !̃r/2⇡ = 8.174 GHz and a lifetime

of 30 ns, serves only as a fast readout of the ancilla state. In order to perform a high-fidelity single-

shot dispersive readout of the ancilla, we use a Josephson bifurcation amplifier (JBA) operating in

a double-pumped mode [Kamal et al., 2009; Murch et al., 2013] as the first stage of amplification.

The low frequency cavity, with !̃s/2⇡ = 7.216 GHz and a lifetime of ⌧s = 1/s = 55 µs, stores the

photon states that are measured and manipulated; its thermal population is ⇠ 2% (see sec. A.2 for

more details). For simplicity, we will refer to the storage cavity as “the cavity” henceforth.

The ancilla and cavity are in the strong dispersive coupling regime, which again can be described

by the Hamiltonian:

Ĥ/~ = !̃a |ei he| + (!̃s � �sa |ei he|)â†
sâs (5.1)

where âs and â†
s are the annihilation and creation operators respectively, |ei is the excited state of

the ancilla, and �sa/2⇡ = 1.789 MHz is the ancilla state-dependent frequency shift of the cavity.

The readout cavity Hamiltonian terms are omitted because this component remains in the ground

state while the parity mapping is performed. We have adjusted the phase between the JBA readout

signal and the pump such that |gi, |ei, and |fi states can be distinguished with optimal contrast,

where |fi corresponds to all ancilla states above |ei. Figure 5.1 shows the trimodal histogram of the
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ancilla readout. Thresholds between |gi and |ei, and between |ei and |fi states have been chosen

to digitize the readout signal to +1, �1, and 0 for |gi, |ei, and |fi states respectively. We assign

a zero to the |fi states to indicate a “failed” measurement with no useful information about the

parity. The basic ancilla readout properties are shown with the cavity left in its thermal state. The

|gi state is prepared through a post-selection of an initial ancilla measurement, while |ei and |fi
are prepared by properly pulsing the selected |gi state. The loss of fidelity predominantly comes

from the T
1

process during both the waiting time of the initialization measurement (500 ns) and the

ancilla readout time (300 ns).

Ancilla

Ancilla

Ancilla

Figure 5.1: Ancilla readout properties. (a) Histogram of single-shot ancilla readout. The phase
between the JBA readout and the pump tone has been adjusted such that |gi, |ei, and |fi states can be
distinguished with optimal spacings. The signal has been digitized such that a +1 is assigned to |gi, �1
to |ei and 0 to |fi. (b-d) Illustration of pulse sequence (not to scale) producing an ancilla readout matrix
with the storage cavity left in vacuum. The |gi state (b) is prepared through a post-selection of an initial
ancilla measurement M1, while |ei (c) and |fi (d) are prepared by properly pulsing the selected |gi state.
A histogram of the second measurement M2 gives the ancilla readout properties. (e) The resulting ancilla
readout matrix.

As the first step in the experimental sequence here, we choose to initialize the cavity in an

eigenstate of parity. We do not use the qcMAP protocol [Leghtas et al., 2013; Vlastakis et al.,

2013], but instead create a “2-cat” stochastically through the method of measurement back-action

described in sec. 4.1. We first create the Bell-cat | BCi = 1p
2

(|g,↵i + |e, �↵i), as shown in Fig. 4.2,

and then measure the ancilla along �Xa. If the ancilla is observed to be in |gi, we have an even

cat in the cavity, while if the result is |ei we have an odd cat. We then continue with repeated
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Odd Parity

Even Parity

|ei ! 1p
2
(|ei � |gi)1p

2
(|ei � |gi) ! |ei

|gi ! 1p
2
(|gi + |ei)

|gi ! 1p
2
(|gi + |ei)

1p
2
(|gi + |ei) ! |gi

1p
2
(|gi + |ei) ! |gi

|gi ! 1p
2
(|gi + |ei) 1p

2
(|gi + |ei) ! |gi

Figure 5.2: Asymmetry in parity mapping. Two consecutive parity mappings, separated by vertical
black lines, are shown. Green arrows indicate the action of the pulse in rotating the Bloch vectors. A
parity mapping consists of two ⇡/2 pulses separated by a waiting time t = ⇡/�

sa

. Light and dark shades
of arrows indicate the initial (prior to first ⇡/2 pulse) and final (after to second ⇡/2 pulse) Bloch vectors
of the ancilla for each parity. Red (blue) arrows correspond to the time evolution of an ancilla state with
two (one) photons in the cavity. In this example, the two pulses are opposite in sign, which means that if
the parity is even and the ancilla is initialized in |gi (|ei), the resulting measurement pattern will be “flat,”
with |gi (|ei) the only final outcome. On the other hand, should the cavity parity be odd, using the same
protocol maps the ancilla to the opposite pole of the Bloch sphere as compared with its initial state. In this
example, in the first mapping the ancilla starts in |gi and ends in |ei; without a reset pulse, the next parity
mapping begins with the ancilla in |ei, after which it returns to |gi, thus exhibiting an “oscillating” pattern.
We therefore expect the signature of a photon jump in the single-shot traces to be a change between the flat
and oscillating patterns.

measurements of parity at a rate that far exceeds the average lifetime of a single photon in the

cavity. With the parameters above, we achieve a parity mapping and subsequent projective ancilla

measurement in 1 µs ⌧ 55 µs. Such high cadence is an important requirement for successful QEC,

as it both reduces the risk of two errors that occur in quick succession and allows one to rapidly

build up measurement statistics.

Regarding the creation of the initial cavity state and the pulse pattern of the parity mapping,

we make two somewhat arbitrary choices. First, we employ a measurement-based strategy to create

the “2-cats” rather than qcMAP. Although the resulting cavity state is obtained probabilistically,

this method is easier to implement and faster than qcMAP at making parity eigenstates. Second,

upon creating | BCi we measure the ancilla along �Xa rather than +Xa. When repeated in time,
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a sequence of parity measurements returns two contrasting measurement outcome patterns, either

flat or oscillating (Fig. 5.2). A change in the measurement record from one pattern to the other

indicates a change in parity and the loss of a photon. The correspondence of each pattern to a

particular parity, however, depends on the choice of sign in the second ⇡/2 pulse of the Ramsey

sequence, as depicted in Fig. 5.2. Since the parity of the vacuum state |0if is even, on average the

parity
D
P̂
E

will always be biased towards even as the field decays in time, regardless of the initial

coherent displacement ↵ in the cavity (Fig. 5.3):

D
P̂
E

= e�2|↵(t)|2 (5.2)

= e�2n̄
0

e�st

. (5.3)

As measuring the ancilla in |gi rather than |ei is notionally preferable due to the e↵ects of T
1

decay,

measuring along �Xa increases the probability of a flat pattern with the ancilla in |gi for even

parity. As will be shown later, this consequently increases the fidelity of the parity measurement for

the majority of the single-shot traces.

Outside of this experiment, however, this strategy will not be the future approach we will take.

For large cat state amplitudes (|↵| & p
2�p

4) stabilized for long periods of time [Leghtas et al.,

2015a], e↵ectively no bias towards any one parity exists and so neither parity mapping protocol is

more capable in keeping the ancilla in |gi over the other. As will be shown in later chapters, this

consideration provides one of the first motivations for the application of real-time feedback to the

experimental implementation of cat code in our system, one which puts both protocols on an equal

footing, maximizes the parity measurement fidelity for both parity eigenstates, and substantially

reduces the probability of ancilla excitation to states |fi.

Single-shot trajectories of cavity parity

We now proceed to demonstrate the real-time changes in cavity parity through repeated single-shot

measurements of Xs. Figure 5.4 shows a simple schematic of the pulse sequence and typical resulting

400 µs single-shot traces. The initial displacement is |↵| = 1.0 and the repetition interval of the

parity measurements is 1 µs, much lower than the single photon lifetime ⌧s = 55 µs (Fig. 5.3). We

observe a variety of measurement records, from quiet traces that last for hundreds of microseconds

with no apparent changes in parity, to those that have as many as five jumps. The clear dichotomy

between the flat and oscillating patterns in the raw data of our traces suggests a strong sensitivity of

single-shot parity measurements to discrete changes in the state of the cavity. At this point, however,
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Figure 5.3: Average parity decay of a coherent state to vacuum. The lifetime of the cavity is
characterized by measuring the average parity of a coherent state |↵i left to decay freely to vacuum as a
function of time. The measurement protocol is shown in the inset; the cavity is displaced with coherent
states of various amplitudes (distinguished by the di↵erent colors), is left to evolve freely for varying delay
times, and then has its average parity measured (rectangle P ). All measured curves saturate at the same
value, which deviates from exactly +1 due to a finite thermal population in the cavity. The solid lines are
global fits using Eq. 5.3 that give a time constant ⌧

s

= 55 µs. The saturation level has been forced to 0.96
(due to ns

th

= 0.02), represented by the dashed horizontal line.

we cannot yet claim with any confidence that these traces indicate that single photon jumps are

being monitored in a QND way.

In pursuing this goal, we are immediately faced with the challenge that qualitatively one can see

that over the course of 400 µs every trace has a number of intermittent and usually brief changes

in measurement correlation. At certain times, for example, flat patterns of consecutive |gi results

jump to a flat pattern of repeated measurements of |ei. At other times, the ancilla seems to settle

in the |fi state for some length of time and then returns back to either |ei or |gi. One may explain

some of these anomalies away by claiming that there always exists a probability that two jumps

may happen in quick succession, perhaps explaining the occurrence of single spikes between |gi and

|ei. The probability to have so many of these, however, is exceedingly low according to the Poisson

distribution, given that the average time between photon jumps in these traces should be on the

order of ⇠ 1 µs/⌧s ⇡ 0.02 for an ↵ ⇡ 1. Instead, the litany of all other possible sources of error, which

include ancilla T
1

and T�, photon jumps during parity mappings, and indeed perhaps the non-QND

nature of parity measurements themselves, are the likely culprits here. But before we draw any
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Figure 5.4: Observing parity jumps in real-time. These traces reveal the occurrence of parity jumps in
real-time. Horizontal dashed orange lines delineate the thresholds to distinguish |gi , |ei, and higher excited
states of the ancilla, denoted as |fi. Blue dots are the actual measured voltage signal. (a) In this experiment,
we first displace the storage cavity and then proceed to measure the parity (P rectangle) repeatedly in time
in a single-shot way. The sign of the second ⇡/2 pulse is chosen to be negative to measure a flat pattern
when the cavity returns to vacuum (even parity). The repetition time of the parity measurement is 1 µs,
and traces in (b) through (e) all have an initial displacement of |↵| = 1. (b) No obvious changes between
flat and sustained oscillating measurement patterns are observed. For the most part the cavity seems to
be in an even parity eigenstate for the entire duration of 400 µs, although multiple occurrences of multiple
jumps in quick succession cannot be ruled out. (c) One parity jump is clearly discerned, as seen from the
change in the measurement pattern (oscillating vs. flat) at about 130 µs. (d) At least two parity jumps are
recorded at about 10 µs and then again at 260 µs. The ancilla leaves the computational space (|fi) at about
200 µs, a feature that disables the parity measurement. (e) A trace with at least five discernible jumps.

conclusions as to the QND nature of the parity measurements from these qualitative observations

alone, we first must understand the fidelity of a single parity measurement given the preparation of

a known parity state in the cavity.

5.2 Error budget for a parity measurement

Rigorously understanding what limits the performance of a single parity measurement plays an

important role in assessing the future viability of the parity mapping protocol. More specifically

in the context of this experiment, we would like to be sure that our knowledge of the Hamiltonian

parameters and coherence properties of the system’s components is su�cient to predict the results

demonstrated thus far. This approach sets an important precedent in benchmarking the performance
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of an entire error correcting system, as will be seen in chapter 6. The levels of detail we delve into

here also underscore the virtue of the cat code’s simplicity, which o↵ers the luxury of having to

unravel the dynamics of just a single error syndrome measurement.
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Figure 5.5: Parity readout properties and Wigner tomography. (a) Conditional probabilities for
the correlations between neighboring parity measurements given initial even and odd cat states. These are
found using the Ramsey mapping in which the second ⇡/2 pulse is negative and a coherent displacement of
↵ = 1; P(+1|even) = 0.913, P(�1|odd) = 0.860, etc. (b) To start the experiment we post-select |gi after
an initial ancilla readout (M1); then perform five parity measurements (P

1

, ..., P
5

) and post-select on a flat
(oscillating) ancilla measurement pattern, thus purifying even (odd) parity states. Conditional probabilities
P(±1, 0|even/odd) are determined from a histogram of the results of the sixth parity measurement. (c)
Illustration of the pulse sequence (not to scale) for producing the cat states and, additionally, Wigner
tomography. A 280 ns waiting time after each measurement has been chosen to ensure that the readout
cavity is at the vacuum state and likewise to coincide with ⇡/�

sa

so that even and odd cats are aligned
in phase space post ancilla readout. Tomograms are symmetrized to remove background o↵sets due to the
cavity’s anharmonicity (see A.2). The ancilla pulses have a Gaussian envelope truncated to 4� = 8 ns and
the displacement pulses on the storage cavity are 10 ns square pulses. The dashed line enclosure represents
the pulse sequence for a parity measurement. (d) Wigner tomography of even (left) and odd (right) parity
“2-cats” demonstrates the same back-action as seen in Fig. 4.3.
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We would like to quantitatively know what stages of the parity measurements are most sensitive

to the dominant sources of ancilla and cavity decoherence. Figure 5.5 shows the parity readout

properties of our system. The overall performance of the parity measurement is characterized by

looking at the distribution of ancilla states after a parity mapping conditioned on either an initial

even or odd cat state in the cavity. Taking the example of starting in an even cat, the system is first

initialized in the state | iinit = (|↵i+ |�↵i) |gi /
p

2 to the best of our ability (Fig. 5.5b). This state

is created by first measuring the ancilla and through post-selection choosing only when the result is

|gi; then displacing the cavity (|0if ! |↵ = 1i); and then purifying the cavity state into one of even

parity by performing five consecutive parity measurements (P
1

, ..., P
5

) and again post-selecting only

when all results are |gi. We then find the probability of measuring each ancilla state in the sixth

parity measurement P
6

. The correlated outcomes can be +1 (|gi, |gi), �1 (|gi, |ei), and 0 (|gi, |fi).
Ideally, conditional probabilities P(+1|even) and P(�1|odd) both equal +1, while the remaining

P(+1|odd), P(�1|even), P(0|even), and P(0|odd), are 0. In practice, P(+1|even) and P(�1|odd) are

on the order of 90%.

Figure 5.6: Error budgets for the parity readout infidelities. The error budget for the parity
readout infidelity accurately predicts P(+1|even) from Fig. 5.5. .

The deviation of the conditional probabilities from their ideal values primarily arises from ancilla

decoherence. The error budgets for the parity measurement fidelity can be estimated by breaking

down a parity measurement into all of its constituent pulses and delays (e.g. Fig. 5.5c). For

the following we again assume that we start in | iinit = (|↵i + |�↵i) |gi /
p

2 prior to the sixth

measurement P
6

. Should an ancilla T
1

decay event occur between the two ⇡/2 pulses of the Ramsey

mapping of P
6

, the second ⇡/2 pulse simply takes the ancilla back to the equator of the Bloch

sphere, and the subsequent projective readout has a 50% chance of reporting an ancilla result that

correctly corresponds to the cavity parity. An ancilla T� event, or phase flip, between the two ⇡/2
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pulses flips the ancilla state on the equator and leads to the final state | ifin = (|↵i+ |�↵i) |ei /
p

2

at the end of the sequence, resulting in an error 100% of the time. Additional decoherence arising

from excitations to the |fi state between the two ⇡/2 pulses in the sixth parity measurement also

contributes to infidelity. The photon jump process between the two ⇡/2 pulses leads to | ifin =

(|↵i � |�↵i)[(1 � ei�satj ) |gi � (1 + ei�satj ) |ei]/2
p

2, where tj is the time of the photon jump. On

average this gives a 50% chance of an incorrect answer. Finally, the ancilla measurement inaccuracy

in the fifth parity measurement P
5

(due to measurement infidelity as shown by the overlapping

histograms in Fig. 5.1) plus again ancilla excitation both serve to decrease P(+1|even) as they

break the assumption that | iinit = (|↵i + |�↵i) |gi /
p

2. All of the above sources of errors can

be estimated given our knowledge of the sequence duration and the coherence times of the ancilla

and cavity. Tabulated together, they add up to 7.7% (Fig. 5.6), in a good agreement with the

P(+1|even) = 91.3%.

5.3 QND measurements of single photon jumps

The quantum filter

The parity measurement infidelities we found in the previous section indicate that with high prob-

ability many of the abrupt features in the traces from Fig. 5.4, which briefly break a well-defined

measurement pattern, may in fact be due to ancilla and cavity decoherence. In an e↵ort to obtain a

cleaner signal that is perhaps more faithful to the cavity’s true error trajectory, we design a quantum

filter that astutely estimates the actual parity of the cavity at a time t. It takes as inputs the entire

raw measurement record up to t, the initial cavity displacement, the ancilla measurement fidelities

(Fig. 5.1), and the conditional probabilities to measure certain correlations for given prepared parity

eigenstates (Fig. 5.5). The details of how exactly this filter is designed are described in detail in A.2;

its restorative e↵ects, however, are plainly clear in Fig. 5.7 and in greater detail in Fig. 5.8a, where

it is shown in red. In an ideal system with no ancilla decoherence and perfect measurement fidelity,

the cavity parity can be derived exactly from a single-shot trajectory by correlating neighboring

points of raw data. Using the Ramsey sequence chosen here, the correlation for an oscillating pat-

tern is always �1 (odd parity), and +1 for a flat pattern (even parity). In our system many of these

correlations are spurious due to errant measurements. The quantum filter, however, is clearly much

less sensitive to such abrupt changes in the measurement record and |fi state occupation, and in

particular favors changes to even parity after long time intervals since the likelihood of the cavity

being in vacuum becomes increasingly high. Due to the smoothing e↵ect of the quantum filter we
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actually can achieve nearly unity detection sensitivity to changes in photon parity. Intermittent

spikes, small and large, are symptoms either of the e↵ects of decoherence on the filter’s estimate of

parity, or simply photon jumps in quick succession that the filter lacks the bandwidth to catch.
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Figure 5.7: Filtering out decoherence in the single-shot records. Applying a quantum filter, in
red, to the single-shot traces in Fig. 5.4. (a) The filter confirms what we earlier suspected, that changes in
the measurement pattern are most likely due to measurement error rather than actual jumps of parity. (b)
The filter indicates a single parity jump, given by the complete roll-over from �1 to +1 (right axis). Spikes
in the filter indicate likely ancilla decoherence, although multiple parity jumps in quick succession cannot
be ruled out. These spikes highlight the filter’s finite bandwidth. (c) The measurement record is filtered to
show two parity jumps. (d) A trace with at least five parity jumps. Despite intermittent spikes, the filter
achieves nearly complete confidence in the parity for most of the trace.

To illustrate the importance of filter bandwidth on jump sensitivity, we show in Fig. 5.8b a

zoom-in of the behavior of the quantum filter applied to typical photon jump events. Green and

cyan curves are fits of the filter at the transition based on a tanh function, giving a transition time

constant of less than 1 µs. We can also use a simpler definition for ⌧f as just the total time it takes

the filter to roll over from one threshold to the other (±0.9). This approach yields a longer time

constant, ⌧f ⇡ 2 µs, but one that more accurately captures the dynamics of the measurement results.

The probability of missing a photon jump is equal to the probability of a photon jump occurring

within ⌧f . This is given by:

Pjump =
n̄

⌧tot

Z ⌧f

0

e�tn̄/⌧tot dt (5.4)

= 1 � e�⌧f n̄/⌧tot . (5.5)
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Figure 5.8: E↵ectiveness and response time of the quantum filter. (a) E↵ectiveness of the
quantum filter. Blue (raw) and red (filtered) curves are the same as that shown in Fig. 5.7. The green
curve is the direct correlation of ancilla states between neighboring parity measurements. The red curve
is clearly much smoother and can reject the brief changes in the green curve. (b) Response time of the
quantum filter applied to typical photon jump events. The blue curve is the raw data from a repeated parity
measurement. The red curve is the corresponding filter based on the quantum filter. Green (cyan) curves
are fits to tanh functions of the filter at the transition down (up), giving a transition time constant of less
than 1 µs. However, the response time of the filter to make a transition between ±0.9 is ⌧

f

⇡ 2 µs.

For n̄ = 1 and ⌧tot ⇡ 50 µs, the probability of missing both jumps is thus Pjump ⇡ 4%, and ⇡ 15%

for n̄ = 4. This performance may strike one as too poor for the cat code error correction protocol

to ever succeed in a real experiment. Using cavities and ancillae with coherence times of an order of

magnitude greater [Reagor et al., 2016], however, substantially reduces these percentages. Indeed,

as will be seen in later chapters, hardware improvements render such double errors as one of the

lowest contributions to cat code failure.

We have thus answered the first key question introduced at the outset of the chapter. By

measuring the photon parity with a frequency that far exceeds the average error rate and intelligently

interpreting the results with the use of a quantum filter, we can be very confident about the parity

of the state in the cavity at any point in time. Not surprisingly, however, we also find that the

sensitivity to jumps relies on the coherence properties of the system’s components. In a system with

ancillae and cavities that have superior coherence properties to those used here, this performance

can certainly be boosted, as shown in chapters 6 to 8. For now, however, we must demonstrate

that changes in parity indeed correspond to the error process for which the cat code is designed to

correct.
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Counting changes in parity

In order to test how faithfully ostensible jumps in parity correspond to QND measurements of single

photon loss, we first simply count the number of jumps extracted from the quantum filter during

500 µs of repeated parity measurements. We have applied a Schmitt trigger [Schmitt, 1938] to the

filtered data in order to digitize the filter and reject the unavoidable noise (spikes in the filter) coming

from ancilla decoherence and erroneous parity readout. The two thresholds for the Schmitt trigger

are chosen to be ±0.9 to allow for a large discrimination. The number of parity jumps is inferred

from the number of transitions in the digital data after the Schmitt trigger is applied. Figure 5.9

shows the histograms of the extracted number of jumps for an initial even or odd cat state by post-

selection. As expected, the even and odd distributions in Fig. 5.9 indeed show a 98% vs. 2% mixing,

in accord with the knowledge that ns
th = 2%. Due to the finite bandwidth of the filter, however, if

two photon jumps occur within a filter response time ⌧f , the Schmitt trigger does not catch both

jumps.

Although we have no way of knowing the true number of photon jumps for each parity measure-

ment trajectory, we can test how well the distribution of measured jumps agrees with the Poisson

distribution we expect. Due to the complication of background thermal excitation and finite re-

sponse time of the filter, finding an analytical solution becomes di�cult. Instead, we compare a

numerical Monte Carlo simulation with the experiment. In the simulation, we use a coherent state

as the initial state without distinguishing the parity. Each simulation trajectory is 500 µs long

and includes a transition probability n ! n + 1 from the background thermal excitation. We also

neglect trajectories that have neighboring jumps within the response time ⌧f of the quantum filter.

Then, for each trajectory we count the number of jumps, and finally we make a histogram of those

numbers based on 100,000 trajectories (black solid lines in Fig. 5.9). Such good agreement between

simulation and data provides the first concrete evidence that repeated parity measurements do in

fact faithfully track the loss of single photons in real-time.

Quantifying how QND parity measurements are

The extent to which these results agree with the expected Poisson distribution of photon jump

number already strongly suggests that the parity measurements are highly QND as well. We can

confirm this quantitatively by examining the decay rate of the average parity of a coherent state

subjected to repeated single-shot parity measurements. Although the quantum filter appears to

predict the jump statistics with good accuracy, we nonetheless would first like to confirm that we

understand the system dynamics without heavily processing the raw data. We briefly return to
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Figure 5.9: Photon jump histograms. Histograms of the number of jumps extracted from the quantum
filter during 500 µs of repeated parity measurements for an initial even or odd cat state, as chosen through
post-selection on the first parity measurement. (a), (b) |↵| = 2.0. (c), (d) |↵| = 1.4. (e), (f) |↵| = 1.0.
Solid lines are numerical simulations that include ns

th

and the finite response time of the filter. In the
simulation, we use a coherent state as the initial state without distinguishing the parity.

analyzing the data from the perspective of correlations only, and assume that the repeated parity

measurement process is Markovian. The ensemble averaged parity dynamics obtained from the

average correlation hCcor(t)i under repeated parity monitoring are then simply:

hCcor(t)i = P(+1, t) � P(�1, t) + P(0, t)
P(+1, t) � P(�1, t)

P(+1, t) + P(�1, t)
(5.6)
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where P(+1, t), P(�1, t), and P(0, t) are the probabilities of measuring positive, negative, and zero

correlations at time t. The third term comes from the fact that the cases with zero correlation are

assigned to previously measured non-zero correlations +1 and �1, whose probabilities are P(+1, t�
�t) and P(�1, t � �t), respectively. For small �t, P(±1, t � �t) ⇡ P(±1, t).

0.8

0.6

0.4

0.2

0.0

Av
er

ag
ed

 p
ar

ity

4003002001000
Time (μs)

α=0.3  α=0.4
α=0.5  α=0.7 
α=1.0  α=1.4

           α=2.0 

Figure 5.10: Averaged single-shot correlations. Ensemble averaged raw data of single-shot records
obtained directly from the correlation of ancilla states between neighboring parity measurements, using
20,000 traces similar to those shown in Fig. 5.4. Seven di↵erent cavity displacements are shown. Solid lines
are predictions based on Eq. 5.6, in excellent agreement with the measured data. The o↵set of the averaged
parity at t = 0 comes from the asymmetric parity readout fidelities between the even and odd cat states.
The fact that the saturated parity value in the long time limit is evidence that ancilla decoherence and other
parity measurement errors degrade the quality of the raw signal.

The probabilities P(+1, t), P(�1, t), and P(0, t) depend on both the measured parity readout

property P(±1, 0|even/odd) and the even and odd parity evolution P
e

(t) and P
o

(t) of the photon

state:

P(+1, t) = P(+1|even)P
e

(t) + P(+1|odd)P
o

(t)

P(�1, t) = P(�1|even)P
e

(t) + P(�1|odd)P
o

(t)

P(0, t) = P(0|even)P
e

(t) + P(0|odd)P
o

(t)

(5.7)

where P
e

(t) = (e�2|↵|2e�tot

s

t

+1)/2, P
o

(t) = (1� e�2|↵|2e�tot

s

t

)/2, and tot
s � s is a modified decay

rate that could be greater than s if the parity measurements are not QND. With all the parameters

in Eq. 5.6 known, hCcor(t)i can then be predicted.

Comparing the averages of correlated single-shot records with the model derived above (Fig. 5.10),

the agreement is excellent provided 1/tot
s = 1/49 µs. We obtain an identical time constant if we
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Figure 5.11: Demonstrating QND parity measurements. (a) An example of averaging filtered
single-shot traces similar to those shown in Fig. 5.7. In this example, ↵ = 2.0. After 500 averages the curve
already follows the trend predicted by Eq. 5.8. The average parity is expected to saturate at 1

1+2n

s
th

= 0.96

and indeed does so, as shown by the dashed horizontal line. (b) Ensemble averages of 20,000 filtered single-
shot parity traces for di↵erent cavity displacements ↵. Solid lines are fitted theoretical curves for coherent
states using Eq. 5.8, where ns

th

and the corresponding |↵| are fixed, leaving 1/tot

s

= ⌧
tot

as the only free
parameter. Here ⌧

tot

= 49 µs from a global fit, and closely matches the lifetime ⌧
s

= 55 µs as obtained
from a free evolution measurement. This indicates that repeated parity measurements do not significantly
perturb the cavity state, inducing few extra jumps and no measurable increase in cavity thermal population.
Inset: extracted time constants as a function of di↵erent parity measurement repetition intervals. The
error bars indicate one standard deviation from repeated measurements. The decay time ⌧

tot

is modeled as
1/⌧

tot

= 1/⌧
s

+ P
D

/⌧
rep

, where P
D

is the probability of inducing an extra parity change, or photon jump.
A fit (solid line) gives P

D

= 2⇥ 10�3, indicating that a single parity measurement is 99.8% QND.

average the filtered data as well (Fig. 5.11). In form, the curves in Figs. 5.10 and 5.11 mirror those

shown in the case of the free decay of a coherent state (Fig. 5.3). The filtered data in fact demon-
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strates the ability of the quantum filter to correct for measurement infidelity by removing the initial

o↵set at t = 0 and saturating at the predicted thermal population of the cavity. The decay curves

for seven di↵erent displacements are all well-modeled by a simple equation (similar to Eq. 5.3) that

accounts for the finite thermal population of the cavity and a decay of average parity where âs is

the only loss operator:

D
P̂
E

=
1

1 + 2ns
th

e�2|↵|2e�tot
s t/(1+2ns

th). (5.8)

We thus arrive at the conclusion that aside from a modified time constant, the dynamics of the

system under repeated error syndrome measurements are modeled well by the simple stochastic loss

of single photons in time.

The discrepancy in the time constants, 1/tot
s = 49 µs versus 1/s = 55 µs, however, indicates

that the parity measurements are not 100% QND. In order to quantify how destructive each parity

measurement is, we extract the total decay rate of the parity (1/⌧tot = tot
s ) from the ensemble

averaged parity dynamics obtained with the quantum filter for nine di↵erent repetition intervals

(⌧rep). The total decay rate is well modeled by the parallel combination of the free decay time

(⌧s = 55 µs) plus a constant demolition probability PD:

1

⌧tot
=

1

⌧s
+

PD

⌧rep
. (5.9)

We find that PD = 0.002 per measurement interval, as shown by the fit in the inset of Fig. 5.11.

In other words, a single parity measurement is 99.8% QND, leaving the parity of the cavity state

largely unperturbed. Subsequent parity measurements, however, can catch this event with high

fidelity. This result has important consequences on the future viability of the cat code. If the very

act of measuring parity were to induce photon jumps without our knowledge, the parity tracking

protocol itself would be flawed. Performing the parity mapping and the subsequent strong projective

readout of the ancilla, however, barely disturbs the logical qubit, a key ingredient for a working QEC

system that allows us to repeat the procedure many times per photon jump.

Throughout the preceding analysis, we glossed over one crucial point. As shown in Fig. 5.5a,

the conditional probability P(�1|odd) is a full 5% lower than P(+1|even). Yet, the only di↵erence

between the two protocols used to obtain these numbers lies in the parity of the initial state purified

by the first five parity measurements; P(+1|even) corresponds to taking even parity states to |gi
and P(�1|odd) corresponds to taking odd states to |ei. We thus come full circle to the issue we

encountered early on in sec. 5.1 when choosing the sign of the second ⇡/2 pulse in the Ramsey
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mapping to be negative. The problem arises from the substantial probability of ancilla T
1

decay

during a projective readout of the ancilla in |ei, resulting in parity information of inherently lower

confidence for odd states with this choice of pulse sequence. Indeed, the quantum filter picks up

on this problem as well; it is no coincidence that the majority of the spikes in the filtered data in

Fig. 5.7 occur during the oscillating patterns that correspond to odd parity. At first one may brush

this aside and claim that with higher coherence times this e↵ect won’t be as pronounced, and that

even now the filter is so e↵ective that this asymmetry does not play that great of a role in reducing

the fidelity of the logical qubit. But this of course assumes that only missed photon jumps dephase

the cat states. In the following section, confronting the third and final consideration introduced at

the beginning of this chapter, we see why this in fact is not the case and begin to consider what is

required for a parity measurement to be QND on the entire state in the cavity.

5.4 Motivating the need for real-time feedback

Finding that the parity measurements we employ to detect errors in the cavity are highly QND

encourages us to continue the study of the cat code as a viable route towards protecting a quantum

bit. This positive result, however, must not eclipse an equally pressing concern: the degree to

which we may still be perturbing the information stored in the cat states. Referencing the Wigner

tomograms (Fig. 5.5d), although we can confidently claim that we are QND as far as the point at

the origin is concerned, a priori the same cannot be said regarding rest of the information present at

other points in phase-space. In other words, although the parity monitoring doesn’t change photon

number probabilities it could still change the relative phases between the Fock states superpositions

that constitute the cat states. This more general issue of the forward propagation of errors from the

syndrome measurements to the logical qubit stored in the cavity must now be understood in detail

and addressed.

We now look at the e↵ects the dominant sources of decoherence for the ancilla, T
1

and T�, have

on the state in the cavity. The very term in the Hamiltonian that enables the parity measurement,

namely the dispersive shift in frequency �sa per photon, leaves the state in the cavity vulnerable

to dephasing due to its coupling to a lossy ancilla. The detrimental e↵ects of T
1

decay are thus

apparent when recalling the entanglement between the cavity and the ancilla during the parity

mapping protocol, where the cat state begins to acquire a phase at a rate q�sa that depends on the

ancilla state {|gi (q = 0), |ei (q = 1), |fi (q ⇡ 2)}. In the following example, we fix the rotating

frame to be the one rotating at the cavity frequency !̃s when the ancilla is in |gi. Specifically, if

ancilla T
1

relaxation occurs at t during the parity protocol waiting time ⇡/�sa, an ideal cat acquires
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a phase proportional to t:

| i =
1p
2
(|↵i ± |�↵i) ! 1p

2
(|↵ei�sati ± |�↵ei�sati) (5.10)

We thus see that if the ancilla state changes at a random time without our knowledge, the cat

state acquires an unknown phase proportional to �sa and the amount of time the state is out of the

chosen rotating frame, resulting in a complete loss of information. In the Wigner tomography, this

would manifest itself as a washing out of the cat state’s features, and unlike at the origin, successive

measurements can only further reduce the fidelity. Thus, in a given single-shot record, ancilla T
1

decay and excitations to higher ancilla states impart an arbitrary phase on the cat states from which

it would be impossible to recover from without some auxiliary correction protocol.

The contribution of ancilla dephasing T� enters in a subtle way. Without loss of generality, let

us assume the system is initially at state | i = (|↵i + |�↵i) |gi /
p

2. After the first ⇡/2 pulse, the

dispersive interaction kicks in and the state becomes at some time t < ⇡/�sa:

| i =
1

2
[(|↵i + |�↵i) |gi +(|↵ei�sati + |�↵ei�sati) |ei]. (5.11)

Again let’s assume that at time t an error in the ancilla occurs, but this time a phase flip. The state

becomes:

| i =
1

2
[(|↵i + |�↵i) |gi � (|↵ei�sati + |�↵ei�sati) |ei], (5.12)

and then continues to evolve in the expected way, regardless of the change in sign of the term

associated with |ei. At the end of the waiting time ⇡/�sa, the system becomes a product state again

| i = (|↵i + |�↵i)(|gi � |ei)/2. The second ⇡/2 pulse just takes the ancilla to the other pole on the

Bloch sphere opposite to the case without the phase flip, erroneously indicating a change in parity,

but otherwise leaving the cavity phase unchanged. Another way to understand the di↵erence between

an ancilla T
1

vs. T� error would be to recall the dispersive interaction between ancilla and cavity

as formulated in the Hamiltonian: (!̃s � �sa |ei he|)â†
sâs. Any change of the ancilla energy results

in a change of the cavity frequency, thereby dephasing the cavity state. A phase flip by contrast

does not change the ancilla energy, and therefore the cavity phase remains una↵ected. Any extra

phase acquired by the cavity state contingent on the final ancilla state post-measurement would be

completely deterministic (to within our ability to discriminate between |ei vs. |gi). By contributing

to the parity measurement infidelity, however, the e↵ect of T� necessitates more measurements to
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achieve the high degree of confidence in the estimation of the cavity state’s parity. As increasing

the number of measurements increases the likelihood of T
1

decay, ancilla dephasing still facilitates

an overall degradation of cat state fidelity.

What remains to be studied is how the possible failure modes, mirroring those introduced in

chapter 3, contribute to the most important figure of merit: the degree of fault-tolerance the current

experimental implementation of the cat code currently o↵ers. The subtle relationship between errors

in the code space and errors in the ancilla will in fact prompt us to completely rethink the optimal

strategy in implementing QEC, and will challenge the typical wisdom that syndrome measurements

performed at the highest frequency possible maximize the benefits of error correction. Aside from

the natural desire to improve ancilla and cavity lifetimes, further characterizing these types of error

processes are important next steps, and the benefits of doing so will become apparent in later

chapters.

The study of parity measurement infidelity in sec. 5.2, together with the aforementioned con-

sequences of potential ancilla back-action on the state in the cavity, motivate us to enhance the

technological capabilities of our experiment to improve the performance of the parity monitoring

protocol. For example, unmistakable signs of excitation to the higher excited states of the ancilla,

as seen in Fig. 5.7, demonstrate the high probability of losing parity information over long track-

ing times if the ancilla occupies |ei too frequently. This inconvenient detail of the experiment can

clearly be overcome with a straightforward application of real-time feedback. If one considers, for

example, the possibility of modifying the pulse sequence in real-time to maximize the probability

to measure the ancilla in its ground state after every measurement, already substantial inroads in

enhancing parity mapping fidelities can be envisioned. We thus postpone the discussion on the levels

of performance we can achieve until we describe in the next chapter a more sophisticated system in

which real-time feedback plays a central role.
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6 – A Full Quantum Error Correction System

A key challenge in demonstrating QEC that actually yields advantages when implemented within

an experimental setup is including every step of the process to ensure that the dominant forms of

decoherence that actually occur will be handled. One must show that all quantum states can be

protected from naturally occurring errors without the use of post-selection. Previous works have

demonstrated parts of a full QEC solution, but have never realized a system that can satisfy each

of these three requirements at once. Typically, the approach has been either to correct artificially

induced errors; focus on one out of several dominant error processes; assess the performance of

known protected or particularly vulnerable states; employ post-selection as a means to study specific

decoherence mechanisms; or implement some combination thereof [Aoki et al., 2009; Chiaverini et al.,

2004; Córcoles et al., 2015; Cory et al., 1998; Cramer et al., 2016; Kelly et al., 2015; Knill et al., 2001a;

Leung et al., 1999; Moussa et al., 2011; Nigg et al., 2014; Pittman et al., 2005; Reed et al., 2012;

Ristè et al., 2015; Schindler et al., 2011; Taminiau et al., 2014; Waldherr et al., 2014]. By isolating

subsets of a general error process to study the viability of a QEC scheme, however, these works

indicate a correction of specific errors under restricted circumstances. Indeed, they do not quantify

the exponential decay in time one would see in the process fidelity of a quantum bit subjected to

repeated rounds of error correction.

In large part the central challenge for these e↵orts has been the resource overhead required by

traditional QEC proposals: the large numbers of imperfect physical qubits and couplings involved

that very quickly degrade QEC performance, in particular due to the decoherence penalty, as intro-

duced in chapter 3. Due to this penalty, the coherence time of the logical qubit in fact drops at first

due to the greater number of physical qubits involved in the encoding, typically by a factor of five to

ten for traditional codes [Steane, 1996]. The overhead has prevented demonstrations of QEC beyond

the break-even point, wherein one can fully make up for the decoherence penalty. Specifically, pre-

vious works have been unable to realize a system in which applying error correction actually yields

a logical qubit with a lifetime longer than the system’s most coherent constituent. In this work,

the hardware requirements of the cat code are minimal, and there is just one dominant source of
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decoherence that we must combat: single photon loss. The prospects for achieving break-even are

thus more realistic.

We have shown in the previous chapters that with fast, repeated photon number parity measure-

ments, the natural occurrence of single photon loss can be tracked in real-time. We have understood

the e↵ects of an imperfect ancilla on the levels of fidelity achievable and that we must be wary of

the possibility of the back-action of ancilla energy decay on the cavity state. In this chapter, we

demonstrate the implementation of a full QEC system that protects a logical qubit exposed to its

natural environment. We detail every step, from encoding a qubit, to monitoring the error syn-

drome, to decoding back, and we analyze the performance with full process tomography. We show,

and indeed stress, the crucial role played by real-time feedback, which not only performs the more

routine functions of ancilla reset, but moreover responds to the stochastic evolution of the cavity

field and determines the necessary decoding procedure that depends on the error history. Finally,

we set the stage for a discussion in subsequent chapters of what it takes to overcome the decoherence

penalty incurred by a redundant encoding in a larger logical space.

6.1 Implementing a full QEC system

In a practical setting, in order to demonstrate QEC successfully, one must implement all elements of

a full QEC system within a single shot of the experiment and benchmark the performance without

the use of post-selection. Our strategy is based on the assumption that single photon loss is the

dominant source of decoherence in the system, as justified in the introduction of the cat code

(sec. 3.3). Consequently, as a first-order approach to enhancing the qubit’s lifetime, we track just a

single error syndrome: changes in photon parity that indicate the occurrence of photon loss. We are

of course cognizant of sources of error besides photon loss, which serve to degrade QEC performance.

By not performing post-selection or restricting the quantum states to be protected to specific and

known points on the Bloch sphere, however, we do not artificially exclude such non-idealities and

inflate our results. Instead, we employ a full QEC system in order to ensure that we in fact include

all sources of decoherence. We thereby highlight the real challenges in demonstrating a system that

can actually o↵er gains in preserving the integrity of quantum information over time.

Broadly speaking, a full QEC system is composed of the steps illustrated in Fig. 6.1, where

the first and sixth steps, necessary for process tomography, serve to benchmark the performance of

four in-between. The flow begins with an initialization of the quantum bit. In our experiment this

involves applying pulses on the ancilla transmon to encode one of the six cardinal points, shown

as forming an octahedron on the Bloch sphere. In a general application, initialization may simply
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Figure 6.1: A full QEC system. Steps two through five take an input quantum bit and return a corrected
quantum bit at the output. The first and sixth step benchmark the performance of the four in-between.
This formulation is not specific to the cat code and generally describes the steps involved in any active,
measurement-based error correction scheme. The process begins with an initialization of the quantum bit
in one of the six cardinal points on the Bloch sphere, enough to characterize the action of the system on
an arbitrary input state. Next, the state is encoded in a logical qubit, here comprised of superpositions of
coherent states. The error syndromes are then monitored, and the resulting error history is used to decode
and finally correct the state. Ideally, the corrected state will be the same as the one initialized. In reality,
due to not only decoherence in the logical space but also any imperfections in the operations required in each
of these steps, the final quantum bit will necessarily contain some degree of incoherent mixture, evidenced
by deviations of the process fidelity X matrix from the ideal form depicted here.

involve the receipt of a quantum bit from some preceding step in an algorithm. The point is that this

step must reflect the fact that one has no prior knowledge of the state that will be logically encoded;

hence, studying the action of error correction on the six cardinal points amounts to benchmarking

the process on any arbitrary input [Nielsen and Chuang, 2010]. The second step, encoding, involves

applying some sequence of pulses on the system to transfer the information to a larger Hilbert space,

thereby redundantly mapping the information onto a logical qubit whose symmetry properties allow

one to monitor error syndromes. In this realization, we map the information from the ancilla onto

a superposition of coherent states in the cavity following the prescription of the cat code. Next,

one repeatedly monitors the errors due to the natural sources of decoherence in the system with

single-shot QND syndrome measurements. As described several times, we infer the occurrence of

errors in the cavity due to single photon loss from changes in the photon number parity of the cat

states. Decoding and then correcting returns a density matrix that is ideally the same as the one

that was initialized. In our system, depending on the best estimate of the number of jumps at

the end of the monitoring step, di↵erent decoding pulses are applied to transfer the information

back from the cavity back onto the ancilla, where simple corrections either with actual gates or

in software can be made to account for the number of photon jumps that were detected. Taking
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each one of the six cardinal points through these steps, from encoding to correction, allows us to

perform process tomography (see chapter 7), which quantifies how well the QEC system implements

the identity Î operation. Stated more simply, when the dust settles we obtain a single number that

ranges from +1, which reflects a perfect quantum memory, to +0.25, which indicates the system

returns a completely incoherent mixture.

The experimental components and setup of our system are again similar to those used in chap-

ters 4 and 5, and are presented in greater detail in A.3. We employ a superconducting cQED

architecture [Wallra↵ et al., 2004] using 3D waveguide cavities [Paik et al., 2011]. Specifically, a

single transmon qubit is coupled to two such cavities [Kirchmair et al., 2013; Vlastakis et al., 2013]

and is used as an ancilla to both interrogate the error syndrome and to encode and decode the logical

states. One of the cavities stores the logical states while the other is used for ancilla readout. The

dominant interaction terms are described by the following Hamiltonian:

Ĥ/~ = !̃sâ
†
sâs + (!̃a � �saâ†

sâs) |ei he| � K

2
â†2

s â2

s, (6.1)

with |ei he| being the ancilla excited state projector; !̃s, !̃a the storage cavity (henceforth just the

cavity) and ancilla transition frequencies; �sa/2⇡ ⇠ 1.95 MHz the dispersive interaction strength

between the two; and K/2⇡ ⇠ 4.5 kHz the cavity anharmonicity, or Kerr. The readout cavity is

excluded as it is only used to measure the ancilla at the end of each parity-check. The coherence

times are much improved in this realization as compared with the experiments reported in previous

chapters; T
1

⇡ 35 µs and T
2

⇡ 13 µs, while the cavity has a single-photon Fock state relaxation

time of ⌧s ⇡ 250µs, and T s
2

⇡ 330 µs. To perform high-fidelity single-shot measurements of the

ancilla [Hatridge et al., 2013; Vijay et al., 2011], we set the readout cavity to have a 1 MHz bandwidth

and use a nearly quantum-limited phase-preserving amplifier, the Josephson Parametric Converter

(JPC) [Bergeal et al., 2010], as the first stage of amplification, which allows for a readout fidelity of

99.3% and an error syndrome measurement fidelity of 98.5% (see sec. A.3 for more details).

Real-time feedback plays a crucial role in maximizing the performance of the full QEC system

in our experiment and indeed enables us to demonstrate all the six steps outlined above without

the use of post-selection. Thus, before delving into the detailed experimental implementation, we

provide a high-level overview of the quantum control architecture in order to outline the basic

hardware components that enable the fast and sophisticated reactions to the stochastic evolution

of the quantum system. The discussion then turns to the specific applications of feedback and how

encoding and decoding pulses are implemented. Finally, an operational example of the full QEC

system is presented within a debugger view, which demonstrates not only the successful execution
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of feedback responsibilities, but moreover our capability to predict the evolution of our system in

time knowing only the parity measurement fidelity and the Hamiltonian parameters.

6.2 Quantum control architecture

Future experiments in quantum computation will necessitate modifying the pulse generation in

real-time as a response to returning signals that indicate the current state of a system (real-time

feedback), in particular to minimize qubit decoherence. Crucial to the success of the quantum

experiment is the e�ciency of collecting, interpreting, and reacting to the returned signals with

sub-microsecond pulse lengths and feedback latencies. Previous results demonstrated that real-time

feedback can be a powerful tool for realizing control and performance enhancements of a quantum

system. For example, weak measurements with phase-sensitive amplification and a phase-locked

loop setup were used to stabilize Rabi oscillations in a cQED setting [Vijay et al., 2012]. Using

simple control electronics, the results of weak measurements with Rydberg atoms of a microwave

field in a Fabry-Perot cavity were fed back into an actuator to stabilize a cavity state [Sayrin et al.,

2011]. Additionally, FPGA-based control electronics were used in a cQED setting to apply a ⇡

pulse conditioned on a measurement result [Ristè et al., 2013], and enhance the performance of Bell-

state stabilization using two FPGA cards that communicate their results to one another [Liu et al.,

2016]. As in ref. [Liu et al., 2016], the architecture demonstrated here is comprised of four major

components all on one piece of hardware (Fig. 6.2): Digital-to-Analog converters (DACs) that output

pulses; Analog-to-Digital converters (ADCs) that sample input signals; digital inputs/outputs (DIG-

IOs) that enable inter-card communication as well as the triggering of certain digital RF components;

and finally a Field Programmable Gate Array (FPGA) that dictates the flow of the experiment in

time, orchestrating the three previous components to steer the quantum system to some desired

state in real-time. This is our quantum controller. It is a new, multi-purpose computer designed to

execute programs for quantum control. In this experiment, we translate the cat code into a program

the controller understands, load it onto the FPGA, and press “play.” A carefully choreographed

stream of pulses on the ancilla, cavity, and readout cavity ensues to take a quantum bit through

a series of error syndrome measurements and return a corrected quantum bit, thus realizing a full

QEC system.

Each hardware unit, or “card,” is an independent agent. It combines the functionality of an

instrument like a commercially available Arbitrary Waveform Generator (AWG), a data sampling

card, and certain data analysis functions crucial for e�cient feedback all on one piece of equipment.

Such a design dramatically enhances the possible levels of control, sophistication, and complexity of
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Figure 6.2: Real-time feedback hardware. (a) A picture of an Innovative Integration X6-1000M card
and the layout of the main components, with arrows indicating where signals from the experiment come in,
and pulses to the experiment go out. (b) A picture of the VPXI-ePC chassis with a VPX-COMEX module
and four X6-1000M cards, three of which are used in the experiment (M: measurement, C: storage cavity,
Q: ancilla). The feedback wish list briefly summarizes the intended implementations of real-time feedback.

a quantum experiment. Furthermore, all cards run in parallel with no inherent dependency on each

other. They may produce pulses that are sent to manipulate a particular component of the quantum

system. Incoming signals from the quantum system may also be routed as inputs to the cards in some

pre-defined way. Each card thus produces and analyzes di↵erent signals, and it can then distribute

its findings among the other cards in real-time through a dedicated digital communication layer.

The common denominator in this scheme is the set of instructions loaded onto each card prior to

the experiment, which coordinates how the cards work together. Once the experiment starts there is

no one master card that must dictate the flow; each card can decide what to do independently. The

result is a decentralized network of classical computation that provides a fast, e�cient, and flexible
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platform to interface with the quantum system. By properly coordinating the signals sent and

received by this network of cards, the user ultimately coordinates the interactions between distinct

entities of the quantum system, all accomplished on time scales of just a few hundred nanoseconds.

We use three Innovative Integration X6-1000M boards housed in a VPXI-ePC chassis with a

VPX-COMEX module, shown in Fig. 6.2, which produces a 1 GHz clock and triggers synchronized

to within 50 ps. Each board contains two 1 GS/s ADCs, two 1 GS/s DAC channels, and digital

inputs/outputs that are controlled by a Xilinx VIRTEX-6 FPGA loaded with in-house logic. The

three boards are synchronized to control the storage cavity, readout cavity, and ancilla transmon.

The readout signals are routed to the ADCs on the readout cavity board, whereafter the FPGA

demodulates and thresholds the signal to determine the state of the ancilla (|gi, |ei, and higher).

The feedback latency between the last sample arriving at the input to the ADC to the first sample

out of the DAC is approximately 200 ns, providing us with a powerful tool to mitigate the deleterious

e↵ects of the forward propagation of errors due to ancilla decoherence, as described in the following

section.

6.3 Detailing the six steps of a full QEC system

The role of real-time feedback can be divided into two general parts: maximizing the probability that

the ancilla remains in its ground state throughout the error monitoring, and modifying the decoding

pulses in real-time to take into account the error history. These two points summarize the entries in

the feedback wish list of Fig. 6.2. Using real-time feedback to not only reset the ancilla whenever it

is measured to be in the excited state, but also changing the measurement sequence to preferentially

map the parity to the ancilla ground state minimizes the probability of this dephasing, owing to the

asymmetry in the rates of ancilla decay versus ancilla excitation. Secondly, no one single set of pulses

can map back the information from cavity states of di↵erent parity onto the ancilla. Moreover, the

exact pattern of photon jumps dictates the final phases of the cat states due to an interesting e↵ect

of the cavity anharmonicity. These considerations are elaborated upon in detail below. To start,

we summarize our full protocol (Fig. 6.3), wherein every run of the experiment cycles through the

following steps:

1. System and ancilla reset – using feedback, we make sure that the ancilla is in ground state

|gi and the cavity is in vacuum |0if .

2. Quantum bit initialization – in each realization of the experiment we apply a gate on the

ancilla to encode one of the six cardinal points on the Bloch sphere. This over-complete set
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of states allows us to perform process tomography of the QEC system (see sec. 7.1), and is

equivalent to characterizing the action of a system on the quantum bit | iinit = c
0

|0i+ c
1

|1i.

3. Encoding – we transfer the quantum bit from the ancilla onto a superposition of cat states in

the cavity. At the end of this step the state of the cavity is | iinit ! c
0

|C+

↵ i + c
1

|C+

i↵i, while

the ancilla, to the best of our ability given experimental realities (see sec. 6.3), ends in |gi,
ideally completely disentangled from the cavity state.

4. Parity monitoring – we identify photon jumps, or errors in our logical qubit, by monitoring

the parity of the logical state in the cavity. This is done using an adaptive parity monitoring

scheme. The total duration of each error syndrome measurement is just 1 µs, or ⇠ 0.8% of

the average time between photon jumps for cat states of n̄ = 2.

5. Decoding and correction – the quantum bit of information is brought back onto the ancilla

using the knowledge we gather while monitoring the error syndrome (see sec. 6.3). A di↵erent

decoding pulse is used for each point in time due to the changing amplitude and Kerr evolution

of the cat states. At the end of the decoding pulse, the cavity should ideally be completely

in vacuum and with the measured error record the quantum bit is corrected following the cat

code prescription.

6. Tomography – we perform state tomography on the ancilla to compare the final quantum

| ifin with the initial state | iinit. Using the results we fully characterize the QEC system

process (see sec. 7.1).

Steps 1-2 prepare the system in its ground state with high accuracy. This part does not assume

any knowledge about the quantum state it is designed to protect or the decoherence mechanisms.

Steps 3-5 are the error correction part of the experiment. In the final step we measure the ancilla

that is ideally back in the initial state. Any deviation leads to a decay of the process fidelity in time.

While the entire experiment is implemented as one big state machine, only the exact durations of

the system and ancilla reset step are not predetermined.

Ancilla reset

Ancilla reset is more than 99.8% e↵ective and e↵ectively no residual thermal population is measured

after cavity reset (less than 0.1%). As detailed in Tab. A.5, the thermal populations of the ancilla

and the cavity are ⇠ 4% and < 2%, respectively. This is enough to adversely a↵ect not only

our encoding pulses, but also subsequent error syndrome detection. The protocol starts with the

quantum controller measuring the state of the ancilla. If the result is the excited state |ei, the
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Figure 6.3: Full QEC system experimental flow. (a) The six steps of the QEC protocol using a
standard flow-chart convention. 1. System reset: we use a long selective ⇡ pulse on the ancilla (� ⇠ 600 ns)
that addresses only the Fock state |0i

f

of the cavity [Schuster et al., 2007] to verify that it is indeed in
vacuum. In order to boost our confidence, we require three consecutive verifications to trust the results
(counter “cnt” must be incremented from 0 to 3 for the process to continue). We then perform the ancilla
reset protocol by measuring it and applying a short pulse (� = 2 ns) to return to to |gi if it is found to be in
|ei. 2. Ancilla initialization: we apply a short pulse (� = 2 ns) to encode the ancilla into one of 6 cardinal
points on the Bloch sphere. 3. Encoding: an optimized control pulse of length 508ns transfers the quantum
information from the ancilla to the cavity, leaving the ancilla in |gi. 4. Parity monitoring: we repeat the
adaptive parity monitoring protocol. Each monitoring step begins with a delay of some duration, followed
by the right Ramsey-like sequence that maps the ancilla back to |gi if there was no photon jump during the
delay. We then measure the ancilla; if we find it in |ei, we reset it as soon as possible. This happens 332 ns
from the moment the readout pulse ends (200 ns of FPGA calculation latency, plus experimental delays such
as finite microwave cable lengths). 5. Decoding: after a short delay to finalize the estimation of current
state in the cavity, the decoding pulse is chosen in real-time and is played with a best estimate of a corrected
cavity phase to account for Kerr-induced phase rotation for non-zero error cases (see sec. 6.3). 6. State
tomography: measuring the ancilla after a pre-rotation to find the final density matrix of the quantum bit.
(b) The whole protocol set to scale, shown to emphasize that we interrogate the system for only fraction of
the entire sequence duration.
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controller applies a fast ⇡ pulse (Gaussian envelope with � = 2 ns) to return the ancilla to |gi and

measures again; if the pulse is not successful the loop is repeated, while if the pulse is successful the

experiment continues. With feedback latencies of just ⇠ 200 ns (last sample in, first sample out), a

readout pulse duration of ⌧
meas

⇡ 400 ns, and latencies due to cables into and out of the experimental

setup totaling ⇠ 100 ns, we are able to reset the ancilla to > 99.8% in |gi. This protocol was also

demonstrated in [Ristè et al., 2012].

|ei |ei

|fi
|fi

|gi

|gi
0

0

Ancilla Thermal Histogram Preparing Ancilla in      

0

0
II

Q

|gi

>99.8%

~96%

~1%

~3%

7.5

0
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0

Figure 6.4: Resetting the ancilla to the ground state. Shown are 2D histograms of single-shot
measurements of the ancilla transmon, where the logarithm (base 2) of the number of counts per bin is
given by the color. The numerical values along the x and y axes are the result of the quantum controller’s
integration of the demodulated in-phase (I) and quadrature (Q) readout signals, and are thus in scaled
voltage units. The value of this scaling factor is determined by details of the integration implementation in
the FPGA and are thus presented as arbitrary here. In thermal equilibrium (5⇥ 105 shots), the ancilla is
measured to be in |gi ⇠ 96% of the time, |ei ⇠ 3%, and states |fi and higher ⇠ 1%; orange circles outline
where the majority of counts for each state lie. After running the reset protocol (1⇥ 106 shots), the ancilla
is measured in |gi more than ⇠ 99.8% of the time.

Second, we use the now initialized ancilla to project the cavity state to the vacuum by applying

long ⇡ pulses on the ancilla (Gaussian envelope with � = 600 ns > 1/�sa) that address only the |0if

Fock state [Schuster et al., 2007]. If the result of a subsequent ancilla measurement is |ei, with high

probability the cavity is in vacuum. These pulses, however, have a lower fidelity (⇠ 90�95%) owing

to the ancilla T
2

, and so we repeat this experiment until we measure |ei three times consecutively.

Once this occurs, we once again employ the protocol above to reset the ancilla to |gi and continue to

the encoding step. With a thermal population of ⇠ 2% and a lifetime of 250 µs, the average rate of

excitation of the cavity from |0if ! |1if is on the order of 10 ms, and so we are unable to measure

any residual population in |1if after this purification procedure.
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Encoding a logical qubit

We employ optimal control pulses to encode and decode logical states in the cavity based on the

Gradient Ascent Pulse Engineering (GRAPE) algorithm originally developed for pulse sequences in

NMR spectroscopy [de Fouquieres et al., 2011; Khaneja et al., 2005]. This algorithm is designed to

numerically find a set of pulses that most accurately realizes a unitary operation or state transfer,

taking an initial state | (t = 0)i to a final state | (T )i. We define the fidelity of the simulated state

transfer Foc to be:

Foc =
1

K2

|
KX

k

⌦
 k(T )| tar

k

↵ |2, (6.2)

for a target state | tari, where K is the total number of state transfers we wish to realize. In order

to model the physical limits in output amplitude imposed by our electronics hardware, we add an

amplitude constraint of the form �
PT

t=1

e(at/h)

2

, where � is an overall scaling; at is the amplitude

at each point in time of the pulse (discretized into 1 ns steps); and h is an amplitude threshold,

which we choose to be slightly below the maximum output amplitude our waveform generators

can produce. This penalty term turns on sharply when at reaches h. The scaling factor � is a

proportionality constant that makes the total penalty much smaller than 1 for pulses that have all

amplitudes below h. We also include a derivative penalty to give preference to smoother pulses,

similarly defined as �d

PT
t=1

e(at�at�1

)

2/h2

d . With such a term included, the simulation favors pulses

with changes smaller than hd between neighboring control points. The criterion we enforce is that

Foc must exceed a value typically set to be 98%, although this constraint is relaxed when the overlap

of basis states becomes non-negligible (see sec. 8.2).

In our implementation, we expand the Hamiltonian introduced earlier (Eq. 6.1) to include higher

order terms, which may become more influential in dictating the time evolution of the state during

the pulse:

Ĥ/~ = !̃ab̂†b̂ + !̃sâ
†
sâs � �sab̂†b̂â†

sâs � Ka

2
b̂†2b̂2 � Ks

2
â†2

s â2

s + �0
sab̂†2b̂2â†

sâs. (6.3)

We furthermore include driving terms on the ancilla and cavity of the form "a(t)b̂† + "⇤
a(t)b̂ and

"s(t)â†
s + "⇤

s(t)âs. Temporal envelopes "a(t) and "s(t), which specify Û(t), are discretized into 1 ns

pieces. It is the shape and amplitude of these envelopes that we wish to numerically optimize in

order to realize the desired state transfer. More explicitly, for the encoding pulses we wish to find a
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Figure 6.5: Optimal control pulses. (a) Example encoding pulses for cat states of initial size n̄
0

= 3.
The pulses are played by the controller at the same time, minus a 2 ns o↵set to account di↵erent lengths of
line going down to the cavity versus the ancilla (determined experimentally by stepping relative pulse delays
in 1 ns increments). The y-axis is given in units of the voltage that needs to be applied on a particular mode
(frequency !̃

m

) for the same amount of time to insert one quantum of energy. For the cavity, this value is
determined by finding the voltage needed to create a coherent state of amplitude |↵| = 1 for a square pulse
of duration 508 ns; likewise, with the ancilla it’s the voltage needed to perform a ⇡ pulse in 508 ns. Mixer
quadratures I and Q are shown in red and blue, respectively. (b) In executing the numerical optimization
to find the optimal control pulses we do not include as simulation inputs experimental imperfections, such
as frequency-dependent reflections in our microwave lines and components. When implementing the pulses
experimentally, we calibrate a scaling factor on the amplitudes for both the cavity and ancilla drives by
performing a 2D voltage sweep to see at which scalings we find the maximum parity of the cavity state
(ideally +1), which should also coincide with the maximum occupation of the ancilla in its ground state |gi
(ideally 100%). Shown here are images where we have already found the optimal range of drive scalings,
outlined in the black dotted ellipses.

single unitary Û
tar

such that for all c
0

and c
1

we have:

Û
tar

(c
0

|gi + c
1

|ei) |0i ! |gi (c
0

|C+

↵ i + c
1

|C+

i↵i) (6.4)

This unitary takes a quantum bit initially stored in the ancilla (with cavity in the vacuum) to a

superposition of cat states in the cavity with the same amplitudes c
0

and c
1

(returning the ancilla

to |gi). Figure 6.5a shows a set of such encoding pulses on the ancilla and cavity.
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Figure 6.6: Encoding the six cardinal points: cat code. Using joint Wigner tomography [Vlastakis
et al., 2015], we plot the experimentally obtained conditional Wigner functions (W

z

(�) = h�̂
z

P̂ (�)i) to
demonstrate the capability of a single pair of pulses to encode an arbitrary vector on the Bloch sphere.
The only di↵erence in the pulse sequence is the initial qubit preparation pulse. The encode-decode process
fidelity is 93%.

Crucial to the success of finding an optimal control pulse with high fidelity is an accurate knowl-

edge of the dominant Hamiltonian parameters. Furthermore, careful microwave hygiene at all points

in the experimental chain is necessary to prevent undesired reflections and dispersions that can dis-

tort the pulse as it goes from room temperature to the setup inside the dilution refrigerator. Figure

6.5b demonstrates a calibration sequence we use to tune the amplitudes on individual ancilla and

cavity drives. Ideally, the encoding pulse returns the ancilla to the ground state and creates a cat

state with parity of +1. In practice, both the parity and the final ground state occupation are

slightly lower than their ideal values, and are sensitive to errors in pulse power. By sweeping the

relative powers for both the ancilla and cavity drives, we find the maximum ground state occupation

and parity value to occur at roughly equal scalings. The full Wigner tomography shown in Fig. 6.6

illustrates visually how we do indeed have the capability to encode any arbitrary state in a super-

position of cat states (n̄ = 3) with the same pulses, where the only di↵erence lies in the preparation

of the initial quantum bit. Shown in Fig. 6.7 is an example of encoding all six cardinal points in

superpositions of Fock states |0if , |1if , respectively.
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Figure 6.7: Encoding the six cardinal points: Fock state superpositions. These Wigner tomograms
instead show all six cardinal points encoded in the Fock states |0i

f

, |1i
f

. Again, the only di↵erence in the
pulse sequence is the initial preparation pulse.

The use of such optimal control pulses is a departure from the theoretically proposed [Leghtas

et al., 2013] and experimentally demonstrated [Vlastakis et al., 2013] qcMAP protocol, which just

as the encoding pulses described above, deterministically maps a quantum bit from the ancilla

onto a superposition of coherent states in the cavity. Although beautiful in its simplicity and

intuitive design, qcMAP su↵ers from generally longer total pulse lengths than an optimal control

equivalent, and additionally lacks the capacity to correct for Hamiltonian terms of higher order than

the dispersive shift �sa, such as the cavity Kerr. Indeed, by comparing the two schemes side-by-

side, as shown in figure 6.8, one sees that encoding a state using qcMAP requires nearly a three-fold

increase in pulse duration, decreasing the final fidelity of the logical qubit due to ancilla decoherence.

Likewise, one can see the clear evidence of distortion to a subset of the four coherent states, which

primarily arises due to the asymmetry in the location of the coherent states during di↵erent stages

of the sequence, resulting in consequent asymmetric smearing due to the Kerr. Importantly, such

distortion does not imply that the information is lost; rather, the di�culty this introduces is that

decoding the state back onto the ancilla using the reverse of qcMAP becomes more challenging and

less successful. Using the optimal control pulses addresses this challenge by symmetrizing the cavity
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Figure 6.8: Optimal control vs. qcMAP. Top: a typical qcMAP sequence that maps a quantum bit
onto a superposition of coherent states in the cat code paradigm. The total sequence is comprised of well-
known and easily characterizable pulses, such as unselective displacements (rectangles), unselective ancilla
pulses (sharp Gaussians), and ancilla pulses selective on the cavity |0i

f

Fock state (long, broad Gaussians).
Such simplicity makes qcMAP both easy to calibrate and straightforward to diagnose from the perspective
of ancilla and cavity decoherence. Bottom: in contrast, the optimal control pulses are much faster and result
in cat states with less distortion, as emphasized by the black dotted circles. Their transient action on the
joint system is, however, di�cult to intuitively grasp.

state, as seen in the Wigner function in the lower panel of Fig. 6.8. We do, however, lose the intuitive

understanding of the time evolution of the joint ancilla-cavity state.

Adaptive parity monitoring

This quantum state machine implements an adaptive parity monitoring scheme in which the parity

mapping protocol is updated in real-time to maximize the probability to measure |gi (Fig. 6.9). This

substantially reduces the time the ancilla spends in |ei, enhancing parity measurement fidelities and

making it an essential component in the experimental workflow. Recalling the discussion in sec. 5.1,

and more specifically Fig. 5.2, in measuring photon number parity as the error syndrome, two

protocols may be used that both employ a Ramsey-style pulse sequence to map opposite parities to

opposite poles of the ancilla Bloch sphere; they di↵er only in the sign of the second ⇡/2 pulse. For

example, when the cavity starts in an even parity cat state and the sign of the second ⇡/2 pulse is
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positive, the ancilla ends up in |ei at the end of the protocol, while if the parity is odd, the ancilla

ends up in |gi. Likewise, if the parity is even but the sign of the second pulse is negative, the ancilla

again ends up in |gi. Thus, in implementing our QEC system, simply repeating just one of the two

protocols during the error syndrome monitoring does not su�ce, since with either one the ancilla

spends much more time in the excited state for one of the two parities. This asymmetry provides a

strong motivation for using real-time feedback.

The prescription is simple: assuming the parity of cavity state is known, one must employ the

pulse sequence that maps the ancilla to |gi for that known parity; if instead |ei is measured, one

should assume that a photon has jumped and in the following parity measurement flip the sign of

the second pulse to invert the interpretation of the subsequent mapping (Fig. 6.9). With such a

scheme, one no longer expects the flat and oscillating patterns seen in Fig. 5.4. Rather, a change in

parity is inferred only from one measurement of the ancilla in |ei.
The benefits of employing this adaptive protocol cannot be overstated. Feedback latencies of

just ⇠ 200 ns mean that the ancilla spends just ⇠ 700 ns in |ei per error. Without feedback, this

time can be far greater, perhaps as much as ⇠ 50 µs per error in a 100 µs-long experiment, e↵ectively

guaranteeing cat state dephasing with our ancilla coherence times (see sec. 8.2). As shown in Fig. 6.3,

with the adaptive parity monitoring scheme and the ancilla reset described above, the full timeline

of our measurement sequence is designed to have the ancilla in the ground state as much as possible.

We therefore regard the role of the quantum controller to be crucial to our goal of realizing a QEC

scheme without the use of any post-selection or corrections for measurement ine�ciencies.

Error history-dependent state rotation

The adaptive monitoring protocol is supplemented with the addition of a second application of real-

time feedback: an instruction to record not just the occurrence, but the time at which an error

occurs. The necessity of this feature stems from the non-commutativity of the Kerr Hamiltonian

Ks

2

â†2
s â2

s and the dissipation operator âs, which leads to an extra undesired e↵ect of random photon

jumps: a phase shift of the cavity state in phase space that is proportional to K and the time at

which the jump occurs, tj : | (t)i âs�! ei✓â†
sâs(âs | (t)i) [Leghtas et al., 2013]. When the di↵erence

in time between syndrome measurements t
w

is non-zero, the uncertainty in jump time grows with

increasing t
w

, leading to the aforementioned dephasing. For n total syndrome measurements spaced

by t
w

there is, however, still a known average angle of rotation for a jump that is measured at step j:

✓̄j = Ks(j � 1/2)t
w

. In other words, Ks(j � 1/2)t
w

is our best estimate of tj given the measurement
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Figure 6.9: State machine for adaptive error monitoring. (a) This state machine implements an
adaptive parity monitoring scheme. A parity mapping is comprised of two ⇡/2 pulses separated by a waiting
time of t = ⇡/�

sa

[Bertet et al., 2002]. If the sign of the second pulse is positive (negative), even parity is
mapped to ancilla |ei (|gi) and odd parity is mapped to |gi (|ei). The state machine updates the sign of the
second pulse in real-time to maximize the probability to measure |gi, reducing the probability of changes
in ancilla energy during the projective measurement. Entering the state machine (double-arrow pointing
inward), a counter is initialized (cnt = 0); the system idles for t

w

; even parity is mapped to |gi (red circle);
the ancilla is then measured and the counter is incremented. If the result is |gi, the system idles for 40 ns
(stopwatch) and then returns to the previous state. The result |ei indicates a photon has likely jumped; a
⇡ pulse is then applied (Gaussian envelope; � = 2 ns; duration 40 ns); the system thenceforth uses a pulse
sequence that maps odd parity to |gi (blue circle). The controller returns to the initial state after another
photon jump. When the counter reaches cnt = N

fin

(pre-loaded), the system exits (double-arrows pointing
out). Measurement infidelities are emphasized by lighter shades of red and blue, corresponding to lower
confidence when the meter measures |ei. The non-adaptive protocol simply cycles between using a fixed
parity mapping sequence and the short idling time (green dotted arrow). (b) Results. An example single-
shot record of parity measurement results with t

w

= 9 µs demonstrates the di↵erence between the adaptive
and non-adaptive protocols. In the former, the ancilla is found to be in |ei once out of 20 measurements.
With the latter, |ei is measured 8 times; given t

w

/T
1

⇡ 0.3, the odds of ancilla decay in this trace are so
high that it is unclear how many errors occurred.

cadence. We can and must take this angle into account to prevent substantially greater excursions

out of the logical subspace.

In order to do so, our controller must record the step in the monitoring at which the photon

jump occurs, or equivalently the time. Then, in real-time it must apply a rotation to the coordinate
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Figure 6.10: Correcting for phase rotation due to Kerr. Starting from the left, the first two Wigner
tomograms show the cavity state post-selecting on measuring trajectories 10 and 01, respectively. The right-
most tomogram shows just a single “1-error” state, where all 10 and 01 trajectories have been aligned in
real-time and averaged together using the knowledge of the Kerr and the time at which the jump occurred.
Dotted circles indicate the approximate location of the coherent states. Di↵erences in parity and fringe
contrast for the di↵erent trajectories are explained in sec. 8.1

system of the cavity’s phase space by an angle ✓̄(k) =
Pk

j=1

✓̄j for k jumps so that the decoding

pulse at the end of the sequence is applied correctly. For n monitoring steps there are l = n!

k!(n�k)!

di↵erent combinations of jump times for k  n errors, and thus the controller must individually

align all l error trajectories that correspond to k photon jumps on top of one another. For example,

when n = 3 one can have 2n = 8 di↵erent monitoring outcomes (0 ⌘ “no error” and 1 ⌘ “error”):

000, 100, 010, 001, 110, 101, 011, 111; in this case, the feedback rotates 100 by ✓̄
1

= Kstw/2, 010 by

✓̄
2

= 3Kstw/2, and 001 by ✓̄
3

= 5Kstw/2 so all three can be decoded with a single pulse. Prior to

decoding, the feedback takes just 100 ns to align all frames of reference to the orientation defined

at the outset, consolidating trajectories of equal error number yet di↵erent error timestamp into

a single e↵ective cavity state. Figure 6.10 shows an example of how such a correction succeeds in

aligning all trajectories to the same phase for two tracking steps. The Wigner function on the left

(center) shows the cavity state after an error history of 10 (01) and the right-most tomogram shows

how these two can be aligned and averaged together not in post-processing bur rather in real-time.

This aspect of the feedback highlights the complexity of the calculations that the controller does in

real-time. Furthermore, it can in principle handle an unlimited number of steps; as the number of

combinations of jump times grows exponentially, it is a testament to the capability of the logic to

e�ciently perform and store the results of such calculations. In the future, when measurement rates

become much faster, this will be an indispensable feature.
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Adaptive quantum bit decoding

The decoding pulses simply reverse the encoding described above, up to a modification that accounts

for the e↵ects of amplitude damping and Kerr evolution. A single decoding pulse, however, cannot

take two cavity states of di↵erent parity back to the same state of the ancilla since a unitary operation

cannot bring two orthogonal states to a single state. For a given monitoring time we thus prepare

two sets of decoding pulses, one for even states and one for odd states. Based on the parity of the

final state, the controller decides in real-time to apply one of two decoding pulses, depending on

even or odd parity, to map the cavity state back onto the ancilla. Although this feature is simple

to implement, it is in some sense the most crucial; applying the wrong pulse does not disentangle

the cavity and ancilla at the end of the decoding, leading to a completely incoherent quantum bit

mixture when tracing over the cavity state.
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Figure 6.11: Decoding the six cardinal points: cat code. These Wigner tomograms show the action
of cat state decoding pulses that immediately follow the encoding shown in the first panel. The first and
sixth tomogram demonstrate that we map the “2-cat” along the real axis back to vacuum with the ancilla

in |gi (W (�) = + 2

⇡

D
D̂(�)P̂ D̂(�)†

E
) and a “2-cat” along the imaginary axis back to vacuum with the

ancilla in |ei (W (�) = � 2

⇡

D
D̂(�)P̂ D̂(�)†

E
). The di↵erence in sign (and consequently color, red vs. blue)

between the two is a result of di↵erent ancilla initialization (|gi vs. |ei) prior to Wigner tomography. The
remaining four joint tomograms should ideally have no visible features for perfect encoding and decoding
since h�̂

z

i = 0. Experimental imperfections and primarily ancilla decoherence, however, result in residual
cavity-ancilla entanglement at the end of the sequence and thus slightly visible interference features in the
Wigner functions.
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After monitoring errors for arbitrary lengths of time the decoding pulse must also take into

account the substantial deviations of the coe�cients in the Fock state expansion of the basis states

from their original Poisson values. We thus use these pulses to remove any distortions in the cavity

state due to the deterministic action of the Kerr Hamiltonian and deterministic amplitude damping

due to energy decay. For example, after a monitoring time T the decoding pulse for even parity

realizes the following state transfer:

|gi {e�iKs
2

â†2
s â2

sT N+

↵
(T )

[c
0

(|↵(T )i + |�↵(T )i) + c
1

(|i↵(T )i + |�i↵(T )i)]} (6.5)

! (c
0

|gi + c
1

|ei) |0if

For the data in which we perform many monitoring steps to study the decay of the process fidelity

in time, presented in sec. 7.3, we require a di↵erent pair of decoding pulses for each of the nine

data points in the plot. The feedback controller stores these in memory and applies them at the

appropriate time. These results demonstrate that beyond o↵ering the convenience of fast encoding

and decoding that take into account distortions due to higher order Hamiltonian parameters, optimal

control pulses provide a striking example of the levels of control possible with continuous-variable

systems in a cQED framework.

6.4 The debugger view: QEC in action

With each step of the full QEC system detailed, the stage is now set to see how all of the pieces fit

together with a debugger view of two error syndrome steps over ⇠ 28 µs of monitoring, as seen in

Fig. 6.12. With this approach we check at every step of the program whether the pulses we apply and

measurement results we obtain correspond to the state predicted by the cat code and our knowledge

of the Hamiltonian parameters. We seek to not only understand the central figure of merit in the

work, the final process fidelity, but moreover whether the parity, changes in cavity phase, and jump

statistics all match what we expect. By finding excellent agreement with simulation across many

metrics, we can be confident that the behavior coincides with our understanding of the full QEC

system.

The density matrix, ⇢init, is initialized in one of the six cardinal points and then encoded onto

a superposition of coherent states in the cavity. Wigner tomography is obtained by direct measure-

ments of the cavity Wigner function in the continuous variables basis [Lutterbach and Davidovich,

1997] to give a snapshot of the cavity state at any point in time. In this example, only one of the six

cardinal points, 1p
2

(|C+

↵ i � |C+

i↵i), is depicted. As intended, the measured parity of the initial state
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0

= |↵|2 = 3. (b). Parity measurement rectangles: pulse

patterns that map even (odd: dotted line) parity onto ancilla |gi (|ei); diamonds: branching on the ancilla
measurement result (0 ! no error, |gi; 1 ! error, |ei); ⇡ pulse rectangle: ancilla reset; clock icon: record
jump time t

j

; purple arrows demonstrate real-time phase rotation capabilities. Deterministic rotations ✓
M

are due to cross-Kerr interactions between the readout and storage cavities during projective measurements.
(c) A real-time decision is made to apply decoding pulses for even (red D), or odd (blue D) parity pulses.
(d) Correction step returns ⇢

fin

, with rotations by 0 (0 errors), �⇡/2 (1 error), and �⇡ (2 errors) made in
software.
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starts o↵ even, and the collective fringe pattern seen in the tomogram closely matches the expected

form as seen in simulation for an initial average photon number n̄ = 3 in the cavity. Remember

furthermore that the Wigner function is equivalent to the density matrix of the encoded state [Cahill

and Glauber, 1969], so at each subsequent point where the tomogram snapshots are presented, we

can verify the parity, phase, and occurrence probability of the cavity state.

The controller interrogates the error syndrome by employing the adaptive parity monitoring

protocol, with delays of t
w

⇠ 13 µs between each measurement. Starting in even parity, and given

the low probability (⇠ 20%) to have an error between two consecutive syndrome measurements

for this measurement cadence, the controller plays the pulse sequence that maps even parity to

|gi and odd parity to |ei. When an error occurs and the parity changes, the controller pulses the

ancilla from |ei back to |gi and then continues monitoring errors by employing the opposite protocol,

which instead maps odd parity to |gi and even parity to |ei. Therefore, again, throughout a single

measurement trajectory, counting the number of errors amounts to just counting the number of

times |ei is measured.

One may immediately ask where this seemingly arbitrary choice of delay t
w

comes from, as

typically the natural premise in error correction is that errors are best suppressed with a higher

measurement cadence. Such an assumption overlooks, however, the potentially destructive e↵ect

of the syndrome measurement itself, most notably through the potential of forward propagating

errors from the ancilla into the code space. Indeed, as outlined above, this consideration is central

to motivating several implementations of the real-time feedback meant to maximize the occupation

of the ancilla in the ground state. As discussed in 5.4, entangling the ancilla with the cavity too

frequently instead leads to a net loss in the performance of the system. Despite the greater statistics

and consequently the improved estimate of the photon number parity in time that come with an

increased measurement rate, the phase information of the cavity state increasingly runs the risk of

being lost if the ancilla undergoes T
1

decay. The choice of delay time can therefore be motivated by

the need to strike a balance between dephasing due to missing photon jumps and the probability

of forward propagation of errors, as elaborated upon in greater detail in upcoming chapters (see

sec. 8.3).

The program stores in memory a single measurement record of 0s (no error) and 1s (error)

that specifies the monitoring history of the encoded state; Fig. 6.12 shows the four possibilities for

two steps: {00, 01, 10, 11}. Conditioned on obtaining one of these four records, each tomogram

provides a striking visual demonstration of the cat code in action. Interference fringes, signatures

of quantum coherence [Haroche and Raimond, 2006], continue to be sharp and extremal as the
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program proceeds in time, as compared with the case of performing no parity monitoring at all.

Indeed, at each point in the program, the tomograms agree well in parity contrast, phase, and

amplitude as seen in simulations. More specifically, with each case the quantities of interest can be

predicted with high accuracy: the parity (origin of the Wigner function) matches the controller’s

best estimate at any time (border color); the di↵erence in phase between each trajectory matches

the expected extra rotation ✓K ⇡ 20� ⇥ tj for every jump occurring at time tj , emphasized by the

purple arrows for cases 01 and 10; ✓M ⇡ 20� of cavity phase rotation due to measurement cross-Kerr

arising from the introduction of photons into the readout cavity; and finally the jump probabilities

{70.4%, 13.7%, 11.8%, 4.1%} of each trajectory {00, 01, 10, 11}, which can be accurately predicted

with a Bayesian analysis by knowing the parity measurement infidelity and probability of photon

loss (see sec. 8.1). Furthermore, ancilla state tomography after decoding (Fig. 6.12c) conditioned on

the number of errors returns octahedrons similar to the one in the initialization step. The rotation

of the six cardinal points by ⇡/2 for one error and ⇡ for two errors indicates that the cat code

successfully maps photon loss errors in the cavity onto a unitary operation on the logical qubit. Upon

completion of the program’s execution, the knowledge of how many errors occurred is equivalent to

having corrected the state. Although aligning the Bloch spheres of all error trajectories to the same

orientation requires a simple phase adjustment on the ancilla drive in the decoding sequence, here

we instead choose to explicitly emphasize how the cat code maps errors to logical rotations. The

program thus returns the corrected quantum bit, now stored again in the ancilla, completing the

full QEC cycle.

Besides illustrating self-consistency, these results also highlight the successful implementation of

each intended application of real-time feedback. Looking at the 1-error case, for example, one sees

that in order to obtain the measured jump statistics, both the ancilla reset and adaptive monitoring

must have been executed properly; moreover, the consolidation of 01 and 10 trajectories into a single

1-error case demonstrates that the necessary changes in decoding pulse phase were introduced; and

finally, as the final octahedron exhibits the necessary ⇡/2 rotation about Z, the correct decoding

pulses based on the final best-estimate of parity must have been applied. Coordinating so many steps

in the QEC system is a testament to the levels of sophistication the quantum controller can achieve.

The high levels of predictability throughout the entire debugger view again highlight the advantages

of the hardware-e�cient scheme, as in the previous chapter: knowing the Hamiltonian parameters

together with a measurement fidelity of a single error syndrome is su�cient to encapsulate the

evolution of an error-corrected logical qubit.
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We would also like to note here that each Wigner snapshot is a 71 ⇥ 71 grid of parity measure-

ments. As shown in chapter 4, this granularity is su�cient for accurate cavity state reconstruction.

After the first step of error correction, joint ancilla-cavity state tomography therefore requires about

20, 000 measurements per repetition. On the other hand, the Steane code with seven physical data

qubits and six ancillae (introduced in chapter 3) would instead require millions. In this sense, the

hardware e�ciency of the cat code translates not to just a simplified error correction scheme, but

furthermore enables full state characterization after the syndrome measurements.

With a convincing demonstration of a full QEC system in hand, we now turn to performing more

than just two steps of error correction and look beyond the multitude of statistics presented above

to converge on a single metric for the performance of the system as a whole: the process fidelity.

The next chapter is devoted to this sixth step in Fig. 6.1, which assigns just a single number to

the system and serves to benchmark its performance against the available passive schemes for the

storage of quantum information.
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7 – Reaching Break-Even

The ability of QEC to suppress errors empowers a quantum computer to perform larger and more

complex algorithms. If one implements an error correction system within the framework of a fault-

tolerant architecture, in which the performance of all the components also exceeds the architecture’s

threshold, the error in a fixed-length computation can be reduced exponentially with only a polyno-

mial overhead in hardware. Challenges abound, given the complexity of a typical QEC circuit, the

stipulation that errors do not propagate, and the demanding error thresholds [Fowler et al., 2012;

Steane, 1996]. In particular, recalling the discussion in sec. 3.2, an uncorrected logical qubit consist-

ing of n physical qubits (for typical first order codes n ⇠ 5� 10 [Steane, 1996]) incurs a decoherence

penalty, wherein the decoherence is of order n times faster. Theoretical models estimate that gate

infidelities on the physical qubits must be on the order of 10�4 for traditional QEC schemes to

be successful. Works that demonstrate performance approaching these levels [Barends et al., 2014;

Chow et al., 2012] do so in simplified settings, with few physical qubits in small and well-controlled

microwave environments. As implementations such as these will eventually require substantially

greater resources, it isn’t at all clear that currently reported gate fidelities can be sustained as sys-

tems become more complex. Indeed, symptoms of such challenges are already apparent in a recent

experiment on correcting a classical bit with repeated error correction that uses quantum opera-

tions [Kelly et al., 2015]. Although the group reports CNOT fidelities ostensibly near the thresholds

for fault-tolerance (on the order of 99%), employing two such gates to entangle a single physical

qubit with two others results in a GHZ state with a fidelity that is completely incommensurate with

their previous claims. In all likelihood, their losses come from not just the increased decoherence

penalty due to the greater number of physical qubits, but also from the resource overhead that comes

with the supporting architecture required to control them, which elevates the significance of perhaps

previously overlooked error mechanisms. As discussed in chapter 3, the cat code o↵ers enormous

benefits in this regard.

The debugger view shown in Fig. 6.12 already demonstrates that the full QEC system implements

the cat code as intended. Indeed, errors within the logical space due to single photon loss are mapped
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Figure 7.1: Enhanced Wigner fringes from QEC. These Wigner functions are enlarged versions of
those in Fig. 6.12. The top tomogram shows the initial “4-cat,” the bottom-left shows the same state left to
evolve naturally with no QEC for 28 µs, and the bottom-right shows the same state after two error syndrome
measurements that return the result record 00. The black dotted-line boxes emphasize the di↵erence in the
quality of the fringe patterns between corrected and uncorrected states. Note that the initial state and the
corrected one both have diagonal fringes between the coherent states that are higher in contrast than in
the uncorrected case. This example shows how coherence between the superpositions of coherent states is
encoded in not just the parity, but in other key places in the cavity’s phase space.

onto discrete rotations in increments of ⇡/2 about the logical qubit’s Z-axis per photon jump. It

is also qualitatively clear that for at least some portion of the data, for example the 00 trajectory,

one can already gain by employing the QEC system rather than just letting the logical qubit evolve

and lose coherence on its own. This is evident from the higher coherence of the corrected cavity

state, as seen in Fig. 7.1. Such improved purity is exactly what we seek in having our measurements

be QND on the entire state, as discussed in sec. 5.4. We can perhaps surmise the same about the

10 trajectory, but a priori it isn’t so clear that the Wigner functions of 01 and 11 demonstrate any

benefit from QEC given their less pronounced features.
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The desire to understand exactly how well our QEC system performs motivates the next step

and the focus of this chapter: calculating the process fidelity of the full QEC system from start

to finish. Rather than deducing state fidelities from the Wigner tomograms, we instead decode

the logical qubit back onto the ancilla, perform the necessary corrections to take into account the

number of detected changes in parity, and simply compare the resulting quantum bit to the initial

quantum bit for all possible input states. We thus quantify the performance of the QEC system in

suppressing natural qubit decoherence, and moreover do so without the use of post-selection.

Observing how the process fidelity decays over time with more applications of error syndrome

measurements allows us to finally answer the question posed at the end of the previous chapter. By

comparing the integrity of an actively protected quantum bit to one that is redundantly encoded yet

evolving freely with no interruption, we show in this chapter the first demonstration of a QEC system

that actually overcomes the decoherence penalty inherent to QEC. The significance of reaching this

break-even point lies in the remarkable property that a logical qubit can remain coherent for longer

periods of time if aided by a supporting architecture constructed with human hands. With this

result, we prove that QEC is possible in a real-world setting, and set the stage for understanding

what further steps must be taken to improve performance. We conclude the chapter by launching a

serious discussion on what fault-tolerance requires.

7.1 Process fidelity: an analytical treatment

We seek to benchmark the entire process of the QEC system. The density matrix of the final state,

⇢fin, is the output of the entire QEC system process (see sec. 6.4) E(⇢init): ⇢fin = E(⇢init), where

⇢init = | iinit h |init. Ideally, E(⇢init) = ⇢init, where the process is simply given by the identity

operator Î, corresponding to perfect error correction. In reality, however, due to decoherence in

conjunction with experimental imperfections, E(⇢init) is a combination of non-unitary and unitary

operations on the encoded state.

In order to characterize the full process E(⇢init), we find ⇢fin by performing state tomography

of the ancilla following the correction step to measure the components of the final Bloch vector

~r = {rx, ry, rz}: ⇢fin = (Î + rx�̂x + ry�̂y + rz�̂z)/2, where �̂x, �̂y, �̂z are the Pauli operators. The

results allow us to represent E(⇢init) in the chi (X) matrix representation using the operator-sum

notation [Nielsen and Chuang, 2010]: E(⇢init) =
P

jk Ẽj⇢initẼ
†
kXjk, where for a single quantum bit

Ẽ
0

= Î , Ẽ
1

= �̂x, Ẽ
2

= �i�̂y, Ẽ
3

= �̂z and the coe�cients Xjk comprise the process matrix X. This

is a complex 4⇥4 matrix of trace Tr(X) = 1 that completely describes the action of our QEC system

on an arbitrary input state. We define the fidelity F to be the overlap of the measured chi matrix,
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XM , with X
0

, the ideal identity process: F = Tr(XMX
0

). In principle, only four cardinal points

are needed to determine XM , the two at the poles of the Bloch sphere (+~z, �~z) and those along �̂x

(+~x) and �̂y (+~y). Following the derivation presented in [Nielsen and Chuang, 2010], we can also

find a simple formula for the (0, 0) entry of XM , XM
00

, which is equivalent to the expression above

for the fidelity to the identity process. It requires the results of state tomography, ~r n̂ = {rn̂
x , rn̂

y , rn̂
z },

for the four cardinal points (n̂ = +~x, +~y, +~z, �~z):

X
00

=
1

4
(1 + (r+~x

x � r+~z
x + r�~z

x

2
) + (r+~y

y � r+~z
y + r�~z

y

2
) +

r+~z
z � r�~z

z

2
) (7.1)

We perform these calculations with both +~x, +~y and �~x,�~y, however, to verify that there are no

unexpected asymmetries in the cat code. Figure. 7.2 shows a simple example of a X matrix for an

ideal identity process and one for complete depolarization[Nielsen and Chuang, 2010], in which r+~x
x ,

r+~y
y , r+~z

z , and r�~z
z all decay to 0.

0

F = 0.25

Full
Mixture

F = 1

1 1

0

Identity

0

arg
�⇡

+⇡

�⇡/2

+⇡/2

Figure 7.2: Process fidelity limits. The X matrix on the left corresponds to the identity process Î. The
matrix on the right shows an example of a depolarization process that leads to a completely mixed state.
Note the minimum process fidelity is equal to 0.25 rather than 0, indicating that all information about the
initial Bloch vector has been lost. This simple matrix reveals that the process one has implemented ended
up applying one of four operations with 25% probability: either Î, or rotations by ⇡ around one of the three
Bloch sphere axes. The left Bloch sphere shows a pure state after a known unitary operation, such as Î,
while the right Bloch sphere (small green sphere at the origin) shows that under depolarization all Bloch
vector components go to 0.
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In order to develop some intuition about this somewhat abstract formulation, we can first con-

sider a simple case where a cavity state ⇢s(t) = |↵(t)i h↵(t)| is left to evolve without intrusion for

a short time �t. If we exclude ancilla non-idealities, undesired couplings such as Kerr, and only

consider the possibility of single errors within our code space, we can write the cavity density matrix

⇢s(�t) as:

⇢s(�t) = p
0

⇢
0

+ p
1

⇢
1

, (7.2)

where p
0

and p
1

are the probabilities associated with obtaining density matrices ⇢
0

and ⇢
1

after �t.

In the specific example here, ⇢
0

is the state of the cavity after some amount of energy decay yet no

detected jump in photon number, while ⇢
1

is the state of the cavity if a photon jump does occur.

The probability p
1

is just n̄
0

s�t, and for a small �t, p
0

⇡ 1 � p
1

. The natural question of why a

field’s energy decays only when no photon jump is recorded is elegantly explained in [Haroche and

Raimond, 2006], section 4.4.4. Recalling that the energy decay of a coherent state after �t takes the

form |↵i ! |↵e�s�t/2i and that a photon jump is equivalent to applying the lowering operator âs

on the cavity field, we can rewrite ⇢
0

and ⇢
1

as:

⇢
0

=
e�(s�t/2)â†

sâs⇢s(0)e�(s�t/2)â†
sâs

Tr(e�(s�t/2)â†
sâs⇢s(0)e�(s�t/2)â†

sâs)
(7.3)

⇢
1

=

p
s�tâs⇢s(0)

p
s�tâ†

s

Tr(
p
s�tâs⇢s(0)

p
s�tâ

†
s)

(7.4)

We see, however, that:

Tr(
p
s�tâs⇢s(0)

p
s�tâ

†
s) = n̄

0

s�t = p
1

(7.5)

Tr(e�(s�t/2)â†
sâs⇢s(0)e�(s�t/2)â†

sâs) = p
0

(7.6)

The state ⇢s(�t) can thus be written as:

⇢s(�t) = e�(s�t/2)â†
sâs⇢s(0)e�(s�t/2)â†

sâs +
p
s�tâs⇢s(0)

p
s�tâ

†
s (7.7)

=
1X

k=0

Êk⇢s(0)Êk
†
,
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where Ê
0

= e�(s�t/2)â†
sâs and Ê

1

=
p
s�tâs. This convention, known as the operator-sum nota-

tion [Nielsen and Chuang, 2010], allows us to finally define the process for the time step �t:

E(⇢s(0)) =
1X

k=0

Êk⇢s(0)Êk
†

(7.8)

Note for small �t,
P

1

k=0

Êk
†
Êk ⇡ Î, as required. Translating these error processes on the actual

cavity field to those of Pauli operations on the logical qubit returns the X matrix formulation

introduced above.

7.2 Demonstrating QEC after many steps of correction

With the analytical definitions of process fidelity in place, we begin quantifying the performance of

the cat code by first again returning to the debugger view presented in 6.12, and more specifically to

the decoding step that shows the transfer of the quantum bit from the superposition of cat states to

the ancilla transmon. Shown in Fig. 7.3 are the process matrices for the QEC program demonstrated

in Fig. 6.12. Just by looking at these images and the associated fidelities we can already glean some

important information about the QEC process we implement. Firstly, the form of XM
j (XM for

j = 0, 1, and 2 errors) matches the process matrix for ideal rotations about the Z axis by j · ⇡/2,

Xj⇡/2

. Secondly, the fidelities are lower for higher detected error numbers, an expected trend given

the non-zero syndrome measurement infidelity. Signatures of developing incoherent mixture are

evident from the non-zero values in all diagonal elements, which approach 0.25 for a fully mixed

state. In fact, the equal height of the diagonal elements of XM that should ideally be zero suggests

that depolarization is the dominant error channel in the system; the following section explores this

in greater detail. Trajectories with two errors, however, have a substantially lower fidelity and have

a number of non-negligible o↵-diagonal entries in XM , which suggests that the decoding pulses were

frequently applied at incorrect angles due to misinformation from errant syndrome measurements.

Although at first perhaps surprising, this feature can in fact be explained by the low confidence that

a record with consecutive error detections (...11...) faithfully reflects the true error history of the

encoded state (discussed in greater detail in the following chapter, sec. 8.1). Such trajectories occur

just 4.1% of the time after 28 µs, however, and thus have little bearing on the final output. Upon

correction, the resemblance of XM to X
0

reflects the simplicity of the cat code; by accounting for

single photon jumps we witness no dominant processes besides Î and emerging depolarization within

the logical space.
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We note that after the decoding step we do perform a small correction to the data in software

prior to calculating XM . Given that the optimal control encoding and decoding pulses do not realize

the intended unitary perfectly at each time step, there could be some overall unintended rotation of

the final quantum bit. Following the approach in [Schindler et al., 2011], we allow for one and the

same rotation to be applied in software to all six cardinal points simultaneously that maximizes the

overlap of XM with X
0

. This is a simple change of reference frame that in no way compensates for

measurement infidelity or an artificial enhancement of performance. It is equivalent to applying a

fixed pre-determined unitary operation on the decoded quantum bit to adjust its orientation that

most closely matches that of the initial state. In practice, rotations do not exceed several degrees

around each axis and have only a small e↵ect on the reported results.

Occurrence : 25.5%

1

0

Tr(XM
1

X⇡/2

) = 0.77

1 Error
Uncorrected

Occurrence : 70.4%

Tr(XM
0

X
0

) = 0.89

1

0

0 Errors

1

0

Occurrence : 4.1%

Tr(XM
2

X⇡) = 0.44

2 Errors
Uncorrected

0

arg
�⇡

+⇡

�⇡/2

+⇡/2

0

arg
�⇡

+⇡

�⇡/2

+⇡/2

1

0

F = 0.84

All Errors
Corrected

100% of Data

Figure 7.3: Process tomography for two monitoring steps. Results for j = 0, 1, and 2 errors prior
to correction. Experimental data for XM

j

is shown in solid bars, and is obtained using the results of state
tomography conditioned on error number as shown in the debugger view of the full QEC system (Fig. 6.12);
the values are complex numbers with amplitude on the vertical axis and an argument specified by the bar
color. Amplitudes less than 0.01 are not depicted. Ideal X

j⇡/2

process matrices are shown in wire-outlined
bars. Process tomography after correction is shown following the arrow, where the final fidelity F = 0.84.
Non-zero diagonal elements in the X matrix indicate developing incoherent mixture in the final state. Note
that there is no post-selection of data.
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Uncorrected Transmon

Uncorrected Fock State Encoding

Uncorrected Cat Code Encoding

CORRECTED Cat Code Encoding

F = 0.33

F = 0.77

F = 0.77

F = 0.65

Figure 7.4: Comparing possible quantum memories. State tomography, after the decoding pulses
that transfer the information from the cat states onto the ancilla transmon, is shown for four examples of
quantum memory implementations in our system. The uncorrected transmon and Fock state encoding show
the expected trends characteristic of amplitude decay; the transmon in particular, shown on a di↵erent time-
scale, decays very quickly. In the cases of the uncorrected and corrected cat codes (n̄

0

= 2), the octahedrons
decay toward fully mixed states at the origin. The six cardinal points in the latter, however, clearly exhibit
greater contrast, indicative of the benefits of active error correction. The uniform shrinking of each point in
time demonstrates that the loss of fidelity is well-represented by a depolarization channel.
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The final fidelity F = 0.84 after two steps of monitoring for 28 µs tells us nothing about how the

process fidelity decays over time. Our feedback controller, however, can in fact perform an unlimited

number of consecutive syndrome measurements while still maintaining all aforementioned feedback

capabilities. Moving to an initial encoding size of n̄
0

= 2 in order to reduce the probability of

errors in the code space, we implement the cat code with multiple repetitions of the QEC program’s

monitoring step over ⇠ 110 µs, starting with zero time delay where decoding immediately follows

encoding. Each syndrome measurement is separated by an optimized waiting time ranging from

t
w

⇡ 15 µs to t
w

⇡ 25 µs, which as briefly described in sec. 6.4 balances contributions from

competing decoherence mechanisms (see the following chapter, sec. 8.3 for a derivation). In setting

the stage for a discussion of what it means to overcome the decoherence penalty introduced by

the redundant encoding, we compare the decay of the quantum bit protected by the cat code to a

quantum bit stored using three di↵erent passive quantum memories: an uncorrected transmon, an

uncorrected Fock state encoding (the system’s most coherent piece of hardware), and the cat code

with no QEC. As shown in Fig. 7.4, the six cardinal points in each of the four storage schemes decay

in time. Even without quantifying these results yet, we can already visually see that the contrast

of the octahedron corresponding to the corrected cat code clearly exceeds that of the uncorrected

encoding at each point in time. This indicates that the photon number parity measurements do

indeed o↵er benefits over simply allowing the cat states to undergo uninterrupted decay. We include

the octahedron corresponding to the transmon to underscore how rapidly it decays toward a single

point as compared to any storage scheme in the cavity. This finding is of course certainly expected

given the disparity in coherence times between the two. The significance of this result, however, lies

in the realization that even by using an ancilla with a T
2

that is a factor of ⇠ 25 lower than that

of the cavity, applying QEC with the cat code nonetheless increases the lifetime of the uncorrected

logical qubit.

Discerning a qualitative di↵erence between the performance of the Fock states and the cat code,

however, is di�cult. Beyond the fact that the final octahedra for the two cases look to be similar in

contrast, the encoding penalty for the cat code is slightly inferior due to the greater complexity of the

initial states (and thus longer length of the optimal control pulses), and the decoherence processes

are clearly very di↵erent as well. In particular, both the Fock state and the transmon encodings are

susceptible to generalized amplitude damping, which is given by the following process [Nielsen and

Chuang, 2010]:

E(⇢) = E
0

⇢E†
0

+ E
1

⇢E†
1

+ E
2

⇢E†
2

+ E
3

⇢E†
3

(7.9)
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Figure 7.5: Fock state encoding amplitude decay. The Fock state encoding shows decay curves
typical of amplitude damping, or T

1

-type decoherence, in which all coordinates preferentially decay toward
the energetically favorable cavity ground state |0i

f

. One can see in each plot that the value of the hZi
coordinate monotonically increases towards (or stays at) +1 regardless of the initial state, while every other
coordinate decays to 0.
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Figure 7.6: Cat code depolarization This data demonstrates that depolarization, in which every Bloch
vector shrinks uniformly toward a fully mixed state at the origin, is the dominant error channel in the full
QEC system. The six plots show the decay in time of the average X, Y , and Z components of the Bloch
vector (hXi, hY i, hZi respectively) for each cardinal point after using the cat code QEC system. These
six points are initialized by applying the identity (I), ⇡ pulse about the Y axis (Ry

⇡

), or ±⇡/2 rotations
about the Y or X axes (Ry

⇡/2

,Ry

�⇡/2

,Rx

⇡/2

,Rx

�⇡/2

) on the ancilla prior to the error monitoring. This data is

used to calculate the process matrix XM of the corrected quantum bit. In each of the six cases, only the
non-zero coordinate of the Bloch vector at zero time decays while the other two remain at 0 throughout the
entire tracking duration. We find the decay rate of cat states along |±X+

L

i to be slightly more robust as
these states are symmetric about both axes in the cavity’s phase space, while |C+

↵

i, |C+

i↵

i and |±Y +

L

i are
symmetric about only one. Thus, rotations in phase space are somewhat less detrimental for |±X+

L

i.
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where f(t) is a function of time of the form f(t) = 1�et/t
0 ; for the transmon t

0

= T
1

and nth = na
th;

for the Fock state t
0

= ⌧s and nth = ns
th (see sec. A.3). As seen in Fig. 7.5b, all Bloch sphere

vectors preferentially decay toward the energetically favorable ground state of the encoding. The

o↵-diagonal elements in the density matrices of these encodings decay with a time constant that in

addition to the amplitude damping also includes the pure dephasing in the system; these combined

rates are T
2

for the transmon and T s
2

for the Fock state components. Thus, we find that r+~x
x and

r+~y
y in eq. 7.1 decay at T s

2

(T
2

) for the Fock state (transmon) encodings, while (r+~z
z � r�~z

z )/2 decays

at ⌧s (T
1

). The process fidelity as a function of time XM
00

(t) therefore decays at two di↵erent rates,

resulting in a double-exponential behavior. In the decay of the cardinal points in the Fock state

encoding (Fig. 7.5) one can only discern a single exponential behavior, however, as the maximum

duration of ⇠ 110 µs is still short compared to the cavity’s coherence times.

In contrast, with the cat code we find that all of the cardinal points on the Bloch sphere shrink

uniformly toward the fully mixed state ⇢fin = Î/2 (Fig. 7.6). Such decoherence can be described by

the process of depolarization, in which one essentially loses knowledge as to the orientation of the

Bloch vector:

E(⇢) = pˆI
2

+ (1 � p)⇢

= (1 � 3p
4

)⇢+ p
4

(�̂x⇢�̂x + �̂y⇢�̂y + �̂z⇢�̂z)

=
P

j Ẽj⇢Ẽ
†
j Xjj

X =

0

BBBBBBB@

1 � 3p
4

0 0 0

0 p
4

0 0

0 0 p
4

0

0 0 0 p
4

1

CCCCCCCA

(7.10)

This simple formula shows that the signature of depolarization errors is a diagonal process matrix

X in which the value of X
00

decreases with p, while the remaining diagonal components increase

with p, for p a probability between 0 and 1. The dominant source of depolarization in our work stems

from the incorrect application of the decoding pulse at the end of the QEC sequence, a consequence

of both syndrome measurement results that incorrectly indicate the occurrence of an error, and of

dephasing due to the back-action of ancilla T
1

decay. If the decoding pulse is applied at either the

wrong angle (quantified in sec. 8.2) or attempts to decode the wrong parity (see sec. 6.3), at the

end of the decoding sequence we are left with a completely mixed quantum bit after tracing over

the cavity state. Although at first glance the basis states along the logical Z axis, “2-cats,” should

be immune to double-errors within the waiting time between syndrome measurements, the resulting

Kerr phase accumulation after two photon jumps is su�cient to appreciably rotate the cat states

out of the logical space.
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7.3 Overcoming the decoherence penalty with the cat code

Using the results of the state tomography shown in the octahedra of Fig. 7.4 to find how the process

fidelity of each quantum bit storage scheme decays over time, we arrive at a central result of our work.

Specifically, we look at how well the full QEC system implements the identity operation, where the

process fidelity is defined as F = XM
00

(or equivalently, F = Tr(XMX
0

)). The benefits of employing

QEC are once again apparent, as seen in Fig. 7.7. Without any post-selection or renormalization to

remove encoding-associated penalties, the corrected cat code overcomes the decoherence penalty by

a factor of 2.2.

In many ways this is the culmination of the goals first introduced in chapter 3. We began

by stressing the challenges associated with traditional error correction protocols by framing the

discussion around the decoherence penalty as the dominant limitation; constructing a logical space

from so many physical qubits simply makes things worse with current levels of performance across

all quantum computing platforms. In our experiments, however, we have shown that a very simple

architecture introduces a much smaller resource overhead to begin with for a single logical qubit: an

enhanced error rate that scales linearly with the average photon number of the cat states. A logical

qubit in which the non-orthogonality between the basis states is very nearly 0 requires an n̄ ⇡ 4 and a

single ancilla for the error syndrome, versus the Steane code’s seven physical qubits and six ancillae.

Even with an ancilla that lacks the cavity’s coherence properties, the encoding and decoding losses

are just ⇠ 4% per operation, as seen in the initial o↵sets in Fig. 7.7; this state-of-the-art performance

demonstrates a manipulation of a full logical quantum bit that to-date no other system has been

able to achieve. Finally, sparsely applied parity measurements that entangle the encoded state with

the ancilla only briefly allow us to extract an error syndrome with high enough fidelity to not just

make up for the decoherence penalty of n̄
0

= 2, but in fact realize gains in performance by slowing

down the rate of decay by a factor of 2.2. We thus prove that one can actually realize gains with

QEC while satisfying the three criteria set out in chapter 6: all quantum states are protected from

naturally occurring errors without the use of post-selection.

Additionally, the performance of the cat code matches that of a simple encoding in the |0if , |1if

Fock states after ⇠ 80 µs, and by decaying with a time constant that exceeds that of the Fock state

by a factor of 1.1, it protects the information from decoherence more e↵ectively than using the Fock

state encoding as a passive quantum memory. At this point one may ask if this decrease in the rate

of process fidelity decay when using the cat code with active error correction su�ciently supports

the claim that the system surpasses the break-even point of QEC. For instance, one may hold the
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Figure 7.7: QEC program process tomography. To implement QEC, we redundantly encode the
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0

= 2) and pay the required decoherence penalty, ubiquitous to QEC. This
leads initially to worse performance; the process fidelity of the uncorrected cat code (orange circles), where
cat states are left to decay freely between encoding and decoding, exhibits faster decay as compared to the
Fock states |0i

f

, |1i
f

(gray circles). Substantial improvements in performance are realized with the full QEC
system; the corrected cat code (red triangles) surpasses the uncorrected transmon (green squares) by a factor
of ⇠ 20, makes up for the QEC decoherence penalty by a factor of ⇠ 2.2, and o↵ers an improvement over
the Fock state encoding by a factor of ⇠ 1.1. With only high-confidence trajectories (blue diamonds), the
decay time increases to ⌧ > 0.5 ms. Top axis: number of syndrome measurements used for each point in the
corrected cat code. Cat code data: 100,000 averages per point; transmon, Fock states: 50,000 averages per
point; error bars are smaller than marker sizes. Although no data exhibits strictly single-exponential decay,
all curves are well modeled by F (t) = 0.25 + Ae�t/⌧ ; dotted lines are fits; F = 0.25 (dashed line) implies
a complete loss of information; uncertainties are given by errors in the fit. Fluctuations in the uncorrected
cat code are explained by the Kerr e↵ect and are reproduced in simulation.

pedantic point of view that as the curve of the corrected cat code never actually crosses the Fock

state encoding, one cannot realize any actual advantage to using the former in a practical sense:

given this exact system, the cat code at best matches the fidelity of the Fock state encoding only

at one point in the monitoring sequence, at ⇠ 80 µs. The claim of surpassing break-even, however,

should rather be understood as characterizing the capacity of the QEC system to yield advantages

in a future realization of a quantum computer. For example, immediate issues concerning encoding

and decoding losses, responsible for the initial drop of ⇠ 8% in the process fidelity at time t = 0,
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must of course be addressed before any practical application becomes a reality. Indeed, thus far

no architecture on any platform has managed to demonstrate a redundant encoding with higher

fidelity than that of the single, physical qubit. This problem will be solved once operations on and

between cat states approach fidelities necessary for fault-tolerance. If the experiment reported here

were then performed in the exact same way, each curve in Fig. 7.7 would start at some value very

close to +1, at which point the cat code would always outperform every element in the system.

Thus, although it is true that as presented here the cat code doesn’t currently provide any practical

advantages, the point is that these results demonstrate that it will once the necessary gate fidelities

are achieved. The full QEC system implemented here completely overcomes the decoherence penalty

associated with using the full QEC system, a feature we argue is more germane to the discussion of

what break-even requires.

To conclude, our results show that QEC can actually protect an unknown bit of quantum

information, and extend its lifetime by active means. By employing the cat code as the foundation

of a novel QEC system, we demonstrate the advantages of the hardware e�ciency: the capacity

of a single cavity to store a logical qubit; its intrinsically high coherence times; and the need to

monitor just one error syndrome with just one ancilla. Furthermore, we demonstrate the crucial role

of real-time feedback, an addition to the experimental setup that vastly improves error correction

performance and allows us to realize the cat code at the break-even point of QEC. Future goals

include combining the cat code with mechanisms to re-inflate cat state amplitudes and to equip

the parity monitoring protocol to handle changes in ancilla energy, thereby addressing issues of

non-fault-tolerance head-on. We believe our results, however, already motivate the adaptation of

QEC schemes to exploit the e�ciencies of hardware platforms beyond the purview of traditional

architectures, and the promise of cat states as components integral to future quantum computing

applications.
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8 – Limitations on Fault-Tolerance

Now that we’ve demonstrated a full QEC system that overcomes its decoherence penalty while

sweeping nothing under the rug, we would like to understand what limits its final performance. The

goal in this work is not to demonstrate anything that is fault-tolerant. Indeed, by design, the current

implementation of the cat code suppresses errors to first order, so at the outset we are prepared to

be limited at least by the occurrence of multiple errors within the encoding that the error syndrome

measurements are not designed to capture. Moreover, working within a continuous variable space,

we are destined to lose fidelity simply because sources of dephasing arising from smaller terms in

the Hamiltonian become non-negligible over long periods of monitoring and obviously result in some

form of decoherence simply due to leakage out of the code space. In other words, photon number

parity measurements teach us only about the occurrence of photon loss rather than any change in

the phase of the state in the cavity. These sources must still of course be quantified and their e↵ect

on future implementations of the cat code assessed.

To varying degrees, every step in the full QEC system described in sec. 6.4 lowers the fidelity of

the final state. Starting with the quantum bit initialization, which is limited by pulse fidelities, and

moving through the encoding, monitoring, and decoding stages, which all su↵er from decoherence

in the code space and in the ancilla, we inevitably end up losing some amount of information when

the experiment concludes. The questions are: how much, and what are the dominant limitations?

The most pressing consideration is the contribution to dephasing due to forward propagation

of errors. Every time we perform an error syndrome measurement, with some probability ancilla

T
1

decay occurs, the back-action of which makes the state in the cavity irrecoverable (discussed in

sec. 5.4). This motivates a substantial pivot in the strategy of implementing the full error correction

system. We can largely suppress the contributions to infidelity arising from higher order error

processes, pulse and readout imperfections, and deviations of the cat states from their defined basis

with faster measurement rates, which allow for a build-up of confidence in the true error trajectories.

Forward propagation, on the other hand, pulls us in the opposite direction. Entangling the imperfect

ancilla with the logical qubit increases the probability of information loss. The more frequently error
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syndrome measurements are performed, the greater the probability per unit time the final quantum

bit will be unrecoverable. If the ancilla’s coherence properties are su�ciently poor, the optimal

strategy calls for a measurement cadence with which accruing meaningful statistics to perform some

type of majority voting no longer becomes possible. In this case, we must take every measurement

result at face value.

This chapter is devoted to a discussion of the dominant sources of error that a✏ict the system

and how they contribute to the non-fault-tolerance of the current implementation of the cat code.

We present each source of decoherence in the general context of the dominant loss mechanisms

ubiquitous in any measurement-based error correction scheme, as first introduced in chapter 3.

By understanding how these di↵erent fault mechanisms enter into the calculus of optimizing the

performance of the cat code, we predict the impact better ancilla coherence properties will have

on our ability to protect a quantum bit from decoherence. Thus, in step with the general guiding

philosophy in this work, we scrutinize each aspect of the QEC system in great detail before thinking

about how to scale up to more complex architectures. We ultimately arrive at a second, equally

important result of this work: the forward propagation of errors from ancilla T
1

decay is by far

the dominant limitation that currently prevents our QEC system from o↵ering much greater gains

in lifetime. In many ways this conclusion reflects yet another crucial advantage of the hardware

e�ciency of the code. By pinpointing the dominant source of non-fault-tolerance, we know where

to focus our e↵orts to improve the performance of the error correcting system.

8.1 The di↵erence between error record and error history

The simplicity of the curves shown in Fig. 7.7 belies the trove of information we can garner from

looking more closely at the statistics of these measurements. The exact pattern of the error syndrome

measurement results also presents us with a valuable measure of confidence as to our knowledge of the

actual trajectory of the encoded state. For example, using the post-selection strategy that accepts

only high-confidence trajectories yields a decay constant of the QEC system’s process fidelity of over

half a millisecond while still keeping a majority of the data (Fig. 8.1). This suggests of course that

with faster syndrome measurement rates, one can approach a regime in which real-time statistical

analysis of the error syndromes will be possible. Simple strategies such as majority voting on the

measurement result, for example, will o↵er a means to rule out results with errant parity mappings.

As a result, this will improve the confidence in the knowledge of how many photon jumps actually

occurred. We thus seek to understand the statistics of the ostensible jumps in photon number we

detect, and use the resulting analysis to deduce the optimal measurement strategy.
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Figure 8.1: QEC program process tomography with post-selection. (a) This plot demonstrates
the further enhancements in performance possible with post-selection as compared with the data shown
in Fig. 7.7. The process fidelity decay of the cat code QEC system with n̄

0

= 2 improves substantially if
low confidence trajectories are omitted from the data (purple diamonds). Binary representations of high
confidence trajectories; the first time a two jump record is included in the averaging occurs at 68 µs (1010).
(b) This plot shows the measured occurrence of high confidence trajectories. Note that after ⇠ 100 µs we
still keep nearly 80% of the data.

With the calculations below, we expand upon the disparity in fidelity between high and low-

confidence records. In particular, we discuss why the process fidelity of the 2-error case after two

syndrome measurements, shown in Fig. 7.3, di↵ers so substantially from that of the 0 and 1 error
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cases. We proceed to show that with more syndrome measurements, the fidelity of the two-error

case in fact increases toward a maximal value attained at a later time. This seemingly paradoxical

observation should not come as a surprise if one recalls the discussion of the quantum filter in sec. 5.3.

The improving fidelity of multi-error cases in time simply underscores the point that the confidence

associated with a given measured error record relies on a build-up of statistics. Despite the paucity

of such statistics here as compared to the hundreds of repeated measurements presented in chapter 5,

we can nonetheless quantify why records indicating consecutive errors are so untrustworthy.

In order to understand this e↵ect, we invoke Bayes’ rule. The measured fidelity of successfully

mapping parity in the presence of n̄ = 3 photons in the cavity is 97.7%. Although very high, this

number still leads to the somewhat surprising di↵erences in the confidence of certain measurement

results over others. We start by assuming that we have encoded a quantum bit in cat states of size

n̄ = 3 and that the ancilla is in |gi prior to the parity mapping. This is the initial system state

(Fig. 6.12a). After a round of error monitoring in which we use the parity protocol that maps even

parity to |gi and odd parity to |ei (indicated by the superscript “�”), the probabilities to measure

ancilla |gi, |ei are given by:

p(g) =p�(g|0")p(0") + p�(g|1")p(1") (8.1)

p(e) =p�(e|0")p(0") + p�(e|1")p(1"), (8.2)

where p(0") = e�(n̄e�t/⌧s
)t

w

/⌧s is the probability that the cavity state had 0 parity jumps, p(1") =

1 � p(0"), and p�(g|0") and p�(e|1") are respectively the probabilities to measure |gi when the

cavity state had 0 parity jumps and |ei when the cavity had 1 parity jump. Likewise, when we use

the parity protocol that maps odd parity to |gi and even parity to |ei (indicated by the superscript

“+”), the probabilities to measure ancilla |gi, |ei are given by:

p(g) =p+(g|0")p(0") + p+(g|1")p(1") (8.3)

p(e) =p+(e|0")p(0") + p+(e|1")p(1"), (8.4)

where p+(g|0") and p+(e|1") are respectively the probabilities to measure |gi when the cavity had 0

parity jumps and |ei when the cavity had 1 parity jump. In our system, for average photon number

n̄ = 3 in the cavity, p�(g|0") = p+(g|0") = 0.983 and p+(e|1") = p�(e|1") = 0.971.

We seek to predict the statistics for monitoring errors for two steps and an initial cat size of

average photon number n̄ = 3, as presented in Fig. 7.3. Following the flow of Fig. 3a-d, assuming

at time t = 0 we start with an even parity state in the cavity and perform the first round of error
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monitoring that maps even parity to |gi, after 13.8 µs p(g) = 0.841 and p(e) = 0.159. Using Bayes’

rule, we can now calculate the conditional probabilities for the cavity to be in a certain parity state

given the measurement outcome:

p�(0"|g) =
p�(g|0")p(0")

p(g)
= 0.995 (8.5)

p�(1"|e) =
p�(e|1")p(1")

p(e)
= 0.910 (8.6)

The key point here is the di↵erence in the confidence as to the true occurrence of an error

when the ancilla ends up in |ei. The small measurement infidelities together with the relatively low

probability to have an error in the first place leads to a considerable di↵erence of ⇠ 8% between the

two conditional probabilities p�(0"|g) and p�(1"|e). This di↵erence leads to a higher likelihood for

the parity meter to suggest the occurrence of another error in the encoded state in the subsequent

measurement, and thus leads to a substantially lower confidence in any trajectory that indicates

consecutive errors, as we show next.

If we measure |gi, we continue using the same protocol, but now to obtain p±(g) and p±(e)

(probabilities to measure |gi and |ei for the two di↵erent parity mapping protocols) we no longer have

the luxury of knowing that we start in an even state and thus must use the conditional probabilities

obtained above for the following:

p�(g) =[p�(g|0")p(0") + p�(g|1")p(1")]p�(0"|g) (8.7)

+ [p�(g|1")p(0") + p�(g|0")p(1")][1 � p�(0"|g)] = 0.834,

and p�(e) = 1�p�(g) = 0.166. Similarly for the case where we instead measure |ei and the protocol

is flipped in the second round:

p+(g) =[p+(g|0")p(0") + p+(g|1")p(1")]p�(1"|e) (8.8)

+ [p+(g|1")p(0") + p+(g|0")p(1")][1 � p�(1"|e)] = 0.777,

and p+(e) = 1 � p+(g) = 0.223.
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We now have the probabilities to obtain the following measurement records, which closely match

those presented in Fig. 7.3:

p
0" =p(g)p�(g) = 0.841 ⇥ 0.834 (8.9)

= 0.701

p
1" =p(g)p�(e) + p(e)p+(g) = 0.841 ⇥ 0.166 + 0.159 ⇥ 0.777 (8.10)

= 0.263

p
2" =p(e)p+(e) = 0.159 ⇥ 0.223 (8.11)

= 0.036

Beyond telling us that we understand the statistics of our system, this calculation also provides

crucial information as to the confidence of certain trajectories over others. First, one may imme-

diately note the slight asymmetry between measuring |gi and then |ei (0.841 ⇥ 0.166 = 0.140) vs.

the reverse order (0.159⇥ 0.777 = 0.124). Indeed, with the following conditional probabilities for all

possible error histories (gg, eg, ge, ee) we see the huge benefit of a “confirmation” g measurement on

the probability that the measured trajectory faithfully reflects the error trajectory of the encoded

state:

p�(0"|gg) =
p�(g|0")p(0")p�(0"|g)

p�(g)
= 0.993 (8.12)

p+(1"|eg) =
p+(g|0")p(0")p�(1"|e)

p+(g)
= 0.978 (8.13)

p�(1"|ge) =
p�(e|1")p(1")p�(0"|g)

p�(e)
= 0.869 (8.14)

p+(2"|ee) =
p+(e|1")p(1")p�(1"|e)

p+(e)
= 0.592 (8.15)

It becomes clear that measurements of “error” confirmed by subsequent measurements of “no

error” have a ⇠ 10% higher fidelity than those without such a confirmation. Moreover, if two

consecutive “error” measurements are recorded, the probability drops substantially by ⇠ 20 � 30%.

With these findings, many of the features in the data fall into place. One can see the e↵ects of these

conditional probabilities by looking at the 1-error cases in the Wigner tomography in Figs. 6.10

and 6.12, where the parity and fringe contrast of the 01 case appear to be less negative and sharp

than that of 10 (0 ⌘ “no error” and 1 ⌘ “error”). Along the same lines, the case 11 has by far

the lowest fidelity, as confirmed by the process tomography in Fig. 7.3. The single-shot records
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that come with each repetition of the monitoring sequence thus provide us with crucial information

beyond simply how to bin each result.
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Figure 8.2: Assessing measurement record confidence. Predicted statistics and confidence for
the corrected cat code after four syndrome measurements over 68 µs of monitoring; n̄

0

= 2. After four
rounds of error correction there are sixteen possible result records: 0000, 1000, . . . , 1111. The left plot
shows the predicted probability to measure each of these records individually (green bars, top axis), and
the cumulative probability (bottom axis). In the right plot, we also show the predicted process fidelity
conditioned on measuring each record (red bars are even parity, blue bars are odd parity). This conditioned
fidelity corresponds to our confidence in the output. In the column separating the plots, the numbers in
green correspond to the actual values of each individual green bar (left plot), and the numbers in red and
blue correspond to the values of the red and blue bars (right plot). The axis of the right plot, cumulative
process fidelity, is the cumulative sum of the predicted conditional probabilities weighted by the trajectory
occurrence probability. It is interesting to compare the records 1010 and 0001. The first suggests two
photon jumps (during the first and third steps) and the second suggests a single photon jump during the
last step. The conditional process fidelity for 1010 is actually higher. This is because measuring ancilla
|gi, which indicates no change in parity, has a higher probability of being correct than measuring |ei, which
does indicate a change of parity. Thus, every error (1) in 1010 is “verified” by the subsequent measurement
of no error (0), while an error in the last step of 0001 has a higher likelihood to be a faulty measurement.
Outlined in purple is the set of data we accept as “high-confidence” trajectories (Fig. 8.1), wherein every 1
is confirmed by a subsequent 0.

We can extend these calculations to a general simulation that handles an arbitrary number of

correction steps to show that this simple approach captures many of the features we see in our data.

A detailed look at tracking for ⇠ 68 µs in Fig. 8.2, for example, shows the individual process fidelities

we expect to measure for every possible measurement record. A particularly noteworthy conclusion

is that trajectories such as 1010 have a higher expected fidelity than 0001. Although the former

suggests more errors in the encoded state, each measurement result 1 is confirmed by a subsequent

0, whereas this is not the case in the latter.
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In summary, with each error syndrome measurement, all measurement infidelities are pushed

onto records that report higher and higher error numbers, and with time, these records become

more and more common. As seen in Fig. 8.2, the occurrence of high-confidence trajectories falls in

time, albeit slowly. In this sense, although the post-selection substantially improves the quality of

the final quantum bit, it nonetheless results in an exponential decay of acceptable trajectories, an

expected trade-o↵.
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Figure 8.3: Process matrices after seven steps of error monitoring. Measured process matrices
XM

j

for j = 0, 1, 2, and 3 errors after 109 µs for an initial encoding size of n̄
0

= 3. Ideal processes are
given by X

j

and are wire-outlined. As compared with the data in Fig. 7.3, note that the 0 error case has
the greatest drop in fidelity, the 1 error case goes down slightly, and the 2 error case increases substantially.
Note the 3 error case also exhibits clear signatures of the correct X

3

form. The substantial drop in fidelity
from 0.84 of Fig. 7.3 to 0.69 here is primarily due to the drop in the occurrence of 0 error cases with time.

Thus, the notion that an error record and an actual error history are not simply related by

some overall scaling corresponding to measurement infidelity explains why we should in fact expect

the fidelities of multi-error cases to not simply decay in time. As we’ve seen, building up statistics

over time provides valuable information in estimating the properties of the final state in the cavity.

Continuing the monitoring shown in the debugger, where n̄
0

= 3, (Fig. 6.12) for more than two steps

provides a palpable example. After seven steps over ⇠ 110 µs, the XM matrices conditioned on zero

to three photon jumps (Fig. 8.3) show a similar form as to those in Fig. 7.3. Interestingly, and as

144



1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Pr
oc

es
s 

Fi
de

lit
y

100806040200
Time (µ!"

 Corr. Cat Code, 0 Errors
 Corr. Cat Code, 1 Error
 Corr.Cat Code, 2 Errors
 Uncorr.Fock 0,1 Encoding

100

80

60

40

20

0
Oc

cu
rre

nc
e 

(%
)  0 Errors

 1 Error
 2 Errors

Figure 8.4: Process fidelity conditioned on error number. This plot shows the process fidelities
conditioned on individual error trajectories for j = 0, 1, and 2 errors (red circles, blue squares, and green
triangles respectively). Unsurprisingly, the 0 error case has the highest fidelity, followed by the 1 and 2
error cases. The initially surprising feature here is that the process fidelity of the 2-error case increases with
time. This is precisely a consequence of error syndrome measurement fidelity, wherein with more 2 error
trajectories we have more result records that have the aforementioned confirmation measurements. In other
words, with more statistics (inset) we have greater knowledge that measured 2 error cases in fact correspond
to actual 2 error cases in the encoded state. Non-monotonic variations in the data points throughout the
entire curve are attributed to variations in the e�cacy of the decoding pulses at di↵erent points in time.

expected, the zero jumps cases experiences the greatest drop in fidelity, from F = 0.89 to F = 0.82;

despite the high fidelity associated with so many consecutive “0” measurements, a probability of

missing photon jumps or misreading the parity meter still exists (discussed next in sec. 8.2). This

means that the quality of the estimate of the cavity parity and phase can only deteriorate. The

fidelity of the one-jump case in fact stays more-or-less the same, while that of the two-jump case

substantially improves as more high-confidence trajectories become available. The lower final process

fidelity is due to the exponentially diminishing number of 0-error cases.

Looking at the data for all points in time and plotting the fidelity decay conditioned on the

numbers of errors detected, as shown in Fig. 8.4, demonstrates the contrasting trends for the 0, 1,

and 2-error case. The 0-error case decays with a time constant of ⇠ 630 µs; this is the longest time

constant in our error correction system, and demonstrates the high fidelity we can achieve if we

use the cat code only as an error indicator. The fidelity of the 2-error case instead slowly increases
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with time as the occurrence of two-error trajectories that contain higher confidence “confirmation”

measurements within them increases as well, leveling o↵ after about 80 µs of monitoring. Crucially,

these results do not suggest that the cat code is ill-equipped to handle multiple errors throughout a

monitoring sequence. Rather, as explained in the following sections, they highlight the trade-o↵s we

make between mitigating the e↵ects of ancilla back-action and the consequent dearth of statistics

that results from the requirement of a substantially reduced syndrome measurement rate.

8.2 Cat code QEC performance limitations

In discussing what limits our performance, we return to the original motivation for the cat code

itself, namely the variety of errors one must inevitably face when implementing any QEC system

and the rewards one reaps by moving to a hardware-e�cient approach. The cat code still faces

the same dominant avenues of code failure as those introduced in the context of the Steane code

in Fig. 3.5. The need for only one ancilla and only one error syndrome measurement, however,

drastically simplifies the analysis of where things can go wrong (Fig. 8.5) and enables us to estimate

the severity of each source of loss. Table 1 details an infidelity budget for the cat code, which lists

the main contributions to depolarization. Although the contribution of each source is small, the

sources are many and add up quickly, bluntly encapsulating the challenges one faces in realizing

fault-tolerant QEC. Many of the e↵ects can be mitigated by measuring more quickly and perhaps

employing a quantum filter to retrieve a best estimate of the parity at any given time (see sec. 5.3).

For example, infidelities due to missing the occurrence of an error; ancilla preparation and readout;

and excursions out of the logical space due to Kerr, all approach zero as the measurement rate

increases. These thus impose no intrinsic limitation on cat code performance.

Crucially, however, errors due to the ancilla T
1

still persist regardless of measurement rate. Due

to its dispersive coupling to the cavity, a change in the energy of the ancilla at an unknown time

imparts an unknown rotation to the cavity state in phase space (introduced in sec. 5.4); this is

the forward propagation of an error. Any such rotation commutes with the parity measurement,

indicating that we learn nothing about these errors from our one syndrome measurement and that

the cat code in its current implementation is not fault-tolerant. Measuring the syndrome more

frequently only increases the likelihood of ancilla-induced dephasing, necessitating an optimized

measurement cadence to balance the risk of missing errors during t
w

with the probability of error

propagation during each syndrome interrogation. By slowing down the measurement rate, however,

we unfortunately elevate the contributions from the remaining sources of decoherence.
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errors that the cat code does not address, such as additions of a single photon, â†

s

(single incoming line); (3) a
failed parity mapping resulting from ancilla dephasing (ancilla T

�

); (4) incorrect ancilla initialization prior to
syndrome measurement resulting from unknown excitations, ancilla �" (|gi ! |ei); (5) undesired couplings
that result in dephasing due to Kerr, â†2

s

â2

s

(uncertainty in the time of a photon jump t
j

); and (6) ancilla
decoherence that directly propagates to unrecoverable errors in the logical qubit, a result of ancilla decay
or excitation, T

1

(single outgoing line). A repeat of the image from Fig. 3.5 highlights the correspondence
between the Steane and cat codes.

In the remainder of this section we expand upon the calculations that produce the predicted

gains in lifetime of the cat code over the Fock state encoding listed in Table 1. Each dominant source

of decoherence, whether arising from errors in the encoded state or in the syndrome interrogation,

contributes to the probability that the cat code will fail in a single round of error correction. When

isolated in a hypothetical situation as the only source of loss in the system, it can be quantified

with simple estimates based on coherence times, thermal populations, and measurement fidelities.
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Failure Dominant Max. Rate Opt. Rate
Mode Source t

w

⇡ 0µs t
w

⇡ 20µs

Predicted ⌧ Predicted ⌧

Double Errors cavity â · â 40 ms 1.7 ms

Uncorrectable Errors cavity â† 6 ms 6 ms

Readout Error transmon T� 7 ms 2 ms

Ancilla Preparation transmon �" 300 ms 900 µs

Undesired Couplings cavity â†2â2 600 ms 3 ms

Forward Propagation transmon T
1

200 µs 600 µs

Net Lifetime predicted 200 µs 320 µs

measured - 318 µs

Gain Over Uncorrected Logical Qubit: 1.4 2.2
Gain Over Best Physical Qubit: 0.7 1.1

Table 1. Failure modes of the corrected logical qubit. This table shows the predicted decay time
constant (⌧) of quantum information stored in a corrected logical qubit using the cat code paradigm under a
scenario in which each individual failure mode is the only source of loss. Dominant modes of failure in the cat
code are double errors (â

s

followed by â
s

) between consecutive syndrome measurements separated by a time
t
w

; possible errors that the cat code does not address, such as additions of a single photon (â†
s

); a failed parity
mapping resulting from ancilla dephasing (T

�

); incorrect ancilla initialization prior to syndrome measurement
resulting from unknown excitations (�") of the ancilla during t

w

; undesired couplings that result in dephasing
due to Kerr (â†2

s

â2

s

); and finally ancilla decoherence that directly propagates to unrecoverable errors in the
cavity state, a result of ancilla decay or excitation (T

1

). Two di↵erent measurement strategies are shown
for an initial n̄

0

= 2: as quickly as possible (t
w

⇡ 0µs) and the optimal monitoring time (t
w

⇡ 20 µs).
The lowest two rows show the multiplicative gains of cat code performance over the decay constants of
the uncorrected logical qubit (147 µs) and the system’s best physical qubit (287 µs, Fock states |0i

f

,|1i
f

).
These gains reflect the combined e↵ects of all loss channels acting together. We predict all numbers using
an analytical model derived in the following section (sec. 8.3) and show that for the net gains the failure
modes do not contribute independently. Using the optimal measurement strategy, we find that the predicted
gains in lifetime over the uncorrected logical qubit and over the Fock state encoding match the measured
performance of the corrected cat code (318 µs). Lifetimes of at least 6 ms would be possible if the forward
propagation of errors from the syndrome measurements were abated.

We stress, however, that the sources of loss detailed in the sections below do not act independently

when considering the experimental reality. Indeed, simply adding all of the rates in parallel leads

to an underestimate of the cat code performance. In sec. 8.3 we analyze the system as a whole and

show that we can analytically predict the data for the cat code decay shown in Fig. 7.7.
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Figure 8.7: Process fidelity decay for a larger encoding. An identical plot to that shown in Fig. 7.7,
except the initial cat size here is n̄

0

= 3. Every time constant involving cat code is lower than for n̄
0

= 2
due to the increased error rate in the cat states for higher photon numbers, � = n̄

s

⇡ 3
s

versus � ⇡ 2
s

.
On the top axis we plot the number of syndrome measurements used for each point in the corrected cat
code; note that for this larger encoding we typically use more measurements for a given time step than for
cat states of n̄

0

= 2.

Double-errors

The cat code is a first-order code, which means that the error syndrome we employ cannot detect

the occurrence of multiple errors between two consecutive measurements. The probability of such

events, p
2", can be calculated from the Poisson distribution:

p
2"(tM ) =

(n̄stM )2

2
e�n̄stM , (8.16)

where we take the approximation that n̄ is constant throughout the small time interval tM . In this

expression, tM ⇡ t
w

+ 1µs is the total measurement time; t
w

is the time delay between the end of

one syndrome measurement and the beginning of the next; and the parity mapping together with

ancilla readout totals ⇠ 1µs (see Fig. 6.3 for exact timings).

The average time between photon jumps is given by 1/n̄s. A simple calculation using Eq. 8.16

for measurement intervals tM ⇡ 1 µs and tM ⇡ 21 µs returns the predicted gains in the process
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Figure 8.8: QND parity measurements in the full QEC system. We repeat the same experiment
demonstrated in 5.3, which quantifies the e↵ect of measuring parity on the e↵ective cavity decay rate 1/⌧

tot

.
The main plot shows three decay curves of average parity hP̂ i versus time for three di↵erent measurement
repetition intervals: 2 µs, 5 µs, and 20 µs; the initial displacement is |↵| = 2. The inset shows a plot of
the extracted time constants for these three and other points. The data fits well to a model in which the
natural decay rate acts in parallel with an induced decay rate p

d

/⌧
rep

, for ⌧
rep

the repetition interval. In
this experiment we find p

d

to be 0.1% per measurement, in agreement with the results in [Sun et al., 2013].

fidelity lifetime over a Fock state encoding, ⌧f01

, one would expect to see if missing such events were

the only source of error. Defining a gain G
2"(tM ) = tM/(p

2"⌧f01

), we find:

G
2"(1 µs) ⇡ 125 (8.17)

G
2"(21 µs) ⇡ 6, (8.18)

reproducing the results presented in Tab. 8.6. Figure 8.7 shows an example of the e↵ect of greater

redundancy on the performance of the cat code. With a cat states of n̄
0

= 3, the greater rate of errors

in the logical space reduces the fidelity of each syndrome measurement and likewise necessitates more

frequent syndrome interrogation. As a result, the corrected cat code underperforms the Fock state

encoding. Once again, however, it overcomes the decoherence penalty, this time by a factor of ⇠ 3.3.

We also quantify how Quantum Non-Demolition (QND) our parity measurements are, just as

in chapter 5. Ideally, for perfectly QND measurements 1/⌧tot should match the natural decay rate

1/⌧s, regardless of the measurement rate. In reality, there is a small probability PD that by measuring

parity we induce more photon jumps. Using the methods studied extensively in 5.3, we find that

PD = 0.001 in this system (Fig. 8.8), comparable to our previous result [Sun et al., 2013]. The

150



probability of dephasing, however, is P 2

D, since this is the probability of inducing two jumps in a

row; this e↵ect is negligible.

Note that regardless of measurement rate each curve saturates at a measured hP̂ i ⇡ 0.95. This

is consistent with a thermal population of the storage cavity ns
th < 2%, which reduces the average

parity from ideally +1 of the vacuum to hP̂ i ⇡ 1� 2ns
th, and a parity measurement fidelity of 98.5%

for no photons in the cavity. Such performance would be impossible without the crucial application

of the adaptive parity monitoring protocol (see sec. 6.3) and highlights the advantages of always

maximizing the probability that the ancilla returns to the ground state.

Uncorrectable errors

The cat code cannot distinguish between photon loss (âs) and photon gain (â†
s). The probability of

excitation due to â†
s is given by p"s(tM ) = tMns

thn̄/⌧s. Given the low thermal population and high

coherence of the cavity, we expect an â†
s event on average every ⇠ 6 ms for n̄ = 2, a rate of thermal

excitation that is negligible compared to all other sources of loss. If this were the only source of

code failure, the gain G"s = tM/(p"s⌧f01

) would be independent of tM and equal to approximately

20, as given in Tab. 8.6.

When these currently uncorrectable sources of error become dominant, the redundancy of the

cat code can be augmented by increasing the size of the logical basis states to superpositions of three

coherent states (and higher) [Leghtas et al., 2013]. Although coherent states are not eigenstates of

â†
s, for large enough amplitudes the addition of a single photon results in a distortion in the Poisson

coe�cients that can still be corrected by the pumping scheme described in [Leghtas et al., 2015a].

Readout error

During the parity mapping sequence, ancilla dephasing due to T
2

is the dominant contribution to the

overall drop in parity measurement fidelity. The parity of the state of course does not change upon an

errant measurement, but our reaction to the result within the experimental flow does (see sec. 6.4).

Were it not for the detrimental e↵ects of ancilla back-action (see sec. 8.2), the optimal approach

would be to measure as quickly as possible to build up measurement statistics (see sec. 8.1). Indeed

this was the strategy implemented in chapter 5, where the goal was to understand the dynamics of

photon jumps and so the forward propagation of ancilla decoherence was not considered. A quantum

filter used Bayesian statistics to best estimate the parity of the state at any given time, and it would

take about three consecutive agreeing measurements for the filter to completely switch from one

parity to another. In this work, with improved fidelities and lifetimes we understand that with a
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measurement cadence of tM ⇡ 1 µs it would take roughly two measurements (2 µs total) for an

equivalent filter to converge on a parity with high probability. If a photon jump occurs within this

e↵ective bandwidth, the filter will not detect it, resulting in a readout error. With average photon

jump times on the order of 140 µs for an n̄ = 2 in the cavity, the probability of missing a jump is

therefore pmj ⇡ 2/140 ⇡ 1.5%. The gain is therefore approximately equal to 140 µs/(pmj⌧f01

) ⇡ 25,

as in Tab. 8.6.

For the optimal measurement cadence tM ⇡ 21 µs for n̄ = 2, given that the probability to have

photon jumps within tM is approximately 20%, the optimal strategy is to trust each result implicitly

(see sec. 8.3). If ancilla dephasing were the only source of error, after the syndrome mapping

time ⇡/�sa the purity of the ancilla state would decrease to approximately ⇡/(�saT
2

) ⇡ 0.98.

The remaining 2%, which is incoherent mixture, would be measured to have the correct syndrome

mapping result half of the time. The probability to dephase the logical qubit due to an errant

syndrome measurement result becomes p� ⇡ 1%. The gain G�(tM ) = tM/(p�⌧f01

) ⇡ 7 returns the

result presented in Tab. 8.6.

Ancilla preparation

After every syndrome measurement, we reinitialize the ancilla to |gi regardless of the result (see

sec. 6.3). Given its finite rate of excitation �", after tM the ancilla may no longer be in the ground

state with a probability p"a = �"tM , which leads to an errant subsequent syndrome measurement.

With a maximal syndrome measurement rate, ancilla preparation errors are negligible as some type

of majority voting can be performed on groups of measurements to filter out this e↵ect. Errors only

occur on the order of p2

"a for majority voting in groups of three. The gain is therefore G"a(tM ) =

tM/(p2

"a⌧f01

) ⇡ 2000, reproducing the result in Tab. 8.6. For the optimal rate, however, this gain is

limited by �" only, and thus G"a(tM ) = 1/(�"⌧f01

) ⇡ 3. This mechanism is of course also responsible

for cavity dephasing, as is described in section 8.2, and could be mitigated by stabilizing the ancilla

ground state during t
w

.

Orthogonality of basis states

Using a Python quantum simulation software package called QuTiP [Johansson et al., 2012, 2013],

we simulate the e↵ect of the increasing non-orthogonality on the e�cacy of the optimized decoding

pulses to faithfully transfer an encoded state in the cavity back onto the ancilla (Fig. 8.9). We

find that with an initial encoding size of n̄
0

= 2 and after a time of ⇠ 100 µs, the error in the

decoding pulses for even parity states approximately equals 2-3%, while for the odd parity states it
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approximately equals 6-7%. Using the Poisson distribution to calculate the percentage of even and

odd parity states after ⇠ 100 µs, we find that the resulting infidelity due to overlapping basis states

at the end of the tracking sequence amounts to roughly 4-5%. For earlier times, this error rapidly

decreases toward 0, indicating that even for small cat sizes, the approximation that the basis states

are orthogonal is still quite accurate.
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Figure 8.9: Decoding pulse fidelity as a function of time. These numbers are obtained from
the fidelities predicted by the Python QuTip [Johansson et al., 2012, 2013] quantum simulation package.
Consistent with the analytical expressions for cat code basis overlap plotted in Fig. 3.10, the optimal control
map back pulses have a lower fidelity for odd parity states. As expected, the fidelity is also lower when the
size of the initial encoding is n̄

0

= 2 rather than n̄
0

= 3.

Code-space leakage

To a good approximation, for n̄ . 2 the basis states of the cat code can be interpreted as super-

positions of only the Fock states |0if ! |7if . In turn, this restricted space can be described in

a binary representation that requires just three physical qubits (Fig. 8.10), with coe�cients given

by the Poisson distribution of a coherent state of ↵ .
p

2 and with d
0

the least significant bit in

|d
2

d
1

d
0

i (e.g. |110i ⌘ |6i). In this formulation, d
0

is the “Parity Bit:” when d
0

= 0 the parity of

the state is even and when d
0

= 1 the parity is odd. Note that the even and odd logical basis states

are still all mutually orthogonal.

Although in principle such an encoding scheme can be fashioned in a cQED system with three

transmons, the error processes would be completely di↵erent, dominated by single transmon energy

decay and dephasing rather than the correlated shift of bits arising from the action of some e↵ective

lowering operator. The utility of this representation, however, is that it emphasizes the possibility

of excursions out of the code space; for increasing deviations ✏n of the coe�cients cn from their ideal
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Figure 8.10: Cat code basis in a three-qubit binary representation. The cat code logical basis
states |C±

↵

i and |C±
i↵

i can be expanded in the Fock basis, where each component is rewritten in binary.
For small cat sizes of |↵|2 . 2, only three physical qubits are necessary to realize such a representation to
high accuracy, as the Poisson coe�cients c

n

for Fock states greater than |111i ⌘ |7i become vanishingly
small. Should these coe�cients deviate from their specified values without our knowledge, the integrity of
the quantum information may start to su↵er.

values as specified by the Poisson distribution, the overlap (hC+

↵ | +
P

7

n=0

✏n hn|) |C+

↵ i ! 0. This

e↵ect is of course continuous.

One may note that the Kerr of the cavity immediately changes these coe�cients at a rate Ks.

This e↵ect, however, is deterministic, does not change the parity of the state, and in fact periodically

brings the coe�cients back to their original values (minus the e↵ect of amplitude decay) [Kirchmair

et al., 2013]. It therefore does not constitute a source of dephasing since it can be taken as just a

continuous change of basis in time. As long as we take this into account when decoding the encoded

state back onto the ancilla at the end of our protocol, no information is lost (sec. 6.3). There are,

however, several non-deterministic e↵ects that do constitute dephasing, all arising from undesired

interactions of the cavity with the ancilla, with the readout cavity, and again with itself (a second

e↵ect of Kerr to be described shortly). Some of these sources of loss are possible to partially recover

from even in the current implementation of the experiment, while others are a central vehicle of

non-fault-tolerance in this system.

Undesired couplings – self-Kerr & cross-Kerr

The non-commutativity of the cavity’s Kerr Hamiltonian and the annihilation operator [Ks

2

â2†
s â2

s, âs] 6=
0 results in the following relation [Leghtas et al., 2013] (excluding an irrelevant global phase):

âse
�iK

2

tâ†2
s â2

s = e�iK
2

tâ†2
s â2

se�iKtâ†
sâs âs. (8.19)

This means that every time a photon jumps at a time tj , the cavity state is rotated in phase space by

an angle ✓ = Kstj . Without an infinite cadence of measurement, however, there is always some finite

uncertainty in tj , �tj , and consequently in ✓, �✓. A non-zero �✓ results in an angular spread of cat
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code basis states in phase space. On a shot-by-shot case, it means that we lose track of the phase of

the cavity state within the angular window defined by KstM . In other words, the state leaks out of

the code space. We study the e↵ects of such leakage by encoding a quantum bit into our code-space

and then immediately thereafter intentionally decoding back at the wrong phase (Fig. 8.11). The

resulting Gaussian curve allows us to quantify the sensitivity of the cat code to uncertainties in the

jump time.
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Figure 8.11: Fidelity as a function of incorrect decoding pulse angle. Measured loss of fidelity as a
function of an intentional phase o↵set ✓ of a decoding pulse that immediately follows quantum bit encoding.
With a standard deviation of ⇠ 24�, the broad Gaussian fit shows that for small rotations the fidelity su↵ers
only quadratically. Hence, the Kerr-induced rotation per photon jump is not a major source of dephasing
for low jump numbers even with a t

w

⇡ 20 µs. However, as ancilla decay during mapping can rotate the
state by any angle, it causes a substantial degradation in process fidelity.

If we were to measure the error syndrome very quickly, we would know tj to high accuracy

and the resulting error due to uncertainty in jump time would be negligible given the second-

order dependence of process fidelity on decoding angle. With a tM ⇡ 1 µs, the average angle of

rotation ✓̄ ⇡ 1�. For this cadence, we can assume a uniform probability distribution that gives

an uncertainty in angle of �✓ ⇡ 0.5�. Using the result of the fit in Fig. 8.11, we average over the

Gaussian distribution within a window of ±0.8� to find a probability of dephasing pK ⇡ 0.02%, an

expectedly minor contribution. Weighting pK by the probability to have a jump within tM , which

is on the order of 1%, the predicted gain in such a scenario where this is the only source of error is

consequently very high: GK = tM/(pK · 0.01 · ⌧f01

) ⇡ 2000, as in Tab. 8.6.

Given the necessity of spacing out parity measurements in time by t
w

in order to maximize

lifetime gain, however, the absolute time of the jump and thus the value of ✓ inherit some non-

155



negligible uncertainty, resulting in code space leakage. In other words, the coe�cients cn now

deviate from the Poisson distribution by ✏n that are unknown. For a typical t
w

⇡ 20 µs and the

value of the cavity’s Kerr, the uncertainty in jump angle is ⇠ 10�, resulting in a ⇠ 3% loss of fidelity.

This loss of course increases with a greater error count. Assuming the probability of detecting a

photon jump is again ⇠ 20% per step, the loss in process fidelity is pK ⇡ 0.2 ⇥ 0.03. The gain

GK = tM/(pK⌧f01

) ⇡ 10, as in Tab. 8.6. The rate Ks, however, is on the order of several kHz,

and so in principle we can completely recover from this minor dephasing by interleaving the parity

measurements with the dissipative pumping scheme demonstrated in [Leghtas et al., 2015a], which

pumps and refocuses slightly dephased cat states back to the original logical basis (restoring their

amplitude as well).

Figure 8.12: E↵ect of uncertainty in photon jump time. The state in the cavity acquires an extra
phase ✓ every time a photon jump occurs that is proportional to the Kerr and the absolute time of the jump
t
j

: ✓ = K
s

t
j

. As the parity measurements are performed approximately every 20 µs, there is an inherent
uncertainty associated with the absolute time of the jump, which causes some degree of dephasing. This
cartoon illustrates this feature; although we know the average phase rotation ✓̄, the unknown exact jump
time results in an uncertainty in this angle �✓. If this uncertainty is small, as seen in Fig. 8.11 the e�cacy of
the decoding pulse is not substantially degraded. This e↵ect encourages a greater syndrome measurement
frequency.

Likewise, code space leakage occurs whenever a coherent state is injected into the readout cavity

to measure the state of the ancilla. As coherent states have an uncertainty in their average photon

number of
p

n̄, the cross-Kerr interaction leads to a dephasing of the encoded state at a rate propor-

tional to �sr. Quantitatively, per measurement we see an average rotation of �̄ = n̄�sr⌧meas

⇡ 20�

of the cavity state in phase space for a readout pulse duration ⌧
meas

. Given the value of �sr, we

estimate that each readout pulse contains n̄ ⇡ 70 photons. The uncertainty in the rotation scales

as the square root of n̄: ��̄ =
p

n̄�sr⌧meas

⇡ 2�. With n measurements, the total uncertainty in the
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angle is
p

n��̄. For example, after ten measurements this uncertainty is still much smaller than the

standard deviation of the Gaussian in Fig. 8.11. Given the minimal e↵ect on the process fidelity, this

source of dephasing is excluded from the discussion. We therefore treat the cavity anharmonicity

and coupling to the readout cavity not as sources of non-fault-tolerance, but rather as necessary

technical trade-o↵s that can in principle be e↵ectively suppressed.

Forward propagation

Infidelities due to ancilla dephasing outlined in sec. 8.2 and the forward propagation of errors to

be discussed in this section have a common denominator: ancilla decoherence. In the former, both

phase flips and amplitude decay of the ancilla contribute to a decrease in parity measurement fidelity.

In the latter, one can see by looking at a simplified system Hamiltonian that the frequency of the

cavity depends on the state of the transmon:

Ĥ/~ = !̃a |ei he| + (!̃s � �sa |ei he|)a†
sas (8.20)

Figure 8.13 depicts how one can model a parity measurement in a digitized version (Fig. 8.10) of

the cat code. Employing a single ancilla, the parity measurement is nothing more than a CNOT

gate between this ancilla and the parity bit d
0

, which specifies the state’s symmetry with respect

to a 180� rotation. The CNOT is written here equivalently as a controlled phase gate between two

Hadamard gates (H) [Nielsen and Chuang, 2010]. The higher parity bits, d
1

and d
2

, provide further

information about the state’s symmetry properties with respect to 90� and 45� degrees. The first

panel shows that with no ancilla energy decay, the parity mapping is perfect since it does nothing

to coe�cients cn at the end of the protocol.

The length of this mapping, ⇡/�sa ⇡ 250 ns, however, is a small but non-negligible fraction of

the ancilla T
1

. One can model this finite gate time by splitting the phase gate into two “controlled-

⇡/2” gates and adding two phase gates to the next parity bit d
1

. With a perfect parity mapping one

obtains the exact same results as in the first row. If the ancilla decays exactly half-way through the

sequence, however, the cavity state inherits a phase of ⇡/2 in phase space; this is a logical bit flip

in our basis. One can continue splitting the gate into smaller and smaller pieces (e.g. third panel),

where now the ancilla T
1

decay rotates the cavity state by an arbitrary angle that is known only if

the time of ancilla decay is known. Of course, as we depend on the entangling interaction between

the ancilla and cavity throughout the parity mapping time, in this implementation we have no way

of detecting when such decay occurs. Equivalently, the photon number parity operator P̂ = ei⇡â†
sâs

157



Figure 8.13: E↵ect of ancilla T
1

in a circuit model representation. Code space leakage can be
particularly acute if the ancilla |Ai undergoes energy decay (or excitation) during the parity mapping. Shown
in the first panel is an ideal parity mapping using the binary representation. The least significant bit, d

0

, is
the parity bit; the parity is even for d

0

= 0 and odd for d
0

= 1, regardless of d
1

and d
2

. The parity mapping
is thus a simple CNOT gate, depicted here as a controlled phase (solid black circles, ⇡ phase shift) between
two Hadamard gates (H). Such a circuit representation belies the fact that the mapping is finite in time,
lasting ⇡/�

sa

⇡ 250 ns. To obtain a better approximation of the true dynamics, we split the CPHASE into
two pieces, where the two empty circles are now controlled phase gates with a ⇡/2 phase shift. A simple
calculation in the Fock basis demonstrates that if the ancilla suddenly decays to |gi exactly halfway through
the mapping, a logical bit flip occurs. For arbitrary decay times, we witness code space leakage, where the
cat state is aligned with neither the real nor the imaginary axis. The third row shows an example of this for
one more layer of granulation.

commutes with any rotation in phase space: [P̂ , ei✓â†
sâs ] = 0. The environment gains information

that we do not. Beyond the risk of T
1

decay during the parity mapping, the equally detrimental

e↵ect of T
1

decay of the ancilla during the readout pulse (before ancilla reset, see sec. 6.3) reduces

the fidelity of all trajectories in which one or more photon jumps occur. In addition, unknown ancilla

excitations from |gi to |ei (or higher states), which occur at a rate proportional to �", dephase the

cavity state similarly.

We can comb through the probabilities of a T
1

event in each of the three main steps throughout

the entire duration of the sequence and calculate a gain in a manner similar to calculations in previous

sections. During the parity mapping, the probability of ancilla decay is p#a,1 ⇡ ⇡/(�sa ·2T
1

) = 0.004;

the probability of measuring ancilla |ei equals the probability of measuring a photon jump, and so
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the contribution to dephasing is p#a,2 ⇡ (n̄stM )⌧
meas

/T
1

= 0.0001, the probability of a photon

jump times the probability of T
1

decay in a duration ⌧
meas

; finally, during tM there is always the

risk of ancilla excitation, with a probability p"a,3 ⇡ tM�" = 0.001. The total probability of forward

propagation is pfp(tM ) ⇡ p#a,1 + p#a,2 + p"a,3. For n̄ = 2, we find that pfp(1 µs) ⇡ 0.5%. Defining

the gain Gfp(tM ) = tM/(pfp⌧f01

), we find Gfp(1 µs) ⇡ 0.7. Performing the same calculation for

tM ⇡ 21 µs, we find Gfp(21 µs) ⇡ 2. We thus obtain the numbers in the final row of Tab. 8.6,

and arrive at the key constraint of our system: measuring more frequently enhances the likelihood

of forward propagation of errors. As seen in the preceding sections, by mitigating this decoherence

channel we stand to gain substantially in all other aspects with faster syndrome measurements.

8.3 Optimizing cat code performance

The presence of forward propagating errors in our system due to ancilla decoherence substantially

alters the strategy one normally seeks to employ in a QEC system. Typically, the goal is to suppress

the occurrence of errors within the code-space to second order with measurements performed at

the maximum rate permitted by the parameters of the system. With such a strategy, however,

one necessarily entangles the logical states with the ancillary systems needed to extract the error

syndromes for a substantial fraction of the QEC protocol’s duration. As the rate of photon jumps

in our system is much lower than 1/⌧
meas

, the probability that two errors occur within ⌧
meas

is

considerably lower than the probability of ancilla-induced decoherence. Such a strategy thus results

in a net-loss.

We thus explore a di↵erent approach, one that instead slows down the syndrome measurement

cadence to find an optimal balance between errors in the code and ancilla induced dephasing. We

take the point of view that experimentally our task is to preserve a quantum bit of information for

a total time T . The analytical model we present below then calculates the optimal measurement

cadence and the predicted lifetime. It takes into consideration the basic measured parameters in

our system: cavity and ancilla coherence properties (⌧s = 250µs, T
1

= 35µs, T
2

= 12µs), thermal

populations, and measurement fidelities. The predictions we arrive at closely match the data we

present in sec. 7.3. Such results indicate that not only can we successfully optimize and employ a

measurement strategy that preserves a quantum bit beyond the break-even point, but given only a

basic set of assumptions about the sources of loss in the system, namely those outlined in sec. 8.2,

we capture the dominant mechanisms that set the performance metrics of our QEC system. Using

this model, we can then predict the potential gains we expect to witness when certain key system

parameters are enhanced. In particular, by improving ancilla T
1

to levels of ⇠ 100 µs (well within the
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range of current transmon technology), we enter the regime in which the optimal strategy encourages

measurements that are fast enough to warrant majority voting in real-time, thereby substantially

mitigating decoherence due to ancilla T
2

. With this single improvement, the cat code promises to

provide gains of over an order of magnitude.

A simplified model

As a brief primer, we can define the e↵ective cavity decay rate, eff , which predicts the gain one

would expect to see in a parity tracking protocol over the natural cavity photon jump rate n̄s (or

the Fock state encoding, if scaled appropriately). This rate be described by the sum of all dominant

error rates including the three sources of infidelity described above plus a fourth to include readout

errors. This eff should also be a function of the number of consecutive parity measurements, N ,

and a waiting time ⌧W between each one of these N -measurement “packets” (Fig. 8.14). Quantifying

the parity tracking performance as the foundation for a QEC protocol comes down to finding the

optimal N and ⌧W that give the lowest eff , given the realistic experimental parameters at hand.

Explicitly, we have:

eff = [
(n̄s)2(N⌧M + ⌧W )2

2
+ N✏T

1

+ O(✏mT�
) + O(✏mM )]

1

N⌧M + ⌧W
, (8.21)

where ⌧M is the time it takes to perform one parity measurement; ✏T
1

⇠ ⌧M/T
1

; ✏T�
= ⇡/�saT�;

✏M are the loss of cat fidelity due to ancilla T
1

, T�, and measurement inaccuracy respectively; and

m = N+1

2

.

Figure 8.14: Schematic of an optimized parity monitoring protocol. An optimized parity tracking
scheme would involve performing packets of N measurements, each lasting a time ⌧

M

, followed by a waiting
time of ⌧

W

.

Central to this paradigm is understanding that the incorrect knowledge of the number of parity

jumps is the first major contribution to cat state decoherence. Single photon jump events can be

tracked as demonstrated in the previous chapters, and therefore the corresponding phase errors that

arise from the stochastic application of âs on the logical qubit can be corrected. The term that goes
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like (n̄s)2 determines the probability instead to have two or more jumps within the time window

(N⌧M + ⌧W ). Measurement infidelity in the form of ancilla dephasing ✏T�
and ✏M contributes to

misleading the observer that a jump has occurred, which is equivalent to losing track of the number

of jumps. These terms contribute to the eff expression exponentially, and in a “majority vote”

fashion (assuming N is odd), which explains the choice of exponent in ✏T�
and ✏M . Therefore, in

principle the errors due to ✏T�
and ✏M can drop out by either simple majority voting or the more

elaborate quantum filtering. Collectively, these three terms correspond to cat state dephasing in

the event of the incorrect tabulation of the number of jumps the cat state has undergone during

its evolution. The second major contribution to decoherence, ✏T
1

, comes from cat state dephasing

due to T
1

. It only takes one ancilla decay event within a string of N measurements to completely

dephase a cat state, which is why ✏T
1

grows linearly with N . Therefore, an optimal balance needs

to be struck between gaining information about photon jumps and dephasing the cavity state by

inquiring too frequently.

The full optimal strategy

In our experimental implementation, the optimal strategy is clearly to measure so infrequently that

each measurement result must be taken at face value (Tab. 8.6). At the moment immediately prior

to the application of the decoding pulse, all we have in our possession is a record of measurements

that we can use to deduce the error trajectory of the state that was encoded in the cavity. As a

function of this classical information we then act on the system and decode the state to the best of

our knowledge. There are two questions we can ask:

a. For a given trajectory of photon jumps, what is the probability that the conclusion we ob-

tained, based on the measurement record, is correct?

b. What is the probability distribution of possible trajectories that may produce a given mea-

surement record?

The first question relates to the optimization process. We wish to maximize the probability

of correctly identifying the actual cavity error trajectory. Trajectories with either many errors or

consecutive errors result in a lower probability of success, as shown in sec. 8.1.

The second question relates to our confidence in the output. There are di↵erent error trajectories

that can produce the same measurement record. The best strategy is to simply choose the most

probable one. Our confidence in the output is then the probability that this scenario occurred

conditioned on the measured record. The output is thus not only the final state, but also a measure
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of confidence. We can either ignore this extra classical information and treat the whole process as

a black box (red curve, Fig. 7.7) or we can also use this information to post-select the data relative

to some required confidence constraints (blue curve, Fig. 8.1).

Below we summarize our findings from an analytical model fully derived in appendix B. For a

fixed, desired time T for which we would like to correct a quantum bit, we define a configuration to

be the combination of the following parameters:

1. The initial Cat size, n̄
0

= |↵|2.

2. The number of parity tracking steps S.

3. The step durations {t
1

, t
2

, . . . , tS}, where
PS

k=1

tk = T .

The process fidelity, Fprocess decays exponentially from 1 to 1/4. Here we derive and optimize

the scaled version which decays from 1 to 0 at exactly the same rate, which we denote as the fidelity :

F ⌘ Fprocess � 1/4

3/4
. (8.22)

This is the probability we successfully corrected the state. We can write the total fidelity as a

product of four terms:

F (T, n̄
0

, S, {tk}S
t=1

) = F
�"(T ) · FED(T, n̄

0

) · FT (T, n̄
0

, S, {tk}S
t=1

) · FKD(T, n̄
0

, S, {tk}S
t=1

). (8.23)

F
�" Whenever the ancilla is excited to |ei we lose the encoded information. This a↵ects our

protocol and also any other storage scheme that uses the cavity equally, since the ancilla’s

rate of excitation should be independent of the state in the cavity. The term F
�" depends on

T alone and equals e�T ·�" .

FED The fidelities of the encoding and decoding pulses depend on the initial and final cat sizes,

which are n̄
0

and n̄
0

e�s T . The non-orthogonality is simulated and taken into account nu-

merically (Fig. 8.9).

FT The loss of fidelity due to the monitoring itself depends on the ancilla’s figures of merit

throughout the time-scale of the parity mapping and projective measurement. It also depends

on the cat size and s through the probability to miss photon jumps during a single step.

FKD The uncertainty in the angle due to the rotation from the non-commutativity of the Kerr

Hamiltonian and âs decreases the fidelity of the decoding pulse. We calculate this Kerr rotation
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distribution from the number of expected photon jumps and the step lengths, together with

the measured fidelity of the decoding pulse as a function of the angle (Fig. 8.11).

Ignoring FKD for the moment, we can show that the optimal fidelity can be written in the

following form:

FOPT (T, n̄
0

) = e�T�" · FED(T, n̄
0

) · e�n̄
0

[1�e�s T
]/G, (8.24)

where G, the system gain, is a function of the other system parameters (�sa, T
1

, . . . ) and is a constant

of the system. When sT ⌧ 1 we can approximate the optimized fidelity as:

FOPT (T, n̄
0

) = e�T�" · FED(0, n̄
0

) · e�s T · n̄0

G , (8.25)

which shows that the decay rate of the quantum error corrected information is G/n̄
0

slower compared

to storage cavity decay rate s. The process fidelity decay rate of the |0if , |1if Fock state encoding

decays 3/2 slower than s. The break-even condition is therefore:

2G

3n̄
0

> 1. (8.26)

As we increase n̄
0

, the gain in lifetime decreases. On the other hand, in order to have su�cient

orthogonality between the logical basis states, n̄
0

has to be high enough. Hence, an optimal n̄
0

exists. Since eq. 8.24 ignores FKD, it expresses an upper bound for the fidelity, and thus G has to

be even larger in order to get an actual gain in lifetime. Better ancilla coherence times will increase

the optimal measurement cadence and make FKD approach unity (see sec. 8.2).

Figure 8.15 shows how G depends on T
1

and T� of the ancilla. With our ancilla’s coherence times,

G is about 5. With n̄
0

= 2, the ratio 2G/3n̄
0

equals 1.65. The actual gain is lower, however, since we

need to take into account the e↵ect of the Kerr rotation and the degradation of the decoding pulse

due to loss of orthogonality. We can take these e↵ects, FKD and FED(T), into account and optimize

the configuration when fixing the number of steps. Figure 8.16 displays the measured fidelity and

our model’s prediction for the same configurations. It also displays the optimal expectations when

forcing di↵erent numbers of steps. Our model predicts the measured data accurately and lets us find

the optimal configuration as a function of the total duration T . We end up with a total predicted

gain of 10%, in line with the results in Fig. 7.7.

Just as in the work on the Bell-cat (chapter 4) and the repeated monitoring of photon number

parity (chapter 5), we again arrive at a point in the story where we can feel comfortable that little,

if anything, has been excluded from our understanding of this full QEC system. Taking stock of
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Figure 8.15: Expected gains in lifetime with a more coherent ancilla. The gain G as a function of
T
1

and T
�

of the ancilla. With the parameters of our ancilla we get G = 4.96, and the predicted gain over
the Fock state encoding is 1.65. This value is higher than the measured 10% improvement since this plot
does not include the e↵ects of dephasing due to Kerr or the degradation of information due to overlapping
logical basis states. A key point is that with ancilla coherence on the order of 100 µs, we already expect to
see gains of an order of magnitude.

what we’ve just learned through the analysis of the dominant sources of decoherence in the system

and their e↵ects on the decay of process fidelity with time, we are encouraged to press forward

and confront the issue of fault-tolerance head-on. Far from being discouraged that once again it

seems like the T
1

of a physical qubit stands in the way of realizing a QEC system that can enhance

the lifetime of a quantum bit for periods of time to be practically applicable, we instead find our
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Figure 8.16: Predicted process fidelity decay with optimal monitoring cadence. The optimal
predicted process fidelity for our system given ancilla and cavity coherence times, and cavity Kerr (squares).
Comparing this simulation with the data (circles) shown in Fig. 7.7, we find that our model faithfully predicts
the measurement results at each point. We also display the expected process fidelity we would have obtained
had we fixed the number of steps, in colored curves. Commensurate with the top axis Fig. 7.7, we chose
optimal configuration for each of the total time durations.

task to be simpler and more focused than before. There is no inherent limitation to the cat code.

Even with the basic hardware that we’ve been using for several years now we can actually overcome

the decoherence penalty of a bonafide QEC code. Instead of having to understand the dizzying

array of (perhaps unknown) couplings and Hamiltonian parameters in large, multi-physical qubit

systems, we take our rigorous understanding with us towards the natural and necessary future steps

of increasing the redundancy of the cat code to handle ancilla back-action and the remaining entries

in Tab. 8.6. The fact that our predictions are in such good agreement with the data gives us

confidence in designing future hardware upgrades as a means to increasing the complexity of our

quantum devices to the point that they can perform meaningful calculations. In conclusion, perhaps

the most important contribution of our results thus far is that they have contributed to crystallizing

our understanding of what fault-tolerance with the cat code will require and where to go next.
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9 – Future Directions

In implementing the first quantum memory that outperforms the system’s most coherent ele-

ment, we’ve taken an big step towards realizing fault-tolerant quantum computation [Devoret and

Schoelkopf, 2013]. Under the umbrella of this single figure of merit, however, many important lessons

serve to direct future endeavors in demonstrating the cat code as a fully fledged logical qubit on

which logical operations can be performed and algorithms can be executed. We have shown the

capability to e�ciently encode and extract information from a continuous variable system through

the violation of a Bell-inequality, where the choice of coherent states as the basis allows us to treat

the state in the cavity to a good approximation as just another two-level system. The experimental

verification of how photon loss leads to the degradation of the CHSH entanglement witness with

increasing cat size confirms the assumption that single-photon loss is by far the dominant error

mechanism in such cavities. A time constant of parity decay of a state in the cavity subjected to re-

peated error syndrome interrogation that matches the case of uninterrupted free evolution indicates

that single-shot photon number parity measurement provide a fast, high fidelity, and QND means

of monitoring the occurrence of errors. Increasing the complexity and sophistication of the archi-

tecture to a full quantum error correction system, in which real-time feedback plays a crucial role,

has allowed us to benchmark for the first time the severity of each dominant source of decoherence

that can a✏ict any QEC system. This result provides crucial information as to the single dominant

source of non-fault-tolerance in this implementation. Given the ability to not only make up for the

decoherence penalty associated with the redundant encoding of a quantum bit using the cat code,

but moreover realize gains in lifetime over the system’s most coherent element, we have underscored

the advantages a hardware-e�cient architecture yields. Indeed, we’ve argued that ancillae with far

inferior coherence properties can be utilized to great e↵ect in enhancing the lifetime of quantum

information.

In this chapter we explore some of the next pressing challenges that need to be faced by future

endeavors in order to improve the performance of the QEC system further. We discuss the recent

progress that has been made in combating sources of dephasing that parity measurements do not
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address, namely the decay of the coherent states to vacuum, and an uncertainty in the location

of the coherent states in phase space that comes about to the e↵ects of higher order Hamiltonian

terms, such the the cavity’s anharmonicity and its interaction with the readout cavity during the

projective ancilla measurement. Furthermore, we discuss the necessity to move beyond implementing

a quantum memory with a single logical qubit in one cavity to coupling multiple cavities to perform

logical operations and the crucial requirement of correcting errors during logical gates. We then

conclude with an outlook of how a modular architecture designed to incorporate all of these ideas

presents an encouraging, viable, and exciting path toward realizing a quantum computer in the

near-future.

9.1 Cat pumping that stabilizes the logical states

In order to move beyond the corrected quantum memory demonstrated here towards a scalable

architecture with which we can perform actual computations, we need several advancements. First,

we must suppress many other sources of dephasing in the system that fall under the general heading

of code-space leakage. The photon number parity measurements provide essential information as to

the occurrence of discrete errors in the state of the cavity. They do not, however, reveal anything

about the code-space leakage due to ancilla state measurement, uncertainty in the photon jump

time, and the overlap of basis states that constantly increases in time as the coherent states decay

to vacuum. The goal is to thus confine any state in the cavity to a quantum manifold that is

spanned by the coherent states that comprise the components of “2-cats” or “4-cats,” for example.

Such stabilization, crucial to future cat code applications, has already been proposed [Mirrahimi

et al., 2014] and successfully demonstrated in the impressive experimental work shown in [Leghtas

et al., 2015a], in which the basis states |↵i and |�↵i were chosen. The idea is to engineer a driven

dissipative process in which pairs of photons are added to and subtracted from the storage cavity.

This can be achieved by using a Josephson junction as a 4-wave mixer, which when stimulated

by an o↵-resonant pump tone converts photons from the readout cavity into two photons in the

storage, and vice-versa (Fig. 9.1). The frequency of the pump tone must be chosen to obey a specific

frequency matching condition to enable this process:

!p = 2!̃s � !̃r, (9.1)

where !p, !̃s, and !̃r the pump, storage, and readout frequencies respectively. Applying the pump

together with a weak drive on the readout cavity, one realizes a system that is well-described by the
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following Hamiltonian in the RWA approximation:

Ĥsr/~ = g⇤
2

â2

sâ
†
r + g

2

â†2
s âr + ✏dâ

†
r + ✏⇤dâr � �srâ

†
rârâ

†
sâs � Ks

2
â†2

s â2

s � Kr

2
â†2

r â2

r (9.2)

g
2

=
�sr⇠⇤

p

2
(9.3)

⇠p ⇡ �i✏p
r

2

+ i(!̃r � !p)
, (9.4)

where r is the decay rate of the readout cavity, ✏r and ✏p are the respective drive strengths for the

readout and pump, and g
2

reflects the conversion of pairs of photons in the storage to single photons

in the readout.

Figure 9.1: Confining a cavity state to a manifold spanned by two coherent states. (a).
Confinement of a quantum state belonging to a large Hilbert space into a 2D quantum manifold. The outer
and inner cubes form a hypercube representing a multidimensional Hilbert space. The inner blue sphere
represents the manifold of states spanned by the two coherent states. Stabilizing forces direct all states
toward the inner sphere without inducing any rotation in this sub-space, as indicated by the purple arrows.
(b) Similar to the setups described in the previous experiments in this work, the long-lived storage cavity
(high Q) and fast readout cavity (low Q) are bridged by an ancilla transmon. The pump, readout, and ancilla
manipulation drives are applied through the readout input port. The input port of the storage is used to
map out the Wigner function. (c) Cartoon spectrum of the relevant frequencies in the setup. (d), (e)
Depictions of the 4-wave mixing process mediated by the Josephson junctions, where two storage photons
are converted into a readout photon that is lost to the 50⌦ environment of the output transmission line and
two storage photons are created as a result of a drive on the readout.
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One can then adiabatically eliminate terms including the readout in 9.2 to obtain the following,

simplified form that describes the dynamics that govern the storage cavity [Leghtas et al., 2015b]:

Ĥs/~ = ✏⇤
2

â2

s + ✏
2

â†2
s � Ks

2
â†2

s â2

s (9.5)

✏
2

= �i
�sr

r
⇠⇤
p✏d (9.6)


2

=
�2

sr

r
|⇠p|2, (9.7)

where ✏
2

is the nonlinear drive that inserts photon pairs into the storage and 
2

is the decay rate of

photon pairs. With this Hamiltonian, the storage cavity converges into the two-dimensional manifold

spanned by the coherent states |±↵1i, where

↵1|Ks,s=0

= i

s
2✏d
⇠p�sr

. (9.8)

In the actual experiment in reference [Leghtas et al., 2015a], �sr/2⇡ = 206 kHz, Kr = 2.14 MHz,

Ks = 4 kHz, 1/s = 20 µs, and 1/r = 25 ns. Additionally, the applied pump strength resulted in

|⇠p|2 = 1.2, and thus g
2

/2⇡ = 111 kHz and 
2

/s = 1.0. With such parameters, the e↵ects of the

engineered bistability of the system are evident. Starting from coherent states at di↵erent angles in

phase space, applying the pumping sequence stabilizes the states at |±↵1i (Fig. 9.2). Moreover, by

looking at snapshots of the cavity state during its evolution from vacuum to an equal superposition

of |↵1i and |�↵1i, an even parity “2-cat,” one sees clear signatures of a quantum state from the

negative values of the interference fringes in the Wigner function (Fig. 9.3).

As described in chapter 3, the cat code of course requires at least a “4-cat” for a single logical

qubit in one cavity, which means that the pumping architecture must be modified to allow for

the stabilization of a quantum manifold spanned by the four coherent states |↵1i, |�↵1i, |i↵1i,
and |�i↵1i. Such modifications, however, call for a rather involved redesign of the Josephson

junction geometry. Perhaps a more advantageous scheme could instead rely on the “2-cats” that

form the logical basis residing in two di↵erent cavities. Indeed, such a device has already been

demonstrated [Wang et al., 2016] to show the entanglement between cat states in two cavities and

the ability to measure a joint parity error syndrome with a new transmon qubit design (Fig. 9.4).

These results o↵er ample evidence that using such a pumping scheme to stabilize superpositions

of coherent states can o↵er an e↵ective means of suppressing forms of dephasing within the cat

code paradigm aside from single photon loss. The parameters of the experiment described above

also indicate, however, that one necessarily pays a price by employing such an architecture. The
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Figure 9.2: Bistable behavior of the steady-state manifold. The central panel shows the theoretical
classical equivalent of a potential of the storage nonlinear dynamics. Shown are the locations of two stable
steady states at |±↵1i and a saddle point when the cavity is in vacuum (|0i

f

). The trajectories given by
the white lines and arrows indicate the how an initialized state at the border converges to one of the two
steady states; the curvature is a result of the cavity anharmonicity. The remaining eight outside panels show
the measured Wigner functions after initial cavity displacements of |↵| = 2.6 at di↵erent angles followed
by 10 µs of pumping. For angles 0,±⇡/4, the state mainly evolves to |↵1i, while for angles ⇡,±⇡/4 the
state evolves to mainly |�↵1i. At angles ±⇡/2, as the initial state is almost symmetrically positioned with
respect to |±↵1i the state evolves to a mixture of |±↵1i.

stronger coupling between the storage and readout cavities, necessary for the pumping to convert

photons on useful time scales, means that measuring the state of the ancilla during repeated error

syndrome interrogation must be as e�cient as possible to mitigate the resulting dephasing (see

sec. 8.2). Additionally, this larger cross-Kerr requires a much larger coupling strength between the

transmon qubit and the readout cavity (⇠ 35 MHz) than used, for example, in the experiments

described in previous chapters. In turn this requires the use of a Purcell filter on the output of

the readout cavity to suppress Purcell-enhanced decay of the transmon mode, an extra addition of

hardware that can potentially adversely a↵ect system performance. Likewise, using a stronger pump

to enhance the conversion process can inadvertently turn on undesired hamiltonian terms that have

been excluded in the approximations above. Such new sources of loss are unavoidable though, and

are another example of how extra resource overhead must be introduced in order to perform error
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Figure 9.3: Pumping a cavity from vacuum to a “2-cat.” (a) Measured data. (b) Reconstructed
density matrices. (c) Numerical simulations. The state is initialized in vacuum at time t = 0 µs. After
2 µs of pumping, the state becomes squeezed in the Q quadrature. Negative fringes are visible after 7 µs,
indicating a coherent superposition of the two steady states that approximate a “2-cat.” At t = 19 µs, the
state in the storage cavity is stabilized at |±↵1i, but the fringes have disappeared due to unavoidable single
photon loss. (d) Storage photon number distribution P (n) as measured by spectroscopy of the transmon
qubit after pumping. The nonclassical nature of the states in the storage cavity at t = 2 µs and t = 7 µs is
confirmed by the non-Poissonian distribution of the photon numbers.

correction, much as in the case of increasing the redundancy of a quantum bit encoding in order to

identify a measurable error syndrome. As with the experiments leading up to the result presented

in chapter 7, the work described above is already being improved upon in redesigned setups, and

an imminent demonstration of concurrent pumping and single-shot parity measurements promises

to o↵er even greater enhancements to quantum bit coherence.
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Figure 9.4: Architecture for a logical encoding that uses two cavities. (a) A cartoon image of the
device, which shows two coaxial �/4 cavities [Reagor et al., 2016], Alice and Bob, both coupled to a single
Y-shaped transmon ancilla that itself is also coupled to a 2D stripline cavity used for projective readout.
(b) A top view of the same device, which shows how each component of the system is positioned. (c) A
photograph of the actual device with a quarter coin for size-scale reference.

9.2 Correcting logical gates

Beyond stabilizing a state in the cavity to a quantum manifold, which as presented can still be

thought of as enhancing the performance of a quantum memory, we must also be able to implement

single and multi-physical qubit gates that are universal. The remarkable levels of control we already

have over the states in the cavity as evidenced by the action of the optimal control pulses (see

sec. 6.3) in encoding and decoding a quantum bit from and back onto a transmon ancilla suggests

that this could be a promising path forward. As with the parity measurements, however, the

challenge is to combat the e↵ects of ancilla decoherence that reduces the fidelity of the mappings

on time scales roughly dictated by the product �saT
2

, where �sa sets the speed limit of the pulse

and ancilla T
2

sets the maximum fidelity that can be achieved after a certain interval of time. In
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our current implementation, we are still working to understand how to make optimal control pulses

fault-tolerant. Indeed, as seen Wigner snapshots of the cavity state in Fig. 9.5, which shows an

example encoding pulse for |�XLi (sec. 6.3), while the pulse is being played the evolution of the

state is extremely non-trivial. If at any point the ancilla undergoes either a bit flip or a phase flip,

the encoding, or any other operation for that matter, will fail.

t = 0ns t = 50ns t = 100ns t = 150ns t = 200ns

t = 250ns t = 300ns t = 350ns t = 400ns t = 450ns

t = 500ns

Figure 9.5: The challenge of decoherence during optimal control pulses. Snapshots in steps
of 50 ns of cavity state Wigner functions during an optimal control pulse that maps the quantum bit
| 

q

i = 1/
p
2(|0i � |1i) from the ancilla onto |�X

L

i. Between the initial vacuum and final “4-cat” the
cavity and ancilla are entangled and evolving in completely unintuitive ways. If the ancilla undergoes any
form of decoherence at any point during this pulse, with near certainty the quantum bit will be completely
unrecoverable; by the time the pulses finishes, the state in the cavity will have left the code space.

The proposal in [Mirrahimi et al., 2014] in fact also outlines in detail how supplementing the cat

pumping with operations such as small displacements, turning on intentional Kerr evolution, and

realizing beam-splitter Hamiltonians between neighboring cavities can implement the necessary set

of gates for universal quantum computation (perhaps in a fault-tolerant fashion). Thus, although

optimal control pulses as described seem to have run into the limits imposed by ancilla coherence,
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our experience in understanding their strengths and drawbacks motivates exploring their potential

applications in regimes where the transmon is used merely to supply the nonlinearity to the system

without its mode participating in the actual manipulation of the logical state. Together with the

pumping schemes, this can o↵er a promising path forward in performing gates that in principle are

not intrinsically limited by the system’s least coherent constituent.

9.3 Future directions: building on our rapid progress

Further necessary advances include achieving a high degree of device reproducibility, motivating cav-

ities that can be integrated into the fabrication process of the physical qubits. Substantial progress

towards this end has been made recently [Brecht et al., 2015, 2016; Minev et al., 2016] and remains a

central focus of future work, where key challenges include reaching the same internal quality factors

in micro-fabricated cavities as in their 3D-machined predecessors. Finally, we also need to integrate

a host of components that can e�ciently route signals in a modular architecture and enable processes

such as remote entanglement and distillation. Recent experiments have demonstrated remarkable

progress towards these ends as well [Narla et al., 2016; Sliwa et al., 2015].

The sum total of this work over the past four years illustrates the at times painstaking e↵ort

required to understand, design, and optimize a quantum system to perform in ways conducive

towards future applications. The resulting breadth of knowledge acquired, however, now puts down

a flag in this journey, a checkpoint at which results make sense and to which we can always return to

regroup. In fact, the system as it stands is quite simple: three quantum controller cards hooked up

to a two-cavity setup with standard microwave drive and readout lines; the sequences that realize

the full error correction system are written; they can now only be improved and built upon to run

new and interesting experiments. These experiments can now exploit the results of previous e↵orts

to grasp, and to face, the host of challenges yet to be overcome.

The first experiment that used a two-cavity, single transmon qubit 3D architecture was published

in March of 2013 [Kirchmair et al., 2013]. By 2016, just three years later, the groups at Yale are using

real-time feedback to implement quantum memories that surpass break-even, employing dissipative

pumping schemes to stabilize a quantum manifold, entangling logical qubits across multiple cavities,

performing arbitrary gates on arbitrary states in a cavity, remotely entangling physical qubits,

rerouting signals on command, autonomously stabilizing Bell states with real-time feedback, as well

as constantly refining their theoretical understanding of encodings and error correction schemes

with logical states stored in a cavity. Such rates of innovation are truly inspiring, and herald an era

of progress in quantum computation that invigorates the entire field, sparks new discussions and
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collaborations, and challenges the mainstream perspective that multi-physical qubit architectures

are the only conceivable way forward towards a practical, fault-tolerant device. In truth, from

sophisticated fabrication techniques at MIT Lincoln Labs and impressive advances in coherence times

in planar structures at IBM, to alternative paradigms based on quantum annealing with D-Wave

and Google that raise important questions of quantum versus classical computation capabilities,

with any approach comes a wide array of insights, successes, and failures that we can always learn

from. By doing so we stand to maintain our position at the forefront of the field. Exciting challenges

abound. And they are our future directions.
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A – Experimental Setup Details

Experiments are performed in a cryogen-free dilution refrigerator at a base temperature of ⇠ 10 mK.

Our output signal amplification chain consists of two stages. The first stage is comprised of a

Josephson parametric amplifier. For the experiments in which we create a Bell-cat and quantify how

QND single-shot parity measurements are (chapters 4 and 5, respectively), we used a Josephson

bifurcation amplifier (JBA) [Vijay et al., 2009] operating in a double-pumping configuration [Kamal

et al., 2009; Murch et al., 2013], which provides phase-sensitive detection. For the experiments with

the full QEC system (chapters 6 through 9), we used a phase-preserving JPC. In all setups, the

parametric amplifiers are followed by a high electron mobility transistor (HEMT) amplifier bolted

to the 4K plate of the fridge.

The transmon ancilla is fabricated on a c-plane sapphire (Al
2

O
3

) substrate with a double-

angle evaporation of aluminum after a single electron-beam lithography step. The two-cavity, single

transmon system is well described by the approximate dispersive Hamiltonian (Eq. A.1):

Ĥ/~ ⇡!̃ab̂†b̂ + !̃sâ
†
sâs + !̃râ

†
râr (A.1)

��sab̂†b̂â†
sâs � �rab̂†b̂â†

râr � �srâ
†
sâsâ

†
râr

�Ka

2
b̂†2b̂2 � Ks

2
â†2

s â2

s � Kr

2
â†2

r â2

r,

where !̃s,r,a are the storage, readout, and ancilla transmon transition frequencies, âs, âr, b̂ are the

associated ladder operators; and Ks,r,a, �sa,ra,sr are the modal anharmonicities and dispersive

shifts respectively. The resonant frequency of the readout cavity is determined by transmission

spectroscopy. The transmon and storage cavity frequencies are found using two-tone spectroscopy.

The transmon anharmonicity Ka is measured using two-tone spectroscopy to observe the 0 � 2 two-

photon transition [Paik et al., 2011]. The dispersive shift between the transmon and the readout

cavity �ra is found by taking the di↵erence in frequency between the readout resonance when the

transmon is in the ground and the excited states. The dispersive shift between the transmon and

the storage cavity �sa is found using two methods: photon number dependent ancilla spectroscopy
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[Schuster et al., 2007], and observing transmon state revival using Ramsey interferometry [Vlastakis

et al., 2013]. The storage-readout cross-Kerr �sr is predicted using its approximate relationship

between Ks and Kr [Nigg et al., 2012]. Finally, we predict the readout cavity anharmonicity Kr

using its approximate dependence on the measured values of Ka and the transmon-readout dispersive

shift �ra [Nigg et al., 2012]. When performing Wigner tomography, in order to remove the cross-

Kerr e↵ect between the readout cavity and the storage cavity, which skews the readout signal for

large storage cavity displacements, we have followed the identical procedure as in the Supplementary

Material in Ref. [Vlastakis et al., 2013]. The idea is to perform tomography using two pulse sequences,

which both measure parity but di↵er in the sign of the second ⇡/2 pulse (Fig. 5.2). We then take

the di↵erence between the two measurements to remove any bias in the measurement.

The lifetime of the readout cavity is found from its line-width. The thermal population of the

transmon is determined from a histogram of one million single-shot measurements of the transmon

thermal state, where the signal-to-noise ratio provided by the JBA (or JPC) allows discrimination

between |gi and all states not |gi. The thermal population of the storage cavity is found by taking

the di↵erence between parity measurements of the thermal and vacuum states of the cavity. A

vacuum state is prepared by first performing two parity measurements on the thermal state and

then post-selecting such that all results give even parity, projecting the thermal state onto |0if .

Finally, the known thermal population of the readout cavity is bounded by the dephasing rate �� of

the ancilla: ��=n̄thr, where n̄th is the readout cavity’s thermal occupation and r is the readout

single-photon decay rate [Sears et al., 2012].

A.1 Bell-cat setup

The refrigerator wiring (Fig. A.1), including the filters and attenuators used, is similar to that of [Sun

et al., 2013], but with the addition of a feedback system used for ancilla reset. The Hamiltonian

parameters are summarized in Tab. A.1. The storage cavity anharmonicity Ks is determined by

displacing the cavity with a coherent state and observing its time evolution with Wigner tomography.

The resulting dynamics are characterized by state reconstruction and Ks is observed by the state’s

quadratic dependence of phase on photon number. The coherence times and thermal occupations of

the system’s three modes are given in Tab. A.2.
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Figure A.1: Fridge wiring diagram for Bell-cat experiments. The schematic of the experiment
shows a two-cavity one-transmon device identical to that used in [Sun et al., 2013] with the addition of a
feedback setup for active ancilla reset. The feedback setup uses two input-output (I/O) boards for ancilla
and storage cavity control and one arbitrary waveform generator (AWG) for readout cavity control. All have
a dedicated microwave generator and mixer for amplitude and phase modulation. Each I/O board has five
main components: 1) a digital-to-analog converter (DAC) for pulse generation; 2) digital outputs serving
as marker channels; 3) an analog-to-digital converter (ADC) that samples input signals; 4) an FPGA that
demodulates the signals from the ADC and based on predefined thresholds determines the measured ancilla
state, |gi or |ei; and 5) a PCIe connection that transfers FPGA data to a computer (PC) for analysis. In
this setup, the top I/O board serves as the master, which accepts the readout signal, returns ancilla state
information, and using digital output signals, triggers the AWG and the second I/O card given a particular
ancilla measurement result.
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Term Measured
(Prediction)

!̃a/2⇡ 5.7651 GHz
!̃s/2⇡ 7.2164 GHz
!̃r/2⇡ 8.1740 GHz
Ka/2⇡ 240 MHz
Ks/2⇡ 1.5 kHz
Kr/2⇡ (2 kHz)
�sa/2⇡ 1.43 MHz
�ra/2⇡ 1 MHz
�sr/2⇡ (1.7 kHz)

Table A.1: Hamiltonian parameters for Bell-cat experiments.

Ancilla Storage Readout
T1 10µs - -
T2 10µs - -
⌧s - 55µs 30 ns

ground state (%) 90% > 98% > 99.8%

Table A.2: Coherence and thermal properties for Bell-cat experiments.

Measurement fidelities

We define single-shot measurement fidelity as Fa = P (g|g)+P (e|e)
2

, where P (g|g) and P (e|e) are the

probabilities to get |gi (|ei) knowing that we start with |gi (|ei). The state |gi is prepared through

purification of the ancilla thermal state with realtime feedback (see the following section). Given

a preparation of |gi, we have a 98.5% chance of measuring |gi again (P (g|g) = 0.985). Likewise,

we find P (e|e) = 0.975 by preparing |gi and rotating the state to |ei. This gives a single-shot

measurement fidelity of Fq = 98%. We find our cavity parity measurement fidelity by purifying the

storage cavity thermal state into |0if then performing one of two kinds of parity measurement. We

report a parity measurement fidelity for n = 0 photons as Fc = P (g|E
1

)+P (e|E
2

)

2

= 95.5%, where

P (g|E
1

) (P (e|E
2

)) is the probability to measure |gi (|ei) given that the parity is even for each of

the two measurement settings. We expect Fc to decrease with increasing numbers of photons in the

cavity due to single photon loss during the measurement sequence.

I/O control parameters

We employ a field-programmable gate array (FPGA) in order to implement an active feedback

scheme. We use an X6-1000M board from Innovative Integration that contains two 1 GS/s ADCs,

two 1 GS/s DAC channels, and digital inputs/outputs all controlled by a Xilinx VIRTEX-6 FPGA
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loaded with custom logic. We synchronize two such boards in a master/slave configuration to have

IQ control of both the ancilla/storage cavity. IQ control over the readout cavity is performed with

a Tektronix AWG, which is triggered by the master board. The readout and reference signals are

routed to the ADCs on the master board, whereafter the FPGA demodulates the signal and decides

whether the ancilla is in |gi or |ei. The feedback latency of the FPGA logic (last in, first out LIFO)

is 320 ns. Additional delays for active feedback include cable delay (⇠ 100 ns) and readout pulse

length with cavity decay time (320 ns). Thus, in total the ancilla waits ⌧
wait

⇠ 740 ns between

the time photons first enter the readout cavity and the time at which the feedback pulse resets the

ancilla.

Implementations of feedback

Feedback is used three times during a single iteration of the experiment. Prior to the Bell-cat

preparation, we purify the ancilla state to |gi by measuring the ancilla and applying a ⇡ pulse if

the result is |ei. We succeed in preparing |gi with a probability of 99%. Secondly, when performing

ancilla tomography we reset the ancilla to |gi if it is measured to be in |ei. Since we must wait

⌧
wait

before feedback can be applied, the cavity state will acquire an additional phase �sa⌧wait

if the

ancilla is in |ei. In this case, in addition to reseting the ancilla, the FPGA applies an equivalent

phase shift on the subsequent Wigner tomography pulse. This feedback implementation does not

close the ‘locality’ loophole for a CHSH Bell test and therefore cannot be used to test local realism.

A.2 Parity monitoring setup

The refrigerator wiring is similar to that shown in Fig. A.1, only without the feedback setup. The

Hamiltonian parameters are summarized in Tab. A.3. The coherence times and thermal occupations

of the system’s three modes are given in Tab. A.4.

Figure A.2 shows the probability of the first eight Fock states n = 0, 1, 2, ...7 as a function of

displacement amplitude |↵|. The results are in excellent agreement with a Poisson distribution,

indicating a good control of the coherent state in the cavity. We scale the x-axis from the voltage

amplitude of the displacement pulse applied from an arbitrary waveform generator and use this

scaling as a calibration. There is a small residual amplitude for the n = 1 peak even with no

displacement (point near origin), allowing us to infer that there is a background photon population

ns
th = 0.02 in the cavity. The inset of Fig. A.2 shows the so-called number splitting peaks of the

ancilla due to di↵erent photon numbers in the cavity, which is displaced with a 10 ns square pulse
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Term Measured
(Prediction)

!̃a/2⇡ 5.938 GHz
!̃s/2⇡ 7.2164 GHz
!̃r/2⇡ 8.1740 GHz
Ka/2⇡ 240 MHz
Ks/2⇡ 1.5 kHz
Kr/2⇡ (2 kHz)
�sa/2⇡ 1.789 MHz
�ra/2⇡ 0.93 MHz
�sr/2⇡ (1.7 kHz)

Table A.3: Hamiltonian parameters for parity monitoring experiments.

Ancilla Storage Readout
T1 8µs - -
T2 5µs - -
⌧s - 55µs 30 ns

ground state (%) 86% 98% > 99.5%

Table A.4: Coherence and thermal properties for parity monitoring experiments.

right before the spectroscopy measurement. A second order polynomial fit �(n) = ��san + �0
san2,

where n is the peak number, gives a non-linear correction to the dispersive shift [Vlastakis et al.,

2013] �0
sa/2⇡ = 1.9 ± 0.1 kHz, which is small enough to be neglected in the cavity dynamics.

To perform a good parity measurement, the ⇡/2 pulses in the Ramsey parity mapping should

equally cover as many number splitting peaks as possible without significantly exciting the |fi state.

We choose a Gaussian envelope pulse truncated to 4� = 8 ns (�f = 80 MHz) for a good compromise.

Figure A.3 shows the e↵ectiveness of the ⇡/2 pulses as a function of n̄ in the cavity. The curvature

for n̄ > 4 is due to the finite bandwidth of those pulses in the frequency domain.

The quantum filter

In estimating the parity in time, in order to mitigate the e↵ects due to ancilla decoherence, |fi state

of the ancilla (an undesirable state that obscures the parity measurement), and other imperfections in

the ancilla readout in extracting the parity, we have applied a quantum filter [Belavkin, 1992; Bouten

et al., 2007]. The quantum filter can loosely be thought of as a more rigorous application of majority

voting on the measurement results, wherein it integrates the quantum stochastic master equation

and returns a result that depends on the entire measurement record. At each point in time, the

quantum filter is updated in two steps: first, a new density matrix ⇢̃s(Ct+dt) is calculated from the
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Figure A.2: Poisson distribution of photon numbers in the cavity. Dotted color lines are data for
the first eight Fock states n = 0, 1, 2, ...7 as a function of displacement amplitude |↵|. The measurements are
performed with a selective ⇡ pulse on each number splitting peak and the resulting signal amplitude should
be proportional to the corresponding number population. These oscillation amplitudes have been normalized
to probabilities such that the sum of the amplitudes corresponding to n = 0 and n = 1 equals unity. Dashed

lines are theoretical curves with a Poisson distribution P(|↵|, n) = |↵|2ne�|↵|2/n! where the x-axis has had a
single scale factor adjusted to fit all these probabilities. The excellent agreement indicates good control over
the coherent state in the cavity and also gives a good calibration of the cavity displacement amplitude. Based
on the probability of n = 1 at |↵| = 0, we find a background photon population ns

th

= 0.02 in the cavity.
Inset: spectroscopy (left axis) of the number splitting peaks of the ancilla when populating di↵erent photon
numbers in the cavity. Top panel shows the di↵erence between peak positions and a linear fit. The curvature
necessitates a second order polynomial fit resulting a linear dispersive shift �

sa

/2⇡ = 1.789 ± 0.002 MHz
and a non-linear dispersive shift �0

sa

/2⇡ = 1.9± 0.1 kHz.

best estimate ⇢s(Ct) at the previous point based only on the decoherence of the cavity; second, the

density matrix ⇢̃s(Ct+dt) gets updated as a best estimate ⇢s(Ct+dt) according to Bayes’ rule based on

the newly acquired knowledge from the current parity measurement. This density matrix ⇢s(Ct+dt)

is then used as the input for the next iteration. We have truncated the dimension of the density

matrix to N = 5n̄ ⇡ 20, which is large enough to cover all relevant number states. To initialize the

density matrix after a displacement D(↵), we have set ⇢s(t = 0) = (1 � ns
th)D(↵) |0if h0|f D†(↵) +

ns
thD(↵) |1if h1|f D†(↵), taking into account the background photon population in the limit ns

th ⌧ 1.

At time t, the density matrix of the photon state is ⇢s(Ct), which depends on all previous

correlations. At t + dt, only considering the decoherence of the cavity, the expected density matrix

from free evolution becomes ⇢̃s(Ct+dt) = Mdown⇢s(Ct)M
†
down + Mup⇢s(Ct)M†

up + Mno⇢s(Ct)M†
no,

where Mdown =
p
downdta, Mup =

p
updta†, and Mno = I � (M†

downMdown + M†
upMup)/2 are the

Kraus operators for photon loss, absorption of thermal photons, and no jump events respectively.
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We have down = (ns
th + 1) and up = ns

th, and  = 1/⌧tot is the energy decay rate in the cavity

under repeated parity measurements. The additional information Ct+dt acquired from the parity

measurement at t + dt changes the quantum state according to:

⇢s(Ct+dt) =

8
>>>>><

>>>>>:

P(even|Ct+dt)
ˆPeven⇢̃s(Ct+dt)

ˆPeven

Tr(

ˆPeven⇢̃s(Ct+dt)
ˆPeven)

+ P(odd|Ct+dt)
ˆPodd⇢̃s(Ct+dt)

ˆPodd

Tr(

ˆPodd⇢̃s(Ct+dt)
ˆPodd)

, if Ct+dt 6= 0,

⇢̃s(Ct+dt) if Ct+dt = 0,

(A.2)

where P̂even and P̂odd are the projectors onto the even and odd manifolds, P̂ = P̂even�P̂odd = ei⇡â†
sâs

is the parity operator, P(even|Ct+dt) and P(odd|Ct+dt) are the probabilities of being in the even and

odd parity respectively for a measured Ct+dt. To simplify the quantum filter, we assume that the

event of the ancilla jumping to the |fi states is independent of the cavity parity being even or odd.

Hence, if the measured correlation is zero, the density matrix of the photon state is assigned to the
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expected one from free evolution. Based on Bayes’ rule, Eq. A.2 becomes:

⇢s(Ct+dt) =

8
><

>:

P(Ct+dt|even)

ˆPeven⇢̃s(Ct+dt)
ˆPeven+P(Ct+dt|odd)

ˆPodd⇢̃s(Ct+dt)
ˆPodd

P(Ct+dt)
, if Ct+dt 6= 0,

⇢̃s(Ct+dt) if Ct+dt = 0.

(A.3)

where P(Ct+dt) = P(Ct+dt|even)Tr[P̂even⇢̃s(Ct+dt)P̂even] + P(Ct+dt|odd)Tr[P̂odd⇢̃s(Ct+dt)P̂odd]. The

best parity estimation of the resonator state is then:

P(t + dt) = Tr[⇢s(Ct+dt)P̂ ] (A.4)

A.3 QEC methods

Our setup is identical to that described in [Vlastakis et al., 2015] and [Sun et al., 2013], aside from

a 2 mm rather than 4 mm wall separating the storage and readout cavities, a Josephson Parametric

Converter (JPC) [Bergeal et al., 2010] replacing a Josephson Bifurcation Amplifier (JBA) [Vijay

et al., 2009] as the first stage of amplification, and a quantum control architecture replacing the

Tektronix AWG configuration (Figs. A.4, A.5). The Hamiltonian parameters are summarized in

Tab. A.5. The coherence times and thermal occupations of the system’s three modes are given in

Tab. A.6.

The Kerr interaction of the storage cavity Ks is measured by monitoring the errors of a cat code

logical state (see sec. 6.4) and finding the di↵erence in phase between trajectories where errors are

measured to occur at di↵erent times: �✓ = Ks�tj . In Fig. 6.10, we show two Wigner functions

for the case of a single parity jump: 01 and 10, where 0 ⌘ “no error” and 1 ⌘ “error.” We Fourier

transform circular cuts at a fixed radius of these Wigner functions that show pronounced interference

fringes to compare the phase of the oscillations for 01 vs. 10 and in so doing find �✓. On average,

photon jumps for 01 versus 10 are separated in time by tM , where tM is the total time between

syndrome measurements; we thus find the average di↵erence between jump time �tj = t
M

to find

Ks.

A lower bound on the dephasing rate of the storage cavity, �s
�, is given by �s

� = �" [Reagor

et al., 2016], akin to the dephasing one expects of an ancilla (e.g. transmon) coupled to a low-Q

readout cavity with a finite thermal population [Sears et al., 2012]. The storage cavity coherence

time T s
2

is thus given by (T s
2

)�1 = (2⌧s)�1 +�s
�, where ⌧s is the average lifetime of the single photon

Fock state |1if . The coherence time T s
2

is consistent with the observed time constant in the decay

of the process fidelity of a ancilla stored in Fock states |0if , |1if .
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The single-shot ancilla measurement fidelity is 99.3%. The parity measurement fidelity is 98.5%

for no photons in the storage cavity, 98.1% for an average photon number n̄ = 2, and 97.7% for

n̄ = 3; these fidelities are also obtained using the methods in sec. A.1.

Term Measured
(Prediction)

!̃a/2⇡ 6.2815 GHz
!̃s/2⇡ 8.3056 GHz
!̃r/2⇡ 9.3149 GHz
Ka/2⇡ 297 MHz
Ks/2⇡ 4.5 kHz
Kr/2⇡ (0.5 kHz)
�sa/2⇡ 1.97 MHz
�ra/2⇡ 1 MHz
�sr/2⇡ (2 kHz)
�0
sa/2⇡ 1 kHz

Table A.5: Hamiltonian parameters for QEC experiments.

Ancilla Storage Readout
T1 35µs - -
T2 12µs - -
⌧s - 250µs 100 ns
T s
2 - 330µs �

ground state (%) 96% > 98% > 99.3%

Table A.6: Coherence and thermal properties for QEC experiments.
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setup that allows us to implement a full QEC system.
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B – Deriving the Optimized Configuration

Here we derive the optimal fidelity F assuming FKD = 1. We follow a pessimistic approach. Any

error that may happen will be regarded as a total loss of information. An error in the parity

measurement could, in principle, be corrected by repeating it several times and taking a majority

vote. In practice, although our measurement fidelities are very high, the errors that these extra

measurements introduce are larger than the those we wish to correct for, so it is better to blindly

trust any result. This approach simplifies the analysis greatly, and we can calculate the probability

to successfully keep the information for each step independently and take the product to get the

final total fidelity.

A successful step starts with the ancilla in |gi, followed by either no jumps or a single photon

jump during the delay, an accurate parity measurement, and the ancilla back in |gi at the end.

There are several failure mechanisms:

1. While waiting, the ancilla may have been excited to |ei

2. Two or more photon jumps occurred during the step delay

3. The parity measurement returned the wrong answer

4. A successful parity measurement brought the ancilla to |ei, but the following reset pulse failed

to return it back to |gi

The probabilities to have zero, one, or more jumps are a function of the cat size at the beginning

of the step and the step length. We express the step success probability as:

Fk = e�tk�" [Pk(0) · f
0

+ Pk(1) · f
1

] , (B.1)
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where Pk(n) is the probability to have n photon jumps in the kth step, f
0

(f
1

) is the conditional

success probability when no (a single) photon jump occurred. The final success probability is then:

F/FED =
SY

k=1

e�tk�" [Pk(0) · f
0

+ Pk(1) · f
1

] = e�T�"
| {z }

F
�"

·
SY

k=1

[Pk(0) · f
0

+ Pk(1) · f
1

]

| {z }
FT

. (B.2)

From this point onward we focus only on FT .

The success of the parity measurement depends primarily on the ancilla’s T
2

. On top of that,

there is the readout fidelity (which is di↵erent for the ground and the excited states). When a single

photon jump occurs, the ancilla ends up in |ei. It may decay back to |gi before the reset pulse,

which means that the reset pulse inadvertently returns it back to |ei. This is a critical period of

time when we are vulnerable to T
1

decay of the ancilla:

f
0

⇡ e� ⇡
�saT

2 · Mgg (B.3)

f
1

⇡ e� ⇡
�saT

2 · Mee · e�
⌧
meas

+T
FB

T
1 , (B.4)

where Mgg (Mee) is the probability to measure correctly |gi (|ei), ⌧
meas

= 400 ns is the readout

pulse length and T
FB

= 332 ns is the feedback latency that includes delays due to the experimental

setup (cables, etc.). Ancilla T
1

decay causes code failure no matter when it happens, which is why

we take into account the whole duration until the ancilla is back in |gi.
At the beginning of the kth step, the averaged photon number in the cavity is given by (n̄

0

is

the cat size at the beginning of the k = 1 step):

n̄k�1

= n̄
0

· exp

 
�s

k�1X

i=1

ti

!
. (B.5)

During the step delay, the number of photon jumps follows a Poisson distribution with the

following mean value (the decay during the step itself is taken into account):

�k = n̄k�1

· ⇥1 � e�sti
⇤
. (B.6)

We expect no photon jumps with probability e��k and a single jump with probability �ke��k .

Hence, the step fidelity is simply given by:
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F (k)

T = f
0

e��k + f
1

�ke��k = (f
0

+ f
1

�k) e��k (B.7)

#

FT

⇣
T, n̄

0

, S, {tk}S
t=1

⌘
=

SY

k=1

⇥
(f

0

+ f
1

�k) e��k
⇤

(B.8)

We can now optimize the step length for a fixed number of steps. For S = 1, a single step, the

solution is forced to be t
1

= T . For two steps we will need to optimize the following expression:

max
t
1

FT (T, n̄
0

, S, {t
1

, t
2

= T � t
1

}) =
⇥
(f

0

+ f
1

�
1

) e��
1

⇤ · ⇥(f
0

+ f
1

�
2

) e��
2

⇤
(B.9)

= (f
0

+ f
1

�
1

) · (f
0

+ f
1

�
2

) e�(�
1

+�
2

) (B.10)

= (f
0

+ f
1

�
1

) · (f
0

+ f
1

�
2

) e�(1�e�sT
) (B.11)

The expected number of photon jumps during the two steps sums up to the expected number of

jumps during the whole duration. This is independent of how we partition the whole duration into

two steps. We can simply maximize the multiplication of (f
0

+ f
1

�
1

) and (f
0

+ f
1

�
2

). Since the

sum of these terms is constant, the maximum is achieved when they are equal, meaning �
1

= �
2

. In

other words, we need to maintain a constant rate of photon jumps between the steps. This will be

true for any number of steps; for S steps the mean number of photon jumps per step is given by:

�k =
n̄

0

⇥
1 � e�sT

⇤

S
. (B.12)

Substituting this expression into eq. B.8 and using the optimal step lengths, we obtain:

FT (T, n̄
0

, S) =

" 
f
0

+ f
1

n̄
0

⇥
1 � e�sT

⇤

S

!
· e�n̄

0

[1�e�sT ]/S

#S

(B.13)

=

 
f
0

+ f
1

n̄
0

⇥
1 � e�sT

⇤

S

!S

| {z }
⌘F 0

T

·e�n̄
0

[1�e�sT ] (B.14)
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As an exercise, we can see how this expression behaves for S much greater than the number of

expected photon jumps during the whole duration, S � n̄
0

[1 � e�sT ]:

FT (n̄
0

, T, S) = lim
S!1

fS
0

✓
1 +

f
1

n̄
0

[1 � e�sT ]

f
0

S

◆S

e�n̄
0

[1�e�sT
]

⇡ fS
0

en̄
0

[1�e�sT
]

f
1

f
0 e�n̄

0

[1�e�sT
]

= fS
0

e�(1�f
1

/f
0

)n̄
0

[1�e�sT
]

⇡ fS
0

✓
f
1

f
0

◆n̄
0

[1�e�sT
]

= fS�n̄
0

[1�e�sT
]

0

f n̄
0

[1�e�sT
]

1

(B.15)

What this limit means is that when we measure frequently enough, the fidelity will fall o↵ by a

factor f
0

for any steps when no jumps happened and by f
1

when a single jump occurs. As the step

size is so short, errors due to double photon jumps are negligible and therefore excluded.

We continue with F 0
T :

nj ⌘ n̄
0

⇥
1 � e�sT

⇤ · f
1

f
0

(B.16)

#

F 0
T (T, n̄

0

, S) = fS
0

⇣
1 +

nj

S

⌘S

, (B.17)

where nj is the number of expected photon jumps during the whole duration up to a scale factor

of order 1. We will treat the number of steps as a continuous variable and find its optimum. In

practice, we will use the closest integer:

d

dS
F 0

T = F 0
T · d

dS

h
S · log(f

0

) + S · log
⇣
1 +

nj

S

⌘i

= F 0
T ·
"
log(f

0

) + log
⇣
1 +

nj

S

⌘
+

S�
1 + nj

S

� · �nj

S2

#

= F 0
T ·

log(f

0

) + log
⇣
1 +

nj

S

⌘
� nj

S + nj

�
want
= 0 (B.18)

We need to solve:

log(f
0

) + log
⇣
1 +

nj

S

⌘
� nj

S + nj
= 0 (B.19)

#

log(f
0

) + log

✓
1 +

1

r

◆
� 1

1 + r
= 0 (B.20)
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where r ⌘ S/nj (the number of steps per photon jump up to small correction). Although we

cannot solve for r explicitly, it is a function of f
0

, the success probability of the parity measurement

conditioned on no photon jumps (r(f
0

)). The optimal number of steps is then:

SOPT = r(f
0

) · nj =
r(f

0

) · f
1

f
0

n̄
0

⇥
1 � e�sT

⇤
, (B.21)

leading to the optimal average number of photon jumps per step:

�k =
n̄

0

⇥
1 � e�sT

⇤

SOPT
=

f
0

r(f
0

) · f
1

. (B.22)

In the limit f
0

! 1, r(f
0

) approaches infinity. We can expand eq. B.20 in 1/r:

log(f
0

) =
1

1 + r
� log

✓
1 +

1

r

◆

log(1 � [1 � f
0

]) =
1

r
· 1

1 + 1

r

�

1

r
� 1

2r2

+ · · ·
�

�[1 � f
0

] � 1

2
[1 � f

0

]2 � · · · =
1

r
� 1

r2

+ · · · �

1

r
� 1

2r2

+ · · ·
�

1 � f
0

⇡ 1

2r2

(B.23)

For f
0

, f
1

⇠ 1, the optimized average number of jumps per step is simply 1/r. Hence, 1/2r2 is the

Poissonian probability to have two jumps. The last approximation states that in this limit we need

to match the parity measurement infidelity with the double-jump probability. As long as f
0

is above

90%, this approximation will be correct within 50% of the right value.

We can now substitute the optimal steps number and get the maximal success probability as a

function of the total duration and initial cat size:

F 0
T

OPT (T, n̄
0

) ⌘ F 0
T (T, n̄

0

, SOPT ) =
h
f
0

⇣
1 +

nj

SOPT

⌘iSOPT

log
�
F 0

T
OPT

�
= SOPT


log(f

0

) + log

✓
1 +

1

r

◆�

| {z }
=

1

1+r

=
r(f

0

)

1 + r(f
0

)

f
1

f
0

· n̄
0

[1 � e�sT ] (B.24)

#

FT
OPT (T, n̄

0

) = F 0
T

OPT (T, n̄
0

) · e�n̄
0

[1�e�sT
] = e+n̄

0

[1�e�sT
]

r(f
0

)

1+r(f
0

)

f
1

f
0 · e�n̄

0

[1�e�sT
].(B.25)
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The second term is the uncorrected cat state decay, which is n̄
0

faster than s. The first term

counteracts this decay, and so we identify it as the action of the QEC.

We define the unit-less parameter G as follows:

G ⌘ 1

1 � f
1

f
0

· r(f
0

)

1+r(f
0

)

(B.26)

#

FT
OPT = e� n̄

0

[1�e�sT
]

G ⇡
sT⌧1

e�sT · n̄0

G . (B.27)

In other words, we slow down the decay of the cat state by a factor of G. This number is a constant

of the system, a function of the various infidelities. It approaches infinity as f
0

, f
1

get closer to 1.
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