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One of the most important requirements for building a quantum computer is having complete
control over qubits and quantum gates. That is, errors in qubit state preparation and measurement,
as well as errors in the fidelity of single-qubit gates need to to be sufficiently low for quantum
computation to be feasible. One of the most widely accepted methods of diagnosing errors in
gate implementation is that of randomized benchmarking, a process in which a quantum circuit
composed of randomly chosen, yet known, gates is applied to a qubit prepared in the ground state,
and the final state is then measured. The randomness of the circuit allows for the extraction of
an average error per gate independent of the individual gates themselves, effectively evaluating the
gate implementation process as a whole. An additional method known as interleaved randomized
benchmarking can be used in conjunction to separate out the errors due to individual gates. For
my thesis, I wrote pulse generation and simulation software for randomized benchmarking in the
Python programming language, and was then able to run it on a physical quantum system composed
of superconducting qubits. I hope this tool will prove useful as the lab works to improve pulse tuning
methods and ultimately gate fidelities of their quantum operations.

I. INTRODUCTION

In classical computing, a problem is said to have
an efficient solution if the solution can be determined
in polynomial time. However, some of the most chal-
lenging problems in computer science—such as find-
ing the prime factors of large numbers—as well as
others in physics—such as simulating multi-particle
quantum systems—have no known efficient solution
using the best known classical algorithms. In the-
ory, quantum computing offers ways to improve the
efficiency of otherwise intractable problems in classi-
cal computing, and therefore has gained much inter-
est in both the physics and computer science com-
munities. One of the most famous quantum algo-
rithms that has been developed since the advent of
quantum computing is Shor’s algorithm, which is
able to perform integer factorization in polynomial
time. The development of this algorithm revolu-
tionized the study of quantum computing, pushing
other physicists to develop additional quantum algo-
rithms that offer drastic speedups over their classical
counterparts. However, without the ability to phys-
ically implement a quantum computer, no amount
of progress in the theory of quantum computing will
be realized, because even the simplest instances of
the known quantum algorithms require hundreds of
qubits and an even larger number of quantum gates
to perform computations.

In attempting to physically realize a scalable
quantum computer, one of the most important chal-
lenges that scientists face is being able to produce
quantum gates that have low error rates during op-

erations regardless of the context. One approach
to diagnosing errors in gate implementation is the
method of process tomography, which can be used to
establish the complete behavior of a single quantum
gate. This method can give much useful information
about a gate being used as the sole operation on a
qubit, but does not tell how well it will work when
being used as the kth gate of a computation. Ad-
ditionally, process tomography has exponential time
complexity as a function of the number of qubits, so
it can become very time consuming very quickly.

For my thesis, I instead decided to use randomized
benchmarking, another widely accepted method of
diagnosing errors in quantum gates. Rather than de-
scribing the complete behavior of a single quantum
gate, randomized benchmarking works by prepar-
ing a sequence of random gates, and gives informa-
tion about the average error rate of the entire cir-
cuit. Thus, randomized benchmarking can be con-
sidered as a tool for determining general gate im-
plementation as a function of sequence length. One
of the earliest papers on randomized benchmarking
is that of Knill et al from 2008, which describes an
implementation on trapped ion qubits [1]. In ad-
dition, a paper by Chow et al from 2009 describes
another implementation of randomized benchmark-
ing, but on solid-state qubits [2]. Each description of
randomized benchmarking has slightly different fea-
tures, but the one I ended up implementing is equiv-
alent to the protocol in the 2012 paper by Magesan
et al [3]. In this version, the sequence is comprised of
random Clifford gates, where the set of Clifford gates
is {I,Xπ, Yπ, X±π/2, Y±π/2} and Uθ is a θ-rotation
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FIG. 1. Bloch sphere simulation showing the effect of a
pulse train on a qubit in the ground state. The blue line
shows the trajectory of a qubit state over the course of
a single randomized pulse train.

around the U -axis. In addition, a final gate is added
such that the entire sequence composes to the iden-
tity operation, and then the state can be measured
and compared to the qubit’s initial state.

II. SIMULATION TECHNIQUES

Before I could implement a randomized bench-
marking simulation, I had to first get a handle on
the tools at my disposal for designing quantum sim-
ulations. Using QuTiP’s simulation tools and pulse
sequence libraries developed by members of the lab,
I learned how to set up a single-qubit simulation
environment and introduce time-dependent driving
terms. To set up the system, we must first define its
starting Hamiltonian, which defines the evolution of
the quantum system. For a two-level system this
equation is represented by 2 × 2 unitary operators
called Pauli matrices. However, for physical quan-
tum systems like superconducting qubits, a two-level
system is only an approximation of reality. This is
one of the major difficulties in determining a phys-
ical qubit’s response to a time-dependent drive—–
although we want to represent physical qubits as
merely a ground and excited state, we are in fact
dealing with a multi-level quantum system. One way
to combat this problem is by numerically simulating
an approximation of the physical Hamiltonian, and

a superconducting qubit is well approximated by an
anharmonic quantum oscillator. By altering the en-
ergy levels of the various photon number states, we
can create a set of non-uniform energy differences
between the states. These non-uniform energy dif-
ferences in effect decrease the probability that a driv-
ing pulse will result in an undesirable photon number
state (one that is higher than the first excited state).

After understanding how to prepare the quantum
system, my next goal was to investigate the possible
operations I could perform on the system. When
dealing with qubits, it is convention to use what
is known as the Bloch sphere to visualize a qubit’s
state. The Bloch sphere is a three-dimensional rep-
resentation of all the possible superposition states
of a qubit, with the north and south poles repre-
senting the ground and excited states of the system.
The vector from the center of the sphere to a point
on the surface represents the current state of the
qubit, and being able to correctly manipulate this
state is a critical step in building a system capable
of performing quantum computations. To manipu-
late a physical qubit, one can alter its state by ap-
plying quantum gates that act as rotations around
the Bloch sphere. The lab uses microwaves pulses
to apply these quantum gates to transmon qubits,
where a π pulse rotates the state 180 degrees around
the Bloch sphere, and a π/2 pulse rotates the state
90 degrees. However, because quantum systems are
extremely sensitive to errors, these pulses do not al-
ways result in the desired state, thus motivating my
goal of implementing randomized benchmarking to
diagnose these errors.

III. RANDOMIZED BENCHMARKING

A. Standard Randomized Benchmarking

Implementing a randomized benchmarking sim-
ulation begins with the selection of a sequence of
pulses to form the randomized pulse train. These
pulses are chosen at random from the set of Clifford
pulses {I,Xπ, Yπ, X±π/2, Y±π/2}, where the first is
equivalent to no pulse, the next two are π pulses,
and the last two are π/2 pulses. Represented in ma-
trix form, the first pulse is the identity operator, the
second is the Pauli operator σx, the third is the Pauli
operator σy, and the final two are:

X±π/2 = (I ± iσx)/
√

2 =
1√
2

(
1 ±i
±i 1

)

Y±π/2 = (I ± iσy)/
√

2 =
1√
2

(
1 ±1
∓1 1

)
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Denoting the set of Clifford pulses as C, the jth Clif-
ford pulse in our randomized pulse train will be writ-
ten as Cj , where Cj ∈ C. Then, the entire random-
ized pulse train is represented by ©m

j=1Cj where m
is the desired pulse train length and © represents
the composition of gates. But, there is still one final
operation to be done. In simulation, we can track
the evolution of a state vector, but in physical sys-
tems that would constitute measurement and there-
fore the collapse of our quantum system. Thus in
experiment, we must choose what basis upon which
to measure our qubit’s state when we perform our
final measurement. Rather than try to change this
basis in accordance with the expected outcome of the
randomized pulse train, we add one final correcting
pulse to the train that should bring our quantum
state back into an eigenstate of the z-basis. The
z-basis is desirable because it is the basis in which
our qubit’s initial state was prepared (the ground
state), and therefore it is easy to figure out if our
qubit ended up where we predicted it to. Thus, if
we say that U =©m

j=1Cj , we can then think of the

correcting pulse as U−1, effectively forcing the com-
position of the randomized pulse train and correct-
ing pulse to be equivalent to the identity operator I.
Finally, with the correcting pulse Cm+1 added, the
entire randomized benchmarking sequence SRB can
be written as:

SRB = Cm+1 ◦ (©m
j=1Cj)

FIG. 2. Pulse train schemes for standard (a) and in-
terleaved (b) randomized benchmarking protocols. The
target pulse C (green) is interleaved between random
pulses Cj (orange) selected from the Clifford pulses C.
A final correcting pulse Cm+1 (red) is added to make
the composition of the entire sequence equivalent to the
identity operation. (Reprinted from Magesan et al [3]).

B. Interleaved Randomized Benchmarking

Like standard randomized benchmarking, inter-
leaved randomized benchmarking is a protocol that
uses a sequence of randomized pulses. But, in addi-

tion to these pulses, a target pulse C is interleaved
between each randomized pulse. C, like the other
pulses, is chosen from the set of Clifford pulses C, and
performing interleaved randomized benchmarking in
conjunction with standard randomized benchmark-
ing is a way to hone in on the errors contributed by
a specific pulse to the entire pulse train. Other than
the introduction of the C pulse, every other aspect
of the protocol is identical to standard randomized
benchmarking, so the entire interleaved randomized
benchmarking sequence SIRB can be written as:

SIRB = Cm+1 ◦ (©m
j=1[C ◦ Cj ])

IV. DATA ANALYSIS

A. Standard Randomized Benchmarking

Applying the randomized benchmarking sequence
SRB to the initial state vector of a qubit |ψ〉 would
theoretically result in no change to the state vector
in the event of an error-free quantum system. How-
ever, the purpose of randomized benchmarking is to
diagnose the possible errors that could arise during
a sequence of quantum operations. Denoting the
final state vector that is measured after the applica-
tion of SRB as |ψ′〉, we measure the probability that
these states are different. This probability, called
the “survival probability” or “excited state proba-
bility,” would be 1 for each sequence in the ideal
case. Averaging the probability over k sequences of
the same length m, we then determine the sequence
fidelity Fseq(m). Performing this protocol for a num-
ber of different sequence lengths (we denote this set
of lengths as M), we can then fit the data to the
zeroth-order exponential decay model:

Fseq(m) = Apm +B

This fit gives the depolarizing parameter p, which is
equivalent to our metric for gate fidelity. And, from
p, it is trivial to calculate the average error rate per
gate e = 1− p.

B. Interleaved Randomized Benchmarking

In order to perform the analysis for interleaved
randomized benchmarking, we must first perform
standard randomized benchmarking. Then, using
the same number k of sequences per length, and
the same set of sequence lengths M as the stan-
dard randomized benchmarking instance, we build
the interleaved randomized benchmarking sequences
SIRB and apply them to our qubit, once again de-
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FIG. 3. Plot of a standard randomized bench-
marking run with the set of train lengths M =
{5, 25, 50, 100, 200}, the number of sequences per length
k = 20, and 5000 averages per sequence. The spread of
the excited state probability values is quantified using
error bars, and the data are fit to a zeroth-order expo-
nential decay model. From this fit, we can extract the
gate fidelity p = 99.855%± 0.021%.

termining the survival probability for each sequence.
We then average the probabilities over the k se-
quences per length m to determine the interleaved
sequence fidelity F ′seq(m). Similarly, we perform
this protocol for every sequence length m ∈ M and
then fit the data to the zeroth-order exponential de-
cay model once again. This time, we end up with
the interleaved gate fidelity p′, which allows us to
calculate the corresponding average error per gate
e′ = 1 − p′. Finally, we can then extract the error
eC contributed by the target pulse C by the simple
formula eC = e′ − e, where e was determined in the
standard randomized benchmarking instance.

V. EXPERIMENTAL RESULTS

After completing my pulse generation and simu-
lation software, I spent the remainder of my time in
the lab running the software on physical qubits. Us-
ing the randomized benchmarking protocol and data
analysis techniques described above, I was able to ex-
tract some meaningful data from experimentally im-
plementing my randomized benchmarking software.

A. Standard Randomized Benchmarking

To learn more about the errors in the lab’s pulse
tuning methodology as a whole, I began by perform-
ing standard randomized benchmarking. Using the

set of train lengths M = {5, 25, 50, 100, 200} with
k = 20 sequences per length and 5000 averages per
sequence, I was able to produce the plot in Figure 3.
The plot features the zeroth-order exponential de-
cay fit, along with error bars to quantify the spread
of excited state probability values for a given train
length. As is shown on the plot, the gate fidelity
p determined by the fit is p = 99.855% ± 0.021%,
meaning that the average error per gate e can be
calculated to be e = 1 − p = 0.145% ± 0.021%. By
itself, this number gives us an average error per gate,
but cannot tell us what the source of these errors are.

B. Interleaved Randomized Benchmarking

Having performed standard randomized bench-
marking, I then set out to try to gain more informa-
tion about the specific sources of error in the ran-
domized pulse trains. By interleaving the identity
operator in our gate sequence, which is equivalent to
a “wait” operation in the pulse train, we can imple-
ment something that is called “decoherence random-
ized benchmarking.” This protocol is aptly named,
because by determining the gate fidelity of a deco-
herence randomized benchmarking run and compar-
ing it to an identically constructed standard random-
ized benchmarking run, we can learn more about
the breakdown of errors between qubit decoherence
and imperfect pulse tuning. In addition to the wait
pulse, any of the Clifford pulses in C can be the
target pulse C in an interleaved randomized bench-
marking run. Using the same M , k, and number of
averages per sequence as the standard randomized
benchmarking run described in the previous subsec-
tion, I was able to extract the interleaved gate fi-
delities p′ for a number of different pulses. Then,
the corresponding eC value for each pulse C can
be calculated by the difference eC = p − p′, where
p = 99.855% ± 0.021% from the standard random-
ized benchmarking run (see Table I).

C p′ eC

I 99.833%± 0.018% 0.022%± 0.039%

X+π/2 99.630%± 0.041% 0.225%± 0.062%

Y−π/2 99.736%± 0.030% 0.119%± 0.051%

Xπ 99.270%± 0.125% 0.585%± 0.146%

Yπ 99.157%± 0.125% 0.698%± 0.146%

TABLE I. Error per gate contributions due to various
interleaved Clifford pulses. To determine the value of
eC for each Clifford pulse C, we calculate the difference
p− p′ of the standard and interleaved gate fidelties.
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FIG. 4. Distribution of excited state probability for m =
50 and k = 200 with 5000 averages per sequence. The
attempt at a Gaussian fit is in green, and the normality
test of the data gives a p-value of 0.00000.

C. Distribution of Errors

In addition to analyzing the sequence fidelity fit
of randomized benchmarking runs, and in turn ex-
tracting information about specific gate errors, I also
investigated the distribution of excited state proba-
bility values for a given train length. Currently, not
much is known about the behavior of such a distribu-
tion, but intuition says that it will not be Gaussian.
The motivation for this intuition is that although
the values for excited state probability are random,
they are necessarily bounded above by the maximum
probability value of 1. Therefore, I performed an
additional standard randomized benchmarking run,
but with the parameters slightly altered in order to

determine whether or not the distribution is Gaus-
sian. Using the set of train lengths M = {5, 25, 50},
the number of sequences per length k = 200, and
5000 averages per sequence, I was able to get rich
distribution data for the various lengths. Then, I
plotted the data for each train length in a corre-
sponding histogram, tried to fit a Gaussian distribu-
tion to the data, and performed a normality test. As
seen in Figure 4, the distribution fits the data poorly,
and the normality test gives a negligible p-value.

VI. CONCLUSION

Although more randomized benchmarking runs
are necessary to validate the data, it seems that the
eC values can provide useful insight into the mani-
festation of errors in physical quantum systems. For
example, the fact that the eC value for the wait pulse
is so small seems to indicate that the errors in the
lab are weighted more heavily towards issues with
pulse tuning. However, the difference in eC values
between the π and π/2 pulses also seems to indicate
that of all the Clifford pulses, the π pulses are the
largest sources of pulse tuning errors in a given se-
quence. In addition, the fact that a normality test
of the excited state probability values gives a neg-
ligible p-value seems to affirm that the distribution
is not Gaussian, and opens up possibilities for fu-
ture research into the exact behavior of the distri-
bution. Although my research leaves many ques-
tions unanswered, I hope that my pulse sequence
generation and simulation software will serve as a
useful tool in the future to improve the pulse tun-
ing methods of the lab so that we can continue to
make progress towards complete control over quan-
tum systems and ultimately the realization of a scal-
able quantum computer.
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