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ABSTRACT

Cavity State Reservoir Engineering in Circuit
Quantum Electrodynamics

Eric T. Holland
2015

Engineered quantum systems are poised to revolutionize information science in
the near future. A persistent challenge in applied quantum technology is creat-
ing controllable, quantum interactions while preventing information loss to the
environment, decoherence. In this thesis, we realize mesoscopic superconducting
circuits whose macroscopic collective degrees of freedom, such as voltages and
currents, behave quantum mechanically. We couple these mesoscopic devices to
microwave cavities forming a cavity quantum electrodynamics (QED) architec-
ture comprised entirely of circuit elements. This application of cavity QED is
dubbed Circuit QED and is an interdisciplinary field seated at the intersection
of electrical engineering, superconductivity, quantum optics, and quantum in-
formation science. Two popular methods for taming active quantum systems in
the presence of decoherence are discrete feedback conditioned on an ancillary
system or quantum reservoir engineering. Quantum reservoir engineering main-
tains a desired subset of a Hilbert space through a combination of drives and
designed entropy evacuation. Circuit QED provides a favorable platform for in-
vestigating quantum reservoir engineering proposals. A major advancement of
this thesis is the development of a quantum reservoir engineering protocol which
maintains the quantum state of a microwave cavity in the presence of decoher-
ence. This thesis synthesizes strongly coupled, coherent devices whose solutions
to its driven, dissipative Hamiltonian are predicted a priori. This work lays the
foundation for future advancements in cavity centered quantum reservoir engi-
neering protocols realizing hardware efficient circuit QED designs.
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Introduction

Quantum mechanics is amongst the most visible branches of physics. Yet the
concept of quantization in the real world to a general audience is initially baf-
fling. Discussing the quantization of examples such as currency or integer num-
bers are largely considered straight-forward; however, the quantization of our

natural world requires inherent complications such as the wave-like behavior of



matter. This creates abstract physical and philosophical concepts not easily in-
tuited by laymen and experts alike. Fortunately, quantum optics, a subfield of
quantum mechanics, theoretically and experimentally investigates counterintu-
itive quantum phenomena solidifying in experiment what initially seems to be

philosophical.

As an experimentalist, the theoretical development of quantum mechanics
is all the more impressive considering the technological state of the early 20"
century. One cannot help but wonder how a modern day version of the Bohr-
Einstein letters would read if they were able to cite present day work where one
routinely has full quantum control over an atom, artificial atom, or a single pho-
ton. For instance, Schrodinger remarked, “we never experiment with just one
electron or atom or molecule. In thought-experiments we sometimes assume
that we do; this invariably entails ridiculous consequences... we are not exper-
imenting with single particles any more than we can raise Ichthyosauria in the
z00” [1]. However, at the start of the 215 century a wide range of experimental
platforms exist to investigate single photon or single atom interactions verifying
and expanding early theories.

The 1980’s had truly foundational work in not only quantum computing but
also in the development of mesoscopic systems that would thrive in quantum in-
formation experiments some twenty years later. One may wonder if the rich and
unique physics that occurs with single or small number of atoms can be analo-
gously achieved with a large collection of atoms. This may at first seem a little

far fetched but early in a mechanics course, Newton’s 3™ law is used to explain



how an extended object can be treated as a point particle. Anthony Leggett
theoretically undertook the question of whether or not a massively macroscopic
system such as a circuit could exhibit quantum behavior and be faithfully de-
scribed by a few quantum operators [2, 3]. Furthermore, Leggett along with
Caldeira investigated coupling to an infinite sea of harmonic oscillators giving
rise to tunneling [4]. On the experimental front, at the University of Califor-
nia at Berkeley Michel Devoret, John Martinis, and John Clarke (thirty years
later all are familiar names in the quantum superconducting circuit community)
carried out the first demonstration of the quantum mechanical nature of electri-
cal circuits [5, 6, 7, 8, 9]. Electrical circuits typically have of order Avogadro’s
number of atoms and for quantum mechanical processes to be apparent the de-
grees of freedom of the system must be substantially less than the number of
atoms involved which further underscores how impressive and fundamental this
work was. In hindsight, it would seem exploiting these artificial atoms for quan-
tum computing or quantum optics would be a natural progression. However,
in a sense, these landmark discoveries predated their future applications. Nei-
ther quantum computing nor quantum optics were the well developed fields that
they are today. It wasn’t until the late 90’s that superconducting circuits were
explicitly demonstrated with an outlook towards quantum computing [10, 11].
Towards the end of his life, Richard Feynman was a proponent of developing
quantum machines. Feynman’s insight was that some tasks such as simulat-
ing a quantum system, may be accomplished more naturally with a well con-

trolled quantum system rather than a classical system [12]. The first hard look



at quantum computing was by David Deutsch in 1985 [13]. From there theo-
retical investigations in both quantum algorithms and the necessary quantum
error correction to make said quantum algorithms possible in the presence of
noise took off in the 90s [14, 15, 16, 17, 18, 19, 20, 21]. A foundational refer-
ence to quantum computation and information is the textbook by Nielsen and
Chuang [22] whose initial release is temporally closer to the first few quantum
algorithms than present day. In the coming years the first logical qubit will
be experimentally demonstrated which can be thought of as the first quantum
transistor—the foundational bit that will comprise a quantum computer.
Looking back historically it is not necessarily the first demonstration of a
given technique that becomes ubiquitous in the field but rather the demonstra-
tion which can most easily overcome its current obstacles. For instance, an early
leader in experimental demonstrations of quantum computing and quantum
algorithms was NMR [23, 24, 25, 26]. However, progress in NMR based quan-
tum computation has largely been stymied by fundamental obstacles [27]. Since
this is a dissertation focused on quantum phenomena in superconducting cir-
cuits it is inherently biased towards that application. However, other systems
also offer viable platforms for the pursuit of quantum computation. A lead-
ing implementation is ion trapped based systems [28, 29, 30, 31, 32]; however,
other platforms exist such as optical lattices of neutral atoms [33], semiconduc-
tor quantum dots [34, 35, 36, 37, 38], and diamond nitrogen vacancy centers

39, 40, 41, 42, 43].



1.1 THESIS OVERVIEW

This thesis contains work that incrementally advances the field of circuit quan-
tum electrodynamics. Chapter 2 lays the foundation and sets the tone of this
thesis by describing common electrical circuits that will be realized. A success-
ful approach to circuit based quantum systems is by attacking the problem as
an RF engineer. Chapter 2 describes circuits as harmonic oscillators and quan-
tifies loss mechanisms of circuits which serves as a guiding principle in designing
experiments.

Chapter 3 is devoted to the early stage development of a scalable technology.
Early designs and experiments of an architecture that combines and leverages
highly coherent 3D structures with the robustness of lithographically defined
features. Great progress has been achieved on this front but fundamental inves-
tigations on design and integration are ongoing.

Chapter 4 serves as a brief introduction to the rich field of circuit quantum
electrodynamics. Some key topics are discussed to give the reader a sense and
a flavor for the field; however, it does not aim to be an exhaustive review of the
field of quantum information with superconducting circuits.

Chapter 5 is devoted to the experimental techniques used to make, measure
and characterize quantum devices at microwave frequencies.

Chapter 6 presents two unique advances in circuit quantum electrodynam-
ics. The first being a single photon resolved cavity-cavity state dependent shift.

The state dependent shift enables a demonstration of a protocol that stabilizes



photon number states in one of the microwave cavities.
Finally, the dissertation ends in chapter 7 with concluding remarks and a
warranted positive outlook for the field of quantum information with supercon-

ducting circuits.



Resonator Theory

This chapter lays the foundation upon which the rest of this thesis is built. We
begin with a classical description of resonators in terms of their circuit compo-

nents: capacitors, inductors, and transmission lines. We do this because we will
understand the constituents of our superconducting systems, artificial atoms

and cavities, in terms of circuit elements. Additionally, we will use these circuit



elements to understand coupling between artificial atoms and cavities as well
as the coupling to the external environment. In later chapters, using only cir-
cuit components a cavity quantum electrodynamics analogue will be achieved.
The circuit analogue to cavity quantum electrodynamics is realized with circuit
elements comprising both the cavities and the artificial atoms dubbed circuit
quantum electrodynamics or simply cQED.

Furthermore, resonators provide a means to investigate the loss mechanism
of our cQED systems. Since our circuit systems are designed and fabricated
by the scientist it is unclear which superconductors, if any, are more suitable
building blocks for resonators and artificial atoms. The final part of this chap-
ter is devoted to developing the concept of participation ratios which provides
a means to make “apples” to “apples” comparisons between the wide variety of
resonators and artificial atoms in the 5-10 GHz regime. Having the concept of
participation ratios is of paramount importance for progress to continue at the

historically accustomed rate [44] in the superconducting circuit community.



2.1 LC CIrculT

Figure 2.1: LC Circuit Diagram. An ideal capacitor, C, is connected in series
with an ideal inductor, L. We will describe the harmonic motion of either the

charge on the capacitor, Q(t), or its conjugate variable the flux in the inductor,
D(t).

We will begin with a simple series inductor-capacitor (L, C') system that is iso-
lated from the environment (Fig. 2.1). Looking at the voltage drop around this

circuit, we can derive the equations of motion for the charge on the capacitor,

Q(t):

Ve+ V=0
QW) , ,d*Q(t) _
c L dtz 0
d’Q(t) Q@) _
e 1o =" (2.1)
2
dd%(t) + wiQ(t) =0 (2.2)

We notice that the solution to our equation in terms of the charge on the ca-

pacitor, Q(t), satisfies a harmonic oscillator equation with w2 = % In later

9



chapters, we will rely on the fact that an LC circuit is a harmonic oscillator
when electrical circuits are quantized. For completeness we demonstrate that
the flux in the inductor also satisfies the harmonic oscillator equation and begin

again with the voltage:

Vi+Ve=0
d2e(t)  d(¢)
a2 o= 0 (2.3)
d2o(t
ng) +wi®(t) =0 (2.4)

As expected the flux in the inductor, ®(t), also satisfies the harmonic oscil-
lator equation with the same resonance frequency found in equation 2.2 (w2 =
%) Conceptually one could think of the charge sloshing back and forth from
the different sides of the capacitor through the inductor versus the time dynam-
ics of the flux. However, in chapter 4 we will find that it is easier to describe
our systems in terms of the flux because the nonlinearities introduced by the
Josephson junction perturb the potential when described in the flux basis rather
than when describing the charge and distorting the ‘mass’ Regardless, as we

have shown either variable satisfactorily describes an LC circuit as a harmonic

oscillator which we will make use of later in cQED systems.

2.2 LCR CiIrculT

It is useful to expand the work in the previous section to include dissipation.

Practically speaking, there will always be some form of dissipation in any circuit

10



R |V

Figure 2.2: LCR Circuit Diagram. 1 An ideal capacitor, C', is connected in series
with an ideal inductor, L which are connected to a transmission line with Z, =
50 €. 2 The transmission line can be replaced with a dissipative resistor, R.
This LCR circuit will be described as a damped harmonic motion in terms of
the charge on the capacitor, Q(t).

whether it be in the form of intended coupling to the 50 2 world, resistive heat-
ing, or residual coupling to the environment. One consequence of dissipation
is that our resonances will have a nonzero bandwidth. A finite, or even large
bandwidth, is desirable for the measurement chain enabling repeated quantum
non-demolition measurements [45, 46]. Dissipation in the form of information
removal from the quantum system under study to the physicist is advantageous
and necessary.

In figure 2.2 dissipation is taken into account by including a resistor, R. The
voltage for this term will generally be Vi = %EUR + Vi (t) where Viy(t) is the

noise term of the resistor. The noise of the resistor is non-neglible for excita-

11



tions of a few photons; however, if we restrict our view to large excitations we

can suppress the noise term and eq. 2.1 becomes:

Q) | AR, Q)

dt2 at L o 0 (2:5)
a2 d
dcf@ 1 2 giﬂ +W2Q() =0 (2.6)

The LCR circuit takes the form of a damped harmonic oscillator with damp-

B
2L

1

76> and damping factor, ¢

ing attenuation a = resonance frequency of wg =

defined as:

Q R /L R

=0 "2V T e

(2.7)

Since our LCR circuits will be relatively low loss, superconductors at giga-
hertz frequencies, we can ignore corrections to the resonance frequency of the

oscillator due to damping.

2.3 QUALITY FACTORS
The quality factor, Q, of a resonator is defined as:

average energy stored

Q = wy (2.8)

dissipated power

Q is an important quantity not only because it defines the bandwidth of the
resonance (BW = é) but also because it quantifies the different loss mechanisms

of our RF circuits.

12



2.3.1 QuALITY FACTOR PARALLEL LCR CIRcCUIT

To determine the quality factor of a parallel LCR circuit we begin by looking at

the power dissipated by the resistor, P;:

V2
P=— 2.9
1= 5h (2.9)
The average stored energy in the electric field by the capacitor, E., will be:
Lo
E.= ZV C (2.10)

Also, the average stored energy in the magnetic field by the inductor, E;, will
be:
1 v?

E=—-——— 2.11
4wiL (2.11)

If we now use equations, 2.9, 2.10, and 2.11 in equation 2.8 we get:

V€ + 3V (5L

Qrer = wo V2
2R
Qrer = wolRC =wor (2.12)

In the case of a parallel LCR circuit we see that the bandwidth will be set by
the resonance frequency of the oscillator as well as its “RC” time which is de-
fined in the usual way as 7. From equation 2.12 we notice that for a fixed total
quality factor the total lifetime of the circuit can be increased simply by low-

ering the resonance frequency and not at all altering the dissipation. This is a

13



reason why discussing the quality factor of a resonance is preferred to discussing
the lifetime of a resonance. It must be noted that one cannot make the reso-
nance frequency of the artificial atom or resonator arbitrarily low just to have a
long lifetime. One reason is that lowering the frequency makes is easier for the
thermal bath to provide excitations. For instance 1 GHz corresponds to roughly
50 mK. Other considerations when lowering the frequency of artificial atoms
are, for charge based designs such as the transmon, that charge dispersion (de-
phasing) grows exponentially as the frequency of the device is lowered [47].

For completeness we note that for an oscillator its quality factor can always

be written in the form of equation 2.12 as well as being written as [48]:

wo_fo

= 2w = Af (2.13)

Additionally, for series circuit elements we can define the quality factor in terms
of its impedance, Z(w), as:

Q=_—-* (2.14)

Also, for the case of parallel circuit elements we can define the quality factor in

terms of the admittance, Y (w), as:

Q=—1 2 (2.15)
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Z, C—=L

Figure 2.3: Coupling to LC Oscillator. We model coupling to an LC oscillator as
a series coupling capacitor, C,, to the Z, of the environment.

2.4 CouPLING TO LC OSCILLATOR

We begin with the case of an LC oscillator capacitively coupled to the Zy (50 2)

environment by a coupling capacitor, C,, as shown in figure 2.3. The coupling

capacitor and the Zy (50 ) line can be described as a shunt admittance Yi:
1—jq

Y, = jwC.—= 2.16
Wl 2 (2.16)

In equation 2.16 we have defined ¢ = wZ,C.. We take the real part of this shunt

admittance because it will in part determine the quality factor of our resonance.

RelY] =~ Z (2.17)
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In equation 2.17 we have made the simplification that ¢ < 1. Using equation

2.17 the total quality factor of the LC oscillator is:

o (U()C
Y = Repy)
WOCZO

= = (2.18)

For the LC oscillator we remember that its resonance frequency, wy, and its

characteristic impedance, Z., are:

1
“ = = (2.19)

Z, = \/g (2.20)

Using equations 2.19 and 2.20 we solve for the capacitance as:

1
C = 2.21
A (2.21)
Now we simplify equation 2.18 by using equation 2.21:
1 Z
= == 2.22
R 2:22)
1
Q = — (2.23)
q
c. = ! (2.24)
‘ woZoV/@Q '
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To go from 2.22 to equation 2.23 we make the approximation that the char-
acteristic impedance of the transmission line normalized by the characteristic
impedance of the LC oscillator is of order unity. From equation 2.24 we can
now estimate the value of the capacitor needed to have a total quality factor of
no worse than a million. If we assume a resonance at 8 GHz and a characteris-
tic impedance of 50 €2 then our coupling capacitor is 400 aF. For a total quality
factor of 10'° this would require a net coupling capacitor of 4 aF. This is why
the evanescent coupling, which allows exponential suppression to the external

environment, is so useful in realizing weak coupling.

2.5  PARTICIPATION RATIOS

In this final section, quality factors are used to develop the concept of participa-
tion ratios giving an implementation independent means to describe dissipation

in a RF circuit.

2.5.1 Lossy CAPACITOR

We begin our investigation into participation ratios by looking at a capacitor
whose loss originates from having a material with a complex dielectric constant,
€ = ¢ +ie (i = v/—1). As a simple example we will look at a parallel plate
capacitor (Fig. 2.4) which we acknowledge for all frequencies is not a capacitor

[49] but nevertheless gives insight into the problem of handling a lossy capaci-
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d e=¢ +ig, —)C,, G

shunt

Figure 2.4: Lossy Parallel Plate Capacitor. To frame the discussion of participa-
tion ratios a lossy parallel plate capacitor will be considered. The results for
describing the lossy parallel plate capacitor will be quite general and not specific
to this geometry. We decompose the lossy capacitor into an idealized capacitor,
C,. shunted by a lossy element Ggpyn:-

tor. In general, the admittance for a capacitor is simply:
Y, = jwC (2.25)

Where C' is the capacitance of the object, w is the angular frequency, and j is
in the standard electrical engineer definition (7 = —i). In the case of a paral-
lel plate capacitor filled with a material with a complex dielectric constant the
capacitance for this parallel plate is:

4

Cp = € (2.26)

Where € is the complex permittivity, A is the area of the plates, and d is the

distance for the plates (Fig. 2.4). If we use equation 2.26 in equation 2.25 then
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the admittance for this lossy capacitor is:

}/cp = jwe—

Explicitly writing out the complex permittivity equation 2.27 becomes:

%K: %K: %K:
S S S
I Il I

S
S
I

A
d

A
Jjw(er + ZE,)E

Jwer— + Jiwe;

d
. A L+ A
jwerd we,d

jwcr + Gshunt

(2.27)

(2.28)

(2.29)

We rewrite our result in equation 2.28 as two terms in equation 2.29. The first

term in equation 2.29 stores energy in the E or D fields and acts as an idealized

capacitor. The second term in equation 2.29 is a dissipative term which shunts

the idealized capacitor. This shunt resistance, Gpune, is not ohmic and has zero

DC contribution but has an appreciable RF value. To determine the quality

factor of this lossy capacitor we can take the ratio between the imaginary and

the real parts of equation 2.29:

Q cpp
Q cpp
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Figure 2.5: Lossy Capacitor-Two Dielectrics: Parallel. Parallel plate capacitor
with lossy dielectrics whose surface interface is parallel to E or D fields is con-
sidered. The above case of a parallel plate capacitor filled with two different
complex dielectrics €1 2 is presented. The two different regions can be modeled
as an idealized capacitor C; o shunted by G; o with each region circuit equiva-
lent being in parallel with the other regions circuit equivalent.

In equation 2.30 we find a relationship between the quality factor of this circuit
element and its loss tangent, tand. The loss tangent of a dielectric is a common
materials property in electrical engineering [48] which is generally held to be a

frequency independent quantity. We find that in the case of the lossy capacitor,

the quality factor is set by the loss tangent of the dielectric.

2.5.2 PARTIALLY FILLED Lossy CAPACITOR-PARALLEL

The next two sections are devoted to a more realistic situation: multiple di-
electrics that contain E and D fields. We will look at two extreme cases: fields
perpendicular to the dielectric interfaces and fields parallel to the dielectric in-
terfaces. In this section we undertake the case where a parallel plate capacitor
is completely filled two different lossy dielectrics complex dielectric constants €,
and ez (Fig. 2.5). The dielectric interface will take place parallel to the E and

D fields. Since each section of dielectric has the same voltage across it, these
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two lossy capacitors are in parallel. Following a similar formalism as in section
2.5.1 we can describe each region as a capacitor shunted by a resistor. If we as-
sume that for each dielectric there is a corresponding area, A; , As then for the

capacitors in region 1 and 2 we have:

A

C, = e,— (2.31)
d

Gl = tanélClw (232)
A

Cy = ey — (2.33)
d

G2 = tanégng (234)

These circuit elements are all in parallel and it is straight forward to calculate

their total capacitance, C,, and total conductance, G:

A A

Ciot = Ci+Ch=e1,— +epp— (2.35)
d d

Gtot = G1 + G2 = tan (5101&) + tan 5202w (236)

We can use equations 2.35 and 2.36 to write down the impedance for the circuit
equivalent of a parallel plate capacitor filled with two different lossy dielectrics
as:

Zcp = Gtot + ij’tot (237)
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Using the the total impedance, Z.,, we can readily determine the quality factor:

Im[Z,)]
Re[Z,,)
Otot

= 2.
Q P tan (5101 + tan 5202 ( 38)

Qcp =

If we invert equation 2.38 we have:

1 Ch Cy
— = tan d; + tan o
Q cp Ctot ! C'tot ?
1 C; 1 Cy 1
— = — 2 2.39
Q cp Ctot Ql CVtot QQ ( )
1 Y41 P2
- = =4 = 2.40
Q cp Ql QQ ( )

Equations 2.39 and 2.40 define the capacitive participation ratio in the case

where the field lines are parallel to the interface—explicitly p;, = C(iit' Conceptu-

ally we understand this participation ratio to be the electric field energy stored
in the given region normalized by the entire electric field energy. The sum of
all participation ratios multiplied by their respective loss rate results in the to-
tal loss rate of the resonance and is inverse to the total quality factor. We gain
the intuition that if we must include lossy components then our circuit design
should be such that the lossiest part has the smallest participation ratio, mini-
mally spoiling the total quality factor.

For example, 3D resonators coupled to qubits with lifetimes of order 1 ms in
the 5-10 GHz [50, 51, 52] regime give total quality factors in excess of 107. If

we have a dielectric with a loss tangent of 107 in the quantum regime, then
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no more than 1% of the total electric field energy can be stored in the lossy
dielectric. Furthermore, we can also consider manipulations on the quantum
state of a cavity that require conditional qubit rotations which take of order

1 ps [53, 54]. For qubit decay to be less than a percent during the cavity manip-
ulation, qubit lifetimes must also be of order 100 us leading to the conclusion
that no more than 10% of the total electric field energy can be stored in a rel-
atively low loss dielectric. The major point is that the physicist must carefully
design the resonant circuit or artificial atom with participation ratios in mind so

to minimally spoil the coherence of the quantum system.

2.5.3 PARTIALLY FILLED L0OSSsy CAPACITOR-SERIES

The other key case for a lossy capacitor is when it is filled with two different di-
electrics €1 and e whose interfaces are perpendicular to the E and D field lines
(Fig. 2.6). This partially filled capacitor can be modeled as two lossy capacitors

in series. Each lossy capacitor’s admittance is:

Yeq = jwCi+wCtand; = Gy + jwCy (2.41)

Yo = jwCsy+wCstandy = Gy + jwCy (2.42)
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Figure 2.6: Lossy Capacitor-Partially Filled Series. To gain insight for how lossy
dielectrics which are parallel to E or D fields contribute to the total quality fac-
tor, the above case of a parallel plate capacitor filled with two different complex
dielectrics € 2 is presented. The two different regions can be modeled as an ide-
alized capacitor (' o shunted by G o with each region circuit equivalent being in
series with the other regions circuit equivalent.
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Where 5 = ELQT%. We now combine these two series lossy capacitors to

determine the total impedance, Z;:

1 1
Zio
ot }/csl—i_Yrch
Cs tan o1 + Cy tan o (Ch + C.
Zyy ~ C2tandit Citandy + (G +C) (2.43)

wC’lCQ

We define C,; = Cclfc%z so that we can now determine the total quality factor:

1 . Re[Ztot]
Q tots Im[ZtOt]
1
= pitand; + po tandy (2.44)
Q tots

We arrive at similar result again. The total quality factor will be set by the
loss tangent of each item scaled by its participation ratio which in the case for
field lines perpendicular to the interface is p; = %jt If we use the parallel plate

capacitor as an example and look at one of the participation ratios we have:

(2.45)

o Chot Cy €2rA/d2 (1 €1y @) -

€or dl

P Cl N Cl + OQ - ElTA/dl + EQTA/dQ -

As one would expect the participation ratio for a given layer increases with
increasing relative thickness of the layer under investigation. A counter intu-
itive result is that by increasing the dielectric constant of a given layer actually
reduces the participation ratio! In planar resonators a method that has been
shown to increase the quality factor of the resonator is removing the dielectric

near the edges, trenching [55, 56, 57]. A possible method to improve on trench-
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Figure 2.7: Lossy Inductor. To understand how lossy permeable material affect
the quality factor of an inductor we will analyze the case of a solenoid of length
[, cross sectional area A, complex permeability u, and whose number of terms
per unit length is n. This lossy solenoid will be described as an idealized induc-
tor L' in series with a resistor R.

ing would be to use a material with a very large dielectric constant that can be
thinly deposited underneath the resonator. This could allow for more aggres-
sive trenching and structural support resulting in more energy stored in lossless
vacuum. The idea of trenching could also prove useful for superconducting ar-
tificial atoms in the GHz frequency range, which unequivocally must be fabri-
cated through lithographic processes and metal deposition in contrast to cavities

which can be machined out of high purity superconductors.

2.5.4 Lossy INDUCTOR

Up until this point all the discussion of participation ratios has been in terms of
the E and D fields. However, we can and will produce analogous results for B
and H fields. In a similar fashion to the lossy parallel plate capacitor we begin

with a solenoid filled with a lossy material. The solenoid consists of n turns per
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unit length, is filled with a lossy material with a complex permeability u, has an

cross sectional area A, and length [. The inductance for the lossy solenoid is:

L = un*Al (2.46)

Using equation 2.46 the impedance of a lossy solenoid is:

Zsolenoid = JWL = ]CL)/LT??AZ = jw(ﬂr—i_lﬂz)nQAl = w,UJin2Al+jw,u7’n2Al - R+jWL,

(2.47)
From the solenoid impedance the quality factor can be calculated as:
o Im[Zsolenoid]
Q solenoid — WAl .1
Re [Zsolenoid]
Hor 1
, — = 2.48
Q solenoid L tan 5[ ( )

Where in equation 2.48 we have defined an analogous loss tangent for perme-
able materials as tanJ; :%. In the same manner as with the lossy capacitor, in

the case of the lossy inductor its quality factor will be set by its inductive loss

tangent.

2.5.5 PARTIALLY FILLED L0OSSY INDUCTOR-SERIES

Now we begin our treatment of inductors that have two different lossy per-
meable cores. In this section, we undertake the situation where the B and H

fields are perpendicular to the surface interface of the two permeable materials
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Figure 2.8: Lossy Inductor-Partially Filled Series. In the above, a solenoid is filled
with two different permeable materials with complex permeabilities j4 2 whose
interface is perpendicular to the B and H fields in the solenoid. By rewrit-

ing this as idealized inductors L; o and resistors R; » we gain insight as to how
these permeable materials affect the total quality factor. It is also worth noting
that the resistance we discuss here is non-ohmic and has zero DC resistance but
nonzero resistance at RF frequencies.

(Fig. 2.8). The inductance for either region is:

LLQ = Uy 1,2n2Al172 (249)

We can also use equation 2.49 to readily write down the resistance in either re-
gion as:

RLQ = wtan 51 172.[/1’2 (250)

Using equations 2.49, 2.50, and that these idealized circuit elements are in series

the total inductance and resistance are:

Ly = HQA(,UT 1+ pr 2la) (2.51)

Riy = wn?A(tand; 1, 11y + tan d; opty olo) (2.52)
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Figure 2.9: Lossy Inductor-Partially Filled Series. In the above, a solenoid is filled
with two different permeable materials with complex permeabilities ji4 2 whose
interface is parallel to the B and H fields in the solenoid. By rewriting this as
idealized inductors L; » and resistors R; o we gain insight as to how these per-
meable materials affect the total quality factor.

From equations 2.51 and 2.52 the quality factor of the lossy solenoid is:

1 . Re[Ztot]
Q tots Im[Ztot]
1
= pitand; 1 +patand o (2.53)
Q tots

Where we have defined the participation ratios for the B and H fields when the
permeable materials are in series as p; = p, il;/(Zp, ;1;). As expected the sec-
tions with longest length and highest permeability contribute most to the total

quality factor.

2.5.6 PARTIALLY FILLED L0OSSY INDUCTOR-PARALLEL

In this final section, we under take the case that a solenoid is entirely filled with

permeable material but that the interface between two distinct regions is per-
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pendicular to the B and H fields (Fig. 2.9). Each section will have an induc-

tance and resistance of:

Ly = iy 12n*Asl (2.54)

Rl’g = wtan (5172[/172 (255)

The impedance for either region can be written as:

Zio=Rig+ jwlis (2.56)

Since these two regions are in parallel we combine them to find their total impedance:

YAV
Zne I —
' Zy + Z
212 212 jw3L1Lo(Ly + L
Znet ~ w 1R2+w 2R1 +jw 1 2( 1+ 2) (257)

w2(L1 + L2>2

Now to determine the quality factor of this solenoid we again take the ratio of

the imaginary part of the net impedance to the real part:

1 _ Re[ZtOt]
Q totp Im[ZtOt]
1
= P2 tan (5[ 2+ P1 tan 51 1 (258)
Q totp
Where we have used that the total inductance is L;,; = LL11+LL22' We use the
total inductance to define the participation ratio for each element as p; = LL“?t.
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In the case of a solenoid we can find the participation ratio to be:

_ Ltot
b1 I
P 1A -
o= (Z ;A—;H) (2.59)

From this we find two surprising results. That the participation ratio increases
for smaller areas and for smaller permeabilities! Once again we find a scenario
where a small bit of vacuum could substantially improve the quality factor of a
resonator. It is not too surprising that this case would be the one with a bene-
ficial outcome since an electromagnetic wave in free space has the electric and
magnetic fields perpendicular to each other. From the results of section 2.5.3
for the electric field participation ratios we could have naively guessed that the
orthogonal magnetic field would scale similarly; however, it is quite nice that it

did work out to be the case.

2.6 FINAL THOUGHTS

The major ideas we have developed in this chapter, quality factors and partic-
ipation ratios, will be used extensively in the next two chapters which are on
the physical implementation of microwave cavities and resonators. Quality fac-
tors give a frequency independent way to quantify the loss of a resonant mode.
Although two cavities or qubits could have the same quality factor for their res-
onance those with lower frequencies have longer lifetimes from equation 2.12.

Also, participation ratios give a means to quantify resonances with similar qual-
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ity factors by being able to break down the contributing loss mechanisms to see

if results are consistent or inconsistent.
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Transmission Line Resonators

The main goal of this chapter is to describe and adapt a microwave geometry
for circuit quantum electrodynamics. Cavities with lifetimes in excess of 1 ms in
the quantum regime [58, 50, 51, 52| can be constructed from bulk superconduc-
tors materials. However, to access the rich physics of cQED it is necessary to

have an atomic like object [59]. In cQED the atomic like object relies originates
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from the Josephson junction. Incorporating a Josephson junction to realize res-
onances in the 5-10 GHz range requires fabrication with lithography and deposi-
tion making fabrication nano-fabrication an essential part of cQED. Thoughtful
integration is required to build more complex structures while maintaing the
coherence found in waveguide cavities. To fulfill this demand, we seek to imple-
ment a novel, lithographically defined transmission line geometry. As we will
see, the transmission line structure can realize a resonant cavity. This resonant
cavity in principle can be used for: state readout of the ‘artificial atom’, pro-
tecting the ‘artificial atom’ from radiating into the environment, and serving as
a test bed for different superconducting materials, dielectrics, and lithographic

procedures.

3.1 HISTORICAL DEVELOPMENT

Microwave circuits are by no means a new development as their use date back
to the 1930s. Although waveguide structures were quite successful in the 1940s,
the desire for an increased bandwidth as well as complexity and integration
spurred the development of two new geometries: stripline and microstrip [60]
(Fig. 3.1). The invention of the stripline architecture is credited to Robert M.
Barrett in the 1950s at the Air Force Cambridge Research Center [60]. The
original development by Barrett used dielectric materials only to support the
center conductor between the two ground planes (Fig. 3.1 C). Although now
any structure with a flat conductor between two ground planes is referred to as

a stripline, in the 1950s if the device was mostly filled by vacuum then it was
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called a stripline and if the device was filled entirely with a dielectric material it
was referred to as “tri-plate” (Fig. 3.1 B). Striplines were an attractive geome-
try for microwave engineers in part because it is a TEM structure with no cut
off frequency. At the same time the stripline was being developed so too was
the microstrip geometry (Fig. 3.1 A). The microstrip relies on the fields being
concentrated between the center conductor and a sole ground plane. Issues with
the microstrip geometry are radiative losses as well as a greatly distorted phase
velocity due to the large difference in dielectrics. For improved performance mi-
crostrips typically need an enclosure and for this reason we elect to develop a

stripline structure.

3.2 CHARACTERISTIC IMPEDANCE

Figure 3.2 shows the prototypical stripline. The ground planes are separated

by a distance, H, filled with a dielectric with relative dielectric ¢,, and with the
center conductor placed symmetrically between the ground planes. The center
conductor has a width, W, and thickness, t. Since there are two conductors this
is a TEM structure [48]. Closed form solutions to the characteristic impedance,
Z,, of this transmission line exist [61]; however, a more simplified form that does

not deviate by more than 1% [48] of the true value is:

60 AH
de= =l (.677TW(.8 + %)) (3:1)

In our particular case the thickness will be 200 nm or less and the widths will
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Figure 3.1: In all sketches, a conducting strip (blue) is deposited on a substrate
(yellow) and then kept a distance away from another conductor, ground, (grey).
In all cases, electric field lines are drawn in red and magnetic field lines are
drawn as green dashed lines. A a cartoon figure of a microstrip geometry which
has only one ground plane and is quasi-TEM transmission line [48]. B A car-
toon schematic of a tri-plate structure which is a center conductor fully sur-
rounded by a dielectric substrate with a top and bottom ground plane. C A
cartoon schematic of the original stripline design where the center conductor is
deposited on a substrate only thick enough to provide mechanical support and
is mostly vacuum (air). As we saw in chapter 2, the electric field energy den-
sity will be greater in the region with the lower dielectric constant if the electric
field is perpendicular at the interface so in the original stripline design the ma-
jority of the electric field energy will reside in vacuum (air). The substrate sits
between two conducting ground planes and is a TEM transmission line [48]. All
sketches of microstrip, tri-plate, and striplines with electric and magnetic fields

based on Ref. [60].
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Figure 3.2: Prototypical stripline. The ground planes (grey) are separated by a
distance, H, filled with a dielectric with relative dielectric €, (yellow), and with
the center conductor (blue) placed symmetrically between the ground planes.
The center conductor has a width, W, and thickness, t.

1
w

60 4H
Z, = 1 2
© Ve N (.547TW) (32)

We can use the above to gain some intuition as to the relative sizes our phys-

be 300 microns or more so we can neglect the — contribution and simplify eq.

3.1 to:

ical structure requires. For this structure to have a characteristic impedance of
50 €2, assuming €, = 10, the height to width ratio is roughly a factor of 5. In
this thesis, a height to width ratio of 3 was used. The smaller height to width

ratio is a consequence of the dielectric being roughly half vacuum.

3.3 DESIGN CONSIDERATION

In this section, we undertake the design of a stripline structure that will be
readily compatible with the standard cQED environment. We seek to minimize

fabrication steps required and elect to construct the grounding structure out of
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bulk superconductor so different chips can be readily swapped in and out. The
thought process was to minimize the ambiguity in future results that depend on
complicated fabrication and deposition procedures. A substrate inserted into the
superconducting structure will have a deposited thin film which acts as the cen-
ter pin for the stripline structure. By having a finite length of the center con-
ductor we can realize a half wave length resonator with respect to the voltage
on the center pin.

Since we will be building an enclosed stripline to minimize radiative and en-
vironmental losses we must acknowledge that the enclosure is really a rectangu-
lar waveguide. We will design this rectangular waveguide to have a high cutoff
frequency (> 20 GHz) to avoid any extraneous modes coupling to our supercon-
ducting structures. The cutoff frequency, f..mn, of the rectangular waveguide,

with sides of length a and b, is [48]:

o = g () (5 3

In equation 3.3, ¢ is the speed of light in vacuum, pu, and €, are the relative per-
meability and permitivity respectfully, and m,n are the different transverse
mode indices. Rectangular waveguides are analyzed as a single conductor and
consequently cannot support TEM wave propagation. For this reason, the rect-
angular waveguide can only support TE,,,, or TM,,, modes. Equation 3.3 gives
the cut off frequency for either TE,,, or TM,,, modes. In our design we care
only about the frequency that the first mode of the structure that propagates

rather than higher modes. The lowest mode will be the TE;q defined by the
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Figure 3.3: Rectangular Waveguide Cavity. A rectangular waveguide with di-
mensions a (red), b (blue), and ¢ (green). Shown in blue and green arrows are
the amplitude of the electric field along either the b, & directions which due to
boundary conditions must be zero at the walls of the rectangular waveguide cav-

ity.
longest side of the rectangle [48]:

C
= 3.4
fero =5 e (3.4)

The longest length that can be tolerated for a cutoff frequency of 20 GHz is
roughly Smm assuming that the waveguide is fully filled with a relative dielec-
tric of 10. Decreasing the relative dielectric will increase the cutoff frequency
and consequently increase the relevant length scale.

A similar consideration to investigate is the consequence of having a finite

length rectangular waveguide. The sample box itself is rectangular (figure 3.3),
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with sides a, b, and ¢, and will have resonance frequencies given by [48]:

o= g () () () 55

In equation 3.5 ¢ is the speed of light in vacuum, g, and €, are the relative per-

meability and permitivity respectfully, and m,n are the different transverse
mode indices and [ is the longitudinal index. Once again the dominant mode,
lowest frequency, will be the TE;p;. This assumes that ¢ > a > b which means
that the external conductor will be longer than either of the sides making up
the cross-sectional rectangle. From equation 3.5 we gain the insight that the
longer we make the structure the less it depends on the length. For a TE;q,;
mode, in the limit that ¢ > a equation 3.5 reduces to equation 3.4 but has the

interpretation of being a resonance frequency rather than the cutoff frequency.

3.4 FIRST DESIGN

In the first design we choose the width of our rectangular cross section to be
1.2 mm, the height to be Imm, and the length of the structure to be 25mm. If
the structure were entirely filled with €, = 10 then the cutoff frequency from
equation 3.4 is 40 GHz. If the relative dielectric is smaller than that only in-
creases the cutoff frequency. The resonant mode of this holder will also be ap-
proximately 40 GHz because of the extreme length to width ratio.

Figure 3.10a, b contain diagrams with cross sections of the enclosed stripline

that will be the focus of this chapter. We have chosen to have a very narrow
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Figure 3.4: First generation stripline design. a) Cross section of design. In grey is the outer

conductor whose internal dimensions are 1 mm by 1.2 mm. In yellow is the substrate for the

deposited film (blue). The substrate primarily used is sapphire; however, any dielectric can be

used. This structure is flexible enough to accommodate many different dielectrics and conduc-

tors to measure their loss. b) Side cut lengthwise down holder. In grey is the outer conductor

whose total length is 25 mm and height is 1mm. In yellow is the dielectric material with de-

posited superconducting material (blue and green). Although different colors are used the

superconducting material is the same. In green are the superconducting leads which are gap

coupled to the superconducting half wave length resonator, blue. c¢) Photo of actual sample.

The external structure has two symmetric halves that close into each other. One half has the

sapphire substrate with the deposited superconductor. SMA connectors are wire-bonded to

the superconducting leads to allow measurement of the resonator.
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structure to force all undesired modes to be quite high in frequency. All though
most of the discussion up until this point has discussed the stripline with a uni-
formly filled dielectric we have elected to only partially fill the structure. The
main reason for this decision is for frequency stability. In preliminary tests it
was found that adding in dielectric on top would cause fluctuations in the fre-
quency of the resonator. As we will see later even with half filled dielectric it
accounts for roughly 90% of the electric participation ratio so adding dielectric

on top was an unnecessary complication in the early development.

3.5 PARTICIPATION RATIOS

In this section we undertake analytically calculating participation ratios for
both the surface loss of a lossy dielectric and the bulk loss of a dielectric in a
stripline geometry. To achieve these calculations one must make some approxi-
mations that are not exact in real experiments. The goal with these analytical
calculations is not to accurately calculate participation ratios to arbitrary preci-
sion but rather to give the experimentalist intuition for the order of magnitude
of loss and what to expect when a given geometry is changed.

To accurately calculate a participation ratio is is essential for one to use a fi-
nite elemental solver. The software of choice in this thesis is Ansys’ HFSS (High
Frequency Structural Simulator). HFSS allows one to draw all structures in a
CAD environment and solve for the scattering, impedance, or admittance ma-
trices. HF'SS partitions the drawn structure into many small tetrahedrals and

solves Maxwell’s equations inside each tetrahedral. Since HF'SS solves for the
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electric and magnetic fields it is relatively straight forward to use their fields
calculator to sum the electric or magnetic field energy in a given region or vol-
ume. One can setup the field calculation ahead of time to calculate a participa-
tion ratio and then use the participation ratio as the numerical quantity that is
used to determine whether or not a solution converged. Additionally, HFSS can

be used to simulate Hamiltonian parameters which is discussed in chapter 4.

3.5.1 SURFACE DIELECTRIC LOSS

We now undertake calculating dielectric losses to know how loss will determine
our quality factors as well as give insight into which knobs we have available

to change as an experimental parameter. First we will calculate the loss from
dielectric surfaces. The total energy per unit length stored in the electric field of

a stripline of length L, with capacitance per unit length, ¢, and voltage, V, is:

= —cV? (3.6)

To calculate the energy per unit length stored in the lossy dielectric of thick-
ness t and length L we must calculate the following integral:
1 2
Usurf = §Lt GIEsurf’ dw

(3.7)

To evaluate equation 3.7 we must determine Fg,, ;. Assuming a uniform charge
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per unit area, o, on the center conductor the electric field is:

Byury = — (3.8)
€o€r

We can rewrite Fy,,; in terms of the total charge, ), and the length, L, and

width, W, of the center conductor equation 3.8 becomes:

o Q
€06,  LWege,

Esurf = (3.9)

We can rewrite equation 3.9 by using the capacitance relation between the charge

per unit length, the capacitance per unit length, and the voltage:

=cV (3.10)

=[O

With equations 3.9 and 3.10 we can find the surface electric field is:

cV
Wege,

Esurf = (311)

Using equation 3.11 in equation 3.7 we can determine the energy per unit length

stored in the lossy surface dielectric:

1
Usurf = —Lt/e\EWf\?dW

2
1 Vo2
Usirt = =LtWege,
! 2 co¢ (WEOET )
Usurf 1 t 2
— = = vV
L 2 Wege, (V)
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We can now calculate the participation ratio for a lossy surface dielectric for the

stripline using equations 3.6 and 3.10 is:

o Usurf Utot -
Psurf = I

L
1t 1 !
- - 2 - 2
Pourf = (2 Wepe, (V) ) (2CV )

tc
Wege,

Psurf

We find that the surface participation ratio is dependent mostly on well defined
quantities such as the thickness of the lossy dielectric, ¢, its width, w, and the
relative dielectric constant, €,.. The only unknown quantity we need to deter-
mine is the capacitance per unit length, c. We remember that for a transmission
line its characteristic impedance in terms of its inductance per unit length [ and

capacitance per unit length c is:

L=/ (3.12)

(3.13)

Using equations 3.12 and 3.13 we can solve for the capacitance per unit length

as:

—_

(3.14)

N
S
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Now we can rewrite the surface participation ratio using equation 3.14 as:

t

surf — 3.15
Psur Wepe, Z v ( )

We can further simplify this by using that velocity of light in the transmission

line in terms of the speed of light ¢ and the relative dielectric constant e, is

t
Psurf = WGO\/EZCC

(3.16)
Plotted in figure 3.5 is equation 3.16 as a function of center trace width for real-
istic parameters. As an example, we can use equation 3.16 for a typical stripline
geometry. For a lossy surface layer with thickness of 3 nm, a center conductor
width of 300 pum, relative dielectric of 6, and Z. = 50 €2 from equation 3.2, we
get a surface participation ratio of order ~ 107°. From this we learn that to
have a total quality factor in excess of a million the lossy surface layer need only
have a quality factor of ten. However, at the writing of this thesis the state of
the art cavity lifetime when coupled to a qubit is of order 1 ms which if realized

in a stripline geometry requires the lossy layer to have a quality factor no worse

than a few hundred.

3.5.2 BuLK DIELECTRIC LOSS

The bulk dielectric loss will be a more straight forward calculation than the
surface dielectric loss. We assume that the center conductor is symmetrically

placed between the ground planes. To determine the energy stored in the dielec-
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Figure 3.5: Center Conductor Surface Participation Ratio. Plotted as a function
of the width of the center conductor of the stripline structure is the surface par-
ticipation ratio for dielectric losses. In solid black is the theoretical predictions
from equation 3.16 where the lossy layer has been assumed to be 1 nm, a rela-
tive dielectric of 6, and the characteristic impedance is calculated from equation
3.2. In blue triangles are the results from HFSS simulations at different center
widths. In HFSS one can specifically calculate the ratio of electric field integrals
and then multiplying that ratio by the assumed thickness one readily has the
dielectric surface participation ratio. For smaller widths such as 50 ym and 100
pm the HFSS simulation does not converge. Explicitly this means that the sim-
ulation computer does not have enough RAM to store the meshing necessary to
properly evaluate the electric field integral. This is a common issue when there
are extreme aspect ratios. For larger widths the simulation does converge giving
us confidence that the analytical value and the simulation roughly agree.
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tric substrate we need only compare the energy stored in the dielectric to the

total energy stored. Therefore the electric field energy stored in the dielectric is:

1
Uputie = 5/606T|E|2dv (3.17)
The energy stored in vacuum will be:
1 2
Upae = 3 eo|E[*dV (3.18)

The bulk participation ratio pg is then:

P Upuik
g Uvac + Ubulk
_ 5 [ €oer|EPdV
PE = TT6|ERAV + L [ e, |E2AV
€
— T 3.19
PE 1+e, ( )

For sapphire we can take €, = 10 and then pg = .91 which agrees with an HFSS

simulation giving the bulk dielectric participation ratio as pp = .92.

3.5.3 INDUCTIVE LOSSES AND KINETIC INDUCTANCE RATIO

To calculate the kinetic inductance ratio, o, between the center pin and the to-
tal geometric inductance we begin with the reactance associated with the ki-

netic inductance of a superconductor with uniform current density:

Xk = w,u,o)\o = ka (320)
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In equation 3.20, w is frequency, uq is the free space permeability, and A is the
London penetration depth of the superconductor, and we have defined the prod-
uct ppAg as the kinetic inductance, L. We now say that the superconducting
strip has a width, w, which we divide by to get the kinetic inductance per unit
length:

Ly, _ HoAo

L, = —*
w w

(3.21)

Now the kinetic inductance ratio can be formally defined in terms of the kinetic
inductance per unit length, [, and the geometric inductance per unit length, [,
as:

a=— (3.22)

To determine [, we use the characteristic impedance of the transmission line its
1

propagation velocity v =

l
ZO — <
Cg

_ZOE/E (3.23)

Using equations 3.21 and 3.23 in equation 3.22 yields:

- Iy, - HoAoC
Qg = 77 = ————

- 3.24
l, wZo/& (3:24)

Equation 3.24 depends mostly on fundamental or materials properties and the

only external knob we have as an experimentalist is the width of the center
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Figure 3.6: Kinetic Inductance Calculation. Kinetic inductance ratio is plotted
as a function of the center conductor width of the stripline. The solid line is
equation 3.24 with A\g = 50nm, ¢, = 6, and Z; calculated from equation 3.2.
In blue triangles are the results from HFSS simulations done where the mag-
netic field integrals are specifically evaluated. This once again gives the benefit
of only needing to scale the simulation result by the London penetration length.
As in figure 3.5, for smaller widths the simulation is unable to converge on a
value. An additional discrepancy is that for equation 3.24 a uniform current dis-
tribution is assumed whereas in simulation a non-uniform current distribution
is observed. Regardless, both simulation and analytical values are still within a
factor of two so our intuition and order of magnitude estimate are correct.

trace. Although the characteristic impedance will also change dependent on
the width of the center strip as in equation 3.2 the dependence is weak (log-
arithmic). Plotted in figure 3.6 is a plot of the kinetic inductance fraction for

realistic values of the stripline structure.
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3.6 EVANESCENT COUPLING

In this section we will describe the coupling between stripline structures under
the umbrella of evanescent coupling. The conceptual idea is that we will send

a wave at a barrier that does not allow propagation at the intended frequency;
however, on the other side of the barrier is another region where the wave can
propagate. It has long been known for electromagnetic waves that evanescent
coupling is possible and is well described by Feynman [49]. Evanescent coupling
has been successfully leveraged for measurements in the quantum regime with
3D cavities [58, 62, 63, 64]. In the case of the stripline we will have the scenario
where the incoming signal is propagating down the transmission line structure,
it will then encounter a rectangular cavity with a signal frequency below the
cutoff of the wave guide exponentially reflecting the signal based on the length
of the waveguide. Finally, the signal in the waveguide below cutoff is met with a
half wavelength resonator formed in the stripline. At each boundary the overlap
between the electric and magnetic fields of the different modes will determine
which modes participate and control the coupling. Although closed form solu-
tions do not exist for TEM wave propagating down the stripline, from the field

lines in 3.1 we can approximate the transverse electric and magnetic fields as
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Erem(,y, 2)
Ey,TEM (ZE, Y, Z)
Hx,TEM(xv Y, Z)

Hy,TEM(xa Y, Z)

%) sin —) e (3.25)
T > . J(Bz—wt) (3.26)
_> cos (%) ¢ J(Bz—wi) (3.27)
71”) sin (”_by) e J(Bz—wt) (3.28)

Since this is a TEM structure the propagation constant, 3, is equal to the wave

number—explicitly, § = k =

2

s
% We must determine the overlap between this

mode and the possible modes of the rectangular waveguide which cannot sup-

port TEM waves but can support either transverse electric, TE,,,, or transverse

magnetic, TM,,,, modes. The TE,,, modes are [48]:

)W U T mwTxr\ . (N7 (B

Errp(z,y,2) = %AmnCOS( - )sm( by>emz “b(3.2)
_ Jwpnt ./ MmTX nTY\  j(Bz—wt)

Burelo ) = 204 i (U1 o () SO0 (330

| B . /mnx nmw (B
Hyrp(z,y,2) = %Amn&n( - )cos (%)ej(ﬂz @ (3.31)

) b mmwr\ . [N’ (B
Hy7TE<x7yvz) = inb AmnCOS< 0 >Sln <Ty>€j(ﬁz Wt) (332)
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Likewise the TM,,,, modes of the rectangular waveguide are [48]:

Eorm(z,y,2) = _jigZWan cos (m;rx) sin (%) e J(Bz—wt) (3.33)
E,ru(z,y,z) = —%an sin (m;rx) cos (%) ¢ J(Bz—w1) (3.34)
Hyrm(z,y,2) = %an sin <m;m;> oS <n77bry ¢ J(Bz—wt) (3.35)
Hyryv(z,y,2) = _ju;;r;m By cos <m;m:> sin (%) ¢ J(fz=wt) (3.36)

The propagation constant in the waveguide will be determined by the wave

number k£ and the cutoff wave number k.. Explicitly:

B =k — k2 (3.37)

If £ < k. we get some neat physics. The propagation constant becomes imag-
inary and instead of a propagating wave an exponentially reflected wave is the
solution in the given region. From equation 3.37 we see that higher cutoff wave
numbers, higher frequencies, will reflect more of the signal. This means we are
concerned most with the first rectangular waveguide mode that has a nonzero
overlap with the incoming TEM wave because that will be the dominant trans-

fer of electromagnetic waves. By computing the overlap:

a b
0 0
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The first nonzero overlap from equation 3.38 is the TM;; mode. Due to the very
tight dimensions of the stripline we expect the TM;; mode to account for the
vast majority of the transferred signal due to the very high cutoff frequency of
the rectangular waveguide. The last part we need to check is that the TM;; has
a nonzero overlap with the standing wave of the stripline. The approximated

fields at the end of the stripline half wavelength resonator are:

Epho(2,y,2) = 0 (3.39)
b 2 1 i

Eyn(2,y,2) = Eo,©O(y — 5)005 (Wz) e T (3.40)

Hx,hw(ajayvz) = Hij)(.f,y,Z) =0 (341)

In the above, ©(y — g) is the Heaviside unit step function. This means that at
t = 0 the electric field exists only above the center conductor and not below it.
Fortuitously the overlap is nonzero between the TM;; mode and the end of the
stripline. This means that we expect the transmitted power into and out of the
stripline resonator will exponentially depend on the length of rectangular wave

guide. Explicitly, the coupling quality factor, Q). will be:
Q. o 2% (3.42)

From equation 3.42 we have an amazingly simple relation for the coupling
quality factor to a half wavelength stripline resonator which is plotted in fig-
ure 3.7. As a function of the length of waveguide, z, all we need to know for the

Q). scaling is the propagation constant in the waveguide. It is true that the ex-
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Figure 3.7: Evanescent Coupling to 3D Cavity and Stripline. In both figures the
coupling quality factor is obtained through room temperature measurements

of |Sa1]? using the formula derived in section 5.4.1. a) Evanescent coupling to

a rectangular waveguide cavity. Plotted as a blue dashed line are results from
an HFSS simulation where one varies the distance between a rectangular wave
guide cavity and the distance to the coupler pin. As the pin is retracted ex-
ponential growth of the coupling quality factor is observed. Plotted as a solid
black line is an analytical prediction for the rectangular waveguide cavity based
on the same principles used in section 3.6. The procedure used only gives the
scaling (slope in the above plot). The first value of the analytical result is nor-
malized to have the same value as the simulation and then plotted based on the
‘287 value which is the slope. As points is data measured at room temperature
in incremental steps. Excellent agreement is found between all three. b) Evanes-
cent coupling to a stripline resonator. The dashing blue line is the results for
coupling quality factor from an HFSS measurement as the distance between the
resonator and incoming leads is increased. In solid black, is a line normalized to
the first coupling quality factor found from simulation and whose slope is deter-
mined from the ‘23" value calculated for the stripline. In green, is a line predict-
ing the coupling quality factor if the stripline was coupled to the lowest mode
allowed to propagate in the rectangular waveguide which has a 23 = 5.2mm™1.
In red are measurements performed at room temperature of the stripline setup.
The slope of the measurements, 23 = 2.7mm ™!, is substantially different than
theoretical, 28 = 8.2mm ™! and simulated predictions, 23 = 8.3mm~'. It seems
that no matter how long the gap is between the resonator and the leads a resid-
ual coupling remains. In green are measurements of coupling quality factor car-
ried out in an indium coated stripline holder that is then welded together. The
slope from this data seems to be better in line with what is expected.
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act propagation constant for a rectangular waveguide cavity partially filled with
dielectric requires solving a transcendental equation corresponding to the ex-
act mode in the waveguide [48]. However, due to the small cross section of the
rectangular waveguide (Imm by 1.2mm) the propagation constant is changed
by less than a .5% between vacuum or filled entirely with sapphire (¢, = 10).
For these reasons we will use the relative dielectric constant of 6 and not worry
about the sub percent precision. In our case 23 ~ 8.2mm™'. This means that
for every 85 microns of rectangular waveguide added between the stripline res-

onator and the incoming leads we expect the coupling quality factor to double.

3.6.1 ASYMMETRY AND COUPLING THROUGH TE; MODE

A potential caveat to the previous section was that largely the asymmetry be-
tween the top half of the stripline with vacuum as the dielectric and the bottom
half with sapphire as the dielectric (e, &~ 10) was only handled in the waveguide
portion. Two methods to approach this problem is to make further approxima-
tions to the previous sections to introduce asymmetries to see what effect asym-
metries have on the coupling. The second option is to fully assume the worst
case scenario—that the stripline resonator couples exclusively through the lowest
mode of the rectangular waveguide. If the stripline were to couple exclusively
through the lowest mode which is the TEg; (1 for the longest side of the rectan-
gular cross section), then 23 = 5.2mm™1. In figure 3.7 (b) the green line is the
trend one would expect if the coupling to the stripline was exclusively through

the lowest mode. As one can see this still does not fit the data. If one fits the
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data the extracted value is 2Bmeqs = 2.7mm~!. From this we conclude that
evanescent coupling through a rectangular waveguide cavity cannot faithfully
describe what is observed. The suspected culprit for the broken symmetry is the
longitudinal cut. In section 3.9.3 two different paths to remedying the pervasive
coupling are described. In hindsight, one could be suspicious about a longitudi-
nal cut for a rectangular waveguide since it is typical for rectangular waveguides
to be joined transverse to the direction of propagation rather than longitudi-

nally.

3.7 QUALITY FACTOR MEASUREMENTS

In general the total quality factor of a resonator will be an inverse sum to all

methods of dissipation:

L i Di (3.43)
Qo Qs

This means that the simple measurement of a quality factor is an inverse some
of many different forms of dissipation. A necessary form of dissipation is cou-
pling to the external environment. For the striplines measured we elected to de-
sign and measure them for transmission measurements. The major reason being
that transmission measurements allow one to easily observe a broad frequency
response to the sample. Furthermore, to simplify the problem we elect to per-
form measurements on symmetrically coupled striplines. Using symmetric cou-
pling we can separate equation 3.43 into intended dissipation, coupling to the 50

Q) line, and unintended dissipation which we will call the internal quality factor,
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Figure 3.8: Total Quality Factor versus Temperature. Plotted above is the total
quality factor of a stripline resonator with a 1200 pm gap on either side of the
resonator. At low temperatures the quality factor saturates to about 265, 000.
At room temperature the coupling quality factor was measured to be of order
500, 000 which suggests that the stripline resonator’s internal quality factor is in
excess of 1million. These measurements were done in transmission which with-
out a reliable “through” calibration makes it difficult to determine the coupling
quality factor at cryogenic temperatures.
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Qii
1 2 1

Qtot:@—i_@

(3.44)

Solving for @); we get:

2 1\!
Qi = (@ - Qtot) (3.45)

The internal quality factor contains all the information desired related to loss
mechanisms and it is this quality factor multiplied by the participation ratio
which sets the bound one can place on the quality factor of an individual con-
stituent. From equation 3.45 it should be apparent that knowing ones coupling
quality factor is essential for determining the internal quality factor. Figure
3.10, shows the total quality factor of a stripline structure as a function of tem-
perature at the base plate of the dilution refrigerator. The total quality factor is
nearly half the coupling quality factor measured at room temperature making it
difficult to precisely state the internal quality factor of this device. In fact, the
inability to make the coupling arbitrarily small hampered our ability to state
definitively the coupling quality factor. Several other devices with similar cou-
pling quality factors were measured and all roughly had é ~ ﬁ However,
since the total quality factor seems to be predominately limited by the coupling
quality factor that gives us reason to suspect that the stripline structures are

relatively low loss and that internal quality factors in excess of a million are

possible.
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3.8 KINETIC INDUCTANCE RATIO MEASUREMENTS

In this section we describe measurements done to determine the kinetic induc-
tance ratio of our enclosed stripline resonators. The inverse quality factor and
fractional frequency shift can be related to the surface resistance, Ry and sur-

face admittance Xy as follows [58, 66]:

1 df « .
+2j— = —— (R, + j0X, 3.46
O THF T g e 1I0X) (3.46)

Although a great deal of literature exists that investigates the AC conductiv-
ity of superconductors a full and exhaustive treatment is beyond the scope of
this dissertation [67, 68, 69, 70, 71, 72]. In equation 3.46, « is the kinetic in-
ductance ratio, w is the angular frequency, A\ is the London penetration length,
and ¢ is the anomalous skin depth which in the superconducting case becomes
the London length. In figure 3.9, the fractional frequency change of the stripline
resonator is tracked as the dilution refrigerator temperature is changed. This
data is fitted to determine o and T, from a numerical integration of Mattis

and Bardeen’s formulas for the full AC conductivity of a BCS superconductor
[66]. We are able to extract the total kinetic inductance ratio for the stripline
which includes the deposited film (center conductor) and the aluminum housing
(ground). Since we would like to separately discuss the quality factors of the de-
posited films as well as the bulk aluminum ground in figure 3.9 b we separately
measure the kinetic inductance fraction of the bulk aluminum ground. Simply

by subtracting the bulk aluminum kinetic inductance fraction from the total ki-
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Figure 3.9: Measured Kinetic Inductance of Stripline Resonator and Holder. a)
The fractional frequency change of a stripline resonator whose center conductor
is aluminum as well as the outer holder being aluminum. The measured kinetic
inductance fraction, aypqr = 1.06 - 1073, encompasses the kinetic inductance
not only for the center conductor but also the outer conductor. In b) we re-
place the center conductor with niobium, which should not vary much over this
temperature range, to measure the outer conductor kinetic inductance ratio,
Qouter = 2.4 - 107*. This gives a kinetic inductance fraction of ceepter = .82 - 1074
for the center conductor when its width is 300 pm which is very close to the
simulated value of .8 - 1073 and the predicted value of .6 - 1073.

netic inductance fraction we readily get the kinetic inductance fraction of the
deposited film. For the 300 ym wide deposited aluminum center conductor we

find its kinetic inductance fraction to be o, ~ .8 - 1073.

3.9 LIMITATIONS

In the first few designs of the striplines there were worrisome issues holding
back the development of this architecture. In the following sections we will de-
scribe issues with persistent coupling to the environment that cannot be turned

off and the frequency stability issues.
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Figure 3.10: Second generation stripline design. In the second generation of the
stripline holders the major issues to address were the coupling to the resonators
as well as the frequency stability of the resonators. To address the coupling in-
dium grooves were added to improve contact between the two halves. Also, the
cut was now place at the top of the rectangular structure rather than at the
middle. To address frequency stability the microwave launchers were designed
to be over the chip so that indium as well as pogo pins (beryllium-copper cen-
ter) could clamp the edges of the chip. Unfortunately, all of these changes did
not improve the coupling nor the frequency stability. From this we conclude
that having a true RF short is necessary for high quality factor resonators in
this design as well as other designs that drive a current across an interface simi-
larly to what is found by others [73].
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3.9.1 COoOUuPLING

As described in section 3.6 the coupling to the stripline should be in princi-

ple able to made as arbitrarily small as desired. Yet in Fig. 3.7 b, room tem-
perature measurements that extract coupling quality factors according to sec-
tion 5.4.1 strongly contradict this claim. As can be seen the room temperature
measurements disagree both with theoretical calculations and from simulation.
What is even more troubling is that it does not seem that there exists a gap dis-
tance that can even reliably produce a coupling quality factor in excess of a mil-
lion. This issue with persistent coupling to the environment around a coupling
quality factor of a million is quite suspicious. At the very least, a take home
message should be that to achieve quality factors in excess of a million the RF
environment of the structures must be not only well designed but also well im-
plemented.

The primary explanation for the persistent coupling in the stripline geome-
try is attributed to the two halves of the ground plane not making perfect RF
contact. This is despite using an indium seal around all edges. By not having a
perfect RF contact at all frequencies a parallel plate waveguide between the ex-
ternal shielding allows transmission regardless of the gap between the leads and

the center pin of the resonator.

3.9.2 FREQUENCY STABILITY

Aside from issues in coupling there are also issues with frequency stability of the

higher quality factor striplines. The striplines are sensitive to vibrations causing
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changes of order the linewidth or larger. By shutting off the pulse tube of the
dilution refrigerator the vibrations decrease and allow a higher quality factor
measurement. Furthermore, the vibrations can easily be made worse by knock-
ing on the support structure of the dilution refrigerator causing the resonance to

change frequency substantially.

3.9.3 ISSUE RESOLUTION

The explanation for the uncontrolled weak coupling is that our ground is really
two different grounds that are not well connected. The two options for fixing
this are to either find a way to weld the two grounds together to make a great
RF short or machining everything so that the ground truly is one continuous
piece of metal. Both of these options have been pursued with encouraging re-
sults. Since I personally have not carried out the measurements I will only give
highlights on material that has been presented. By making a single continu-
ous structure for the ground of the stripline has allowed not only carefully con-
trolled coupling but also high quality factor striplines. In the enclosed, single
ground geometry quality factors routinely above five million are measured up to
nearly nine million [74]. Additionally, indium welding of the ground enclosures
seems to improve the coupling as well though more work is needed [75, 73]. The
methods used to stabilize the striplines in this geometry make it seem that pro-

ducing qubits with lifetimes in excess of 100 us should be possible.
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Figure 3.11: Above is a cartoon schematic of an architecture that has resolved
many of the issues that plagued the original stripline. In purple is a substrate
that supports the deposited superconductor (blue). In yellow are center pins
from an SMA connector that allow evanescent coupling to the stripline res-
onator similarly to the standard coupling to a rectangular waveguide resonator.
A hole is machined into an aluminum block which allows the stripline chip to
be slide inside the holder. The drilled hole gives a uniform, single ground plane
for the stripline. In this design coupling quality factors in excess for 3 billion
have been measured repeatably whereas in previous devices the largest coupling
quality factor measured was of order one million. In this design the placement
of the stripline affects the coupling quality factor and a misplacement can re-
sult in coupling quality factors too large to make single photon measurements
plausible.
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3.10 FUTURE OUTLOOK

In this chapter the ground work for using enclosed striplines in quantum in-
formation science was laid. The issues that plagued the development of the
stripline are issues that must be addressed by all groups going forward. In scal-
ing up for a logical qubit or a quantum computer dense circuitry must be made
to allow sufficient control of these quantum devices. Integration of complex cir-
cuitry will require the ability to make high quality RF shorts to tie together
different ground planes. Truly single ground planes will allow for better elec-
tromagnetic isolation as well as well controlled coupling. Furthermore, having
a single ground conductor improves the frequency performance of devices that
rely on external geometry. Going forward all of these issues need be addressed.
Fortuitously, the Yale group has been working on this explicitly through micro-

machining and indium welding [76].
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Circuit Quantum Electrodynamics

In this chapter we describe the light-matter interactions between supercon-
ducting circuits and microwave photons. Quantum optics is the general field of
physics devoted to the study of light-matter interactions. A full and comprehen-
sive description of quantum optics is beyond the scope of this thesis; however,

many references exist and is covered wonderfully as an advanced undergraduate
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text book in reference [77] and given further treatment in the standard graduate
references [78, 79]. Cavity Quantum Electrodynamics (CQED) [80] is a regime
of quantum optics where the coupling between atoms and cavities occur much
faster than dissipative channels, unveiling beautiful physics that shared the 2012
Nobel prize in physics. Inspired by CQED, circuit Quantum Electrodynamics
(cQED) is a similar conceptual framework that makes use of mesoscopic, mi-
crowave circuits to play the analogous role of atoms coupled to microwave cavi-
ties.

A starting point for CQED is a single two level system (atom) coupled to a
cavity which can affectively be modeled by the Jaynes-Cummings Hamiltonian[81,
82]:

Hjc = hw.a'a + hwa% + hg(ac, +alo_) (4.1)

In equation 4.1 w, is the angular frequency of the cavity mode, and af, a are
the raising and lowering operators of the cavity. Also in 4.1, the idealized two
level system has an angular resonance frequency w,, and inversion operator o,
(eq.4.2), and raising and lowering operators of the two level system o, (eq.4.3)
or o_ (eq.4.4) respectively. We define the two level system operators in terms of

its two states, |g), |e), as:

o = le) (el = 19) (4] (4.2)
or =le) (gl (4.3)
o =lg) (el (4.4)
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Figure 4.1: Jaynes-Cummings Model. Figure from Ref. [83]. Mirrors (blue) form
a resonant photon mode (pink) that interacts with a two level system, atom
(green), at a rate g. The cavity mode dissipates at a rate x and the atom dis-
sipates energy at a rate v. The strong coupling regime is reached when the
interaction strengths are larger than the dissipation rates specifically when
qg> K, 7.

In the Jaynes-Cummings Hamiltonian, when the two level system is brought
onto resonance with the cavity the avoided crossing of the energy splitting is 2¢
[84]. However, the splitting will be dependent on the number of photons in cav-
ity (y/n dependence). The photon number dependent splitting was beautifully
observed in Ref. [85].

4.1 CAviTY QUANTUM ELECTRODYNAMICS

In a letter to Robert Hooke, Sir Isaac Newton humbly writes, “If I have seen
further, it is by standing on the shoulders of giants.” Similarly, it is hard to dis-
cuss circuit QED without paying homage to CQED. The pioneering work by
Nobel Laureate Serge Haroche and Jean-Michel Raimond is a textbook unto

itself [86]. In CQED, Rydberg atoms are sent through a high quality factor mi-
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Figure 4.2: CQED Realization. Figure from Ref. [89]. Velocity-selected by laser
optical pumping, Rydberg atoms are prepared in box B, out of a thermal beam
of rubidium atoms. The atoms then enter the first Ramsey cavity R, cross the
cavity C, followed by the second Ramsey cavity Ry (both Ramsey cavities are
excited by the classical microwave source S), and finally detected in the state
selective field ionization detector D. The three cavities are enclosed in a box at
0.8 K that shields them from thermal radiation and magnetic fields.

crowave cavity and couple off resonantly to the cavity [87] (Fig. 4.2). By ob-
serving the quantum state change of the incoming and out going Rydberg atoms
one can make, monitor, and manipulate the quantum state of the high quality
factor cavity. A fun video to show those unfamiliar with physics was made by
Minute Physics after the 2012 Nobel Prize in physics announcement and can

be found here [88]. A distinguishing feature of CQED is that the device under
study is the cavity rather than the atoms used. To reveal the rich, quantum
features of a cavity one needs an atom or atomic like structure [59]. Haroche’s
work is very well complemented by Dave Wineland, the other recipient of the
2012 Nobel Prize in physics, who also used cavities and atoms but instead fo-

cused on the quantum nature of atoms.
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Figure 4.3: Circuit QED. Figure from Ref. [83]. Circuit analogue of a cavity QED
system. In blue, a transmission line cavity is formed by lithographically defining
breaks in the center conductor which results in a half wavelength resonator in
the transmission line. An artificial atoms comprised of a Josephson junction and
other lithographically defined features dipole couples to the transmission line
resonator through the electric field of the resonator (red arrows).

4.2  CIRCUIT QUANTUM ELECTRODYNAMICS

We begin by asserting that one can make a circuit analogue to cavity QED [90].
In the following sections we will show how this is possible but a brief introduc-
tory summary will help one understand the organization. As can be seen in Fig.
4.3 a lithographically defined resonator is formed from a 1D transmission line
by inserting breaks in the center pin. The length of the resonator determines
the fundamental mode of the resonant cavity with wavelength being twice the
length. An artificial atom (cooper-pair box in this case Ref. [91]), dipole couples
to the transmission line resonator. This dipole coupling can be quite larger, of
order a few percent of the frequency of the artificial atom transition frequency,

and allows strong coupling between the microwave cavity and the artificial atom
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to occur. This strong coupling allows one to reproduce any experiment per-
formed in cavity QED as well as allowing new experiments to be performed.
Lithographically defined resonators are not a unique development for instance
chapter 3 describes one such resonator. The unique development of circuit QED
is the strong coupling provided by the dense Electric field and an artificial atom.
The artificial atom is a nonlinear L.C oscillator. The nonlinearity arises from a
Josephson junction being apart of the LC oscillator. In section 4.3 we will de-
scribe how a Josephson junction can be described in circuit terms. The follow-
ing section demonstrates the quantization of an LC oscillator (cavity). Using
the LC oscillator as the guiding point we alter the quantization to show how an
LC oscillator with a Josephson junction realizes an anharmonic oscillator. Fi-
nally in section 4.5 we show how an LC oscillator coupled to a Josephson junc-
tion based circuit can realize a Jaynes-Cummings Hamiltonian and consequently

a circuit QED environment.

4.3 JOSEPHSON JUNCTION AS A CIRCUIT ELEMENT

We begin by looking at the Josephson equations for the current through, I,

and voltage across, V;, a superconducting-insulating-superconducting barrier:

[J == [0 sin (S(t) (45)
vV, = 2—25(75) (4.6)
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Figure 4.4: Josephson junction schematic and circuit equivalent. a) A supercon-
ductor (grey) insulator (yellow) superconductor (grey) Josephson junction. In
this thesis the superconductor used is aluminum and the insulator is aluminum
oxide typically 1.5nm thick. A Josephson current, I;, flows from one island

to the other while the voltage across the Josephson junction is V;. We define

d = d§; — 0, as the superconducting phase difference between the two islands. b)
Microwave circuit symbol which is shown explicitly in ¢) as a nonlinear inductor
shunted by a capacitor. Typically the capacitance of the junction is negligible in
transmons and the physics is dominated by the Josephson inductance, L ;.
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In equation 4.5, I is the critical current of the Josephson junction and §(¢) =
0; — 0, is the time dependent phase difference between the two superconducting
sides of the junction. The voltage across the junction, Eq. 4.6, is expressed in
terms of the reduced Planck constant, A, the electron charge, e, and the time
derivative of the phase difference between the two superconducting leads 0(t).
By taking the time derivative of equation 4.5 we express 8 (t) as:

I

Iy = Ipcosd(H)d(t) = 6(t) = Troos® (4.7)

Using the result for 0(¢) the voltage across the junction is:

h . h

L T S (R
Vi o) 2elycosd(t)

o (4.8)

We now recognize that equation 4.8 is in the form of an inductance relationship
(Vy x I 7). We will describe the proportionality as the Josephson inductance,

Ly, and define this nonlinear inductance as:

h

Ly—— "
77 2ely cosb(t)

(4.9)

A nonlinear inductor is exciting because this could potentially have an an-
harmonic spectrum. Furthermore we note that this inductance is not associated
with a magnetic field. The inductance is due to the kinetic energy of the Cooper
pairs tunneling through the junction. Explicitly this means that the Joseph-

son junction’s inductance is purely kinetic inductance. For this reason, typical
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transmon qubits have kinetic inductance fraction of order unity since the induc-
tance of the transmon is primarily due to the Josephson junction.

It is fair to ask at what frequency the Josephson junction self resonates. For
Al-AlOx-Al junctions that have an overlap area of 100nm by 100nm, typical
Josephson inductance values are of order 10nH and from a simple parallel plate
calculation a capacitance of roughly 1fF. This order of magnitude for Joseph-
son inductance and capacitance sets the self resonance of the junction at nearly
50 GHz. To lower the fundamental frequency to the 5-10 GHz range a sim-
ple solution would be to either inductively or capacitively shunt the Joseph-
son junction. A shunting capacitance of 50 fF or shunting inductance of 1.5
#H would bring the resonance of the combined circuit to frequencies in the 5-
10 GHz range. Designing a microwave circuit with 50 fF of shunting capacitance
is easy to achieve; however, 1.5 uH of inductance is a challenging task. Concep-
tually, a single junction shunted by a large capacitor is described as a transmon
[92, 93, 94], and a single junction shunted by a so called super-inductance is de-
scribed as a fluxonium [95, 96]. Also, it is worth noting that the transmon and
the fluxonium are both descendants of the original charge qubit—the cooper pair

box [91].

4.4 CIRCUIT QUANTIZATION

4.4.1 LC OSCILLATOR

The rules of circuit quantization are treated fantastically well in references [97,

94, 98, 99] and will not be reproduced in full here. For an LC oscillator we can
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write its Hamiltonian in terms of the charge on the capacitor, ¢, and flux through
the inductor, ¢, as:
¢ ¢

Hp=1 & 41
Lo =55 T 57 (4.10)

From equation 4.10, the angular frequency, w, and impedance, Z, are computed

to be:

W L (4.11)

VIC
7 = \/g (4.12)

To quantize equation 4.10 the charge now becomes the charge operator, q, and
similarly the flux becomes the flux operator, ¢ which allows one to define cre-
ation, af, and annihilation, a, operators to realize a quantum harmonic oscilla-
tor:

Hre = hw(ala +1/2) (4.13)

Where we define the creation, af, and annihilation, a, of the LC oscillator as:

[a,al] =1 (4.14)
¢ = Pzpr(a+al) (4.15)
q=—iQzpr(a—al) (4.16)
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And the zero point fluctuations of the flux and charge are:

hZ
Darr =\ (4.17)

h

Qzpr = 57 (4.18)

4.4.2 ANHARMONIC OSCILLATOR: THE TRANSMON

To treat the case of a single Josephson junction shunted by a capacitor we will
modify equation 4.13 by including the Josephson energy and removing the lin-
ear inductance:

Hyp = hw, (a'a+1/2) — E; (cos(gb) + %2) (4.19)

Iy®
Where we have defined £; = 070

as the Josephson energy where [ is the
h

critical current of the junction and &5 = % is the flux quantum. Expanding
e

cos ¢ and only keeping terms related to energy differences gives:
_ to — EI 4 6
HT = hwa aa— ﬂQb + O(QS ) (420)

Using the definition for ¢ as in equation 4.15 with the caveat that L — L;

equation 4.20 becomes:

E
Hp ~ hw, a'la — Q—ZCID%DF(a +af)? (4.21)

7



Figure 4.5: Circuit representation of a transmon. a) The transmon consists of a
Josephson junction (square with x) with nonlinear inductance L; shunted by

a capacitor, C'. b.)Analogy can be made between a transmon and a quantum

rotator [92] and for ¢ < 1 this system realizes an anharmonic oscillator.

Finally by taking only counter rotating terms we realize the simplest form of the
transmon Hamiltonian:

- h
Hp ~ hi, ala — TOéawa2 (4.22)

In equation 4.22 we have defined w, = w, — a and a = %@‘EPF. The coeffi-
cient o is commonly referred to as the anharmonicity of the transmon with typ-
ical values in the hundreds of MHz. The most faithful description of the anhar-
monicity is that it is proportional to the energy difference of the ground state
of the anharmonic oscillator and its first excitation, haa = FEy — E;. The ap-
proximation we made in expanding the cosine term of the Josephson junction

is most accurate for a small number of excitations of the transmon. Equation
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4.22 can be thought of in terms of a mass spring system with ¢ playing the role
of position and q the role of momentum. The choice of which electrical variable
corresponds to which mechanical variable is arbitrary. However, chosen as such,
the nonlinearity of the junction can be thought of as altering the potential en-
ergy of the system (nonlinear spring constant) rather than the nonlinearity of
the junction serving as a relativistic correction to the mass. In cQED, typically
only the first two energy levels of the transmon are used so equation 4.22 can be

rewritten as a two level system with energy levels |g) , |e) as:

Hry = ha|e) (el (4.23)

Written as a two level system, equation 4.23 suggests that a capacitively shunted
Josephson junction could fulfill the role of a two level system in a Jaynes-Cummings

Hamiltonian.

4.5 TRANSMON COUPLED TO HARMONIC OSCILLATOR

The previous two sections individually arrived at the quantum Hamiltonians for
electrical circuits. The culmination of that effort is this section where a quan-
tum LC oscillator is coupled to an anharmonic LC oscillator allowing one to
create a CQED system with purely electrical circuit elements [90, 100]. For the
case of a transmon coupled to an LC oscillator we can say the total Hamilto-

nian will be a combination of the transmon Hamiltonian, Hr, the LC oscillator
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Figure 4.6: Circuit representation of transmon coupled to LC oscillator. The
transmon consists of a Josephson junction (square with x) with nonlinear in-
ductance L; shunted by a capacitor, Cy; is capacitively coupled,C¢, to an LC
oscillator.

Hamiltonian, Hyc, and an interaction Hamiltonian, Ho:
Hioo = Hr + Hrpe + Ho (4.24)
To remind the reader, Hr is:
t ha 1o o
Hr ~ hwr a'a — S a’a (4.25)

Likewise, H ¢ is:

Hro = hw,(b'b + 1/2) (4.26)

The major work of this section is determining the interaction Hamiltonian

which we will initially write in terms of the charge operators for the transmons,
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qr, and the charge operator for the LC oscillator, qr¢:

qrdrc
H, =
? Cnet
(4.27)
Where the net coupling capacitance, C,; is:
CCs + CsCe + CcC
Onet - » 1 ObetCe (428)

Ce

We now rewrite the interaction Hamiltonian in terms of the quantum zero point

fluctuations and raising and lowering operators of each charge operator as:

. y 1
Ho = (~iQrzpr(a—al)) (=iQ,zpr(b b))
net
HO _ QT7ZPC'FQT,ZPF (aTb + abT _ (ab —+ aTbT))
net
HOVTwa _ QT7Z];F‘QT,ZPF (a’[b + abT) (429)
net

To arrive at equation 4.29 we have taken the rotating wave approximation. We

can rewrite equation 4.29 in an even more suggestive form:
Ho rwa = hg(a™ + ab) (4.30)

With ¢ defined as:
1

g =
2 V ZTZLCCnet

(4.31)
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We could also use equation 4.31 to estimate the dimensionless coupling ratio
9.
"

~Ce (4.32)

2/ CxC

Using we can see for nominal values of C' = 320 fF, Cy, = 70 fF, and C. =

SIS

5 fF that the coupling ratio is about 1.5%—which is quite large compared to
atomic systems!

Now the full Hamiltonian of the coupled transmon and resonator system is:
- h
Hyot = hw,(b'b + 1/2) + hior ala — gamf + hg(a'b 4 ab') (4.33)

The above Hamiltonian is a Jaynes-Cummings Hamiltonian provided that we
restrict the transmon to only single photon excitations which is a requirement
routinely met in quantum superconducting circuits. We see all the characteris-
tics necessary. A Hamiltonian term corresponding to cavity excitations, terms
corresponding to an anharmonic oscillator (the most anharmonic oscillator is

a two level system) and finally an interaction term that lets excitations in the
cavity or transmon under go a unitary evolution at rate g (nominal values in
circuit QED systems range from 10-100 MHz) where the excitation is created
in one and destroyed in the other. The ‘strong coupling’ regime is entered when
interaction strengths are larger than decoherence mechanisms. Explicitly when
g > 7r, k- where yr is the decay rate of the artificial atom and x, is the de-
cay rate of the cavity. For instance, in the case of a 3D transmon values such as

g ~ 100 MHz, yr ~ 3 kHz, and , ~ 24 kHz as in Ref. [62] are typical.

82



tunable coupling
junctions

(sQuIDs) \ AR

three-dimensional
cavily resonator

transmon qubit

Figure 4.7: Small Junction (E7/Ec ~ 1) Superconducting Qubits. a) The original
small junction superconducting qubit: the Cooper pair box. b) The offspring of
the Cooper pair box are the capacitively shunted Josephson junction, transmon,
and c) the inductively shunted Josephson junction, fluxonium. d) and e) are the
3D versions of the transmon and fluxonium which due to their well defined elec-
tromagnetic environment have, at the writing of this thesis, the best coherence
and energy relaxation times of any superconducting qubit.
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4.5.1 STRONG DISPERSIVE REGIME

The Jaynes-Cummings like Hamiltonian derived in equation 4.33 can be rewrit-
ten when the detuning between the resonator and the transmon is large com-
pared to the interaction strength (A = |w, — wr| > ¢) as (full details of deriva-
tion see Ref. [101]):

har

h
Hypt ~ hedyp (ATA +1/2) + b, (BB 4 1/2) — %AT2A2— B2B2 - 1y ATAB'B

(4.34)

2 2
In the dispersive limit y — i, ar — FE., a, — 0. Equation 4.34 has become

A
a frequent form to represent the coupled resonator and transmon system which
treats the transmon’s modest anharmonicity as a perturbation. Reliably coher-
ent single junction transmons such as those in a rectangular waveguide cavity
(Ref. [62]) are a reason for equation 4.34 being a common form for the Hamil-
tonian of a transmon coupled to a cavity. Equation 4.34 can be generalized for

an arbitrary number of modes and to fourth order in the junction flux, ¢, the

general Hamiltonian is:

Hy = hZ(wiaTa - %aT2a2) —h Z xi;alab’b (4.35)
i i

Where wj is the dressed frequency of the mode, «; is the mode anharmonicity,

and y;; is the state dependent shift between mode 7 and mode j.
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4.6 BLACK BOX QUANTIZATION

In this final section we will go over a major advancement for single junction
devices, the so called black-box quantization (BBQ) [102] method. Where the
BBQ theory and general approach truly shine is not relying on lumped element
approximations to predict Hamiltonian parameters such as the anharmonici-
ties of modes, their state dependent shift, and higher order corrections to those
terms. In general one must have the full admittance matrix seen by the junc-
tion; however, for a single junction system in BBQ this simplifies to a single
port measurement of Y (w) allowing one to fully determine the Hamiltonian pa-
rameters from a single frequency dependent simulation. The information needed
are the poles, Y (w;) = 0, which correspond to undressed frequencies and the
characteristic impedance at the resonance frequency, Z.; = \/é:Z . The charac-
teristic impedance of the modes can be determined by using the admittance for

a parallel LCR circuit:

1 1
+—= (4.36)

Y (w) = jwC,
(w) ]wC’Z—i-iji R,

Taking the derivative of the admittance with respect to angular frequency yields:

1
CUQLZ'

Y (w) =j(Ci + ) (4.37)
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We are concerned with the characteristic impedance of the mode on resonance

1
2 _ :
SO We can use w; = IC
Y '(w) =25C (4.38)
Using L; = e the characteristic impedance of the mode on resonance is:
Zo— (4.39)
WG '

Realizing that from equation 4.38 we can write the capacitance C; on resonance

| Iy /()]

¢= 2

(4.40)

Finally the characteristic impedance of the mode on resonance in terms of the

poles of the admittance and the slopes of the poles is:

2

Lei =~
’ w;Im[Y " (w;)]

(4.41)

Which is fantastic because now by knowing the admittance across the junction
as a function of frequency the Hamiltonian parameters can be fully determined.
In practice, one obtains Y (w) through an electromagnetic simulation (ANSY'S’
HFSS was used in this thesis). By using a 2D drawing of the deposited super-
conductor, the junction can be simulated as an imposed boundary condition
with a series inductance of L; (and if one desires a C; or R;). In parallel with
the junction is a port that allows one to measure the imaginary part of the ad-

mittance as a function of frequency as seen by the junction. By knowing the
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Figure 4.8: Black-box quantization HFSS simulation. a) CAD drawing of two 3D
rectangular cavities coupled to a ‘vertical’ transmon [103]. b) Zoom in on faux
junction area. In red is a lumped element set to be L;. In green is the wave
port that allows us to produce c¢) which is the frequency dependent imaginary
part of the admittance seen by the junction. Points 1, 2, and 3 correspond to
the different modes in our system corresponding to the transmon, the low fre-
quency cavity, and the high frequency cavity. By inspection one can clearly see
that the high frequency cavity will be more linear than the lower frequency cav-
ity and correspondingly have a smaller state dependent shift to the transmon.
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location of the poles in frequency, the slopes at the poles, and the junction in-
ductance one can readily obtain the Hamiltonian parameters to arbitrary order.
As coherence increases for qubits and cavities, knowing their anharmonicities,
state dependent shifts, and higher order corrections will be crucial for successful

implementations. For each mode we can write its contribution to fourth order in

¢ as:

H,, = hw,,a'a — ha,,a’?a? (4.42)
Where w,, and «,, are:
Wi = Wy — Oy, (4.43)
e?7?
m = < 4.44
=G (4.44)

The above equations are only approximations as found in Ref. [102]. A com-
mon practice is to use QuTIP [104] to diagonalize the full system Hamiltonian.
The circuit designer need only provide the zero crossings of the admittance, the
slope at the zero crossings, and the junction inductance to extract Hamiltonian
parameters from the electromagnetic simulation. Since QuTIP is open source it
is quite conceivable that in the near future a function can be added to the ex-
isting database much in the same way there are built in functions for Wigner
functions or Husimi Q functions. The advantage here is it would allow BBQ
to become the industry standard for simulating quantum systems much as the
transmon has become ubiquitous.

A nice observation is that anharmonic modes such as the transmon will have

88



much smaller slopes than cavity like modes with a very large slope. By know-
ing this coupled with the fact that the state dependent shift between modes is
Xij /= 2,/a;a;, one can quickly look at a plot and have a good sense for what
the order of strength the Hamiltonian parameters are as well as when changing

physical dimensions how that affects Hamiltonian parameters.
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Experimental Techniques

This chapter is devoted to the details of the materials, equipment and proce-
dures used in all the experiments in this dissertation. The general framework for
experimental pursuits in the Schoelkopf group is circuit quantum electrodynam-
ics (cQED). In this thesis a cQED experiment is realized with two rectangular

waveguide cavities which have “box” mode resonances coupled to a transmon
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qubit. These modes are pervasive even in planar structures where these modes
are ignored and hopefully avoided as they potentially serve as another mecha-
nism for decoherence. As the size and complexity of the quantum circuits used

increases so to will the care and design required to preserve coherence.

5.1 FABRICATION

5.1.1 SUBSTRATES

All fabrication in this thesis is performed on 50mm diameter, c-plane sapphire
substrates. Sapphire is an anisotropic material and the c-plane version specifies
the plane in which wafers are cut from the sapphire ingot. C-plane sapphire has
a uniform dielectric constant along the large surface of the wafer (e, ~ 9.3) and
a larger dielectric constant perpendicular to the the large surface (¢, | ~ 11.5).
The early work with stripline resonators was predominately on single side pol-
ished, 480 pm thick sapphire. Eventually, the Schoelkopf group began to only
purchase double side polished, 430 pm sapphire and the stripline experiments
migrated over accordingly. No appreciable changes in device performance were
observed. All transmon fabrication performed in this dissertation was on 50mm

diameter, 430 pm thick, c-plane, double side polished sapphire.
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5.1.2 LITHOGRAPHY
STRIPLINES

For the fabrication of the stripline resonators a bilayer resist is used for optical
lithography. The bilayer of resist consists of a bottom layer of MicroChem LOR
5A (~ 480nm thick) and a top layer of MicroChem photoresist S1805 (~ 500nm
thick). Details on the full procedure are available in appendix A. One thing to
explicitly point out is that adhesion between the sapphire substrate and the first
resist, LORSA, was found to be inconsistent. After exposing and developing, the
bilayer resist a common occurrence was for the the entire bilayer to be removed
by the development process. To remedy the adhesion issue in subsequent ex-
periments, the sapphire substrate was pretreated with HMDS and adhesion was
no longer an issue. All the optical processing was done using the Heidelberg di-
rect writer. This tool enabled fast turn around of devices and designs since the
“mask” was a file produced by the experimentalist. For the standard configu-
ration, the direct writer can reliably make feature sizes down to a few microns
which is not an issue considering the smallest feature size for the stripline was
of order a few hundred microns. By changing the laser head on the direct writer
features down to ~ .5 pm can be written but this project did not evolve to the

point of requiring such small features.
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TRANSMONS

The transmon fabrication in this dissertation makes use of the Niemeyer-Dolan
resist bridge technique [105, 106] to manufacture the required small Joseph-
son junctions. The transmons fabricated in this dissertation used a bilayer of
resist consisting of a 550 nm layer MMA EL-13 and a top layer of 120 nm of
PMMA A3 both from MicroChem. The bottom layer of resist, MMA, must
develop faster than the top layer of resist, PMMA, to produce an appreciable
undercut for liftoff as well as producing a “bridge” of resist (Fig. 5.1 A). To
aid in clearing out underneath the resist bridge, a “shadow” dose is applied at
the bridge location that is about 3.5 times smaller than the dose used for ar-
eas that one intends to clear. A full and complete description of this process is
given in appendix A. Electron beam lithography was accomplished in a Vistec
EBPG 5000+, 100kV system. Sapphire substrates do not conduct and therefore
it is necessary to deposit an anti-charging layer on top of the bilayer of resist to
prevent beam deflection during writing. The anti-charging layer used in all the
lithography in chapter 6 was a 13nm layer of aluminum. It is worth noting that
others in RSL and QuLab have used gold as the anti-charging layer and fabrica-
tion results are comparable; however, the conductor used for the anti-charging
layer affects the required dose used for not only clearing structures but also the

“shadow” dose.
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Figure 5.1: Double Angle Dolan Bridge Deposition. In all cartoons, green trape-
zoids are previously deposited superconducting material that forms the planar
resonator or capacitive pads of the transmon. In brown is the MMA resist while
the top yellow layer is the PMMA that forms the “bridge”. A Aluminum, navy,
deposition at first angle. B Oxidation, orange, of deposited aluminum. C Alu-
minum, navy, deposition at a second angle producing an overlap which forms
the Josephson junction. D Final oxidation of the Josephson junction in a con-
trolled environment.
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5.1.3 DEPOSITION AND DICING
STRIPLINES

All deposition for aluminum stripline resonators were done in the Plassys elec-
tron beam evaporator. Depositions were done at a 0° degree angle with respect
to the normal at a rate of 1 nm/s for a thickness of roughly 200nm. Full wafer
liftoff was done with the sample side facing down in acetone at 75 C for at least
an hour (covered), or in NMP at 90 C for at least an hour (covered). Once com-
plete the wafer was coated with S1827 as a protective layer for dicing. It was
found, that chips diced to a width of 1 mm were not robust and prone to break-
ing. However, chips were substantially more robust when diced to widths of 1.2
mm or larger. This minimum width was the driving force behind the stripline

chip widths used in chapter 3.

TRANSMONS

All Josephson junction depositions done in this dissertation were in the Plassys
electron beam evaporator. For the shadow evaporation process two angles are
used and for electrodes of different widths the layering order will alter the Joseph-
son inductance of the device. That is why it is necessary to align the wafer to

the deposition system as well as possible before beginning deposition. Once

fully setup the Plassys will pump down to the 108 Torr range before deposi-
tion. The first step is a brief titanium sweep to further lower the pressure. A

critical first step for depositions done on sapphire is an ion- beam cleaning step
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with an Anatech argon ion gun operating at 250 V for 30 s. The first angle de-
posited is 25 nm of aluminum at a 0° angle with respect to the normal, followed
by an oxidation step of 15 Torr of oxygen for 12 minutes (aluminum has a self
limiting oxide layer so the time duration need not be exact to 12 minutes), a
second deposition of 60nm of aluminum at an angle of 35°, and finally another
oxidation at 3 Torr for ten minutes so the final aluminum oxide can be grown
under controlled conditions.

Once finished all handling of the wafer and future devices must be done when
fully grounded and all wafers and devices in a static dissipative container. Joseph-
son junctions are susceptible to static shock which will ruin the junction and
undermine all the work done in creating it. The next step is to lift off the junc-
tions in either acetone at 75 C (covered) for at least an hour or in NMP at 90 C
for at least an hour. Once fully lifted off and cleaned, the wafer must be coated

with S1827 as a protective layer for dicing.

5.2 SAMPLE HOLDERS

5.2.1 STRIPLINES

The first generation stripline holder in chapter 3 were machined in 6061 alu-
minum which is roughly 95% aluminum. However, the second generation stripline
holders were machined from extruded bars (ingots tend to have air pockets

that ruin mill bits and cause the machine shop to be unhappy) of 4N aluminum
(99.99% aluminum) purchased through Laurand Associates. The holders were

etched according to the process described in appendix A which in Ref. [58] was
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shown to improve the internal quality factor of aluminum waveguide cavities.

5.2.2 CAVITIES

In chapter 6 a two rectangular waveguide cavity sample, which was antenna
coupled to a transmon, was machined from high purity (4N) aluminum. The
cavities were then etched following the procedure in appendix A which was

shown in Ref. [58] to improve internal dissipation of aluminum cavities.

5.3 EXPERIMENTAL SETUP

5.3.1 DILUTION REFRIGERATOR

The heart of the experiments done in quantum computing and information with
superconducting circuits is the dilution refrigerator. All experiments done in
chapter 3 and chapter 6 were performed in cryogen free dilution refrigerators
which trade the expensive recurring cost of liquid helium for the more reason-
able costs of liquid nitrogen, electricity, cooling water, and compressed air for
normal operation. In chapter 3 all experiments were performed in an Oxford
Triton 200 with a base temperature of 20 mK. All experiments performed in
chapter 6 were performed in a Vericold (acquired by Oxford) dilution refrigera-
tor with a base temperature of 20 mK. The Vericold is a bit unusual in that its
helium 3 and 4 mixture injection pressure is over 1 bar where as Oxford systems

typically have their injection pressure in the .6-.7 bar range.
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5.3.2 VERICOLD WIRING AND FILTERING

This section is devoted to the description and explanation of the experimental

setup used in chapter 6.

5.3.3 POWER

Before discussing cavity filtering it is worth briefly what is meant by power in
this context. For instance we can define the circulating power inside a cavity in
terms of the average number of photons in the cavity < n >, the energy per

photon hw, and the bandwidth of the cavity,  as:

P =<n> hwk (5.1)

For a cavity with on average one photon at 10 GHz and a linewidth of 1 MHz
this corresponds to a power of about -140 dBm. This small amount of power
means we must heavily attenuate incoming signals to prevent inadvertent exci-
tation of a cavity (or qubit). In the following sections we will discuss how that

is achieved.

5.3.4 CaviTYy FILTERING

The general goal with our filtering is to prevent unwanted and unintended pho-
tons from entering in our device and ruining performance. On the input side
we attenuate at the “4 K” stage with -20 dB cryogenic safe attenuators and

at the base plate with -30 dB attenuators. For most applications we only need
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Figure 5.2: Vericold Dilution Refrigerator Wiring. The rectangular two cavity sample labeled FS_ 2 is the
sample used in chapter 6. The other sample, D 1 re, was Reinier Heeres’ sample which resulted in Ref. [53].
Following line 5A (yellow) from room temperature, this input line goes through 50 dB of attenuation, a 10
GHz low pass K&L filter, an ecosorb filter and finally to the input port of the storage cavity. The dashed box
around the two samples and the ecosorb filters represents the magnetic shield that all reside inside. All parts
placed in the shield are measured to be no more magnetic than the baseline of the RSL magnetometer ( 1mG).
The input line for the readout cavity, 2B (dark blue), follows a similar trajectory except for one place that

has a directional coupler to lessen the thermal load put on the base plate of the DR when performing the high
power Jaynes-Cummings readout (section 5.5.2). The signal from the readout cavity is sent through two mi-
crowave circulators, is reflected off of the JPC (which may or may not be operated to produce gain to the sig-
nal), sent through two isolators (-20dB of isolation each), travels up niobium inner and outer conducting SMA
lines to minimize loss before the Caltech 1-12 GHz HEMT amplifier, and finally up to the room temperature

electronics for data acquisition.
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a few photons in the 5-10 GHz range— a noteworthy exception is the Jaynes-
Cummings high power readout discussed in section 5.5.2 — so the attenuation
on the input side is fine as long as the dilution refrigerator has enough cooling
power to handle the microwave power dissipated by the attenuators on the base
plate. Where things are a bit trickier is on the output side because the signal
carrying precious quantum information will also only be a few photons for a dis-

persive readout (section 5.5.1).

CIRCULATORS AND ISOLATORS

On the output side between the HEMT at “4 K” and the sample are two PAMTECH/
Quinstar 3-12 GHz isolators. These isolators provide -20 dB of directionality to

our microwave signals, so two isolators in series, as in figure 5.2 gives -40 dB of
isolation from the HEMT at the “4 K” stage. It has been postulated that -40

dB of isolation is inadequate and one of the newer Schoelkopf lab fridges was

outfitted with three isolators in series for -60 dB of isolation. No definitive an-

swer exists for whether or not -60 dB of isolation is necessary though an argu-

ment can be made in its favor.

In figure 5.2 two PAMTECH /Quinstar 8-12 GHz circulators are used with a
Josephson parametric converter (JPC). The two circulators allow for reflection
to occur off of the JPC (with or without gain). One port on the first circula-
tor isn’t essential and this circulator could be replaced with an isolator. How-
ever, the superfluous port is diagnostically useful for measuring and characteriz-

ing the JPC independent of the sample. For a circulator to operate effectively,
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all incoming ports must be matched. In figure 5.2, the -10 dB attenuator is at-
tached to one circulator to fix the mismatch in impedance between the ecosorb
filter and the circulator. Without the attenuator the circulator does not main-

tain its reverse isolation.

EcosorB FILTERS

The ecosorb filters in this thesis serve the purpose of attenuating signals above
20 GHz. The idea behind these filters is to make a transmission line that is
filled with a dielectric that is not very lossy in the 5-10 GHz range but whose
loss increases as a function of frequency and is very lossy at high frequencies.

In this thesis ecosorb filters filled with CR-110 were used to produce the mi-
crostrip version of ecosorb filters. A thorough investigation into the different
types of ecosorb was undertaken by Geerlings and is available in his thesis [107].
It would seem that the coaxial version of the ecosorb filters is preferable due to

its ability to better impedance match to the SMA lines.

K&L CaviTty FILTERS

The K&L cavity filters serve the purpose of rejecting signals from roughly 10-20
GHz. Any resonator will have multiple higher modes especially 3D rectangular
waveguide cavities. Typically the fundamental mode of the readout cavity is de-
signed to be around 9 GHz and any higher mode is above 10 GHz. K&L filters
prevent noise at the higher mode frequencies from entering the cavity and hope-

fully minimize the amount of photon shot noise dephasing experienced by the
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qubit [63].

NONMAGNETIC COMPONENTS

A more recent point of emphasis in the Schoelkopf group is using measurably
nonmagnetic components. The room temperature magnetometer used for all
measurements is a 3 axis Bartington Mag-03 (basic model) that can reliably
measure down to < 1 mG. Copper inner and copper outer SMA cables are used
on the input and output of the sample with hand formable cables being reserved
for room temperature setup. All wiring, SMA connectors, and other components
are nonmagnetic to the level that can be measured. All components are mea-
sured in the Bartington Mag-03 magnetometer at room temperature and only
microwave connectors and other components are used inside the sample mag-
netic shield if the component is not measurably magnetic. Although somewhat
tedious to spend an afternoon measuring everything that will be used near the
sample the payoff was that devices in the Vericold seemed to have a substan-
tially smaller excited state population after this change as well as longer coher-

ence times.

MAGNETIC SHIELDING AND INFRARED

The magnetic shielding used in the experiments of chapter 6 was initially de-
sign by Gerhard Kirchmair. The design is a cylinder made of cryoperm shielding
that is then capped with another cryoperm shield. The shield and cap lock into

one another and both are thermally heat sunk. Slight variations in size have
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progressed over the years. The Vericold dilution refrigerator has the smallest
usable sample space and its magnetic shield is small compared to what is used
in other Triton systems especially the newer Triton systems which have a large
volume that can be connected to the base plate. In the Vericold, both samples
were at the very bottom of the magnetic shield and the space above the samples
was used for ecosorb filters. Also, inside the magnetic shield is a copper sheet
that has been covered with ecosorb and is thermally heat sunk to the baseplate.
The copper sheet is to be an absorber of any stray infrared photons that make

it into the magnetic shield.

5.3.5 HETERODYNE MEASUREMENT SETUP

All of the quantum measurements performed in chapter 6 used a microwave,
heterodyne interferometer (Fig. 5.3). By expanding previous implementations
of heterodyne detection in the Schoelkopf group the microwave interferometer is
less susceptible to drifts in the experimental setup.

The pulse generation was accomplished with a Tektronix AWG 5014C with
a 1 GS/s digital to analogue converter. The signal, typically modulated at 50
or 100 MHz, is then fed into a microwave mixer along with a 5-10 GHz local
oscillator tone which is single sideband modulated to achieve the desired pulse
shape at the desired frequency. The typical local oscillator used in chapter 6
was a Vaunix LMS-802 generator. For frequency sweeps an Agilent MSG series
microwave generator was used. Measurements are recorded with an analog-to-

digital converter using the AlazarTech. A full schematic of the setup used in
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Figure 5.3: Room Temperature Microwave Control and Data Acquisition. Pulse
sequences are played along the I and Q DAC channels of the AWG5014C that
are then single side band modulated with a local oscillator tone that is 50 or
100 MHz detuned from the desired frequency. Switches, S, are after the mix-
ers and are controlled by the digital channels of the AWG. These switches serve
the purpose of preventing leakages from entering the system. The signals con-
trolling the qubit or cavity are sent into the quantum device under test along
with the readout, RF, tone. After leaving the QDUT, the signal is then sent
into the AlazarTech analog to digital converter along with an earlier reference
signal that was broken off before being sent into the fridge. This microwave,
heterodyne interferometer robustly protects the measurement apparatus from
phase drifts.
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chapter 6 is in figure 5.3.

5.4 CAvVITY MEASUREMENT TECHNIQUES

5.4.1 TRANSMISSION

All cavity measurements performed in chapter 3 measured the magnitude squared
of Sg; in transmission with a vector network analyzer (VNA) where ports 1 and
2 are the input and output ports of the cavity. For the stripline measurements
the two ports were designed to be symmetric so it is arbitrary which port is la-
beled 1 versus 2. A key relation used in chapter 3 was the extraction of the cou-
pling quality factor based on room temperature measurements of the stripline
resonators. The following is a derivation that relates the coupling quality factor
to the total quality factor assuming symmetric coupling. Another assumption is
that the coupling quality factor is much larger than the internal quality factor.
For room temperature measurements of aluminum stripline resonators the inter-
nal quality factors were ~ 20 whereas coupling quality factors were investigated

all above 103.

TRANSMISSION COUPLING QUALITY FACTOR—SYMMETRIC

We define the power applied to port 1 as compared to the powered received to

port 2 in terms of the scattering matrix element as:

Py
Soq]? = == 5.2
S| P, (5.2)
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On resonance | Sy |? is defined as the insertion loss of the device. We will say

that the the resonator will have the standard voltage and current relation:

I - VGtot (53)

We can calculate the input power as:

]2
P =— 5.4
TeN (5.4)
The output power will likewise be:
[2
P, = G (5.5)
? G%ot ?

Using equations 5.4 and 5.5 in equation 5.2 yields:

|So|? = §2
Sl = ot
-
Sal” = 4?2%
Qc = 2Quot|Sa] (5.6)

Equation 5.6 gives a simple relation between the coupling quality factor, the

total quality factor, and the insertion loss. We assumed in equation 5.6 that the
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coupling into and out of the resonator was done symmetrically.

5.5 QUBIT MEASUREMENT TECHNIQUES

Vector network analyzers (VNAs) are terrific for cavity measurements because
they have all the necessary microwave electronics in one nice, convenient, user
friendly box. An analogous commercially available piece of equipment does not
exist yet for measuring qubits. Qubits are trickier in that they require a more
flexible input pulse than a continuous wave drive. Also, generally speaking more
than one input tone is required for qubit measurements. I will now discuss the

two types of readout techniques used in chapter 6.

5.5.1 DISPERSIVE READOUT

The first type of readout used in chapter 6 was theoretically developed around
the same time of cQED. Initial theoretical work [90] was shortly followed by
experimental demonstrations [100] and shown to be quantum non-demolition
(QND), even with only a HEMT, in reference [108]. The dispersive readout

relies on the qubit and cavity being strongly coupled (Fig. 5.4) albeit well de-
9
A

mode is 'cavity-like’. The dispersive interaction in the Hamiltonian can be writ-

tuned, < 1, from each other so that one mode is 'qubit-like” and the other
ten in terms of the state dependent shift, x, between the qubit and cavity, and
in terms of the raising (a', b") and lowering operators (a, b) of the qubit and
cavity is:

Hy;,, = —hxa'ab'b (5.7)
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Figure 5.4: Dispersive Readout. A conceptual cartoon depiction of the underlying
principles of the dispersive readout. By having a strong, dispersive interaction
between the qubit and cavity the frequency of the cavity is dependent on the
state of the qubit. a The frequency of the cavity is resolvablely different when
the qubit is in the ground state, blue, or in the excited state, red. b Having the
readout tone applied to the cavity frequency corresponding to the qubit in the
ground state, double arrow in a, allows transmission through the cavity when
the spectroscopic tone is not resonant with the qubit. When the spectroscopic
tone is applied on resonance with the qubit, the cavity frequency changes and
the observed transmitted signal drops.
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Due to the qubit-cavity coupling, x, the resonance frequency of the cavity (or
qubit) will be dependent on the state of the qubit (or cavity). By recording the
transmission through the cavity one can observe when a second drive is on res-
onance with the qubit. When the qubit is driven on resonance it will shift the
resonance frequency of the cavity and thus lower the transmission through the
cavity (Fig. 5.4 b). As shown in Fig. 5.4 a), the cavity is driven at the peak
corresponding to the qubit in the ground state and likewise transmission is ob-
served for that case. However, one could just as well drive at the cavity peak
corresponding to the qubit in the excited state. It is up to the experimentalist
to decide which cavity peak to drive at and choose accordingly to maximize the
signal to noise ratio. Since the dispersive interaction is QND its use with nearly
quantum limited amplifiers have demonstrated a variety of novel quantum phe-

nomena [109, 110, 46, 111, 112, 113, 114, 115, 116, 117).

5.5.2 JAYNES-CUMMINGS READOUT

An alternative mechanism to readout the state of a qubit was discovered in 2010
using the Jaynes-Cummings interaction between an anharmonic oscillator and

a cavity [118]. The unique observation is as follows, by driving very hard at the
bare cavity frequency the cavity can fully decouple from the qubit and its high
power peak can be resolved. The unique observation is that by having the qubit
excited less power is required to drive the cavity to its bright state. This gives

a very non-QND method to measure the state of the qubit. The trade off for

non-QND measurements is the robust, high fidelity single shot readout for this
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Figure 5.5: Jaynes-Cummings Readout. The observation of Ref. [118] was that
for different qubit states, when the readout cavity is driven at its undressed res-
onance the cavity will decouple from the qubit at different drive powers. In blue
is the digitized readout signal as a function of drive power applied to the read-
out cavity at a fixed frequency when the qubit is in the ground state. In red is
the digitized signal for the case when the qubit is in the excited state. When in
the excited state the qubit requires less power to make the readout cavity “go
bright”. By using a power between 1 and 3 dBm a relatively large signal will
result from the measurement.
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method.

We begin by describing the observed cavity frequency as a function of power.
At low powers which correspond to @ & 1 one would observe the cavity at its
dressed frequency due to the quantum coupling to the qubit as is described
in chapter 4. However, as the drive power applied to the readout cavity is in-
creased the frequency of the cavity will begin to lower due to the inherited Kerr
nonlinearity from the qubit. At some point when the applied power to the cav-
ity is large enough no longer will one have a cavity response. To put things col-
loquially the cavity spectroscopically disappears. The innovation by Reed was
to not be dismayed by the lost cavity response and to continue to increase the
applied power to the cavity. At some very high power the cavity resonance will
reappear. This frequency can be thought of as the uncoupled cavity frequency
and it occurs much lower in frequency that the low power resonance. The cavity
response at high powers is very strong and is why it is occasionally referred to
as a bright state.

A further unique observation by Reed, was that one can use this unique bright
state as a readout mechanism. By projecting a quantum state onto a classical
output this readout scheme has a robust, high single shot fidelity for a wide
array of parameters. To readout the qubit state as in Fig. 5.5, one finds that
the power required to cause the cavity to go bright when the qubit is in the ex-
cited state is less than the power required to make the cavity go bright when
the qubit is in the ground state. The disadvantages to this readout mechanism

is that it is not QND and requires a longer reset time to repeat a measurement
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sequence than a dispersive measurement. For instance, a cavity with a lifetime
of order a few hundred nanoseconds would require with the high power readout
of order a millisecond or more for the experimental repetition rate where as in
a dispersive setup one could use tens of microseconds. The optimal choice for
a repetition rate is one that does not negatively impact the coherence nor the

performance of the quantum device under test.
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Cavity State Reservoir Engineering

6.1 INTRODUCTION

In this chapter, we undertake the challenge of taming active quantum systems.
In the absence of drives, a quantum system will naturally decay to thermal
equilibrium with its environment. Regardless of the physical system, the ther-

mal equilibrium state is singular and, at best, serves to initialize the quantum
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system to its ground state. A major obstacle for quantum information and quan-
tum computation is that the quantum states used are non-equilibrium states.
Non-equilibrium states persistently dissipate entropy to the environment, losing
their information. Two well developed methods in combating entropy loss from
a quantum system are measurement with external feedback and autonomous

protocols with dissipative feedback.

6.1.1 MEASUREMENT WITH EXTERNAL FEEDBACK

This section serves to acknowledge and mention a well studied method for con-
trolling active systems—measurement with external feedback. Theoretical ideas
for sequential unitary operations to control open quantum systems predate
quantum computing [119]; however, quantum information did inspire further
development [120, 121]. Early experimental work lacked the ability for real-time
external feedback [122; 123, 124, 125] yet still showed great promise. Proposals
for cavity QED protocols that stabilize photon number states, Fock states, re-
quired external feedback [126, 127]. Advances in technology allowed a series of
experiments by the ENS group [128, 129, 130] to stabilize Fock states in a mi-
crowave cavity through repeated measurement and real-time feedback.

The focus of this chapter is the stabilization of Fock states in a microwave
cavity through an autonomous protocol with dissipative feedback. Consequently,
this chapter will not be an exhaustive review of measurement based feedback.
However, it is worth mentioning a few of the advances in the superconduct-

ing quantum circuit community made possible by nearly quantum limited am-
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plifiers [131, 132, 133, 134, 46]. Noteworthy demonstrations are the realtime
monitoring of quantum state decay of either an artificial atom [109] or the cat
state of a microwave cavity [111]. Realtime QND observation of quantum state
decay opened the possibility of feedback based on the outcome of a measure-
ment. Since several quantum error correction protocols require realtime feed-
back [135, 136, 137, 138, 139, 140] experimental work demonstrating feedback

on a small number of quantum devices exist [114, 115, 112, 116].

6.1.2 QUANTUM RESERVOIR ENGINEERING

An alternative approach to active quantum systems is quantum-reservoir engi-
neering (QRE) [141, 142, 143, 144, 145], also refereed to as autonomous state
preservation with dissipative feedback, dissipative state production and quan-
tum bath engineering. QRE harnesses persistent, intentional coupling to the
environment as a resource. Although it is common for QRE proposals to involve
continuous wave drives, proposals [146] as well as experimental implementa-
tions [147] using pulsed or stroboscopic drives exist. Both measurement with
external real-time feedback as well as QRE require entropy removal. However,
only QRE employs environmental losses as a necessary part of its protocols. An
advantage to QRE is that it does not require an external feedback with calcu-
lation since the Hamiltonian interactions are designed a priori to stabilize the
subset of a Hilbert space avoiding uncertainty in the quantum-classical inter-
face. Additionally, QRE is less susceptible to experimental noise, such as gen-

erator drifts (phase and amplitude), [148] and in some cases thrives in a noisy
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Figure 6.1: In red, a storage cavity is nonlinearly coupled to a cooling cavity,
blue, which is strongly coupled to a cold bath (transmission line). Drives ap-
plied to the circuit, blue and red double arrows, combined with dissapation, de-
caying blue arrow, stabilize Fock states in the storage cavity.

environment [149]. QRE is less studied than measurement based protocols with
external feedback; however, a few notable examples exist in superconducting
circuits. One such example that is relevant to this chapter was performed by
collaborators at Yale University in the group of Michel Devoret, who demon-
strated a QRE protocol in a cQED environment using a single qubit coupled to
a fast cavity [101]. The protocol of choice was the double drive reset of popu-
lation (DDROP). DDROP was used to cool a qubit that initially had a resid-
ual excited state population of ~10% to an excited state population of < 1%.
DDROP is conceptually similar to the protocol shown in figure 6.2 which is used
in section 6.7 to stabilize Fock states of a microwave cavity. Other theoretical
QRE proposals exist in superconducting circuits [150, 151, 152, 153, 154, 155]
and optomechanical systems [153] as well as experimental demonstrations of

QRE in both superconducting circuits [156, 157, 158] and trapped atomic ion
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systems [159].

6.2 FOCK STATE STABILIZATION PROTOCOL

We now introduce the major focus of this chapter—stabilizing Fock states of a
microwave cavity through quantum reservoir engineering. We intend to have
this investigation in QRE be a fruitful endeavor in understanding driven dissi-
pative systems, specifically as applied to cavity modes since the quantum com-
puting paradigm of the Yale group is the cavity centric Cat Code architecture
[140]. Stabilizing Fock states appears to be conceptually, theoretically, as well
as less resource intensive than the stabilization of a superposition states in a
cavity or the stabilization of entangled cavity modes such as entangled cat states.

Shown in Fig. 6.2(b) is a QRE protocol that stabilizes Fock states in a mi-
crowave, storage, cavity. Fig 6.2 is drawn with the drives applied so as to stabi-
lize a one photon Fock state in the storage cavity. This protocol which we will
refer to as the Fock State Stabilization Protocol (FSSP) is conceptually simi-
lar to DDROP [101]. Later in the chapter we will present results demonstrating
the stabilization of the vacuum state of the storage cavity, which is analogous to
stabilizing the ground state of a qubit, and present a comparisons to DDROP in
table 6.2.

Due to the anharmonicity of the storage cavity, a CW drive, wys with drive
strength (g, can be applied to the f; o transition (Fig. 6.2(a) left). This drive
is an induced Rabi rate between vacuum and a one photon Fock state. Concur-

rently, with wgy,, a drive applied to the cooling cavity at wg. with strength Q¢
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Figure 6.2: Ideal cavity spectrum and Fock state stabilization protocol. (a) Left: sketch of
idealized storage cavity spectrum. The storage cavity must have unequal energy levels spac-
ing (hAs), inherited from the coupled qubit, to selectively drive storage cavity transitions. On
the right is the idealized cooling cavity spectrum. The frequency shift of the cooling cavity
due to photons in the storage cavity, the cross-Kerr (xs.), must be larger than either cavity
linewidth to selectively drive this transition. (b) Energy level diagram for the coupled cavity-
cavity system tracing over the qubit state. Ascending vertically are excitations in the stor-
age cavity while to the right is increasing number of excitations in the cooling cavity. A mi-
crowave drive, g, is applied on the storage cavity so that population only oscillates between
vacuum and the first Fock state of the storage cavity. Simultaneously a drive, ¢, is applied
on the cooling cavity such that it is resonant provided there is exactly one excitation in the
storage cavity. Once resonant, the cooling cavity is pumped to a mean photon number set by
the strength of the drive. The autonomous loop of this protocol is closed by cavity decays,

decaying arrows, returning the population to |0,0) allowing the preparation to be repeated.
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is applied detuned by a cross-Kerr from the cooling cavity, wse = w? — Yso,
(Fig. 6.2 (a) right). This drive is resonant provided that there is exactly one
photon in the storage cavity (Fig. 6.2(b)). Once resonant, the conditional drive
displaces the cooling cavity to a coherent state determined by the amplitude of
the drive. When a photon decays from the storage cavity, {2¢ is no longer reso-
nant and the cooling cavity quickly decays to vacuum. Once back to the ground
state, the storage cavity is resonant with the drive {25 and can then be pumped
to the target state. This protocol reaches its steady state solution in a time gov-
erned by the decay rate of the cooling cavity. The steady state population in
the one photon Fock state of the storage cavity will be determined by the stor-
age cavity decay rate, kg, and the stabilization rate, k1. The stabilization rate
is defined as the rate at which the system is returned to the target state when

a photon decays from the storage cavity. To gain a qualitative understanding of
the FSSP potential performance we will investigate a simple four state system

to develop physical intuition.

6.2.1 FOUR STATE MODEL

To develop intuition for the expected fidelity of a Fock state produced by the
FSSP we investigate a simplified case: a four state system. Figure 6.3 depicts
the simplified energy level diagram that will be used to model the FSSP. Start-
ing with the state in the bottom left which is the state with zero photons in the
storage and cooling cavity we will label states clockwise as 1 photon in the stor-

age cavity and zero photons in the cooling cavity, 1 photon in the storage cavity
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and a coherent state « in the cooling cavity, and zero photons in the storage
cavity and a coherent state a in the cooling cavity. Our intention is to stabilize
the target state with one photon in the storage cavity and a coherent state of

« in the cooling cavity. To determine how well the target state is stabilized an
important rate to consider is the rate at which photons decay from the storage
cavity (k). We will treat x| as an external parameter of this system. Specifi-
cally x; will be an independent variable over which to analyze the FSSP. The
other rate that must be determined is the rate at which our system returns to
the target state after a photon decays from the storage cavity which we will call
the stabilization rate x4. The stabilization rate will be a combination of the
decay rate of the coherent state in the cooling cavity, kpa, the Rabi rate that
the vacuum and first Fock state of the storage cavity is driven at Q5g, and the
rate at which a coherent state in the cooling cavity grows, kgc. To simplify this
model we will call the rate at which the oscillator decays x and eliminate the
subscript “CD”. For an oscillator, kgc is the rate at which a coherent state will
grow when driven from vacuum in steady state with m ~ 1 and consequently

this rate is also k. To recap:

RKDA — KRBC — R (61)

Now we must determine how x and 2xp combine to produce x+. We identity

that if either xk or {2sp are zero then x4 should also be zero regardless of the
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Figure 6.3: Four state system with drives and decay rates.

value of the other rate. For this reason we add the rates in inverse:

1 1 1\ !
=(2+=-4+ = 6.2
R4 (Ii + o + QAB> ( )

The optimal choice is for Qa5 ~ k found through an eigenvalue calculation of

the matrix modeling for the four state model. With this simplification we find:
K
~ - 6.3
Kt g (6.3)

It is at this point that we realize that the decay of our fast cavity (k) is propor-
tional to the rate at which the system returns to the target state after decaying

(k1):
(6.4)

SI=

Ry =
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In steady state we have:

K, P(1) = #1P(0) (6.5)

Solving for P(1) using that P(1) + P(0) = 1 we get:

-1
P(1) = (1 + ﬁ) (6.6)
Kt
Using equation 6.4 we rewrite P(1) as:
-1
P(1) = (1 + M) (6.7)
K

In the case of n = 3 using equation 6.7, to have a fidelity of 0.99 to the target
state a ratio of 300 is required ratio between the decay rate of the cooling cav-
ity, x, and the decay rate of the target state, k. With the actual experimental
ratio of 25 (section 6.7) from the four state model we expect P(1) ~ 0.9 assum-

ing perfect tomography.

6.3 LINBLAD MASTER EQUATION AND SIMULATION

To improve upon the four state model we can use the Linblad equation for our
driven, dissipative system. The experimentally realized FSSP Hamiltonian in-

cluding only cavity terms is:

A, A,
Hp = wsb'b + w.cle — 7bT2b2 — 7CT2C2 — xscb'befe (6.8)
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Where bf, ¢l are the creation operators for the storage and cooling cavity and

b, c are the annihilation operators for the storage and cooling cavity. In terms
of these Hamiltonian parameters the FSSP will work best for x,. > k. > k, and
As > ks (Fig. 6.2 a) . To incorporate continuous wave drives into our Hamilto-
nian we begin by adding stiff drives of the form Qg(b'+b) for the storage cavity
drive and Qc¢(c' + ¢) for the cooling cavity drive. Where Qg and ¢ are complex
drive amplitudes. By including these drives and entering the rotating frame of
both cavities (Ug = exp(ib'bwg,t) and Ug = exp(ic'cwgt)) the result is detun-
ings of Ay = w, — wy, for the storage cavity and A, = w, — wy. for the cooling
cavity. We note that wy, and wy. are the frequencies of the drives on the storage

and cooling cavity respectively. The driven FSSP Hamiltonian is now:

A A
H/, = Ab™b 4+ Acle — 75bT2b2 — 7CCT2C2
—xscbbefe + Qg(b! + b) + Q¢ (c! + ¢) (6.9)

With this driven Hamiltonian the master equation for the open quantum system

(with storage and cooling decays of ks and k,) is:

p = —i[H, p| + 5, D[blp + r.Dlclp (6.10)

The above master equation is used in QuTIP 2.2 [104] with the steady state
solver and the time dependent solver to produce the simulation results that ap-
pear in Fig. 6.12(b),(c),(d) and Fig. 6.11(b),(c). The code used for the simula-

tions is found in appendix B. From simulation we find the stabilization rate to
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be Ky & K.

6.4 MEASUREMENT INDUCED DEPHASING: PHOTON NUMBER CALIBRATION

In this section we develop a method for determining the average photon number
in a fast cavity. Fast cavities, relative to the quantum object they are measur-
ing, are crucial for repeated quantum measurements [109, 111]. The goal in this
procedure is to use the AC stark effect on the qubit as a method of determining
the average photon number in a cavity given a room temperature drive strength
or in the actual experimental setup the drive power. If the drive is placed at

wg = (w?+ws)/2 then our measurement efficiency which is the average I quadra-

ture value, I,, , divided by its standard deviation, o, is:

T 1 Tm
= = T_/ \/n/iTm|ag(t) — . (t)|2dt = /2nKT,,nsin <g) (6.11)
m Jo

g

Where T, is the measurement time , 7 is the quantum efficiency, x is the de-
cay rate of the cavity, and a.4(t) is the amplitude of our cavity displacement
for either the excited or ground state of the qubit. This integral can be approxi-
mately evaluated to give the right hand side which has the average photon num-
ber in the fast cavity, n, as well as the sine of half the angular separation be-
tween the cavity coherent states corresponding to the qubit being in the ground

or excited state. Since the actual measurement will be average photon number
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Figure 6.4: Photon Number Calibration via Measurement Induced Dephasing.
From Ref. [46], (top) Different qubit states represented on the Bloch sphere.
An arbitrary qubit state can be measured with projections along the I and Q
quadratures. Fach ‘g’ or ‘e’ distribution has an associated cavity displacement
of ay, . The full angular separation between the two distributions is 6 and

each distribution has a width of 20.
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we square the above result to get:

2

([_m> ~ 20K 1,7 sin’ (g) =Ty (6.12)

o

In equation 6.12 we define this quantity as our dephasing rate. We can now
use equation 6.12 to express the amplitude of our AC stark measurement, where

T is the time between our qubit rotations, as:

A = exp([yT)

A = exp (—277/<;Tmﬁ sin? (g) T)

A = exp(TT)exp (—2/<;Tmﬁsin2 (g)> (6.13)

Since we will be operating in the regime that y ~ x we can take the simplifi-

2
sin® <€> ~ X (6.14)

cation of:

Y2+ K2
We recognize that equation 6.13 is written in the form of Ae=?" with B =
2kT},, sin’ (g) Furthermore the average photon number in the cavity will be
proportional to the drive power, P;, applied to the cavity. So we analogously
expect that the amplitude of our response in terms of the drive power, Py, will
be of the form De~“4. By relating the arguments of the exponentials (B = C')

the average photon number in the cavity can be related to the room tempera-

ture drive power as:

2 -1
= <2;€Tmﬁ> CPy (6.15)
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From this expression the only unknown is the constant, C'. This constant,
along with other measurement parameters, converts room temperature drive
power to the average photon number in the cavity. It is quite remarkable that
one constant can take into account all the attenuation, intended or otherwise,
as well as reflections in the lines. To determine this constant, we perform the
procedure in Fig. 6.5a. The first step is a % qubit rotation around the x axis,

a drive on the cavity at wy that is long enough so that steady state is reached
in the cavity, a wait time which is five times the cavity decay time allowing the
cavity to be fully evacuated, and finally a second % qubit rotation at various
angles around the x axis creating oscillations in the measured signal. Fitting
the measured oscillation to a sine wave allows the amplitude to be extracted
(Fig. 6.5b ). Repeating this protocol for different drive powers applied to the
cavity allows the amplitude to be plotted as a function of cavity drive power
(Fig. 6.6). Figure 6.6 shows the results from several measurements can be fit to
an exponential to extract the decay constant (C'). By driving at wy = (w? +
w¢)/2 all of the dephasing information is in the amplitude and not the phase of

the oscillation. In our particular setup we found that roughly .24 mW of room

temperature drive power was required per average photon in the cooling cavity.
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Figure 6.5: Photon Number Calibration Protocol by Measurement Induced De-
phasing. (a) A rotation of 7T/ 2 is performed around the x axis of the qubit’s
Bloch sphere. A cavity drive at (w? 4+ w¢)/2 is applied for a duration of two mi-
croseconds (k; ' & 100 ns) allowing the cavity to reach steady state. The drive
is then turned off, the cavity fully evacuates and a final 7r/ 2 is performed at var-
ious angles with respect to the x axis. Varying the angle of the pulse creates os-
cillations of the qubit state between ‘g’ and ‘e’ (b) Representative data showing
oscillations due to variations in the second qubit rotation. In red circles are the
result of a measurement with a weak drive strength and in red diamonds are the
result of a measurement with larger drive strength. The full plot of amplitude
versus applied power is in Fig. 6.6.
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Figure 6.6: Photon Number Calibration by Measurement Induced Dephasing.
The protocol from Fig. 6.6 (a) is performed to extract the amplitude of the ob-
served oscillation. Several experiments are performed with varying cavity tone
drive powers and the extracted amplitude is plotted as a function of that drive
power. By fitting the data to an exponential the constant C' is found and used
in equation 6.15 to determine the drive power corresponding to on average one
photon being in the readout cavity.
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6.5 DETERMINING THE PARAMETERS OF THE FSSP HAMILTONIAN

In this section we will describe in detail the measurement of the two most im-
portant Hamiltonian for the FSSP- the storage cavity anharmonicity, A, and
the cavity-cavity cross-Kerr, y,.. From the previous sections we gained the in-
sight that the requirements for the FSSP are: that the ratio of lifetimes be-
tween the cooling cavity and storage cavity must be large, that the storage cav-
ity must be anharmonic enough such that individual transitions can be selec-
tively driven, and that the cooling cavity be reasonably linear to avoid photon
blockade. The cooling cavity will inevitably have a non-negligible inherited non-
linearity because it is necessary for the cross-Kerr term to be larger than the
linewidth of the cooling cavity.

The full Hamiltonian of the qubit (transmon) coupled to two cavities includes
frequencies (w;), anharmonicities (4;), and state dependent shifts (x;;) for all

the discrete modes involved as:

Hfp = wana + wsb™b + w.cle
A, A A
_Aagiza2 _ Dspieg2 Loz 2
,aa 5 5 ¢ c
—Xgsa'ab'b — ya'ac’c — x,.b'bclc (6.16)

6.5.1 MEASURING INHERITED ANHARMONICITIES

In ¢cQED systems the cavity anharmonicity is not an innate feature of the cavi-

ties but rather is an inherited nonlinearity from the qubit [102]. A large, inher-
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Figure 6.7: Storage cavity spectra. Spectroscopy is performed on the storage cav-
ity with a single CW drive. With a large amplitude drive, we observe the two
photon transition, L2022  From this measurement we infer the location of the
fsa—2 transition (black line) and determine its detuning from the fyo,; tran-
sition as 4.0 MHz which we define as the anharmonicity of the storage cavity.

ited nonlinearity was necessary for the observation of coherent revivals due to
the self-Kerr (anharmonicity) of a cavity [160]. For the FSSP, the anharmonic-
ity must be much larger than the cavity linewidth (A, > k) so that the applied
microwave drives can selectively address individual transitions of the storage
cavity. Large anharmonicities are not universally desirable. To combat unde-
sired inherited nonlinearities discrete as well as CW protocols have been demon-
strated [53, 51, 50].

To measure the storage cavity anharmonicity, a single CW drive is used for
spectroscopy (Fig. 6.7) with a dispersive measurement (measurement tone ap-
plied at the cooling cavity peak corresponding to zero excitations in the storage
cavity). A large amplitude drive applied to the storage cavity power broadens

the fs o1 transition (f; = wi/2r), and we observe the two photon transition at
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Figure 6.8: Cooling cavity spectra. A 5 ns displacement pulse, whose amplitude
gives m =~ 1.5 in the storage cavity, enables the observation of a single photon
resolved cross-Kerr between the two cavities, xs.(27) ! = 2.59 £ .06 MHz.

a frequency of % The detuning between the two photon transition and the
fs,01 corresponds to half the anharmonicity, A; :Ai/ 2m, of the storage cav-

ity and we infer an inherited cavity anharmonicity A, = 4.0 MHz. Following
the same method, we determine A, = 300 kHz (cooling cavity anharmonicity)
and A, = 26.1 MHz (qubit anharmonicity). The cooling cavity anharmonicity
was measured in this fashion when it was weakly coupled to the 50 €2 environ-
ment and had a linewidth of 33 kHz. During the FSSP when the cooling cavity
linewidth was large (1.7 MHz) its anharmonicity was verified by performing the
AC stark calibration of section 6.4 so that the single photon power was known
and then extracting the cooling cavity anharmonicity by tracking its resonance

frequency as a function of drive power applied to the cooling cavity.

6.5.2 SINGLE PHOTON RESOLVED CAVITY-CAVITY CROSS-KERR

In this section, measurements of the state dependent shift between the storage,

cooling, and qubit modes are undertaken. The state dependent shift between
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two coupled cavities was predicted to be be measurable [161] and the observa-
tion of this state dependent shift is a new results. Each mode is excited sequen-
tially, rather than concurrently since off resonant drives result in larger than ac-
tual state dependent shifts [162]. To measure the state dependent shift between
the two cavities, we first perform a 5 ns square pulse which displaces the state
of the storage cavity, then a 2 us square pulse on the cooling cavity, and finally
high-power readout on the cooling cavity which relies on the anharmonicity of
the cooling cavity for discernible signal based on the state of the storage cavity
[118]. Shown in Fig. 6.8 is a spectroscopic measurement of the cooling cavity
for a storage cavity displacement of m ~ 1.5. Discrete spectral peaks for up to
three photons in the storage cavity are visible. From this we infer a state depen-
dent shift Xsc/2r = 2.59 £+ .06 MHz and observe the first single photon resolved
cavity-cavity cross-Kerr.

A similar method is used to measure the state dependent shift, x,s between
the qubit and the storage cavity. We apply a 5 ns square pulse which displaces
the state of the storage cavity, a 2 us square pulse on the qubit, and perform
high-power readout on the cooling cavity which relies on the anharmonicity of
the transmon for a readout signal. To measure the state dependent shift, x,,
between the qubit and the cooling cavity we use a slightly different approach
because of the short lifetime of the cooling cavity. Instead we perform a 7/2
pulse on the qubit, then a 2 us square pulse on the cooling cavity, and finally
high power readout on the cooling cavity. In summary we find our Hamiltonian

parameters (Y;; =Xii/2r, A; = Ai/27) to be:
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Term | Measured Value | Simulation Prediction | Units
fq 7249.46 £ .01 7221 MHz
fs 8493.73 + .02 8564 MHz
fe 9320.11 £+ .02 9346 MHz
A, 26.1£.3 25.9 MHz
Ay 4.0+ .1 3.7 MHz
A, 300 £ 80 240 kHz
Xgs 211+ 1 19.8 MHz
Xqe 49+ .1 4.2 MHz
Xsc 2.59 % .06 2.2 MHz
K 65+ 5 — kHz
Ke 1.7+ 1 — MHz

Table 6.1: FSSP Hamiltonian parameters as well as the predicted parameters
from a BBQ simulation. The initial CAD drawings in HFSS were from the de-
signs sent to the machine shop that manufactured the aluminum cavities. The
HFSS drawings of the 3D cavities were then adjusted to match up with room
temperature measurements of the bare 3D cavities with a vector network ana-
lyzer. The same design file used for the lithography of the qubit was imported
into HF'SS and only a small (~1 um) section was removed to insert a port to
measure the impedance seen by the junction as well as a linear inductor bound-
ary condition that was a few nanohenries. The predicted values are quite close
to the measured values and the major sources of error are machining tolerances,
thermal contractions, and alignment of the vertical transmon to the machined
structures.
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6.6 PHOTON NUMBER SELECTIVE 7™ PULSE CALIBRATION

From table 6.1 we see that the necessary relations for the FSSP are satisfied
(Xse > Ke > ks and Ag > Kg). However, we must develop the tools necessary for
cavity state tomography to measure the target state of the FSSP. First we re-
quire photon number selective m pulses on the different resonance frequencies of
the qubit which are dependent on the number of excitations in the storage cav-
ity ( RN qo —nXgys). To calibrate these 7 pulses multiple cavity displacements
are performed allowing the measurement of Rabi oscillations for each of the dif-
ferent photon number peaks of the qubit. Due to the large state dependent shift
between peaks (21 MHz), each qubit transition will require a different drive am-
plitude for a full 7 pulse due to mixer nonlinearities as well as increased filtering
due to detuning further from the cooling cavity (all qubit excitations are driven
through the cooling cavity). We find that each subsequent transition requires
roughly 10% larger amplitude than the previous transition. Once the 7 pulses
for each photon number peak are calibrated a good check is to perform cavity
displacements on the storage cavity and measure the photon number distribu-
tion (Fig. 6.9). For each displacement, the photon number distribution should
be Poissonian. From this set of measurements we have a collection of back-
ground subtracted raw data that in Fig. 6.9 is plotted versus AWG DAC ampli-
tude for the 5 ns displacement pulse. With these five traces we perform a global
fit on the traces which gives not only the y scaling, photon number probabil-

ity, but also x scaling, root photon number. We can see from Fig. 6.9 that for
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larger cavity displacements (7 > 2) there will be non-negligible uncertainty in
the results. However, for smaller average photon numbers (7 5 2) in the storage
cavity we can reliably measure the photon number distribution. The difficulty
in measuring the Poissonian photon distribution for larger average photon num-

bers is due to the large cross-Kerr saturating the readout mechanism.

6.6.1 ESTIMATING m PULSE SELECTIVITY

In this section we seek to estimate the selectivity of the 7 pulses used on the
qubit. In this context selectivity is used to describe how well only the intend
transition is excited. To estimate the selectivity, S, of our 7 pulse we use the
following [163]:

s=(1+Zew (—(qu/aw)2)>1 (6.17)
Here we assume a gaussian pulse with spectral width o, and spectral peak
spacing of x4s. In our particular case, x,s is the state dependent shift between
the qubit and the storage cavity but in general this is just the spacing between
the different photon number peaks. From eq. 6.17 the estimated selectivity of
our 7 pulses (x4s = 21.1 MHz and o,, = 4 MHz) for the different photon number
peaks is no worse than .999. We experimentally investigate the contribution to
7 pulse selectivity by applying a gaussian 7 pulse on the N = 0 and measuring
the population in the N = 1 photon peak and find that our induced transition is

no worse than .3%, a bound limited by averaging.
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Figure 6.9: Photon number selective 7 pulse response versus room temperature
displacement amplitude. Measurement of the different photon number peaks of
the qubit as a function of displacement amplitude. Photon number peaks of the
transmon qubit due to the storage cavity are measured up to N=4. The data

is background subtracted (a sequence that is a cavity displacement with no 7
pulse) and plotted as a function of AWG DAC value for the amplitude of the 5
ns displacement pulse. A global fit is performed on the entire set of measure-
ments determining the x scaling, root photon number, and y scaling, probabil-
ity. We attribute the difficulty in measuring higher photon numbers to the satu-
ration of our readout mechanism due to the large, direct cross-Kerr interaction.
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6.7 FOCK STATE STABILIZATION PROTOCOL

Shown in Fig. 6.2(b) is the QRE protocol we will use to stabilize Fock states in
the storage cavity. This protocol is conceptually similar to the protocol used in
Ref. [101] which stabilized the ground state of a qubit tensor product with a co-
herent state of a cavity. The FSSP in some sense generalizes DDROP allowing
the physicist to not only stabilize the vacuum state but also any exact excita-
tion number for a small number of excitations. In this section we will present
results stabilizing not only the zero photon Fock state of the storage cavity but
also the first Fock state of the storage cavity.

To implement the FSSP the frequencies of the two microwave drives and their
amplitudes must be chosen judiciously. For the drive applied to the storage cav-
ity we find optimum performance both experimentally and in simulation for a
drive strength of )g ~ k.. In figure 6.10, the storage cavity drive is resonant
with the f; o transition with drive strength {2g ~ k.. Since the cooling cavity
is weakly anharmonic we expect that its frequency will change dependent on its
average photon number.

In figure 6.10 (a) is the pulse scheme used to implement and characterize the
FSSP. Continuous wave drives are applied to the storage cavity and the cool-
ing cavity for a duration that is two hundred times longer than k. which is the
rate at which steady state will be reached. Furthermore, this pulse duration is
roughly ten times longer than the decay time of the storage cavity meaning that

any steady state achieved through the FSSP has overcome the internal decays
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Figure 6.10: Photon number probabilities of the zero and one photon Fock

states from the FSSP. (a) The Fock state stabilization protocol described in

Fig. 6.2(b) is applied for a duration, T}, followed by a 300 ns wait to evacuate
excitations from the cooling cavity, a photon selective 7 pulse is then performed
on the qubit determining the probability of each photon state of the storage
cavity up to three photons. (b) Storage cavity photon number probability (N=0
left and N=1 right) as a function of drive amplitude and frequency. The fre-
quency of the cooling cavity drive is plotted as A = w? — wy., and normalized by
the cross-Kerr, xs. As the frequency of the drive applied to the cooling cavity is
brought in resonance with the first photon peak of the storage cavity 2/xs. =~ 1
the protocol stabilizes the first Fock state of the storage cavity. The inset is a
simulation plot with the same axis and color scale as the experimental result.

(c) Linecuts (dashed lines in part b) for a weak drive power and a drive power

resulting in stabilization.
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of either cavities. Next a wait time of 300 ns wait time follows the long pulses
so that fast photons can leak out of the cooling cavity. Finally photon num-
ber selective 7 pulses (o, = 40 ns) are applied to measure the photon number
probability distribution. In figure 6.10(b,c) the frequency of the storage drive

is held fixed at the f; -1 transition with a drive strength roughly equal to k.
The parameters swept in figure 6.10 are the drive strength of the cooling drive,
which alters the size of the coherent state the cooling cavity is conditionally dis-
placed to, as well as the drive frequency applied to the cooling cavity which de-
termines whether the zero or one photon Fock state of the storage cavity is sta-
bilized. The drive strength applied to the cooling cavity is calibrated via the
AC Stark dephasing method described in section 6.4. The drive frequency is
plotted as a detuning, A = w® — wq., and normalized by the cross-Kerr, Y.
The drive frequency on the cooling cavity is normalized by the cross-Kerr to
illustrate that at about one cross-Kerr, with a sufficiently strong drive, a one
photon Fock state is stabilized. Since the cooling cavity is weakly anharmonic
maximum stabilization of the first Fock state of the storage cavity will not hap-
pen for A = x,. but will happen at a lower frequency and therefore a larger
detuning. From simulation, we expect on average four photons will be in the
cooling cavity for maximum stabilization of the first Fock state of the storage
cavity. Four photons in the cooling cavity with an anharmonicity of 300 kHz
corresponds to the extra half cross-Kerr observed in figure 6.10. This explains
why maximum stabilization for the first Fock state occurs for A &~ 1.5y,.. From

the linecuts in figure 6.10 we see that for a sufficiently strong drive strength on
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DDROP FSSP

Vacuum Stabilization | 0.993 £ 0.005 | 0.96 £+ 0.03

K

¢/ K(y.0) 700 25
Ag,s)/ Ac 3000 15
X(q,s)c//ic 2.3 1.5

Table 6.2: Comparison FSSP and DDROP. As can be seen from this table the
implementation of DDROP produced a more pure system reset than the FSSP
experiment. The difference in state preparation is due to in the DDROP exper-
iment having an order of magnitude larger difference in decay rates than in the
FSSP experiment. As expected, in simulation with a comparable ratio of life-
times the FSSP would produce results nearly indistinguishable from DDROP.

the cooling cavity that we can either stabilize a zero or one photon Fock state
of the storage cavity solely as a function on the placement of the cooling cav-
ity drive. We define the probability of getting exactly N photons in the storage
cavity as P(N) and measure probabilities for N = 0 to N = 3. At the optimum
parameter selection for the cooling cavity drive we stabilize vacuum of the stor-
age cavity with P(0) = 0.96 £ 0.03 and stabilize the one photon Fock state with

P(1) = 0.63 4 0.02.

6.7.1 ComPARISON DDROP aAND FSSP

In table 6.2 a direct comparison is made between the results of DDROP and the
FSSP when stabilizing the ground state of a qubit or in the case for the FSSP
a microwave cavity. Although the FSSP did not outperform DDROP it is not

a truly ‘apples’ to ‘apples’ comparison which is shown in the remaining lines
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in table 6.2. The predominant reason for DDROP out performing the FSSP is
due to the larger ratio of lifetimes in the DDROP experiment. Other parame-
ters, such as the linearity of the cooling cavity as well as the separation of pho-
ton number peaks matter weakly in this comparison. Although if higher photon

numbers were stabilized these parameters would matter more.

6.7.2 STEADY STATE WIGNER FUNCTION FOR STABILIZED N=1 FOCK STATE

In this section we characterize, through a measurement of the Wigner function,
the larger than 2 bit Hilbert space of the stabilized system to confirm that the
stabilized state is indeed a nonclassical cavity state. In Fig. 6.11 (a) we perform
cavity tomography after the FSSP measuring generalized Husimi Q functions
[160] defined as:

Qx(0) = ~|{N| Do |0) P (6.15)

D_, is the displacement operator, and |¥) is the final state. In our case |¥)
will be the steady state to the FSSP. Although the zeroth Husimi Q function
entirely describes the state of the oscillator we measure generalized Husimi Q
functions up to N = 3 Fock state of the storage cavity so that we can infer
the Wigner function. By adding and subtracting the even and odd measured Q

functions the Wigner function is:

2 — "
W) == (-1)'Qu(a) (6.19)
n=0
The Wigner function is measured in this manner because of the large state de-
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pendent shift, x,s, between the qubit and the storage cavity. The preferred
method to measure a Wigner function directly measures photon number par-
ity. Measuring photon number parity directly requires 7 pulses which are not
photon number selective. For instance, a 7 pulse with 0, = 5 ns gives a spec-
tral width of roughly 32 MHz which for a qubit-cavity state dependent shift of
21 MHz is insufficient. In cases with large state dependent shifts, it is neces-
sary to measure the generalized Husimi QQ functions. Since it is not practical to
measure all the Husimi Q) functions a truncation must be made. This truncation
could result in a halo effect in the Wigner function. Although a small effect, one
can see that in figure 6.11 (b) that on the corners of the Wigner function the
measurements are skewed towards negativity (red). By comparing the measured
Wigner function to a simulation of the steady state solution to the FSSP when
stabilizing a one photon Fock state the negativity at the origin in our Wigner
function is a real result and not due to the slight bias in our measurement from
the last Fock state included in the truncated sum being an odd number (ending
on an even Fock state would give a slight positive bias).

As can be seen in figure 6.11(b,c) the harmonic oscillator picture describes
the steady state of the storage cavity as a statistical mixture of P(0) = 0.37 &+
0.03 and P(1) = 0.63 £ 0.02 with no statistically significant population in
the N = 2,3 states. In Fig. 6.11 c statistically significant negativity in the
Wigner function is observed. With harmonic oscillators Wigner functions are
often shown since negativity in the Wigner function indicates a quantum state.

What is quite special here is that we observe negativity in the Wigner function
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for arbitrarily long stabilization times. In this case the stabilization protocol
was run for ten times the storage cavity lifetime. Without the FSSP the storage

cavity would have fully decayed in that amount of time.

6.7.3 INTERPRETING RESULTS AS A SPIN SYSTEM

Since the results of the FSSP have the storage cavity limited to its first two
Fock states, we can recast our results in a way analogous to a spin system. The
figure of merit will be the polarization, p defined by p = %. As a thought
experiment imagine a spin system with many spins in a magnetic field B that
is in thermal equilibrium with a bath at temperature 7. At zero Kelvin, we ex-
pect the spin system to overwhelmingly be aligned with the external magnetic
field since the bath cannot provide the energy necessary to align against the
magnetic field. However, as the temperature of the bath is increased thermal
fluctuations provide individual spins with the necessary energy to align against
the magnetic field. As infinite temperature is approached, the spin ensemble
will not have a net polarization since the spin ensemble will have as many spins
aligned with the magnetic field as those that are anti-aligned. In the case of a
discrete, quantum system, adding even more energy to the bath paradoxically
causes the spin system to predominately anti-aligned to the magnetic field and
consequently decrease the spin system entropy. This process is how a polariza-

tion inversion can be created. With this in mind we may now define tempera-
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Figure 6.11: Wigner tomography of stabilized steady state of the storage cavity.
(a) The previously described stabilization protocol is used to reach the desired
steady state. Then Wigner tomography is performed on the state of the storage
cavity. (b) Left: Measured Wigner function for the steady state of the storage
cavity which is a statistical mixture of an N = 1 and N = 0 Fock state. Right:
Simulated steady state of the protocol. (c) Linecuts along Im(a) and Re(«) for
the measured Wigner function and the simulated steady state Wigner function.
Although not a pure N = 1 Fock state of the storage cavity our long term solu-
tion does have negativity in the Wigner function indicative of a quantum state.
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ture in terms of the polarization as [164]:

— hfs,O%l
2kp tanh ™ (p)

(6.20)

Where h is Planck’s constant and kg is Boltzmann’s constant. Using equation
6.20 we determine that our steady state solution corresponds to an effective
negative temperature of —0.77 + 0.06 K in equilibrium with the storage cavity.
Fig. 6.12(b) is a plot of the steady state polarization of the storage cavity af-
ter implementing the FSSP. When ()¢ is driven at the zero photon peak of the
cooling cavity we observe p = 0.95 4+ .04 demonstrating that storage cavity is
overwhelming in the zero photon Fock state despite the induced Rabi drive on
the storage cavity. However, as the drive power and frequency applied to the
cooling cavity are varied, steady state stabilization of a polarization inversion
occurs corresponding to a predominantly one photon Fock state in the storage
cavity. The ability to realize a population inversion is a purely quantum effect.
In Fig. 6.12(d) we see the time dynamics of this protocol where the initial po-
larization is unity then changing as a function of time to its steady state value
of p = —0.26 4+ 0.04. Plotted on top of the data is a full simulation of our
driven dissipative system where we find excellent agreement in the time dynam-
ics [104]. Through simulation of the full Linblad master equation we find that
the limitation in polarization inversion is the finite ratio of lifetimes. Physically
realized two cavity systems exist with a ratio of lifetimes being a factor of one

thousand [111]. With that ratio we expect that in steady state P(1) > 0.99.
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Figure 6.12: Storage cavity polarization. (a) The Fock state stabilization protocol described
in Fig. 6.2(b) is applied for a duration, 7%, followed by a 300 ns wait to evacuate excitations
from the cooling cavity, a photon selective 7 pulse is then performed on the qubit determin-
ing the probability of each photon state of the storage cavity up to three photons. (b) Storage
cavity state polarization as a function of drive amplitude and frequency. The frequency of

the cooling cavity drive is plotted as A = w? — wg., and normalized by the cross-Kerr, Y.
As the frequency of the drive applied to the cooling cavity is brought in resonance with the
first photon peak of the storage cavity &/xs. & 1 the protocol stabilizes the first Fock state
of the storage cavity. The inset is a simulation plot with the same axis and color scale as the
experimental result. (c) Linecuts for a weak drive power and a drive power resulting in a po-
larization inversion. (d) As the duration of the stabilization protocol is varied the polarization

of the storage cavity alters and for infinite time reaches its steady state solution.
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6.8 FUTURE IMPROVEMENTS

The major limitation of this implementation of the FSSP was our modest ra-
tio of lifetimes between the storage cavity and the cooling cavity, Fe/ks ~ 25.
This ratio is most likely set by the Purcell effect between the two cavities. To
mitigate the Purcell effect between the cavities, we could improve the design

of the qubit and increase its anharmonicity. In this sample the transmon an-
harmonicity was 26 MHz. The small anharmonicity is in part a consequence of
the geometrical capacitance overwhelming the qubit design which has a total
length of 5 mm. In addition, the strong coupling between the transmon and the
storage cavity has the storage cavity inherit a large fraction of the transmon’s
nonlinearity. To improve the anharmonicity of the qubit, a gap capacitor could
be implemented on one or both sides of the junction to decrease the geometrical
capacitance of the qubit. To get a sense for how an increased transmon anhar-
monicity would help the FSSP results we look at a simple Purcell calculation
which gives:

~ 982 902 _ Xsc (6.21)

RS Ke R S RG
2 A2
A§ AG 20y

Ks

For this simple estimation we would expected a ratio of lifetimes to be of or-
der 20 and in experiment we see a ratio of 25. However, if our transmon an-
harmonicity were increased by a factor of ten then we would expect a simple

Purcell limitation resulting in a ratio of lifetimes between the storage and cool-

ing cavity in excess of 250. From this we would expect to stabilize a one photon

Fock state with P(1) > .87 and a polarization of p < —.74. To further improve
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the ratio of lifetimes between the storage cavity and cooling cavity a Purcell
filter such as the waveguide Purcell filters made by collaborators at Yale Uni-
versity would be necessary. An outstanding issue in superconducting circuits is
coupling long lived elements such as cavities to less coherent elements such as
qubits or readout cavities. For successful integration, without comprising co-
herence, work must continue in developing novel approaches to merge highly

coherent devices with intentionally short lived quantum objects.

6.8.1 FINAL COMMENT

In this chapter the first single photon cavity-cavity cross-Kerr is presented. This
large cavity-cavity state dependent shift was developed so that we could imple-
ment the FSSP. Future applications of the cross-Kerr are in a QRE scheme that
stabilizes an even two ‘cat’ state of a cavity [154], as well as, serving as a direct
cavity-cavity entangling operation. A one photon Fock state, as well as, the vac-
uum state of the storage cavity were stabilized. To achieve this stabilization, we
demonstrated a considerable level of mastery and conceptual understanding was
required over a driven, dissipative cavity centric protocol adding to the general
knowledge base of the cQED community. Going forward it is unclear what role
QRE will play in the pursuit of a quantum computer. It may be the case that
QRE protocols are most useful in stabilizing either a logical state, or a subset
of logical states. The advantage of QRE is that the feedback loop is built into
the Hamiltonian whose latency is most likely less than protocols that require

measurements of ancillary systems with external feedback.
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Figure 6.13: Simulation of driven dissipative system for stabilizing a one photon
Fock state in the storage cavity. In solid lines are the results of the steady state
population of a one photon Fock state in the storage cavity. In black is what
would be measured with perfect tomography. In red is a more realistic expec-
tation that includes decay during the tomography. As we would expect, as the
lifetime of the storage cavity is increased we are less susceptible to photon loss
during our measurement. By obtaining a ratio of one thousand between the two
cavities we would stabilize a one photon Fock state with P(1) > .99. In dashed
lines are if the storage cavities’ anharmonicity was increased by a factor of five
and if the state dependent shift was increased by a factor of root five. We see
that for smaller ratios of lifetimes that this helps but as we approach truly long
lived cavities the difference is negligible.
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Conclusion & Outlook

7.1 CONCLUSION

In the past six years the progress and growth of the quantum superconduct-
ing circuit community has been to say the least impressive. Continual improve-
ments in quantum device coherence times (Fig. 7.1) as well as an ever expand-

ing field bodes well for quantum information with superconducting circuits.
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Indicative of this growth is a long standing memory I will have from the 2014
APS March Meeting in Denver, CO where fire regulations prevented many physi-
cists from attending talks and one person in particular was only able to enter
for her presentation through polite and persistent discourse [75]. This thesis is
part of the progress in the last six years. Some parts will pay large dividends in
the future as quantum systems increase in size and complexity as 3D integration
becomes necessary. Other parts are reflective of great advances in classical and
quantum simulation capabilities. The ability to engineer a Hamiltonian with re-
markable precision through classical electromagnetic simulation is an under ap-
preciated development [102]. Furthermore, the ubiquity of open source quantum
simulation capabilities such as QuTIP enable deeper synthesis between theory

and experiment.

7.2 FUTURE EXPERIMENTS

In this section future work will be discussed based on accomplishments from
previous chapters. This list is not exhaustive nor does it include applications for
existing theoretical proposals. For instance, Ref. [154] relies on a large cavity-
cavity state dependent shift, along with parametric processes, to stabilize the

even two component Schrodinger cat state of a cavity.

7.2.1 EXTENSION TO FOCK STATE STABILIZATION

The first possible experiment is applying the Fock state stabilization protocol

discussed in chapter 6 to stabilize higher Fock states of a microwave cavity. The
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setup would be very similar to chapter 6 where a storage cavity is strongly cou-
pled to a cooling cavity. The decay rate of the cooling cavity must be fast com-
pared to the storage cavity. To alter the protocol in chapter 6, it would require
adding Rabi drives between adjacent Fock states of the storage cavity up to the
desired Fock state for stabilization. In a sense this can be thought of creating a
“Rabi ladder” between vacuum and the desired Fock state to be stabilized. The
final drive needed would be applied at the cooling cavity but detuned by the
number of cross-Kerrs (wy = w% — Nysc) corresponding to the N such Fock
state to be stabilized.

On an experimental front, realizing a highly coherent cavity strongly cou-
pled (enough to inherit ~ 1 MHz of anharmonicity) to a transmon stands as a
formidable challenge. Ideally, one would use a cavity with coherence times of or-
der 1 ms so that a variety of Fock states could be stabilized with high fidelity.
Accomplishing this is nontrivial and requires a fair amount of development.

However, the payoff could be realized in the next section.

7.2.2 NOON STATE STABILIZATION

References [157] and [159] both leveraged quantum reservoir engineering pro-
tocols to stabilize a Bell state of two qubits. One could recast these results as
the stabilization of a NOON state where e — N = 1,and g — N = 0. With
this observation there are two possible options to stabilize NOON states with

N > 1. One possibility would be to have two weakly anharmonic transmons

coupled to a cooling cavity. The other possibility uses two storage cavities that
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are strongly coupled to transmons to inherit nonlinearity as well as a cooling
cavity which acts as an entropy dump. The second approach has the advantage
of one being able to claim that the cavities have no innate nonlinearity at the
expense of requiring more ‘hardware’.

For the remainder of the discussion we will gloss over which exact hardware is
chosen and simply refer to the entangled system we are stabilizing as two stor-
age cavities that have a strong dispersive interaction to a cooling cavity and
that the state dependent shifts between either storage cavity and the cooling
cavity are equal. The first pair of drives are applied to the cooling cavity at w2
and w™" which are only resonant, and therefore displace the state of the cooling
cavity, provided that two storage cavity states are both in vacuum or maximally
excited. The next type of drives applied are to the storage cavities and are Rabi
drives—the same “Rabi ladders” discussed in the previous section. In total four
“Rabi ladders” would need to be applied to the system. The first pair of “Rabi
ladders” are applied to the storage cavities, coherently swapping excitations be-
tween vacuum and the N** Fock state of that storage cavity provided that the
cooling cavity is in its ground state. The second pair of Rabi ladders would be
applied to the storage cavities in the same manner as previously described; how-
ever, for the case of the cooling cavity being in some optimal coherent state.
The phase difference between the two pairs of “Rabi ladders” would set the
phase of the observed NOON state. This experiment would be highly demand-
ing of the coherence required, the coupling strengths needed between cavities as

well as the microwave drives needed for the system.
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Figure 7.1: Historical Progress of Superconducting Circuits. From Ref. [44] as an
illustrative figure showing the impressive progress of superconducting circuits.

7.3 FUTURE OUTLOOK

In some sense the outlook given in this thesis is not dramatically different than
that given in other dissertations. Superconducting circuits continue to show
great progress for the realization of a quantum computer as well as a test bed
for quantum information and quantum optics experiments. However, at the
writing of this thesis superconducting circuits are at a unique point in their
history. Over the past twenty years superconducting circuits have grown from
an academic curiosity to as serious of an option for a quantum computer as
trapped ions. A novel feature of superconducting circuit is that the physicist
has tremendous freedom in designing the Hamiltonian. Hopefully, in the coming
years the ability to design a Hamiltonian is adequately leveraged because super-

conducting circuits are, as a community, positioned to become a trail blazing
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testbed for new and innovative pursuits in quantum information science.
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Recipes

A.1 CAvVITY PHOTOLITHOGRAPHY

A.1.1 RESIST

To improve the LOR5A to sapphire adhesion the following is performed before

the resist is spun:
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1. 5 minute bake at 195 C

2. 1 minute cooling at room temperature on heat sink

3. Oy Ash 3 minutes

4. Spin HMDS

Spin the bilayer resist:

1. LOR 5A @4000 RPM for 60 seconds.

2. Bake 195 C for 5 minutes.

3. Let cool for 2 minutes on aluminum block.

4. S1805 @4000 RPM for 60 seconds

5. 115 C for 1 minute.

6. Run in Heidelberg.

A.1.2 DEVELOPMENT

1. MF-319 for 80 seconds.

2. Dunk in DI water for 15 seconds.

3. Hold under running DI water 10 seconds.

4. Blow dry.
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A.2 CaviTy ETCHING

This recipe was shown [58] to improve the quality factor of high purity alu-
minum microwave cavities. At Yale we do all etching in the cleanroom since this

is an acid etch.

A.2.1 TooLs REQUIRED

1. At a minimum two beakers. One beaker will hold the cavity being etched
as well as the acid being poured in. Since the acid must fully cover the
cavity one needs a beaker deep enough so that a cavity can be placed in
the beaker and fully covered with acid we use a beaker which is roughly
four times larger than the volume of the cavity we are etching. The sec-
ond beaker must be larger than the first one and is there to catch any acid
that overflows. Having two sets of beakers will make your life easier since

the acid must be replaced half way through the etch.
2. Two petri dishes capable of covering the smaller nested beaker.
4. Teflon stirring bean

5. Protective gear suitable for working with acid. In the Yale cleanroom on
top of the normal attire this includes: face shield, apron and green gloves

suitable for handling acid.

6. Tweezers though if cleanroom approved tongs (possibly rubber ends) are

found then these would be preferred.
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A.2.2 SeETTING UP

The most important step in this process is checking that the external thermome-
ter is NOT plugged into the hot plate. If you leave this in, you will cause open

loop heating of a volatile acid. We begin with:

1. With protective gear on, place the nested beakers on the hot plate in the
acid hood.

2. Add cavities with the critical surfaces (the inside of the cavity versus out-

side) facing each other and stirring bean.

3. Fill the inner beaker about 80% full with Aluminum Etch A - located in
the bottom right cabinet of the acid hood. The maximum acid to alu-

minum volume ratio is 4:1
4. Cover with petri dish.
5. Set the hot plate to 50 C and the stirring rate at 175 RPM.

6. Leave a note with the description of the setup and your phone number.

A.2.3 ACID CHANGE AT TWO HOUR MARK

1. The red gas floating about your now green beaker is expected. If your acid
is clear and boiling rapidly you ve likely passed the saturation point of the

acid and your etch rate will have been much higher than typical.

2. With protective gear on, remove the nested beakers from the hot plate.
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3. Move them to the back of the acid hood.

4. Tip the Petri dish to remove the Nitrogen Oxide (holding breath not re-

quired).
5. Clean the Petri dish with water and set on a wipe

6. Fill the second beaker with fresh Alum Etch A enough to cover your cavi-

ties.
7. With the tweezers, move the cavities and stirring bean to the fresh acid.

8. Remove the waste acid beaker from the nested configuration (somewhat
tricky) and place on a wipe in the acid hood. Cover this beaker with a
Petri dish, and slide to the back with a note describing the acid as Cool-

ing from 50 deg C, Waste Alum Etch A with your contact info.

9. Put the fresh acid beaker into the larger beaker for spillage protection,
cover and place on the hot plate.
A.2.4 FINISH

1. Repeat steps (1-5) from the previous section. You should be wearing pro-

tective gear throughout this process.

2. Empty the now-cooled waste beaker into the acid waste bottle labeled for
Alum Etch/Phosphoric and Nitric Acid, wash thoroughly with water, and

fill with water.
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3. Move the cavities and stirring bean from the acid into the water beaker,

giving them a quick shake in the acid before moving.

4. In the solvent hood, open the unhalogenated waste bottle and mount a

funnel in it.

5. Remove from the water with tweezers the first aluminum piece to be cleaned,
run the water gun in the acid hood over the critical surfaces for 1 min
with high pressure in the sink, follow with a quick rinse with methanol in

the solvent hood, and blow dry with Nitrogen gas. Repeat for each piece.
6. Clean the stirring bean, water beaker, and tweezers in the acid sink.

7. If 30 min have passed you may dump the waste acid into the waste con-
tainer. If not allow the acid to cool off or else it will react with the bottle
comprising its integrity. Finally, clean the last few beakers and wipe down

any water that may have accumulated on the acid hood.

A.3 DorLAN BRIDGE JOSEPHSON JUNCTION RECIPE

A.3.1 WAFER CLEANING (15 MINUTES)

1. Later we will need the hot plate to have a surface temperature of 175C.
Since the time response of the cleanroom thermometers are slow it is ad-

vised you check it now and make any adjustments necessary now.
2. 3min NMP ultrasonic

3. 3min Aceton ultrasonic
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4. 3min Methanol ultrasonic
5. N2 blow dry

6. Optionally you could bake the wafer for a few minutes if you are con-

cerned about moisture.

A.3.2 RESIST SPINNING (45 MINUTES)

Check to make sure that all resist is not expired.
1. MMA EL13, 90 sec, 5000 rpm, acceleration code 17.
2. Bake for 1min @ 175 C surface temperature.
3. Let it cool off on Al block for 1min.
4. PMMA A3, 90 sec, 4000 rpm, acceleration code 17.
5. Bake for 30 min @ 175C surface temperature.
6. Let it cool off on aluminum block for 1min.

7. Put the sample in a vacuum container with desiccant.

A.3.3 ANTI-CHARGING LAYER (1 HOUR)

If using the ‘old’ Plassys, put 13nm of aluminum on top of the bilayer resist. It
is strongly recommended to use the electron beam to write your sample within

24 hours.
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A.3.4 ELECTRON BEAM WRITING (2-4 HOURS DEPENDING AREA TO BE WRIT-

TEN)

1. Before e-beam make sure temperature of MIBK:IPA bath is 25 C.
2. Transport sample to and from EBPG in vacuum container with desiccant.
3. Dose for big structures 680u% @ 50 nA

4. Dose for small structures (junctions) 220u-5 @ 5nA

cm

A.3.5 DEVELOPMENT (15 MINUTES)

1. Remove aluminum anti-charging layer with MF-312 for 90 seconds.

2. COMPLETELY blow dry the wafer, your tweezers and the holder for the
wafer. The reason this must be completely blown dry is that MF-312 con-
tains H,O and HyO combined with IPA is a developer of our resist. This
means your sample will develop much faster than it is supposed to and

lead to unreliable results.

3. Fill MIBK:IPA beaker after MF-312, Temperature: 25 C and fill up a sec-
ond beaker with IPA.

4. Develop for 55 seconds in MIBK:TPA.
5. Immediately (1sec) put into IPA for 10 seconds.

6. Blow dry.
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A.3.6 DEPOSITION (4 HOURS)

1. Mount correctly so that the “hammer” is on the appropriate side. Older
styles of vertical transmons (circa 2012/2013) have the flat of the wafer
being perpendicular to the gun and as far as possible to the gun. Current
styles have the wafer perpendicular to the gun with the flat as close as

possible to the gun.
2. Line up sample with stage as precisely as possible.
3. Line up stage with arrow and screw.
4. Run deposition.

5. Remove wafer while being grounded with a wrist strap and put it in a

conducting wafer carrier.

A.3.7 LIFTOFF (24+HOURS)

1. Always Handle wafer wearing a grounded wrist strap.

2. Either put the wafer into acetone @ 75C face down for 90 minutes with a
lid on it because acetone evaporates. Or, put wafer into NMP @ 90 C face

down for 90min with lid.
3. Use syringe or squirt bottle to remove left over aluminum.

4. Clean wafer by submersing in Acetone (unless lifted off in Acetone) and

then Methanol. NMP can leave a residue unless properly cleaned off.
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5. Blow dry.
6. Check resistances of the junctions to verify this process worked.

7. Put back into conducting wafer carrier.

A.3.8 DICING (4 HOURS)

1. We need to spin photo resist on waver before dicing.
2. Always be grounded when handling wafer.
3. Spin SC1827 for 2min at 1500rpm.

4. Let it dry (!'no!! hot plate) for 5 min. It should be dry enough to pick up

and put into the conductive wafer carrier.
5. Wait for 2h before dicing to completely dry it
6. Dicing (1-3h depending on number of cuts)
7. Always handle wafer with grounded wrist strap

8. For dicing you must be trained so ask the master.

A.3.9 AFTER DICING (2 HOURS)

1. Clean the pieces in acetone for 30 seconds and then methanol for 30 sec-

onds.

2. Blow dry.
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3. Put in container
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B.1 FOCK STATE STABILIZATION

B.1.1 TiME DEPENDENT SOLVER

import numpy as np
import qutip as qutip

import pylab as pylab
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import math

DEFINE THE NUMBER OF EXCITATIONS IN THE STORAGE CAVITY, S, AND COOL-

ING CAVITY, C. ALSO, DEFINE THEIR DECAY RATES.

kappa s = 2*math. pi*.072 storage decay

kappa_c¢ = 2*math. pi*1.7 cooling decay

DEFINE THE HAMILTONIAN PARAMETER

Kerr_s = -2*math.pi*4.4 storage anharmonicity
Kerr ¢ = -2*math.pi*.3 cooling cavity anharmonicity
x_sc = -2¥math.pi*2.5 cross kerr

detune_s = .5*Kerr_s detuning

detune ¢ = -x_sr*1.45 detune one cross kerr away
E d s = 2*math.pi*1.85 storage drive strength

E_d_c = 2*math.pi*3.25 cooling (conditional measurement) drive strength

DEFINE OPERATORS IN HAMILTONIAN

a = qutip.tensor(qutip.destroy(Ns), qutip.qeye(Nc)) destroy a photon in the
storage cavity
¢ = qutip.tensor(qutip.qeye(Ns), qutip.destroy(Nc)) destroy a photon in the

readout cavity
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Ncav_s = a.dag()*a cavity number operator storage
Ncav__c =c.dag()*c cavity number operator cooling
DEFINE THE HAMILTONIAN

H = detune s*Ncav s-+detune c*Ncav ¢
+.5*Kerr s*a.dag()*a.dag()*a*a+.5%Kerr c*c.dag()*c.dag()*c*c
+x_sc*a.dag()*a*b.dag()*b+E_d_s*(a.dag()+a)+E_d_c*(c.dag()+c)
DEFINE AN INITIAL STATE IN THIS HILBERT SPACE

psi0=qutip.tensor(qutip.basis(Ns,0),qutip.basis(Nr,0))

DEFINE THE COLLAPSE OPERATOR

c_ops = || collapse operator
c_ ops.append(math.sqrt(kappa_s)*a) storage cavity decay

c_ops.append(math.sqrt(kappa_ c)*c) cooling cavity decay
DEFINE THE NUMBER OF TIME STEPS AS WELL AS SET THE OPTIONS ON THE ODE
SO THAT THIS WILL CONVERGE

tlist = np.linspace(0.0, 10.0, 1000.0)
opts=qutip.Odeoptions()

opts.nsteps=1000
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LINBLAD EQUATION

medata = qutip.mesolve(H, psi0, tlist, ¢c_ops, [],options=opts)
expect = False

print medata.states

TIME BEHAVIOR OF THE 1 PHOTON FOCK STATE OF THE STORAGE CAVITY

results1=[0]*1000;

for ix in range(1000):

print "We’re on time %d” % (ix)

resultsl[ix]=qutip.expect(qutip.fock dm(Ns,1),qutip.ptrace(medata.states[ix],0))
print "Results N=1"

print resultsl

TIME BEHAVIOR OF THE 0 PHOTON FOCK STATE OF THE STORAGE CAVITY

results0=[0]*1000;

for ix in range(1000):

print "We’re on time %d” % (ix)

resultsO[ix]=qutip.expect(qutip.fock__dm(Ns,0),qutip.ptrace(medata.states[ix],0))
print "Results N=0"

print results0

PLOT RESULTS
pylab.plot(tlist,resultsl)
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pylab.plot(tlist,results0)
pylab.xlabel("Time”)
pylab.ylabel(”Probability”)
pylab.legend(("N1”,”N0”))

pylab.show()

B.1.2 STEADY STATE SOLVER

import numpy as np
import qutip as qutip
import pylab as pylab

import math

DEFINE THE NUMBER OF EXCITATIONS IN THE STORAGE CAVITY, S, AND COOL-

ING CAVITY, C. 1ALSO7 DEFINE THEIR DECAY RATES.

Nc = 60
Ns=4
kappa_ s = 2*math. pi*.072 storage decay

kappa ¢ = 2*math. pi*1.7 cooling decay

DEFINE THE HAMILTONIAN PARAMETER

Kerr s = -2*math.pi*4.4 storage anharmonicity
Kerr_ ¢ = -2*math.pi*.3 cooling cavity anharmonicity

X_sc = -2*math.pi*2.5 cross kerr
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E_d_ s = 2*math.pi*1.85 storage drive strength

E_d_carray = np.array([2*.5%math.pi*t for t in np.linspace(0,30,num=30)]);
detune_ carray = np.array([2*math.pi*t for t in np.linspace(-3,10,num=30)));
print "Cooling drive”

edctemp=E_d_ carray*pow(2*math.pi,-1)

print edrtemp

np.savetxt(’DriveStrengthCooling’ edctemp)

print "Storage detuning”

dctemp=detune_carray*pow(x_sc,-1)

print dctemp

np.savetxt(’DetuningInUnitsOfCrossKerr’,dctemp)

DEFINE OPERATORS IN HAMILTONIAN

a = qutip.tensor(qutip.destroy(Ns), qutip.qeye(Nc)) destroy a photon in the
storage cavity

¢ = qutip.tensor(qutip.qeye(Ns), qutip.destroy(Nc)) destroy a photon in the
readout cavity

Ncav_s = a.dag()*a cavity number operator storage

Ncav__c =c.dag()*c cavity number operator cooling

DEFINE EMPTY MATRICES FOR SAVING DATA

matl = np.zeros((len(E_d_ carray),len(detune_ carray)))

matns = np.zeros((len(E_d_ carray),len(detune carray)))
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matnc = np.zeros((len(E_d_ carray),len(detune_carray)))

mat0 = np.zeros((len(E_d_ carray),len(detune_ carray)))

mat2 = np.zeros((len(E_d_ carray),len(detune_ carray)))

mat3 = np.zeros((len(E_d_ carray),len(detune_ carray)))

for ix in range(len(E_d_carray)):

print ’ix = %d’ % ix

for iy in range(len(detune_ carray)):

H = detune_s*Ncav_s+detune_ carray[iy|*Ncav_r+.5*Kerr_s*a.dag()*a.dag()*a*a+.5%Kerr_r*b.c
+x_sr*a.dag()*a*b.dag()*b+E_d_s*(a.dag()+a)+E_d_carray[ix|*(b.dag()+b)

final state = qutip.steadystate(H, c_ops)

vall = qutip.expect(qutip.fock_ dm(Ns,1),qutip.ptrace(final state,0))

val0 = qutip.expect(qutip.fock dm(Ns,0),qutip.ptrace(final_state,0))

val2 = qutip.expect(qutip.fock dm(Ns,2),qutip.ptrace(final_state,0))

val3 = qutip.expect(qutip.fock_dm(Ns,3),qutip.ptrace(final state,0))

valns = qutip.expect(Ncav_ s final state)

valnc = qutip.expect(Ncav_ c,final state)

mat1[ix,iy] = round(vall,4)

mat0|ix,iy] = round(val0,4)

mat2[ix,iy] = round(val2,4)

mat3[ix,iy] = round(val3,4)

matns[ix,iy] = round(valns,4)

matnc|ix,iy] = round(valnc,4)

print "Probability 1fock”
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print matl
np.savetxt(’PopN1’ mat1)
print "Probability Ofock”
print mat0
np.savetxt(’PopN0’ mat0)
print "Probability 2fock”
print mat?2
np.savetxt(’PopN2’ mat2)
print "Probability 3fock”
print mat3
np.savetxt(’PopN3’ mat3)
print "Nbar in storage”
print matns
np.savetxt('NbarStorage’,matns)
print "Nbar in cooling”
print matnc

np.savetxt(’NbarCooling’, matnc)
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