ABSTRACT

Controlling coherent state superpositions with
superconducting circuits
Brian Michael Vlastakis
2015

Quantum computation requires a large yet controllable Hilbert space. While
many implementations use discrete quantum variables such as the energy states
of a two-level system to encode quantum information, continuous variables could
allow access to a larger computational space while minimizing the amount of re-
quired hardware. With a toolset of conditional qubit-photon logic, we encode quan-
tum information into the amplitude and phase of coherent state superpositions in a
resonator, also known as Schrodinger cat states. We achieve this using a supercon-
ducting transmon qubit with a strong off-resonant coupling to a waveguide cavity.
This dispersive interaction is much greater than decoherence rates and higher-order
nonlinearites and therefore allows for simultaneous control of over one hundred
photons. Furthermore, we combine this experiment with fast, high-fidelity qubit
state readout to perform composite qubit-cavity state tomography and detect en-
tanglement between a physical qubit and a cat-state encoded qubit. These results
have promising applications for redundant encoding in a cavity state and ultimately

quantum error correction with superconducting circuits.
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Introduction

Breakthroughs in quantum technologies over the past decade have given scien-
tists unique control over complex quantum mechanical systems. This progress has
opened many opportunities to explore the fundamental aspects of the natural world
and push the technological limits of creating, manipulating, and detecting complex
quantum states. In turn, these tools produce the building blocks for realizing useful
quantum information processing for both computation and communication tech-
nologies [Ladd et al., 2010; Zoller et al., 2005].

Many physical systems could be utilized to explore and control quantum me-

chanical effects, including trapped ions [Cirac and Zoller, 1995; Monroe and Kim,

18



2013], nuclear spins [Vandersypen and Chuang, 2004], photons with linear op-

tics [Kok et al., 2007], diamond centers [Dutt et al., 2007], electron spins in quan-
tum dots [Awschalom et al., 2013], and superconducting circuits [Devoret and
Schoelkopf, 2013]. The common feature among these systems is the creation of
quantum states that remain well-protected from its environment. Each superpo-
sition state must be isolated from noise as its extreme sensitivity to errors leads to
the destruction of its quantum nature. This protection comes at a cost. Quantum
control of many highly coherent systems are limited by the speed and strength of
its interactions. Superconducting circuits, however, allow for strong, tunable cou-
plings and the possibility for larger, more complex implementations. Superconduct-
ing circuits apply the principles of electronic circuit design to quantum devices and
allow flexibility in both their construction and implementation, which has already
led to the development of amplifiers, signal modulators, and small quantum proces-
sors. These facets make superconducting circuits a compelling platform for pursu-
ing quantum computation.

Superconducting qubit systems are based on a form of cavity quantum electrody-
namics (QED). Cavity QED exploits the strong ‘light-matter’ coupling of an atom
trapped in a standing wave of electromagnetic field to prepare quantum superpo-
sition states and entangled states between the atom and light modes [Haroche and
Raimond, 2006] comprising the essential components for quantum control. Super-
conducting circuits emulate this system in an architecture called circuit QED which
creates a strong coupling between trapped microwave field in a superconducting
resonator and an artificial atom. These artificial atoms employ the non-linearity of
the Josephson effect to create energy levels that mimic atomic transitions and two-
level quantum bits (qubits). In the past decade, coherence times have increased one
hundred-fold: from qubits with lifetimes of up to 100 us [Paik et al., 2011] to cav-

ity resonators with lifetimes exceeding 0.01s [Reagor et al., 2013], further bolstering
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superconducting circuits as a leading technology for quantum information process-
ing [Devoret and Schoelkopf, 2013].

In this thesis, I investigate circuit QED designs to demonstrate quantum control
of microwave photons. This work reveals multi-photon quantum mechanical effects
in circuit QED and showcases the viability of cavity resonators as a quantum com-
puting platform. I concentrate on the off-resonant regime of qubit-cavity coupling
and its efficacy for complex cavity state quantum control. In particular, this work
demonstrates the creation, control and measurement of coherent states in a cavity.
Finally, by describing tomography and entangling operations, this manuscript out-
lines methods for characterizing qubit and cavity modes as these systems develop to
more complex implementations.

By accessing the large Hilbert space of a cavity resonator, these tools can be used
to implement quantum information processing using minimum hardware [Leghtas
et al., 2013b]. Reimagining the resonator as quantum register, multiple qubits can
be replaced by a single cavity, reducing not only the physical components in the
system but limiting the number of channels of possible decoherence. Furthermore,
by using coherent states in the cavity mode, we can describe resonator control tech-
niques with continuous variables giving outlook towards implementing optics pro-

posals [Braunstein and Van Loock, 2005] to a superconducting circuit system.

1.1 'THESIS SYNOPSIS

The following chapter introduces the basic concepts of quantum optics in the con-
text of this work. I introduce terminology, figures of merit, and formal representa-
tions used for experimental results.

Chapter 3 introduces superconducting qubits and circuit quantum electrodynam-
ics. I discuss the theoretical basis behind the basic components of the circuit QED

experiments used in this work. I give my perspective on multi-cavity implemen-
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tations and describe experimental implementations which represent the field as it
stood when this work began.

Chapter 4 discusses the physical system and experimental design for the mea-
surements carried out in this thesis. This includes a description of the first imple-
mentation of a two-cavity three-dimensional circuit QED design. I describe the uses
of black-box circuit quantization (BBQ) and highlight its importance for supercon-
ducting circuit design [Nigg et al., 2012]. Furthermore, I introduce the ‘vertical’
transmon qubit used in these experiments to create strong-coupling between two
separated cavity resonators.

Chapter 5 outlines the toolbox of qubit and cavity gates available in the disper-
sive coupling regime. This chapter describes tuning techniques for qubit and cavity
operations, including displacement calibration. This chapter introduces the forms
of entanglement which can be created in the qubit/cavity state using the dispersive
regime, including operations such as the photon-number selective qubit rotation
and the qubit state conditional cavity phase shift.

Chapter 6 describes experimental tomography for characterizing the quantum
state of a cavity resonator. I introduce different techniques for encoding a cavity
state observable onto an ancilla qubit state and its combination with a subsequent
state measurement. I describe experimental measurements of both the cavity state
Q- and Wigner functions. Furthermore, I outline how these representations can be
modified to measure the more complex representations including the generalized
Q-function and the joint-Wigner function.

The final three chapters discuss experiments using these aforementioned tools to
observe quantum mechanical effects of the cavity mode. Chapter 7 describes the
effects of strongly interacting photons in the cavity mode, known as the self-Kerr
effect [Kirchmair et al., 2013]. I discuss its influence on coherent states, which pro-

duces an apparent dephasing and subsequent revival of the coherent state. These
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measurements realize a decades-old thought experiment [Yurke and Stoler, 1986]
and highlights the flexibility of this system design.

Chapter 8 considers cavity state control from a quantum information standpoint.
This work introduces the prospects for using cavity states as a quantum memory.

I describe the mapping of an arbitrary qubit state into a superposition of coherent
states in the cavity mode [Vlastakis et al., 2013]. Beyond this mapping procedure,
encoded qubit-state representation and process tomography is also explored.

Chapter 9 describes the characterization of the composite qubit-cavity system.
Using repeated quantum-non-demolition measurements, this experiment allows the
characterization of both qubit and cavity state observables. By comparing these
correlated measurements, the entire system is represented by the joint-Wigner func-
tion. Finally, using these measurements, a qubit-cavity Bell test [Vlastakis et al.,
2015] is performed, demonstrating measured correlations surpassing classical limita-
tions, emphasizing the efficiency of this detection scheme.

Finally I summarize the work from this thesis and offer perspective on future
applications of these implementations. I introduce the variety of additional oper-
ations that can arise from dispersive qubit-cavity coupling and its application to-
wards quantum error correction as well as future experiments which can build off

the techniques detailed in this thesis.
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Concepts of quantum optics

Before concentrating on the specific investigations outlined in this thesis, let us un-
derstand the theory behind the behavior of quantum oscillators. This chapter will
provide a brief review of the quantum harmonic oscillator and will outline the the-
oretical underpinnings for manipulating its state. This chapter will introduce the
differences between discrete and continuous quantum variables used to describe

the quantum state and summarize quasi-probability distributions which we use to
replace the standard density matrix representation. More comprehensive introduc-
tions to the field of quantum optics can be found elsewhere [Haroche and Raimond,

2006; Scully and Zubairy, 1997]; in this chapter however, we will focus on its appli-
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cations to circuit QED and the experiments reported in this manuscript. In addi-
tion, we will highlight common pitfalls when interpreting these quantum descrip-

tions.

2.1 THE FUNDAMENTALS

The harmonic oscillator is characterized by its quadratic potential energy relation-
ship. The quantum mechanical description of a mechanical resonator can be repre-

sented by the Hamiltonian:

P W 72

2m 2

H =

(2.1)

where x, p are position and momentum operators and m,w are the system’s mass
and angular frequency (Fig. 2.1). We can represent this Hamiltonian in a more

symmetrized form:

H = hw (P? 4+ X?) (2.2)

where P = p/v2mwh and X = x/,/% are the generalized position and momen-

tum operators. These operators are dimensionless quantities which can be written

as X = 2xzpp P = , the ratio of position and momentum with its zero-point
fluctuations zyzpyp = \/%, Dzpr = hmw . In turn, we can further simplify the

system using ladder operators P = %(a — a') and X = }(a + a), where [a,a'] = 1.

Substituting these terms into Eq. 2.2 and ignoring a constant offset, we arrive at:

H = hwa'a (2.3)

where eigenstates of this Hamiltonian are the number states H |n) = hwn |n). The
number states |n) have important relationships to the lowering, raising, and number

operators:

24



aln) =+vnn—1) a'n) =vn+1|n+1) a'a|n) =n|n). (2.4)
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Figure 2.1: Mechanical and electro-magnetic resonators. Systems described
by a quadratic energy potential experience equivalent oscillatory behavi2or. The me-
chanical resonator, modeled by a mass and spring, has kinetic energy J7; and po-

tential energy % These dynamics follow for a LC-resonator circuit, where mag-

netic field energy % and electric field energy % describe the oscillating system.

2.1.1 DISPLACEMENT OPERATOR

In order to characterize the manipulation of the resonator state, let us represent
the act of imparting a change in position or momentum in terms of translation and
boost operators (Fig. 2.2). A change in a state’s position X, can be represented
using P as a generator to produce the translation operator:

Ty = e 2P (2.5)
We could equally represent imparting some momentum P using X as a generator
producing the boost operator:

Tp = 2iPX (2.6)

The combination” of these results in the generalized displacement operation:

“Since [X,P] = constant, I am taking advantage of the relation: eSedes = ATB

[A, B] = ‘constant’, so there is no global phase accumulation.

when
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12\_{7;57-12\_{ _ 621‘(27’—73)() (27)

Dyp =T

V]

and substituting ladder operators produces:
D)? 5= e()?—iﬁ)a—()(-i—ip)af (28)

A displacement imparts a change in position X and momentum 7 on the oscilla-

tor and will serve as the primary operation for performing ‘single-cavity’ gates. To

a) P b) P C) P d) P

T 1T "Dy 5
B /X Tp s Pxp
J X @( X X

()

Figure 2.2: Translations and displacements. Shown is the action in phase
space on a resonator in the ground state (a) due to a translation (b), boost (c), and
displacement (d) operation. Notice that the displacement operation is a generaliza-
tion of the translation and boost operators. The result of each of these operations
on the ground state produces a coherent state with defined phase and amplitude.

generalize this derivation beyond the dynamics of just mechanical systems, let us
replace our notation of momentum and position with a complex value a = X + P

producing the canonical representation of the displacement operator:

D, = e oo (2.9)

2.1.2 COHERENT STATES

We can define a state that is created by a single displacement of the oscillator in its
ground state, |a) = D, [0). This state is described by a single complex number with
well-defined amplitude and phase a = |a|e’®. Written in the discrete energy basis

we have a superposition of number states |n):
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) =Y \j‘; In) (2.10)

The dynamics of a coherent state under a harmonic oscillator Hamiltonian Eq. 2.3

results in:

—iHt

la(t)) = e |ap) (2.11)
—iwala _lagl? Oég
=e e 2 —=|n
2 "

—iwt)n

_lagl? (ape
= e 2 e I 0}
2

7iwt>

= |age

The coherent state has an angular evolution which remains at an amplitude of |«|
but whose phase precesses at a rate of w. Unlike the number state |n), the coherent

state |) is not a stationary state’ under this oscillator Hamiltonian.

ROTATING FRAME
We will use a phasor notation to simplify dealing with coherent states undergoing
a time evolution. We define the in-phase I and quadrature () axes which trans-

form at an angular frequency w such that I = coswt (%‘ﬂ) — sinwt (“5—f> and

@ = —sinwt <“g‘.ﬁ> — coswt (‘HQ‘ZT) This rotating frame, while removing some in-
7

tuition about a state’s momentum or position, will allow a system representation in

a quasi-stationary form and removes less interesting effects of the oscillator’s evolu-

tion in time (Fig. 2.3).

PARITY OPERATOR

Let us emphasize an important oscillator state observable, the parity operator:

tThis is an easy mistake to make given that most representations of a state’s time evolution
are in a rotating frame, making the coherent state appear stationary.

27



\\‘ X
\

Figure 2.3: Resonator rotating frame. A coherent state will gain a phase

¢ = —wt as it evolves in time. We can represent the state in quasi-stationary form
by placing the position and momentum axes in an equivalent rotating frame with
quadrature axes I, ().

P =l = (—1)@'e (2.12)

Not to be confused with the momentum operator P the eigenvalue of parity P is
+1 for even and odd number states, respectively. The parity operator acts such
that it anticommutes with the raising and lowering operators and inverts the dis-

placement operator:
Pa = —aP Pa' = —a'P PD=D'P (2.13)

These relations will be useful for evaluating oscillator state representations in with

continuous-variables (see appendices).

CAT STATES

States composed of a superposition of coherent states, known as cat states [Brune
et al., 1996; Haroche and Raimond, 2006; Deléglise et al., 2008], will be used
throughout this manuscript. For simplicity, let us focus on a superposition of two

coherent states with opposite phase:
) =N (|0) + €7 |-a)) (2.14)

where N = \/2(1%712‘&‘2)‘305% Since the superimposed coherent states are not pre-
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cisely orthogonal (a|—a) = 2l

, the normalization constant N # \/Li Two partic-
ular states of interest occur when ¢ = 0,7 where the state contains only even and

odd number states known colloquially as the even and odd cat states:

V) even = No (Jo) + [—a)) ) even = N= (Ja) = |-a)) (2.15)

Both of these states are eigenstates of the parity operator such that P |¢) =

1) evens P 1) oaa = = 1¥) 0aa-

2.1.3 ELECTROMAGNETIC OSCILLATOR

While the mechanical resonator is a useful tool to visualize the quantum harmonic
oscillator in terms of position and momentum, quantum optics describes the quan-
tized electromagnetic field. We can write the parallel LC circuit equivalent of an
oscillator represented by two elements, the inductor and capacitor. The energies as-
sociated with the charge and phase of the circuit correspond directly to the kinetic
and potential energy of a mechanical oscillator (Fig. 2.1) with the resulting Hamil-

tonian [Girvin et al., 2009]:

— (2.16)

This system follows precisely the same dynamics as a mechanical resonator, albeit
with replaced quantum variables ¢ and ¢. The flux and charge operators act as
conjugate variables and can correspond to the momentum and position operators
of a mechanical resonator. For the purposes of this thesis, we will chose to the flux
operator to correspond to position operator and the charge operator to correspond

to the momentum operator.
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2.2 REPRESENTATION OF OSCILLATOR STATES

In the following sections, we will introduce discrete-variable and continuous-variable
representations of the oscillator. Due to the resonator’s large Hilbert space, a vari-
ety of different states can be generated and particular representations may be best
suited to gain an intuition about a certain state. For the majority of this thesis, we
will focus on continuous-variable implementations such as the Wigner and Husimi

Q-functions?.

2.2.1 DISCRETE-VARIABLE BASIS

The harmonic oscillator is a multi-level quantum system and can in turn be repre-

sented in the excitation basis as a density matrix:

p = o lm) (1 (217)

where |m) , |n) are a number states and ¢,,,, is a complex value. The number states

completely span the Hilbert space of the oscillator such that:

L= [|n)(n|. (2.18)
n

While the oscillator density matrix size is in principle infinite, in practice the state
can be truncated to a smaller computational space corresponding to 0 < n < Npax.
This representation draws many parallels to single and multi-qubit state representa-
tions, which will become cumbersome as Ny becomes large’.

Other discrete representations exist for an oscillator mode, such as the moments
of the raising and lowering operators (a'""a™) where m,n here are integers corre-
sponding to the various powers of each operator [Eichler et al., 2011]. This descrip-

tion is the oscillator equivalent to a qubit Pauli set [Nielsen and Chuang, 2009].

tWe will typically refer to the Husimi-Q distribution as the Q-function for short.
SIn this thesis, we will typically truncate at Nyax = 15 photons.
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2.2.2 (CONTINUOUS-VARIABLE BASIS

We will discuss two important oscillator state representations in the continuous-
variable basis; the Q-function, and Wigner function. Each are quasi-probability dis-
tributions that describe a state in terms of coherent displacements. Much like the
density matrix representation, the Q- and Wigner functions contain all possible in-
formation about the state. Continuous variable descriptions can be a useful tool to
provide a more intuitive picture of an oscillator’s state, especially states that are
already parameterized by continuous variables. A more complete derivation and

theoretical backing for each distribution can be found in [Cahill and Glauber, 1969].

COMPLETENESS OF COHERENT STATES

We can represent any arbitrary oscillator state as a superposition of coherent
states. This can be proved by taking the completeness relation for Fock states

(Eq. 2.18) and converting to a coherent state representation:

1 = %/dﬁa ) (al (2.19)

To see this, we can expand into the Fock state basis (Eq. 2.10):

L[ @ala) ol = 2 A ol [ @ Parayn 20

Then using the integral relation (which I’ll leave to the reader to derive):

/d2a6_a|2a"(a*)m = 7l (™2 4 1), (2.21)

Allows us to rewrite Eq. 2.20 as:
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Figure 2.4: Quantum state representations. The three standard ways to rep-
resent the quantum state of an oscillator is its density matrix, Wigner function, and
Q-function. While the density matrix is a complex valued matrix written in the
photon number basis, the Wigner function and Q-function are real-valued functions
in a coherent state basis.

[(Em +1)
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RTINS

n,m

=Y Iyl =1

Since coherent states are not orthogonal to each other (a]a’) # 0, the coherent

Spum ) (1] (2.22)

state basis represents an overcomplete set to form the basis of oscillator states.

CHARACTERISTIC FUNCTIONS

The Q- and Wigner function are two such quasi-probability distributions that take
on real values and can represent both pure and mixed quantum states. The Q- and
Wigner functions for a given state are determined by taking the complex Fourier
transform of its corresponding characteristic function C'(\). These characteristic
functions are each created by a different formulation of the displacement operator,

denoted by either its anti-normal ordering C, or symmetric ordering Cj:

Co(A) = (e M) Cy(N) = (X279 (2.23)
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The two-dimensional Fourier transform of these characteristic functions creates the

Q- and Wigner functions:
Qo) = F{Ca(N)} W(a) = F{Cs(A)} (2.24)

Where F{C(\)} = &5 [ d?AC(A)e®* ~*"*. The Q-function is determined by the anti-
normal ordered characteristic function whereas the Wigner function is calculated
from the symmetric ordered counterpart. While these characteristic functions give
a strong theoretical backing for the derivation of these distributions, we will now

describe the Q- and Wigner function each in a more physically intuitive way Y.

HusiMi Q-FUNCTION

The Husimi Q-function (also called the Q function) [Cahill and Glauber, 1969;
Haroche and Raimond, 2006] draws many parallels to classical representations of
oscillators. The Q-function reports the probability p(a) = (a|p|a) for an oscillator

state p to be a particular coherent state |«), which can be written as:

Q) = Z{alpla) (2.25)

where p is the state density matrix. This representation (Fig. 2.4) is a density plot
showing the average phase and amplitude of the oscillator state. Unfortunately, the
‘smoothing’ that this representation undergoes (by measuring the state’s overlap
with a coherent state) will suppress most of the quantum features of the state. The
canonical example of this is the apparent similarities between the Q-functions of a
superposition of coherent states |¢)) = N (|a) + |—«)) and a mixture of two coher-
ent state |a) and |—a) (Fig. 2.5). This representation, as we will see in Ch. 6, can
be conveniently measured using a circuit QED system. Rewriting the Q-function as

Q@) = L{a|pla) = £(0|D]pD,|0) shows that by measuring the overlap of the dis-

YFor derivations of the Q and Wigner functions from the characteristic functions see appendix

A.
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Figure 2.5: Cat state representations. The Wigner and Q function are well
suited to representing coherent states. Shown is the Wigner and Q function for an
odd cat state |v) = N(|B) — |3)) with 8 = 2. The Q-function suppresses cer-
tain quantum mechanical effects, such as the interference fringes due to a coherent
superposition. Using a Wigner function instead of the Q-function, one can more
easily distinguish a cat states from a mixture of coherent states.

placed state with the zero-photon Fock state, a single value of the Q-function can
be determined. This will prove a useful tool for characterizing and tuning coherent

state superpositions (see Ch. 8)

WIGNER FUNCTION

The Wigner function representation has the advantage of being well-behaved |
while still being able to represent a quantum state without the unwanted informa-
tion suppression found in the Q-function. First, we will simply state the typical
relation between an oscillator state density matrix and the Wigner function and fol-
low this with particular examples and interesting relationships to get an intuitive
feel for this special representation.

The Wigner function can be computed from the mean value of a state’s photon-

IOther distributions such as the P-distribution can contain singular values Cahill and Glauber
[1969] and in turn be a difficult representation to directly measure in experiment.
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Figure 2.6: Coherent and Fock states. A coherent state and a Fock state can
both contain the same average photon number yet exhibit striking differences in
both their Wigner and wave-functions. Shown is the Wigner function for a coherent
state |8) with |3]* = 4 and Fock state |n) with n = 4. Notice that while the coher-
ent state has a probability distribution centered around Re(a) = 2 the Fock state
shows symmetry about Wigner function origin and thus contains no phase informa-
tion.

number parity P after the state has been displaced by an amount DI. The typical

representation is:

W(a) = 2Tr[D} pD,P] = 2(D,PD}) = 2(P,) (2.26)

T
Here I have introduced a new notation P, which is the displaced photon number
parity operator D,PD]. In fact, most representations shown in this thesis will re-
move the scaling factor % and report only the measured values for (P,). This way
all Wigner representations will have maximum contrast at +1.

Equally, this Wigner function relation of Eq. 2.26 can be rewritten in its inverted
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form:

p= 27r/d2o<W(a)Pa (2.27)

We can calculate an oscillator state observable by looking at the overlap integral of

the Wigner function with a particular observable using Eq. 2.27. This follows as:

Tr[pO(a,a)] = /d2aW(a)O(a). (2.28)

The conversion of an operator from the discrete basis to the continuous-variable

basis is performed by calculating the equivalent ‘Wigner function’ of the operator™ .

O(a) = Tr[D! O(a,a") D, P] (2.29)

Recognizing the shapes of typical observables will make interpreting the Wigner
function easier. For instance, the observable |5) (5] will result in a Wigner function
W(a) = %6*2‘0‘*%. This means that any Wigner function that appears to have

a Gaussian shape will have some component of its state represented by a coherent
state. This visual confirmation of the state is one tool that makes using this rep-
resentation extremely valuable. The fidelity to a target state can be calculated in

such a way. This follows from the relationship:

F = (ol =+ [ Wl@)W(a)da (230

where the Wigner function of the target state Wi(a) = (¢4|Pa|tby) is used in an

overlap integral with the measured Wigner function. This description should not be
too suprising considering other representations such as the density matrix follows a
similar relationship F = Tr [p;p] where p, p; are the density matrix and pure target
state density matrix, respectively. We will use Eq. 2.30 to determine state fidelities

in chapters 8 and 9.

“*This will only hold for ‘bounded’ observables as defined in [Cahill and Glauber, 1969], but in
practice will work for all observables within a truncated Hilbert space.
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The Wigner function can also be used to determine the state’s marginal distri-
butions Pr;(a’) and Prg(a”) along the I and () quadratures Haroche and Raimond

[2006] where oo = o/ + i

Pr;(a/) = /do/’W(a) Pro(a”) = /do/W(a). (2.31)

In addition, when the oscillator state is an eigenstate of parity P, the Wigner
function is proportional to its own complex Fourier transform. This means that
for particular states, if the state contains far displaced components or large photon
populations, the Wigner function will in turn reveal accompanying high frequency
oscillations. This follows from the relation of the generating function Eq. 2.24 if a
state is an eigenstate of parity p = pP:
C4(\) = Tx[Dap] = Tx[Dy/20D1,/2P) = 3W()/2). (2.32)
This occurs when p contains only even photon number states. This creates the rela-
tionship:
W(a) = £F(V()) (2.33)

resulting in a Wigner function that is its own (scaled) complex Fourier transform.

RELATIONSHIP BETWEEN THE WIGNER AND Q-FUNCTION

Following from Eq. 2.24, the Q-function and Wigner function are related by a

Gaussian convolution:

Q(a) = / a2 (a) (2.34)
Qa) = e~ 20" 4 W(a).

A ‘Gaussian blur’ of the Wigner function results in the state’s Q-function. This

should give some intuition for why the Q-function suppresses certain state observ-
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ables since it in effect experiences a low-pass filter of the information contained in
the Wigner function. See Fig. 2.4 for an example of this interdependence between
representations.

This also sheds light on why phase-preserving amplifiers (such as the Josephson
parametric amplifier (JPC) [Bergeal et al., 2010]) can only perform measurements
resembling Q-function tomography of a propagating wave. Since the amplifier adds
an additional half quantum of noise, the quantum nature of its state will be sup-
pressed. A phase-sensitive amplifier (such as the Josephson bifurcation amplifier
(JBA) [Vijay et al., 2009]) will allow for measurements that do not necessarily sup-

press this effect.
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Figure 2.7: Wigner and its generating function. The Wigner function is de-
rived from its generating function Cs(\) = Tr[pD,]. For even photon number states,
the generating function is its own scaled Wigner function. This means that states
such as the even cat state |5) + |—3) and even Fock states |n) (n = 0 mod 2) will
show interference fringes dependent on photon number population.

2.3 QUANTUM BITS

For comparison, let us briefly introduce the quantum bit (qubit) and its represen-

tations. A single qubit is defined by its two computational states |0) and |1) and
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is the fundamental construct for quantum information processing. This system can
be formulated from a truncation of the operators formulated for the quantum har-
monic oscillator. Taking the oscillator ladder operators and reducing to their lowest

two levels produces the spin raising and lower operators:

(01 , (00
a—>a_—(0 0) a —>a+—<1 0). (2.35)

This representation can be extended to the X and P quadratures as well as the

photon number operator N of the oscillator to create the qubit Pauli spin opera-

— ((1] (1)) oy = (? _OZ) o, = ((1) _01) (2.36)

and the number operator can be written as

tors:

rio- =157 =ltel = (o ) (237)

where |e) is the qubit excited state. Typical representations of the qubit state in-
clude the Bloch sphere and the qubit Pauli set, both of which report the mean val-
ues (0;), (oy), (0.) [Nielsen and Chuang, 2009]. For quantum computation, many
quantum bits may be combined to increase the system’s Hilbert space and in turn
perform algorithms. This may raise the question: could a single quantum harmonic
oscillator be used to replace many quantum bits? To quantitatively investigate this,
let us compare the capacity to store information in both a collection of N quantum
bits and a harmonic oscillator containing at most N photons. We can observe the

Shannon entropy of these systems described by:

S =— Z n; logy m; (2.38)

Where n; are the eigenvalues of the density matrix describing a statistical mixture
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of the computational basis. For the multi-qubit state there are 2%V states each with
an eigenvalue of n; = ZLN giving the informational entropy of the fully mixed system

as:

21\7

S, = Z o~ log, 2V = N (2.39)

This makes intuitive sense. For each qubit, we are adding another bit of available
information. For the cavity state, the number of states in the system increases by
the maximum number of photons N giving eigenvalues 7, = The maximum

N+1

informational entropy in a harmonic oscillator with N photons follows:

N+1

=%

The number of bits of information that can be stored in a multi-qubit system in-

log2 (N +1) =logy, (N +1) (2.40)

creases exponentially faster than those confined to photon superpositions in a sin-
gle harmonic oscillator (See Fig. 2.8). These derivations suggest that encoding a
full quantum computer in a harmonic oscillator will be prohibitively impractical,
however, it can still be advantageous to encode a small quantum register in a har-
monic oscillator. Indeed, if coherence times of an oscillator are longer than physical

qubits, then qubit-encodings in a resonator may be optimal (Fig. 2.8).

2.4 SUMMARY

Experimental implementations of harmonic oscillators such as waveguide cavity
resonators have shown coherence times that are up to 10 times longer than typi-
cal superconducting qubits. While there has been no observed fundamental limit
to coherence in either of these systems, resonators typically show greater coher-
ence [Reagor et al., 2013]. As shown in Fig. 2.8, when qubit decoherence is greater

than resonator losses, it becomes optimal to encode small quantum registers in an
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Figure 2.8: Information capacity of a harmonic oscillator. a)The amount of
information that can be stored in a multi-qubit system will scale with the number
of qubits, whereas a single harmonic oscillator, while technically having an infinite
Hilbert space, can store information up to log,(N + 1) where N is the maximum
number of photons used in the system. The maximum decay rate [',,., of a cavity
state scales with occupied photon number and for multi-qubit systems I';,,.« scales
with qubit number. When the single photon decay rate of the cavity I'y is smaller
than single qubit decay rates, it could be optimal to encode small quantum regis-
ters within the cavity mode rather than using a multi-qubit register. b) Shown is
the relative maximum decay rates 'y /T'o for a resonator and a multi-qubit sys-
tem. Dashed lines describe multi-qubit registers with decay rates proportional to
['y. For example, if a multi-qubit register’s single qubit decay rate is less than 41",
then it will be optimal to encode the four qubit state into the more coherent oscilla-

tor (black line).

oscillator over a multi-qubit system. Furthermore, encoding a quantum register in a
single resonator will limit the number of channels of decoherence, which could have
a substantial impact for realizing quantum error correction schemes [Leghtas et al.,
2013b].

We will explore throughout the rest of this thesis how we can create, control, and
measure quantum states in a cavity resonator. We believe that the larger Hilbert
space and coherent nature of cavity resonators in circuit QED make them an in-
triguing resource for quantum information processing. With the theoretical back-
ground outlined in this chapter, we can now begin to describe how these quantum

states can be realized in experiments.
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Superconducting qubits and circuit QED

The previous chapter outlined the fundamentals for describing quantum oscilla-
tors and spins, yet we have not introduced physical implementations to study such
a system. Here we will describe the basics of superconducting circuits and circuit
quantum electrodynamics (QED) and provide this within a quantum optics for-
mulation. We will discuss the theoretical basis for describing a multi-cavity, single-
qubit system and we will introduce the dispersive approximation and its resulting

higher-order non-linear effects.
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3.1 SUPERCONDUCTING QUBIT BASICS

3.1.1 JOSEPHSON EFFECT

Inductors and capacitors serve as the basic linear components for circuit design.
Superconducting circuits can also take advantage of the Josephson effect to cre-
ate a dissipationless nonlinear element. The Josephson effect arises from the quan-
tum tunneling of Cooper pairs across a superconducting junction [Tinkham, 2004].
This junction creates a non-linear current-phase relation across the two islands of a

Josephson junction:

2
[ = Isin C}%b (3.1)

Where & is the flux quantum and I, is the junction critical current. We will typi-
cally refer to the junction phase as ¢ = 27w¢/®y. This nonlinear circuit element can
be used to create a variety of non-trivial quantum devices in superconducting cir-
cuits. This includes the ability to create individually addressable energy transitions
which can be decomposed into controllable two-level systems. Examples include
flux [Mooij et al., 1999; Friedman et al., 2000; Stern et al., 2014}, phase [Martinis
et al., 2002], and charge qubits [Nakamura et al., 1999; Lehnert et al., 2003]. For
the purposes of this thesis we will focus on one of the physically simplest to design
and control, the single-junction transmon qubit [Koch et al., 2007; Schreier et al.,

2008; Houck et al., 2009).

3.1.2 TRANSMON QUBIT

While a variety of superconducting qubits have been developed with explicit depen-
dence on quantum variables such as charge, flux, and phase; a version of the charge
qubit called the transmon has come into prominence for its robustness against noise

sources. To learn the intricacies of the transmon, I suggest the following refer-
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ences [Bishop, 2010; Koch et al., 2007]. Here, I will step through the fundamentals
of the transmon by expressing its dynamics as an anharmonic oscillator.

The transmon qubit in its simplest form is a single Josephson junction coupled to
a shunting capacitance (Fig. 3.1). To visualize the energy of the transmon qubit, we
will take an harmonic oscillator approximation with an additional perturbation due

to the Josephson effect, resulting in the following Hamiltonian:

2
H = hw,a'a — E; (cos © + %) (3.2)

Where Ey = I;io is the Josephson energy and ¢ = > ¢,(a + a') is the junction
phase denoted by its zero-point fluctuation ¢,. If we operate in a regime” where

6
%% < 1, we can rewrite this energy relation in a Taylor expanded form:

H = hwa'a — £o* + O(4°) (3.3)
= hwana — %903 (a + aT)4

Finally by neglecting counter-rotating terms we realize the typical form for the

approximate transmon energy relation':

H = hwla'a — —a'"a (3.4)

where o = %cpg and w; = w; — . The anharmonic coefficient o represents the dif-

ference in neighboring energy levels AE = E, 1 — E,, = hw, — ha. With this dispar-
ity between energy transitions, drives on the system can be selective on a particular
transition. With careful preparation and control, the transmon can be restricted to

its first two levels [0), |1) and we can reduce its Hamiltonian to a two-level sub-

space: H = hw/ |e) (e|. While oftentimes this Hamiltonian will be shown instead of

“While this regime does not necessarily hold well for many transmon designs, the fact that we
eventually truncate the system to its first two levels allows us to ignore higher-order effects while
still retaining the dynamics of the system.

"Note that an equivalent representation writes the system in terms of charging energy E¢ and

Josephson energy E; as: H/h = /8EcE a'a — E—Qc(cﬁa)2
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Figure 3.1: The transmon qubit. (a) The transmon qubit in its simplest form
is a single Josephson junction with nonlinear inductance Lj shunted by a capaci-
tance C. (b) This circuit creates a system similar to an oscillating pendulum. For
small oscillations ¢ < 1, we can further simplify this system to an anharmonic os-
cillator and (c) represent its energy with unequal energy level spacings. Reproduced
from [Koch et al., 2007].

0
2m¢/ o

its complete representation, care must be taken to ensure that the higher levels of

the transmon qubit will not affect the dynamics of the system.

3.2 CircuiT QED

An extremely fruitful direction for protecting, manipulating, and entangling su-
perconducting qubit systems has been to emulate a form of cavity quantum elec-
trodynamics (QED). Cavity QED is the strong coupling between an atom and
trapped electromagnetic field. By coupling the atom to a resonator, its state can
be protected from radiative decay and unwanted decoherence. In both optical and
microwave regimes, cavity QED has allowed the creation of non-classical states

of light and its entanglement with atomic superposition states [Haroche et al.,
1999; Miller et al., 2005]. In circuit QED, we can describe a superconducting qubit
(treated as a two level system for now) coupled to a cavity resonator [Schuster,

2007]:

H = hw,a'a + hw, |e) (e + hg(a + a')o, (3.5)
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where a is a resonator ladder operator, |e) is the qubit excited state. The interac-
tion specified here is the result of a dipole coupling between the qubit and cavity
modes. This equation can be recast by taking the rotating wave approximation into

the Jaynes-Cummings Hamiltonian:

H = hwya'a + hw, |e) {e| + hg(ac, +a'o_). (3.6)

Notice that in this regime, the qubit and cavity ‘share’ excitations. For every ex-
citation that leaves one mode a, o_ an excitation is gained in the other o, af. If
we begin to take into account experimental considerations such as the photon decay
rate xk or qubit decoherence rate 7, some of these effects can be obscured. ‘Strong
coupling’ is attained when the interaction strength ¢ is much stronger than these
decoherence rates g > k, . The strong coupling regime is required if we hope to

perform quantum gates or measurement utilizing this Hamiltonian.

3.2.1 DISPERSIVE REGIME

When the qubit and cavity are far off resonance with each other (i.e. g > |w, —

wy| = A), Eq. 3.6 can be recast into what is called the dispersive Hamiltonian:

H = h(w: = x|e) {el)aa + hw, |e) (] (3.7)

where Y = %. Please note that this definition for yx is different by a factor of
two from previous derivations [Schuster, 2007], this is in order to match current
notation used in the lab for the dispersive interaction. For simplicity, modifica-
tions in the transition frequencies, such as the Lamb shift, have been ignored in
this equation. The dispersive interaction produces a qubit state dependent cavity
frequency which is used for non-destructive readout of the qubit state as well as a
qubit-cavity entangling operations covered in chapter 5.

Again, in order to observe these effects experimentally, the interaction strength
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in this Hamiltonian needs to be greater than qubit and cavity decoherence rates
v, k. The ‘strong-dispersive’ regime is achieved for values x > nk,vy where n =
{(a'a). This dependence on photon number in the cavity mode carries importance

for coherent access to higher photon number states.

9

The dispersive Hamiltonian (Eq. 3.7) arises from a second-order expansion in £,

and in fact other terms can and will become important in experimental implemen-
tations. One such ‘quasi-dispersive’ term, the Kerr of the resonator can be derived

from this higher-order approximation:

Hquasi = Hdisp - Ka'TQG'QO-z (38)

where K = Z_i [Boissonneault et al., 2009]. In fact, when we can rewrite this term

in the excitation number basis knowing that o, = 1 — 2|e) (e|:

K
Ka'’a?o, — ?(IT26L2 — Kaa? le) (e (3.9)

In the latter description, one can imagine the cavity mode to have inherited an an-
harmonicity K when the qubit is in the ground state and when the qubit is excited
this anharmonicity will change. We address design considerations for these terms in

chapter 4 and observe this effect explicitly in experimental chapters 6 and 7.

3.2.2 MULTI-MODE ANHARMONIC APPROXIMATION

While the Jaynes-Cummings Hamiltonian (Eq. 3.6) can be a good way to gain in-
tuition for the qubit/resonator system, in fact the transmon qubit is a multi-level
system and its interactions with a resonator must be treated as such. We can gen-
eralize Eq. 3.4 to a multi-mode system (a system where we will eventually deem
one mode the qubit and the other the resonator) with a single Josephson junction,

the Hamiltonian of the system can be written as:
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a) 9 ¢ b)

Figure 3.2: Photon number spitting and energy level diagram. (a) An il-
lustration of spectroscopy shows the dispersive regime, where an excitation in the
qubit results in a shift in transition frequency of the cavity and vice versa. This
‘number splitting” allows probing of the excitation number of either the qubit or
cavity mode, which can be used for measurement and entanglement generation.
The associated energy level diagram (b) illustrates the different transitions in this
ideal dispersive regime. Reproduced from [Schuster et al., 2007].

2
H=h Z wiala; — E; (cosgp + %) (3.10)

1=q,r

where a,, are the ladder operators for the qubit and resonator modes respectively
and the junction phase p = ) ._ o wila; + a;r) is now a combination of qubit and
resonator operators. The phase across the single Josephson junction has participa-
tion from both the qubit and resonator modes. We designate the qubit mode as the
one which participates the most (¢, >> ¢,) and therefore has the largest anhar-
monicity. Taylor expanding ¢ to fourth order and taking the rotating wave approx-

imation (RWA) gives:

Ki 2
H = (hwiala; — 7@3 a?) — xalaqala, (3.11)
i=q,r
where K; = EJT%'I and y = EJgpq . If we reduce the qubit state to its lowest

two levels and assume that K, is small then we return to the standard dispersive

Hamiltonian Eq. 3.7. Note that in this anharmonic oscillator approximation, the
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cavity self Kerr K, is derived in the same order as the qubit anharmonicity a@ = K.
If the junction participation of the qubit and oscillator are similar ¢, ~ ¢,, then
the two modes will both behave with similar dynamics. This behavior cannot be
derived from the standard Jaynes-Cummings Hamiltonian.

This process can be extended to a system containing more than just two modes.
The general relationship for a mulitmode Hamiltonian to fourth order in ¢ =

S, ila; + al) and taking the RWA follows as:

H, = Z(hwia;rai Tz 2) Z X”a ala a; (3.12)
7 1,7>1
where K; = EJQ@? and y;; = L JQO,L . All modes in the Hamiltonian will have an an-

harmonicity or self-Kerr corresponding to their participation to the junction phase,
K; x ¢} and each mode will have a state-dependent shift due to all other modes x;;
which we typically call the cross-Kerr.

Higher-order terms in this approximation can also become important, see
Tab. 3.1 for ratios, but one which we’ll study further experimentally is the modi-
fication of the dispersive shift x. If we take Eq. 3.10 to sixth order in ¢, additional

terms will include:

2
H4+Z gl a +Zz J jaT a2aT (3.13)
where K| = Jgo' and x;; = %. One can interpret K’ and x’ as photon-number

n dependent modifications of the fourth order terms:

K K
Xij X
Xz] (nz) — (XZ] + TJ - 2] z)

Measuring the cavity self Kerr and qubit-cavity dispersive shifts along with their

higher-order corrections are explored in Ch. 6,7.
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Order Term Relation

- w; /27 -

O(p') Ki/om 1) G) Bt
(") xis/2r 5(1) () 6) Q) Eswie}
O(¢%) K/2m 5 (5) (5) Erg?
O X2 5()6)6) Q) Ewie

Table 3.1: Anharmonic oscillator approximation. Each term of the disper-
sive anharmonic oscillator Hamiltonian can be calculated from the Josephson en-
ergy E; and the contribution of each mode to the junction phase p = > ;(a; + ag).
These estimates come from the Taylor expansion of the cos ¢ term in Eq. 3.10 and
collecting all terms into normal order. This table shows the predicted terms in the
Hamiltonian up to O(¢%).

3.3 CirculT QED EXPERIMENTAL IMPLEMENTATIONS

Circuit QED has proven to be an excellent resource for studying quantum optics
and control of microwave photons. The physical implementations, though, can take
form in many different manifestations. Here I will outline a few of the key designs
being used in the field and I will in particular focus on experimental implementa-
tions used to study stationary electromagnetic modes in contrast to the studies on

propagating modes.

3.3.1 CircuiT QED FOR QUANTUM OPTICS

Many circuit QED experiments utilize a superconducting qubit strongly coupled

to a coplanar waveguide transmission line resonator. The trapped electromagnetic
field results in high coupling rates between the qubit and microwave photons, allow-
ing access to both the strong-coupling regime [Wallraff et al., 2004] and the strong-

dispersive regime [Schuster et al., 2007] in superconducting circuits.
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Multi-resonator implementations [Hofheinz et al., 2008; Leek et al., 2010; John-
son et al., 2010; Mariantoni et al., 2011] have also been investigated to explore
quantum state creation and control between qubit and resonator modes. These ex-
periments all take advantage of the strong-coupling achieved between superconduct-
ing qubits and transmission line resonators. However, circuit QED designs beyond
the transmission line have also been investigated. From one extreme, the ‘lumped-
element’ compact resonators [Geerlings et al., 2012] composed of inductor and ca-
pacitor elements, to three-dimensional box mode resonances [Paik et al., 2011]. We

will explore the latter in more detail in Ch. 4 of this thesis.

3.3.2 DISPERSIVE AND RESONANT CONTROL

Circuit QED experiments studying quantum optics typically operate in one of two
coupling regimes, where either resonant and dispersive interactions dominate. As
explained above, resonant interactions allow the swapping of excitations between
the qubit and cavity mode allowing energy to increase or decrease in the cavity
one photon at a time. This resonant swapping could in turn be used for mapping
a quantum bit into a superposition of photons in the cavity, creating what is effec-
tively a quantum memory.

With resonant coupling, a variety of investigations have been performed includ-
ing the shuttling of photons into and out of resonators [Mariantoni et al., 2011] (ex-
amples with Rydberg cavity QED systems in [Haroche et al., 1999]). By quickly
changing the qubit frequency using flux bias control, the qubit can be brought
into and out of resonance to mediate excitation swapping between the qubit and
resonator. Furthermore, this resonant control can allow the creation of complex
quantum states. By shuttling multiple excitations into the resonator, multi-photon
Fock states can be generated [Hofheinz et al., 2008|. Using the available control

due to the Jaynes-Cummings Hamiltonian (Eq. 3.6), it has been proven that arbi-
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Figure 3.3: Resonators for circuit QED. Shown is a sample of the variety of
resonator designs investigated for circuit QED. While the transmission line res-
onator (a) and compact resonator (b) are fabricated using photo- or electron beam
lithography, the three-dimensional cavity resonator (c) is produced from machined
aluminum. Notice the length scales associated with each of these variants, ranging
over two orders of magnitude. Reducing the electro-magnetic field density in res-
onator modes helps limit the surface losses responsible for limited resonator coher-
ence, making box-mode resonances an ideal platform for creating highly coherent
resonator modes. Reproduced from [Hofheinz et al., 2008; Geerlings et al., 2012;

Paik et al., 2011].



trary quantum states can be created in the resonator using this technique [Law and
Eberly, 1996]. This technique has been experimentally demonstrated and showed

the creation of complex quantum states using superconducting circuits [Hotheinz

et al., 2009].
a) b)
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Figure 3.4: Resonant and dispersive manipulation. Using either resonant or
dispersive interactions, complex quantum states can be created in the cavity. (a)
Using superconducting circuits with resonant control, the photon number states
and their superposition can manipulated with a qubit [Hotheinz et al., 2009]. With
a cavity QED setup, the dispersive interaction allows the projective measurements
of the cavity to create superposition states [Deléglise et al., 2008].

With an off-resonant, dispersive interaction the qubit and cavity modes will not
share excitations, but become entangled due to conditional shifts in each mode’s
transition frequency. With this technique, quantum non-demolition measurements
can be performed by correlating the phase of coherent field in the cavity mode with
the ground or excited state of the qubit. Coupled with near quantum-limited am-
plifiers [Bergeal et al., 2010; Vijay et al., 2009] quantum jumps of qubit states have
been performed [Vijay et al., 2011; Hatridge et al., 2013]. Beyond quantum mea-
surement, the dispersive interaction has shown the splitting of energy transitions of
the qubit to be dependent on photon number [Schuster et al., 2007], whose applica-

tions include the entangling of photon number states with the qubit mode [Johnson
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et al., 2011]. Throughout this work, we will explore further the applications of the
dispersive regime in circuit QED to create and manipulate complex quantum states

of light.

3.4 SUMMARY

The strong-coupling that can be created between a superconducting qubit and mi-
crowave resonator makes this system extremely enticing for exploring quantum con-
trol of photons. This platform allows us to recreate some of the canonical Jaynes-
Cummings Hamiltonian in order to achieve this control. The following chapter will
describe how we can implement a circuit QED architecture that takes advantage of
the high quality factor resonators achieved with three-dimensional resonators and
creates a multi-cavity system for investigations into quantum control. We will take

the tools outlined here to recreate this system with increased cavity coherence.
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Experimental design and setup

With a firm theoretical backing in hand, let us now focus on a physical realization
of a circuit QED system for investigating quantum optics effects. In particular,
I will focus on a circuit QED architecture that uses three-dimensional microwave
cavities [Paik et al., 2011]. Single cavity 3D circuit QED implementations have led
to record-breaking qubit coherence times [Devoret and Schoelkopf, 2013] and pro-
vide an excellent platform for designing quantum optic experiments with microwave
photons.

With strong qubit-photon coupling, circuit QED has opened many avenues for

investigating microwave quantum optics [Hotheinz et al., 2009; Mariantoni et al.,
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2011; Johnson et al., 2010; Eichler et al., 2012]. Traditional superconducting qubit
architectures have looked towards a ‘planar’ circuit design, ones with on-chip trans-
mission line resonators or lumped element capacitors and inductors. These devices
are in fact, implemented in ‘three-dimensional’ sample boxes and signals are dis-
tributed between coplanar waveguides and coaxial connectors. Design considera-
tions such as RF crossovers and flip-chip designs [Chow, 2010] must be made in
order to mitigate unwanted effects due to spurious leakages out of the substrate
plane.

In the Schoelkopf lab, we have looked towards a circuit QED design that takes
advantage of three-dimensional standing EM waves for its direct applications with
superconducting circuits. Using the box-mode resonances inherent in any supercon-
ducting qubit implementation allows for simpler physical designs and improvements
in both qubit and resonator coherence times. Qubit lifetimes of over 100 us and
cavity lifetimes surpassing 10 ms are achieved using this architecture [Devoret and
Schoelkopf, 2013]. It is believed that surface dielectric and material interfaces play
a leading role in energy relaxation of superconducting qubits [Sears, 2013] and in-
tense research to minimize these effects have been investigated using fabrication
techniques [Megrant et al., 2012; Chang et al., 2013; Bruno et al., 2015]. A 3D
cQED architecture, instead, reduces each mode’s participation to these lossy inter-
faces. By spreading electro-magnetic energy throughout the volume of the sample
instead of confining it within micro-fabricated features, three-dimensional designs
open an immediate path to highly coherent superconducting qubit devices.

In this chapter, we will describe a two-cavity circuit QED design to allow the
study of qubit-cavity interactions and microwave quantum optic effects. We
will step through the design and implementation of such a system with three-
dimensional circuit QED. This design is the first proof-of-principle design for a

multi-cavity 3D cQED device and allows the investigation of unparalleled coher-
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ent properties between a qubit and resonator (experiments in Ch. 7, 8, 9). We

will introduce a circuit analysis method for determining the Hamiltonian parame-
ters [Nigg et al., 2012] of such a system and compare these predictions to measure-
ments of physical implementations. Finally, we will outline the important details
for these two-cavity experiments including qubit and cavity preparation, microwave

design, and qubit state detection with quantum amplifiers.

4.1 Two-caviTy 3D circuiT QED

In this work, we use a two-cavity circuit QED design to allow for both efficient
qubit state detection and photon storage and manipulation [Johnson et al., 2010;
Leek et al., 2010]. We will design a system which consists of a single qubit disper-
sively coupled to both of these cavity resonators, creating the dispersive Hamilto-

nian (extending Eq. 3.7):

H
== wrala, + wsala, +w, le) (el (4.1)

- eraiar |€> <6| - qua';ra's |€> <6|

where x, (x4s) are the dispersive shifts between the qubit and readout (storage)
cavity resonators. With a readout cavity which is over-coupled to an output line
(and thus has a large decay rate, k,.), we can perform efficient qubit state detection
with a dispersive readout [Blais et al., 2004; Wallraff et al., 2004; Boissonneault

et al., 2009; Vijay et al., 2011]. Using a storage cavity with a long coherence time
(ks > K,), we can also perform qubit-cavity entangling operations (Ch. 5) for
photon storage and manipulation using the dispersive regime [Brune et al., 1992;
Haroche and Raimond, 2006]. We will then combine these features to both manipu-

late and measure the quantum state of the storage cavity (Fig. 4.1).
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4.1.1 CAVITY DESIGN

While other cavity designs for 3D circuit QED exist [Reagor et al., 2013], the ar-
chitecture in this thesis uses the electromagnetic modes of a three-dimensional box
mode resonance. The modal frequencies can be approximated using the cavity’s

length [, height h, and width w:

o= 3 02 G (£) 42

where c is the speed of light and m, n, k are integers denoting the particular mode

of the box mode resonance. The lowest mode fi; is determined by only the longest
two dimensions of system and is the mode primarily chosen for circuit QED experi-
ments.

Each half of the cavity is machined from bulk aluminum (Al 6061 or 4N5 high-
purity Al) or OFHC copper. Critical to the design is the location of the seam join-
ing each half of the cavity [Sears, 2013]. This seam has been chosen such that cur-
rents across this gap are minimized (perpendicular to the ‘width’ dimension). To
ensure a proper connection between halves, indium is lined along each seam (see
Fig. 4.2). Input and output port locations are chosen to minimize the loading of
higher modes which can lead to unwanted photon shot noise [Sears et al., 2012]. In
our physical designs, we also remove some corners of the box-mode resonator which
has a minimal effect on the designed transition frequency but allows for increased
convenience in machining.

Each cavity from the two-cavity design is derived from the single cavity archi-
tecture. We have chosen the lowest modes of each box-mode resonance to serve as
either the readout or storage cavities. Each cavity has its own input and output
ports allowing complete control for coupling quality-factors. Here, we chose each

cavity geometry such that transition frequencies are well separated from each other.
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Figure 4.1: Cavity QED equivalent. Two-cavity 3D circuit QED can be illus-
trated by a cavity QED equivalent diagram with Fabry-Perot resonators (a). Both
systems use two cavities coupled to single (artificial) atom. One cavity is designed
to be long-lived for photon manipulation and storage while the other cavity con-
tains a leaky mirror (over-coupled output coupler) for atom state detection. (b)
Shown is one half of the physical device with two box-mode resonators and a trans-
mon qubit coupled to both modes.

coupler - | cavity coupler

Typical implementations leave each cavity with ~ 1 GHz separation in transition

frequencies occurring between 7 — 10 GHz.

4.1.2 VERTICAL TRANSMON QUBIT

In order to realize the two-cavity illustration shown in Fig. 4.1, we need to cou-
ple both cavities to a single qubit. For a planar circuit design, this can performed
by implementing coupling capacitors which link individual cavities to a single
qubit [Johnson et al., 2010; Mariantoni et al., 2011; Steffen et al., 2013]. For a
three-dimensional architecture this is less obvious. Unlike a planar geometry, a 3D
transmon qubit is placed physically inside of the cavity and antennas are used to
create a dipole coupling between the qubit and cavity resonator. Instead, we need
to develop a qubit that does not need to ‘live’ inside of the cavity but can merely
use an antenna that reaches into the cavity to create a strong qubit-cavity coupling.
This is the basis for the ‘vertical transmon’ design which we will outline in more
detail here.

The vertical transmon is designed as a coaxial mode that exists between the ad-
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joining cavity resonators. This coaxial mode (also known as a rectax due to its
rectangular design) is created by placing a substrate containing the fabricated de-
vice within a machined trench between each cavity (see Fig. 4.3). A single Joseph-
son junction is located within this trench and galvanically connected to two trans-
mission lines that extend into each cavity. The extension of each antenna creates
a capacitive coupling to the electromagnetic field in the cavity allowing a strong

qubit-cavity interaction for both spatially separated modes.

a) b) @)

Josephson Junction

Figure 4.2: Two-cavity length scales. (a) Shown is a bisection of a two cavity
design machined from Al 6061. An indium track surrounds both cavities which pro-
vides a strong electrical connection at the device seams. (b) The first inset shows
the vertical transmon qubit between both cavity modes. While the Josephson junc-
tion is located within the small trench connecting the cavities, antennas from the
qubit extend into both cavity modes providing strong qubit-cavity coupling. (c)
Finally a second inset shows an SEM image of the transmon junction with an ap-
proximate junction area (45 um?) resulting in a Josephson inductance of ~ 6 nH.

CIRCUIT DESIGN

Let us approximate the design of the vertical transmon by creating a circuit model
to predict its dependence on geometrical features. We wish to create a Joseph-
son junction circuit which behaves like a transmon qubit but without the use of
lumped element capacitors and inductors (to minimize lossy surface effects) and

which can have significant length in order to couple to two spatially separated cav-
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Figure 4.3: Vertical transmon
cross-section. A diagram of the cross-
section of the vertical transmon shows
| the dimensions of the substrate as it
/ spans between cavities. One half of the
volume is occupied by a sapphire sub-
strate (AlyO3) with an anisotropic di-
electric constant €, ~ {9.4, 9.4, 10.2}
(perpendicular to the plane). The ‘ver-
200um|  (Al,O, tical transmon’ moniker is used to de-
1 note that most field lines act vertical to
1.2mm the plane of the substrate.

—
—

ity resonators. How far away can these cavities be? What are the qubit design limi-
tations? We will investigate these questions with this simplified model”.

The vertical transmon qubit is a single Josephson junction connected to two
transmission lines. Each transmission line will serve as one antenna to reach into
each of the two cavity resonators. The input impedance for an ideal transmission
line is described as:

21, + jZp tan(Bl)
Zo + jZ tan(Bl)

Ziine(l) = Zo (4.3)

where Zj is the characteristic impedance of the line determined by its geometry, Z,
the load impedance, 5 the wavenumber, and [ the transmission line length. We can
approximate the vertical transmon as having two transmission lines with an open

load impedance (or a sufficiently weak capacitive coupling such that |Z;| = |g¢+0’ >

Zp). Thus the input impedance of each transmission line will follow as
Zline(l) = —jZ() cot (ﬂl) (44)

We can rewrite the input impedance as a function of both length and frequency

such that

*A coplanar waveguide implementation of the vertical transmon, the inline transmon, was pre-
viously investigated and can be found in Markus Brink’s Yale Monday Lunch Seminar, initial idea
can found in [Devoret et al., 2007]
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[
Dine(w, 1) = —jZy cot (Ci) (4.5)

Vp
where v, = \/%T is the phase velocity of the transmission line determined by the

speed of light ¢ and the relative permeability and permittivity u,, €. . Note that
for most cases the phase velocity is within an order of magnitude of the speed of

light v, ~ (0.2 — 1)c.

Zline(w)

Zline ((.U)

Figure 4.4: Vertical transmon circuit diagram. We can approximate the ver-
tical transmon as a Josephson junction connected to two transmission lines. Each
transmission line will be defined by its length [, characteristic impedance Z,, and
its phase velocity 1v,. These parameters are determined by the system’s geometry
which in the case of the vertical transmon the diameter of the inner and outer con-
ductors as well as the permittivity of the dielectric. By assuming a typical charac-
teristic impedance Z; ~ 80f2 and phase velocity v, ~ 0.4c.

To predict the resonance and anharmonicity of the vertical transmon, let us use
black-box circuit quantization [Nigg et al., 2012]. The linear admittance function
Y (w) across the junction can be approximated by replacing the junction with a lin-
ear inductor L; such that this Josephson junction is related to the Josephson en-
ergy F; = %% From this admittance function, we determine two parameters of each
resonance: a resonant frequency wy = \/ﬁ where Y (wy) = 0 and characteristic
2

impedance Z.g = (Lf‘; = o) These two parameters allow us to approxi-

mate the qubit Hamiltonian as an anharmonic oscillator
a
H/h = w,a'a - §aT2a (4.6)

where to fourth order in the junction phase ¢ (see Eq. 3.2) the qubit resonance and

anharmonicity will follow as
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Wy =Wy — & (4.7)
2772

N Zeﬁf.
2hL,

(4.8)

By combining the junction inductance with the input impedance of each transmis-
sion line, we can predict the linear admittance of the vertical transmon (Fig. 4.4)

as:

1 ¥ wl
Yi = — — . 4.
m(w) ol + 27, tan (Vp) (4.9)

The resonance condition Yi,(wp) = 0 is solved when

o (). (4.10)

wOLJ N 2Z0 Vp

This transcedental equation can be solved numerically (see Fig. 4.5) and using the
derived wy, the characteristic impedance Z.g can be determined by the derivative of

the input admittance

1 l wl
Im[Y'(w)] = L + v, sec” (V—p> . (4.11)

LUMPED ELEMENT APPROXIMATION

Beyond this numerical method, we can instead gain a qualitative understanding by
approximating the input impedance from Eq. 4.9 out to first and third orders of
tan (f—}f) We will later compare these to the exact solutions from above. The first
order approximation of input admittance gives

1 7wl
Yin(w) = - =
(w> jCLJLJ 2Z0 Vp

(4.12)

Note that here the admittance has been reduced to the form of a parrellel LC-

resonator:
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1
Yin(w) = ol + jwC(1) (4.13)

where C(l) = szwp and is dependent on the length of the transmission lines. The

resonant condition occurs at

Wo = /2ZOVp _ 1 <414)
LJZ LJC(Z)

and the qubit anharmonicity follows as

2 72 2 2
e Ly e Loy, e

2L, W 2rC(D)

a (4.15)

Notice this is the lumped element relationship derived for the standard transmon

qubit [Koch et al., 2007]. This approximate solution shows that each transmis-

sion line behaves to first order as a capacitance per unit length. and creates both
L

a length dependent transition frequency wy(l) o —; as well as a length-dependent

anharmonicity a(l) o 1 (See Fig. 4.5).
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Figure 4.5: Vertical transmon circuit model. Using the exact (solid), lumped
element (dashed red), and approximate (dashed violet) circuit models, we can pre-
dict the dependence of geometrical parameters on the resonant frequency wg/2m
and the transmon anharmonicity «/2m. Shown is the predicted behavior for a ver-
tical transmon with L; = 7nH, Z; = 80 2, and v, = 0.4c as a function of
antenna length. Notice that the exact and approximate third order solutions be-
have similarly while the lumped element approximation breaks down at longer an-
tenna lengths. These plots show that for typical parameters and length scales, a
transmon-like mode can be created using the vertical transmon geometry without
need for lumped element capacitors or additional junctions.
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THIRD-ORDER APPROXIMATION

We can take the admittance approximation out to a third order in tan <,°j—l), which
P

gives an admittance

V(o) ~ o el (] 2 (4.16)
n(w) ~ = - — — | — : :
JwLy  2Zy v, 2\

Solving for a resonant condition we obtain transition frequency:

3 1\ 2 87y |
22 (22 142222 1], 4.17
o 2(1) <\/ 3L, > (4.17)

The third-order approximation for the qubit anharmonicity can be solve analyti-
cally (see Fig. 4.5). We can observe an approximate solution by using the derivative
of Eq. 4.16 and using the solution for wq from Eq. 4.14:

€2ZOI/p 2ZQ l
= l1——. 4.18
T ( L, yp> (4.18)

This shows an anharmonicity with a similar relationship to Eq. 4.15 with an addi-
tional offset which reduces the predicted anharmonicity.

Shown in Fig. 4.5 is a comparison for determining the parameters of the vertical
transmon model using both a lumped element (Eq 4.14), third order approximation
(Eq. 4.17), and exact solution (Eq. 4.9). From these predictions, we observe that
a transmon qubit with typical design parameters can be achieved by merely using
a single Josephson junction and two transmission line antennas. Other parameters
beyond the transmission line length can be controlled in order to tailor a particu-
lar quantum system, including the characteristic impedance of each transmission
line and the Josephson energy of the junction. When predicting the parameters for
a physical system however, we will use simulation software described in the next

section.
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4.1.3 SIMULATION

For a more precise determination of the full-system Hamiltonian, we turn to three-
dimensional electro-magnetic field modeling. We use Ansys HFSS (high frequency
structural simulator) software in combination with AWR Microwave Office to de-
termine the impedance/admittance of a given system geometry. More details on
this software and its applications for three-dimensional transmon design can also be
found in [Sears, 2013]. Here, we apply this simulation scheme to a two-cavity archi-
tecture.

We wish to determine the input admittance of the system across the Josephson
junction of a two-cavity design. We perform a linear element simulation (replacing
a Josephson junction with a linear inductor L;) and black-box quantization [Nigg
et al., 2012] to predict system parameters. A full system simulation can be per-
formed to determine this input admittance. However, an alternative approach
which splits the system in to separate components for simulation can be also used
and was implemented here. Shown in Fig. 4.6, we can break the system up as con-
sisting of three components, two cavity resonators simulated separately in HFSS
and a vertical transmon qubit modeled from its estimated circuit parameters in Mi-
crowave Office. Table 4.1 shows estimated and measured Hamiltonian parameters
using this method. While in hindsight breaking the system into smaller components
is not necessary for implementations with only a few modes of interest, this method
could be useful for future designs which require modeling of many modes and could

prove a more feasible method for large quantum circuit design.

4.2 EXPERIMENTAL SETUP

In this section, we will cover only a few of the important components for experi-

mental measurement and design for the experiments in this thesis. Basic informa-
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Figure 4.6: Full system circuit diagram. The full two-cavity single-qubit sys-
tem can be approximated with a circuit model consisting of a vertical transmon
qubit coupled to two LC-resonators. In order to estimate the coupling parameters
between the transmon and cavity modes, we perform three-dimensional EM-field
simulations on each cavity (b) to determine approximate impedances Z;(w), Zs(w).
Combined with a circuit model for the vertical transmon, we estimate the linear
admittance Y;,(w) (c) and determine Hamiltonian parameters (Tab. 4.1).

67



Device 1 Device 2
Predicted Measured Diff (%) | Predicted Measured Diff (%)
Frequency (GHz)
qubit 7.801 7.846 -0.68 7.606 7.496 1.5
cavity 1 8.318 8.272 0.55 8.269 8.239 0.36
cavity 2 9.367 9.322 0.48 9.409 9.374 0.37
Self-Kerr (MHz)
qubit 86. 78. 8.3 247 237 4.2
cavity 1 2.0 3.6 44 - - -
cavity 2 0.25 - - - - -
Cross-Kerr (MHz)
qubit-cavity 1 23. 30 -23 5.0 6.5 -22
qubit-cavity 2 8.0 10 -20 0.65 0.45 44
cavity-cavity 1.3 - - - - -
Device 3 Device 4
Predicted Measured Diff (%) | Predicted Measured Diff (%)
Frequency (GHz)
qubit 7.438 7.345 1.3 7.890 7.763 1.6
cavity 1 8.267 8.179 1.1 8.336 8.249 1.1
cavity 2 9.409 9.280 1.4 9.372 9.278 1.0
Self-Kerr (MHz)
qubit 255 245 4.1 72 86 -17
cavity 1 0.046 - - 3.7 2.5 49
cavity 2 0.029 - - 0.25 0.20 25
Cross-Kerr (MHz)
qubit-cavity 1 3.5 3.7 -4.1 30 26 12
qubit-cavity 2 0.62 0.62 -0.8 8.2 7.5 9.3
cavity-cavity 0.034 - - 2.1 1.4 46

Table 4.1: Parameter estimation. Using black-box circuit quantization [Nigg
et al., 2012] and a combination of simulation packages (HFSS and Microwave of-
fice), we have tested different two-cavity designs. Reported here are the predicted

parameters using a junction inductance estimated from normal state resistance
measurements and black box quantization to O (¢°). We compare these predic-

tions to measured parameters. Notice that all transition frequencies were predicted
within 150 MHz of their actual values and all self and cross-Kerr’s were predicted
within 10 MHz. Devices 1 and 4 were from a distinctly different design set than de-
vices 2 and 3 which can be seen clearly by the estimated self and cross-Kerr’s for

each device.
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tion on superconducting qubit experiments can be found elsewhere [Schuster, 2007;
Chow, 2010; Reed, 2013]. T will focus on three details which carry the most impor-
tance for the experiments shown here: Input/output wiring design for a two-cavity
system, implementation of an interferometric readout, and the addition parametric

amplification for high-fidelity readout.

4.2.1 DEVICE PREPARATION
TRANSMON FABRICATION

The vertical transmon qubit (made of a single Josephson junction galvanically con-
nected with two stripline antennas) is fabricated on a single-crystal C-plane sap-
phire substrate using Dolan bridge double-angle electron beam deposition lithog-
raphy. Film thickness for each deposition is approximately 20 nm and 60 nm. Be-
tween these depositions, an AlOx barrier was grown via thermal oxidation for 720
seconds in 2000 Pa static pressure of gaseous mixture 85% argon and 15% oxygen.
This resulted in a junction normal state resistance of 2 - 8 k(2. This fabrication

procedure is similar to previous transmon implementations

CAVITY PREPARATION

After cavity construction, miscellaneous particulates including swarf and lubrication
residue must be removed to ensure high quality resonances. We perform the follow-
ing recipe for cavity preparation using aluminum material: An Alconox soak (soni-
cate 10 min), water rinse (sonicate 10 min), acetone bath (1hr @ 75C) and sonicate
(5 min), methanol sonicate (5 min), and blow dry. The results of this cleaning pro-
cess can be seen in Fig. 4.7. Alternative cleaning can be done using an Aluminum

etchant as outlined in [Reagor et al., 2013].

69



Figure 4.7: Cavity preparation. To minimize the effects of surface losses, we
wish to remove all residue from the surface of the cavity walls. Shown is are optical
images of a cavity wall: (a) using an acetone, methanol cleaning process and (b)
the same process with an additional Alconox detergent cleaning step.

4.2.2 FRIDGE AND WIRING DESIGN

All experiments shown here were performed with a cryogen-free dilution refrigera-
tor operating at ~20 mK. Proper signal and thermal filtering must be performed to
ensure a cold, protected environment for each experiment (see [Sears, 2013]). Each
two-cavity experiment typically contains two input ports, one for each cavity. Addi-
tionally, one of these ports will also serve as an input for the qubit mode (typically
through the designated readout cavity). The output for the readout cavity is typi-
cally overcoupled to allow signal to exit the cavity. Depending on the implementa-
tion, either a dispersive or high-power readout is used[Gambetta et al., 2006; Reed
et al., 2010]. For later experiments (Ch. 9), a quantum amplifier is also employed
for high-fidelity QND qubit readout. Most experiments will not contain an output
port on the storage cavity. This is due the fact that all information of the storage
cavity mode will be obtained by probing the qubit state dispersively coupled to the
mode. See Fig. 4.8 for details on fridge wiring for two-cavity implementations in-

cluding filtering and thermalization.
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INTERFEROMETRIC HETERODYNE DETECTION

Qubit state readout depends on the detection of amplitude or phase changes in a
signal sent through the readout resonator in transmission. The dispersive shift of
the qubit-cavity interaction will cause a change in readout cavity frequency depen-
dent on qubit state. By determining this frequency shift, we can perform detection
on the qubit state [Blais et al., 2004].

We use a heterodyne detection scheme where an input signal designated at or
near the readout resonator’s transition frequency is sent through the device un-
der test (DUT). We perform two different types of heterodyne detection in these
experiments (Fig. 4.9). Both types down-convert the measurement signal by us-
ing a frequency mixer modulated by a local oscillator (typically 10 MHz off reso-
nance). This intermediate frequency is then recorded by an analog-to-digital con-
verter (ADC) which can then be demodulated by a digital homodyne scheme and
integrated to retrieve a single complex value for each measurement I + Q).

However, this detection scheme (outline in Fig. 4.9a) is sensitive to drifts in
phase of the generated signals wrp, wro. The output modulated signal Vg, follows

as
‘/sig X COS (wIF + 5RF — 6LO + 6DUT) (419)

where wip = wrrp — wro is the difference in the generated readout waves and
drr, Lo, puT are the phase accumulations due to the device under test (DUT) or
unwanted drifts in the readout signals wgrp, wro.

If we demodulate this signal assuming the original IF frequency wip then the
estimated phase shift § will be affected by the drifts in the readout signals. In-
stead, as in Fig. 4.9b, we can demodulate not according to an assumed signal
Viemod X coswir but to a reference signal that takes into account generator drifts

‘/;ef X COS (wlpt + 5RF — 5LO)-
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PULSE GENERATION

We require time-dependent modulations of our input microwave signals in order to
perform gates on our system. We do this by using an arbitrary waveform generator
(AWG) with a 1 GS/s digital-to-analog converter (DAC). This signal is then mixed
with a microwave signal to create the modulated pulse. We use a Tektronix 5014c
for waveform generation in experiments of Chs.7, 8 and an Innovative Integrations
X6-1000M with a custom logic FPGA for waveform generation with feedback con-
trol in Ch. 9. (see Fig. 4.10 for more details). Microwave generation is performed
with either Agilent MSG series or Vaunix LMS-802 generators. Measurements are
recorded with an analog-to-digital converter using an AlazarTech digitizer or with

the Innovative Integrations on-board digitizer.

4.3 SUMMARY

In this chapter, we have discussed the physical design and implementation of a two-
cavity single-qubit experiment. We have outlined the design of the vertical trans-
mon qubit, a qubit consisting of only a single junction and two transmission line
antennas. We have discussed our ability to predict experimental parameters using
simulation software packages (HFSS, Microwave Office). Finally we have described
particulars of the experimental setup including device preparation and input and
output wiring design. In the following chapters, we will outline the basics for per-
forming quantum optics experiments with this setup, including qubit-cavity opera-

tions and cavity state tomography.
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Figure 4.8: Fridge wiring diagram. All experiments are carried out in a
cryogen-free dilution refrigerator. Shown is a typical wiring diagram for a fridge
which contains two two-cavity experiments. Storage cavity inputs (pink, yellow)
have approximately 60 dB of attenuation as well as absorptive and reflective filter-
ing. Readout input lines (blue, green) give access to the readout and qubit modes.
The signal is then sent to a parametric amplifier (a JPC in this implementation)
which amplify in reflection sending the signal through one more amplification chain
(HEMT amplifiers at 4K) before exiting the fridge.
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Figure 4.9: Heterodyne detection. Heterodyne detection (a) uses the modula-
tion of two off-resonant frequencies wrr, wro in order to convert a high frequency
signal to an intermediate frequency wir = wrr — wro for digitization. However
heterodyne detection is sensitive to drifts in the generator phases drp, 010 and can
distort the the desired signal dgignai. We can correct for this by using an interfero-
metric heterodyne detection (b) where a reference and signal are compared to iso-
late the desired information.
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Figure 4.10: Input/output setup. Shown is input/output wiring diagrams for
room temperature control electronics. (a) The first uses a Tektronix AWG with
analog and digital outputs for pulse generation which modulates a microwave local
oscillator for signal generation. The feedback setup (b) uses two input-output (I/0)
boards for qubit and storage resonator control and one AWG for readout resonator
control. All have a dedicated microwave generator and mixer for amplitude and
phase modulation. Each I/O board has four main components: 1) a DAC for pulse
generation; 2) digital outputs serving as marker channels; 3) an ADC that samples
input signals; 4) an FPGA that demodulates the signals from the ADC and based
on predefined thresholds determines the measured qubit state, |g) or |e) to generate
pulses. In this setup the top 1/O board serves as master, which accepts the readout
signal, returns qubit state information, and using digital output signals, triggers the
AWG and the second 1/0O card given a particular qubit measurement result.
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Figure 4.11: Readout configuration. We use two different qubit state readout
configurations, either with or without a near-quantum limited amplifier. (a) With-
out amplification, signals from the readout resonator are sent directly to the HEMT
amplification chain at 4 K. In later experiments, we integrated quantum amplifiers
(b) to pre-amplify the readout signal. We have implemented both Josephson para-
metric amplifiers (JPC) and Josephson bifurcation amplifiers (JBA) for two-cavity
experiments.
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Gates for qubit and cavity states

In this chapter, we will discuss the ways to characterize and control the qubit-
cavity system using the tools provided by the dispersive interaction between the
qubit and cavity modes. This interaction will allow entanglement, manipulation,
and characterization of the qubit-cavity state. First, we will introduce the basic
operations we wish to achieve with this interaction and give a theoretical under-
standing for the non-idealities of these operations. We will then discuss both spec-
troscopic and time-resolved techniques to determine Hamiltonian parameters and
implement both single cavity and entangling qubit-cavity operations. We will de-

scribe both photon-number splitting and multi-photon spectroscopy to measure the
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cross- and self-Kerr effects in qubit-cavity systems. Furthermore, we will describe
Ramsey interferometry and its uses to witness the collapse and revival of a qubit
state due to the dispersive interaction. These tools create the building blocks for

qubit-cavity entanglement in the off-resonant dispersive regime which we will use

for Chs. 7, 8, and 9.

5.1 STRONG-DISPERSIVE CONTROL THEORY

We use fixed frequency qubit/cavity modes with qubit/cavity drives in order to ma-
nipulate interactions between modes and generate entanglement. We can perform
both conditional and unconditional qubit/cavity operations by controlling the du-
ration and shape of the driving fields used. We realize qubit-photon operations uti-
lizing a strong off-resonant coupling of a qubit and storage cavity which we describe

by the dispersive Hamiltonian Eq. 3.7 and rewrite as:

H/h = w,|e) (e| + wsala — xa'ale) {e] (5.1)

where |e) is the excited state of the qubit, a(a) are the raising (lowering) ladder
operators of the cavity resonator, w, s are qubit and cavity transition frequencies,
and y is the dispersive interaction between these modes. We exploit this condi-
tional frequency shift to produce qubit-photon entanglement. The conditional
cavity phase shift can be produced by a state under the dispersive Hamiltonian

(Eq. 5.1) which is described as:
Cp = e = 1 @ |g) (g + ' @ |€) (e] (5.2)

where |g) is the ground state of the qubit and ® is the conditional phase shift in-
duced on the cavity state. This conditional phase appears from the free evolution of
the state for a time 7 where ® = y7 (Fig. 5.1). For example, applying a conditional

cavity phase shift on a coherent state while the qubit is in a superposition state
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produces an entangled qubit/cavity state, Cg {|a) @ (|g) + |e))} = |, g) + |ae'®, e)

(disregarding normalization) [Brune et al., 1996]. Noting that a coherent state

_ e

la) =e Yo j—% |n) is a superposition of Fock states |n) represented by a com-

plex value «, this operation enables us to encode the qubit state information into
the cavity phase and entangle the qubit with many photons simultaneously. For a
special case, Cy—,, the cavity state attains a conditional 7 shift per photon. This,
in turn, causes the qubit state to acquire a phase shift conditional on there being
exactly an odd number of photons in the cavity, resulting in a mapping of the cav-
ity photon number parity to the qubit state. As we will outline in this chapter,
with Ramsey interferometry, we use this gate to measure the cavity photon par-

ity and ultimately the cavity Wigner function [Lutterbach and Davidovich, 1997;
Bertet et al., 2002]. A direct Wigner measurement is produced by measuring the
mean photon parity (P) at many points in the cavity phase space which we can use

to completely determine the quantum state of the cavity.

a)
Jj ® = y7 Figure 5.1: Conditional cavity phase
ﬁ N shift. The dispersive interaction allows
() us to perform entangling operations on
X the qubit-cavity state. (a) The condi-
tional cavity phase shift invokes a condi-
tional phase on the qubit-cavity system
that is both qubit excitation and photon-
b) number dependent. This evolution can
be visualized in phase space where a co-
cavity herent state [¢) = |e, e® ) will acquire a
O phase ® = x7. (b) We write this gate in
a quantum circuit as a conditional phase
qubit gate C'p between the qubit and cavity.

In order to realize this entangling operation with high fidelity, we must achieve
dispersive shifts much greater than the qubit and cavity decoherence rates, y >

v, Nmaxks Where 7 is the qubit decay rate, x, is the storage cavity decay rate, and
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Nmax 18 the maximum occupied photon number. The dispersive approximation
(Eq. 5.1) is valid in a low photon number regime where the dispersive interaction
xa'a|e) (e] is much greater than higher order non-linear terms such as the cavity
self-Kerr K,a'%a? and the non-linearity of the dispersive shift x’a™?a? |e) (e| [Bois-
sonneault et al., 2009]) which we also explore in this chapter. Combined with
qubit/cavity drives, the dispersive interaction give us a powerful toolset for con-
trolling the joint qubit/cavity system.

The following sections will describe the theoretical limitations of performing both
conditional and unconditional operations in the dispersive regime. We will discuss
four distinct gates: the conditional qubit rotation, the unconditional qubit rota-
tion, the conditional cavity displacement, and the unconditional cavity displace-

ment (Fig. 5.3).

5.1.1 CONDITIONAL QUBIT ROTATIONS

By combining the dispersive interaction with a drive on the qubit, we can achieve
a set of conditional and unconditional qubit operations. The first, the conditional
qubit rotation, is a rotation on the qubit state dependent on the photon num-
ber of the cavity state. Because the qubit transition frequency is strongly photon
number dependent, we can drive a particular transition selective on a cavity Fock
state [Johnson et al., 2010; Kirchmair et al., 2013]. A rotation on the qubit state
conditioned on the m'™" photon Fock state can ideally be described as

Ry =|m)(m| ® Rap+ > |n)(n|@1 (5.3)

nm

where R;, ¢ is a qubit rotation about a vector 1 with rotation angle . In practice
however, this operation will result in residual photon-dependent populations and
phase shifts which we estimate in the following sections.

Due to the state-dependent shift between qubit and storage cavity x, we can
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Figure 5.2: Conditional/unconditional operations By controlling the spectral
content of a qubit and cavity pulse, both conditional and unconditional operations
can be performed on the system. Shown here is a representation of each gate act-
ing on an example state in phase space and its corresponding circuit diagram. The
phase space representation shows two coherent states each color-coded to represent
a states correlation to the ground or excited state of the qubit. (a) A conditional
qubit rotation can flip the qubit state if and only if there are m photons in the cav-
ity. The dashed circle corresponds to the ‘selectivity’ of the desired pulse which
flips the the qubit if the cavity mode is located within its boundary. (b) An uncon-
ditional qubit rotation will ideally flip the qubit regardless of photon population in
the cavity though an upper photon limit n,, will exist. (d) A conditional displace-
ment will displace the cavity dependent on the state of the qubit. Finally, (c¢) an
unconditional displacement will displace the cavity regardless of qubit state.

represent the qubit transition frequency as dependent on photon number as w; =
Wq — Xn Where n is the number of photons in the storage cavity. The premise of the
conditional qubit rotation is to perform a drive that is selective on only one of these
transitions in order to create an entangled system with correlations between the
qubit and a photon number state in the cavity (Eq. 5.3). Due to the finite band-
width of a time-resolved drive, this operation cannot be perfectly performed. For-
tunately, we can still realize this operation approximately for long pulse durations
> 1/x.

Using Eq. 3.7, we can introduce a classical drive on resonance with the m'" pho-

ton number peak w;" resulting in the Hamiltonian (using qubit and cavity rotating
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frames)
H/h=—x(a'a—m)|e) (e| + e(t)o, (5.4)

where €(t) is a time-dependent real value representing the amplitude envelope of
the microwave drive (we will ignore the phase of the drive) and o, is the Pauli spin
operator about the y-axis of the qubit Bloch sphere. We can represent this Hamil-

tonian in a block diagonal form
H/h=Y H,/h|n)(n|
=Y {=x(n=m)le) {e| + e(t)ay} n) (n]. (5.5)
Taking each block, we can transform into a rotating frame

n/h Z ’LAn TVLtl |O-y6_iAn7mtle><€l (56)

where A, = wp — wi’. We can predict the evolution of a qubit-cavity state [1(t))

by the time-dependent Schrodinger relation

[9(t)) =~ Hol0) [9(1)) (57)

For a state containing exactly m photons, this evolution will produce a qubit rota-
tion Ryp = e 139 where 0 = 2 J e(t)dt. We can approximate this interaction for all

other photon number states |1, (t)) by looking at the first order Dyson expansion

) = {1 =+ [ astts)  oato) 59

For an initial state |¢(0)) =>_ . C, |g,n), this produces

n#m

82



=3 Caflown) — 1 [ dsta(s)lg.m}

n#m

n#m

t
—z’/ dse(s)eidnmsleNel g o=immslelel | )}
0

=Z@mmiﬁm>"wm»

n#m

~ 3" Cullgin) — {An} len)} (5.9)

n#m
where é{w = A,,,,,} is the Fourier transform of the drive amplitude envelope €(t) at

a frequency A,,. This produces a normalized final state at a time 7 as

—{A,m}le,n)}. (5.10)

W(T)) \/m Z n{|ga

This equation states that when performing a qubit drive centered on frequency w;",
all qubit states correlated to other photon number states will still receive a small
rotation dependent on the spectral content of the drive e. Eq. 5.10 allows us to

put an estimate on the amount of undesired qubit population produced when per-
forming one of these selective qubit rotations. We will define the ‘selectivity’ of the
qubit drive by the probability that all other occupied states |¢) = >, Cylg,n)
are in the qubit ground state |g) assuming the qubit started in the ground state.

This gives the relation for selectivity

= [(n, gle:()> =) $' (5.11)

n#m
For example, when we wish to perform a conditional qubit rotation on the m'
photon number split peak, we use a shaped qubit pulse €(t) = Ae=75t/2 where
0, is the spectral width of the qubit pulse and A = 4/8/ma,, is the amplitude

of the drive required to perform a qubit 7 rotation on the wy" transition. If we

use a 0,/21 = 800 kHz pulse (0, = 200 ns) for a system with a dispersive shift
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x/27 = 3 MHz, we will observe a selectivity between the m™ level and the (m41)™
level as S = (1 + %e_XQ/ 78)~1 > 99%. Therefore we can represent the operation with
the approximate result

Ry = |m) (m| ® Ryr + Y " |n) (n| ® 1 (5.12)

n#m

where |m) is the selected m'™ photon Fock state and &, is an induced photon-
dependent phase accumulation on all other Fock states. Ignoring or correcting for
this phase accumulation, we arrive at the ideal operation (Eq. 5.3). It is important
to note that this additional phase accumulation is photon number dependent. In
related work, we explore how a photon-number dependent phase accumulation can

also be utilized for cavity state manipulation [Heeres et al., 2015].

CONDITIONAL QUBIT ROTATIONS ON CAT STATES

For certain qubit-cavity states (Ch. 8), we will have a looser restriction on the spec-
tral width o, of our selective qubit pulse. In the qubit/cavity mapping sequence
(creating a superposition of coherent states, |3) and |—f)), we wish to perform the

ideal operation Rgm on a particular state:

R} (128, 9) +10,€)) — (|28) +|0)) @ |g) (5.13)

This requires a qubit 7 rotation on the |0) cavity state while being selective
against all other occupied Fock states |n) in the state [28) = Y > C,|n) =

_ 12812
€ 2

Yoo % |n). For this rotation, we can choose a Gaussian-shaped pulse
with o, = 4|8|*x/5 which gives a selectivity between the zero photon Fock state
and the displaced cavity state [28) as S = 00 |C, (1 + e~ 0*/78)~1 > 99%.
This allows us to perform qubit rotations selective on a particular coherent state

much faster than the strict photon-number selective operation (Eq. 5.3). This

speed-up is described and simulated in the theoretical proposal for deterministic
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cat state creation [Leghtas et al., 2013a].

For this conditional qubit operation, we can approximate the form of the in-
duced photon-dependent phase accumulation &, on a coherent state. For transitions
with large detunings from the drive frequency A,, = xn > o, the accumulated
phase &, will follow the AC stark relationship for slowly varying drive envelopes,

& = [e(t)*dt/A,. When 1/(2|3]) < 1, each Fock state |n) will acquire an ap-
proximate phase &, oc 1 — n/(8|3|%), a phase which is now proportional to the
mean number of photons n in the cavity. This affects the cavity state in two ways:
first, the photon independent term will result in a shift in phase for the coherent
state superposition, which can be calibrated by adjusting the relative phase of the
drive €; second, a photon-dependent term will result in a shift of the coherent state
which can be calibrated by adjusting the relative phase of the experiment’s rotat-
ing frame. Taking these calibrations into account, we can approximately achieve the
ideal description of the conditional qubit rotation described in Eq. 5.3 when per-

forming operations on cat states.

5.1.2 UNCONDITIONAL QUBIT ROTATIONS

One caveat with the fixed frequency qubits and fixed interaction in a dispersive
Hamiltonian is the difficulty in performing qubit rotations independent of the
cavity state. Since the qubit and cavity are coupled at all times with a disper-

sive interaction ya'a |e) (e|, any gate which takes a finite time will result in some
non-vanishing qubit/cavity entanglement. We wish to characterize and minimize
these errors for the particular Hilbert space size we want to access. We can rewrite
Eq. 5.5 in terms of Pauli spin operators o, and o,

H/h =Y {=x(n—m)Z +e(t)o,} In) (n]. (5.14)

We will approximate this interaction with a constant drive amplitude € for a time 7
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resulting in a block diagonal evolution operator

U(T) _ S_ig/hT

= Ua(7) |n) (n

=D eIt ) (n

= e |n) (n| (5.15)

2
where ¢, = eTy/1+ [%} , 0, = arctan (%), and oy, = cos (0,)o, +

sin (0,)o.. This allows us to write each photon-dependent operation explicitly as

Un(T) = e~ Pn0n
= cos(¢p) 1 + isin(p,)oy,
— [cos(n) + #sin(6a)] sin(6,) [, ) (2,
+ [cos(¢p,) — isin(¢,)] sin(6,,) |n, e) (n, €| (5.16)
+ sin(¢n ) cos(0)(In, €) (n, g| — |n, g) (n, e]).

Using this relation, we can estimate this operation’s ability to be independent of
all photon number states in a defined cavity Hilbert space size. In Ch. 8 as an ex-
ample, we apply an unconditional qubit 7 /2 rotation using a square pulse for time
7 = 4 ns. We can compare this operation to an ideal unconditional qubit rotation
Ry = to get an estimated gate fidelity F = | TI‘[R;%U(T)”Q greater than 0.96 for a
Hilbert space size ny.x = 20 photons. This operation will become increasingly inef-
fective for large numbers of photons which is a leading cause for infidelities in state
preparation and Wigner tomography. This can be corrected somewhat by moving
the qubit drive to a frequency wy;" = w, — nx for a cavity state with mean photon

number 7.
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5.1.3 CONDITIONAL CAVITY DISPLACEMENTS

The cavity transition frequency is dependent on the qubit state resulting in two
spectral peaks w? and w¢ representing the cavity transition frequency when the
qubit is in the |g) and |e) state respectively. Using Eq. 5.1, we can introduce a
drive on resonance with the w¢ transition resulting in the Hamiltonian (in the ro-

tating frame of the drive)
Hasive /T = (wg—w5) le) (| = x 19) (9] a'a + e(t)a’ + €(t)"a. (5.17)

In the same manner as the conditional qubit rotation, a cavity drive with a small
spectral width o, < x will be able to selectively drive a displacement D, con-
ditioned on the qubit in the excited state |e). This results in the approximate

qubit /cavity entangling operation
D¢ = 1® e |g) (9] + Dy ® |e) (e] (5.18)

where ¢ is an induced phase accumulated on |g) due to the AC stark effect. For ex-
ample, the conditional cavity displacement D¢ acting on a qubit/cavity product
state produces D¢{[0) @ (|g) + |e))} = €0, g) + |, €) resulting in an entangled
qubit /cavity state. This entangling operation could be used directly in the map-
ping sequence, but in practice is ineffective due to its long required gate time. A
selective displacement D¢ can also be achieved by combining a conditional cavity
phase shift C; with ordinary cavity displacements: Dy, = D_,/»CD, /o which is the

method we use in the qubit-cavity mapping procedure in chapter 8.

5.1.4 TUNCONDITIONAL CAVITY DISPLACEMENTS

We must also ensure that our standard cavity displacements D, will displace the
cavity state unconditioned on the qubit state. Unconditional cavity displacements

are used throughout for cavity state manipulation and tomography. Fortunately,
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their restriction is much looser than the unconditional qubit rotation. When driv-

ing on resonance with the w? cavity transition we have the driving Hamiltonian
Hesive/ B = (wy—w?) |e) {e| — x |e) {e| a’a + e(t)a’ + (t)*a. (5.19)

When the drive amplitude is much greater than the dispersive shift € > vy, the
displacement will behave approximately unconditional. For typical displacements

D.—1 with a 6 ns square pulse, € = 170 MHz > y ~ 3 MHz.

5.2 SPECTROSCOPIC CHARACTERIZATION OF THE SYSTEM

In order to perform these qubit and cavity operations, we must understand the
Hamiltonian parameters of our system. Spectroscopic techniques for determining
energy transitions of the quantum system has served as a powerful characterization
technique [Schuster et al., 2007; Paik et al., 2011]. Typically limited to determining
qubit Hamiltonian parameters, in this section we will explore how spectroscopy can

be used for characterizing cavity modes and detecting cavity-cavity interactions.

5.2.1 NUMBER SPLITTING IN THE STRONG-DISPERSIVE REGIME

Due to the dispersive interaction, the qubit mode will have a photon-number de-
pendent transition frequency for both cavity modes. We can cast Eq. 3.7 to repre-
sent the interaction between the qubit and two cavity modes (and taking a rotating

frame for both cavities)
Hyor /B = (wg — quaias - eragaq) le) (el (5.20)

where x,s and xg are the dispersive shifts for the storage and readout cavity
modes, respectively. We can inject coherent field (Eq. 2.10) into either cavity mode
using drives centered at their respective transition frequencies. By subsequently

performing spectroscopy on the qubit mode (whose pulse width 7 > x%g’ X;),
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Figure 5.3: Number-splitting spectroscopy. Number splitting experiments
can be performed for each mode of the two-cavity, single-qubit system. Photons are
injected into one of the two cavity modes before a qubit spectroscopy. The disper-
sive shifts for each of the two cavity modes, one we designate as storage (a) and the
other readout (b), differ in strength and results in a difference in qubit frequency
shift per photon.

we can view its frequency dependence on photon number. Shown in Fig. 5.3 is
spectroscopy of the qubit with photons in either of the two cavity modes. This
‘number-splitting’ experiment [Schuster et al., 2007] is the standard way to de-
termine the dispersive interaction strength y, but as we will investigate later, this

term can be determined in a time-resolved manner.

5.2.2 MULTI-PHOTON QUBIT TRANSITIONS

Qubit state spectroscopy can also be used in order to measure the anharmonicity or
Kerr of the transmon qubit. By measuring multi-photon transitions, we can probe
directly the energy spectrum of the qubit state. The resonant condition for driving

an n—photon transition will be dependent the strength of the anharmonicity:

— =W, —n— (5.21)

where wy,, is the multi-photon transition frequency and “* is the resonant condi-

tion for the spectroscopy drive.
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By applying a high power spectroscopic tone we can find both the transmon’s

first transition frequency fo; = 5% and the two-photon transition fo/2 = (“’42;0‘)

Comparing the measured transitions will let us determine the anharmonicity of the

qubit energy transitions K (Fig. 5.3).
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Figure 5.4: Multi-photon spectroscopy. By applying a high-power drive,
multi-photon transitions can become visible in spectroscopy. Due to the disparity
in energy levels of the qubit mode, the two-photon transition fy/2 will result in a
different transition frequency than the single photon fo;. This difference tells us the
strength of this anharmonicity K.

5.2.3 CAVITY STATE SPECTROSCOPY

Whereas qubit state spectroscopy can be performed by probing qubit transitions
and detecting the qubit excited state probability through a readout cavity. Stor-
age cavity spectroscopy must” be performed through an indirect measurement. In
order for our readout signal to be sensitive to the photon population in the stor-
age cavity, we will perform a conditional qubit rotation selective on the zero-photon
number state of the storage cavity mode. This will correlate the excited state of the
qubit to photon population in the storage cavity mode and provide readout sensi-
tivity to cavity population (Fig. 5.5). While this can be done on either the ‘read-

out’ or ‘storage’ cavity modes, we will focus here on the storage cavity state.

“A ‘cross-Kerr’ readout can in principle be employed for large, engineered cavity-cavity cou-
pling [Holland, 2015].
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Figure 5.5: Qubit-assisted cavity spectroscopy. By applying a selective tone
on the qubit transition, we can perform spectroscopy on the storage cavity. This
allows us to not only measure the storage transition frequency but can also let us
perform number-splitting experiments between the two cavity modes. Shown here
is storage cavity spectroscopy with increasing initial readout photon injections. We
also observe a small Stark-shift effect which we attribute to residual off-resonant
drive effects.

5.2.4 RESOLVING THE CAVITY CROSS- AND SELF-KERR

Cavity-cavity interactions such as the cross-Kerr can be measured by performing
spectroscopy on the cavity state. A long spectroscopy tone (7 > >_1<) is applied to
the cavity mode. The cavity excitation is then measured by mapping the cavity
population left in the ground state to the qubit using a photon number state selec-
tive 7 pulse RS’W. The 7 pulse on the qubit will be successful only when the cav-
ity is in the ground state after the spectroscopy pulse. This selective rotation can
be calibrated through standard power or time Rabi techniques. Cavity state spec-
troscopy in this manner can be used to detect cavity-cavity interactions. Similar
to the qubit-cavity number splitting experiment, we can probe the storage cavity
when a weak number of photons have been injected into the readout. According
to Eq. 3.10, a cross-Kerr interaction will exist between cavity modes. Spectroscopy
will show a shift in one cavity frequency due to excitations in the other (Fig. 5.3).
It is important to note that small injections of photons into the readout mode will

eventually ‘saturate’ the readout cavity as a detection device. This spectroscopy
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method only holds for a small number of injected readout photons.

Furthermore, spectroscopy on the cavity for a varying spectroscopy power can be
used to detect the cavity self-Kerr K, as shown in Fig. 5.6. For the lowest power
the cavity is only excited on the |0) — |1) transition at a frequency. As the power
is increased different transitions appear in the spectroscopy. These transitions are
multi-photon transitions from |0) to |n) with n = 2, 3. This separation gives the

Kerr nonlinearity K of the cavity.
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Figure 5.6: Cavity spectroscopy in the strong-Kerr limit. Cavity spec-
troscopy can be performed for varying spectroscopy power. The cavity excitation

is measured by mapping the population left in the ground state to the qubit using a
photon number state selective 7 pulse. For the lowest power (dark blue) the cavity
is only excited on the |0) — |1) transition. As the power is increased (cyan, green,
yellow, red) different transitions appear in the spectroscopy. These transitions are
n-photon transition from |0) to |n) with n = 1,2,3 labeled from the right peak

to left. The separation between the peaks is given by 0.5 K/27 = 163 kHz. The
dashed lines are fit to the data using a multi-peak Lorentzian function.

5.3 RAMSEY INTERFEROMETRY

The previous section focused on performing spectroscopy on the qubit-cavity sys-
tem in order to understand the parameters of the system. An alternative method is
to use a qubit superposition state as a ‘quantum meter’ [Brune et al., 1996, 1992]

in order to understand the qubit-cavity interactions in the system. While the previ-
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ous measurement depended on a photon-number dependent transition frequency for
the qubit mode, this experiment will have a stricter requirement on the linearity of

the number-split transitions (Eq. 5.1).

5.3.1 QUBIT-STATE REVIVALS

We utilize the dispersive shift x in order to create a qubit state-dependent phase
shift of the cavity state Cy where ® = x,,t. Using Ramsey interferometry, we can
characterize the qubit-cavity interaction by observing the precession of the qubit
state’s phase when interacting with a cavity state. Here, we can perform a Ramsey
experiment (See Fig. 5.7) for various times ¢ and an initial state [(0)) = |3, g),

which due to a dispersive Hamiltonian will result in

[U(t)) = Ry x Comy iRy x |8, 9)
_ 3 Ue)gl—lg)el) ,—ixastalale)(e] (le) (gl —Ig) (e]) 18, 4)

= 2((18) ~ 1874  lg) + (18) + 8¢~ ©]€))

where R = is a 7/2 rotation about the y-axis of the qubit Bloch sphere. This re-

2

sults in a qubit excited state probability P, as

P, = {1+ Re((g]3e)))

1 2 .
= 5{1 + elAPeosas)=1) o5 (| 512 sin(ygst)) }- (5.22)

A loss of contrast of the qubit excited state probability at each time ¢ for a Ram-
sey experiment is typically a signature of incoherent qubit dephasing in the sys-
tem. However, here, this apparent decay in coherence is proportional to e’%(wxqst)?,
and is in actuality a coherent precession of the qubit phase dependent on the cavity
state. The entanglement generated from the qubit-cavity system will result in an
apparent state mixture when observing only one component of the bipartite system.

From this coherent interaction, we should also expect to see a revival in the qubit
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Figure 5.7: Qubit state revival with Ramsey interferometry. Due to the
dispersive interaction, if coherent photons are in the cavity mode, the qubit will
experience an apparent photon-dephasing and subsequent revival. (a) The quan-
tum circuit diagram outlines the method to observe this effect. A displacement on
the cavity mode with an amplitude § will input a coherent state in the the cavity
mode. Now performing a Ramsey experiment by preparing the qubit on the Bloch
sphere equator, waiting for some amount of time, rotating the qubit state into the
Z-basis and performing a qubit readout will reveal this effect. (b) shows the qubit
state revival for displacements 5 = 0 (blue), 5 = 0.5 (green), 5 = 1.0 (yellow),
B = 1.5 (red) with a fit (black) taking into account qubit and cavity decoherence.
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state. This will occur at a time tyevivai = 27/X4s When the qubit and cavity have
disentangled. Shown in Fig. 5.7 is a Ramsey experiment for displacements Dg with
|B] = 0 to 2.5 and wait times t = 0 to 1 ps. This time-dependent method allows an
alternative measurement to confirm the dispersive shift measured in spectroscopy.
The overall reduction in revival visibility will be due to internal qubit dephasing.
Cavity photon decay will also begin to dominate at larger displacements. A shift in
the revival time can be observed due to higher-order interactions in the dispersive

Hamiltonian (Eq. 3.10) which we focus on in the next section.

5.3.2 DETECTING HIGHER-ORDER NONLINEAR TERMS

Before attempting to access higher photon Fock states of the cavity Hilbert space,
we must ensure that higher-order terms in our dispersive approximation will not
begin to dominate. For the dispersive Hamiltonian, we must determine the non-
linearity of the dispersive shift %aTzaQ le) (e| (Eq. 3.10) to confirm its interactions
are sufficiently weak in comparison to dispersive shift x,s. According to the expan-
sion of the dispersive Hamiltonian (see chapter 3), the dispersive shift x,saa |e) (e]
will contain a small non-linear dependence on photon number, x,.a'?a®|e) (e|. This
becomes more obvious at higher photon numbers n when ny;, becomes compara-
ble to x4s. Performing Ramsey interferometry shown in Fig. 5.8, we can observe the
qubit state revival with higher mean photon numbers, up to n = 25 photons . To
first order, the non-linearity in the dispersive shift will result in a small change in

the qubit state revival time t,cvival = . We use this measurement as a time-

2
XQS_|B‘2X;S
resolved method to compare y to x;, which for the measurement in Fig. 5.8 in a
ratio xi./Xgs = 3.6 X 1073. This is they typical ratio for the devices used during my

dissertation, where x,s ~ 3 MHz.
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Figure 5.8: By performing the Ramsey revival experiment shown in Section 5.3
for larger displacement amplitudes. We can observe the breakdown of the linear
dispersive shift. At higher photon numbers, the revival peak is observed to shift to
longer revival times, a result of an additional a?a term in the Hamiltonian. This
shift allows us to determine the limit of this dispersive approximation.

5.4 SUMMARY

This chapter has shown the flexibility of the dispersive Hamiltonian and its po-
tential to control and characterize the qubit-cavity system. With fixed-frequency
drives, we can attain both conditional and unconditional operations and use these
tools to understand the parameters of our system and its interactions. In the fol-
lowing chapter, we will discuss how we can use these operations in order to perform
cavity state tomography and outline its uses for diagnosing the manipulated quan-

tum system.
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Cavity state analysis and tomography

In this chapter, we will combine qubit-cavity operations in order to characterize
particular states in the cavity mode. More specifically, using the tools of condi-
tional qubit rotations and conditional cavity phase shifts, we will be able to map
cavity observables to the qubit and with subsequent qubit measurements, per-
form tomography on the cavity state. This ancillary action of the qubit has al-
ready proven an extremely useful resource of cavity state manipulation and detec-
tion [Deléglise et al., 2008; Hofheinz et al., 2009]. Here, we will explore our abil-
ity to measure both the cavity Q-function and Wigner function using the disper-

sive tools outlined. We will also demonstrate extensions of the tomography tech-
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niques in order to characterize the larger qubit-cavity system with both correlated

Q-functions and joint Wigner tomography of the system.

6.1 DISPLACEMENT CALIBRATION

We can perform two varieties of cavity state tomography by utilizing qubit/cavity
entangling operations, Cy and R} 4, with cavity displacements D,. Detecting the
zero-photon number probability po(a) for displaced states and displaced photon
number parity (P,), we are able to measure cuts of the cavity Q-function and
Wigner function, Fy(a) = 7Q(a) and (P,) = W (). By performing these tomog-
raphy measurements on a known state, the cavity vacuum state, we can calibrate
our displacement drive strength and normalize our readout signal (see Fig. 6.2).

A displaced cavity vacuum state will create a photon number probability distri-

bution:

e—\oe|2 ‘a‘2n.

pal@) = [ {n] Da|0)|* = (6.1)

n!
We observe that our readout signal follows this same distribution which we use to
calibrate our readout signal and scale our displacement amplitude. We also follow

irata

a similar scheme when measuring the mean photon parity P = e of a displaced

vacuum state:

(P(ct)) = Tx[PD, |0) (0| Di] = ¢~2F, (6.2)

From this, we see the expected Gaussian envelope associated with Wigner function
of the cavity vacuum state which we can also use to calibrate our displacement am-
plitude. One must be careful though when calibrating with (P(«)), as a thermal
state will follow this same envelope and may incorrectly skew displacement calibra-
tion. If a measured cavity population P, &~ 0.02 in experiment then a systematic

error in displacement calibration can occur dar/a = 0.02.
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Figure 6.1: Using conditional qubit rotations RQM, we can measure the photon
number probability P, of the cavity state. Shown here (a), is the circuit diagram
for detecting P, as a function of « and its corresponding simplified circuit. Resid-
ual cavity-cavity cross-talk (also known as the Cross-Kerr y,,.) will skew the read-
out signal for large displacements. This background signal can be removed by com-
paring to an additional experiment which is qubit state independent. Shown (b)
is the uncorrected signal for detecting Py (red) after various displacements and its
corresponding ‘control’ experiment (black). From these measurements, we can de-
duce P, (c: n =0, 1,2, 3,4, 5,6, 7 photons) Note that these measurements for
P, are measurements of the cuts of the generalized cavity Q-function of a vacuum
state.
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Figure 6.2: Using conditional cavity phase shifts C), we can measure the mean
photon parity (P,) of the cavity state. Shown here (a), are the circuit diagrams for
detecting (P, ), as a function of a. Residual cavity-cavity cross-talk will skew the
readout signal for large displacements. This background signal can be removed by
comparing to an additional experiment which is qubit state independent. Shown
in (b) is the uncorrected signal for detecting (P,) of various displacements and its
corresponding ‘correction’ experiment. From these measurements, we can deduce
(P,) (c) of a displaced vacuum state. Note that these measurements for (P,) show
cuts of the cavity Wigner function of a vacuum state.
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6.1.1 CAVITY-CAVITY CROSS TALK

The dispersive interaction between the storage and readout resonators, or cross-
Kerr ., causes a storage state dependent shift of the readout cavity. While this
could allow for direct cavity-cavity state detection this also means that the qubit
state cannot technically be read out independently of the state of the storage cav-
ity. In turn both storage and qubit modes will contribute to the readout signal. By
assuming that both modes contribute linearly we can perform control experiments
that allow us to remove this cavity-cavity cross talk. For Q-function tomography
we perform a control experiment where no conditional rotation R7 ; is performed,
revealing the background signal due to the cross-Kerr. For Wigner tomography,

we perform a control experiment which reverses the parity mapping sequence (i.e.
odd photon probability is mapped to the qubit |e) state instead of |g)) and in turn
allows us to distinguish between cavity cross-talk and the desired measurement ob-
servable. For more details on this cross-talk skewness see [Kirchmair et al., 2013;

Vlastakis et al., 2013; Leghtas et al., 2015].

6.2 Q-FUNCTION TOMOGRAPHY

Let us remind ourselves that the Q-function of the cavity mode can be represented
by the overlap of the cavity state p with a distribution of coherent states |«) writ-

ten as

1

™

Q(a) = — (alple) (6.3)

By measuring the probability of the cavity state to be a coherent state «, one can
begin to build up the Q-function distribution. We can rewrite the Q-function in a

more convenient form
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Q) = = (01DLpDal0) (64

where D, is a displacement by an amplitude a. This means that a Q-function mea-
surement can also be determined by measuring the overlap of a displaced cavity
state p, = D} pD, and the zero-photon number state |0). In order to measure

the zero-photon probability of the cavity state we can use the qubit as an ancil-
lary measurement system. By performing a conditional qubit rotation selective

on the zero-photon state, we correlate the qubit excited state with the photon-
probability statistics. A subsequent measurement allows a detection of the cavity

state (Fig. 6.3).
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Figure 6.3: Q-function tomography. (a) By measuring the overlap of the zero-
photon number state with the displaced cavity state Q(a) = £ (0|D},pD,|0) on can
measure the Q-function of a cavity state. Shown in (b), is tomography of a coher-
ent state |3) produced in the cavity mode.

The Q-function can serve as a powerful tool to characterize the cavity state. By
expressing the states overlap probability with a coherent state, we can understand
the apparent amplitude and phase characteristics of the state. Quantum states
that have well-defined amplitude and phase serve as states that are well suited for
the Q-function. However, as outlined in chapter 2, the Q-function can hide vari-
ous quantum mechanical effects such as quantum interference in a superposition of

states.
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6.2.1 CORRELATED Q-FUNCTION MEASUREMENTS

Using the qubit as an ancillary measurement device means that when performing
Q-function tomography, we are not simply measuring the cavity state |0) (0| but in
fact detecting the joint observable of the qubit-cavity state |0) (0] ® o,. For typical
Q-function tomography, we assume the qubit state has been properly initialized”

in the ground state |g) which allows us to trace over the qubit degree of freedom.
In fact, we can take advantage of this detection scheme to observe the effects of
qubit-cavity entanglement on the joint system. As shown in Fig. 6.4, we detect cor-
relations between the qubit and the cavity state by a joint QQ function tomography,

which we can define as

1
Qz(a) = ;Tr [chUzDa 10) (0] DU (6.5)
1 1
= % <07g| D;rupqcDoz |O,g> - % <07 €| DlpqcDa |07 €>

= PgQg)(g1(@) — PeQjey(el(@)

where pg. is the composite qubit-cavity state and p,, p. are the qubit ground, ex-
cited state probabilities (¢|pgc|g), (€|pqcle). This generalized Q-function is corre-
lated both to the overlap of the cavity state with a coherent state |«) as well as the
qubit observable o.. All positive values are Q-function measurements correlated
with the ground state of the qubit Qg () and all negative values are measure-
ments correlated with the excited state of the qubit Q) () (Fig. 6.4. We use this
feature in chapeter 8 in order to tune conditional cavity phase shifts when modified

by the effects of the cavity self-Kerr effect.

“Qubit state initialization is a source of detection error which we observe in chapter 7 and
mitigate in chapters 8 and 9.
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Figure 6.4: Correlated Q-function tomography. Using the qubit as an an-
cilla, we can observe correlations between the qubit and cavity states. We can
use this to diagnose the effects of qubit-cavity entanglement of the composite
state. Positive values correspond to the cavity correlated with the qubit ground
state Qg)(g () and negative values correspond to the cavity correlated with the
qubit excited state Qey(e|(c). Shown in (a-b) is the evolution of qubit-cavity state
[y = N (lg, B) + |e,e"®3)) under the dispersive interaction.

6.2.2 GENERALIZED Q-FUNCTION TOMOGRAPHY

While the Q-function technically does provide a complete representation of the cav-
ity state it will exponentially suppress certain features of the quantum state (see
chapter 2). Under experimental conditions, noisy measurements prevents a com-
plete state tomography. In order to combat this effect, we need to measure other
observables of the cavity mode. Beyond Wigner tomography which we will in-
troduce later in the chapter, we can alternatively extend Q-function tomography
methods.

While an element in the cavity Q-function specifies the overlap of a displaced
state p, = DTpD, with the zero-photon number state |0), we can alternatively
measure the overlap with other photon number states |n). We call this: generalized

Q-function tomography, which is given as

Qn(a) = <n|DlpDa|n> (6.6)
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By measuring each Q,(«) up to a cavity state truncation level Ny.y, the combina-

tion of generalized Q-functions will make up the cavity Wigner function

W (a) = (pD},PD,)

=> (=1)"(n|D}pDy|n)

=D (-1)"Qu(w)

As we will show in chapter 7, we can use the generalized Q-functions to not only

recreate the cavity Wigner function but reconstruct the cavity state density matrix

to infer the cavity’s quantum state.

6.3 WIGNER TOMOGRAPHY

Figure 6.5: Generalized Q-
functions. While the stan-
dard Husimi-Q function is
represented by the overlap of
the zero-photon number state
with the displaced cavity state
Q(a) = 1{0|D},pDa[0), this rep-
resentation can be extended to
higher photon number states.
The generalized Q-function
Qm(a) = % <m|DlpDa|m>

is shown on a measurement

of the cavity vacuum state |0)
with generalized Q-functions
Qo(a), Qi(a), Q2(a), Q3(a).
Notice that these genearlized Q-
functions will be equivalent to
standard Q-functions measur-
ing the 0, 1, 2, 3 photon Fock
states.

Wigner tomography of the cavity state can serve as a powerful representation of

the quantum state in the cavity mode. This distribution is real-valued and well-
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behaved, and more importantly can be directly measured using the dispersive cou-
pling between a qubit and cavity mode. The Wigner function can be redefined

(Eq. 2.26) as

W(a) = ; Tr[D! pD,,P] (6.8)

where D! pD, is the cavity state displaced by an amount « and P is the photon
number parity operator P = e™a'e Tn order to measure the photon-number parity
of the cavity state, we will again use the qubit as an ancillary detection device. We
will map photon number parity to the qubit state and perform a qubit state mea-
surement to learn about the photon statistics in the cavity mode. By performing

a Ramsey experiment with a conditional cavity phase shift as in chapter 5, we can

produce the unitary operation

—imalale)(e
U == R@%Cq):ﬂ.Rg’% = Rg’ge le)( IRQ

™
)

(6.9)

where U is the unitary to correlate cavity photon number parity with the qubit

state. We can rewrite U in a block diagonal form:

U=> Udn)(nl (6.10)
=Y Ryze ™R, = n) (n]
=Y Ry: {1<1+<;1>"> n Uzu—(;m)}Rg% In) (n]

= Y RysRyzln)(nl+ ) Ryzo.Rys|n)(n]

n even n odd
= Y Ryxln) (n[+ > 1|n)(n]
n even n odd

This unitary creates a conditional-NOT gate between the qubit state and the
even/odd subspace of the cavity mode. By mapping the photon number parity to

the qubit state using this method, we can perform Wigner tomography of the cav-
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ity mode (Fig. 6.6).

a) state  cavity b) T T T
prep  tomography HW(Oé) ,,,,, 2
cavity 2 : : : m

D] z 4.
£ op - (Lo

qubit /7\ - :
2 _2
| I | i

2 0 2

Re(a)

Figure 6.6: Wigner tomography. (a) The quantum circuit diagrams for map-

ping photon number parity to the qubit state. Using two qubit rotations and a con-
s

ditional cavity phase shift, photon number parity can be quickly (7 = ;) mapped.
By prepending a cavity displacement, we can map the displaced photon parity op-
erator P, = D,PD], to the qubit state. (b) Shown is a measured Wigner function
of a coherent state |3) where 3 = v/3. The benefits for measuring the Wigner func-
tion over the Q-function will be revealed in chapters 8,9.

6.3.1 JOINT WIGNER TOMOGRAPHY

In chapter 9, we take advantage of single-shot qubit state detection in order to re-
alize repeated measurements of the composite qubit-cavity system. This allows us
to measure both observables of the qubit and the cavity state separately which we
combine into a representation we call the joint Wigner functions.

The joint Wigner functions are similar to a two-qubit Pauli set where we report
correlations between the two halves of a bipartite system. In this case, we can re-
port the correlations between a Pauli observable of the qubit and the Wigner func-

tion of the cavity, which is given as

I%z%wﬂﬁ (6.11)

where P, is the displaced photon number parity operator and o; is a Pauli oper-
ator in the single qubit Pauli set {I, X, Y, Z}. These correlations will allow us

to represent the complete state of the qubit-cavity system. In these experimental
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Figure 6.7: Joint Wigner tomography. By performing repeated measure-
ments, we can measure correlations in the qubit-cavity system. (b) Using a sequen-
tial detection scheme (see chapter 9), we measure and compare observables between
the qubit and cavity. (b) Shown is joint-Wigner tomography of a product state of
the qubit-cavity system [¢0) = N (|g) — |e)) ® |8) where 3 = /3. Notice the lack
of correlations in the Wy () and Wy («) joint Wigner functions whereas negative
correlations are located in Wx () measurement.

implementations, we can correlate a qubit and cavity measurement by performing
sequential detection of the qubit state. Before the first measurement a qubit ob-
servable { X, Y, Z} is mapped to the qubit state. Before the second measurement
a cavity observable P, = D,PD] is mapped to the qubit. The comparison of these

two measurements produces a single value of the joint-Wigner function.

CALCULATING OBSERVABLES

We can represent the density matrix in the excitation number basis:
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Z Zpu ) (] @ [n) (m] (6.12)

where p}/" are elements of qublt /cavity density matrix and |é, j) is the qubit state
in the excitation basis and |n,m) is the cavity state in the excitation (photon num-
ber) basis. From a density operator, one can calculate an observable of the com-
bined system by determining the product of observables from each individual sys-

tem:

(AB) = Tr [ABy] (6.13)

where A, B are operators for the qubit and cavity respectively.

In the joint Wigner function, the qubit basis is the Pauli set o; = {I,0,,0,,0.}.
For the cavity mode, we choose the displaced photon parity operator P, = D,PD]
that corresponds to a single point in the cavity state Wigner function. For a trun-
cated Hilbert space (in this experiment N,,x = 12 ) and a displacement grid of
Omax,min = £3.4 with step size Ao = 0.085, this measured Wigner function repre-
sents an over-complete set of measurements for the cavity mode. The joint Wigner
function W;(«) = 2(0;P,) is constructed directly from experimental measurements.

A qubit operator A can be written in the Pauli basis A = ). A;0; where
A; = Tr[Ao;] and a bounded cavity observable (see [Cahill and Glauber, 1969] for
details) can be represented in the continuous-variable basis B = I [ B(a)P,d*a
where B(«) = Tr[BP,]. Finally, the composite qubit-cavity density matrix can be

written as:

p= WZ/M(Q)UiPad2O€ (6.14)

Note that for separable states p = p, ® p,, this relation can be split up into its

respective discrete and continuous components:
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1 2
P=3 ZZ: Tr(p,0:]0; @ 27 / ;Tl"[pcPa]Pa(FOé (6.15)

For any state p, we can write the mean value of an observable for the combined

system with the following relation:

(AB) = Tr [ABp]
=Tr Z / AiB(a)Wj(a’)al-ojPaPa/d204d2a’] (6.16)
1,J
Using the following operator rules Tr[o;0;] = &;; and Tr[P,Py] = 6*(a — ) we can

simplify Eq. 6.16:

(AB) =Y / A;B()Wi(a)da (6.17)
The overlap integral used in this calculation is similar to descriptions of the stan-

dard Wigner function [Cahill and Glauber, 1969; Haroche and Raimond, 2006].

6.4 CAVITY STATE RECONSTRUCTION

Using the Wigner and Q-functions, one may also want to reconstruct the density
matrix of the measured cavity state. The Wigner function is related to the cavity
density matrix by the combination of displacement operators D, and photon num-

ber parity P as

W(a) = %Tr[DLpDaP} (6.18)

where p is the cavity state density matrix. This can be rearranged into a linear

equation by
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W(a) = ;Tr[DaPDLp}
= Tr[M(a)p]
= Z M;ji(a)pij

where M (a) = D,PD] such that M;;(a) and p;; are elements in matrices M ()
and p. This linear relation can be inverted using least squares regression to deter-
mine each element of p;; from W (a). This regression can be performed under the
constraint that p is normalized (Tr[p] = 1), positive semi-definite, and truncated
at nmax photons. See chapter 8 for a comparison between a measured and recon-

structed Wigner function of the cat state reported.

6.5 SUMMARY

This chapter has shown how qubit-cavity entangling operations can be used to di-
agnose the state of the composite system. Both Q- and Wigner function tomogra-
phy are powerful tools for characterizing the cavity state. In the following chap-
ters, we will use these diagnostic tools to understand the effects of particular qubit-
cavity interactions and understand the quantum states we can manipulate in this
system. Representing the cavity state in terms of continuous-variables provides a

unique intuition for the quantum states produced.
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Coherent state revivals due to the Kerr

effect

Photons are generally considered to have only very weak interactions with each
other and their environment. This is a leading reason for their use as quantum
communication and information processing resource. However, to create and ma-
nipulate non-classical states of light, a controllable non-linear interaction must be
achieved at the single-photon level. One such approach is to create a direct photon-
photon interaction known as the self-Kerr effect [Gerry and Knight, 2005]. Using a

two-cavity circuit QED architecture, we engineer an artificial Kerr medium which
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enters this single-photon regime and allows the observation of new quantum effects
on microwave photons. This investigation follows the thought-experiment proposed
by Yurke and Stoler [Yurke and Stoler, 1986] in which the collapse and revival of a
coherent state can be observed. This time evolution is a consequence of the quan-
tization of the microwave field in the cavity and the nonlinear interaction between
individual photons and results in the production of multi-component coherent state
superpositions (cat states). We will outline in this chapter our investigation of the
self-Kerr effect on a cavity mode and describe measurements of the Q-function and

its generalization (Ch. 6) to confirm the properties of these transient states.

7.1 SINGLE-PHOTON KERR REGIME

A Kerr medium denotes a material whose refractive index depends on the inten-
sity of an applied light field. This causes any impinging light to acquire a phase
shift ¢xerr = K IT where [ is the intensity of light, 7 the interaction time, and K
the Kerr constant. The Kerr effect has been widely considered an important re-
source for nonlinear quantum optics and has been used to generate quadrature and
amplitude squeezed states [Slusher et al., 1985] and ultra-fast pulses [Fisher et al.,
1969]. For microwave circuits, the direct analog of the Kerr effect occurs from the
nonlinear inductance of the Josephson junction [Nigg et al., 2012; Bourassa et al.,
2012]. In traveling waves, this effect can be recreated with the use of Josephson
parametric amplifiers [Bergeal et al., 2010; Vijay et al., 2009]. However, in both the
microwave and optical domains, most experiments use the Kerr nonlinearity in this
semi-classical regime, where the quantization of light does not play a crucial role.
The Kerr effect for a quantized mode with frequency w,. can be described by the

Hamiltonian

K
H = hw,a'a — hEaTQaZ (7.1)
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where K is the Kerr shift per photon [Haroche and Raimond, 2006; Bourassa et al.,
2012]. To observe this behavior, the Kerr effect must be made much larger than

the cavity’s single photon decay rate k4 and could allow the realization of quantum
logic operations [Milburn, 1989], continuous variable quantum information proto-
cols [Braunstein and Van Loock, 2005], or QND measurements of photons [Grangier
et al., 1998]. By designing a circuit QED experiment which puts us in this single-
photon Kerr regime, we can begin to see the interesting quantum mechanical effects

that result from this Kerr Hamiltonian.

7.1.1 COHERENT STATE REVIVAL

The result of Eq. 7.1 gives a photon-photon dependent shift on the resonator mode,

which can produce interesting effects on a stored coherent state |3). If we change to

i(ws—g)aTat

a rotating frame RHR' where R = e~ , we can write the modified Hamil-

tonian as Hye/h = —%(aTa)Q. With this interaction, a coherent state will evolve

. _inerrt
under a unitary U(t) =e” »  as

(1)) = U(t) 18) (7.2)
= ez (@) |B)

1812 Z B ka2t | >
pmnd 6_ —€ 2 n).
— /!

With the state written in the Fock state basis |n), we can see that for short times,

the nonlinear phase evolution |3(t)) ~ |Be’?xer(®)is closely approximated by a ro-
tation with angle ¢ger = K|S|*t (see Fig. 7.1). Due to the n* dependence for
each Fock state component, however, we expect a phase collapse for larger times
t. When the width of the photon distribution leads to a spread of phase shifts of
approximately 7, a collapse occurs at a time Ty, = Mﬁ Finally, if we note that
at a time Ty, = 22 the unitary U(Tyey) = eimala)® — (_1)@a)® — (_1)ala  Thig

produces the state [1)(Trey)) = |—0), a revived coherent state with opposite phase.
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Even though the state undergoes a phase collapse, this unitary operation allows
the eventual revival of the state, a signature of a coherent operation on the cavity

mode.

T
0,1,2,3 \ K

3
I

Y
Y
Y
A 4
4
A
Y
Y

Figure 7.1: Kerr evolution diagram. The intuition behind a coherent state

|B) = >, cn|n) evolving under a self-Kerr interaction is that each Fock state com-
ponent |n) will attain a photon number dependent phase. A state may initially be
created such that each component ¢, = |c,|e*" has an equivalent phase ¢, = 0.
Shown in (a) is a Q-function diagram for a coherent state and its corresponding
schematic illustrating the phase of each vector ¢,. Under the Kerr interaction, how-
ever, each component will gain a phase ¢, = n?Kt and the coherent state will begin
to dephase (b). If we wait for particular times, then groups of each Fock state com-
ponent will align. In particular, for a time ¢ = %, all odd and even components will
align. This creates a superposition of two coherent states with opposite phases (c).

Furthermore, for particular waiting times, namely for times t = L= we can rep-
resent the evolving state as a superposition of coherent states
2q—12q—1
Trev Zk k— p tpm
(L mg;}; 718" (7.3)

Trev

When the system has evolved for a time , a superposition of ¢ different coherent
states is produced, each lying symmetrically on a circle in phase space. Eq. 7.3 is
derived in appendix B. Let us look at the revival time where ¢ = 2, producing a

two component cat state:
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Figure 7.2: Observing the Kerr effect. In order to visualize the effect of a
Kerr interaction, we can observe a coherent state’s evolution using Q-function to-
mography. First the cavity is prepared into a coherent state |3). We then allow the

iHyerrt

system to evolve for an amount of time ¢ under the Kerr interaction U(t) = e~ =
Finally we perform Q-function tomography by mapping a cavity observable to the
qubit state before a subsequent qubit state measurement. We can perform this ex-
periment at different times ¢ in order to visualize this coherent evolution.

1 .
) = E(!@ +i|=p)). (7.4)

Notice here, that this and all subsequent states produced from a coherent state
evolving under the Kerr interaction will not have a definite photon number par-

ity. This is due to the fact that the intial photon distribution originated as a coher-
ent state with a mean photon number parity (5|P|3) ~ 0 and this is not affected

throughout the entire evolution.

7.2 IMPLEMENTATION

We experimentally realize a highly coherent Kerr medium by coupling a supercon-
ducting vertical transmon qubit to two waveguide cavities as described in Ch. 4.
In this experiment, both cavities have a total quality factor of ~ 1 million, limited
by internal losses, corresponding to a single photon decay rate rg/2m = 10 kHz.
The observed transition frequency of the qubit is w,/27m = 7.85 GHz and its anhar-
monicity is K,/2m = (wy' — w,?)/2m = 73.4 MHz. Notice that this anharmonicity

is lower than typical transmon designs (~ 250 MHz), due to experimental design

that maximizes the cavity self-Kerr K. The energy relaxation time of the qubit is
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Figure 7.3: Coherent state collapse and revival. Shown are the measured
and simulated states for a coherent state that evolves under a Kerr interaction.
Each frame shows the coherent state at a different time due to this effect. The
state is prepared in a coherent state |3) with |3|*> = 4 photons. Each frame shows
the state expressed through Q-function tomography where the coherent state un-
dergoes an apparent dephasing and revival. Each frame is scaled by a factor A to
clearly represent the state through its evolution. Theory frames show a simula-
tion for the coherent state evolution with the effects of a cavity state decay rate k.
Both theory and experiment show the effects of photon loss by a hazy ring around
each of the revived coherent states in the final frame.

Ty = 10 ps with a Ramsey time T3 = 8 us. The storage cavity frequency is chosen
to be off-resonant with the qubit mode w,/2m = 9.27 GHz. Using the conditional

operations described in Ch. 6, the qubit is used to interrogate the state of the stor-
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age cavity [Johnson et al., 2010] and the other cavity is used to read out the state
(using a qubit state detection following [Reed et al., 2010]).

As described in Ch. 4, the circuit analysis of the distributed elements can be per-
formed using finite-element calculations for the system geometry (HFSS simula-
tions) and with black-box circuit quantization, [Nigg et al., 2012] we can derive
dressed frequencies, couplings, and anharmonicities with good relative accuracy
(Ch. 4). The coupling of the qubit to the storage resonator, acting in the strong

dispersive limit of circuit QED, is well described by the Hamiltonian

H K .o
- = wy le) (e] + (ws — x) a'a le) (e] — 5CLT a’. (7.5)

In this description, we completely omit the readout cavity as it is only used for
reading out the state of the qubit and otherwise stays in its ground state. The sec-
ond term in Eq. 7.5 is the dispersive shift x /27 = 9.4 MHz of the qubit transition
frequency. The last term describes the cavity as an anharmonic oscillator with a
dressed resonance frequency ws and a nonlinearity K/2m = 325 kHz which is ap-
proximately K ~ x*/4K, [Nigg et al., 2012]. Notice here that the Kerr is much
greater than the photon decay rate in the cavity K > 30x; making this an ideal

system for studying these photon-photon interactions.

7.3 RESULTS

7.3.1 VISUALIZATION OF THE STATE COLLAPSE AND REVIVAL

In order to visualize and understand the quantum system of the cavity mode, we
perform Q-function tomography using conditional qubit rotations (Ch. 6). With
this method, we can follow the time evolution of a coherent state in the presence
of the Kerr effect. In the experiment, we prepare a coherent state with an average

photon number |3]*> = i = 4. We then measure Qg for different delays between the
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preparation and analysis pulses (Fig. 7.2). A comparison of the theoretical evolu-
tion of the coherent state and the measured evolution can be seen in Fig. 7.3. The
time evolution of the state is described by considering the action of the Kerr Hamil-
tonian Hke, on a coherent state |5) in the cavity [Yurke and Stoler, 1986]. We ob-
serve the onset of this phase rotation as can be seen in the first frame of Fig. 7.3
which is taken at the minimal waiting time of 15 ns between the two displacement
pulses. Due to this waiting time, the state rotates under the influence of the Kerr
effect from 3 = 2 to BelPkerr = 2.0e13. For longer times, we can see how the state
rotates further and begins its apparent dephasing. This spreading can be under-
stood in a semi-classical picture where each Fock state component making up the
coherent state further evolve with different angular velocities given by the n? de-
pendence of the Kerr effect. For our system the complete phase collapse occurs at
Tiop = 385 ns.

After the complete phase collapse, structure re-emerges in the form of superposi-
tions of coherent states at times (see Fig. 7.3). At the time T}, we get a complete
state revival to a coherent state with opposite phase |—f3). For times t = Ty, /q,
with an integer ¢ > 1, we observe the generation of multi-component cat states. For
q = 2 we get the two-component Schrodinger cat state and for shorter waiting times
(¢ = 3, 4) we see the generation of three and four component cat states.

In the final frame of Fig. 7.3, we see a coherent state revival at T,., = 3065 ns.
At this time we get a state with amplitude |5] = 1.78 which corresponds to the
expected decay of the resonator state from the original amplitude of |5 = 2.

The simulations are solved using a master equation formalism with decay rate
k/2m = 10 kHz of the resonator and introducing a small detuning of 5 kHz of the
drive from the resonator frequency ws. The hazy ring that can be seen in theory
and experiment is the result of cavity decay during this evolution. A movie of the

evolution of this state from 0 - 6.05 us over 50 frames, including two revivals, is
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available in [Kirchmair et al., 2013].

SIS

____________________________________

Figure 7.4: In order to reconstruct the cavity state, we perform generalized Q-
function tomography @,(«) forn = 0 — 8 on particular states of interest.
Shown here are measurements of the generalized Q-function for wait times corre-
sponding to t ~ (12—;; for ¢ = 2, 3, 4. Each wait time corresponds to a generated
multi-component cat with ¢ different components. All tomograms are normalized to
A = e " such that interesting features are made apparent. Notice the interference
fringes that occur for generalized Q-functions ¢ > 0; These oscillations are the sig-
nature of a quantum superposition in the system. By combining these generalized
tomograms we can reconstruct the cavity state Wigner function.

7.3.2 WIGNER TOMOGRAPHY OF QUANTUM RESONATOR STATES

To get a more quantitative comparison of experiment and theory we want to in-
fer the precise quantum state of the resonator. Here, we use a modified technique,
based on earlier work with ion traps and microwave circuits [Hofheinz et al., 2009;
Leibfried et al., 1996], to determine the density matrix of the resonator using the
generalized Q-function (Ch. 6). By directly measuring @, () we can perform a

reconstruction of the density matrix of the resonator with a least square fit to
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each (), with a priori assumptions (such as photon truncation and positive semi-
definiteness). Using the density matrix, we then calculate and plot the Wigner
function to show the interference fringes, highlighting the quantum features of the
resonator state. An alternative method could have been to perform a direct mea-
surement of the cavity Wigner function using Ramsey interferometry. However this
method would be limited in this experiment due to the large strength of the disper-

sive interaction x in this implementation.
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Figure 7.5: Wigner function of quantum states due to the Kerr effect.
Shown is the theory and experimentally derived Wigner functions for wait times
corresponding to t = ;—; for ¢ = 2 (a), 3 (b), 4 (¢). The measured Wigner func-
tions are determined by a density matrix reconstruction of the cavity mode using
the measured generalized Q-functions.

In Fig. 7.5, we show a comparison of the experimentally obtained Wigner func-

tions to those simulated at three different times during the state evolution. The
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times (t = 27 /2K,27/3K,2r/4K) were selected such that the Wigner func-

tions correspond to two, three and four-component cat states. The simulation

was again done by solving a master equation which includes the decay of the cav-
ity. The fidelity F© = (Wiq| pm |¥iq) of the measured state p,, compared to an
ideal n-component cat state |¥q), consisting of coherent states with amplitude

18] = 2e7/2is F, = 0.71,F3 = 0.70,F, = 0.71 for the two, three, and four-
component cats respectively. The Wigner functions show clear interference fringes
which demonstrates that the evolution is indeed coherent and well described by the
interaction described in Eq. 7.1, up to the decay of the cavity. The main reduction
in fidelity of these reconstructed states is due to the spurious excited state popula-

tion of the qubit and the decay of the resonator.

7.4 SUMMARY

In this chapter, we have shown that using a two-cavity circuit QED design we can
engineer strong photon-photon interactions in a cavity, entering the single-photon
Kerr regime where K >> k. We are able to observe the collapse and revival of

a coherent state due to the intensity-dependent dispersion between Fock states in
the cavity. The good agreement between the theory and the experiment demon-
strates the accurate understanding of this system. It also confirms our ability to
predict higher-order couplings for quantum circuit design which is a necessary in-
gredient for understanding the behavior of large circuit QED systems. Furthermore,
we have measured the evolution of a coherent state in a Kerr medium at the single
photon level and shown an experimental method for creating and measuring multi-
component Schrodinger cat states. In subsequent chapters, we will explore methods

beyond the Kerr effect in order to manipulate the cavity state.
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Deterministic qubit-to-cavity state

mapping

Cavity resonators serve as an important resource for quantum information process-
ing. Typically, a cavity serves as an auxiliary system for both qubit state detection
and qubit protection from a lossy environmental factors. In this chapter, we will
explore quantum states in the cavity as a primary resource to store and manipulate
quantum information.

Resonators create the potential to store multiple quantum bits with a single

physical device. Due to the large parameter space of a resonator’s quantum state
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there are a variety of ways to encode a quantum bit into this system. Possibly the
most obvious is to use the discrete variable encoding of photon number states.
Alternatively, qubit encoding can be done in a continuous variable way using
squeezed state or coherent state superpositions [Gottesman et al., 2001; Braun-
stein and Van Loock, 2005]. Experimental demonstrations creating non-trivial
quantum states in a cavity include using resonant interactions between a super-
conducting qubit and resonator to achieve qubit-photon swapping [Hofheinz et al.,
2009; Mariantoni et al., 2011; LinPeng et al., 2013]. However, no implementation
has shown the ability to deterministically map an unknown qubit state into a su-
perposition of two coherent states in a cavity.

In this chapter, we will combine the conditional qubit-photon logic demonstrated
in previous chapters using the dispersive Hamiltonian to map an arbitrary qubit
state into a superposition of coherent states, cat states, in a cavity. This qubit-to-
cavity state mapping (QCmap) is independent of the desired amplitude and phase
of the resulting coherent states allowing us to create cat states of various sizes. We
extend this protocol to create three and four-component cat states revealing the
versatility of this scheme. This encoding, similar to phase-shift keying for digital
modulation, allows redundant encoding in the cavity mode and potentially quan-
tum error correction [Leghtas et al., 2013b]. Finally, we will also demonstrate a
proof-of-principle experiment using a cat state to achieve sub-Heisenberg phase sen-
sitivity [Caves and Shaji, 2010], a prospective application for quantum sensing with
microwave photons. These experiments demonstrate that resonators truly have the
potential to act as a primary player in quantum information processing for storage,

logic, and error correction.
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8.1 CAT-STATE ENCODED QUBIT

A physical qubit requires the ability to encode a quantum bit of information into
an arbitrary superposition of two orthogonal states. The simplest representation of
this condition is the two-level system. This discrete variable encoding is the most
prevalent form used in experiments today and can be achieved in a wide variety of
physical implementations, including polarization of coherent light, occupation of ex-
citations or particles, and energy levels in atomic structure. Alternatively, quantum
information can be encoded in continuous quantum variables such as the ampli-
tude and phase of an electromagnetic signal. Physical examples of this encoding
can include both squeezed and coherent states in either stationary and propagating
modes [Gottesman et al., 2001; Braunstein and Van Loock, 2005; Hatridge et al.,
2013; Eichler et al., 2012]. Here, we will focus on encoding quantum bits into coher-
ent state superpositions in a cavity.

A quantum bit described by two states |0) ,|1) can be encoded into the ampli-
tude and phase of two coherent states. For simplicity let us focus on coherent states

with opposite phase |3),|—/5). This encoding can be represented as:

[¥) = 5 {cos(5) 18) + sin(5)e™ |-B) } (8.1)

where 0, ¢ are the angles describing the qubit state on the qubit Bloch sphere and

the N' = /1 +sin(f) cos(¢)e~2A is the normalization constant of the coherent
state superposition. For large displacements the normalization factor approaches
unity, N' — 1. This state can be represented on a qubit state Bloch sphere where
the poles are expressed by coherent states |3) and |—3) which make up the +Z.
and —Z, eigenstates of the encoded qubit™. In this terminology, the eigenstates

for X, and Y, encoded qubit axes are equal superpositions of coherent states, cat

*An alternative basis can be chosen such that even and odd cat state compose the +Z eigen-
states [Mirrahimi et al., 2014]
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Figure 8.1: Cat-state qubit. We
can use a Bloch sphere representation
of a cat state encoded qubit. Here,
we have denoted the Z eigenstates of
the qubit state as the coherent states
B, —0. The equator of the Bloch
sphere corresponds to cat states.
Shown are illustrations of the Wigner
functions for the +X,., +Y., +Z, eigen-
states of the encoded state. Repro-
duced from [Vlastakis et al., 2015].

states:

[£Z:) = 1£8)  |£Xe) = w5 (B £1-8) £V =558 £51-8) (82)

The normalization N'(3) reveals that each encoded state is dependent on the am-
plitude of the coherent state |5). In fact this amplitude determines the overlap or
‘nonorthogonality’ of the coherent state superposition. The state overlap for two

coherent states with opposite phases follows as:

(8] — B) = e 278, (8.3)

This overlap leads to an error in the qubit state encoding, but is fortunately expo-
nentially suppressed with displacement amplitude. By encoding in coherent states

with sufficient separation this error can be ignored.

MAXIMUM ENTROPY

To further visualize the error due to quasi-orthogonality, we can look at the infor-
mation carrying-capacity of a superposition of coherent states. Using the definition
for Shannon entropy of quantum states, the encoded state’s maximum entropy goes

as:

S==> njlog,n;. (84)
J
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where 7; is the weight of each eigenstate in a completely mixed state p =
>-;Mj 13) (- A mixture of two coherent states can be represented by the state
p = 2(|8) (8] + |-B) (—B]). We can diagonalize p into two orthogonal states: the

even and odd cat states |E),|O).

p =351+ E) (B +5(1— ) |0) (O] (8.5)

We can in turn write the Shannon entropy for a mixture of coherent state superpo-

sitions as:

]_ + 672|ﬁ|2
2

S = 0gs

1+ 20812 1 — e28P 1 — 28
— 1 . .
9 9 082 9 (8.6)

This is the maximum entropy of the cat state encoded qubit and follows the limit-
ing conditions we expect, Sg_,o = 0 and Sz, = 1. The state has no information
carrying capacity at 5 = 0 and can hold a single bit of information as 5 — oo (see
Fig. 8.2). The coherent state superposition rapidly approaches a single quantum bit

as its amplitude increases (at 5 =1, S = 0.99).

a) b) | o 4

P _ 10 i 1.0

0.8y 0.8

d S0.6f [ 0.6 T

Q0.4f [ttt 404 3

O+0x gaff s
|—B) 1) Mooy 40.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Displacement (3

Figure 8.2: Cat-state size. We wish to encode a quantum bit into a superpo-
sition of two coherent states with opposite phase |3), |—f3). These states are not
perfectly orthogonal (8|—/3) #= 0 which means some information will be lost with
this encoding. (a) We define the size of a cat state as the square distance between
the two states in phase space d? = (3 — —3)? which will determine the overlap be-
tween the superimposed states. (b) Shown is the maximum entropy of a cat state
qubit dependent on the displacement amplitude 3. Note that this maximum en-
tropy S quickly approaches 1 with increasing amplitudes and is closely related to

the square of the state overlap and the cat state size: S~1—|(8|-8)]*=1— e,
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CAT STATE SIZE

Finally, in this chapter we wish to express the ‘size’ of a quantum state. We can
look towards the action between the two superimposed states |5) ,|—/3). We define
a distance between these two coherent states d = 23 and the size of a cat state as
d? [Deléglise et al., 2008]. The size d? for a superposition of coherent states is in
photons and is related to orthogonality of the coherent states | (3|—3) |2 = e~".
The cat state size describes the rate at which the superposition state decoheres.
The fragility of a cat state and its dependence on size can be illustrated by deco-

herence of a density matrix p for an initial ‘even’ cat state under single photon de-

cay:

p(t) = 3 [1B()) (B + |=B®) (~BO)] + e 2OPE= (| 5(1)) (B(1)] + |8(8)) (~B(2)])
(8.7)

where ((t) = ﬁe_%“t and « is the single photon cavity decay rate. The off diagonal
components of the state density matrix decays in amplitude at an approximate rate
e_%d%t. This reduction in amplitude is precisely equivalent to the expected loss of
fringe contrast for the cat state Wigner function.

Furthermore, notice that cat state size is not necessarily dependent on the total
number of photons in the cavity mode. Cat states that are not created symmet-
rically within its phase space could potentially have a much greater mean photon

number than its ‘size’. The mean photon number of the mode does not necessarily

correspond to the rate of decoherence or the fragility of the superposition state.

8.2 MAPPING PROTOCOL

In this experiment, we explore our ability to map an arbitrary qubit state onto a
cat state, thereby initializing a ‘cat state encoded qubit’. By combining a condi-

tional cavity phase shift with a conditional qubit rotation described in Ch. 5, we
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sequentially entangle then disentangle the qubit and cavity to map a qubit state
to a superposition of coherent states. Following the sequence outlined in Fig. 8.3,
we start with an unentangled qubit/cavity state |¢) = [8) @ (|lg) + |e)) (dis-
regarding normalization) where |3) is a coherent state. Performing a conditional
cavity 7 phase shift on the initialized state creates an entangled qubit-cavity state
|Yn) = Cr|to) = |B,9) + |—B,€). We can unconditionally displace this state to
obtain |¢) = Dgl1) = [28,9) + |0,e). At this point, we can apply a qubit 7
rotation conditional on the cavity vacuum state |0) which produces the unentan-
gled cat state |¢)3) ~ RY |2) = (|28) +|0)) ® |g). Due to the non-orthogonality
of coherent states, this operation will leave some remaining entanglement which
rapidly decreases with cat state size and can be neglected compared to other ex-
perimental imperfections. An additional displacement results in the final state
|Ya) = D_g|¢s3) = (|5) + |—F)) ® |g). This procedure can be generalized to any

arbitrary initial qubit state and cavity phase which maps as
0) ® {cos(4)[g) +sin(2)e )} — {cos(2) |8) + sin(De[86®)} @ ]g) (8.9
where 6 and ¢ are parameters of the initial qubit state and when the superimposed

coherent states are sufficiently orthogonal |(3|5"®)|> < 1.

8.3 IMPLEMENTATION

We use a two-cavity single qubit architecture, in order to create and analyze the
qubit-to-cavity mapping procedure. For this experiment we wish to have a qubit-
cavity interaction which is much stronger than single-photon decay rates. In this
section, we will outline the physical parameters for this experiment as well as cali-

bration techniques in order to achieve this mapping protocol.
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8.3.1 EXPERIMENTAL PARAMETERS

For this experiment, we use two waveguide cavity resonators coupled to a trans-

mon qubit (see Ch. 4). A storage cavity is used for photon state manipulation

and preparation with a transition frequency 5= = 8.18 GHz and decay rate
5 = 7.2kHz = m (limited by internal losses). A second cavity is used for
qubit state detection with transition frequency 5= = 9.36 GHz and decay rate,

5= = 330kHz = limited by output coupling for increased readout fi-

s (
delity). Both cavities are coupled to a vertical transmon qubit with transition fre-
quency 5¢ = 7.46 GHz and decay rate ;- = 36kHz = m (limited by internal
losses). This system creates a dispersive interaction between the qubit and storage
cavity mode resulting in a state-dependent frequency shift % = 2.4 MHz. We in-
dependently measure (see Ch. 5) higher-order non-linear terms K and x;, allowing

us to put a limit on the maximum accessible photon number for this experiment:

N <K Nmax = Min|Xgs /X0, = 560, Xgs/ K5 = 650, x4/ ks = 330].

8.3.2 TUNING PROTOCOL

Besides the standard tune-up procedure for single qubit [Reed, 2013; Chow, 2010]
and cavity gates [Ch. 5], we must take into account the effects of the cavity self-
Kerr and unwanted stark shifts when performing conditional rotations. The
QCmap protocol takes a qubit state into a superposition of two particular coher-
ent states; these changes in cavity frequency result in deterministic (and thus cor-
rectable) shifts in phase. In order to determine and correct for these shifts, we per-
form a tuning procedure for every conditional cavity phase operation used.

If we desire to create (and keep) a state at a coherent displacement |—/) by us-
ing the conditional cavity phase shift Cy, we can observe the state’s precession in
cavity phase by measuring a single point in the Q-function @ = («|p|a). If we pick

this Q-function point to be a = ||, then we can measure the phase between the
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displaced state |3¢'®) and the Q-function point o = 3. The value of this Q-function
will then follow:

Q(B) = [(B|Be)|* (8.9)

_ 6—2|B\2(1—cos<1>)

where @ is the angle between the displaced state and the point in the Q-function
measurement. For the conditional cavity phase shift, the operation will change the
phase ® with time proportional to the dispersive shift x,s. Shown in Fig. 8.3 is the
measurement of a coherent state which is evolving to the state of |—f3). We perform
this detection at different wait times in order to calibrate the precise moment that
this coherent state has gained opposite phase. With a time resolution of 1 ns, we
can align the correct phase up to 0.015 radians.

The Q-function of a cavity state is Q(«) = (a|p|a) where p is the cavity state
density matrix and can be a useful tool for detecting the population and phase of
a cavity state. Alternatively, we can measure the correlated Q-function (see Ch. 6)
which we use here to illustrate qubit/cavity correlations. Fig. 8.3 shows each step
in the QCmap protocol beginning with the state, |¢) = —={|0) @ (|g) + |e))} and

2

mapping to the state, |¢0) = N{(|B) + |=B)) ® |g)} where |3| = v/7T and N ~ \/Lg

8.3.3 EXPERIMENT INITIALIZATION

The experiments shown here rely on the assumption that the qubit/cavity sys-
tem is initialized in the ground state |0, g). If there exists some probability of
initial residual qubit excitation P,, techniques such as post-selection can be per-
formed to remove these systematic preparation errors. In this experiment, we can
realize a similar operation by applying a conditional cavity displacement tone

Dj on an initial mixed state p = [0) (0] ® {Py|g) (9| + P le) (e|} to produce

ngeT = P,10,9)(0,g| + P.|B,e) (B, e|. For this experiment, we use a weak tone
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Figure 8.3: Qubit-to-cavity mapping steps.. (a) The protocol for perform-
ing a qubit-to-cavity state mapping requires cavity displacements and conditional
qubit-cavity operations. The quantum circuit shows the process to initialize a qubit
state and perform the mapping procedure. (b) We can observe each step in this
mapping process by measuring the generalized Q-function of the qubit-cavity state.
Colors (blue, red, pink) correspond to the correlations between the cavity and the
qubit ground, excited and superposition states respectively. Q-function tomography
allows us to calibrate each of these operations through the mapping protocol.

with a drive strength /27 = 990 kHz and duration 2.5us to initialize each exper-
iment which produces an estimated displaced state |3, e) where |5| ~ 17 for any
residual qubit excitation. This operation ideally correlates any initial qubit excita-
tion with photons far outside of our measurable Hilbert space (for this experiment,
our tomography displacements do not exceed |a| = 6). By displacing the unwanted
initial state out of our defined Hilbert space, the selective displacement acts as an

initialization that allows us the option to ignore all experiment instances where the
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qubit first starts in the excited state (normalizing a reconstructed state such that
Tr[p] = 1 or [ W(a)d*a = 1 ignores all measurements where the state is outside the
experiment’s defined Hilbert space). For the measurements shown throughout this
chapter, an uninitialized experiment has a qubit in the excited state with probabil-
ity P. = 0.12. After a selective displacement initialization, we can ignore unwanted

qubit state population and in turn measure a qubit population P, < 0.01.

8.4 RESULTS

8.4.1 WIGNER TOMOGRAPHY OF A CAT STATE

The Q-function measurements show that we have created a state which contains
two coherent states with opposite phase. While the Q-function tomography is able
to represent clearly the amplitude and phase of a cavity state, it also hides many
important features including the coherence between the two superimposed coherent
states. In fact, this quantum interference revealing this superposition is exponen-
tially suppressed with the distance between each coherent state. From an exper-
imental standpoint, a measured Q-function of a cat state will be nearly indistin-
guishable from that of a mixture of two coherent states. Fortunately, Wigner to-
mography can be experimentally realized with a dispersive Hamiltonian (see Ch. 6),
revealing the interference fringes associated with the coherent superposition. See
Fig. 8.4 for Wigner function measurement of a cat state created with qubit-cavity
mapping.

From the measured Wigner function, we can calculate the fidelity to a target
cat state in a variety of ways. We can perform a density matrix reconstruction of
the state using convex optimization least squares regression to invert the relation:
W(a) = Tr [DoPD]p] to solve for the density matrix p. We can also calculate
the fidelity to a target state by finding the overlap integral of the measured Wigner

function with the target state Wigner function: F' = f WiuWiargda where Wiy, is
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Figure 8.4: Wigner tomography of a mapped state. We can perform Wigner
tomography of the mapped state |[¢)) = N (|5) + |—f)) and determine fidelity for
state creation. Cuts in the Wigner function show that the populations of the co-
herent state and its interference fringes. We perform this mapping procedure for
different initial qubit states and observe its effect on the produced cavity state. No-
tice that each mapped state now corresponds to a different point on the qubit state
Bloch sphere. Reproduced from [Vlastakis et al., 2013].

the target Wigner function [Haroche and Raimond, 2006]. These two measurements

give us a reported cat state fidelity of 79% and 81% respectively.

8.4.2 ARBITRARY CAT STATE PREPARATION

The qubit-cavity mapping protocol can map any arbitrary qubit state. Shown in
Fig. 8.4 are cuts in the measured Wigner function of states that have been pre-
pared using qubit states initialized at each of the six cardinal points of the qubit
Bloch sphere. This demonstrates the control to prepare various weighting of each
coherent state |3),|—/) as well as their superposition phase. Additionally, we per-
form a Rabi (Ramsey) experiment where we prepare the qubit in a range of states
) = {cos(§)|g) +sin(4)le)} (|v) = \/Li {lg) +€*le)}) and map to the cavity
state. Shown in Fig. 8.5 are cuts in the resulting cavity state Wigner function.

Two special forms of cat states result in complete destructive interference of ei-
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ther the odd or even Fock state amplitudes. Known as the even (odd) cat states
|B) + |—/3), these states produce superpositions of only even (odd) photon num-
bers. This interference can be showcased in the dispersive regime by perform-

ing qubit spectroscopy after the creation of one of these cavity states. Due to the
strong-dispersive interaction, each spectral peak reveals a photon number prob-
ability of the prepared cavity state [Schuster et al., 2007]. For a coherent state

|3), the qubit spectrum will represent a Poissonian photon number distribution
P.(I8)) = [(n|B)|* = %. An even and odd cat state of equivalent amplitude
follows this same envelope but with destructive interference for the odd and even
photon number states respectively, P,(|5) £ |—5)) « (1 £ ei””)%. We per-
form spectroscopy on the qubit with three prepared states: |3, g), {|8)+|—8)}®]|g),
and {|8) — |—5)} ® |g) for |B] = 2.3, illustrating the discreteness of the electromag-
netic signals in the cavity and revealing the non-classical nature of the generated
cat states (Fig. 8.6).

This mapping protocol can scale to cavity states with larger quantum superpo-
sitions by merely increasing the displacement amplitude. The size of the quantum
superposition in a cat state d> = |3; — B»]? is determined by its square distance
in phase space between the two superimposed coherent states |51), |52) [Deléglise
et al., 2008]. To characterize d* without performing full state tomography, we mea-
sure cuts of the Wigner function along the axis perpendicular to its quantum in-
terference, W(Re(a) = 0,Im(c)). The interference fringes in these cuts appear as
W (0, Im(c)) = Ae M) cos(2d Im(ar) + &), where A and § are the fringe ampli-
tude and phase [Haroche and Raimond, 2006]. Using this method, we create and
confirm cat states with sizes from 18 to 11179 photons (Fig. 8.6). The increased
oscillation rate of these fringes with d? shows the increased sensitivity to small
displacements in cavity field due to larger quantum superpositions (see extended

analysis for proof-of-principle Heisenberg-limited phase estimation). Reduced fringe
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visibility with larger sizes is due to the increased sensitivity to cavity decay. Other
factors also contribute, namely infidelity in Wigner tomography and qubit decoher-

ence during preparation.

8.4.3 MULTI-COMPONENT CAT STATES

Since the methods outlined here are deterministic, entangling operations can be
combined to create complex non-classical cavity states. Using a conditional cav-
ity phase shift for various phases ®, we can encode quantum information to a par-
ticular phase of a coherent state. Using this operation, we can create superposi-
tions of multiple coherent states, that is multi-component cat states. We use gates
Csr3 and Cr 9 to create three- and four-component cat states (Fig. 8.7 ) with fi-
delity F4 = 0.60, Fg = 0.58, and Fx = 0.52 (see [Vlastakis et al., 2013] for
details). The skewing of these states is caused by the inherited cavity self-Kerr.
Additional factors contributing to infidelity include photon decay during prepara-
tion and measurement as well as tomography pulse errors. Note the state in Fig.
4C, also known as the ‘compass state’, contains overlapping interference fringes re-

vealing increased sensitivity to cavity displacements in both quadratures simultane-
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ously [Zurek, 2001].

8.5 EXTENDED ANALYSIS

8.5.1 SYSTEMATIC ERROR IN CAT STATE SIZE

Statistical errors from fitting the fringe oscillations are much smaller than re-
ported precision. However, a possible systematic error can occur when determin-
ing cat state size if the cavity is not perfectly initialized in the ground state. All
experiments shown here have displacement amplitudes calibrated by the width

of a Wigner measurement of the cavity’s vacuum state (see chapter 6). A cavity
state with residual thermal population, however, will result in a displacement mis-
calibrated by aal = aact(1 + da) where e, is the calibrated displacement ampli-
tude, au is the actual ideal displacement amplitude, dor = (\/@nth + 1) is the frac-
tional displacement error, and ny, is the mean photon number of the cavity thermal

state. This miscalibration is due to the width of a thermal state Wigner function:

2 a|2

W(a) o e 2atl. For the experiment in this chapter, we have determined that

the thermal population is ny, < 0.01 (using a selective qubit Rabi experiment, see
[Sears, 2013]). Our reported cat state size d> will be bounded by our knowledge of
the residual thermal population of the cavity: d*(1 — 2ny,) < d%, < d* where d, is
the actual cat state size. For the largest reported cat state, size is bounded between

109 < d? < 111 photons.

8.5.2 HEISENBERG-LIMITED PHASE ESTIMATION WITH CAT STATES

The QCmap protocol [Leghtas et al., 2013a] which we outline above allows for the
deterministic creation of cat states. A cat state’s increased sensitivity to cavity
displacements could be utilized for high precision metrology experiments ([Zurek,
2001; Caves and Shaji, 2010]. Linear schemes using a coherent state |3) will have

a phase resolution d® that scales as \/Lﬁ where . = |(|? is the average energy (in
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photons) of the coherent state. This scaling is known as the quantum-noise limit.
Using entanglement (or in this case, a superposition of photons) allows one to sur-
pass this limit and achieve a scaling of %, known as the Heisenberg limit [Caves and
Shaji, 2010].

Shown in Fig. 8.8 is a proof-of-principle experiment where we use the QCmap
protocol to realize Heisenberg-limited phase resolution. We compare the scaling of
a cat state’s sensitivity to phase with that of a coherent state with equivalent mean
energy. To do so, we prepare a qubit state in either |g) or |g) + |e) and map to a
cavity state to produce either the states |3) or |0) 4 |v/23). Notice that both states
have a mean energy 7 = |3|?. We implement a cavity phase shift ® (by changing
our cavity drive reference frame) before mapping the cavity state back to the qubit
state. We will define the phase resolution 6® = 1/9 of these states as the in-
verse of the maximum slope of the detected qubit population P, with respect to the
phase shift ®. For a coherent state, this gives a phase resolution 6®p = \/e/_ﬁ. A
cat state of equivalent mean energy gives a phase resolution (for small angles of ®)
d®c = 1/n. In reality, the cat state’s sensitivity to phase d®¢ is an approximation
at low energies for nkT < 1 where & is the cavity decay rate and 7 is a combination
of the time for preparation and detection. For larger energies, the cat state’s phase
resolution will diverge as 0®c = ™7 /.

We measure the phase resolution for cat states of mean energy n = 9, 15.5, and
22.5 photons and compare them to coherent states with mean energies up to 30
photons (Fig. 8.8) and show phase resolution scaling indicative of the Heisenberg

limit.

8.5.3 MAP-MAP BACK PROCESS TOMOGRAPHY

Since qubit to cavity state mapping is deterministic, we can reverse the process in

order to map an encoded cavity state back to the qubit. We explore sources of er-
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ror in the mapping operation by performing a ‘map/map-back’ experiment.

We perform quantum process tomography on the map/map-back operation act-
ing on the qubit. We determine the process matrix (see Fig. 8.9) for this procedure
for different cat state sizes. While an ideal operation would be identity (perfectly
mapping the qubit to the cavity and back), we instead observe a dominant error
manifesting itself as an increase qubit phase flips (o, errors). These errors are those
that are most sensitive to photon loss of the cavity state during the mapping pro-
cess and becomes increasingly sensitive when creating cat states with larger sizes.

Using a Ramsey experiment on the qubit, we can also observe the recovered
quantum coherence for mapping a cat state to the cavity then back to the qubit.
We perform this experiment for cat states of approximate size: 16, 28, 40, and 100
photons. The reduction in Ramsey contrast with larger cat state sizes is indicative
of decoherence due to photon decay during the map/map-back process. This sug-
gests that cat state preparation fidelity could actually be above 90% for sizes up to
40 photons and above 75% for a state of size 100 photons where the fidelity F is
estimated from the recovered qubit state fidelity Fiecov a5 F = v/Frecov- Note that
further loss of fidelity not included in this approximation can occur due to effects

such as the cavity self-Kerr.

8.6 SUMMARY

In this chapter, we have shown that using a superconducting qubit architecture,
one can deterministically map a qubit state into a superposition of coherent states.
This could prove to be an important resource for using continuous quantum vari-
ables for quantum information processing.

We have demonstrated the efficient generation and detection of coherent state
superpositions using off-resonant interactions inherent in the circuit QED archi-

tecture. The tools and techniques described here require only a fixed-frequency,
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strong-dispersive interaction and realize an interface between discrete and contin-
uous variable quantum computation [Braunstein and Van Loock, 2005]. This can
lead to simplified methods for individual storage and retrieval of multi-qubit states
in a cavity resonator and creates ways to perform multi-qubit stabilizer measure-
ments [Nigg and Girvin, 2013] or to redundantly encode information for quantum
error correction [Leghtas et al., 2013b] using minimal hardware. Additional applica-
tions include Heisenberg-limited measurement [Zurek, 2001; Caves and Shaji, 2010]
and quantum information storage in thermally excited resonator states [Jeong and

Ralph, 2006].
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Figure 8.6: Qubit spectroscopy and scaling to large photon superposi-
tions (A) Photon number splitting is observed when performing spectroscopy of a
qubit dispersively coupled to the storage cavity with three different prepared states:
a coherent state |J3), even cat state |5) + |—/), and odd cat state |3) — |—3) with
amplitude |G| = 2.3. Each spectral peak corresponds to the probability for a pho-
ton number state following a Poissonian distribution. Dashed bar plots show the
expected photon probabilities for each of these states. Notice that even and odd cat
states show destructive interference for the odd and even photon numbers. These
spectra are acquired by deconvolving the measured signal with the Fourier spec-
trum of the finite-width spectroscopy pulse. (B) Cuts along the imaginary axis of
the measured Wigner function for each prepared cat state reveal quantum super-
positions with up to 11119 photons in size. Cat state size d? is determined by these
measured interference fringes following the relation Ae= 2@ cog(2d Im(ar) + 6)
where S, A and § are fit parameters. Reproduced from [Vlastakis et al., 2013].
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Figure 8.7: Multi-component cat states. Using conditional cavity phase

shifts Csr/3 and Cr /2, we create superpositions of three and four coherent states.
Shown here is Wigner tomography of three cavity states: (A) |3) + €™t |3e™™/3) +
2 | Be™/3) where |3| = V7, Ay = 0.6m, and Ay = —0.37; (B) |0) + et |[—if) +
2 | Bet™/3) - eih3 | Bei?m/3) where | 8] = V7, iy = 0.5m, po = —0.47, and s = —0.27;
and (C) |B) + €™ [if) 4 |—B) + e™2 |—iB) where |3| = V7, v1 = 7, and 1, = —0.27.
(D) A closer inspection of the quantum interference in (C) reveals increased sen-
sitivity to cavity displacements in both quadratures simultaneously. Reproduced
from [Vlastakis et al., 2013].
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Figure 8.8: A) The circuit
diagram outlines the methods

to perform a proof-of-principle
Heisenberg-limited phase esti-
mation. In two different experi-
ments, we create coherent states
or cat states and compare phase
resolution 0P to each state’s
mean energy 7. (B,C) To do this,
we induce a cavity phase shift

® on each prepared cavity state
before reversing the mapping pro-
cess. We measure the resulting
qubit state population P, for co-
herent states (D) and cat states
(E) with various mean energies.
(F) Using these measurements,
we can observe the phase resolu-
tion for a coherent state (blue)
and a cat state (red) to scale

as 1/v/n and 1/7, respectively,
demonstrating a proof-of-principle
for Heisenberg-limited phase es-
timation using cat states. Note
that in practice a cat state is in-
creasingly sensitive to photon de-
cay at larger energies. This gives
a phase resolution d®¢ o< ™7 /7
where « is the cavity decay rate
and 7 is the total time of state
preparation and phase detection
(shown in F), which will become
unfavorable when nkT > 1.
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Figure 8.9: Write/Read analysis of qcMAP. In order to diagnose possible
qcMAP errors, we perform both quantum process tomography and Ramsey exper-
iments on the map/map-back operation. Quantum process tomography (A, C) of
the map/map-back operation on the qubit reveals increased phase errors at larger
photon numbers (note: all imaginary portions of the process matrix are < |0.06]).
This suggests that a loss in superposition coherence is a dominant source of error
in the mapping operation and that this error is increasingly sensitive to photon loss
in the cavity. This Ramsey experiment (B, D) shows a maximum recovered qubit
state fidelity of 87, 84, 83, and 67% for cat states with estimated sizes up to 100
photons. This allows us to infer a mapping fidelity of over 90% for sizes up to 40
photons and above 75% for 100 photons.
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Bell-cat state detection

The hallmark of entanglement is the detection of strong correlations between sys-
tems, for example by the violation of Bell’s inequality [Nielsen and Chuang, 2009].
Using the CHSH variant [Clauser et al., 1969] of the Bell test, this violation has
been observed with photons [Freedman and Clauser, 1972; Aspect et al., 1981],
atoms [Rowe et al., 2001; Hofmann et al., 2012], solid state spins [Pfaff et al., 2012],
and artificial atoms in superconducting circuits [Ansmann et al., 2009; Chow et al.,
2010]. For larger, more distinguishable, states, the conflict between quantum pre-
dictions and our classical expectations is typically resolved due to the rapid onset

of decoherence. To investigate this reconciliation, we employ a superposition of co-
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herent states. In contrast to discrete systems, one can continuously vary the size of
the prepared cat state and therefore its dependence on decoherence. In this chap-
ter, we demonstrate entanglement between a transmon qubit and a cat state in a
cavity, which we call a ‘Bell-cat’ state. We use a high-fidelity measurements, and
real-time feedback control to violate Bell’s inequality [Clauser et al., 1969] with-
out post-selection or corrections for measurement inefficiencies. Furthermore, we
investigate the influence of decoherence by continuously varying the size of created
Bell-cat states and characterize the entangled system by joint Wigner tomography.
These techniques provide a toolset for quantum information processing with entan-
gled qubits and resonators [Leghtas et al., 2013b; Mirrahimi et al., 2014]. The work
in this chapter demonstrates that information can be extracted efficiently and with
high fidelity, a crucial requirement for quantum computing with resonators [DiVin-
cenzo, 2000].

Quantum information processing necessitates the creation and detection of com-
plex entangled states. The cavity mode’s state can be completely described by di-
rect measurements in the continuous-variable basis with the cavity state Wigner
function [Lutterbach and Davidovich, 1997]. We extend this concept to express an
entangled qubit-cavity state as the joint Wigner representation (see Ch. 6). We
construct this representation by performing a sequence of two subsequent QND
measurements, where a qubit state measurement is correlated with a subsequent
cavity state measurement. However, complete state tomography requires many
more measurements than needed for a certain cavity state encodings, for instance
one with a clear mapping to single-qubit observables. By choosing an encoding
scheme where logical states of a quantum bit are mapped onto a superposition
of coherent states |3) and |—f), we can condense the joint Wigner representation
down to just sixteen correlations, equivalent to a two-qubit measurement set. Using

direct fidelity estimation [Da Silva et al., 2011; Flammia and Liu, 2011] and CHSH
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Bell test witnesses [Park et al., 2012] within this logical basis, we assess the degree
of entanglement of the state. We investigate this system’s susceptibility to decoher-
ence by continuously increasing the cat state amplitude |5|. We measure a range in
which correlations surpass the Bell violation threshold and observe its decline due

to decoherence, benchmarking the efficiency of our encoding and detection schemes

with cat-state qubits.

9.1 DBELL-CAT STATE

The dispersive interaction between the qubit and cavity (Eq. 3.7) allows us to
generate entanglement. The dispersive interaction creates a shift in the transi-
tion frequency of one mode dependent on the other’s excitation number, resulting
in qubit-cavity entanglement [Brune et al., 1992] allowing us to perform a condi-
tional cavity phase shift (Ch.5). We use this operation in order to create an en-
tangled state with correlations between the qubit state and a coherent states in
the cavity. As described in Fig. 9.1, the system is first prepared in a product state
vy = \/Li(|g> + |e)) ® |B), where |g), |e) are the ground and excited states of the
qubit and |3) is a coherent state of the cavity mode. Under the dispersive interac-

tion we allow the system to evolve for a time t = %, creating the entangled state:

¥s) = (g, 8) + le. —B)) (9-1)

which we call a Bell-cat state, mirroring the form of a two-qubit Bell state (e.g.
[y = \/L§(| gg) + |ee))). Alternatively, we can rewrite the Bell state in its Pauli

operator form.
W) (| =11+ XX, ~YY. + ZZ, (9.2)
where {I, X, Y, Z} are the qubit Pauli operators and {I., X., Y., Z.} are the

approximate encoded state Pauli operators (see Ch. 8). Notice that this entangled
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Figure 9.1: Entangled state preparation and measurement A quantum cir-
cuit outlines the method to prepare and measure entanglement between a qubit and
cavity state using sequential detection. State preparation is performed by first cre-
ating a product state [¢)) = %ﬂg) + |e)) ® |B) with a cavity displacement Dgs of

s

2
A conditional gate using the dispersive interaction, produces the entangled state

lg) = \%ﬂ g,0) + |e,—3)). Tomography is performed by measuring an observable

amplitude S and a qubit gate R% corresponding to a = rotation around the y-axis.
2

of both the qubit and cavity with sequential QND measurements. A pre-rotation
R; allows qubit detection along one of three basis vectors X, Y, and Z. The qubit
is reset and a cavity observable, the displaced photon number parity P,, is mapped
to the qubit for a subsequent measurement. Sequential detections are binary results
compared shot-by-shot to determine qubit-cavity correlations. Reproduced from
[Vlastakis et al., 2015].

state is one half of the qubit-cavity mapping protocol outlined in Ch. 8 [Vlastakis
et al., 2013; Sun et al., 2014] and has been demonstrated in other implementations
[Brune et al., 1996; Jeong et al., 2014; Morin et al., 2014]. In this chapter, we will
demonstrate the creation and efficient measurement of this entangled state. By an-
alyzing this state, we can gain a better understanding of the mapping procedure

and non-idealities in using the dispersive qubit/cavity coupling.

9.2 ENTANGLEMENT METRICS

Entanglement metrics will allow us to bound the entanglement generated in a pre-
pared state [Nielsen and Chuang, 2009]. For this chapter we will focus on entan-
glement between two systems, bipartite entanglement, and choose entanglement

metrics that are a linear combination of measurable observables. We use two such
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metrics: direct fidelity estimation F and Bell test observables C.
Direct fidelity estimation is the detection of four observables to determine the
fidelity of a particular Bell state. We choose the fidelity to a Bell state |target) =

\/Li (lgg) + |ee)) which we can represent as the sum of the following observables:

F = (rarger plPrarger) = 3 (I1) + (XX) = (YY) +(Z22)). (9-3)

By measuring the four observables I1, XX, YY, ZZ, we can determine a state’s
fidelity to a target state. This is directly related to the entanglement witness

W = 1((II) = (XX) + (YY) — (ZZ)) [Horodecki et al., 2009]. Whereas the en-
tanglement VW denotes entanglement for any value below zero, the direct fidelity
estimation will satisfy this same constraint at F > %

We will also use Bell tests to characterize the entanglement of the bipartite sys-
tem. While typically used to test local realism [Nielsen and Chuang, 2009], we in-
stead use this same formalism to bound the observed entanglement of the system.
Here we will use the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality to de-
note and benchmark observed entanglement in our prepared state [Clauser et al.,
1969]. Classical theory dictates that the sum of four correlations between random

variables of values £+1 will be bounded such that:

—2< O =(AA) + (AB.) — (BA,) + (BB,) < 2 (9.4)

where in this experiment A, B are two qubit observables and A., B, are two cav-
ity observables. By comparing each of these measured observables, we can place
a stricter bound on the entanglement of the system. By performing both direct fi-
delity estimation and bell tests on our prepared states, we can form a more com-
plete picture on the entanglement we observe.

It is important to note that other entanglement metrics exist, including the en-

tanglement monotones of concurrency and logarithmic negativity [Horodecki et al.,
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2009]. However, these metrics are not linear combinations of measured observables

and their sensitivity to experimental imperfections are not completely understood.

9.3 IMPLEMENTATION

This experiment uses two waveguide cavities coupled to a single transmon qubit.
One long-lived cavity (relaxation time 7, = 55 us) is used for quantum information
storage, while the other cavity, with fast field decay (relaxation time 7, = 30 ns ),
is used to realize repeated measurements. A transmon qubit (relaxation and deco-
herence times Tj, T ~ 10 us) is coupled to both cavity modes and mediates en-
tanglement and measurement of the storage cavity state. All modes have transition
frequencies between 5-8 GHz and are off-resonantly coupled (see Chapter 3). The

storage cavity and qubit mode are well described by the dispersive Hamiltonian:

H/h = wsata + (w, — xa'a) |e) (e] (9.5)

where a is the storage cavity ladder operator, |e) (e| is the excited state qubit pro-
jector, ws, w, are the storage cavity and qubit transition frequencies, and x is the
dispersive interaction strength between the two modes (27 % 1.4 MHz).
Correlating sequential high-fidelity measurements of the qubit and cavity allows
state tomography of the composite system. We use a Josephson bifurcation am-
plifier [Vijay et al., 2009] in a double-pumped configuration in combination with
a dispersive readout to perform repeated QND measurements with qubit detec-
tion fidelity of 98% and a repetition rate of 800 ns. The first measurement detects
the qubit along one of its basis vectors {X, Y, Z}. This value is recorded and the
qubit is reset to |g) using real-time feedback. The displaced photon-number parity
observable P, of the cavity is subsequently mapped onto the qubit using Ramsey
interferometry [Lutterbach and Davidovich, 1997] before a second qubit state detec-

tion. The cavity observable P, = D,PD! where D, is the displacement operator
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and P the photon number parity operator is detected with 95.5% fidelity.

9.4 RESULTS

9.4.1 TOMOGRAPHY OF A BELL-CAT STATE

The Wigner function W(a) = 2 (P,) is constructed from an ensemble of such pho-
ton parity measurements with different displacement amplitudes «. The correla-

tions between the qubit and cavity states make up the joint Wigner functions:

Wi(a) = 2 (0:P.) (9.6)

where o; is an observable in the qubit Pauli set {I, X, Y, Z}. These four distri-
butions are a complete representation of the combined qubit-cavity quantum state
(see Fig. 9.2). While other representations exist for similar systems [Eichler et al.,
2012; Morin et al., 2014; Jeong et al., 2014; LinPeng et al., 2013], W;(«) is directly
measured with this detection scheme and does not require a density matrix re-
construction. By an overlap integral, we determine the fidelity to a target state

F = (Wslplvs) = 5>, WP(a)Wi(«)d?>a where WP (a) are the joint Wigner
functions of the ideal state |¢g) and W;(«) are the measured joint Wigner functions
(normalized), yielding a state fidelity F = (87 £ 2)% for a displacement amplitude
f = /3. This amplitude was chosen to ensure orthogonality between logical states
[(B]—pB)]* = 6 x 107° < 1 with minimal trade-off due to photon loss. Further-
more, the efficiency of our detection scheme can be quantified by the visibility of
the unnormalized joint Wigner measurements V = 2 [ (IF,) d?a = (85 £ 1)%. The
visibility V is primarily limited by measurement fidelity and qubit decoherence be-
tween detection events (see Sec. 9.5.2). The parameters F and V represent critical

benchmarks for creating and retrieving information from entangled states.
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Figure 9.2: Joint Wigner tomography of a Bell-cat state. (a) The set of
joint Wigner functions W;(a)) = % (0;P,) represents the state of a qubit-cavity sys-
tem with correlations between the qubit o; = {I , X ,Y |, Z} and cavity P, reported
for a state [¢g) and displacement amplitude 3 = /3. Shown are measurements
comprised of four grids of 6500 correlations between the qubit and cavity states. In-
terference fringes in (X P,) and (Y P,) reveal quantum coherence in the entangled
state. (b) A density matrix reconstruction shows the combined qubit-cavity state p
in the Fock state basis. (c) Projecting onto the logical basis |3) (8] +|—5) (—3|, this
state can be further reduced exhibiting the traditional Bell state form. Reproduced

from [Vlastakis et al., 2015].
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9.4.2 DIRECT FIDELITY ESTIMATION

The number of measurement settings required to perform cavity state tomogra-
phy can be resource intensive. Restricting to an encoded qubit subspace, only four
values of the cavity Wigner function W («) are required to reconstruct the state,
known as a direct fidelity estimation (DFE) [Flammia and Liu, 2011; Da Silva

et al., 2011]. For large cat states | (8|—03) |* < 1, the encoded state observables

map to cavity observables as:

X, =P, I.=Ps+ Py (9.7)
YC:P% Zc:Pﬂ_P_IB

where {/I., X, Y., Z.} form the Pauli set for the encoded qubit state in the cavity
(for derivations see extended analysis). Cuts in the joint Wigner function (Fig. 9.3)
show these observables and their correlations to the qubit as a function of cat state
size. As the superposition state is made larger, interference fringe oscillations in-
crease while fringe amplitude decreases due to photon loss. For a state [i¢5) with

8] = V/3, we estimate a direct fidelity Fprr = 2((I1.) + (X X.) — (YY.) + (ZZ.)) =
(72 + 2)% putting a fidelity bound on the target state with no corrections for vis-
ibility. This estimate is related to the benchmarks reported above Fppg =~ V x F
and far surpasses the 50% threshold for a classically correlated state. This indi-
cates both high fidelity state-preparation and measurement, and demonstrates that

strong correlations are directly detectable using joint Wigner tomography.

9.4.3 CAT STATE BELL TESTS

To place a stricter bound on observed entanglement, we perform a CHSH Bell test
on the measured state. Although proposed to investigate local hidden variable the-
ory, the Bell test also serves to benchmark the performance of a quantum system

that creates and measures entangled states [Pfaff et al., 2012; Chow et al., 2010].
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Figure 9.3: Qubit-cavity correlations. Correlations are measured for entan-
gled states [¢g) with displacement amplitudes ranging from § = 0 to 2. Cuts in
joint Wigner functions (I P,) and (ZP,) at Im(«) = 0 show the increasing separa-
tion of the coherent state superpositions, whereas (X P,) and (Y P,) at Re(a) = 0
reveal the interference fringe oscillations dependence on cat state size. (b) Single
cuts at 8 = /3 show single-shot correlations (crosses) with their ideal trends (solid
line). Using just individual measurement settings (circled), joint observables such
as {[1.,XX.YY., ZZ.} of the qubit-cavity state can be determined. Reproduced
from [Vlastakis et al., 2015].
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We perform two Bell tests (Fig. 9.4) with correlations taken shot-by-shot with no
post-selection or compensation for detector inefficiencies. In the first, we take ob-
servables X (), Z(0), X., Z. and sweep both qubit detector angle 6 (see Sec. 9.5.4)
and cat state amplitude 5. We observe a Bell signal with a maximal violation

0O, =230+£0.04 at 0 = —7 for § = 1. In the second Bell test, we follow a scheme
similar to Ref. [Park et al., 2012] and choose observables X, Y, X.(«), Y.(a) where
« is a displacement amplitude corresponding to a rotation of the encoded cavity
state detector and observe a maximal violation Oy = 2.14 + 0.03 for § = 1. As
predicted, a lower Bell signal is observed in the second test due to its greater sensi-
tivity to photon loss, yet in both tests two regimes are evident. For small cat state
amplitudes, the initial Bell signal is limited by the non-orthogonality of the coher-
ent state superpositions (see Chapter 8), while for large displacements the system’s
sensitivity to photon loss results in a reduction of the Bell signal. Larger, more dis-
tinguishable states quickly devolve into a classical mixture due to the onset of de-
coherence, corresponding to the resolution of Schrodinger’s thought experiment.
However, for intermediate cat state sizes, we violate Bell’s inequality beyond the

statistical uncertainties in both tests.

9.5 EXTENDED ANALYSIS

9.5.1 DETECTOR CROSS-TALK

The sequential detection protocol in this experiment uses the same detector to per-
form first a qubit measurement followed by a cavity measurement. To minimize
unwanted systematic errors due to detector cross-talk between measurements, we
perform each experiment under four detector setting permutations. Two settings
are used for the qubit measurement: a pre-rotation which maps a qubit eigenstate
|£) to detector values +M{ and another which maps |£) to FM{. Two settings

are used for the cavity measurement: a Ramsey experiment which maps a cavity
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Figure 9.4: Bell tests with a cat state. (a) Using correlations between qubit
state observables X (6) and Z(#) and the encoded state observables Z., X,; a

CHSH Bell test O = (AA.) + (AB.) — (BA,) + (BB,) is performed as a function of
qubit detector angle . (b) Furthermore, we observe a violation with an additional
Bell test using qubit observables X, Y and cavity state observables X.(«), Y.(a)
where a corresponds to a tomography displacement amplitude serving as a rotation
of the effective cavity detector angle. (c-d) Both tests are performed for different
cat state amplitudes § and show the dependence of the entangled state with photon
loss and detector visibility. Squares represent measured values with height denot-
ing their statistical uncertainty. Solid lines describe the predicted trends given the
measured cavity decay rate and detection visibility. While the ideal behavior (red)
for an entangled state approaches @ = 2v/2, photon loss (green), detector visibility
(blue), and their combined effects (black) will ultimately limit the maximum Bell
signal achieved. Reproduced from [Vlastakis et al., 2015].
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eigenstate |+) to detector values =M and another which maps |+) to FMS. Each
detector setting is performed an equal number of times and results are combined
to remove unwanted correlations between detector readings and measured quantum
observables.

The dominant form of cross-talk for this experiment is due to qubit state deco-
herence between measurements. To realize the cavity state measurement, the qubit
must be initialized in |g), which we perform using active feedback. Qubit decay can
occur during this reset process causing an incorrect initialization for cavity state
detection. We can model this error by observing the possible trajectories of each
measurement, outcome. This modifies the average measurement of the observable
AB where A, B are qubit and cavity operators that can be decomposed into qubit
projectors AB = (A, — A_)B, where A, + A_ = I. Due to qubit decay, the mea-
sured value (A, B) will be modified to (1 —2p.)(A. B) where p. is the probability of
qubit decay in the time between the first measurement and the feedback rotation.

This relation changes the measurement into:

(AB) —=(1 —2p.) (A1B) — (A_B) (9.8)
—(1—p) (A,B—A_B) —p. (A, B+ A_B)
=(1—pc) (AB) — p.(B)

For measuring B = X,,Y,, Z. of the Bell-cat state |i).), we expect (B) = 0, which
gives merely a reduction in the visibility of the observable (AB) by a factor(l — p.)

_ Twait

without systematic offsets. We estimate in this experiment that p. =1 —e T

Q

0.06. With this justification we can predict the additional loss in visibility V men-
tioned in the previous section which gives a visibility Vyrea = (1 — pe)V = 82%. The
experimentally obtained visibility V is 85%; we believe the discrepancy between
predicted and measured values is due to an overestimate in the time the qubit is

susceptible to energy decay during measurement.
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9.5.2 DETECTOR EFFICIENCY

Under experimental conditions, the measured joint Wigner function is determined
with point-by-point measurements of the joint observable (o;P,). Detector ineffi-
ciency results in a reduced visibility V € [0, 1] and in turn a reduced contrast of the
measured joint Wigner functions W () = VW4l (q). We can determine V by
tracing over both the qubit and cavity states and comparing this to its ideal value

[Wideal(q)d?a = 1:

V= / meas () d2a, (9.9)

where I is the qubit state identity operator. We observe V = 85% and attribute
this primarily to readout infidelity and qubit decay between the sequential mea-

surements.

9.5.3 ENCODED STATE PAULI SET

We can represent the two qubit Bell state shown in Fig. 9.2 as a list of two-qubit
correlations. The complete set constitutes the permutation of each of the single
qubit Pauli set {1, X,Y, Z}. We can determine the two-qubit Pauli set from the
complete reconstructed qubit-cavity state and projecting onto the encoded basis of
{I.,X., Y., Z.}. Fig. 9.5 shows the resulting two-qubit Pauli set for the transmon
qubit and an encoded qubit in the cavity mode, a variant of the reduced density

matrix representation shown in Fig. 9.2.

9.5.4 BELL TEST ANALYSIS

The CHSH Bell tests reported earlier are composed of two qubit observables A, B

and two cavity observables A., B., correlated such that:
O = (AA.) + (AB.) — (BA,) + (BB,) (9.10)
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c

Joint Pauli operator

Figure 9.5: Reconstructed Pauli set. The set of sixteen joint Pauli operators
span the two-qubit Hilbert space of the qubit/encoded-qubit state. Shown is the
Pauli set for the entangled target state [¢p) derived in two ways. (Red) is the re-
constructed Pauli set using a density matrix reconstruction of the full quantum
state with no normalization constraint, then projecting onto the encoded subspace.
(Blue) shows the values discerned from an overlap integral of the measured joint-
Wigner functions (Eq. 6.16). These measurements agree with each other within sta-
tistical errors.
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We perform two variants of this test on the state |ip).

TEST #1 MODEL:

In the first test we choose qubit cavity observables Z., X. and qubit observables
Z(0), X (0) where:

Z(0) =Zcos% — Xsin? X(0) = Xcosé+ Zsin (9.11)

2
This angle 6 corresponds to a rotation of the qubit state before detection. In

Fig. 9.4a, we plot O for each of the four permutations of the joint observables and

find a maximum Bell violation for an angle § = —7 giving observables:

Rz (9.12)

As shown in Fig. 9.4, we can model the effects of photon loss and measurement in-
efficiency on the maximum violation. For the ideal case, an overlap of the coherent
state superposition reduces contrast in (AZ.) and (BZ.) and will limit the maxi-
mum Bell signal:

Oideal = V2(2 — 6_8|Bl2)

Measurement inefficiency will reduce the contrast of this maximum Bell signal

which we expect to go as the visibility V:
Ouis = V2V(2 — e 8IFF)

Photon loss will also have an effect on the maximum Bell signal by reducing the
measured contrast of all correlations for (AX.) and (BX.). This produces a maxi-

mum Bell Signal dependent on the size of the superposition state:

OIOSS fr \/5(1 — 6_8|ﬁ|2 — 6_2|/B|2'Y)
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where v = tj—ﬁ such that 7, is the photon decay time constant and t.¢ is the effec-
tive time to create and measure the Bell-cat state. Finally taking into account both

visibility and photon loss produces the expected maximum Bell signal:
Oprea = V2V(1 — e SIAP _ 2181

This predicted Bell signal is shown in Fig. 9.4 using the measured joint-Wigner con-

trast ¥V = 0.85 and time between cavity state creation and detection tegq = 1.24 us.

TEST #2 MODEL:

In the second test, we choose qubit observables X, Y and cavity observables

X.(a),Ye(cr) where:

Xe(a) = DjaPyD}, & X, cos & + Y, sin £ (9.13)
Yo(a) = DjaP%D;fa ~ Yocos {5 — Xesin {5

Where the displacement amplitude a corresponds to an approximate rotation of

the encoded cavity state before detection. In Fig. 9.4b, we plot O for each of the

four permutations of the joint observables and find a maximum Bell violation for a

displacement o = 0.15 for § = 1 which produces the approximate observables:
A=X; B=Y

_ XetYe _ XY, (9.14)
Ac = T Bc ="

Shown in Fig. 9.4c, we can also model the effects of photon loss and measurement

inefficiency for the second test. The ideal case is the result of four summed joint

Wigner values represented as:
Oideal = 2(cos 4oy + sin 4agﬁ)e_2|°‘°‘2
where o is an optimal displacement for maximum violation which can be calcu-
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lated from Eq. 9.15 and in detail in Ref. [Park et al., 2012]. Taking into account

photon loss and measurement inefficiency produces the following relationship:
Opred = 2V€727"BI2(COS 4o + sin 40405)6’2'0‘0'2

This predicted Bell signal is shown in Fig. 9.4b using the measured joint-Wigner

contrast V = 0.85 and an effective time toq = 1.24 us.

9.5.5 OPTIMAL MEASUREMENTS FOR ENCODED OBSERVABLES

Eq. 9.7 describes the ideal observables to efficiently determine an encoded qubit
state observable using a superposition state with |G| > 1. In fact, the optimal mea-
surement for particular observables will be further modified for smaller coherent
displacements.

For the second CHSH experiment, the optimal observable Pyj,, ~ \%(Xc + YC)

follows the relation:

B — ag
B+ g

= tan 4dapf (9.15)

where « is the amplitude for a coherent displacement Dj,, to perform the mea-
surement Pj,, given . Further details are discussed in Ref. [Park et al., 2012]. In
the large £ limit, the observable corresponds to the encoded qubit state observ-
able %(XC + YC) and follows the relationship P__ iz a8 related in Eq. 9.7. Shown
in Fig. 9.6 is the predicted and chosen optimal values for a maximum CHSH Bell

signal.

9.5.6 TWO-QUBIT ENTANGLEMENT WITNESSES

Two qubit entanglement can also be quantified by an entanglement witness W =

II,— XX.+YY.—ZZ, [Horodecki et al., 2009] for a Bell state [¢)) = %(|gg>+|ee>).
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Figure 9.6: Optimal displacement for Bell violation. For performing the sec-
ond CHSH Bell test, the optimal points in the conditional Wigner function depend
the ‘size’ of the entangled cat state (ch. 8). The dashed line shows the optimal dis-
placement point as a function of coherent state amplitude S. Shown in circles are
the displacement values used to calculate a maximum violation for each entangled
state. Differences between chosen and ideal values are a result of the discretization
of our joint-Wigner measurement.

The witness ‘confirms’ entanglement for all observations of (W) < 0. Shown in
Fig. 9.7, we report W (as well as its corresponding direct fidelity estimation JF) as
a function of coherent state amplitude (3 using the optimal displacements described
in Fig. 9.6. As expected, entanglement is not detected for a 5 = 0 coherent state (a

product state \%(\g) + le)) @ [0)).

9.5.7 BELL TEST FOR EACH DETECTOR SETTING

We analyze the systematic errors that can occur for a particular detector setting.
Shown in Fig. 9.8 are the observables used to calculated a Bell violation using test
#2 for each of the four detector settings. Systematic errors are shown to be within
statistical bounds of the experiment and each detector setting violates Bell’s in-
equality by at least three standard deviations, see Fig. 9.8. We report measure-
ments from the combined data set in the earlier section resulting in smaller sta-

tistical error and a stronger violation of Bell’s inequality.
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Figure 9.7: Entanglement witnesses with cat states. An entanglement wit-
ness and direct fidelity estimation (DFE) are determined by measuring four qubit-
cavity correlations. (a) The entanglement witness W = I — ZZ — XX +YY shows
entanglement for all negative values (gray shading). (b) DFE to a target Bell state
F =114+ XX -YY + ZZ is also shown where entanglement can be confirmed for
values above F > (.5. Notice that these two witnesses have a much looser bound
for entanglement than the CHSH Bell test.
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Figure 9.8: Bell test for each detector setting. To ensure that a particular
detector setting is not producing systematic errors we have not taken into account.
We report a Bell test for each detector setting used to observe our maximum viola-
tion in test #2. The expectation value of each observable used in that Bell test is
shown for the four detector settings used. Significant deviations due to unexpected
systematic errors are not observed.A Bell test is analyzed for each detector setting
to determine the effects of possible systematic errors. Each of these subtests violate
Bell’s inequality by more than three standard deviations of their statistical error.
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9.5.8 QUANTUM MEASUREMENT BACK-ACTION

The sequential measurement protocol allows us to observe the result of quantum
back-action of the qubit measurement on the cavity state. The result of an ideal

qubit measurement outcome M,, will give a projected qubit-cavity state:

o) = M 9] (9.16)

(| M M, |)

Measuring along the {X,Y, Z} axes of the qubit gives three measurement sets:

11 1 -1
.1 1
w3 Nen (4 e
1 —j 1
Y %(J. 1)@16, %(_j 1)®ILC (9.17)

10 00
2o (2 0er | (2 0)en

BELL-CAT PROJECTIONS:

We prepare the system in a Bell-cat state as in Eq. 9.1, and measure along each of
the three qubit axes. These three measurements results in six possible outcomes

[Ym) = [thy) @ |th.) with the projected cavity states:

[Year) = X2 N(IB)+15)) | N(I8) —15))
Yo N(8) —318) | N(18) +315)) (9.18)
Z: 5) —5)

See Fig. 9.9 for each projective measurement of the Bell-cat state |¢g). The method
of using strong projective measurements to create cat states has been demonstrated

in previous experiments [Deléglise et al., 2008].
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Figure 9.9: Bell-cat state projections. The resulting projections of the state

|Yg) = \%ﬂg, B) + |e, —f)) due to a particular qubit measurement outcome. Note
that measuring along the X and Y axes results in a projected cat state each with
different superposition phases. Combining these measurements with the probabil-

ity to obtain each result describes the entire system and is used to create the joint
Wigner function representation in Fig. 9.2.

FOCK STATE PROJECTIONS:

In addition, we investigate this measurement back-action by preparing the system
in a state such that the qubit state |e) is correlated with the m'™ photon Fock state
Im) of a coherent state |3) (in this example m = 3 photons and 3 = 4/3). This can
be written as:
) = Chle,;m) + > Crlg,n) (9.19)
n#Em

where C,,, = (m|#3). Shown in Fig. 9.10, when the qubit is measured along the Z

axis we observe a change in photon statistics such that a +1 event projects the cav-
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ity onto the state [Yeay) = N (|8) — Cpn|m)) and a —1 event projects onto the Fock

state [tcay) = |m).
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Figure 9.10: Entangled Fock state projections. (a) A measured Wigner func-
tion of a coherent state |3) where 8 = /3 results in a Poissonian photon distribu-
tion. Performing a photon-selective qubit rotation on the m'" level where m = 3
results in an entangled state [¢)) = Cy,le,m) + >, Cylg,n) where C,, is the
coefficient of the n photon number state C,, = (n|3). (b) The measured Wigner
function of the cavity state after the qubit has been measured in the —Z state
results in a 3-photon Fock state. (c¢) Instead, when a +Z result is obtained the
measured cavity state Wigner function is a Fock-state subtracted coherent state

Ve) =N 32,25 Cn ).
9.6 SUMMARY

In this chapter, we have demonstrated and quantified the entanglement between
an artificial atom and a cat state in a cavity mode. We determine the entangled

state using sequential detection with high-fidelity state measurement and real-time
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feedback on the quantum state. We benchmark the capabilities of this detection
scheme with direct fidelity estimation and Bell test witnesses, which both reveal
non-classical correlations of our system. This work demonstrates the viability of us-
ing and measuring redundantly encoded states in multi-level systems [Gottesman
et al., 2001]. This implementation provides a vital resource for quantum state to-
mography and quantum process tomography of continuous-variable systems and
creates a platform for measurement based quantum computation and quantum er-
ror correction using superconducting cavity resonators [Mirrahimi et al., 2014]. Fi-
nally, these features are directly extendable to multi-cavity systems which will re-
quire entanglement detection between continuous variable degrees of freedom and

entanglement distribution of complex oscillator states.
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10

Conclusion and future work

Demonstrations of multi-qubit systems [Barends et al., 2014; Corcoles et al., 2015;
Riste et al., 2015] show the potential for scaling superconducting qubits to larger,
more complex quantum systems. However, the work outlined in this thesis provides
an alternative path towards increased system complexity by using the cavity res-
onator for single or multi-qubit encodings. A key feature of this direction is the ca-
pability to increase the quantum complexity of the system without increasing its
physical complexity. Accessing a larger Hilbert space without potentially increasing
the number of physical channels of decoherence, could provide shortcuts in quan-

tum error correction.
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Future experiments that could take advantage of the cavity resonator for quan-
tum information processing include the encoding and protection of quantum states
using a logical cat-encoding [Leghtas et al., 2013b]. Current experimental efforts
include the creation of such a logical state and possible methods for logical qubit
rotations. on such a qubit and relate these potential experiments to ones that exist
today [Heeres et al., 2015; Krastanov et al., 2015; Holland et al., 2015]. Addition-
ally, I will describe future experiments in a quantum optics and control, including
multi-cavity manipulations and qubit-cavity process tomography, as well as future

improvements in physical designs.

10.1 LOGICAL ENCODING AND ERROR DETECTION

One major goal in the physical implementation of a quantum computing architec-
ture is quantum error correction [Nielsen and Chuang, 2009]. Due to the cavity’s
large Hilbert space, we can implement redundant qubit encodings to create a logical
qubit. Using an interpretation of qudit error correction [Gottesman et al., 2001], we
can encode a logical qubit state into the physical multi-level system of the cavity
mode in order to detect and potentially correct for errors on the logical state. For
a stabilizer representation of quantum error-correction schemes see appendix A3.
Here, let us observe one example of redundant qubit encoding in a cavity state to
protect against a physical errors: single photon jumps a (more general solutions for
amplitude damping will not be covered here [Leghtas et al., 2013b]).

If we note that the coherent state is an eigenstate of the photon jump opera-
tor: a|a) = aa) then we can create a logical encoding scheme by determining a
measurement which anti-commutes with the error [Nielsen and Chuang, 2009] and
commutes with all states in the logical subspace. For a photon jump this measure-
ment operator is photon number parity, where aP = —Pa. By selecting a logical

subspace with definite parity, each state within this space commutes with a parity
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measurement. We can in turn create a logical encoding in the coherent state basis

as:

0Ly =N (I8) + |-5)) 1) =N (I5B) +-iB)) (10.1)

where N is a normalization constant which asymptotically approaches \% for large
displacement amplitude . Notice the logical state projectors, |0z) (0|, |15) (11|
commute with the parity operator P. This allows the ability to measure photon
number parity of any state within the logical basis without projecting onto one of
the logical states. Using the QCmap outlined in chapter 8, we will be able to ini-
tialize this encoded and potentially protected quantum state.

Using Ramsey interferometry as outlined in chapter 5 and high-fidelity qubit
state detection, this error syndrome can be detected. As demonstrated by Luyan
Sun and Andrei Petrenko, using a two-cavity architecture, photon number par-
ity can be repeatedly measured, all with minimal destruction of the observed par-
ity [Sun et al., 2014]". See Fig 10.1 for examples of the observation of jumps in the
photon number parity in a prepared coherent state. Showing the detection of this
error syndrome is the first step in realizing this error correcting protocol.

Other physical errors will also manifest themselves in a cavity resonator and
must be corrected including cavity dephasing, Kerr evolution, and amplitude damp-
ing. Current experiments are exploring the ways which we can correct for these
additional errors including cavity state reservoir engineering [Leghtas et al., 2015;

Mirrahimi et al., 2014; Holland et al., 2015].

“current work is investigating the ‘demolition’ of the measured quantum state and by deter-
mining one’s ability to keep the logical qubit within the encoded logical space and ensuring the
measurement is quantum non-demolition
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10.2 CAVITY STATE MANIPULATION

This thesis has covered the capabilities of only two kinds of entangling operations
between the qubit and cavity state. While this demonstrates a wide variety of con-
trol techniques of the cavity mode, there are in fact further operations which can be
used to control the cavity state using the dispersive qubit-cavity interaction. One
such operation is the extension of the photon conditional qubit rotation, the photon

number selective phase shift (SNAP):

S,(0) = il (10.2)

—

and the generalized SNAP gate S(f) acting on multiple Fock state components as:

S(0) = ﬁ S, (6,) (10.3)

with 6 = {6,}2°,. By driving on resonance of the selective photon number peak, we
can perform a qubit rotation which always returns the qubit to the ground state,
yet imparts a phase on the cavity state conditional on a particular photon number
state (see Fig. 10.2). Using this technique, we have the ability to perform arbitrary
phase rotations on the cavity state allowing the correction of the self-Kerr effect

as well as the creation of non-classical cavity states [Heeres et al., 2015; Krastanov
et al., 2015]. This manipulation can be combined with cavity state displacements to
potentially obtain arbitrary control of the oscillator in the dispersive regime. This
could open the path for logical operations on encoded cavity states and well as the

creation of more complex protected cavity modes.

10.3 FURTHER DIRECTIONS AND OUTLOOK

Beyond these investigations, there are many improvements to both experimental

design and implementation that can be performed. As described in chapter 4, a
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box-mode resonance is used throughout this thesis as the storage resonator. We
can alternatively turn towards microwave cavity designs that are less susceptible
to surface losses or seam design. These have been described in [Reagor et al., 2013]
and are a natural progression of the multi-cavity technology described here.

Furthermore, improvements in measurement and tomography techniques are
required as we move towards higher-fidelity operations. Quantum state tomog-
raphy of a larger dimensional system can be extremely sensitive to measurement
noise and systematic errors. Efficient tomography techniques such as compressed
sensing [Gross et al., 2010] and direct fidelity estimation [Flammia and Liu, 2011;
Da Silva et al., 2011] could help reduce measurement times dramatically while re-
ducing the effects of noise. Diagnosing how to minimize tomography errors will be
imperative as future work aims to implement these systems in a quantum comput-
ing platform.

The inevitable direction of beyond this work will be to scale to systems with mul-
tiple storage resonators. The creation and detection of multi-cavity quantum states
including their entanglement with superconducting qubits will provide a wealth
of new experimental demonstrations and investigations with this extended archi-
tecture. The QCmap protocol and tomography techniques described in this thesis
is well suited for multi-cavity entangled states as no resonant interactions are re-

quired. Such protocols can allow the creation of the multi-mode cat state:

) =N(18,8) +1-B,—5)) - (10.4)

This state could further provide proof-of-principle experiments for large quantum
state creation and potential Heisenberg-sensitive measurements [Caves and Shaji,
2010; Zurek, 2001]. Multi-cavity entangled states will be the next progression for
quantum information processing using cat states and will open the path forward for

multi-logical qubit operations and algorithms.
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The strong coupling and relatively high coherence of superconducting quantum
systems gives us the opportunity to explore interactions and operation inconceiv-
able in other physical implementations. This provides a path to explore not only
new methods for quantum information processing, but also quantum optics and
control. We will surely come across interesting physics as we push the limits of

these quantum technologies.
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Figure 10.1: Error correction with cat states. A superposition of cat states
(a) can form a subspace composed of two logical states |0.), |1.). By using the
QCmap protocol outlined in chapter 9, we can encode a logical qubit into the cav-
ity mode. Shown in (a) is an experimental implementation of creating the logical
state N'(|0z) + |11)) using this protocol. The error syndrome for single photon-loss
is photon number parity P which can be measured using Ramsey interferometry
(chapter 5). Frame (b) shows repeated measurements of such an error syndrome on
a cavity mode. The blue trace is the signal obtained from repeated Ramsey exper-
iments, and the red trace shows the inferred jumps in photon number parity. By
combining both state initialization (b) and error detection (c), this system has the

potential to form an alternative error-correctable logical qubit. Reproduced from
[Sun et al., 2014].
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Figure 10.2: Cavity manipulation with the SNAP gate. (a) The photon-
number splitting due to the dispersive interaction allows one to perform qubit rota-
tions conditioned on a photon number state (chapter 5). (b) The cavity state in the
photon number basis is written as |1).) = > ¢, |n) where ¢, is a complex number.
(¢) By driving the qubit conditioned on the photon number state |n) such that the
qubit starts and ends back |g), a selective number-dependent arbitrary phase gate
is applied (SNAP). (d) This additional phase manifests itself on each photon state
component ¢,. Reproduced from [Heeres et al., 2015].
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Pulse tuning with trains

A.1 OBIJECTIVE

This appendix will describe the various experimental errors that occur in a single
qubit pulse rotation. We will review the effects of these rotation errors and pre-
scribe methods to diagnose and correct them. The theory will be reinforced with
simulations that include non-idealities such as mixer miscalibration. Finally, we
will contrast error syndromes between baseband modulated and single-sideband
modulated pulses. Simulations in this document uses the software packages devel-
oped by Reinier Heeres for physical qubit control including pulse shapes and fit-

ting functions (packages qrlab and pulseseq). Each simulation shown here can be
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recreated step-by-step following the example notebooks found in the RSL-developed

qutipsim directory.

Rotation errors we will address:

Amplitude
Errors including under or over-rotating for a desired qubit gate. Overall am-
plitude scaling error can occur as well as amplitude offset errors between

quadrature channels.

Phase
Errors resulting in misaligned rotation axes. This can occur when quadrature
channels are not precisely orthogonal. Errors will manifest differently depend-

ing on the modulation scheme.

Detuning
Errors in an inadvertent qubit/drive detuning which will lead to a mislabel-
ing of rotation axes as a function of time. Detuning errors can be masked as

phase errors when working with a fixed pulse duration.

DRAG
The ‘Derivative Removal by Adiabatic Gate’ is a modulation scheme that will
correct for errors that occur due to the higher levels of the transmon qubit.
Higher energy levels create a pulse amplitude-dependent qubit detuning which
must be taken into account when using fast qubit pulses. We typically refer

to all errors due to higher energy levels as ‘DRAG’ errors.

Off-resonant leakage
Off-resonant leakage can be a result of miscalibrated mixers or poorly filtered

microwave lines. When this leakage is small compared to its qubit-detuning,
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errors will appear as either detuning or DRAG. If leakages are large compared

to qubit detuning, then you are in real trouble.

A.2 THEORY

A.2.1 PAULI SPIN OPERATORS AND ROTATIONS
PAULI SPIN HANDY COMMUTATION RELATIONS

First let us list some of the useful commutation relations for Pauli spin operators

that we should keep in mind when concatenating multiple qubit rotations:

2 2 2
ox =0y =0, =1
OxOy = 10y, Oy0y = 10x 050x = 10y (A1)
e = 1 cos O + iopy sin 6 ’
iEG' iEU
e2""e2"™ = —0,0m

DRIvVING HAMILTONIAN

Since we are talking all about qubit rotations, let us mention a bit about where
they come from in the driven Hamiltonian. We can describe single qubit rotations

with an approximate Hamiltonian in the qubit rotating frame as:

Hyive/B = 5§+ E)ox + 5:(€ — E)oy + 1 A0, (A.2)

where ¢ is a complex number describing a qubit drive with amplitude and phase
while A is the detuning between the qubit and drive. The real and imaginary com-
ponents of & control the coefficients of ox and oy, respectively. A pulse of length ¢
can be described as the unitary evolution U = e% Jy ) at of this Hamiltonian with
a time-dependent £(t) such that £(¢t) = 0 for t < 0 and ¢ > d6t. This allows for com-
plete unitary control of the qubit state with rotations along the x and y axes of the
Bloch sphere (as well as the z axis technically). This gives us options for two kinds

of qubit rotation operators:
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Ay =2 B, = 2% (A.3)

where A,B are the integrals of the real and imaginary parts of 2¢ respectively and

correspond to an angle of rotation on the Bloch sphere.

A.2.2 DRAG PULSE ERROR

If you are not quite sure what DRAG is or where it comes about, take a look at
this paper [Phys. Rev. Lett. 103, 110501 (2009)]. The basic gist states there is

an amplitude-dependent qubit detuning when using fast pulses and that this is
caused by an interaction with the higher energy levels of the transmon. A first
order correction to a drive along the x-axis is in turn an additional drive in the y-
quadrature. More specifically, if there is a driving term Q(¢)o, then an additional
correction term @(Iy must be applied. Often referred to as the half-derivative cor-
rection, we will use this as our first guess for our own DRAG correction (in the in-

cluded simulations we actually use a quarter-derivative guess, but I believe this is

due to our DRAG shaping definition in pulseseq).
A.2.3 PULSE TRAIN SEQUENCES

AMPLITUDE PULSE TRAIN

Amplitude errors can be amplified by stringing together a chain of equivalent qubit
pulses and observing the deviation of the resulting qubit state from the ideal. For
the sake of those that do not have perfect qubit state readout, we will look at pulse
trains that always end with the qubit ideally on the Bloch sphere equator (and thus
most sensitive to changes in qubit population. For a train of 7/2 rotations, we will

perform the ideal unitary operation:

. T T N .«
Uz, = (XW/QXTF/Q)NXW/Q = (eZZ"xezZ""> o' 1% (A.4)
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where N is the number of iterations of the train sequence. Now if there is an error

in amplitude such that § — (1 4 ¢). This operation becomes:

1z [ez%(l—ke)axez%(l—l—e)ax} ez%(l—&-e)ax

(A.5)

i {%(1+e)+%(1+6)} ox

A qubit that starts in the ground state and and has been rotated by an operation,
¢/272 will result in a mean value of Z, (Z) = cosf. Then the operator from equa-

tion (A.5) acting on the qubit ground state will give:

Ui/2 0) = (Z) =cos [Nm(1+¢€) + Z(1+¢)]

A6
= (—1)"*'sin [Z¢ + Nme] (4.6)

If we take amplitude error to be small, |¢| < 1, then (Z) will have a linear depen-

dence on €:

(Z) ~ (—)N ! [N7e + Ze] (A7)

This same error syndrome will also follow for 7 rotation errors as well as any other

fraction thereof, w/m:

.TC

T mN io mN i O
U? = (Xey) ™ X = <e o ) ¢ 7% (A.8)

PHASE PULSE TRAIN

An error in pulse phase is caused by a misalignment of the defined qubit axes as-
sociated with rotations around the o, and o, axes. This non-orthogonality can be
described by an additional rotation of the o, operator, J’y = cos ¢o, — sin ¢o,. We
observe this error by performing a sequence of qubit rotations along both the X

and Y axes:
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T T T T T N &
U=Y, (X, Y X, Y) X, pp = €17 <e’5”"e_15”y615”"ez5”y) ¢17%  (A.9)

We will replace the ideal Y rotation with the incorrect axis o, and simplify the se-
quence of repeated X and Y 7 rotations by following the some of the handy Pauli

operator relations:

2% a2 6l T2 % — —0,0,0,0,
= —0, [cos ¢poy, — sin po,] 0, [cos po, — sin P,
= — [cos po 0, + sin @] [cos po,0, + sin @)
= —1—isin(2¢)o,
= Lcos(m + sin(2¢)) + io, sin(m + sin(2¢))
i, (n-+sin(24))

(A.10)

=e
For every iteration of this sequence of pulses, a phase error will result in an addi-
tional rotation around the Z axis. If we prepend/append this sequence with /2
pulses around the X/Y axes (as shown in equation (A.9)) then we can detect this

error by a change in (Z).

(Z) = (=1)"*!sin(N sin(2¢)) (A.11)

which if the error in phase is small, ¢/(27) < 1, then we can represent it as a linear

equation:

(Z) ~ (=1)NT12N¢ (A.12)

DETUNING AND DRAG PULSE TRAIN

Pulse errors due to an uncalibrated DRAG pulse will result in a drive-amplitude
dependent qubit detuning. This means that both detuning and DRAG errors will
manifest themselves as pulse errors in much the same way. Luckily, detuning can be

calibrated first through a simple Ramsey experiment. We can then use the below
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pulse sequence to amplify errors due to DRAG.

.TC

T T T N .w
U:ogYﬂxagWXMf:@6Wgﬁ@d?%ﬁ%)eﬁ% (A.13)

A pulse detuning will take rotations axes, o,, o, to o, + do,, 0, + do,. For small

errors in detuning 0 the sequence can be reduced:

LA R LA L —dlolola!
= — [0, + 00.] [0y — 00.] [0, + 60] [0, + 0]
- [vaay +d(0.0y —0,0.) + (52} [Jxay +6(0,0, + 0,0,) + 52}
~ 1 — 28io,
= 1 cos(—20) + io, sin(—26)
_ o—2ios

(A.14)

For every iteration of the sequence, there will be an additional rotation around the

X axis. Repeating the sequence N times results in a qubit measurement:

(Z) ~ —4N® (A.15)

A.2.4 1Q MIXER CALIBRATION

We have three different kind of errors which can occur due to mixer non-idealities,
I/Q amplitude offset, phase imbalance, and DC voltage bias. The output of an 1Q
mixer with lower SSB modulation can be represented with these errors in the fol-

lowing way:

Vout = (1 + €) [cos(wipt — @) + 7] cos(wrot) + (1 — €) [sin(wipt + ¢) + 7] sin(wrot)
(A.16)

where € is the amplitude imbalance, ¢ is the phase offset, and v is the DC bias.
When these error are zero the output becomes a signal at the desired lower side-

band frequency:
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Vous = cos(wipt) cos(wpot) + sin(wipt) sin(wrot)

A7
= COS([LL)LQ — wlp]t) ( )
AMPLITUDE IMBALANCE
Amplitude imbalance will result with the following output:
Vout = (1 + €) cos(wirt) cos(wrot) + (1 — €) sin(wipt) sin(wrot) (A18)

= cos([wLo — wirt) + € cos(jwro + wirt)

So € is the ratio of signals from opposing sidebands. We can measure this ratio in
practice by performing a ‘single-sideband tuneup’ and view the difference in power’s

/20

between peaks with the relation: e = 10%48</20 where Pyp, is the difference in pow-

ers in decibels.

PHASE OFFSET

Phase offset results in a similar error syndrome as amplitude imbalance which goes

as:

Vout = cos(wipt + ¢) cos(wrot) + sin(wirt + ¢) sin(wrot)
= cos(wrot) [cos(wirt) cos(¢) — sin(wypt) sin(¢)]
+ sin(wrot) [cos(wirt) cos(¢) — sin(wrrt) sin(¢)]
= cos(¢) cos([wLo — wir|t) — sin(¢) sin(jwro + wirlt)

(A.19)

So tan(¢) is the ratio in the voltage of the signals in the opposing sidebands. The
error results in the same way as amplitude imbalance and gives a relation to the
difference in measured peak powers: tan(¢) = 1074</29 where Py, is the difference

in powers in decibels.
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DC Bias

An additional DC bias will result in leakage through your carrier signal which fol-

lows from:

Vout = [cos(wir) + 7] cos(wrot) + [sin(wipt) + 7] sin(wrot)
= cos([wro — wir]t) + 7 [cos(wrot) + sin(wrot)] (A.20)
= cos([wro — wir]t) + ysin(wrot + 7/4)

Errors in mixer calibration will create off-resonant tones on the qubit mode
which will result in a shift in qubit frequency. This will manifest itself as detuning
or DRAG errors in your pulse tune-up. Only when these leakages are strong com-
pared to their qubit-detuning will they have a dramatic effect on your system (says

Brian).

A.2.5 PROCESS TOMOGRAPHY

We will use quantum process tomography to create a metric for the success of qubit
rotation tune-up. Look up pg. 289 in Nielsen & Chiang for a thorough definition,
but ultimately one should interpret the chi matrix (the result of process tomog-
raphy) as a mapping of an input basis vector to its output. We define ‘process fi-
delity’ as the difference between the reconstructed chi-matrix from a simulated
qubit rotation and the chi-matrix from an ideal rotation, F = Tr [XsimXideal]- SO
the closer a simulated chi matrix looks like the ideal, the higher the fidelity. A few
examples can be see in the accompanying figure.

Other metrics which could be used include randomized benchmarking and inter-

leaved randomized benchmarking.

185
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Figure A.1: Proccess tomography of ideal rotations. Shown is the recon-
structed chi matrix for standard qubit rotations (Identity, X90, Y90, X180). We
will use process fidelity as a metric for successful qubit pulse tune-ups.

A.3 APPLICATION

A.3.1 TUNE-UP WITH BASEBAND-MODULATED PULSES

Let’s step through tuning up qubit pulses with a simulated environment. For the
time being we will work with an ideal transmon qubit (*/2, = 250MHz) but with
unideal mixer parameters (no qubit decay or dephasing, but with a mixer which
has uncalibrated amplitude and phase offsets). We will start with a completely un-

tuned pulse and work our way towards tuned pulse parameters.
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Initial Parameters

Qubit:
anharmonicity | —oy 250 MHz
drive detuning | A 8.453 kHz
drive amplitude | &, 500 MHz
Mixer:
phase offset | ¢ | 27 x5.25 x 1073
amplitude imbalance | € 0.02

Pulse Shape:

standard deviation o 3 ns
pulse width | 7 12 ns
DRAG coefficient 0.33

RABI AND RAMSEY EXPERIMENTS

First tune up an ‘initial guess’ for the pulse amplitude and detuning by performing
Rabi and Ramsey experiments. A Ramsey experiment is the most sensitive way to
measure this detuning (compared to the pulse sequences shown below) and is in-
sensitive to pulse errors (since most of the experiment is letting the system freely
evolve). A Rabi/Ramsey tune-up is the generic way to tune a qubit rotation. As-
suming a best case scenario where there are no mixer errors or T1/T2 effects. See
the notebook ‘simple tune up.ipynb’ located in the RSL repository with the re-

sulting simulation.

AMPLITUDE PULSE TRAIN

With detuning corrected and a good first estimate for drive amplitude, we can
now perform the amplitude pulse train to accurately determine the amplitude er-

rors along both the X and Y axes for 7/2 and /7 pulse amplitudes. For small er-
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Figure A.2: Initial Rabi and Ramsey experiments. Perform a basic Rabi
and Ramsey experiment to estimate amplitude and detuning error. Even without
measurement errors, you will not expect to get better than 1% amplitude error (due
to the effects of drag).
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Figure A.3: Process fidelity from simple tune-up. Process tomography of a
‘simple tune-up’ (a single pass of a power-Rabi and Ramsey experiment). For this
system this results in an amplitude error of 5% (compared to a ‘full tune-up’) and
results in a process fidelity of (1 — 3.5e—3) and (1 — 1.0e—3) without DRAG and
with a half-drag estimate respectively. The figure above shows process tomography
(without SPAM) for an ideal X90 rotation, and simple-tuned X90 without/with
DRAG.
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-« Figure A.4: X90 Am-
plitude Error. This is a
simulated pulse train to de-
tect amplitude errors. After
each rotation, we hope to
remain on the qubit equa-
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rors, we can fit these deviations with the model calculated in the above theory,

(Z) ~ (- [N7e + Ze], and correct for them.

X-axis trains: Y -axis trains:
& N 0 N
U7r/2 = (XTI'/ZXﬂ‘/Q) X7r/2 Ui/g = (Yw/2Y7r/2) Y7r/2
Ul = (X2)" Xz Ul = (Vo) Yapo

PHASE PULSE TRAIN

Now that amplitudes are tuned up between quadrature channels, we can now detect

for misalignment between channels and correct for this additional phase, (Z) =

(—1)N 12N ¢:
U=Y, XY . X, Y)" X0 (A.21)

DRAG PULSE TRAIN

Next we tune up DRAG with the below sequence and fitting for the corresponding

error syndrome, (Z) ~ 4N¢:
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Figure A.5: X180 Am-
plitude Error. A pulse
train similar to X90 except
that we are testing the dif-
ference in amplitude error
between a 7 rotation and a
7/2. As seen in this partic-
ular implementation, expect
roughly 0.5% difference in
the measured X180 am-
plitude and twice the X90
amplitude.

Figure A.6: Y90 Ampli-
tude Error. In the zero-IF
regime, this experiment will
test mixer amplitude off-
sets. Shown here is with
0.5% difference in ampli-
tude offsets between a mis-
calibrated mixer and a cor-
rected one.
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Figure A.7: Phase DRAG Error. Phase and DRAG will manifest themselves
from the same type of pulse train (we call it BAMO). Phase is encoded on the x-
axis of the Bloch sphere while DRAG is on the z-axis. Figure (a) shows before tun-
ing and figure (b) after.

U=(X,Y_. X, Y)" X,/ (A.22)

TUNE-UP ORDER AND CONVERGENCE CRITERIA

The theory presented in the previous section assumes that for each pulse-train
there is only a single error (the one we are trying to detect and correct for). This
means that other uncorrected errors could skew the fits and in turn distort the cor-
rected parameters. Some of these pulse trains are more sensitive to extra errors
than others. To mediate this, we will ‘bootstrap’ by picking a particular order of
these pulse-tunings. The current preferred order is as follows: Rabi, Ramsey, X90,
Y90, X180, Phase, DRAG, X90, X180. I (Brian) have chosen this order because
X180 is sensitive to X90 amplitude errors; Phase and DRAG are sensitive to X90,
Y90, and X180 errors; and finally changes in DRAG parameters will effect X90 and

X180 drive amplitudes (this is due to our current pulse parameter definitions for
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DRAG correction). Accompanying theory would be nice to see, but these can all be
checked with the numerical tools provided in the accompanying code.

Convergence for each fit is determined by the ratio of the fit parameter for a par-
ticular error syndrome and its standard error. Convergence is determined when this
fit error is larger than the fit parameter. A single pass through the specified order
will result in errors that are smaller than 1 in 10* (see table below).

Congratulations! You have now tuned up your qubit pulses using pulse train se-
quences! One could attempt to improve the tune-up by repeating the above steps
multiple times. So far I have seen no significant improvement in process fidelity
using this method. Stay tuned for more complicated systems including SSB mod-

ulated pulses and qubit decoherence.

Tuning Fits (Baseband)

Qubit:
Syndrome Slope Error
X90 amplitude | 2.63e—05 | +3.4e—05
X180 amplitude | —7.9e—06 | £3.7e—05
Mixer:

phase offset | —2.0e—06 | £6.3e—05

amplitude imbalance | —2.6e—05 | £3.4e—05

Pulse Shape:

DRAG | 4.9e—05 | £9.7e—05

A.3.2 TUNE-UP WITH SINGLE-SIDEBAND MODULATED PULSES

Here, we will step through the important points of a qubit pulse tune-up when
using a SSB modulation scheme. Here errors in your mixer manifest themselves

differently as compared to the baseband scheme. This is important to note when
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Figure A.8: Process tomog-
raphy of a tuned baseband
pulse. Shown is process tomogra-
phy for an X90 rotation with tuned
amplitude-modulated pulse param-
eters. This produces a process fi-
delity of 1 — 1e—04. Differences to
ideal phase offset and amplitude
imbalance are 2.1e—06% and 0.1%
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comparing your tune-up strategy to others (IBM citation (Chow PRL 109 060501)
uses AM). Again, we will start with an uncalibrated pulse (mixer uncalibrated, no
DRAG), an ideal transmon qubit (no dephasing or decay, and a qubit anharmonic-

ity of 250 MHz.

MIXER CALIBRATION

First, the mixer must be calibrated at a particular qubit drive frequency. Do this
by applying a CW (or quasi-CW) single-sideband modulated tone and observe the
particular mixer leakages with a spectrum analyzer. Remember the rule of thumb
that if the difference in opposing sidebands are > 60 dBc then you can be assured
that you have tuned your amplitude and phase offsets to one part in one thou-
sand. The resulting pulse errors from a mixer calibration are not well understood
(says Brian), but as long as leakages are far off resonance then merely an additional

o, will occur in the driving Hamiltonian (be it constant or amplitude dependent)
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Figure A.9: X90 and Y90 pulse train measurements with an uncali-
brated mixer. With the same uncalibrated mixer settings as before (amplitude
imbalance of 2% and phase offset of 0.52%), notice that Y90 is not sensitive to am-
plitude imbalance, unlike the amplitude modulation scheme. Each fit corresponds
to a slope of 2.8e—5 and 8.9e—5 for X90 and Y90 respectively.

which can be corrected for in subsequent Ramsey and DRAG tune-ups.
For the simulations below, we will observe tune-ups with and without mixer

tune-ups to view their effects.

RABI AND RAMSEY EXPERIMENTS

The same comments apply here as in the amplitude modulation scheme. Tune-up
to determine qubit detuning (which now can be caused by unwanted mixer leak-

ages) as well as getting an initial guess on drive amplitude.

AMPLITUDE PULSE TRAIN

We can tune amplitude errors using the same pulse train as that for the amplitude-
modulated sequence which will rotate along both the X axis for 7/2 and 7 pulse
amplitudes. Unlike amplitude modulation unfortunately, mixer amplitude imbal-

ance cannot be corrected by comparing X and Y pulse trains when using SSB.

Puase AND DRAG PULSE TRAIN

I currently have no theory to support this, but it appears that mixer phase errors

cannot be observed with the phase pulse train, but DRAG can be detected and cor-
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Figure A.10: SSB Phase and Drag correction. Shown are the DRAG and
phase pulse sequences with a tuned SSB qubit rotation (with a calibrated mixer).
The phase measurement shows an error that results in an unwanted oscillation. 1
believe this is a an error in our DRAG pulse definition which we will investigate
ASAP.

rected for. I still see an additional error syndrome in the phase train measurement
which I believe to be a mistake in our current DRAG implementation. See accom-

panying figure to support this.

TUNE-UP ORDER

I advise a similar tune-up order as the amplitude modulation scheme except with
the removal of the Y90 and Phase sequences: Rabi, Ramsey, X90, X180, DRAG,
X90, X180. A single pass will result in a process fidelity of (1 — 8.2e—4) with mixer

calibration and (1 — 1.4e—3) without.
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phy for an X90 rotation with tuned pulse parameters with and without a calibrated
mixer. This produces a process fidelity of 1 — 8.2e—04 and 1 — 1.4e—3 respectively.

Tuning Fits (0IF)
Qubit:
Syndrome Slope Error
X90 amplitude | 1.1e—05 | +2.7e—05
X180 amplitude | 1.4e—06 | £8.5e—05
Mixer:
phase offset N/A
amplitude imbalance N/A
Pulse Shape:
DRAG | —8.1e—05 | £1.3e—04

A.4 OUTLOOK

So far, simulation agrees with the simple theories stated in this document. The va-

riety of pulse trains allow for measurements of pulse errors that grow linearly with

each appended pulse. This gives increased sensitivity over other tuning sequences

currently used in the lab (e.g. AlIXY). More importantly, the software package de-

veloped (whom without Reinier Heeres this would not have been possible) allows us
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to test the reliability of our pulse shape design and creates an excellent opportunity
to explore optimized pulse sequences. There are loads of interesting questions to

still explore, let us name a few:

effects of T1 and T2

e second order DRAG correction

« non-Gaussian pulse shapes

o cavity photon-dephasing

o adding SPAM errors

e numerical pulse parameter optimization

o numerical precision of simulation

o effects of LO leakage

o randomized benchmarking and interleaved RB
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Usetul derivations

B.1 DEeRIVING THE HUSIMI-QQ AND WIGNER DISTRIBUTIONS FROM THEIR

CHARACTERISTIC FUNCTION

B.1.1 OBJECTIVE

In this section, we show the explicit derivation for the Husimi-Q and Wigner dis-
tributions. Beginning with the Fourier transform of a distribution’s characteristic
function, we derive the Husimi-Q and Wigner distributions as explicit functions of

state observables.
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B.1.2 HusiMI- Q DISTRIBUTION

The Husimi-Q distribution (also known as the Q-function within the quantum
optics community) is defined as the Fourier transform of the anti-normal ordered

characteristic function for an oscillator state p:

Q) = F{Cu(N)} (B.1)

where C,(\) = Tr [pe_A*aeA“T] and F{} = &% [d?Xe®¥ "} We write Eq. B.1

explicitly as:

1 * * *
Qa) = = /d2)\e°"\ ATy [pe_)‘ “e)‘“q (B.2)
7r
Now taking advantage of the coherent state closure relation L [d?|3) (8] = 1, we

can rewrite the Q-function as:

Qla) = Tr o [ e 00 5 g5 (B3)

Using the two-dimensional Dirac delta function relationship: [ A?eX =" = 72§(p),

Eq. B.3 reduces to:

Q) = 21v | [ st~ 5)19) 3] (B.4)
= “Tr[po) (al]
= ~(alpla).

This final line is the recognizable form for the Q-function written in terms of a

state overlap with a coherent state |a).
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B.1.3 WIGNER DISTRIBUTION

The Wigner distribution is defined as the Fourier transform of the symmetrically

ordered characteristic function for an oscillator state p:
W(a) = F{C.(N)} (B.5)

where Cs(A) = Tr [pD(N)] and F {} = & [d?Xe™ =" We write Eq. B.5 explicitly

as:

W(a) = L / d?AeN ATy [pD(N)]. (B.6)

2
Before we begin this derivation, let us rewrite this representation in terms of real

values, converting the complex numbers «, A to o’ +ia”, X +i\’. This allows us to

rewrite the following as:

* % N AVENAN/
6ou\ a'A eQz(a AN =a'\'") (B?)

and the displacement operator in terms of translation operations as defined in

Chapter 2:

D()\) = -2 (B.8)

= € 4

ENAV/
=N Tpoy T

We begin this derivation by first changing to the trace operation in the characteris-

tic function to an integral over position eigenstates |z):

Cs(A) = Tr [pD(N)] (B.9)
- / dz (x| pD(N)|z)

We can therefore rewrite Eq. B.6 as:
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1 N av YA
W(a) = —/dz)\deQZ(a A=A (x| pD(N)|x) (B.10)

2
Using Eq. B.8, we can determine the operation of a displacement on a position

eigenstate as:
DOV [2) = € Ty T o) (B.11)

VA
= e INA 7;5:)\// |ZE + >\/>

NI o\ ’
—e z/\)\e%)\ (a;+/\)|x_|_>\/>

(B.12)
We plug this into Eq. B.10 and we get:
1 ; avi I\ SYAYU s\ !
W(Ol) _ p/(:12)\(13:,821(04 NN —a/\ )efz)\)\ 621)\ (z+X) <$‘p‘3§'+ )\/> <B13)
1 s\ /! ! / AV
_ P d2)\dl’62)‘ (A +2m—2a)62za A <x|p|x—|— )\/)

Using the one dimensional Fourier transform relationship [ due’ = 27d(v), we can

simplify Eq. B.13 as:

W(a) = /d)\/d$5()\, + 22 — 20/)eXY (z]plz + N) (B.14)

/dxe%au(zalzm) (z|p|lz 4+ 2a" — 2x)

NSRRI NG R o)

= —/dxe‘m”("‘/_w) (x|p|2a’ — 2z)

T
By substituting u = 2(x — /), and noting that:

!

Do) |- 4) = e 7o of — 1) (B.15)

2
|%> DT(&) — (o + %’ e*'ia’a"ef'ia"u

we can further simply the Wigner function to the more recognizable form:

1 - 1 Ky Ly s I
W(a)=— /due_zm ueielalgmiata giou (1) D¥ () pD ()| — %) (B.16)

™

-2 / du (3|D'(a)pD(a)] — %).
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Finally, if we introduce the parity operator P which acts on a position eigenstate as

P|—z) = |z), we can arrive at:

W) = [ du(sIDi(@)pD(@)Pl3) (B.17)

— %/dfu (v| D' () pD(ct) P|v)
= %Tr [D¥(a)pD(a)P]

_ 27y [D(c)PD(a)p]

™

This states that the Wigner quasi-probability distribution can be written as a func-
tion of cavity state observables of the displaced parity operator P, = D(a)PD'(a).
Both the Husimi-Q and Wigner distribution derivations can also be found in

Haroche and Raimond [2006] as well as Cahill and Glauber [1969] albeit in less de-

tail.

B.2 DETERMINING QUASI-PROBABILITY DESIGN MATRICES

B.2.1 OBJECTIVE

The Wigner and generalized Q distributions are calculated by the following rela-

tions:
W () = Te[Da PD}p] Qn(a) = Tr[Dq In) (n] Dip] (B.18)
We can rewrite both quasi-probability distributions as:
W(a) =Y W(a)ipi; Qul@) =) Qa)ipi (B.19)
i,j Y]

where W(a) = D,PD],, Q(a) = D, |n) (n| D], are the design matrices of the each
distribution. We also call these functions the displaced parity operator and the dis-

placed Fock state operator, respectively. These functions are known parameters and
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are used to calculate a given state’s Wigner or Q-function as well as allowing cavity
state reconstruction. The design matrix can be pre-calculated using what we call
the operative, analytical, and iterative methods. The operative method calculates
each design matrix by numerically deriving the displacement operator and perform-
ing matrix algebra. Analytical methods take advantage of the analytical form for
the displacement operator and the photon number operators [Haroche and Rai-
mond, 2006; Scully and Zubairy, 1997]. Operative and analytical methods to deter-
mine a design matrix tend to be computationally intensive. Here, we will describe

how to derive the design matrix using an iterative method.

B.2.2 WIiGNER FUNCTION

We can derive W(a) by solving for each element W ;(a) = (j|D,PD} i) using an
iterative approach. If we note useful commutation relations for the displacement

and ladder operators:

D,a = (a — «a)D, Pa = —aP (B.20)
Dla = (a+ a)D} Pa' = —a'P.

Using these relationships we can derive the following:

aD,PD! = 2aD,PD! — D,PD!a (B.21)
D.PD!a" =2a*D,PD! — a'D,PD}

With these formulas in hand we can begin to write the solution for each element in

the matrix W(«). First looking at the zeroth component:
Wao(a) = (0D, PDL[0) = (0]2a) = =2’ (B.22)

The first row of the design matrix can be derived following the relations of

Eq. B.21:
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Wio(a) = (0|Do PDY | k) (B.23)
1
= —(0|D,PD!al|k —1
7 (01D PDlallk = 1)

2a*

Vk

Noting that the matrix W(«a) is Hermitian, then WY (a) = W*(a), we can derive

- kal,g (OJ) .
the first column:

2a*

Vi

We can then determine the remaining elements of the design matrix building off of

Wo’k(Oé) = Wo,k_l(()é) = W;;O(Oé). <B24)

these same relationships:

W) = (1D PD} k) (B.25)
1

Vi

= = (20 Winas(0) = VIV ).

Using the Hermitian properties of the design matrix again we also can derive the

(I|DoPDla’|k — 1)

transpose:
Wik(a) = (k| Do PDL|l) = W (). (B.26)

With this iterative method, only nmax(nmax — 1) parameters must be calculated for
each displacement amplitude o where n,,,, is the dimension of the cavity state den-
sity matrix p. Notice this truncation is not dependent on displacement amplitude
«. This allows a much greater speedup over the operative method which requires

a larger truncation basis. Shown is an explicit implementation (in Python) for the
design matrix of the Wigner function given a set of displacement amplitudes and

a photon truncation basis (this can be found in the reconstruction package on the

RSL account):

import numpy as np
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def designW(basis = 10, alpha = np.zeros([10,10]) ):
??”Returns the design matrix to build a Wigner function from a given
density matrix.

Parameters

basis : dinteger
The truncation number of the density matrix which will be used to determine the
Wigner function.

alpha : complex matrix
An array of complex values which represent the displacement amplitude for
a set of measurements

Returns

Wmat : complex 4-dim array
Values representing the design matrix to create a Wigner function

given an arbitrary cavity state density matrix.
299

rho_shape = [basis, basis]
Wmat = np.zeros(np.append(rho_shape, alpha.shape), dtype = complex)

#initial ’seed’ calculation for |0><0]|
Wmat[0][0] = np.exp(-2.0 * np.abs(alpha) ** 2)

for n 1in range(l,basis):
# calculate |0><n| and |n><0|

Wmat[0] [n] (2.0 x alpha * Wmat[0][n-1]) / np.sqrt(n)
Wmat[n][0] np.conj (Wmat[0][n])

for m 1in range(1l,basis):
for n in range(m , basis):
# calculate |[m><n| and |n><m|
Wmat[m][n] = (2.0 * alpha * Wmat[m][n - 1]
- np.sqrt(m) * Wmat[m - 1][n - 1]) / np.sqrt(n)
Wmat[n][m] = np.conj(Wmat[m][n])

return Wmat

B.2.3 GENERALIZED Q-FUNCTION

We can additionally derive the design matrix Q"(«) for the generalized Q function
where Q, (o) = Tr [Q"(a)p] and Q}';(a) = (j|Dq |n) (n] D}|i). We first note a set of

useful operator relationships:

aD, |0) (0] D, = aD4 |0) (0] D} (B.27)
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and

1
Dg |n) (n| D} = =Da'|n — 1) (n — 1| aD},

(a" —a*)D|n—1)(n — 1| D! (a — a)

(a'Dn—1)(n—1|Dla—a*D|n—1){n—1|Dla

3|>—‘3|P—‘§

—aa'D|n —1){n—1| D! + |a]*D|n — 1) (n — 1| D}).

Using these equations, we can iterative calculate Q7 ;(a) noting that the first ele-

ment is:
Q3 0(a) = (0 Da [0) (0] DLJ0) = e71" (B.28)
. We can derive the rest of the design matrix for the standard Q-function following;:

e )—<l!D 0) (0] DL|%) (B.29)
{1~ 1]aDa0) (0] DK

(I = 1|D4 10) (0] DE[%)

2,1—1(04)

§|Q§|Q§|

and using the Hermitian properties of the design matrix, Q% (a) = Q*(«a) then we

can also derive:

(@) = Q" (@). (B.30)

Finally, by using Eq. B.28, we can determine the rest of the design matrix for the

generalized Q-function:

<\/_Qk Lia(@) =@ VEQIT] () — aVIQit (o) + |affQiyh)  (B.31)

An explicit implementation using this iterative approach can be found below. No-
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tice that the design matrix for a the n'® generalized Q function Q, () requires the
derivation of all generalized Q functions (0,1, ...,n — 1). We use this method in or-
der to efficiently derive the generalized Q-function which can be found in the RSL
reconstruction repository.

import numpy as np

def designQ(basis = 10, alpha = np.zeros([10,10]), photon_proj = 0):
??»Returns the design matrix to build a generalized Q function from a given
density matrix.

Parameters

basis : dinteger
The truncation number of the density matrix which will be used to determine the
generalized Q function.

alpha : complex matrix
An array of complex values which represent the displacement amplitude for
a set of measurements

Returns

Qmat : complex 5-dim array
Values representing the design matrix to create a generalized Q-function

given an arbitrary cavity state density matrix.
299

rho_shape = [basis, basis]

photon_array = np.arange(photon_proj + 1)

Q_size = np.append(rho_shape, photon_array.shape)
Q_size = np.append(Q_size, alpha.shape)

Qmat = np.zeros(Q_size,dtype = complex)

#initial ’seed’ calculation for |0><0@|, 0 photon
Qmat[0][0][0] = np.exp( -np.abs(alpha) ** 2)

for k 1in np.arange(l,basis):
# calculate |k><0| for @ photon
Qmat[0] [k][0] = (alpha x Qmat[0][k-1]1[0]) / np.sqrt(k)
Qmat[k][0][0] = np.conj(Qmat[0][k][0])

for k 1in np.arange(1l,basis):
for 1 1in np.arange(k, basis):
# calculate |k><1l| for n photon
Qmat[k][1][0] (alpha * Qmat[k][1-1][0]) / np.sqrt(l)
Qmat[1][k][0] = np.conj(Qmat[k][1]1[0])

for n 1in np.arange(l, photon_proj+1):
# calculate |0><0| for n photon
Qmat[0][0][n] = np.abs(alpha)**2 x Qmat[0][0][n-1] / n

for k 1in np.arange(l, basis):
# calculate |k><0| for n photon
Qmat[0][k][n] = ( (1./n) * (np.abs(alpha)**2 * Qmat[0][k][n-1] -
alpha * Qmat[0][k-1][n-1] * np.sqrt(k) ) )
Qmat[k][0][n] = np.conj(Qmat[0][k][n])

for k in np.arange(1l, basis):
for 1 1in np.arange(k, basis):
# calculate |k><1| for n photon
Qmat[1][k][n] = ( (1./(n)) = ( l.xnp.sqrt(lxk) * Qmat[1-1][k-1][n-1]
- (alpha) * Qmat[1][k-1][n-1] * np.sqrt(k)
- np.conj(alpha) * Qmat[l-1][k][n-1] * np.sqrt(l)
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+ np.abs(alpha)**2 x Qmat[l][k][n-1] ) )
Qmat[k][1]1[n] = np.conj(Qmat[1][k][n])

return Qmat

B.3 COHERENT STATE EVOLUTION UNDER THE KERR EFFECT

B.3.1 OBJECTIVE

In this derivation, we solve to the evolution of a coherent state under the Kerr in-
teraction in the coherent state basis. This allows us to represent the evolution as
a superposition of coherent states and gives the solutions for the multi-cat states

observed in Chapter 6.

B.3.2 DERIVATION

A coherent state |3) will evolve under a Kerr interaction as:

(1) = U(t)|8) = e~ 2 @7 |5) (B.32)

tn2 *‘6‘2

(K 2
= ZQ_ZT@ 2 % ’n>

For a time ¢, = (12_172 where ¢ is an integer, we can represent the state the evolution:

-18/2

) = 3 ™S %m (B.33)

9
where F,, = e ¢ . [, is a discrete function that is 2¢ periodic, i.e. Fj,19y =
. .2 2
_ i 2 2 _inmn _ . . _imn .
e a (M2 = T eAmig—ingi — =%~ — [ Thus F, can be expressed by its
discrete Fourier transform:
2q—1
iTpn
F, = g fpe 1 (B.34)
p

where
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1 2q—1 _— 1 2q—1 2 - 1 2q—1
—am imk® T AT fe(k—
fp:ZZer q :2—qu11@ q ZQ—QZGQ( p) <B35)
k k k
With this knowledge we can rewrite Eq. B.33:
iy —182 B" ne et
Y (T ) (.0
2q 1
'Lp7r
= Z fo e
2q—12q—1
3o D0 Do e e
p=0 k=0

As an example, for ¢ = 2, Equation B.36 gives the zero-parity cat state:

(t2)) = 5 (T 18) + ¢

—6>> (B.37)
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Stabilizer formalism for cat-codes

C.1 OBJECTIVE

The goal of this appendix is to use the formalism for multi-qubit error-correction
(stabilizer generators, Pauli groups, and error sets) to describe multi-level systems
(qudits) and their potential for error-correction. We will build off of this framework
to represent the basic implementations of cat codes and give an outlook on future

applications using these descriptions.
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C.2 QUuUDIT BACKGROUND

C.2.1 GENERALIZED CLIFFORD ALGEBRA

We will attempt to use notation for quantum error correction from [Nielsen and
Chuang, 2009] and qudit representations from [Gottesman et al., 2001]. Our focus
will be to use a d-dimensional qudit to encode a single logical qubit and detect dis-
crete errors to this logical qubit encoding.

We can express operations on the qudit using generalized Clifford algebra with

two operators called the shift and clock matrices:

0 1 0 0 1 0 0 - 0
0 0 1 0 0 w 0 - 0

X=]10 0 1 0 Z=10 0 w2 0 (C.1)
1 0 0 0 0O 0 0 - @b

where w = e“@ and X , Z serve as generalized Pauli operators for the d-dimensional
system. Notice at d = 2, we have the standard qubit Pauli operators and for any d,

X and Z follow the relations
ZX =wXZ 7%= X"=1. (C.2)
The Pauli operators act on a qudit state |j) such that
X17) =10 + 1) mod d) Zj) =’ |5) (C.3)

Furthermore, the generalized Y Pauli operator can be produced by products of the
shift and clock matrices Y = wXZ. Interestingly, we can also derive a generalized
Hadamard operator for the qudit which corresponds to a d-dimensional discrete
Fourier transform [Wiki:Generalized Clifford algebra]. Notice these generalized
Pauli operators are not Hermitian and could in principle be difficult to implement

in a physical system.
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C.2.2 QubIiT PAULI GROUP

To gain an intuition, let us first observe the Pauli group for a single qubit (d = 2)

system (Eq. 10.81 : [Nielsen and Chuang, 2009])
Go = {+1,£X,4Y,+2,} (C.4)

We have chosen to include all multiplicative factors in order to treat this as a
proper group where all operations formed by multiplying two members in the group
results in another member within that same group.

In order to avoid writing out these long list of operators, we can represent the
Pauli group in terms of generators. A set of elements g1, ..., gx in a group G is said
to generate the group G if every element of G can be represented as a product of
elements from the list ¢y, ..., gr. We write this in the form G = (g1, ..., gx) (see
pg. 455 [Nielsen and Chuang, 2009]). The generators for the Pauli group for a sin-

gle qubit is:
Go=(X,Z,-1). (C.5)

We can extend this formalism to a qudit with generalized Pauli operators. The

Pauli group for a d-level system is

Gq= (X, Z,wI) (C.6)
Notice here that that the qudit Pauli group now contains products of up to d oper-
ators (X2, Z3, e.g.) which means this set will grow with dimension size.
C.2.3 STABILIZER FORMALISM

From the Pauli group G4, we can select a subgroup S. Suppose we define Vs to be
a set of states which are fixed by every element of S = (g1, ..., ;). We say that Vg

is the vector space stabilized by S and we call S the stabilizer of the space Vg, since
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every element of Vs is stable under the action of elements in S (see pg.454 [Nielsen
and Chuang, 2009]).

We can determine the vector space Vg by observing the projector P which takes
any state [1) of the qudit into a space which is invariant under the action of any

element in S (Eq. 10.102 [Nielsen and Chuang, 2009])

P=NTJU+a. (C.7)

Where N is a normalizer (of which I believe is % for a single qubit encoded into a
qudit). If we define a stabilizer group S, we can use P to determine what states

will lie within the protected vectors space V.

C.2.4 ERROR-DETECTION

First let us consider errors that can occur on our system that lie within our Pauli
group G4 (while this is definitely not a necessary condition, as we’ll show later, it
does set up a nice structure for understanding the errors that a particular stabi-
lizer group can correct). Let S be the stabilizer for a code C'(S). Suppose {E;}
is a set of operators that anticommutes with an element in the stabilizer group
E;g, = —g E;. This error takes C(S) to an orthogonal subspace and could in prin-
ciple allow the error to be detected and perhaps corrected (pg. 465 [Nielsen and
Chuang, 2009]).

Let us outline a series of steps we will take to determine whether we have a vi-

able error-correcting code:
1. Determine the dimension d of the qudit system

2. Pick a set of stabilizer operators g; € S such that all elements commute g;g; =

grgi-
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3. Determine the projector P to create the vector space Vg that commutes with

all elements g;.

4. Determine what errors { £;} that anticommute with at least one element of

the stabilizer group S.

5. Revel in the knowledge that you now have a code C(S) that detects for errors

{E;} in a subspace V.

C.3 EXAMPLES

EXAMPLE 1: d =4,5 = (Z?)

Let’s run through these steps to build some qudit error correcting codes. While I'm
sure there are some very methodical ways to build a code C'(S), I will merely do a
guess and check to see what works and what doesn’t.

First let’s work in a d = 4 system. Remember that the Pauli group of this qudit
is G4 = (X, Z,wl) where

o O

(C.8)

— o oo
co o
co - o
o~ oo
co o
oo & o
o g,

g, ooco

with w = e%. For our first code, let us pick the stabilizer group S = (Z?). Note
that Z? is a Hermitian matrix with a very recognizable form for a typical multi-

level observable

1 0 0 0
0 -1 0 0

7? = 00 1 0 (C.9)
0 0 0 —1

Using this stabilizer group S, we can build a projector P onto the protected sub-

space Vg
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1000
1 ) 0000

P=2U+2=14 0 1 o (C.10)
0000

The projector can also be written as P = |0) (0] + |2) (2|. From this it is natural to

organize the protected subspace into a superposition of two logical states
02) = 0) 1) =12). (C.11)

Notice that all states within Vg commute with the stabilizer Z2. What errors can
this code detect? As one example we can look at an unwanted operation within the

Pauli group G4. We can see from commutation relations (Eq. 2) that
X7?=w?7°X = -7°X (C.12)

Our new code C(S) has the logical space |0), |2) and with measurements of the

stabilizer Z2, we can determine errors resulting in unwanted X operations.

EXAMPLE 2: d =4,5 = (X?)

Let us take the same dimension size but chose a different stabilizer group S = (X?)

where

0010
0001

X? = 100 0 (C.13)
0100

Notice that X? is Hermitian and could in principle serve as a stabilizer measure-

ment. This stabilizer group results in the projector

_ 1 2y _ L
p_2(1+X)_2 (C.14)

S = O =
—_— O = O
S = O =
—_— O = O
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We can instead write the projector as P = \%(|O> +12)) ® c.c. + \%(H) +13)) ® c.c..

Which gives our logical states

00) = L(10) + 12)) 1) = L1 +13)). (C.15)

Just as in example 1, we can determine what errors this system can correct for by

observing commutation relations
ZX? =wX*7 = -X*Z (C.16)

This code C(S) has a logical space spanned by the states \%(|O) +2)) and \%(H) +
13)) and by using stabilizer measurements of X2, one can detect errors resulting

from unwanted Z operations.

EXAMPLE 3: d =4,5 = (X? Z?)

We've picked stabilizers Z? and X? separately, but why not combine them into one
stabilizer group? Let’s try it out. First we must check that each element in S com-

mute.
7?X? = wX? 7 = X? 7P (C.17)

Good, these generators still form a legitimate stabilizer group. We can now deter-

mine the projector onto the protected vector space Vg

1 1
P:—U+Z%U+X%:§

> (C.18)

O = O =
o O OO
S = O =
o O OO

This projector can be rewritten P = \%(!(D + |2)) ® c.c.. Notice that this projector
no longer takes us into logical qubit subspace but in fact onto a single qubit state
lv) = \%(]O> + 12)). We have picked a qudit size too small to use the stabilizer

group S = (X2, Z?%). Let us now observe a higher dimensional system.
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EXAMPLE 4: d =8,5 = (X4 Z%)

We can pick stabilizers Z4 and X* in an 8-dimensional qudit. Some things to
note which I will not write explicitly: both operators are Hermitian (X*)T =

X4, (ZY1 = Z* and commute with each other

Z7AXt = WXzt = X7t (C.19)

where w = eT. We can now determine the projector onto the protected vector

space Vg

P= %(I + ZH(1 + X (C.20)

This projector can be written as P = \%(|O> + 4)) ® c.c. + \/Li(|2> +16)) ® c.c. (I'll

leave this to the reader to write out). This gives our logical states

02) = 2(10) + 4)) 1) = 2(12) + I6)). (C.21)

We have now created a code C'(S) with a logical space spanned by the states
\%(|0> +14)), \%(|2) + [6)) and by using stabilizer measurements S = (X*, Z%),
one can detect (and possibly correct) for errors of unwanted X, Z operations.

One can also derive the logical operations on the encoded qubit using this frame-
work (pg.470: [Nielsen and Chuang, 2009]), however I will ignore this for the time
being. There are more codes beyond the four mentioned here, yet I have chosen
these particular examples as they will produce the most recognizable physical im-
plementations. Additional codes include a d = 18 code with 9 different error syn-

dromes as well as an extension to multi-qudit systems [Gottesman et al., 2001].

217



C.4 APPLICATIONS

COHERENT STATE QUDITS

So far, we have only described the theoretical framework for error correction

with qudit states. An error-correcting code is only as good as the physical im-
plementation we can provide. Can we create a physical qudit error correcting

code that corrects for our most prevalent physical errors? The most famous qudit
code [Gottesman et al., 2001] encodes a qudit into an oscillator using a superposi-
tion of squeezed states. However, here we will choose a qudit composed of a super-
position of coherent states, all that lie on a circle in the oscillator’s phase space. We

can define our qudit states as
) = |Bw’) (C.22)

with w = e”@" where d is the qudit dimension size and in turn the number of super-
imposed coherent states |Sw’) where 3 is a coherent state amplitude. For the sake
of my sanity, let us assume that all coherent states are sufficiently orthogonal with
each other (j|k) ~ J;, and that these coherent states remain in this defined coher-
ent state subspace. Notice this may not be the smartest way to encode our infor-
mation, since this makes rather poor use the physical oscillator’s Hilbert space size,
but as you will see, this decision will provide a convenient theoretical framework.
Let us define generalized operators on the ‘coherent state qudit’. As noted in
Eq. 3, an X operation shall take a state [j) — |(j7 + 1) mod d). This can be physi-

cally achieved with the operation
X =¢ad (C.23)

where af, a are the raising, lowering operators for the oscillator. The X operation

is simply a rotation in phase space such that each coherent state |j) has moved to
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the state |7 + 1). The Z operation is defined using Eq. 3 and takes a state |j) —
w? 7). This operation is more difficult to physically realize but is achievable using
a combination of SNAP gates [Heeres et al., 2015] or optimal control pulses. Now

that we have this physical qudit formalism let’s apply some error correcting codes.

EXAMPLE 1: d =4, 5 = (Z?)

Using our previous calculations, we can first write an implementation of a d = 4

code with stabilizer measurements Z2. We can write out this stabilizer as

z* = (I8) (Bl + |=8) (=B1) — (1iB) (iB| + |—iB) (~iB]) (C.24)

The intuition behind this stabilizer measurement is that the binary answer deter-
mines whether the qudit state is a superposition of coherent states lying on the real
axis or on the imaginary axis of the oscillator’s phase space. I will not prove this
here (since I don’t know how), but I believe this measurement operator is achiev-
able using two-photon operations of the oscillator state.

Following the example, the logical space for this system is

0) = |5) L) = =) (C.25)

and we can correct for X errors which manifest themselves physically as a de-
phasing error on the oscillator X = ez ala (Eq. C.23). This is the basic frame-
work behind the error correction performed in the two-photon dissipation experi-

ment [Leghtas et al., 2015].

EXAMPLE 2: d =4,5 = (X?)

Now let us pick a d = 4 code where we use the stabilizer S = (X?). This operator

can be written in its physical implementation as
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X2 = (I8) (=Bl + |-B) (BI) + (iB) (=iB| + |—iB) (iB]) (C.26)
— (\/%(W +18)) ® c.c. + (1) + |—iB)) ® QC)

~ (3091 =18 ® e+ F5(i8) ~ |-i8)) @ )

The X? operator is merely a measurement determining whether the system con-
tains even photons or odd photons, the equivalent to a photon-number parity mea-
surement P = eima'e, Using this stabilizer, we now operate in the logical basis

(Eq. C.15)

02) = 5(18) + |-8)) 12) = 5(1iB) + [=iB)). (C.27)

Our logical subspace is spanned by two different cat states, one aligned with the
real axis and the other with the imaginary axis of the oscillator in phase space.
This system can correct for errors in unwanted Z operations. As we’ve mentioned
earlier, the Z operation in this basis is rather unnatural. In fact this code can cor-
rect for other errors that do not necessarily need to be unitary operations (or trace
preserving pg. 435 [Nielsen and Chuang, 2009]). Let us observe the commutation

relationship of the lowering operator a with our chosen stabilizer
aX? = ae™* = oP = —Pa = —X?a. (C.28)

This stabilizer measurement will detect single photon jumps! (So far however, we
are still only considering a coherent state qudit that remains in its defined manifold
of states and does not decay to the vacuum state). So to recap with a d = 4 co-
herent state qudit using the stabilizer group S = (X?), we have an error correcting
code C'(S) such that our logical subspace is made of cat states and can correct for
jumps in the oscillator lowering operator. This is equivalent to the familiar 4-cat

error correcting code [Leghtas et al., 2013b].
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EXAMPLE 4: d =8,5 = (X4 7Z%)

We will not work through this problem explicitly, but let us take a look at some
this higher dimensional code’s interesting features. With the d = 8 code, we will
be able to correct for both X and Z errors. First let us specify the stabilizer gen-
erators X* = ¢™'e = P which is photon number parity operator and Z* is

a measurement operator that determines whether you are a 4-cat located on the
real /imaginary axes or if you are a 4-cat rotated by 45 degrees. Notice that now Z4
is an operator using some sort of 4-photon transition.

Following Eq. C.21, this code’s logical states are

02) = 5(18) + 1-5)) 12) = 5 (iB) + [—iB)) (C.29)

the equivalent to the logical subspace of example 2. Now, however, we have a larger
error subspace (X and Z errors will place the state into different orthogonal sub-
spaces). Note that this code can still correct for photon loss since the stabilizer X*

anticommutes with the lowering operator a.

CONCLUSION

Here, we have shown that using a qudit stabilizer formalism, we can derive the
cat-codes that we are currently implementing in our experiments. While this

might not be anything particularly new, this now allows us to speak the same
language as other quantum information scientists as we work to create usable er-
ror correcting codes. There are still many things I did not cover in this appendix.
To name a few, I would like to understand how we can precisely relate the two-
photon (and four-photon) pumping to these codes and understand whether a dis-
cretized, measurement-based algorithm exists. Furthermore, I would like to see this
formalism extended so we can begin applying these schemes to multi-qudit sys-

tems [Gottesman et al., 2001] (coherent state superpositions in multiple cavities).
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Finally T have not addressed deterministic amplitude damping, another key error
which must be corrected in our physical systems. We should be able to address this
by reconciling pumping schemes within this framework. Other interesting things to
explore include the expected error-rates due to the non-orthogonality of coherent
states and the potential for correcting continuous errors such as small rotations in
phase space. Finally I would also like to point again to the d = 18 code which uti-
lizes n-ary measurements for error-correction (as opposed to binary). This could be
an interesting path forward since our measurement apparatus (the transmon or the

readout cavity) is also a multi-level system.
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