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A quantum computer will use the properties of quantum physics to solve certain
computational problems much faster than otherwise possible. One promising potential
implementation is to use superconducting quantum bits in the circuit quantum electro-
dynamics (cQED) architecture. There, the low energy states of a nonlinear electronic
oscillator are isolated and addressed as a qubit. These qubits are capacitively coupled
to the modes of a microwave-frequency transmission line resonator which serves as a
quantum communication bus. Microwave electrical pulses are applied to the resonator
to manipulate or measure the qubit state. State control is calibrated using diagnostic
sequences that expose systematic errors. Hybridization of the resonator with the qubit
gives it a nonlinear response when driven strongly, useful for amplifying the measurement
signal to enhance accuracy. Qubits coupled to the same bus may coherently interact
with one another via the exchange of virtual photons. A two-qubit conditional phase
gate mediated by this interaction can deterministically entangle its targets, and is used to
generate two-qubit Bell states and three-qubit GHZ states. These three-qubit states are
of particular interest because they redundantly encode quantum information. They are the
basis of the quantum repetition code prototypical of more sophisticated schemes required
for quantum computation. Using a three-qubit Toffoli gate, this code is demonstrated
to autonomously correct either bit- or phase-flip errors. Despite observing the expected
behavior, the overall fidelity is low because of decoherence. A superior implementation
of cQED replaces the transmission-line resonator with a three-dimensional box mode,
increasing lifetimes by an order of magnitude. In-situ qubit frequency control is enabled
with control lines, which are used to fully characterize and control the system Hamiltonian.
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CHAPTER 1

Introduction

At the turn of the twentieth century, it was widely believed that physics was complete.
Electricity and magnetism were unified with Maxwell’s equations, statistical mechanics

accurately predicted the properties of fluids and gases, and optics, acoustics, thermody-
namics, and kinetics all seemed to be understood. This was reflected in the progress
of the industrial revolution. Steam power, transatlantic radio, and the telegraph were
direct results of physical understanding, yet several nagging problems remained. In 1895,
Wilhelm Röntgen created x-rays and in 1889, Marie Curie discovered radiation, neither
of which had an explanation. In 1902, Philipp Lenard observed that the photoelectric
voltage depended on the color of light and not its intensity, to the contrary of Maxwell’s
predictions. The Rayleigh law of 1900 absurdly predicted that a black body at thermal
equilibrium will emit radiation with infinite power at short wavelengths, a problem known
as the ultraviolet catastrophe. And in 1911, Ernest Rutherford showed that electrons orbit
the tiny positively-charged nucleus of the atom, but could not explain why the electrons
do not fall in.

Initially, a few postulates were used to rectify these problems. In 1900, Max Planck
suggested that energy was quantized and that light came in integer units of hν, where ν is
the frequency of the light and h is a number known as Planck’s constant. This conjecture
solved the problem of black body radiation, but its broader implications were unappreciated
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until much later. In 1905, Albert Einstein explained the photoelectric effect with this idea
of energy quantization. In 1913, Neils Bohr suggested that electrons orbiting atoms could
only occupy certain well-defined orbitals, which explained why electrons did not spiral into
an atomic nucleus as well as why atoms emitted only at discrete energy levels. These
theories, despite remaining strictly phenomenological, successfully explained many of the
specific experimental difficulties of the age. However, this “old quantum theory” offered
no justification for quantization nor underlying structure.

It was not until 1925 that a modern theory of quantum mechanics was developed.
Werner Heisenberg and Erwin Schrödinger invented respectively, matrix mechanics and
wave mechanics. Although this modern theory unified the phenomenological postulates, it
had bizarre implications. Particles could be in more than one state at once and properties
like position and momentum could not be simultaneously known. Even determinism
– arguably the deepest postulate of modern science – would be thrown out. For this
reason, and despite its success at explaining the world, the modern theory had numerous
detractors. Albert Einstein, Boris Podolsky, and Nathan Rosen highlighted a supposed
paradox that occurred when two “entangled” particles were separated and one measured
[1]. The information of this measurement appeared to be instantly transmitted to the
unmeasured particle regardless of distance, which seemed to violate the special theory
of relativity. EPR suggested that the only resolution to this problem was that quantum
theory was incomplete.

Despite this and other vociferous challenges, quantum theory was simply too effective
to repudiate. It accurately and self-consistently described the world, especially after
the development of renormalized quantum field theory that unified special relativity and
quantum physics in the early 1950’s [2]. For example, field theory correctly predicts
the electron spin g-factor to a precision of better than one part per trillion [3, 4]. The
relativistic objections to quantum mechanics were also dismissed, most famously by John
Bell’s theorem of 1964 [5]. Bell showed that there are physical consequences of quantum
entanglement which could not occur if “local hidden variables” pre-ordained particle
correlations. The subsequent experimental verification of this theorem by Alain Aspect in
1981 [6] and others proved that the universe truly disobeyed local realism.

The development of Bell’s theorem greatly strengthened the conceptual foundation
of quantum theory, but fundamental questions about the nature of quantum information
remained. For example, could entanglement be used to transmit information faster than
the speed of light? This question∗ led to the development of the No-Cloning Theorem
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[7], which held that an arbitrary quantum state could not be perfectly copied and thus
entanglement could not violate relativity. Proposals for forgery-proof quantum money [8]
and provably secure communication using quantum key distribution [9] were made as a
direct result.

These developments raised the question of whether the properties of quantum mechanics
could be leveraged for other useful purposes. In 1982, Richard Feynman suggested that
a computer using quantum mechanics might more naturally model the physical world
[11]. David Deutsch showed in 1985 that such a “quantum computer” could not be
efficiently simulated with a classical one, which cemented the supposition that quantum
information is fundamentally different from its classical counterpart [12]. Initially, this
was only of theoretical interest since it was unclear how to actually achieve a quantum
speed-up. Though the state of a quantum computer could evolve in a huge parallel
superposition, the result of a computation would be randomly chosen from that population
when it was measured. Fortunately, the Deutsch-Jozsa algorithm was discovered in 1992,
demonstrating that this was a surmountable problem [13]. Though that algorithm has
little practical use, it runs exponentially faster than any classical solution and proved
that, in principle, the computational power of quantum physics could be accessed. More
importantly, Peter Shor discovered an integer factoring algorithm in 1995 which could also
realize an exponential speed-up [14]. The computational difficulty of factorizing numbers
is the basis of many classical encryption algorithms [15], so an efficient algorithm provided
significant motivation for further study of quantum information science.

For the same reason that a quantum computer would be powerful, it would also be
highly susceptible to errors. Quantum bits are intrinsically analog devices and are described
by continuous variables. Any spurious interactions with the environment or imprecision
in control signals will cause the quantum state to become corrupted. Moreover, even if
each individual error is small, there is nothing to prevent subsequent errors from building
up and propagating as an algorithm is run. Thus, the rate at which errors occur sets a
fundamental limit on the duration of a calculation that has any appreciable chance of
success, and is quite low for a calculation of any size. For example, the rate required to

∗ These questions had long been disregarded by the mainstream community, who largely adhered to the
“shut up and calculate” school of quantum-mechanical thought. However, a group of counter-culture Bay
Area physicists in the 1970’s who failed to find jobs following the postwar physics boom formed a cohort
to investigate these more philosophical questions. Their “Fundamental Fysiks Group” proposed a method
of transmitting information faster than the speed of light, which three groups independently discovered
the No-Cloning theorem to resolve [10].
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run Shor’s algorithm on an appreciably large number is ten or more orders of magnitude
lower than could ever feasibly be achieved [16]. Without some means of circumventing
this issue, the quantum computer would again be relegated to a mere theoretical curiosity.
Fortunately, in 1995 Peter Shor proposed the first “quantum error correction” code, by
which a single “logical” qubit was redundantly encoded with nine physical qubits [17]. This
code makes the effective error rate of a logical qubit much lower than the rates of each
constituent qubit. Error correcting codes requiring 5 or 7 qubits were discovered shortly
then after [18, 19], but merely correcting errors is not enough to compute. These logical
qubits must be usable in algorithms, which means manipulating them in a way that is
robust to errors as well. Peter Shor once again solved this problem∗, finding in 1996 that
an arbitrarily perfect fault tolerant quantum computer could be built from faulty qubits
[20].

With a quantum computer shown to be theoretically possible, it turned to experimental
groups to attempt to build one. The earliest efforts used liquid-state nuclear magnetic
resonance (NMR). Due to its applications to medicine and chemistry, NMR already
had some of the necessary functionality, such as single-qubit gates and good coherence
times. For that reason, initial progress was rapid with demonstrations of simple two-qubit
algorithms [21–23] soon followed by a seven-qubit factorization of the number 15 using
Shor’s algorithm [24]. For a variety of reasons including poor measurement signal-to-noise
and register initialization, however, liquid-state NMR could not scale much past this point
[25].

A more promising approach was to use trapped ions [26]. In that system, a linear
string of ionized beryllium, calcium, strontium, or another type of atom are confined using
electric fields. Certain electronic transitions of each atom are used as a qubit, with higher
transitions used for measurement and initialization [27]. Ions are coupled to one another
by their collective motion, which is essentially a coherent “phonon bus.” High-precision
lasers are used for both single and multi-qubit manipulations†. The field also enjoyed brisk
progress by leveraging the techniques and machinery developed for atomic clocks, and by
taking advantage of the long coherence times of atomic transitions [28–31]. This system
currently holds the record for measurement [32] and gate fidelity [33], as well as for the
most qubits simultaneously controlled (fourteen) [34]. Despite this, scaling to thousands

∗ It is rather remarkable that the same person discovered the most important algorithm and solved the two
biggest theoretical challenges facing quantum information.
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or millions of trapped ions is an imposing problem. Correlated noise [34] harms state
fidelity as the system grows, and the experimental apparatus required for these relatively
small systems are quite complicated. Progress has been made toward miniaturizing the
trap onto a chip [35, 36], but combining the huge current required to trap ions with the
constraints of a cryogenic circuit represents a challenge [37].

A variety of other quantum computing systems have recently been introduced. Some
examples of credible architectures are optical lattices of neutral atoms [39], semiconductor
quantum dots [40–44], electrons trapped over liquid helium [45], and diamond nitrogen-
vacancy centers [44, 46–48]. One of the most promising new approaches and the subject
of this thesis is superconducting circuits [49]. There, the collective motion of Cooper pairs
in a nonlinear electronic circuit is quantized and used as a qubit [50–52]. The state of this
motion can be controlled and detected with microwave signals. Superconducting circuits
have been used to demonstrate a variety of quantum information tasks like single-qubit
gates [53, 54], two-qubit gates [55–57] and high-fidelity measurement [58–61]. For much
of their history, however, there was an open question about whether these circuits could
be sufficiently coherent to attain fault tolerance. Fortunately, in the context of very recent
experiments [62, 63], it appears that the answer is yes.

1.1 Overview of thesis

This thesis reports recent results using the circuit quantum electrodynamics (cQED)
superconducting architecture. This system, in which superconducting qubits are coupled
to microwave cavities, has proven itself as one of the most promising implementations of
superconducting technology and potentially of any known quantum computing architecture.
I begin by introducing the characteristics and experimental implementation of cQED and
culminate with the experimental realization of the three-qubit quantum error correcting
code. A variety of other results will also be reported, including a new mechanism for
qubit readout and a design for improving the coherence of qubits without sacrificing
controllability.

† This fact is amusing in the context of a quote from Erwin Schrödinger in 1952, where he said that
“we never experiment with just one electron or atom or (small) molecule. In thought-experiments we
sometimes assume that we do; this invariably entails ridiculous consequences... we are not experimenting
with single particles any more than we can raise Ichthyosauria in the zoo” [38]. The Ichthyosaur is a
dolphin-like marine reptile that has been extinct for 90 million years.
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Before examining the details of the system, I provide a brief overview of quantum
information science in chapter 2. I introduce the concept of quantum bits, gates, algorithms,
and measurement. I discuss entanglement and how it can be quantified, and briefly mention
the requirements for a quantum computer and a few useful algorithms that can be run on
one. The chapter concludes by emphasizing the need for quantum error correction and
listing several approaches to do so.

In chapter 3, I summarize the physics of these superconducting systems. I introduce
the transmon qubit, which is the qubit variant used throughout this thesis, and show how
it can be coupled to a microwave resonator in cQED. Control of the resonator enables us
to apply single-qubit gates, mediate coupling between qubits, and measure qubit states. I
discuss flux bias lines, which are used to control qubit transition frequencies in-situ, and
show how to calculate the expected qubit relaxation.

With the theoretical concepts established, I turn to the details of our experimental
implementation in chapter 4. I introduce two approaches to building cQED: the two-
dimensional planar design and the three-dimensional cavity design. Though they are
conceptually similar, their designs are quite different. I show a new variant on 3D cavities
that integrates flux bias lines and comes with its own host of design considerations. I then
explain how the devices are cooled in a helium dilution refrigerator, and describe how the
fridge is cabled to maximize thermalization, control precision, and measurement fidelity.
Finally, I explain how single-qubit gates are accurately and inexpensively generated at room
temperature.

Calibrating these gates in a real experiment is the subject of chapter 5. I introduce
simple procedures for measuring cavity transmission and qubit spectroscopy which are
required to initiate any cQED experiment. I then show how to progressively tune-up qubit
pulses with Rabi and Ramsey oscillations and a sequence called “AllXY.” This sequence
is more sensitive to a variety of pulse error syndromes than other approaches, and is an
archetype for even more sophisticated tune-ups.

Chapter 6 concerns the details of qubit measurement. It begins with the conventional
dispersive mechanism and calculates the expected signal to noise ratio of such a mea-
surement. Due to the low signal power and the relatively high noise temperature of the
amplifier chain most often used, this SNR and the corresponding measurement fidelity
can be low. Motivated by this fact, I introduce a new element called a “Purcell filter”
that breaks the relationship between qubit and cavity lifetime. Apart from enabling the
use of low-Q measurement cavities to increase dispersive measurement fidelity, it can
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also be used to efficiently reset qubits to their ground state. I then discuss the “high
power” readout scheme, which exploits the unusual behavior of the cavity when driven
very strongly to make a high-fidelity measurement. This has the advantage of obviating
the need for sophisticated amplifiers or design complications to attain good measurement
fidelity, but scrambles the qubit state during the measurement, which limits the scope of
its application.

I then turn to more sophisticated qubit experiments and discuss how we have generated
three-qubit entanglement on demand in chapter 7. I start by describing the characteristics
of the device we used, which hosts four individually flux-biased transmon qubits. I show
two ways that we can use this flux control to implement two-qubit entangling gates. Both
methods exploit an interaction with higher transmon excited states, but approach it either
in the slow (adiabatic) or fast (sudden) limit. In order to verify that these gates are working
as expected and to quantify their fidelity, I discuss how state and process tomography can
be efficiently measured with a joint qubit measurement. Finally, using the sudden two-qubit
gate, I explain how we have produced three-qubit entanglement and measured the resulting
state with tomography. We also verified the presence and quality of entanglement with
various witnesses.

These techniques lead directly into chapter 8, where I discuss our recent demonstration
of three-qubit quantum error correction. The key to this result is an efficient three-qubit
Toffoli gate. This gate leverages our understanding of both sudden and adiabatic gates
using higher-excited states to engineer an interaction between a computational state and a
third-excited state of one transmon. I discuss the procedure we have developed to tune the
gate up and report the resulting performance as measured by state and process tomography.
Using this gate, we demonstrated both bit- and phase-flip quantum error correction. We
verified that the algorithm worked as expected by measuring the ancilla qubit states after
a full bit-flip on a single qubit and confirming the quadratic dependence of fidelity on the
effective error rate of all three qubits. Despite this success, the algorithm never improves
the fidelity of a process because the coherence of the qubits in the device was too poor.

Motivated by this result and recent breakthroughs in 3D qubit coherence [62, 64],
I report on preliminary results using a tunable version of the 3D cQED architecture in
chapter 9. I show how the added control lines constitute an unacceptable qubit decay
channel as we expected, and that this channel can be effectively turned off with proper
filtering. I then discuss a host of experiments we have performed to measure the system
by combining cavity photon-number Fock states with fast flux control. These techniques
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enabled us to accurately measure cavity lifetime, coherence, nonlinearity, and dispersive
shift as a function of qubit frequency. These results indicate that, in the absence of
qubit hybridization, the cavity can be extremely coherent. This leads us to study the
cavity itself as a quantum resource. I explain how we have used qubit number splitting to
measure the cavity state and the inherited Kerr nonlinearity to produce interesting states
to detect. Finally, combining this with fast flux control, I show how we can “freeze” this
Kerr evolution, effectively controlling the cavity Hamiltonian on demand.

I conclude this thesis in chapter 10 with an overview of the state of the field and
suggestions for future work. In particular, I list a few straightforward improvements that
could be made to the tunable architecture to enable more sophisticated experiments. A
few of these experiments are also proposed. Finally, I give my perspective on the future of
superconducting qubits and their prospects for implementing a quantum computer.



CHAPTER 2

Concepts of Quantum Information

This chapter will serve as an introduction to the core concepts of quantum information
processing. There will be three sections. First, we introduce the fundamental building

blocks and language of quantum information starting with qubits and single-qubit rotations.
Next, we describe the reasons that quantum information processing is potentially very
powerful, introduce some of the potential applications, and describe what constitutes the
basic requirements for a “real” quantum computer. We then introduce quantum error
correction, which is required for the same reasons that a quantum bit is powerful, and give
an example with the simple three-qubit code. We will conclude with a brief survey of the
different kinds of more sophisticated error-correcting codes.

The first section will begin with the idea of a quantum bit or “qubit,” which is the
fundamental building block of quantum information. We will introduce a useful geometric
picture for their quantum state known as the “Bloch sphere,” and single-qubit “quantum
gates” used to manipulate that state which can be viewed as rotations about some axis
of the Bloch sphere. One convenient way of describing these rotations is with the Pauli
matrices, which correspond to full flips about a given axis but can also be applied in small
amounts using matrix exponentiation. Pauli operators are also useful as a language that
defines observables of quantum states. We then consider what happens when you have
more than one qubit, both how the quantum state of a register is described and how

9
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operators are constructed. The consequences of having multiple qubits leads to a discussion
of the density matrix. This accounts for the experimental reality that we are only ever
controlling and measuring subsystems that may be coupled with other uncontrolled degrees
of freedom. It also enables us to describe the state of an ensemble of identically-prepared
qubits that do not remain the same because of noise, control imprecision, and decay.
We conclude this section by discussing the entanglement of particles and how it can be
generated and detected.

The second section of this chapter will offer an explanation as to why quantum
information processing has the potential to be such a powerful tool and what it would
take to harness that power. We start with a general explanation of the properties of
quantum information. Because particles can be in superpositions of states, even a relatively
small number of qubits can encode an enormous amount of information. Moreover,
that information can be efficiently manipulated with unitary operations. This leads into
a discussion of quantum algorithms, which are specialized procedures that utilize this
complexity to solve certain problems faster than otherwise possible. These algorithms
operate only with stringent requirements, however, which leads us to the final topic of this
section: the DiVincenzo criteria for a quantum computer. Those criteria constitute the
basic hardware requirements that a quantum computer must satisfy.

The final section will explain why quantum bits are much more susceptible to errors
for the same reason they are powerful. There are straightforward methods of correcting
errors in classical computers which do not seem to easily generalize to the quantum case.
Fortunately, by taking advantage of another resource unique to quantum mechanics –
entanglement – we demonstrate how a three-qubit quantum repetition code can be made
to correct for arbitrary bit-rotations of any one qubit. There are two implementations
of this code: one relies on measuring error syndromes and classical logic to detect and
correct an error; the other implementation combines coherent quantum interactions with
non-unitary qubit reset to autonomously correct errors. Both codes can easily be modified
to fix phase-flip errors instead of bit-flips, which may be a more common error for certain
qubit implementations. A qubit is susceptible to both bit- and phase-flips, however, which
require a larger code to repair. One such code which corrects for all possible single-qubit
errors is the nine-qubit Shor code, which is a concatenation of the three-qubit bit- and
phase-flip repetition codes. We conclude with a discussion of other kinds of error correcting
codes and the concept of fault tolerance.
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2.1 Fundamental concepts

The field of quantum information processing typically concerns systems of one or more
quantum bits or qubits. A quantum bit is a much more sophisticated object than its
classical brother. Whereas a classical bit stores only one bit of information, a qubit state
is described by two real numbers – in some sense, an uncountably infinite amount of
information. As if this enormous multiplication were not enough, when we have multiple
qubits, the amount of information needed to describe the overall state grows exponentially
as a function of the number of qubits. This section will introduce the basic tools we use
to describe and manipulate this quantum information.

2.1.1 Single-qubit states

A single qubit is a quantum object whose allowed states are either |0〉 or |1〉. These “ground”
and “excited” states form what is known as the “computational basis.” Being a quantum
object, superpositions of these states are also allowed: the qubit can be in both states
simultaneously. The quantum state of a single qubit is therefore given by |ψ〉 = α|0〉+β|1〉,
where α and β are complex numbers and |α|2 + |β|2 = 1. The probability that the qubit is
in its ground state is given by |α|2 (or, equivalently, α∗α, where the star operator indicates
the complex conjugate), and similarly |β|2 for the excited state. Since α and β are complex
numbers, we can equivalently write |ψ〉 = |α|eiφα |0〉 + |β|eiφβ |1〉.

The Bloch sphere

We can further simplify the representation of ψ by exploiting two facts. First, we know
that the sum of the probability of being found in each state must equal 1, |α|2 + |β|2 = 1.
Second, the “global” phase of a quantum state has no physical meaning. Then, defining
φ = φβ − φα and noting that cos2(x) + sin2(x) = 1, we say

|ψ〉 = cos

(
θ

2

)
|0〉 + eiφsin

(
θ

2

)
|1〉 (2.1)

with θ ∈ [0, π] and φ ∈ [0, 2π). This representation is chosen to map our quantum
state to a point on a sphere, as shown in Fig. 2.1. This is known as the Bloch sphere
representation of a quantum bit. We can also say that ψ is a two-component vector given
by
[
cos

(
θ
2

)
, eiφsin

(
θ
2

)]
.
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θ

φ

z

y

x

|0〉 + |1〉√
2

|0〉 + i|1〉√
2

|0〉

|1〉

cos(θ/2)|0〉 + eiφsin(θ/2)|1〉

Figure 2.1: The Bloch sphere. A single-qubit wavefunction |ψ〉 = α|0〉+β|1〉, where α and
β are complex numbers, is reduced to two real parameters |ψ〉 = cos(θ/2)|0〉+eiφsin(θ/2)|1〉
with the application of the constraint |α|2 + |β|2 = 1 and that global phases are irrelevant.
The coordinates {θ, φ} map to a point on the surface of a sphere, known as the Bloch sphere.

2.1.2 Single-qubit gates and the Pauli matrices

Now that we have a single qubit, how do we manipulate its state? We can describe our
state as a two-component complex vector; any possible manipulation of that vector can be
represented with a 2 by 2 matrix. We can further say that this matrix must be Hermitian
(e.g. Ô = Ô†) due to the constraints of quantum mechanics. One convenient way of
writing this matrix Ô is as a sum of Pauli matrices, which are given by:

σz =

(
1 0

0 −1

)
, σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σi = I =

(
1 0

0 1

)
(2.2)

where σz adds π to the relative phase difference between |0〉 and |1〉, σx flips their
populations, σy does both, and σi does nothing. They obey the relationship σ2

j = I

and the anti-commutator {σj, σk} = 2δjkI for all {j, k} = {x, y, z, i}. From the point
of view of the Bloch sphere, the first three of these can also be viewed as a rotation
by π about the respective axis. For example, the σx-operation on a qubit rotates the
state 180 degrees about the x-axis of the Bloch sphere. These operators also form
a complete basis for any Hermitian 2 by 2 matrix, and so any Hamiltonian evolution
on a single qubit can be described as a sum of them. By convention, we say that
Ĥ = 1

2
h0I +

1
2
(hxσx + hyσy + hzσz) =

1
2
�h · �σ, where in the second step we have omitted
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the h0 term because it is only an energy offset and is therefore physically irrelevant. Another
common gate is known as the “Hadamard,” which maps |0〉 to (|0〉 + |1〉)/√2 and |1〉 to
(|0〉 − |1〉)/√2, and is defined by the matrix H = 1√

2
( 1 1
1 −1 ).

Small rotations

What if we want to apply only a small rotation about one of these axes? Let us consider
the time-dependent Schrödinger equation, given by

i�
∂

∂t
|ψ〉 = Ĥ|ψ〉 (2.3)

where Ĥ is the Hamiltonian governing the time evolution. For time-independent Ĥ, we can
solve this equation with |ψ(t)〉 = e−iĤt/�|ψ〉. If Ĥ = 1

2
Ω�n·�σ, where �n is an arbitrary vector

which defines our rotation axis, the corresponding unitary is given by Û = e−iĤt = e−iΩt
2
�n·�σ.

Taylor-expanding the exponential, Û =
∑∞

j=0
1
j!

(−iΩt
2

�n · �σ)j, and utilizing the Pauli

operator identities, we are left with
∑∞

j∈evens
1
j!

(−iΩt
2

)j
I +

∑∞
j∈odds

1
j!

(−iΩt
2

)j
(n̂ · σ̂). We

can identify the two sums as sines and cosines, giving us

Û(t) = cos

(
Ωt

2

)
I − isin

(
Ωt

2

)
(n̂ · σ̂) = RΩt

n̂ . (2.4)

Thus, we can control the amount of rotation driven by our Hamiltonian by simply changing
the period of time for which we apply it. Equivalently, we could change the parameter Ω,
which represents the coupling or drive strength of our rotation. As we will see in chapter 5,
we control both of these parameters when applying rotations to superconducting qubits
using resonant microwave tones.

For example, if we take n̂ = ẑ, then Û is diagonal in the computational basis as

Û(t) =

(
e−iΩt/2 0

0 e+iΩt/2

)
= e−iΩt/2

(
1 0

0 e+iΩt

)
(2.5)

wherein the second equation we have factored out the irrelevant global phase. We can
arbitrarily control the phase difference between |0〉 and |1〉 by applying the σz operator.
Geometrically, this corresponds to rotations about the z-axis – as a function of time, our
state precesses about z. For arbitrary �n, if we choose our qubit basis as states pointing
parallel and anti-parallel to �n, the unitary operation is exactly as written above.
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2.1.3 Measurement

How do we understand measuring the state of a qubit? Consider the projection operator
P̂ = |0〉〈0|, which models the act of measuring. Its expectation value, 〈ψ|P̂ |ψ〉, gives the
probability to be found in the ground state. (This corresponds to the infinite strength
limit of measurement, where the qubit is fully projected. Finite-strength measurements
are extremely subtle [61, 65] and are outside the scope of this introduction.) Note that
measuring a qubit destroys the quantum nature of the qubit – we have gone from encoding
two continuously-valued numbers θ and φ in the wavefunction to retrieving a single classical
bit of information. This process is known as “projecting” or “collapsing” the qubit state. If
the measurement is quantum non-demolition (QND) to the qubit state, the qubit state will
be left in the state in which we measure it. A non-QND measurement still collapses the
wavefunction, but may leave the qubit state in some other (perhaps non-computational)
state or states unrelated to the measurement outcome.

We can combine this understanding of measurement with the time-dependent operators
we derived in the previous section. Suppose we apply the Hamiltonian Ĥ = Ω

2
σz to the

state |ψ〉 = 0 starting at time t. What is the value of 〈ψ(t)|P̂ |ψ(t)〉? Using our result
from Eq. 2.4, we have

Û(t) =

(
cos

(
Ωt
2

) −isin
(
Ωt
2

)
−isin

(
Ωt
2

)
cos

(
Ωt
2

) ) . (2.6)

Applying this to our state, we have |ψ(t)〉 = [
cos

(
Ωt
2

)
,−isin

(
Ωt
2

)]
. The expected value

of the operator P̂ is given by 〈ψ(t)|P̂ |ψ(t)〉 = cos2
(
Ωt
2

)
. This behavior, where the

populations of |0〉 and |1〉 oscillate as a function of time, is known as a Rabi oscillation
and will be discussed in greater detail in chapter 5.

How would we measure such a Rabi oscillation? Our measurement will always either
give us 0 or 1, but our prediction is cos2

(
Ωt
2

)
, which can take any value between those

two extremes. In order to see this behavior, we need to prepare the qubit many times in
the same state, measure it, and average the measurement outcomes. This is known as an
“ensemble average,” where |α|2 fraction of the time we will find the qubit in the ground
state and |β|2 in the excited state. The average of these two numbers as a function of θ
will be cos2 (θ/2). We would repeat the experiment many times for several values of θ to
see the full oscillation.
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Expectation values

We can also measure the expected value of other projections. For example, the expected
value of a Pauli operator given by 〈σj〉 = 〈ψ|σj|ψ〉 indicates the projection of our state
vector onto that axis of the Bloch sphere. The projection operator P̂ is related to the
expected value of σz by a constant; the expected value of the other Pauli operators can be
understood as measuring the qubit along a different axis than the computational basis. As
we will see in section 2.1.5, the projections of the qubit along each∗ of the Pauli operators
fully specifies the quantum state.

2.1.4 Multiple qubits

When we have more than one qubit in our system, the number of computational basis
states increases rapidly. The number of states grows exponentially with the number of
qubits N , as 2N . For two qubits, we have four basis states: |00〉, |10〉, |01〉, and |11〉;
for three, we have eight states: |000〉, |100〉, |010〉, |001〉, |110〉, |101〉, |011〉, and |111〉,
and so on. A quantum state must specify the complex coefficients of all of these basis
vectors; this information can no longer be represented as a simple geometrical picture like
the Bloch sphere.

Multi-qubit gates

Gates operating on a manifold of multiple qubits must also be realized. Since the state
vector has 2N elements, these operators must be 2N by 2N matrices. Consider a set
of k = (i, x, y, z) Pauli operators that each act on only the jth qubit, σj

k, where the
superscript denotes which qubit it addresses. For example, if we have two qubits, an
X-operation on the first qubit would be given by the tensor product of σ1

x and σ2
i . A

single-qubit gate is one where all but one of the operators in the tensor product are I;
having two or more non-identity operations constitutes a multi-qubit gate. For example, an
X-operation on two qubits simultaneously would be given by σ1

X ⊗ σ2
X and is commonly

abbreviated as σXX or simply XX.
Some particularly common gates include the “SWAP gate,” which maps |01〉 ↔ |10〉

∗ Only three numbers are required; σi tells us nothing because 〈ψ|σi|ψ〉 is defined to be 1 by normalization.
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and does nothing to |00〉 or |11〉, and is given by the matrix

SWAP =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ . (2.7)

There are also controlled NOT gates, where a target qubit is flipped if and only if a control
is excited, and is given by the matrix

cNOT = Λ(σx) =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞⎟⎟⎟⎟⎠ . (2.8)

The cNOT is naturally extendible to being “controlled” by more than one qubit; for example,
the three-qubit Toffoli gate flips some qubit if and only if two controls are excited, and
is therefore also known as a controlled-controlled-NOT or ccNOT gate [66]. Another
common two-qubit gate is the controlled phase gate, which flips the phase of only the
|11〉 basis state:

cPhase = Λ(σz) =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎠ . (2.9)

The cPhase also has a multi-qubit generalization known as the Toffoli-sign (or ccPhase)
gate which flips the phase of the basis state |1..1〉. Many of these multi-qubit gates can be
related to one another with single-qubit rotations. Experimentally, single-qubit gates are
implemented essentially the same regardless of the number of qubits. Multi-qubit gates
are much more exotic, however. Methods of producing these interactions and using them
to entangle qubits will be a major topic of discussion in chapter 7 and chapter 8.

Multi-qubit correlations

Just as there are multiple-qubit gates, we can also define multi-qubit correlations. Single-
qubit observables are still defined as the expected value of some tensor-product operator
that has only one non-identity element. For example, the expected value of X on the first
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qubit of a three-qubit register is given by

〈X1〉 = 〈ψ1|〈ψ2|〈ψ3|σ1
x ⊗ σ2

i ⊗ σ3
i |ψ3〉|ψ2〉|ψ1〉

= 〈ψ1|σ1
x|ψ1〉〈ψ2|σ2

i |ψ2〉〈ψ3|σ3
i |ψ3〉

= 〈ψ1|σ1
x|ψ1〉

(2.10)

where we have used the fact that operators commute through states that do not share the
same labels, and that the states are normalized.

We can also define multi-qubit correlations, where its value is given as the product of
the two individual correlations. For example 〈Z1Z2〉 tells us the probability that both qubits
are pointing in the same direction along the z-axis. The state |φ+〉 = (|00〉 + |11〉) /√2

would have a 〈Z1Z2〉 value of +1, even though both single-qubit Z correlations are zero.
(This is a special state known as a Bell state, see section 2.1.6 below for more.) Note that
this tells us nothing about which direction either one individually is pointing – merely that
they are pointing in the same direction. As we will see, the fact that these are independent
pieces of information will be crucial both in understanding entanglement and for performing
quantum error correction.

Just as with the single-qubit case, knowing all of the expected values of the multi-qubit
Pauli operators fully specifies a state. With two qubits there are 15 non-trivial correlations
given by XI, Y I, ZI, IX, IY , IZ, XX, XY , XZ, Y X, Y Y , Y Z, ZX, ZY , and
ZZ. Just as you would expect, the number of these linearly-independent correlations
grows exponentially with the number of qubits, as 4N − 1. Measuring these multi-qubit
correlations can be done by either post-processing individual but simultaneously performed
single-qubit measurements, or, as we will see in chapter 7, by exploiting the properties of
more exotic measurement operators.

2.1.5 The density matrix

The previous sections showed how significantly our state description and operators change
when we add a single qubit. But what happens if someone snuck in an extra qubit before
we closed the sample box without us noticing? More generally, how can talk about a
subsystem – our group of qubits – when there are so many other degrees of freedom
around? Each atom in our sample box, the helium circulating through our fridge, the
bench that our control electronics are sitting on, a plane flying overhead – everything –
should, in principle, be included in the wavefunction describing our system. We are forced
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to admit that in our experiments, we are only describing and controlling a subset of the
system, and must therefore come up with a new language to describe it. In particular, this
new description must contain more information than just an 2N -component vector due to
the fact that our state, viewed as a subset of a larger system, can undergo non-unitary
evolution.∗

We introduce an object called the density matrix defined as

ρ =
∑
i

pi|ψi〉〈ψi| (2.11)

where |ψi〉 are some complete or over-complete set of states of our subsystem that need
not be orthogonal to one-another and pi ≥ 0 is the probability that the subsystem is
in that state, with

∑
i pi = 1. (Note that pi is a real-valued probability, and not a

complex probability amplitude.) The expectation value of some operator A is then given by
〈A〉 = tr (ρA) =

∑
i pi〈ψi|A|ψi〉, where the tr operation is the matrix trace. The density

matrix has three properties worth mentioning right away: it is self-adjoint (e.g. Hermitian)
so that ρ = ρ†, it is normalized, so that tr (ρ) = 1, and it is “positive” in the sense that
〈ψ|ρ|ψ〉 ≥ 0 for all |ψ〉. The last property further implies that all the eigenvalues of the
matrix are greater than or equal to 0.

We define the state purity as tr (ρ2) =
∑

i p
2
i ≤ 1. If it is possible to write the density

matrix with only one non-zero pi, then the purity is 1 and the state can be written as a
conventional state vector. For a two-level qubit, the Pauli operators span the space of
Hermitian density matrices, so we can write ρ = 1

2
(λ0I + λxσx + λyσy + λzσz). Since

tr(ρ) = 1, this simplifies to ρ = 1
2

(
I + �λ · �σ

)
, with |λ| ≤ 1. The purity of this state

can be shown to be 1
2

(
1 + �λ · �λ

)
≤ 1. λj = 〈σj〉 = tr(ρσj), confirming our earlier claim

that by knowing the expected values of all the Pauli operators of a single qubit, we know
everything that can be known about the state.

We can also introduce a useful property called von Neumann Entropy. It is defined
as S(ρ) = −tr [ρlog2ρ] = −∑

j λjlog2(λi). For a pure state like ρ = |0〉〈0|, we have
S(ρ) = 0 and nothing is uncertain; however, for a maximally mixed state like ρ′ =
1
2
(|0〉〈0| + |1〉〈1|), S(ρ′) = 1. S has several important properties: for any pure state,

∗ Much of this section and the next are adapted from the lecture notes of Liang Jiang from his Spring 2013
course Quantum Information and Computation at Yale University [67].
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S(ρ) = 0; S(ρ) ≥ 0 for all ρ; for a system with a d-dimensional Hilbert space, S(ρ) ≤ log2d;
and if systems A and B are in some pure state |ψAB〉, S(ρA) = S(ρB).

Density matrix examples

Let us build up some intuition about the density matrix. Suppose the entire universe
contains only two qubits, A and B, in some state |ψAB〉, and a thief steals away the B

qubit while we are distracted by something important. What can we say about the state
of A? We can write the total state |ψAB〉 = ∑

i,μ ai,μ|i〉A|μ〉B where |i〉 is a quantum
state of system A and |μ〉 of system B and

∑
i,μ |ai,μ|2 = 1. The density matrix of qubit

A is given by the partial trace of the full density matrix, where we sum over the degrees
of freedom of B. That is, ρA = trB (ρAB) = trB (|ψAB〉〈ψAB|) =

∑
i,j,μ a

∗
i,μaj,μ|j〉〈i|,

where again the indices i and j sum over the A states and μ over the B states. Consider
a specific case where |ψAB〉 = α|00〉 + β|11〉. We have a0,0 = α and a1,1 = β, so
ρA = |α|2|0〉〈0| + |β|2|1〉〈1| =

(
|α|2 0

0 |β|2
)
.

Interestingly, this reduced density matrix cannot be written in terms of a single vector.
The state which you might suppose is most similar to it, |ψA′〉 = α|0〉 + β|1〉 has the
density matrix ρA′ = (α|0〉 + β|1〉) (α∗〈0| + β∗〈1|) = |α|2|0〉〈0|+αβ∗|0〉〈1|+βα∗|1〉〈0|+
|β|2|1〉〈1| =

(
|α|2 αβ∗

βα∗ |β|2
)
. The astute observer will notice that this is not the same matrix:

the cross-terms that we picked up when expanding |ψ〉〈ψ| give us off-diagonal terms.
Those terms indicate the coherences of the state; when we traced away the B qubit
above, those coherences were lost. In the Bloch sphere representation, this is equivalent to
forgetting about the φ information while keeping θ. We can calculate the purities of both
cases; for state A′, we find the purity is equal to (|α|2 + |β|2)2 = 1, while for state A we
find a purity of |α|4 + |β|4 ≤ 1. The matrix ρA need not have a vector-state equivalence.

So far, we have introduced the density matrix in the context of a subsystem. However,
it also strongly motivated by another experimental reality: the fact that we are always
measuring an ensemble of prepared states. Suppose that our universe truly contains only
one qubit, and we are interested in measuring how well we can prepare that qubit in
some state. Since quantum mechanics only lets us measure a qubit by projecting it along
a chosen axis, in order to fully characterize the state we must repeatedly prepare and
measure it many times along several distinct axes, in a similar way that we described to
measure the Rabi oscillation above. The question then arises: what happens if we do
not actually prepare an identical state every time? This might happen if some random
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process affects the qubit, such as dephasing or spontaneous emission, if there is noise
in our control machinery, if the environment is changing slowly (e.g. the temperature
of the fridge or attenuation of the drive lines), or so on. It turns out that the density
matrix representation is also equipped to deal with this. An ensemble of imperfect states is
described by a density matrix whose purity is reduced as the differences among the states
increases.

Super-operators

Quantum mechanics predicts that the evolution of the universe, taken as a whole, is unitary.
However, when we limit ourselves to a small subset of that system, its interactions with
degrees of freedom outside of our awareness need not be unitary. How must we modify
our operator formalism to model such evolution and ensemble impurity? We introduce a
new object called a super-operator which takes a density matrix and maps it to a new one,
ρA′ = ε̂ (ρA). ε̂ must obey several properties. First, to be consistent with the properties
of classical probability, it must be linear, such that ε̂(λ1ρ1 + λ2ρ2) = λ1ε̂(ρ1) + λ2ε̂(ρ2).
Second, it must preserve the hermiticity of ρ. Third, it must be trace preserving, so that
tr(ρA′) = 1. Fourth, it must be positive, so that 〈ψ|ρA′ |ψ〉 ≥ 0 for all |ψ〉. The Kraus
representation theorem [68] states that any super-operator ε̂ satisfying these criteria has
an operator representation

ε̂(ρ) =
∑
μ

MμρaM
†
μ (2.12)

for some set of operators Mμ where
∑

μ M
†
μMμ = 1. For a pure state ρ = |ψ〉〈ψ| and a

single operator M0 = O, we see that ε̂ reduces to the normal single-matrix operator we
are used to seeing with state vectors. However, if we have more than one Mi, the action
of ε̂ on ρ is no longer unitary and the purity of our state need not be preserved.

This formalism is correct, but quite abstract without a few examples. Let us first
consider a dephasing channel, where M0 =

√
1 − pI, M1 =

√
p|0〉〈0|, and M2 =

√
p|1〉〈1|.

In some sense, this is a channel where the qubit is randomly measured, which projects away
its phase coherences. The parameter p can be taken to be the probability that the qubit
has been dephased. Taking ρ = ( ρ00 ρ10

ρ01 ρ11 ), we calculate ρ′ = ε̂(ρ) = (1 − p)ρ+ p
(
ρ00 0
0 0

)
+

p
(
0 0
0 ρ11

)
=
(

ρ00 (1−p)ρ10
(1−p)ρ01 ρ11

)
. If our state ρ = 1

2

(
1 + �λ · �σ

)
, then the new state ρ′ has

λ′ = (λx(1 − p), λy(1 − p), λz). We see that if p = 1, ρ becomes fully dephased and the
off-diagonal terms vanish, just as demonstrated in the above case where our B qubit was
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stolen. Note that if the states are separable with |ψ〉 = |A〉 ⊗ |B〉, then there are no
coherences and dephasing (or tracing over B) has no effect on A. It is possible to apply this
process continuously using the “Master Equation” partial differential equation formalism.
Deriving this equation exceeds the scope of this introduction, but it can be shown that if
dephasing occurs at a rate γ, ρ(t) =

(
ρ00(0) ρ10(0)e−γt

ρ01(0)e−γt ρ11(0)

)
. The dephasing rate γ is often

specified by a characteristic dephasing time T2 = 1/γ.
Another relevant example is the amplitude damping channel ∗. There, M0 =

(
1 0
0
√
1−p

)
and M1 =

(
0
√
p

0 0

)
=

√
p|0〉〈1|. Repeating the calculation above, we find that λ →

λ′ =
(√

1 − pλx,
√
1 − pλy, p+ (1 − p)λz

)
. Again, if we were to apply this operation

continuously, we can define its rate γ to be equal to 1/T1, where T1 is the characteristic
time of the qubit for it to relax from |1〉 back to |0〉. The maximum T2 is given by 2T1.
Interestingly, this decay channel’s eigenstate is not a maximally mixed state, but rather the
ground state |0〉〈0|. Finally, the third common process is the depolarizing channel. There,
M0 =

√
1 − pI, M1 =

√
p
3
σx, M2 =

√
p
3
σy, and M3 =

√
p
3
σz. This is often considered

the most severe damage that you can inflict on a qubit state, since λ → λ′ =
(
1 − 4p

3

)
λ,

making the qubit completely impure (e.g. |λ′| = 0) for p = 3/4. In the context of quantum
error correction, undoing a depolarizing error is the most demanding task for a code.

2.1.6 Entanglement

The phenomenon of quantum entanglement is one of the most famous and “spooky”
predictions of quantum theory. It refers to the fact that the quantum state of one particle
can depend on the state of another. For example, take the Bell state mentioned above
where |φ+〉 = (|00〉 + |11〉) /√2. Measured individually, both qubits are equally likely
to point in either direction along the z-axis, but if one qubit is found to be pointing
up then the other will as well, and vice versa. That is, their behaviors are random but
correlated. An entangled state is one where the state |ψAB〉 cannot be written as a

∗ M0 accounts for the possibility that the channel did not cause the qubit to decay. Why, then, does M0 �= I?
Suppose we are performing an experiment where we are measuring the qubit with a photodetector, which
clicks when the qubit decays and emits a photon. As we wait and are attempting to infer the state of the
qubit, the longer our photodetector does not click, the more we have to account for the possibility that
the qubit was not in its excited state to begin with. Similarly, if we fail to detect photons leaking out
of a cavity supposedly containing some large coherent state, we must consider the possibility that the
cavity actually contains a smaller state that which is less likely to have emitted a photon. Thus, the M0

operator reduces our estimate of the excited state population. This phenomenon is known as the “dog
that did not bark”; if our guard dog is silent, it may be that there are no robbers trying to break in, but it
also might be that the dog is simply absent (or asleep).
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separable state, the product of two wave functions individually spanning the constituent
subsystems, |ψA〉⊗|ψB〉. Quantifying entanglement requires defining what your subsystems
are. Mathematically, entanglement is a consequence of the fact that each coefficient
of a multi-component wavefunction is independent. Viewed from the point of view of
elements in a vector, there is no discrimination between subsystems – no inherent meaning
of the basis vectors. It is only in the context of delineations between subsystems that
entanglement is meaningful. For example, an atom with four energy levels and two two-level
qubits would have the same Hilbert space, but we would only say that the two separate
atoms could meaningfully be entangled.

More formally, we define the Schmidt decomposition for two systems A and B as

|ψAB〉 =
∑
j

√
λj|Uj〉A|Vj〉B (2.13)

where
∑

j λj = 1 and the states |U〉A, |V 〉B form a complete orthonormal basis for the
systems A and B, respectively. Any pure state can be written in this form∗. If it is not
possible to find a basis in which we can write |ψAB〉 using only one non-zero λj , then the
state is entangled. For pure states, we can also say that if the von Neumann entropy of
some subsystem is greater than zero, it is entangled with some other subsystem. If the
von Neumann entropy is maximal, the state is also maximally entangled. Interestingly,
since the entropy of the full pure state is zero but the entropy of the subsystems are not,
there seems to be some “negative entropy” associated with entanglement.

Generating entangled states

How is entanglement generated? We know immediately that any local operation cannot
change the amount of entanglement. A local operation is one which leaves invariant
the basis vectors of a subsystem that it does not address. Consider the Hamiltonian
Ĥ = ĤA + ĤB where ĤA leaves invariant system B and vice versa, and [ĤA, ĤB] = 0.
The unitary evolution driven by this Hamiltonian is also separable, since Û = e−iĤt =

e−i(ĤAt+ĤBt) = e−iĤAte−iĤBt = ÛAÛB when their commutator is zero. If we start with an
unentangled state |ψAB〉 = |ψA〉 ⊗ |ψB〉, applying this unitary to the state also gives us
an unentangled state, since Û |ψAB〉 = ÛA|ψA〉ÛB|ψB〉 = (ÛA|ψA〉) ⊗ (ÛB|ψB〉), which
is still separable. Moreover, if we have an entangled state, this local operation will only

∗ The proof can be found in Nielsen and Chuang [68] on page 109.
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change the vectors in the Schmidt decomposition and not the number or magnitude of
the λi’s, leaving the amount of entanglement unchanged.

Generating entanglement therefore must involve non-local operations which do not
commute with the any of the subsystems we are attempting to entangle. We can see
this with an example. Suppose Ĥ = gσA

x ⊗ σB
x , which gives Û = e−iĤt = cos(gt)I −

isin(gt)σA
x ⊗ σB

x . Applying this to the state |00〉 for t = π
4g

gives us 1√
2
(|00〉 − i|11〉),

which is a maximally-entangled two-qubit state with S(ρA) = S(ρB) = 1 and S(ρAB) = 0.
Another Hamiltonian that will be useful later is given by Ĥ = g

(
1−σA

z

2

)(
1−σB

z

2

)
. This

operation, which contains all the Pauli Z operators σZI , σIZ , and σZZ , maps to the
unitary Û = diag{1, 1, 1,−1} at t = π/g, which we identify as a controlled-phase gate –
it flips only the phase of the basis state |11〉. We can also make a controlled-NOT gate,
which flips the state of qubit B if and only if qubit A is excited using the Hamiltonian
Ĥ = g

(
1−σA

z

2

)(
1−σB

x

2

)
.

There are certain classes of entanglement that are particularly famous. For two
qubits, we have already mentioned the Bell state |φ+〉 = |00〉+|11〉√

2
. We can also construct

a Bell basis with the addition of the states |φ−〉 = |00〉−|11〉√
2

, |ψ+〉 = |01〉+|10〉√
2

, and
|ψ−〉 = |01〉−|10〉√

2
. Each of these states is maximally entangled, mutually orthogonal, and

span the two-qubit Hilbert space. We can write product states in this basis since it

is complete, for example |00〉 =
|φ+〉+|φ−〉√

2
. For three qubits, there are two separate

classes of entanglement: GHZ and W-type states [69]. The canonical GHZ (Greenberger-
Horne-Zeilinger) state [70] is given by |GHZ〉 = (|000〉 + |111〉) /√2 and the W state
by |W 〉 = (|100〉 + |010〉 + |001〉) /√3. These two states are not transformable to one
another with local operations, so we can say that each of these entanglement classes form
a manifold of states. For example, the state |GHZ ′〉 = (|010〉 + |101〉) /√2 still counts as
a GHZ-class state since it is modified from its prototype by an X-operation on the second
qubit, and no application of single-qubit rotations could change it into a W state. As
the number of qubits increases, so too does the number of distinct entanglement classes;
GHZ and W types generalize to more qubits in an obvious way, but the additional classes
are very complicated and constitute an active research question [71].

Entanglement of impure states

The method of detecting entanglement we mentioned earlier does not work if the state
under test is impure: states no longer have a defined Schmidt decomposition and their
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purity can be less than 1 without entanglement. However, we can extend our language
to deal with these states as well. We previously defined a separable state as one that
can be written as |ψAB〉 = |ψA〉 ⊗ |ψB〉. When talking about a density matrix, we can
distinguish between two types of unentangled states: an uncorrelated state and a separable
state. An uncorrelated state can be written as ρun = ρA ⊗ ρB, while a separable state
as ρsep =

∑
k pkρ

k
A ⊗ ρkB, with

∑
k pk = 1 and pk ≥ 0. That is, a separable state is an

incoherent sum of uncorrelated states. If our density matrix cannot be written in either
of these forms, we can say it is entangled. Rigorously distinguishing the presence of
entanglement with impure states is outside the scope of this introduction. However, at
least for two qubits, the “positive partial transpose” (PPT) is definitive [72, 73].

2.2 Computing with qubits

Why are qubits potentially useful for computing? Broadly speaking, quantum information
science seeks to take advantage of two properties of quantum mechanics: superposition
and parallelism. We have already seen that the amount of information stored in a single
qubit is in some sense much greater than a single bit, with its state described by two
real numbers. This fact is compounded when describing the wavefunction of a system of
several qubits: for two qubits, there are six real numbers, with three there are fourteen,
and so on. For N qubits, there are 2(2N − 1) real numbers that describe a pure quantum
state (and more, 2N+1 − 1, if the state is impure, though this information is not necessarily
useful); for N = 200, this is more real numbers than there are atoms in the universe. Even
a relatively small number of qubits (by the standard of modern computers), stores an
incredible density of information. Moreover, if we had some unitary that acts on these
qubits, it would operate on all the basis states simultaneously. That is, for some unitary
Û , |00..0〉 → Û |00..0〉, |10..0〉 → Û |10..0〉, and so on through |11..1〉 → Û |11..1〉. Even
if our qubit is in some vast superposition of states, a unitary operation acts on each
constituent equally rapidly. Not only can we store a huge amount of information in a
register of qubits, then, but we can also manipulate that information very efficiently as
well.

Unfortunately, things are not as favorable as these facts might imply due to the realities
of quantum measurement. As we saw in the previous section, a measurement can only
return the value of one observable. When a qubit is in an eigenstate of that observable
(e.g. it is already pointing along the direction you are measuring), the measurement will



CHAPTER 2. CONCEPTS OF QUANTUM INFORMATION 25

not destroy any information since the qubit is merely projected to itself. However, in
any other case it will randomly project the qubit along one of the possible eigenstates.
Thus, the best you can do to extract the expected value of some observable is to prepare
and measure the state many times in succession. There is also no way of isolating or
measuring a single coefficient of one basis vector without many repetitions; you cannot
tell if a coefficient is identically zero, for example, or simply very small. Thus, it seems
that this huge amount of information stored and manipulated in our quantum state is not
useful to us because we cannot efficiently retrieve it.

2.2.1 Quantum algorithms

Thankfully, the problem of measurement is surmountable because of quantum interference.
Using it, the answer to a simple (e.g. yes-or-no) question might be encoded in an observable
or observables that can be extracted efficiently. For example, the quantum amplitude of
a basis state corresponding to the correct answer might be amplified at the cost of an
incorrect state’s population. A quantum algorithm would take advantage of the qualities of
quantum mechanics to solve certain problems faster than is possible classically. However,
because of the difficulty of getting around the issue of measurement, only a few useful
quantum algorithms have so far been discovered [74, 75]. The most well-known examples
include Grover’s search algorithm, which can search an unstructured database quadratically
faster than is possible with a classical computer [76, 77], Shor’s factoring algorithm, which
is exponentially faster than is believed to be possible classically [14], and the Deutsch-Jozsa
algorithm for determining whether a function is balanced or constant, which also grants an
exponential increase [13], though many more exist [78]. The first two algorithms will only
return a correct answer with a high probability and may require several repetitions (though
it is efficient to check if they succeeded). This is in contrast to Deutsch-Jozsa, which is
deterministic and will always return the correct value if the algorithm was run successfully.
The details of how these algorithms work will not be covered here, but often take advantage
of more fundamental quantum subroutines like phase estimation, the quantum discrete
Fourier transform, and basis state amplitude amplification [75].

2.2.2 DiVincenzo criteria

Just as classical algorithms do not require a particular type of computer as long as they
implement certain functionality, quantum algorithms are also agnostic about their physical
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implementation. Any quantum computer must satisfy certain requirements, however, which
were first enumerated by David P. DiVincenzo and are known as the DiVincenzo criteria
[79]. This section will briefly introduce and explain each of these and several additional
requirements for error correction.

1) “A scalable physical system with well characterized qubits”

A quantum computer must be made up of many quantum bits, which both exhibit quantum
properties (superposition and entanglement) and can be produced in large quantities. They
must be “well characterized,” in the sense that their physical parameters are accurately
known (for example, the energies of states) as well as their couplings to other qubits and
the environment. The Hamiltonian of the qubit itself must be understood, so that, e.g. if
there are higher excited states of the bit we can ensure that qubit population is contained
to the computational Hilbert space.

2) “The ability to initialize the state of the qubits to a simple fiducial state,
such as the ground state”

We must be able to initialize the computer in some state |ψ〉 = |00...〉 for two reasons.
First, any algorithm would require the computational register to be in some known state to
begin a computation, since its evolution is unitary and “garbage in” would map to “garbage
out.” Second, as we will see, it is necessary to perform error correction on any quantum
computer, which requires a steady stream of qubits in some pure state to extract entropy.
For that reason, this requirement might be expanded to not only include the initialization
of the computer in some known state, but also the real-time preparation of extra “ancilla”
qubits in a known state during computation.

3) “Long relevant decoherence times, much longer than the gate operation
time”

In order to successfully run an algorithm, a quantum computer must accurately store
the information it is working on. As discussed above in section 2.1.5, any corruption of
information is known as decoherence, and can be understood as the unintentional coupling
to the environment, noise in control signals, and so on. The time it takes to do any part
of an algorithm must be much faster than the characteristic time of this information loss.
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Note that the total algorithm run time need not be short compared to the decoherence
time because of the existence of quantum error correction. As long as errors can be quickly
identified – that is, as long as the error rate for a given operation is below some threshold
– some amount of decoherence is tolerable.

4) “A ‘universal’ set of quantum gates”

Any quantum algorithm is a set of deterministic unitary instructions that involve some
number of qubits. For example, an algorithm might call for a unitary Û1 to be applied,
followed by another unitary Û2, and so on. Then, to run that algorithm, we would turn on
some Hamiltonian H1 for some time, followed by H2, and so on. In practice, it is very
challenging to implement a series of arbitrary Hamiltonians. It is more convenient to break
them down into some set of constituent parts like we did with the Pauli operators for
single-qubit rotations. Just as with a classical computer, where having the NAND gate
is sufficient to do any fundamental logic operation (NOT, AND, OR, NOR, XOR, and
XNOR operations all have simple circuit diagrams involving only NANDs), many quantum
operations can be comprised from the others. For example, a controlled-phase gate can be
turned into a controlled-NOT with the addition of Hadamard gates on the target qubit
before and after [68]. Thus, there are many possible sets of “universal” gates. One set of
gates that can be shown to be universal is the combination of the Hadamard, a Z rotation
by π/4 (mysteriously known as the π/8 gate), and the controlled-NOT gate. Having such
tenuous control is not ideal; it increases the overhead to construct whatever unitary we
might need. More control, like arbitrary rotations of single qubits or additional two or
three-qubit gates, is better.

5) “A qubit-specific measurement capability”

We will need to extract information from our computer to retrieve its results, and so
some sort of measurement mechanism is required. The words “qubit-specific” are slightly
more controversial, however. A measurement of some group property of qubits, like their
projection onto a specific basis state, is insufficient. While an algorithm could possibly be
tailor-made for a different measurement operator, individual qubit measurement is crucial
for extracting error syndromes to perform quantum error correction [80]. Also, if a single
measurement is not reliable enough, with the ability to measure qubits individually, you
could potentially perform controlled-NOT gates between the qubit and several ancillae and
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then measure those and tabulate the results to improve the fidelity. For example, we could
map (α|0〉 + β|1〉) ⊗ |0000〉 → α|00000〉 + β|11111〉 using entangling gates and then do
a majority-rules vote on the measurement result of all those qubits.

Requirements for fault tolerance

There are also specific requirements for fault tolerant quantum error correction [20] (as
defined and discussed in section 2.3.6), in addition to the well-known error threshold. We
must be able to perform operations on many qubits in parallel, so that we can keep up as
we grow the computer and increase the error channels. Since most physical “qubits” are
actually larger quantum systems and error correction only addresses the computational
Hilbert space, we must be able to ensure that we do not leave that space, or at least have
a means of unconditionally pumping population back to it. We need a continuous source
of initialized qubits to absorb entropy; it is not enough to simply initialize all the qubits
at the beginning of the algorithm because their purity will drop exponentially as time
goes on. And finally, we require that errors do not scale unfavorably with the size of the
computer (e.g. the error rate per qubit does not depend on the size) and that the errors
are not strongly correlated between qubits (e.g. many qubits cannot fail simultaneously, or
the code will be overwhelmed, as we explain in section 2.3.4). As a corollary to this, the
architecture used to couple qubits together must not cause errors to propagate between
qubits [80].

Additional “desiderata”

The five enumerated requirements are necessary to do computation. There are, however,
several other abilities that would be extremely desirable from a practical point of view
[81]. The ability to both convert a stationary quantum bit into a “flying” qubit like a
photon and then transmit it large distances is crucial for quantum-enabled communication
[82, 83]. Access to gates between physically distant qubits can reduce the requirements
on error thresholds by one or two orders of magnitude compared to being limited to only
nearest-neighbor cNOTs [84, 85]. Fast and reliable measurement and classical computation,
so that we can take advantage of the extremely low error rates of classical computers to
implement our error correction, also dramatically reduces overhead [86]. (In principle, a
quantum computer can implement the classical logic that would follow a measurement, but
since the error rates of quantum gates are much higher and we do not require quantumness
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to perform these corrections, it is preferable to use a classical computer.) Some amount
of error correlation is tolerable, but the less the better, as is a high degree of parallelism
and a large supply of extra ancilla qubits. Finally, exceeding the error threshold by a
large amount also reduces the overhead required by a code; in practice, we would want to
exceed it by two or more orders of magnitude so that the number of qubits required is not
excessive [80].

2.3 Quantum errors and error correction

As we have seen in the previous section, because continuous unitary evolution can occur
on a vast multitude of simultaneous basis states, a quantum computer is potentially much
more powerful than a classical one. However, that same property also makes it intrinsically
more sensitive to errors. Quantum algorithms like the quantum discrete Fourier transform
often rely on maintaining minute phase differences between states; any source of noise or
control error may corrupt these continuous-valued parameters and cause the computation
to fail. Moreover, because evolution is continuous, even tiny errors will inexorably build up
as time goes on, foiling our computational aspirations or at least limiting them to trivial
problems.

This section will introduce the concept of quantum error correction, which can the-
oretically save us from this predicament. We start by clarifying the difference between
a classical and quantum error and will introduce a simple classical error correcting code.
We will then argue that there are three major reasons that we might expect this error
correcting code should fail in the quantum case. However, by being clever enough, we can
bypass each issue and propose a quantum bit-flip code. This code, which requires only
three qubits to operate, does not correct for all possible errors but represents a prototype
for more sophisticated quantum codes. We will explain this code in detail and demonstrate
that, with a small modification, it can correct for phase errors instead. We will end by
introducing other quantum codes which can correct for arbitrary errors and discuss the
requirements for fault tolerance.

2.3.1 Classical vs. quantum errors

Let us begin by discussing the reasons why a classical computer typically does not require
error correction during normal operation. Consider the state of a classical switch (e.g. a



CHAPTER 2. CONCEPTS OF QUANTUM INFORMATION 30

z

y

x

ε

Quantum bitClassical bit

Control signal

St
at

e 
va

lu
e

“1”

“0”

ε

Figure 2.2: Classical vs. quantum errors. Quantum bits are intrinsically more susceptible
to errors than classical bits. As shown on the left, the state of classical bits is set by some
nonlinear mapping of a control signal to a state value. Any state value below a certain
threshold counts as a “0” and any value above, a “1.” Thus, small amounts of noise in the
control parameter will not affect the value stored in the bit. This fact, where there is not
a one-to-one mapping of control to state values is known as “phase space compression.”
Contrast this to the case of a quantum bit, shown on the right, where the quantum state
is continuous-valued and any noise in the control parameters directly change the quantum
state. For this reason, while classical error rates are typically on the order of 10−15, the best
quantum error rates demonstrated to date are on the order of 10−2 − 10−4 per gate [54, 87].

transistor) as a function of its control parameter (e.g. the applied voltage). As shown in
Fig. 2.2, because the switch can only take one of two values, small fluctuations in the
control parameter will not change its value. This is called phase space compression, since
there is not a one-to-one mapping of input control states to output switch states. It is
a very good thing for a classical computer; in some sense, the switch is automatically
correcting for control errors as it operates. For this reason, the probability that any given
operation will fail (e.g. encode the wrong result) in a modern computer is typically on the
order of ε ∼ 10−15.

Contrast this to the case of a quantum switch. Its state can take any continuous value,
so there is no compression of the mapping of control inputs to state outputs. Thus, even
tiny control errors will change the quantum state in a way that could corrupt the outcome
of a calculation. Moreover, because the state’s precise value affects the future evolution of
the computer, even small errors will add up as time goes on. So far, the best single-qubit
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Figure 2.3: Binary symmetric channel. The cartoon depicts the attempt to send a single
bit to a recipient over a noisy channel. The bit is correctly transmitted with probability 1− p
but is flipped with probability p. The error probability is independent of which symbol is
being transmitted, hence calling the channel symmetric.

error rates demonstrated in any system are only on the order of ε ∼ 10−2 − 10−4 per gate
[54, 87], with even worse rates for two-qubit gates. This error rate limits the size of a
computation that has any feasible chance of succeeding. For example, in order to run
Shor’s algorithm on a number impossible to factor classically (500-1000 digits), we would
need an error rate similar to that of a classical computer, ε ∼ 10−15. To get that rate,
even disregarding the need for our control to be essentially perfect, our qubit coherence
would need to be on the order of T2 ∼ 1 year; an improvement of 11 orders of magnitude
over the current state-of-the-art for superconducting qubits. We need a more practical
way of lowering quantum error rates.

2.3.2 The classical repetition code

Though classical error correction is normally unnecessary, there are circumstances where it
is useful. Suppose for example we are attempting to send a bit of information to someone
over a noisy communication channel, as shown in Fig. 2.3. This channel has a probability p

of flipping the bit being sent. The probability of this error is independent of the information
being sent, so this is known as a binary symmetric channel. One possible way to reduce
our susceptibility to this problem is to encode all the information we send with a repetition
code. Every time we send a piece of information, we actually transmit it three times
(e.g. to send a 1, we transmit 111); any message that does not conform to the format of
three repeated bits is not allowed and must be due to an error. The recipient then takes
every group of three bits and does a majority-rules vote; in order for the information to be
corrupted, two or more errors would have to simultaneously occur. Of course, we have also
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gone from having one faulty bit to having three, so the likelihood of an error occurring has
substantially increased. The probability Pn of having n bit-flips is given by P0 = (1 − p)3,
P1 = 3p(1 − p)2, P2 = 3p2(1 − p) and P3 = p3. Thus, the probability for the code to
fail is given by peff = P2 + P3 = 3p2 − 2p3. Crucially, this error rate no longer has any
linear dependence on p; for p < 1/2, the effective error rate is less than p and adding the
redundancy of the extra faulty qubits benefits rather than detracts. The smaller the value
of p, the greater the improvement due to performing this code; for example, if p = 10−4,
peff = 3 · 10−8. Moreover, if we require a higher-order reduction we can employ greater
amounts of redundancy (e.g. sending 5 or 7 bits for every 1 we wish to transmit).

2.3.3 The challenges of quantum errors

Implementing such a repetition code with quantum bits seems like it might help our
problem. While we do not necessarily need to transmit a quantum state over a noisy
channel to perform quantum computation (though this would be required for things like
quantum key distribution), we could think of the “channel” as simply the passage of time.
That is, as we let our qubit sit in some state, it will inevitably interact with the environment
and decohere, causing an error. Can we implement the repetition code with quantum bits?
There are actually three good reasons to think the answer is no, which initially seemed to
indicate that quantum error correction was impossible [68]. First, the no-cloning theorem
prohibits the copying of quantum states [7]. Second, measuring the states to see if they
are the same does not seem to help us detect the presence of an error and will necessarily
destroy their quantum information. And third, we must correct for continuous rather than
discrete errors and so might expect to need an infinite amount of redundancy to distinguish
each possible error. Let us investigate each one of these and introduce why they present a
problem.

The no-cloning theorem

The no-cloning theorem states that it is impossible to create an identical copy of a quantum
state. It is surprisingly easy to prove [7]. Suppose we have a qubit A that is in some state
|ψ〉A that we want to copy and a qubit B in some initial state |i〉B. If we have the ability to
clone our state, there must be some unitary such that Û |φ〉A|i〉B = |φ〉A|φ〉B. Û preserves
the inner product, so 〈i|B〈φ|A|ψ〉A|i〉B = 〈i|B〈φ|AÛ †Û |ψ〉A|i〉B = 〈φ|B〈φ|A|ψ〉A|ψ〉B,
where we have introduced the state |φ〉A which is some arbitrary state of A. Since
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〈i|i〉 = 1, it follows that 〈φ|ψ〉 = 〈φ|ψ〉2 and either |φ〉 = |ψ〉 or 〈φ|ψ〉 = 0. Since
φ and ψ are arbitrary and need not satisfy either relationship, it follows that Û cannot
clone any quantum state and the no-cloning theorem is proven. This seems to preclude
our application of the repetition code. We cannot make redundant copes of our qubit
to independently transmit, a functionality that seems to be at the core of the code’s
mechanism.

The measurement problem

Even if we bypass the issue of cloning, how might we detect the presence of an error
and not destroy the state? Suppose we had three identical copies of our quantum state
through some process (perhaps by running our algorithm three times). Our only means
of extracting information is with a projective measurement. Measuring each qubit will
give us a 0 or a 1, but that does not tell us anything about whether a flip has occurred.
For example, suppose that the state we are trying to protect is |ψ〉 = 2√

3
|0〉 + 1√

3
|1〉.

We should expect to get, on average, a 0 twice and a 1 once for every three qubits we
measure, even in the absence of any error. In contrast to the classical code, different
measurement outcomes do not necessarily indicate that an error occurred because qubits
can be in superpositions. Moreover, once we have measured the qubits, we will have
collapsed their wave functions and destroyed the quantum information stored inside. Our
projection maps our two continuous values of θ and φ to one classical bit. Of course, with
prior knowledge of |ψ〉 one could arrange the measurement axis so that the measurement
operator is P = |ψ〉〈ψ|. However, we are trying to come up with a code that can detect
errors in unknown states.

Continuous errors

In the classical code, if we restrict ourselves to the possibility of zero or one error, we can
know exactly which error has occurred. If we receive for example the codeword 100, the
first bit was corrupted and the intended message was a “0” (even if more than one error
can occur, the most likely event was the first being flipped only). We could then flip the
first bit back and restore the datum to its unaltered state if we needed to re-transmit
those bits. We would like to be able to do the same thing with our qubits: since their
states will need to be manipulated and maintained for the entire length of a computation
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(which may take months), we must periodically refresh their state by applying the inverse
of the error that has occurred∗.

For quantum errors, this seems to pose a daunting challenge. We started this section
by arguing that qubits were especially sensitive to errors exactly because there are so many
ways that things can go wrong. While a classical bit can undergo only one discrete error –
being flipped – a qubit could undergo any spurious evolution in two continuous dimensions.
If we need to correct a qubit to some high precision, it would seem that we would need
to know the precise unitary that caused the error to equal precision. And because there
are in some sense an infinite number of different errors, does that imply that we need an
infinite set of resources to distinguish each one?

2.3.4 The quantum repetition code

Somewhat miraculously, none of these issues are prohibitive. There is a simple quantum
code that can correct for arbitrary bit-rotations of a qubit. To explain it, we first note
that the bit-flip code we described actually uses more information than is necessary to
fix an error. We do not need to know the value of the bits being sent, we only need to
know whether they are the same as the other bits. For example, whether our code word is
101 or 010 does not change the identification of the error – the middle bit was flipped in
both cases. In the language we have developed, we need not know 〈Z〉 for each qubit,
but rather 〈ZZ〉 for both pairs. This key observation turns out to save us from all three
problems previously identified.

The quantum repetition code encodes a single qubit on a manifold of three qubits, as
does its classical analog. What is this encoding? We already know that we cannot copy our
state three times because of the no-cloning theorem, but we can do something even better
using entanglement. We map (α|0〉1 + β|1〉1)|0〉2|0〉3 → α|000〉 + β|111〉, where the first
qubit stores some state we would like to protect, the second and third qubits are known as
ancillas and are initialized in the ground state, and the notation |abc〉 refers to the state
of the first, second, and third qubit respectively. This state, where the three qubits are
all in the same state as one another but individually are pointing in no definite direction,
is a three-qubit entangled state known as a “GHZ-like” state. When |α| = |β| = 1√

2
it

∗ In some codes, simply keeping track of exactly which error has occurred to each qubit and incorporating
that knowledge into future operations or in interpreting the final result is enough. You do not necessarily
have to correct the error in-situ, but you do have to know exactly what happened.
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is maximally entangled and the state is a GHZ state without qualification, as defined in
section 2.1.6.

The unitary responsible for mapping α|0〉+ β|1〉 to this state is two controlled-NOT
gates between qubits 1 and 2 and 1 and 3, Û = N2

1N
3
1 . The operation of a single

controlled-NOT flips the target qubit if and only if the control qubit is excited. Because
the operation is coherent, it will act on only the subspace where this is true. Thus,
N2

1 (α|0〉1+β|1〉1)|0〉2 = α|00〉+β|11〉 and the extension to three qubits is obvious. Note
that the state is not being copied; if any one of the qubits were measured, the entire state
would be projected. Interestingly, this kind of state is actually more susceptible to noise
because if any single one of the qubits is dephased, all three states are lost. For the same
reason, an entangled state may be interesting for applications to sensing or detection since
its sensitivity to fields that affect all the qubits grows like N instead of

√
N , as found

classically∗.

GHZ-like states

These states have the valuable property that they are simultaneous eigenstates of the
three Pauli ZZ operators. For example, Z1Z2|φ0〉 = Z1Z2α|000〉 + Z1Z2β|111〉 =

(+1)(+1)α|000〉 + (−1)(−1)β|111〉 = α|000〉 + β|111〉, so the state |φ0〉 has eigenvalue
+1 for the operator Z1Z2 (and also for Z1Z3 and Z2Z3, though knowing any two of
these correlations implies you know the third; we omit Z1Z3 henceforth). Something
very interesting happens if we suppose that one of the qubits was flipped, so we have
|φ1〉 = α|100〉 + β|011〉. We calculate that Z1Z2 now equals −1 (and Z2Z3 = +1). The
sign of the eigenvalue has changed in response to the error. We list the eigenvalues for all
four possible cases – either no error or a bit-flip of exactly one of the three qubits – in
table 2.1. Luckily, each of these errors has a distinct set of values of the ZZ eigenvalue –
a unique error syndrome. Moreover, we can in principle measure these error syndromes
without learning anything about the encoded state – these syndromes are independent of
the values of α and β. We have thus made a huge amount of progress. Not only have we
come up with an encoding that does not violate the no-cloning theorem, but there are a

∗ Affecting all the qubits equally would correspond to correlated noise, which would diminish our ability to
correct errors. For example, if the noise channel never caused a single flip but instead always flipped two
bits at a time, the code we have described would fail. A similar pattern holds true with quantum codes;
correlations in noise that make double errors more likely than they would otherwise be must be limited or
at least well-understood if we hope to build a quantum computer.
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State Error Z1Z2 Z2Z3

|φ0〉 = α|000〉 + β|111〉 None +1 +1
|φ1〉 = α|100〉 + β|011〉 Q1 −1 +1
|φ2〉 = α|010〉 + β|101〉 Q2 −1 −1
|φ3〉 = α|001〉 + β|110〉 Q3 +1 −1

Table 2.1: Eigenvalues of the GHZ states. Each of the four error syndromes has a unique
signature in the values of Z1Z2 and Z2Z3 which can be determined without knowledge of α
or β. This fact is the basis of the quantum repetition code.

set of observables∗ that unambiguously identify which error has occurred on that state
(assuming that there was at most one error). We have thus gotten around two of the
three major problems we had identified with correcting quantum errors. We see how to
circumvent the third problem in the next section.

Measurement-based quantum repetition code

We saw in the last section that if we know the values of both ZZ eigenvalues of our
GHZ-like state, we can unambiguously detect the presence of a single bit-flip. But what
happens if a finite rotation (that is, a superposition of a bit-flip and no bit-flip) occurs? It
turns out that this is also correctable by the three-qubit quantum repetition code. To see
this, we need to be specific about how the code works. The code is shown as a “quantum
circuit” in Fig. 2.4, where each horizontal line represents the action on a single qubit as
a function of “time.” The code begins with the situation that we have a qubit in some
state that we wish to protect, |ψ〉 = α|0〉 + β|1〉, here the second qubit, and two “ancilla”
qubits – one and three – in their ground state. As described above, the circuit that maps
this state α|0〉 + β|1〉 → α|000〉 + β|111〉 consists of two controlled-NOT gates, depicted
by black dots and crossed, open circles connected by a line. The qubit that has the open
circle is flipped if and only if the qubit with the black dot is excited. After these two gates,
the three-qubit manifold is in the encoded GHZ-like state. Suppose now that one of the

∗ The operators Z1Z2 and Z2Z3 are known as stabilizer operators, following the formalism of Daniel
Gottesman [88]. They have the property that they commute both with one another and that our GHZ-like
state is an eigenstate of them both. Our manifold of three qubits is reduced to a single-qubit degree
of freedom with the constraint that the three-qubit state must be an eigenstate with eigenvalue +1 for
both operations. The stabilizer operators also commute with the “logical qubit operators” Xl = X1X2X3,
Yl = iXlZl, and Zl = Z1Z2Z3 which perform rotations on the encoded qubit α|0〉l + β|1〉l, where
|0〉l = |000〉 and |1〉l = |111〉.
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Figure 2.4: Measurement-based QEC circuit. The code begins by mapping a single-qubit
state α|0〉 + β|1〉 to the three-qubit entangled state α|000〉 + β|111〉. A single bit-flip is
shown on the middle qubit, making the state α|010〉+β|101〉. The encoding is then reversed,
leaving the middle qubit in a quantum state, related to its original state possibly by an error
rotation, and the ancilla qubits with the values of the error syndromes. These qubits are then
measured and the results processed with classical logic, which triggers conditional rotations
that return the quantum register to its original state. Small error rotations are projected to
full flips or nothing by the measurement process. This quantum code corrects for a single
erroneous rotation of any qubit.

qubits is fully flipped; for concreteness, say the second qubit, so the manifold will now be
in the state α|010〉 + β|101〉.

At this point, we wish to detect the presence of an error. We do this by reversing the
encoding step with two more controlled-NOT gates∗. For our case of the second qubit
being flipped, the qubits will now be in the state (α|1〉 + β|0〉)⊗ |11〉, where we have first
listed the state of the second qubit followed by the state of the first and third qubit. Notice
that the ancilla qubits are no longer in their ground state. Instead, the ancilla qubits now
contain the values of the ZZ eigenvalues between themselves and the middle bit – the
exact error syndromes that we wish to measure. To see this, consider only two qubits in
some state α|00〉 + β|11〉. If we perform a cNOT gate on the second qubit, the state
will be given by α|00〉 + β|10〉 = (α|0〉 + β|1〉) ⊗ |0〉. If the first qubit were flipped, the
resulting state α|10〉+ β|01〉 would be mapped to α|11〉+ β|01〉 = (α|1〉+ β|0〉)⊗ |1〉 by
the cNOTs. If the second qubit were flipped instead, the resulting state would be given by
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(α|0〉 + β|1〉) ⊗ |1〉. In the first case, the ZZ eigenvalue was +1, while in the second and
third it was −1; the ancilla being left in its excited state indicates that the ZZ eigenvalue
was flipped.

Immediately after the decoding step, the second qubit is in its original state that may
or may not have been flipped and the other two qubits contain the values of the error
syndromes Z1Z2 and Z2Z3. Because the values of these correlations contain no information
about α and β, we can proceed by measuring these qubits and using some classical logic to
conditionally flip the qubits back as necessary∗. In the case of a flipped Q2, the manifold will
be (α|1〉+β|0〉)⊗|11〉 and we find that we need to flip each qubit to return the manifold to
its original state, (α|0〉+β|1〉)⊗ |00〉. But what happens if instead of having a full bit-flip,
Q2 underwent some small rotation? Suppose the rotation is by some angle θ; we can define
the effective probability of a full flip to be p = sin2(θ/2). Immediately after decoding, then,
the manifold will be in the state

√
1 − p(α|0〉+ β|1〉)⊗ |00〉+√

p(α|1〉+ β|0〉)⊗ (|11〉).
That is, the state will be a superposition of Q2 in the correct state with the ancillas
indicating no error plus Q2 flipped with the ancillas indicating as such. If we were to now
measure the ancilla qubits, we must either get 00 or 11 – the two-qubit wavefunction will
collapse. If we get 00, the wavefunction of Q2 will have collapsed to α|0〉 + β|1〉 – no
error; if we get 11, it will be α|1〉 + β|0〉 – a full flip. Thus, by measuring the ancilla
qubits, we have essentially forced them to decide whether or not a full error has occurred.
The discreteness of the error syndrome measurement collapses the continuous errors to
discrete errors; after the measurement, there are either no errors or there is one bit-flip.
Put another way, the measurement has removed the entropy associated with this error by
projecting it into a definite state. The experimenter need not be aware of the fact that
the errors can occur continuously. Thus error correction still works for superpositions of
zero or one full error. In fact, the code would still work perfectly for superpositions of any
of the four possible errors, as long as they never occur simultaneously.

∗ Reversing the encoding returns our quantum information to a single-qubit state, so we could not detect
the presence of additional errors. In a “real” error corrected computer, we are never allowed to store
important information in such a risky way. We must come up with methods of extracting the error
syndromes without leaving the safety of our encoded subspace, as discussed below in section 2.3.6.

∗ The fact that these operations are conditional on a measurement outcome is crucial. Suppose that our
error was not simply a qubit being flipped, but rather that it became entangled with some degree of
freedom that we do not control; it is now in an impure state. Since we do not control those external
degrees of freedom, no unitary operation applied to the qubit can reduce this impurity. The state collapse
associated with measurement provides the non-unitarity that we need to unravel this entanglement.
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Figure 2.5: Autonomous QEC circuit. The three-qubit bit-flip code can be modified to
eliminate the need for a measurement by implementing the classical logic operation with a
coherent controlled-controlled-NOT gate and a non-unitary unconditional reset of the ancilla
qubits.

Autonomous error correction

The previous section showed how measurement can be used to extract the entropy associated
with an error from our quantum state. In practice, however, it can be challenging to extract
information from our quantum state with high fidelity, perform a classical calculation
with that information, and manipulate our qubits conditioned on the result, all within a
time brief compared to T2. Fortunately, it is possible to modify the code to eliminate the
need for this measurement by using a combination of a coherent multi-qubit operation
and an unconditional qubit reset. As shown in Fig. 2.5, the first half of the code – the
encoding, error, and decoding steps – are all the same as shown previously in Fig. 2.4. The
difference comes after the unencoding and imprinting of the error syndromes in the ancilla
qubits. There, we apply a three-qubit controlled-controlled NOT (ccNOT, also known
as Toffoli) gate which flips the target qubit if and only if both control qubits are excited.
This implements the classical logic that would be used in the measurement-based case. If
the “protected” qubit were flipped, the ccNOT will flip it back since both ZZ eigenvalues
will be −1 and the ancillae will be left in their excited state after the unencoding. This
approach will still work with continuous errors because it acts coherently on each subspace.
For example, if we again had |ψ〉 = √

1 − p(α|0〉+β|1〉)⊗|00〉+√
p(α|1〉+β|0〉)⊗ (|11〉)

and applied our ccNOT on it, we would be left with the state |ψ′〉 =
√
1 − p(α|0〉 +

As soon we measure the ancilla, any entanglement with the bath is eliminated. As we will see later,
unconditionally resetting a qubit can serve this purpose as well.
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β|1〉)⊗ |00〉+√
p(α|0〉+ β|1〉)⊗ (|11〉) = (α|0〉+ β|1〉)⊗ (

√
1 − p|00〉+√

p|11〉). That
is, the protected qubit will be in its correct state and the ancillae will contain the entropy
of the error.

At this point, the middle qubit will be in its original state (as long as there were zero
or one errors), but we still must return the ancillae to their ground state if we hope to
re-encode and correct another error. Unfortunately, it is not possible to also do this with
some multi-qubit unitary gate. There are two arguments demonstrating this is true: first,
a unitary operation cannot reduce the amount of entropy in a system since it would violate
the laws of thermodynamics (nor could the amount of entropy change since a unitary is
invertible and if entropy increased, its inverse must cause a corresponding decrease). Since
we are treating these errors as random∗, they increase the entropy of our wavefunction,
and therefore cannot be eliminated (only shuffled around, as we have done so far). Second,
if the error we are correcting originates with an interaction with the environment – perhaps
our qubit partially swapped an excitation with some other degree of freedom and is now
entangled – the error will not be correctable because our unitary by convention does not
address that subsystem. Thus, we must introduce some non-unitary operation to extract
this entropy. One method is to reset the ancillae to the ground state |ψ〉 → |0〉 as shown
in the final step of the code, by putting them in contact with a cold bath. (One example
of this is described in section 6.2.4.)

Phase-flip correction

The code described thus far corrects only bit-flip errors, described by the Pauli operator
X. That represents only one of the possible rotations we can perform on a qubit. We can
also have Z errors. (Y errors can be thought of as simultaneous X and Z errors because
iXZ = Y and do not count as an additional axis.) Moreover, Z errors are a much more
common type of error for many types of qubits. For example, a superconducting qubit’s
frequency can sometimes be changed with applied flux and so noise in that parameter
scrambles the phase of a superposition, producing a Z error. Fortunately, it is possible to

∗ “Errors” are not necessarily random. For example, a systematic under or over-rotation would look to the
code like a bit-flip error. Similarly, if we had some always-on coherent coupling to some other degree of
freedom (e.g. the environment), it also would be correctable in principle, even though nothing about it is
truly “random.” Its preferrable to actually eliminate such errors and reduce the overall error rate, but if
that’s impossible, error correction could serve as a last line of defense. Nevertheless, there is no loss of
generality of labeling these systematic errors “entropy” since they are unknown from the point of view of
the code.
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Figure 2.6: Nine-qubit Shor code. Arbitrary single-qubit errors can be corrected by
concatenating the phase- and bit-flip codes. This is done by replacing each qubit used in the
phase-flip code with three qubits that are bit-flip corrected. The measurement-free version is
shown here; the eight bottom qubits would need to be reset at the end of this operation.

modify the bit-flip code to instead correct for phase-flips by changing coordinate systems.
If immediately before (and after) the “error” portion of the code we applied a π/2 (−π/2)
rotation around the y-axis (or a Hadamard), the code will correct for phase-flips instead of
bit-flips. This happens because the rotations will map Z errors to X errors and vice versa,
since XY = iZ, or, more explicitly, Rπ/2

y Rπ
zR

−π/2
y = Rπ

x and R
π/2
y Rπ

xR
−π/2
y = Rπ

z (up to
a global phase). These extra rotations can be commuted with the other rotations of the
code, so its requirements are no greater than the bit-flip code.

2.3.5 The Shor code

We have shown how the three-qubit code can correct bit-flip or phase-flip errors. But
what if we wish to correct both at the same time? In principle, being able to correct for
both X and Z errors (and thus also Y errors) would account for any possible error on a
single qubit, including particularly nasty errors like the depolarizing channel. We can see
that this is not possible to achieve with only three qubits by using a counting argument:
we need one qubit to store the state we are protecting and two more classical bits to
encode the four error syndromes of a single bit or phase flip. Thus, in order to correct for
both errors simultaneously we need more qubits. One conceptually straightforward way of
doing this is the nine-qubit Shor code [17]. The idea of the Shor code is to concatenate
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the bit-flip and phase-flip codes together. As shown in Fig. 2.5, each “qubit” used in the
phase-flip code will actually be a composite of three qubits which are themselves bit-flip
corrected, so any bit or phase flip of any one of the qubits will be corrected. The logical
basis is then given by |0〉L = 1√

8
(|000〉 + |111〉) ⊗ (|000〉 + |111〉) ⊗ (|000〉 + |111〉) and

|1〉L = 1√
8
(|000〉 − |111〉) ⊗ (|000〉 − |111〉) ⊗ (|000〉 − |111〉), where we would write our

encoded state as α|0〉L + β|1〉L. We can manipulate this logical qubit with the logical
operators XL = XXXXXXXXX and ZL = ZZZZZZZZZ (which are not the same
as simultaneous rotations on each qubit individually – XL and ZL are nine-qubit gates).
The error syndromes are given by the operators S1 = ZZIIIIIII, S2 = ZIZIIIIII,
S3 = IIIZZIIII, S4 = IIIZIZIII, S5 = IIIIIIZZI, S6 = IIIIIIZIZ, S7 =

XXXXXXIII, and S8 = XXXIIIXXX, where the first six discriminate bit-flips of
each individual physical qubit and the remaining two detect phase-flips of the three bit-flip
corrected composite qubits. This was one of the first error correcting codes discovered,
but is unlikely to be the most practical given its relatively large overhead and complicated
logical operations.

The five-qubit code

The Shor code is “inefficient” in that it can correct for more than one error on a single
qubit at a time. For example, because there is so much redundancy you could have a
bit-flip of one of all three “composite” qubits and still recover. It is actually possible to
make do with only five qubits to recover from an arbitrary single-qubit error [19] using the
aptly named “five-qubit code.” The error syndromes (that is, stabilizer operators) are given
by S1 = XZZXI, S2 = IXZZX, S3 = XIXZZ and S4 = ZXIXZ, and the logical
operators are XL = XXXXX and ZL = ZZZZZ. This is the smallest code possible
that can correct any single-qubit error. Its efficiency can be proven by a simple counting
argument. There are 3× 5 + 1 = 16 = 24 errors to detect (a Z, X, or Y error on each
qubit, or no error) and the information of one qubit to encode, thus giving us a total of
4 + 1 = 5 required qubits.

Other error correcting codes

There are numerous other error correcting codes that have been discovered over the years.
The 7-qubit Steane code is most similar to those we have previously discussed [18]. Though
requiring two more qubits than minimally necessary for an arbitrary single-qubit error, it
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has the advantage of being a “CSS”-type code which eases its analysis and implementation
[18, 68, 89]. (CSS codes are named after A. Calderbank, P. Shor, and A. Steane and are
a special class of stabilizer codes that are constructed from classical error correcting codes
[68].) Topological codes have been developed, which are defined for a two-dimensional
(or higher) lattice of qubits [80, 90, 91]. They have the advantage of being tolerant to
relatively high error rates, requiring only nearest-neighbor two-qubit gates for both error
detection and logical gate operations, and more conveniently scaling to higher levels of
protection than discrete codes, where the only option is concatenation. More recently,
there have been proposals to encode a quantum state into a superposition of coherent
states of light [92], taking advantage of the large Hilbert space and the possibility of fewer
types of errors of a harmonic oscillator [93].

2.3.6 Fault tolerance

It is not enough to be able to correct an error that occurs at some discrete, specified time.
In reality, our computer must be built with the understanding that an error may occur at
any point during a calculation, and that the gates we will rely on to correct those errors
may themselves be faulty. A protocol that satisfies these requirements is fault tolerant
[20, 94, 95]. To be so, we must not only be able to store a quantum state in a way that
can recover from errors, but we must also be able to manipulate that information using
some complete set of logical gate operations without leaving the space of the code. Put
another way, we have to replace all our qubits with logical qubits that are error corrected.

A more insidious problem that must be dealt with is that our logical gate operations
must be performed in a way that do not propagate or magnify errors. Even if these gates
are perfect, they will modify an error that has occurred. Suppose we have some unitary
Û that acts on a state |ψ〉 that has suffered an error E, so we wish to evaluate ÛE|ψ〉.
Because of linearity, this is equal to (ÛEÛ †)Û |ψ〉 – that is, the desired state (Û |ψ〉) that
has now suffered a new error ÛEÛ †. If Û is a single-qubit operation, this may not be
such a big deal, since although it will change the error (a Hadamard switches an X error
with a Z, and so on), our code should be able to mitigate any kind equally well. A more
significant problem arises when Û is a multi-qubit gate like a cNOT, because it will have
the effect of propagating our error to other qubits. For example, if the control qubit has
suffered an X error, after our cNOT gate, the target qubit will have picked up that error
as well – our single-qubit error has become a two-qubit error that we may not necessarily
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Figure 2.7: Fault-tolerant three-qubit bit-flip code. Rather than decoding the qubits
after the error, one can use two additional ancillae to extract and measure the error syndromes.
This way the quantum information is always protected from bit-flip errors. Combined with
logical gate operations, this constitutes a fault-tolerant implementation of the three-qubit
code.

be able to correct. In order to be fault-tolerant, then, we must be very careful with our
multi-qubit gates so as to avoid this problem.

The solutions to all these problems will not be fully explained here, but we can get
the flavor of the necessary changes by looking at how we might modify the three-qubit
code. Since we can never leave the code space, we no longer have the luxury of recycling
the ancilla qubits to also extract the error syndromes. As shown in Fig. 2.7, we instead
measure the correlations Z1Z2 and Z2Z3 with two additional ancillae through the use of
controlled-NOT gates. In addition to not having our logical qubit leave the subspace, this
has the further advantage of potentially allowing us to measure the syndromes several
times before making a decision, since the logical qubit is an eigenstate of those operators.
This is helpful if our cNOT or measurement operations are not perfect. It is also in
principle possible to make a fault-tolerant version of autonomous error correction where
measurements are not necessary, but it requires a great deal more overhead since the
“classical” logic can no longer be assumed to be perfect.

2.4 Conclusions

This chapter was intended to serve as a brief introduction to quantum information science
for people with a background in physics but no particular knowledge of the subject. We
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started with a survey of the tools and language used in quantum information: the Bloch
sphere, Pauli matrices and operators, the density matrix, and entanglement, to name a few.
This led into a discussion of what makes quantum information processing so powerful but
also that harnessing that power to run quantum algorithms has many stringent hardware
requirements. Finally, we showed why quantum information is particularly sensitive to
errors, and explained the simplest model of how we might correct them without losing their
advantages. We concluded with a discussion of more sophisticated codes that can correct
for arbitrary errors and have different hardware and parameter requirements, and gave
an outline of fault tolerant error correction. With the tools introduced here established,
we can now proceed with an explanation of our particular implementation of quantum
information processing. In the next chapter, we discuss superconducting qubits coupled to
microwave resonators, known as circuit quantum electrodynamics, with the goal of laying
the framework to present our recent experimental achievements.





CHAPTER 3

Superconducting Qubits and cQED

The previous chapter introduced the requirements that a quantum computer must
satisfy; however, there was no corresponding statement about the particular physical

manifestation of such a machine. In fact, significant experimental progress has been made
using a variety of systems [96] including nuclear spins [97, 98], trapped ions [26, 27, 29–31],
linear optics [99, 100], solid state quantum dots [40–44], diamond color centers [44, 46–
48], and superconducting circuits [49]. In addition, there have been dozens of proposals
[101] for additional systems like topologically protected qubits [102–104]. Demonstrating
the basic building blocks of quantum information science like single-qubit control and
on-demand entanglement is a lot different than mastering a system that could be scaled
to a fault-tolerant million-qubit system, however. Thus, the history of quantum computing
has seen the rise and fall of several technologies at the experimental forefront. Though
liquid-state NMR systems were always known not to be scalable [25], they made rapid initial
progress before being superseded by trapped ions. Recent advances with superconducting
circuits[61, 62] and quantum dots [42, 43] are now threatening the primacy of ions. The
field is increasingly concerned not only with basic quantum information experiments, but
also with which system has a chance to scale to the large number of qubits required to
perform calculations or simulations not otherwise possible.

This thesis reports on one of the most promising technologies: superconducting qubits.

47



CHAPTER 3. SUPERCONDUCTING QUBITS AND CQED 48

Compared to its competitors, superconducting circuits have certain advantages, such as
being relatively simple to fabricate using standard lithography techniques [105], having
all-electrical quantum control using microwave light fields [52, 106], and large, controllable
nonlinearities at small energy scales [107]. They require being cooled in a helium dilution
refrigerator to milliKelvin temperatures, however, and until recently there were major
questions about the limits of their coherence. There is still a lot of work necessary to build
a scalable quantum architecture with these devices, but progress has been very rapid and
there is no known reason that will inhibit this technology from advancing further. Moreover,
it has enabled a new class of quantum physics experiments [107–111] that, in addition to
being useful for information processing, are intrinsically interesting and beautiful.

This chapter begins with a theoretical introduction to the physics of superconducting
qubits and the architecture with which we study them. These two topics have been
discussed in great detail in previous theses [112–114] and papers [106, 115, 116], and so
we summarize rather than exhaustively derive those results. We focus on the particular kind
of qubit, the transmon [115, 117], that we are studying in our lab. It is conveniently modeled
as a nonlinear LC oscillator that has non-degenerate transition frequencies between higher
excited states. These additional levels play an important role in generating entanglement, as
will be discussed in chapter 7. We couple these qubits to standing-wave modes of microwave
resonators in the circuit quantum electrodynamics (cQED) architecture [118, 119]. The
dynamics of cQED are described by the Jaynes-Cummings Hamiltonian [120]. While being
straightforward to derive, it must be approximated and transformed in order to most
clearly see the properties we regularly take advantage of for readout, single-qubit gates,
and qubit-qubit coupling. We complete this section by discussing dissipation and the
strong dispersive limit, which defines a regime of parameter space where even high-order
qubit-cavity coupling terms dominate over decoherence, enabling additional control through
the use those effects.

Many of our devices employ flux bias lines (FBLs), which are current-carrying wires
used to thread magnetic flux through the qubit SQUID loop. They allow us to tune
qubit transition frequencies in-situ and have been used successfully in the planar cQED
architecture [55, 121]. The final section of this chapter will discuss our recent extension
of FBLs to the 3D cQED architecture. We will show how to calculate the flux coupling
that we can expect for a given geometry, which has been a concern due to the screening
effects of the superconducting 3D box, and show that for reasonable geometries it should
be possible to thread a flux quantum with a sufficiently small amount of current. Doing
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so requires a drastic expansion of the size of the FBL and the SQUID loop that greatly
increases the capacitance between the two, creating a new channel for qubit decay. We
show how to calculate the expected qubit lifetime using an effective circuit model and how
we can add simple filtering to fix the problem.

3.1 Superconducting qubits

One thing that distinguishes superconducting qubits from virtually all of their competitors
is the fact that the quantum degree of freedom is not that of a single or small number
of discrete particles. Instead, superconducting qubits employ the collective motion of a
macroscopic number of paired electrons known as Cooper pairs. These particles have
condensed into a single collective ground state. Electrical circuits built using superconduc-
tors will exhibit quantum behavior with energy levels set by their geometric parameters.
They can in principle be lossless if we limit ourselves to dissipationless elements like the
capacitor and the inductor. However, because these are both linear elements, the only
Hamiltonian we could engineer with them is the harmonic oscillator. They would have
have precisely evenly spaced levels and the only free parameter is the frequency of that
oscillator. A system must have individually addressable transitions if we intend to control
two of its levels as a qubit; linear elements are insufficient.

To our great fortune, superconductors are endowed with the only known simultaneously
nonlinear and non-dissipative circuit element∗, the Josephson junction [122, 123]. It is the
source of anharmonicity used by all types of superconducting qubits. There are several
ways of making a Josephson junction, which is most generally any weak link between
two superconductors. By far the most common method is via two superconducting wires
separated by a thin insulating oxide. Cooper pairs may coherently tunnel across this barrier,
which leads to a phase difference φ between the macroscopic wavefunction on one side of
the barrier compared with the other. The condensates on either side are in the ground state
of the BCS Hamiltonian, so this phase difference is the only possible low-energy degree of
freedom. The tunneling supercurrent is given by I = Icsinφ(t), where the critical current
Ic is the maximum current that may flow through the junction and is set by parameters
like the effective barrier transparency. The phase φ(t) evolves in time in the presence of a
potential difference V across the junction according to

�
∂φ

∂t
= 2eV. (3.1)
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Taking the full time derivative of I, we have

İ = (Iccosφ)
∂φ

∂t
=

2eV Ic
�

cosφ. (3.2)

We note that this equation looks like the inductor relationship V = −Lİ with a Josephson
inductance given by

LJ =
�

2eV Iccosφ
=

Φ0

2πIccosφ
(3.3)

where Φ0 = h/2e is the magnetic flux quantum. Thus, the Josephson junction can be
thought of as an inductor with an inductance that depends on φ, and thus the applied
current, and is therefore nonlinear.

3.1.1 The Transmon qubit

In the early days of superconducting quantum information science, there was a proliferation
of qubit circuit topologies that were classified as flux [129–131], phase [132, 133], and
charge qubits [50, 134, 135] based on which degree of freedom was a good quantum number.
As time went on, these distinctions became less and less relevant as “hybrid” superconducting
qubits were developed that had better properties (e.g. decreased susceptibility to specific
sources of noise) and whose eigenstates were no longer number states of any of the three
quantities [52, 115, 117]. One such hybrid qubit is known as the transmon. Though
normally classified as a charge qubit, it enjoys an exponentially suppressed sensitivity to
charge noise because its eigenstates are superpositions of several charge states [115]. It is
often sufficient to consider this qubit as a slightly anharmonic LC oscillator, though as we
will see, calculating the detailed level structure requires a more careful treatment.

The Cooper-pair box

The transmon qubit is a derivative of the Cooper-pair box qubit (CPB). The CPB is
topologically simple, consisting of two superconducting islands connected by a Josephson
junction [50, 134]. Cooper pairs may tunnel across this junction, and since there is only
one path for this transit, the number of tunneled pairs is an integer quantity. This also

∗ One possibly exception to this statement is the field of cavity quantum optomechanics, where the low-
energy interaction between light and mechanical objects is studied [124–128]. The radiation pressure
of light couples to the mechanical motion of some oscillator, which can endow the Hamiltonian with a
nonlinearity.
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implies that the junction phase φ is “compact” or periodic in 2π. (This would not be true if,
for example, the junction was shorted out by an inductor as it is with a phase qubit. There,
the potential energy landscape has an overall φ2 dependence on top of the Josephson
sinusoid. φ is then non-compact due to the closed-loop topology of the circuit.) There are
two relevant energy scales: EC = e2

2CΣ
, the charging energy of a single electron stored on

the capacitance, and EJ = ICΦ0

2π
, the energy associated with an electron tunneling across

the junction. CΣ = Cg + CJ is the total capacitance of the CPB to ground, given by the
sum of the geometric capacitance and the capacitance of the Josephson junction itself.
The CPB Hamiltonian is then

Ĥ = 4EC(n̂ − ng)
2 − EJcosφ̂ (3.4)

where n̂ is the integer number of Cooper pairs that have tunneled through the junction,
ng is some offset “gate” charge representing an external voltage bias, and φ is the phase
across the junction and is periodic in 2π. n̂ and φ̂ are canonically conjugate variables,
where n̂ = ∂

∂φ̂
and [n̂, e±iφ̂] = ±e±iφ̂ ∗.

We can build some intuition for this Hamiltonian with a physical analog of a charged
quantum rotor, following the argument of Koch et al. [115]. Suppose we have some
point-mass m attached to a massless rod of length l, which is free to rotate around a fixed
pivot. The potential energy of the mass in a uniform gravitational field is V = −mglcos(φ),
where φ is the angle of the rod relative to its equilibrium position. Angular momentum is
given by L̂z = (�r × �p) · ẑ = i� ∂

∂φ
, so our full Hamiltonian is

Ĥrotor =
L̂2
z

2ml2
− mglcosφ̂. (3.5)

Since L̂z/� has integer eigenvalues, we can map n̂ ↔ L̂z/�, EJ ↔ mgl, EC ↔ �2/8ml2,
and we find that this is identical to Eq. 3.4 with ng = 0. We can add that term by
stipulating that the mass carries some charge and is in a uniform magnetic field parallel
to the rotor’s pivot, and thus �p → �p − q �A, giving Lz → Lz +

1
2
qB0l

2, where the vector
potential A = B0(−y, x, 0)/2. This gives ng ↔ qB0l

2/2�, completing our one-to-one
mapping of the Cooper-pair box Hamiltonian to the charged quantum rotor.

∗ If φ̂ is non-compact, we would have [n̂, φ] = 1. When φ is compact, only operators like eiφ̂ that respect
the periodicity of φ̂ are valid.
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Figure 3.1: Transmon energies as a function of gate charge. We plot the energy of
the solutions to Eq. 3.4 as a function of gate charge ng. We show the results for various
values of EJ/EC , demonstrating the reduction in gate charge sensitivity.

Transmon regime

The gate charge ng is actually a major nuisance because its value is subject to charge
noise. Electrons drifting around in the environment will cause it to change at random. If
that changes the transition frequency of our qubit, it will induce dephasing. Fortunately,
we can suppress our sensitivity to gate charge by operating our qubit in the “transmon”
regime where the ratio EJ/EC is large. In this limit, variation in transition frequency
between two subsequent levels as a function of gate charge∗ scales as e−

√
8EJ/EC . The

cost, a small EC , reduces the anharmonicity of the qubit. However, this effect scales only
geometrically with EC whereas our sensitivity to charge noise scales exponentially – a
huge net win [115]. We show numerically-evaluated energies for various values of EJ/EC
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as a function of ng in Fig. 3.1. This shows that for low values of EJ/EC the transition
energies depend strongly on ng, but for larger values the dependence flattens out.

Large EJ/EC corresponds to limiting our junction to small phase excursions from
φ = 0. For our rotor model, this is imposed when both the gravitational pull and moment
of inertia are very large, so the angle φ only experiences small fluctuations. In this limit,
we can expand the cosine potential as Ĥ = Ĥ0 + V , where Ĥ0 is a linear term given by
4EC n̂

2 + EJ

2
φ̂2 and V is the perturbation

V = EJ

(
− 1

4!
φ̂4 +

1

6!
φ̂6 + ...

)
. (3.6)

We identify Ĥ0 as a simple harmonic oscillator with frequency �ω =
√
8EJEC . As we

mentioned earlier, to zeroth order, the transmon is an LC oscillator with the Josephson
junction serving as a large linear inductor. Importantly, the gate charge ng does not enter
into this calculation. By limiting ourselves to small values of φ, the boundary condition
that φ = φ+ 2π becomes irrelevant, meaning that φ can be treated as non-compact. We
are free to impose vanishing boundary conditions on our wavefunction for φ → ∞. This
transforms the conjugate momentum n̂ from an integer-valued discrete quantity into a
continuous quantity and we can therefore neglect the offset term ng. Limiting ourselves to
small phase fluctuations corresponds to large charge fluctuations, which in turn disperse
the discreteness of charge [136].

We continue our calculation in second quantization with the substitution φ̂ = φZP(â+

â†), where φ2
ZP = �ω

2EJ
=
√

2EC

EJ
. Plugging this in, we have Ĥ0 = �ωâ†â, the normal

harmonic oscillator equation, and V ≈ −1
12
EC(â + â†)4. Expanding the term (â + â†)4

and dropping rapidly-rotating terms like â†â† (the rotating-wave approximation), we get
V ≈ −EC

2
(â†â†ââ+ 2â†â) [137]. Combining terms, we find that the oscillator frequency

has been renormalized to
�ω′ =

√
8EJEC − EC (3.7)

and has an anharmonicity given by

α = −EC . (3.8)

∗ In the WKB approximation, the Mathieu characteristic values can be approximated to give the charge

dispersion for the mth level of the transmon as εm ∼ (−1)mEC
24m+5

m!

√
2
π

(
EJ

2EC

)m
2 + 3

4

e−8
√

8EJ/EC .
Note that the size of charge dispersion increases with the excitation level.
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Figure 3.2: Transmon eigenstates in the charge basis. We plot the solution to Eq. 3.10
with ng = 0.25 and values of EJ/EC of 0, 10, and 100. Notice as this ratio is increased, the
amount of hybridization of the eigenstates increases as well.

Thus we have arrived at our original description of the transmon qubit as a slightly
anharmonic LC oscillator with Hamiltonian

Ĥ = �ω′(â†â+ 1/2) + �
α

2
â†â†ââ. (3.9)

The transition frequency from ground to first excited state, given by �Ω01 = �ω′, is
different from the transition between the first and second excited state �Ω12 = �Ω01 − α.
This grants us the ability to control the levels directly. The anharmonicity α = −EC is on
the order of ∼ 3− 5% of �ω′ in the transmon limit, where EJ/EC ∼ 50− 100. In typical
experiments this is large enough (∼ 200 MHz) to allow for controlling microwave pulses on
the order of a few nanoseconds. The view of the transmon as an anharmonic LC oscillator
is particularly relevant with the recent development of the 3D cQED architecture [62] and
black-box quantization [138], where it is useful to numerically calculate parameters in the
basis of Eq. 3.9.

The charge basis

If we wish to relax our assumptions about the size of EJ/EC , the eigenstates of Eq. 3.4
can also be solved analytically using special “Mathieu” functions [113]. In practice, however,
these are difficult to evaluate, so it is often more convenient to numerically solve Eq. 3.4
in the charge basis. Using n̂ = i ∂

∂φ̂
and the commutation relation [n̂, eiφ̂] = eiφ̂ =⇒



CHAPTER 3. SUPERCONDUCTING QUBITS AND CQED 55

eiφ̂|n〉 = |n+ 1〉, we rewrite the Hamiltonian as

Ĥ = 4EC

N∑
j=−N

(j − ng)
2|j〉〈j| − EJ

N−1∑
J=−N

|j + 1〉〈j| + |j〉〈j + 1| (3.10)

where we truncate the Hilbert space at some size N large enough to encompass the levels
we are interested in evaluating. In this representation, the underlying tunneling of Cooper
pairs is clear, with the first term corresponding to the capacitive energy stored in the
charge configuration and the second term to the tunneling across the junction. We write
the solution to this equation in the transmon basis which diagonalizes it, given by

Ĥq = �
∑
k

ωk|k〉〈k| (3.11)

where |k〉 are the exact solutions to the CPB Hamiltonian (e.g. in the φ basis, the Mathieu
functions) and ωk = Ek� are the eigenenergies. We will often approximate the |k〉 with
the numerical solutions of equation 3.10, with which we can compute much faster. Several
such solutions for various values of EJ/EC are shown in Fig. 3.2.

When the higher excited states are not important, we can approximate the transmon
oscillator as a two-level qubit by restricting our sum to only the ground and first excited
state. Ignoring the existence of the higher levels (for example, taking the limit that the
anharmonicity goes to infinity), we approximate the qubit Hamiltonian as a spin-1/2
particle with

Ĥq =
�

2
ωqσ̂z. (3.12)

Here, we would assign ωq = ω′, the value that we calculated in the previous section. This
approach lends itself more readily to the language of quantum information science, as we
discussed in chapter 2.

Flux sensitivity

Both the Cooper-pair box and the transmon are often designed with a pair of Josephson
junctions connecting the islands rather than only one. This configuration, known as a
superconducting quantum interference device or SQUID, allows for the tuning of the
effective EJ by changing the magnetic flux Φ threading through the loop formed by the
two junctions. The Josephson contribution to the CPB Hamiltonian with two junctions is
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given by
ĤJ = EJ1cos(θ1) + EJ2cos(θ2) (3.13)

where the two junctions have their own Josephson energies EJi and superconducting phase
difference θi. Due to flux quantization (see section 3.2.3 of David Schuster’s thesis [112]),
the phase difference φ = θ1 − θ2 can be written in terms of the loop magnetic flux Φ, with
φ = 2πΦ/Φ0, where Φ0 = h/2e is the flux quantum. Combining this identification with
trigonometric substitutions, we write

ĤJ = (EJ1 + EJ2)cos

(
π
Φ

Φ0

)
cosθ + (EJ2 − EJ1)sin

(
π
Φ

Φ0

)
sinθ (3.14)

where θ = θ1+θ2
2

. This is identical to the term in Eq. 3.4 when EJ1 = EJ2 with the
effective Josephson energy

Eeff
J = (EJ1 + EJ2)cos

(
π
Φ

Φ0

)
. (3.15)

This “symmetric junction” case shows that we can tune the effective Josephson energy
of a qubit with the applied magnetic field. The transition frequency, following Eq. 3.7, is
given by

hf01 ≈
√

8EC(EJ1 + EJ2)|cos (πΦ/Φ0) | − EC . (3.16)

Things are a bit more complicated when the junctions are not identical. Defining the
asymmetry parameter d as

d =
EJ1 − EJ2

EJ1 + EJ2

(3.17)

we can write Eq. 3.14 as

ĤJ = Eeff
J

√
1 + d2tan2

(
πΦ

Φ0

)
cos(φ − φ0) (3.18)

where Eeff
J is given by Eq. 3.15 and the phase offset φ0 is given by the transcendental

equation tanφ0 = dtan(πΦ/Φ0) and can be eliminated by a variable transformation [115].
Thus, the effective EJ now not only has a maximum value Emax

J = EJ1 + EJ2 but also a
minimum value Emin

J = d(EJ1+EJ2) = EJ1 −EJ2 in the limit that φ → π/2. In practice,
d � 0.1, and so this minimum frequency is too low to be experimentally important, but if
we intentionally make the junctions quite asymmetric we can engineer a minimum frequency
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Figure 3.3: Transmon flux tuning as a function of junction asymmetry. With perfectly
symmetric junctions, as a function of applied flux the transmon transition frequency will tune
between its maximum frequency down to zero, according to ω ∼ √|cos (πΦ/Φ0)|. When
the junctions are different sizes, set by the asymmetry parameter d, a minimum frequency
develops and the qubit is less sensitive to flux.

that is relatively high. As we will see in the next section, this ability may prove interesting
if we wish to have more than one “flux sweet spot.”

3.1.2 Flux noise

Just as charge noise affecting the qubit transition frequency looks like a random Ẑ process
and causes dephasing (which motivated the development of the transmon), noise in the
flux Φ will also dephase split-junction qubits. Following Koch et al., the dephasing time
due to flux noise is given to first order by

Tφ =
�

A

∣∣∣∣∂E01

∂Φ

∣∣∣∣−1

=
�

A

Φ0

π

(
2ECE

max
J

∣∣∣∣sinπΦΦ0

tan
πΦ

Φ0

∣∣∣∣)−1/2

(3.19)

where the parameter A is the RMS flux noise∗, and typically is on the order of 10−5Φ0.
For fixed A, the only control we have over this is given by the slope of the frequency curve
– essentially the qubit’s susceptibility to this noise. Tφ goes to infinity for Φ = nΦ0, which
is known as a flux sweet spot. The dephasing time of course does not go to infinity, but
rather only becomes second-order sensitive to the flux noise. We must take the next-order
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derivative of ω(Φ), giving

Tφ =

∣∣∣∣π2A2

�

∂2E01

∂Φ2

∣∣∣∣−1

Φ=0

=
�Φ2

0

A2π4
√

2Emax
J EC

. (3.20)

At a flux bias of Φ = Φ0/4, A = 10−5Φ0, EJ = 30 GHz, and EC = 350 MHz, Eq. 3.19
gives Tφ ∼ 1 μs, while at the flux sweet spot Φ = 0, these same parameters give Tφ ∼ 3 ms.
Thus, it is always preferable to operate as close as possible to a flux sweet spot; a lot
of effort has gone into engineering fmax for this exact reason. As we saw in the previous
section, any amount of junction asymmetry gives rise to two sweet spots. In principle, one
could choose the junction sizes carefully to set these two frequencies at experimentally
relevant values.

3.2 Circuit quantum electrodynamics

The field of circuit quantum electrodynamics (cQED) concerns the study of superconducting
qubits that are strongly coupled to a mode of light [106, 118]. Conventionally, this mode was
a standing wave in a 1-dimensional microwave-frequency transmission line [118, 119, 121],
but more recently the resonant modes of a 3D box have supplanted that role [62]. This
mode, commonly known as the “cavity” in reference to the older and recently Nobel
prize-winning field of cavity quantum electrodynamics, fills many important roles. First,
because the frequency of the cavity mode is sensitive to the state of the qubit(s), we
can infer those states with a cavity transmission measurement [58, 116]. Second, the
cavity gives us an easy way to perform single-qubit rotations with resonant microwave
tones [53]. Third, as we will see in section 6.2.1, it protects the qubit from spontaneous
decay by changing the density of photon states [139]. Fourth, and finally, it mediates
qubit-qubit coupling via a virtual coupling [119, 121]. We do not seek to re-derive all the
properties of cQED here given the plentiful pre-existing resources that do an excellent job
[106, 112–115, 137]. We will instead briefly summarize the results of these sources that
we will reference in later chapters.

∗ Treating flux noise properly is a bit difficult. Equation 3.19 is a statement that T−1
φ = δωRMS = ∂ω

∂ΦΦRMS.
Our job is to define ΦRMS in a reasonable way. Since we are assuming the noise follows a 1/f frequency
dependence, we have to define some frequency range that we care about. Thus, Φ2

RMS =
∫ fmax

fmin

A2

f df =

A2ln( fmax

fmin
). This logarithmic factor is of order unity, so we usually approximate ΦRMS = A. Strictly

speaking, however, A sets only the scale of noise and not its precise magnitude.
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3.2.1 Harmonic oscillators

Both transmission lines and 3D cavity modes are, in the absence of a qubit, linear harmonic
oscillators∗. The Hamiltonian of a single harmonic oscillator is given by

ĤHO = �ω
(
â†â+ 1/2

)
= �ω

(
N̂ + 1/2

)
(3.21)

where â† and â are the raising and lowering operators and N̂ = â†â is the number operator.
The operators satisfy the relation [â, â†] = 1. We can define a number basis |n〉 which is
an eigenvector of the number operator with N̂ |n〉 = n|n〉. We can also define a conjugate
set of variables, charge Q̂ and magnetic flux Φ̂ (or equivalently, position and momentum)
as Q̂ = −iQZPF(â− â†) and Φ̂ = ΦZPF(â+ â†), where QZPF and ΦZPF are the magnitude
of the zero-point fluctuations of each variable and can be defined in terms of the physical
parameters of the oscillator. These variables correspond to physical observables of the
charge on the capacitor and the flux through the inductor of the effective circuit of the
oscillator, and obey the relation [Φ̂, Q̂] = i�.

We can calculate the eigenstates of this Hamiltonian in second quantization [140].
First, we note that â†|n〉 = √

n+ 1|n + 1〉 and â|n〉 = √
n|n − 1〉, which implies that

â|0〉 = 0. Writing â = 1
2

(
Φ̂

ΦZPF
+ i Q̂

QZPF

)
, and noting that Q̂ = �

i
∂

∂Φ̂
, we have

〈Φ|a|0〉 = 1

2
〈Φ|

(
Φ̂

ΦZPF

+ i
Q̂

QZPF

)
|0〉 = 1

2
〈Φ|

(
Φ̂

ΦZPF

+
i

QZPF

�

i

∂

∂Φ̂

)
|0〉

=
1

2

(
Φ

ΦZPF

〈Φ|0〉 + �

QZPF

∂

∂Φ̂
〈Φ|0〉

)
= 0

(3.22)

where in the second line we have used 〈Φ|Φ̂|0〉 = Φ〈Φ|0〉 and 〈Φ| ∂

∂Φ̂
|0〉 = ∂

∂Φ
〈Φ|0〉.

∗ See, for example, Chapter 2 of Steven Girvin’s 2011 Les Houches notes for a modern approach to how
circuits are quantized [137]. Other useful resources are Chapter 3 of David Schuster’s 2008 thesis [112]
and Chapter 2 of Lev Bishop’s 2010 thesis [113]. Circuit quantization involves assembling a Lagrangian
for the system following an explicit set of instructions and applying a Legendre transformation to get the
Hamiltonian. A quantum LC oscillator is found to have the Lagrangian L(φ, φ̇) = Cφ̇2

2 − φ2

2L , where φ
is the flux in the inductor and L and C are the inductance and capacitance of the circuit, respectively.
From this, the Hamiltonian is found to be the common harmonic oscillator with Ĥ = q̂2

2C + φ̂2

2L , with q̂ the
operator for charge on the capacitor. This can be written in terms of raising and lowering operators as

Ĥ = �ω
(
â†â+ 1

2

)
with [â, â†] = 1, φ =

√
�Z
2 (â+ â†), q = −i

√
�

2Z (â− â†), ω = 1√
LC

, and Z =
√

L
C .
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Solving, we find the first-order single-variable differential equation

∂

∂Φ
〈Φ|0〉 = −QZPF

�ΦZPF

Φ〈Φ|0〉 (3.23)

whose solution is given by the gaussian

〈Φ|0〉 = Ne
−QZPF
2�ΦZPF

Φ2

= Ne
− Φ2

2Φ2
ZPF (3.24)

with the normalization factor N =
(

QZPF

π�ΦZPF

)1/4

and noting that QZPFΦZPF = �. We
can also get the higher excited states of the harmonic oscillator by applying the raising
operator â† = 1

2

(
Φ̂

ΦZPF
− i Q̂

QZPF

)
, so that

〈Φ|n〉 = 1√
n!

〈Φ|(â†)n|0〉

=
1

2n
√
n!

(
Φ̂

ΦZPF

− �

QZPF

∂

∂Φ

)n(
QZPF

π�ΦZPF

)1/4

e
−QZPF
2�ΦZPF

Φ2

.

(3.25)

Omitting normalization, we find for example

〈Φ|1〉 = Φe
−QZPF
2�ΦZPF

Φ2

. (3.26)

In the absence of some nonlinearity, this quantization of photon number is not physically
obvious. The classical controls that we possess over a cavity are not sources of a definite
number of photons, but rather perform what is known as a displacement on the oscillator.
This is because the oscillator’s levels are exactly evenly spaced so we cannot address
individual transitions. For example, if we apply a resonant drive to a cavity in its ground
state, we will initially transfer population from |0〉 to |1〉. However, as soon as there is
population in |1〉, transitions to |2〉 are possible, which then turns on transitions to |3〉,
and so on. Thus, we can only create some Poisson-distributed superposition of number
states. The unitary displacement operator describing this process is given by

D̂(α) = eαâ
†−α∗â. (3.27)

The parameter α is a complex number, with α = |α|eiφ. Working in the photon number
basis, if we apply this displacement operator on the ground state, we will produce a
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coherent state

D̂(α)|0〉 = |α〉 = e−
|α|2
2

∞∑
n=0

αn

√
n!

|n〉. (3.28)

This state is an eigenstate of the lowering operator, with

â|α〉 = α|α〉. (3.29)

A real-valued displacement corresponds to adding a constant to the flux (position) coordi-
nate of the harmonic oscillator, while an imaginary value corresponds to adding charge
(momentum). For example, a displaced ground state wavefunction is given by

〈Φ|D̂(λ)|0〉 = 〈(Φ − λ)|0〉 = 〈Φ|λ〉 = ψλ(Φ) (3.30)

where λ is some real-valued displacement along the flux axis. As a function of time, a
displaced state will oscillate between being displaced in flux and in charge, with

â(t)|α〉 = eiωtα|α〉
=⇒ |α(t)〉 = |αeiωt〉.

(3.31)

It can be shown that any possible linear drive of the form Ĥd = f(t)(â+ â†) can only ever
produce a coherent state, independent of the form of f(t)∗.

Both the transmission line and 3D box have higher modes (e.g. the first mode of the
transmission line has voltage nodes only at the capacitors, but higher modes will have
additional nodes), so we can expand our treatment to explicitly take them into account
with

ĤnHO = �
∑
n

ωn

(
â†nân + 1/2

)
(3.32)

where ωn is the frequency of the nth mode. Enumerating these modes can be done
analytically in the case of a transmission line†, but is more complicated with a 3D box and
generally requires a numerical simulation of the actual box geometry. These higher modes
are often neglected, but understanding them can be important because they can be a

∗ As a corollary, if we ever want to have some interesting “non-classical” state of light, we require some
sort of nonlinearity to get out of coherent state purgatory. A qubit turns out to be a great source of
nonlinearity, with several recent results creating and detecting photon number Fock states [109, 141] and
Schrödinger cat states [107, 142].
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Figure 3.4: cQED eigenenergies. The solutions to Eq. 3.36 are plotted as a function of
the detuning between the qubit transition frequency between the 0 and 1 state, ωq, and the
bare cavity frequency ωr. Eigenstates are labeled according to the excitation levels of the
qubit and cavity. Here, the parameters ωr = 7 GHz, α ≈ EC = 300 MHz, g = 200 MHz,
and ng = 0.25 were used. The transmon was numerically solved with 21 charge number
states and the cavity with 5 photon levels.

source of decay [139, 143] and dephasing [144], or an additional resource for measurement
or storage of quantum information [145].

3.2.2 Qubit-cavity coupling

In cQED, we are interested in coupling a qubit to the standing-wave mode of a harmonic
oscillator. By placing the qubit in a region where the electric field of the cavity will induce
a voltage difference across the two islands, we can attain a coupling between the two
degrees of freedom [115]. The coupled Hamiltonian is given by

Ĥ = �ωrâ
†â+ 4EC(n̂ − ng)

2 − EJcosφ̂+ 2βeV 0
rmsn̂(â+ â†) (3.33)

† For a transmission line resonator of length d, capacitance per unit length c, and inductance per unit
length l, the resonant frequencies are approximately ωn = nπ/d

√
lc for integer n. The approximation

comes in from the capacitive loading from the input and output capacitors, which can also be included
but would be more complicated.
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where ωr is the cavity frequency, β = Cg/CΣ the ratio of the effective capacitance Cg of
one side of the transmon to the cavity to total capacitance∗, and V 0

rms is the root-mean
squared voltage at the qubit position per photon of the oscillator. We can re-write this
Hamiltonian in the transmon basis |i〉 as

Ĥ = �ωrâ
†â+ �

∑
j

ωj|j〉〈j| + �
∑
i,j

gij|i〉〈j|(â+ â†) (3.34)

where the dipole coupling energies are

�gij = 2βeV 0
rms〈i|n̂|j〉. (3.35)

The first term of Eq. 3.34 is the energy of the harmonic oscillator, the second the energy of
the transmon, and the third a term that couples the two. This equation further simplifies
if we apply the rotating wave approximation (RWA), where we drop rapidly-rotating terms
that do not conserve energy (for example, terms that promote the energy of both the
transmon and the photon), giving

Ĥ = �ωrâ
†â+ �

∑
j

ωj|j〉〈j| +
(
�
∑
i

gi,i+1|i〉〈i| + 1|â† + h.c.

)
. (3.36)

We have plotted the solutions to this Hamiltonian as a function of qubit frequency in
Fig. 3.4.

In the limit of a small number of transmon levels, we can simplify this expression
by substituting the qubit with the anharmonic oscillator of Eq. 3.9. Labeling the cavity
degrees of freedom with the operator â and the qubit with b̂, we have

Ĥ = �ωrâ
†â+ �ωq b̂

†b̂ − α

2
b̂†b̂†b̂b̂+ �g

(
â†b̂+ âb̂†

)
. (3.37)

We can further simplify this by ignoring the higher levels entirely and, following Eq. 3.12,
treat it like a spin. The result is the Jaynes-Cummings Hamiltonian

Ĥ = �ωr

(
â†â+

1

2

)
+

�ωq

2
σ̂z + �g

(
â†σ− + âσ+

)
(3.38)

∗ For the planar architecture, this gate capacitance Cg can be worked out by inverting a five by five
capacitance network of the two islands of the transmon and the center pin and two ground planes of the
coplanar waveguide cavity. See, for example, Figure 2.8 in Lev Bishop’s 2010 thesis [113]. In the case of
the 3D resonator, this geometric picture is no longer correct and it is necessary to numerically simulate
the impedances seen by the junctions.
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where g = g0,1, σ± is the raising and lowering operator of the spin, and where we have
again included the vacuum energy of the harmonic oscillator for arbitrary reasons.

Studying these equations is arguably the goal of the remainder of this thesis, but we can
immediately highlight some physics by diagonalizing the Jaynes-Cummings Hamiltonian.
Because of our simplifications, the Hamiltonian is a 2 by 2 block diagonal matrix, with
dressed eigenstates

|n,+〉 = cos(θn)|n − 1, e〉 + sin(θn)|n, g〉
|n,−〉 = − sin(θn)|n − 1, e〉 + cos(θn)|n, g〉

(3.39)

where tan(2θn) =
2g

√
n

Δ
. This pair of states constitute the Jaynes-Cummings ladder and

parametrized by the total number of excitations n̂tot = â†â + σ+σ− > 0. Each pair
constitutes an excitation manifold∗, though for n = 0, we have only one state |0〉 = |0, g〉.
The energies of these states are given by E0 = −�Δ

2
and En,± = n�ωr ± �

2

√
4g2n+Δ2

where Δ = ωq − ωr is the detuning between the qubit and cavity. When Δ = 0 and the
qubit and cavity are in resonance, we are in the vacuum-Rabi regime, where the eigenstates
are symmetrically-weighted odd and even combinations of |n− 1, e〉 and |n, g〉. If you were
to prepare one of the undressed eigenstates at this point, the excitation would oscillate
between the qubit and cavity at the rate g – a “vacuum-Rabi oscillation.”

3.2.3 Dispersive limit and qubit readout

We can further approximate the full transmon Hamiltonian (Eq. 3.38) in the dispersive
limit, where gj,j+1 � ωj+1,j − ωc. Using a unitary transformation [115], we can expand

∗ When talking about multiple-level transmon qubits, the number of states per excitation manifold grows
with the excitation number. As we saw in Fig. 3.4, with only one excitation, we have (in the undressed
basis) only two states: |n = 1, q = 0〉 or |n = 0, q = 1〉. For two excitations, we now can have
|n = 2, q = 0〉, |n = 1, q = 1〉, or |n = 0, q = 2〉, and so on. As you can imagine, with several multi-level
qubits at some reasonable level of excitation, the level diagram becomes very complicated (see, for
example, Fig. 8.5).

Incidentally, the reason that the Hamiltonian is block diagonal is that it commutes with the total
number of excitations N̂ex ≡ â†â+ 1+σ̂z

2 . This structure gives this ladder of states. Each block is given
by

Ĥ
(n+1)
2x2 /� =

(
nωc +

1
2ω01 g

√
n+ 1

g
√
n+ 1 (n+ 1)ωc − 1

2ω01

)
.
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the Hamiltonian in powers of g/Δ, giving to second order [113]

Ĥ/� = ωrâ
†â+

∑
i

(ωi|i〉〈i| + χi,i+1|i+ 1〉〈i+ 1|)

− χ01â
†â|0〉〈0| +

∞∑
i=1

(
χi−1,i − χi,i+1â

†â
) |i〉〈i| (3.40)

where χij =
g2ij

ωij−ωc
are known as dispersive couplings. Here, the first term is again the

cavity and the second the transmon qubit energy. The third and fourth terms constitute a
renormalization of the transmon and cavity energy levels due to their coupling; the fifth
term corresponds to the state-selective dispersive shifts. We can again take the two-level
approximation of the qubit, giving the dispersive Jaynes-Cummings or number splitting
Hamiltonian

Ĥ = � (ω′
c + χσ̂z) â

†â+
�

2
ω′
qσ̂z. (3.41)

Here, both the qubit transition frequency ω′
q = ω01+χ01 and the cavity transition frequency

ω′
c = ωc − χ12/2 are renormalized by a quantity known as the Lamb shift. The dispersive

cavity shift χ = χ01 − χ12

2
can be approximated for transmons as χ ≈ g2

Δ
EC

�Δ−EC
, with

Δ = ω01 − ωC .

Number splitting

Equation 3.41 deserves some analysis. We see that the term corresponding to the exchange
of excitations between the qubit and cavity is gone, replaced by the term χσ̂zâ

†â. There
are two ways of interpreting this term. First, we could group it with the qubit σz operator,
giving Ĥlq = �σz

2

(
ωq + 2χâ†â

)
. The qubit frequency then depends on the number of

photons in the cavity. Explicitly, the qubit transition frequency will be ωq if the cavity is
in its ground state, but ωq + 2χ if there is one photon, ωq + 4χ for two, and so on. If
there is a superposition of photon number states in the cavity (for example, if there is
a coherent or thermal state), the qubit transition frequency will split into many peaks,
a phenomenon known as number splitting [146]. When these peaks are resolved (in the
strong dispersive limit, discussed below), it is possible to perform number-selective pulses
on the qubit, thus entangling the qubit with the number state of the cavity. This turns out
to be extremely useful for a variety of quantum optics [92, 109] and quantum information
processing applications, as we will discuss in chapter 9.
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Qubit readout

Alternatively, we could group this extra term with the cavity number operator, giving us
Ĥc = � (ωc + χσz) â

†â. The cavity frequency now depends on the qubit state, moving 2χ

lower in frequency when the qubit is excited. For the case of transmon qubits, both the
ground and excited state peaks are moved up in frequency relative to the undressed cavity
frequency, but the ground state is shifted more, by what we call 2χ. Thus, in that case,
ωc does not have physical significance and is instead a convenient frequency with which to
write the Hamiltonian. This dispersive shift is the mechanism that we will use to measure
the qubit: by measuring the frequency of the cavity, we can infer the state of the qubit.

Consider the situation where we pulse on a drive of strength εrf at some detuning
δrf = ωRF − ωr from the bare cavity frequency. Ignoring any nonlinearity of the cavity
itself, the resulting coherent state in the cavity will depend on the state of the qubit, and
will be given by [112, 147]

α± =
εrf

κin+κout

2
+ i(δrf ± χ)

(3.42)

where the subscript denotes the state of the qubit. This state has an amplitude

|α±|2 = n± =
ε2rf

(κin+κout)2

4
+ (δrf ± χ)2

. (3.43)

The amplitude inside the cavity is given by the product of the drive power with the input
coupling strength, εrf = εin

√
κin. We can detect these states by measuring the power

leaking out of the cavity in a transmission experiment. In the simple case where χ � κ,
if we drive on resonance with the ground state cavity peak and get a relatively high
transmission, the qubit is in its ground state; if we get a relatively low transmission, the
qubit is in its excited state. It is also possible to drive such that the amplitudes of α± are
the same, but the phase is different; which choice is optimal depends on system parameters.
The distinguishability of these two states in either case is given by D = e−|α+−α−|2 , and
corresponds to the overlap of two gaussians on the complex plane. As we will see in
section 6.1, optimizing this dispersive readout is a complicated task, especially when
accounting for the nonlinearity that the cavity inherits from its qubit coupling.

The measurement operator corresponding to this operation is |0〉〈0|. What happens
if more than one qubit is coupled to the single cavity? We can generalize the dispersive
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Hamiltonian as

Ĥ/� =

(
ω′
c +

∑
i

χ(i)σ̂(i)
z

)
â†â+

1

2

∑
i

ω(i)
q σ̂(i)

z . (3.44)

The cavity frequency will then have a distinct frequency for each eigenstate of the
computational state manifold. For example, with two qubits, the cavity will be found at ω′

c

for |00〉 but ω′
c+χ(1) for |10〉, ω′

c+χ(2) for |01〉, and ω′
c+χ(1)+χ(2) for |11〉. Then, if we

measure at ω′
c and get a high transmission in the limit that the peaks are well-resolved, we

will have projected the system with the operator |00〉〈00|. For N qubits the measurement
operator can be understood to first order as |0⊗N〉〈0⊗N |. As we will see in section 7.3, it
is somewhat more complicated when we include the fact that the cavity responses have
finite overlaps.

3.2.4 Single-qubit gates

The Jaynes-Cummings Hamiltonian is not the complete story: we must also include the
effect of a microwave drive. Conceptually, a drive can be understood as a coupled second
cavity mode that is displaced [113] and will leak energy into our primary cavity. We can
approximate its state in the limit that its displacement is large and coupling small as being
constant and write

Ĥd = (â+ â†)
(
ξe−iωdt + ξ∗eiωdt

)
= âξ∗eiωdt + â†ξe−iωdt (3.45)

where ξ is a parameter that defines the strength of the driving (given, in our toy model,
by the product of the coupling times the displacement) and in the second part we have
applied the rotating wave approximation (assuming ξ is much smaller than any relevant
transition frequency). We can add this term to equation 3.36, and by applying a unitary
transformation to go into the rotating frame of the drive, have

Ĥr/� = (ωr−ωd)â
†â+

∑
j

(ωj −jωd)|j〉〈j|+
(∑

i

gi,i+1|i〉〈i+ 1|â† + h.c.

)
+ âξ∗+ â†ξ.

(3.46)
In this form the drive is acting on the cavity state, but we are interested in the dynamics

of the transmon. To see those instead, we can make another unitary transformation, the
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Glauber displacement transformation [113, 147], producing

Ĥ/� = Δrâ
†â+

∑
j

Δj|j〉〈j| +
(∑

i

gi,i+1|i〉〈i+ 1|â† + |i+ 1〉〈i|â
)

+
1

2

∑
j

(Ω∗
R(t)|j〉〈j + 1| + ΩR(t)|j + 1〉〈j|)

(3.47)

where Δr = ωr − ωd, and Δj = ωj − jωd. ΩR(t) = 2gα(t) is the Rabi frequency of the
drive with α(t) the applied displacement as a function of time; we have ΩR = 2ξg/Δr for
the case of a time-independent drive. Taking the dispersive limit as we did in the previous
section, this further simplifies to

Ĥ/� = Δrâ
†â+

∑
j

Δj|j〉〈j| +
∑
j

χj,j+1|j + 1〉〈j + 1| − χ01â
†â|0〉〈0|

+
∑
j=1

(χj−1,j − χj,j+1â
†â)|j〉〈j|) + 1

2

∑
j

(Ω∗
R(t)|j〉〈j + 1| + ΩR(t)|j + 1〉〈j|).

(3.48)

Finally, treating the qubit as a two-level system, we arrive at the driven dispersive Jaynes-
Cummings Hamiltonian

Ĥ =
�

2
Δqσ̂z + �(Δr + χσ̂z)â

†â+ �(Ω∗
R(t)σ̂− + ΩR(t)σ̂+). (3.49)

Choosing ΩR(t) = Ωx
R(t)cos(ωdt) + Ωy

R(t)sin(ωdt),

Ĥ =
�

2
Δqσ̂z + �(Δr + χσ̂z)â

†â+
�

2
(Ωx

R(t)σ̂x + Ωy
R(t)σ̂y) (3.50)

and we see that by choosing the phase and amplitude of the drive, we can perform arbitrary
rotations of our qubit about the x- and y-axes (defined in the rotating frame).
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3.2.5 Qubit-qubit coupling

We can generalize Eq. 3.40 to N transmons coupled to a single cavity by writing

Ĥ/� =
N∑

n=1

{∑
i

(
ω
(n)
i |i〉n〈i|n + χ

(n)
i,i+1|i+ 1〉n〈i+ 1|n

)
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(n)
01 â

†â|0〉n〈0|n

+
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i=1
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χ
(n)
i−1,i − χ

(n)
i,i+1â

†â
)
|i〉n〈i|n

+
∑
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g
(n)
j,j+1g

(m)
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Δ
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j +Δ
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(n)
j Δ

(m)
i )

[|j〉n〈j + 1|n ⊗ |i+ 1〉m〈i|m+

+|j + 1〉n〈j|n ⊗ |i〉m〈i+ 1|m]
)}

+ ωrâ
†â

(3.51)

where |i〉n denotes the ith level of the nth transmon, and the superscript (n) labels the
parameters of the nth transmon. The first two lines are the sum of single transmon
energies and cavity couplings and the third and fourth lines control interactions between
transmons and the cavity energy. This equation is a bit intimidating, so let us simplify to
the case of N = 2 and the two-level qubit approximation. Thus, equation 3.51 simplifies
to

Ĥ/� =
(
ωc + χ1σ̂

(1)
z + χ2σ̂

(2)
z

)
â†â+

1

2
ω1σ̂

(1)
z +

1

2
ω2σ̂

(2)
z

+
g1g2 (Δ1 +Δ2)

2Δ1Δ2

(
σ̂
(1)
+ σ̂

(2)
− + σ̂

(1)
− σ̂

(2)
+

)
.

(3.52)

We can identify these terms as, respectively, the cavity which may be dispersively shifted
by both qubits, the two bare qubit Hamiltonians, and a two-qubit swap interaction that
occurs via a virtual interaction with the cavity. The direct qubit-qubit interaction strength
is known as J splitting∗, and could potentially be used to generate entanglement, as we
will discuss in section 7.2.1.

The full expression of equation 3.51 indicates that there will be interactions involving
the higher excited states of transmons as well. We have found that the interaction of the
computational state |11〉 with the non-computational state |02〉 is of particular experimental

∗ For more about this interaction, see section 4.3.2 of Jerry Chow’s 2010 thesis [114].
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relevance. As described in section 4.3.3 of Jerry Chow’s thesis [114], we can estimate the
size of this interaction with fourth-order perturbation theory and by approximating the
transmons as three-level systems [121]. Defining the parameter ξ as the magnitude of an
effective σ̂

(1)
z ⊗ σ̂

(2)
z interaction between the qubits, we have

ξ = −2g21g
2
2

(
1

δAΔ2
1

+
1

δBΔ2
2

+
1

Δ1Δ2
2

+
1

Δ2Δ2
1

)
(3.53)

where δA = ω
(2)
01 − ω

(1)
12 , δB = ω

(1)
01 − ω

(2)
12 , and Δi = ω

(i)
01 − ωr. This expression is only

valid when the 0 ↔ 1 transition of one qubit is far from the 1 ↔ 2 transition of the other,
and it diverges when the transitions are in resonance. A full numerical diagonalization
of Eq. 3.51 accurately predicts the experimentally-measured ξ all the way through the
avoided crossing [121]. This interaction is the basis of two different implementations of a
two-qubit entangling gate, one using the crossing off-resonantly and the other directly in
resonance. We discuss both implementations in section 7.2.1 and section 7.2.2 respectively.
Moreover, the virtual interaction of |102〉 and |003〉 in a three-qubit register is the basis of
a fast three-qubit gate we use to demonstrate quantum error correction, as we will discuss
in chapter 8.

3.2.6 Dissipation and the strong dispersive limit

So far we have not mentioned that these quantum objects are also coupled to their
environment and therefore suffer from dissipation. In the case of the cavity, we often
explicitly control this dissipation with the input and output RF coupling strengths because
we want our measurement photons to be transmitted (see chapter 6). This will give the
cavity a finite line width κ/2π, which is related to its lifetime by Tcav = 1/κ. (If we reduce
our coupling enough, κ will no longer be dominated by our intentional coupling and instead
by, for example, photon absorption on the walls of the cavity.) The qubit also has a finite
lifetime, parametrized by T1 = 1/γ. This is often set by either off-resonant decay through
the cavity known as the “Purcell effect,” [139, 148] (section 6.2.1) or some uncontrolled
degree of freedom like lossy dielectric.

We define the strong dispersive limit as occurring when χ > γ, κ. There, the cavity
will move by more than a linewidth in response to a change of the qubit state, making
our measurement highly projective. More interestingly, in the case of photon number



CHAPTER 3. SUPERCONDUCTING QUBITS AND CQED 71

Figure 3.5: Flux bias line designs. (a) Optical micrograph of a typical FBL in the 2D
planar architecture. Current comes in from a single-ended CPW transmission line and is
shorted out close to the transmon SQUID loop to create a local magnetic flux. The current
freely returns through the device’s ground plane. (b) Optical micrograph of a filtered 3D
FBL. The FBL and qubit are located on separate substrates, and so require much larger
geometries. The resulting increased capacitance between the two objects requires explicit
filtering of the FBL to avoid affecting the qubit lifetime.

splitting, the qubit transition frequencies will be photon-number resolved [146], enabling
photon-number selective qubit operations [107, 109].

3.3 Flux bias lines

As we discussed in section 3.1.1, when using two Josephson junctions in a transmon qubit,
an applied magnetic flux through the loop formed by those junctions will change their
effective EJ . Initially, this was accomplished by placing a magnetic field coil outside of the
sample holder. This approach has several disadvantages. First, if there is more than one
qubit, it is not possible to independently tune them with only one global field [119]. Second,
because of the large inductance of the coil, the field cannot be changed on timescales
comparable to the qubit coherence time. As we will see in chapter 7, this is desirable
because it would allow for much richer control schemes. Third, the total magnetic field
(and therefore, the total current) needs to be rather large in order to thread a flux quantum
through our small loop, which could adversely affect device performance by spawning
vortices or heating the fridge. Finally, it is increasingly common to package devices in
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superconducting boxes (be it the sample holder or the 3D cavity itself), eliminating the
possibility of applying an external field because of the Meissner effect [149].

These issues prompted the development of flux bias lines or FBLs. Broadly speaking,
FBLs are wires that get very close to the SQUID loop of a single qubit. Running current
through this wire will produce a magnetic field that changes the SQUID flux. To date, there
have been two implementations of these devices: one in the two-dimensional architecture
[121], and much more recently, a second implementation that works for inline transmon
qubits coupled to 3D cavities which we will introduced in section 4.2. As shown in
Fig. 3.5(a), the 2D FBL is implemented with a short-circuited transmission line that
is terminated near the loop. To place the maximum of current close to the loop, the
termination is off-center, and is symmetric about the center line in an attempt to control
the impedance. The current returns in an uncontrolled way through the ground plane of
the device. This simplifies things by requiring only one microwave port, though, as we will
see in section 7.1, it has the disadvantage of having finite DC flux coupling to other qubits.

The design of the 3D FBL is a bit different because the flux line and qubit are on
separate substrates, as shown in Fig. 3.5(b). As with the 2D case, a current-carrying wire
comes as close as possible to the qubit SQUID loop, but the size of the loop is significantly
larger as a result of the increased distance owing to being on different substrates. As we
will see below, it is necessary to add explicit filtering to these lines to prevent the qubit
from decaying due to the substantial capacitance of this geometry. This FBL design also
has two ports so the current flows along a well-defined path in and out of the sample
holder. As a result, there is zero measurable flux cross-coupling between qubits.

This section will focus primarily on the design considerations for extending FBLs to
the 3D architecture. Specifically, we wish to calculate whether it is possible to thread a
flux quantum through the superconducting loop with a reasonable geometry and current
magnitude. Initially, this was a major concern because the loop and FBL are so much
farther apart than the 2D case and because of the flux screening of the Meissner effect.
We will show that a flux quantum should be attainable using with an analytic calculation.
We then discuss the consequence of the much larger geometry necessary: an increased
capacitive coupling between the qubit and FBL leading to qubit relaxation. We calculate
that the qubit should decay in only a few microseconds due to this effect, but that it can
be eliminated with the addition of explicit low-pass filtering on the FBL.
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Figure 3.6: Flux bias line geometry. A current-carrying wire approaches a SQUID loop
of width W and height H at a distance D away. The closest approach of the wire has a
length L. The magnetic field of the wire coming to and from this length is cancelled out by
symmetry.

3.3.1 Flux coupling

One major question when designing the 3D FBLs was whether it would be possible to
couple a flux quantum into the SQUID loop without an excessive amount of current∗.
Applying more than a few milliamps would constitute an unacceptable heat load on the
fridge because of finite cable resistance. Following the work of Nissim Ofek and Kevin
Chou (see appendix A), we can estimate the flux coupling analytically using the Biot-Savart
Law

B =

∫
μ0I

4π

�dl × �r

|r|3 . (3.54)

The geometry in question is shown in Fig. 3.6, where we have a SQUID loop of width w

and height h positioned a distance d away from a wire of length L. The field at a position
(x, y) due to the length of wire is given by

B(x, y) =
μ0Iẑ

4π
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(3.55)
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Integrating to find the total flux in the loop, we have

Φ =

D+H∫
D

dy

W
2∫
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2

dxB(x, y)
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2π
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√
u2 + y2

}]∣∣∣D+H
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∣∣∣∣L+W
2

u=L−W
2

.

(3.56)

Note that we can ignore the field due to the wire carrying current to and from the length
L because the two sides are equal and opposite, and the SQUID loop is symmetric relative
to them.

Unfortunately, this treatment ignores an important complication. The flux bias line is
surrounded by a superconducting box that initiates surface currents to cancel any magnetic
field inside its bulk due to the Meissner effect. These screening currents tend to reduce
the amount of flux looped through the SQUID. We can impose this boundary condition
using the method of images, which involves placing fictitious currents in the bulk of the
superconductor. An image reflected about the wall imposes the B = 0 condition on that
wall, but violates the requirement on the opposite wall. Another wire placed there similarly
solves that side, but again messes up the opposite boundary, albeit to a lesser extent.
Thus, we need an infinite sum of currents placed at integer multiples of w (where the
walls are at y = ±w/2), with each “wire” carrying In = (−1)nI. We define the ratio
G(d, 0) = B(d, 0)/B0(d, 0), where B0(d, 0) is the field at (d, 0) in the absence of the
screening of the walls. We then have

G(d, 0) ≡ B(d, 0)

B0(d, 0)
=

∞∑
n=−∞

1

n2(w/d)2 + 1

≈ 1

cosh
(

d
2wσ

)2 (3.57)

where the second line is a fit to the numerically-evaluated sum, with σ = 0.955π2

24
. A

thorough explanation of this process is found in appendix A. Taking the product of
equation 3.56 and equation 3.57 and plugging in reasonable parameters of L = W =

325 μm, D = 790 μm, and L = 500 μm, we find that the current required to thread one

∗ A similar calculation for both the flux coupling and capacitive relaxation for the 2D case is found in
section 5.3.3 of Jerry Chow’s thesis [114].
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Figure 3.7: Flux bias line circuit. (a) We model the effect of qubit relaxation through
the FBL with an equivalent circuit model where the qubit is capacitively coupled (by two
capacitors of size Cc) to two transmission lines that are shorted together by an inductor Ls.
We break this circuit into differential and common modes. (b) The equivalent circuit for
the common mode, where Ls has dropped out because there is no voltage drop across it.
(c) The equivalent circuit for the differential mode, where a virtual ground is placed at the
mid-point of the inductor Ls.

flux quantum is approximately 1.7 mA. Experimentally, this same geometry was found to
require about 1.5 mA – very close to the prediction, considering the approximations taken.

3.3.2 Relaxation through capacitive coupling to FBLs

An increased capacitive coupling is the cost of the large FBL geometry required for the
3D case. The coupling of the qubit to the FBL itself will add a relaxation channel, which,
especially with the increased qubit lifetimes, can become the dominant source. We can
model the FBL-qubit system with an equivalent circuit, as shown in Fig. 3.7(a). The
lifetime of the LC oscillator standing in for the qubit will be given by

T1 =
CΣ

Re[Y (ωq)]
(3.58)

where CΣ is the qubit capacitance and Y (ωq) is the admittance of the FBL circuit seen
by the qubit [139, 150, 151]. There are two paths to ground, so we break this circuit
into common and differential modes, where the two sides of the qubit junction have
either equal or opposite voltages∗. The qubit lifetime is then also set by two components,
T−1
1 = C−1

Σ (Re[Ydif(ωq)] + Re[Ycom(ωq)]). The effective circuit diagrams for each of the
two cases are shown in Fig. 3.7(b) and (c). The impedance for the common case is given
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by

Zcom =
1

2

(
Z0 +

1

iωCc

)
(3.59)

where the factor of 1/2 accounts for the fact that there are two copies of the circuit shown
in (b) in parallel with one another. Taking the real part and the inverse, we then have

Re[Ycom] =
2

Z0

ω2

ω2 + ω2
c0

(3.60)

where ωc0 =
1

Z0Cc
. Doing the equivalent for the differential case, including a factor of 2 to

account for having two of copies of circuit in parallel with the shared ground connecting
them, we have
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+
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)
(3.61)
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(3.62)

where ωd0 = 1√
LsCc/2

and in the second half we take the low-frequency approximation

ω � ωd0. Using an electrostatic simulation of Cc ≈ 0.25 fF, a typical qubit capacitance
CΣ = 40 fF, and estimating Ls = 0.5 nH, we find that the lifetime of the qubit at 9 GHz

would be about 2 μs – a number much smaller than typical 3D T1s. (As we will see in
section 9.1, this is consistent with what we measure experimentally.) Note that this decay
is entirely dominated by the common mode, in which we lose the benefit of the additional
filtering of Ls. The differential mode alone would grant a lifetime of about 100 μs, and
can be ignored in the limit that the qubit couples to both modes.

3.3.3 Filtering

For the large geometry needed to couple a flux quantum in the 3D case, the capacitive
coupling to the flux bias line can be the dominant source of relaxation. Fortunately, it is
possible to ameliorate this decay by adding a low-pass filter, as shown in Fig. 3.8. There,
we have added a series inductor and capacitor both to ground and between the two arms

∗ As we will discuss in the next chapter, due to its design, the qubit in practice couples to both the
differential and common mode. In principle, it would be possible to make sure that the two islands have
equal capacitance to ground to make the qubit oscillation symmetric, thereby reducing the matrix element
to the common mode. For this treatment, however, we assume that both modes are equally important in
the approximation of a highly asymmetric qubit island capacitance.
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Figure 3.8: Filtered flux bias line circuit. (a) In order to reduce qubit relaxation via
capacitive coupling to the outside world, we add a low-pass filter to the FBL. We are free to
do this because the FBL control signals are always below 1 GHz while the qubit transition
frequencies are typically 5− 10 GHz. The filter is implemented with a series inductor and
parallel capacitor, and again can be split into common and differential modes, shown in (b)
and (c).

of the bias line. We can again calculate the impedance for the common and differential
modes of this structure, with

Zcom =
1

2

((
1

Z0

+ iωCg

)−1

+ iωLf +
1

iωCc

)
(3.63)

Zdif = 2

⎛⎝(( 1

Z0

+ iω (Cg + 2Cs)

)−1

+ iωLf

)−1

+
1

iωLs/2

⎞⎠−1

+
2

iωCc

. (3.64)

As before, inverting these equations and taking their real part gives us the expected
qubit lifetime using Eq. 3.58. The largest geometric inductance that can be made
on this scale without being affected by self-resonances is about Lmax

f ≈ 1 nH. Thus,
the job of filtering comes down to the capacitance. Experimentally, it is possible to
get a large capacitance by using a three-layer lithography process, where Cg can be
as large as tens of pF. Evaluating Eq. 3.63 and Eq. 3.64 with reasonable parameters
(Cc = 0.25 fF, CΣ = 40 fF, Ls = 0.5 nH, Cg = 10 pF, Lf = 1 nH), and assuming Cs = 0

since it is much smaller than Cg, we predict a common mode lifetime of ∼ 1.6 ms and
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Figure 3.9: Qubit lifetime due to flux bias lines with and without filters. The
predicted qubit lifetime due to coupling to the FBL common and differential modes, with
and without filtering, are plotted. Without filtering, because of the large geometry leading
to a capacitance Cc ≈ 0.25 fF, the qubit is expected to decay in only 2 μs via the
common mode. This can be ameliorated with the use of a low-pass filter, which both
flattens out the frequency dependence above the characteristic cutoff frequency and pushes
the lifetime up by several orders of magnitude. Since these numbers are very sensitive
to the particular qubit and FBL parameters (CΣ and Cc in particular), one should not
pay so much attention to the numerical values of these predictions but rather the ratio
of improvement realized with filtering. The parameters used in these calculations are
Cc = 0.25 fF, CΣ = 40 fF, Ls = 0.5 nH, Cg = 10 pF, Lf = 1 nH, and Cs = 0.

a differential mode lifetime of 0.15 sec at 9 GHz. Thus, this simple filtering should
completely turn off decay through the flux line. The qubit lifetime as a function of
frequency for both the filtered and unfiltered case is shown in Fig. 3.9.

3.4 Conclusions

This chapter introduced the superconducting transmon qubit and several ways of looking
at it. In the most correct case, we exactly diagonalize the Cooper-pair box Hamiltonian in
the charge basis. This often provides more precision than necessary, so we can approximate
the transmon as either an anharmonic oscillator or a two-level spin-1/2 particle. We couple
these qubits to a standing-wave mode of a microwave resonator in the cQED architecture,
which grants us the ability to perform single-qubit rotations and qubit measurements, and
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mediates couplings between qubits that will be used to generate entanglement. The terms
responsible for these properties are found in the Jaynes-Cummings Hamiltonian, though
some work is required to convert them into a transparent form. We use flux bias lines to
control the frequency of qubits in-situ, and recently extended them to the 3D architecture.
There, the geometry required to couple a flux quantum results in a substantial capacitance
between the FBL and qubit and therefore a new channel for qubit decay that can dominate
for typical parameters. We have the capacity to to eliminate this channel with the addition
of a low-pass filter to the FBL. In the next chapter, we will explain the actual experimental
realization of both planar and tunable 3D cQED.





CHAPTER 4

Experimental Design and Setup

Now that we have a solid theoretical background in both quantum information processing
and superconducting qubits, we can shift our attention to the experiment. This

chapter begins by introducing the planar cQED architecture [106, 118] which has been the
primary focus of the Schoelkopf lab for many years. It uses a coplanar waveguide geometry
that is entirely specified with optical lithography. We will introduce the basic features of
this geometry and conclude with how such devices are fabricated and packaged.

More recently, our lab has shifted to a new architecture that replaces the CPW
cavity with a three-dimensional superconducting box [62]. This change has realized huge
improvements in qubit coherence, though it initially came the a cost of reduced control.
We seek to re-introduce the ability to tune the qubits using flux without giving up the
lifetime gains of the 3D transmon. This motivation sets the stage to introduce the tunable
3D cQED architecture, which integrates flux tunability by utilizing a vertical transmon
whose Josephson junction is located in the bulk aluminum rather than inside the cavity
itself. We can therefore access the junction with a wire placed on a separate piece of
sapphire. We will first introduce the design principles of the tunable architecture and show
how it is assembled. We next explain the design of the cavity, sample box, qubits, and flux
bias lines.

We then discuss more broadly the experimental details of measuring any cQED device.

81
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Figure 4.1: Coplanar waveguide geometry. (top) The planar cavity is implemented with
a coplanar waveguide terminated with two capacitors. The length between these capacitors
sets the resonance frequency of the cavity, and the size of the capacitors determines its
coupling Qc. (side) The waveguide is patterned on top of a sapphire substrate with thickness
h ≈ 420 μm. The width a of the CPW is typically 10 μm, with a spacing from the ground
plane b = 4.2 μm. The thickness of the niobium film t = 200 nm. These parameters will
give an impedance Z ≈ 50 Ω.

We use a helium dilution fridge to cool the device to ∼ 20 mK. The cables going into and
out of the fridge must be thoroughly filtered, with attenuation on the incoming lines and
circulators on the outgoing ones. We then examine a typical wiring diagram used both
to generate control pulses and measure a cQED device, and explain common areas for
variants and recent improvements. We conclude with a description of how mixers can be
used to implement pulse modulation much more cheaply than using a full vector generator,
but how doing so requires a series of calibrations.

4.1 Planar design

The planar or “2D” geometry used in most of the experiments presented in this thesis
has been developed for several years, beginning with the first realization of cQED with
Cooper-pair boxes in 2004 [118]. Other than the transition to transmon qubits and the
introduction of flux bias lines, the overall geometry has not changed significantly in the
years since. Therefore, instead of introducing all the details of the architecture which have
been thoroughly discussed in previous papers [118, 119, 121] and theses [112, 114, 152],
we will instead summarize the features of planar cQED.

The resonators in planar cQED are implemented with a coplanar waveguide (CPW)
geometry, as shown in Fig. 4.1. The length of the center pin between two capacitors sets
the frequency of the resonator and the magnitude of those capacitances sets the coupling
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Figure 4.2: Four-qubit planar cQED device. (left) Optical micrograph of whole chip.
We can see the CPW cavity patterned in the center of the 2 mm by 7 mm chip, with looping
to set the frequency to ∼ 9 GHz. There are four transmon pockets highlighted with a red box,
each equipped with its own flux bias line. (right) An optical micrograph of a transmon qubit.
This qubit was designed without interdigitation between the two islands in an attempt to
reduce dielectric participation. At the top of the picture, the termination of the FBL is visible.
The two squares above and to the right and left of the qubit are alignment markers used
during fabrication. (Figure adapted with permission from [55]. See Copyright Permissions.)

Qc. The large dielectric strength of the sapphire substrates set an effective εeff ≈ 6 for
the wave, giving a cavity resonance frequency of ωr =

cπ
l
√
εeff

, where l is the physical length
of the center conductor. The input and output capacitors Cin and Cout can be different
sizes, and making the output capacitor large is especially favorable for maximizing the
signal power sent into the amplification chain for dispersive readout (see section 6.1). The
overall coupling Qc of the cavity is given by

Qc =
π

2

1

ωZ2
0 (C

2
in + C2

out)
(4.1)

where ω is the frequency of the fundamental λ/2 mode of the resonator and Z0 is the
characteristic impedance of the line (ideally 50 Ω). The impedance is a function of the
center pin width a = 10 μm, ground plane gap b = 4.2 μm, film thickness t = 200 nm,
and substrate height h = 420 μm. It can be calculated analytically, but using a numerical
method like AWR Microwave Office’s TXLINE is more practical. The total Qtot is given
by the inverse sum of the coupling Qc and the non-radiative internal Qi that takes into
account uncontrolled losses through (for example) dielectrics, with Q−1

tot = Q−1
c +Q−1

i .
A typical device is shown in Fig. 4.2. The devices are 2 mm by 7 mm by ∼ 500 μm,

with the CPW structure patterned with niobium on a sapphire substrate. There are 300 μm

by 30 μm pockets alongside the cavity center pin for transmon qubits, highlighted in red in
the figure. These pockets are located near the ends, where the anti-nodes of the standing
wave are located, to maximize coupling. In the case of this four-qubit device, the qubits are
offset from one another to minimize direct qubit-qubit capacitance. (Direct capacitance
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would add an undesirable constant ZZ interaction between the qubits.) These devices
employ flux bias lines that are similarly implemented with 50 Ω CPW but short-circuited
near the location of the transmon SQUID as described in section 3.3. The figure shows
that each of the transmon pockets is equipped with a FBL, making this a six-port device
when the input and output cavity ports are counted. On the right, a zoom-in of one of the
transmon qubits is shown. Engineering the parameters EC and β of the transmon qubit
requires inverting a 5 by 5 capacitance matrix (see Ref. 115). However, to first order, β
can be controlled with the long dimension of the qubit (closest to the center pin) and EC

with spacing between the two islands. In this picture, the end of the FBL is visible, aligned
so that one of the two current paths is centered on the transmon SQUID loop.

4.1.1 Planar fabrication

All planar resonators in this thesis were produced by a similar process [105]. It begins
with sputtering a ∼ 200 nm thick niobium film on 2-inch C-plane corundum (α − Al2O3)
wafer using a d.c.-magnetron. This wafer is covered with S1808 photoresist, on which the
resonator structures are patterned with contact UV optical lithography. The niobium is dry
etched with a fluorine-based reactive ion etcher, followed by lift-off in acetone. The wafer
is diced into 2 mm x 7 mm chips. To create the qubits, each individual chip is covered
with two additional layers of photoresist (top 100 nm of 950K PMMA A3, bottom 550 nm
MMA(8.5)-MAA EL13 copolymer) and patterned with electron-beam lithography. The
bottom layer is more sensitive to electrons than the top, giving a natural ∼ 80 nm undercut
which eases lift-off. After development, aluminum is deposited with a double-angle electron
beam evaporation to create the Al−AlOx −Al Josephson junctions and qubit capacitors,
with a 15% O2 15 torr 12-minute oxidation step between subsequent depositions. Finally,
the undeveloped photoresist is removed with lift-off, leaving behind only the aluminum
that was defined by electron lithography. Junction resistances (which are related to Emax

J )
can be tested by either fabricating explicit test junctions alongside the qubits or by directly
probing the transmon islands. As long as appropriate precautions are taken to limit the
test current and prevent static shocks, this measurement does not appear to harm the
junction.
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Figure 4.3: Planar sample packaging. (a) Typical wire bonding of planar device to PC
board. For assembly, the planar chips are placed into a pocket of a PC board and thoroughly
wire bonded to join the two ground planes. Connections between the center pins of the
device and the PC board are also made. To cut down on extraneous on-chip modes, wire
bonds are sometimes also placed on the device itself. Note that this picture is not the same
device as shown in the others of this figure. (b) PC board view. The copper traces of the
PCB are connected to Rosenberger connectors which mate with cables connected to the
sample holder. (c) Assembled sample bottom. The PCB is screwed to an “octobox lid” and
a copper shim designed to control the 3D mode structure of the sample holder is placed over
the top. (d) Octobox lid and base, PC board with installed device, and copper shim.

4.1.2 Planar sample holders

The packaging of the planar device is depicted in Fig. 4.3. The devices are placed on a
copper PC board which has an Arlon dielectric. As many as eight microwave Rosenberger
connectors can be soldered to this board to interface with RF cables. The board is covered
with vias to short the two copper ground planes together. The devices are wire-bonded
hundreds of times around their perimeter to short the PCB ground and sample ground, and
the microwave connections (e.g. RF and flux bias) are similarly bonded to the associated
printed circuit board (PCB) trace. Additional wire bonds are often placed on the sample
chip itself, to short together adjacent ground planes that are split by control lines∗. Over
the top of this, a “flip chip” is placed to reduce the volume surrounding to the chip in an
attempt to control the resonant mode structure. Finally, the assembly is screwed onto the
“octobox lid” (made of either copper or aluminum) and placed into the “octobox bottom”,
where the Rosenberger connectors are mated to RF cables. There are eight RF cables in
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Figure 4.4: One- and two-cavity 3D cQED designs. (a) The canonical single-cavity
3D cQED architecture. A superconducting 3D cavity is made by mating two metal pieces
with pockets that line up and constitute the walls of the cavity. A sapphire substrate hosting
a transmon qubit is placed between the two cavity halves. This qubit is much larger in size
to couple strongly to the more diffuse electric field of the cavity, but is functionally identical
to a planar transmon. It is isolated in the middle of the cavity, and so is impossible to control
directly using this geometry. The device is controlled exclusively via RF ports, shown in
gold at the top of the picture. (b) Two-cavity 3D cQED device with a “vertical transmon”
coupled to both. A thin sapphire substrate containing a qubit is placed across the cavities.
Its Josephson junction is located between the cavity walls and in the bulk of the aluminum,
potentially giving us the ability to place a wire (shown in a dashed black line) next to it for
flux control.

the octobox sample holder, as referred to by its name. The whole package is placed inside
a magnetic shield and bolted to the base plate of the helium dilution fridge.

4.2 Tunable 3D architecture

Our lab has recently shifted to coupling qubits to the electromagnetic modes of a three-
dimensional box rather than a planar CPW, an architecture commonly known as “3D
cQED” [62]. The conventional design is shown in Fig. 4.4(a), where we see a bisected
aluminum 3D cavity with a wafer of sapphire laying across the plane of the cut. Two
of these cavity halves constitute the device (second half not shown), which are screwed
together with the sapphire wafer laying between them. As shown in the inset, a transmon
qubit is patterned on this wafer. It must be a great deal larger than conventional 2D
designs in order to attain the same cavity coupling strength because the electromagnetic
field is more diffuse, but is otherwise equivalent in behavior to planar devices. RF coupling
antenna are inserted into the top of the cavity (whose gold-colored connectors are seen

∗ See section 5.3.3 of Jerry Chow’s thesis for more on this [114].
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at the top of the picture), and are also functionally identical to the RF drive ports of
the planar devices. (See Adam Sears’s thesis [153] for a more detailed description of the
geometry of these devices.)

This 3D architecture has realized huge gains in coherence time, with measured T1 and
T2 in excess of 100 μs. The reason for this nearly two orders of magnitude improvement
is thought to be primarily due to reduced energy storage in lossy materials [154–157],
though quasiparticle dynamics may also play a role [158–161]. The dielectric quality of
surfaces and interfaces of materials are suspected to be of poor quality compared to the
bulk. Relatively small features like those found in the planar architecture tend to focus a
large fraction of stored energy near these surfaces, while large features will have a smaller
participation ratio in that lossy material because the field lines will penetrate deeper into
the bulk. Thus, instead of attempting to improve the material properties as many believed
was required, the 3D architecture bypasses the issue by reducing the qubit’s susceptibility
to the problem. In the process of studying these qubits, it also became clear that proper
thermalization and filtering was crucial to getting good performance and is responsible for
another factor of two in coherence [144, 162].

These improvements come at some cost. The qubit is suspended in the middle of a
superconducting cavity, greatly limiting our ability to have direct control of it. We cannot,
for example, run wires for flux bias to the qubit nor interface these wires through the wall
of the cavity without modifying the mode structure (and, likely the lifetime) of the cavity.
Since the cavity is typically superconducting, threading external flux is also not a possibility.
(We could instead use a copper cavity [64], but the cavity quality factor will be much lower,
requiring a much larger qubit-cavity detuning to limit Purcell relaxation.) Is this a significant
disadvantage? Though flux bias lines are extensively used in this thesis for the purpose
of entangling gates, that is unlikely to be their most important application∗. However,
fast tunability would play a critical role in demonstrations of hardware-efficient quantum
error correction [93], entanglement distillation between distant pairs of qubits [163–165],
and distribution of quantum information between subsystems [166]. The coupling of
a qubit to the cavity bus could be modulated to control the inherited nonlinearity and
the dispersive shift of the oscillator in real time, useful for continuous-variable quantum
information processing [92, 93, 167]. Controlling the interactions between individual qubits,
particularly those coupled to more than one cavity, could be used to shuttle quantum
information between distant subsystems. Fine-tuning system parameters would ease the
implementation of schemes that have strict parameter requirements [168]. Individual QND
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qubit readout, reset, or drives also requires individual qubit addressability, and are crucial
for quantum error correction and are some of the DiVincenzo criteria [79] enumerated in
section 2.2.2.

The capacity to address individual qubits is a desirable capability, but we would like to
regain it without sacrificing the improvements of 3D cQED. Fortunately, work on coupling
a single 3D qubit to two different cavities [107] has suggested a solution. As shown in
Fig. 4.4(b), a “vertical transmon” can be laid across two cavities, with antennas sticking
into both, and yielding strong coupling∗. (This has also been done previously in the planar
architecture, as reported in Ref. 109.) As a result, the Josephson junction of the qubit is
located between these two cavities in the bulk of the aluminum and it is no longer isolated.
We could potentially thread in a current-carrying wire from the side to apply magnetic flux,
as shown by the dashed lines on the right of (b). This is the principle concept behind the
tunable 3D cQED architecture. In this section, we first show how the tunable architecture
is assembled which will give a broad overview of the design principles. We then introduce
the specific design of the tunable cavities themselves, the two versions of the vertical
transmon qubits, and the flux bias lines.

4.2.1 Tunable 3D cQED assembly

To implement the idea inspired by the two-cavity 3D device for the tunable 3D architecture,
we place flux bias control wires adjacent to the vertical transmon qubits in the bulk of
the cavity material. Both single-cavity and two-cavity variants of the architecture exist.
As shown in Fig. 4.5(a), the single-cavity device has pockets for as many as four tunable
vertical transmon qubits. Adjacent to each pocket are trenches for flux bias lines that are
patterned on separate slivers of sapphire and abut against the qubit at the location of its
junction (middle inset). The slivers protrude from the side of the cavity and are received by
two copper PC boards attached to the sample holder surrounding the cavity (right inset).
In a manner identical to the planar devices, these FBLs are wire-bonded to copper traces

∗ Recently, an all-RF entangling gate which requires no qubit tunability has been demonstrated [169]. The
qubits used in that experiment were single-junction devices and not susceptible to flux noise, therefore
enjoying longer T2 times.

∗ The vertical transmon is actually a middle-ground between the full 3D qubit shown Fig. 4.4(a) and the
planar geometry in the sense that its participation in surfaces is somewhat higher than the 3D geometry.
Though other differences may be responsible, this increased participation could be the reason that vertical
transmons thus far seem to be limited to T1 ≈ 20− 40 μs. So, for now at least, we have compromised
some coherence for improved control.
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Figure 4.5: Single-cavity tunable 3D architecture assembly. (a) As described in the
body of the text, the tunable 3D architecture employs vertical transmons located in trenches
traversing the cavity that are coupled via antenna that stick in. These qubits are controlled
with separately fabricated flux bias lines, which are able to access the qubit SQUID loop
because it is located in the bulk of the material. The FBLs attach to conventional PC boards
located outside the cavity, on a sample holder that surrounds it. (b) Assembly diagram of
the four components of the architect, showing the “3D octobox” sample holder in copper
(though it most commonly made of aluminum), inside which the cavity is placed. (c) Picture
of a fully-assembled device, showing the eight cables that can be used to control flux bias.
(d) Picture of a coaxial RF coupler used to address the cavity, inserted through a hole in the
bottom of the sample holder and into the cavity.

that are themselves soldered to a Rosenberger connector. The qubits and the flux bias
lines are held in place by flattening indium metal around them at several locations. This is
shown in the right inset for the case of the flux bias line and in the middle inset for the
qubit (the latter case is more difficult to see due to the low contrast between aluminum
and indium). For additional shielding and to better connect the two cavity halves, indium
wire can also be placed around the cavity in a rounded-rectangular groove.

The architecture is assembled in four main sections, as shown in Fig. 4.5(b). The
cavity is placed in the pocket of a sample holder box (copper-colored in the figure) and is
secured with three screws. To the sides of the cavity are placed the copper PC boards,
which are similarly screwed to the sample holder. In this configuration, the qubits and
flux bias lines can be inserted and secured with indium, the FBLs wirebonded, and the
indium seal placed. The second half of the cavity is placed over the top, which must be
carefully aligned by scrutinizing the matching flux bias line trenches on the top, and is
secured with four more screws. Finally, the sample holder lid which mates the PC board
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Figure 4.6: Two-cavity 3D octobox assembly. The two-cavity version of the tunable 3D
architecture can support as many as five tunable qubits, with a pair of qubits coupled to each
cavity and a fifth qubit coupled to both. It is compatible with the single-cavity sample holder,
and so its assembly is essentially identical. Here, a variant of the architecture is shown that
merges the bottom cavity with the bottom of the sample holder in an attempt to cut down
on RF crosstalk of the couplers via the small gap between the cavity and sample holder that
otherwise arises.

connectors to conventional cables is placed over the top and screwed to the bottom part.
Since this lid has eight flux bias line ports, it is known as a “3D octobox.” A picture of a
fully-assembled device is shown in Fig. 4.5(c), where the eight cables have been installed.
RF cavity control is achieved in a similar way as with conventional 3D cQED, with an
RF coaxial cable sticking into the side of the cavity through a corresponding hole in the
octobox. As shown in Fig. 4.5(d), the coupler soldered to a copper bar that is used for
thermalization, shorting of ground planes, and securing it to the octobox.

The two-cavity version of the tunable architecture is shown in Fig. 4.6. It is designed
and assembled much like the single-cavity version. The primary difference is that the
different locations for the qubits and flux bias lines require a distinct PC board design.
Each cavity supports two local tunable qubits, with a fifth tunable qubit located between
the two cavities in the same geometry as the original two-cavity vertical transmon. There
is room for two RF couplers on either side of the octobox, enabling full RF control of both
cavities. Since the octobox has only four ports on either side, two of the flux bias lines on
the side with the fifth qubit’s FBL are shorted to the PC board instead of returning their
current through a cable. The two-cavity device also omits the indium trench for lack of
space.
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Figure 4.7: Tunable single cavity design. The two halves of the cavity are shown on the
left and right, with three-dimensional perspectives of each below. The main features of the
cavity design are highlighted, with the cavity itself located in the center and qubit trenches
laying across. Flux bias line trenches come in from the sides of the cavity and abut against
the qubit trench at the location of the SQUID. Countersunk screw holes hold the assembly
together, with each mating to the screw pattern on the octobox bottom shown in Fig. 4.9.

4.2.2 Cavity design

Diagrams and 3D perspectives for the top and bottom sections of the tunable single-cavity
device are shown in Fig. 4.7. Both halves are 1.5" x 0.6" x 1.8" in size and typically
are machined out of aluminum. Focusing on the bottom half, we see at the center a
single rounded-rectangular cavity pocket. Across this cavity run four qubit trenches, with
matching indentations on the opposite side of the cavity to support the qubit substrate.
Each qubit has a matching trench for a flux bias line that approaches from the side and
abuts upon the location of the qubit SQUID loop; note that two different lengths of FBLs
are required here. Alongside the FBL trenches are several semi-circular “ears” into which
indium is packed to secure the flux bias line. Additional ears are located at the top and
bottom of the qubit and serve the same purpose∗. An indium wire can be placed in the
trench surrounding the cavity and qubits to provide additional shielding. This wire must
be interrupted at the locations of the flux bias lines, and might not be necessary. An
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alignment pin similar to the one shown in Fig. 4.4(b) can also ease assembly. There are
three countersunk screw holes used to attach the cavity to the octobox sample holder;
due to the countersinking, the head of the screw is below the cavity plane and does not
interfere with assembly. There are four clear holes on the corners of the device, through
which we inserted the screws securing the top cavity. Finally, there are two holes drilled
from the outer wall of the device to the cavity for RF coupling (dashed lines). Adjacent to
both holes are tapped holes to which the RF couplers are fastened.

The top of the cavity is designed in much the same way. There is a matching rounded-
rectangular cavity pocket and matching trenches for the qubit and flux bias lines. Those
bias line trenches flare out to make room for wirebonding of the flux bias line filters to
the body of the cavity. Without the extra room, the wirebonds would be sheared off by
the wall of the trench during assembly. There are four countersunk screw holes to hold
the cavity together, with the countersinking on the back side surface (not shown in the
perspective view). Finally, next to the alignment pin holes are tapped screw holes that may
be used to separate the two cavities in a controlled manner if they become stuck together.

We show the two-cavity device in Fig. 4.8. There, we see two cavities of slightly
different size (with unloaded bare cavity frequencies of about 7.8 GHz and 9.2 GHz).
Both the top and bottom cavities have qubit trenches traversing them, positioned at the
same location as the single-cavity devices so that the same flux bias lines can be recycled.
A fifth tunable qubit is located between the two cavities at the exact center. The FBL and
qubit trenches also have the “ears” used to secure their contents with indium. There are
four RF coupling holes with matching tapped screw holes for two cavities. Countersunk
screw holes are located at the top and bottom of the devices, used for assembly, though the
bottom device has two screws rather than three due to lack of space. For the same reason,
the indium seal trench has been omitted. There are also alignment pins and corresponding
tapped screw holes on the top of the device to ease assembly and disassembly.

4.2.3 Octobox design

A diagram of the 3D octobox sample holder is shown in Fig. 4.9. As before, we show
separate diagrams for the top and bottom of the device, each with 3D perspective views

∗ In addition to making it possible to machine. Since this trench will be milled out with a circular tool, if
we did not have these ears, the edges of the trench would be rounded and a rectangular substrate would
not fit.
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Figure 4.8: Tunable two-cavity design. The features of the two-cavity version are much
the same as the single-cavity. The device supports as many as five tunable qubits, with four
coupled to individual cavities and one coupled to both. There are also four RF ports granting
full control of both cavities.

below. Focusing first on the bottom section, we see that the holder is large enough – 1.5
in by 0.83 in by 3.2 in – to fully enclose the cavities described in the previous section in
a pocket at its center. The floor of this pocket is patterned with tapped holes used for
assembling the cavity, and is symmetric with respect to both cardinal axes of the device to
simplify assembly. Next to this pocket is an elevated platform for the PC boards with a
matching screw hole pattern. This pattern is again symmetric about the long axis of the
octobox and supports both single-cavity and two-cavity variants. The perimeter of the
sample holder is lowered slightly to produce a lip that hopefully makes it more light-tight.
On this strip are tapped screw holes used to attach the top of the octobox. There are
twelve clear holes for the four RF couplers and tapped holes on the sides used for attaching
the sample to the fridge, thermalization, and potentially attaching other samples to cool
alongside.

The primary purpose of the top of the octobox is to interface with the Rosenberger
connectors for the flux bias lines. There are four holes on either side of the cavity used to
capture the sample holder cables using a Fairview Microwave SMP-M 0.086" SR bulkhead
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Figure 4.9: Octobox design. The cavity is inserted into the pocket in the middle of the
bottom half, alongside which PC boards are placed to interface with the flux bias lines. The
bottom of the octobox primarily serves as a platform for screwing together the rest of the
assembly, with a screw pattern in the cavity pocket and on the FBL platform. Clear holes for
RF couplers are also located on the long sides of the box. The top of the sample holder, which
has a matching pocket for the top of the cavity, primarily functions to interface with the PC
board connectors and convert them into SMA cables. It also secures tightly to the octobox
bottom, providing some additional magnetic shielding (if it is made out of a superconductor)
and light shielding. On both sides of the assembled octobox are six tapped screw holes, used
to secure the sample holder to the fridge or to secure other experimental paraphernalia.

connector (model number SC5161). The length of this connector is specific; we pinch in the
sides of the octobox directly above the PC board to form a “top hat” shape. The large part
of the box contains the pocket for the top half of the cavity. There are additional shallow
holes above the PC board screw pattern to make room for the heads of the screws. There
are also eight clear holes around the perimeter that match up with the tapped holes on the
bottom for assembly. An additional line of tapped holes are on the sides for thermalization.
The octobox is generally made out of aluminum to provide additional magnetic isolation,
but could be made out of copper if thermalization is a larger concern. By design, the
coherent “quantum” systems are exclusively located inside the superconducting cavities.
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Figure 4.10: Tunable 3D qubit design. Qubits are defined by four parameters: EJ , EC ,
g, and flux sensitivity. (a) In the case of the single-cavity qubit, all four of these parameters
can be chosen independently in the limit that one side of the antenna is much larger than the
other. (b) For two cavities, we need both antennas to be long and couple to their respective
cavities. A capacitor between the junction and one branch of the antenna is required to keep
the charging energy (and therefore, qubit anharmonicity) high enough.

4.2.4 Qubit design

The tunable vertical transmon designs are shown in Fig. 4.10. There are two variants:
qubits designed to couple to a single cavity, or couple to two. These qubits have four design
parameters: the maximum Josephson energy EJ , the charging energy EC , the coupling
strength g (or, for a fixed frequency, χ) to the cavity or cavities, and the flux sensitivity
(e.g. area of the loop, setting the magnetic field per flux quantum). The Josephson energy
is set by the area of the junctions and the amount of oxidation; the remaining three are set
by the gross geometry that is visible in the figure. The charging energy is approximately
set by the smaller of the two island capacitances to ground, the coupling strength by the
length of the antenna penetrating the cavity, and the flux sensitivity set by the size of the
SQUID loop.

In the case of a single-cavity qubit, the design is straightforward because each of these
parameters can be engineered essentially independently from one another. We are able to
make one side of the antenna as short as we like to set the charging energy. Similarly, the
length of the other side sets only the coupling because in the limit that this capacitance
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is much larger than the other side, the smaller one drops out∗. The flux loop size is
also mostly irrelevant to both parameters and can be changed without redesigning the
entire qubit. Thus, as we shown in Fig. 4.10(a), we can see that the left antenna is
much smaller than the right, which sticks into the cavity by approximately 1.5 mm. (The
location of the rightmost pair of arrows on the qubit denotes the wall of the cavity when
it is installed.) Though we have this design freedom, quantitatively predicting the qubit
parameters requires numerical simulation of the geometry using a program like Ansoft
HFSS. This qubit also demonstrates an unusual feature: silver pads bookending the 12
mm by 1.2 mm sapphire substrate. When shorted to the cavity with indium wire, this was
intended to better thermalize the qubit and act as a quasiparticle drain.

Since we need both antennas to strongly couple to both cavities, we do not have the
freedom of making one side of the qubit tiny for a two-cavity device. In the first two-cavity
3D cQED device [107], this trick was still viable given the possibility of spacing the cavities
more closely (only 2 mm apart), placing the junction off-center, and making the antenna
very thin. In the case of the tunable architecture, however, we must have the cavities at
least 4 mm apart to fit the flux bias line and require that the SQUID loop is near the center
so that we can couple sufficient flux (see Fig. 4.6). In order to circumvent this problem,
we add a new sophistication: a capacitor that couples one side of the qubit island to its
antenna. As seen in the inset of (b), there is a very short piece of metal on the right side
adjacent to a long antenna. The holes surrounding the capacitive gap between these two
features are present for technical reasons: to help avoid overdosing during electron beam
lithography and shorting out the capacitor as a result. The size of this capacitor and the
length of the antenna then sets the size of the coupling to the right cavity and the position
of the gap relative to the SQUID loop sets the charging energy. We are free to choose
the length of the opposite antenna to address other concerns. The wires connecting the
two sides of the junction and the auxiliary antenna are there to prevent the junctions from
getting destroyed by static discharge during dicing, and are removed prior to installation.
Comparing the two qubit designs, we also see that the SQUID loop in the case of the
single-cavity device is a great deal larger than the two-cavity device. This is due to the

∗ A corollary of this is when the two island capacitances are very different, the mode of the transmon is
quite asymmetric as well. It will therefore couple to both the common and differential modes of a flux
bias line. We calculated in section 3.3.2 that the contribution to T1 of the common mode dominates
that of the differential mode, which is unfortunate, since that is exactly the component we become more
sensitive to as we utilize this trick. One way to solve that problem is to use filtering, as we have done,
but it may have been unnecessary if we were more clever about qubit design.
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fact that the single-cavity qubit was designed first, when we were not yet confident in our
ability to thread flux. As it became clear that flux coupling was not a problem, we chose
to reduce the size of the loop in an attempt to reduce the magnitude of flux noise. We
also increased the pitch size of the antenna from 200 μm to 300 μm to reduce surface
participation.

4.2.5 Flux bias line design

The flux bias lines used in the tunable 3D architecture are on their own 1.5 mm by
∼ 20 mm sapphire substrates. The simplest form of these, shown in Fig. 4.11(a), is a
wire that passes from one of the PCB ports to the other, coming as close as possible to
the qubit SQUID to maximize coupling. As explained in section 3.3.2, however, this type
of bias line design is unacceptable because it will shorten the lifetime of the qubit via
capacitive coupling. The solution to this problem is to add a low-pass filter (section 3.3.3)
to the line in the form of an inductor and capacitor. In Fig. 4.11(b-c), we show two
versions of this filter. In both cases, the inductance of the low-pass filter is produced by a
length of wire 1 mm long, corresponding to approximately 1 nH. It is not possible to get
substantially more than this from a wire at this frequency without running into problems
of self-resonances. As a result, the two bias line designs differ only in their capacitor
implementation.

The first-generation filter design, shown in Fig. 4.11(b), uses an interdigitated capacitor.
The center pin of the FBL fans out with numerous fingers, which are interleaved with
fingers of metal islands above and below the line. There are also fingers between the
two lines, granting extra capacitance to the differential mode. During operation, the
islands on the top and bottom are shorted to the electrical ground of the cavity using
either compressed indium or wire bonds. This filter helps somewhat by increasing the
measured T1 by approximately a factor of four. It cannot, however, provide sufficient
capacitance to solve the problem. The surface length of the fingers sets the frequency
scale of self-resonance; adding more fingers to get more capacitance would push this
self-resonance frequency down, violating the lumped-element approximation, and making
it inoperable as a capacitor at the relevant frequencies. We knew this would be the case
prior to measuring it, however, and only tested it because the fabrication was no more
complicated than the unfiltered FBL found in (a). We also enlarged the width of the
transmission line used for the filtered FBLs to attempt a better impedance match.
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(a) Unfiltered FBL

(b) Interdigitated filter FBL

(c) Trilayer filter FBL
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Figure 4.11: Flux bias line design. The flux bias lines used in the tunable 3D cQED
architecture are patterned on narrow sapphire substrates. (a) The prototypical FBL is a wire
that approaches as close as possible to its qubit, with large pads on one end suitable for wire
bonds. This design unacceptably shortens qubit lifetime, however, necessitating filtering. (b)
There are two approaches to implementing the FBL filter, depending solely on the capacitor.
The easier implementation uses an interdigitated finger capacitor between the two lines and
the lines and some metal islands. The islands are shorted out to the cavity. (c) The superior
though more involved method uses a three-layer parallel plate capacitor design, which can
attain much higher capacitances without self-resonance issues. The constituent layers are
shown to the right. Note that in all these cases, the vast majority of the length of the FBL is
simply a transmission line. The length of this line is varied depending on its use, since there
are three distinct FBL lengths with two for single-cavity qubits and one for the two-cavity
versions.
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A superior filter is shown in Fig. 4.11(c), which uses a three-layer lithography process.
Instead of relying on the capacitance between two pieces of metal on the same plane (which
is extremely inefficient) this approach uses the third dimension to produce a canonical
parallel plate capacitor with a dielectric in between. The lithography is straightforward:
first, as shown in black in (c), the flux bias line is patterned in niobium. It flares out
considerably at the point where we wish to have our capacitor. Next, a thin layer of
dielectric – we have tried 200 nm of silicon monoxide or 50 nm of hafnium oxide – is
deposited in the area designated in green. Finally, a 200 nm thick strip of aluminum is
deposited over the whole thing (denoted in gray), which constitutes the other side of the
capacitor. The aluminum is shorted to the bulk of the cavity with wire bonds. (This type
of filter is shown in both Fig. 4.5 and Fig. 4.6.) This approach has the advantage of
getting a capacitance many times higher before being concerned about self-resonances. In
practice, it seems to eliminate any relaxation through the FBL (section 9.1).

4.3 Dilution fridges and wiring diagram

Most of the experiments detailed in this thesis were performed in a Cryoconcept “wet”
helium dilution refrigerator. The fridge uses a bath of liquid helium to get to 4 Kelvin
and a standard closed-circuit 3He-4He dilution unit to attain its base temperature of
Tb ∼ 10 − 15 mK. The advertised cooling power at 100 mK is 200 μW. The helium
bath must be filled approximately twice a week with 50 L of liquid. The level of this bath
constantly changes, as does the fridge temperature profile, causing the attenuation of the
cables to drift slightly in time. More recently, the lab has shifted toward using Oxford
Instruments brand “dry” fridges that use a high-performance pulse tube to reach 4 K.
These have the advantage of being much cheaper to run as they do not require liquid
helium. This provides both more experimental space and less overall bulk; it also requires
much less work to cool (due to e.g. the lack of need for an indium seal) and operate.
Given the rapidly increasing price of helium in the context of these advantages, it is likely
that many cryogenic labs will shift toward these dry fridges if experimentally possible∗.

The wiring diagram used to produce GHZ states, as described in chapter 7, is shown
in Fig. 4.12 and is representative of all the experiments. Let us first explain what happens
inside the fridge, as denoted by the dashed blue box. Thermal Johnson noise coming down

∗ One example of where this is unfeasible is for experiments that are extremely sensitive to vibration.
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Figure 4.12: Diagram of room-temperature electronics and fridge cabling. Cables
going into the fridge must be attenuated at 4 K and base to prevent thermal noise from
disrupting the experiment. For flux bias line cables, attenuation at base would produce too
much heat because of the large current required, so reactive filtering and lossy microstrips are
used instead. On the return side, we cannot attenuate our signal and instead use microwave
circulators to reject room temperature thermal and amplifier back-action noise. A HEMT
amplifier is located at 4 K, after the circulators, for the first stage of signal amplification;
further amplification takes place at room temperature. The overall amplification chain noise
temperature is approximately 10 K. At room temperature, flux bias control signals are
produced with Yokogawa voltage sources for DC biases and Tektronix AWGs for fast pulses.
A combination of vector and scalar generators controlled with additional AWGs produce
single-qubit rotations and measurements. The output of the amplification chain is mixed
down to DC and digitized by an Acquiris analog to digital converter. (Figure used with
permission from [55]. See Copyright Permissions.)
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cables would constitute an unacceptable noise source to the sample, and must be “filtered”
by lowering its effective temperature via cold attenuation. In the low effective-temperature
limit, voltage noise is linear in temperature SV (ω) ≈ 4kbTR, so we can attenuate at a
cold stage by a factor α = Thot/Tcold. Thus, cables carrying signals into the fridge are
attenuated by 20 dB at 4 Kelvin to cut down room temperature 290 K noise. The RF
drive line used for measurement and single-qubit rotations (black) is further attenuated by
30 dB to go from 4 K to base. The lossy stainless steel cables themselves (which are used
for their minimal thermal conduction) constitute an additional 10 dB of attenuation, for a
total of ∼ 80 dB. Since resistively attenuating the large DC currents used for flux bias
would generate too much heat at base, the flux bias line cables (gray, blue, green, red) use
reactive low-pass and lossy strip-line filters. They reject Johnson noise as well as prevent
erroneous qubit coupling, while maintaining a 50 Ω impedance match at low frequency.

On the amplification (output) side, we do not have the luxury of attenuating our small
signals, and instead use microwave circulators. Circulators are three-port non-reciprocal
devices by which microwaves going into one port are transmitted only to the port to the
right [170, 171]. Waves going to port 1 would come out port 2, those going into port 2
would go to port 3, and into 3, out 1. We terminate one of these ports with a matched 50 Ω

load to absorb the noise coming down from room temperature, but the signal coming up
from the sample is transmitted. This effective two-port device is also known as an isolator
and can be purchased by itself. Reverse-isolation is not perfect, so we typically use two or
more in series. In addition to rejecting noise from room temperature, circulators also block
the back-action noise produced by the high electron mobility transistor (HEMT) amplifier.
This amplifier has about 40 dB of gain and a noise temperature of 5 K. If we include cable
losses and reflections between the device and the amplifier, the total amplification chain
noise temperature is closer to 10 K. We use additional room temperature amplification as
well, bringing the total output gain to ∼ 70 dB.

Outside of the fridge, there are three sets of equipment. Starting from the top of
Fig. 4.12, we have the four flux bias line channels. This wiring diagram is for a cQED
sample with four flux-tunable qubits. In the GHZ experiment described in chapter 7, only
three of these qubits were used and the fourth tuned far away and left in its ground state.
The first FBL channel (in gray) provides a quiescent DC bias for this unused qubit, which
needs no fast control. It is attenuated at room temperature by 10 dB to reduce the noise
coming from the Yokogawa 7651s voltage source. The remaining three flux channels (in
blue, green, and red) have a Yokogawa voltage source to provide DC offsets, but are also
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driven by a channel of a Tektronix 5014 arbitrary waveform generator (AWG) for fast
control. This AWG outputs four 14-bit channels at 1 GSample/s, with a voltage range of
±2.25 V. It is attenuated by 20 dB and combined with the DC bias using a Mini-Circuits
ZFBT-6GW bias-T. In this experiment, the bias-T had a 100 KHz high-pass on the AC
port, which limits the duration of fast flux pulses to a few microseconds. For the purposes
of the GHZ experiment, this was more than slow enough. However, it may not be sufficient
for longer-lived future experiments and could be replaced by a resistive splitter that has no
intrinsic timescale. It would be possible to use the AWG 5014 to provide both the AC and
DC biasing of the qubits, though the Yokogawa sources are more stable and have higher
resolution. Separating the tasks allows for greater attenuation of the relatively noisy AWG
outputs.

The middle set of equipment connected to the black RF input cable generates the
microwave drives used in the experiments. In Fig. 4.12, qubit rotations are generated
using wideband I-Q modulated vector generators (Agilent E8267C and 8267D). The mixer
control voltages are generated with a combination of a second Tektronix 5014 AWG and
a Tektronix 520 AWG (which differs from the 5014 by only having two channels with 10
bits of vertical resolution each). The 520 AWG additionally generates a gate pulse for the
Agilent E8254A RF scalar generator for measurement pulses and a clock to synchronize the
AWGs which sets the repetition rate of the experiment. The outputs of all four generators
are combined with MiniCircuits ZFSC-2-10G splitters, the output of which is split to send
half to the fridge and the other half to a diagnostic spectrum analyzer. As we show below
in section 4.4.1, the relatively expensive and exotic IQ generators can be readily replaced
with much cheaper IQ mixers connected to RF generators that serve the same function.

The final set of equipment constitutes the measurement chain. In this experiment,
the output of the amplification chain was mixed down to DC by mixing it with a copy of
the measurement pulse. This copy, serving as the local oscillator (LO) of the mixer, is
tuned with a phase shifter in order to isolate the readout signal to one quadrature. The
output voltages I and Q are then low-pass filtered and amplified again (with an SRS 445A
preamplifier) before being digitized with an Acqiris AP240 digitizer. This card has two
input channels and can operate at a 1 ns sampling interval with 8 bits of resolution. In
all three sets of equipment, the AWGs, microwave synthesizers and acquisition card are
clocked with a Rubidium 10 MHz frequency standard (SRS FS725, not shown). Compared
to the other two sets of equipment, the measurement chain varies most widely between
experiments. Often, a separate LO generator is used to mix down the measurement signal
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to some finite frequency to avoid low frequency noise. The Acqiris digitizer card has
increasingly been phased out in favor of a card made by AlazarTech that has a much faster
connection to its host computer and can acquire and process data in real time. The use
of field programmable gate arrays (FPGAs) for real-time data acquisition, analysis, and
conditional pulse sequencing has also recently become possible [172, 173].

4.4 Pulse generation at room temperature

Precise generation of microwave pulses at room temperature is required for high-fidelity
single-qubit control. Learning the most effective way to do this took considerable effort,
but can now be easily reproduced with standard components. Broadly speaking, microwave
pulse generation is done by modulating the amplitude of a CW microwave tone in time
with voltages provided by an AWG or APS (arbitrary pulse sequencer). As shown above in
Fig. 4.12, one approach to applying this modulation is to use a vector signal generator such
as the Agilent E8267D to both generate and shape a microwave tone. The modulation is
taken care of internally, and so one only needs to supply the modulation voltages from
an AWG. This approach works well: the instruments have built-in amplitude and pulse
modulation, IQ leakage cancellation, and can control output power over fifteen decades,
accurate to the hundredth of a dB. Unfortunately, they are as expensive as they are
capable. They typically cost three times as much as an equivalent scalar generator (even
without options, a new generator lists at $101,192). As we scale up both the number and
complexity of our qubit experiments, it is impractical to continue relying on vector signal
generators.

Fortunately, the relevant functionality of the vector generator can be replicated with
much cheaper components. A judicious combination of a microwave mixer, band-pass
filters, a power amplifier, an arbitrary waveform generator, and a scalar generator, paired
with a robust calibration scheme, can deliver performance essentially indistinguishable from
a vector generator for a third of the price or less. These components are also not a “black
box” with layers of proprietary (and potentially unnecessary) Agilent technology between
the experimentalist and the output, so more reliable and less noisy performance can also
be expected. The following section will serve to explain the various calibrations necessary
and the reasoning behind them, as well as considerations to make when assembling the
components.
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4.4.1 Calibrating the mixer

The heart of our pulse modulation scheme is a microwave IQ mixer (here, the Marki
IQ0618MXP). These are four-port passive microwave devices which take a local oscillator
(LO) microwave tone and convert it to an amplitude and phase-modulated radio frequency
(RF) tone based on the applied voltage on the I (in-phase) and Q (out-of-phase) modulation
ports. Specifically, an ideal mixer’s RF output should be proportional to the instantaneous
low-frequency (e.g. DC to a few hundred MHz) voltage on the modulation ports (produced
by an AWG), with the sine component of the RF given by I and the cosine by Q. However,
like all things in experimental physics, microwave mixers are not perfect. We now introduce
and explain the resolution to five important non-idealities.

Nonlinearity

The simplest problem to fix is related to the nonlinearity of the mixer. The proportionality
between applied voltage and output power is only linear in the low-voltage limit. The
output power will compress (similar to the gain of a microwave amplifier when too much
power is applied) if this voltage is too large, leading to distortions of the pulse. For example,
the voltage corresponding to a π pulse will not be exactly twice that of a π/2 pulse. The
transfer function could be measured and inverted, but that is more trouble than it is worth.
A better solution is to ensure that you not apply very large voltages, staying well within
the linear limit. This comes at a cost of maximum output power. Even when using a
high-power mixer (sourced with a 16 dBm LO), it is not possible to drive a fast 8 ns π

pulse for a typical experiment when limited to low, linear voltages. For that reason, we
use a power amplifier.

The power amplifier we typically use is the Mini-Circuits ZVE-3W-183+, which has a
maximum output power of 3 W, a gain of 35 dB, and bandwidth of 6 − 18 GHz∗. This
amplifier requires a lot of power (2 A at 15 V) so a special power supply is necessary.
Its gain has proved sufficient to drive fast pulses on typical planar or 3D qubits while
staying well within the linear regime of the mixer. As with most amplifiers, however,
its gain is not adjustable. Since the input power to the mixer must be fixed (at e.g.
16 dBm), the course-grain tuning of the pulse power is done by adding attenuation to
some combination of the output of the mixer, amplifier, or AWG. Fine-tuning can be done
by changing the amplitude of the AWG output. This is somewhat inconvenient if you
intend to move your qubit around in frequency significantly (correspondingly requiring
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large changes in spectroscopy power). During those situations, it may be best to invest in
a computer-controlled variable attenuator if a vector generator is unavailable. Once the
qubit’s frequency is fixed for the purposes of an experiment, tuning up is straightforward.

One convenient way of ensuring that you do not apply too much voltage to the mixer
is to add 20 dB of attenuation to the output of the AWG. Then, even when the AWG is at
its maximum output voltage (4.5 V for the Tektronix 5014), the mixer is still guaranteed
to be sufficiently linear. This also has a significant advantage of increasing the effective
DC voltage resolution seen by the mixer, which, as we will see, is crucial for effectively
canceling the IQ leakage. It may be preferable to split this into two 10 dB attenuators
placed on either end of the cable going from the AWG to the mixer to minimize reflection
delays.

IQ leakage

Finite LO leakage is one of the less trivial non-idealities of the mixer. Even when there is
zero applied voltage to both modulation ports, some LO will couple to the RF port of the
mixer. Uncorrected, this leakage is too large for our purposes – on the order of 30 dB

lower than the maximum output power – which, if in resonance with the qubit, would drive
a huge population. Fortunately, this leakage can be significantly diminished by applying
DC “offset” voltages to both of the mixer ports.

The optimal voltages are a function of LO frequency and power, and can drift by a
small amount with time. The easiest way to determine the voltages is with a spectrum
analyzer. With an AWG, you would run a sequence that applies zero nominal voltage to
the mixer. You then adjust the AWG’s offset voltages to minimize the mixer output by
monitoring the leakage on the spectrum analyzer. The leakage drops off sharply as you
approach the optimal offset voltages, so the efficacy of this cancellation is a strong function
of available voltage resolution. As mentioned in the previous section, the cancellation
can be significantly improved by attenuating the output of the AWG by 20 dB, which
effectively increases the voltage resolution by a factor of ten. Further attenuation does not
seem to improve cancellation beyond that, possibly due to noise of the AWG output. It
may be possible that a less noisy voltage source could improve cancellation, though other
considerations then become important as well.

∗ The ZVE-3W-183+ has a relatively high noise temperature and probably has more gain than is necessary
so other amplifiers might be better suited to this task if a large output power is not required.
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Pulse modulation

While IQ leakage can be greatly reduced with applied offset voltages, even a small resonant
leakage can cause problems. This is especially true as the T2, and therefore the Rabi
decay time, of qubits increase. When using a vector generator, we were able to avoid
this by instantaneously turning the output of the generator off when not intentionally
driving. This instantaneous control is known as “gating” or “pulse modulation” and can
be toggled on nanosecond timescales to provide another ∼ 80 dB of isolation. While it
is still necessary to cancel IQ offsets with the vector generator, gating greatly reduces
our sensitivity because the leakage only occurs during a tiny fraction of the experimental
duty cycle when pulses are intentionally applied. Unfortunately, we cannot use the internal
modulation of the RF generator when using a mixer for pulse shaping. The mixer’s output
is distorted immediately after such a pulse due to a turn-on transient. While it may be
possible to correct for these distortions, it is much easier to avoid the issue entirely by
using an additional switch further down the chain.

We have used the Hittite HMC547LP3 chip to provide pulse modulation. These
chips have excellent bandwidth (DC-20 GHz), low insertion loss (< 2 dB), high isolation
(< 45 dB), extremely fast response time (< 3 ns), and are relatively inexpensive when
purchased as a single chip. The only disadvantage is that the TTL signal used to switch
them is an inconvenient voltage, namely 0 to −5 V. Ideally we would use one of the
plentiful marker bit channels output by the Tektronix to do this modulation, though in
practice we have to use two analog channels of the AWG because the marker bits can
only source 2 V. Fortunately, the 0 to −5 V specification is somewhat negotiable, and
seems to work with the 0 to 4.5 V provided by the 5014 analog channels, or even the 0 to
2.5 V provided by the 520 analog channels. (You have to be a little unconventional with
the Tektronix 520 by using 0 to 2.5 V on one channel and −2.5 to 0 V on the other.)
We hope to soon produce a board with some analog electronics to take a single 0 to 2 V

marker bit from the 5014 and convert it to two 0 to −5 V channels necessary to drive the
board. Hittite also sells connectorized switches (part number HMC-C019), but they cost
nearly $2000.

Single sideband mixing

If a Hittite switch or the necessary AWG channels are unavailable, there is an alternative
technique called single sideband mixing (SSB) [174]. The idea is that by multiplying the
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pulse waveform a sine and cosine of some frequency on the I and Q channels respectively,
the resulting pulse frequency will be offset from the local oscillator. Typical SSB frequencies
are 50 to 200 MHz, which means that the LO can be that far detuned from the qubit.
The maximum SSB frequency is set by the bandwidth of the Tektronix and the mixer,
and was about 300 MHz for the equipment used in this thesis. Additionally, it is possible
to use a single mixer chain to pulse at more than one frequency. This is very useful for
pulsing multiple number-split peaks or two separate qubits that are close in frequency.
The mathematical details can be found in Blake Johnson’s thesis [152], and have been
implemented in the Mathematica and Matlab pulse generation code used in the Schoelkopf
lab. Sideband modulation is also sensitive to two additional non-idealities of the mixer,
which, as we will discuss in the next subsection, gives us a convenient method of tuning
up their corrections.

IQ skewness and amplitude imbalance

When single sideband mixing is working properly, the only tone going through the mixer
should be at the intended frequency (e.g. the LO minus the SSB frequency). However,
there are two more tones: one at the LO frequency, and one at the opposite sideband (LO
plus the SSB frequency). The tone at the LO frequency is due to IQ leakage, and can be
cancelled as described in the previous section. The upper sideband, however, is due to two
more sources of mixer imperfection: skewness and amplitude imbalance. The presence of
either of these errors will cause power to be delivered at this unwanted frequency.

Applied voltages on the I and Q ports should produce RF tones exactly out of phase
from one another. However, the two ports will not actually be perfectly orthogonal. We
describe this imperfection by imagining that the Q axis is rotated by some angle relative
to where it should be, so there is some projection of Q onto I. This skewness syndrome
can be corrected by rotating Q back using a linear transformation. (The mathematics of
this have already been worked out and are included in the pulse generation notebook.)

The same voltages on the I and Q ports should produce the same amount of power at
the RF port. In reality, there is often a small amplitude imbalance between these ports. If
you are attenuating the output of the AWG, small differences in the size of the various
attenuators can cause the same error. This will result in a rotation around the x-axis being
different than one around the y-axis for the same nominal voltage. This error is corrected
by multiplying one quadrature voltage by some factor.
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How do we determine this rotation angle and scale factor? It turns out to be easily
done, as with IQ leakage, using a spectrum analyzer and Tektronix 5014 AWG. First, set
the AWG to play a sequence of a very long (e.g. 15 μs) single-sideband shifted square
wave. Then, using a spectrum analyzer, monitor the power coming out of the mixer at
the unwanted sideband frequency. We then want to adjust the scale factor and angle
to minimize this leakage. Changing the scale factor is accomplished by adjusting the
amplitude of only one of your two AWG outputs.

Controlling the rotation angle is a bit more subtle. The AWG 5014 has the capability
of delaying the output of channels relative to one another. This delay is set in multiples
of 5 ps, up to a maximum of several nanoseconds. In the limit of a long SSB-shifted
tone, this delay turns out to be mathematically equivalent to a phase shift according to
Δφ = 2πfssbΔt. (Both the Tektronix AWG 520 and the BBN Arbitrary Pulse Sequencers
lack this feature, so some other method of determining φ is necessary when using those
instruments.) Thus, you can extract the rotation angle and scale factor by iteratively
adjusting the amplitude and channel delay to minimize the upper sideband leakage. Once
known, these parameters should be incorporated into the sequence file and not left enabled
on the AWG. (For short pulses, the AWG delay is not the same as a skewness rotation.)

Filtering

The final mixer correction is also the simplest. The mixers we use (the Marki IQ0618MXP)
have a very large RF output at twice the LO frequency. This frequency is so high that it is
not immediately obvious that it would cause problems, but is unsettling in the context
of higher excited states and multi-photon transitions. Fortunately, it is simple to remove:
add a band-pass or low-pass filter to the output of either the mixer or power amplifier.
For qubits between 6 and 8 GHz, a pair of Mini-Circuits VBFZ-6260-S+ filters work well,
but other filters would certainly be acceptable. Where best to place these filters relative
to the amplifier is not obvious. It is beneficial to prevent the large tones from going into
the amplifier to cut down on higher-order products, but it is also advantageous to have
the filters after the amplifier to reduce the noise sent to the fridge. In practice, we have
simply had one filter before and one filter after the amplifier, but it is not clear that it
matters either way.
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Figure 4.13: Typical mixer assembly scheme. The components discussed so far are
assembled as shown. Multiple qubit channels can be made via the addition of more mixers
to the first splitter. To better control reflections, it may be better to split the 20 dB AWG
attenuation between either end of the cable – that is, 10 dB at the AWG and 10 dB at the
mixer. In this scheme, an extra splitter is added right before sending the output to the fridge
for attaching a spectrum analyzer to. It is important to terminate this port when not actively
using the spectrum analyzer, as the additional cable length going to it can cause problems
with reflections.

4.4.2 Assembly and reflections

A schematic of a typical setup is shown in Fig. 4.13. This scheme is scalable to many
qubits – simply duplicate everything to the right of the first splitter as necessary. If only
one spectroscopy tone is necessary, omit the first splitter and plug the mixer’s RF port
directly into the power amplifier. It should be noted that additional savings (compared to
a vector generator) can be had by using a cheaper scalar microwave generator known as
a LabBrick. It costs a tenth the price or less of a full-featured Agilent scalar generator –
$3,000 vs. $35,000 or more. However, compared to Agilent generators, LabBricks have
significantly worse phase noise, frequency resolution, power precision, and dynamic range.
Fortunately, these disadvantages are irrelevant for the single-qubit rotations, though likely
are unacceptable for qubit measurements or biasing of quantum-limited amplifiers.

In addition to knowing which components to use and effective ways of tuning them up
individually, it is important to consider reflections when assembling the apparatus. Any
impedance mismatch between components can cause reflections of time-dependent pulses,
which, when combined with significant lengths of cabling, will result in “ghosts” of your
pulse arriving as much as tens of nanoseconds after the intended pulse. This can cause
significant rotation errors and can be very difficult to diagnose. While it would be best to
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Figure 4.14: Photograph of mixer assembly. (a) An overhead view of a typical setup
for generating pulses for three separate qubits. (b) A sideways view, showing the third mixer
more clearly. Here, we have 10 dB of attenuation at the mixer and another 10 dB at the
AWG (not shown). Two band-pass filters are also used to reject unwanted frequencies, and
are placed before the amplifier. In this picture, both were attached before the amplifier, but
in later implementations one was put before and one after, in order to reduce amplifier noise
power being sent to the fridge. An “autodyne” measurement scheme is used here, where the
RF and LO are the same generator. The length of cable between the mixers and the splitter
headed to the fridge is minimized wherever possible. Note that the Hittite switch was not
yet integrated into this scheme at the time of the picture, but would normally go after the
power amplifier.

use only components with well-controlled impedances, they are not always available. In
particular, the mixers and splitters we use appear to have unfavorable VSWRs. However,
the nature of the reflection matters a great deal. If the echo takes place only a few
nanoseconds after your intended pulse, it will be calibrated away easily. If it comes in a
long time after, when you may be performing some subsequent pulse, that rotation can be
significantly distorted. (See section 5.2.3 for more on this.) Therefore, we aim to minimize
the reflection delay by limiting the length of the cable through which the pulses travel.
Note in particular that cable length only matters for time-dependent pulses. You are free
to pipe the CW generator output as far as you like, so we prefer to have the mixers as
close to the top of the fridge as possible. A photograph of a typical setup for three qubits
is shown in Fig. 4.14.
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4.5 Conclusions

This chapter introduced the two specific architectures for realizing cQED. The planar or 2D
architecture, which has been studied extensively in this lab for many years, is the subject
of much of the remaining content of this thesis. We summarized its properties and showed
how the devices are fabricated and packaged. We also introduced a new tunable 3D cQED
architecture, which has the useful flux control found in the 2D architecture but also enjoys
the improved qubit lifetimes of 3D qubits. Getting this to work involves re-engineering
every constituent part, including the “samples” (of which there were two variants, with one
or two cavities), the sample holders, the qubits, and the flux bias lines. We also showed
three generations of flux bias line designs, each implementing more sophisticated filtering
than its predecessor. Finally, we discussed how these samples are cooled in dilution fridges
and operated with an overview of the room-temperature control equipment involved. It is
possible to use either a vector-modulated RF generator to generate our microwave control
pulses, or, with proper calibrations, a much cheaper scalar generator and RF mixer. In
the next chapter, we will go into detail about the initial measurements to bring a new
qubit experiment online, the best way to accurately tune-up single-qubit rotations, and will
introduce the basic single-qubit experiments that we will use as tools in future chapters.





CHAPTER 5

Single Qubit Gates

Accurate generation of microwave pulses is an important experimental capability when
working with superconducting qubits. This has already proven true with applications

such as state tomography, which requires measuring the projection of a state along various
axes of the Bloch sphere and is sensitive to errors in both the Bloch angles θ and φ. In
the future, single qubit gates with verifiable fidelities in excess of 99.9% will be crucial for
practical error correction and other applications. With recent advances in qubit coherence
[62–64], the dominant source of gate infidelity is no longer necessarily T1, but rather the
technical details of pulse generation and non-ideal terms of the system Hamiltonian (such
as higher levels or spurious couplings).

This chapter begins by explaining the conventional experiments that must be done
with a new cQED device to bring it online. This involves finding the cavity frequency by
measuring transmission (at both high and low drive powers) and performing spectroscopy
to find the qubit. We will then examine the methods we have developed for tuning up and
verifying pulse calibrations. These range from simple Rabi oscillations to more sophisticated
sequences such as “AllXY” which significantly increase the precision of the tune-up. AllXY
is both much more sensitive to certain kinds of errors than other sequences and detects
many linearly-independent error syndromes at the same time. Finally, we will discuss the

113
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kinds of techniques that will be necessary to further increase and accurately measure pulse
fidelities.

5.1 Experimental bring-up

When a new cQED device is first cooled down and measured, there are several standard
experiments that are always done to determine basic device parameters. Through many
repeated trials, we have gotten quite good at them; what might have taken weeks or months
in the past has now been smoothed out or automated to the point of only taking hours or
days. This section introduces the standard suite of experiments to set up measurements
and find and track the qubit as a function of applied magnetic field. These experiments
also serve to debug the experimental setup, as they will take advantage of many of the
basic capabilities that will be required for more sophisticated experiments.

5.1.1 Cavity transmission

The first and most basic measurement that should be done in every cQED experiment is to
find the resonance frequency of the cavity. This is done by measuring transmission through
the cavity ports as a function of frequency, and serves several purposes. First and most
obviously, knowing the cavity frequency is necessary for qubit measurements∗. Transmission
also verifies that the experiment is set up correctly (amplifiers powered, cables connected,
generators on, etc). It can be done with either a network analyzer or a computer-based
data acquisition card and heterodyne detection [112]. While a network analyzer is the
faster option (since this is exactly the kind of measurement they are designed to do), it is
usually a good idea to try and make things work with the instruments that will be used for
the qubit experiment in order to debug more of your setup.

The power that should be used for this transmission experiment is actually rather
important, because of the cavity anharmonicity inherited from the qubit. The frequency and

∗ We saw in section 3.2.3 that the simplest readout mechanism involves measuring the transmission through
the cavity at the frequency corresponding to the qubit in the ground state. This requires knowing the
hybridized cavity frequency, and uses a very low RF power. As we will discuss in chapter 6, there is
another means of measurement that involves using a very high power and a different frequency – the
so-called bare cavity frequency. Unlike the dispersive cavity location, this frequency is set entirely by the
physical geometry of the device and does not depend on the coupling to or detuning of the qubit. Both
measurement schemes play a role in current experiments, and so the bring-up experiments depend slightly
on which readout you use.
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Figure 5.1: Cavity transmission for various drive strengths. (a) Transmission using a
relatively large drive strength (+20 dBm), showing the “bare cavity” frequency and linear
response of the resonator. (b) As we turn down power (to +6 dBm), the cavity reveals
a strongly nonlinear response, indicating the presence of a qubit which is hybridizing with
the cavity mode. (c) At sufficiently low drive strengths (-34 dBm), the cavity has a mean
occupation of only one photon and returns to linear response at its “low power” frequency
used for dispersive readout. Notice the differing y-scales for each case.

structure of cavity transmission depends very strongly on input power, which is the basis
of the high-power readout scheme [59] described in section 6.3. As shown in Fig. 5.1(a-c),
we see that, as we lower the drive power, the lineshape of transmission changes from
a lorentzian response at the bare cavity frequency at high power, to a highly nonlinear
response at medium power, and finally to a weak lorentzian response at the dispersively
shifted frequency at very low (∼ 1 photon mean excitation) power. This behavior is only
present when a qubit is strongly coupled to the cavity, so seeing any non-linear power
dependence of the cavity frequency and response is an easy way to detect the presence
of qubits. It makes sense to first use a relatively large amount of power to find the bare
cavity frequency and then repeat the measurement with substantially less power to try
and detect the presence of nonlinearity.

In experiments where a low-power dispersive readout mechanism is going to be used,
measuring the frequency of the cavity at ∼ 1 photon mean occupation is necessary. Since
knowing the input power required to drive one photon is a function of line attenuation,
cavity Q, and other parameters that may only be roughly known, a good tactic is to turn
down the drive power until the apparent cavity frequency stops changing. Especially in the
case of high Q cavities, this may become impractical if the signal becomes too small. In
that case, once the qubit is found, number splitting (section 3.2.3) can be used to more
efficiently measure the ultra-low power cavity frequency. In experiments where the qubit
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Figure 5.2: Transmission vs. applied qubit flux. When the qubit frequency is tuned
through the cavity, the two hybridize and make an avoided crossing. This is known as
a vacuum-Rabi splitting. These data were taken using the four-qubit device described in
section 7.1.

frequency can be changed, the low-power cavity frequency will also move, and must be
found at every magnetic flux. This is in contrast to the high-power bare cavity frequency,
which is independent of qubit detuning. It is also worth noting that the difference between
the high-power and low-power cavity frequencies and the approximate coupling strength of
the qubit and cavity can be used to calculate the qubit detuning. If these frequencies are
almost the same, the qubit is weakly coupled and/or far detuned.

Measuring transmission as a function of qubit frequency can also inform you about
device parameters. If the qubit’s maximum frequency (at the zero SQUID flux point) is
above the cavity, tuning the qubit through the cavity will produce vacuum-Rabi splitting
curve like the one shown in Fig. 5.2. There, as described in section 3.2.2, the cavity
response splits into two peaks because of the avoided crossing between the cavity and
qubit. The size of this splitting indicates the coupling strength between the two. Even
if the qubit does not actually come into resonance, the cavity will still shift in frequency
away from the qubit as it approaches. This can be useful for finding the magnetic field
corresponding to the maximum qubit frequency since it is usually offset from 0 by ambient
magnetic fields. In either case of maximum qubit frequency, the conversion of applied
control voltage to SQUID flux quanta can be measured by tuning over a full period of flux.
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5.1.2 Spectroscopy

The next experiment generally performed to bring-up an experiment is spectroscopy. There
are several variations commonly used in the field, but they all involve applying a microwave
pulse at some frequency followed by a qubit measurement∗. The frequency of the pulse is
typically scanned and, when it drives transitions of the qubit, the subsequent measurement
will indicate as such. The simplest conceptual version of spectroscopy is known as pulsed
spectroscopy, where the qubit pulse is turned off prior to a measurement being turned on.
The qubit pulse could either be some fast gaussian rotation, or more commonly, a long
saturation tone. A tone that is much longer than the qubit T2 will drive some equilibrium
incoherent population of the qubit, and is convenient because that population is relatively
insensitive to the pulse power. (A short, coherent drive would require carefully tuning the
π pulse power at each detuning to maximize fidelity, and could even eliminate signal if we
inadvertently drive a 2nπ pulse. However, this approach can yield a larger signal if SNR is
a challenge.) The spectral width of a long pulse is much smaller than the faster gaussian,
which allows for narrower line widths. An example of saturation pulsed spectroscopy is
shown in Fig. 5.3(a).

Prior to the high-power readout coming into common usage [59], spectroscopy was
more often done with both the qubit saturation and measurement tones on continuously.
One would step the frequency of a continuous-wave (CW) microwave tone while monitoring
the transmission of second tone at the low-power dressed cavity frequency to detect qubit
transitions [114]. This is known as “CW spectroscopy.” Since this approach does not
require time-domain control it is quite straightforward to set up. It has the disadvantage
of producing a more-complicated spectrum than pulsed spectroscopy, however. There is
an equilibrium population of photons in the cavity, so qubit transitions that depend on the
number of photons will be visible. The most concrete example of this is qubit number-
splitting (section 3.2.3) which will either split or broaden the qubit response, though
higher-order transitions may also be visible. This is in contrast to pulsed spectroscopy,
where only one microwave pulse at a time is ever on and many of these complications are
absent. CW spectroscopy is also incompatible with the high-power readout mechanism,

∗ In addition to pulsed and CW spectroscopy discussed here, we will later introduce “swap spectroscopy”
as well as “flux spectroscopy” which add a fast-flux pulse to the mix. They serve to measure avoided
crossings in the time domain, which is vital to calibrating sudden entangling gates or to calibrate flux
pulse amplitudes. The second of these is a requirement when using fast flux to quantitatively measure a
system.
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since the qubit state is scrambled by the measurement tone, so finding the dressed cavity
frequency for each detuning is necessary. The experimental simplicity of CW spectroscopy
is often out-weighed by the convenience and high fidelity of the high-power readout, so
CW spectroscopy is seldom performed anymore.

When using a long saturation tone for spectroscopy, the drive strength is an important
consideration. As described in Ref. 175, at low drive power, the spectroscopic linewidth of
the qubit is set by the pure dephasing time T ∗

2 . This is because the inverse of this number
can be taken as the intrinsic uncertainty of the qubit frequency. As the power of the drive is
increased, the observed linewidth will also grow, a phenomenon known as power broadening.
The expected power dependence is given by 2πΔfHWHM =

√
1/T 2

2 + 4Ω2
RT1/T2, where

T1 and T2 are the qubit lifetime and dephasing time and ΩR is the drive Rabi rate [175].
It can be understood as the drive causing stimulated emission of the qubit, shortening its
lifetime and therefore T ∗

2 . Power broadening is actually a useful effect, since recent 3D
qubits can have intrinsic linewidths less than 10 KHz [62] and would be difficult to find
without substantial broadening. Moreover, as the applied power is increased, the average
excited state qubit population initially grows linearly, and so its response gets stronger. For
larger drive strengths, the average qubit population approaches 1/2 and saturates. The
power dependence of the qubit transition is shown in Fig. 5.3(b-c).

A large spectroscopy power can also drive higher-order qubit transitions. For example, a
two-photon transition directly from the ground state to the second excited state (|0〉 → |2〉)
is allowed, but requires substantially more drive power than it takes to saturate |0〉 → |1〉.
This is shown in the blue trace of Fig. 5.3(a). This effect is very useful in that it is
the easiest way to directly measure qubit anharmonicity. The transition frequencies are
related by ω02/2 = (ω01 + ω12) /2, and ω12 = ω01 + α, where α is defined as the qubit
anharmonicity. Finding both the ω01 and ω02/2 transitions, therefore, also determines
α. The fact that this is the anharmonicity can be verified by saturating the 0 → 1

transition with a CW tone and then repeating spectroscopy, directly revealing the 1 → 2

transition. Even higher-order qubit transitions, such as a three-photon transition directly
from |0〉 → |3〉 are also allowed. When two qubits are coupled to the same cavity, a
two-photon transition between |00〉 → |11〉 is also possible at the exact average of the
two qubit transition frequencies, and is sometimes referred to a “Bell-Rabi” transition
because it can be used to directly prepare an entangled Bell state [176]. Thus, if you see
a spurious transition in your spectrum it is often a good idea to first try turning down
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Figure 5.3: Qubit spectroscopy. (a) In black, spectroscopy of a 3D qubit is performed
with a low drive power. Blue shows the same trace with significantly more power, broadening
the 0 → 1 qubit transition and turning on a two-photon transition directly between |0〉 and
|2〉. Knowing both of these frequencies tells you the qubit anharmonicity. This is verified with
a third experiment, shown in red, where the 0 → 1 transition is saturated with a CW tone
and spectroscopy is done with a second tone, revealing the 1 → 2 transition. The difference
between these two frequencies is a direct measure of anharmonicity, with the f02/2 transition
located directly between. (b) The f01 transition as a function of drive power, demonstrating
power broadening. (c) The FWHM of the qubit transition as a function of spectroscopy drive
power, fit to the expected power dependence. (Figure adapted with permission from [62].
See Copyright Permissions.).
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Figure 5.4: Spectroscopy as a function of applied magnetic flux. The qubit frequency
is tracked as a function of applied voltage on the qubit’s flux bias line. The qubit frequency
tunes proportionate to

√|cos (πΦ/Φ0) | (Eq. 3.16), where Φ is the flux threaded through
the qubit SQUID loop. In the inset, we see each individual trace with the qubit frequency
denoted with a red circle. The required measurement power changes as a function of qubit
frequency, making it necessary to periodically re-tune as the qubit flux is stepped.

the spectroscopy power to see if it goes away, meaning that it can be ascribed to some
higher-order effect.

Performing spectroscopy as a function of applied magnetic field is another common
experiment for tunable devices, but poses its own challenges. At zero applied magnetic
flux, the qubit should nominally be at its maximum frequency but in practice is offset due
to finite environmental magnetic field. Once a flux-tunable qubit is found at one position,
then, the next step is to “track” it to its maximum frequency by doing pulsed spectroscopy
as a function of applied magnetic field. This tells you not only the qubit fmax but can
also serve to verify that the qubit spectrum is clean of spurious avoided crossings. Some
typical data are shown in Fig. 5.4(a). One complication of this process is due to the fact
that both the optimal RF and spectroscopy drive power change as a function of detuning.
Periodically, the high-power readout contrast should be maximized by comparing readout
contrast as a function of measurement power. This involves making a measurement at a
given power with and without the a tone applied to the qubit. This is not actually the
same thing as readout fidelity, but it is typically an excellent analog that is experimentally
convenient and easily automated. The “optimal” spectroscopy power is more ambiguous,
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but is typically tuned to keep the width of the qubit transition within some range (e.g.
3 − 5 MHz).

5.2 Single-qubit pulse tune-ups

Once the qubit has been located and readout has been set up, the next task is to calibrate
single-qubit gates. As we saw in section 4.4, much of the work to tune-up an IQ mixer
can be done with room-temperature measurements. However, there are several pulse
parameters that must be measured with actual qubit experiments. The simplest example is
the attenuation and mixer voltage that corresponds to a π rotation on a qubit. This is set
by, among other things, cavity Q, qubit detuning, coupling strength, cable attenuation, and
insertion loss – all of which are only roughly known prior to measurement. In this section
we will introduce, in order of increasing complexity and precision, a series of experiments
that are already in common use for calibrating pulses. The section will culminate with the
“AllXY” sequence, which tests the result of all combinations of two single-qubit gates and
is quite sensitive to a variety of error syndromes.

Despite the relative sophistication of this procedure, it is clear that in the future more
sensitive techniques will become necessary. We will conclude with a brief discussion of the
shape those experiments might take. Depending on the application, some or all of these
experiments are not necessary. The best pulses are only needed for experiments like state
tomography that require high-precision control of the whole qubit Bloch sphere; measuring
something like qubit T1 requires little calibration.

5.2.1 Rabi

As discussed in section 5.2.1, one of the simplest experiments one can do with a qubit
is a Rabi oscillation. There, the qubit is rotated by some angle about the x-axis of the
Bloch sphere via the application of a resonant microwave tone. As a function of that
angle, the z projection of the qubit will oscillate. There are two common versions of the
experiment. First, a “time Rabi,” where a constant-power tone is applied to the qubit for
a variable period of time. The probability of being found in the excited state after this
pulse is sin2

(
ΩR

2
τ
)

where ΩR is the Rabi rate and τ is the amount of time the pulse is
applied. The more useful realization for the present purpose is the “power Rabi,” where
a fixed-length pulse with a variable amplitude is applied to the qubit∗. This amplitude
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Figure 5.5: Rabi oscillations. (a) A qubit is rotated by some angle θ, controlled by the
amplitude of a resonant gaussian microwave pulse, and measured. The x-axis of this plot is
experiment number, where 41 has no rotation, experiments greater than 41 have positive
rotation angles, and lesser have negative ones. For example, point 19 corresponds to a −π
rotation. (b) A “bad” Rabi oscillation showing that the qubit is hybridized with some other
Hilbert space. A 2π (e.g. sequence number 0 or 80) pulse does not return the qubit to the
ground state, indicating leakage from the qubit computational space. (c) Spectroscopy in the
vicinity of an avoided crossing. The red arrow indicates the frequency and bias of the qubit
in (b), showing that the system is indeed hybridized with some spurious degree of freedom.

is swept, again yielding a sinusoidal response. To tune-up the sequence, we adjust the
Rabi rate so that a π rotation happens at some desired voltage or DAC value. All possible
rotation angles can be interpolated from that calibration as long as the pulse amplitude
modulation is linear in voltage. An example of this is shown in Fig. 5.5(a).

A Rabi experiment also serves as a general check of whether a qubit is behaving well.
The oscillation is only perfect in the limit of addressing a true two-level system, and so if
this assumption is violated, the resulting curve will be distorted. This may come about,
for example, if the bandwidth of the qubit pulse is comparable to the anharmonicity of the
qubit or if the qubit is hybridized with some other degree of freedom (such as a two-level
system or a cavity mode). An example of this second case is shown in Fig. 5.5(b). This
qubit was near a spurious avoided crossing, shown in (c), distorting the oscillation. A 2π

pulse does not return the qubit to its ground state, indicating that there is leakage from
the two-level qubit Hilbert space. Another common distortion is an overall offset of the
curve along the x-axis because of mixer IQ leakage (which drives an equilibrium qubit

∗ A time Rabi is exactly equivalent to a power Rabi from the point of view of the physics, but it is
experimentally convenient to impose a constant time for pulses and vary amplitudes. This is true not
only because it is easier to time things out when you have “clock cycles,” but also because the amplitude
resolution of AWGs is typically much better than their time resolution.
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excited state population). It is also not unusual to see that a negative and positive pulse
amplitude drive different apparent rotations, which might be due to a mixer nonlinearity or
imbalance. Generally, a Rabi oscillation will not look as good as shown in Fig. 5.5(a) unless
both the mixer (see section 4.4.1) and pulse parameters (enumerated in section 5.2.3)
have been tuned carefully.

5.2.2 Ramsey

As we described in section 5.1.2, the rough frequency of the qubit is first determined with
pulsed spectroscopy. However, because of power broadening and finite pulse bandwidth,
this procedure typically enjoys a precision of only ∼ 1 MHz. That experiment typically
will not use a mixer, and so the frequency measured there might also have a systematic
offset from the one you will have in the “real” time-domain experiment. This might be due
to Stark shifts from IQ leakage or equilibrium cavity photon population due to a too-fast
experimental repetition rate. Thus, the precise qubit frequency must be measured using a
Ramsey experiment.

A Ramsey oscillation is the gold-standard of frequency calibration for qubits as well
as for precision instruments like atomic clocks [177]. The idea is to use the fact that a
detuning Δ of the qubit from the RF generator frequency reference looks like a z-gate
being continuously applied at a rate Δ. Thus, even tiny detunings can be measured by
integrating this detuning as a function of time, limited only by the pure dephasing rate T ∗

2 .
The procedure begins by putting the qubit on the equator of the Bloch sphere with a π/2

pulse. (Though errors in this rotation angle merely reduces the contrast of the Ramsey
fringes.) The qubit is then allowed to evolve for some period of time before a second π/2

rotation is applied. For a finite detuning, the qubit will oscillate between being rotated
back to the ground state and the excited state as a function of the delay time. Because of
dephasing, the amplitude of this oscillation will exponentially decay∗ at a rate T ∗

2 .
In order to distinguish between the exponential decay due to dephasing and the

oscillation due to detuning, it is desirable to have four or five full oscillations in the first
two 1/e times. Thus, you should either intentionally detune from where you think the

∗ This is also the standard method of measuring the qubit decoherence time T ∗
2 . Another common version

of this procedure includes a π pulse on the qubit exactly between the two π/2 pulses – this is known
as a Hahn echo. The π pulse flips the direction of evolution, thereby making the qubit insensitive to
low-frequency noise [178]. This will increase the effective coherence time, known as T echo

2 , when the
spectrum of the qubit noise is skewed toward lower frequencies, as it often is.
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qubit is or to sweep the phase angle of the second π/2 pulse to simulate a detuning. (The
second case might be preferable if you cannot source enough power to have a fast Rabi
rate, and so have relatively slow, and therefore spectrally narrow, pulses. This requires
having full control of both quadratures of your mixer, however, which might not always be
an experimental priority.) The longer T ∗

2 is, the smaller the detuning required to keep the
number of oscillations constant. Fitting these data, and subtracting the intentional (real
or “simulated”) detuning gives you a measurement of the unknown component of detuning.
The accuracy of this detuning is set by the quality of the fit (and so also the signal to noise
of the data), but in general will be much more accurate than spectroscopy. For example,
the frequency of a 3D transmon was recently measured to better than 100 Hz [62].

5.2.3 AllXY

Rabi and Ramsey calibrations are adequate tune-ups for most basic single-qubit experi-
ments. However, higher quality rotations are often desirable for applications where a high
quantitative value of fidelity is the goal, as for algorithms and state tomography. For this,
we need more sophisticated tune-up sequences. While a Rabi oscillation is only second-order
sensitive to the Rabi rate at its poles (though more sensitivity can be recovered by curve
fitting the oscillation), concatenations of π/2 and π pulses are, for example, first-order
sensitive and errors can be intentionally amplified with additional π pulse repetitions. Other
parameters like the orthogonality of rotations around the x and y axes, pulse corrections for
higher excited transmon states, reflections, and the consequences of simultaneous pulses or
coupling to other qubits are also not reliably measured by Rabi and Ramsey experiments.

In order to more accurately calibrate these parameters, we have developed a pulse
sequence known as AllXY. All combinations of one or two single-qubit rotations around
the x- and y-axes by an angle of π/2 or π are performed on a qubit that is then measured.
These are a member of the “Clifford set”∗ of quantum gates [179]. In each case, the qubit
should either end up on the north pole, the equator, or the south pole of the Bloch sphere.
Other rotations like π/4 can be linearly interpolated from these two calibration points.
Each pulse combination is sensitive to various errors to varying degrees. Different errors
will then have a distinct fingerprint in the deviation from the ideal response, providing a
quick way of diagnosing problems. Moreover, the sequence was not designed with certain
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errors in mind, and is quite general. Indeed, new types of pulse errors were discovered as a
result of trying to make the sequence behave properly.

The order of the 21 different pulse combinations was chosen to give each error syndrome
an obvious signature. The first tier of ordering, as seen below in table 5.1, is determined
by the place that the qubit should end up on the Bloch sphere. First are those pulses
which should return the qubit to the ground state, then the equator, and finally the excited
state. Pulses that end up on the north or south pole are often relatively insensitive to
errors (though, as we will see, they uniquely indicate some errors and so are still important
to perform), and so the most valuable information is primarily given by the pulses ending
on the equator.

The ordering of the equator-bound pulses is first given by their sensitivity to over-
rotations. Each combination varies from being only second-order sensitive to the rotation
angle to being several times as sensitive as a normal π/2 rotation. That is, a X(π/2)

rotation followed by a X(π) rotation would be three times as sensitive to over-rotations
than just a X(π/2) rotation. Though both will end up on the equator (where a z

measurement is first-order sensitive), in the first case the over-rotations of both pulses
add together, magnifying the error syndrome. (The notation N(θ) denotes a rotation
about the n̂ axis by an angle θ.) Similarly, a X(π/2) rotation followed by Y (π) will be
only as sensitive as a X(π/2) pulse, because the second Y pulse will not rotate the qubit
to first order since the qubit will be in an eigenstate of that operation. Rotations that
end up on the north or south pole of the Bloch sphere are second-order sensitive because
the expected value of z is proportional to the cosine of the angle. By ordering the pulses
according to this sensitivity, too much or too little power yields a characteristic “step”
pattern, shown below in Fig. 5.6(a), which can be distinguished with even a relatively
poor signal to noise ratio. For that reason, this approach is much more sensitive than a
Rabi oscillation for tuning up power, even without curve fitting the data. (However, if
the power is significantly off, the errors are so large as to be uninterpretable – you must
first do a Rabi oscillation to get close.) The remaining order is given by first X rotations
then Y rotations in the first pulse position. This is helpful because the two axes feel the
opposite effect of detuning, giving a zig-zag pattern to both detuning (Fig. 5.6[b]) and,

∗ The Clifford set is a finite subgroup of U(2N ) (the space of operations on N qubits) that is generated by
the Hadamard H and phase-shift K gates on any single qubit and controlled-NOT gates Λ(σx) between
any two [179]. Recall that these are given by H = 1√

2

(
1 1
1 −1

)
, K = ( 1 0

0 i ), and Λ(σx) =
(
I 0
0 σx

)
. All of

the gates used in AllXY can be made using only combinations of H and K.
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Ideal 〈z〉 First pulse Second pulse Power dependence Detuning dependence
1 Id Id 1 1
1 X(π) X(π) 1 − 8ε2 + O(ε4) 1 − π2ε4

32 + O(ε6)

1 Y (π) Y (π) 1 − 8ε2 + O(ε4) 1 − π2ε4

32 + O(ε6)

1 X(π) Y (π) 1 − 4ε2 + O(ε4) 1 − ε2 + O(ε3)

1 Y (π) X(π) 1 − 4ε2 + O(ε4) 1 − ε2 − O(ε3)

0 X(π/2) Id −ε+ O(ε3) (1 − π
2 )ε

2 − O(ε4)

0 Y (π/2) Id −ε+ O(ε3) (1 − π
2 )ε

2 − O(ε4)

0 X(π/2) Y (π/2) ε2 − O(ε4) −2ε+ O(ε3)

0 Y (π/2) X(π/2) ε2 − O(ε4) 2ε − O(ε3)

0 X(π/2) Y (π) ε − O(ε3) −ε − O(ε2)

0 Y (π/2) X(π) ε − O(ε3) ε − O(ε2)

0 X(π) Y (π/2) ε − O(ε3) −ε − O(ε2)

0 Y (π) X(π/2) ε − O(ε3) ε − O(ε2)

0 X(π/2) X(π) 3ε − O(ε3) 3πε2

8 + O(ε4)

0 X(π) X(π/2) 3ε − O(ε3) 3πε2

8 + O(ε4)

0 Y (π/2) Y (π) 3ε − O(ε3) 3πε2

8 + O(ε4)

0 Y (π) Y (π/2) 3ε − O(ε3) 3πε2

8 + O(ε4)

-1 X(π) Id −1 + 2ε2 + O(ε4) −1 + ε2

2 + O(ε4)

-1 Y (π) Id −1 + 2ε2 + O(ε4) −1 + ε2

2 + O(ε4)

-1 X(π/2) X(π/2) −1 + 2ε2 + O(ε4) −1 + 2ε2 + O(ε4)

-1 Y (π/2) Y (π/2) −1 + 2ε2 + O(ε4) −1 + 2ε2 + O(ε4)

Table 5.1: AllXY pulse sequence. The first and second pulse are listed and ordered
according to where the qubit should ideally end up (on the north, equator, or south pole
of the Bloch sphere). The analytically calculated leading-order power and detuning error
dependence of the qubit z projection are shown.

as we will see later, an additional pulse parameter used to compensate for phase errors
due to the presence of higher excited-state levels being incorrect [180]. The leading-order
dependence on small errors of amplitude and detuning are listed in the table (the code
used to produce these equations is found in appendix B).

Single-qubit error syndromes

As mentioned in the previous section, the AllXY sequence is set up so that the myriad
pulse error types produce distinct error syndromes. While many of these syndromes can
be calculated with unitary matrix multiplication, others are due to either physical flaws in
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the experiment (e.g. reflections) or effects related to more complicated underlying physics
(e.g. DRAG corrections) and are more difficult to model. Nevertheless, we have identified
numerous syndromes and, because they are linearly independent from one another (though
not necessarily orthogonal), single-qubit pulse errors can be quickly diagnosed. If you
are interested in measuring only a single syndrome (e.g. amplitude deviations), there are
other sequences that can be both faster and more sensitive; AllXY has the advantage of
identifying a wide range of issues including problems that we were not previously classified.
One example of this is the syndrome associated with qubit-qubit coupling which was
noticed in AllXY before it was understood or modeled.

The matrix describing the rotation of a qubit by an angle θ about the axis σ̂ is given
by Û(θ, σ̂) = e−i θ

2
σ̂. An error in pulse power by x dB (note the logarithmic power units)

is correctly captured by this equation by scaling θ by a factor of 10(x/20) (see appendix B).
As shown in the left column of Fig. 5.6, we can analytically calculate the expected z-
projection following such errors. We see experimental data on the right, showing excellent
correspondence. A detuning error is understood as an additional z field to σ̂, scaled by the
ratio of the detuning to the Rabi rate. A good approximation to this syndrome is given
by σ̂ → σ̂ + σ̂′, where σ̂′ = −2πΔδtσz, Δ is the detuning, δt is the single-qubit gate
duration, and σz is the z Pauli matrix. Other more esoteric syndromes, such as a scale
factor between the x and y quadratures (that might happen if the IQ mixer is imbalanced),
can also be modeled by scaling all σx rotations by the appropriate factor.

There are other syndromes that are not easily modeled, but nevertheless offer un-
ambiguous syndromes. The first example of this is that of reflections. As described in
section 4.4.2, reflections are caused by impedance mismatches in the pulse conditioning
chain. Reflections of the first pulse which arrive at the sample after a delay long enough to
collide with the second pulse will change the resulting qubit evolution. That is, the effect
of the first pulse will depend on what pulse happens after it, and second pulse on what
happened before it. In order to understand the syndrome associated with this problem, we
observe that the second pulse of the first six sequences that end on the equator should
have no effect. For example, the fifth sequence is first X(π/2) followed by Y (π). If the
first pulse is successful, the qubit will end up parallel to the y-axis, and therefore rotations
about that axis will do nothing. For the last six sequences, however, the second pulse does
rotate the qubit (e.g. X(π/2) then X(π)). We therefore expect that when reflections are
an issue, the first six pulses on the equator should be approximately correct, while the last
six should be distorted. Indeed, this is what we experimentally observe, shown in Fig. 5.7.
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Figure 5.6: Experimental and simulated syndromes for amplitude, detuning, and
skew-type errors. On the left, a calculation using unitary matrix evolution for each type
of error are shown. The right shows the experimental reproduction of these same errors,
showing excellent correspondence. Each error signature is distinct, making it possible to
detect several error syndromes simultaneously.
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Figure 5.7: AllXY reflection error syndrome. The first six equator pulses are insensitive
to the action of the second pulse while the last six are first-order sensitive. If reflections are
an issue, the second pulse will be modified by the reflection of the first arriving at the qubit
at the same time, and so will modify its behavior. Here we see AllXY data with and without
pulse reflections. The drive power was tuned to minimize the overall error and so we actually
see more of a problem with the “insensitive” pulses because we are using too little power.
Nevertheless, there is a clear difference between the first six and last six pulses due to this
reflection.

Another syndrome not easily calculated but nevertheless crucial to tuning up pulses is
associated with the technique of derivative removal by adiabatic gate or DRAG [180]. As
described in section 4.2.3 of Jerry Chow’s thesis [114], this technique corrects for gate
phase errors caused by the presence of higher excited states of the transmon qubit [181].
The lowest-order correction involves either continuously detuning the pulse as a function of
its instantaneous amplitude or adding a copy of the derivative of the primary pulse to its
orthogonal quadrature. In both cases, there is a scale factor for this correction. Though
Motzoi, et al. calculate the value of this parameter as an analytical function of matrix
elements and qubit anharmonicity in their original paper [180], the optimal value (and
even its sign) differs dramatically due to filtering effect of the cavity. We tune it up as a
free parameter based on the observation of its syndrome in AllXY. As shown in Fig. 5.8(a),
the syndrome is reminiscent the one associated with detuning (consistent with the fact
that this is principally an error in phase), though it is still distinct and distinguishable. In
order to efficiently tune-up the DRAG parameter, we take two of the AllXY pulses which
exhibit the opposite sign of error – Y pX9 and XpY 9 – and perform each as a function of
the parameter value. This yields two lines that cross at the point where the parameter



CHAPTER 5. SINGLE QUBIT GATES 130

I
d
I
d

X
p
X
p

Y
p
Y
p

X
p
Y
p

Y
p
X
p

X
9
I
d

Y
9
I
d

X
9
Y
9

Y
9
X
9

X
9
Y
p

Y
9
X
p

X
p
Y
9

Y
p
X
9

X
9
X
p

X
p
X
9

Y
9
Y
p

Y
p
Y
9

X
p
I
d

Y
p
I
d

X
9
X
9

Y
9
Y
9

Pulse sequence

-1.0

-0.5

0.0

0.5

1.0

Z 
pr

oj
ec

tio
n

DRAG coef
  9.4
  7.4
  5.4
  3.4
  1.4
 -0.6
 -2.6
 -4.6
 -6.6
 -8.6

9

8

7

6

H
. v

ol
ta

ge
 (m

V
)

4321
DRAG coeffcieint (MHz)

 YpX9
 XpY9

(a) (b)

1.4

Figure 5.8: DRAG coefficient error syndrome. The DRAG pulses used to cancel phase
errors due to the presence of higher transmon levels are defined by one additional experimental
parameter. Here, that parameter is given by the number of megahertz that the qubit pulse
should instantaneously be detuned by at a π pulse amplitude. (The pulse detuning will be
scaled by the instantaneous pulse amplitude.) The error syndromes associated with this
parameter are challenging to calculate analytically, but are easily measured, as shown in (a).
An easy way to tune-up this parameter is to choose two of the AllXY pulse sequences whose
errors come in with opposite sign, and measure them both with varying DRAG coefficient.
This will produce two lines that cross at the optimal DRAG coefficient value, as shown in
(b).

is optimal, as shown in Fig. 5.8(b). The technique of choosing two AllXY pulses and
sweeping a control parameter is very general. It also lends itself to curve-fitting programs,
which are better at determining the intersection of two lines than the naked eye.

Two-qubit error syndromes

There are also error syndromes associated with coupling to additional qubits [182]. The
hybridization of these qubits produces an effective ZZ interaction and causes the matrix
element coupling one qubit to the microwave drive to depend the state of the other qubit.
In one particularly extreme case [169], the Rabi rate of a qubit was observed to change
as much as 17% if the other qubit in the cavity flipped its state, as shown in Fig. 5.9.
This causes big problems when trying to perform accurate pulses on both qubits, because
by definition a single-qubit rotation cannot depend on the state of other qubits. AllXY
run for the case of the adjacent qubit being in the ground and excited state are shown
in Fig. 5.10(a). When the qubit is in its ground state, AllXY looks essentially perfect,
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Figure 5.9: State-dependent Rabi rate. A time-Rabi is performed on a qubit with and
without another qubit in its excited state. The Rabi rate depends strongly on the state of
that adjacent qubit because of the hybridization of the qubit eigenstates. This coherent error
is equivalent to an unintentional two-qubit entangling gate and causes a new single-qubit
error endemic to multi-qubit devices. The ratio of the Rabi rates for the two cases is 1.17.

but by exciting that adjacent qubit the sequence is ruined. Fortunately, by using the BB1
composite pulse sequence, which is designed to reduce sensitivity to amplitude errors, this
issue can be largely mitigated as shown in Fig. 5.10(b). For more information on this
composite pulsing, see Ref. 183.

5.2.4 Future tune-up sequences

AllXY has the advantage of being simultaneously more sensitive to errors than conventional
experiments like a Rabi oscillation, having unique signatures for various error types, and
detecting many different error types. However, if there is a particular error that you are
interested in studying, it is possible to design experiments that are more sensitive. For
example, amplitude errors could be directly detected by applying a π/2 pulse followed by
N π pulses. Each additional π pulse amplifies the error syndrome, and since the qubit is
initially on the equator, it is first-order sensitive to these errors. It is easy to imagine that
equivalent pulse sequences can be made arbitrarily sensitive to particular errors, limited
only by qubit decoherence.

Verifying that pulses are correct can also be a challenge. It is possible to construct
robust tests for specific kinds of errors, but that requires knowing what to look for. For the
purposes of quantum error correction, or simply to report gate fidelity to the community,
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Figure 5.10: Two-qubit joint AllXY. (a) The AllXY sequence is run on a qubit with and
without an adjacent qubit in its excited state. The state-dependent Rabi rate and frequency
shift associated with that excitation cause huge errors. Note that ideally both of these traces
should look identical and tuned up; deviations indicate that single-qubit pulses are actually
multi-qubit ones. Errors can be mitigated to a certain extent by splitting the difference
between the two cases, but ultimately a new tactic must be taken. (b) Joint AllXY using
BB1 composite pulses. These pulses are designed to be insensitive to amplitude errors, and
so significantly mitigate the multi-qubit syndrome [169, 183]. In both (a) and (b), repeated
pulse sequences are averaged together, giving a total of 21 measurements rather than the 42
shown in previous figures.

we are interested in knowing the absolute difference between a gate and its ideal unitary.
Randomized benchmarking is one attractive protocol recently developed for this purpose
[33, 53, 182, 184–188]. There, a large number of randomly chosen (but known) pulses
are applied to a qubit prior to measurement. The pulse sequence is arranged so that the
qubit should end up in the ground state after the sequence. It can be shown that any
type of gate error will be mapped to a depolarization channel [182]. Then, any remaining
excited state population, averaged over many sets of chosen gates, is a direct measure of
gate infidelity. This process tells you nothing about what is wrong with a gate, but does
indicate its overall fidelity.

5.3 Summary

In this chapter, we have listed the experiments and procedures necessary to bring a new
cQED qubit experiment from initial cool down to being well-calibrated. We showed how
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to measure the cavity frequency with a transmission measurement, and how measuring
transmission as a function of drive power can quickly detect the presence and approximate
detuning of a qubit. With the measurement set up, the qubit can be found by using
spectroscopy. Of the several variants, by far the most common and conceptually simple
version is pulsed spectroscopy. With the qubit found, we can then go about tuning up
single-qubit rotations. Gross calibrations are done with Rabi and Ramsey oscillations to
get the pulse power and qubit frequency correct, respectively. We have developed a more
sophisticated sequence known as AllXY which is both more sensitive to detuning and pulse
power and detects numerous other error syndromes that the earlier sequences cannot.
However, if you are interested in tuning up a particular pulse parameter, there are other
protocols that can be made much more sensitive than AllXY by concatenating multiple
rotations together. Quantifying the fidelity of pulses is challenging, but one promising
approach is to use randomized benchmarking. In the next chapter, we will discuss in
greater detail the various measurement schemes that we previously alluded to.





CHAPTER 6

Qubit Measurement

The measurement of qubits has been a major line of research for the last several years,
both for the field in general and this thesis specifically. Broadly speaking, quantum

measurement involves entangling a qubit with some other degree of freedom which can
be measured to infer the qubit state. Measuring the pointer state of our ancillary degree
of freedom projects the qubit along some axis, which is usually defined to be the qubit
z-axis. In cQED, the extra degree of freedom is the cavity and the pointer state is its
displacement. The fundamental mechanism for measurement in cQED is shown in the
dispersive Jaynes-Cummings Hamiltonian (section 3.2.3). There, the cavity frequency
depends on the state of the qubit, so driving the cavity entangles the cavity and qubit
states since the cavity displacement depends on the detuning of the drive. This physics
is straightforward in principle, but we will see that optimizing readout, when faced with
experimental realities, can be subtle and complicated.

There are three main sections to this chapter. The first introduces the experimental
use of the low-power dispersive measurement (see section 3.2.3). There, we apply a weak
tone to the cavity and measure the resulting transmission. Since the cavity displacement
depends on the qubit due to the dispersive coupling, the amount of transmitted light
similarly encodes the qubit state. When used with a conventional microwave amplifier,
however, and especially in experiments that do not explicitly optimize system parameters for

135
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measurement, the resulting fidelity can be low. The situation has improved recently with the
development of practical quantum-limited microwave amplifiers which dramatically reduce
added noise at the cost of increased complexity. This section will introduce experimental
quantum measurement in cQED, and will provide much of the language and intuition used
later.

The second section seeks to optimize the fidelity of the dispersive readout. As we
will see, under normal circumstances the qubit and cavity lifetimes are interrelated by the
Purcell effect. This inhibits our ability to increase measurement fidelity by independently
optimizing those lifetimes. In response, we introduce the Purcell filter, which breaks (or at
least, engineers improvements in) the relationship between the qubit and cavity lifetime. It
can significantly increase qubit lifetime and therefore dispersive measurement fidelity, and
has the advantage of being compatible with quantum-limited amplifiers. As an ancillary
benefit, we will discover that the Purcell filter can also enable efficient reset of the qubit
by swapping long-lived qubit excitations into the short-lived cavity mode.

The third and final section concerns an unexpected behavior which was accidentally
discovered when measuring the first Purcell filter device. As a function of drive strength,
cavity transmission initially looks linear and lorentzian at low drive strengths but rapidly
develops anharmonic behavior as the inherited qubit nonlinearity comes into play with
higher excitations. It was long thought that these nonlinearities, which eliminate readout
contrast, set the maximum drive strength that could be used to measure. However, we find
that if you drive even harder, the cavity eventually restores to a linear lorentzian response
at a different frequency. The power required to reach this bright state depends on the
initial qubit state, providing what turns out to be a very high fidelity qubit measurement
that is not affected by following amplifier noise. While this mechanism works well for a
wide range in qubit and cavity parameters, it scrambles the qubit and cavity state (e.g. is
not quantum non-demolition) and is not applicable to some experiments.

6.1 Dispersive readout

We saw in section 3.2.3 that, in the dispersive limit, the Jaynes-Cummings Hamiltonian
simplifies to

Ĥ = �ωrâ
†â+ �

ωq

2
σz + �χâ†âσz (6.1)
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where ωr is the cavity frequency, ωq the qubit frequency, and χ the dispersive shift. Recall
that the first term is responsible for the cavity oscillator (with the zero-point energy
included, but suppressed from now on), the second responsible for the two-level qubit∗, and
the third responsible for the state-dependent frequency shift. In the case of a true two-level
qubit, χ = g2/Δ, but for transmon qubits, this parameter becomes χ = g2

Δ
α

Δ−α
[115]. We

have already taken the rotating wave approximation, ignoring terms like â†σ+ and âσ−

which do not conserve energy, and assumed that the detuning Δ = |ωr − ωq| � g, where
g is the vacuum-Rabi splitting.

For the purposes of qubit readout, we group the dispersive term with the cavity number
operator, giving us Ĥc = �â†â (ωr + χσz) (section 3.2.3). This shows that cavity frequency
depends on the qubit state; the frequency when the qubit is in the ground state is 2χ higher
than when it is in the excited state. In the case of transmon qubits, ωr is a convenient
frequency with which to write the Hamiltonian and has no physical significance. Both
the ground and excited state peaks are shifted up in frequency relative to the bare cavity
frequency, but the ground state shift is larger, by what we call 2χ. (In the Cooper-pair
box limit, the two χ shifts are actually equal and opposite, but this symmetry is broken by
the higher transmon levels.)

We can demonstrate the dispersive cavity shift with a simple pulsed transmission
experiment. We first prepare the qubit in either its ground or excited state and then
measure the transmission of a short RF tone, as shown in Fig. 6.1. There, the dispersive
shift 2χ is much larger than the cavity linewidth κ, so the two cavity frequencies are
well-resolved. The qubit has some chance of decaying during the measurement, so we see
a small peak in the blue curve corresponding to the qubit being in the ground state. This
measurement was done with a drive power small enough that the mean cavity occupation
is approximately one photon so as to avoid the nonlinear cavity effects discussed in
section 6.3.1.

In order to measure the qubit, we apply a tone at the ground-state cavity frequency and
measure how much is transmitted. If we get a relatively large transmission, we can infer
that the qubit must be in the ground state, while a relatively small signal indicates that
the qubit is excited. That is, we take advantage of a state-dependent cavity transmission.
If we send a single photon of the relevant frequency through the cavity and see it come

∗ If we include higher transmon levels, we find that each has a different dispersive shift to the cavity. It
is therefore possible, if you can measure both the phase and amplitude of the transmitted signal, to
discriminate between several qubit states in a single shot [189].
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Figure 6.1: Dispersive cavity shift. We measure transmission as a function of frequency
when the qubit is in the ground and excited state by preparing the qubit then pulsing on
the measurement tone for a time (400 ns) that is small compared to the qubit T1. We see
two distinct cavity frequencies, different by the dispersive shift 2χ. During the measurement,
there is a finite chance for the qubit to decay, giving us an additional peak for the blue curve
at the ground state cavity frequency of ∼ 9.15 GHz. By measuring the transmission at e.g.
9.15 GHz, we can infer the qubit state by mapping a high transmission to ground state and
a low transmission to excited state. These data were taken using the device described in
section 7.1.

out the other end, we have in principle measured the qubit as long as the two cavity
frequencies are well resolved. (Alternatively, we could measure at the exact middle of these
two frequencies – at ωr – and see a large difference in the phase of the outgoing signal.
This is advantageous in some cases.)

Of course, in real life things are not so simple [116]. While it is true that a single
photon can project the qubit into a z-eigenstate (e.g. collapse a superposition), detecting
that photon is very difficult. This is essentially a statement about the energy scale involved:
microwave photons carry very little energy and cannot ionize atoms, so we do not (yet)
have the luxury of a single-photon detector in this frequency range. Instead, we use
heterodyne detection to down-convert and digitize the signal directly. This process, where
the signal coming out of the fridge is mixed with a local oscillator ∼ 25 MHz detuned
and sent to a digitizer card, necessarily includes several stages of amplification that add
noise. Even when using the best commercially-available cryogenic high electron mobility
transistor (HEMT) amplifiers, this noise power is typically twenty times larger than the
signal power of a single photon.

One thing we could try is to send several photons through the cavity. As long as
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the qubit does not decay, we are free to do this because the third term in equation 6.1
commutes with the the other terms. (Formally, this is because the measurement is QND
to the qubit state; when we measure the qubit, it remains in the same state in which
we had measured it.) How much signal could we gather with this process? We must
remember that we can only send photons through the cavity as long as the qubit has
not decayed. Since we cannot know when that has happened, we aim to integrate for
a time Δt which is on the order of the T1 of the qubit. (Exactly how long you should
measure turns out to be a bit complicated, and is touched on in a footnote below.) Next,
the amount of information we extract per photon is not necessarily one full bit. If the
dispersive shift is smaller than the cavity linewidth, for example, we will gain an amount of
information expressed as sin2(θ), where θ = tan−1

(
2χ
κ

)
, which is bounded between 0 and

1 bit. (We get a full bit when the state-dependent shift χ is much larger than the cavity
bandwidth κ.) Finally, each of these photons will give us �ωr of energy and the rate of
photon collection is set by the bandwidth of the cavity κ. If we have 〈n〉 equilibrium cavity
photons, our information gain (in units of energy) during a measurement will be given by

Esignal = 〈n〉�ωrsin
2(θ)T1κ. (6.2)

If we specify the noise of our measurement chain with an effective noise temperature TN

our signal to noise ratio is given by SNR = Esignal/kBTN .
For most devices, this number turns out to be rather small. Assuming fairly favorable

numbers of a mean cavity occupation 〈n〉 = 10 photons∗, an 8 GHz measurement cavity,
an integration time of 3 μs, κ = 5 MHz, and a 10 K noise temperature (typical when
using only a HEMT), we have SNR ∼ 1. (In Cooper-pair box devices or more recent 3D
transmon devices with longer lifetimes, this number can be more like 5 − 10.) As a result,
for a conventional amplification chain, the fraction of the time you can correctly identify
the qubit state with a dispersive measurement is bounded to about 70%. For devices with
parameters less favorable for dispersive measurement (e.g. a longer cavity lifetime), fidelity
values have been observed as low as 5− 10%, though this is atypical. Robust quantum
error correction requires fidelities in excess of 99%, so this performance must be improved.

Fortunately, significant progress has recently been made in the development of spe-
cialized quantum-limited amplifiers [190–192]. The idea is to put an extremely low-noise

∗ The reason we cannot just increase the number of intra-cavity photons will be discussed in section 6.3.
Ten photons is approximately where cavity nonlinearity and a reduction in qubit T1 start to dominate.
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amplifier like a Josephson parametric converter (JPC) or Josephson bifurcation amplifier
(JBA) between the cavity and the cryogenic commercial amplifier, so as to boost the
signal and drown out the added HEMT noise. This significantly reduces the effective
amplification chain noise temperature, increasing SNR and measurement fidelity. For
example, if we reduce the noise temperature to three times the quantum limit, or 100 mK,
and re-calculate the signal to noise ratio with the parameters as above, we find SNR ∼ 50

(or, with state-of-the-art lifetimes, several hundred). As a result, dispersive measurements
can now resolve individual quantum jumps of the qubit state in real time [60] and are
approaching 99.5% fidelity [61]. This comes at a cost of complexity. The amplifiers have
to be biased with a very stable RF source, require extra circulators, and have narrow
amplification bandwidth that must be matched with the cavity. Nevertheless, it is clear
that as the engineering challenges are overcome, the use of these devices will become more
routine (a process which is coinciding with the writing of this thesis), enabling high fidelity
QND measurement and real-time feedback. For the purposes of this chapter, however, we
focus on improvements we can make without using these special devices.

Another method to circumvent amplifier noise is to intentionally make the cavity
extremely nonlinear with the addition of a Josephson junction. The cavity will then exhibit
a “latching” Kerr bistability between two long-lived and classically distinguishable states.
The qubit state can be mapped onto the choice of cavity state and read out over a relatively
long period of time, yielding higher fidelity [193–196]. As with low-noise amplifiers, this
approach also increases complexity of both fabrication and the physics of the device since
the cavities require an additional junction. Though we will not further discuss this approach,
it is as an interesting context for section 6.3, in which we produce a qualitatively similar
behavior without the need of an extra cavity junction.

6.2 The Purcell filter

In considering how to optimize the fidelity of dispersive readout, we quickly reach an
impasse. On the one hand, we would like to have the fastest possible cavity (e.g. a large κ)
to maximize the rate of measurement photon transmission; on the other hand, decreasing
cavity lifetime can also reduce qubit lifetime due to the Purcell effect [139, 148]. For a
fixed signal to noise ratio, the optimal measurement time is a fixed fraction of T1. Higher
SNRs require shorter and shorter integration times to optimize the resulting measurement
fidelity [116]. The reason for this is simple: the readout is QND but the qubit is free to
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decay during the measurement. When this happens, all measurement integration following
the decay event will actually lower the measurement faithfulness, because we are interested
in what the qubit state was at the beginning of the measurement and not what it is
currently∗. Thus, lowering qubit T1 will lower measurement fidelity.

6.2.1 The Purcell effect

The Purcell effect modifies the lifetime of any quantized system coupled to a resonant
circuit or cavity [148]. Depending on the detuning of the system transition frequency from
the cavity resonance frequency and the lifetime of the cavity, the rate of decay of the
quantum system can be strongly enhanced [148, 197] or suppressed [198–200] relative to
the decay rate to the electromagnetic continuum. In cQED, qubits are often sufficiently
detuned to have suppressed decay rates compared with the continuum, but T1 can still
be limited by radiative decay through the cavity. That is, the qubit decaying through
the cavity is always a possible mode of relaxation, but it may or may not be dominant
depending on the coupling strength and cavity lifetime. When a significant fraction of
qubit relaxation is decay through the cavity, we say that the qubit is “Purcell-limited.”

We can make a rough approximation of the Purcell lifetime with the single-mode
Jaynes-Cummings Hamiltonian (equation 3.38). In this case, Ĥ = �ωr

(
â†â+ 1

2

)
+

�ωq

2
σ̂z + �g

(
â†σ− + âσ+

)
, with g the coupling strength, ωr the cavity frequency, and ωq

the qubit frequency. Using first-order non-degenerate perturbation theory (expanding in
powers of g

Δ
), we find that the dressed qubit-like eigenstate of the system is given by

|dressed〉 ≈ |e, 0〉 + g
Δ
|g, 1〉 (see Appendix B of David Schuster’s thesis [112]). There,

|e, 0〉 is the undressed eigenstate of an excited qubit and zero photons, |g, 1〉 is the

∗ The optimal length of integration is complicated by the possibility of both linear and nonlinear filtering.
One example of linear filtering is to multiply the measurement tone by an exponential decay. The data at
the beginning of the measurement will then count for more than that of later measurements, ameliorating
the effect of finite qubit lifetime. Indeed, such a filter can improve with low SNRs, though its effectiveness
drops rapidly for larger SNRs [116].

Processing data in real time with a nonlinear filter can do even better if you have knowledge of the
distribution of measurement outcomes as a function of integration time [61]. For example, if, shortly after
the measurement is started, the integrated homodyne voltage is already located far down one of the tails
of the “S-curve” distribution, then you already know with high confidence what the qubit state was and
the measurement is complete.

In the case of the simple boxcar integration of the measurement tone that is used in most experiments,
the x% of T1 integration time for 1-x fidelity rule of thumb is a good approximation. That is, in order to
get 99% measurement fidelity, you need high enough SNR to accurately read out the qubit within no
more than 1% of T1.
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Figure 6.2: Multi-mode vs single-mode Purcell decay rates. We calculate the Purcell
lifetime for a single mode with T−1

1 = γκ = (g/Δ)2κ for a device with g = 300 MHz. We
consider a symmetric device where Cin = Cout = 1 fF. We use the relation qi = ωCiZ0,
κi =

(
2
π

)
q2i ω and κ = κin + κout. Qtot = 124, 000. We compare this to a multi-mode

circuit model using a transmission line of length l = 7650 μm, an impedance Z0 = 50 Ω, a
capacitive qubit coupling Cc = 20 fF and a qubit capacitance Cq = 55 fF. In both cases,
the resonance frequency of the cavity is 8.02 GHz. Note the significant difference between
the two predictions when substantially detuned from the first cavity resonance.

undressed qubit in the ground state and one photon, and Δ the qubit-cavity detuning (see
section 3.2.2). We can then say that the Purcell decay rate is given by the decay of the
photon-like component of this state at the cavity decay rate κ, γκ =

(
g
Δ

)2
κ.

This is an excellent approximation for the case of a single-mode cavity. However, we
are coupling to a transmission line or 3D cavity that has many independent spatial modes
which can also couple strongly to and induce decay of the qubit [139]. As a result, when
the qubit is appreciably detuned from any particular mode, the single-mode approximation
is very poor, as shown in Fig. 6.2. To correctly calculate the Purcell effect, we must
incorporate the full impedance environment seen by the qubit. As explained in section 3.3.2,
the relationship between qubit T1 due to spontaneous emission and admittance Y of the
coupled environment is

TPurcell
1 =

Cq

Re[Y (ωq)]
, (6.3)

where Cq is the qubit capacitance [Fig. 6.3(a)] [150, 151]. This equation, which is
equivalent to Fermi’s golden rule, has previously been used to accurately model TPurcell

1

when all modes of the cavity are taken into account in the calculation of Y [139] and the
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qubit anharmonicity is relatively small. In that paper, Y is calculated with an equivalent
circuit model of the device, with a transmission line crucially playing the role of the cavity.
As of the writing of this thesis, calculating the Purcell lifetime in 3D cavities is an ongoing
project.

6.2.2 Optimizing dispersive fidelity

Returning to the issue of measurement fidelity, we see that we have arrived at an impasse.
If we are Purcell-limited, the ratio of κ and γκ is fixed and the number of collected
measurement photons per qubit lifetime cannot be adjusted by changing the cavity decay
rate. (Not being Purcell-limited is actually more detrimental because our κ is smaller than it
could be without harming T1; we are losing information in a way that does not increase our
measurement fidelity.) We can therefore only improve the SNR by increasing the amount of
information carried per photon, using a larger number of equilibrium measurement photons,
or lowering the noise power of the amplifier chain. In practice, however, the amount of
information per photon is already close to one and the number of measurement photons is
already at its maximum (which is found by driving the system as hard as possible without
lowering qubit T1 or measurement contrast). Amplifier noise is ripe for improvement but,
for now, we are looking for solutions that do not require modifying the measurement
apparatus. Similarly, increasing Δ would increase the Purcell lifetime but will the decrease
information per photon to precisely balance it as long as χ is not (wastefully) larger than
κ.

These issues limited us to about 70% measurement fidelity in conventional 2D cQED
[109]. The issue is normally more severe than this because experiments are rarely optimized
for readout. We generally prefer for T1 to be as long as possible to attain high gate
fidelities and therefore would not be Purcell-limited. Similarly, parameters like Δ or χ may
be otherwise constrained by engineering multi-qubit interactions [201] or quantum optics
experiments [109]. For example, the dispersive readout in the device first used to make a
three-qubit GHZ entangled state [55] had a single-shot dispersive measurement fidelity of
less than 5%.

We see that optimizing dispersive readout fidelity is complicated because our parameters
are interrelated. Specifically, we want T1 to be long so we can maximize our measurement
time, but we also have to maximize the cavity lifetime to accommodate for the Purcell
effect. Increasing the cavity lifetime means our measurement photons leak out more



CHAPTER 6. QUBIT MEASUREMENT 144

slowly, eliminating the “transmitted photons per qubit lifetime” gains we may have made
by increasing the qubit T1

∗. A better solution would improve qubit T1 independent of the
cavity lifetime, leaving its optimization to our discretion.

Fortunately, there is a way around this problem because there is no intrinsic reason
that the Purcell decay rate cannot be modified, even with fixed κ and coupling. A key
feature of equation 6.3 is that the impedance is evaluated at the frequency of the qubit
only. We can modify the admittance at the qubit frequency without substantially affecting
the cavity if the two are far detuned from one another. In particular, if we make the
admittance purely reactive at ωq (that is, make Y imaginary-valued) then TPurcell

1 diverges
and the Purcell decay channel is shut off. This solution decouples the choice of cavity Q

from the Purcell decay rate, freeing us to optimize readout fidelity by increasing κ while
enjoying a long qubit T1. As we will see, this admittance engineering can be realized with
conventional circuit elements placed in an experimentally convenient location.

6.2.3 Purcell filter implementation

We implemented the idea of shorting out the admittance at the qubit frequency with what
we have deemed a “Purcell filter.” In this first experiment, the filter was realized with a
transmission-line stub terminated in an open circuit placed outside the output capacitor of
a low-Q CPW cavity. As shown in Fig. 6.3, the length of the stub is set to act as a λ/4

impedance transformer to short out the 50 Ω environment at its resonance frequency ωf .
In this configuration, the Purcell filter only inhibits decay through the output capacitor,
Cout, so that capacitor is made much larger than the input capacitor Cin. We cannot filter
both capacitors because that would eliminate (or at least severely inhibit) our ability to
directly drive the qubit; however, the input capacitor is so small that the Purcell decay
through that channel is negligible compared to non-radiative (e.g. dielectric) relaxation.
The total coupling capacitance in this device was approximately 80 fF, giving a cavity
bandwidth of κ/2π = 20 MHz. The bare cavity frequency is ωc/2π = 8.04 GHz, the filter
is at ωf/2π = 6.33 GHz, and a flux bias line is used to address a single transmon qubit
with a maximum frequency of 9.8 GHz, a charging energy EC/2π� of 350 MHz, and a
resonator coupling strength g/2π of 270 MHz.

∗ In a “normal” cQED device, the maximum fidelity is given when χ ≈ κ and the qubit T1 is just barely
Purcell-limited. This strikes a good balance between coupling strength lowering T1 and increasing
information per photon. The point of this section is to circumvent this “normal” bound.
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Figure 6.3: Design and realization of the Purcell filter. (a) Circuit model of the
Purcell-filtered cavity design. The Purcell filter, implemented with λ/4 open-circuited
transmission-line stubs, inhibits decay through Cout near its resonance ωf . We use two
identical stubs above and below the major axis of the chip to maximize the symmetry of the
device, in an effort to suppress undesired on-chip resonances. A flux bias line is included
to tune the frequency of the qubit in-situ by changing the magnetic flux through the qubit
SQUID loop. (b) Optical micrograph of the device with inset zoom on transmon qubit. Note
the correspondence of the circuit elements directly above in (a). The device is made with
standard 2D cQED fabrication techniques: the resonator and filter structure are niobium
patterned on a sapphire substrate, while the single transmon qubit (shown in the inset, top
left) is fabricated using standard shadow masked double-angle aluminum deposition. The
device is 2 by 7 mm and is wire-bonded to a copper PC board and cooled in a standard
octobox sample holder in a helium dilution fridge. (Figure used with permission from [143].
See Copyright Permissions.)
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Figure 6.4: Diagnostic transmission data of the Purcell filter. We measured transmis-
sion through the Purcell-filtered cavity at 4.2 K. At ωf (arrow) the Purcell filter shorts out
the 50 Ω output environment, producing a 30 dB drop in transmission. The high frequency
oscillations visible are due to a small impedance mismatch along the measurement cables. A
circuit model incorporating only the experimental parameters Cin, Cout, ωc, and ωf shows
excellent correspondence. This gives us confidence our design and understanding of the
Purcell filter. (Figure used with permission from [143]. See Copyright Permissions.)

It is worth emphasizing that the concept of a Purcell filter does not imply a particular
implementation. One might consider any structure that additionally modifies the impedance
environment of a cavity for the purposes of reducing the Purcell decay rate of a subsystem
to be a filter. Indeed, a waveguide below cutoff has recently been constructed for use with
a 3D cavity [202].

We can verify that our device is working as expected by first measuring transmission
at 4.2 K (below the superconducting transition temperature of the Niobium resonator)
and comparing it with the circuit model used in design. As seen in Fig. 6.4, there is a dip
corresponding to inhibited decay through Cout at ωf . A circuit model accurately predicts
this dip and the overall structure of the transmission. The model only misses the high
frequency oscillations that are due to slight impedance mismatches (e.g. reflections) in
the measurement chain. The model used four input parameters: the input and output
capacitance (which were simulated with the ANSYS Maxwell software package) and the
frequencies of the cavity and filter (free parameters based on the measurement), lending
confidence to our ability to predict and engineer the impedance of the structure.

Finally, to demonstrate the filtering effect, we measured the qubit T1 as function of
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Figure 6.5: Purcell-filtered qubit T1 and comparison to models. We measure qubit
T1 using two methods. The first is a static measurement (circles): the qubit is excited and
measured after a wait time τ . The second (triangles) is a dynamic measurement: the qubit
frequency is tuned with a fast flux pulse to an interrogation frequency, excited, and allowed
to decay for τ , and then returned to its operating frequency of 5.16 GHz and measured. This
method allows for accurate measurement even when T1 is extremely short. When measuring
near resonance with the pulsed method, coherent oscillations are noticeable as the qubit
excitation swaps to the cavity and back (not shown). Measurements using the two methods
show excellent agreement. The top dashed curve is the predicted TPurcell

1 , while solid curve
additionally includes non-radiative internal loss with best-fit QNR = 2πfTNR

1 ≈ 27, 000. The
two lower curves correspond to an unfiltered device with the same Cin, Cout, and ωc, with
and without the internal loss. In this case, the Purcell filter gives a T1 improvement by up to
a factor of ∼50 (6.7 GHz), but would be much higher in the absence of QNR. (Figure used
with permission from [143]. See Copyright Permissions.)

frequency. As shown in Fig. 6.5, T1 is accurately modeled by the sum of the Purcell rate
predicted by our filtered circuit model and a non-radiative internal loss QNR ≈ 27, 000.
The source of this loss was not definitely known, though some possibilities proposed at the
time were surface two-level systems [154–157], dielectric loss of the tunnel barrier oxide
[155] or corundum substrate, non-equilibrium quasiparticles [158–161], or effects due to
IR radiation or inadequate sample thermalization (which may or may not be related to
quasiparticle creation). More recent advances in qubit coherence [62, 63] have strongly
indicated surface dielectric loss as the primary culprit. This model contains only the fit
parameter QNR combined with the independently measured values of g, EC, ωc, ωf , Cin,
and Cout.

To calculate the improvement of T1 due to the filter, we rely on our model to simulate
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Figure 6.6: Calculated Purcell-filtered lifetimes for various filter frequencies. We
simulate the circuit shown in Fig. 6.3(a) for various lengths of Purcell filter, corresponding to
different filter center frequencies. The cavity Q is a weak function of the cavity frequency,
with Q = {60, 94, 146, 196, 268, 372, 445, 521, 605} for filters centered on ff = 5 GHz to
7 GHz, in steps of 250 MHz. This dependence comes from our having fixed the output
coupler capacitance, but it would be possible to restore a constant-Q by changing Cout along
with ff . We also plot the unfiltered case and a constant Q = 70, 000 T1 line that estimates
the non-radiative planar T1.

what would occur in its absence. The model, which calculates the Purcell decay rate for
the case of an unfiltered circuit with the same κ with and without the experimentally
measured non-radiative decay is shown in the green dashed lines. The improvement to T1

due to the Purcell filter is found to be as much as a factor of 50 at 6.7 GHz, and would
be much greater in the absence of QNR (comparing the red and green dashed lines). We
also calculated the predicted Purcell lifetime for various filter center frequencies, shown in
Fig. 6.6.

For small detunings, the qubit T1 approaches the lifetime of the cavity itself, in the
range of a few tens of nanoseconds. A T1 that brief can be a challenge to measure because
dispersive readout (used in this experiment) will have a very low SNR. This issue was
avoided by using fast flux control [121]. For measurements at small Δ, the qubit is pulsed
to the detuning under scrutiny, excited and allowed to decay, then pulsed to 5.16 GHz

where measurement fidelity is higher, and interrogated. This method has the advantage
of being able to measure small lifetimes without sacrificing readout fidelity. It would be
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easier to pulse the qubit at the home position and only then flux it because the qubit pulse
frequency would be fixed, but the prescribed order also verifies that the qubit frequency at
a given flux amplitude is truly known.

6.2.4 Qubit reset

One consequence of the Purcell filter is that the device exhibits an exceptionally large
dynamic range in T1. We realize about a factor of 80 between the longest and shortest
times measured (a ratio that would be significantly larger if not for QNR). This can be
viewed as a major ancillary benefit, one so substantial that it might be advertised as
enabling the primary application of the Purcell filter. That benefit is for qubit reset. As we
have already seen with the example of measurement-free [203] quantum error correction
(section 2.3.4), there are many applications that benefit from or require on-demand reset
of qubit state. Experimental repetition rates can be greatly enhanced when they are
otherwise limited by T1. At the end of a calculation, our qubit state will in general be in
some unknown superposition of its ground and excited state. If we want to do another
calculation, we need to restore the qubit state unconditionally to some known state. This
is normally done by waiting for the qubit to decay back to the ground state at a rate
1/T1. As qubit lifetimes increase [62], this can be inconveniently slow. Resetting the qubit
would greatly increase experimental bandwidth. Similarly, experiments that use a qubit to
make repeated measurements of a coupled system also require resetting the qubit between
interrogations [109].

With our Purcell filtered device, we can exploit the sudden drop in qubit lifetime in
the vicinity of the cavity to perform reset. We normally operate far detuned from the
cavity, where the qubit T1 is not Purcell-limited. To reset, we can quickly move the qubit
frequency near resonance with the cavity using a fast flux pulse. The qubit excitation
is dumped into the cavity and quickly decays to the environment∗. Though this could
work for any flux-tunable cQED device, the Purcell filter greatly improves the flexibility of
this process. It can exhibit a dramatically increased “lifetime contrast” – the ratio of the
longest to shortest qubit T1 – through the use of a low-Q cavity that does not limit qubit
T1 at its operating frequency. This concept has been used in other experiments, but by
resetting through a spurious lossy two-level system that couples to the qubit rather than
an engineered cavity mode [204].

∗ It is worth noting that reseting with the Purcell filter need not require fast flux tunability. There are
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Figure 6.7: Fast qubit reset using Purcell filter. (a) Schematic of a pulse sequence
used to realize a qubit reset and characterize its performance. The fidelity of reset was
quantified using a modified Rabi oscillation scheme. The qubit is first rotated around the
x-axis by an angle θi at the operating frequency of 5.16 GHz and then pulsed into near
resonance with the cavity (solid line) or left at the operating frequency (dashed line) for a
time τ . The state of the qubit is measured as a function of θi and τ after being pulsed back
to 5.16 GHz. (b) Remaining Rabi oscillation amplitude as a function of τ , normalized to the
amplitude for τ=0. This ratio gives the deviation of the qubit state from equilibrium. Curves
are fit to exponentials with decay constants of 16.9± 0.1 ns and 540± 20 ns respectively.
Insets: Measured Rabi oscillations for τ = 0 (lower left) and τ = 80 ns (top right). Note
that the vertical scales differ by a factor of 100. This measurement technique was carefully
chosen to be insensitive to thermal excitations of the qubit or cavity – we are measuring
the relaxation back to equilibrium, whatever that equilibrium may be. A sinusoidal signal of
known phase is also easy to fit accurately, leading to minimal uncertainties. Fit uncertainties
for the remaining equilibrium deviation are included here, but only visible for τ > 120 ns.
(Figure used with permission from [143]. See Copyright Permissions.)
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The efficacy of reset in this device is readily quantified using a modified Rabi oscillation
sequence. As shown in Fig. 6.7(a), the qubit is rotated by some angle and then reset
for some time before being measured. The amplitude of the remaining sinusoidal Rabi
oscillation indicates the degree to which the qubit is out of equilibrium after the reset time
τ . The protocol was chosen so as to be insensitive to any equilibrium thermal population
of the qubit. The non-equilibrium population is found to exhibit pure exponential decay
over three orders of magnitude. The qubit can be reset to 99.9% in 120 ns or any other
fidelity depending on τ (e.g. 99% for 80 ns or one “9” every 40 ns). The sequence is
also performed with the qubit remaining at the operating frequency during the delay to
demonstrate the large dynamic range of T1 available in this system. The dynamic range
would be much higher in the absence of the non-radiative QNR limiting qubit lifetimes to
well below the Purcell limit when far detuned.

One potential concern with using this technique in larger systems is what would happen
were we to reset one qubit by transferring its population into the cavity, which is itself
coupled to other qubits. This photon would cause a χ shift on all the others, and since the
decay of that excitation out of the cavity is stochastic (e.g. the time it takes to decay, and
therefore the phase it evolves, is random), would result in dephasing of all the other qubits
[144]. This could be avoided by either turning off the χs of the other cavities by detuning
them or by using separate reset cavities for each qubit. Having separate cavities might
seem a bit extravagant, but it should not be any more costly (and it could potentially
be much more useful) than a flux bias line per qubit. This is especially attractive given
recent methods of entangling subsets of qubits with all-microwave drives [169, 176, 209]
which may eliminate the need for flux bias lines. This extra cavity mode could also be
implemented for individual qubit readout, a functionality that fulfills one of the DiVincenzo
criteria (section 2.2.2).

several methods of unconditionally swapping excitations from the qubit into the cavity [205–207], but
they all benefit from a large dynamic range between cavity and qubit lifetimes. We need some non-unitary
evolution to reset the qubit, which can be granted by the cavity decay. Another possible non-unitary
initialization is to measure the qubit and use that classical information to feed back and set the state
[172, 208]. This has the advantage of being something that we will need to do anyway in a “real” quantum
computer, giving us initialization essentially for free.
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6.2.5 Purcell filter summary

The Purcell filter seeks to solve the problem of radiative decay of the qubit through the
cavity to which it is coupled. We approached this problem in the context of measurement
fidelity, but it should be understood as a general problem of maximizing qubit coherence
when coupled to a lossy external impedance (section 3.3.2). One can always reduce
coupling or increase cavity lifetime, but doing so will have unwelcome implications for
measurement fidelity. Fortunately, there is no reason that the qubit needs to decay through
a coupled cavity at all. As long as the frequencies of the respective modes are sufficiently
detuned, the cavity and qubit sample distinct impedance environments. We exploited this
fact by creating a Purcell filter using a piece of shorted transmission line. This object
shorts out the coupled environment at the qubit frequency while minimally changing it at
the cavity frequency. The resulting device demonstrated that the Purcell effect was shut
off in accordance with our expectations and also exhibited a very large dynamic range in
qubit T1. Combining this resource with fast flux, we showed the ability to reset our qubit
back to equilibrium very rapidly by dumping the excitation into the cavity.

You may have noticed that we introduced the design of the Purcell filter for increasing
measurement fidelity, but we did not actually demonstrated that it helps. This is due to
the fact that we were never able to carefully study its effect. During our exploration and
optimization of measurement performance in the first Purcell device, we discovered a new
readout mechanism. It is found only at very high drive strengths and at an unusual cavity
frequency, but can deliver very high measurement fidelity. This phenomenon diverted our
attention from the applications of the Purcell filter to dispersive readout and is the subject
of the next section of this chapter.

6.3 Jaynes-Cummings readout

One aspect of measurement that we have not yet explored is what happens as a function
of measurement power. It seems rather crucial – why not simply increase the drive power,
increasing the signal while keeping noise constant? Unfortunately, as alluded to earlier in
the chapter, there is an optimal number of measurement photons that you may use, beyond
which the overall measurement fidelity will decrease. There are several underlying causes of
this fact, but the one we focus on in this section is inherited cavity nonlinearity∗. For the
purposes of qubit readout, we like to model the cavity as a perfectly harmonic oscillator
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whose transition frequency happens to depend on the qubit state (e.g. equation 6.1), but
the reality is more complicated. The cavity mode hybridizes with the qubit itself, such
that photons stored in the cavity mode drive currents not only in the coplanar strip line
(or the walls of your 3D resonator) but across the Josephson junction of the qubit as well.
Thus the cavity inherits some qubit-like behavior – nonlinearity – that is not contained in
the typical dispersive Hamiltonian.

This section will introduce what happens, experimentally, to the cavity transmission
as a function of drive power. We will find that the cavity initially becomes strongly
nonlinear and loses state-selective readout contrast. When we drive much harder, the
cavity eventually reaches a high-transmission bright state where its nonlinearity has shut
off and it is restored to a harmonic oscillator. We observe that the power required to drive
the cavity to this state depends strongly on the initial qubit state. We use this fact to
make a qubit measurement, which, because of the large number of equilibrium photons in
the bright cavity state, has a very large signal-to-noise ratio and a fidelity not limited by
amplifier noise. We conclude with a discussion of the underlying physics, which until that
point will have been described only phenomenologically, and offer an intuitive (if simplified)
explanation of the dynamics. All of the data in this section are the result of measurements
done on the four-qubit device described in section 7.1.

6.3.1 Cavity nonlinearity

The framework we most often employ to describe the mechanism of qubit readout is that
of a perfect harmonic oscillator cavity with a qubit state-dependent frequency. This is a
good approximation in the limit of few excitations (e.g. less than one mean photon), but it
rapidly breaks down as the cavity occupation increases. As mentioned in the introduction
to this section, this is because the cavity mode is hybridized with the qubit and therefore
“inherits” some nonlinearity. There are two equivalent ways of viewing this hybridization: as
either a quantum mechanical effect where the eigenmodes of the system are hybridizations
of the undressed qubit-like and photon-like excitations, or as a classical effect where the
EM mode of the cavity routes some finite current through the qubit’s Josephson junction.

∗ The other primary reason is that the qubit T1 is observed to reduce as a function of incident drive in
many systems. The reason for this is not well understood. Typical values of where the qubit lifetime
is significantly affected is on the order of ∼ 10− 20 photons. For dispersive measurement, the SNR is
directly proportional to this number. Fortunately, for the purposes of the JCR readout scheme described
in this section, this effect seems to be irrelevant.
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(b)(a)

Figure 6.8: Cavity transmission for low drive strengths. (a) Dispersively shifted cavity
response for excited (blue) and ground (red) states of the 8 GHz qubit with ∼ 1 photon
mean cavity occupation. We reference this power to 0 dB. For all plots in this figure and the
next one, the qubit tuned to 8 GHz is prepared, a measurement tone is pulsed on, and the
responding homodyne amplitude of the transmitted signal is averaged for 400 ns to yield AH.
The mV scale used is arbitrary, but consistent to ease comparison. (b) Cavity transmission
for the same preparations and frequency range as (a), but when driving with 100 times
(+20 dB) more incident power. Transmission is inhibited by the cavity nonlinearity, which
also distorts the line into an asymmetric shape, bending in the direction of the nonlinearity.
Data from (a) is plotted in dashed lines for comparison. (Figure adapted with permission
from [59]. See Copyright Permissions.)

While to first-order the form of this nonlinearity is encapsulated by a simple (â†â)2 “Kerr”
term∗, at higher powers, the cavity’s behavior is quite exotic and unexpected.

Cavity transmission as a function of drive power reveals this nonlinearity. Here, we
measure the device detailed in chapter 7, which is a two-dimensional cQED device with
a cavity at 9.070 GHz and four qubits tuned to 6, 7, 8, and 12.3 GHz (when making
single-qubit measurements the 8 GHz device is addressed). As shown in Fig. 6.8(a),
at extremely low drive power the cavity response is Lorentzian and therefore harmonic.
This is because the nonlinearity has no consequence if we only sample the 0 or 1 photon

∗ Another common model for the cavity-qubit system that has recently gained popularity following the
development of the black-box quantization (BBQ) model [138] is to treat both the qubit and cavity as a
harmonic oscillator with some (a†a)2 nonlinearity. In the limit of low cavity occupations, this model again
has great success. For example it can correctly predict the single-photon Kerr effect [107] and cavity-cavity
“cross-Kerr” coupling in devices with more than one cavity. However, as we will see, even this more
sophisticated model will not correctly predict the high-power behavior of the cavity. The cavity nonlinearity
is not constant, but rather reduces with excitation number. Indeed, the form of the nonlinearity cannot
be captured with a finite number of Taylor expansion terms of the Josephson potential.
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states. (The fact that two photons are not exactly twice the energy of one photon is not
noticed if we never populate the second photon). We also observe the dispersive shift,
with transmission for the qubit prepared in the ground state in red and the excited state in
blue. If we wanted to make a conventional measurement, we would drive at this power at
about 9.145 GHz (the red peak), inferring that the qubit was in the ground state if we
got a relatively high transmission and vice versa.

When we drive much harder, we start to see evidence of the cavity being non-harmonic.
This is shown in Fig. 6.8(b), in which we have increased the drive power by a factor of
100. We refer to this power as being +20 dB, where 0 dB is defined by the power that
produces a one-photon mean cavity occupation. The cavity line shape is asymmetric, with
the slope on the low-frequency side being much steeper than that of the high-frequency
side. This is the canonical behavior of a Kerr-Duffing oscillator, where the negative cavity
anharmonicity pushes the resonance down in frequency as the occupation increases. The
peak transmitted homodyne amplitude would be a factor of 10 higher if the cavity were
linear but has only increased by a factor of 4. This is attributable to either pure cavity
dephasing or a photon-blockading effect, where further excitation is inhibited when an
additional photon shifts the transition frequency of the cavity out of resonance with the
drive. Photon blockading would be correctly predicted by an (â†â)2 anharmonicity.

The photon-blockade or dephasing effect is even more dramatically illustrated in
Fig. 6.9(a). There we have increased the drive power by another factor of 100 but see
an increase in homodyne voltage by less than a factor of two. (Note the presence of a
square root here, with the drive measured in power units but the transmission in voltage
units; we should expect only ten times more voltage in linear response.) The line shape no
longer resembles that of a conventional resonance: it is quite broad and rough and the
excited-state cavity transmission has shifted back toward the ground state, reducing the
state-dependent transmission difference. There is also a sharp dip at lower frequencies,
possibly due to an interference between the multiple solutions of the now-bifurcated cavity
[211].

For a long time, it was believed that this bifurcation was the end of the cavity-
transmission-vs-power story. For the purposes of readout, increasing power would initially
help, but not as much as it “should” if the cavity were linear because of photon blockading
effects. Beyond a certain point, the cavity would be so distorted that the state-dependent
transmission difference would drop, and fidelity would suffer. Indeed, this would be true
if the cavity had a constant Kerr-type nonlinearity, which is well understood and even
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Figure 6.9: Cavity transmission at large drive strengths and bare cavity response
vs. power. (a) Cavity response for increasing drive power, with data for previous power
plotted with dashed lines. Transmission is inhibited by the cavity’s inherited nonlinearity,
limiting dispersive measurement fidelity. Note that increasing drive amplitude 10 dB from
the dashed to solid lines increases AH by a factor of ∼ 2 and complicates the frequency
dependance. (b) At slightly higher drive strengths than (a), a distinct resonance starts to
emerge from the chaotic background, indicating that the physics driving this response is
not simply a Kerr-Duffing nonlinearity. Detuned from this peak, the transmission is not
substantially changed from (a). (c) At large drive power, the feature at fbare grows to
near-unity transmission, indicating that the cavity anharmonicity has shut off. For this power
the system only reaches its bright state when the qubit is excited due to the asymmetry of
the dispersive cavity shift about fbare. This asymmetry is characteristic to the transmon
qubit [117] but might be possible to simulate for other designs [210]. (d) Response at fbare
versus input power, showing a steep jump in transmission corresponding to the onset of the
bright state at a qubit-state dependent power. Though transmission state dependence exists
elsewhere, the behavior here is especially amenable for use as a qubit readout because the
transmission difference is large compared to amplifier noise. On either side of the jump, the
increase in power is a linear function of power (e.g. a straight line on a log plot, where the
x-axis is in exponential units) because the cavity response is linear in both cases. On the
left, the cavity excitation is too low to sample the nonlinearity; on the right the nonlinearity
has been turned off as the cavity is in its bright state. (Figure adapted with permission
from [59]. See Copyright Permissions.)
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(b)(a)

Figure 6.10: Cavity amplitude response. We plot the log magnitude of cavity response
as a function of drive power and frequency for (a) qubit ground and (b) excited state
preparations. The cavity continuously evolves from its low-power linear behavior through the
anharmonic bistable region and to the bright state. There are two peaks present in (b) due
to qubit relaxation during measurement. The symbols (+) denote the optimal power and
frequency for qubit readout, where the cavity response for the two qubit states is maximally
different. The dip that follows the cavity up to the bright state on its low-frequency side is
likely an interference between the two bistable cavity solutions with differing phase. (Figure
adapted with permission from [59]. See Copyright Permissions.)

regularly used to create low-noise Josephson bifurcation amplifiers [190–192]. It turns
out, however, that the form of the cavity nonlinearity is not so simple. As shown in
Fig. 6.9(b), when we increase the power a further 4 dB as compared with (a), a distinct
peak emerges from the chaotic background. If we further increase the power, that peak
grows to completely dominate the transmission, as shown in (c). This behavior indicates
that the cavity anharmonicity must shut off at a certain point, restoring the cavity to linear
response. (That is, the anharmonicity is a function of power and asymptotically decreases
to zero with increasing occupation, as we will see in section 6.3.3.) At this point, the cavity
is referred to as being in its bright state, where transmission has dramatically increased (to
near-unity) compared to lower drive strengths, and its line shape and frequency cease to
evolve with power. The frequency at which the cavity goes bright is always the same and
is known as the bare cavity frequency. This is the frequency at which the cavity would
resonate in the absence of the qubit’s Josephson junction. As shown in Fig. 6.9(c), the
transmission of the cavity in this state is huge compared to its response when we drive with
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only a few dBs lower power. Transmission for the two qubit preparations is summarized in
Fig. 6.10.

The strongly-driven Jaynes-Cummings Hamiltonian has been previously studied for the
case of the cavity and qubit in resonance [210]. There, at drive strengths so high that
they would be inaccessible with essentially any other system, higher-order photon number
resonances with characteristic

√
n spacing appear, in excellent agreement with theory. The

dispersive limit was not studied for the reasons described in the previous paragraph, but
the story is similar. We can reach a regime of the Hamiltonian where the drive strength
(or, excitation level) is so high that qualitatively new physics emerges [59, 210, 212]. In
contrast to the resonant case and to our great fortune and surprise, this new physics has
practical applications for the purposes of qubit measurement.

6.3.2 Single and multi-qubit measurement

The ability to use this phenomenon to read out the qubit was demonstrated in Fig. 6.9(c).
There, we have driven the cavity to the bright state for the qubit in the excited state,
but not for the ground state. The transmission difference at the bare cavity frequency
is therefore huge. We get a small signal driving at 9.070 GHz with 47 dB if the qubit
is in its ground state but a very large one if it is excited. Qualitatively, this is the same
mechanism we use for the dispersive readout. The primary difference here is that we are
dealing with much larger signals. In the case of the dispersive readout, we have a mean
cavity occupation of approximately ten photons; in this device, there are thousands of
times more. Thus, our measurement fidelity is not dominated by the signal-to-noise ratio,
nor set by things like amplifier noise. (Let us hasten to point out that a very large SNR
for distinguishing the bright state from the dim state does not imply unity measurement
fidelity; the mapping of the qubit state onto the semi-classical cavity pointer state can still
be imperfect.)

The emergence of the high-power peak, we postulated, results from the fact that at a
certain occupation the cavity anharmonicity reduces to zero (or at least to less than the
cavity linewidth). This explanation made no mention of the qubit state, however, so why
do we see a state dependence of the critical power? It originates from the same underlying
physics as the conventional low-power readout: the qubit-state selective dispersive cavity
shift. In our prescription for measurement using this effect, we drive at the bare cavity
frequency with a certain power. This means that we are initially driving far off-resonant
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(a) (b)

87%

Figure 6.11: Measurement transients and histograms for single-shot measurement
of one qubit. (a) Three measurements of single-shot system amplitude response AH(t) to
driving at fbare with a power Pmeas for prepared qubit ground and excited states, low-passed
to the response time of the cavity 1/κ ≈ 100 ns. They are reproducible and well-distinguished,
demonstrating that the response is large compared to the measurement noise. (b) Histograms
and S-curves quantifying measurement fidelity of the 8 GHz qubit. An ensemble of single-shot
responses are integrated for 500 ns and their distribution plotted. The two histogram peaks
(solid lines) are well separated with few counts between them. Integrating these yields
“S-curves” (dashed lines), with their maximal difference indicating a single-shot fidelity of
87%. (Figure adapted with permission from [59]. See Copyright Permissions.)

from the cavity transition frequency when it contains a few photons. However, the amount
by which we are off-resonant depends on the qubit state because of the dispersive shift.
If the qubit is excited, the cavity starts nearer to the bare cavity frequency (since χ is
negative) and the measurement drive, making it somewhat easier to input photons. Thus,
the cavity will reach the occupation necessary for the bright state at a slightly lower drive
strength compared to the ground-state case. For a fixed drive strength, the cavity will be
much more likely to excite to its bright state if it starts out closer to the drive. This gives
us our state-selective transmission and qubit measurement mechanism.

Single-shot measurement fidelity

The state-dependent cavity critical power provides a mechanism for qubit readout, but
how good is this measurement? Specifically, we are interested in knowing what fraction of
the time the measurement result is an accurate representation of the qubit state. We can
directly measure this fraction by repeatedly preparing the qubit in a known computational
state (|0〉 or |1〉) and measuring, then comparing what we should have found with what
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we did find. This is as simple as doing a π pulse or no pulse on the qubit, immediately
measuring it, and then recording each single-shot measurement result. (One aspect which
is atypical for this measurement is that we are interested in knowing individual measurement
outcomes without ensemble averaging∗.) In Fig. 6.11(a), we show several single-shot
measurement transients of our system when the qubit is prepared in either the ground or
excited state. At time t = 0, a measurement tone at the critical power and frequency is
pulsed on, and at t = 2 μs it is turned off. When the qubit is in the ground state, the
response is so minimal as to be obscured by the noise, but when the qubit is excited the
response is large and easily discriminated. After only about one hundred nanoseconds,
the signals are entirely distinguishable, which supports our expectation of a very high
signal-to-noise ratio.

Given these single-shot measurement transients, we can readily quantify our measure-
ment fidelity by histogramming that data. We integrate each trace for some fixed amount
of time and plot the distribution of the resulting values in Fig. 6.11(b), with a separate
histogram for either of the qubit preparations. These “measurement histograms” show a
bimodal and well-separated distribution in both cases, with very few counts between the
two peaks. While the excited state qubit almost always results in the cavity going bright
(here, a small bin number) and vice versa, there are also counts for each case indicating the
opposite response and corresponding to the qubit state being incorrectly mapped to the
cavity. This unfaithful mapping might trivially come from a faulty qubit state preparation
(e.g. thermal qubit population or imperfect π pulses) or decay of the qubit state prior
to measurement. It might also be indicative of the underlying physics: most obviously, a
small difference between critical state powers. The difference in critical power for the two
qubit states seems to be influenced by the ratio of χ/κ. Experimentally, if this value is

∗ For the vast majority of experiments we currently perform, you may average ensembles of measurement
records together on the digitizer card before transmitting the data to the computer. When the communi-
cation link between the card and the computer is slow (e.g. with the Acqiris 240 data acquisition card we
have long used), this can provide huge advantages in repetition rate by e.g. getting several thousand runs
of the experiment per data transfer rather than only a few. When histogramming measurement results,
however, we do not have that luxury; we have to transfer each unmolested trace to the computer for
processing. This makes collecting measurement histograms thousands of times slower than it should be.
Fortunately, our lab has started to transition to a much faster solution, the AlazarTech digitizer, with
which data can be acquired and transmitted to the computer in real-time with essentially no overhead.
This opens up the possibility of, for example, histogramming and thresholding every measurement, which
would reduce our sensitivity to gain drifts and give some physical meaning to our measurement values.
For example, our y-axis could be understood to be “the fraction of time the cavity went bright,” rather
than just “digitizer millivolts.” This and measurement integration time are discussed further below.
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small (e.g. the dispersive shift is not large compared to the cavity linewidth), we observe
relatively low measurement fidelity. In addition to simple cavity overlap, this may have
to do with our square measurement pulse having a large spectral bandwidth. We have
seen some evidence that pulse-shaping and frequency-chirping can result in qualitatively
different behavior [213]. Classical and perhaps quantum noise would also tend to wash
out the cavity transition, as would a finite cavity lifetime.

The fact that there are very few counts between the two histogram distributions
indicates that when we start driving the cavity, it either immediately reaches its bright
state or it never does. The behavior of the cavity for very long time scales under a
continuous-wave drive seems to refute this, with random jumps of the cavity up to and
down from the bright state [213]. These up and down rates are strong functions of
measurement power, however, and mostly play a role at relatively modest drive strengths.
For the short time scales and drive strengths optimal for measurement, the cavity state
will only rarely relax back from the bright state once it is attained. This is because we
had to drive much harder than necessary to maintain the bright state when we initially
off-resonantly populated photons.

By integrating the two distributions as a function of bin number, we can define a single
measurement fidelity number at the point where the difference of these two “S-curve”
functions is largest. By drawing a line at this maximum-difference bin, we say that any
measurement result larger than that point most likely indicates that the qubit is in its
ground state, and vice versa. The difference tells us our measurement fidelity, which for
this case is 87%. That is, our measurement result agrees with our qubit state preparation
an average of 93.5% of the time∗. This is a substantial improvement over what the
conventional dispersive readout would yield in this particular device, measured to be ∼ 5%.

Fidelity as a function of integration time

One thing we have not yet discussed is how long these measurements need to take. In
the case of the dispersive readout, the measurement time is of great importance because

∗ Looking at the histograms in Fig. 6.11, the measurement fidelity is defined as one minus sum of the
probability that either state is misidentified. For example, if your measurement correctly identifies the
excited state 90% of the time and the ground state 95% of the time, the fidelity would be 1−0.10−0.05 =
0.85. This definition correctly classifies the case of a measurement that merely “flips a coin”, successfully
identifying either state 50% of the time. The fidelity of that measurement would be 1− 0.5− 0.5 = 0.
Similarly, a measurement that always says the qubit is in the ground state will have a fidelity 1−0−1 = 0.
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Figure 6.12: Measurement histograms and fidelity versus integration time. (a-f)
Histograms of single-qubit measurements as a function of integration time. Here, the
same measurement transient dataset are processed and histogrammed, but with a variable
integration as specified in each window. At short times, the histograms are essentially
overlapping, but for longer measurements they evolve apart and entirely separate. (g)
Measurement fidelity as a function of integration time. Integrating VH(t) for 120 ns yields
80% fidelity, while 240 ns yields 87%. After that point, the fidelity has saturated and
increasing the SNR does not improve the result. We are limited by the cavity pointer state
incorrectly mapping the qubit state, rather than an inability to distinguish the pointer state.
Additional integration does increase the histogram separation, however, which may be useful
if we are thresholding the data to convert a voltage to an estimated qubit state. (Figure
adapted with permission from [59]. See Copyright Permissions.)
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the qubit can decay, so further integration after this occurs lowers the fidelity. In the case
of the bright state readout, however, once the cavity has decided to go bright or not, it
tends to stay that way – that is, this is a latching readout. As a result, we have the luxury
of integrating as long as we like to get whatever SNR we desire. In Fig. 6.12, we show
the resulting measurement fidelity for varying measurement integration times. For this
device, the measurement fidelity smoothly increases from 0 to 80% in the first 100 ns,
and levels off at its final value of 87% by 175 ns. This time is likely due to either the
speed with which the system excites to the bright state, or simply how long it takes for
the measurement chain noise to be drowned out by our growing signal.

Integrating for more than 240 ns does not increase fidelity in this device because we
are limited by unfaithful qubit state mapping; it does, however, increase the signal-to-noise
ratio. We can see this increase by plotting the measurement histograms as a function of
integration time. After only 20 ns the distributions are virtually identical, but they split
into our bimodal distribution as we integrate longer. By 120 ns, the fidelity has almost
reached its final value, but the distributions remain close to one another. Integrating for
300 ns or 500 ns does not substantially change the measurement fidelity but does increase
the open space between the peaks. This has one practical benefit. If we were to use a
fast digitizer to “threshold” the data at our optimal fidelity point, turning distributions of
measurements into ones and zeros, having extra open space around the threshold value
makes that process more robust. Drifts in the gain or offsets of the measurement chain
will not tend to change the thresholded measurement outcome for long integration times,
while they might for smaller SNRs of the same nominal fidelity.

Multi-qubit measurement

We can extend this readout scheme to simultaneously measure multiple qubits. The physics
of multi-qubit readout is similar to the single-qubit case, but generalized for multiple basis
states. Each qubit has its own dispersive shift χi, and since for e.g. three qubits there are
eight separate basis states, there will be eight zero-power cavity frequencies. For example,
the state |011〉, where the second and third qubits are excited, will shift the cavity by
2χ2 + 2χ3. Since each basis state induces a different net dispersive cavity shift, there will
be a hierarchy of drive strengths necessary to drive each cavity to the bright state. Readout
is done by choosing a measurement drive power above the onset power for all except the
state or states one is trying to distinguish. That way, the cavity should go bright for the



CHAPTER 6. QUBIT MEASUREMENT 164

Figure 6.13: Pulsed cavity response AH for |111〉 state. The eight (23) regis-
ter states of three qubits induce a different dispersive cavity shift, each discernible at
low power due to decay of the |111〉 state during measurement. These frequencies
were independently measured to be (f|000〉, f|100〉, f|010〉, f|001〉, f|110〉, f|101〉, f|011〉, f|111〉) =
(9.145, 9.139, 9.131, 9.112, 9.124, 9.105, 9.097, 9.090) GHz, with fbare = 9.070 GHz. The
most prominent secondary cavity position corresponds to the third qubit (at 8 GHz) relaxing
during measurement, consistent with its Purcell-limited [139] T1 being the shortest of the
three, with TQ1

1 = 1.2 μs, TQ2
1 = 1.0 μs, and TQ3

1 = 0.6 μs. The system excites to its
bright state at lower power here than seen in Fig. 6.10 because of the smaller initial cavity
detuning from fbare. The color scale is identical to that in Fig. 6.10. (Figure adapted with
permission from [59]. See Copyright Permissions.)

states with critical powers below the selected drive power, and stay dim otherwise, again
giving us a single classical bit of information. This scheme is especially convenient for
performing qubit state tomography [214], which requires inferring multi-qubit correlations
[121, 215, 216]. As discussed in section 7.3, the effective measurement operator for this
scheme is

∣∣0⊗N
〉〈
0⊗N

∣∣ and contains all Z correlations. As we will see, this fact has been
exploited to efficiently detect tripartite entanglement [55].

The device that we first demonstrated this effect with had a total of four qubits.
Three were tuned to 6, 7, and 8 GHz, with the fourth at high frequency and unused
(section 7.1). In Fig. 6.13, we show transmission as a function of frequency and power
when the |111〉 state (where all three qubits are in their first excited state) is prepared. At
low drive strengths, eight separate cavity peaks are visible because |111〉 has the possibility
of decaying into each of the other seven basis states. The cavity reaches its bright state at
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61%

(a) (b)

Figure 6.14: Joint qubit readout fidelity measurement. (a) Histograms for all eight
basis states when driving with +49 dB at fbare. Here we have tuned the drive strength to
optimize the distinguishability of |100〉 from |000〉, which requires a large drive power and
causes the cavity prepared with |000〉 to go bright about 25% of the time. We integrate
long enough for the SNR to be large, separating the two peaks by a substantial margin. (b)
S-curves for joint qubit readout, indicating a minimum of 61% fidelity for distinguishing the
|000〉 from the least differentiated state. If we add a π pulse on the 1-2 transition of the
6 GHz qubit to increase its dispersive shift, the three-qubit fidelity can be increased to 80%.
(Figure adapted with permission from [59]. See Copyright Permissions.)

a substantially lower power – about 41 dB – than any other basis state, because it starts
closest to the bare cavity frequency.

We typically want to distinguish the ground state |000〉 from all other basis states.
There is an ambiguity about how to optimally accomplish that task, however, because there
are seven states against which we are potentially discriminating. For example, we might
choose our readout power to give the highest average fidelity over all states or perhaps
the fewest spurious |000〉 bright-state counts; the exact tune-up might depend on precisely
what you are interested in measuring. Here we chose to optimize the discrimination of
the least distinguishable state, |100〉 (where only the 6 GHz qubit is excited), and found
that a drive strength Pjoint ≈ 49 dB was best for that purpose. Histograms and S-curves
for each of the seven pairs (discriminating each state from |000〉) are shown in Fig. 6.14.
Defining measurement fidelity is again ambiguous because this process gives us seven
distinct numbers. We report the most conservative metric, the single-state fidelity to the
least distinguishable state (again, |100〉), and find a three-qubit measurement fidelity of
61%. That number could be substantially improved by either reducing detuning of that
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qubit or by performing a π pulse on the 1-2 transition of that qubit prior to measurement
to increase its effective dispersive shift. When that pulse is included in the measurement
process, the joint fidelity here is increased to about 80%. Note that optimizing against
this state necessarily reduces the fidelity to the others. That optimization leads us to drive
rather strongly, giving a ∼ 25% chance of the cavity exciting for the ground state; all
other fidelities are reduced by this factor.

6.3.3 Theory of the Jaynes-Cummings nonlinearity

Now that we have presented the experimental observations of the high-power cavity response
and its application to measurement, let us return to the discussion of the underlying physics.
This section will largely summarize the result of [210], which qualitatively predicts the main
features of the Jaynes-Cummings readout from first principles. Bishop et al. consider the
Jaynes-Cummings Hamiltonian of a two-level qubit coupled to a cavity under the influence
of a drive:

Ĥ = ωrâ
†â+

ωq

2
σz + g

(
âσ+ + â†σ−

)
+

ξ(t)√
2

(
â+ â†

)
(6.4)

where ωr/2π is the cavity frequency, ωq/2π the qubit frequency, g the coupling strength,
and ξ(t) = ξcos(ωdt) is the drive of amplitude ξ and frequency ωd. They then make
the “bad-cavity” and strong-dispersive approximations, where the cavity lifetime is short
compared to the qubit decay and dephasing rates (κ > γ, γφ) and the qubit-cavity dispersive
shift χ is greater than κ, respectively. Dropping small terms, this yields the effective
Hamiltonian

˜̂
H = ωrâ

†â+ (ωr − Δ)
σz

2
+

ξ√
2

(
â+ â†

)
cos(ωdt). (6.5)

This equation could be (and has been) integrated numerically with a quantum master
equation [210]. That is challenging here because there will be a large number of photons for
relevant drive strengths and so the Hilbert space is huge. Instead, if the cavity anharmonicity
is smaller than its linewidth (e.g. the N − 1 ↔ N and N ↔ N + 1 transition peaks
overlap, or N � g4/κδ3), a semiclassical model will be a good approximation. This is
especially attractive given that the typical approach of perturbatively expanding Eq. 6.4 in
powers of N/Ncrit will not converge when N > Ncrit. There, the critical photon number
Ncrit = δ2/4g2 and δ is the cavity-qubit detuning. For the parameters of this device,
Ncrit ∼ 6, so this is a very stringent limit.

Bishop rewrites Eq. 6.4 using canonical variables X =
√

1/2
(
â† + â

)
and P =
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X2 + P 2 + σz

)
+ ξXcos(ωdt) − σz

2

√
2g2 (X2 + P 2 + σz) + δ2. (6.6)

Treating X and P as numbers (and not operators) in the semiclassical approximation, and
incorporating cavity decay with an additional damping term, we solve for the steady state
amplitude A =

√
X2 + P 2 as

A2 =
ω2
rξ

2

{ω2
d − [ωr − χ(A)]2}2 + κ2ω2

d

(6.7)

with the cavity dispersive shift χ(A) depending on cavity amplitude as

χ(A) = σz
g2√

2g2 (A2 + σz) + δ2
. (6.8)

This equation satisfies the normal approximation for the dispersive shift for a Cooper-pair
box (e.g. two-level qubit) with χ(0) ≈ ±g2/δ. Crucially, under strong driving it also
saturates with limA→∞χ(A) = 0.

With this result, we can start predicting the behavior of the cavity as a function of
drive strength. We expect the anharmonicity of the cavity (e.g. the difference in χ for N
and N + 1 excitations) to be maximal at low power and continuously diminish as the drive
strength is increased. At the zero-power limit, we will see a linear response because we
are only populating the 0 and 1 photon states and never sample the nonlinearity. As we
increase the drive strength, however, the anharmonicity will turn on and distort our line
shape, consistent with Fig. 6.8.

At slightly higher drive strengths, based on our experience with Kerr nonlinearities,
we expect the frequency response to bifurcate into two solutions. The phases of the two
solutions, one “dim” and one “bright,” will be almost opposite since they are effectively on
alternate sides of the resonance. This bifurcation is observed in the numerical simulations
of Eq. 6.7 done by Bishop, et al. As the drive strength is turned up, rather than the
bistable region growing forever with power as with a Kerr oscillator, the region shrinks and
eventually vanishes, emphasizing that this cavity’s nonlinearity is not constant. This point
corresponds exactly with the bare cavity frequency and critical power. As a consequence,
when driving at the bare cavity frequency, the system is never bistable (at least in this
model’s approximation). Moreover, this bifurcation is responsible for the appearance of the
dip in Fig. 6.10 that traces up to the high-power peak. We expect destructive interference
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at the point where the populations of the two solutions are similar, weighted by the
switching rates [211]. This occurs where our heterodyne detection coherently averages
over the ensemble of experiments.

Finally, for increasing drive strength at the bare cavity frequency, the cavity population
increases and anharmonicity shrinks. At some critical power, where χ(N) � κ, we drive
hard enough for the cavity to shift into resonance with the drive. At this point, its
population (and therefore transmission) rapidly grow while its anharmonicity shrinks – thus
reaching the bright state. Note that this point (where we say N = Nbare) necessarily
happens at a much larger drive strength than Ncrit, so a perturbative expansion would
fail to reveal this behavior. It is unsurprising that this phenomenon was not theoretically
predicted prior to its experimental discovery. By looking at the numerical solution shown
in the Bishop paper, we also see that the semiclassical model predicts the qualitative
response as a function of drive power at the bare cavity frequency shown in Fig. 6.10(a).
The success of this model at predicting essentially all of the behavior of the cavity is
quite remarkable considering that it is a vast simplification relative to the actual system
Hamiltonian.

One detail worth mentioning is that the model presented above does not predict that
this would work as a readout mechanism. The model assumes a two-level atom, implying
that the dispersive cavity shift will be symmetric about the bare cavity frequency. Without
an asymmetry, the critical power for both cases would be essentially the same (broken
only by qubit relaxation), eliminating our state-dependent transmission. In order to have
contrast, this symmetry must be broken. For our system, this is accomplished by the fact
that our qubits are actually weakly anharmonic transmon oscillators with higher excited
states. The repulsion of the states |e, n+ 1〉 and |f, n〉 (where e is the first excited qubit
state and f the second) of the undressed Hamiltonian would, for example, be sufficient
asymmetry. Alternatively, if more than one two-level system were available, the extra shift
from that qubit would give contrast to any single qubit, though not both jointly (since e.g.
the |00〉 and |11〉 states would have the same shift).

6.3.4 JCR summary

Using the Jaynes-Cummings cavity nonlinearity to measure qubits has the significant
advantage of delivering high fidelity without requiring any additional experimental hardware
or change of sample design. Essentially, we are using the qubit as its own amplifier. Its
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fidelity is virtually independent of cavity Q as long as χ > κ. We have observed excellent
measurement fidelities with cavity Q’s ranging from a few hundred to several million. (Note
that this would not be true of a dispersive measurement, since its information collection
rate is proportional to κ.) The effect is seen in every cavity coupled to a transmon qubit.
As discussed in section 5.1.1, it can even serve as a quick verification that qubits are
present. We can measure the cavity at high power and then see if it either disappears
abruptly or shifts in frequency as the power is lowered to detect the presence of a qubit,
and estimate how strongly it is coupled or how far it is detuned using the difference in
frequency between the high- and low-power cavity frequencies.

There are some practical aspects which are not fully understood. Occasionally, the
critical power seems to have a “switchy” behavior, seeming to randomly jump between two
or more values. The source of this tendency is unknown, but it is seemingly mitigated by
either using slightly lower measurement power or by waiting for the system to “calm down”
(it seems to happen more frequently shortly after the device is cooled). When a qubit
is positively detuned from the cavity, the readout is typically not as reliable because the
cavity nonlinearity will have to change its sign. The gain curve analogous to Fig. 6.9(d)
can also exhibit a double-step behavior where the cavity seems to go bright in two distinct
transitions when the qubit is far detuned or weakly coupled. There, the understanding
of an asymptotically decreasing anharmonicity is no longer true. Though the physics are
significantly more complex, it still seems to work as a reliable measurement mechanism.

Experimental repetition rates and qubit T1s can also be affected by the high-power
readout. We did not initially notice any difference between the dispersive and high-power
readout when using a relatively low-Q cavity. However, the 3D cQED architecture features
photon lifetimes so long that the difference between waiting for a few dozen and a few
thousand measurement photons to decay can be meaningful. We have seen that if the
repetition rate is not slow enough, the qubit T1 and T2 can be adversely affected. The
repetition rate required can also sometimes be much longer than one would expect from
either the qubit or cavity decay time. Since the 3D architecture generally operates in a
much larger value of χ/κ, the drive power needed to off-resonantly drive the cavity to its
bright state can be extremely large and populate a huge number of photons if the cavity
is allowed to come into equilibrium. We therefore speculate that we might be driving
the qubit junction to its normal state, and so are required to wait for quasiparticles to
recombine. One way of mitigating this effect would be to chirp the frequency of the drive
tone from the low-power cavity down to the bare cavity frequency while its amplitude is
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increased [213]. This would lower the effective critical power as well as the total energy
needed for measurement.

This readout mechanism is only appropriate for the end of an experiment because it is
not QND to the qubit state. In order to drive the cavity to its bright state, it is necessary
to dump so much power into the cavity that the qubit state seems to be scrambled and
likely left in a highly excited state. This is likely due to some combination of dressed
dephasing, qubit dressing [212], or direct qubit transitions. For experiments in which
measurements must be QND, the Jaynes-Cummings readout is not an option.

6.4 Conclusion

Qubit measurement in cQED is accomplished by taking advantage of the dispersive shift
of the cavity frequency. Applying a displacement to the cavity therefore entangles the
cavity together with the qubit state. This displacement leaks out and is absorbed by our
amplifier chain, projecting the qubit superposition along the z-axis. If we have a high
enough signal to noise ratio, we can detect this transmitted light to infer the state of the
qubit. With a conventional amplifier chain, this transmission is combined with a large
amount of amplifier noise which obscures our ability to distinguish the signal. The signal
power is also limited by the cavity lifetime, which cannot be made too short because the
Purcell effect will reduce qubit lifetime. One solution to this is to use a so-called Purcell
filter, which breaks the cavity-qubit lifetime relationship. This apparatus has the ancillary
benefit of increasing the dynamic range in qubit lifetime, which can be used for efficient
qubit reset.

For conventional dispersive readout, the equilibrium number of cavity photons is limited
by cavity anharmonicity. Beyond a certain drive strength, the cavity’s inherited nonlinearity
will corrupt its response, reducing measurement fidelity as power is increased. The nature
of this nonlinearity is quite special since it turns off at extremely high drive strengths, giving
the cavity a linear response at its bare cavity frequency. Because the drive strength required
to drive the cavity to this high-transmission state depends on the initial cavity detuning
and thus on the qubit state, the effect can be used to readout the qubit state. This
mechanism, known as the Jaynes-Cummings or simply high-power readout∗, is extremely
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robust to device parameters. Moreover, because the cavity is so highly excited and emits a
large signal, its fidelity is not limited by amplifier chain noise and can be quite high.

The question of which readout mechanism is the “best” arises. The choice often comes
down to experimental requirements. If a QND measurement is not required and fidelities
of ∼ 90% are acceptable, the high-power JC readout is extremely attractive. It does not
require any special hardware and will deliver relatively high fidelity across a wide range in
qubit and cavity parameters. Additionally, it always operates at the same cavity frequency
independent of qubit detuning, and thus is easy to tune up. Its main disadvantage is that
it is not QND to the qubit state. If you wish to make a qubit measurement and then
manipulate the system as a result of that measurement (a function that will be extremely
common in a “real” error-corrected quantum computer), the JCR will not work since the
large number of cavity photons seem to scramble the qubit state. There are other potential
downsides to this scheme as well: the large amount of energy deposited in the cavity is
suspected to heat up the system and create quasiparticles that may adversely affect qubit
coherence. The system also seems to require a long time to relax back to its ground state,
reducing the experimental repetition rate that can be used.

The dispersive readout mechanism solves many of these issues, but introduces some
of its own. Since an extremely small amount of power is used, it can be QND to the
qubit state and allow for repeated feed-forward measurements. This small amount of
energy decays quickly, which potentially speeds up experimental repetitions. However, the
small signal power is difficult to distinguish from conventional amplifier noise, requiring
sophistications like the Purcell filter or ultra-low noise amplifiers to attain high measurement
fidelity. Fidelity is also a strong function of system parameters (cavity Q, qubit coupling
and detuning, etc), which complicates sample design, especially for experiments that are
not strictly about qubit measurement. Nevertheless, it is clear that when implemented
correctly, the dispersive mechanism can provide a well-understood, high-fidelity, and QND
qubit measurement. If a cQED quantum computer is ever built, it will certainly use some
form of the dispersive readout mechanism.

∗ Calling it the “Reedout” has also been known to happen, as a play on words with my last name.





CHAPTER 7

Tripartite Entanglement on Demand

We now turn our attention to generating and measuring entanglement in the cQED
architecture. This chapter serves two primary purposes. First: to report our result

of generating an entangled state of three qubits known as a Greenberger-Horne-Zeilinger
or GHZ state. As we saw in section 2.3.4, this state is of great interest because it is a
prerequisite for demonstrating the simplest form of quantum error correction. In showing
how we generate a GHZ state, we will explain how to engineer and tune up entangling
gates and introduce the distinction between adiabatic and sudden quantum trajectories.
The second purpose of this chapter is to introduce the idea of measuring quantum systems
with tomography, which is useful for verifying the states and processes we claim to control.
Virtually everything discussed here will be revisited when we demonstrate quantum error
correction in chapter 8. Many ideas presented here are also not specific to cQED, and can
be applied to any quantum computing platform.

In the first section, we introduce the four-qubit device used to generate GHZ states
and explain how the device is operated and calibrated. Each qubit has its own flux bias line
which is used to tune qubit frequencies in-situ. We use them in two different limits: DC
and fast-flux, respectively used to set the default frequency of each qubit and to tune their
frequency rapidly to generate entanglement. The flux lines must be calibrated for both
tasks. In the case of DC flux, there is substantial cross-coupling between each flux line

173
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and the neighboring qubits which can be measured and inverted to make virtual control
knobs that address only one qubit. For fast-flux, we need to apply a deconvolution kernel
to compensate for ringing and finite bandwidth. Using these linearized control knobs, we
show pulsed spectroscopy of Q1 moving up in frequency through avoided crossings with
Q2, Q3, and the cavity.

Taking the qubit-qubit avoided crossings as an impetus, we then discuss how to engineer
the controlled-phase gates used to generate entanglement between qubits. We start by
proposing a hypothetical “J-swap” gate that directly accesses the interaction zone between
two qubits. While this process would work to generate entanglement [217], we find that it
fails to be the desired gate in the case of |11〉 due to an interaction that was not revealed
in single-tone pulsed spectroscopy. Using two-tone spectroscopy technique, we measure
the additional avoided crossing between the higher-excited |11〉 and |02〉 states, thus
accounting for the failure of the J-swap. We show how this crossing, rather than being an
obstacle, can be used to produce two different kinds of controlled-phase entangling gates
by moving into the crossing either adiabatically or suddenly.

Having established our ability to entangle qubits, we then describe how we measure
and prove that the intended state was produced. We reconstruct the density matrix of
an ensemble of our states by repeatedly measuring certain correlations, a process known
as state tomography. The conventional method of obtaining these correlations involves
measuring each of the three qubits individually and calculating the correlations with
classical post-processing. However, because we lack the ability to measure the qubits
individually, we use an alternate method. Our measurement operator is (approximately)
M̂ =

∣∣0⊗N
〉〈
0⊗N

∣∣, which can be expressed as a sum of all combinations of Z and I Pauli
operators. By rotating the qubits immediately prior to measurement, we can effectively
modify this measurement operator to contain all the Pauli correlations we seek. Applying
a full set of rotations, we produce sufficient linearly-independent measurement operators
to infer every Pauli correlation and fully specify the experimental density matrix. We
demonstrate this capability with several simple test states.

We can extend this idea to perform tomography on a quantum process. This technique
tells us the full action of any quantum process by measuring state tomograms of a sufficient
number of states to span the full Hilbert space. These data can be converted to a χ-matrix
which maps input density matrices to output density matrices. We demonstrate this
technique by measuring the process matrix of a two-qubit controlled-phase gate. The
conventional χ-matrix representation is difficult to interpret beyond its fidelity and is
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Figure 7.1: Optical micrograph of the four-qubit cQED device. This device has a
total of six ports, two for the input and output of the CPW cavity and four for the flux bias
lines. The bias lines allow us to tune the four qubit transition frequencies on nanosecond
timescales with room-temperature voltages Vi. We label each qubit Q1 through Q4. In these
experiments, we use the first three qubits and tune the fourth to its maximum frequency of
12.271 GHz to minimize its interactions with the others. 8 ns microwave pulses resonant
with the qubit transition frequencies f1, f2, and f3 are used to drive single-qubit rotations
around the x- and y-axis. To measure the qubits, we pulse on a microwave tone at the
bare cavity frequency fc = 9.070 GHz and measure the resulting homodyne voltage VH .
(inset) Optical micrograph of a typical transmon qubit in this device. Note that the normal
interdigitation between the two islands of the qubit was omitted in an attempt to reduce
susceptibility to dielectric loss. The termination of the FBL is also visible in this picture.
(Figure used with permission from [55]. See Copyright Permissions.)

susceptible to systematic errors; we will discuss how these limitations have motivated
researchers to suggest alternative formulations.

We complete the chapter by producing and measuring 2- and 3-qubit entanglement.
We introduce procedures that use the sudden cPhase gates introduced earlier to generate
entangled Bell states of two qubits, and extend that idea to make a three-qubit entangled
GHZ state. We show that the so-called Pauli bar representation of a density matrix
is especially useful for depicting entangled states. This is in contrast that to the case
of conventional “cityscape” plots, which are much more difficult to interpret when the
state being shown is not easily written in the z basis. We conclude by evaluating various
three-qubit entanglement witnesses and verifying that we have exceeded both biseparable
and W-class bounds, unambiguously creating true three-qubit GHZ-class entanglement.
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7.1 Four-qubit cQED device

The device to which we will refer throughout this chapter is a cQED device with four qubits.
It employs the conventional planar cQED architecture to couple the qubits to a single
CPW cavity, as shown in Fig. 7.1. The device serves as the context for the experimental
capabilities we have as well as for the specific object that we used to produce the results
reported in chapter 7 and chapter 8 (as well as large parts of chapter 6). We label the
qubits Q1 through Q4, starting in the upper right corner and counting counterclockwise.
The transmission-line cavity has a bare frequency of 9.070 GHz and was employed for the
high-power Jaynes Cummings readout mechanism [59] introduced in the previous chapter.

Each qubit is equipped with its own flux bias line, which is used to control the qubit
frequencies in-situ by driving a current very close to a qubit’s SQUID loop (section 3.3).
We can send DC currents through these lines to set the “default” frequency of each
qubit. For the experiments reported here, we set the qubit frequencies to (f1, f2, f3) =

(6.000, 7.000, 8.000) GHz ± 2 MHz, with the fourth biased at its maximum frequency of
12.271 GHz and unused. As we will see, these flux lines can also move the qubits very
quickly with an RF pulse. If we suddenly apply a voltage pulse to the line, the associated
qubit will move to a new frequency within a few nanoseconds. This timescale is fast
when compared to the coherence time of the qubits, so we use this fast-flux control to
manipulate the qubits during a given experiment. As we will see starting in section 7.2,
this manipulation can deterministically entangle qubits.

7.1.1 Calibrating flux lines and spectroscopy

The flux bias lines require some calibration to work as desired. Because the return path
of the current on each line is not explicitly controlled, there is a large amount of DC
cross talk between each line. That is, changing the bias on any single qubit’s flux line
actually changes all of the qubit frequencies. Fortunately, this effect can be measured
and compensated for. As shown in Fig. 7.2, we measure the frequency of each qubit as a
function of the voltage applied to each FBL. While the bias line that is nominally intended
to control the qubit has the most substantial effect, each of the other lines also change
the qubit frequency. For small voltages, the frequency dependence is approximately linear
(e.g. we do not need to include the curvature of the qubit’s flux dependence), so the ratio
of the slope of each line accurately represents the relative magnitude of each coupling.
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Figure 7.2: Flux bias line orthogonalization. For each qubit, we measure its frequency as
a function of the applied voltage on each flux bias line. In each case, the strongest response
is given by the flux line closest to that qubit, though we also observe that voltages applied to
neighboring flux lines cause a frequency shift due to cross-coupling. By measuring the slopes
of these lines, we can orthogonalize the control scheme to produce “virtual” voltage sources
that move one qubit at a time. The fourth qubit was also measured, but is not shown. We
list the slopes of each line, normalized to the steepest response.

We insert each slope, combined with the analogous data for the fourth qubit (not shown
here), into a matrix which we invert. By multiplying our desired excursion by this matrix,
we control “virtual” voltage sources that are orthogonalized to move only the desired qubit.
Properly done, this process can reduce cross-talk from 40% to less than 1%.

The second calibration necessary for our flux lines concerns fast time scales. While
we experimentally observe that the orthogonalization described in the previous chapter is
not necessary for fast-flux pulses (e.g. less than ∼ 1 μs), we do need to compensate for
finite rise time and ringing. Without any compensation, a square flux pulse can move a
qubit several gigahertz in 2− 4 ns, but will take 10− 100 ns to settle down to its final
frequency, ∼ 10 MHz away, as shown in Fig. 7.3. The waveform generator we typically
use to generate these pulses, the Tektronix AWG 5014, also has ∼ 1% transients for
∼ 1 μs both before and after the flux pulse (e.g. it is acausal due to some internal signal
processing). Fortunately, again because of the linearity of the FBL, an integral transform
can deconvolve away both of these effects. The procedure for generating and using a
deconvolution kernel, which describes the system’s response to a delta-function impulse,
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Figure 7.3: Fast-flux calibration. When a square flux pulse is applied, the qubit will
quickly move most of the way, but will slowly relax in ∼ 100 ns to its final frequency. We
show this effect by applying a flux pulse to the qubit and then performing pulsed spectroscopy
with gaussian pulses on the qubit as a function of frequency. We then extract the peak
frequencies from that data, and plot them as a function of time after and the size of the
applied flux pulse (in units of DAC value). We can apply a deconvolution kernel to the square
flux pulse which shortens this effective response time, shown in green.

is described in section 4.3 of Blake Johnson’s thesis [152]. In practice, we can settle to
within 1 MHz of the final frequency within 5 − 10 ns of the start of the flux pulse.

With the flux lines properly orthogonalized, we can demonstrate flux tuning of the
qubits. As shown in Fig. 7.4, our qubits are at their home positions of 6, 7, and 8 GHz

at V3 = 0. As we increase V3, we move Q1 up in frequency. (The labels of the voltages
and the qubits they control are not the same; one index is set by the qubit frequencies
while the other is set by the geometry of the chip. The voltage V3 is an orthogonalized
virtual voltage, with an offset which sets the qubits to their home positions at Vi = 0 for
i = 1..4. The extent to which Q2 and Q3 do not change their frequencies as we sweep
V3 demonstrates the efficacy of this calibration.) As Q1 tunes through Q2 and Q3, we
see large J-type avoided crossings which are mediated by virtual interactions through the
cavity (section 3.2.5). When the qubits are in resonance, they hybridize into “light” and
“dark” superposition states, named because the symmetries of (in this case) the upper
state cause the coupling matrix element to cancel, turning off its dispersive shift and
spectroscopic response [119]. At larger biases, the qubit comes into resonance with the
cavity, demonstrating a vacuum-Rabi splitting (section 3.2.2). (Data above 8.2 GHz
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Figure 7.4: Spectroscopic characterization of the four-qubit device. We perform
pulsed spectroscopy on each qubit as a function of the orthogonalized flux bias on Q1. We
find avoided crossings between Q1 and Q2, Q3, and the cavity. The size of these splittings
indicates the strength of the coupling between the qubits and the cavity. Above 8.2 GHz,
we measured transmission instead of pulsed spectroscopy because the qubit is sufficiently
hybridized with the cavity to produce a response. The x-axis is an orthogonalized “virtual”
voltage, with an offset which sets the qubits to their home positions. The effectiveness of
this calibration is reflected in the fact that Q2 and Q3 do not change frequency during this
sweep. (Figure adapted with permission from [55]. See Copyright Permissions.)

are cavity transmission measurements rather than pulsed spectroscopy.) The minimum
separation of these peaks defines 2g ≈ 620 MHz. To the resolution of all spectroscopy,
there are no spurious avoided crossings which, as we will see, is a critical requirement for
the pulsed qubit excursions used for multi-qubit flux gates.

7.2 Two-qubit phase gates using fast-flux

With our qubits well characterized and controlled, we are now interested in generating and
studying entanglement between them. As discussed in section 2.1.4, there are two classes
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of two-qubit gates: controlled-NOT and controlled-phase gates. When the control qubit
is in its excited state, the target qubit is flipped around the x-axis (e.g. a bit-flip) by a
cNOT gate and is flipped around the z-axis (e.g. a phase-flip) by a cPhase gate. The
two gates are related to one another with single-qubit pulses – for example, a cPhase is
turned into a cNOT by bookending the target qubit with π/2 or Hadamard pulses. The
key concept is that they are controlled: something happens if and only if the qubits are in
a particular state.

There are numerous ways of producing controlled operations in cQED, each with their
own strengths and weaknesses. The primary concern is the ultimate fidelity with which
the operation can be performed∗. In the case of the four-qubit device, our qubit lifetimes
were only on the order of 1 μs, so fidelity of any operation is well approximated by the
T1 decay during its execution. We are therefore interested in using interactions that are
as fast (e.g. strong) as possible. We aim to use FBLs to tune interactions terms of the
system Hamiltonian on and off by moving the qubits together and apart from one another.
We will also only consider cPhase gates, which have fewer parameters to calibrate and
more naturally generated in our architecture.

This section will explain two methods of generating controlled-phase gates and entan-
glement using fast-flux lines. They exploit an avoided level crossing of non-computational
states which is accessible only when both qubits are excited, thus providing the conditional
nature of the gate. The first method approaches this crossing adiabatically, which has
the advantage of being less sensitive to parameters and to compensation of the flux
bias line response function, but is relatively slow. The second approaches the crossing
suddenly, which saves time (and commensurately increases fidelity), but is more technically
challenging. Both of these techniques will ultimately be used in the next chapter to
generate a three-qubit gate which we use to demonstrate basic quantum error correction.

∗ Other concerns include how easy it is to calibrate the gate, whether it can be trivially repeated (e.g. the
system has no memory of its application, outside of the qubit states), whether the gate requires extra
hardware or engineering either at room temperature or in the device itself, how precisely you need to hit
device parameters, and so on. In this device, the coherence times were so short that essentially the only
concern was gate time, but recently our qubits have become so coherent that we are afforded the luxury
of optimizing for other considerations [169]. Gate fidelities also depend on parameters other than gate
duration, though this is often only relevant when qubits are very coherent; this is explored in the cited
paper.
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7.2.1 Adiabatic controlled-phase gate

To generate entanglement, broadly speaking, we require interactions between qubits∗. Based
on the spectroscopy of Fig. 7.4, one obvious place where we would expect interactions
is when they are near resonance with one another other, for example with Q1 and Q2 at
V3 = 0.25 V. Indeed, this is a viable way of preparing an entangled state. Imagine that Q2

is initialized in its excited state and Q1 in its ground state (or vice versa) and we quickly
move Q1 into resonance with Q2 with a fast-flux pulse. If we are sudden, the state of
our qubits will not change, but the eigenstates of the Hamiltonian will. That is, though
we begin in an energy eigenstate, by changing the Hamiltonian quickly with our fast flux
bias, our wavefunction will no longer be an eigenstate, but rather a mixture of the newly
hybridized eigenbasis. Thus, as a function of time, the excitation that started in Q2 will
oscillate between qubits at the rate of the splitting between them. Ideally, this interaction
would produce a J-swap gate, with a unitary⎛⎜⎜⎜⎜⎝

1 0 0 0

0 cos(Jt) isin(Jt) 0

0 isin(Jt) cos(Jt) 0

0 0 0 1

⎞⎟⎟⎟⎟⎠
where J is again the interaction strength between the two qubits. If we were to wait for
half of the oscillation time t = π/4J , we would be left with the excitation half in Q1 and
half in Q2, giving us a (|01〉 + |10〉) /√2 maximally-entangled Bell state. (Indeed, after
this section was written, a paper was published that demonstrates the J-swap “gate” [217],
and it works exactly as we predicted.) Unfortunately, as we will see, this interaction does
not work if we start with both qubits simultaneously in their excited states (e.g. the |11〉
state); the lower right element of the J-swap unitary is not simply 1. This denigrates the
operation from a true quantum gate (which must work for all inputs) to a method of
preparing a particular Bell state. It turns out that on the path of Q1 toward Q2, there is
an extra interaction that only involves the |11〉 state, which causes this J-swap gate to fail
because quantum amplitude leaks out of the computational Hilbert space.

We can investigate this extra interaction by performing two-tone spectroscopy. Spec-
troscopy only detects transitions involving the prepared qubit state (typically the ground

∗ A measurement protocol could also be used, where, for example, the joint properties of the two qubits are
interrogated in such a way that the state is projected onto the Bell basis [218–220].
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|000〉 ↔ |001〉
|000〉 ↔ |010〉
|001〉 ↔ |002〉
|001〉 ↔ |011〉

Figure 7.5: Two-tone spectroscopy of 011-020 avoided crossing. (a) For each vertical
cut of these data, we first find the frequency of Q3, which is near 8 GHz. Pulsing on a
saturation tone 4 MHz detuned from this frequency, we then scan the frequency of a second
pulsed tone, and measure the result. Using this process, we drive transitions starting in either
|000〉 or |001〉 because |001〉 is only virtually populated by our first, detuned tone. As a result,
we see both the normal transitions of |000〉 ↔ |010〉 moving up in frequency as we tune
the bias on Q2 (analogous to Fig. 7.4) and the two-excitation transitions of |001〉 ↔ |002〉
and |001〉 ↔ |011〉. The states |011〉 and |002〉 have an avoided crossing which disrupts our
J-swap gate but can be used to make a controlled-phase gate. (b) We locate each peak
from the data in (a) and label the transition our tones are driving. Note that as we move
through the avoided crossing between |011〉 and |002〉, the identities of the eigenstates swap.
This fact is reflected in their color.

state). In order to measure other transitions, we must prepare the qubit in a different
state. One method of doing so is to use two-tone spectroscopy, which, as the name
suggests, involves applying two microwave tones simultaneously. The process is iterative:
at each given flux point, we first find the transition frequency of Q3 (initially set at 8 GHz,
though it will change as the other qubit approaches) and turn on a saturation tone near
that frequency to prepare an incoherent mixture of ground and excited states. We then
scan the frequency of a second tone and measure the resulting qubit populations, as
with conventional pulsed spectroscopy. In order to maintain readout contrast, the first
tone is set to a frequency at a small fixed detuning (here, −4 MHz) from that qubit.
Transitions that involve populations of Q2 will then be shifted by the opposite of that
detuning in order to conserve energy – that is, Q2 will only be virtually populated until
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the energy deficit is paid by the second tone. (If Q2 were actually populated, we would
not see these two-excitation transitions because the difference in measurement contrast
between whichever final state and |010〉 would likely be small. Our measurement operator
is approximately |000〉〈000|, which does not discriminate between those states.) As a
result, we will also see transitions that start from the qubit in the ground state – essentially,
we are turning on sensitivity to extra transitions for free.

The result of this measurement is shown in Fig. 7.5. There, we move Q2 up toward
resonance with Q3. We have switched to examining the crossing between Q2 and Q3

instead of Q1 and Q2 because our data for the first case were cleaner; the physics is exactly
analogous for either pair. We observe the normal single-tone transitions of |000〉 ↔ |010〉
(dark green) and |000〉 ↔ |001〉 (blue), but also detect an extra avoided crossing at
7.62 GHz and −0.33 V . For small voltages, we see a horizontal line 334 MHz below the
|000〉 ↔ |001〉 transition (dark blue). This frequency is exactly the anharmonicity of Q3

(modulo the 4 MHz offset), indicating that this transition is from the first excited state
of Q3 to the second excited state, |001〉 ↔ |002〉. We also observe an extra line that is
initially parallel to |000〉 ↔ |010〉 (teal), but peels off in a crossing with what we now
understand to be |002〉. This is the |001〉 ↔ |011〉 transition, and so the avoided crossing
is between |011〉 and |002〉. We can now explain why our proposed J-swap gate will not
work: because the qubits have negative anharmonicity, there will always be a large avoided
crossing between |11x〉 and |02x〉 prior to the |01x〉 ↔ |10x〉 swap. (Recall that we
estimated the size of this interaction in section 3.2.5.) If we move through this transition
with population in |11x〉, we cause quantum amplitude to leak into the non-computational
state |02x〉. As we will see below, the |11x〉 state will also evolve an additional phase
difference during this process, further distorting it from the ideal J-swap.

Far from being a nuisance as we have characterized it thus far, this extra avoided
crossing is actually a valuable resource. Consider the energies of the |011〉 state compared
with the sum of its constituents, |010〉 and |001〉. Initially, as shown in Fig. 7.6(a), the two
energies will be very similar because we are far from |002〉. As we approach the avoided
crossing, however, the energy of |011〉 will bend over and lag behind that of |010〉 and
|001〉. At this point, the phase evolution of |011〉 will be substantially different than its
constituents, giving us a conditional phase – evolution that only occurs when both qubits
are excited. We define the difference between the energies of the |011〉 state and its
constituents to be a parameter ζ, as shown in Fig. 7.6(b).

To explain how we can use this interaction, it is helpful to first write out the unitary
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1 MHz

E|011〉
E|002〉
E|010〉 + E|001〉

Figure 7.6: Conditional frequency shift of |011〉, ζ. (a) Using the data from Fig. 7.5(b),
we calculate the energies of the |011〉 and |002〉 states and compare them to the sum of
the energies of |010〉 and |001〉. In the vicinity of the avoided crossing, there is a large
difference between the energy of |011〉 and the sum of its constituents. (b) We define
and plot ζ = f010 + f011 − f011, the difference between the energy of the |011〉 state and
its constituents. We consider the case of the crossing transversed adiabatically from the
right, and so ignore the change in identity of |011〉 at V = −0.35. As we approach this
avoided crossing, we acquire conditional phase between Q2 and Q3 at a rate ζ because the
avoided crossing is only accessible by the |011〉 or |111〉 computational states and is therefore
conditional on both Q2 and Q3 being in their excited states. At the home position of Q2,
ζ = 1 MHz, constituting an always-on ZZ interaction between the qubits. (Figure adapted
with permission from [55]. See Copyright Permissions.)

transformation of a general phase gate. As the name implies, a phase gate does not change
the excitation of the inputs, but does modify their phases. Without loss of generality,
we can write the action of any two-qubit phase gate as |00〉 → |00〉, |10〉 → eiφ10 |10〉,
|01〉 → eiφ01 |01〉, and |11〉 → ei(φ10+φ01+φ11)|11〉 (note |11〉 acquires three different phases
in this language). The matrix describing this transformation is then the diagonal matrix:⎛⎜⎜⎜⎜⎝

1 0 0 0

0 eiφ10 0 0

0 0 eiφ01 0

0 0 0 ei(φ10+φ01+φ11)

⎞⎟⎟⎟⎟⎠ .

This is a convenient way of parameterizing the phases of each state because it separates
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the origins of each phase. The first two, φ10 and φ01, are known as single-qubit phases,
and as we will see are due to the trivial phase evolution of any one qubit. φ11, on the
other hand, is a two-qubit phase, which is a phase evolution that occurs only when both
qubits are exited and is associated with two-qubit interactions and entanglement. This
parametrization properly distributes phases; if we did a z-gate on a single qubit such that
φ10 = π, any state with the first qubit excited (that is, both |10〉 and |11〉) should have
its phase flipped and we would have the unitary diag{1,−1, 1,−1}∗.

Let us first consider how we would get a “single-qubit” phase. The quantum amplitude
of a state with energy E = �ω0 evolves proportional to eiω0t. This evolution is normally
eliminated because we work in the rotating frame of an RF generator tuned to the qubit
transition frequency. However, if the qubit were to be detuned from its reference frame
with a flux pulse, the difference between the qubit’s instantaneous energy and its reference
would be responsible for a phase evolution. As a function of time, the overall phase delay
would be given by φsq =

∫ t

0
(ω0 − ω(τ))dτ =

∫ t

0
Δ(τ)dτ . It is worth noting that to control

a single-qubit phase, we do not actually need to change the associated qubit’s frequency.
It is only defined relative to the rotating frame of its respective drive, so we need only
advance or retard the phase of that oscillator to control it. This is easily done in software
by changing what defines the x- and y-axes for all pulses following a “virtual” z-gate, which
comes down to changing the distribution of voltages on the I and Q ports of our mixer.
The fact that we are free to do this reveals the triviality of these single-qubit phases.

In contrast, a two-qubit phase is a more subtle beast that can have real physical
implications. As you may have anticipated, one way of acquiring such a two-qubit phase
involves the avoided crossing between |11〉 and |02〉. As we have defined it above, the
two-qubit phase is the difference in phase between |11〉 and its constituents. Thus, we
will acquire conditional phase at a rate proportional to the difference in energy between
|11〉 and the sum of |10〉 and |01〉. Having previously defined this quantity as ζ, if we
again tune Q2’s frequency over some trajectory, the conditional phase acquired would be
φ11 =

∫ t

0
ζ(τ)dτ . Importantly, two-qubit phases are phase differences between qubits and

cannot be generated in software†. Multi-qubit phase is very precious!
We have thus far neglected to emphasize that this mechanism relies on all of our flux

∗ Note that our definition of single- and two-qubit phases is slightly different than the one found in Ref. 121.
† We can make an analogy between qubit phases and potential energies. Physically, the only thing that

matters is the energy difference between a starting and ending state of some process. We are free to
renormalize an energy scale to whatever convenient zero we choose. This is similar with phases: a



CHAPTER 7. TRIPARTITE ENTANGLEMENT ON DEMAND 186

pulses being adiabatic to the avoided crossing. Adiabatic means that our qubit always
remains in an instantaneous eigenstate of the time-dependent Hamiltonian. This is only
an issue when there are avoided level crossings, where eigenstates mix and change identity.
If we approach these splittings slowly enough, our wavefunction will evolve exactly with
the changing eigenstate and stay on the same energy “track.” The timescale (or, energy
change per unit of time) that we must be slow compared to is determined by the size
of the splitting. “Slow” depends on the details of the Hamiltonian, but in practice our
approach must take a few times longer than the splitting period. The larger the avoided
crossing, the easier it is to be adiabatic to it. The more closely you approach a crossing,
the slower you must be to inhibit undesired tunneling. Optimally acquiring two-qubit phase
is a matter of finding the best trade-off between the magnitude of ζ and speed; the larger
ζ, the slower our trajectory must be. The best solution is one in which you never stop
moving the qubit, since any stationary time would be cut down by bringing the qubit closer
to the crossing.

With our source of two-qubit phase established, we can now construct a cPhase gate.
The canonical conditional-phase gate is, as mentioned earlier, one which flips the phase
of the qubit manifold if and only if both qubits are excited∗. Thus, the unitary matrix
should be diag{1, 1, 1,−1} and we can immediately see that we need φ10 = φ01 = 0 and
φ11 = π. To get the two-qubit phase, we apply a flux pulse that tunes the qubits close to
one another (where ζ is large) while maintaining our adiabaticity to the avoided crossing.
We can fine-tune the time and amplitude of the pulse to satisfy φ11 =

∫ t

0
ζ(τ)dτ = π.

This conditional phase can be measured by applying a Ramsey sequence on one qubit
while preparing the other in either its ground or excited state. (This “conditional Ramsey”
experiment is very useful whenever you are interested in measuring conditional phase
evolution and will be discussed in more detail in section 8.1.5.) We satisfy our condition
when the resulting oscillations are exactly π out of phase from one another. During the
flux pulse, we will also get large single-qubit phases, since the qubits will be detuned from
their phase references. These are no problem, though, because we can simply measure
them (using a procedure similar to that for two-qubit phases, where instead of toggling

single-qubit phase is like an energy that can be arbitrarily changed in our book-keeping, while a two-qubit
phase is an energy difference that has physical implications.
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the excitation of one of the qubits we measure the qubit phase with and without the gate
applied) and unwrap them in software.

There are four equivalent cPhase gates, differing only by which computational state
picks up the −1 sign. All the gates have π conditional phase, but differ in their values
of single-qubit phase. For example, if we wished to put the −1 sign on the ground state,
we would set φ10 = φ01 = π, in addition to φ11 = π (in this case we have the matrix
diag{1,−1,−1,−1} which is equal to diag{−1, 1, 1, 1} when we factor out a global
phase). Similarly, we can move the minus sign to |10〉 by setting φ10 = π and φ01 = 0 or
put it on |01〉 with the opposite configuration. These gates are not different evolutions
since we can apply our z-gates in software. Instead, you should consider them to be a
means of keeping track of the single-qubit phase evolution that may be necessary to create
a particular quantum state.

An adiabatic cPhase gate was used in the first demonstration of on-demand entangle-
ment and quantum algorithms with superconducting qubits [121]. It has the advantage of
being straightforward to tune-up and insensitive both to pulse timings and flux trajectory.
However, it is relatively slow because we must be adiabatic to the qubit-qubit interaction
we are using to generate conditional phase. These gates typically take about 30 − 40 ns,
which is several times the 10− 15 ns splitting period. Since the coherence time of these
devices was so low, this inefficiency is undesirable. Fortunately, there is another version of
this gate that operates at full speed which we describe in the next section.

7.2.2 Sudden controlled-phase gate

Now that we have explored what happens when approaching the |11〉 ↔ |02〉 avoided
crossing adiabatically, it is interesting to consider the case of moving suddenly. This is the
opposite limit, where we move so fast that our state wavefunction does not have a chance
to evolve in response to the changing Hamiltonian. In the vicinity of the avoided crossing,
where eigenstates change their identities, our wavefunction will become a hybridization

∗ There is no sense of individual “target” or “control” qubits with a cPhase gate. Each computational basis
state has only one phase degree of freedom and only |11〉 gets the extra phase. Each qubit therefore
acts as both a control and a target. This is in contrast to the controlled-NOT gate, where each qubit
can individually flip and the gate can transmute one basis state to another. Since a phase-flip gate can
be easily converted to a bit-flip gate and vice versa, there is no substantive meaning underlying this
asymmetry – it is just an artifact of the basis we choose for computation. This fact is the origin of the
idea of a “phase kickback” and can complicate the interpretation of a quantum circuit diagram if you are
not looking for it.
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Figure 7.7: Model of a sudden approach to an avoided crossing. (a) We consider
a toy model of the |11〉 ↔ |02〉 avoided crossing with the two-state Hamiltonian Ĥ =
{{0, g}, {g,−Δ}} and plot its eigenenergies as a function of Δ/g. This energy diagram
closely resembles the avoided crossing found in Fig. 7.5(a). The dashed black lines show
the eigenenergies in the absence of interaction. (b) We calculate the transition probability
of a process where we start in the lower-energy undressed eigenstate, suddenly move to a
certain detuning, wait for a period of time, then jump back and measure the projection to our
original state. Defining that time as τ = t/trp, where trp = 1/

√
(2g)2 +Δ2 is the rephasing

time, we see that our projection oscillates as the phase between the dressed eigenstates
evolves. This oscillation is due to our wavefunction being a superposition of those dressed
eigenstates. The closer we move toward the avoided crossing, the more strongly hybridized
our wavefunction, and therefore, the larger the oscillation.

of the two states (e.g. |11〉 = |+〉 + |−〉 with |±〉 = (|11〉 ± |02〉)/√2 when we are in
resonance with the crossing). The two eigenstates have different energies because of the
avoided crossing, and so their relative phase will evolve in time. As this evolution proceeds,
the projection of our wavefunction will oscillate between being primarily |11〉 and |02〉.
The amplitude of this oscillation will be given by the degree of hybridization at the location
to which we jumped. Moreover, because the oscillation is due to the presence of a higher
level that only interacts when we are in |11〉, we will acquire conditional phase during this
process.

Toy model

We can see how this works with a toy model of an avoided crossing. Consider the
Hamiltonian Ĥ = {{0, g}, {g,−Δ}}. This matrix is diagonalized with the eigenenergies
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E± =
(
±√(2g)2 +Δ2 − Δ

)
/2, as plotted in Fig. 7.7(a), and has associated eigenvectors

v± = {cos (θ±m) , sin (θ±m)} with θ±m = cot−1

(
2g

Δ±
√

(2g)2+Δ2

)
. If we start far detuned from

the crossing, with Δ → ∞, we have v− ≈ {0, 1} and E− ≈ −Δ. We are interested in
what happens when we suddenly jump to a certain detuning and wait for some period of
time. The operator describing this evolution is given by

U = |v+〉〈v+|eiE+t/h + |v−〉〈v−|eiE−t/h (7.1)

where we evaluate the eigenvectors and eigenenergies at the Δ to which we are jumping.
Starting in a pure state |v0〉 = {0, 1}, we say the probability that we return to our
initial state is given by Preturn (t,Δ, g) = |〈v0|U |v0〉|2. The “rephasing” time, defined by
the first time that Preturn (trp,Δ, g) = 1 and physically corresponding to one full period
of oscillation, is given by trp = 1/

√
(2g)2 +Δ2. Defining τ = t/trp, we can plot this

return probability as a function of time for several values of Δ, shown in Fig. 7.7(b). As
anticipated, the amplitude of this oscillation is given by the degree of hybridization; far
from the avoided crossing, there is very little transfer of population, while in resonance the
state is fully transferred to the other eigenstate and back.

What is the conditional phase acquired during this process? One thing that is initially
confusing is that if we calculate the phase angle of 〈v0|U |v0〉 at t = trp, we get φ0 =

−π

(
1 + Δ√

(2g)2+Δ2

)
. Does that mean we are getting more than π of two-qubit phase

when we wait off-resonance and so are maximally entangled at some intermediate time?
The answer is no – we actually acquire less conditional phase for finite Δ – but to see
that we must consider what would happen if the avoided crossing were not there. We
have added dashed lines alongside the eigenenergies plotted in Fig. 7.7(a) to indicate the
energies for the case of no interaction between the states. This is our analog for the
energies of the constituent computational states in the adiabatic case described in the
previous section; it defines the single-qubit phase that we must subtract to determine our
conditional phase. The phase acquired by this state is given by φ1 = Eg=0

− t = −2πΔt. If
we consider only the times that cause full oscillations, we have φ1 = −2πΔtrp = −2πΔ√

(2g)2+Δ2
.

Our conditional phase is then φc = φ0 − φ1 = π

(
1 − Δ√

(2g)2+Δ2

)
. This has the expected

limits of φc → 0 as Δ → −∞ and φc = π when Δ = 0. We show the behavior of the
two-qubit phase as a function of time and Δ (at t = trp) in Fig. 7.8.
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Figure 7.8: Evolution of conditional phase using sudden approach. (a) We plot the
conditional phase acquired by the quantum amplitude of the original, lower-energy eigenstate
as a function of the interaction time τ for several different values of Δ. The slope of this
curve and maximum conditional phase acquired increases with decreasing Δ. Note that we
are examining only the phase of the projection on our original state; for non-integer values
of τ , our wavefunction will be a superposition of the two undressed eigenstates. (b) Fixing
t = trp, we plot the conditional phase acquired as a function of the detuning to which we
suddenly jump. At Δ = 0, we acquire a full π conditional phase shift, which decreases

asymptotically to zero as Δ → ∞ with the functional form φc =

(
1 − Δ√

(2g)2+Δ2

)
.

Swap spectroscopy and the sudden cPhase gate

Now that we understand the underlying physical mechanism for a sudden cPhase gate,
let us explore the details of its implementation. In order to construct a gate with the
|11〉 ↔ |02〉 avoided crossing, we first use swap spectroscopy to measure where and how
large it is. The procedure is done by preparing some state of our qubit register, performing
a sudden flux pulse on one of the qubits to a certain location, waiting for some time
τ , fluxing back, executing whatever qubit pulses would bring the prepared state back
to the ground state, and finally, measuring. The idea is that if we are near an avoided
crossing at whatever flux location we jump to, waiting there will cause our population
to oscillate between the prepared state and the state with which it is interacting. We
must have measurement contrast between the two potential states to detect whether or
not this oscillation has occurred, so we jump back to our starting position and transfer
whatever population remains in our prepared state back to its ground state. Our readout
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Figure 7.9: Swap spectroscopy of 011-002 avoided crossing. (a) We prepare the state
|011〉 and suddenly move Q2 such that the |011〉 eigenstate is near in energy to the |002〉
eigenstate. We then wait for some amount of time, causing the quantum amplitude in our
starting state to oscillate into the interacting state and back. Finally, we return Q2 to its
home position, transfer the amplitude of |011〉 to |000〉 by repeating the initialization pulses,
and measure. We will get a low voltage (colored white) if, at the end of our waiting time,
our population returned to |011〉 and a large voltage (blue) if the population was transferred
to |002〉. The data are asymmetric because our flux pulse is not perfectly sudden. The data
on the right correspond with smaller flux excursions, which, for fixed bandwidth, have slower
velocities and are therefore less sudden. (b) We extract the frequency of oscillation for each
vertical cut of the data in (a) and plot it as a function of amplitude (top axis). We compare
this to the spectroscopic data from Fig. 7.5(b) and find excellent correspondence.
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will then discriminate between the qubit in the ground state (indicating that no leakage
has occurred) and the qubit in some other state that it tunneled into during the waiting
time.

In Fig. 7.9(a) we show the result of performing swap spectroscopy on the |110〉 ↔ |020〉
avoided crossing when preparing |110〉. We observe the characteristic “chevron” pattern of
a suddenly-approached avoided crossing. We plot the measurement result as a function of
both flux pulse amplitude and the time we hold at each applied voltage. Where we get a
relatively small voltage, indicated in white, the qubit’s wavefunction is unchanged; a dark
pixel corresponds to a large voltage and population transfer to |020〉. The frequency of
this oscillation corresponds well with the prediction from our simple model. The frequency
of oscillation is minimal (86 MHz) when we move into resonance with the avoided crossing
(V = −55 mΦ0). As we detune, the frequency increases according to f =

√
(2g)2 +Δ2.

The amplitude of oscillation also decreases in a similar way. In Fig. 7.9(a) we plot the
oscillation frequency extracted from the chevron data (top and right axes) and overlay
the spectroscopically measured splittings from Fig. 7.6 (bottom and left axes), showing
excellent correspondence between the two methods. Flux spectroscopy is much more
precise since we have the luxury of fitting a sinusoid rather than two Lorentzians.

With this information, it is simple to construct our cPhase gate. The amplitude of
our flux pulse is given by the voltage corresponding to the slowest oscillation frequency
we found in swap spectroscopy, V ≈ 55 mΦ0. (Note that we have converted to units of
Φ0 to have physical meaning, but experimentally we specify a voltage amplitude.) We
apply a square flux pulse with the fastest possible rise time to be maximally sudden for a
time of t = 1/f ∼ 12 ns, where f = 86 MHz is the splitting of the avoided crossing. As
with the adiabatic case, we must also measure and correct single-qubit phases in software.
The resulting gate is of relatively high fidelity owing to its fast speed, as we will see in
section 7.4.

One potential concern is whether we are able to precisely time our excursion, since
any error would cause some leakage into |020〉. We can be neither perfectly sudden, nor
can we exactly hit the timing of 11.62 ns corresponding to one oscillation. While there
are methods of detecting and compensating for these small timing errors (discussed in
section 8.1.2), for the purposes of a cPhase gate on qubits with relatively short T1s, these
errors are negligible enough to disregard.
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7.2.3 Other two-qubit gates

The adiabatic and sudden fluxed cPhase gates that we have discussed are by no means
the only methods of generating entanglement in cQED. In fact, though they were the first
practical gates demonstrated, they will almost certainly not represent the best approach
going forward. Our ideal gate is fast (as these are), but also has high “intrinsic” gate
fidelity and does not require additional hardware in the device or at room temperature.
The intrinsic gate fidelity is a vague term which refers, in this context, to the infidelity
of the gate unrelated to T1 or T2. For example, non-adiabaticity or timing errors might
cause leakage into the |02x〉 state, the size of which directly reduces the gate’s fidelity.
These errors are also quite insidious, because they would not be corrected by most forms
of quantum error correction [221]. More importantly, these gates require fast flux lines. In
addition to requiring an extra cryogenic microwave line and room temperature electronics,
making the qubits sensitive to flux inexorably decreases their T2 coherence times because
of flux noise.

One appealing gate that we have recently developed [169] works by utilizing the
dispersive shift of the cavity frequency – exactly the same mechanism used in qubit readout.
We adiabatically apply a microwave pulse far detuned from the cavity such that the cavity
state is instantaneously proportional to the drive state, and turn it on and off slowly so that
the cavity returns to its ground state. Each dispersively shifted cavity will take a different
trajectory in Hilbert space and therefore will acquire a different phase (of both geometric
and Stark-shift origins). Decomposing these phases into single- and two-qubit types, we
can tune-up a cPhase gate in the same way as normal. This gate is interesting because
it only requires microwave tones on the cavity – something we automatically have for
performing readout – and has high intrinsic fidelity. The two main sources – measurement
induced dephasing and non-adiabaticity – can be made extremely small with appropriate
choice of device parameters.

There are other attractive microwave-only gates that have been developed [222–224],
including the Bell-Rabi gate [176] that directly drives the |00〉 ↔ |11〉 transition, and the
cross-resonance gate [209], which relies on a state-dependent Rabi rate of the two qubits.
This is by no means an exhaustive list; indeed, superconducting qubits in cQED seem to
love entangling with one another since they have large spatial wave functions. Rather
than being difficult to entangle, in fact, it seems that the challenge in moving toward
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high-fidelity gates will be to make sure the qubits do not unintentionally entangle with one
another.

7.3 State tomography

Now that we have the ability to generate entanglement, how can we prove that we have done
so? If we are given many copies of some unknown state, how can we determine what that
state is? The act of reconstructing the density matrix from an ensemble of states is called
state tomography. Constructing a state tomogram involves measuring some property of a
quantum state; by averaging the result of that and other measurements over an ensemble
of identically prepared states, we can infer every entry of the matrix. We can express an N

qubit density matrix as a sum of Pauli correlations times their associated operator. For a sin-
gle qubit, we have ρ = 1

2

∑
tr (ρI) + tr (ρX)X + tr (ρY )Y + tr (ρZ)Z. We define the

quantity 〈Ô〉 ≡ tr
(
ρÔ
)
. This generalizes, for N qubits, to ρ = 1

2N

∑
Ô∈{I⊗N ..Z⊗N}〈Ô〉Ô

where the sum is taken over every N -qubit Pauli operator∗. Thus, reconstructing the
density matrix is the same as knowing each of the quantities 〈Ô〉.

The most conceptually straightforward way to measure these Pauli correlations is with
single-shot single-qubit measurements. If we have the ability to measure 〈Ô〉 for each
qubit individually, we can calculate the correlations in software with classical processing.
For example, we would find 〈ZZ〉 by calculating the probability that, when we measured
the Z projection of both qubits at the same time, we found that both pointed in the
same direction, and subtract from that the probability that they were both pointing
in the opposite direction. Similarly, calculating quantities such as 〈XY 〉 would require
measuring the X projection of Q1 simultaneous with the Y projection of Q2. In our system,
however, we do not have the capability of measuring each qubit individually. Instead,
our measurement operator (under normal circumstances) is one which projects the qubit
manifold to the ground state: M̂ = |0⊗N〉〈0⊗N |. We get a 0 if all the qubits are in their
ground state, and a 1 otherwise. Taking the case of two qubits, we can express this
operator in terms of Pauli operators as M̂2 = |00〉〈00| = (II + ZI + IZ + ZZ) /4, where

∗ For example, for two qubits there are 16 Pauli operators: II, XI, Y I, ZI, IX, IY , IZ, XX, Y X,
ZX, XY , Y Y , ZY ,XZ, Y Z, and ZZ. For three qubits there are 64, and for N , there are 4N . That is,
the amount of information stored in a manifold of qubits grows exponentially with the number N . The
notation I⊗N denotes the tensor product of N Pauli I operators, e.g. I...I.
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Z is the Pauli z matrix∗. We see in this representation that our measurement operator
inexorably projects all of them.

This measurement operator is actually ideal for tomography because it eliminates the
need for single-shot measurements and for manually calculating correlations. Consider
what would happen if we performed qubit rotations – say, a π pulse on the first qubit –
just prior to measuring. If we view that π pulse as acting on the measurement operator
rather than the qubit state, we would flip all of the Z correlations of the second qubit,
making M̂

R1
π

2 = II − ZI + IZ − ZZ. If we instead were to pulse only the second
qubit, we would have M̂

R2
π

2 = II + ZI − IZ − ZZ. Taking the sum of the ensemble
averaged values of these two cases, we would have 〈M̂R1

π
2 〉 + 〈M̂R2

π
2 〉 = 〈II〉 − 〈ZI〉 +

〈IZ〉 − 〈ZZ〉 + 〈II〉 + 〈ZI〉 − 〈IZ〉 − 〈ZZ〉 = 2〈II〉 − 2〈ZZ〉. Since 〈II〉 ≡ 1, we
can directly calculate 〈ZZ〉 = 1

2

(
2 − 〈M̂R1

π
2 〉 − 〈M̂R2

π
2 〉

)
. Thus, by performing rotations

on the ensemble immediately prior to measurement, we can calculate any single-qubit or
two-qubit correlation with linear combinations of our measurement results.

The measurement operator is actually more complicated than
∣∣0⊗N

〉〈
0⊗N

∣∣ because of
finite measurement fidelity and differing sensitivity to the various basis states. For example,
recalling the case of multi-qubit readout with the high-power Jaynes-Cummings readout
mechanism described in section 6.3.2, we had ∼ 67% fidelity to the least-distinguishable
|100〉 state, but in excess of 80% fidelity to others. This disparity could have been made
even more extreme had we optimized for a state other than |100〉: the difference in fidelity
could be two-to-one or more. Taken in the ensemble, we will measure slightly different
voltages for each basis state. (Indeed, if we are in an eigenstate and given enough averaging,
we can know not just whether or not we have the ground state, but also exactly what
state we are in.) Since our experiment gives us voltages and not measurement operator
expectation values, we must compensate for this fact.

One simple way of calibrating the differing sensitivity to basis states is to modify
our Pauli expansion of the measurement operator. Rather than saying that M̂2 =

(II + ZI + IZ + ZZ) /2, we add coefficients in front of each term of the operator
and take the ensemble average such that our measurement voltage is given by V̂ M

2 ≡

∗ The operator |00〉〈00| =
(

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
if we assume the qubit amplitude is confined to the computational

subspace. We have II =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
, ZI =

(
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

)
, IZ =

(
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)
, and ZZ =

(
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

)
.

Thus |00〉〈00| = (II + IZ + ZI + ZZ) /4. Similarly, the measurement operator for three qubits M̂3 =
|000〉〈000| = III + ZII + IZI + IIZ + ZZI + ZIZ + IZZ + ZZZ, and so on for more qubits.
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Measurement Rotation on Q1 Measurement operator
1 I +βII + βZZ

2 R
π/2
x +βII + βZY

3 R
π/2
y +βII − βZX

Table 7.1: Gate sequence for one-qubit state tomography. The rotations on Q1

effectively modify the measurement operator when we consider them to be part of the
measurement process. We measure the values of βI and βZ with separate experiments
preparing |1〉 and |0〉, and perform them in series with the tomographic measurements to
nullify slow drifts of measurement chain gain. Combining that information with the result
of the three operator measurements, we can extract the values of 〈Z〉, 〈X〉, and 〈Y 〉, and
therefore know the entire one-qubit density matrix.

βII〈II〉 + βZI〈ZI〉 + βIZ〈IZ〉 + βZZ〈ZZ〉. These β coefficients have units of voltage,
as does V̂ M

2 . We can determine the values of these in a manner experimentally similar
to our original construction of tomography. We prepare each of the states |00〉, |10〉,
|01〉, and |11〉 and measure them. If our control is perfect, we should measure voltages of
βII + βZI + βIZ + βZZ when preparing |00〉, βII − βZI + βIZ − βZZ for |10〉, and so on.
We can again make linear combinations to convert these results to βs. Because their values
tend to drift with time due to (for example) changes in helium level or local oscillator
phase, we always measure them at the same time as the other tomographic measurements.

Once we know the proper β calibrations, we can infer every Pauli correlation by
performing different rotations prior to measurement. Just as doing a π pulse converted
Zi (the z Pauli matrix acting on the i-th qubit) to −Zi, R

π/2
x maps Zi → +Yi and R

π/2
y

maps Zi → −Xi. Doing all combinations of nothing, π/2 rotations around x and y and π

rotations around x on both qubits will extract all the information of the density matrix.
The three pre-rotations necessary for single-qubit tomography are listed in table 7.1, and
for two qubits, the required 15 pre-rotations can be found in table 7.2. (For two qubits,
we have suppressed the βIIII term of the measurement operator, which is identical in
all cases.) There are 4N − 1 entries since there are four gates and N qubits plus one
constraint (tr(ρ) = 1). Given this list of measurements, it is again a matter of converting
those data into a density matrix. It is also worth noting that these lists are not unique
– any combination that spans the Hilbert space would work, even a non-orthogonal one
[225].

This method works just as well for more than two qubits. For the case of three, we say
that the measurement produces a voltage given by V̂ M

3 ≡ β0〈III〉+β1〈ZII〉+β2〈IZI〉+
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Measurement Rotation on Q1 Rotation on Q2 Measurement operator
1 I I +βZIZI + βIZIZ + βZZZZ
2 Rπ

x I −βZIZI + βIZIZ − βZZZZ
3 I Rπ

x +βZIZI − βIZIZ − βZZZZ

4 R
π/2
x I +βZIY I + βIZIZ + βZZY Z

5 R
π/2
x R

π/2
x +βZIY I + βIZIY + βZZY Y

6 R
π/2
x R

π/2
y +βZIY I − βIZIX − βZZY X

7 R
π/2
x Rπ

x +βZIY I − βIZIZ − βZZY Z

8 R
π/2
y I −βZIXI + βIZIZ − βZZXZ

9 R
π/2
y R

π/2
x −βZIXI + βIZIY − βZZXY

10 R
π/2
y R

π/2
y −βZIXI − βIZIX + βZZXX

11 R
π/2
y Rπ

x −βZIXI − βIZIZ + βZZXZ

12 I R
π/2
x +βZIZI + βIZIY + βZZZY

13 Rπ
x R

π/2
x −βZIZI + βIZIY − βZZZY

14 I R
π/2
y +βZIZI − βIZIX − βZZZX

15 Rπ
x R

π/2
y −βZIZI − βIZIX + βZZZX

Table 7.2: Gate sequence for two-qubit state tomography. We list the rotations for
each of the two qubits to give 15 linearly independent measurement operators. As with
the single-qubit case, we measure the values of the βs by preparing all the computational
basis states. Combining these numbers with the 15 measurements is enough to infer the full
two-qubit density matrix.

β3〈IIZ〉 + β4〈ZZI〉 + β5〈ZIZ〉 + β6〈IZZ〉 + β7〈ZZZ〉 (here, we have switched to
enumerating rather than labeling the β coefficients for the sake of brevity). We can again
calibrate the coefficients by creating and measuring all the computational basis states
(|000〉 through |111〉), and, by pre-pending the measurement with all combinations of
rotations, infer each Pauli correlation. The only difference is that there are a lot more
correlations to worry about. While with two qubits we only had 42 − 1 = 15 numbers to
infer, with three we have 43 − 1 = 63 numbers. The list of tomographic pre-rotations
necessary to measure all of these numbers is listed in table 7.3 and table 7.4. While the
math for one qubit is trivial and two qubits isn’t too taxing, it is wise to use a formal
matrix inversion to convert our measurements to Pauli correlations when dealing with three
qubits or more. Listing the rotations required for four qubits or more is left as an exercise
for the reader, for the sake of saving (an exponentially-increasing amount of) paper.

We demonstrate three-qubit state tomography in Fig. 7.10. In (1-3) we show a circuit
diagram for performing state tomography on several simple states. Assuming that the
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# RQ1 RQ2 RQ3 Measurement operator
1 I I I +β1ZII+β2IZI+β3IIZ+β4ZZI+β5ZIZ+β6IZZ+β7ZZZ

2 I I R
π/2
x +β1ZII+β2IZI+β3IIY+β4ZZI+β5ZIY+β6IZY+β7ZZY

3 I I R
π/2
y +β1ZII+β2IZI−β3IIX+β4ZZI−β5ZIX−β6IZX−β7ZZX

4 I I Rπ
x +β1ZII+β2IZI−β3IIZ+β4ZZI−β5ZIZ−β6IZZ−β7ZZZ

5 I R
π/2
x I +β1ZII+β2IY I+β3IIZ+β4ZY I+β5ZIZ+β6IY Z+β7ZY Z

6 I R
π/2
x R

π/2
x +β1ZII+β2IY I+β3IIY+β4ZY I+β5ZIY+β6IY Y+β7ZY Y

7 I R
π/2
x R

π/2
y +β1ZII+β2IY I−β3IIX+β4ZY I−β5ZIX−β6IY X−β7ZY X

8 I R
π/2
x Rπ

x +β1ZII+β2IY I−β3IIZ+β4ZY I−β5ZIZ−β6IY Z−β7ZY Z

9 I R
π/2
y I +β1ZII−β2IXI+β3IIZ−β4ZXI+β5ZIZ−β6IXZ−β7ZXZ

10 I R
π/2
y R

π/2
x +β1ZII−β2IXI+β3IIY−β4ZXI+β5ZIY−β6IXY−β7ZXY

11 I R
π/2
y R

π/2
y +β1ZII−β2IXI−β3IIX−β4ZXI−β5ZIX+β6IXX+β7ZXX

12 I R
π/2
y Rπ

x +β1ZII−β2IXI−β3IIZ−β4ZXI−β5ZIZ+β6IXZ+β7ZXZ

13 I Rπ
x I +β1ZII−β2IZI+β3IIZ−β4ZZI+β5ZIZ−β6IZZ−β7ZZZ

14 I Rπ
x R

π/2
x +β1ZII−β2IZI+β3IIY−β4ZZI+β5ZIY−β6IZY−β7ZZY

15 I Rπ
x R

π/2
y +β1ZII−β2IZI−β3IIX−β4ZZI−β5ZIX+β6IZX+β7ZZX

16 I Rπ
x Rπ

x +β1ZII−β2IZI−β3IIZ−β4ZZI−β5ZIZ+β6IZZ+β7ZZZ

17 R
π/2
x I I +β1Y II+β2IZI+β3IIZ+β4Y ZI+β5Y IZ+β6IZZ+β7Y ZZ

18 R
π/2
x I R

π/2
x +β1Y II+β2IZI+β3IIY+β4Y ZI+β5Y IY+β6IZY+β7Y ZY

19 R
π/2
x I R

π/2
y +β1Y II+β2IZI−β3IIX+β4Y ZI−β5Y IX−β6IZX−β7Y ZX

20 R
π/2
x I Rπ

x +β1Y II+β2IZI−β3IIZ+β4Y ZI−β5Y IZ−β6IZZ−β7Y ZZ

21 R
π/2
x R

π/2
x I +β1Y II+β2IY I+β3IIZ+β4Y Y I+β5Y IZ+β6IY Z+β7Y Y Z

22 R
π/2
x R

π/2
x R

π/2
x +β1Y II+β2IY I+β3IIY+β4Y Y I+β5Y IY+β6IY Y+β7Y Y Y

23 R
π/2
x R

π/2
x R

π/2
y +β1Y II+β2IY I−β3IIX+β4Y Y I−β5Y IX−β6IY X−β7Y Y X

24 R
π/2
x R

π/2
x Rπ

x +β1Y II+β2IY I−β3IIZ+β4Y Y I−β5Y IZ−β6IY Z−β7Y Y Z

25 R
π/2
x R

π/2
y I +β1Y II−β2IXI+β3IIZ−β4Y XI+β5Y IZ−β6IXZ−β7Y XZ

26 R
π/2
x R

π/2
y R

π/2
x +β1Y II−β2IXI+β3IIY−β4Y XI+β5Y IY−β6IXY−β7Y XY

27 R
π/2
x R

π/2
y R

π/2
y +β1Y II−β2IXI−β3IIX−β4Y XI−β5Y IX+β6IXX+β7Y XX

28 R
π/2
x R

π/2
y Rπ

x +β1Y II−β2IXI−β3IIZ−β4Y XI−β5Y IZ+β6IXZ+β7Y XZ

29 R
π/2
x Rπ

x I +β1Y II−β2IZI+β3IIZ−β4Y ZI+β5Y IZ−β6IZZ−β7Y ZZ

30 R
π/2
x Rπ

x R
π/2
x +β1Y II−β2IZI+β3IIY−β4Y ZI+β5Y IY−β6IZY−β7Y ZY

31 R
π/2
x Rπ

x R
π/2
y +β1Y II−β2IZI−β3IIX−β4Y ZI−β5Y IX+β6IZX+β7Y ZX

32 R
π/2
x Rπ

x Rπ
x +β1Y II−β2IZI−β3IIZ−β4Y ZI−β5Y IZ+β6IZZ+β7Y ZZ

Table 7.3: Gate sequence for three-qubit state tomography, part 1. State tomography
for three qubits is again analogous to the cases of one and two qubits, but needs 63 linearly
independent measurement operators to infer all the Pauli correlators. Only 32 fit on this
page; the remaining 31 can be found on the following page. As before, we measure the βs
by preparing and measuring all 8 computational basis states.
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# RQ1 RQ2 RQ3 Measurement operator
33 R

π/2
y I I −β1XII+β2IZI+β3IIZ−β4XZI−β5XIZ+β6IZZ−β7XZZ

34 R
π/2
y I R

π/2
x −β1XII+β2IZI+β3IIY−β4XZI−β5XIY+β6IZY−β7XZY

35 R
π/2
y I R

π/2
y −β1XII+β2IZI−β3IIX−β4XZI+β5XIX−β6IZX+β7XZX

36 R
π/2
y I Rπ

x −β1XII+β2IZI−β3IIZ−β4XZI+β5XIZ−β6IZZ+β7XZZ

37 R
π/2
y R

π/2
x I −β1XII+β2IY I+β3IIZ−β4XY I−β5XIZ+β6IY Z−β7XY Z

38 R
π/2
y R

π/2
x R

π/2
x −β1XII+β2IY I+β3IIY−β4XY I−β5XIY+β6IY Y−β7XY Y

39 R
π/2
y R

π/2
x R

π/2
y −β1XII+β2IY I−β3IIX−β4XY I+β5XIX−β6IY X+β7XYX

40 R
π/2
y R

π/2
x Rπ

x −β1XII+β2IY I−β3IIZ−β4XY I+β5XIZ−β6IY Z+β7XY Z

41 R
π/2
y R

π/2
y I −β1XII−β2IXI+β3IIZ+β4XXI−β5XIZ−β6IXZ+β7XXZ

42 R
π/2
y R

π/2
y R

π/2
x −β1XII−β2IXI+β3IIY+β4XXI−β5XIY−β6IXY+β7XXY

43 R
π/2
y R

π/2
y R

π/2
y −β1XII−β2IXI−β3IIX+β4XXI+β5XIX+β6IXX−β7XXX

44 R
π/2
y R

π/2
y Rπ

x −β1XII−β2IXI−β3IIZ+β4XXI+β5XIZ+β6IXZ−β7XXZ

45 R
π/2
y Rπ

x I −β1XII−β2IZI+β3IIZ+β4XZI−β5XIZ−β6IZZ+β7XZZ

46 R
π/2
y Rπ

x R
π/2
x −β1XII−β2IZI+β3IIY+β4XZI−β5XIY−β6IZY+β7XZY

47 R
π/2
y Rπ

x R
π/2
y −β1XII−β2IZI−β3IIX+β4XZI+β5XIX+β6IZX−β7XZX

48 R
π/2
y Rπ

x Rπ
x −β1XII−β2IZI−β3IIZ+β4XZI+β5XIZ+β6IZZ−β7XZZ

49 Rπ
x I I −β1ZII+β2IZI+β3IIZ−β4ZZI−β5ZIZ+β6IZZ−β7ZZZ

50 Rπ
x I R

π/2
x −β1ZII+β2IZI+β3IIY−β4ZZI−β5ZIY+β6IZY−β7ZZY

51 Rπ
x I R

π/2
y −β1ZII+β2IZI−β3IIX−β4ZZI+β5ZIX−β6IZX+β7ZZX

52 Rπ
x I Rπ

x −β1ZII+β2IZI−β3IIZ−β4ZZI+β5ZIZ−β6IZZ+β7ZZZ

53 Rπ
x R

π/2
x I −β1ZII+β2IY I+β3IIZ−β4ZY I−β5ZIZ+β6IY Z−β7ZY Z

54 Rπ
x R

π/2
x R

π/2
x −β1ZII+β2IY I+β3IIY−β4ZY I−β5ZIY+β6IY Y−β7ZY Y

55 Rπ
x R

π/2
x R

π/2
y −β1ZII+β2IY I−β3IIX−β4ZY I+β5ZIX−β6IY X+β7ZY X

56 Rπ
x R

π/2
x Rπ

x −β1ZII+β2IY I−β3IIZ−β4ZY I+β5ZIZ−β6IY Z+β7ZY Z

57 Rπ
x R

π/2
y I −β1ZII−β2IXI+β3IIZ+β4ZXI−β5ZIZ−β6IXZ+β7ZXZ

58 Rπ
x R

π/2
y R

π/2
x −β1ZII−β2IXI+β3IIY+β4ZXI−β5ZIY−β6IXY+β7ZXY

59 Rπ
x R

π/2
y R

π/2
y −β1ZII−β2IXI−β3IIX+β4ZXI+β5ZIX+β6IXX−β7ZXX

60 Rπ
x R

π/2
y Rπ

x −β1ZII−β2IXI−β3IIZ+β4ZXI+β5ZIZ+β6IXZ−β7ZXZ

61 Rπ
x Rπ

x I −β1ZII−β2IZI+β3IIZ+β4ZZI−β5ZIZ−β6IZZ+β7ZZZ

62 Rπ
x Rπ

x R
π/2
x −β1ZII−β2IZI+β3IIY+β4ZZI−β5ZIY−β6IZY+β7ZZY

63 Rπ
x Rπ

x R
π/2
y −β1ZII−β2IZI−β3IIX+β4ZZI+β5ZIX+β6IZX−β7ZZX

Table 7.4: Gate sequence for three-qubit state tomography, part 2. These are the
remaining 31 pulse sequences continued from the previous page.
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State tomography
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Pauli operator
Q1
Q2
Q3

|ψ〉 = |000〉

|ψ〉 = |100〉

|ψ〉 = |001〉

Figure 7.10: State tomography of separable states. We prepare three separable states
as shown in the circuit diagrams of (1) |000〉, (2) |100〉, and (3) |001〉. As shown in (1)
and implied for the other two cases, immediately following state preparation we perform
three-qubit state tomography. The resulting tomogram is shown in (a-c) for the three states
in the Pauli bars representation. We plot the expected values of the 63 Pauli operators for the
state, grouping them with single-qubit operators (red, green, blue for operators on Q1, Q2,
and Q3 respectively), two-qubit operators (yellow, purple, and teal for Q1 and Q2, Q1 and
Q3, and Q3 and Q3), and three-qubit operators (black). (Figure adapted with permission
from [55]. See Copyright Permissions.)
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qubits start in |000〉, we prepare some quantum state of the register and then perform
tomography by applying the appropriate single-qubit rotations on all three qubits and
measuring with our joint readout. We show the resulting reconstructed density matrix in
(a) using the Pauli bar representation, in which we plot the value of each Pauli correlation.
The types of correlations are segregated by color: red, green, and blue for single-qubit
correlations of Q1, Q2, and Q3 respectively, followed by yellow, purple, and teal for two-
qubit correlations between Q1 and Q2, Q1 and Q3, and Q2 and Q3; finally, in black, we
have three-qubit correlations. As we will show in section 7.5, in contrast to the conventional
cityscape density matrix plot, this representation makes the presence of entanglement
unambiguous.

We first show the resulting tomographic data for measuring the ground state. As shown
in Fig. 7.10(a), we have seven unit-height bars for the 〈ZII〉, 〈IZI〉, 〈IIZ〉, 〈ZZI〉,
〈ZIZ〉, 〈IZZ〉, and 〈ZZZ〉 correlations. The value of 〈III〉 is defined to be 1 and is
suppressed in all plots, though it should be included when calculating state fidelity. It is
easy to see why these bars are all 1. For example, we can break the ZIZ correlator up
into 〈000|ZIZ|000〉 = 〈0|Z|0〉〈0|I|0〉〈1|Z|1〉 because the operators commute through
qubit states that they do not address. Then, because 〈0|Z|0〉 = 1 and 〈0|0〉 = 1, we
have 〈000|ZIZ|000〉 = (+1)(+1)(+1) = +1. This same argument applies to all of the
Pauli correlations involving only I and Z. Other correlations, for example IIX, are zero
because the ground state is orthogonal to the eigenstates of the Pauli σx operator. In
Fig. 7.10(b) and (c) we show tomograms for the states |100〉 and |001〉. These are similar
to the ground state, except that the correlations involving the Z operator for the flipped
qubit are now negative because 〈1|Z|1〉 = −1.

Looking at how much information is stored in only three qubits, you can imagine how
complicated this gets as the number continues to increase. Indeed, the exponential growth
of the amount of information stored in a manifold of qubits is a reflection of the sample
complexity of quantum mechanics that we’re trying to leverage in building our computer.
The addition of each qubit multiplies the amount of information by about a factor of four.
We were fortunate that a single-state tomogram required only 5 minutes to measure in this
device (a reflection of high readout fidelity and a fast repetition rate), but adding another
qubit would translate that to a 20 minute task and one more would require more than
an hour. And as we will see in the next section, this scaling worsens dramatically when
characterizing a full quantum process involving N qubits. Going forward, it will become
more and more necessary to employ compressed sensing [226–228] to measure our system,
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Figure 7.11: State tomography with population outside the Hilbert space. (a) We
intentionally put population in the |102〉 state by preparing |111〉, moving suddenly into
resonance with the |111〉 ↔ |102〉 avoided crossing, waiting for half the splitting time,
and then moving suddenly back. The tomogram shows significant unphysical correlations
because the tomographic pre-rotations do not address the non-computational population.
Experimentally, this causes a constant voltage offset in all of our measurements. (b) We
manually subtract a constant voltage from all the measurements to reduce this effect, chosen
by minimizing the squared amplitude of the density matrix (e.g. assuming that it is maximally
mixed). This tomogram is a more accurate representation of the computational space
population.

wherein we extract only the most relevant properties, chosen based on external knowledge
or assumptions.

7.3.1 Errors and physicality of state tomograms

There are several conditions that are important to keep in mind when using this method
of performing state tomography. This process assumes that the entire qubit density matrix
occupies only the computational space; that is, the Hilbert space that our pre-rotations
address. To be more complete, our translation of the measurement operator

∣∣0⊗N
〉〈
0⊗N

∣∣
should also include operators that address higher excited states of the transmon, since a
transmon in its second excited state will also give us a positive measurement outcome. As
shown in Fig. 7.11(a), this can have dramatic effects on our reconstructed density matrix
because any population outside the addressed space will always be present. As shown in
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Fig. 7.11(b), it will cause an offset voltage, as if our value for β0 is incorrect. (In Ref. 55,
this was explicitly excised with the addition of a best-fit parameter to β0 that was chosen
to minimize the sum of the magnitude of the bars. This strategy was not used in Ref. 201.)
We also assume that our β values are calibrated with perfectly prepared test states. If
there is some thermal equilibrium qubit population, for example, we will only address the
“pure” quantum amplitude given by P (|0〉)− P (|1〉). Thus, the fidelities we claim from
tomography do not take into account the impurity of our ground state. Finally, if our
measurement pre-rotations are imperfect, our inferred values will also be flawed [169, 225].

All of these issues contribute to the un-physicality of our reconstructed density matrix.
Our density matrix automatically has the required property tr (ρ) = 1 since 〈I⊗N〉 ≡ 1.
However, a physical matrix must additionally have all positive eigenvalues, which is not
guaranteed here. For example, nothing prevents the inferred value of a Pauli correlation
from being larger than ±1, be it due to noise or systematic errors. This adds ambiguity
to the definition of things like state fidelities, which involve taking a dot product of the
measured Pauli correlations with their ideal values. This is an especially large problem
when fidelities approach 100%, since there is a significant difference in a state fidelity of
99.9% and 99.0% from the point of view of fault tolerant error correction. Estimating the
size of both systematic and random errors presents a challenge.

There are several strategies to deal with these sources of error. You want your state
tomograms to be as reliable as possible. This involves calibrating single-qubit rotations as
well as you can, both when addressing a single qubit and when simultaneously rotating
multiple qubits. Running sequences like AllXY with and without auxiliary π pulses, as
described in section 5.2.3, can help, as can its more sensitive derivatives. In a recent
paper [169], it was also necessary to use NMR-inspired composite rotations that are less
susceptible to certain types of errors.

It has become common to perform a maximum likelihood estimation of the density
matrix [229, 230]. This process applies Lagrange multipliers to the inferred Pauli correlation
values to enforce the physicality. As described in section 2.5.2 of Jerry Chow’s thesis
[114], this involves evaluating polynomial functions of measurement results and is therefore
nonlinear. This complicates the estimation of uncertainties. A maximum likelihood
estimation makes the smallest possible changes to the matrix to make it physical, which
is most justifiable when random errors are the dominant source of un-physicality [231].
These changes are arbitrary, however. If we have systematic rather than random errors,
there is no particular reason to trust the maximum-likelihood matrix more than the original
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one. Nevertheless, many research groups [216, 231, 232] use this process and argue that
without enforcing physicality, metrics like state fidelity have no meaning.

Finally, there has been a recent proposal to perform tomography in a self-consistent way
by oversampling the action of our measurement pre-rotations [225]. The idea is to relax
the assumption that the unitary rotations we perform prior to measurement are perfect,
and instead to infer their effect by extensively sampling measurement results following their
application. While this approach should mitigate one source of systematic error, it still
requires nonlinear convex optimization. Though there exists a linear map of measurement
results to the process matrix of each of our rotations, measurements have finite noise
which will be magnified in the state tomogram unless it is mitigated. In order to make
this optimization tractable, the authors linearize the involved equations. This has the
effect of simplifying the math, but also requires that the rotations used are fairly close
to the intended rotations around which the equations were expanded. Nevertheless, this
method promises to reduce sensitivity to errors and enforce physicality in a more realistic
and thoughtful way than a relatively crude maximum likelihood estimation.

7.4 Process tomography

What if we are interested not in the density matrix of a state, but rather, in the unitary
evolution of a process. For example, suppose someone gives us a black box which takes as
an input N qubits and gives the same number as an output, but with a modified state.
How can we determine the action of the box? To begin, we might insert the ground state
(|00〉, supposing for now that N = 2) and measure the density matrix of the output state.
We must perform many measurements to perform state tomography, so we prepare an
ensemble of our test ground states and apply the process to each. This will tell us only
a tiny amount about what the box does: we will learn its affect on the ground state.
For two qubits, that accounts for only one point in 4-dimensional Hilbert space with 16
orthogonal basis vectors. We send another state through, selecting this time the state
in which the first qubit is pointing along the x-axis and the other is in its ground state
((|00〉 + |10〉) /√2). This is actually a huge improvement over having only one point
because quantum mechanics is linear. Since we know the output density matrix for both
states, we also know what happens to any superposition of those states: the result of any
rotation about the y-axis on the first qubit alone. If we know how the process affects each
of the 4N basis states for N qubits, in principle, we know everything about the process.
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In practice, we wish to express our process data in a more convenient way. Specifically,
following equation 2.12, we want a set of operators Ei for the process E(ρ) =∑

i EiρE
†
i
∗.

We express these operators Ei in some fixed basis of operators Ẽi such that Ei =∑
m eimẼm, which we may plug into the expression for E above to give

E(ρ) =
∑
mn

ẼmρẼ
†
nχmn (7.2)

with χmn =
∑

i eime
∗
im. The basis Ẽi is arbitrary, but the N -qubit Pauli matrices are most

often chosen. The matrix χ is the “chi-matrix representation” of our process, and measuring
it is our goal. It will contain d4 − d2 numbers, where d is the dimension of the system
(e.g. d = 2 for one qubit). From state tomography, we know E(ρj) =

∑
k λjkρk, where

ρk is our basis of states and λjk are coefficients. These λjk are given by λjk = tr(ρkρ),
which we identify as the Pauli tomography bars (introduced in the previous section). We
relate our choice of operator basis to our state basis with a matrix β, defined by

ẼmρjẼ
†
n =

∑
k

βmn
jk ρk. (7.3)

There, Ẽi is again the operator basis in which we are expressing the process, ρj are the basis
states of our Hilbert space that we inserted into the black box and performed tomography
on, and ρk is the eigenbasis with which we express the resulting experimental density
matrix. Plugging this expression into the equation above, we have∑

k

∑
mn

χmnβ
mn
jk ρk =

∑
k

λjkρk. (7.4)

Since ρk is a linearly independent basis, it follows that
∑

mn χmnβ
mn
jk = λjk. Inverting β

with κ = β−1, we arrive at an expression relating our tomographic measurement record λ

to the process matrix representation χ with

χmn =
∑
jk

κmn
jk λjk (7.5)

where, again, the index j labels the state we test with, k specifies the basis with which we
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Figure 7.12: Process tomography of sudden two-qubit controlled-phase gate. The
plots in (a-b) show the real and imaginary part of the experimentally measured process
matrix χe, while (c-d) show the theoretically calculated χt. The operator basis used is II, IX,
IY, IZ, XI, XX, XY, XZ, YI, YX, YY, YZ, ZI, ZX, ZY, and ZZ. The fidelity of this operation
is given by the dot product tr(χeχt) = 91.6%.

express that state, and m and n are the indices of the χ-matrix and specify the operator
basis of Ei. Code which implements this math can be found in appendix B.

The previous paragraph is necessarily rather abstract, but do not lose sight of the basic
idea. We are simply applying some unknown process to a series of states that span the
Hilbert space, and then, using the fact that quantum mechanics is linear, inferring what
would happen to superpositions of those states. Measuring process tomography is a matter

∗ This paragraph follows pages 390-392 of Quantum Computation and Quantum Information by Michael
Nielsen and Isaac Chuang [68].
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of measuring state tomography many times. In Fig. 7.12, we show the experimental and
theoretical process matrix for a sudden two-qubit controlled-phase gate. The matrix χ

can be complex-valued, depending on the operator basis used, and so we plot both the
real and imaginary parts. Just as with state tomography, process tomography can also
suffer from unphysical errors. For this reason, significant effort has been made recently in
developing more robust and efficient ways to characterize processes [188, 232–236].

7.5 Entanglement on demand

Now that we have the tools of entangling gates and efficient state tomography, we can
demonstrate entanglement. We begin with the simple case of generating entanglement
between only two qubits. The gate sequence for generating a Bell state between Q2 and
Q3 is shown in Fig. 7.13(a). We start by putting both qubits in a superposition of |0〉
and |1〉 with π/2 rotations about the y-axis of the Bloch sphere, with Q1 unused. This
transfers |000〉 → |0〉 ⊗ (|00〉 + |10〉 + |01〉 + |11〉) /2. We then apply a cPhase gate (in
this case, we use the sudden version described above) with the −1 sign set to the |01〉
state, giving us |ψ〉 = |0〉 ⊗ (|00〉 + |10〉 − |01〉 + |11〉) /2. At this point, we are in a
maximally entangled Bell state of the top two qubits, though it is not yet in an easily
recognizable configuration. To achieve that, we finish with a second π/2 rotation about y
on Q3 to give us |Bell23〉 = |0〉 ⊗ (|00〉 + |11〉) /√2 – the canonical Bell state.

We perform state tomography on the result of this procedure, shown in Fig. 7.13(b).
The order of the Pauli correlations emphasizes entanglement. As previously mentioned, the
first three sets, denoted in red, green, and blue, show single-qubit correlations. Note that
while there is a strong (ideally, +1) Z correlation for Q1, there are no nonzero single-qubit
correlations for either Q2 or Q3. This might be an indication that both of those qubits
are in a fully mixed state; however, looking further down the tomogram, we find that
we have strong two-qubit correlations between these qubits (in IXX, IY Y , and IZZ).
This is an unambiguous sign of entanglement between those two qubits: neither qubit has
any individual character, but considered simultaneously with its pair, we observe strong
correlations. We also see that the two-qubit correlations involving Q1 and either Q2 or
Q3 are zero, again reinforcing the idea that Q2 and Q3 cannot be described separately.
Finally, we have three-qubit correlations which are a trivial extension of our two-qubit
correlations plus Q1 in its ground state. The fidelity of this state to the intended state is
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Figure 7.13: Circuit model and state tomography of Bell and GHZ states. In (1)
we show the circuit for preparing a Bell state between Q2 and Q3. Lines between qubit
tracks terminating in circles indicates a controlled-phase gate, with the state receiving the −1
sign indicated adjacent to the line. In (a) we show the Pauli bar tomogram of the resulting
state. Q1 still has a single-qubit Z correlation of +1 because it is in the ground state, but
Q2 and Q3 have no single-qubit correlation since they are entangled. They do have strong
two-qubit correlations, however, which are echoed in the three-qubit correlations. The fidelity
of this state to its target, calculated by taking a dot product of the Pauli bar vector with the
ideal one (including the value of +1 for 〈III〉), is 94%. In (2) we show a circuit to extend
the entanglement to all three qubits, and plot the measured tomogram in (b). The lack of
single-qubit correlations and presence of strong two- and three-qubit correlations indicates
that this is a three-qubit entangled GHZ state. The resulting state fidelity is 88%. (Figure
adapted with permission from [55]. See Copyright Permissions.)
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94%, calculated by taking the dot product of the ideal state vector with the measured
values (including the III bar) and dividing by 8.

To entangle all three qubits, we can extend this procedure with an additional cPhase
gate. As shown in Fig. 7.13(2), we first put all three qubits on the equator of their Bloch
sphere. The state at this point will be an equal superposition of all computational states,
given by

|ψ〉 = (|000〉 + |100〉 + |010〉 + |001〉 + |110〉 + |101〉 + |011〉 + |111〉) /2
√
2.

Performing conditional phase gates between Q2 and Q3 with the conditional phase on
01 flips the phase of |001〉 and |101〉 (since the state of Q1 is irrelevant for that gate),
and the second conditional phase gate between Q1 and Q2 with the phase on 10 flips the
phase of |100〉 and |101〉. The concatenation of these two gates will thus flip |001〉 and
|100〉 only, since |101〉 is flipped twice, yielding

|ψ〉 = (|000〉 − |100〉 + |010〉 − |001〉 + |110〉 + |101〉 + |011〉 + |111〉) /2
√
2.

As in the two-qubit case, this state is already a maximally entangled three-qubit state,
though in this basis it is difficult to see that. Thus, to finish, we apply π/2 rotations
about y on Q1 and Q3, which give us the simple and unambiguously entangled state
|GHZ〉 = (|000〉 + |111〉) /√2. Like the Bell state, this state also has a special name: a
three-qubit Greenberger-Horne-Zeilinger or GHZ state [70] (section 2.1.6).

The presence of three-qubit entanglement is clear when looking at the measured state
tomogram depicted in Fig. 7.13(d). Following the argument we made for the case of
the two-qubit Bell state, we see here that there are no nonzero single-qubit correlations.
There are, however, strong two-qubit ZZ correlations of any pair of qubits. This alone
tells us that all three qubits are entangled with one another. Though they do not point
in any particular direction by themselves, when measured as a group they have a definite
direction. There are also nontrivial three-qubit correlations of XXX, Y Y X, Y XY , and
XY Y , which, as we will see later, are sufficient to witness three-qubit entanglement. The
fidelity of this state to the state we intended to create is 88%.
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Figure 7.14: Calculated separable and entangled state tomograms. We calculate the
density matrices of the states produced by the circuits shown in (a) and (b) and plot their
cityscape density matrices in (c) and (d). The state shown in (c) is separable and the state
in (d) is a maximally-entangled Bell state between qubits 1 and 3, but it is very difficult to
distinguish them in this representation (here ρ is real). The Pauli representation of the same
states, shown in (e) and (f) unambiguously communicates that the first state is separable
and the second entangled because the first has strong single-qubit correlations and few
two-qubit ones, while the second is the opposite. This demonstrates the advantage of the
Pauli representation.



CHAPTER 7. TRIPARTITE ENTANGLEMENT ON DEMAND 211

An aside on the Pauli correlation representation

A big advantage of the Pauli bar representation of a density matrix is the ability to read
off the fact that these states are entangled. We can compare this to the conventional
“cityscape” density matrix representation, where each element of the matrix is displayed
in a 3D bar plot∗. In Fig. 7.14(a-b), we depict circuit diagrams to create two states,
one separable and the other fully-entangled. The first case is the result of applying π/2

rotations around the y-axis to all three qubits and then flipping the phase of the top
and bottom qubits with π rotations around the z-axis. The resulting separable state is
|ψ〉 = |000〉− |100〉+ |010〉− |001〉− |110〉+ |101〉− |011〉+ |111〉. We make the second
state starting with the same initial single-qubit rotations, but then apply a controlled-phase
gate between the top and bottom qubits conditioned on |00〉. In the two-qubit subspace,
this gate has the phases φ10 = φ01 = φ11 = π. In other words, we still apply the same
single-qubit z gates, but add an additional two-qubit rotation around ZZ.

We calculate the density matrix resulting from both of these processes. In Fig. 7.14(c-
d) we show the cityscape representation, plotting each of the elements of ρseparable and
ρentangled, the density matrices for the separable and entangled states respectively. As you
can see, though the two matrices differ slightly, without labels and a lot of careful thought
there would be no way of distinguishing that one matrix was fully entangled while the
other is a separable state. This reflects the fact that this state is pointing along the x-axis,
and is quite complicated when expressed in the z basis. Contrast this representation to
the Pauli bar plots shown in Fig. 7.14(e-f) for the separable and entangled states, which
clearly illustrates the difference. In the first case, all three qubits are pointing in cardinal
Bloch sphere directions (along +x, −x, and +x, respectively); in the second case the
qubits Q1 and Q3 have no single-qubit correlations but have strong two-qubit correlations,
unambiguously identifying the tomogram as of a fully-entangled Bell state of qubits 1 and
3.

This problem is not as extreme when the state can be efficiently written in the z basis.
In Fig. 7.15, we show the density matrices corresponding to the Pauli bar data for the
ground state (from Fig. 7.10[a]), the Bell state between qubits 2 and 3 (Fig. 7.13[a]), and
the GHZ state (Fig. 7.13[b]). Since these states are easily written in the z basis as |000〉,

∗ Both representations contain the same information since ρ =
∑

Ô∈{III...ZZZ}〈Ô〉Ô. To convert in the

opposite direction, we have 〈0̂〉 = tr
(
ρÔ
)
.
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Figure 7.15: Cityscape density matrix representations of experimentally created
states. These are the same states shown in the Pauli representation in Fig. 7.10(a) and
Fig. 7.13(a,b). Entangled states of two z eigenstates show the characteristic four corners of
a square pattern. These density matrices are simple because their states are easily written in
the z basis. (Figure used with permission from [55]. See Copyright Permissions.)

|0〉 ⊗ (|00〉 + |11〉) /√2, and (|000〉 + |111〉) /√2, the cityscape density matrices are not
terribly complicated. Nevertheless, because this symmetry is not necessarily present for any
given quantum state, we strongly favor the Pauli bar representation. This representation
has also been extended to more naturally express process matrices [54], though that
practice has not yet been adopted by Schoelkopf lab.

Why entangle three qubits?

Why is three-qubit entanglement interesting? There are several reasons, but the primarily
one is the prospect of doing error correction. As we saw in section 2.3.4, the most basic
quantum error correcting code requires three qubits. This code starts identically to the
procedure we have just demonstrated, encoding a quantum state in a three-qubit GHZ
state. If we change the rotation axis of the π/2 rotation on Q2, we will create a different
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GHZ state. Defining the angle φ relative to the x-axis of the Bloch sphere (so that
φ = π/2 is the y-axis), preparing Q2 with a π/2 rotation around the axis n̂(φ) will create
the state |GHZφ〉 = (|000〉 − ieiφ|111〉)/√2. The three-qubit codes, of which there are
two distinct types, can protect this encoded state from either bit-flips or phase-flips, and
demonstrate the first principles of quantum error correction. The next chapter in this
thesis will experimentally demonstrate both codes.

With three qubits, we can see the proliferation of distinct classes of entanglement
for the first time, as mentioned in section 2.1.6. With two qubits, any increase of
entanglement meant moving toward the manifold of Bell states. With three qubits,
however, there are two distinct classes of entanglement. The first we have already seen,
the GHZ-like states, whose canonical state is |GHZ〉 = (|000〉 + |111〉) /√2 but span
the space given by any combination of single-qubit rotations on that state. The second
class, known as “W”-like states, are most commonly expressed by the state given by
|W 〉 = (|100〉 + |010〉 + |001〉) /√3, but again span the space of single-qubit rotations on
that state. The GHZ state is considered to be a higher form of three-qubit entanglement.
It exhibits stronger multi-qubit correlations (the W state has some nonzero single-qubit
correlations, for example), measuring any single qubit would project the entire state, and
it is the kind of entanglement necessary for quantum error correction. The W state
is nevertheless distinct, and cannot be transmuted to GHZ class or back with local
operations.

7.5.1 Entanglement witnesses

We can make statements about the type and quality of entanglement we have generated
without needing to know the entire density matrix. These fall under the broad category
of “entanglement witnesses,” the most famous of which are the CHSH (Clauser-Horne-
Shimony-Holt) operators for two qubits [53, 237]. They were originally suggested in the
context of fundamental tests of quantum mechanics like the EPR (Einstein-Podolsky-
Rosen) [1] paradox and Bell’s theorem. Witnesses are operators whose expected values
will never exceed a certain threshold for a separable state, but might if the ensemble
contains entanglement. To be concrete, one of the CHSH operators is given by ĈHSH =

〈XX〉 − 〈XZ〉 + 〈ZX〉 + 〈ZZ〉, which has the property that any non-entangled state
satisfies ĈHSH < 2, while entangled states can reach values as high as 2

√
2. Another

witness is given by Ŵ = (II − XX + Y Y − ZZ) /4, such that tr
(
ρŴ

)
< 0 guarantees
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entanglement [216, 237, 238]. Being expressed as operators, they have the advantage over
other metrics of being linear.

How can we extend witnesses to three-qubit states? The simplest is the state fidelity
to a GHZ-class state. The maximum fidelity of a biseparable state (a state with no more
than two qubits entangled) to any GHZ state is 50%. Any fidelity greater than that value
thus guarantees the presence of some degree of three-qubit entanglement [239]. This
metric also distinguishes between the types of three-qubit entanglement. While either
W or GHZ-class states will exceed a GHZ fidelity of 50%, only states with GHZ-class
entanglement, useful for quantum error correction, can have a fidelity of greater than
75%. Thus, our state fidelity of 88% definitively exceeds both these biseparable and GHZ
bounds. Note that we are free to choose any GHZ-class state for this purpose: we should
exhaustively evaluate the fidelity of our test state to any state on the GHZ manifold and
choose to compare against the largest value we find.

Though the fidelity metric is definitive, obtaining it requires reconstructing the entire
density matrix. (In principle, this is not necessary – perhaps we could engineer our
measurement operator to perform exactly |GHZ〉〈GHZ| – but, for us, that would mean
repeating the GHZ-creation step twice over. This would be a challenge to tune-up
reliably and independently.) It is possible to detect three-qubit entanglement with linear
witnesses, which necessitates fewer Pauli measurements than knowing the full density
matrix. For example, the Mermin sums MS1 = 〈XXX〉 − 〈Y Y X〉 − 〈Y XY 〉 − 〈XY Y 〉
and MS2 = −〈Y Y Y 〉+〈XXY 〉+〈XYX〉+〈XY Y 〉 satisfy |MS1,2| ≤ 2 for all biseparable
states [240]. Notice that the first of these involves the nonzero three-qubit correlations
we found in our GHZ state tomogram; they contain the information in which we are
interested. The second sum contains those bars that are maximal for another GHZ state,
|000〉 + i|111〉.

In order to elaborate on the behavior of these sums, we create a variety of GHZ-
class states. As previously mentioned, we take a cut along the manifold of GHZ states
by changing the initial axis of rotation of the first pulse on Q2. Rotating about the
axis n̂(φ) where φ = 0 is the x-axis and φ = π is the y-axis, we create the state
|GHZφ〉 = (|000〉 − ieiφ|111〉)/√2. This is a maximally entangled GHZ state for all
values of φ, but the values of the three-qubit Pauli correlations change with this angle.
In Fig. 7.16(a) we show the circuit diagram for creating this state, and in (b) show the
fidelity of the resulting state as a function of φ. For all values, the biseparable and W-class
bounds are amply exceeded. We also evaluate the Mermin sums MS1 and MS2 for all
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Figure 7.16: Witnessing entanglement with fidelity and Mermin sum inequalities.
(a) We map

(|0〉 − ieiφ|1〉) /√2 superpositions of Q2 into GHZ-class states |GHZφ〉 =(|000〉 − ieiφ|111〉) /√2 using the circuit shown. The indicated section constitutes the
encoding step of the three-qubit quantum error correcting “repetition” code that will be
discussed in the following chapter. The fidelity of these states F = 〈GHZφ|ρ|GHZφ〉 as a
function of the azimuthal angle φ of the initial π/2 rotation of Q2 is plotted in (b) and has
an average value of 87%. This fidelity far exceeds biseparable and W-class bounds, witnessing
stringent GHZ-class three-qubit entanglement. (c) Evolution of Mermin sums MS1 =
〈XXX〉−〈Y Y X〉−〈Y XY 〉−〈XY Y 〉 and MS2 = −〈Y Y Y 〉+〈XXY 〉+〈XYX〉+〈XY Y 〉
as a function of φ. Allowed values for quantum and biseparable states are labeled. For all
values of φ, at least one of the sums exceeds the biseparable bound. For (b) and (c), the
solid lines result from a master equation simulation including only qubit decay during the
81 ns pulse sequence. The fact that it predicts a similar fidelity to our experimental result
suggests that pure dephasing and other errors are small contributions to infidelity. (Figure
used with permission from [55]. See Copyright Permissions.)
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Figure 7.17: Witnessing three-qubit entanglement with Mermin product inequalities.
The values of the Mermin products MP1 = 〈XXX〉〈Y Y X〉〈Y XY 〉〈XY Y 〉 and MP2 =
〈Y Y Y 〉〈XXY 〉〈XYX〉〈Y XX〉 are plotted as a function of the angle φ of the prepared
state |GHZφ〉 =

(|000〉 − ieiφ|111〉) /√2. The most negative value measured, −0.52±0.05,
violates the biseparable and LHV bound of −1/16 by 830±80%. The solid lines are the result
of a master equation simulation that includes qubit relaxation during the pulse sequence.
(Figure used with permission from [55]. See Copyright Permissions.)

angles, shown in (c), and exceed the biseparable bound of at least one of the sums for all
φ. It should be clear that although we defined only two Mermin sums, it is possible to
create a MSφ, which is maximally violated for each value of φ. |MS1,2| ≤ 2 also defines a
local-hidden-variable (LHV) bound in the same way as the Bell test, which our extremal
value of 3.4 ± 0.1 violates by 14 standard deviations [241]. However, we cannot refute
local realism because we are not free of detection loopholes [242].

Figure 7.16(c) clearly demonstrates one downside of the Mermin sums: for most of
its allowed range of values, a sum will not distinguish between classical behavior and
quantum behavior. Formally, this indicates that for three qubits, the biseparable range
significantly overlaps with the quantum range. We can compress this overlap by using
a nonlinear metric, amplifying three-qubit correlations that are due to entanglement.
We define the Mermin products MP1 = 〈XXX〉〈Y Y X〉〈Y XY 〉〈XY Y 〉 and MP2 =

〈Y Y Y 〉〈XXY 〉〈XYX〉〈Y XX〉, which are a function of the same correlations as the
Mermin sums. For these metrics, we found through numerical exploration that biseparable
states obey −1/16 ≤ MP1,2 ≤ 1/64, which is small compared to the range spanned by
three-qubit quantum states, −1 ≤ MP1,2 ≤ 1/16 [55]. The LHV range for the Mermin
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products is −1/16 ≤ MP1,2 ≤ 1. Thus we see the advantage of the product over the
sum: whereas for the sum the range for LHV states was fully inside the range for quantum
states, the product values only overlap for |MP1,2| ≤ 1/16. Figure 7.17 shows the result
of evaluating this product. The most negative value we find is −0.52 ± 0.05, which is
distinguished from the biseparable and LHV bounds by 830 ± 80%. As with the Mermin
sum, at least one of the products falls outside the compatibility region for all values of φ.

7.6 Conclusion

This chapter focused on methods to create and measure entanglement. We introduced a
four-qubit cQED device that we will continue to study in the next chapter. That device
features flux bias lines to tune qubit frequencies in-situ, but they require calibration to
work effectively. We used this flux control to implement two versions of a controlled-phase
two-qubit entangling gate. These employ an avoided crossing with a non-computational
state, which is approached either adiabatically or suddenly. We then introduced how
to perform state and process tomography efficiently by taking advantage of the joint
measurement operator to extract multi-qubit correlations. Finally, we demonstrated both
two- and three-qubit entanglement and calculated entanglement metrics to detect the
presence of high-quality entanglement. As we will see in chapter 8, all of these tools and
techniques are directly extendible to implementing three-qubit quantum error correction.





CHAPTER 8

Quantum Error Correction with cQED

This chapter explains how we have implemented the most basic form of quantum error
correction in a cQED device. Though this demonstration has been done before in NMR

[243–246] and trapped ions [30, 247], this was the first realization in the solid state. We
perform the quantum repetition code that was introduced in section 2.3.4, implementing
the measurement-free version because we do not yet have the ability to individually measure
and feed-forward ancilla states. As we saw, the key to this code is the three-qubit ccNOT
or Toffoli gate, which coherently reverses an error on the primary qubit after decoding.
Though this gate can be constructed with four of our existing cPhase gates, we instead
implement a faster version using the higher level structure of the transmon qubits. Our
gate uses both adiabatic and sudden interactions, leveraging our understanding of the two
cPhase gates that we have discussed previously. In the first half of this chapter, we will
detail how our gate works and is tuned up before verifying its action with both state and
process tomography.

We combine this gate with our ability to create GHZ-like states to implement quantum
error correction in the second half of the chapter. After encoding an arbitrary quantum
state into the three-qubit manifold using the GHZ circuit, we apply intentional bit-rotation
errors to one of the qubits. We then reverse the encoding step, correct the errors with the
Toffoli gate, and perform state tomography on the output to verify our success. We also
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demonstrate phase-flip error correction, which only requires a small change to the bit-flip
code. To more realistically evaluate its performance, we apply errors on all three qubits
simultaneously with some effective probability. The signature of success is a quadratic
dependence of the fidelity of the final quantum state on this error probability, which
unambiguously verifies that errors are being corrected as expected.

8.1 Toffoli gate

As shown in section 2.3.4, the key ingredient to the autonomous three-qubit QEC code is
the Toffoli gate which implements the correction. This operation, which is also known
as the controlled-controlled-NOT or ccNOT gate, acts on a manifold of three qubits
simultaneously and is therefore a three-qubit gate. In addition to QEC, this gate is
important for a variety of applications such as Shor’s factoring algorithm [14]. For that
reason, it has attracted significant experimental interest with recent implementations in
linear optics [248], trapped ions [249], and superconducting circuits [232, 250]. Though
we have not yet encountered such a gate in this thesis, since the combination of the
cPhase gate and single-qubit rotations is universal, we know that we can directly construct
a Toffoli gate from techniques already established. One possible construction is shown
in Fig. 8.1, comprised of six cNOTs. (We could equivalently use cPhase gates here, with
appropriate changes to the single-qubit rotations.) We can optimize this gate for the
purpose of autonomous error correction by taking advantage of the fact that the code
calls for two of the qubits to be measured or reset at the end of the operation. Thus, any
spurious entanglement between the ancillas is harmless and need not be corrected. This
freedom enables us to make a smaller construction using only four cNOTs, also in Fig. 8.1
by omitting the red gates (which involve only the top two ancilla qubits) and swapping
the bottom corner of the resulting unitary matrix with diag{−i, i}.

Even this optimized pseudo-Toffoli takes quite a long time, however. If we assume the
cPhase gates take 18 ns and the single-qubit rotations 12 ns (including 2 ns of padding
for each), it requires at least 130 ns. This is quite intimidating, given that the coherence
times for these qubits were less than 1 μs and including the cost of making and unmaking
a GHZ state to perform the error correction code. Can we do better? While it has been
proven that a six-gate Toffoli is the shortest possible construction using cNOT gates [251],
that fortunately only applies to two-level qubits. We can potentially use the higher level
structure of the transmon qubits to engineer a more efficient gate.
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Figure 8.1: Construction of the ccNOT gate with cNOT gates. The three-qubit
Toffoli gate necessary for autonomous quantum error correction can be constructed out of
two-qubit cNOT gates. The full construction requires at least six cNOT gates and eight
single-qubit rotations [251]. This can be reduced to four of each by utilizing the fact that we
have quantum error correction in mind, so spurious two-qubit phase entanglement between
the ancilla qubits is inconsequential. The resulting unitary matrix is shown for the two cases,
with a red dashed area that indicates the result if we employ our QEC optimization. In our
system, the cNOT gates would be implemented with cPhase gates, but that does not change
the cost of the gate since the single-qubit rotations associated with mapping cPhase to cNOT
can be compiled with the existing ones.

How might we expect such a gate to work? We found in the last chapter that a
conditional interaction is produced by an avoided crossing between exactly one of the
computation states (|11〉) and a non-computational higher-excited state (|02〉). Energy
conservation and selection rules dictate that this interaction is very strong when both
qubits were excited but non-existent for any other basis state. The same reasoning applies
for a three-qubit gate: an interaction that affects a single basis state of the three-qubit
manifold is conditional on all three qubit states. Moreover, we know that this interacting
state must be triply-excited. If we interacted |111〉 with a lesser state like |102〉, that
interaction would be exactly symmetrical with |011〉 and |002〉, and would merely yield a
two-qubit interaction.
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8.1.1 Efficient Toffoli using higher levels

Here we will show how we used exactly that interaction of |111〉 with |003〉 to build
an efficient Toffoli-sign gate. This gate, also known as the controlled-controlled-Phase
or ccPhase, is related to the Toffoli by single-qubit rotations, just as the cPhase is to
the cNOT. We must discuss two major complications in getting it to work. The first
complication is that the direct interaction of these two states is extremely weak. There is
no coupling of |111〉 to any state that changes its excitation by more than one to first order
(e.g. there are strong interactions with states like |201〉 but not with |300〉). Higher-order
terms do enable some coupling, but will be less than 1 MHz and too slow to be useful. In
section 8.1.3, we will see the signature of this interaction and will verify that it is indeed
tiny. To avoid this, we begin by swapping the quantum amplitude of the state |111〉 into
|102〉, and, because the state of Q1 is irrelevant, |011〉 to |002〉. The |102〉 state has
a large avoided crossing with |003〉 that we use to generate our three-qubit conditional
phase. We then reverse the swap to transfer back to the computational space.

The second complication is that a three-qubit phase gate has seven independent
parameters, four of which are due to nontrivial multi-qubit interactions. We can see
this by generalizing the notation that we introduced for the case of a two-qubit phase
gate. We distinguish between types of phases, again mapping singly-excited states like
|100〉 to eiφ100 |100〉 and doubly-excited states like |110〉 to ei(φ100+φ010+φ110)|110〉, the
latter of which has the conditional phase φ110, as seen with two-qubit gates. One
difference here, however, is that there are three independent two-qubit phases between
each pair of qubits (φ110, φ101, and φ011), so |101〉 maps to ei(φ100+φ001+φ101)|101〉, with
a phase linearly independent from the others. Finally, there is also a three-qubit phase
φ111 that is conditional on all three qubits being excited, so that the state |111〉 maps
to ei(φ100+φ010+φ001+φ110+φ101+φ011+φ111)|111〉. We can summarize this by saying that any
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three-qubit phase gate can be written in the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 eiφ100 0 0 0 0 0 0

0 0 eiφ010 0 0 0 0 0

0 0 0 eiφ001 0 0 0 0

0 0 0 0 ei(φ100+φ010+φ110) 0 0 0

0 0 0 0 0 ei(φ100+φ001+φ101) 0 0

0 0 0 0 0 0 ei(φ010+φ001+φ011) 0

0 0 0 0 0 0 0 ei
∑

φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where we have again factored out the global phase, order of states as |000〉, |100〉, |010〉,
|001〉, |110〉, |101〉, |011〉, and |111〉, and

∑
φ = φ100+φ010+φ001+φ110+φ101+φ011+φ111.

Thus, in order to fully tune-up our gate, we need to engineer an interaction that will
provide us with the correct three-qubit phase in addition to allowing us to control two-qubit
phases as necessary.

This section will explain each component of implementing a three-qubit Toffoli-sign
gate. We start by discussing how the three-qubit phase is generated by first transferring
population from |111〉 into |102〉. We perform this transfer suddenly, which requires certain
tricks to compensate for technical limitations. We next explain how the three-qubit phase
is adiabatically acquired by bringing |102〉 near in energy to |003〉. We then reverse the
swap and return the population of |102〉 back to |111〉, after which we show how to
control two of the two-qubit phases (that being enough since we can choose to ignore the
remaining two-qubit ancilla phase). We report the resulting pulse sequence and discuss
how to measure and verify each of the phases. Finally, state and process tomography is
shown, proving that the gate works as intended.

8.1.2 |111〉 → |102〉 transfer

We aim to use the interaction of |111〉 with |003〉 to generate a three-qubit phase. But,
because of selection rules, the direct coupling between these states is first-order prohibited
and is therefore extremely slow. Instead, we first swap the quantum amplitude of |111〉
into the non-computational state |102〉, which interacts strongly with |003〉. Since this
transfer does not involve the state of Q1, it will also swap |011〉 into |002〉. In Fig. 8.2(a),
we show the calculated energy levels in the vicinity of the avoided crossing of these two
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Figure 8.2: Calculated spectrum and time-domain measurements of the |111〉 ↔
|102〉 avoided crossing. The energy spectrum of doubly-excited states in the vicinity
of the avoided crossing between |011〉 and |002〉 is shown with both (top) a numerical
diagonalization of the system Hamiltonian and (bottom) a time-domain measurement as
a function of the applied magnetic flux on Q2. (top) The frequencies for the involved
eigenstates are blue and the non-interacting eigenstates of similar energy are gray. The
notation |abc〉 ⊗ |d〉 indicates respectively the excitation level of each qubit and the cavity
photon number. When omitted, d = 0. (bottom) The state |011〉 is prepared and a square
flux pulse of duration t and amplitude V2 is applied. Coherent oscillations produce a chevron
pattern, with darker colors corresponding to population remaining in |002〉. This crossing is
identical to that between |111〉 and |102〉, aside from a 6 GHz offset since Q1 is not involved
in the interaction. (Figure used with permission from [201]. See Copyright Permissions.)
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states as we move the frequency of Q2 up toward Q3. Using Mathematica, we numerically
diagonalize the Hamiltonian given by Eq. 3.51, where we include six quantum states of
the three transmons and the cavity. The parameters of the Hamiltonian were set with
independent experiments. The two states we are concerned with – |111〉 and |102〉 – are
colored in blue; states which are nearly degenerate but irrelevant because they do not
couple to any populated level are colored in gray.

This spectrum suggests two methods for transferring our population. Since the identity
of |111〉 transmutes into |102〉, we could potentially transfer our population with a full
adiabatic passage. However, the splitting size of these states is relatively small at only
67 MHz, which means that the adiabatic transfer would take ∼ 3/(67 MHz) ≈ 50 ns

each way, for a total of 100 ns round trip. As this is only the process by which to begin our
gate, and given that we are competing against the four cNOT construction which takes
approximately 130 ns, clearly this approach will not yield the sought after improvement.

Fortunately, there is a second method for transferring population: the sudden approach.
In Fig. 8.2(b) we show swap spectroscopy in the vicinity of this crossing. As described
in the previous chapter, we first initialize in the state |011〉 and then suddenly tune its
energy to a certain value by adjusting the frequency of Q2. Because this move is made
suddenly, |011〉 is no longer in an eigenstate and our state’s projection oscillates between
the undressed eigenstates. After waiting some time t, we suddenly move back to our home
position, pulse |011〉 → |000〉, and measure. If we had transferred some population to
|002〉 during our waiting time, our measurement will give a large value (black pixels); if
not, we will be in the ground state and get a small value (white pixels). (Note that we
subtract the average of each vertical cut, so the color scale is not an absolute indication
of state. Near the avoided crossing, the black/white |002〉/|000〉 mapping is correct, but
away from it blue corresponds to the ground state.) If we jump in, wait until our population
oscillates fully into |002〉, then jump away in either direction, we will have swapped our
entire population from |011〉 into |002〉. (For the purposes of this gate, we want to move
further up in frequency to get Q2 out of the way of Q1, which will need to be increased in
frequency to turn on our |102〉 � |003〉 interaction.) Moreover, this transfer is very fast,
taking 1

2
1

67 MHz
≈ 7 ns. This is a huge improvement over the adiabatic case and preserves

the possibility of making gate which is faster than the constructed one.
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Figure 8.3: Eigenstate transfer verification test. (a) A sequence to test the efficacy of
the transfer of |011〉 → |002〉 using a sudden flux pulse is shown. The state |011〉 is first
initialized with π pulses on Q2 and Q3. The frequency of Q2 is then tuned with a square
flux pulse which moves the state directly into resonance with |002〉 for 7 ns. This transfers
the projection of the quantum state from |011〉 to |002〉, which we lock in by moving Q2

further up in frequency, away from the interaction. We wait for some time at this higher
frequency and then reverse the swap with a symmetrical flux pulse, rotate |011〉 back to
the ground state with two π pulses, and measure. (b) If the transfer was successful, this
process should fully return the qubit manifold to its ground state. However, if the transfer
was incomplete and we were really in a superposition of states during our hold time, the
relative phase will evolve and we will see oscillations as a function of time. We see that, when
preparing the state |011〉, there is a substantial oscillation due to incomplete transfer. We
compare this to the case of a Rabi oscillation on Q1 and Q2 simultaneously (both qubits are
being pulsed, which is why the oscillation is not sinusoidal) to calibrate the y-axis. There is
an oscillation of approximately 5 − 10% of the full measurement amplitude, which indicates
that the transfer is imperfect. We also plot the case of preparing |010〉, which also exhibits
oscillations because it is non-adiabatic to the J crossing between Q2 and Q3.
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Correction for finite bandwidth

Our intent to transfer in 7 ns does warrant some cause for alarm. The Tektronix AWG
we use to generate our flux pulses has a bandwidth of about 300 MHz, so we cannot
expect the rise time of any flux pulse to be much faster than 2 − 3 ns. The flux pulse
which we intend to be square will in fact have rounded edges and will not be perfectly
sudden. This error will cause us to leave behind population in |011〉, which we can test for
by performing a modified version of swap spectroscopy. As shown in Fig. 8.3(a), we first
perform the transfer of |011〉 to |002〉 and leave Q2 positively detuned from the avoided
crossing, then wait for some varying amount of time. We next undo the transfer with a flux
pulse that exactly mirrors the first, and finally, we apply pulses to map |011〉 → |000〉 and
measure. If we are fully transferred to our target state, we will be in an eigenstate at our
waiting point, and thus should see no evolution as a function of the waiting time. However,
if our transfer is incomplete and we are in a superposition, the phase between the two
states will evolve, modifying the reverse process and yielding oscillations. This is shown
in Fig. 8.3(b). There, we also show the case of preparing the state |010〉, which itself
approaches an avoided crossing with |001〉 to which we must be adiabatic. We compare it
to the contrast of a |000〉 � |011〉 Rabi oscillation and find that the size of the oscillation
is fairly substantial – almost 10% – which we must mitigate.

Fortunately, a simple theoretical procedure exists to deal with a finite transfer speed.
Consider a test Hamiltonian Ĥ = 1

2
(Δσz + gσx). Our goal is to transfer the population of

the lower eigenstate to the upper eigenstate using a finite-length pulse, starting from a large
negative detuning and ending at some finite positive detuning. We begin by adiabatically
moving to a position at which we are symmetric about the avoided crossing relative to
our final position. That is, if we call our final position F , which has energy EF , we want
to move to an intermediate position I, such that EI = −EF (E = 0 for Δ = 0). Note
that while we must make this first movement adiabatically, if F is sufficiently distant from
Δ = 0, we can be very fast and still satisfy that condition (given that our speed limit
there is set by Δ, not g). Second, we move as quickly as possible to exact resonance,
taking time ts. (Our fast movement saved time, though this is not a necessity.) At this
point, we visualize the two states of the basis at I on the Bloch sphere, and have slightly
rotated from the north pole in some direction due to our non-sudden trajectory. This small
rotation is directly accountable for the error that we are trying to correct.

At this point, our goal is to wait for a period of time τ that will bring the qubit to the
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equator of this pseudo-Bloch sphere. How much and in what direction our non-sudden
trajectory has rotated the qubit determines the amount of time we need to wait. In
resonance, the Hamiltonian acts as σx but our erroneous initial rotation could go in any
direction. In fact, during the sudden transfer we would expect extremely rapid changes
in the axis of rotation as the eigenstates change and phase is acquired between them.
Therefore, τ is a sensitive function of the qubit’s exact trajectory into the avoided crossing.
If it happened to rotate about σy, τ will be given by exactly 1/g, but will be reduced by
any component of the rotation around σx

∗.
Assuming that we have calculated or can experimentally determine τ , we want to wait

for 2τ to bring the qubit to a point mirrored across the x − y plane of the Bloch sphere.
We then move as fast as we can to the final position F , which will perfectly complete our
population transfer. The reason this should be perfect is because of the symmetry that we
have enforced at t = ts + τ , where we have moved to the equator of the Bloch sphere.
Since the avoided crossing is exactly symmetrical with respect to Δ = 0, if we start in
an eigenstate at point I and get to the equator of the Bloch sphere halfway through
our transfer, then by symmetry we know that we will also be at an eigenstate at point
F , regardless of the specific trajectory we took to get there. The total transfer time is
2 (ts + τ).

In the experiment, we lack the time resolution necessary to fine-tune the wait duration
as prescribed above. However, we can consider this to be theoretical guidance for searching
for a more easily-implemented mitigation scheme. We have found above that the specific
trajectory we take through the avoided crossing can have significant consequences for the
final state. We thus suggested finding a specific time to match our trajectory. However,
in principle, we could choose a trajectory to match our waiting time just as well. Thus,
we hold constant the amount of time we sit in the crossing, but slightly tweak the path
through which we go. Specifically, while above we jumped directly into the crossing for
exactly 7 ns, let us instead jump to some different position relative to the crossing for 1 ns,
then jump into resonance for the remaining 6 ns. That position for the first nanosecond is
a free parameter that we can adjust to minimize the oscillation we see in our modified swap

∗ If we moved into the avoided crossing adiabatically we would have moved to a location on the Bloch
sphere corresponding to being an eigenstate of the σx operator, and therefore would not move from that
point during the waiting time. But if we are able to move in adiabatically, we can simply repeat that
path on the other side and accomplish the transfer. Our goal is to be at an eigenstate at the end of the
transfer; being one at every point during the process is a sufficient but not necessary condition.
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Figure 8.4: Eigenstate transfer verification test with pulse shaping. (a) To mitigate
the imperfect state transfer of |011〉 → |002〉, we fine-tune the trajectory we take approaching
this avoided crossing. We leave the first DAC value of the pulse as a free parameter which
we sweep to minimize the amplitude of oscillation following a repetition of the experiment,
as described in Fig. 8.3(a). The flux pulse is symmetric, and uses the same fine-tuned
parameter for both directions of transfer. (b) We show the resulting oscillation amplitude for
preparations of |011〉 and |010〉, just as with Fig. 8.3(b). Below, we zoom in on the oscillation
of |011〉 and compare it to the data from Fig. 8.3(b), showing a substantial reduction of the
oscillation amplitude.
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Figure 8.5: Calculated spectrum and time-domain measurements of the |102〉 ↔
|003〉 avoided crossing. The spectrum of triply-excited states showing the avoided crossing
between |102〉 and |003〉 as a function of the flux bias on Q1 is characterized in the same
way as in Fig. 8.2. |102〉 is prepared by first making |111〉 and then performing the swap
as described in Fig. 8.4. As before, the relevant eigenstates are highlighted in blue. Many
additional eigenstates (shown in gray) are close in energy but are irrelevant because they
do not interact with the populated states. The large avoided crossing between |102〉 and
|003〉 that is used to produce an adiabatic three-qubit interaction happens near 28 mΦ0.
Extra lines near 31 mΦ0 and 29 mΦ0 are due to higher-order interactions predicted by the
Hamiltonian (|102〉 with |030〉 and |003〉 with |111〉), as is the larger first-order interaction
at 25 mΦ0 (|102〉 with a hybridization of |021〉 and |111〉), but their impact on the gate
protocol is negligible. (Figure used with permission from [201]. See Copyright Permissions.)

spectroscopy sequence. We show this exact result in Fig. 8.4, thus reducing the amplitude
of spurious oscillation by a factor of three with this simple modification. Additionally, this
change does not worsen the non-adiabaticity of the |010〉 state approaching |001〉.
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8.1.3 |102〉 � |003〉 interaction

Now that we are able to efficiently transfer |111〉 into |102〉, we can turn on the interaction
with |003〉 to acquire three-qubit phase. We show the energy levels in the vicinity of the
|102〉 ↔ |003〉 avoided crossing in Fig. 8.5(a), calculated, as before, with a numerical
diagonalization of the system Hamiltonian. We highlight the relevant states, |102〉 and
|003〉, in blue. In contrast to the previous plot which showed states with only two
excitations, there is now a vast proliferation of nearly-degenerate states, shown in gray.
We label each state. Note how the slope of each line is approximately proportional to the
excitation of Q1 (the qubit being tuned). Several of these states have finite coupling to
our populated states, though the coupling is high-order and therefore very weak.

We can demonstrate the coupling, as before, with swap spectroscopy. We prepare
the state |102〉 following the procedure we worked out in the previous section. After we
have moved to the final position F of Q2, we suddenly move Q1 up in frequency, wait
some time, flux back, undo the preparation of |102〉, and measure. If our state leaks into
some other eigenstate during the wait time, our process mapping |102〉 → |000〉 at the
end will not address that population and our measurement will indicate that the qubit
manifold is excited. In Fig. 8.5(b) we show the result of performing this measurement
over the same range as (a). The primary feature is a large avoided crossing at 27.5 mΦ0,
which corresponds precisely with the location of where we expect |102〉 and |003〉 to be
in resonance. The splitting is extremely large, at 121 MHz. The size of this crossing is
also reflected in the asymmetry of the coloring: the contrast on the lower-frequency side is
smaller than on the larger-frequency side because we are more sudden the further we jump.

We see several other features in the swap spectrogram. At 25 mΦ0 we have another
fairly large (∼ 35 MHz) crossing, corresponding to an interaction between the state |102〉
and a hybridization of |021〉 and |111〉. This region is clearly very complicated, given
the simultaneous interaction of several states. Moreover, because we are not completely
sudden to the crossing of |102〉 and |003〉, |102〉 is likely not fully populated at this point.
The contrast of that chevron will be reduced by the fraction of population not in |102〉,
though the frequency and location of the oscillation will be unchanged. We also see three
more faint lines, with two near 31 mΦ0 and the third at 29 mΦ0. These correspond to
interactions of |102〉 with |030〉, the residual population of |111〉 with |200〉 ⊗ |1〉 (the
second excited state of Q1 plus one photon in the cavity), and |003〉 with |111〉.

The fact that these last two interactions are visible is a bit surprising. In the first



CHAPTER 8. QUANTUM ERROR CORRECTION WITH CQED 232

case, this is present only because some population must have been left in |111〉. This
indicates that our transfer to |102〉 was not perfect, though we already knew this from the
finite contrast of the oscillation in Fig. 8.4. That contrast is only a few percent of the full
readout voltage, which shows that our swap spectroscopy sequence is extremely sensitive
and indicates that any place where we do not see a line is truly free from interactions. The
second oscillation, |003〉 with |111〉 tells us something interesting as well. For one, we are
only sensitive to this crossing because of the small population that we have erroneously
left in |111〉. Secondly, the smallness of this crossing confirms our original contention that
the direct interaction of |111〉 and |003〉 is weak and that the intermediate swap to |102〉
is required. Note that though it appears as if we have approximately one-half oscillation in
70 ns, this is again merely an artifact of the way we normalize these data (subtracting the
average from each horizontal cut). While a half-oscillation would indicate the splitting is
approximately 7 MHz, in reality the coupling strength is a great deal less than that.

Getting good correspondence between the numerical diagonalization and swap spec-
troscopy data requires some work. The relationship between qubit frequency and flux pulse
amplitude must be calibrated. Qubit frequency is not directly proportional to flux because
the qubits have a finite maximum frequency; ω01 is proportional to

√|cos (Φ/Φ0) |. The
numerical diagonalization’s x-axis must be transformed by the inverse of this function. We
accomplish this by using “flux spectroscopy,” whereby we move the qubit to some location
with fast-flux and then send in a short spectroscopy pulse at some frequency, and then
measure. The qubit will be populated when our pulse is on resonance with the transient
qubit frequency, which allows us to map out the voltage-frequency relation. Fitting those
data to a

√|cos (V/V0 + φ) |, we can invert that function and transform the x-axis. This
process is also used in Fig. 8.2, but is less noticeable because there is only one avoided
crossing.

We also need to include accurate values of all the Hamiltonian parameters in our model.
In particular, the frequency of the cavity and all the qubits’ maximum frequencies, the qubit
frequencies during the gate (e.g. where Q2 and Q3 end up after the |102〉 transfer), and all
of the qubit anharmonicities and cavity coupling strengths are required. We independently
measured these values with conventional and flux spectroscopy and input them into the
model. We see excellent agreement with the first four avoided crossings, though there is
some small aberration with the one at 25 mΦ0. This may be due to small errors in our
system parameters or due to the presence of higher modes of our cavity which were not
included in the model. We could fine-tune the parameters to correctly fit all the locations,
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but that process is a bit unscientific. Nevertheless, the quality of correspondence indicates
that our simple Hamiltonian accurately models the system even for these relatively highly
excited states.

Now that we have mapped out the flux spectrum of the |102〉 state, it is straightforward
to acquire three-qubit phase. We adiabatically move Q1 up in frequency to move |102〉
close to resonance with the |003〉 state. As in the case of the adiabatic two-qubit gate,
|102〉 experiences a frequency shift relative to its constituents (|100〉 plus |002〉) due to
the avoided crossing, thus yielding three-qubit phase. In principle this phase could also be
acquired suddenly, but the size of the avoided crossing is too large for our room temperature
electronics to approach. Moreover, the large size makes an adiabatic approach both easy
and fast. We can acquire π three-qubit phase in only 20 ns, tuning with the location of
the closest approach. We might also be concerned that being adiabatic would give us
problems with the three spurious avoided crossings we found along the way. Fortunately,
however, these are so small that even while we are adiabatic to |102〉-|003〉, we will be
sudden to these other interactions, making them wholly irrelevant.

8.1.4 Two-qubit phases

We have now seen how the combination of a sudden transfer to |102〉 and an adiabatic
interaction with |003〉 can give us full control over the three-qubit phase φ111. But, as we
discussed in section 8.1.1, there are three more two-qubit phases that describe a three-qubit
phase gate. These phases, φ101, φ011, and φ110, must be dealt with as well. Fortunately,
because we reset or measure the ancilla qubits at the end of the QEC code, conditional
phase between those qubits does not matter. Moreover, the code is entirely symmetric
with respect to the qubits until the correction step (and with the exception of the very first
single-qubit pulses), so we can use whichever two qubits are most convenient for ancillas.
For reasons that will soon become clear, we choose Q1 and Q3. Thus, the value of φ101 is
inconsequential and we need only to control φ011 and φ110.

In order to tune-up the remaining two phases, we need to find a location where we will
very rapidly acquire the relevant two-qubit phase so we can control it by changing some
parameter by a small amount. It is important that this small adjustment does not change
the other two- or three-qubit phases significantly. Otherwise, it would be difficult to find
a location where all of our conditions are simultaneously satisfied. That is, we might be
able to get φ110 = 0, but then find that φ111 �= π, so we tune that back up, but then
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φ110 might be wrong again, and so on. While this process may eventually converge with
sufficient iterations, it would be time consuming and laborious.

To our great fortune, there is automatically such a point in this gate where the phase
φ011 is acquired rapidly. After we have transferred the population of |011〉 to |002〉 and
|111〉 to |102〉, we move to a point positively detuned from that crossing, where the
transition frequency of Q2 is even closer to Q3. At that point, the state |x11〉 is detuned
from |x02〉 (x = 0, 1) by approximately 100 MHz, and so the phase φ011 is wrapping
extremely rapidly. While we do not necessarily have much freedom to control the amount
of time we wait at this location (the minimum time is set by making φ111 = π and
we would not want to wait any longer than necessary), we do have a large amount of
freedom in choosing the exact frequency to which we tune Q2 (using the language of the
previous subsection on finite bandwidth, we are choosing the location of point F ). By
finely adjusting this, we change the difference in the energy of |x11〉 and |x02〉 and so
control the conditional phase. Moreover, since we acquire φ111 adiabatically, this change
doesn’t do much to the other two conditional phases. Therefore, it is fairly insensitive to
the exact location of the |102〉 − |003〉 avoided crossing; Q1 need not get very close to
Q2 during the process and so will not interact strongly.

We are not quite as lucky in regard to the remaining phase φ110. The qubits Q1 and
Q2 are only close together when we are acquiring three-qubit phase, so we cannot fine
tune their interaction there independently. Instead, we must append an extra controlled
interaction between these qubits to control their mutual phase. In principle, we could do
this correction suddenly by going on a revolution at the exact detuning from the avoided
crossing that cancels the spurious phase (as described in section 7.2.2); in practice, however,
this is too much trouble since we would need to choose a different pulse detuning and
duration every time φ110 changes, which it does frequently during the tune-up process.
We instead perform this interaction adiabatically so we can adjust the phase by simply
changing the minimum detuning between Q1 and Q2. Since the uncorrected phase φ110

turns out to be small, we can save time by performing a π pulse on Q2 prior to the adiabatic
interaction, so the phase evolves in the opposite direction and we need not phase-wrap.
At this point, it is clear why we chose to ignore the φ101 phase. Those two qubits are not
nearest-neighbors so bringing them close to each other to control their conditional phase
would inexorably cause large changes in the other conditional phases.
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8.1.5 Pulse sequence and the cRamsey phase tune-up procedure

We now have all the ingredients of the efficient Toffoli-sign gate. Before we continue,
let us briefly recap our decisions thus far. The gate is initiated by suddenly transferring
|011〉 to |002〉 and |111〉 to |102〉 with a flux pulse on Q2. The first nanosecond of the
transfer is fine-tuned to compensate for our finite control bandwidth and time resolution.
We then wait in the state |102〉, and choose the location of Q2 during this time to set the
first of our two-qubit phases φ011 = 0. Simultaneously, we move Q1 up in frequency to
bring the state |102〉 close to an avoided crossing with |003〉. This causes the energy of
|102〉 to diverge from the sum of its components, |100〉 and |002〉, giving us a three-qubit
conditional phase. We tune this to equal π by adjusting the time and the detuning of
this pulse. Moving Q1 back to its home position, we then reverse the swap, dumping the
amplitude of |102〉 back into |111〉 (and |002〉 back to |011〉). Finally, we perform a π

pulse on Q2 and adiabatically move Q1 up to bring the states |11x〉 close to resonance
with |02x〉, thus fixing the φ110 conditional phase. A cartoon depicting the resulting pulse
sequence is shown in Fig. 8.6.

Looking at the pulse sequence, it is clear that there are quite a few parameters that
we need to experimentally measure in order to perform this gate. First of all, we need
to know precisely what voltage we must apply to our flux line to bring the |111〉 state
into resonance with |102〉 as well as approximately how long we need to wait to efficiently
transfer our quantum amplitude. Swap spectroscopy is the best way of doing this, as was
previously shown in Fig. 8.2. We also need to fine-tune the transfer to |102〉, which is
done by repeatedly measuring the oscillation in population while waiting at position F , as
shown in Fig. 8.4. We also measure swap spectrograms for all other computational state
preparations as a function of the frequency of Q2 to make sure there aren’t any unknown
interactions that are approaching. We also need to approximate the distance we need to
move Q1 up to acquire three-qubit phase, and verify the absence of any extra crossings
that affect our other basis states. To do this, we again perform swap spectroscopy for the
|111〉 state, as shown in Fig. 8.5. In principle, we have now proven that we can acquire
three-qubit phase, though we still need to work out how to go about measuring it and
other conditional phases.

How do we measure these conditional phases? In the previous chapter, we mentioned
that a modified Ramsey oscillation can be used to measure the conditional phase between
two qubits. In this sequence, we prepare one of our qubits along the equator of the Bloch
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Figure 8.6: Toffoli-sign pulse sequence. The frequency of each qubit as a function of
time during our efficient Toffoli-sign gate is shown. Q2 is first moved up to transfer the
quantum amplitudes of |111〉 → |102〉 and |011〉 → |002〉. The final waiting position is
chosen to tune-up the two-qubit phase between Q2 and Q3. Q1 is then moved up in frequency
to adiabatically approach the |102〉 ↔ |003〉 avoided crossing. At that point, we acquire
three-qubit phase. Afterwards, the swap is reversed, returning all quantum amplitudes to the
computational basis. Finally, we apply a π pulse to Q2 (not shown, happening at t = 36 ns)
and perform an adiabatic cPhase gate between Q1 and Q2 to correct their two-qubit phase.
(Figure adapted with permission from [201]. See Copyright Permissions.)

sphere and the other qubit in either its ground or excited state. Next, we apply the gate, do
a second π/2 pulse about a varying angle on the first qubit, return the second qubit to the
ground state, and measure. We get two sinusoidal oscillations that will be offset from one
another by the exact two-qubit conditional phase φ11. How do we see that? First, consider
the Ramsey oscillation when the second qubit is in the ground state. As a function of the
angle of the final π/2 pulse, we oscillate between |00〉 and |10〉. We define the action of
our gate as mapping |00〉 → |00〉 and |10〉 → eiφ10 |10〉. The rotation axis that will move
the qubit up to the excited state will thus be rotated by φ10 from the axis of our first π/2
pulse, which we can call x without loss of generality. Following this same logic, when the
second qubit is excited, we oscillate between |10〉 and |11〉 and |11〉 → ei(φ10+φ01+φ11)|10〉.
We are only sensitive to phases involving the state of the first qubit because our π/2 pulse
addresses only that qubit. The phase-lag of the resulting oscillation is given by φ10 + φ11 –
that is, it does not depend on the value of φ01. Finally, if we examine the phase difference
between these curves, we get (φ10 + φ11) − (φ10) = φ11, the two-qubit conditional phase,
as promised. This conditional-Ramsey technique (cRamsey) measures the difference in
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phase acquired by a single qubit depending on the state of the other qubit during some
process.

What happens when we apply cRamsey to three qubits? If we only excite two qubits,
the above description remains unchanged. We can therefore use this technique without
modification to measure and tune-up the two two-qubit phases of the gate. Measuring the
three-qubit phase is more complicated, however. Consider what happens if we perform a
Ramsey sequence on Q2 with Q1 excited and Q3 excited or not, as described in Fig. 8.7.
The first oscillation will be between |100〉 and |110〉, and tells us φ010 + φ110. The second
oscillation is between |101〉 and |111〉, giving us φ010 + φ110 + φ011 + φ111. Subtracting
these two, we see the phase delay is given by φ011 + φ111. This indicates that we cannot
only measure the three-qubit phase in which we are interested. Unfortunately, the only
means to circumvent this is to independently measure φ011.

The cRamsey technique provides another important piece of information about your
gate: its approximate fidelity. The contrast of the Ramsey curves after a gate, normalized
to a Ramsey where nothing happens between the two π/2 pulses, is given by the remaining
coherence of the target qubit. Contrast can be reduced if quantum amplitude leaks out
of the Hilbert space or for any other reason that the control qubits are not returned to
their ground state. Almost nothing except technical problems with the measurement
apparatus will increase contrast. This is a good first test; measuring the ratio of Ramsey
contrast is much faster than the more formal methods determining gate fidelity (such as
quantum process tomography), so verifying with this method before proceeding with those
techniques can prevent a lot of wasted effort.

With the two techniques of swap spectroscopy and cRamsey, we can fully tune-up the
Toffoli-sign gate. After extracting the parameters from swap spectroscopy as described
above, we tune-up the phases φ011 by adjusting the waiting position of Q2, represented by
the flat portion of the green curve in Fig. 8.6. Since we acquire phase so rapidly at that
position, there are usually several waiting locations that will satisfy φ011 = 0, which we
choose between experimentally to maximize the Ramsey contrast of the other basis states.
We set φ111 with the height of the first pulse on Q1 (the red curve). Finally, we adjust
φ110 with the height of the second pulse on Q1. This tune-up is iterated several times until
all the phase values are stable. Given that, we can also measure the single-qubit phases
for unwrapping in software.
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Figure 8.7: Conditional-Ramsey phase tune-up sequence for measuring φ111+φ011.
(a) The pulse sequence for three Ramsey experiments is shown. For red and green, a
superposition of the states |101〉 and |111〉 is prepared; a superposition of |100〉 and |110〉 is
made for blue. The Toffoli gate we are testing is applied to the red and blue cases. After each,
a π/2 pulse around the φ-axis is applied to Q2, and, before being measured, the remaining
qubits are pulsed back to their ground states. This procedure tells us the phase difference
between the two prepared states. In red, we measure the phase φ010 + φ110 + φ011 + φ111;
in blue, we measure φ010 + φ110. Subtracting the two will give us the value of φ111 + φ011,
which, combined with similar experiments with different qubit preparations, fully specifies the
ccPhase gate. We are not interested in the phase of the green experiment in this case, but
the amplitude of oscillation indicates any loss in fidelity. (b) The result of performing the
experiment described in (a). We indicate the phase delays of the red and blue experiments
which we fit and subtract from one another to extract φ111 + φ011. We also highlight the
amplitudes of the red and green experiments. Ideally, these amplitudes should be identical,
which would indicate that the gate is working properly. Additional decoherence because of
being highly excited and imperfect state transfer slightly reduces the amplitude of red by
about 4%.
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π-ccPhase

Rπ/2
xRπ/2

x Rπ
x

ccNOT

Figure 8.8: ccNOT implemented with Toffoli-sign gate. The full pulse sequence for
generating a controlled-controlled-NOT gate with our efficient Toffoli-sign gate is shown. Q2

is pulsed by π/2 around the x-axis before the Toffoli-sign gate is applied. Because of our π
pulse on Q2 to save time on the unwrapping of the φ011 phase, we refer to this operation as
a π-ccPhase. Afterwards, another π/2 gate is applied to Q2. If the ccPhase flipped the sign
of the manifold, this gate will combine with the other rotations on Q2 to flip its state. If not,
it will rotate Q2 back to its original value. (Figure used with permission from [201]. See
Copyright Permissions.)

8.1.6 Toffoli-sign gate tomography

We first demonstrate our tuned-up gate by measuring its classical action. The ccPhase
gate, which maps |111〉 to −|111〉, has no effect on pure computational states because
the extra phase acts globally. Instead, we can implement a ccNOT gate by appending
±π/2 pulses on Q2 both before and after a ccPhase gate, in the same way that we have
previously mapped a cPhase to a cNOT. For the two input states where both ancillas are
excited (|101〉, |111〉, becoming |101〉 ± |111〉 after the pulse), Q2 acquires a π phase
shift which flips the phase of the second pulse, and so the two pulses combine for a full
rotation. (The uncorrected φ101 phase is irrelevant because it does not affect Q2.) Other
computational states do not see the phase of Q2 shifted, so the pulses cancel. We show
the actual phase in the shaded region of Fig. 8.8, which differs slightly from a pure ccPhase
because of the π pulse used to speed the unwrapping of φ110. A ccNOT is thus constructed
by making both the pre- and post-rotations a positive π/2 rotation.
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Figure 8.9: ccNOT classical verification state tomograms. We can measure the
classical action of our ccNOT gate by preparing the eight computational states, applying the
gate to them, and measuring the result with state tomography. We show each tomogram in
the Pauli-bar representation, with gray bars indicating the ideal values of each correlation.
Each tomogram is labeled with the state that was prepared and its ideal final state. Since
the gate is conditional on the states of Q1 and Q3, Q2 is flipped if and only if both those
qubits are excited. (Figure used with permission from [201]. See Copyright Permissions.)

A ccNOT gate ideally swaps the states |101〉 and |111〉 but does not affect the
remaining computational states. To verify this, we prepare the eight computational states,
apply the gate, and measure the resulting output with three-qubit state tomography [55].
We report each tomogram in Fig. 8.9. We label each tomogram with the state that was
prepared and what it should ideally be mapped to, and use gray to outline the bars of the
ideal target state. Generally speaking, the more highly excited the input state, the less
faithful the mapping. Note that the lack of erroneous two- and three-qubit correlations
indicates that there is no significant loss of population from the computational subspace
(section 7.3.1).

We can measure the fidelity to each target state by taking a dot product of the measured
values with the target state. The states |000〉, |010〉, |100〉, |110〉, |001〉, |011〉, |101〉,
and |111〉 map to their ideal targets with fidelities of 95.4, 95.2, 87.1, 85.2, 84.4, 82.2,
78.1, and 75.7%, respectively. The unconventional order of states is commensurate with
the order of fidelity. States that differ only by the excitation of Q2 are similar because that
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Figure 8.10: ccNOT classical truth table. We take the projection of each tomogram
shown in Fig. 8.9 onto the eight computational states and plot the result as a function of
the prepared state. This is the classical “truth table” of the ccNOT gate. Note that the
matrix is diagonal except for the bottom corner, where the qubit is flipped if and only if the
two control bits, Q1 and Q3, are excited. The correct state is reached with an average of
85 ± 1% fidelity. (Figure used with permission from [201]. See Copyright Permissions.)

qubit is immediately pulsed onto the equator so its state will not change the net excitation
of the system during the gate nor modify the effect of T1. We then order according to
the knowledge that Q1 has a longer T1 than does Q3. By taking the projection of each
tomogram to the remaining seven computational states, we generate the classical truth
table, shown in Fig. 8.10. The intended state is reached with 85 ± 1% fidelity on average.

Since we only input computational states, the truth table is only sensitive to classical
action. We therefore complete our verification by performing full quantum process tomog-
raphy (QPT) on the ccPhase gate, which detects the evolution of quantum superpositions
of computational states. Instead of only eight, we prepare 64 input states which span
the computational Hilbert space and then perform state tomography on the result of the
gate’s action on each state (see section 7.4). The resulting χ-matrix is shown with both
the theoretical prediction and experimental result in Fig. 8.11. The fidelity is found to be
78 ± 1% to a process in which the spurious two-qubit phase between Q1 and Q3 is set
to the independently measured value of 57 degrees. Though this phase does not affect
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Figure 8.11: Toffoli-sign gate process tomography. (a) A theoretical prediction of the
χ-matrix of the gate, including the spurious phase φ101 set to its experimentally-measured
value of 57 degrees. (b) Full quantum process tomography of the Toffoli-sign gate, acquired
with the procedure described in section 7.4. In both cases, the absolute value of χ is shown.
The fidelity of the experimental gate to its theoretical ideal is 78±1%. The order of operators
here are as follows: III, IIX, IIY, IIZ, IXI, IYI, IZI, XII, YII, ZII, IXX, IYX, IZX, IXY, IYY,
IZY, IXZ, IYZ, IZZ, XIX, YIX, ZIX, XIY, YIY, ZIY, XIZ, YIZ, ZIZ, XXI, YXI, ZXI, XYI, YYI,
ZYI, XZI, YZI, ZZI, XXX, YXX, ZXX, XYX, YYX, ZYX, XZX, YZX, ZZX, XXY, YXY, ZXY,
XYY, YYY, ZYY, XZY, YZY, ZZY, XXZ, YXZ, ZXZ, XYZ, YYZ, ZYZ, XZZ, YZZ, and
ZZZ. We do not make use of the maximum-likelihood estimator commonly used to require
the physicality of the χ-matrix so that the reported elements of χ and the fidelity are linearly
related to the raw measurements [216]. (Figure used with permission from [201]. See
Copyright Permissions.)
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Figure 8.12: Bit-flip QEC circuit. The error correction protocol starts by encoding the
quantum state to be protected in a three-qubit GHZ-like state by entangling the two ancilla
qubits Q1 and Q3 with Q2 through the use of π/2 rotations and two cPhase gates (vertical
lines terminating in solid circles). The number adjacent to each cPhase indicates which state
receives a π phase shift (e.g. for each the single-qubit phases φ01 = φ10 = 0, with φ11 = π).
A single y-rotation of a known angle θ is then performed on a single qubit to simulate a
bit-flip occurring with probability p = sin2(θ/2). The state is then decoded, leaving the
ancillas in a product state indicating which single-qubit error occurred. For finite rotations,
the ancillas will be in a superposition of the error occurring or not, with each tensor-multiplied
by the associated single-qubit state of Q2. If an error has occurred on Q2, the ccNOT gate
implemented with our ccPhase gate (represented by three solid circles linked by a vertical
line) at the end of the code will correct it. We then perform three-qubit state tomography to
verify the result. Note that in the actual experiment, we compile consecutive single-qubit
rotations together to save time and increase fidelity. Specifically, the error y-rotation on the
ancillas would normally be placed between a positive and negative π/2 x-rotation associated
with turning the cPhase gate into a cNOT, and so we compile these three single-qubit gates
into one z-gate. (Figure used with permission from [201]. See Copyright Permissions.)

the operation of error correction, it is detected by QPT. Due to this extraneous phase,
the gate is most accurately described as a cc-eiφZ gate. The infidelity is consistent with
the expected energy relaxation of the three qubits during the 85 ns procedure, with some
remaining error owing to qubit transition frequency drift during the 90 minutes required to
collect the full dataset. This completes our construction and verification of our efficient
Toffoli-sign gate.

8.2 Realizing the bit-flip code

With our Toffoli gate in hand, and having leveraged our knowledge of how to create GHZ
states (as introduced in chapter 7), we can now demonstrate the quantum repetition
code. We first examine the bit-flip code, which is shown in Fig. 8.12. To review, the
code begins by encoding some quantum state in a three-qubit entangled state through the
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use of cPhase gates. This is an exact replica of the code we used to create GHZ states
in chapter 7, but now modified so the state of Q2 is arbitrary. (When Q2 is located on
the equator, the resulting state is a maximally-entangled GHZ state [55, 70, 252]; for any
other state, the resulting state may or may not exhibit some level of entanglement.) As
before, we use the sudden cPhase gates that employ the |11〉 ↔ |02〉 avoided crossing
between the involved qubits. The state α|0〉 + β|1〉 is thus encoded as α|000〉 + β|111〉.

Recall that this state has the property that any two-qubit ZZ product is +1 regardless
of the values of α and β. Moreover, if any single qubit is flipped, one or both of these
ZZ products will flip this sign as well. For example, if Q3 were flipped, we will have the
state α|001〉 + β|110〉, whose Z1Z2 expectation value is +1 but whose Z2Z3 product
is −1. As seen in table 2.1, if no more than one qubit flips, knowledge of the two ZZ

products uniquely specifies which error occurred. Since we do not have extra ancilla qubits
to extract these error syndromes in a fault-tolerant way, we instead reverse the encoding,
leaving Q2 in a state that may or may not have been flipped and Q1 and Q3 containing
the values of the Z1Z2 and Z2Z3 products (as explained in section 2.3.4). Specifically, if
Q2 were flipped, both of the ancillas will be left in their excited state. As discussed in
section 2.3.4, we can then use these qubits as the control bits of our three-qubit Toffoli
gate to rotate Q2 back to its original state conditional on the error. At this point, the
ancillas store the entropy associated with the error. If we wished to apply another round
of QEC, we would need to reset them to return the qubit register to its original state,
perhaps by using the method described in section 6.2.4. Thus, we see that this code can
correct for full bit-flips.

8.2.1 Finite rotation errors

With classical bits, the only errors that may occur are full bit-flips, mapping 0 ↔ 1. With
quantum bits, however, finite rotations may occur because superpositions of 0 and 1 are
allowed. Luckily, the code we just introduced works for finite errors as well. To show this,
we will step through the evolution of the quantum register at each point in the code. Prior
to encoding, Q2 is in an unknown state α|0〉 + β|1〉 and the ancilla are in their ground
state, so the system state is |ψ〉 = (α|0〉+ β|1〉)⊗ |00〉, where we list Q2 followed by the
two-qubit ancilla state of Q1 and Q3. After the encoding step, we are in the canonical state
|ψ〉 = α|000〉+β|111〉, which is sensitive to errors. Suppose we now perform a rotation on
Q2, not of π, but some finite angle θ. Though we implement this as a coherent rotation,
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Figure 8.13: Bit-flip quantum error correction with finite error rotations. State
fidelity to the created state |ψ〉 = |+X〉 after applying an error on one of the qubits, with
and without error correction. Ideally, the curves would be flat lines at unit fidelity. Finite
excited-state lifetimes cause oscillations and displacement downward because errors change
the excitation level of the system. (Figure used with permission from [201]. See Copyright
Permissions.)

in the context of the error correcting code this can be viewed as a bit-flip that occurs
with probability p = sin2(θ/2). The wavefunction will now be a superposition of the two
possibilities, |ψ〉 = √

1 − p(α|000〉+β|111〉)+√
p(α|010〉+β|101〉)∗. Decoding, we will be

left with |ψ〉 = √
1 − p(α|0〉+β|1〉)⊗|00〉+√

p(β|0〉+α|1〉)⊗|11〉: that is, the state will be
a superposition of Q2 in the correct state with the ancillas indicating no error plus Q2 flipped
with the ancillas indicating as such. Finally, we apply the ccNOT gate on this wavefunction,
which coherently flips Q2 if and only if both Q1 and Q3 are both in their excited state. This
results in the wavefunction |ψ〉 = √

1 − p(α|0〉+β|1〉)⊗|00〉+√
p(α|0〉+β|1〉)⊗|11〉 =

(α|0〉 + β|1〉) ⊗ (
√
1 − p|00〉 + √

p|11〉), where in the last step we have rewritten ψ to
highlight the fact that the wavefunction of Q2 is now correct regardless of p. Thus, we
have shown that this code works even for finite rotations because the ccNOT gate operates
only on the subspace where a full bit-flip has occurred and otherwise does nothing.

We demonstrate the process just described by implementing the circuit shown in

∗ If we did not know that the rotation was coherent, we could also write the state of the system at this point as
a density matrix ρ = (1−p)(α|000〉+β|111〉)(α∗〈000|+β∗〈111|)+p(α|010〉+β|101〉)(α∗〈010|+β∗〈101|).
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Fig. 8.12. We choose the initial state |ψ〉 = |+X〉 to encode in the three-qubit state and
perform single deterministic rotations around the y-axis by some angle to simulate errors.
We then un-encode and correct the error, before performing state tomography to measure
the fidelity of Q2 to its original state. As shown in Fig. 8.13, we plot this fidelity for the
case of error correction both performed or not performed with errors applied to Q2. For
the case of no error correction, we still wait for an equivalent period of time but do not
involve Q1 or Q3, so as to indicate the loss of fidelity due to the decoherence of Q2. We
also demonstrate the case of errors on the two ancilla qubits individually, because when
doing error correction, their state undergoing an error cannot be allowed to corrupt the
encoded state. The error correcting code should perfectly correct any single rotation, so
we should expect unit fidelity for all angles when we apply it. However, because of qubit
decay and the varying excitation levels of the qubits depending on the error performed
(e.g. when Q2 is flipped, Q1 and Q3 are excited and thus can decay), the curves show a
small oscillation centered at 75.7% fidelity. Nevertheless, they demonstrate a significantly
reduced sensitivity to θ as compared to the uncorrected case, showing that our error
correction successfully ameliorates the errors.

8.2.2 Verifying ancilla states

Our demonstration of a reduced oscillation contrast is encouraging, but in some sense
reflects a null result. We do something and nothing happens. How can we show that the
code truly works as expected? One approach is to measure the two-qubit density matrices
of the ancilla qubits. After the four possible full-flip errors (no error or a flip of one of
the three qubits), they should be in a computational product state that indicates which
error occurred. As shown in Fig. 8.14, this is indeed the case, allowing for finite fidelity
due to decoherence. These “debugging data” demonstrate, at least in the case of full flips,
that the code operates as expected. We could also examine the case of finite rotations
mapping to the correct states, where the ancilla should be left in some superposition state
of error and no error. In practice, however, it is easier and more impressive to look for
the signature of error correction when we apply simultaneous errors. We will show this in
section 8.3.1.
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Figure 8.14: Ancilla states after bit-flip quantum error correction. Two-qubit density
matrices of the ancillas after each of the four possible full bit-flip errors have occurred. The
fidelities of each of these states to the ideal error syndromes, which are respectively |00〉, |01〉,
|10〉, and |11〉, are (81.3%, 69.7%, 73.1%, 61.2%) (Figure used with permission from [201].
See Copyright Permissions.)
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Figure 8.15: Phase-flip quantum error correction circuit. The phase-flip error correction
protocol differs from the bit-flip one described in Fig. 8.12 in only the single-qubit rotations.
Those gates effectively rotate the coordinate system, mapping phase-flips to bit-flips and
vice versa, so the remainder of the procedure is exactly the same as for the bit-flip case [68].
We perform errors on all three qubits simultaneously with z-gates of known rotation angle,
which is equivalent to phase-flip errors with probability p = sin2(θ/2). These z-gates are
implemented “in software” by rotating the frame of reference of subsequent x- and y-rotations.
As with the bit-flip code, if a single error has occurred on the primary qubit, the ccNOT gate
at the end of the code will undo it. (Figure used with permission from [201]. See Copyright
Permissions.)
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8.3 Realizing the phase-flip code

The quantum repetition code can correct for one type of error: bit-flips or phase-flips.
Thus far, we have discussed the case of bit-flip errors. These have the advantage of being
intuitive because of their direct classical analog. However, they are in some sense a less
important error in our system. Bit errors only occur on their own if we have incorrectly
tuned-up pulses (or, perhaps, some spurious mixer leakage, etc). They also happen during
spontaneous emission, but only in combination with phase-flip errors. (That is, the T1

process is not a bit-flip and it can only be described as a combination of bit- and phase-
errors; see section 2.1.5.) Phase-flips, on the other hand, are a much more common kind of
error associated with inhomogeneous dephasing (Tφ dephasing not due to T1). Therefore,
we are interested in implementing the phase-flip error correcting code. Fortunately, as
shown in Fig. 8.15, the phase-flip code is a very straightforward modification of the bit-flip
code. The only difference is in the rotations performed after the entanglement. Rather
than rotating the primary qubit as in phase-flip correction, the ancillas are π/2 pulsed.
This can be understood as a change in coordinate system, converting phase-flips to bit-flips
and vice versa; the remainder of the code is exactly the same as in the previous case
[30, 68, 253].

8.3.1 Simultaneous errors

We originally introduced the quantum repetition code in the context of a classical binary
symmetric channel (section 2.3.2). We wished to transmit a bit through a noisy communi-
cation channel that had a probability p of flipping it. We found that we could reduce our
sensitivity to this error if we communicated each bit three times. The resulting error rate
was a quadratic function of p, given by 3p2 − 2p3. Critically, as long as p was small – less
than 1/2, which is not a very strict requirement, since a channel with error probability 1/2
has zero information carrying capacity – then the overall error rate of this approach was
smaller than sending only one bit. The reason p must be small is that by transmitting
more bits of information, we are also adding ways for the information to be corrupted.

This is also true for quantum error correction. When we add extra qubits to encode
our quantum state, we also add extra ways by which the system could be corrupted. The
qubits we use to encode are no less likely to experience an error than the qubit we are trying
to protect. This idea shows that our demonstration of error correction is quite artificial
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because we intentionally apply exactly one error at a time. A more realistic error model
would account for the fact that in real physical systems, errors occur at approximately the
same rate on all qubits rather than on one at a time. Our error correction scheme can only
succeed if no more than error happens, and will fail if there are two or three coincident
errors. As in the classical case, if we have a single-qubit error rate p, the probability of
two or more errors is given by 3p2 − 2p3 and so the fidelity of the error correction process
should be given by 1 − 3p2 + 2p3. For a scheme with gate fidelity limited by decoherence,
these coefficients will be smaller, but crucially, any linear dependence on p will be strongly
suppressed. If the qubits experience errors at different rates, these coefficients would again
be modified, but the linear dependence would remain abated. This suppression of linear
dependence on p is the unambiguous signature of quantum error correction.

8.3.2 Process tomography

We demonstrate the procedure shown in Fig. 8.15 by creating some state |ψ〉 of Q2,
applying the protocol, and then measuring the state of Q2 using state tomography. In
contrast to the bit-flip case, we are now going to do something slightly more sophisticated.
Instead of testing some specific chosen state |ψ〉 that could be more or less susceptible to
the errors that are being applied, we instead perform full quantum process tomography
on the protocol (section 7.4). To do so, we create four states (|0〉, |1〉, |+X〉 and |+Y 〉)
that span the single-qubit Hilbert space of Q2. We apply the QEC circuit to each of
these states and measure the result with state tomography. The resulting state fidelities
for the case of performing or not performing error correction are plotted in the insets of
Fig. 8.16. For the case of no error correction, we apply identical single-qubit rotations to
Q2 without involving the ancillas. We insert appropriate delays to have the same total
procedure duration to indicate the infidelity due to the decoherence of Q2, then combine
each of these state tomograms into a single process matrix and calculate the fidelity of
that process matrix to the identity. The two process fidelities are plotted and fit to a
polynomial in Fig. 8.16.

For no error correction, we find a purely linear dependence on error probability given
by f = 0.81 − 0.79p. However, when we apply the correction, we suppress all linear
dependence, finding that the data are well-fit by f = 0.76− 1.46p2 +0.72p3. If we include
a linear term in this function, its best-fit value is found to be consistent with zero. The
suppression of linear dependence on p when performing error correction was precisely the
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Figure 8.16: Process tomography of phase-flip quantum error correcting circuit. We
perform quantum process tomography on the phase-flip QEC circuit shown in Fig. 8.15 as a
function of the effective error probability. The fidelity of the process matrix of the protected
qubit to the identity operation is plotted as a function of p. As the code corrects only single-
qubit errors, it will fail on the three-qubit subspace where more than one has occurred, which
happens with a probability 3p2 − 2p3. These coefficients are reduced for processes with finite
fidelity. The process fidelity is fit with f = (0.760±0.005)−(1.46±0.03)p2+(0.72±0.03)p3.
If a linear term is allowed, its best-fit coefficient is 0.03± 0.06. We compare this to the case
of no error correction to simulate the improvement that occurs when the decoherence of Q2 is
normalized away (blue symbols). We also plot the simulated fidelity of a decoherence-free but
non-corrected system (black dashed line), indicating that we do not show a net improvement
for any rate of artificial errors. (insets) The constituent state fidelities of the four basis
states used to produce the process fidelity data for the case of (right) error correction and
(left) no correction. The x-axes of both plots are the same as the main panel, and they
share the same y-axis. The state |+Y 〉 is immune to errors because its encoded state is an
eigenstate of two-qubit phase-flips. (Figure used with permission from [201]. See Copyright
Permissions.)
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signature that we had hoped to find, and proves that the circuit works as expected. We
anticipated that the fidelity of the process would only be improved by error correction
if the error probability was less than 1/2, below which it should be reduced. However,
in Fig. 8.16, we see that the error corrected case is always better than the non-error
corrected case. This is the result of an accident: below 50% fidelity, decoherence of our
state actually improves our state fidelity since a fully-mixed state has 50% fidelity to any
state. (Its II Pauli correlation is always defined to be +1, and is included in the fidelity.)
Moreover, when we are performing quantum error correction, we are much more susceptible
to decoherence since three qubits are involved rather than one. Thus, we get a boost in
fidelity that pushes us above the uncorrected case. Nevertheless, if the code was perfect
and decoherence was nonexistent, when p > 1/2, the protocol should indeed reduce our
net fidelity.

In Fig. 8.16, we also plot the fidelity of a process without error correction in the absence
of any overhead. This simulates a process in which we perfectly prepare some state and
immediately apply an error before measuring the resulting fidelity. As you can see, this line
is always above the experimental lines, which indicates that our error correction protocol
never actually improves effective error rates. Put another way: while the protocol corrects
errors, the associated overhead is so large that the net fidelity of some process will never
be improved. This is not the fault of the code, but rather of the system itself. The qubits
we used in this planar structure are simply too error-prone. Their coherence times were on
the order of 1 μs, which is on the order of the time it takes to run the correction protocol.
In order for error correction to make sense, the overhead needs to be small compared to
the improvement associated with going from a linear dependence on p to a quadratic one.
Thus, in order to show an actual improvement (and perform error correction for a reason
other than its own sake), we need substantially better qubits.

8.4 Conclusion

In this chapter, we have demonstrated the first realization of the most basic form of
quantum error correction – the quantum repetition code – in a superconducting circuit. We
realized both bit- and phase-flip error correction, testing both major conceptual components
of the nine-qubit Shor code [17] which can protect from arbitrary single-qubit errors by
concatenating the two codes. The key to our implementation was an efficient three-qubit
Toffoli-sign gate, which is required for the autonomous repetition code. Our gate made use
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of an avoided crossing between the |102〉 and |003〉 non-computational states to acquire
three-qubit conditional phase. Accessing this avoided crossing required intentionally leaving
the computational space with a sudden swap operation. We characterized our gate with
both quantum state and quantum process tomography, and found fidelities approaching
80%. The gate requires approximately half the time of an equivalent construction with
one- and two-qubit gates.

Combining this gate with a sudden cPhase gate, we implemented the bit-flip QEC
code. We began by encoding the qubit state that we wished to protect in a three-qubit
GHZ-like state and then applied a deterministic rotation on one of the qubits to simulate a
bit-flip error. We showed how the code works with finite error rotations and that the error
syndromes are being correctly encoded in the ancilla qubits. We also implemented the
phase-flip code, but used a more sophisticated error model that simulated simultaneous
errors on all three qubits. We performed process tomography on this circuit, and found the
expected suppression of linear dependence of process fidelity on error probability. Though
this proved that the code was working as expected, the fidelity never exceeded the case of
no error correction without overhead, which indicates that the improvement of the fidelity
of a real physical process will require significant advances in both gate fidelity and device
complexity.



CHAPTER 9

The Tunable 3D cQED Architecture

In the previous chapter, we showed that we have built up the sophistication to perform
basic quantum error correction with superconducting qubits. We concluded by noting

that although the circuit worked as anticipated, it did not improve error rates because our
qubits were too short-lived. We need much more coherent qubits that are as controllable
as those we have already used. Our answer to this requirement is the tunable 3D cQED
architecture, first introduced in section 4.2. That architecture combines the extremely
high coherence times of 3D cQED with the ability to tune the system in-situ with fast flux
bias lines. In this chapter, we will summarize the experimental results attained thus far
with tunable 3D cQED. Though the results are unpublished, we aim to give a flavor of the
possibilities enabled by this architecture.

We begin by showing that our flux bias lines constitute a significant relaxation channel.
We measure qubit T1 as a function of frequency. Both the magnitude and structure of
these data provide strong support for our hypothesis that the qubit relaxes through the
FBL because of capacitive coupling. We confirm this by adding a low-pass filter to the
FBL, and demonstrate that the qubit’s relaxation is significantly ameliorated when we
fabricate a big enough filter capacitor. We also use flux spectroscopy to confirm that this
low-pass filter does not adversely affect the response time of our fast flux bias lines.

In the second part of this chapter, we introduce several experiments to measure the

253
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system Hamiltonian parameters as a function of qubit frequency. In the device we are
describing, the cavity inherits enough anharmonicity from the qubit when it is at its
maximum frequency that we can prepare photon number states. By combining this ability
with fast flux control, we show how to measure cavity lifetime, coherence time, nonlinearity,
and dispersive shift as a function of qubit frequency. While the results are of interest in and
of themselves, this section primarily serves as an instruction manual for building up and
understanding sophisticated experiments using fast flux. In particular, when measuring the
cavity dispersive shift χ, we choose to perform a sequence that is much more challenging
than necessary, in order to demonstrate the technical capabilities of the architecture.

We focus the last third of the chapter on using the cavity as a quantum resource.
Our cavity, being a harmonic oscillator, has an infinitely large Hilbert space that makes
efficient measurement of its quantum state challenging. We introduce the Husimi Q
quasi-probability distribution, known more simply as the Q function, which more naturally
represents an oscillator density matrix. We use the Q function to measure the unusual
evolution of a coherent state subject to the Kerr-type nonlinearity our cavity inherits from
the qubit. After a particular duration of this evolution, our coherent state is mapped
to a superposition of two coherent states known as a Schrödinger cat state. By tuning
our qubit away, we show that we can stop this Kerr evolution and freeze the cat state.
This demonstrates our ability to control the cavity Hamiltonian on demand by tuning it
continuously between qubit-like and cavity-like limits. It also highlights the possibility of
using the cavity as an efficient quantum memory. We conclude the chapter by noting that
these capabilities enable a host of new experiments. These will be the topic of the thesis’s
final chapter.

9.1 Qubit lifetimes and FBL filtering

The central feature of the tunable 3D cQED architecture is the flux bias line. In section 3.3.2,
we showed that in the absence of additional filtering, the capacitive coupling of the qubit
to the FBL will create an unacceptable channel for relaxation. We measured the qubit
lifetime when controlled with such an unfiltered FBL to confirm our expectations. In
Fig. 9.1(b), we see that the unfiltered lifetime T1 is approximately 2 μs, which is consistent
with the predictions of our circuit model. There is also a prominent oscillation with a
period of about 300 MHz. We associate this oscillation with an impedance mismatch
some distance d = nc/f ≈ 2 m from the qubit. This indicates that the qubit is affected
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Figure 9.1: FBL filter performance. Optical micrographs of the flux bias lines with (a)
no filtering, (b) an interdigitated capacitor filter, and (c) a three-layer quasi-parallel plate
capacitor. The detailed designs of each are shown in Fig. 4.11. (d) Qubit lifetime as a
function of frequency for the three FBL designs, and for three qubits that do not have FBLs.
In the absence of filtering, the qubit lifetime is only about 2 μs and exhibits oscillations that
we ascribe to an impedance mismatch with a filter several feet away (blue dots). Qubits
addressed by the interdigitated filter have a slightly longer lifetime (3 − 5 μs), but still show
oscillations (red dots). If we use a trilayer filter that has a sufficiently large filter capacitor,
those oscillations disappear and we observe qubit lifetimes between 8 and 20 μs (black
dots). We compare this to identically-designed qubits that do not have flux bias lines, which
we measure to have lifetimes as high as 40 μs (green dots). Spurious avoided crossings
at 8.8 GHz for the blue points and 8.5 GHz for the black cause dips in qubit T1 but are
unrelated to the flux bias line. For each frequency, the value is the mean and the error bars
are the standard deviation of repeated measurements.
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by the environment all the way to the lossy low-pass FBL filters located outside the sample
box. Moreover, we have measured several qubits without flux bias lines (both with and
without SQUID loops) and found their lifetimes to be in the range of 20 − 40 μs. As
expected, the qubit seems to be limited by the FBL.

To fix this problem, we implemented two generations of FBL filters, which are shown
in Fig. 9.1. They both seek to solve the issue of FBL relaxation by low-pass filtering
the line described in section 3.3.3. The key to this filter is the size of the capacitance
of each line to ground. The difference between the two filters is how this capacitor is
fabricated (section 4.2.5). In the first generation, we implemented an interdigitated finger
capacitor that requires only one layer of fabrication. The size of this capacitor was limited
by its self-resonance frequency, and so could not provide enough capacitance to shut off
the relaxation channel. The resulting T1 data are shown in Fig. 9.1(b), where we see
that the lifetimes are improved by some factor, but remain considerably lower than qubits
without FBLs. Moreover, the oscillations as a function of frequency are still present, which
indicates that the qubit is still sampling the impedance environment outside of the sample
box.

The second generation FBL implemented a much larger filter capacitor by using a
three-layer lithography process. This easily produces capacitances much larger than should
be necessary to eliminate FBL relaxation. This three-layer structure is analogous to a
parallel-plate capacitor, where we have deposited either silicon monoxide or hafnium oxide
between two metal pads. The resulting qubit lifetime data are significantly improved, with
T1s approaching 20 μs, and showing no evidence of oscillation. We have also measured
T2 times in several devices and found a flux noise density five to ten times higher than
typical values in planar devices (data not shown). The source of this increased noise is not
yet known, but may have something to do with the increased size of the SQUID loop or
technical problems with the grounding of the fridge and measurement setup.

Though the qubit lifetimes in the filtered device are much closer to those we measured
without FBLs, it is not yet the same. What can account for this persistent degradation of
performance? One potential concern is the dielectric loss of the material used in the filter
capacitors. They have recently been measured to have an internal Qi ≈ 500− 2000 [254],
which is rather alarming. We can estimate this loss, again, with a circuit argument. The
conductance across the capacitor will be given by G = ωC tan δ. As long as this value
is small compared to 1/(50 Ω), then the dielectric loss should be negligible. Plugging in
C = 10 pF, ω/2π = 9 GHz, and even assuming tan δ = 1, we have 1/G = 1/(2 Ω),
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Figure 9.2: Fast flux characterization with flux spectroscopy. (a) To perform flux
spectroscopy, we suddenly detune the qubit from its starting position with a square flux pulse,
depicted in blue. After holding for some time, the qubit is returned to its home position and
measured. During this time, we apply a gaussian spectroscopy pulse at some frequency and
delay relative to the flux pulse. Here, the width of that gaussian is σ = 20 ns and its total
duration is 4σ. (b) The ensemble-averaged measurement is plotted as a function of the delay
and frequency of the spectroscopy pulse. We see features for small times at 8.537 GHz and
for large times at 8.657 GHz, indicating that the qubit initially starts at the first frequency
but jumps to the second upon the application of the flux pulse. (c) Taking cuts along the two
relevant frequencies, we see that these features are rounded in time. The rounding is due to
the temporal extent of the gaussian pulses. Fitting them to error functions, we find that the
offset between the centers of the two curves is only a few nanoseconds. This indicates that
the qubit is moving between the two positions in that time. Note that the two y-scales are
different for the two plots because the spectroscopy pulse drives a slightly different rotation
at the two frequencies because of the cavity filtering.

indicating that the dielectric loss of this capacitor is irrelevant. This treatment does not
account for direct hybridization of the qubit mode with this dielectric, however. If the
qubit stores as little as 0.1% of its energy there, it could constitute the dominant source
of relaxation. Whether or not this is a prominent effect remains an open question as of
the writing of this thesis.
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9.1.1 Fast flux performance

The addition of the low-pass filter to the flux bias line potentially slows down its response
time. The characteristic frequency of the filter is set by the size of the capacitor, which
we aim to control with lithography. What if we accidentally make a much larger capacitor
than we intend? Evidence would not appear in the T1 data nor in the static flux tuning; it
would only become apparent in a slowing of the rise time of an applied flux pulse. We can
directly measure this time with flux spectroscopy. As shown in the cartoon of Fig. 9.2(a),
we perform pulsed spectroscopy simultaneous with a flux pulse. Some fixed time after the
experiment begins, we move the qubit from its home position to another frequency as fast
as possible with a square flux pulse. We wait there for a few microseconds, flux back, and
measure the qubit. During this time, we apply a gaussian π pulse of some frequency at
some delay relative to the flux pulse. We then ensemble average as a function of both
pulse frequency and delay.

The result of this experiment is shown in Fig. 9.2(b). We see that the qubit initially
starts at 8.537 GHz and, at t ≈ 50 ns, jumps to a frequency of 8.657 GHz. We take cuts
along both frequencies and plot them, shown in (b). The observed rounding is due to the
temporal width of the qubit spectroscopy pulse used to interrogate the system. To see
this, suppose that the qubit moves suddenly away during the application of the pulse, at
tf . If its final position is far detuned from the spectroscopy frequency, the rotation that
the qubit experiences will be given by the integral of the pulse from t = 0 to tf . Since the
pulse is gaussian and the rotation angle is given by the integral of the applied amplitude,
the rotation angle is specified by the integral of that gaussian: an error function. We
fit both sets of data to that function with time constants of t = 20 ns. The difference
between the centers of the two fits gives the transit time of the qubit, here being 5 ns.

This experiment is a bit unusual in that it aims to be sensitive to both frequency and
time. Since we use relatively long 20 ns pulses in Fig. 9.2(b), the data is relatively smooth
in time and spectrally narrow. However, as we show in Fig. 9.3, by using faster 5 ns

pulses, we substantially broaden the qubit response. This increases our temporal resolution,
revealing fast ringing of the qubit frequency once it has neared its final frequency. As
described in section 7.1.1, this ringing is due to the response function of the Tektronix
AWG and the flux line itself, and can be mitigated with linear deconvolution.
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Figure 9.3: Flux spectroscopy with 5 ns gaussian pulse width. We repeat the experi-
ment shown in Fig. 9.2 with 5 ns gaussian pulses instead of 20 ns. The spectral width of
the qubit response is significantly broadened, but the temporal resolution is commensurately
higher. As a result, we can resolve ringing of the qubit frequency once it reaches its final
frequency. These dynamics can be mitigated with linear deconvolution (section 7.1.1).

9.2 Device characterization with Fock states

Since our flux bias line filtering is working as desired, we now turn our attention to
performing experiments with a particular device. This section reports on a single-cavity
3D device with a single trilayer-filtered tunable qubit. The Hamiltonian of this system is
well-approximated by

Ĥ/� = ωq b̂
†b̂ − α

2
b̂†b̂†b̂b̂+ ωcâ

†â − K

2
â†â†ââ − χâ†âb̂†b̂, (9.1)

where b̂†/b̂ are the qubit raising and lowering operators, â†/â are the cavity raising and
lowering operators, α is the qubit anharmonicity, K is the cavity anharmonicity (also
known as the self-Kerr term), and χ is the state-dependent dispersive shift [138, 255]. In
this treatment, the cavity and qubit are governed by the same dynamics, differentiated
only by the magnitude of α and K. Note that this is a slightly different definition of
χ than the one used in previous chapters. Here we adopt the more modern convention
where number split peaks are separated by χ [107, 138]. In previous chapters, including
section 3.2.3, we had defined that separation to be 2χ.

The qubit in this device has a maximum frequency that is very close to vacuum-Rabi.
The cavity therefore inherits enough K anharmonicity that we can directly pulse it to create



CHAPTER 9. THE TUNABLE 3D CQED ARCHITECTURE 260

7.5

7.0

6.5

6.0

5.5

Vo
lta

ge
 (m

V
)

8.928.908.888.868.84
Frequency (GHz)

fn=0 = 8.9207 GHz
fn=1 = 8.9016
fn=2 = 8.8840
fn=3 = 8.8678
fn=4 = 8.8519
 

8.8

8.6

8.4

8.2

8.0

7.8

Fr
eq

ue
nc

y 
(G

H
z)

-0.8 -0.7 -0.6 -0.5 -0.4
FBL voltage (V)

(a) (b)

Figure 9.4: Qubit spectroscopy as a function of frequency and qubit number split-
ting at fmax. (a) Qubit frequency as a function of applied flux bias line voltage. We
measure with pulsed spectroscopy, as described in section 5.1.2. Red circles indicate the
qubit frequency at each voltage point. Here, the bare cavity frequency is 9.169 GHz and
the qubit maximum frequency is 8.921 GHz. (b) At fmax, the qubit is strongly hybridized
with the cavity. We apply a weak tone at the cavity frequency to set up some equilibrium
photon population. The qubit transition frequency splits according to the number of photons
in the cavity, as described in section 3.2.3. Normally, these peaks would be evenly spaced,
but because the qubit is so close to the cavity non-dispersive corrections become important.
As a result, χ01 = 19.1 MHz, χ12 = 17.6 MHz, χ23 = 16.2 MHz, and χ34 = 15.9 MHz.

photon number Fock states (section 3.2.1). As we will show, this capability introduces
the potential for a host of experiments that make it straightforward to measure system
parameters like cavity coherence, Kerr anharmonicity, and the dispersive χ shift as a
function of qubit frequency. These experiments also demonstrate the power and flexibility
of fast flux tuning. Combined with the long cavity and qubit coherence times, a variety of
interesting experiments are operable.

9.2.1 System spectrum

Recall from section 5.1 that one of the first characterization experiments is to measure
qubit frequency as a function of applied flux bias voltage. We see from that measurement
that this device is a little unusual, as shown in Fig. 9.4(a). Though the qubit does not
cross the cavity and vacuum-Rabi split, it has an extremely close approach, with a qubit
maximum frequency of 8.921 GHz and a bare cavity frequency of 9.169 GHz. Their
minimum detuning of only 250 MHz is comparable to the coupling strength g ≈ 150 MHz,
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Figure 9.5: Pulsed spectroscopy of anharmonic cavity. (a) In order to measure the
spectrum of the cavity, we must slightly modify our conventional pulsed spectroscopy sequence.
We begin with a long cavity saturation tone, as with normal spectroscopy. In order to be
sensitive to the resulting cavity state, we map its population onto the qubit by applying
a π pulse on the 0-photon number-split peak at 8.9207 GHz. To detect the state of the
qubit, we measure with the second spatial mode of the cavity at 11.244 GHz. We do this
to avoid our qubit measurement contrast being sensitive to the number of photons stored
in the first mode. The qubit is also strongly coupled to the second mode because it is
physically offset from the center of the cavity, a symmetry point usually used to eliminate the
coupling strength. We will continue using this trick to measure the cavity state throughout
this chapter. (b) The resulting cavity spectrum reveals resolved f01 and f02/2 transitions,
just as we see with a strongly-driven qubit (section 5.1.2). This indicates that the cavity has
inherited an anharmonicity of about 1 MHz due to its hybridization with the qubit. Note
that the y-axis is inverted because we get a large voltage when the qubit pulse conditional on
zero photons succeeds. When our spectroscopy tone is in resonance with a cavity transition,
we populate the cavity, causing the qubit pulse to fail and giving us a dip in measurement
voltage.

making the qubit strongly non-dispersive at fmax. This fact is illustrated clearly when
we measure qubit number splitting, shown in Fig. 9.4(b). As described in section 3.2.3,
normal number-split peaks are evenly spaced by χ. However, here the splitting is not evenly
spaced, with, for example, the difference between the qubit transition frequency with 0
and 1 photons of 19.1 MHz, but only 17.6 MHz between 1 and 2 photons. This is an
indication that the qubit and cavity are so strongly hybridized at fmax that the dispersive
approximation has broken down.
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We observe another indication of this non-dispersive behavior in the spectrum of
the cavity with the qubit at its maximum frequency. The procedure to perform cavity
spectroscopy is shown in Fig. 9.5(a), where we make use of qubit number splitting as
well as the fact that the qubit couples to more than one spatial mode of the cavity. The
resulting data are shown in (b), demonstrating that we can resolve the individual f01
and f02/2 transitions. The cavity is so strongly hybridized with the qubit that it inherits
appreciable anharmonicity; in essence, the cavity behaves like a transmon qubit. At fmax,
this anharmonicity is approximately 1 MHz, which is substantially larger than the cavity
linewidth. This is known as a Kerr nonlinearity, and, as we will see in section 9.3, it has
interesting consequences for the dynamics of the cavity [107, 167, 256].

9.2.2 Cavity Rabi oscillation

The substantial anharmonicity of the cavity makes it possible to directly populate Fock
number states. Just as with a qubit, we apply a gaussian pulse to the cavity resonance
frequency that is sufficiently spectrally narrow to address only the desired transition. The
difference here is that the anharmonicity is so small that we must use extremely slow
pulses, here a gaussian σ = 1 μs. The procedure to do a Rabi oscillation on the cavity is
shown in Fig. 9.6(a). After this slow gaussian pulse, we again map the resulting cavity
state to the qubit by performing a π pulse on the 0-photon peak and measuring its state
with the second cavity mode, done previously with cavity spectroscopy. As shown in (b),
we can extend this procedure by applying a rotation on the 1-2 transition of the cavity as
well. The resulting oscillations shown in (c) are consistent with our expectations, with the
1-2 oscillation sped up by

√
2 and its amplitude reduced due to the longer pulse sequence

length.

9.2.3 Cavity lifetime

The ability to create single Fock states in the cavity is extremely useful for characterizing
its properties. The simplest example experiment is to measure the cavity lifetime. Due
to cavity anharmonicity and the glassy physics that sometimes dominates its loss, the
apparent lifetime of the cavity can be a strong function of the magnitude of its excitation
[156]. Since we are normally interested in the low-power lifetime, we can only displace with
an extremely weak tone that populates at most ∼ 1 photon. We can then either watch this
energy leak out in the time domain or measure the cavity spectral width in the frequency
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Figure 9.6: Cavity Rabi oscillation on 0-1 and 1-2 Fock number states. (a) To
perform a Rabi oscillation on the cavity, we first apply a pulse of some varied amplitude on
resonance with the 0-1 transition. This is identical to rotating a qubit, but, because of the
small cavity anharmonicity, we use an extremely long σ = 1 μs gaussian pulse that is spectrally
narrow enough to address only the desired transition. In order to measure the resulting cavity
state, we map it to the qubit with a number-selective π pulse and measure with the second
cavity mode, as described in Fig. 9.5. (b) We can extend this procedure to perform a Rabi
oscillation on the 1-2 transition of the cavity. We first prepare a 1-photon Fock state with
a π pulse, then do a second pulse of varying amplitude at the 1-2 frequency. This pulse is
depicted as oscillating in the cartoon so as to indicate frequency modulation (section 4.4.1).
To have contrast between the 1- and 2-photon Fock states, we pulse 1 → 0 with a second
π pulse prior to measurement. (c) The results of the two experiments are plotted as a
function of the amplitude of the Rabi pulse. As expected, the oscillation frequency of the 0-1
oscillation is slower than the 1-2 oscillation by

√
2. The amplitude of the 1-2 oscillation is

also reduced because the sequence duration is a substantial fraction of the cavity lifetime.
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Figure 9.7: Cavity T1 measured with Fock state. (a) To measure the cavity lifetime,
we first prepare a 1-photon Fock state with a π pulse on the cavity and wait for some amount
of time. We then measure the resulting cavity state with a number-selective π pulse and
second-mode measurement, as before. (b) We plot the average remaining cavity population
as a function of the delay time. The cavity lifetime is found to be 31.4 ± 0.8 μs with the
qubit at fmax.

domain with transmission. (The second tactic actually measures some combination of T1

and T2.) Both approaches suffer from a low SNR since the signal we are looking for is
very small. It can also be difficult to ascertain that you are driving with a small enough
power. A superior method for measuring cavity lifetime is shown in Fig. 9.7(a). There, we
replicate the normal sequence for measuring qubit T1 by applying a π pulse to the cavity
with our slow gaussian and delaying for a variable length of time prior to measurement.
As before, we measure by mapping the cavity state to the qubit with a number-selective π

pulse. The result is shown in (b), where we find a cavity lifetime of about 30 μs when the
qubit is at its maximum frequency.

We can extend this protocol to measure the cavity lifetime as its hybridization with
the qubit is turned off. If the qubit is lossier than the cavity, the dispersive coupling
may limit the cavity’s lifetime. The procedure is shown in Fig. 9.8(a). The sequence is
identical to the one described in Fig. 9.7, except that during the waiting time, the qubit
is moved away to some other detuning with a flux pulse. In Fig. 9.8(b), we show the
resulting measurement when the flux pulse amplitude is chosen to move the qubit near its
minimum frequency, estimated to be 2− 3 GHz. The cavity lifetime is found to be 40 μs,
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Figure 9.8: Cavity T1 with qubit moved to its minimum frequency. (a) We measure
the cavity lifetime with the qubit far detuned by adding a qubit flux pulse during the waiting
time of the procedure described in Fig. 9.7. (b) The cavity lifetime when the qubit is near
its minimum frequency is found to be 40.3± 1.1 μs. This is an improvement of more than
20%, indicating that the cavity was relaxing through the qubit due to hybridization.

an improvement of over 20% as compared to when the qubit is at fmax. This indicates
that the cavity hybridization caused it to decay faster than it would have otherwise.

We can measure the evolution of cavity T1 by repeating the fluxed-cavity-lifetime
experiment as a function of the flux pulse amplitude, as shown in Fig. 9.9(a). The resulting
data, shown in (b), reveal a general trend upward as the qubit is detuned and the cavity
becomes less hybridized. At 8 GHz, however, there is a feature showing a dramatic
drop-out in cavity lifetime. Looking at the measured qubit lifetime in this device, we
see that there is a drop-out at the same frequency corresponding to a spurious two-level
system. This additional loss is shared with the cavity, and causes its lifetime to diminish
due to this “reverse” Purcell effect (section 6.2.1).

9.2.4 Cavity coherence

We can also use Fock states to measure the cavity coherence time T2. As shown in
Fig. 9.10, the procedure for measuring cavity T ∗

2 and T echo
2 is identical to the procedure

for qubit coherence, excepting for the need to map the cavity state to the qubit for
measurement. The measured coherence time reveals that the cavity experiences some

inhomogenous dephasing, with Tφ =
(

1
T2

− 1
2T1

)−1

≈ 30 μs. Applying an echo improves
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Figure 9.9: Cavity T1 as a function of qubit frequency. (a) To measure cavity lifetime
as a function of qubit frequency, we repeat the experiment described in Fig. 9.8 as a function
of the flux pulse amplitude. (b) Cavity lifetime as a function of qubit frequency shows a
general trend upward as the qubit is decoupled from the cavity. We relate the amplitude
of the applied flux pulse to the frequency of the qubit by measuring flux spectroscopy (see
Fig. 9.2) for several points and fitting the resulting data to a

√
cos curve that we invert (not

shown). The measured cavity lifetime drops out near 8 GHz. (c) This drop-out is associated
with a spurious avoided crossing in the qubit spectrum that causes the qubit lifetime to
become very short. Since the cavity mode is hybridized with the qubit, the cavity lifetime
also suffers. Essentially, this is the reverse of the Purcell effect (described in section 6.2.1).

the decay time somewhat. We are left to wonder: what is causing this dephasing? While
there are possible explanations such as vibration or heating to consider, the most likely
culprit is the qubit itself. Just as we saw with the cavity lifetime, the cavity mode is
strongly hybridized with the qubit and so may inherit some of its dephasing.

To test this theory, we would like to measure the T2 of the cavity as a function of the
qubit frequency. Unfortunately, doing so is not as simple to generalize because of dynamical
phases. The cavity frequency changes by as much as 20 MHz when the qubit is detuned
from its home position, causing the resulting cavity Ramsey oscillation to be extremely fast.
In order to resolve this phase evolution and get an accurate fit to the exponential decay,
we would need to sample at a rate fast compared to 1/(20 MHz) = 50 ns. Considering
that we expect dephasing times on the order of 30− 80 μs and we would want to measure
for several time constants, the number of required samples approaches 10, 000, which is



CHAPTER 9. THE TUNABLE 3D CQED ARCHITECTURE 267

(a) (b) 

12

11

10

9

8

Vo
lta

ge
 (m

V
)

3020100
Delay time (μs)

Cav T2* = 21.3 ± 1.2 μs

12080400
Delay time (μs)

Cav T2
echo = 30.6 ± 1.2 μs

/2 /2 /2 /2

Figure 9.10: Cavity T ∗
2 and T echo

2 . (a) The cavity coherence time T ∗
2 is measured in the

same way as with a qubit. We prepare a superposition of 0 and 1 photons by applying a π/2
pulse to the cavity. We then delay for some period of time before applying a second π/2
pulse and measure by mapping the cavity state to the qubit with a number-selective qubit
rotation. The cavity pulses are slightly detuned so as to see an oscillation. The resulting
dephasing time is found to be 21.3 ± 1.2 μs, with the uncertainty given by the fit. This
corresponds to a pure dephasing time of approximately 30 μs. (b) We can also perform a
Hahn echo experiment with the addition of a π pulse on the cavity exactly half way through
the experiment. The dephasing time increases to 30.6± 1.2 μs. Here, we sweep the angle of
the final π/2 pulse to see an oscillation, though that fact is not indicated in the cartoon for
clarity.

quite unfeasible. Alternatively, we can use the method shown in Fig. 9.11(a). There, we
choose several fixed times and repeat the Ramsey experiment for each while sweeping
the angle of the final π/2 pulse. At each time we get a sinusoid with a phase that, from
our point of view, is random. The amplitude of this oscillation tells us the amount of
phase coherence remaining at that time. As shown in (b), we can plot the amplitudes for
each time and fit them to an exponential decay. We see that when we have detuned the
qubit by about 2 GHz, the cavity coherence time has improved to more than 60 μs. This

corresponds to a pure dephasing time of Tφ =
(

1
60 μs

− 1
2·35 μs

)−1

≈ 400 μs. Clearly, the
inherited dephasing from the qubit was dominating the cavity coherence.

As before, we can reveal the evolution of this decoupling by measuring T2 as a function
of qubit frequency. As shown in Fig. 9.12, this is done by repeating the procedure from
Fig. 9.11 for a variety of flux pulse amplitudes. The resulting data show two general trends.
At first, as we detune the qubit from its maximum frequency, the cavity coherence time is
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Figure 9.11: Procedure for measuring cavity T2 with the qubit detuned. (a) Detuning
the qubit with a flux pulse changes the cavity frequency by as much as 20 MHz. In order
to measure the cavity dephasing time, we therefore must use a sequence that is insensitive
to its absolute phase evolution. We first prepare a superposition of 0 and 1 photons with a
π/2 cavity pulse, as before. We then move the qubit away for some time, do another π/2
pulse on the cavity, and measure its state in the usual way. We repeat each time with several
angles of the second π/2 pulse. (b) The resulting raw data of this procedure show eight
different sinusoids for delay times of 10− 80 μs. At each time, we get a sinusoidal oscillation
with some phase. This phase is set by the fast dynamics of the cavity, which seems random
from our point of view. The amplitude of the oscillation, which we extract by fitting the
data, is proportional to the amount of phase coherence of the cavity at the specified time.
(c) We plot the extracted amplitudes as a function of the delay time (shown in blue). We
also plot the raw data (in black). Fitting the amplitudes to an exponential, we find that
the cavity dephasing time has improved to 60.9 ± 1.7 μs when we have moved the qubit
approximately 2 GHz away from its maximum frequency. Given that the cavity lifetime here
is approximately 35 μs, this corresponds to a pure dephasing time in excess of 400 μs.

reduced because the qubit dephasing time is shrinking faster than the cavity is becoming
decoupled. (It is somewhat difficult to see this with the chosen y-scale, but the lifetime
degrades from 22 μs with the qubit at 8.914 GHz to 12 μs with the qubit at 8.846 GHz.)
As the qubit is further detuned, however, the cavity becomes less and less hybridized and
thus less susceptible to the inherited dephasing. The dephasing time therefore increases
steadily to ∼ 70 μs, corresponding to nearly pure dephasing. We conclude that, in the
absence of the qubit, the cavity experiences essentially no inhomogenous dephasing.
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Figure 9.12: Cavity T1 and T2 as a function of qubit frequency. We perform the
experiment described in Fig. 9.11 as a function of qubit frequency by varying the amplitude
of the qubit flux pulse. We plot the measured cavity dephasing time, revealing that it
initially decreases as the qubit lifetime rapidly degrades away from fmax. When the qubit is at
8.914 GHz, the cavity T2 is 22 μs, but reduces to only 12 μs with the qubit at 8.846 GHz. For
larger detunings, however, the dephasing time increases as the cavity becomes less hybridized
and therefore becomes less susceptible to qubit dephasing. Error bars are the standard
deviation of several repeated measurements. Uncertainties are larger for big detunings
because we are unable to measure for larger delay times than 80 μs due to the memory
limitations of our AWG. Therefore, we do not sample far on the exponential curve when the
cavity coherence time gets long. As before, we relate the applied flux pulse amplitude to
qubit frequency with flux spectroscopy. We also plot the previously-measured cavity T1 for
comparison, which shows that the cavity approaches T2 = 2T1 for large detunings.
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9.2.5 Cavity nonlinearity

We can continue building up procedure complexity and measure the cavity anharmonicity
K. The Kerr effect is due to hybridization of the cavity with the qubit that gives the
cavity some nonlinearity. As described in section 6.3.1, this can be seen as the first-order
Taylor expansion of the Josephson potential, giving the cavity Hamiltonian a K

2
(â†â)2

term. While many materials exhibit some degree of Kerr nonlinearity, they are generally
so lossy that the effect requires very high excitation to be observed. The combination
of large Josephson nonlinearities and extremely low cavity losses found in 3D cQED has
recently enabled the study of the “single-photon Kerr effect,” where the quantization of
photon number plays an important role in the physics [107]. One way of quantifying
this importance is to define the phase shift per photon φ = K/κ, where κ is the cavity
bandwidth. This phase shift is normally not resolvable when κ > K.

We want to directly measure the cavity Kerr anharmonicity using Fock states. The
essential fact that we are going to employ is that the energy of two photons is slightly
less than twice the energy of one photon due to K. A procedure for measuring K as a
function of qubit frequency is shown in Fig. 9.13, where we measure the phase evolution
of a superposition of 0 and 1 or 1 and 2 photons after moving the qubit away for some
time. The 0 − 1 superposition acquires a phase due to the cavity frequency shifting in
response to the qubit being detuned, while the 1− 2 gets both phase as well as another
due to being lower in energy by K. Both also acquire a dynamical phase due to the finite
transit time of the qubit. We perform two more experiments with different waiting times
to calibrate those away. We can solve the resulting system of four equations to extract K.

We can immediately perform this experiment as a function of qubit flux pulse amplitude
(as shown in Fig. 9.14). We find that the Kerr reduces from ∼ 1 MHz to ∼ 1 KHz when
we detune the qubit by only 1.5 GHz. This dramatic reduction indicates that we have
the ability to completely turn off the Kerr effect, in the sense that κ � K. Indeed, the
reason we were not able to measure much lower than 1 KHz was because this device
had a κ = 1/(2π · 40 μs) = 4 KHz and our superposition state decayed faster than it
acquired phase. For larger detunings where the dispersive approximation applies [257], the
data conform to a Δ−4 curve. Even if our cavity was substantially longer lived [258], this
indicates that we could still turn off the Kerr nonlinearity by detuning slightly further.
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Figure 9.13: Cavity Kerr measurement procedure. To measure the cavity anharmonicity,
we leverage our ability to create Fock state superpositions in the cavity. Due to dynamical
phases, we require four independent experiments. (a) In the first experiment, we prepare
a superposition of 0 and 1 photons with a π/2 rotation on the cavity. This rotation is
considered to be about the x axis and addresses the 0 ↔ 1 transition, and so is labeled x01π/2.
We then move the qubit away for some time t1 and then apply a π/2 cavity rotation around
the φ axis, labeled as φ01

π/2, and measure. We repeat this experiment as a function of φ
to get a sinusoidal oscillation. The phase of this curve will be given by φ1 = t1Δ+ ξn=1,
where Δ is the amount by which the cavity frequency changes due to the qubit moving
and ξn=1 is a dynamical phase associated with one photon undergoing that trajectory in
time. (b) The second experiment repeats the first except using a superposition of 1 and 2
photons. We prepare that state by applying a π pulse on the 0 ↔ 1 transition and then a
π/2 rotation on the 1 ↔ 2 transition using single sideband modulation. After waiting for t1,
we apply a second π/2 cavity rotation around the φ axis followed by a second π pulse to
map 1 → 0 to restore contrast between 1 and 2 photons for our subsequent measurement.
The phase of the resulting oscillation is be given by φ2 = t1 (Δ +K) + ξn=2 where K is the
Kerr anharmonicity and ξn=2 is the dynamical phase acquired by the 2-photon Fock state.
Note that the oscillation amplitude is significantly reduced compared to (a) because the
sequence takes a substantial fraction of the cavity lifetime due to the slow cavity pulses. (c-d)
The third and fourth experiments simply repeat the first and second, but with a different
waiting time t2. We therefore have φ3 = t2Δ+ ξn=1 and φ4 = t2 (Δ +K) + ξn=2, noting
that the dynamical phases are identical to the first two cases so long as t2 is longer than
any qubit dynamics. We thus have four equations and four unknowns, and can solve for
K/2π = (φ1−φ2)−(φ3−φ4)

2π(t2−t1)
.
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Figure 9.14: Cavity Kerr as a function of qubit frequency. We perform the experiment
described in Fig. 9.13 as a function of the qubit flux pulse amplitude. As before, we relate the
flux amplitude to the resulting qubit frequency with flux spectroscopy. We plot the measured
Kerr value as a function of qubit frequency. Note that the y-axis is logarithmic, and that the
Kerr parameter drops three orders of magnitude when we detune the qubit by only 1.5 GHz.
We plot a Δ−4 curve fit to data starting at 8.5 GHz where the dispersive approximation
should hold. The data is well-fit by this power law, indicating that the Kerr effect can be
reduced arbitrarily low with further detuning.

9.2.6 Cavity dispersive shift

We can measure the cavity χ-shift as a function of qubit frequency. As described in
Fig. 9.15, the sequence is quite similar to the one we used to measure the cavity Kerr. We
prepare either 0 or 1 photon, put the qubit on its equator, flux the qubit to the frequency
at which we want to know χ, wait for some time, then move the qubit back home and
interrogate its phase with a Ramsey experiment. Just as was necessary with Kerr, we have
to perform four experiments to cancel out dynamical phases.

This sequence is somewhat more complicated than is necessary. It calls for performing
π/2 pulses on the qubit at a frequency fhome that was distinct from fmax. By choosing
fhome to be far from the cavity, the qubit number splitting can be smaller than our qubit
pulse bandwidth. That way we can successfully apply a number insensitive π/2 pulse
regardless of the number of cavity photons. This requires high-quality flux deconvolution
(see section 7.1.1) because we perform a qubit pulse shortly after the qubit has moved down
from fmax. Operating at fhome is a requirement if, for example, we wanted to interrogate
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Figure 9.15: Sequence to measure cavity χ. (a) The prototype of a set of experiments
to measure the cavity dispersive shift χ as a function of qubit position is shown. The qubit
starts at some home position where χ is relatively small. Here we choose fhome ≈ 8.5 GHz
where χ = 3 MHz. We then move the qubit up to its maximum frequency fmax, where
the cavity inherits enough anharmonicity to be π pulsed. We prepare a one-photon Fock
state before moving the qubit back to its home position. By applying a π/2 pulse, we
then prepare a superposition of ground and excited qubit states. We perform this rotation
as fast as possible so as to be maximally insensitive to the cavity state. We then move
the qubit to some frequency fmeas where we wish to measure the χ-shift (which can be
either above or below fhome) and wait for some time t. Finally, we flux the qubit back
to fhome and perform a Ramsey experiment by varying the angle of a final π/2 pulse and
measure with the second cavity mode. (b) We perform the experiment described above
for preparations of both 0 and 1 cavity photons by either performing or omitting the cavity
π pulse. (In either case the flux pulse sequence is unchanged.) As with the sequence for
measuring the cavity Kerr (described in Fig. 9.13), here we also have dynamical phases
associated with a finite flux pulse rise time that we must measure and cancel out. This is
done, as before, by repeating the two experiments with a different integration time, here
chosen to be either 50 ns or 150 ns. The four phases we will measure are then given by
φ1 = t1Δ + ξ0, φ2 = t1 (Δ + χ) + ξ1, φ3 = t2Δ + ξ0, and φ4 = t2 (Δ + χ) + ξ1, where
Δ/2π = fhome − fmeas and ξi is the dynamical phase for i = 0, 1 photons. We solve this
system of equations, giving χ/2π = (φ2−φ1)−(φ4−φ3)

2π(t2−t1)
.
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Figure 9.16: Cavity-qubit dispersive shift χ as a function of qubit frequency. We
measured cavity χ as a function of qubit frequency using the sequence described in Fig. 9.15.
Note that each frequency point required re-writing the sequence file, since we operated
at three distinct frequencies and could not simply sweep the flux pulse channel voltage.
The measured χ-shift is non-asymptotic as a function of detuning, indicating that there is
something unusual going on. One theory is that because the qubit is initially so close to the
cavity, there may be some non-dispersive effects or avoided crossings that add complication.
Another possibility is that, because the qubit is so large and distributed, non-lumped-element
effects may come into play. Nevertheless, the point of this experiment was to prove that it
could be measured, rather than understand in detail the parameters of the device.

the cavity parity by performing a flux excursion such that
∫
nχdt = nπ [93, 142]. However,

for the purposes of this experiment, the cavity is always in an energy eigenstate of either 0
or 1 photons. Therefore, we could apply our qubit rotation at two different frequencies
depending on the preparation, and thus apply all of our rotations at fmax. This would be
a huge technical simplification, since any residual flux bias line ringing would be strongly
damped as a result of the qubit being near its maximum frequency. Nevertheless, as shown
in Fig. 9.16, we were able to perform the prescribed more complicated sequence. This
proves that we can successfully deconvolve away the ringing, enabling more sophisticated
experiments that require operating the system at several distinct frequencies.
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9.3 Cavity dynamics

Our lab has recently become interested in using the cavity itself as a quantum resource.
Cavities may be longer-lived than even the best 3D qubits [258], have a infinitely-large
Hilbert space that can store huge amounts of quantum information [92, 107, 142, 250,
259, 260], and suffer from only simple error processes that could potentially be monitored
and reversed in real time [93, 261]. These properties are very attractive for using the
cavity as a quantum memory, which may be error correctable [93] and fault-tolerant. This
section introduces some of the basic building blocks to store and interrogate quantum
information in a cavity. We measure as an example the Kerr evolution of a coherent state
stored in the cavity, and show how we can shut off this evolution using fast flux. As with
the last section, the control and techniques we demonstrate here generalize directly to
future experiments.

9.3.1 The Husimi Q function

How do we measure the quantum state of a cavity? Since its Hilbert space is infinitely
large, coming up with an efficient and physically-motivated representation is crucial to
making good use of this resource. As we saw in section 3.2.1, one possible route is to use
the photon number Fock basis [109]. This is most analogous to how we think of qubit
quantum states, but is not a very natural choice for cavities. The canonical cavity state is
a “coherent state,” which has a complicated representation in the Fock basis. Since we
are likely to use coherent states frequently, it makes sense to use a representation that
acknowledges that fact. We therefore seek to use coherent states as the fundamental basis,
rather than Fock states. One consequence of representing our infinite Hilbert space with
those states is that we must now explicitly represent our state using continuous, rather
than discrete, variables [262, 263]. This reflects the physical reality that two coherent
states always have finite overlap, with 〈α|β〉 = e−|α−β|2 �= δ (α − β).

The simplest “quasiprobability” distribution for representing quantum states of light
is known as the Husimi Q function [264]. It is defined∗ as the modulus squared of
the resonator state |ψ〉 with a coherent state |α〉, Q(α) = 1

π
|〈α|ψ〉|2. The coefficient

1/π is included for normalization, such that
∫
α∈C Q(α)dα2 = 1. That is, Q(α) is

proportional to the probability that |ψ〉 is the coherent state |α〉. As expected, if our
cavity contains a coherent state |ψ〉 = |β〉, then Q(α) = 1

π
e−|α−β|2 . We can also represent
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Q using the displacement operator D̂(α) = eαâ
†−α∗â. Recall from section 3.2.1 that the

displacement operator represents the action of a coherent tone on a harmonic oscillator,
and creates coherent states as |α〉 = D̂(α)|0〉. Using D̂†(α) = D̂†(−α), we can write
Q(α) = 1

π
|〈0|D̂(−α)|ψ〉|2.

This expression for Q is highly suggestive of an experimental procedure. To measure
Q(α), we could displace the cavity by −α and measure the probability that there are zero
photons using a number-selective qubit π pulse conditioned on n = 0. As before, we use
the first cavity mode as storage for the quantum state and use the second cavity mode to
measure the qubit. This plan will work, though we must acknowledge a complication ∗.
Due to the cross-Kerr effect, there is a direct dispersive coupling between the first and
second cavity mode. Our second-mode measurement voltage will therefore depend on the
number of photons in the first cavity mode. This dependence will corrupt our measurement
because the answer to whether or not the cavity has zero photons should not change if it
has one photon or one hundred. For relatively small displacements at least, the linearity of
the measurement can be used to compensate for this effect (demonstrated in Fig. 9.17).
For each measurement of Q, we measure both with and without the qubit π pulse and
subtract the two measurements, which effectively cancels the cross-Kerr component. We
use this strategy to measure the Q function of a coherent state in Fig. 9.18.

9.3.2 Kerr evolution

The Q function is not limited to measuring coherent states. How might we create some
other quantum state of light? As we mentioned in section 3.2.1, any coherent tone applied
to the cavity can only cause a displacement. We require some source of nonlinearity
to create a more interesting non-classical state. Interesting non-classical states of light
have been made before by building up Fock states [141], but this is rather cumbersome.
Fortunately, there is an easier way. As we have discussed in section 6.3.1 and section 9.2.5,
the cavity automatically has some nonlinearity due to its hybridization with the qubit. The
phase evolution of the nth Fock state is therefore delayed, with |n〉 → ei

K
2
n2t|n〉. Coherent

∗ This can be generalized to a cavity density matrix as Q(α) = 1
π 〈α|ρ̂|α〉, the normalized trace of the

density matrix over the coherent state basis.
∗ Note that we are omitting from our discussion some other details of measuring a Q functions that are

necessary for a quantitative analysis. These complications include the finite bandwidth and selectivity of
our qubit π pulse, thermal population of either the qubit or cavity, the linearity of the cavity displacement,
and others. Discussion of these issues can be found in references 107 and 142.
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Figure 9.17: Q function calibration. (a) We apply a real-valued displacement of some
magnitude α before interrogating the cavity with a qubit π pulse conditioned on the n = 0
photon number state. We measure the qubit state with the second cavity mode. (b) Due
to the cross-Kerr effect, the measurement voltage will depend on the size of α. In red, we
show the result of the experiment described in (a) when the qubit π pulse is omitted, as
a function of the displacement. If the measurement was truly only sensitive to the qubit
state as we desire, this line should be flat. At this point we have not yet calibrated the
our displacement magnitude, so we instead plot as a function of sequence number. In blue,
we show the result when we include the qubit pulse. (c) We plot the difference of the red
and blue lines from (b) and fit the result to a gaussian distribution. The quality of this
fit indicates that we can successfully subtract away the cross-Kerr error. This is because,
at least in the low-photon limit, our measurement operator is approximately linear in the
total number of excitations. If we were to displace substantially further, or pulse higher
number states, we would start to see an compression in measurement contrast that we
cannot subtract away. Physically, this compression originates with the cavity bright-state
probability approaching unity. The characteristic width σ of the gaussian fit also calibrates
our displacement scale. The probability of having n photons given a displacement α is given
by P (|α|) = |α|2ne−|α|2/n!. For n = 0, P is a gaussian, and when P = 1/e, α = 1. Thus,
the best-fit value of σ = 24.6 indicates that, at the voltage corresponding to that sequence
number, we are doing a displacement of unit magnitude.
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Figure 9.18: Procedure for measuring the Q function and example data. (a) To
measure Q, we prepare a test state with a displacement D̂(β = −1.5). We then measure
|〈0|D̂(−α)|ψ〉|2 by applying a second displacement D̂(−α), a qubit π pulse conditioned on
0 photons, and finally, a measurement through the second cavity mode. (b) If we omit the
qubit pulse (as described in Fig. 9.17) we still get measurement contrast as a function of α
due to the cross-Kerr effect. This measurement is used to calibrate away this effect. Here,
the x and y axes are proportional to the real and imaginary parts of α. We measure for
121 separate values of α. (c) Including the qubit pulse, we see a large peak slightly offset
from the origin due to our prepared state |β〉. As expected, however, we also see an overall
background that must be removed. (d) By subtracting (b) from (c), we arrive at our Q
function. It is ideally given by a gaussian centered at β. Here, we calibrate the x- and y-axes
using the method described in Fig. 9.17.

states are thus no longer eigenstates, and evolve according to

|ψ(t)〉 = ei
K
2
(â†â)2t|β〉 = e−|β|2/2∑

n

βn

√
n!
ei

K
2
n2t|n〉 �= |β′〉. (9.2)

By displacing our cavity and waiting, we can create interesting non-classical states.
As first observed with two physical cavities in Ref. 107, we demonstrate this Kerr

evolution using the procedure shown in Fig. 9.19. There, we initially displace our oscillator
by a magnitude β = 1.5. This takes only 5 ns and, since its bandwidth is much greater
than K, is completely insensitive to the cavity nonlinearity. We then wait for some time t,
during which the state evolves as written in Eq. 9.2. Finally, we measure Q. The measured
distributions are also shown in Fig. 9.19. For short times, the Kerr evolution is closely
approximated by a rotation in phase space by an angle φKerr = Kt(|β|2+1/2) [107]. (This
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Figure 9.19: Evolution of a coherent state under the Kerr nonlinearity. The cartoon
in the upper left corner shows the procedure for producing and measuring these states, where
we initially displace the cavity, wait some time, and then measure the Q function. The
resulting evolution is stroboscopically probed every 50 ns until the state eventually re-coheres
and the evolution repeats. Note that we were in the K

2 â
†â†ââ rotating frame of the cavity in

these data rather than the K
2 (â

†a)2 frame, giving us a net π phase shift in 1 μs.
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fact was used to measure even smaller values of K by compensating with larger α, but in
practice it is considerably more cumbersome than the procedure described in section 9.2.5.)
For longer times, the state spreads angularly because amplitude components further from
the origin rotate with a larger velocity due to the n2 dependence of the Kerr effect. After
a time Trev = 2π

K
≈ 1 μs, the state revives to a coherent state, but with a −1 phase since

ei
K
2
n2t = (−1)n for t = Trev [265]. There a small tail is visible due to inhomogenous cavity

dephasing inherited from the qubit.
The state appears to be much more complicated between this early spreading out and

the eventual revival. For example, we see at t ≈ 450 ns that our state is two distinct blobs.
This is a superposition of |β〉 and |−β〉, and is known as a “Schrödinger cat” state. The
name refers to the fact that it is a superposition of “alive” and “dead” macroscopic quantum
states. Although it is difficult to resolve with this relatively small initial displacement β,
the Kerr evolution in general produces a superposition of an arbitrarily large number of
evenly-spaced coherent states. For integer fractions q of Trev, we can write the quantum
state as [107, 266] ∣∣∣∣ψ(Trev

q

)〉
=

1

2q

2q−1∑
p=0

2q−1∑
k=0

eik(k−p)π
q

∣∣∣βeipπ
q

〉
. (9.3)

This is a “multi-component Schrödinger cat” state and is made up of q coherent states.
Note that the cat shown at t = 450 ns should be exactly symmetric, but is not. We
attribute this to the cavity having substantial higher-order nonlinearity due to its extremely
strong coupling with the qubit. If we move the qubit slightly away to slow down the Kerr
evolution, the cats appear to be more symmetric (data not shown).

9.3.3 Freezing Schrödinger cats

The Kerr evolution therefore gives us the ability to create interesting non-classical states
of light. However, the evolution shown in Fig. 9.19 loops around forever, or at least
until the state decays to 0 photons and becomes an eigenstate of the Kerr Hamiltonian.
If we stored some quantum information in this cavity, it would only be accessible every
Trev. Fortunately, we can eliminate this restriction by using our fast flux control. As we
showed in Fig. 9.14, we can turn K down to essentially zero by detuning the qubit. We
can therefore start with the qubit near fmax to create some quantum state with the Kerr
evolution or direct cavity pulses and then move it away to freeze the evolution of that
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Figure 9.20: Freezing Schrödinger cat states with fast flux. (a) We create a
Schrödinger cat state by displacing the cavity with β = 1.5 and waiting for t1 = 480 ns.
To freeze this state, we move the qubit far away, making K → 0, and wait for some time
t2. We then measure the Q function. (b) The Q function of state we are aiming to freeze,
with t1 = 480 ns and t2 = 0 ns is plotted. This state does exhibit some asymmetry due to
higher-order cavity nonlinearities, but for the purposes of this experiment is deemed to be
the ideal state we wish to protect. (c) As described in (a), after creating our Schrödinger
cat, we move the qubit suddenly away for some period of time. We show the resulting Q
function for several values of t2, demonstrating that the evolution has completely shut off.
During the 40 ns of evolution shown, the cat would become noticeably deformed if K had
not been reduced. Note that these data have been rotated in software to compensate for the
22 MHz detuning that the cavity has from our LO when the qubit is far-detuned.

state, as shown in Fig. 9.20. This demonstrates that we are able to dynamically tune the
Hamiltonian of the cavity from being qubit-like to cavity-like on demand to suit our needs.

9.4 Conclusions

This chapter demonstrated some of the basic qualities and functionality of the tunable
3D cQED architecture. We showed that if we do not filter the flux bias lines, they will be
an unacceptable qubit decay channel. Consistent with our expectations, this channel can
be turned off with proper low-pass filtering. Moreover, this filtering does not appear to
substantially degrade the fast performance of our flux bias lines since the associated time
scales of the qubit and FBL are sufficiently different (∼ 500 MHz vs ∼ 5 − 10 GHz).

We then turned our attention to a particular device with a single qubit and cavity.
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The qubit maximum frequency was very close to resonance, making it possible to directly
Rabi oscillate the cavity and create photon number Fock states. Combined with fast flux
control, this enabled us to perform a variety of characterization experiments. We showed
how we can directly measure the lifetime and coherence of the cavity as a function of qubit
frequency, demonstrating that the cavity inherits substantial dephasing from the qubit. We
were able to directly measure and instantaneously control the cavity Kerr anharmonicity
and the dispersive χ shift. These experiments primarily serve as an explanation of the
kinds of techniques and tools that are available with fast flux control, though also provide
a rich dataset for validating theoretical predictions.

Finally, motivated by the promising qualities of the 3D cavities, we introduced some basic
tools for manipulating and measuring continuous-variable quantum states. In particular,
we showed how to measure the Husimi Q quasi-probability distribution using the tools we
have already established. Using the Q distribution, we measured the Kerr evolution of a
coherent state stored in our nonlinear cavity. At a particular time, this evolution maps us
to a superposition of two coherent states known as a Schrödinger cat state. Using fast
flux, we froze the evolution of this state, demonstrating our ability to dynamically change
the cavity between an anharmonic qubit-like system to a linear memory. In the next and
final chapter of this thesis, we will further explore this idea to motivate future applications
of the tunable 3D architecture.



CHAPTER 10

Conclusions and Future Work

During the last several years, superconducting circuits have made dramatic progress
in both complexity and coherence time. We have highlighted these trends in this

thesis, culminating respectively with the demonstration of the most basic form of quantum
error correction and the development of the tunable 3D cQED architecture. While
some breakthroughs such as the high-power readout mechanism were unexpected, other
progressive trends were more purposeful. Increasing from two entangled qubits to three
was primarily a matter of improved engineering. Similarly, the three-qubit Toffoli gate
required for error correction was a logical progression from the two-qubit gates pioneered in
earlier work. (The improved coherence of 3D cQED lies somewhere in between these two
extremes, as it was guided by principle but still exploratory.) The fact that these devices
are so well understood that they can be expanded and built upon speaks to the advantages
of a solid-state quantum architecture. Better understanding of physics and development
of techniques can be leveraged to do progressively more sophisticated experiments. Indeed,
many high-profile results have become standard techniques for later experiments.

The experimental path thus far has largely followed that of earlier systems like NMR and
trapped ions [267]. We have now accomplished many of the “proof-of-principle” experiments
where any level of functionality can evidence success, but future quantum information goals
are qualitatively different. New landmarks will require combining increased device complexity

283
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with higher gate and measurement fidelity. One such goal is to demonstrate a logical qubit
with a lowered effective error rate using quantum error correction. This has never been
accomplished in any system despite the fact that the whole future of quantum computing is
predicated on its success. While there are a variety of proposals [17, 18, 68, 80, 90, 91, 93],
a great deal of theoretical interest and, more recently, experimental ambition [54, 268] has
concerned the “surface code” [80, 90, 91]. This code has advantages of a high threshold
(∼ 1%) and simple hardware requirements. However, the signature of an operational
surface code – an improved logical error rate – only emerges from the collective behavior
of a large number of qubits. Even assuming gate fidelities continue to increase, it is hard
to imagine fewer than one hundred qubits being used in an initial demonstration. And
if merely controlling one hundred qubits is not challenging enough, each of them must
be endowed with record-breaking gate fidelity and high fidelity in-situ readout and reset.
Progress is being made on each requirement [54, 60, 61, 143, 161, 169, 172, 207], but
combining all those advances with a large number of coupled qubits is a much bigger
challenge.

Fortunately, there are more direct paths to interesting scientific results. One example is
the recent proposal of Leghtas, et al. to error correct a quantum state stored in the Hilbert
space of a harmonic oscillator [92]. It is not yet known to be fault tolerant and does not
yet enjoy the considerable theoretical support of the surface code, but it is much simpler to
implement. None of the experimental requirements seem beyond the reach of an academic
group in the coming years, and several would constitute a high-profile result in their own
right. Moreover, for plausible experimental parameters, this “cat code” could realize an
improved effective cavity coherence time. There is also ongoing theoretical development
of the idea, which might lead to a fault-tolerant implementation that eliminates the need
for a more technical approach like the surface code.

In this chapter, we propose a series of experiments to expand on the work presented in
this thesis. We will start with a list of technical improvements that could be incorporated
into the tunable 3D cQED architecture (section 10.1). Some of these are straightforward
extensions of what has already been demonstrated, while others are more exploratory
and aspirational. We will then summarize a few exciting qubit experiments that could
be achieved with an improved 3D cQED or a similar architecture (section 10.2) before
concluding with a general outlook on superconducting quantum computing.



CHAPTER 10. CONCLUSIONS AND FUTURE WORK 285

10.1 Tunable 3D cQED development

A considerable amount of development of the 3D cQED architecture has already occurred,
but there is room for more. One promising example is to replace the flux bias lines with
microwave resonators for individual qubit readout. We already have high-bandwidth RF
connectors on the PC board for flux control, so this would be a simple matter of a new
lithographic design of the FBL. It may also be possible to design a circuit that could be
used for both flux bias and microwave cavity coupling because the relevant frequencies are
so different. Additionally, because the FBL wafer is so large, it would be easy to integrate
complications like a Purcell filter to the output of the resonator. This would enable efficient
qubit reset, as we saw in section 6.2.4. When combined with a quantum-limited amplifier
[61, 190–193, 195, 269, 270], a Purcell-filtered resonator would also enable high-fidelity
and QND dispersive measurements.

A resonant structure like the Purcell filter may also represent a better way to design
3D FBL lines. In addition to being easier to fabricate, it would eliminate the need for the
dielectric capacitors that might currently be limiting coherence. We could also investigate
the dependence of qubit lifetime on physical dimensions. We have already seen that moving
from a 50 μm to a 300 μm antenna pitch improves qubit lifetime considerably; there may
be other simple and effective changes available to us that have not been tried. Similarly,
we could measure flux noise density as a function of the size of our SQUID loop to see if
progress could be made on that front. Recently, there has also been promising work on
using surface treatments to cut down flux noise [271]. We have not ruled out the possibility
that our flux noise is the result of a technical problem with the experimental setup, so
testing a tunable 3D cQED device in another fridge would be informative. Improved
cryogenic filtering might also ameliorate qubit lifetimes, and validating our setup against
others that are known to be of high quality would be reassuring.

Larger architectural design changes are also worth consideration. There have been some
issues with RF coupler cross-talk in multi-cavity designs that could be solved by re-designing
the octobox sample holder. We could retrofit the design to support a waveguide Purcell
filter [202] if we wished to measure through a low-Q 3D resonator. A re-design could
also render more robust the use of high-purity aluminum cavities. The required etching
of these cavities increases physical gaps, which can cause problems when we are relying
on tight fits to confine microwaves in the normal design. An RF choke [170, 272] may
improve shorting the two sides of the cavity together. Particularly when sapphire wafers
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are present, the quality of the connection between the two sides could dominate the cavity
quality factor. Finally, we could scale the architecture to support more cavities and qubits
as experimental requirements dictate.

10.2 Qubit experiments

Though many of the straightforward quantum information experiments have been done,
there are a wealth of future directions for superconducting qubits. As ever, we want to
improve qubit gate and measurement fidelity, inventing more robust or scalable multi-
qubit gates, and investing in technical capabilities like FPGAs for real-time measurement
processing [172, 173, 208].

Thinking about the architecture of a large-scale quantum computer has become
increasingly necessary. One issue that must soon be addressed is that superconducting
qubits tend to interact with one another, particularly when they mutually coupled to the
same cavity. Implementing the surface on a large-scale quantum computer will require
restricting the length scale of these interactions. As we discuss below, one approach is
to make “modules” that interact only through an explicit measurement. This has the
advantages of eliminating any spurious interactions and of being scalable, though it also
somewhat increases physical overhead.

We will also provide a few examples of interesting experiments that can be done with
current (or soon-to-be current) multi-cavity devices. Having multiple cavities enables
conceptually new experiments like entanglement distillation and syndrome extraction, both
of which are necessary for fault-tolerant error correction.

10.2.1 Modules

One challenge with scaling to larger superconducting cQED systems is that qubits tend to
interact with one another over relatively large length scales. While this opens up a variety
of ways to generate multi-qubit gates [55, 121, 169, 176, 201, 209, 232, 252], it presents
a challenge for single-qubit rotations [54, 169, 182, 208]. As we saw in section 5.2.3,
even two qubits in a single cavity can have dramatic implications for maintaining control
over each qubit individually. To a certain extent, composite pulses and understanding
the details of these interactions can mitigate the control problem, but these long-range
interactions also tend to propagate errors to other qubits, creating a nightmare for fault
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tolerance (section 2.3.6). Though it would be possible to fabricate a device with a large
number of qubits, accurately controlling and error-correcting such a system will require
limiting the range of these interactions.

One approach to controlling those interactions is to physically break the connection
between qubits. Suppose we have some relatively small system of a few qubits and several
cavities. If we understood the details of all of the (finite number of) interactions well
enough, we might control each qubit with extremely high fidelity. We could then network a
pair of these smaller devices together via a dispersive measurement that bounces off both
devices prior to being detected [218–220]. These modules may be separated by relatively
large distances (the length of an SMA cable) and would only interact via the intentional
measurements. Entanglement between devices is heralded by this measurement, which
might be repeated or “distilled” if the interactions between modules prove faulty. This
approach is advantageous in that it is the only currently known way to robustly scale
superconducting qubits, and because it has a straightforward experimental path.

What are the initial steps along that path? First, we need to develop better tools
for predicting the higher-order terms of a Hamiltonian and the Purcell effect. Black-box
quantization [138] has been shown to work well for one qubit and cavity, but more work
is necessary to take into account multiple qubits and cavities, especially when EC is not
small. Validating these theoretical calculations will require a detailed measurement of all
the couplings in a system, and performing those measurements as a function of qubit
frequency via flux bias line or external-coil tuning would be even better.

Developing the technology to measure multiple physical cavities is also important. One
approach is making two systems with the same cavity frequency and χ-shift, and connect
them with circulators and cables that are as low-loss as possible. As of the writing of this
thesis, the first results of this experiment were just announced out of Irfan Siddiqui’s lab
in Berkeley [273]. Another approach is to connect the cavities to the signal and idler ports
of a JPC amplifier [61, 270], which would eliminate the requirement for circulators prior
to amplification and for the cavities to be at the same frequency [274].

10.2.2 Multi-cavity experiments

There are also a variety of interesting qubit experiments which take advantage of having
more than one cavity which are currently possible or will be soon. Most multi-qubit
experiments conducted so far have involved several qubits in the same cavity. Even if we
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do not use the module approach, we clearly need to limit the number of qubits that directly
couple to one another in order to scale larger. Fortunately, we already have a prototypical
system with which to study this idea: the two-cavity 3D cQED device (section 4.2.2).
There, we have a single qubit coupled to both cavities, and can have several coupled to
each individual cavity. This enables two conceptual classes of experiments: entanglement
distillation and syndrome extraction.

Entanglement distillation

Entanglement distillation is a process by which we take many imperfect Bell pairs shared
between two locations and convert them into a smaller number of higher-fidelity pairs
[68, 163–165]. Suppose that we can generate entanglement between distant qubits, perhaps
by shuttling excitations through a qubit that is coupled to both. Entanglement generated
in this way will likely be lower fidelity than operations limited to inside a given cavity.
For example, the coherence time of the shuttle qubit will be inferior to the single-cavity
qubits if the shuttler is flux sensitive and the others fixed-tuned. By repeatedly measuring
quantities about the two pairs, we can increase the fidelity of the pairs (conditioned on
the “favorable” outcomes of random measurements).

The most basic type of entanglement distillation would require five qubits in cQED:
one ancilla qubit and one communication qubit per cavity, and one shuttle qubit coupled
to both cavities∗. We also require the ability to measure both ancilla qubits individually.
That protocol [275, 276] begins by entangling two communication qubits by some process
that is assumed to be relatively low fidelity. The communication qubits are then entangled
with the ancilla qubits and subsequently measured along some basis. If the results of
both measurements are favorable and the fidelity of both the ancilla-communication
entanglement and the measurements are high, then the resulting entanglement fidelity
between the communication qubits is increased. If the measurement outcome is unfavorable,
however, the entanglement may either have been destroyed or reduced in fidelity, depending
on the protocol. Fortunately, with at least some schemes [275], the probability of finding
subsequent favorable measurements increases with each successful repetition.

This general scheme – in which ancillas are measured and a “good” result increases
fidelity – is also used in other QI protocols. For example, there is no known way to

∗ The fifth qubit is not required, but some mechanism to controllably entangle the two distant sets is
necessary.
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fault-tolerantly implement non-Clifford gates like T̂ = e−iπẐ/8 in certain error correction
protocols like the surface code [68]. This gate is needed for universality, so another
approach is crucial. One method is known as “magic state distillation” [277, 278]. There, k
imperfect copies of the state |A〉 = T̂ |+〉 ∼ |0〉+ eiπ/4|1〉 are generated. These states are
then entangled with one another and various Clifford projections are measured. If all the
measurements are found to have the value +1, we will have k higher-fidelity copies of |A〉.
This protocol can be repeated to enhance the fidelity of |A〉 to the effective logical error
rate of our computer, and then teleported into the circuit to implement T̂ as necessary.

Syndrome extraction

All error correction protocols rely on extracting error syndromes from encoded logical
qubits. As we saw in section 2.3.4, this information can either be fed into a quantum
gate to implement a correction or it can be measured, classically processed, and fed back.
It turns out that measuring the error syndromes is a much more effective method, since
classical logic operations can be essentially perfect. This dramatically lowers the overhead
associated with fault-tolerant error correction. However, extracting these syndromes is a
challenge itself. In cQED, measurement of transmission through a cavity projects every
qubit coupled to that cavity. If we intend to measure only one ancilla qubit that contains
some error syndrome, we would have to use an individual cavity coupled solely to that
qubit. This is one of the motivations for replacing or supplementing FBLs with cavities, as
we have previously discussed.

A method that avoids the need for individual cavities for syndrome extraction was
recently proposed [168]. There, we have a manifold of N qubits coupled to the same
cavity. By using the dispersive χ-shift and a cavity displacement, we can map the value
of any Pauli correlation to the quantum state of the cavity. The cavity will either be
in the state |+α〉 or |−α〉 depending on whether the value of some observable is +1

or −1. This observable can be chosen arbitrarily by performing rotations on the qubits
and by echoing away the χ-shifts of qubits that should not be measured. The state of
the cavity is then read out with some ancilla that is coupled to both the primary cavity
and a secondary cavity. It is convenient for that qubit to be flux-tunable to control its
dispersive coupling to the storage cavity. Since this qubit will be entangled with the value
of the syndrome, measuring it will project the system as desired in QEC. Moreover, with
recent developments of fast FPGA logic [172, 173] and low-noise amplifiers [60, 61], a
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high-fidelity QND measurement could be repeated several times. Based on the outcomes
of several repetitions, one could, for example, prepare some known entangled Bell or GHZ
state.

10.3 Outlook on a superconducting quantum computer

Despite the inevitable challenges, there are many reasons to be optimistic about the future
of superconducting qubits. Only fourteen years have passed since the first Rabi oscillations
of a Cooper pair box were demonstrated at NEC [134]. Since then, there have been vast
improvements to all aspects of the technology. One of the most important advances has
been in coherence time. Superconducting qubit coherence has improved nearly five orders
of magnitude since 1999, from 2 ns to ∼ 200 μs. This is of key importance because
coherence had long been the most pressing open question in evaluating the prospects
of a superconducting quantum computer. In contrast to systems like quantum dots,
the source of this decoherence is not known, and it was feared to be an intrinsic limit
of Josephson junctions. Recent results [63, 64, 169, 173, 279] have shown that these
junctions are perfect, at least to the limits of our ability to measure them. Dielectric losses
and thermalization were likely the sources of the previous ∼ μs ceiling. Moreover, since
the original demonstration of 3D cQED, transmon coherence has improved by another
factor of four [162] and further advances are hopefully on their way. Two-dimensional
cQED has also enjoyed impressive advances in coherence, with recent devices exhibiting
20−60 μs T2 times [63, 268]. It is fair to say that coherence time no longer represents the
primary obstacle to a superconducting quantum computer, though there always remains
room for improvement.

In contrast to the problem of coherence time for which the origin and solution were
unknown, many of the current and upcoming challenges are better defined. We need to
continue making advances with gate fidelity and figure out how to scale to larger systems
without sacrificing that progress. There is a significant difference between demonstrating
fault-tolerant fidelities in a system with only two qubits and demonstrating the same in a
system with a hundred. This creates a conflict: how can we learn to improve gate fidelity
in a system that does not yet exist? Or rather, how can we design an architecture that
takes full advantage of the tricks and improvements we have gleaned from smaller devices?
One short-term tactic would be to separate the problems of fidelity and scaling into two
research avenues. We can continue studying how to improve the coherence and fidelity of
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relatively small systems while simultaneously thinking about ways to scale to large ones
[250, 268]. Investigating how to mitigate spurious long-distance communication is an
important concern, but has ample room for innovation and creativity.

Fortunately, the challenge of scaling plays directly into the strengths of superconducting
qubits. Unlike previous quantum architectures, cQED devices are solid-state systems
fabricated in a clean room and controlled with electronic signals. (This statement disregards
the fact that 3D cavities are made in a machine shop, since there is no reason to believe
that is a requirement.) These properties of superconducting qubits are reminiscent of the
silicon transistor, the most replicated human-made object in history. It seems likely that
methods of inhibiting qubit cross-talk, constructing high-fidelity gates, and implementing
room-temperature control will all be soon in coming. These will clear the way to scaling
to very large superconducting devices, and potentially, a true quantum computer.

��
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APPENDIX A

Current-Flux Coupling

In this appendix we reproduce the calculations of Nissim Ofek and Kevin Chou for the
coupling of a flux bias line to a loop in a superconducting box.

Here I try to estimate the flux coupling to a current segment (carrying current I) located
between two SC plates. The distance between the plates is w and I want to calculate the
field at distance d.

Without the plates, the field goes down like 1/d. The effect of the plates is to attenuate
it by some factor.

So the current segment if located at (0, 0) and the plates are at y = w/2 and y = −w/2.
Zero perpendicular field at the surface of the plates can be attained by current images
located at (0, n · w) for n = ±1, 2, 3, . . . with alternating currents In = (−1)nI.

The expression I want to get is the ratio By(d, 0)/B
0
y(d, 0). Where B0

y(d, 0) is the
field at (d, 0) without the plates, which is proportional to 1/d. And By(d, 0) is the field
with the presence of the plates, in terms of the ratio r = w/d.
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G(d, 0) ≡ By(d, 0)

B0
y(d, 0)

=
∞∑

n=−∞
(−1)n

1

(n · r)2 + 1
(A.1)

This expression can be analytically solve for the two extreme cases, r � 1 (very close
to the source) and r � 1 (very far from the source).

Case I, r � 1:

∞∑
n=−∞

(−1)n
1

(n · r)2 + 1
≈ 1 +

∑
n 
=0

(−1)n
1

(n · r)2 (A.2)

= 1 +
2

r2

∞∑
n=1

(−1)n

n2
(A.3)

= 1 − ζ(2)

r2
≈ 1 − π2

6r2
(A.4)

So the effect of the plates is negligible near the source (of course ... ).
Case II, r � 1:
Now n · r increments in small steps. I will rewrite the sum as follows:

∞∑
n=−∞

(−1)n
1

(n · r)2 + 1
= 1 − 2

∞∑
m=1

[
1

[(2m − 1) · r]2 + 1
− 1

[2m · r]2 + 1

]
(A.5)

= 1 − 2
∞∑

m=1

[
1

x2 + 1
− 1

(x+ r)2 + 1

]
x=(2m−1)·r

(A.6)

= � (A.7)

I define:
f(x) =

1

x2 + 1
− 1

(x+ r)2 + 1
,

so

� = 1 − 2
∞∑

m=1

f

[
(m − 1

2
) · 2r

]
≡ 1 − 2 · S. (A.8)

It is quite obvious that limr→0 S = 1
2

and so the whole expression goes to zero. Still,
we are interested to see at what rate this occurs.
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∫ ∞

x=0

f(x)dx =
∞∑
k=0

[ ∞∑
m=1

2r2k+1f (2k)[(m − 1
2
) · 2r]

(2k + 1)!

]

=
∞∑

m=1

2r · f
[
(m − 1

2
) · 2r

]
+

∞∑
k=1

[ ∞∑
m=1

2r2k+1f (2k)[(m − 1
2
) · 2r]

(2k + 1)!

]

= 2r · S +
∞∑
k=1

[ ∞∑
m=1

2r2k+1f (2k)[(m − 1
2
) · 2r]

(2k + 1)!

] (A.9)

Now, ∫ ∞

x=0

f(x)dx = [arctan x − arctan(x+ r)]|∞0 = arctan r (A.10)

And so,

S =
arctan r

2r
−

∞∑
k=1

[ ∞∑
m=1

r2kf (2k)[(m − 1
2
) · 2r]

(2k + 1)!

]
(A.11)

For r << 1 we can write:

S =
arctan r

2r
≈ r − 1

3
r3

2r
=

1

2
·
[
1 − r2

3

]
(A.12)

At the beginning I plugged it into get:

1 − 2 · S =
r2

3
. (A.13)

Obviously, I was sloppy. I should also calculate the big sum at least to order r2. This
is quite easy in fact:

∞∑
m=1

r2kf (2k)[(m − 1
2
) · 2r]

(2k + 1)!
=

r2k−1

2(2k + 1)!
· f (2k−1)

∣∣∣∣∞
0

−
∞∑
l=1

[
r2(l+k)

(2k + 1)!(2l + 1)!

∞∑
m=1

f 2(l+k)[(m − 1

2
) · 2r]

]
(A.14)

So, calculating S to the second order in r gives:
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S =
1

2
·
[
1 − r2

3

]
+

r

2 · 3! ·
2r

(r2 + 1)2
(A.15)

=
1

2
·
[
1 − r2

3

]
+

1

2
· r

2

3
· [1 − 2r2 + 3r4 + . . .

]
(A.16)

=
1

2
− 1

6
· [2r4 − 3r6 − . . .

]
(A.17)

So the field decays at least as r4!
It is quite easy to continue to the next order, but it happens that G(d, 0) can be

matched quite accurately by:

G(d, 0) =
1

cosh
(

d
2w·σ

)2 ; σ = 0.955 · π
2

24
(A.18)
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This is OK, but not exactly what I need. I want to see what is the coupling due to a
finite segment of current. To do so, I will calculate the flux threading a square of width w

and height h positioned d away from a current segment of length L. I will assume that
the segment lies on the x-axis.

I start from Biot Savart Lew:

B =

∫
μ0I

4π

�dl × �r

|r|3

First, I calculate the field at position (x, y) due to the current segment:

B(x, y) =
μ0I

4π

L/2∫
−L/2

�dl × �r

|r|3 (A.19)

=
μ0Iẑ

4π

L/2∫
−L/2

y

((x − l)2 + y2)3/2
dl = ⊗ (A.20)

�r stands for (x, y) − (l, 0) = (x − l, y), and �dl is simply (dl, 0). Hence:
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By using x − l = y tan θ, this integral is transformed to be:

⊗ =
μ0Iẑ

4πy

arctan( 2x+L
y )∫

arctan( 2x−L
y )

cos θdθ (A.21)

=
μ0Iẑ

4πy

[
sin

(
arctan

(
2x+ L

y

))
− sin

(
arctan

(
2x − L

y

))]
(A.22)

=
μ0Iẑ

4πy

⎡⎣ L
2
− x√(

L
2
− x

)2
+ y2

+
L
2
+ x√(

L
2
+ x

)2
+ y2

⎤⎦ (A.23)

For a point very close to the segment, y � L
2
− x, L

2
+ x, this expression reduces to:

μ0Iẑ

2πy

Which is the field due to infinite current line.
The next step is to integrate this field within the area of the squid:

Φ =

D+H∫
D

dy

W
2∫

−W
2

dxB(x, y) (A.24)

=
μ0I

4π

D+H∫
D

dy

y

W
2∫

−W
2

⎡⎣ L
2
− x√(

L
2
− x

)2
+ y2

+
L
2
+ x√(

L
2
+ x

)2
+ y2

⎤⎦ dx (A.25)

=
μ0I

2π

D+H∫
D

dy

y

W
2∫

−W
2

L
2
+ x√(

L
2
+ x

)2
+ y2

dx (A.26)

=
μ0I

2π

D+H∫
D

dy

y

⎡⎣√(
L

2
+ x

)2

+ y2

⎤⎦∣∣∣∣∣∣
W
2

−W
2

(A.27)

=
μ0I

2π

D+H∫
D

dy

y

⎡⎣√(
L+W

2

)2

+ y2 −
√(

L − W

2

)2

+ y2

⎤⎦ = ⊕ (A.28)
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As a test, we can check for H � D and L � W,D, and see that we get the area,
H · W times the field due to infinite length current line.

We have here two integral of the form:∫
dy

y

√
u2 + y2 =

√
u2 + y2 + u log y − u log

{
u2 + u

√
u2 + y2

}
+ C

It should be mentioned that this function is symmetric in u. It should be, looking at
what we actually integrate. It is less obvious from the integral itself.

So the whole expression can be written in the following way:

⊕ =
μ0I

2π

[√
u2 + y2 + u log y − u log

{
u2 + u

√
u2 + y2

}]∣∣∣D+H

y=D

∣∣∣∣L+W
2

u=L−W
2

(A.29)

So this is the analytic expression for the coupling as a function of the current, segment
length, frame distance, width and height: f(L,D,W,H).

If the segment is not in the same plane of the frame, say the frame is positioned at
lower altitude, A, then the same formula can be used be slight changes:

g(L,D,W,H,A) = f(L,
√
D2 + A2,W,

√
(D +H)2 + A2 −

√
D2 + A2)



APPENDIX A. CURRENT-FLUX COUPLING 326

We can also calculate the flux coupling when the frame is not sitting symmetric relative
to the current segment, say with some offset O:

If W < 2 ∗ O, then:

h(L,D,W,H,O) =
1

2
[f(L,D,W + 2O,H) + f(L,D,W − 2O,H)]

Otherwise:

h(L,D,W,H,O) =
1

2
[f(L,D,W + 2O,H) − f(L,D, 2O − W,H)]

.
And, of course, we can combine the offset and the altitude together.
This will be useful if we want to take into account the image currents cause by the SC

box. As long as the dimensions are of the order of the width and height of the cavity, we
can take the main term alone. For example, a frame of 100 μm by 100 μm located 400 μm

away from a 500 μm current segment carrying 1mA has one flux quantum threading it.
For the same parameters, the first image caused by the top SC plane, assuming the cavity
is 1mm high, gives 8% of the flux. We have to of these, so taking the first term only has
an error no more than 16% (we have two such images). The error due to the images cause
by the side SC planes of the order of 9%, so the total error is of the order of 35%. We
can still get half a flux out of the same current.



APPENDIX B

Mathematica Code

Here we reproduce the Mathematica code used for state and process tomography and
simulating AllXY syndromes. This code can be used to convert experimental state

tomograms into a χ process matrix, or to simulate the matrix of an ideal process. This
code works only for two qubits (section 7.4), but can be easily generalized for any number.
However, in practice, Mathematica is too slow to operate on more than two qubits, so the
code was re-written in Matlab for the process tomography of section 8.1.6. That code is
not included here, but is functionally identical.

We also calculate the error syndromes of AllXY both analytically and in comparison
with data. Since this code was written, a much better method has been developed using
the QuTiP package for Python∗. We include this code so that the plots from section 5.2.3
can be easily reproduced, but going forward it would be wise to port the code over to
Python.

∗ https://code.google.com/p/qutip/
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Definitons
We begin by defining our language, including raising and lowering operators, 
dagger, tensor product, and Pauli operators.  We then make functions to create and 
manipulate single-qubit states, which generalize to two qubits.  We also define a 
function to produce a Pauli tomogram from a density matrix and Β and Κ matrices for 
converting state tomograms into Χ process matrices.

In[1]:=

Needs�"BarCharts`"�

ident�dim_� :�
SparseArray���Poutine$_, Poutine$_� �� 1�, �dim, dim��;

destroy�dim_� :� SparseArray��Poutine$_, Maudite$_� �;
Poutine$ � 1 �� Maudite$ �� Sqrt�Poutine$�, �dim, dim��;

dagger�a_� :� ConjugateTranspose�a�;
��Transpose�Conjugate�a��; ��

TensProd�a_, b_� :� SparseArray�KroneckerProduct�a, b��;

General::obspkg :
BarCharts` is now obsolete. The legacy version being loaded may conflict with current

Mathematica functionality. See the Compatibility Guide for updating information.
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In[6]:= Σp � destroy�2�;
Σm � dagger�Σp�;
Σx � Σp � Σm;
Σy � �1 � ��� Σp � � Σm�; �� ��� ��
Σz � � Σm.Σp � Σp.Σm;
Σi � ident�2�;

Σii � TensProd�Σi, Σi�;
Σxi � TensProd�Σx, Σi�;
Σyi � TensProd�Σy, Σi�;
Σzi � TensProd�Σz, Σi�;

Σix � TensProd�Σi, Σx�;
Σxx � TensProd�Σx, Σx�;
Σyx � TensProd�Σy, Σx�;
Σzx � TensProd�Σz, Σx�;

Σiy � TensProd�Σi, Σy�;
Σxy � TensProd�Σx, Σy�;
Σyy � TensProd�Σy, Σy�;
Σzy � TensProd�Σz, Σy�;

Σiz � TensProd�Σi, Σz�;
Σxz � TensProd�Σx, Σz�;
Σyz � TensProd�Σy, Σz�;
Σzz � TensProd�Σz, Σz�;

DistributeDefinitions�Σx, Σy, Σz, Σi, Σii, Σxi, Σyi, Σzi,
Σix, Σxx, Σyx, Σzx, Σiy, Σxy, Σyy, Σzy, Σiz, Σxz, Σyz, Σzz�;

U�Θ_, Σ_� :� MatrixExp	��
Θ

2
Normal�Σ�
;

In[30]:= �� Make a one qubit density matrix with QId,
X90p, Y90p, or Xp rotations on the qubits ��
makeΡ1�state_� :� Module��o1�,
Ρ � �Σi � Σz� � 2; �� start from the ground state ��

o1 � Switch�Characters�state���1��,
"I", U�0, Σi�,
"X", U�Π � 2, Σx�,
"Y", U�Π � 2, Σy�,
"Z", U�Π, Σx�,
_, U�0, Σi��;

Return�dagger�o1�.Ρ.o1�;
�;

�� Get Pauli correlations from density matrix ��
paulitomo1�Ρ_� :� �Tr�Ρ.Σi�, Tr�Ρ.Σx�, Tr�Ρ.Σy�, Tr�Ρ.Σz�� � 2;
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In[32]:= �� Programmatically create some order of states and operators ��
getorder1�� :� Module��basis�,

basis � �"I", "X", "Y", "Z"�;
basis
�;

�� Give the density matrix of the kth state in our basis ��
states1 � getorder1��;
state1�k_� :� Module���,

makeΡ1�states1��k���
�;

�� Give the jth operator in our basis ��
operator1�j_� :� Module��op�,

op � ToExpression�"Σ" �� ToLowerCase�states1��j����;
Return�op�;
�;

�� Calculate the Β matrix as a 2nd rank tensor for 1 qubit��
CalcΒ1d�� :�

Module��j, k, m, n, ii, Β, opk, statej, opmstatej, norm, nops�,
Β � ConstantArray�0, �2^4, 2^4��;

nops � Table�0, �ii, 1, 4��;
For�ii � 1, ii � 4, ii��,
nops��ii�� � operator1�ii�;
�;

For�j � 1, j � 4, j��,
statej � state1�j�;
For�m � 1, m � 4, m��,
opmstatej � operator1�m�.statej;

For�k � 1, k � 4, k��,
opk � Flatten�operator1�k��;
norm � Dot�opk, opk�;

For�n � 1, n � 4, n��,
Β��4 � �j � 1� � k����4 � �m � 1� � n�� �

Dot�opk, Flatten�opmstatej.nops��n���� � norm;
�
�
�
�;
Β
�;
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Α � 1; �1;

opx � 1 � �Σp � Σm�;
opy � ��� Σp � � Σm�; �� ��� ��
opz � � � Σm.Σp � Σp.Σm�;
opi � ident�2�;
opii � TensProd�opi, opi�;
opxi � Α � TensProd�opx, opi�;
opyi � Α � TensProd�opy, opi�;
opzi � TensProd�opz, opi�;

opix � Α � TensProd�opi, opx�;
opxx � Α^2 � TensProd�opx, opx�;
opyx � Α � TensProd�opy, opx�;
opzx � Α � TensProd�opz, opx�;

opiy � Α � TensProd�opi, opy�;
opxy � Α^2 � TensProd�opx, opy�;
opyy � Α^2 � TensProd�opy, opy�;
opzy � Α � TensProd�opz, opy�;

opiz � TensProd�opi, opz�;
opxz � Α � TensProd�opx, opz�;
opyz � Α � TensProd�opy, opz�;
opzz � TensProd�opz, opz�;

In[59]:= �� Make a two qubit density matrix with QId,
X90p, Y90p, or Xp rotations on both qubits ��
makeΡ2�state_� :� Module��o1, o2�,
Ρ � �Σii � Σiz � Σzi � Σzz� � 4; �� start from the ground state ��

o1 � Switch�Characters�state���1��,
"I", U�0, Σii�,
"X", U�Π � 2, Σxi�,
"Y", U�Π � 2, Σyi�,
"Z", U�Π, Σxi�,
_, U�0, Σii��;

o2 � Switch�Characters�state���2��,
"I", U�0, Σii�,
"X", U�Π � 2, Σix�,
"Y", U�Π � 2, Σiy�,
"Z", U�Π, Σix�,
_, U�0, Σii��;

Return�dagger�o1�.dagger�o2�.Ρ.o2.o1�;
�;

�� Programmatically create some order of states and operators ��
getorder2�� :� Module��basis, states, i, j, num�,

basis � �"I", "X", "Y", "Z"�;
states � Table�0, �16��;
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�� First programmatically create some order of states ��
num � 1;
For�i � 1, i � Length�basis�, i��,
For�j � 1, j �� Length�basis�, j��,
states��num�� � basis��i�� �� basis��j��;
num��;
�
�;
states
�;

states2 � getorder2��;
�� Give the density matrix of the kth state in our basis ��
state2�k_� :� Module���,
��states � getorder2��;��
makeΡ2�states2��k���
�;

�� Give the jth operator in our basis ��
operator2�j_� :� Module���,
��states � getorder2��;
ToExpression�"Σ"��ToLowerCase�states2��j������
ToExpression�"op" �� ToLowerCase�states2��j����
�;

��Ρ2�xi_,yi_,zi_,ix_,iy_,iz_,
xy_,xz_,yx_,yz_,zx_,zy_,xx_,yy_,zz_� :�
�Σii�xi�Σxi�yi�Σyi�zi�Σzi�ix�Σix�xx�Σxx�yx�Σyz�zx�Σzx�iy�Σiy�

xy�Σxy�yy�Σyy�zy�Σzy�iz�Σiz�xz�Σxz�yz�Σyz�zz�Σzz�;��

paulitomo2�Ρ_� :� Table�Tr�Ρ.operator2�ii��, �ii, 1, 16�� � 4;

get2QΛs�fullΛ_� :� Module��Α�,
Λ � Table�0, �16��;

Α � �1;

Λ��1�� � fullΛ��1��; �� II ��
Λ��2�� � Α � fullΛ��5��; �� IX ��
Λ��3�� � Α � fullΛ��6��; �� IY ��
Λ��4�� � fullΛ��7��; �� IZ ��
Λ��5�� � Α � fullΛ��2��; �� XI ��
Λ��6�� � fullΛ��11��; �� XX ��
Λ��7�� � fullΛ��12��; �� XY ��
Λ��8�� � Α � fullΛ��13��; �� XZ ��
Λ��9�� � Α � fullΛ��3��; �� YI ��
Λ��10�� � fullΛ��14��; �� YX ��
Λ��11�� � fullΛ��15��; �� YY ��
Λ��12�� � Α � fullΛ��16��; �� YZ ��
Λ��13�� � fullΛ��4��; �� ZI ��
Λ��14�� � Α � fullΛ��17��; �� ZX ��
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Λ��15�� � Α � fullΛ��18��; �� ZY ��
Λ��16�� � fullΛ��19��; �� ZZ ��

Λ
�;

CalcΒ2d�� :� Module�
�d, j, k, m, n, ii, Β, opk, statej, opmstatej, norm, nops�,
d � 2^2;
Β � ConstantArray�0, �d^4, d^4��;

nops � Table�0, �ii, 1, d^2��;
For�ii � 1, ii � d^2, ii��,
nops��ii�� � operator2�ii�;
�;

For�j � 1, j � d^2, j��,
statej � state2�j�;
��Print�j�;��

For�m � 1, m � d^2, m��,
opmstatej � operator2�m�.statej;

For�k � 1, k � d^2, k��,
opk � Flatten�operator2�k��;
norm � Dot�opk, opk�;

For�n � 1, n � d^2, n��,
Β��d^2 � �j � 1� � k����d^2 � �m � 1� � n�� �

Dot�opk, Flatten�opmstatej.dagger�nops��n����� � norm;
�
�
�
�;
Β
�;

CalcΒ�j_, m_, k_, n_� :� Module��statej, opmstatej, opk, norm�,

statej � state2�j�;
opmstatej � operator2�m�.statej;
opk � Flatten�operator2�k��;
norm � Dot�opk, opk�;
Print�norm�;

Dot�opk, Flatten�opmstatej.dagger�operator2�n���� � norm

�;
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State Tomography
Here we show some examples of performing state tomography on states.

�� state tomography on the ground state 00� ��
paulibars � paulitomo2�state2�1��;
densitymatrix �

Sum�paulibars��ii�� � operator2�ii�, �ii, 1, 16��;

BarChart�4 � paulibars, PlotRange � ��1, 1��

GraphicsRow��
BarChart3D�Re�Normal�densitymatrix��,
PlotRange �� �All, All, ��1.01, 1.01��� ,

BarChart3D�Im�Normal�densitymatrix��,
PlotRange �� �All, All, ��1.01, 1.01���

��
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�� state 16 is both qubits excited 11� ��
paulibars � paulitomo2�state2�16��;

BarChart�4 � paulibars, PlotRange � ��1, 1��

GraphicsRow��
BarChart3D�Re�Normal�densitymatrix��,
PlotRange �� �All, All, ��1.01, 1.01��� ,

BarChart3D�Im�Normal�densitymatrix��,
PlotRange �� �All, All, ��1.01, 1.01���

��
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�� State tomography on a Bell state ��
phasegate � DiagonalMatrix�
�1, Exp�I � �Φ01��, Exp�I � �Φ10��, Exp�I � �Φ01 � Φ10 � Φ11����;

cphase � phasegate �. �Φ01 � 0, Φ10 � 0, Φ11 � Π�;

�� Circuit to create a Bell state from the ground state ��
bellproc � U��Π � 2, Σyi�.U��Π � 2, Σiy�.cphase.U�Π � 2, Σyi�;

states2 � �"II", "XI", "YI", "ZI", "IX", "IY", "IZ", "XX", "XY",
"XZ", "YX", "YY", "YZ", "ZX", "ZY", "ZZ"�; getorder2��;

paulibars � paulitomo2�dagger�bellproc�.makeΡ2�"II"�.bellproc�;
BarChart�4 � paulibars, PlotRange � ��1, 1��

Out[102]=
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�� Compare this to some random experimentally�
measured Bell state and calculate the fidelity ��

exptData � �1, 0.082, �0.053, 0.037, 0.036, 0.009, 0.021,
�0.804, .152, �.079, .197, .793, .047, �.007, .079, .959�;

BarChart�exptData, PlotRange � ��1, 1��
Sum�paulibars��ii�� � exptData��ii��, �ii, 1, 16��

Out[106]=
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Out[107]= 0.889
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�� Try to match up the data with a process with different single�
qubit phases to optimize the fidelity. ��

testSQAngles�Φ01angle_, Φ10angle_, Φ11angle_, exptData_� :�
Module��phasegate, cphase, bellproc, states2, paulibars�,
phasegate � DiagonalMatrix�
�1, Exp�I � �Φ01��, Exp�I � �Φ10��, Exp�I � �Φ01 � Φ10 � Φ11����;

cphase � phasegate �. �Φ01 � Φ01angle � Π � 180,
Φ10 � Φ10angle � Π � 180 , Φ11 � Π � Φ11angle � Π � 180�;

bellproc � U��Π � 2, Σyi�.U��Π � 2, Σiy�.cphase.U�Π � 2, Σyi�;

states2 �
�"II", "XI", "YI", "ZI", "IX", "IY", "IZ", "XX", "XY",
"XZ", "YX", "YY", "YZ", "ZX", "ZY", "ZZ"�; getorder2��;

paulibars �
paulitomo2�dagger�bellproc�.makeΡ2�"II"�.bellproc�;

Re�Sum�paulibars��ii�� � exptData��ii��, �ii, 1, 16���

�;
In[108]:= testSQAngles�20, 0, 0, exptData�
Out[108]= 0.894764

In[109]:= FindMaximum�testSQAngles�x, y, z, exptData�,
��x, 0�, �y, 0�, �z, 0���

FindMaximum::lstol :
The line search decreased the step size to within the tolerance specified

by AccuracyGoal and PrecisionGoal but was unable to find a
sufficient increase in the function. You may need more than 
MachinePrecision digits of working precision to meet these tolerances. �

Out[109]= �0.898571, �x � 11.1311, y � �2.06128, z � 2.31932��

Two-qubit Process Tomography
Code to create the Β matrix for converting state tomography data into a Χ matrix.

AbsoluteTiming�Β2 � CalcΒ2d��;�
AbsoluteTiming�Κ2 � Inverse�N�Β2��;�

CNot � ��1, 0, 0, 0�, �0, 1, 0, 0�, �0, 0, 0, 1�, �0, 0, 1, 0��;

CPhase � ��1, 0, 0, 0�, �0, 1, 0, 0�, �0, 0, 1, 0�, �0, 0, 0, �1��;
Out[68]= �2.753845, Null�

Out[69]= �0.063325, Null�
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�� Process tomography on the identity
just to verify that everything isn't crazy ��

Proc � U�0, Σii�;
Λ2 �

Table�paulitomo2�Proc.state2�ii�.dagger�Proc��, �ii, 1, 16��;
Χ2 � Partition�Κ2.Flatten�Λ2�, 16�;

GraphicsRow��
BarChart3D�Re�Χ2�, PlotRange �� �All, All, ��1.01, 1.01��� ,
BarChart3D�Im�Χ2�, PlotRange �� �All, All, ��1.01, 1.01���
��
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�� Proc tomo on the cNOT gate ��
Proc � CNot;
Λ2 �

Table�paulitomo2�Proc.state2�ii�.dagger�Proc��, �ii, 1, 16��;
Χ2 � Partition�Κ2.Flatten�Λ2�, 16�;
��Χ2 ��MatrixForm��

GraphicsRow��
BarChart3D�Re�Χ2�, PlotRange �� �All, All, ��0.251, 0.251��� ,
BarChart3D�Im�Χ2�, PlotRange �� �All, All, ��0.251, 0.251���
��
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�� cPhase gate tomo ��
Proc � CPhase;
Λ2 �

Table�paulitomo2�Proc.state2�ii�.dagger�Proc��, �ii, 1, 16��;
Χ2 � Partition�Κ2.Flatten�Λ2�, 16�;
��Χ2 ��MatrixForm��

GraphicsRow��
BarChart3D�Re�Χ2�, PlotRange �� �All, All, ��0.26, 0.26��� ,
BarChart3D�Im�Χ2�, PlotRange �� �All, All, ��1, 1���
��
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�� ZZ gate ��
Proc � U�Π � 2, Σzz�;
Λ2 �

Table�paulitomo2�Proc.state2�ii�.dagger�Proc��, �ii, 1, 16��;
Χ2 � Partition�Κ2.Flatten�Λ2�, 16�;
��Χ2 ��MatrixForm��

GraphicsRow��
BarChart3D�Re�Χ2�, PlotRange �� �All, All, ��0.51, 0.51��� ,
BarChart3D�Im�Χ2�, PlotRange �� �All, All, ��0.51, 0.51���
��
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AllXY Syndromes
Define the AllXY sequence with parameters of certain error syndromes.  Import 
data and calculate the syndromes, and see that they’re the same!  In the mean 
time, we will also analytically calculate the leading-order dependence of each 
sequence to whichever error.

In[119]:= � � ��11 � jj� � 10^6;
Δt � 9 � 10^�9;
xscale � 1;
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In[117]:= zProj�operator_� :� Tr�operator.state1�1�.dagger�operator�.Σz�;

GetAllXY�rs_, �_, Δt_, xscale_� :� Module���,

�op � �2 Π � � � Δt � Σz;

�
�U�Π, Σi � �op � Π�, U�Π, Σi � �op � Π��,
�U�Π, rs � xscale � Σx � �op � Π�, U�Π, rs � xscale � Σx � �op � Π��,
�U�Π, rs � Σy � �op � Π�, U�Π, rs � Σy � �op � Π��,
�U�Π, rs � xscale � Σx � �op � Π�, U�Π, rs � Σy � �op � Π��,
�U�Π, rs � Σy � �op � Π�, U�Π, rs � xscale � Σx � �op � Π��,

�U�Π � 2, rs � xscale � Σx � �op � �Π � 2��, U�Π, Σi � �op � Π��,
�U�Π � 2, rs � Σy � �op � �Π � 2��, U�Π, Σi � �op � Π��,
�U�Π � 2, rs � xscale � Σx � �op � �Π � 2��,
U�Π � 2, rs � Σy � �op � �Π � 2���, �U�Π � 2, rs � Σy � �op � �Π � 2��,
U�Π � 2, rs � xscale � Σx � �op � �Π � 2���,
�U�Π � 2, rs � xscale � Σx � �op � �Π � 2��, U�Π, rs � Σy � �op � Π��,
�U�Π � 2, rs � Σy � �op � �Π � 2��, U�Π, rs � xscale � Σx � �op � Π��,

�U�Π, rs � xscale � Σx � �op � Π�, U�Π � 2, rs � Σy � �op � �Π � 2���,
�U�Π, rs � Σy � �op � Π�, U�Π � 2, rs � xscale � Σx � �op � �Π � 2���,

�U�Π � 2, rs � xscale � Σx � �op � �Π � 2��,
U�Π, rs � xscale � Σx � �op � Π��, �U�Π, rs � xscale � Σx � �op � Π�,
U�Π � 2, rs � xscale � Σx � �op � �Π � 2���,
�U�Π � 2, rs � Σy � �op � �Π � 2��, U�Π, rs � Σy � �op � Π��,
�U�Π, rs � Σy � �op � Π�, U�Π � 2, rs � Σy � �op � �Π � 2���,

�U�Π, rs � Σy � �op � Π�, U�Π, Σi � �op � Π��,
�U�Π, rs � Σy � �op � Π�, U�Π, Σi � �op � Π��,
�U�Π � 2, rs � xscale � Σx � �op � �Π � 2��,
U�Π � 2, rs � xscale � Σx � �op � �Π � 2���,
�U�Π � 2, rs � Σy � �op � �Π � 2��, U�Π � 2, rs � Σy � �op � �Π � 2���
��;
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In[122]:= rs � �1.1�; �� rotation angle scaling ��
� � 0 � 11 � 10^6;
Δt � 8 � 10^�9;
xscale � 1;
AllXY � GetAllXY�rs, �, Δt, xscale�;

ListLinePlot�Chop�Table�zProj�AllXY��Ceiling�ii � 2�����1��.
AllXY��Ceiling�ii � 2�����2���, �ii, 1, 2 � 21����

Out[127]=
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In[128]:= rs � �1 � Ε�;
� � 0 � 10^6;
Δt � 8 � 10^�9;
xscale � 1;
AllXYPowerEps � GetAllXY�rs, �, Δt, xscale�;
Chop�

Series�
FullSimplify�

Table�zProj�AllXYPowerEps��ii����1��.
AllXYPowerEps��ii����2���, �ii, 1, 21��

, �Element�Ε, Reals��� �. �Ε � Ε � Π � 2�, �Ε, 0, 4��� ��
MatrixForm

Out[133]//MatrixForm=

1

1 � 8 Ε2 � 32 Ε4

3
� O�Ε�5

1 � 8 Ε2 � 32 Ε4

3
� O�Ε�5

1 � 4 Ε2 � 16 Ε4

3
� O�Ε�5

1 � 4 Ε2 � 16 Ε4

3
� O�Ε�5

�Ε � Ε
3

6
� O�Ε�5

�Ε � Ε
3

6
� O�Ε�5

Ε2 � Ε
4

3
� O�Ε�5

Ε2 � Ε
4

3
� O�Ε�5

Ε � 13 Ε3

6
� O�Ε�5

Ε � 13 Ε3

6
� O�Ε�5

Ε � 13 Ε3

6
� O�Ε�5

Ε � 13 Ε3

6
� O�Ε�5

3 Ε � 9 Ε3

2
� O�Ε�5

3 Ε � 9 Ε3

2
� O�Ε�5

3 Ε � 9 Ε3

2
� O�Ε�5

3 Ε � 9 Ε3

2
� O�Ε�5

�1 � 2 Ε2 � 2 Ε4

3
� O�Ε�5

�1 � 2 Ε2 � 2 Ε4

3
� O�Ε�5

�1 � 2 Ε2 � 2 Ε4

3
� O�Ε�5

�1 � 2 Ε2 � 2 Ε4

3
� O�Ε�5

Calculate leading � order detuning dependence
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In[134]:= rs � �1�;
� � Ε;
Δt � 1;
xscale � 1;
AllXYDeltaEps � GetAllXY�rs, �, Δt, xscale�;

Collect�Simplify�Normal�Series�Simplify�ComplexExpand�Table�
zProj�
AllXYDeltaEps��ii����1��.AllXYDeltaEps��ii����2���

, �ii, 1, 21���, �Ε � 0��, �Ε, 0, 4����, Ε� �. �Ε � Ε � 4� ��
MatrixForm

Out[139]//MatrixForm=

1

1 � Π
2 Ε4

32

1 � Π
2 Ε4

32

1 � Ε2 � Π Ε
3

4
� 1

64
��32 � Π2� Ε4

1 � Ε2 � Π Ε
3

4
� 1

64
��32 � Π2� Ε4

1

16
�16 � 4 Π	 Ε2 � 1

16
��16 � 5 Π	 Ε4

1

16
�16 � 4 Π	 Ε2 � 1

16
��16 � 5 Π	 Ε4

2 Ε � 1

2
��6 � Π	 Ε3 � 1

16
��4 � Π	2 Ε4

�2 Ε � 1

2
��6 � Π	 Ε3 � 1

16
��4 � Π	2 Ε4

Ε � 1

4
��4 � Π	 Ε2 � 1

8
�6 � Π	 Ε3 � 1

16
��24 � 7 Π	 Ε4

�Ε � 1

4
��4 � Π	 Ε2 � 1

8
�6 � Π	 Ε3 � 1

16
��24 � 7 Π	 Ε4

Ε � 1

4
��4 � Π	 Ε2 � 1

8
�6 � Π	 Ε3 � 1

16
��24 � 7 Π	 Ε4

�Ε � 1

4
��4 � Π	 Ε2 � 1

8
�6 � Π	 Ε3 � 1

16
��24 � 7 Π	 Ε4

3 Π Ε2

8
� 1

256
�64 � 70 Π	 Ε4

3 Π Ε2

8
� 1

256
�64 � 70 Π	 Ε4

3 Π Ε2

8
� 1

256
�64 � 70 Π	 Ε4

3 Π Ε2

8
� 1

256
�64 � 70 Π	 Ε4

�1 � Ε
2

2
� 1

128
��16 � Π2� Ε4

�1 � Ε
2

2
� 1

128
��16 � Π2� Ε4

�1 � 2 Ε2 � 1

8
��16 � Π2� Ε4

�1 � 2 Ε2 � 1

8
��16 � Π2� Ε4

APPENDIX B. MATHEMATICA CODE 345



�� Import actual data and find that
they're the same to our expectations ��

allxypow � Transpose�
Drop�Import�"��Desktop�Thesis�SingleQubitGates�allxy

syndromes�allxy_pow_table.txt", �"Table"��, 2��;

allxypownorm � �2 �
�allxypow � Min�allxypow�� � �Max�allxypow� � Min�allxypow�� � 1;

allxypownorm � 2 � �allxypow � allxypow��11����37��� �
�allxypow��11����1�� � allxypow��11����37��� � 1;

ListLinePlot�allxypownorm�

Out[143]=
10 20 30 40

�1.0

�0.5

0.5

1.0

APPENDIX B. MATHEMATICA CODE 346



In[144]:= allxydelta �
Transpose�Drop�Import�"��Desktop�Thesis�SingleQubitGates�allxy

syndromes�allxy_delta_table.txt", �"Table"��, 2��;

allxydeltanorm � �2 � �allxydelta � Min�allxydelta�� �
�Max�allxydelta� � Min�allxydelta�� � 1;

allxydeltanorm � 2 � �allxydelta � allxydelta��11����37��� �
�allxydelta��11����1�� � allxydelta��11����37��� � 1;

ListLinePlot�allxydeltanorm�

Out[147]=
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rs � 10^�0.9 � 20.�; �1.14�; �� rotation angle scaling ��
� � 0 � 11 � 10^6;
Δt � 8 � 10^�9;
xscale � 1;
AllXY � GetAllXY�rs, �, Δt, xscale�;

ListLinePlot��Table�zProj�
AllXY��Ceiling�ii � 2�����1��.AllXY��Ceiling�ii � 2�����2���,
�ii, 1, 2 � 21��, allxypownorm��2����
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In[148]:= Table�

rs � 10^��1.1 � jj � 10� � 20.�;
�1.14�; �� rotation angle scaling ��
� � 0 � 11 � 10^6;
Δt � 8 � 10^�9;
xscale � 1;
AllXY � GetAllXY�rs, �, Δt, xscale�;

ListLinePlot��Table�zProj�
AllXY��Ceiling�ii � 2�����1��.AllXY��Ceiling�ii � 2�����2���,
�ii, 1, 2 � 21��, allxypownorm��jj����,

�jj, 1, 21��

Out[148]= 
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,
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,
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�1.0
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0.5
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�

In[149]:= Export�"amplitude.txt", Chop�N�Table�
rs � 10^��1.1 � jj � 10� � 20.�;
�1.14�; �� rotation angle scaling ��
� � 0 � 11 � 10^6;
Δt � 8 � 10^�9;
xscale � 1;
AllXY � GetAllXY�rs, �, Δt, xscale�;

Table�zProj�AllXY��Ceiling�ii � 2�����1��.
AllXY��Ceiling�ii � 2�����2���, �ii, 1, 2 � 21��,

�jj, 1, 21�����
Out[149]= amplitude.txt

In[150]:= Table�
rs � 1; �� rotation angle scaling ��
� � ��11 � jj� � 10^6;
Δt � 9 � 10^�9;
xscale � 1;
AllXY � GetAllXY�rs, �, Δt, xscale�;

ListLinePlot��Table�zProj�
AllXY��Ceiling�ii � 2�����1��.AllXY��Ceiling�ii � 2�����2���,
�ii, 1, 2 � 21��, allxydeltanorm��jj����,

�jj, 1, 21��

Out[150]= 
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0.5
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,
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�1.0

�0.5

0.5

1.0

,
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�1.0

�0.5
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0.5

1.0

,
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�1.0

�0.5

0.5

1.0

,

10 20 30 40

�1.0

�0.5

0.5

1.0

,
10 20 30 40

�1.0

�0.5

0.5

1.0

,

10 20 30 40

�1.0

�0.5

0.5

1.0

,
10 20 30 40

�1.0

�0.5

0.5

1.0

,

10 20 30 40

�1.0

�0.5

0.5

1.0

,
10 20 30 40

�1.0

�0.5

0.5

1.0

,

10 20 30 40
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�0.5

0.5

1.0

,
10 20 30 40
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�0.5

0.5

1.0

,
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�1.0
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,
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�

In[151]:= Export�"detuning.txt", Chop�N�Table�
rs � 1; �� rotation angle scaling ��
� � ��11 � jj� � 10^6;
Δt � 9 � 10^�9;
xscale � 1;
AllXY � GetAllXY�rs, �, Δt, xscale�;

Table�zProj�AllXY��Ceiling�ii � 2�����1��.
AllXY��Ceiling�ii � 2�����2���, �ii, 1, 2 � 21��,

�jj, 1, 21�����
Out[151]= detuning.txt

In[153]:= Export�"xscale.txt",
Chop�N�Table�rs � 1; �� rotation angle scaling ��
� � 0 � 11 � 10^6;
Δt � 8 � 10^�9;
xscale � �0.96 � jj � 100� � 1.02 ;
AllXY � GetAllXY�rs, �, Δt, xscale�;

Table�zProj�AllXY��Ceiling�ii � 2�����1��.
AllXY��Ceiling�ii � 2�����2���, �ii, 1, 2 � 21��,

�jj, 0, 11�����
Out[153]= xscale.txt
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