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Abstract

Circuit Quantum Electrodynamics with Electrons on Helium

Andreas Arnold Fragner

2013

This thesis describes the theory, design and implementation of a circuit quantum electro-

dynamics (QED) architecture with electrons floating above the surface of superfluid helium.

Such a system represents a solid-state, electrical circuit analog of atomic cavity QED in which

the cavity is realized in the form of a superconducting coplanar waveguide resonator and

trapped electrons on helium act as the atomic component. As a consequence of the large elec-

tric dipole moment of electrons confined in sub-μm size traps, both their lateral motional and

spin degrees of freedom are predicted to reach the strong coupling regime of cavity QED,

with estimated motional Rabi frequencies of g/2π ∼ 20 MHz and coherence times exceed-

ing 15 μs for motion and tens of milliseconds for spin. The feasibility of the architecture is

demonstrated through a number of foundational experiments. First, it is shown how copla-

nar waveguide resonators can be used as high-precision superfluid helium meters, allowing

us to resolve film thicknesses ranging from 30 nm to 20 μm and to distinguish between van-

der-Waals, capillary action and bulk films in micro-channel geometries. Taking advantage

of the capacitive coupling to submerged electrodes and the differential voltage induced as a

result of electron motion driven at a few hundred kHz, we realize the analog of a field-effect

transistor on helium at milli-Kelvin temperatures on a superconducting chip and use it to

measure and control the density of surface electrons. Finally, the trapping and detection of

an electron ensemble in a DC-biased superconducting resonator is reported. The presence of

electrons in the resonator mode volume manifests itself as trap-voltage dependent frequency

shifts of up to ∼ 10 cavity linewidths and increases in cavity loss of up to ∼ 45 %.
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1 Introduction

THE concept of quantum information processing can be traced back three decades ago

[1, 2] and it has triggered one of the most exciting research efforts in physics and

computer science in recent memory. A computer based on the laws of quantum rather

than classical physics holds great promises, offering polynomial or exponential speedup of

several important algorithmic tasks such as prime factorization [3], unstructured database

search [4], solving linear systems of equations [5] and least-squares fitting [6]. Fundamen-

tally, the power of quantum computing derives from the ability to create superposition states

and entanglement among those states. The resulting state space dimensionality is enormous

and can be exploited as a powerful computational resource. A classical N -bit register has

2N distinct possible states, while a N quantum bit (qubit) register has a state space of 2N

dimensions. The quantum state of such a register is a linear superposition of 2N classical

states, making it possible to take advantage of phenomena such as quantum parallelism and

logarithmic-time implementations of the fast Fourier transform.

While its power is conceptually well-understood, the practical implementation of a quan-

tum computer represents a formidable scientific and technological challenge that requires

controlling, manipulating and preserving quantum entanglement and coherence in a scal-

able way. A wide variety of physical systems are being actively explored as possible building

blocks of a quantum information processor, including nuclear spins in NMR systems [7, 8],

semiconductor quantum dots [9], nitrogen-vacancy centers in diamond [10,11], phosphorous

donors in silicon [12], electronic hyperfine states in trapped ions [13–15] and superconduct-

ing circuits [16–18], among others. Quantum error correction and feedback control [19–22], a

key ingredient for fault-tolerant quantum computing, has so far been demonstrated in Ryd-

berg atoms [23], superconducting circuits [24,25], trapped ions [26,27] and NMR [28]. While

progress over the last two decades has been remarkable, it has also started to highlight the

inherent limitations of some of these systems in simultaneously achieving scalability, long

1



1. Introduction

coherence times, controlled state preparation and universal gate operations [29]. In this con-

text, the notion of hybrid quantum systems which combine and interface different qubit im-

plementations to overcome their individual weaknesses represents a natural extension of

experimental efforts so far. This PhD project seeks to lay the theoretical and experimental

groundwork for the realization of one such hybrid system, trapped electrons on superfluid

helium coupled to superconducting circuits in a solid-state analog of atomic cavity quan-

tum electrodynamics (QED). The two core components of this architecture, superconduct-

ing transmission line resonators operated in the microwave regime and electrons levitated

above the surface of superfluid helium, are introduced in the following two sections and will

be discussed in much detail throughout this thesis.

1.1 Circuit Quantum Electrodynamics

Cavity quantum electrodynamics (QED) studies the interaction of matter and light at the

quantum level, making it possible to resolve the coherent exchange of energy between the

two in a controlled fashion [30, 31]. ‘Light’ here means photons in a single-mode electro-

magnetic field confined to a small volume while ‘matter’ is represented by a quantum-

mechanical two-level system, for example two electronic energy levels in an atom. The inter-

action of matter and light is reduced to its most fundamental form in such a system. Photons

and atoms interact in general very weakly, but the coupling between the two can be strongly

enhanced if there is only one precisely-defined photon energy available that matches the rel-

evant transition energy of the atom. This is the case in a cavity where the allowed photon

energies are determined by the resonance frequency of the cavity. In addition to enhance-

ment, the decay of the atomic component can also be strongly suppressed if the two energies

do not match. In that case, the decay times of the atomic transitions can be greatly increased.

The regime where the interaction is so strong that the corresponding coupling rate exceeds

all rates of energy loss and decay of the atomic and photonic component is referred to as the

strong coupling regime, which was first realized experimentally using a beam of cesium atoms

and an optical cavity in the early 1990s [32]. In this regime, an atom can emit and reabsorb

a single photon many times before the photon escapes or the atom decays irreversibly into

the environment. At its core, cavity QED is based on turning an irreversible physical process

(spontaneous emission in free space) into a reversible process (energy oscillations in a single-

mode electromagnetic field). Cavity QED represents a fundamental concept. It was origi-
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Electrons
on Helium

ground 

Figure 1.1.: Comparison of different candidate systems for the implementation of a hybrid circuit QED architec-
ture, contrasted with respect to coherence time, coupling rate and transverse size of a cavity required to reach
maximal coupling. Fundamental two-level systems based on intrinsic degrees of freedom such as nuclear or
electron spins are characterized by long coherence times, partly offsetting their weaker coupling rates which
limit the speed of gate operations. Systems with large electric dipole moments such as Rydberg atoms or super-
conducting qubits exhibit strong coupling, allowing for fast gate operations to overcome their relatively shorter
coherence times. Laterally-confined electrons on superfluid helium could potentially be on both ends of the spec-
trum, promising long spin coherence times while simultaneously offering large electric dipole moments through
their lateral quantized motion. For a single 5 GHz photon, the zero-point electric field strength in a transmission
line cavity is E0 ∼ 1 − 2 V/m, which gives a coupling strength of g/2π ∼ 10 kHz per 1-Debye electric dipole
moment. The corresponding zero-point magnetic field strength is B0 ∼ 0.1 milli-Gauss with a coupling strength
of g/2π ∼ 100 Hz per Bohr magneton. Figure adapted from Ref. [16].
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nally developed using alkali atoms and optical cavities formed by two highly reflective mir-

rors [32–34], but has since been realized using a variety of systems, including Rydberg atoms

coupled to microwave cavities [30], semiconductor quantum dots coupled to photonic crys-

tal cavities [35, 36] and superconducting resonators [37], nano-mechanical oscillators [38, 39]

as well as spins in nitrogen-vacancy centers in diamond [40, 41]. A particularly successful

implementation, called circuit quantum electrodynamics (cQED), has been developed at Yale

over the last decade [42–44]. Circuit QED can be regarded as an all-electrical, solid-state re-

alization of cavity QED in the microwave regime. In this implementation, atoms are replaced

by Josephson junction based superconducting circuits and cavities are realized in the form

of quasi two-dimensional transmission line resonators [43, 45] as well as three-dimensional

microwave cavities [46, 47]. Many of the cQED system parameters such as photon lifetimes,

transition frequencies and atom-photon coupling strengths can be fully engineered using

conventional nano- and micro-fabrication techniques. This has allowed for a variety of fas-

cinating on-chip quantum optics experiments, such as resolving photon number states [48],

generating single photons on demand [49], observation of multi-photon transitions [50, 51]

and the collapse and revival of non-classical states of light [52], to name a few. The intrin-

sic scalability and the ability to perform quantum non-demolition measurements, together

with all-electrical control based on standard microwave and RF engineering methods, has

also helped establish cQED as one of the most promising platforms for a future quantum

information processor [24, 53–58].

The circuit QED architecture lends itself naturally to the implementation of hybrid quan-

tum systems capable of combining different realizations of the atomic component in cavity

QED. Many natural and artificial anharmonic quantum systems have transition frequencies

in the microwave frequency range and could be made to couple strongly to photons in a

transmission line cavity. For that reason, superconducting transmission line resonators have

been considered as mesoscopic electrical interfaces between superconducting circuits and

microscopic quantum systems, such as polar molecules and molecular ions [59–61], electron

spin ensembles [62–65] and ultracold atoms [66], which typically have smaller couplings but

better coherence times than superconducting qubits. Fig. 1.1 contrasts different qubit im-

plementations in terms of coherence times, coupling rates and the required transverse size

of a cavity to reach maximal coupling. Systems with large electric dipole moments such

as Rydberg atoms or superconducting qubits exhibit strong coupling to the electromagnetic

field in a cavity, allowing for fast gate operations on nano-second time scales, but suffer
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from relatively short coherence times. Fundamental systems based on intrinsic degrees of

freedom such as nuclear or electron spins have weaker coupling due to their small magnetic

moments and the small magnetic field, limiting the speed of gate operations, but offer longer

coherence times that partly offset this limitation. This thesis explores the coupling of cav-

ity photons to a particularly exotic quantum system, isolated electrons bound to the surface

of superfluid helium, which promises large electric dipole moments comparable to those of

Rydberg atoms while simultaneously offering long expected spin coherence times of tens of

milliseconds or more. This system is introduced in the next section.

1.2 Electrons on Superfluid Helium

Electrons on helium represent a unique type of two-dimensional electron gas (2DEG) formed

at the interface of a quantum liquid (superfluid helium) and vacuum [67,68]. The electrons in

this system are levitated several nanometers above the surface of liquid helium in vacuum

as a result of the combination of a long-range attractive interaction, caused by the image

charges electrons induce in the liquid, and a short-range repulsive interaction due to the

Pauli exclusion principle. At high densities and low temperatures, electrons on helium form

a two-dimensional Coulomb liquid or Wigner crystal, an exotic state of matter known to

occur in electrons on helium, semiconductor inversion layers in strong magnetic fields [69]

and in the interior of white dwarf stars [70]. Electrons on helium have been actively in-

vestigated since the late 1960s [71–73], in large part due to their exceptional transport and

coherence properties, which include the highest known mobility of all condensed matter sys-

tems [74, 75] and spin coherence times possibly exceeding 100 s [76]. However, there have

been no observations of quantum-mechanical lateral confinement effects and coherent elec-

tron motion so far, partly owing to the fact that it is not possible to make ohmic contact to

the floating electrons, which effectively prevents DC transport measurements typically used

for probing semiconductor 2DEGs. One of the core ideas of this PhD project is to use elec-

trons on helium to define quantum dots and couple them to superconducting circuits in a

cQED architecture. This represents a potentially powerful new way for probing their quan-

tized motional and spin degrees of freedom and allows taking advantage of cavity QED

techniques developed in atomic and solid-state systems.

In most traditional semiconductor 2DEGs such as in gallium-arsenide or germanium, the

electrons are highly screened by the lattice, forming a degenerate gas of electron-like quasi-
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particles with effective masses and dimensionless magnetic moments (g-factors) much less

than that of a free electron. Spin coherence is typically limited by the interaction with nuclear

spins in the substrate material which create an effective magnetic field for electrons moving

in the semiconductor [77]. In contrast, electrons on helium retain their undressed mass and

g-factor. Their properties are close to those of free electrons. Decoherence due to spin-orbit

interaction is orders of magnitude smaller than in semiconductors as the ‘substrate’ (su-

perfluid helium) has zero nuclear spin and the electrons are levitated in vacuum, isolating

them from any charge impurities and nuclear spins in the substrate below the helium film.

The ’undressed’ electrons on helium could possibly offer some compelling advantages over

semiconductor quantum dots and even ionic or neutral atoms for cavity QED and quantum

computing applications. Like superconducting qubits and quantum dots, electrons on he-

lium can be made to strongly interact with lithographically defined gates submerged under

the helium, leveraging recent advances in nano- and micro fabrication technology to create

complex trapping geometries.

The potential for quantum information processing with electrons on helium has been

pointed out early on in one of the first proposals for experimental quantum computing

[78,79]. The combination of long-range attractive and short-range repulsive interaction with

the superfluid leads to quantization of the vertical motion orthogonal to the helium sur-

face and gives rise to a strongly anharmonic, Rydberg-like energy level spectrum. While

these states fulfill many of the criteria required for quantum information processing, their

experimentally difficult-to-access transition frequencies (> 100 GHz) and the lack of a non-

destructive readout mechanism have so far prevented much progress in this direction. In

contrast to those earlier proposals, this PhD project focuses on using lateral quantized states

of the electron motion parallel to the helium surface as qubit states. These lateral states can

be defined and controlled using electrostatic gates analogous to semiconductor quantum

dots.

1.3 Thesis Overview

This thesis describes the theory, design and implementation of a circuit quantum electrody-

namics architecture for coupling electrons on superfluid helium to superconducting trans-

mission line resonators. The thesis is structured in a standard way, with the first part focus-

ing on the underlying theory (chapters 2 and 3) and the second part presenting details on
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implementation and experimental results (chapters 4 - 7).

Chapter 2 starts with an introduction to electrons on helium that will form the basis for

much of the rest of this thesis. Electrons on helium represent a remarkably clean and sim-

ple system with some exceptional collective properties. The quantized vertical motion of a

single electron above a helium surface is first discussed in section 2.1, together with an early

proposal for exploiting this textbook quantum system for information processing purposes.

Section 2.2 looks at the physics of many-electron ensembles on helium. These surface states

are supported by superfluid helium, a quantum liquid whose unique macroscopic properties

arise as a result of microscopic quantum-mechanical effects. Section 2.3 provides a review of

the physics of superfluid helium, with particular emphasis on its behavior in micro-channel

geometries, which we investigate experimentally in chapter 5.

Chapter 3 develops the theory for circuit QED with trapped electrons on helium. Cavity

QED is a quite fundamental and general concept for investigating matter-light interactions

with a simple and elegant description in the form of the Jaynes-Cummings hamiltonian. Sec-

tion 3.1 discusses the Jaynes-Cummings model in the strong coupling regime independent

of the physical implementations of the atomic and photonic components. The remainder of

chapter 3 then focuses on a cavity QED implementation with superconducting circuits and

quantum dots on helium. The cavities used in our experiments are realized in the form of

superconducting coplanar waveguide resonators operated in the 1 - 10 GHz range. The mod-

eling and design of those resonators, including various types of terminations, are the subject

of section 3.2. In analogy to semiconductors, two-dimensional electron gases on helium can

be used to construct single-electron quantum dots using electrostatic gates. This is one of

the core ideas behind this thesis and the resulting lateral quantized motional states in such

quantum dots are discussed in detail in section 3.3. Section 3.4 then goes on to describe how

intradot states can be coupled to coplanar waveguide resonators through dipole interaction,

realizing a circuit QED system that is expected to be capable of reaching the strong coupling

regime. In addition to its motional degrees of freedom, a trapped electron also has an in-

ternal spin degree of freedom that can potentially be used as a highly coherent resource for

quantum computing. Unfortunately, the direct coupling of a single electron spin to a cavity

is very weak. Section 3.5 therefore describes ways of enhancing the spin-cavity interaction

using a form of spin-orbit coupling via the motional degrees of freedom. Reaching the strong

coupling regime of cavity QED, where the electron can coherently exchange energy with the

cavity, requires sufficiently long lifetimes of the electron states. In addition, long coherence
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times are of paramount importance for quantum information processing applications. The

various mechanisms of decoherence for both spin and motion in our system are explored in

section 3.6. Finally, section 3.7 looks at extended electron traps capable of supporting few-

electron states, which will be important for the experiments presented in chapter 7. Much of

the work discussed in chapter 3 was carried out together with postdoc Dave Schuster, who

originated the main theoretical ideas for this project.

The implementation of a circuit QED setup for electrons on helium experiments requires a

combination of a wide variety of techniques and methods, including microwave, RF and DC

engineering, nano- and micro-fabrication of superconducting devices and low temperature

physics and cryogenics. This is the subject of chapter 4. In addition to the cryogenic mea-

surement setup, particular focus is put on discussing the components developed specifically

for electrons on helium experiments such as hermetic sample cells, capillary helium sup-

ply lines and thermionic emission sources. Significant effort was put into developing nano-

and micro fabrication techniques for single- and many-electron traps, which I summarize in

section 4.3.

Chapter 5 moves on to discuss one of the first major experiments carried out for this thesis,

which seeks to understand the effects of superfluid helium on the resonance frequencies and

quality factors of transmission line cavities. In sections 5.1 and 5.2, I show how supercon-

ducting resonators can be used as high precision meters for measuring superfluid thin films

and demonstrate how helium-induced frequency shifts help in determining the fill dynam-

ics in micro-channel structures. Using a novel type of DC-biased coplanar waveguide cavity,

we then demonstrate in-situ tuning of helium levels in section 5.3.

A key step towards circuit QED experiments with single-electron quantum dots is it to

demonstrate that electrons can be generated and trapped on a superconducting chip at suf-

ficiently high densities and milli-Kelvin temperatures. To this end, we have implemented an

on-chip submerged electrode geometry, known as a Sommer-Tanner setup, for probing elec-

trons on helium at kHz frequencies. The results of these low-frequency measurements are

presented in chapter 6. Section 6.1 discusses the detection method, which takes advantage of

the capacitive coupling of surface electrons to the submerged electrodes and the differential

voltage they induce as a result of their motion driven at a few hundred kHz. Following a

discussion of the device and setup in section 6.2, section 6.3 shows how the on-chip setup

can be used to realize the analog of a field-effect transistor on superfluid helium. Electron

density measurements are presented in section 6.4.
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The final part of this thesis (chapter 7) presents experiments in which an ensemble of elec-

trons is trapped directly inside the gap of a superconducting coplanar waveguide cavity

which acts as a large submerged electron trap. There are a variety of ways an electron en-

semble in a waveguide gap can couple to the cavity field, including dipole interaction of

collective in-plane motional excitations (discussed theoretically in section 3.7), vertical Ryd-

berg states (section 2.1) and combinations thereof. We take advantage of this in our exper-

iments to detect electrons on helium in cavity transmission measurements. The DC-biased

center pin design and some numerical simulations of the cavity-ensemble coupling and the

electron configurations in the trap are first described in section 7.1. In section 7.2, I present

experiments demonstrating how electrons can be trapped in the resonator gap, where their

presence manifests itself in the form of trap voltage-dependent shifts in cavity resonance

frequency and linewidth. Electron loss, hysteresis and lifetime measurements are presented

in section 7.3, showing that the trapped electron ensemble is highly stable and providing a

proof of principle for controlled depletion of the trap region. The thesis concludes in chap-

ter 8 with some thoughts on future experiments and the road ahead for circuit QED with

electrons on helium.
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2 Electrons on Superfluid Helium

ELECTRONS on helium represent a unique type of two-dimensional electron system in

which electrons are levitated above the surface of superfluid helium with a bound state

spectrum resembling that of a Rydberg atom. Proposed theoretically by Sommer [80, 81],

Cole and Cohen [72, 82] and first observed experimentally by Williams et al. [73], these ex-

otic types of surface states are the result of the combination of a long-range attractive inter-

action due to surface polarization and a short-range repulsive interaction due to the Pauli

exclusion principle. Interest in electrons on helium has been historically motivated by their

remarkable transport properties, including the highest known mobility of all condensed

matter systems [74, 75]. More recently, the focus has shifted towards quantum information

processing applications and the possibility of defining quantum dots with electrons on he-

lium where both motional and spin degrees of freedom could be used as long-lived qubit

states [64, 76, 78, 79]. In this chapter, the fundamental physics of electronic surface states on

superfluid helium are explored, laying the theoretical groundwork for much of chapter 3 and

the remaining parts of this thesis. Starting with a discussion of the quantized motion of a

single electron perpendicular to the surface of liquid helium, the hydrogen-like energy spec-

trum and the effects of external electric fields are presented in sections 2.1.1 and 2.1.2, while

section 2.1.3 focuses on how the vertical electron motion can be used for quantum comput-

ing applications. Extending the single electron case to many-electron systems in section 2.2,

the Coulomb liquid, electron gas and Wigner crystal phases are discussed in sections 2.2.1 -

2.2.3. Finally, section 2.3 focuses on the thermodynamic and transport properties of super-

fluid helium in the thin film regime and provides an introduction to elementary excitations

of the liquid such as ripplons.
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2. Electrons on Superfluid Helium

Figure 2.1.: Single electron above the surface of superfluid helium: (a) Illustration of an electron levitated a
distance z ∼ a0 above the surface, interacting with its image charge Q = Λe at position −z. (b) Energy spectrum
and wave functions of an electron bound to the surface of liquid helium as a function of electron position above
the surface. The lowest three energy levels n = 1, 2, 3 are shown together with the probability densities of the
wave functions and the image charge potential. The spectrum is strongly anharmonic and resembles that of a
hydrogen or Rydberg atom.

2.1 Quantized Vertical Motion

The interaction of a single electron and an isolated 4He atom is governed by a short-range

repulsive component and a weakly attractive long-range component [83]. The short-range

component is a consequence of the Pauli exclusion principle which requires the additional

electron wave function to be orthogonal to the 1s state wavefunctions of 4He, which leads to

a substantial energy barrier for the formation of negative helium ions. On the other hand, at

distances large compared to typical atomic scales ∼ 1 Å, an electron is attracted to a helium

atom as a result of polarization. The strength of this interaction is relatively small as a result

of the extremely weak polarizability of helium, which has a dielectric constant near unity

εHe � 1.0572 and a measured loss tangent of < 10−11 at GHz frequencies 1 [85–87]. The

polarization is in fact so weak that an isolated helium atom in three dimensions cannot trap

an electron to form a negative ion, an effect commonly referred to as negative electron affinity.

This, however, need not be the case if an electron interacts with a macroscopic film of liquid
4He.

2.1.1 Rydberg Surface States

The single electron-helium atom interactions carry over to the macroscopic case of the inter-

action of an electron with a bulk liquid helium film, illustrated in Fig. 2.1 a. The short-range

1Theoretical predictions for the loss tangent of superfluid helium are on the order of tan δ < 10−25 at 3 GHz [84],
limited by radiation damping effects.
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repulsion manifests itself through the negative work function of liquid helium, leading to an

energy barrier for electron injection into the liquid. Calculated values for the barrier energy

range from 0.97 - 1.09 eV [88, 89], in good agreement with measured values of 1.02 ± 0.08

eV [90] and 1.3 ± 0.3 eV [80]. As shown below, the mean distance of an electron in the

ground state from the liquid-vapor interface is two orders of magnitude larger than typical

atomic scales such that the attractive polarization can be described macroscopically by an

equivalent induced image charge, as shown schematically in Fig. 2.1 a. While too weak to

support binding of an electron to an isolated 4He atom, the polarization effect in bulk helium

is strong enough to localize the electron wave function above the surface and support stable

bound surface states [72, 82]. Following Refs. [68] and [91], we can approximate the one-

dimensional potential of an electron a distance +z above a liquid helium-vapor interface as

Φe(z) = Φ0Θ(−z)− Λe2

4πε0(z + z0)
Θ(z) (2.1)

where Θ(·) is the Heaviside step function, Φ0 ∼ 1 eV is the injection barrier and

Λ =
εHe − 1

4(εHe + 1)
≈ 0.00696 , εHe = 1.05723 (2.2)

are the image charge factor and dielectric constant of liquid helium at 1.2 K. The offset pa-

rameter z0 avoids the singularity at the interface boundary and is usually adjusted to fit

the bound state spectra obtained from spectroscopy measurements [91] to exact solutions of

the Schrödinger equation [92], with a typical value of z0 � 1.01 Å [68]. Note that eq. (2.1)

assumes a perfectly flat helium surface, which is a good approximation as corrections ac-

counting for the real density profile of liquid helium have been shown to be small [93]. Since

z0 is two orders of magnitude smaller than the average electron distance from the surface

and the injection barrier Φ0 is three to four orders of magnitude larger than the bound state

energies, we can further approximate the potential by

Φe(z) =

⎧⎨
⎩ − Λe2

4πε0z
, z > 0

+∞ , z ≤ 0
. (2.3)

As shown below, this is a very good approximation and typically sufficient to capture most

interesting phenomena. While perpendicular motion is limited to z > 0, motion parallel to

the surface is unconstrained. The three-dimensional Schrödinger equation for an electron
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above liquid helium is therefore given by

[−�
2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
− Λe2

4πε0z

]
Ψ(�r) = EΨ(�r) (2.4)

with the boundary condition Ψ(x, y, z = 0) = 0 , ∀x, y. Eq. (2.4) is trivially separable in

Cartesian coordinates with a solution that can be written as the product of a plane wave de-

scribing the free electron motion parallel to the surface and a one-dimensional wave function

for the vertical motion,

Ψ(�r) = χ(z) · e
ik·r

√
As

(2.5)

where k = (kx, kz) and r = (x, y) are two-dimensional vectors and As is the surface area

under consideration. The total electron energy is given by

E =
�
2k2

2m
+ En (2.6)

where En is the quantized vertical motional energy to be determined. The vertical wave

function χ(z) in position basis is described by the resulting one-dimensional Schrödinger

equation [
− �

2

2m

∂2

∂z2
− Λe2

4πε0z

]
χn(z) = Enχn(z) (2.7)

with the Dirichlet boundary condition limz→0 χn(z) → 0. Eq. (2.7) is identical to the radial

Schrödinger equation for a Hydrogen atom with zero angular momentum and an effective

nuclear charge Z = Λe.2 Introducing the effective Bohr Radius and Rydberg constant

a0 =
4πε0�

2

mee2Λ
, R∗

y =
mee

4Λ2

2�2(4πε0)2
→ a0R

∗
y =

e2Λ

8πε0
(2.8)

and the dimensionless coordinate and energy

ξ = z/a0 , En = En/R
∗
y (2.9)

we have (
− ∂2

∂ξ2
− 2

ξ

)
χn(ξ) = Enχn(ξ) (2.10)

2The textbook treatment of a Hydrogen atom with separation of variables in spherical coordinates leads to a
radial wave function Ψ(R) = χ(R)/R which requires the boundary condition χ(0) = 0 for the solutions to
remain finite.
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The Rydberg energy of the helium surface is R∗
y � 0.658meV = 159.123 GHz or approxi-

mately 8 K with a Bohr radius of a0 � 76 Å= 7.6 nm, much larger than typical atomic scales

∼ 1 Å. The regular solutions of (2.10) are given by a confluent hypergeometric series such

that the vertical wavefunctions can be written in terms of generalized Laguerre polynomi-

als [94, 95]

χn(z) = 〈n|z〉 = 1√
n3a0

2z

na0
e−z/a0L(j)

n−1

(
2z

na0

)
(2.11)

which are related to the associated Laguerre polynomials L(j)
n through

L(j)
n (z) =

1

(−1)j(n+ j)!
L(j)
n (z) (2.12)

for j ∈ N. The corresponding energy spectrum is hydrogen-like and described by a Rydberg

formula

En = − 1

n2
→ En = −R∗

y

n2
= −mee

4Λ2

8πε0�2
1

n2
(2.13)

The lowest three energy levels and wave functions are shown in Fig. 2.1 b together with the

image charge potential. Note the strong natural anharmonicity of the energy spectrum. The

average distances from the surface for the ground, first and second excited state are

〈1|z|1〉 � 11.42nm , 〈2|z|2〉 � 45.66nm , 〈3|z|3〉 � 102.73nm

which significantly exceeds atomic length scales. The transition frequencies are described by

a Balmer series

ωmn/2π =
1

h
(|Em − En|) =

R∗
y

h

∣∣∣∣ 1m2
− 1

n2

∣∣∣∣ (2.14)

For the lowest two transitions we have ω12/2π � 119.16 GHz ∼ 5.72 K and ω23/2π � 22.09

GHz ∼ 1.06 K and a natural anharmonicity of α = (E23 −E12)/E12 = −0.815. At the typical

working temperatures of 20 mK used in the experiments presented in this thesis, the electron

is therefore effectively frozen into the ground state of vertical motion.

At this point, it is worthwhile revisiting the various approximations made so far. The

details of the surface potential have been neglected in (2.3) and the presence of the helium

film only comes into play as a bulk dielectric containing the positive image charge. This

is indeed well justified given the large Bohr radius which indicates that the wave function

is concentrated far from the surface. Hence we expect the electronic properties to be only

weakly sensitive to the details of the surface density profile. A more realistic perturbative
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Figure 2.2.: Stark-shifted transition frequencies for vertical motional states as a function of voltage across the
experimental cell, as first measured by Grimes et al. [91]. Crosses are spectroscopically measured data points
and solid curves are variational calculations using exponentially decaying polynomials as trial wavefunctions.
Figure taken from Ref. [68].

treatment by Sanders et al. [96] using expression (2.1) with an interface of non-zero thickness

found an effective surface thickness of z0 = 0.91 Å through comparison with spectroscopic

data [97]. The error from the hard-core potential assumption (2.3) translates into small de-

viations from the ideal Hydrogen quantum numbers n′ = n + δ with δ = −0.0237 [96].

Further studies in Refs. [93] and [98] using a general liquid density profile function ρ(z) and

Hartree-type potentials confirm that the image potential gives a sufficiently accurate spec-

trum for most practical applications. Observed transition energies are typically on the order

of 7 GHz larger than predicted by the Balmer series (2.14) [91], corresponding to an error of

about 5 - 6 %.

2.1.2 Stark Shift and External Fields

Compared to atomic systems, the binding potential between electrons and a liquid helium

film is very weak, leading to a large Bohr radius and wave functions that extend far above the

helium-vapor interface. An external electric field leads to compression of the wave function

and a Stark shift of the bound state energies, similar to the atomic case. Due to the large size

of the wave functions, even weak applied electric fields can cause significant compression of

the wave function and a sizable Stark shift. The unusually strong Stark effect was used by

Grimes et al. in the first spectroscopic measurements to tune the electronic transitions into

resonance with applied microwave fields in the range of 100 - 200 GHz [91, 97]. The original

data from these experiments is reproduced in Fig. 2.2. Understanding the Stark effect for
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Figure 2.3.: Stark shift for electrons on helium: (a) Electron binding potential for different external fields E⊥ =
−100 (blue), 0 (green), +10 (red) and +100 V/cm (light blue). For large positive fields, the potential approaches a
triangular shape while for negative E⊥ a low ionization barrier forms and excited states can be ionized quickly,
see discussion in text. (b) Stark-shifted transition frequencies between ground and first excited ω12/2π (red) and
ground and second excited state ω13/2π (blue). Solid lines are results from a numerical diagonalization of the
Hamiltonian and dashed lines are first-order perturbation theory results.

electrons on helium will be important later on when coupling to the electromagnetic field in

a superconducting transmission line resonator is discussed in chapters 3 and 7.

Using the coordinates (2.9), we can write the dimensionless Hamiltonian of an electron on

helium in a uniform external field E⊥ in the z-direction as

H =
∂2

∂ξ2
+

2

ξ
− eE⊥ξ

(
a0
R∗

y

)
(2.15)

with the original Stark-shifted potential

Φe(z) = − Λe2

4πε0z
+ eE⊥z (2.16)

The potential Φe(z) is shown in Fig. 2.3 a for several typical electric field strengths E⊥ =

−100, 0, 10 and 100 V/cm. For large fields, the potential approaches a triangular form as the

Stark-shift term dominates the image charge attraction. As the potential becomes steeper

for larger positive fields, the ground and excited states are pushed further and further apart

in frequency. For negative fields the excited states become very easy to ionize, which is

the converse effect of the large Stark tuning rates. For moderate negative field strengths,

the potential becomes quite shallow with a small ionization barrier for the lowest excited

states, allowing excited surface state electrons to leave the surface via tunneling through the

ionization barrier. This forms the basis of the qubit readout mechanism discussed in section

2.1.3.
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2. Electrons on Superfluid Helium

In the limit of small external fields, the energy correction to the nth vertical state in first-

order perturbation theory is given by the linear Stark shift

ΔE(1)
n = eE⊥ 〈n|z|n〉 = e · a0 · E⊥

∫ ∞

0
χ∗
n(ξ) · ξ · χn(ξ)dξ (2.17)

where χn(z) are the unperturbed wave functions (2.11). This is in good agreement with ex-

periment for energies ΔE
(1)
n � En+1 − En [97], giving appreciable linear Stark tuning rates

of 0.83 GHz/(V/cm) and 1.38 GHz/(V/cm) for the 1 → 2 and 2 → 3 transitions, respec-

tively. In the limit of large external fields E⊥ > Λ/4πε0a
2
0, we can ignore the image poten-

tial term and replace (2.16) by a triangular-shaped potential with the boundary condition

limz→0 χn(z) = 0. Exact solutions in terms of Airy functions can be found in this case [68].

For intermediate fields, the ground state wave function can be approximated using a vari-

ational method with the unperturbed wave function χ1(z) as trial wave function [99, 100],

which gives results in good agreement over a wide range of measured shifts [91], see also

Fig. 2.2. Alternatively, one can calculate the matrix elements Hij = 〈i|H|j〉 in the basis of the

unperturbed states and diagonalize the Hamiltonian numerically taking into account d di-

mensions of the Hilbert space with i, j ∈ [1, d]. Fig. 2.3 b shows the Stark-shifted transition

frequencies for the lowest transitions as functions of applied field, calculated via numeri-

cal diagonalization of the Hamiltonian (solid lines) and in first-order perturbation theory

(dashed lines). Note that the large Stark shift allows tuning the transitions over hundreds of

GHz.

2.1.3 Quantum Information Processing With Vertical States

The strong anharmonicity of the vertical motional spectrum together with the ability to

Stark-tune transitions and the relatively weak coupling to the environment make electrons

on helium a natural candidate system for quantum information processing applications. In

one of the earliest proposals for experimental quantum computing, Platzman and Dykman

proposed using the hydrogenic levels of a trapped electron on helium as the computational

basis states of a quantum computer [78, 79]. The states of individual electrons are controlled

using microwave pulses and information transfer is achieved via nearest-neighbor Coulomb

coupling of electrons. In this section we briefly review quantum computing with vertical

states and contrast it later on with the lateral motional and spin-based approaches proposed

in chapter 3.

17



2. Electrons on Superfluid Helium

Decoherence Mechanisms

The coupling of hydrogenic states of electrons on helium to the environment is generally

very weak due to the absence of surface impurities and the atomically smooth superfluid-

vapor interface (see section 2.3). In particular, below T � 600 mK the vapor pressure of

liquid helium is effectively zero such that scattering by vapor atoms is suppressed. In the

absence of external electromagnetic fields, the only substantial coupling to the environment

is through thermally excited capillary surface waves, so-called ripplons which are discussed

in more detail in section 2.3.5. Ripplons represent quantized propagating height variations

δ(r, t) with a cubic dispersion relation ω2 = (σ/ρ)k3 where r = (x, y) is an in-plane vector

and ρ = 0.154 × 10−3 kg/cm3 and σ = 0.378 × 10−3 N/m are the mass density and surface

tension of liquid helium, respectively. Quasi-elastic scattering by capillary waves and elec-

tron relaxation via ripplon emission are the main decoherence mechanism for hydrogenic

electron states. The vertical motion of an electron above the surface couples to these height

variations through

HI = e · E⊥ · δ(r, t) (2.18)

where E⊥ is the total perpendicular holding field applied to the sample cell. Quasi-elastic

scattering by capillary waves is the limiting factor for the mobility of surface-state electrons

(μ ∼ 108 cm2/Vs [68]) and electron relaxation via ripplon emission sets a limit to achievable

energy relaxation times T1. The size of the transition matrix elements 〈j|e · E⊥ · δ(r, t)|i〉 de-

pends primarily on the size of the ripplon wave vector and the size of the electronic wave

function. For a laterally-unconfined electron, coupling to ripplons with matching wave vec-

tors k � a−1
0 leads to an energy relaxation rate that can be estimated as [78]

1

T1
� R∗

y

�

(
δrms

a0

)2

→ T1 � 150ns (2.19)

where δrms =
√

kBT/σ ∼ 2 × 10−9 cm is the mean-square height variation at T = 100 mK.

This looks quite bad at first sight. However, one ripplon decay can be suppressed expo-

nentially by lateral in-plane confinement of the electrons or alternatively by application of

a strong perpendicular magnetic field, both of which create a mismatch between the size of

the electron wave function and the ripplon wavelength at the same energy [79]. Ripplons are

very slow and energy conservation would require too large of a ripplon momentum for an

electron to accommodate, as discussed in more detail in section 3.6. The limiting factor in the
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2. Electrons on Superfluid Helium

confined case are two-ripplon processes, which can lead to energy relaxation via emission

of two ripplons of nearly opposite momentum and equal energy. The dominant dephas-

ing mechanism is quasi-elastic scattering of thermally excited ripplons where both one- and

two-ripplon coupling contributes [79]. The quasi-elastic scattering of thermal excitations off

an electron is different if the electron is in the ground |1, 0, 0〉 or first excited vertical state

|2, 0, 0〉 and therefore randomizes the phase difference between the wave functions with-

out causing any transitions. Other dissipative processes such as spontaneous radiative and

non-radiative emission as well as voltage noise can be shown to give only negligible contri-

butions to decoherence, see Ref. [78] and the discussion in section 3.6. Detailed calculations

in Ref. [79] predict overall decay and dephasing rates of Γ1 ∼ 104 s−1 for two-ripplon decay

and Γφ ∼ 102 s−1 for quasi-elastic one- and two-ripplon dephasing at 10 mK, respectively.

In addition, voltage fluctuations in the controlling electrodes (Johnson noise) are predicted

to lead to a dephasing rate of Γφ ∼ 104 s−1 [79].

Qubit Readout

The basic readout mechanism proposed in Ref. [78] is based on destructive, state-selective

ionization of electrons from the surface. By applying a weak reverse perpendicular electric

field E
(+)
⊥ , the electron tunneling rate for overcoming the ionization barrier, which depends

exponentially on the barrier height, becomes strongly state-dependent such that only excited

state electrons will leave the surface for certain values of E(+)
⊥ . The vertical potential in the

presence of such a uniform reverse perpendicular holding field of strength −100 V/cm is

shown in Fig. 2.3 a. The ionized electrons with kinetic energies of tens of eV are then to be

collected on a channel-electrode configuration with good spatial resolution of about 1μm,

allowing to ‘image’ the wave function. The main drawback of this approach is its destructive

nature as qubits can not be reused for further computational operations.

Qubit Control and Coupling

Single-qubit operations are achieved by application of microwave pulses in the 100 - 200

GHz range, taking advantage of Stark-tuning of the ground to first excited state transition,

as discussed in section 2.1.2, which can be done selectively and locally using additional

submerged DC electrodes underneath each electron. For microwave field amplitudes of

ERF ∼ 1 V/cm, the Rabi frequency is approximately Ω � eERFa0 � 109 s−1, allowing on

the order of ΩT2 � 105 operations for predicted coherence times of T2 � 10−4 s. Coherent
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2. Electrons on Superfluid Helium

resonant energy transfer between qubits can be achieved through nearest-neighbor Coulomb

coupling of individual trapped electrons. As shown in Ref. [79], the Coulomb interaction of

two neighboring electrons acquires a positional coupling term

V (z1, z2) � e2

d3
z1 · z2 (2.20)

where d � 0.5μm is the thickness of the helium film. This interaction term leads to a state-

dependent energy shift of the neighbor and allows for resonant transfer of energy between

nearby electrons.

While vertical motional states should have promising coherence times and a natural strongly

anharmonic energy spectrum, the destructive readout together with the experimentally hard-

to-access frequency range of > 100 GHz, has so far kept this proposal from being realized

experimentally, despite advances in local control of electrons on helium [101, 102].

2.2 Many-Electron States on Helium

A collection of electrons above the surface of superfluid helium can form a two-dimensional

electron gas (2DEG), a Coulomb liquid or a Wigner crystal depending on temperature and

electron density [67]. Such 2DEGs and solids on liquid helium exhibit some remarkable

properties, including long predicted spin coherence times [76], bare electron mass and g

factor and the highest known mobility of all condensed matter systems [74, 75]. In this sec-

tion, the single electron case is extended to the situation of many electrons above the surface

and the collective properties of the system and its different phases are explored. Starting

with a discussion of the two-dimensional many-electron Hamiltonian and the electrons on

helium phase diagram in section 2.2.1, the 2DEG and Coulomb liquid states are discussed

and a comparison with traditional semiconductor electron gases is given in section 2.2.2.

Wigner crystallization and some important features of this phase are described in section

2.2.3. Much of the physics discussed in this section will be important in the many electron

trapping experiments and transport measurements presented in chapters 6 and 7.

2.2.1 Hamiltonian and Phase Diagram

The case of a single electron bound to the surface of liquid helium (section 2.1) can be readily

extended to the case of many electrons collected as a two-dimensional sheet floating above
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2. Electrons on Superfluid Helium

Figure 2.4.: Two-dimensional many-electron system above a superfluid helium film. Electrons are bound to the
surface individually through surface polarization, locating them a Bohr radius a0 above the superfluid-vapor
interface. The mean electron separation r0 is typically several orders of magnitude larger than the Bohr radius,
see discussion in text.

the helium surface. The situation is shown schematically in Fig. 2.4. Individual electrons

are bound to the surface via their induced image charges and are levitated at distances of

〈1|z|1〉 ∼ 11 nm above the surface in their vertical ground states. Achievable areal electron

densities on bulk films are on the order of ns ∼ 107 − 109 cm−2 such that the mean electron

spacing r0 =
√
1/πns ∼ 0.2 − 2μm is orders of magnitude larger than the average distance

of the electrons from the helium surface (r0 � a0). Hence, to lowest order we can ignore the

interaction of electrons with image charges of their neighboring electrons, which are only

a small fraction of the electron charge Q = Λe ∼ 6 × 10−3e. Now at temperatures small

compared to the vertical excitation energies T � 8 K, the electrons are effectively frozen

into their vertical ground states and the motion orthogonal to the surface can be regarded

as eliminated. The characteristic frequencies of the z motion are much higher than for the

unconstrained in-plane motion such that the total potential separates, V (r) = V (x, y)+V (z),

to a good approximation. In the absence of any external electromagnetic fields or charge

impurities on the surface, the Hamiltonian for motion parallel to the helium surface is given

by [103]

H =
N∑
i=1

�
2

2me
Δi +

1

2

∑
i �=j

e2

4πε0|ri − rj | = Hkin + HI (2.21)

where rj = (xj , yj) are two-dimensional vectors parallel to the helium surface. The neutraliz-

ing positive background for electrons on helium is typically provided by a uniform external

field generated by macroscopic capacitor plates, as for example in the experiments of chap-

ter 6. Note that the potential and positive charge background provided by the image charges

only enters through the z coordinate and does not need to be taken into account again in the

2D Hamiltonian. The effects of neighboring images is negligible due to the large equilibrium
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separation.

From (2.21) we see that the phase of the electron system is purely determined by the com-

petition of kinetic energy and electron-electron Coulomb interactions. Due to the absence

of any charged impurities in the helium film, electron-electron interactions are therefore the

primary mechanism of electron localization in this system. The transition between electron

gas, Coulomb liquid and Wigner crystal phases can then be fully characterized by changes

in electron density ns and temperature T . We can parametrize the phase transitions by in-

troducing the dimensionless Bruckner parameter [68]

rs =
r0
aB

, r0 =
1√
πns

(2.22)

which is the ratio of mean electron spacing r0 and the atomic Bohr radius aB = 4πε0�
2/me2.

For typical semiconductors we have ns ∼ 1011−1012 cm−2 and rs ∼ 2−6 [104] while for elec-

trons on helium rs ∼ 2 × 104 due to the much lower achievable densities of ns ∼ 107 − 108

cm−2. At small rs (high densities), electrons on helium form a strongly-correlated Fermi

liquid, while at large rs (low densities) they form a Wigner crystal at sufficiently low tem-

peratures. This transition does not occur in conventional solid state systems under normal

conditions where electron-electron Coulomb interactions are strongly screened and have a

much shorter range. For electrons on helium, the electron-electron Coulomb interactions are

essentially unscreened, which leads to a large restoring force for electron displacement from

their equilibrium positions. The long-range nature of the Coulomb interaction is sufficient

to localize the electrons in regular lattice sites.

Formally, the characteristic quantity that describes the phase of the electrons on helium

system is the plasma parameter Γ(pl) = Vc/Ke, the ratio of mean Coulomb to mean kinetic

energy. The mean potential energy per electron can be estimated by

Ve =
e2

4πε0r0
=

e2
√
πns

4πε0
(2.23)

while the mean kinetic energy is given by a two-dimensional integral over the Fermi distri-

bution [104]

Ke =
1

ns

∫
d2p

2π2

Ep

eβ(Ep−μ) + 1
(2.24)

where Ep = p2/2m = �
2k2/2m, β = 1/kBT , μ is the chemical potential and the electron
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density is given by

ns =

∫
d2p

2π2

1

eβ(Ep−μ) + 1
(2.25)

In the zero-temperature limit of the Fermi distribution we have

lim
T→0

f(Ep) = 1 if Ep < μ = EF (2.26)

where EF = �
2k2F /2m and kF =

√
2πns are the two-dimensional Fermi energy and wave

vector, respectively. In this limit the mean kinetic energy is just half the Fermi energy such

that

Ke =
εF
2

=
�
2

2mer20
→ Γ(pl) = 2rs (2.27)

and the plasma parameter is equivalent to the Bruckner parameter. In the high-temperature

classical regime on the other hand where Ke = kBT , we have for non-zero temperatures

Γ(pl) =
Vc

kBT
=

e2
√
πns

4πε0kBT
=

�
2

mkBT

1

rs
(2.28)

which has the opposite dependence on the Bruckner parameter. For intermediate temper-

atures and densities, the integrals (2.24) and (2.25) can be solved analytically [105]. The

resulting liquid-solid phase boundary parametrized in terms of critical density and temper-

ature is shown in Fig. 2.5. For Γ(pl) < 1 (low densities, high temperatures), we expect the

kinetic energy to dominate the Coulomb potential and hence a dilute electron gas-like phase.

For intermediate densities and temperatures such that 1 � Γ(pl) � 100, electron-electron in-

teractions start to dominate electron motion and we expect a strongly-correlated, liquid-like

system. Finally, for high densities and low temperatures Γ(pl) � 100, Coulomb interaction

completely dominates kinetic energy and the electrons are expected to localize in a regular

lattice.

While Fig. 2.5 gives a good qualitative picture, exact determination of the phase boundary

and the corresponding critical values of Γ(pl) is quite complicated and has been subject of

extensive theoretical and experimental research since the 1970s [67, 105–108]. The ability to

accurately control the density of electrons on helium over a wide range of values via simple

DC voltages has established it as the primary system for studying Wigner crystallization.

Experimentally, the measured values for the plasma parameter at melting range from 124±4

to 139± 8 [109, 110], The first observation of the phase transition by Grimes et al. [111] gave

a value of Γ(pl) > 137± 15. At fixed density of ns = 108 cm−2, the phase transition therefore
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2. Electrons on Superfluid Helium

Figure 2.5.: Parametrized phase diagram for two-dimensional electrons on helium. nc and Tc are the critical
density and temperature for melting of the Wigner solid, as calculated in Ref. [105]. Figure taken from Ref. [68],
based on [105].

occurs at about Tc ∼ 200 mK. The measured values are in good agreement with theoretical

calculations which are in the range of Γ(pl) = 120− 130 [68].

2.2.2 Two-Dimensional Electron Gas and Coulomb Liquid

The physics of the two-dimensional electron gas above liquid helium differs in a number of

important ways from the more well-known semiconductor case. Many of the remarkable

collective properties of 2DEGs on helium are a direct consequence of the unscreened long-

range Coulomb interactions and the atomically smooth, impurity-free surface of the super-

fluid helium which acts as the host substrate. Here, we briefly contrast the semiconductor

and liquid helium cases in terms of practically important properties such as mobility, density

and effective mass. Detailed treatments of the scattering mechanisms and electron-electron

correlations can be found in Refs. [68], [67] and references therein.

In most conventional semiconductor 2DEGs such as in GaAs, the electrons form a degen-

erate gas with small effective masses, renormalized g-factors, and strong interactions with

excitations of the host lattice, in particular strong piezoelectric coupling to 2D and 3D acous-

tic phonons. Apart from weak coupling to surface capillary waves, these mechanisms are

absent for electrons on helium. This manifests itself in a variety of macroscopic properties:

• Effective Mass: The effective mass of electrons on helium is very close to the free

electron mass, m∗ � 0.99 ·me, while in semiconductors such as GaAs m∗ � 0.067 ·me

or Germanium m∗ � 0.56 ·me such that electrons behave like very light quasi particles.
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• Charge: The effective charge of the quasi particles in semiconductors is reduced by the

dielectric constant of the substrate e∗ = e/
√
ε while for electrons on helium no such

screening takes place e∗ = e.

• Gyromagnetic Ratio: The g factor for GaAs is g � −0.44 while for electrons on helium

g � 2 close to the free electron spin g-factor.

• Mobility: Electrons on helium have the highest measured mobility of all condensed

matter systems, with measured values of up to ∼ 1010 cm2/Vs [74, 75]. This is sev-

eral orders of magnitude larger than in typical semiconductors where μ ∼ 104 − 106

cm2/Vs [112]. The high mobility is a consequence of the absence of many of the scat-

tering mechanisms present in solids. The electrons are far removed from the surface

and at low temperatures where the vapor pressure of liquid helium goes to zero, the

only electron scattering mechanism is through capillary surface waves (ripplons). We

can distinguish two regimes where electron scattering is dominated by vapor atoms

(T > 1.2 K) and ripplons (T < 0.7 K) [68]. Early mobility measurements where limited

to temperatures T > 0.8 K and observed a characteristic exponential increase of mobil-

ity with decreasing temperature [71] while more recent experiments clearly show the

transition to the ripplon-limited regime and the abrupt drop in mobility as the system

crystallizes [74, 75, 113, 114].

• Density: Typical electron densities on bulk liquid helium are on the order of 108 − 109

cm−2, limited by a hydrodynamic instability which is discussed in detail in section

2.3.3. Varying the density in a 2DEG on helium over several orders of magnitude can be

achieved in-situ by changing the DC voltages applied to submerged electrodes. Semi-

conductors show much larger electron densities (∼ 2×1011 cm−2 in GaAs heterostruc-

tures) and generally less variability in density which is in principle limited by the

donor concentration. As shown below, the bulk limit for electron density (ns � 2.2×109

cm−2) can be significantly increased using micro-channel geometries rather than bulk

films.

2.2.3 Wigner Crystallization

The existence of an electron-liquid to solid phase transition in infinite 3D Fermi systems

at low densities was first predicted by Wigner in 1934 [115]. A collection of electrons in a
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uniform neutralizing charge background at high densities behaves like a gas of weakly in-

teracting Fermions, sometimes referred to as an electron plasma. In the high density limit,

the energy of the system can be expanded to second order into an average kinetic energy

term plus a term accounting for exchange energy, which gives the entire electrostatic con-

tribution in this limit. The exchange correction is small for high densities and the kinetic

energy dominates. Wigner found that the situation should in principle be reversed for low

densities where exchange energy dominates kinetic energy, which led him to postulate the

existence of an ordered solid phase at low densities. In this limit, the expansion of the

ground-state energy of the system acquires higher order terms that include the zero-point

motion of electrons about their lattice sites [115,116]. Van Horn later showed that for crystal-

lization to occur in three dimensions, the mean electron spacing must be at least ∼ 6.4 times

the Bohr radius [70]. This is very difficult to achieve in conventional solid state systems and

the Wigner crystal phase in 3D was long considered a physically unattainable state of matter

except, possibly, for certain exotic physical systems such as a degenerate ion gas at the core

of a white dwarf star [70]. In 1971, Crandall and Williams hypothesized the existence of a

Wigner crystal transition for 2D electrons on liquid helium [117] and an analogous transition

for semiconductor inversion layers was proposed shortly thereafter [69]. The Wigner crystal

phase transition in electrons on helium was first observed by Grimes et al. [111] by taking ad-

vantage of the field-dependent coupling of Wigner crystal phonons to ripplon modes [107].

As discussed in more detail in section 2.3.5, electrons in a vertical holding field deform the

helium surface, leading to the formation of ’dimples’ of depth ∼ 0.01 Å. If the electrons are in

a correlated lattice structure like a Wigner crystal, the corresponding dimples form a lattice

themselves. Thus, an oscillatory motion imposed on the electron crystal is accompanied by

the excitation of coherent ripplons, which can be measured in an RF absorption experiment,

a method first proposed by Shikin [118]. An alternative way of observing Wigner crystal-

lization in electrons on helium is through its effect on transport properties such as mobility,

conductivity and scattering time for transport parallel to the surface [119–122].

The phenomenon of Wigner crystallization is absent in a system of neutral particles. For

an ordinary neutral system, the interaction energy of the particles increases with density at

a rate higher than their kinetic energy and the particles eventually localize to lattice sites to

minimize energy. For low densities, the kinetic energy dominates the interaction potential

and the system is in a liquid or gas phase. The opposite is the case for charged particles due

to the long-range nature of the Coulomb interaction, which decreases much more slowly
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with decreasing density. For low electron densities and temperatures, the interaction energy

can become much larger than the kinetic energy and a system of electrons can transition

into an ordered crystalline phase to reduce energy. As shown in section 2.2.1, this occurs

when the ratio of mean potential to kinetic energy exceeds Γ(pl) � 135. We can carry out an

analogous calculation for regular semiconductor 2DEGs by replacing m with the effective

mass m∗ (for GaAs m∗ � 0.067m) and the charge by e/
√
ε where ε is the dielectric constant

of the host substrate. This decreases the Coulomb energy by one to two orders of magnitude

and increases the quantum kinetic energy such that the ratio Ke/Vc is larger by typically two

to three orders of magnitude in semiconductors, where electrons do not crystallize into a

Wigner solid in the absence of magnetic fields [69]. Electron localization can only be achieved

using magnetic fields in which case an analogous magnetically-induced Wigner transition

takes place [123].

Wigner Crystal Phonons

In the absence of external magnetic fields, the excitation spectrum of the Wigner solid con-

sists of transverse Ωt,k and longitudinal phonon modes Ωl,k. In the long-wavelength limit

k � 1/r0 for excitation wavelengths large compared to the electron lattice spacing, the dis-

persion relation of longitudinal modes coincides with 2D plasmon modes [103]

Ωl,k =

√
nse2

2meε0εHe
k (2.29)

which is independent of the lattice structure. The square-root dependence markedly differs

from the phonon dispersion in neutral solids where the interactions are more short-range

due to screening effects. In the long-wavelength limit, the transverse modes have a sound-

like linear dispersion relation which takes the form [124]

Ωt,k = ct · k , ct =

√
0.138

e2

mer0
(2.30)

for a triangular lattice (other lattice configurations have been shown to be unstable). Here, ct

is the transverse sound velocity. For short and intermediate wavelengths the phonon spec-

trum has to be evaluated numerically [124]. Due to the small mass of electrons on helium,

magnetic fields can significantly affect the phonon dispersion curves. An external magnetic

field can lead to coupling of longitudinal and transverse long wavelength oscillations of the
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Figure 2.6.: Phase diagram of 4He, showing the lambda transition line that separates normal, superfluid and
solid phases of helium. Figure taken from [125].

crystal [110].

2.3 Superfluid Helium and Quantum Liquids

The unique physical properties of normal liquid and superfluid helium allow for the forma-

tion of bound surface states and 2DEGs in an experimentally accessible regime. The physics

of superfluid helium is of great importance for most of the work done for this PhD project,

in particular the superfluid experiments discussed in chapter 5 and the decoherence mech-

anisms of single-electron quantum dots presented in section 3.6. This section provides a

brief review of the physics of superfluid helium. Starting with a discussion of the thermo-

dynamics of 4He in section 2.3.1, transport properties and thin film dynamics are explored

in section 2.3.2. Charged helium films and the occurrence of hydrodynamic instabilities at

high electron densities are discussed in section 2.3.3. The film dynamics in micro-channel

geometries are particularly important for the experiments presented later on and are the fo-

cus of section 2.3.4. An introduction to ripplons and other elementary superfluid excitations

is given in section 2.3.5. They represent the main decoherence mechanisms for lateral elec-

tron motion, which is discussed in much detail in section 3.6. Finally, alternative cryogenic

substrates supporting bound surface states such as 3He or solid Ne are briefly discussed in

section 2.3.6, together with a summary of the main advantages of 4He.
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2.3.1 Thermodynamic Properties

The well-known phase diagram of 4He is shown Fig. 2.6. Helium liquifies under its own va-

por pressure below the critical temperature Tc � 4.21 K. Below the λ-transition at Ts � 2.177

K (under its own vapor pressure), 4He transitions into a quantum liquid, which manifests

itself macroscopically in a variety of ways. The fluid state exists down to absolute zero and
4He solidifies only under at least 25 bar of pressure. Unlike all other known liquids, 4He

does not become solid under its own vapor pressure, even when cooled to absolute zero.

The origin of the peculiar properties of 4He lies in the interplay of weak interatomic binding

forces and the large quantum-mechanical zero-point energy as a result of the small mass of

helium atoms.

The binding forces between 4He atoms are very weak. Due to the closed electronic s-

shell there is no static permanent dipole moment and hence helium atoms interact only

via induced dipole interaction, i.e. van-der-Waals forces. Helium has the smallest known

atomic polarizability at α = 0.123 cm3/mol, which corresponds to a dielectric constant of

ε � 1.0572. Furthermore, due to their small atomic mass m, helium atoms exhibit very large

vibrational zero-point energies

E0 =
h2

8ma2
, a =

(
Vm

N0

)1/3

(2.31)

where Vm is the molar volume and N0 = 6.022×1023 atoms/mol is Avogadro’s constant. The

zero-point energy is large enough to make the solid phase unstable due to the comparatively

weak binding forces. Helium-4 therefore melts under its own zero-point energy. Put differ-

ently, the zero-point energy is larger than the latent heat of crystallization of helium, making

the liquid phase energetically favorable at low temperatures. Below the superfluid transition

temperature, bulk helium condenses into a Bose-Einstein gas in which a substantial fraction

of the atoms condense into the ground state with a macroscopic occupation.

In the superfluid phase, liquid helium has the highest known thermal conductivity of all

substances at c ∼ 85 kW m−1 k−1 [126], which is about a factor of 2× 102 greater than for Cu

and a factor of 107 for normal state liquid at the same temperatures. This is surprising at first

since liquid helium does not have a valence band of free electrons, which are responsible for

heat transfer in most other good thermal conductors. The mechanism of heat conduction

in superfluid helium is unique and quantum-mechanical in nature. Heat propagates in the
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form of waves, often referred to as second sound, with a group velocity of vg � 20 m/s at T =

1.8 K. Thermal conduction therefore takes place by convection, which is much more efficient

than by gradual heat diffusion as in metals or normal liquids. In that sense, one can think

of superfluid helium as a sort of ’superconductor of heat’. The high thermal conductivity

is responsible for the extremely homogeneous temperature in bulk superfluid helium. As

opposed to normal liquids, superfluid vaporizes without boiling as evaporation from liquid

to vapor can only take place at the surface.

2.3.2 Transport Properties & Thin Film Dynamics

In its superfluid state, liquid helium can have flow velocities below the critical London ve-

locity vL, leading to a vanishing viscosity ν → 0 for flow through fine capillaries or holes.

The critical flow velocity corresponds directly to the critical current in superconductors [127].

The vanishing viscosity allows for a persistent superfluid flow, just like persistent currents

occurring in superconductors. The critical velocity is typically on the order of vL ∼ 60 m/s.

In analogy to superconductors, vortices can lead to a breakdown of the superfluid phase

even below vL. The vanishing viscosity has a number of important consequences in narrow-

channel geometries such as the coplanar waveguide resonators used in our experiments.

In a container filled partly with normal state liquid helium, the walls are coated with a

thin film of helium due to the adsorption of atoms from the vapor phase. Since 4He atoms

experience a comparatively strong van-der-Waals interaction with most solid substrates, this

so-called van-der-Waals film is unusually thick at t ∼ 30 nm at saturated vapor pressure. In

the normal liquid state this film is static and stable due to the finite viscosity. In the super-

fluid state, the viscosity vanishes ν → 0 and this film becomes mobile, covering all surfaces

and creeping towards regions of higher temperature where the superfluid eventually evapo-

rates. The fact that the van-der-Waals interaction between liquid helium and other substrates

is large is related to the low polarizability/small dielectric constant of 4He. The polarizabil-

ity of liquid helium is greater than that of vacuum but less than that of the container wall

substrate, corresponding to a negative Hamaker coefficient [125]. As a result, the interaction

between the walls and vacuum across the superfluid film is repulsive and it is energetically

favorable to have more superfluid between the walls and vacuum. The liquid tries to put

as much of itself as possible near the solid wall to the extent that the van-der-Waals energy

can pay for this mass displacement against gravity. Now consider a layer of bulk superfluid
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Figure 2.7.: Superfluid thin film formation: (a) Formation of a thin van-der-Waals film of d � 30 nm on a substrate
wall next to bulk liquid helium. (b) Capillary action filling of a micro channel array of depth d0 and channel
width w next to a low-lying reservoir of bulk liquid helium, where H is the distance between the channel top
and the bulk liquid level in the reservoir, which determines the radius of curvature Rc and hence the superfluid
level at the channel center d = d0 − z(x), see discussion in text.

helium next to a wall, as shown schematically in Fig. 2.7 a. The thickness of the coating film

at height h above the bulk level can be estimated from the chemical potential of the film

μf [125]:

μf = μ0 + ρgh− α

dn
(2.32)

where the last term is the van-der-Waals potential with n = 3 for d ≤ 5 nm and n = 4 for

d > 10 nm, α is the van-der-Waals constant and ρ = 0.154 × 10−3 kg/cm3 the mass density

of liquid helium. In thermal equilibrium, the chemical potential of the atoms on the bulk

and film surfaces has to be equal such that we find for the film thickness as a function of the

height above the bulk level

d =

(
α

ρgh

)1/n

(2.33)

which gives a value of about 30 nm for thick bulk levels d > 10 nm.

2.3.3 Charged Helium Films and Hydrodynamic Instability

Many of the early experiments with electrons on helium where carried out on bulk liquid he-

lium films with thicknesses many orders of magnitude larger than the effective Bohr radius

a0 ∼ 8 nm of the electrons [71, 91, 111]. The liquid helium surfaces were typically charged

with electrons using thermionic emission from tungsten filaments, discussed in detail in sec-

tion 4.1.4. Due to the polarization of the dielectric liquid, the electrons collect as a sheet on

the helium surface and form a two-dimensional electron gas or Wigner crystal. As discussed

in section 2.2, the liquid-to-crystal phase transition depends strongly on electron density

and temperature. While the electron density can be easily varied in-situ through applied DC
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fields, the attainable areal densities in bulk helium experiments are limited to ns ∼ 2 × 109

cm−2 due to the occurrence of a hydrodynamic instability in charged helium films [67, 128].

Following Ref. [129], the total z-directed pressure on a charged helium surface can be written

as

p(z) = ρgz + σ

(
∂2z

∂x2
+

∂2z

∂y2

)
− 4πn2

se
2∇z (2.34)

where the first term describes hydrostatic pressure due to gravity with ρ = 0.154 × 10−3

kg/cm3 being the mass density of liquid helium, the second term describing surface tension

with σ = 0.378× 10−3 N/m and the third one arising from the mutual repulsion of electrons

which acts in a destabilizing way. Taking the Fourier transform of p(z) we have

p(k) =
(
ρg + σk2 − 4πn2

se
2
)
Z(k) (2.35)

where Z(k) is the Fourier transform of the vertical displacement z. The surface is stable as

long as the above polynomial in k is positive, which gives a critical electron density of

nc =

(
ρgσ

(2πe2)2

)1/4

∼ 2.25× 109 cm−2 (2.36)

in good agreement with experiment [130]. A number of methods have been developed to

avoid the hydrodynamic instability and allow going to higher electron densities, in particu-

lar the use of fractionated micro-channel structures [129].

2.3.4 Capillary Action and Micro-Channel Geometries

Microchannel geometries and fractionated surfaces allow overcoming the hydrodynamic in-

stability and reaching electron densities one to two orders of magnitude higher than the limit

given in (2.36) [129]. A typical micro channel geometry next to a low lying bulk helium reser-

voir is shown schematically in Fig. 2.7 b. The helium film does not follow the substrate form

but fills the depressions through capillary condensation provided that the distance between

the elevations is smaller than the capillary length. The micro-channel structures are therefore

filled with superfluid helium from a lower-lying reservoir by capillary action. In the absence

of electrons, the radius of curvature of the helium film in a micro-channel is determined by

surface tension and gravity

Rc(H) = σ/ρgH (2.37)
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where σ = 0.378 × 10−3 N/m is the surface tension of the superfluid helium/vacuum in-

terface, ρ = 0.154 × 10−3 kg/cm3 and H is the distance between the channel top and bulk

liquid surface in the reservoir. In our device geometries, the reservoir is typically on the

order of H ∼ 5 mm deep such that Rc ∼ 50μm. If the channel width is much smaller than

the radius of curvature w � Rc, the gap will be filled with helium by capillary action. The

profile of the liquid surface across the channel, as shown in Fig. 2.7 b,can be approximated

by a semi-circular shape [131]

z(x) = Rc

⎛
⎝1−

√
1−
(

x

Rc

)2
⎞
⎠ ∼ x2

2Rc
(2.38)

where the x-origin is at the l.h.s wall of the channel (i.e. the channel center is at x = w/2 in

Fig. 2.7 b).The film thickness at the center of a channel of width w and geometric depth d0

can then be expressed as

d = d0 − z(w/2) = d0 − w2

8R
= d0 − w2

8

ρgH

σ
(2.39)

Thus the helium film thickness can be controlled by the geometry of the channels and the

helium level in the reservoir. For a typical device with w = 10μm, d0 = 1μm one needs

a radius of curvature of at least Rc � 20 μm to get any significant level in the gap from

capillary action effects. As the reservoir fills up H → 0, the channels are completely filled

with liquid helium as the radius of curvature diverges Rc → ∞. The helium level in the gaps

is self-stabilized by capillary action as long as Rc ≥ w. The fill dynamics in the capillary

action regime will be the subject of experiments presented in chapter 5, where we use a

high quality factor coplanar waveguide resonator to observe changes in Rc through shifts in

resonance frequency caused by changes in capacitance per unit length.

Charged Micro-Channels

For a charged bulk helium film, the presence of electrons adds another component to the

surface pressure which leads to a hydrodynamic instability at a critical electron density of

nc � 2.2 × 109 cm−2, as discussed above. However, for micro-channel geometries the in-

stability can be suppressed by fractionating the liquid helium surface and imposing a lower

limit for the allowed wave vectors of surface deformations, as suggested in Refs. [129, 132].

If the electron density is above the critical density given in eq. (2.36), ns > nc, the second
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order polynomial p(k)/Z(k) in (2.35) is negative when the wave number k lies between the

two real positive roots of the equation. By forbidding surface deformations for such wave

vector values, the critical density nc can be increased. This can be achieved by fractionating

the surface, such as in a micro-channel geometry, which imposes a minimum allowed wave

vector value km � π/w where w is the width of the channel. The condition for stability then

gives a critical density of

nc =

√
σπε0εHe

we2
(2.40)

where σ = 0.378 × 10−3 N/m is the surface tension. For a channel width of w = 10μm this

yields nc ≈ 2.1×10−10 cm−2 which is about an order of magnitude larger than the bulk limit.

In addition to hydrodynamic instability, the maximum density can be limited by the elec-

tronic pressure exerted on the helium film. For a charged helium film, the radius of curvature

decreases to

Rc =
σ

ρgH + n2
se

2

2εHeε0

(2.41)

compared to (2.37). The modified film thickness at the center of the gap then reads

d(ns) = d0 − w2

8Rc
= d0 − w2

8σ

(
ρgH +

n2
se

2

2εHeε0

)
(2.42)

This sets a limit on the maximum electron density through d(nc) = 0 such that

nc =

√
2εHeε0
e2

(
8σd0
w2

− ρgH

)
(2.43)

For a channel of width w = 10μm and depth d = 1μm this yields nc ≈ 1.5 × 10−10 cm−2

(assuming H = 0).

2.3.5 Ripplons and Elementary Surface Excitations

Ripplons are quantized capillary waves propagating on the surface of superfluid helium.

They can be thought of as the analog of 2D surface phonons at solid interfaces with a some-

what unusual dispersion relation. Although in principle present in normal-state liquids, rip-

plons are overdamped due to the large viscosity and hence generally unobservable. In the

superfluid state on the other hand, the viscosity goes to zero, allowing long-lived capillary

waves to propagate on the surface of the superfluid. Ripplons were first observed directly

in neutron scattering experiments [133, 134], but indirect evidence in the long wavelength
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regime was already obtained in some of the early electrons on helium experiments [111,113].

In the long wavelength limit (q � 108 cm−1), the ripplon dispersion relation is to a good ap-

proximation given by [68]

ω2
q =

α

ρ

(
q2 + κ2

)
q tanh(qd) (2.44)

κ2 =
ρ

α
(g + gd) , gd =

3α

ρd4
(2.45)

where α and ρ are the surface tension and mass density of liquid helium, respectively, d is

the helium film thickness and g the gravitational constant. The additional acceleration term

gd is due to van-der-Waals forces. In the thick film limit and for wave vectors q � κ the

dispersion relation simplifies to

ωq =

√
α

ρ
q3/2 (2.46)

For electrons on helium, we are primarily interested in this long wavelength ripplon regime

since typical thermal electron wave numbers are small compared to atomic scales and single-

ripplon scattering requires momentum and energy conservation. Ripplons can be described

quantum-mechanically in terms of the surface displacement operator ξ(r), which in second

quantization can be expanded in the ripplon creation and annihilation operators [135]

ξ(r) =
1√
As

∑
q

(bq + b†−q)Qqe
iq·r (2.47)

where As is the quantization surface area and the amplitude is given by

Qq =

√
�q tanh(qd)

2ρωq
(2.48)

Here, bq, b
†
q are the ripplon creation and annihilation operator, respectively, with the usual

commutator [bq, b
†
q′ ] = δqq′ . The coupling of electrons above the surface to ripplons via the

surface displacement operator (2.47) is discussed in detail in section 3.6. As shown later

on, this coupling represents one of the major decoherence mechanisms for electron lateral

motional qubits. The second important type of quantized excitation are phonons, which

can be thought of as propagating density modulations that couple to the floating electrons

through a form of piezoelectric interaction 3. Details on the interaction of electrons and

3Note that the dispersion curve for phonons in superfluid helium is strongly non-linear, with a roughly linear
dependence for low momenta. Excitations with momenta in the non-linear region are sometimes referred to
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elementary superfluid excitations are given in section 3.6.

2.3.6 Alternatives to Superfluid Helium

An obvious question that comes to mind is if there are other cryogenic liquids and substrates,

apart from superfluid helium, that can support quantized vertical motional states. Indeed

a number of other host substrates have been investigated both experimentally and theoret-

ically [68]. In this section, we briefly discuss alternative cryogenic substrates such as liquid
3He and solid Neon and conclude with a summary of the main advantages of superfluid
4He.

The most thoroughly studied alternative to 4He is the 3He isotope which forms an I = 1/2

fermionic liquid below Tc = 3.2 K at one atmosphere of pressure and becomes superfluid

only at 0.25 mK in the absence of magnetic fields [125]. The electron injection barrier is

similar to 4He at V0 � 0.9 eV but 3He provides an even more transparent substrate with a di-

electric constant close to unity ε3 � 1.0423 [68]. This in turn means that the effective nuclear

charge Z = Λe for bound electronic surface states is smaller, leading to a larger Bohr radius

of a0 � 10.2 nm and weaker binding potentials. For 3He, the ground state energy is on the

order of ∼ 4.2 K and the average electron position above the surface is 〈1|z|1〉 � 153.3 Å. The

measured transition frequency from ground to first excited state is ω12/2π � 69.8 GHz [136],

in good agreement with the hydrogen approximation. Surface state electrons above 3He

were first observed in Ref. [137], followed by spectroscopic experiments [136] and mobility

measurements [75]. A practically important difference between 3He and 4He lies in the much

smaller evaporation constant of 3He which corresponds to a significantly higher vapor atom

density above the liquid at a given temperature. The mobility of electrons on liquid 3He is

therefore limited by vapor atom scattering down to T � 0.4 K [75].

Solid Hydrogen and Neon have been investigated as surface state electron substrates as well,

in part because of the hydrodynamic instability limit for the electron density on liquid sub-

strates, see section 2.3.3. This kind of instability does not occur for solid substrates, in prin-

ciple allowing us to go to much higher electron densities. Solid H2 has been investigated by

a number of authors [138–140]. Due to the comparably large dielectric constant of solid H2,

the electrons are much closer to the surface with a mean ground-state distance of only ∼ 25

Å and interact strongly with the static surface roughness. Electrons on solid Ne were first

as ‘rotons’.
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realized in Ref. [141]. The deviation from a hydrogenic spectrum is strongest for solid Ne

because of the relatively smaller injection barrier of V0 � 0.61 eV.

While other substrates allow for higher electron densities, superfluid helium has several

fundamental advantages for surface state electron experiments, which are summarized be-

low:

• Weak polarizability: The small dielectric constant εHe � 1.0572 leads to small effec-

tive nuclear charges Λe and large Bohr radii a0 such that electrons are levitated at a

macroscopic distance from the surface, several orders of magnitude larger than typical

atomic scales.

• Vanishing vapor pressure: Since the vapor pressure of 4He vanishes in the superfluid

phase below T ∼ 600 mK, there are no surface defects or irregularities and hence

no scattering of isolated helium atoms. The substrate is perfectly flat and the only

scatterers available are quantized excitations of the surface such as ripplons.

• Self-stabilized films: The vanishing viscosity and capillary action allows for the for-

mation of self-stabilized films, reducing the effects of vibrations in experiments with

micro channel geometries. For a micro-channel array next to a low-lying bulk super-

fluid reservoir as shown in Fig. 2.7, the relative bulk level H sets the radius of curvature

in the channel Rc. For example, for H = 5 mm we have Rc ≈ 53μm and the sensitivity

of the film thickness d in the channel to changes in reservoir level H are reduced by

several orders of magnitude for a channel width of w = 10μm:

∂Rc

∂H

∂d

∂Rc
=

w

H
= 10−4 (2.49)

• Topological defects (vortices) and elementary excitations (ripplons, phonons, rotons)

are well understood, making it easier to calculate their effects on electron transport

properties and decoherence times.

• No nuclear spin: 4He has zero nuclear spin with a natural isotopic purity of 1 − 2 ×
10−7 3He atoms. This is an important property for spin qubit implementations using

electrons on helium [76]. Interaction with nuclear spins in the host substrate represents

a limiting factor for spin coherence in semiconductor quantum dots.
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3 Circuit Quantum Electrodynamics with

Electrons on Helium

CAVITY quantum electrodynamics (QED) studies the interaction of matter and light at

the quantum level and allows resolving the coherent exchange of energy between

the two [31]. In its most general form, a cavity QED system consists of a quantized single

mode radiation field, described as a harmonic oscillator, coupled to an anharmonic quantum

system such as an atomic electron, described as a spin 1/2 particle. While originally devel-

oped in the context of atomic physics [32–34, 142], the cavity QED concept is quite general

and in principle independent of the specific physical implementation of the harmonic and

anharmonic oscillator components. In particular, it is not restricted to "real" atoms and op-

tical cavities with mirrors. Indeed, cavity QED experiments have now been realized using

a variety of physical systems, including Rydberg atoms coupled to optical and microwave

cavities [30], superconducting charge, phase and flux qubits coupled to transmission line

resonators [43, 143, 144] and three-dimensional cavities [46, 52], quantum dots coupled to

photonic crystal cavities as well as superconducting resonators [35–37, 145], nanomechani-

cal oscillators coupled to superconducting circuits [38, 39, 146] as well as early experiments

with nitrogen vacancy centers in diamond coupled to photonic crystal and transmission

line cavities [40, 41, 66, 147]. The superconducting circuit implementation in the microwave

regime, called circuit quantum electrodynamics (cQED) [16, 42, 43], has proven to be a par-

ticularly versatile cavity QED architecture, in part because of the large atom-photon cou-

pling strengths available and the ability to engineer many of the relevant properties of the

atomic and photonic component of system such as photon lifetimes, transition frequencies

and atom-photon coupling strengths. This has allowed for a number of fascinating quan-

tum optics experiments [48, 49, 52, 144, 148–150] and significant progress towards quantum

information processing with superconducting circuits in recent years [24, 53–58].
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The strong coupling to microwave photons possible in circuit QED architectures has also

sparked interest in creating hybrid quantum systems capable of combining the advantages

of different implementations of the atomic component. In these proposals, a superconduct-

ing transmission line cavity acts as an interface between superconducting circuits and mi-

croscopic quantum systems, such as polar molecules and molecular ions [59–61], electron

spins [62, 63, 66], or ultracold atoms [151], typically with smaller couplings but much bet-

ter coherence than superconducting qubits. As shown in chapter 2, the motion of electrons

bound to the surface of superfluid helium becomes quantized with a strongly anharmonic

energy spectrum. Analogous to semiconductors, they form a two-dimensional electron gas

that can be controlled with electrostatic gates. This makes electrons on helium a potentially

promising building block for circuit QED and quantum information processing systems.

In this chapter we investigate the coupling of electrons on superfluid helium to supercon-

ducting transmission line cavities. We show how quantum dots on liquid helium can be de-

fined via submerged electrostatic gates, in analogy to 2DEGs in semiconductors, and that the

lateral quantized motion of such a trapped electron can be engineered to have frequencies in

the 1 - 10 GHz range, matching those of typical superconducting cavities. We discuss how

both spin and lateral motional degrees of freedom can be coupled to microwave photons in

a transmission line resonator via dipole interaction, making it possible to realize strong cou-

pling cavity QED with electrons on helium. We start with a discussion of cavity quantum

electrodynamics as a general concept in section 3.1 and introduce the Jaynes-Cummings in-

teraction and some of the basic physics. Superconducting coplanar waveguide cavities and

transmission line resonators are discussed in section 3.2. In section 3.3, electrostatic traps

and lateral quantized electron motion are presented. Section 3.4 focuses on the coupling of

quantum dots on helium to superconducting cavities and section 3.5 discusses spin-motion

coupling via gradient magnetic fields and the resulting enhanced spin-cavity coupling. De-

coherence mechanisms for both lateral electron motion and spin are presented in section

3.6. Finally, section 3.7 explores trapped many-electron vibrational states and how to couple

them to cavities.

3.1 Cavity Quantum Electrodynamics

The most fundamental system for studying the interaction of matter and light is given by a

quantum-mechanical two-level system coupled to a simple harmonic oscillator. Although it
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g
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κ

Figure 3.1.: Schematic layout of a cavity QED system: A quantum-mechanical two-level system (green) cou-
pled via dipole interaction to a single-mode radiation field (red) with photon decay rate κ, coupling strength g
and two-level decoherence rate γ. In the strong coupling limit g � κ, γ, the two-level system can coherently
exchange energy with the radiation field at rate g. Figure taken from Ref. [16]

is possible to realize such a pure spin-oscillator system in practice, most cavity QED experi-

ments work with approximations to this idealized case. In particular, atoms, ions or artificial

atoms in the form of superconducting circuits have energy spectra consisting of many levels

rather than just two. However, provided these spectra have sufficiently strong anharmonic-

ity, we can truncate the Hilbert space of the anharmonic oscillator to its lowest two energy

eigenstates and describe the system to a good approximation using relatively simple cav-

ity QED models. This section provides a brief review of cavity QED physics independent

of physical implementation. First, atom-radiation field coupling and the Jaynes-Cummings

Hamiltonian are explored, followed by a discussion of the resonant and dispersive limits

in the strong-coupling regime in sections 3.1.1 and 3.1.2. Note that in this section we use

the terms "atom" and "atomic" as generic terms for an anharmonic oscillator, which can be a

quantum two-level system such as a spin, the Rydberg levels of an atom or a superconduct-

ing charge or phase qubit. Cavity QED is a wide and rich field with connections to quantum

optics, quantum information and quantum field theory. We limit ourselves here to the essen-

tials required for a good understanding of the remaining parts of this thesis. For a detailed

treatment of cavity QED the interested reader is referred to the excellent account given in

Ref. [31] with the broader topics of quantum optics and quantum electrodynamics discussed

in depth in Refs. [152] and [153]. Circuit QED with superconducting qubits is presented in

detail in Refs. [44, 154, 155].

The atom-cavity field interaction is illustrated in Fig. 3.1. A two-level system of frequency

ωa interacts via dipole interaction with the electromagnetic field in a cavity defined by two
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mirrors. The separation of the mirrors determines the frequency of the photons in the cavity

field and their rate of escape κ is determined by the reflectivity of the mirrors. As shown

below, the interaction energy �g depends on the dipole moment of the two-level system and

the mode volume of the radiation field. The Hamiltonian for this model system can be de-

rived from first principles. A general free-space electromagnetic field is described by a vector

potential A(r, t), as defined by Maxwell’s equations 1, and has a continuous mode density.

If the field is constrained to a certain physical volume V , the mode density becomes discrete

as the quantization of the field supports only specific orthogonal modes whose wave vec-

tors are such that they "fit" within the volume. In second quantization, the vector potential

can then be expanded in a discrete set of orthogonal plane-wave modes, written as a linear

combination of photon creation and annihilation operators:

A(r, t) =
∑
k

(
�

2ε0ωkVk

)1/2 [
akeke

i(k·r−ωkt) + a†ke
∗
ke

−i(k·r−ωkt)
]

(3.1)

where ak, a
†
k are the ladder operators for the kth mode with [ak, a

†
j ] = δjk, ωk is the frequency

of the kth mode as determined by the volume V and ek are unit polarization vectors. The

mode volume Vk is given by

Vk =

∫
V

∣∣∣ek · ei(k·r−ωkt)
∣∣∣ d3r (3.2)

For a simple box of length L this gives Vk = L3 such that in the free space limit L → ∞ the

mode density goes to infinity, as expected. The root-mean-square electric field amplitude of

the vacuum in the kth mode is then given by 2

E(k)
rms =

√
�ωk

2ε0Vk
(3.3)

which depends on mode frequency and volume. Using the definition of the electromagnetic

energy density, each mode of the radiation field can be described as a harmonic oscillator

1Recall that in Coulomb gauge

B = ∇×A , E = −∂A

∂t
, ∇ ·A = 0 , ΔA(r, t) =

1

c2
∂2A(r, t)

∂t

2The rms field amplitude can be derived from an integral over the energy density of the field, see e.g. Ref. [31].
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such that the total field is governed by the Hamiltonian [152]

H =
∑
k

�ωk

(
a†kak +

1

2

)
(3.4)

where the independence of the mode oscillators is a consequence of the orthogonality of

the plane wave modes in the expansion (3.1). The interaction of an atomic system, such

as an electron bound in a hydrogen-like atom or an artificial superconducting atom, with a

discrete mode field (3.1) is described by the Pauli Hamiltonian (see appendix A) which gives

a dipole interaction term

HI = −d(r) ·E(r, t) . (3.5)

where d(r) = q ·r is the atomic dipole operator and the electric field is given by E = −∂A/∂t.

The spontaneous emission and absorption of photons by the atomic system strongly de-

pends on the mode density and distribution. In the extreme case of a free-space field, the

atom has a continuum of vacuum field states available for spontaneous emission of radia-

tion. If the field is constrained to a fixed volume V , the mode density becomes a sum of

δ-functions and spontaneous emission and radiation behavior is drastically modified. If the

transition frequency of the atom matches one of the mode frequencies ωk, spontaneous emis-

sion is greatly enhanced while if there is no matching mode, emission and absorption can be

strongly suppressed. The dispersive interaction with off-resonant modes manifests itself as

small energy corrections to the atomic levels (Lamb and Stark shift). For the case of a single

mode field, spontaneous emission can in fact be suppressed in the off-resonant case ωa �= ω0,

while in the resonant case the interaction manifests itself in the form of Rabi oscillations 3.

The irreversible physical process of spontaneous emission in free space therefore becomes a

reversible process (Rabi oscillations) if the field is restricted to a single mode. This is the key

idea of cavity QED. It ultimately enables the coherent exchange of energy between matter

and light and the controlled entanglement of atoms and photons.

Returning to the simple model shown in Fig. 3.1, the two-level atom can be described by

a spin-1/2 Hamiltonian

Ha =
�ωa

2
σz =

�ωa

2
(σ+σ− − σ−σ+) (3.6)

3Note that in reality any field has an infinite number of modes given by the higher order harmonics of the
fundamental mode with frequencies that are integer multiples of ωk.

42



3. Circuit Quantum Electrodynamics with Electrons on Helium

where σ+ = |e〉 〈g| and σx− = |g〉 〈e| are the atomic ladder operators. Note that the dipole

operator has odd parity and can be expressed in terms of σ± as

d = d(eaσ
− + e∗aσ

+) (3.7)

where dea = q · 〈g|r|e〉 and d is the dipole matrix element and ea a unit vector describing the

atomic transition polarization direction. The interaction term (3.5) can be simplified further

using the dipole and rotating wave approximations. In the dipole approximation, we take

advantage of the fact that the size of the two-level dipole is typically much smaller than the

wavelength of the mode, hence allowing us to restrict evaluation of the vector potential to

the position of the dipole (at the origin) A(r) ≈ A(0). Furthermore, in the rotating wave

approximation we can neglect terms that describe the simultaneous excitation (σ+a†) and

de-excitation (σ−a) of both the two-level system and the cavity 4. Making both of these ap-

proximations in (3.5) and combining this with (3.4) and (3.6), we arrive at the well-known

Jaynes-Cummings Hamiltonian describing a two-level system coupled to a single-mode ra-

diation field:

HJC = HR +HA +HI = �ωr

(
a†a+

1

2

)
+

�ωa

2
σz + �g(a†σ− + σ+a) (3.8)

where the coupling strength g is given by

g =
d

�
Erms =

√
ωr

2ε0�Vr
· d . (3.9)

The Hamiltonian (3.8) describes the emission and absorption of cavity photons by the two-

level system. A photon bouncing back and forth between the two mirrors can be absorbed

by the atom in its ground state (σ+a term). Similarly, if the atom is excited it can decay back

to the ground state by emitting a photon into the cavity (a†σ− term). The rate of this atom-

photon interaction is given by the coupling strength g, which is determined by the size of

the dipole matrix element d and the mode volume of the cavity. A smaller mode volume

corresponds to a higher energy density and hence larger coupling. Likewise, a larger dipole

corresponds to a larger cross-section for photon absorption and hence also larger coupling.

Interestingly, there is a fundamental upper bound for the magnitude of the coupling, which

limits the coupling strength to about 10 % of the cavity frequency ωr [44, 156]. This can be

4This amounts to neglecting fast-oscillating terms exponential in ±2ωr
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seen explicitly by rewritting the dimensionless coupling strength g/ωr in terms of the fine

structure constant and the ratio of mode volume to dipole size. The best one can do is to use

a dipole that completely fills the transverse dimension of the cavity.

So far we have ignored any dissipation mechanisms of the atom-cavity system. In practice,

the lifetime of photons is limited by the reflectivity of the mirrors. Photons leak out of the

cavity at a rate κ = ωr/Q determined by the quality factor Q of the cavity, which gives an

additional dissipation term Hκ in (3.8). In addition, the two-level system can decay into

modes other than the cavity mode and relax or dephase via its coupling to the environment

at a corresponding rate γ. The atomic decoherence mechanisms are captured by another term

Hγ in the Hamiltonian. The exact form of these terms depends on the specific decoherence

mechanisms present in a given cavity QED implementation. For the case of quantum dots

on helium coupled to transmission line resonators those will be discussed in detail in section

3.6. The dynamics of the system depend strongly on the relative magnitude of the relaxation

rates κ and γ with respect to the coupling rate g. If the coupling strength is much larger

than both of the relaxation rates g � γ, κ, an excitation can oscillate coherently many times

between cavity field and atom, implying that a single atom in a cavity is sufficient to sustain

a laser-like oscillation on resonance ωa = ωr [31]. In the off-resonant case ωa �= ωr, such Rabi

oscillations are suppressed by the frequency mismatch and the coupling manifests itself as

a dispersive, state-dependent shift of the cavity and atom frequencies. Those two limiting

cases are the topics of the following two sections.

3.1.1 Resonant Strong Coupling Limit

The strong coupling regime of cavity QED is obtained when the atom-cavity coupling strength

g exceeds the relaxation rates of both system components g � κ, γ. In practice, this requires

a combination of long coherence times for the atomic degree of freedom, low loss cavities

(high Q factors) and large coupling strengths (small mode volumes and/or large dipoles).

In the strong coupling regime, the dissipative terms in the Jaynes-Cummings Hamiltonian

Hγ and Hκ can be neglected and it becomes possible to diagonalize (3.8) exactly. First, note

that the uncoupled product states |g, n〉 = |g〉 ⊗ |n〉 and |e, n+ 1〉 = |e〉 ⊗ |n+ 1〉 are eigen-

states of the unperturbed Hamiltonian HA+HR, where |g, e〉 denotes the two-level eigenstate

and |n〉 the photon number states of the cavity. They form a basis which can be used to rep-

resent the eigenstates of the full Hamiltonian HJC , the so-called dressed states which are
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Figure 3.2.: Energy level diagram of the Jaynes-Cummings hamiltonian. The dashed lines are the eigenstates
of the uncoupled Hamiltonian, where left is qubit in the ground state and right in the excited state with |n〉
corresponding to the different photon number states. The solid lines are the energies in the presence of dipole
coupling. Both strong dispersive (b) and resonant strong regime (a) are shown with energy level separations and
dispersive shifts indicated accordingly. As shown in (a), the spectrum of the hybridized system on resonance is
anharmonic with an energy level separation that is a function of the number of excitations in the system.

superpositions of the unperturbed eigenstates:

|+, n〉 = cosΘn |g, n〉+ sinΘn |e, n+ 1〉 (3.10)

|−, n〉 = − sinΘn |g, n〉+ cosΘn |e, n+ 1〉 (3.11)

with the mixing angle

Θn =
1

2
arctan

(
2g

√
n+ 1

Δ

)
(3.12)

and Δ = ωa − ωr. The dressed states diagonalize the Jaynes-Cummings Hamiltonian (3.8)

exactly and the corresponding eigenenergies are given by

E±,n = (n+ 1)�ωR ± �

2

√
4g2(n+ 1) + Δ2 , (3.13)

The energy level diagram is shown in Fig. 3.2. One can distinguish between two qualitatively

different regimes depending on the detuning Δ between the two-level atom and the cavity

field. For Δ > g, atom and cavity interact only dispersively and the weak coupling term

can be treated perturbatively using the uncoupled product states |g〉 ⊗ |n〉 and |e〉 ⊗ |n+ 1〉.
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This case is shown in Fig. 3.2 b and will be discussed separately in section 3.1.2. For the re-

mainder of this section we will focus on the near resonant case Δ → 0, shown in Fig. 3.2 a.

If the detuning between atom and cavity is small, the two systems can freely and reversibly

exchange energy. Excitations in the system hybridize in the sense that they are equal parts

atomic excitation and cavity photon. To see this, consider the limit Δ → 0 where the mix-

ing angle is Θn = π/2 such that the eigenstates are equally weighted superpositions of the

unperturbed states

|±, n〉 = 1√
2
(|e, n+ 1〉 ± |g, n〉) . (3.14)

The eigenstates of the atom-cavity system are therefore maximally entangled on resonance

and all excitations are equally shared between the atom and the photon field. The two sys-

tems can then no longer be considered as separate entities. The on-resonance energy level

diagram for the dressed states (3.14) is shown in Fig. 3.2 a, together with the unperturbed

energy levels. The energy level spectrum is strongly non-linear and the separation between

the two dressed states |±, n〉, called the vacuum Rabi splitting, is a function of the number

of excitations in the system,

ΔEn = �g
√
n (3.15)

The coherent and reversible oscillation between atomic excitation and cavity photon can be

seen explicitly from the time evolution of the system. Suppose we start in the state |ψ(0)〉 =
|g, n〉 at time t = 0 where an atom in its ground state is inside a cavity with n photons. We

can express the initial state in the basis of the dressed states |ψ(0)〉 = (1/
√
2)(|+, n〉− |−, n〉).

At time t the system is in the state

|ψ(t)〉 = e−iHJCt/� |g, n〉 = 1√
2
e−i(n+1)ωRt

[
e−itg

√
n+1 |+, n〉 − eitg

√
n+1 |−, n〉

]
(3.16)

The probability for being in the initial state |g, n〉 at time t is therefore

Pg,n(t) = | 〈g, n|ψ(t)〉 |2 = cos2(g
√
n+ 1t) , Pe,n+1(t) = 1− Pg,n(t) (3.17)

Hence we see that the excitation oscillates between atom and cavity photon at a frequency

ωrabi = g
√
n+ 1, the n-photon Rabi frequency. This makes the change from irreversible

spontaneous emission in free space to reversible oscillation of energy in a cavity explicit. In

free space, an atom initially in the excited state relaxes to the ground state via spontaneous

emission of a photon which is then lost irreversibly. In a cavity on the other hand, the photon
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is trapped and can be reabsorbed by the atom, then emitted again and so on. Depending on

the cavity loss rate κ, the atomic relaxation rate γ and the coupling strength g, this process of

absorption and re-emission can happen many millions of times before the photon escapes.

3.1.2 Dispersive Limit

As shown above, the resonant interaction of atom and cavity leads to coherent exchange

of energy and the two systems lose their individual character in this limit. A qualitatively

different regime is reached when atom and cavity are detuned from each other Δ > g. In this

dispersive limit of large detunings, the residual weak interaction manifests itself in the form

of frequency shifts and the Jaynes-Cummings Hamiltonian can be treated perturbatively.

Making a Schrieffer-Wolff-type transformation

U = exp
[ g
Δ
(aσ+ − a†σ−)

]
(3.18)

of the Hamiltonian (3.8) in combination with the Baker-Campbell-Hausdorff lemma and ex-

panding to second order in the small parameter g/Δ gives the effective Hamiltonian 5

Heff = UHU † ≈ �ωr

(
a†a+

1

2

)
+

�

2

(
ωa + 2χa†a+ χ

)
σz (3.19)

where χ = g2/Δ and the interaction term was adiabatically eliminated. We see from the

effective Hamiltonian that the atom-cavity interaction reduces to frequency shifts in the dis-

persive limit. The atom transition frequency ωa acquires a shift proportional to the cavity

field population n = 〈a†a〉, the ac Stark shift δS = 2χn, as well as a virtual photon shift

δL = χ due to its interaction with the vacuum field fluctuations 〈a†a〉 = 0, the Lamb shift.

The presence of both ’real’ and virtual photons inside the cavity manifests itself as a renor-

malization of the energy of the atom in the dispersive limit. Conversely, the dispersive in-

teraction can also be viewed in terms of its effect on the cavity frequency. Regrouping the

effective Hamiltonian as

Heff = � (ωr + χσz)

(
a†a+

1

2

)
+ �

ωa

2
σz . (3.20)

5Note the following commutation relations to arrive at this result:

[σ+a− a†σ−, a†, a] = σ+a+ a†σ− , [σ+a− a†σ−, σ±] = ±σza , [σ+a− a†σ−, σz] = 2(σ+a+ a†σ−)
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we see that the cavity frequency ωr acquires a state-dependent shift given by 〈σz〉χ = ±χ.

The energy level diagram for the dispersive regime and the corresponding frequency shifts

are illustrated in Fig. 3.2 b. The dispersive atom-state-dependent cavity shift forms the ba-

sis of quantum non-demolition (QND) measurements in cavity QED systems [31]. In an

ideal QND measurement, we can repeatedly measure a quantum-mechanical system with-

out changing its state. In the Heisenberg picture, this requires that the measurement operator

A does not change during the time we are measuring, as expressed by the equation of motion

dA

dt
=

1

i�
[A,H] = 0 (3.21)

In the dispersive regime, all terms in Heff commute with the total Hamiltonian and thus the

cavity shift ±χ can be used to infer the state of the two level system 〈σz〉 = ±1.

3.2 Superconducting Coplanar Waveguide Cavities

In the traditional form of atomic cavity quantum electrodynamics encountered in section 3.1,

the harmonic oscillator component is realized in the form of an optical cavity. The photon

loss rate κ is determined by the quality factor Q of the cavity, which is in turn set by the

reflectivity of the mirrors. In the solid state circuit QED version, superconducting coplanar

waveguide resonators represent the electrical circuit analog of the cavities in atomic cavity

QED. Typically operated in the microwave frequency range of ∼ 1 - 20 GHz, the quality

factors of these quasi two-dimensional distributed resonators are determined by coupling

impedances such as capacitors and inductors, which represent the analog of mirrors in this

implementation. The high achievable quality factors of up to Q ∼ 106 [45] combined with

small mode volumes of 10−6 λ3 and the ease of device fabrication via conventional lithogra-

phy techniques make coplanar waveguide resonators well-suited for cavity QED and photon

detection experiments, with applications in quantum optics and quantum information pro-

cessing [16]. The recently developed three-dimensional superconducting microwave cavi-

ties represent a natural evolution of this concept [46]. The larger mode volumes of 0.1λ3

make these devices much less sensitive to surface dielectric losses with measured quality

factors of up to Q ∼ 5 × 108 [46, 47] 6. In addition to superconducting charge and phase

qubits, coplanar waveguide resonators are being actively developed for coupling and mea-

6The decrease in qubit-cavity coupling strength due to the larger mode volumes is compensated via an increase
in dipole moments through larger superconducting qubit electrodes [46].
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suring a variety of other quantum systems such as electron spin ensembles in diamond and

ruby [65, 157] or ensembles of ultra cold atoms [151]. The coplanar waveguide geometry

is particularly well-suited for trapping and detecting electrons on helium. The planar res-

onator structures realize a micro-channel geometry (section 2.3.4) for confining electrons and

supporting self-stabilized films of superfluid helium [64].

This section focuses on superconducting coplanar waveguide cavities and the various

ways of implementing and coupling them to the outside world. In section 3.2.1 we start

with a general discussion of open- and short-circuited transmission lines and the resulting

resonant behavior. Inductively- and capacitively-coupled LCR oscillator circuits are then in-

troduced in section 3.2.2 where we derive expressions for external quality factors for various

types of coupling. In section 3.2.3 inductively- and capacitively coupled transmission lines

are mapped to lumped element LCR circuits around resonance, showing how both series

and parallel resonant structures can be realized using different terminations. Circuit quan-

tization is briefly reviewed in section 3.2.4. For this thesis, we use quasi two-dimensional

coplanar waveguide structures as the cavity implementation, which are discussed in the fi-

nal subsection 3.2.5.

3.2.1 Terminated Transmission Lines

There are many possible ways of realizing a circuit that behaves like a harmonic oscillator,

the most simple example being a parallel or series lumped-element LCR circuit. In the mi-

crowave regime, we are dealing with wavelengths on the order of λ ∼ 100μm − 1 m and

thus a true lumped element oscillator is somewhat difficult to realize. A transmission line

resonator can be regarded as the distributed element version of an LCR oscillator circuit and,

as we will see below, there exists a direct mapping between the two. Circuit analysis makes

the assumption that the characteristic length scale of the circuit elements is negligibly small

compared to the electrical wavelength. This is not the case for transmission lines where the

phase and amplitude of the currents and voltages can change significantly over the length

of the device.

In the most general sense a transmission line is simply a parallel pair of two conductors,

the standard coaxial cable being an everyday example. Transmission lines are characterized

by an inductance L	, capacitance C	, resistance R	 and conductance G	 per unit length and

they can be described as a series of lumped element LCR circuits. Signals on a transmission
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line propagate as voltage or current waves with propagation coefficient [158]

γ =
√

(R	 + jωL	)(G	 + jωC	) . (3.22)

where the imaginary part β = Im[γ] defines the phase velocity vph = ω/β and wavelength

λ = 2π/β and the real part α = Re[γ] describes signal attenuation. The characteristic

impedance of a transmission line is then given by

Z0 =

√
R	 + jωL	

G	 + jωC	
. (3.23)

For the nearly lossless case, such as in a superconducting transmission line, we can make the

approximations γ � jω
√
L	C	, vph � √1/L	C	 and Z0 � √L	/C	. A piece of transmission

line terminated at both ends by a load impedance ZL can realize a distributed resonant circuit

that supports standing waves with a wavelength determined by the length and character-

istic impedance of the line. The type of resonance and the resonant wavelength for a given

physical length L depends on the load impedance. The input impedance of a transmission

line terminated by a load impedance ZL can be expressed as [158]

Zin = Z0
ZL + Z0tanhγ�
Z0 + ZLtanhγ�

(3.24)

where � is the distance from the terminating load impedance. If the load impedance is an

open (ZL = ∞) we have

Zopen
in = Z0cothγ� = Z0

1 + jtanβ� tanhα�
tanhα�+ jtanβ�

. (3.25)

while for a short (ZL = 0)

Zshort
in = Z0tanhγ� = Z0

1− jcotβ� tanhα�
tanhα�− jcotβ�

. (3.26)

For the lossless case these simplify to

Zopen
in = −jZ0 cot(β�) , Zshort

in = jZ0 tan(β�) (3.27)

Both expressions are periodic in �, albeit with different periods. For the open-circuited line,

we see that whenever the length is a multiple of half a wavelength � = nλ/2 = nπ/β the
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input impedance diverges and a high impedance resonance occurs. Conversely for the short-

circuited line, Zin diverges when the length is an integer multiple of a quarter wavelength

� = nλ/4 = nπ/2β.

In this PhD project, we use both high impedance terminations (opens or nearly opens

in the form of capacitors) as well as low impedance terminations (shorts in the form of in-

ductors to ground). Both types of terminations can be used in practice to realize high Q

transmission line resonators. Experiments with electrons on helium require precise control

of the DC potentials and the electromagnetic environment on the chip. A transmission line

open-circuited on both ends represents a floating electrode at DC and is therefore prone to

charging effects. Hence to keep the transmission line electrodes at DC ground potential at

all times, a short termination on at least one end is desirable. On the other hand, an open

termination in the form of a capacitor can be advantageous to avoid leakage of electrons

and ensure confinement to the resonator region. As will be shown in chapters 5 - 7, we take

advantage of these possible design choices in various experiments.

3.2.2 Inductively- and Capacitively-Coupled LCR Oscillators

In this section, we briefly review lumped element LCR oscillator circuits and derive expres-

sions for internal and external quality factors of capacitively and inductively coupled oscil-

lators through Norton and Thévenin equivalent representations. In section 3.2.3, the open-

and short-circuited transmission lines of the previous section will be mapped to lumped el-

ement LCR circuits to arrive at an intuitive understanding of transmission line resonators

around resonance.

Consider the parallel LCR circuit shown in Fig. 3.3 a. Neglecting the external load circuitry

for the moment (shown in dashed boxes in Fig. 3.3 a), it follows directly from Kirchhoff’s

rules that the time evolution of the charge in a parallel LCR circuit obeys q(t) = q0 exp(iω0t−
κ · t/2+φ). Thus the charge in this circuit oscillates with frequency ω0 = 1/

√
LC and decays

at a rate of κ = 2/RC, which describes the damping of the oscillation. The corresponding

internal quality factor is defined as Qint = ω0/κ and describes the number of oscillations per

decay time Tκ = 1/κ. The imaginary part of the total impedance of the parallel LCR circuit

Z
(p)
LCR =

(
1

R
+

1

jωL
+ jωC

)−1

=

[
1

R
+ jωC

(
ω2 − ω2

0

ω2

)]−1

(3.28)

vanishes on resonance ω = ω0. The resonances have a Lorentzian line shape and their half
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Figure 3.3.: Lumped element LCR oscillator circuits with various load impedances: (a) Parallel LCR oscillator
circuit capacitively coupled to a load impedance RL. (b) Norton equivalent circuit of the loaded parallel LCR cir-
cuit in (a). (c) Series LCR oscillator circuit inductively coupled to a load impedance RL. (d) Thévenin equivalent
circuit of the loaded series LCR circuit in (c).

width at half maximum (HWHM) can be expressed by the quality factor δν = ν0/2Q. A

high Q resonant circuit will thus have sharp, narrow resonances and the charge will oscillate

many times before it decays, whereas a low Q circuit has a broad resonance and decays

more quickly. Close to resonance, we can write ω = ω0 + Δω with Δω small and use the

approximation ω2 − ω2
0 = (ω − ω0)(ω + ω0) = Δω(2ω −Δω) ∼ 2ωΔω such that

Z
(p)
LCR � R

1 + 2jΔωRC
=

R

1 + 2jQ
(p)
intΔω/ω0

(3.29)

where the internal quality factor is Q
(p)
int = R/ω0L = ω0RC. This approximate expression

will be used in section 3.2.3 to map a capacitively-coupled λ/2 transmission line resonator

to an equivalent lumped LCR circuit.

Next, consider the series LCR circuit shown in Fig. 3.3 c. Again neglecting the load cir-

cuitry for the moment, the resonance behavior is very much analogous to the parallel LCR

circuit. The series LCR has the same resonance frequency expression ω0 = 1/
√
LC but the

inverse internal quality factor expression Q
(s)
int = ω0L/R = 1/ω0RC, which is a manifestation

of the duality of series and parallel oscillator circuits. The input impedance of the series LCR

52



3. Circuit Quantum Electrodynamics with Electrons on Helium

is

Z
(s)
LCR = R+ jωL

(
1− 1

ω2LC

)
= R+ jωL

(
ω2 − ω2

0

ω2

)
(3.30)

Using the same approximate expansion as for the parallel LCR case yields

Z
(s)
LCR � R+ j2LΔω = R+ j

2RQ
(s)
intΔω

ω0
(3.31)

The quality factors considered so far represent internal properties of the circuits but in prac-

tice the series and parallel LCR oscillators will inevitably have to be coupled to other cir-

cuitry. This external load circuitry has the effect of lowering the overall quality factor. Here,

we consider two ways of coupling the oscillator circuits to the environment.

Capacitive Coupling

The parallel LCR circuit shown in Fig. 3.3 a is symmetrically coupled to a load impedance

at its input/output via two capacitors (see dashed boxes). A capacitor corresponds to an

impedance mismatch, which has an effect analogous to a semi-transparent mirror in the

optical part of the spectrum. To understand the effect of the capacitive coupling Cκ and load

impedance RL on the overall quality factor we can transform the load circuitry to its Norton

equivalent circuit as shown in Fig. 3.3 b. The equivalent resistance and capacitance are

R∗ =
1 + ω2

0C
2
κR

2
L

ω2
0C

2
κRL

, C∗ =
Cκ

1 + ω2
0C

2
κR

2
L

(3.32)

which shows explicitly how the small capacitor Cκ transforms the load impedance RL →
R∗. In this representation, the overall, loaded quality factor of the coupled circuit can be

worked out in a straight-forward way by noting that the Norton equivalent capacitances

and resistances combine in parallel with the internal C and R. For symmetric coupling, R

combines in parallel with R∗/2 and C in parallel with 2C∗ such that the loaded quality factor

is

Q
(p)
L = ω∗

0

C + 2C∗

1/R+ 2/R∗ (3.33)

where the resonance frequency shifted by the capacitive loading is

ω∗
0 =

1√
L(C + 2C∗)

(3.34)
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For small capacitive coupling we can set ω∗
0 ≈ ω0 and C + 2C∗ ≈ C and separate the loaded

quality factor into a parallel combination of an external and internal quality factor:

1

Q
(p)
L

=
1

Q
(p)
ext

+
1

Q
(p)
int

(3.35)

with

Q
(p)
int = ω0RC , Q

(p)
ext =

ω0R
∗C

2
=

1

2Z0

(
1

ω2
0C

2
κRL

+RL

)
(3.36)

where we have used Z0 = 1/ω0C. In the overcoupled regime where Q
(p)
ext � Q

(p)
int → Q

(p)
L ≈

Q
(p)
ext we see that the loaded quality factor is primarily determined by the size of the coupling

capacitor while in the undercoupled regime Q
(p)
L ≈ Q

(p)
int the internal losses of the circuit limit

the overall quality factor.

Inductive Coupling

The same transformation methods as in the capacitively-coupled parallel LCR circuit also

apply to the inductively coupled series LCR oscillator shown in Fig. 3.3 c. This time, we

transform the load circuitry to its Thévenin equivalent to get a simple expression for the

quality factor as a function of coupling inductance. As in the capacitively coupled case, the

inductor to ground creates a large impedance mismatch. The Thévenin equivalent circuit is

shown in Fig. 3.3 d where the equivalent load resistance and series inductance are

R∗ =
L2
κRLω

2
0

R2
L + L2

κω
2
0

, L∗ =
LκR

2
L

R2
L + L2

κω
2
0

(3.37)

The overall loaded quality factor of the symmetrically-coupled circuit is then determined by

the series combination of the internal and coupling inductances

Q
(s)
L = ω∗

0

L+ 2L∗

R+ 2R∗ , ω∗
0 =

1√
(L+ 2L∗)C)

(3.38)

where the resonance frequency is shifted down by the load inductance. As in the capacitive

case, we can approximate ω∗
0 ≈ ω0 and L + 2L∗ ≈ L for small inductors and factor QL into

internal and external parts:
1

Q
(s)
L

=
1

Q
(s)
ext

+
1

Q
(s)
int

(3.39)
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with

Q
(s)
int =

ω0L

R
, Q

(s)
ext =

ω0L

2R∗ =
Z0

2

(
RL

ω2
0L

2
κ

+
1

RL

)
(3.40)

where we have used Z0 = ω0 · L.

3.2.3 Inductively- and Capacitively-Coupled Transmission Line Res-

onators

Close to resonance, the open- and short-circuited transmission lines (TL) discussed in section

3.2.1 can be mapped to the equivalent lumped element LCR oscillators of section 3.2.2. This

kind of mapping will provide us with a more intuitive understanding of the behavior of dis-

tributed resonators around resonance and will also be useful for quick design calculations.

For this thesis, we consider a variety of terminations and couplings to realize both series and

parallel LCR oscillators, with the following mappings:

• Open-circuited L = λ/4 TL → Series LCR oscillator

• Short-circuited L = λ/4 TL → Parallel LCR oscillator

• Open-circuited L = λ/2 TL → Parallel LCR oscillator

• Short-circuited L = λ/2 TL → Series LCR oscillator

A fundamental difference between distributed TL resonators and the ideal lumped element

oscillators lies in the mode structure. While a distributed resonator supports higher harmon-

ics at integer multiples of the fundamental frequency ωn = n ·ω0, a lumped element LCR has

only one mode.

Short-Circuited λ/2 and λ/4 Line

The input impedance of a transmission line at a distance � from a terminating short (ZL = 0)

is given by eq. (3.26). For excitation frequencies close to resonance ωn = nωλ + Δωn with

Δωn small we can write

β� =
nωλ�

vp
+

Δωn�

vp
(3.41)

where the distributed resonance frequency is given by

ωλ =

√
1

L	C	

π

�
. (3.42)
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For a half-wave resonance � = λ/2 = πvp/ωλ we thus find

β� = nπ +
Δωnπ

ωn
(3.43)

Using the periodicity and small argument property of the tangens in (3.26) we then get

tanβ� = tan

(
Δωnπn

ωλ

)
≈ Δωnπn

ωλ
(3.44)

Finally, for small attenuation α� � 1, we can make the approximation tanhα� ≈ α� such

that the input impedance of a short-circuited λ/2 transmission line is approximated by

Z
(short)
in ≈ Z0

(
α�+ j

Δωnnπ

ωλ

)
(3.45)

This maps to the impedance of a series LCR oscillator (3.31) with the following effective

lumped element quantities:

ωn = nωλ , Reff = Z0α� = R	 · � , Leff =
Z0nπ

2ωλ
=

n

2
L	 · � , Ceff =

1

ω2
nLeff

(3.46)

The internal and external quality factors for a symmetrically terminated λ/2 transmission

line resonator can then be approximated by

Qint � ωnLeff

Reff
=

β

2α
, Qext =

nπZ0

2

(
RL

ω2
nL

2
κ

+
1

RL

)
(3.47)

For the overcoupled case QL ≈ Qext the overall quality factor of a short-circuited λ/2 res-

onator can therefore be controlled by adjusting the coupling inductor. Fig. 3.4 b shows the

external quality factor of an inductively, symmetrically coupled transmission line with a

characteristic impedance of Z0 = 50Ω and a matching load RL = 50Ω for a resonance fre-

quency of ω0/2π = 5 GHz as a function of coupling inductance.

Using the same approximations as in the � = λ/2 case, we find for the input impedance of a

short-circuited λ/4 transmission line close to resonance

Z
(short)
in ≈ Z0

α�+ jnπΔωn/2ωλ
(3.48)

56



3. Circuit Quantum Electrodynamics with Electrons on Helium

Figure 3.4.: External quality factors of coupled transmission lines at ω0/2π = 5 GHz and Z0 = RL = 50Ω,
using the LCR mapped expressions (3.47) and (3.51) valid close to resonance: (a) Qext as a function of coupling
capacitance, (b) Qext as a function of coupling inductance.

which maps to the impedance of a parallel LCR oscillator (3.29). The equivalent parallel LCR

oscillator for a quarter-wave transmission line is thus given by

Reff =
Z0

α�
, Leff =

1

ω2
nCeff

, Ceff =
nπ

4ωnZ0
(3.49)

Open-Circuited λ/2 and λ/4 Line

Equivalent lumped element expressions can be derived for transmission lines terminated in

an open (ZL = ∞) using an analogous procedure close to resonance and for small atten-

uation. This shows that the open-circuited � = λ/2 transmission line resonator maps to a

parallel LCR oscillator with

Reff =
Z0

α�
, Leff =

2

nπ

Z0

ωn
=

2

n2π2
L	 · � , Ceff =

nπ

2ωnZ0
=

1

2
C	 · � (3.50)

The external quality factor for a symmetrically, capacitively-coupled λ/2 transmission line

can then be approximated as

Qext =
nπ

4Z0

(
1

ω2
nC

2
κRL

+RL

)
(3.51)

which is plotted in Fig. 3.4 a for a Z0 = RL = 50Ω transmission line at ω0/2π = 5 GHz as

a function of coupling capacitance. Likewise, an open-circuited quarter-wave transmission

57



3. Circuit Quantum Electrodynamics with Electrons on Helium

line maps to a series LCR oscillator with

Reff =
πZ0α

2β
, Leff =

nπZ0

4ωn
, Ceff =

4

nπZ0ωn
(3.52)

3.2.4 Circuit Quantization

As shown in the previous section, a transmission line resonator effectively behaves like a

lumped-element parallel or series LCR oscillator close to resonance. Both open- and short-

terminated transmission lines can therefore be used to realize harmonic oscillators. What

remains to be shown is that such an electrical resonator can behave like a quantum harmonic

oscillator and hence realizes the harmonic component in the Jaynes-Cummings Hamiltonian

(3.8). In this section, we briefly discuss circuit quantization and show that an LC oscillator

can be mapped to a simple quantum harmonic oscillator Hamiltonian.

An electrical circuit can be described quantum-mechanically by the canonical conjugate

variables charge q and flux Φ with the commutator [Φ, q] = i� [159, 160]. The charge plays

the role of momentum and Φ corresponds to the position of a mechanical oscillator. For

the lossless LC oscillator, charge and flux are related by the voltage across the circuit V =

−L(∂I/∂t) = q/C. The energy of a linear LC oscillator is then governed by the Hamiltonian

HLC =
q2

2C
+

Φ2

2L
. (3.53)

consisting of electric energy stored in the capacitor and magnetic energy in the inductive

part. Comparing this to the Hamiltonian of a mechanical harmonic oscillator H = p2/2m +

(1/2)mω2x2, we identify the mapping ω = 1/
√
LC and m = C. Furthermore, we can define

the dimensionless creation and annihilation operators of the circuit

a =
1√

2�
√

L/C
(Φ + i

√
L/Cq) =

1√
2�Z0

(Φ + iZ0q) (3.54)

a† =
1√

2�
√

L/C
(Φ− i

√
L/Cq) =

1√
2�Z0

(Φ− iZ0q) (3.55)

which obey the usual commutation relation [a, a†] = 1. Thus, the Hamiltonian of the LC

circuit can be written in the form of a harmonic oscillator Hamiltonian

HLC = �ω

(
a†a+

1

2

)
. (3.56)
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mechanical oscillator electrical LC oscillator
momentum px(t) q(t)

position x(t) Φ(t)
mass m C

frequency ω 1/
√
LC

commutator [x, px] = i� [Φ, q] = i�

Table 3.1.: Correspondence table of a one-dimensional mechanical oscillator and an electrical LC oscillator cir-
cuit.

and the voltage operator V can be introduced as

V =

√
�ω

2C
(a+ a†). (3.57)

The voltage operator can be thought of as a quantum voltage generated by the photons in-

side the resonator. To a good approximation, a lossless TL resonator thus represents a cavity

that is described by a harmonic oscillator Hamiltonian of the form (3.56). From a quantum

optics point of view, each set of values {Φ, q, L, C} represents a certain mode of the cavity

with an average photon number 〈n〉 = 〈a†a〉. The analogy of a one-dimensional mechani-

cal oscillator, such as a massive particle moving in a harmonic potential, and a resonant LC

circuit is summarized in the correspondence table Tab. 3.1.

3.2.5 Coplanar Waveguide Geometry

The transmission line resonators discussed in sections 3.2.1 - 3.2.3 have so far been treated

conceptually as parallel pairs of conductors with some characteristic impedance, terminated

with a near open or short on both ends. In practice, a certain physical implementation has

to be chosen. There are many possible geometries for realizing a transmission line resonator

and for this thesis we use the coplanar waveguide (CPW) geometry, shown schematically in

Fig. 3.5 a and b. A CPW is a quasi two-dimensional structure that can be thought of as a pla-

nar version of a coaxial cable. As shown in Fig. 3.5 a, a CPW consists of a thin metallization

layer of thickness d patterned on a dielectric substrate of thickness h � d and dielectric con-

stant εr with a center pin conductor of width 2a flanked by quasi-infinite, parallel ground

planes on both sides separated by 2b. Such a structure supports a transverse electromagnetic

mode of wave propagation (TEMnm) and hence constitutes a transmission line as discussed

in the preceding sections. As we will see below, the geometric dimensions, in particular the

ratio a/b, in combination with the dielectric substrate properties determine the capacitance
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Figure 3.5.: Schematic cross-section and top view of coplanar waveguide geometry: (a) Cross-sectional view
with center pin (magenta) and ground planes (blue) on a dielectric substrate (green) of thickness h. Electric field
lines are sketched in orange. (b) Top view where 2a is the width of the center conductor, 2b the spacing between
the two ground planes and the thickness of the metallization. The materials used in this thesis are indicated
accordingly.

C	, inductance L	 and resistance R	 per unit length and hence the characteristic impedance of

the transmission line. Analytical expressions for C	, L	 and Z0 and the effective phase veloc-

ity vph can be derived using a well-known conformal mapping technique [161]. This in turn

allows engineering transmission line resonators with resonance frequencies ω0/2π ∼ 1− 10

GHz and Z0 ≈ 50Ω, typically down to the few % precision [45]. The effective dielectric

constant of a CPW on a finite thickness substrate is defined as the ratio of the waveguide’s

total capacitance per unit length and the partial capacitance in the absence of all dielectrics,

εeff = C	/Cair, which in turn sets the phase velocity vph = c/
√
εeff . εeff can be expressed

analytically through elliptical integrals [161]

εeff = 1 +

(
εr − 1

2

)
K(k′)K(k1)

K(k)K(k
′
1)

(3.58)

where K(·) denotes the complete elliptical integral of the first kind and the geometry-dependent

quantities are given by

k =
a

b
, k′ =

√
1− k2 (3.59)

k1 =
sinh(πa/2h)

sinh(πb/2h)
, k

′
1 =
√

1− k21 , β =
2πν

c

√
εeff (3.60)

The characteristic impedance of the CPW can be expressed as [161]

Z0 =

√
L	

C	
=

1√
εeff

[
μ0

4ε0

K(k′)
K(k)

(
1

2

K(k′)
K(k)

)]1/2
(3.61)
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Figure 3.6.: Schematic top view of coplanar waveguide resonators and the voltage distributions of the n =
1 (red) and n = 2 mode (orange). Center pin (magenta) and ground planes (blue) are shown, not to scale.
(a) Symmetrically, capacitively-coupled λ/2 CPW resonator, (b) Asymmetrically, inductively- and capacitively-
coupled resonator.

where we have neglected kinetic inductance contributions which decrease quadratically

with temperature, see Ref. [44] for a good discussion. To get a desired value of Z0 = 50Ω for

a sapphire substrate εr = 9.4 (c-plane) of thickness h ≈ 500μm, we use ratios of a/b ∼ 0.5

at absolute dimensions of 2a ≈ 10μm and 2b ≈ 19μm. Typical capacitance and inductance

per unit length values are C	 ≈ 100 − 200 pF and L	 ≈ 100 − 200 nH, respectively. The var-

ious inductive and capacitive load impedances and terminations introduced in section 3.2.3

can be realized in quasi lumped form. Capacitors are realized in the form of planar gap or

interdigitated finger structures while inductors can be made as narrow wires connecting the

center pin electrode to ground. Optical microscope pictures of typical coupling capacitors

and inductors fabricated for this thesis are shown in Fig. 3.7. Details on fabrication methods

and recipes are provided in chapter 4. Full inductively and capacitively coupled CPW res-

onators are shown schematically in Fig. 3.6 a and b, together with the voltage distributions

for the lowest two modes. The fundamental n = 1 mode of the symmetrically, capacitively

coupled λ/2 resonator has a voltage node at the center while the inductively coupled version

has an anti-node at that point, a symmetry which will be exploited later on for DC-biased

center pin designs, see chapter 7.

The attentive reader may have noticed the close similarity of the CPW geometry and the

microchannel structures introduced in section 2.3.4. As demonstrated throughout this the-

sis, the CPW geometry lends itself naturally to electrons on helium experiments and has

been put to a variety of uses, for example to measure ultra-thin films of superfluid helium

(chapter 5), as an on-chip helium level monitor (chapter 6) or as a large planar electron trap

or reservoir (chapter 7). A novel type of DC-biased center pin resonator, which exploits the

symmetry of the voltage distribution and has a higher aspect ratio between center pin and
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Figure 3.7.: Optical microscope images of coupling capacitors (left) and inductors (center and right) fabricated
at Yale using optical lithography techniques. See chapter 4 for details on fabrication.

ground plane thickness, will be presented in section 7.1.1.

3.3 Quantum Dots on Superfluid Helium

In chapter 2 we saw that an isolated electron above a film of superfluid helium is bound to

the surface via polarization of the dielectric liquid, leading to quantization of the electron’s

vertical motion with transition frequencies on the order of a few hundred GHz. At low tem-

peratures, the electron is effectively frozen into its vertical motional ground state while its

unconstrained lateral motional states are simple plane waves. As shown in section 2.2, a col-

lection of many electrons above the surface of liquid helium then forms a two-dimensional

electron gas or Wigner crystal, depending on temperature and electron density. In analogy to

gate-defined quantum dots in semiconductor heterostructures [162–167] this exotic type of

two-dimensional electron system can be potentially used to build quantum dots on helium

operated in the single-electron regime. This is one of the core ideas of this PhD thesis. Using

confinement via electrostatic gates submerged in liquid helium, the electron’s motion paral-

lel to the surface can be quantized with a motional energy spectrum that can be engineered

by geometry and applied DC voltages. Electrostatic traps holding small numbers of electrons

have recently been realized and used to count individual electrons on helium [168] and to

observe few electron Wigner molecules using a single-electron transistor [101]. However,

so far there have been no observations of coherent single electron motion or intradot quan-

tization for electrons on helium, in large part because of the lack of suitable detection and

readout mechanisms. Detection and measurement in conventional semiconductor quantum

dots is typically based on gated transport and current measurements using quantum point

contacts at low frequencies ∼ 100 Hz [162, 169]. This is difficult to achieve with electrons on

helium, in part because it is not possible to attach leads directly to the electron gas region.

In this thesis, we show how a circuit quantum electrodynamics setup can be used to iso-
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late, detect and control quantized single electron motion via dipole coupling to a microwave

field.

This section discusses the theory and design of single-electron quantum dots with elec-

trons on helium. Lateral electrostatic traps are first discussed in general in section 3.3.1,

together with the basic parabolic trap geometry. In section 3.3.2 we present a quartic an-

harmonic oscillator model that approximates the parabolic confining potential as a fourth

order polynomial. This conceptually simple model captures most of the essential physics

of trapped electron states and provides an intuitive picture. In section 3.3.3, we follow up

with a discussion of various numerical methods that can be used to diagonalize the quantum

dot Hamiltonian for potentials simulated via finite-element techniques. Finally, section 3.3.4

gives a comparison between lateral electron motional states and superconducting transmon

qubits, showing that one can be mapped onto the other via quartic anharmonic oscillator

modeling.

3.3.1 Lateral Electrostatic Traps

In the absence of any free charges, the electrostatic potential for a general three-dimensional

geometry is described by a simple source-free Poisson equation

ΔΦ(r) = (∂x + ∂y + ∂z) Φ(r) = 0 (3.62)

with appropriate boundary conditions for equipotential surfaces Φ(r ∈ Sj) = Vj where Sj

denotes a surface at potential Vj . The separability of this equation depends on the sym-

metry of the confining geometry. The effective trap potential a charged particle experiences

is a function of both geometry and applied DC voltages. First, note that it is in fact im-

possible to trap a charged particle in three dimensions using only electrostatic potentials.

This is expressed by Earnshaw’s theorem which states that a point charge cannot be main-

tained in a stable, stationary equilibrium in R
3 in purely electro- or magnetostatic potentials

7. For this reason, trapping of ions is achieved using quadrupole Penning or Paul traps that

use time-dependent RF potentials [170]. For an electron above the surface of liquid helium,

however, one dimension of motion is automatically eliminated by the surface binding po-

7The proof is a simple consequence of Gauss’s law: A DC potential obeys Laplace’s equation Δφ(r) = 0 and
hence the corresponding electrostatic force F = −∇φ is divergence-free such that there are no local minima.
It is interesting to note that an Earnshaw-type restriction applies not only to Coulomb interactions but in fact
to any inverse square law force such as gravitational.
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Figure 3.8.: One-dimensional single-electron trap on liquid helium with energy levels and wavefunctions of
electron motional states: The electron is bound to the surface of a film of superlfuid 4He of thickness d via
image charge attraction. A DC trap electrode of width b (magenta), fabricated on top of a dielectric substrate, is
biased positive relative to two guard electrodes (blue), which are typically at ground potential and form a micro
channel with a self-stabilized helium film. The configuration generates a confining potential that is to first order
harmonic but flattens over the guard electrodes, resulting in a small softening anharmonicity, see discussion
in text. The ground (dark blue) and first excited (red) motional wave functions are shown together with the
anharmonic energy levels (dashed lines). Note that the extent of the electron zero-point motion x0 is usually
much smaller than the physical size of the trap w.

tential. As we saw in chapter 2, the energy separation between ground and first excited state

is ω12/2π � 120 GHz or about 5.7 K such that at low enough temperaturs the electron will be

frozen into its vertical ground state. We can therefore treat the z motion parametrically and

assume a constant vertical position of z0 = 〈1|z|1〉 � 11 nm. This approximation obviously

breaks down when the vertical field component becomes large enough to Stark ionize the

electron, see section 2.1.2. To further reduce the dimensionality of the problem, we assume a

sufficiently asymmetric electrode configuration such that motion along the x and y direction

effectively decouple. The potential therefore separates Φ(r) = Φx · Φy · Φz such that

(∂x + ∂z) Φx(x)Φz(z) = 0 → Φ(x, z) = V0e
−kz cos(kx) , k =

2π

w
n (3.63)

where we have assumed periodic boundary conditions along the lateral axis, Φ(x = 0) =

Φ(x = w) and Dirichlet boundary conditions for the vertical motion Φz(z → +∞) = 0. The

assumption of periodic boundary conditions and the resulting cosine potential are useful to

arrive at a simple approximation for typical electrode geometries, as shown below.

The basic one-dimensional electrostatic trap configuration for electrons on helium is shown

schematically in Fig. 3.8. The trap consists of a single DC-biased electrode of width b at

the center surrounded by two negative or grounded guard electrodes separated by w. The

guard electrodes form a micro-channel of width w and depth d that supports a self-stabilized
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capillary action film of superfluid helium (see section 2.3.4). The trap is symmetric about the

center axis such that the we have the boundary conditions Φ(x = 0) = Φ(x = w) and the

trap potential is similar to (3.63). However, the trap is not periodic so we expand the cosine

to fourth order, which gives

V (x) ≈ Vt(z0)− Vt(z0)

2
(kx)2 +

Vt(z0)

24
(kx)4 (3.64)

where we have introduced the effective trap depth

Vt(z0) = V0e
−k(d+z0) = V0e

−2π(d+z0)/w (3.65)

where V0 is the DC voltage applied to the center electrode and d+ z0 = d+ 〈1|z|1〉 � d is the

electron’s distance from the bias electrode. For physically reasonable trapping parameters -

helium channel depth d = 500 nm, trap width w = 500 nm and bias voltage V0 = 10 mV, we

get a trap depth of eVt/h ≈ 20 GHz or about 1 K, deep enough to prevent thermal escape at

milli-Kelvin temperatures. The exact potential depends on the specific boundary conditions

of the electrode geometry under consideration and can be inferred from numerical simula-

tions, see section 3.3.3.

3.3.2 Quartic Anharmonic Oscillator Model

The parabolic approximation for the trapping potential in eq. (3.64) allows us to analytically

estimate the scaling of the system parameters in the electron Hamiltonian with trap geom-

etry and bias voltages. The quantized lateral motional states of a single-electron quantum

dot can then be described as anharmonic oscillator states. This approximation is useful to

arrive at an intuitive picture of the most important electron-qubit parameters such as energy

level anharmonicity α, transition frequency ωp and the zero-point trap size x0. As will be

shown in section 3.3.3, finite-element simulations of the trap potentials generally agree well

with the fourth order polynomial shape. Using the quartic approximation for the trap poten-

tial, the motion of a single electron along the trap axis is described by the one-dimensional

Hamiltonian

H =
p2x
2m

+
eVt

2
(kx)2 +

eVt

4!
(kx)4 (3.66)

where we have subtracted a constant term eVt that does not change the dynamics of the

system. Mapping the first two terms in (3.66) to H = p2/2m + (1/2)mω2
px

2, we can identify

65



3. Circuit Quantum Electrodynamics with Electrons on Helium

Figure 3.9.: Quartic anharmonic oscillator model: Scaling of system parameters with bias voltage and trap ge-
ometry. (a) Trap frequency eq. (3.67) as a function of voltage bias on the center electrode for three different trap
dimensions: w = 400 nm (blue), w = 500 nm (green) and w = 600 nm (red), (b) Absolute trap anharmonicity eq.
(3.83) as a function of geometric trap width w.

the electron’s trap oscillation or plasma frequency

ωp =

√
eVtk2

m
= 2π

√
eVt

mw2
(3.67)

The electron motional frequency can therefore be tuned via the DC voltage V0 applied to

the center electrode, and also depends parametrically on the trap geometry through w and

Vt(z0). Motional tuning curves are shown in Fig. 3.9 a for several typical trap dimensions.

Changing the voltage bias by a few tens of mV allows us to tune the motional frequency

over a wide band of GHz frequencies. We can write the Hamiltonian explicitly as a quartic

anharmonic oscillator

H = H0 +HQ =
p2x
2m

+
1

2
mω2

px
2 +

1

4!
mω2

pk
2x4 (3.68)

where HQ is the fourth order perturbation to the simple harmonic oscillator. The length

scale of our system is set by the spatial extension of the lateral motional ground state, the

zero-point trap size x0, which has the usual form

x0 =

√
�

mωp
. (3.69)

Note that the oscillator is quite large because of the small electron mass. At microwave

frequencies ωp/2π � 5 GHz we have x0 � 60 nm. Now introducing the dimensionless vari-

able ξ = x/x0 and scaled energy En = En/�ωp, we arrive at the dimensionless Schrödinger
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equation [
∂2

∂ξ2
− ξ2 − 1

12
x20k

2ξ4
]
Ψn(ξ) = −2EnΨn(ξ) . (3.70)

As opposed to the harmonic oscillator case, this equation can not be reduced to a hyper-

geometric differential equation and hence its solutions cannot be written in simple analytic

form using Hermite polynomials. One generally has to resort to brute-force numerical di-

agonalization (see section 3.3.3) or various approximation methods, for example Rayleigh-

Schrödinger perturbation theory (shown below), WKB or path integral methods [171]. Alter-

natively, one can go back to the original cosine potential (3.63) and work with the resulting

Matthieu equation

y′′ +
[
E − 2h2 cos(2z)

]
y(z) = 0 (3.71)

which has known analytical solutions.

Algebraic Formulation

The Hamiltonian (3.68) can be expressed in algebraic form by introducing the usual ladder

operators with the standard commutator for dimensionless conjugate variables
[
b, b†
]
= 1

b =
1√
2

[
x

x0
+ i

x0
�
px

]
(3.72)

b† =
1√
2

[
x

x0
− i

x0
�
px

]
(3.73)

such that

p =
i√
2

�

x0
(b† − b) , x =

1√
2
x0(b+ b†) (3.74)

The anharmonic oscillator Hamiltonian then takes on the form of a Duffing oscillator

H = H0 +HI = �ωp

(
b†b+

1

2

)
+

1

4!

�
2k2

4m

(
b+ b†

)4
(3.75)

with the perturbation term quartic in the ladder operators. This form lends itself to an easy

algebraic treatment in non-degenerate, time-independent perturbation theory, which pro-

vides more insight into the scaling of the Hamiltonian with system parameters, in particular

the energy level anharmonicity.
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Perturbation Theory & Anharmonicity

The unperturbed lateral motional states of the electron are the usual harmonic oscillator

number states |n〉 with H0 |n〉 = En |n〉 , En = �ωp(n+ 1/2) which in dimensionless position

basis take the standard form

Ψn(ξ) = 〈ξ|n〉 =
√

1

2nn!

(
1

π

)1/4

e−ξ2/2Hn (ξ) . (3.76)

where Hn(·) denote the normalized Hermite polynomials of order n

∫ +∞

−∞
Hn(x)Hn′(x)e−x2

dx = δn,n′(
√
π2nn!) (3.77)

The eigenfunctions are characterized by the parity relations

Ψn(ξ) = (−1)nΨn(−ξ), Π |n〉 = (−1)n |n〉 (3.78)

i.e. they are symmetric and anti-symmetric eigenstates of the parity operator in alternating

order with the quantum number n, as expected from the symmetry of the potential. This

in turn leads to a general constraint for the matrix elements in the case of parity conserving

interactions

〈i|A|j〉 = 0 ∀i, j : (−1)i+j = −1 (3.79)

where A is some Hermitian operator satisfying [A,Π] = 0 with Π denoting the parity oper-

ator. The unperturbed states |n〉 are non-degenerate and form a complete orthonormal set

such that they can be used for elementary Rayleigh-Schrödinger perturbation theory. This

gives the corrected eigenenergies to first order

En ≈ E(0)
n +ΔE(1)

n = �ωp

(
n+

1

2

)
+ 〈n|HI |n〉 (3.80)

= �ωp

(
n+

1

2

)
+

3

4!

�
2k2

4m
[2n(n+ 1) + 1] (3.81)

Note that only terms of the form (b†b)2 give non-vanishing diagonal matrix elements due to

the parity properties. The leading-order correction to the state |n〉 is given by

|n(1)〉 = 1

4!

�
2k2

4m

∑
i �=n

〈i|(b+ b†)4|n〉
Ei − En

|i〉 (3.82)
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which shows that the quartic perturbation causes mixing of the state |n〉 with the states

|n± 2〉 and |n± 4〉. To lowest order, the absolute anharmonicity of the energy levels is then

given by

α = (E12 − E01)/� =
�k2

8m
=

�π2

2mw2
(3.83)

where Eij = Ej − Ei. Note that α is independent of voltage bias and solely determined by

the physical trap size w. This is an important result which shows that, to lowest order, os-

cillation frequency ωp and anharmonicity α can be controlled independently. One can tune

the motional frequency by adjusting the bias voltage, determine the anharmonicity by the

trap size (confinement effects) and trade off sensitivity in bias voltage for sensitivity in trap

height (recall Vt = V0 exp(−2πd/w)). The numerical calculations presented in section 3.3.3

show a weak dependence of anharmonicity on voltage bias but largely confirm the intuitive

picture given here. The electrons on helium quantum dot geometry shown in Fig. 3.8 is

generally expected to give negative anharmonicities α < 0 since the trap is small and the

potential must flatten at the outer guard electrodes. Fig. 3.9 b shows the lowest order anhar-

monicity as a function of trap width w. Larger traps lead to more harmonic potentials and

hence smaller α. The n to n+ 1 transition frequency can be approximated as

ωp,n � ωp,0 + (n+ 1)α (3.84)

and the Hamiltonian can be written in terms of the anharmonicity

H = �ωp

(
b†b+

1

2

)
+

�α

12

(
b+ b†

)4
= − �

2

2m

1

x20

∂2

∂ξ2
+

1

2
mω2

px
2
0ξ

2 +
1

3
�αξ4 (3.85)

a form which will be useful later on when comparing single electron quantum dots to trans-

mon qubits. Note that since α is the prefactor of the fourth order term, we see immediately

that the anharmonicity per length scale x0 is essentially determined by the fourth order

derivative of the trap potential, which provides us with a quick intuitive check of wether

or not a given trap potential yields large or small anharmonicity.
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Figure 3.10.: Numerical potentials, wave functions and energy levels obtained from electrostatic finite-element
simulations of a three-dimensional trap geometry. Solid lines are quantities obtained by numerical diagonaliza-
tion of the Hamiltonian containing the simulated potential along one of the principal trap axes. Dashed lines
are the corresponding perfect harmonic oscillator quantities obtained from a pure quadratic potential scaled to
the same energy. Dimensionless wave functions are offset by their respective energy quantum numbers n and
energy levels are shown in units of n. The position coordinate is shown in units of the zero-point motional size
x0.

3.3.3 Numerical Methods and Trap Simulations

Our analysis of quantum dots on helium has so far been based on approximating the anhar-

monicity of the trap potential by an additional quartic term in the Hamiltonian. Further im-

plicit approximations made so far include the assumption of a perfectly flat helium surface,

neglecting curvature effects and the effect of DC voltages on the superfluid film thickness.

This section presents some of the numerical techniques used for finding exact wavefunctions

and eigenenergies based on finite-element simulations of the trap potential and numerical

diagonalization of the quantum dot Hamiltonian. This allows us to obtain more accurate

results for the key parameters anharmonicty, trap frequency and trap size and to make more

informed design choices.

For a given trap geometry, we simulate the electrostatic potential along the trap axis using

finite element methods, essentially brute-force solving Maxwell’s equations on a discrete

mesh. This can be done using commercially available software packages such as Ansoft

Maxwell3D. The accuracy of the simulation depends on a number of parameters such as mesh

discretization size (triangle side length), mesh refinement per iteration and error threshold.

The output of the simulation then serves as input for the generic Hamiltonian H = p2/2m+
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V (x). We start by fitting the potential to the general form

V = a(x− xoff)
2 + b(x− xoff)

4 + c (3.86)

where xoff and c are general offsets and estimate anharmonicity and trap frequency through

a =
1

2
mω2

p , b =
�α

3x0
(3.87)

The bias voltage is set to V0 = 1 V in all simulations such that scaling of ωp, x0 and α becomes

straightforward. To construct the Hamiltonian matrix we use the unperturbed harmonic

oscillator basis

M = {|n〉}n=1,...,D , 〈n′|H0|n〉 = nδn′,n , 〈n′|n〉 = δn′,n

H0 =
∑
n

Hn,n |n〉 〈n| , Hn,n = 〈n|H0|n〉 (3.88)

where M denotes the state space and D the dimensionality of the Hilbert space we take into

account. Typically, D ∼ 20 − 30. The matrix elements for the full Hamiltonian are then

calculated via numerical integration

Hij = 〈i|H|j〉 =
∫

Ψ∗
i (x)

(
− �

2

2m

∂2

∂x2
+ V (x)

)
Ψj(x)dx (3.89)

where V (x) is an interpolation function obtained from the finite-element simulation and

Ψi(x) are the harmonic oscillator wavefunctions given in eq. (3.76). For symmetric traps we

can take advantage of the parity selection rule

〈i|H|j〉 = 0 ∀i, j : (−1)i+j = −1 (3.90)

where the potential term satisfies [V,Π] = 0. To avoid under- or overflow issues, it is advan-

tageous to transform all expressions into dimensionless units first, i.e. scale the potential and

position by the size of the motional ground state x0. The matrix with elements (3.89) can be

diagonalized using standard inversion schemes, for example using the numpy.linalg.eigh

module in Python or the eigensystem solver in Mathematica. The resulting eigenvectors and

eigenvalues give the desired motional wavefunctions and energies for the given bias volt-

age V0. Numerically simulated potentials, wavefunctions and energies for a typical trap

geometry are shown in Fig. 3.10, together with the equivalent harmonic oscillator quantities
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obtained for a purely quadratic potential of the same energy scale. Note the small anhar-

monicity in the energy levels and the increasing deviation from perfect harmonic behavior

higher up the energy ladder as the potential flattens out. To extract the tuning curves for

frequency and anharmonicity as functions of voltage bias, we repeat the diagonalization

procedure by scaling the simulated potential with the appropriate bias voltage.

3.3.4 Comparison to Transmon Qubits

Pioneered at Yale, the transmission-line shunted plasma oscillation qubit (Transmon) [156,

172] represents a charge-insensitive Josephson junction qubit design that has been success-

fully used in many circuit QED experiments, both in two-dimensional cQED [53] and with

increased coherence times in three-dimensional architectures [46]. The key behind the trans-

mon design is to reduce sensitivity to charge fluctuations by trading in a decrease in energy

level anharmonicity. In this section we map the single-electron quantum dot on helium to

the corresponding expressions for a transmon qubit. This highlights the conceptual simi-

larity between the two qubit implementations and is particularly useful when considering

hybrid approaches that combine both types of qubits in the same architecture. For a good

introduction to transmon and Cooper pair box qubits see Ref. [44].

The transmon Hamiltonian can be expanded to fourth order for small phase angles [156]

H = 4EC(n− ng)
2 − EJ cosφ ≈ 4EC(n− ng)

2 − EJ + EJ
φ2

2!
− EJ

φ4

4!
(3.91)

where EC and EJ are the charging and Josephson tunneling energies, respectively, n is the

number operator describing the number of Cooper pairs transferred between the supercon-

ducting islands, ng is the offset charge and φ the gauge-invariant phase difference between

the islands. As pointed out in section 3.2.4, the charge and phase operators form a canoni-

cally conjugate pair of variables [n, φ] = i. The cosine potential already hints at the similarity

with the single-electron quantum dot potential, which was motivated in section 3.3.1 by con-

sidering periodic boundary conditions. Writing the expanded Hamiltonian (3.91) in terms

of the transmon ladder operators one finds

H =
√

8EJEC

(
b†b+

1

2

)
− EC

12

(
b+ b†

)4
(3.92)

Comparing this expression to (3.85), we can identify the mapping between the properties of
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Transmon Quantum Dot on 4He

Plasma frequency, ωp/2π
1
h

√
8EJEC 1 - 10 GHz

√
eVt
mw2 1-10 GHz

Trap Depth, eVt/h EJ/h 3 - 10 GHz eV0
h e−2πd/w 20 GHz

Anharmonicity, α/2π EC/h 300 - 500 MHz −h/8mew
2 50 - 100 MHz

Oscillator size ratio (EJ/EC)
1/4 1 - 3 w/x0 1 μm/30 nm

Energy ratio EJ/EC 10 - 100 eVt
�α 1800

Table 3.2.: Mapping between transmon and quantum dot on helium properties, based on comparison of quartic
anharmonic oscillator approximations for each. Left-hand column shows expression in quartic approximation
and right-hand column typical numerical values for both transmon and quantum dot. Representative transmon
values taken from [156, 172].

the motional states in a quantum dot and the transmon, shown in Table 3.2 together with

representative numerical values. The two types of anharmonic oscillators can indeed have

comparable properties. For typical trap geometries in the μm to sub-μm size range with mV

biases, the quantum dot on helium oscillator corresponds to a transmon with large EJ/EC

ratio.

3.4 Circuit QED: Single Electron-Cavity Coupling

One of the core ideas of this PhD project is that a single electron trapped in a quantum dot on

helium (section 3.3) can be coupled to a superconducting coplanar waveguide cavity (section

3.2) to realize a cavity quantum electrodynamics system (section 3.1). This section puts all

the different parts from the previous sections together and shows how an electron can be

coupled to the microwave field in a CPW resonator via dipole interaction. In section 3.5 we

will extend this idea and show how the internal spin degree of freedom of an electron in a

quantum dot can be coupled indirectly to the cavity through spin-orbit interaction. Section

3.7 will furthermore focus on collective coupling of many electron states to CPW cavities.

A single electron in a parabolic trap such as the one shown in Fig. 3.8 is fundamentally

just an oscillating point charge with an associated dipole moment given by d = −e · r. In

section 3.1, it was shown how the Jaynes-Cummings interaction (3.8) in a cavity arises from

the dipole interaction of the atomic component with the quantized electromagnetic field in

the cavity. Coupling an electron on helium to a coplanar waveguide cavity can then be

achieved by aligning the dipole with the cavity field. The challenging part is to find effective

ways of integrating the quantum dot into a CPW in such a way that the coupling strength

is maximized. This can be achieved by fabricating the electrode configuration directly in the
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Figure 3.11.: Top view of an electrostatic electron trap integrated into a capacitively-coupled coplanar waveguide
resonator. Ground plane and cavity center pin are shown in blue while the DC-biased trap electrode is shown in
magenta. The center pin and ground plane configuration forms a split-guard ring around the trap electrode, see
dashed box and zoom-in in Fig. 3.12 a. Manipulation and readout are performed via radio frequency voltages
applied to the input port of the resonator with the modified signal measured by a cryogenic low-noise amplifier
at the output port.

gap of the coplanar waveguide as shown schematically in Fig. 3.11. The principal trap axis

is aligned with the cavity field, positioned at or near a maximum of the voltage distribution,

i.e. at the ends of the capacitively-coupled resonator in Fig 3.11. As pointed out in section

3.2.1, it is in practice advantageous to use inductive coupling to keep the center pin at DC

ground potential and to avoid charging effects. Fig. 3.12 a shows details of the integrated

trap design (dashed box region in Fig. 3.11). The cavity center pin and ground plane form

a split-guard ring configuration around the positively biased trap electrode. Note the high

aspect ratio of this geometry with respect to x and y axes. The motional states of the electron

along the two orthogonal trap axes have distinct motional frequencies for a given voltage

bias ωx � ωy. This mismatch in characteristic frequencies allows us to separate the two-

dimensional Hamiltonian for the trapped electron and reduce the problem to one dimension.

The theory developed in section 3.3 therefore applies well to this type of trap geometry, see

Fig. 3.12 b. The Jaynes-Cummings expression for the coupling strength (3.9) was derived for

a two-level system but the result readily generalizes to arbitrary number of levels

gij =
dij
�
Erms =

√
ωr

2ε0�VR
dij (3.93)

where the dipole matrix element for the transition |i〉 → |j〉 is given by

dij = 〈i|e · x|j〉 = e

∫ +∞

−∞
Ψ∗

i (x) · x · E||(x)Ψj(x)dx (3.94)
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Figure 3.12.: Split-guard ring trap geometry and mapping to a one-dimensional parabolic trap. (a) Top view of
split-guard ring configuration formed by the cavity center pin and ground plane (blue) around the trap electrode
(magenta), see dashed box region in Fig. 3.11. The trap has a high-aspect ratio such that electron motion along the
x and y axes effectively decouples due to the large frequency mismatch ωx � ωy . (b) Cross-sectional mapping
to a one-dimensional parabolic trap model (along dashed white line in (a)). Cavity electric field lines are shown
by red arrows.

where E||(x) is the cavity electric field component along the x axis and Ψi(x) are the wave

functions of the trapped electron. A simple expression for the coupling between the quartic

anharmonic oscillator of section of 3.3.2 and the cavity harmonic oscillator can be derived by

writing the dipole operator in terms of ladder operators (see eq. (3.74))

d = e · x = e
x0√
2

(
b+ b†

)
(3.95)

and using the cavity voltage operator derived in section 3.2.4,

V =

√
�ωr

2C	

(
a+ a†

)
(3.96)

where C	 is the capacitance per unit length. The dipole interaction term thus reads

HI = d · E = e
x0√
2

√
�ωr

2C	

1

w

(
b+ b†

)(
a+ a†

)
= �g(b†a+ ba†) (3.97)

where the coupling strength is defined as

�g =
ex0√
2

1

w

√
�ωr

2C	
=

ex0√
2
Erms (3.98)

and the rotating-wave approximation was used. An alternative way of thinking about the
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coupling is as a dielectric effect. The electron’s motion within the trap is affected by and

induces an electric field in the cavity. In the dispersive regime it acts like a small piece of

dielectric that shifts the cavity frequency in a state-dependent way. As pointed in section

3.3, the extent of the ground state wave function in an electron on helium quantum dot is

unusually large due to the small electron mass with typical values of x0 ∼ 30−60 nm, which

leads to large dipole moments of ex0/
√
2 ∼ 1− 2× 103 Debye. In combination with the large

zero-point electric field strengths available in conventional CPW resonators Erms ∼ 0.2 V/m,

we find coupling strengths on the order g/2π = 20 MHz. The discussion of electron decoher-

ence mechanisms in section 3.6 shows that motional state decoherence times are expected to

exceed 15 μs. We therefore expect this system to be capable of reaching the strong-coupling

cavity QED regime g � γ, κ.

3.5 Spin-Motion Coupling

In addition to the motional degree of freedom, a trapped electron on helium carries an inter-

nal spin degree of freedom, which represents a potentially highly coherent quantum resource

for information storage and processing purposes. Indeed, electrons on helium have some of

the longest predicted spin coherence times of any condensed matter system with lifetimes

that are expected to exceed seconds [76]. Those remarkable spin properties are a direct con-

sequence of the atomically-smooth and nuclear-spin free helium surface, which has a natural

abundance of the spin 1/2 3He isotope of only < 10−6. Unfortunately, the bare coupling of

cavity photons to electron spin is many orders of magnitude weaker than for motion. It can,

however, be enhanced via controlled spin-motion coupling. In this section we show how

the analog of atomic spin-orbit coupling in quantum dots on helium can be used to control

and measure the spin degree of freedom via the quantized lateral motion in the dot. Spin

decoherence will be discussed in detail in section 3.6.8.

The coupling of the spin degree of freedom to the electromagnetic field in a transmission

line resonator is in general very weak compared to the coupling of charge. To see this, con-

sider the magnetic dipole coupling Hamiltonian for a spin in a magnetic field

HI = −μ ·B = −γ
�

2
B · σ (3.99)

where μ = −γs = γ�σ/2 is the magnetic moment of a spin 1/2 particle with the vector of
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Figure 3.13.: One-dimensional single-electron trap on liquid helium with uniform and gradient magnetic fields.
To define a spin quantization axis, a uniform magnetic field Bx in the x direction is applied, which sets the
Larmor frequency of the trapped electron. To couple the motional and spin degrees of freedom, a current is
passed through the center electrode, creating a z-field gradient within the trap.

Pauli matrices σ = (σx, σy, σz)
T. For a single electron on helium γ = geμB/� with ge � 2

and the Bohr magneton μB = e�/2me � 9.3× 10−24 J/T. The interaction Hamiltonian for an

electron on helium in a magnetic field along the x direction is then

HI =
ge
2
μBBxσx = −�ωL

2
σx (3.100)

where the Larmor frequency ωL = γBx = −geμBBx was defined, which gives the precession

frequency of a spin in an external field. For an electron on helium the Larmor frequency per

unit field is approximately ωL/2πBx ≈ 2.89 MHz/G such that circuit QED range frequencies

of ∼ 6 GHz require fields of about 2 kG. A Jaynes-Cummings type interaction for the spin

can be derived in complete analogy to the case describing the electric dipole coupling to a

quantized single-mode radiation field that was presented in section 3.1. One finds for the

single spin-cavity coupling strength [152]

gs/� = m0Brms/� = m0

√
�μ0ωr

2Vr
(3.101)

where m0 is the matrix element of the transition magnetic dipole moment and the zero-point

magnetic field of the cavity Brms =
√

μ0ωr/2�Vr was defined. For a single electron, m0 =

2μB ∼ 1.88× 10−23 J/T and for typical CPW cavities Brms ∼ 2 nT, which gives a single spin

coupling strength of gs/2π ∼ 60 Hz, about a factor of 106 smaller than the motional coupling

strength! One way of improving on this is to couple an ensemble of N electrons collectively
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to the cavity, which enhances the coupling to geff =
√
Ngs for independent electrons. This

method has recently been used to couple solid-state spins in diamond and ruby (Al2O3:Cr3+)

to coplanar waveguide cavities and reach the strong-coupling regime geff � γ, κ [65, 157].

Here, we propose to exploit the analog of spin-orbit interaction in quantum dots to enhance

the single spin-cavity coupling. This can be achieved using an inhomogeneous gradient

magnetic field in the trap region, shown schematically in Fig. 3.13. A spin quantization axis

is first established via a uniform magnetic field Bx along the trap axis, which is used to tune

the spin transition frequency ωL = −geμBBx into resonance with the superconducting cavity.

A non-uniform z-field component with a gradient (∂xBz) along the motional trap axis can

be generated by passing a current through the center trap electrode in the y direction. Such

a gradient field introduces a spin-orbit type interaction, which can be seen by expanding the

z-field component to first order

Bz(x) ≈ Bz |x=0 + x
∂Bz

∂x
|x=0 (3.102)

such that the spin coupling to the z-field component becomes

HI = −μ ·B = −geμB
�

2
σ ·B

= −geμBszBz |x=0 − geμBsz · x · ∂Bz

∂x
|x=0 (3.103)

Hence we get an additional term that couples the spin to the electron motion in the dot,

HSI = −2μBsz · x · ∂Bz

∂x
(3.104)

This interaction is analogous to the spin-orbit interaction of an electron bound to a nucleus,

where the electron magnetic spin moment interacts with the magnetic field generated by its

motion around the nucleus. The interaction (3.104) in turn leads to an enhanced spin-cavity

coupling mediated by lateral electron vibrations with corresponding strength given by

gs = μBx0
∂Bz

∂x

g
√
2

�ωp(1− ω2
L/ω

2
p)

(3.105)

where ωp is the motional frequency as derived in section 3.3 and g is the coupling of the

electron motion to the cavity from section 3.4. Thus the spin can be coupled indirectly to

the cavity electric field through the motion. The above coupling strength can be derived in
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an intuitive way using a semi-classical argument in the Heisenberg picture. Modeling the

trapped electron in the cavity field as a driven oscillator, m∂2
t x + ω2

px = eE and looking for

solutions of the form x = x0 cos(ωLt) that describe forced oscillations at the bare Larmor

frequency yields

x = − eE

m(ω2
L − ω2

p)
(3.106)

where E is the cavity electric field operator. Plugging this back into (3.104) gives a spin-mode

coupling term ∝ szE and the coupling strength (3.105). Note that this type of spin-cavity

coupling is proportional to the applied current, allowing the coupling strength to be tuned

in situ on nanosecond time scales by changing the current passed through the trap electrode.

For a 1 mA current 500 nm away from the electron we get a field gradient of ∂Bz/∂x ∼ 8

mG/nm. If the spin transition is far detuned from the motion ωL � ωp this gives coupling

strengths of gs ∼ 8 kHz. However, for moderate detunings ωx − ωL ∼ 30 MHz the coupling

can be made large gs ∼ 0.5 MHz, potentially allowing the single spin-cavity system to reach

the strong coupling regime. Note that the current also leads to a second order variation in

the x component of B with an interaction term

H(2)
SI = −μBsx · x2 · ∂

2Bx

∂x2
(3.107)

which can potentially be used for side-band based cooling schemes [64]. If the homogeneous

field is applied along the y direction, this term allows simultaneously changing spin and mo-

tional states by applying an RF drive at the sum and difference frequencies ω± = ωx±ωL. An

alternative method for spin-cavity coupling enhancement in semiconductor double quan-

tum dots, based on Raman transitions and electron-spin resonance pulses that simultane-

ously flip charge and spin, was pointed out in [173].

3.6 Decoherence Mechanisms

The discussion in the preceding sections has shown that electrons on helium can be used to

build quantum dots in the single electron regime which can be coupled via dipole interaction

to superconducting cavities, realizing a cavity QED system with sizeable coupling strengths

for both quantized lateral motion g � 20 MHz and spin gs � 1 MHz. Reaching the strong

coupling regime of cavity QED g � γ, κ, where the electron can coherently exchange energy

with the cavity, requires sufficiently long lifetimes of the electron states. Moreover, in the
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context of quantum information processing long coherence times are of paramount impor-

tance for the implementation of quantum error correction codes and quantum memories [22].

The two major sources of decoherence for electrons on helium are electrical fluctuations in

the bias leads and elementary excitations of the superfluid (ripplons and phonons).

In this section we discuss the different possible decoherence channels for electron mo-

tional and spin states. In section 3.6.1, we start off with a brief primer on the basic concepts

of quantum coherence that will be used throughout this part of the thesis. Radiative decay

from the excited motional state via spontaneous emission, which can occur into free space,

through the cavity (Purcell effect) and through the trap bias electrode, is discussed in section

3.6.2. Decay through coupling to elementary superfluid excitations, specifically capillary

surface waves (ripplons) and bulk phonons, is the subject of section 3.6.3. Dephasing due to

ripplon scattering (section 3.6.5) and trap bias fluctuations (section 3.6.4) is discussed after-

wards while the effects of classical helium level fluctuations are considered in section 3.6.6.

A summary of the different motional decoherence rates is given in section 3.6.7. Finally, de-

coherence of the spin degree of freedom is discussed in section 3.6.8, which inherits motional

decoherence in the presence of the spin-motion coupling presented in section 3.5. We will

see that inelastic phonon scattering emerges as the limiting mechanism for electrons on he-

lium motional and spin coherence, giving conservative coherence time estimates of 15 μs for

motion and 0.5 ms for spin. To keep things compact, we will focus here on the main results

and a discussion of the physical mechanisms. Detailed derivations and calculations can be

found in the supplementary materials of Ref. [64].

3.6.1 Decoherence Primer

In the context of quantum information processing, decoherence refers to the fact that a

quantum-mechanical two level system or qubit can lose its information content to the en-

vironment. There are two qualitatively different forms of decoherence in open quantum sys-

tems, energy relaxation and dephasing. Although they can sometimes have identical sources,

they cause changes in different quantum-mechanical properties of a qubit. Here, we follow

the Bloch-Redfield approach [174] which describes the decoherence of a two-level system in

terms of the two rates Γ1 (energy relaxation) and Γ2 (dephasing). We adopt the following

general notation: Γ
(α)
1 denotes energy relaxation rates with the superscript indicating the

specific decay mechanism while Γ
(α)
2 denotes dephasing rates.
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Energy Relaxation

Energy relaxation and heating are processes that lead to incoherent changes of the state of a

qubit. The interaction with an environmental noise bath causes the qubit to flip randomly

between its two states. The time T1 is the characteristic time over which a qubit is excited and

de-excited by the environment. It is defined as the inverse of the sum of the corresponding

excitation and de-excitation rates [175]

T1 =
1

Γ↑ + Γ↓
. (3.108)

A powerful and universal approach for describing coupling and leakage to the environment

is the Kraus or super-operator formalism [22] . In this representation, we can describe the

time evolution of a qubit without having to explicitly consider detailed properties of the

environment. Everything we need to know is wrapped up in a superoperator that acts on the

density operator of the qubit. In this way, the states of the environment itself are traced out

and only the perturbed time evolution of the qubit remains such that all we need to consider

is the interaction Hamiltonian of qubit and environment. In general, energy relaxation is

treated as a perturbation that couples a qubit operator ξ to an environment or noise bath

operator M through HI = ξ ·M. Here, ξ represents the specific variable of the qubit that is

affected. The qubit operator ξ either contains σz or σ⊥ = σx + σy components, depending

on the type of decoherence that is caused by a given noise source. Energy relaxation (Γ1)

refers to the decay of the diagonal z component of the qubit density matrix while dephasing

(Γ2) describes the decay of the off-diagonal part [22]. The noise bath on the other hand

is characterized by a spectral noise density SM (±ω) which depends on temperature and

frequency.

Dephasing

Dephasing refers to processes that cause a qubit to accumulate a random phase rather than

to change its quantum state directly. Although dephasing of overall phases is irrelevant, this

form of decoherence more importantly changes the relative phase in superposition states. Tφ

is the characteristic time scale over which the qubit accumulates a random phase shift of π.

The phase is determined by the frequency and thus the root of dephasing lies in fluctuations

of the qubit transition frequency. The overall decoherence rate generally consists of three
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contributions

Γ2 =
Γ1

2
+ Γφ + Γ∗

φ (3.109)

All mechanisms of energy relaxation also lead to dephasing at rate Γ1/2 since dephasing

describes the decay of the amplitude of a quantum state. This in turn also sets a dissipation-

imposed upper limit for the overall decoherence time of T ∗
2 = 2T1. A qubit that satisfies

T ∗
2 � 2T1 is said to be homogeneously broadened. The second term in (3.109) is due to fluctua-

tions that occur during one decay lifetime of the qubit while the third contribution describes

fluctuations on longer time scales, which is sometimes referred to as inhomogeneous broaden-

ing.

3.6.2 Radiative Decay and Spontaneous Emission

A trapped electron in an excited motional state can decay radiatively via spontaneous emis-

sion into free space (continuous mode spectrum), into a cavity mode (referred to as the Pur-

cell effect) as well as through the trap bias electrode. The different radiative decay channels

are discussed below. Most of the calculations are based on Fermi’s golden rule with an ap-

propriate matrix element for the specific process under consideration. As a reminder, Fermi’s

golden rule8 gives the transition rate (transition probability per unit time) for a system in an

initial state |Φi〉 going to a final state |Φf 〉 subject to a perturbation HI in first order pertur-

bation theory:

Γi→f =
2π

�
ρ(εf )| 〈Φf |HI |Φi〉 |2 (3.110)

where ρ(εf ) is the density of final states. For a discrete set of final states, ρ(εf ) is simply a

series of Dirac delta functions.

Free Space

Radiative energy loss into the electromagnetic continuum of free space represents a very

small effect, both because the size of the trapped electron wave function is small and because

the electromagnetic environment can be carefully controlled in circuit QED systems. The rate

of photon emission via electric-dipole radiation into the vacuum can be estimated using the

continuum version of Fermi’s golden rule with the dipole interaction HI = d · E and the

density of states of the vacuum electromagnetic field ρ(ω) = L3w2/π2c3 with mode volume

8Note that Fermi’s golden rule was first derived by Wentzel [176].
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L ∼ λ:

Γ
(v)
1 =

2

3

e2

�c

(
2πx0
λ

)2

ωp ∼
(x0
λ

)2
(3.111)

where ωp is the transition frequency between the ground and first excited motional state and

λ = 2πc/ωp is the corresponding wavelength. As shown in section 3.3, we have for a trapped

electron on helium at 5 GHz x0 ∼ 6× 10−8 m and λ ∼ 6× 10−2 m such that Γ(v)
1 is negligibly

small. If this were the only decay mechanism, the excited motional state would be expected

to last for more than 100s.

Purcell Effect and Decay into Cavity Modes

The electron motional state can also decay via spontaneous emission into one of the cavity

modes, which can be strongly enhanced or suppressed depending on the detuning of cavity

and electron motion. This kind of enhanced spontaneous emission was first described by

Purcell in the context of spin magnetic resonance [177] and has recently been studied in detail

in circuit QED systems [178]. The reason for the enhanced decay rate close to resonance lies

in the much larger mode density of the cavity field compared to free space. For a simple

two-level system coupled to a single mode radiation field in a cavity of frequency ωr, the

spontaneous emission rate for dispersive coupling g � |ωp − ωr| is given by [44]

Γ
(cav)
1 =

g2κ

(ωp − ωr)2
(3.112)

where κ = ωr/Q is the cavity decay rate (i.e. the average photon loss rate). Assuming a

detuning of Δ ∼ 500 MHz, a coupling strength of g/2π ∼ 20 MHz and a quality factor

Q ∼ 20000 this yields Γ
(v)
1 ∼ 1.5 × 104 s−1. For the case of resonant coupling and a low Q

cavity κ � g, |ωp − ωr|, the decay rate is Γ
(cav)
1 = g2/κ, while in the limit of strong coupling

g � κ on resonance Γ
(cav)
1 = κ/2. As shown in Ref. [178], spontaneous emission rates can be

strongly influenced by far off-resonant modes of the cavity. The effect of higher harmonics

of the cavity on motional decay rates could be captured in a way analogous to the decay of

superconducting qubits into higher modes, e.g. by using a multi-mode Jaynes-Cummings

Hamiltonian or possibly by mapping to a semiclassical circuit model [178].
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Bias Electrode

In addition to spontaneous emission into cavity modes and the free space continuum, the

electron can also decay via its capacitive coupling to the trap bias leads. The correspond-

ing decay rate can be found by considering the effect of Johnson-Nyquist noise of the bias

electrode on the electron motion. This decay channel is suppressed by a parity-selection

rule for a perfectly symmetric trap, but for slight deviations from symmetry this turns out

to be a dominant radiative decay channel and hence we will discuss it in some detail here.

The decay rate can be calculated using Fermi’s golden rule. As pointed out in section 3.6.1,

relaxation can be thought of as a perturbation HI = ξ ·M coupling a given electron opera-

tor ξ to a bath operator M where the bath noise is characterized by a spectral noise density

SM (∓ω) [175]. In our case, the bias lead represents the bath and voltage noise on the bias

leads represents excitations of the bath. The decay rate from excited to ground state due to

coupling to such a noise bath can be shown to be [175]

Γe→g =
1

�2
| 〈g|ξ|e〉 |2SM (∓ωa) (3.113)

where ωa is the transition frequency. The corresponding relaxation time is then T1 = 1/(Γe→g+

Γg→e). From (3.113) we see immediately that a parity-conserving bath coupling operator

gives zero decay rate. To get the general decay rate for the bias leads, we need the spectral

density of the noise and the correct electron operator ξ through which the trapped electron

couples to the bias lead. Assuming a bosonic bath (i.e. 1D blackbody radiation) the voltage

noise spectral density is given by the Johnson-Nyquist formula [175]

SVe(ω) =
2�ωRe[Z(ω)]

1− e−�ω/kBT
≈ 2�ωRe[Z(ω)] (3.114)

where Z(ω) is the impedance of the bias leads and the last expression is the low temperature

approximation for the Bose-Einstein distribution. The electron couples to the bias electrode

via dipole coupling ξ = d · E = −exE(x) where E(x) = −∇V (x) and V (x) is the potential

of the electrode. For a perfectly symmetric potential, E(x) is an odd function of x and so

is the dipole operator. From section 3.3, we know that the ground and first excited state

have different parity such that 〈g|ξ|e〉 = 0 and there would be no decay. However, any

displacement from the trap bias null, e.g. due to a slight asymmetry in the potential or other

stray or intentional fields, will open up a channel for relaxation. Using eEx = meω
2
pΔx =
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�ωpΔx/x20 and expanding the field about small deviations Δx from the trap center we find

Γ
(el)
1 =

Re[Z(ωp)]

�/e2

(
�ωp

eV

)2

ωp (3.115)

where the approximation ∂Ex/∂V = Ex/V was made. For a bath impedance of Re[Z(ωp)] ≈
50Ω and assuming a conservative deviation of the size of the electron wave function Δx ≈
x0 this yields Γ

(el)
1 ≈ 1.6 × 103 s−1. Note that the decay rate can be further reduced by

engineering the impedance of the bath Z(ω) around the electron oscillation frequency using

a resonant structure.

3.6.3 Decay via Superfluid Excitations

In addition to radiative decay of the motional states into free space, the cavity modes and

the trap electrode, the electron can lose coherence to elementary excitations in the super-

fluid, that is, capillary surface waves (ripplons) introduced in section 2.3.5 and phonons in

the bulk superfluid film. As shown below, decay into phonons represents the dominant de-

cay mechanism, in part because of the higher dimensionality of the available phase space

for momentum conservation. The superfluid excitations also cause dephasing of the elec-

tron wave function, which will be discussed in section 3.6.5. The coupling of electrons to

superfluid excitations is mathematically complex, leading to lengthy and quite non-trivial

calculations. To keep things compact, we limit ourselves here to a discussion of the under-

lying physics and the main results. Coupling of electron motion to superfluid excitations is

discussed in mathematical detail in Ref. [79].

One-Ripplon Decay

Coupling to ripplons is in general expected to be small because the electron is levitated a

distance aB ∼ 8 nm above the surface, which greatly exceeds the amplitude of the capillary

surface waves. Decay via single ripplon interaction is exponentially suppressed due to the

large mismatch of the size of the electron wave function ∼ x0 and the ripplon wavelength at

the same energy. The characteristic speed of the electron x0 · ωp is significantly larger than

the speed of sound in helium vs ≈ 2.4× 102 m/s and the characteristic group velocity of the

ripplons. Since ripplons are slow excitations, it is impossible to conserve momentum in the

interaction of an electron with a single ripplon. The momentum mismatch is fundamentally

a consequence of confinement effects on the electron. The relevant matrix elements decay
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exponentially in the product q · x0 where q is the ripplon wave vector and x0 =
√

�/mωp

the oscillator length scale, hence suppressing decay via single ripplon emission. The single-

ripplon decay rate is determined by the matrix elements 〈0, 0| exp(iqr)Vq|1, 0〉 where Vq is

the coupling operator between an electron and a ripplon with wave vector q = (qx, qy) (see

Ref. [79]) and |nx, ny〉 denotes the two-dimensional in-plane motional state. Evaluating those

matrix elements to find the decay rates yields factors of the form [64]

∣∣〈1, 0|eiqr|0, 0〉∣∣2 = 1

2
(qxx0)

2 exp

[
−1

2
(q2xx

2
0 + q2yy

2
0)

]
(3.116)

which are exponentially small for small products of in-plane localization length and ripplon

wavenumber qx · x0.

Two-Ripplon Decay

Due to the exponential suppression of one-ripplon processes, decay into ripplons is dom-

inated by second-order processes in which two ripplons of nearly opposite momentum si-

multaneously interact with the trapped electron, each with approximately half the electron

energy ∼ �ωp. The corresponding decay rate can be estimated from a Fermi golden rule ar-

gument using the ripplon surface displacement operator ξq(r) for a ripplon of wave vector

q introduced in eq. (2.47):

Γ
(2r)
1 =

2π

�

∑
q1,q2

∣∣∣〈0, 0|ξq1
ξq2

ei(q1+q2)rVq1,q2 |1, 0〉
∣∣∣2 δ(�ω−�ωq1−�ωq2)(nq1+nq2+1) (3.117)

where |nx, ny〉 denote the in-plane motional states with quantum numbers nx, ny and nq =

(e�ωq/kBT − 1)−1 is the average ripplon population. The delta function describes energy

conservation in the scattering process and the matrix element Vq1,q2 consists of a kinetic and

a polarization term. It is in general dominated by the kinetic term such that [79]

Vq1,q2 ≈ −Rq1q2 = −〈1|p2z/2m|1〉z q1q2 = − �
2

2ma20
q1q2 (3.118)

where |1〉z is the vertical motional ground state. Evaluating the above expression yields for

the two-ripplon energy relaxation rate Γ
(2r)
1 ≈ 450 s−1 at frequency ωp/2π = 5 GHz and

zero-point motion x0 = 4.8 nm. This rate is quite small which is a direct consequence of the

fact that the allowed phase volume for decay is limited by the condition on the total ripplon

momentum.
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Decay into Bulk Phonons

Bulk phonons in the superfluid represent the dominant contribution to decoherence. The

coupling to phonons is in direct analogy to the piezoelectric coupling for quantum dots in

semiconductors. An electron above the helium surface polarizes the liquid. Phonons in turn

modulate the density of the liquid and thus change the polarization, which in turn affects

the effective potential the electron sees. However, since liquid helium is almost transparent,

the polarization and hence the piezoelectric coupling is much weaker than in semiconduc-

tors. In semiconductors, the typical piezoelectric coupling is epz ∼ 1014 e/cm2 [179] while

the analog in superfluid helium is ∼ e(εHe − 1)/4πa2B ∼ 1010 e/cm2, which is much smaller

due to the large effective Bohr radius. There are two mechanisms through which the electron

can decay via phonon emission. In the first (denoted by Γ
(ph1)
1 below), the coupling is me-

diated by modulation of the dielectric constant along with the density wave corresponding

to the phonon, which changes the effective image potential the electron sees. The second

mechanism (Γ(ph2)
1 below) is a form of direct inelastic phonon scattering, where the electron

couples to the surface displacement in analogy to the ripplon case. The phonon-induced sur-

face displacement operator is similar to the one for ripplons [79]. In this case, however, single

phonon decay is allowed because the momentum is conserved in two dimensions while the

excess energy is dumped into the normal phonon component such that the electron decay

launches most of the energy normal to the surface. The phonon dispersion relation in liquid

helium is linear

ωQ = vs ·Q (3.119)

where Q is the phonon wave vector and vs = 2.4×104 cm/s is the speed of sound in helium.

For an electron plasma frequency of ωp/2π = 5 GHz, a resonant phonon has a wave vector

component orthogonal to the surface of Qz = ωp/vs ≈ 1.3×106 cm−1 while the in-plane elec-

tron wave vector component at that frequency is kx =
√

mωp/� ≈ 1.6 × 105 cm−1 such that

phonons involved in electron decay (inelastic scattering) propagate almost orthogonal to the

surface. The phonon-electron coupling Hamiltonian has a form similar to that for ripplon

coupling. Evaluating the corresponding matrix element in Fermi’s golden rule gives after

lengthy calculation a decay rate of Γ(ph1)
1 ∼ 2.7 × 104 s−1 for dielectric constant modulation

decay, assuming a phonon wave number Qz = 1.3 × 108 m−1. In section 3.6.7 we will see

that this is the dominant decay channel for electron motion in the 1 - 20 GHz band. Note that

in the above estimates we assume a thick bulk film of superfluid helium and no geometric
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confinement effects on the phonon spectrum and dispersion relation. As a possible exten-

sion, one could consider cases where the phonon wave vectors are restricted by imposing

boundary conditions through choice of geometry.

The second contribution to the decay rate arises from the surface displacement caused

by propagating phonons, which is very much like the decay due to surface displacements

caused by ripplons. A crucial difference, however, is that single-phonon decay is allowed

since momentum can be conserved in 2D, as opposed to single-ripplon decay which is expo-

nentially suppressed by momentum conservation in 1D. Evaluation of the matrix elements

gives a decay rate of Γ(ph2)
1 ∼ 1.8 × 103 s−1 at ωp/2π = 5 GHz assuming equal size in-plane

zero-point motions x0 ∼ y0 ∼ 4.8 nm, which constitutes a conservative estimate for our

high-aspect ratio traps.

3.6.4 Dephasing due to Voltage Fluctuations

The depth of the potential and thus the electron motional transition frequencies depend

on the trap bias voltage. Low frequency noise on the bias electrode will result in electron

phase noise as fluctuations in the trap bias voltage V0 deform the effective trapping potential

on time scales short compared to the experiment time, giving a Γφ contribution in (3.109).

Bias fluctuations can result from slow drifts in the voltage source, thermal Johnson voltage

noise or potentially local charge noise in the bias leads. Note that fluctuations that are slow

compared to the experiment time can be compensated for and are in general not a limiting

factor. In section 3.3, we saw that the transition frequency scales like ωp ∝ √
V0 and small

fluctuations in V0 cause frequency shifts of Δωp/ωp = −ΔV0/2V0. For high-precision voltage

sources such as the ones used in our experiments (see chapter 4), long term drifts are typi-

cally ΔV0/V0 ∼ 10−6 per hour, corresponding to Δωp ≈ 8×103 s−1 or 8 MHz at 5 GHz. Since

this drift happens over time scales of hours it can be easily compensated for by measuring

the transition frequency and readjusting the voltage if necessary. For thermal Johnson volt-

age noise the noise spectral density is given by SV0(ω) = 4kBTRe[Z(ω)] 9. The corresponding

dephasing rate can then be expressed as [180]

Γ
(el1)
φ =

(
∂ωp

∂V0

)2 SV0(ω)

2
=

ω2
pkBTRe[Z(ω)]

4V 2
0

(3.120)

9We denote the mean-squared amplitude of voltage noise at frequency ω per 1 Hz bandwidth by SV and the
root-mean-squared quantity by SV . The magnitude of the voltage noise, described by the mean-squared
value 〈V 2(t)〉, can be obtained from SV (ω) through the Wiener-Kinchin theorem. For a good discussion of
current and voltage noise in the context of decoherence, the interested reader is referred to Ref. [175].
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Assuming a typical voltage bias of V0 ∼ 10 mV, a corresponding motional frequency of

ωp/2π = 5 GHz and an environment impedance of Z = 50Ω at 50 mK one finds Γ
(el1)
φ ∼ 90

s−1. Thermal Johnson noise should therefore not be a limiting source of dephasing.

The dominant source of dephasing due to fluctuations in voltage is expected to be local

1/f charge noise. This type of noise is commonly observed in devices with floating elec-

trodes or islands (e.g. for Josephson junction-based devices) and is believed to arise from

mobile charges in substrates. In the proposed device geometries, there are no such float-

ing electrodes or Josephson junctions, but since the origin of 1/f charge noise is not fully

understood it may also arise in our devices in some form. The corresponding noise spec-

trum does not lead to a simple expression for the dephasing rate [180], but a quick back-

of-the-envelope calculation shows that 1/f charge noise should indeed dominate thermal

Johnson noise. The magnitude of charge noise in typical Josephson junctions is on the order

of Sq ∼ (10−4e)2/Hz. Assuming a capacitance of Ceff = 1 fF, this translates into a voltage

noise of SV = Sq/C
2
eff ∼ (1.6 × 10−8)2 V2/Hz or about SV ∼ 10 nV/

√
Hz at 1 Hz. On the

other hand, for thermal Johnson noise at 50 mK and 50 Ω we have SV ∼ 6× 10−3 nV/
√

Hz,

several orders of magnitude lower. More formally, assuming a 1/f noise-spectral density

S
1/f
Ve

(f) = SVe(1Hz)/f , the expected diffusion of phase over time t as a result of charge noise

can be estimated as [180]

〈[φ(t)− φ(0)]2〉 ∼
(
∂ωp

∂Ve

)2

SVe(1Hz) ln(0.4/fmt)t2

=
(ωpt)

2

4V 2
e

SVe(1Hz) ln(0.4/fmt) (3.121)

where f−1
m is the total averaging time, i.e. fm corresponds to the frequency of the entire mea-

surement, which gives a low-frequency cutoff (the logarithmic term results from an integral

over frequency with fm as the lower bound and ωp/2π as the upper bound). The dephasing

time can then be estimated as the time it takes for 〈[φ(tπ − φ(0)]2〉 = π such that the effective

dephasing rate due to 1/f charge noise is Γ
(el2)
φ = t−1

π . To arrive at an order of magnitude

estimate for the dephasing rate we again assume SVe = Sq/Ceff with a typical charge noise

value of Sq(1Hz) ≈ (10−4e)2/
√

Hz. For a conservatively low estimate of the capacitance of

Ceff = 1 fF, this gives a dephasing rate of Γ(el2)
φ ∼ 8 × 103 s−1. In the device designs and

geometries considered for this thesis, the capacitance to ground of the leads is in fact orders

of magnitude larger than this value, and hence charge fluctuations that cause changes in the

effective potential are not expected to be a dominant dephasing mechanism either way.
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3.6.5 Ripplon-Induced Dephasing

In addition to decay, coupling to elementary excitations of the superfluid can lead to fluc-

tuations in the effective potential the electron sees, therefore changing the motional fre-

quency and leading to dephasing. The most important dephasing contribution comes from

thermally-excited two-ripplon coupling. Thermal fluctuations in the helium lead to random

modulation of the energy difference between motional states, which can be described as

quasi-elastic scattering of thermal excitations off an electron. This scattering depends on the

electron state and therefore randomizes the phase difference between the wave functions of

the states, but without causing any transitions. As discussed in section 2.3.5, ripplons are in

general rather soft excitations with a large density of states at low energies such that there

are excitations present even for very low temperatures. At T = 100 mK, the typical wave

number of a thermal ripplon (�ωqr = kBT ) is qT ≈ 4.1 × 106 cm−1 and for T = 50 mK

qT ≈ 2.5 × 106 cm−1. The two-ripplon coupling Hamiltonian can be written in the basis of

the in-plane motional states |nx, ny〉, where ni is the motional quantum number for direction

i, and in terms of the ripplon ladder operators,

H(2r)
I =

∑
j=1,2

∑
q1,q1

vj(q1,q2)b
†
q1
bq2 |j, 0〉 〈j, 0| (3.122)

The terms in the sum over the ripplon wave vectors q1,q2 describe scattering of a ripplon

with wave vector q2 into a ripplon with wave vector q1, the excess momentum being trans-

ferred to the electron and no transitions occurring between electron motional states. The

matrix elements vj(q1,q2) are given by

vj(q1,q2) =
�

ρ

√
q1q2

ωq1 , ωq2

Vq1,−q2 〈j, 0|ei(q1−q2)r|j, 0〉 (3.123)

where Vq1,−q2 is the matrix element of the interaction Hamiltonian of ripplons and out-of-

plane ground state wave functions |1〉z . Vq1,−q2 , already encountered in section 3.6.3, con-

sists of a kinematic and a polarization part [79]. The polarization part describes the change

of the polarization energy due to changes in surface curvature caused by a ripplon. The kine-

matic term dominates for qT rB � 1, which is the case for higher temperatures T � 100 mK.

However, for lower temperatures the polarization term can become comparable because the

characteristic thermal ripplon wave number qT decreases rapidly with temperature. The
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dephasing rate caused by the interaction (3.122) can be estimated as [64]

Γ
(2r)
φ ≈

√
2π

192

ρR2

σ3x0

(
kBT

�

)3

(3.124)

where R =z 〈1|p2z/2m|1〉z = �
2/2ma20 is the vertical kinetic matrix element and ρ and σ are

the mass density and surface tension of liquid helium as usual. At T = 100 mK this gives

Γ
(2r)
φ ∼ 1.4 × 104 s−1 and at T = 50 mK we have Γ

(2r)
φ ∼ 1.7 × 103 s−1. Hence, despite

the large density of states of thermal ripplon excitations at low temperatures, the dephasing

rates remain small because the coupling is weak. As opposed to ripplons, phonons are not

a significant source of dephasing at low temperatures since their density of states is much

smaller at T ∼ 100 mK.

3.6.6 Classical Helium Level Fluctuations

So far we have only considered quantum mechanical variations in the height of the super-

fluid surface (ripplons). Classical fluctuations in the liquid level can also contribute to de-

phasing since any change in thickness of the helium above the electrostatic gates will change

the effective potential seen by the electron and hence the transition frequencies. Such slow

fluctuations in the liquid helium level are caused by either fluctuations in temperature or

mechanical vibrations of the chip. Because this type of fluctuation is slow, it is unlikely to

cause dephasing during the decay lifetime of the electron and should be susceptible to spin-

echo techniques. It can, however, lead to slow drifts in the transition frequency, making it

necessary to readjust the bias parameters between experiments. In section 3.3 we saw that

the trap plasma frequency depends parametrically and exponentially on the helium film

thickness d through the effective voltage Vt(d) = V0 exp(−2πd/w) where w is the geometric

trap width. This corresponds to a film thickness sensitivity of ∂ωp/∂d ≈ 10 MHz/nm. How-

ever, the high-aspect ratio trap designs discussed in section 3.3 represent micro-channels

(see section 2.3.4) that support the formation of a capillary action-stabilized van-der-Waals

film. The channels are filled from a reservoir located well below the chip. The distance of

the bulk level in the reservoir from the channel top H sets the radius of curvature of the

film in the trap channel Rc = σ/ρgH , see section 2.3.4 and the experimental results pre-

sented in chapter 5. This drastically reduces the sensitivity of the transition frequency. For

H = 5 mm we have Rc ≈ 53μm and the trap is well filled with sensitivity reduced by

∂H∂Rc∂Rcd = w/H ≈ 10−4.
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Figure 3.14.: Summary of electron motional decoherence rates as a function of trap frequency at T = 50 mK.
Solid lines are energy relaxation rates Γ1/2 and dashed lines are dephasing rates Γφ: Decoherence due to voltage
and charge fluctuations in the bias leads (magenta), elastic and inelastic ripplon scattering (blue) and phonon
scattering (red). Note that single ripplon decay rates and phonon dephasing rates are not shown as their rates
are negligibly small < 1 s−1.

3.6.7 Summary of Motional Decoherence Rates

The decoherence rates due to the mechanisms described in sections 3.6.2 - 3.6.5 are summa-

rized in Fig. 3.14 and plotted as functions of electron motional frequency ωx/2π at T = 50

mK, with dashed lines depicting dephasing rates Γφ and solid lines energy relaxation rates

Γ1/2. The decoherence rates generally decrease quite strongly with frequency. The domi-

nant mechanism of energy relaxation over the 1 - 20 GHz band is decay via inelastic phonon

scattering, in particular due to coupling mediated by the dielectric modulation that is caused

by the phonon density waves, see section 3.6.3. At 5 GHz we estimate Γ
(ph)
1 ∼ 3 × 104 s−1,

corresponding to an energy relaxation time of T1 = 2/Γ1 ∼ 15μs. The dominant source of

dephasing over the frequency band 1 - 15 GHz are electrical fluctuations in the bias leads

(section 3.6.4), specifically due to 1/f charge fluctuations in the leads. Under the conser-

vative assumptions of anomalously small capacitive screening and typical 1/f charge noise

spectral densities, we estimate Γφ ∼ 8 × 103 s−1 at 5 GHz (see section 3.6.4). For more re-

alistic capacitive screening of charge fluctuations it is possible that the dominant dephasing

comes from two-ripplon scattering (section 3.6.5). Note that single ripplon energy relaxation

(section 3.6.3) and phonon dephasing rates are < 1 s−1 and hence not shown in Fig. 3.14. In

summary, the overall lifetime of the motional state appears to be limited by phonon emis-

sion, coupled via modulation of the dielectric constant.
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3.6.8 Spin Decoherence

The spin of a completely free electron has no internal decay mechanisms and would hence

live forever. For an isolated electron on liquid helium, the situation gets somewhat close to

free-electron case as the physical environment is very clean and well-controlled and the elec-

tron interacts only electrostatically with the nuclear spin-free liquid. Many of the dominant

spin decoherence mechanisms present in semiconductor heterostructures (GaAs or Si/SiGe

substrates), such as spin-orbit interaction, coupling to nuclear spins in the substrate or strong

piezo-electric coupling, are either strongly reduced or absent entirely for electrons at the in-

terface of vacuum and superfluid helium. This has lead to exceptionally long predicted

spin coherence times in the absence of enhanced spin-orbit interaction, expected to exceed

T2 > 100 s [76]. In particular, the motion of two-dimensional electrons in semiconductor

heterojunctions comes with an associated effective magnetic field as a result of spin-orbit in-

teraction, which makes it difficult to preserve spin coherence during electron transport [181].

This mechanism is many orders of magnitude weaker for electrons on helium due to their

large distance from the liquid surface [76]. Furthermore, 4He has zero nuclear spin and very

low atmospheric concentrations of the spin 1/2 3He isotope < 10−6, which can be further

isotopically purified to < 10−13 if necessary [182]. Spin coherence times due to the presence

of such nuclear spins has been calculated to exceed 107 s [76].

This all looks very promising at first, however, in the presence of spin-motion coupling

(section 3.5), the electron spin inherits all of the motional decoherence mechanisms discussed

above with a reduced matrix element, proportional to the gradient term in the interaction

Hamiltonian (3.104)

ρsm ∝ μB
∂Bz

∂x
x0

1

�ωp
(3.125)

At ωp/2π = 5 GHz and a gradient of ∂Bz/∂x ∼ 8 mG/nm (corresponding to a current of 1

mA at a distance of 500 nm), this dimensionless reduction factor is ρsm ∼ 10−4. However, the

spin-motion coupling can be tuned in situ and hence it is possible to reduce the inherited spin

decoherence mechanism by changing the spin motion detuning or turning off the gradient

field.

In addition to motion-inherited decoherence, the spin can dephase through fluctuating

magnetic fields caused by Johnson current noise in the trap electrodes, which has spectral
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noise density

SI = 4kTΔω/Re[Z] (3.126)

where Δω is the bandwidth of interest and Z is the environment impedance, typically Re[Z] ∼
50Ω. The field created at the electron position by a current in the bias electrode at dis-

tance 500 nm is B = 4 × 103 mG/mA, which corresponds to a shift in Larmor frequency of

ΔωL = 3.5×107 s−1/mA. Assuming a Johnson current noise of 100 pA/
√

Hz, this gives a de-

phasing time of Tφ,I ∼ 20 s. Another possible source of magnetic field noise is 1/f flux noise

typically found in experiments with superconducting SQUID loops and Josephson junction

devices [183], which has magnitudes of order Srms
φ ∼ 10−6Φ0/

√
Hz, where Φ0 = h/2e is

the flux quantum. The quantum dot geometry considered in this thesis does not have any

Josephson junctions or superconducting loops, so this mechanism may not be present at all,

although this is difficult to predict since 1/f flux noise is not well understood in this case.

However, conservatively assuming flux noise to be evenly distributed over the trap area at

magnitude Srms
φ gives a dephasing rate of only Γφ ∼ 200 s−1.

3.7 Trapped Many Electron States

The μm-sized single electron traps discussed in section 3.3 are designed to trap single elec-

trons at typical equilibrium electron separations of ∼ 1μm. Extending the dimensions

of the confining electrode geometry, a trap can potentially fit multiple electrons along the

trap axis. Depending on the confining potential, electrons on helium can then form quasi

one-dimensional linear chains analogous to ion chains in quadrupole traps [31, 184]. The

phonon modes of such one-dimensional few-ion chains have been investigated in great de-

tail [184–186] and they represent a crucial resource for quantum information processing and

quantum optics experiments with trapped ions [13]. In this section, we explore the physics of

vibrational states created by confining multiple electrons in a parabolic potential formed by

a large DC electrode configuration. In chapter 7 we then show how this type of geometry can

be realized using a high-aspect ratio coplanar waveguide resonator capable of trapping elec-

trons directly inside the CPW gap. First, we derive expressions for the modes of N = 2 and

N = 3 electron chains in section 3.7.1 and develop general solutions for arbitrary numbers

of electrons closely following methods used for analyzing ion chains [185]. The coupling

of electron chain vibrational modes to the quantized electric field in a coplanar waveguide
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cavity is studied in section 3.7.2. Finally, section 3.7.3 discusses the effects of helium film cur-

vature and the resulting oscillatory motion as a consequence of the image-charge induced

restoring force.

3.7.1 One-Dimensional Electron Chains in Parabolic Traps

Consider the case of N = 2 and N = 3 electrons confined in a one-dimensional parabolic

trap, shown schematically in Fig. 3.15. The trap dimensions are on the order of w ∼ 10μm

and d ∼ 1μm, about a factor of 10 larger in the lateral dimension than the single electron

traps of section 3.3, allowing multiple electrons to fit at an equilibrium mean spacing of

r0 ∼ 1μm. A natural consequence of increasing the trap size is a decrease in anharmonicity

and hence an almost purely quadratic, harmonic oscillator potential, as shown in section

3.3.2. By expanding the Coulomb interaction about the electron equilibrium positions, we

first show that the system can be described by several distinct and independent vibrational

modes. Using methods analogous to those developed for ion traps [185], we then generalize

to N electrons in a parabolic trap and show that the system has N independent modes. In

analogy to section 3.3.1, we will again assume an asymmetric geometry and a sufficiently

strong binding potential in the vertical direction such that the characteristic frequencies of x,

y and z motion are very different, the potential separates and the system can be considered

quasi one-dimensional. In the following calculations, we assume the electrons are at a fixed

distance of a0 ∼ 8 nm above a flat surface of superfluid and we keep the z coordinate fixed.

We will relax this restriction in sections 3.7.3 and consider the effects of film curvature and

changes in coupling strength as a function of z.

N = 2 Electron Case

Two electrons in a parabolic potential, as shown in Fig. 3.15 a, can be described as a pair of

harmonic oscillators with the same oscillation frequency but coupled via Coulomb interac-

tion:

H =
1

2m

[
p21 + p21

]
+

1

2
mω2

0

[
x21 + x22

]
+

e2

4πε0|x1 − x2| = Hkin +V (3.127)

The equilibrium separation of the electrons is determined by the competition of trap oscilla-

tion and Coulomb repulsion and is obtained by minimizing the overall potential

[
∂V

∂xk

]
xk=x

(0)
k

= 0 (3.128)
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Figure 3.15.: One-dimensional electron vibrational modes in a parabolic trap formed by a DC center electrode
(magenta) and grounded guard electrodes (blue). The vibrational modes of the chains are indicated by arrows.
(a) Two electrons in a harmonic potential. The dynamics of the electron pair can be described by two distinct,
independent vibrational modes, a stretch or breathing mode (bottom) and a center of mass mode (top), see text
for details. (b) Three electrons in a harmonic potential, supporting a center of mass mode (bottom), a stretch
mode (middle) and a scissor mode (top).

where x
(0)
k is the equilibrium position of the kth electron with k = 1, 2. Solving this coupled

system of equations gives

x
(0)
1 = −x

(0)
2 =

(
1

2

)2/3( e2

4πε0mω2
0

)1/3

. (3.129)

The electron equilibrium separation is therefore

xc = |x(0)1 − x
(0)
2 | =

(
e2

2πε0mω2
0

)1/3

(3.130)

such that the electrons are located at positions ±xc/2 symmetric about the channel center.

For a fundamental trap frequency of ω0/2π = 5 GHz the electrons are then separated by

xc ≈ 1μm. Introducing the center-of-mass and relative motion coordinates

Z1 =
x1 + x2

2
, P1 = p1 + p2 , Z2 = x1 − x2 , P2 =

p1 − p2
2

(3.131)

we can write the Hamiltonian as

H =

[
1

4m
P 2
1 +

1

m
P 2
2

]
+ 2mω2

0Z
2
1 −mω0x1x2 +

e2

4πε0|Z2| (3.132)
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Expanding the Coulomb interaction term in Z2 for small amplitude oscillations around the

equilibrium separation xc to second order gives

e2

4πε0|Z2| ≈ e2

4πε0

[
2

xc
− Z2

x3c
+

1

x3c
(Z2 − xc)

2

]

=

[
e2

2πε0xc
− 1

4
mω2

0x
2
c

]
+

3

4
mω2

0(Z2 − xc)
2 − 1

4
mω2

0(x1 − x2)
2

where we have used (3.130). Dropping the constant first term, which is equal to the rest

energy of the two-electron crystal, and introducing the coordinates Q1 := Z1 and Q2 :=

Z2 − xc, the Hamiltonian can be written as

H =

[
1

4m
P 2
1 +

1

m
P 2
2

]
+mω2

0Z
2
1 +

3

4
mω2

0Q
2
2 (3.133)

and thus separates into two independent oscillators

H = Hcm +Hrel =

[
P 2
1

2m1
+

1

2
m1ω

2
1Q

2
1

]
+

[
P 2
2

2m2
+

1

2
m2ω

2
2Q

2
2

]
(3.134)

with masses m1 = 2m and m2 = m/2 and frequencies ω1 = ω0 and ω2 =
√
3ω0, respectively.

The oscillatory motion in both modes is indicated by arrows in Fig. 3.15 a.The first part Hcm

describes the common mode oscillation at frequency ω0, which corresponds to both electrons

oscillating back and forth as if they were campled together. The second term Hrel is the

stretch-mode oscillation at frequency
√
3ω0 where the center of mass of the electrons remains

fixed but the inter-electron spacing oscillates around the equilibrium distance xc, which is

sometimes referred to as the breathing or stretch mode. Note that the common mode has zero-

point fluctuation Δ1 =
√

�/4mω0 while the stretch mode has Δ2 =
√

�/mω0

√
3.

Introducing the ladder operators for the kth mode

Qk =

√
�

2mkωk
(ak + a†k) , Pk = i

√
�mkωk

2
(a†k − ak) (3.135)

we can write the Hamiltonian in the usual harmonic oscillator form

H =
2∑

k=1

�ωk

(
a†kak +

1

2

)
(3.136)
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and the wave functions of the two modes in dimensionless form

ψ(k)
n (ξk) =

√
1

2nn!

(
1

π

)1/4

e−ξ2k/2Hn(ξk) (3.137)

where ξk = Qk/Q
(0)
k , with the oscillator length scale Q

(0)
k =

√
�/mkωk, and Hn(·) are the

Hermite polynomials. At a trap frequency of ω0/2π = 5 GHz, the two oscillators have sizes

Q
(0)
1 =

√
�

2mω0
≈ 43nm , Q

(0)
2 =

√
2�

m
√
3ω0

≈ 86nm (3.138)

compared to 61 nm for a single trapped electron in the same potential and at the same fre-

quency.

N = 3 Electron Case

The three electron case can be described in analogy to the N = 2 case by defining the collec-

tive coordinates

Z1 =
x1 + x2 + x3

3
, Z2 =

x3 − x1
2

, Z3 =
x1 − 2x2 + x3

6
(3.139)

After some algebra, the three-electron Hamiltonian can be written as the sum of three un-

coupled harmonic oscillators

H =
3∑

k=1

[
P 2
k

2mk
+

1

2
mkω

2
kQ

2
k

]
(3.140)

The lowest frequency mode Q1 = Z1 is the center-of-mass mode with the same frequency as

in the N = 2 electron case ω1 = ω0 but slightly heavier at m1 = 3m. The second mode

Q2 = Z2 − 51/3xc (3.141)

also has the same frequency as the stretch mode in the N = 2 case, ω2 =
√
3ω0, but four

times the mass m2 = 2m and different offset by a factor 51/3. The third term is the scissor

mode Q3 = Z3 with the highest frequency ω3 =
√

29/5ω0 and effective mass m3 = 6m.

As shown schematically in Fig. 3.15b, in the scissor mode the two outer electrons oscillate

together in one direction with the same amplitude while the center electron oscillates with

twice the amplitude in the opposite direction. The sizes of the oscillators at a fundamental
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Figure 3.16.: Simulated frequencies for the center-of-mass (red), stretch (blue) and scissor mode (green) in a
one-dimensional N = 3 electron chain as a function of voltage bias applied to the trap electrode.

trap frequency of ω0/2π = 5 GHz are

Q
(0)
1 =

√
�

3mω0
≈ 32nm , Q

(0)
2 =

√
�

2m
√
3ω0

≈ 30nm

Q
(0)
3 =

√
�

6
√

29/5ω0m
≈ 15nm (3.142)

As expected, the oscillators become smaller compared to the two electron case due to the

increased Coulomb interaction energy. We can simulate the trapping potential for a given

geometry using finite-element methods and extract the motional frequencies by fitting the

potential to a harmonic or slightly anharmonic oscillator potential (see section 3.3.3 for de-

tails on numerical methods used). Simulated frequencies of the three different modes for

a N = 3 electron chain are shown in Fig. 3.16 as a function of voltage bias for a trap with

dimensions w = 10μm d = 1μm and maximum helium level h = d. The oscillation frequen-

cies are generally in the range of tens of GHz and could potentially be tuned over a wide

band by changing the trap voltage over a few hundred mV. The frequencies scale like the

square-root of trap voltage, as expected from the single electron case (section 3.3.2).

Arbitrary Number of Electrons

The N = 2 and N = 3 electron cases generalize qualitatively to the case of N interacting

electrons in a parabolic potential. The lowest mode is always the center of mass mode where

the crystal oscillates like a rigid body at the fundamental trap frequency ω0. The next highest

mode is always the stretch mode where the displacement of each electron is proportional to
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its distance from the trap center x = 0. However, while qualitatively similar to the N = 2

and N = 3 cases, the normal modes for arbitrary numbers of electrons cannot be solved

for analytically anymore and we have to resort to numerical solutions. A general numerical

framework for finding the modes of an N electron crystal in a parabolic trap is presented in

appendix B, closely following the method used in Ref. [185] for one-dimensional ion chains

in Paul traps.

The Hamiltonian for N electrons in a parabolic potential of frequency ω0/2π coupled via

Coulomb interaction is given by

H =
N∑
i=1

p2i
2m

+

N∑
i=1

1

2
mω2

0x
2
i (t) +

1

2

N∑
i �=j=1

e2

4πε0

1

|xi(t)− xj(t)| = Hkin + V (3.143)

Using a Lagrangian formalism, this Hamiltonian can be transformed into an uncoupled os-

cillator form (see appendix B)

H =
N∑
p=1

[
P 2
p

2m
+

1

2
mω2

pQ
2
p

]
(3.144)

where Pp = m ·
�

Qp and the normal mode coordinates Qp can be found algebraically in terms

of the individual electron positions xj , j = 1, . . . , N . For N = 4 electrons, one finds that the

first two modes (p = 1, 2) are the center of mass and stretch modes already encountered in the

N = 3 case, both with the same frequencies as in that case, ω1 = ω0 and ω2 =
√
3ω0. The third

and fourth mode are different types of scissor modes with higher frequencies. Compared to

the N = 3 case, the normal mode oscillators generally have different masses and charges.

Furthermore. one finds that the equilibrium electron spacing decreases with trap population,

as expected. Note, however, that there is a limit to the number of electrons that can be stored

in a given confining potential as the transverse vibrational states become unstable. Above a

critical number of electrons, the electron crystal will adopt a zig-zag type configuration two

dimensions that minimizes overall energy, which has been studied in for ions in the context

of structural phase transitions using molecular dynamics simulations [187].

3.7.2 Electron Chain-Cavity Coupling

Just like in the single electron case, the oscillator frequencies of the electron chain modes

from section 3.7.1 can be tuned through the voltages applied to the center electrode of the
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trap shown in Fig. 3.15. We can simulate the exact potential and solve for the eigenenergies,

wave functions and the dipole matrix elements numerically, see section 3.3.3 for details on

the method. In analogy to the single electron trap case (section 3.4), the many-electron states

couple to the field in a transmission line resonator E via dipole interaction Hg = dk ·E where

dk = qkQk is the dipole moment of the k mode with qk being the effective charge of the

mode and Qk the coordinates of the mode, see section 3.7.1. The coupling strength of the

|ψ(k)
1 〉 → |ψ(k)

2 〉 transition of the kth transverse many-electron mode is given by the dipole

matrix element

�gk = 〈ψ(k)
2 |dk · E|ψ(k)

1 〉 = 〈ψ(k)
2 |qk · Qk · E|ψ(k)

1 〉
= qk

∫ +∞

−∞
ψ
(k)
2 (Qk) ·Qk · E‖(Qk)ψ

(k)
1 (Qk)dQk (3.145)

where E‖(Qk) is the electromagnetic field component along the transverse direction (parallel

to the electron chain) and ψ
(k)
j are the harmonic oscillator wave functions from section 3.7.1.

The coupling between a single electron crystal mode and the cavity field is then described

as usual by a Jaynes-Cummings hamiltonian

HJC = �ωr

(
a†a+

1

2

)
+ �ωk

(
b†kbk +

1

2

)
+ �gk

(
a†bk + ab†k

)
(3.146)

where ωk is the oscillator frequency of the kth mode. The effective mode charge in (3.145)

for the N = 2 electron case is q1,2 = 2e and for the N = 3 electron case q1,3 = 3e and q2 = 2e.

The coupling strength depends on the specific geometry and the magnitude of the electric

field component along the principal axis of the electron crystal, which can be obtained from

finite-element simulations of the geometry. We will look at this in detail for the specific case

of a DC-biased center pin resonator in chapter 7. In this design, the resonator itself forms

the many-electron trap and the vibrational modes are centered above the center pin of the

coplanar waveguide geometry.

3.7.3 Helium Curvature Effects

In the linear chain calculations of section 3.7.1 we have assumed a flat helium surface and

fixed electron position in the z direction of a0 ∼ 8 nm above the surface. In a uniform

holding field perpendicular to the surface, an electron bound to a curved surface of helium

experiences a restoring force that leads to oscillatory motion in addition to any harmonic os-
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Figure 3.17.: Helium curvature effects for single trapped electron: The helium curvature causes a restoring force
that attracts the electron to the channel center, corresponding to an oscillatory motion at a frequency determined
by the radius of curvature and the electric field.

cillation due to the parabolic trapping potential. The effective electron motion is determined

by a combination of the parabolic trap potential and the restoring force caused by the film

curvature.

To understand the origins of the curvature-induced oscillatory motion we start by consid-

ering the case of a single electron in a uniform, perpendicular DC holding field, as shown in

Fig. 3.17. The lateral one-dimensional motion of a single electron in a micro channel such as

the one shown in Fig. 3.17 is governed by [188]

H =
p2x
2m

+ V (x, z) =
p2x
2m

+ e · E⊥ · z(x) (3.147)

where E⊥ is the vertical DC holding field and the z coordinate is a function of the lateral

motion along x since the electron is bound to the curved helium film. In other words, the

vertical motion of the electron is constrained by the curvature of the helium film. Approxi-

mating the profile of the liquid surface across the gap by a semi-circular shape we have (see

section 2.3.4)

z(x) = Rc

⎛
⎝1−

√
1−
(

x

Rc

)2
⎞
⎠ ∼ x2

2Rc
(3.148)

where Rc = σ/ρgH is the radius of curvature (Note: x = 0 is at the lhs of the gap, x = w at

the rhs with w = 10μm being the width of the gap in Fig. 3.17). The total Hamiltonian for

motion parallel to the film surface can then be written as

H =
p2y
2m

+
p2x
2m

+
1

2
mω2

0x
2 (3.149)
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where the harmonic trap frequency was introduced

ω0 =

√
eE⊥
mRc

=

√
eE⊥ρgH

mσ
(3.150)

The resulting oscillatory motion in the x direction will be quantized if �ω0 � kBT . The

Hamiltonian is separable in x and y and the corresponding two-dimensional wave functions

are

Ψn(x, y) =
1√

π1/2�Lx2nn!
eikyye−x2/2	2Hn(x/�) (3.151)

These are plane waves in the longitudinal direction y and harmonic oscillator wave functions

in the transverse direction x. Here,

� =

√
�

mω0
(3.152)

is the characteristic length scale of the oscillator, ky = 2π/Ly with Ly being the longitudinal

channel size and Hn(·) the Hermite polynomials. Note that typically Ly � w in our device

geometries and hence the y motion can be regarded as unconstrained at the relevant energies.

The energy spectrum is given by

Eky ,n =
�
2k2y
2m

+ �ω0

(
n+

1

2

)
(3.153)

The confining effects in the x direction are caused by the external holding field E⊥ which

leads to a restoring force that moves the electron towards the center of the gap, i.e. the

minimum of the curved helium surface. Upon displacement by an amount x, the potential

energy increases by

V (x) =
eE⊥
2Rc

x2 (3.154)

and the motion will be oscillatory at frequency ω0/2π. From (3.150) we see that the transverse

motional frequency of a single electron depends on the radius of curvature like ∼ R
−1/2
c . To

keep the frequency constant as the radius of curvature increases, we have to increase the

holding field proportionally. In the geometry shown in Fig. 3.15, the electric field is not

perfectly uniform or orthogonal to the surface but one can expect to get similar effects due

to the curvature-restoration force. It is important to note that this oscillatory motion is in

addition to any quantized motion that results from the parabolic trap potential. However,

the curvature-induced oscillation frequencies are small at curvature radii on the order of the

channel width Rc ∼ 10− 50μm unless subject to large electric fields. For a typical curvature
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radius of Rc = 50μm a curvature-induced frequency of ω0/2π = 5 GHz would require

perpendicular fields of E⊥ ∼ 3× 103 V/cm or 300 mV/μm for a single electron.
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4 Experimental Setup and Device Fabrication

THE implementation of a circuit QED setup for electrons on helium experiments requires

a combination of a wide variety of techniques and methods, including microwave,

RF and DC engineering, nano- and micro-fabrication of superconducting devices and low

temperature physics and cryogenics. The superconducting circuits that define the cavity

and electron traps are fabricated via optical and electron-beam lithography on sapphire sub-

strates. The resulting 2× 7 mm chips are mounted in a hermetically-sealed, superfluid leak-

tight sample cell at the 15 mK base stage of a dilution refrigerator. Helium is supplied to

the cell in a controlled fashion through a capillary tube supply system. Electrons are gener-

ated via pulsed thermionic emission from a tungsten filament and the motion and energy of

the electrons on the superfluid surface are controlled via submerged DC gate electrodes on

the chip. The electron-cavity system is probed in transmission measurements at microwave

frequencies and nano-Watt powers. The measurement instrumentation is controlled using

custom software written in Python and Labview. This chapter provides a discussion of the

various components of our circuit QED setup and the fabrication methods used. Section 4.1

starts with an overview of the cryogenic measurement setup, with particular focus on the

microwave and DC circuitry, the capillary helium supply system, the sample cell and the

low-energy electron sources. In section 4.2 we review phase-sensitive detection and homo-

dyne and heterodyne measurements and section 4.3 concludes with a discussion of various

nano- and micro-fabrication methods.

4.1 Measurement Setup

This section provides a discussion of the measurement and electron control setup used in our

experiments. Starting with an overview of the setup in section 4.1.1, we discuss cryogenics

and filtering and the RF, microwave and DC measurement circuitry assembled for this thesis.
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Section 4.1.2 focuses on the capillary tube helium supply setup and section 4.1.3 provides

details on the hermetic sample cell and other superfluid leak-tight components used at base

temperature. Finally, section 4.1.4 discusses the physics and implementation of the low-

energy cryogenic electron sources used in our experiments.

4.1.1 Setup Overview

The experiments presented in this thesis were carried out in a pulse-tube cooled dilution

refrigerator by Oxford Instruments (models DR 200 and Triton 200), capable of reaching base

temperatures of T � 15 mK at cooling powers of 1 μW. In addition, a pumped continuous

flow cryostat by ICE Oxford with a base temperature of 1.4 K was used for testing many of the

individual components such as the capillary helium supply lines and the filament electron

sources. A simplified diagram of the measurement and control setup in its entirety is shown

in Fig. 4.1. Annotated images of the lower stages of the cryostat and the room-temperature

signal synthesis and DC instrumentation are shown in Fig. 4.2. In this section, we will give

an overview of the setup and briefly walk the reader through the different stages, starting at

room temperature down to base. Individual setup components are discussed in detail in the

following sections. The input/output lines of the setup can be roughly segmented into three

parts, indicated by different colors in Fig. 4.1: (1) RF and microwave measurement circuit for

cavity transmission measurements (black), (2) Electron generation and DC control circuits

(magenta) and (3) Capillary helium supply system (yellow).

Cryogenics and Filtering

The Oxford DR200 and Triton 200 pulse-tube cooled dilution refrigerators operate using two

separate cycles, a pre-cooling and a dilution cycle, and consist of five different tempera-

ture stages, as indicated in Fig. 4.1 by dashed colored boxes with approximate temperatures

shown on the l.h.s and cooling powers on the r.h.s. In contrast to conventional cryostats, the

precooling of the 3He/4He mixture in a ’dry fridge’ is achieved using a pulse-tube cooler

(PTC) rather than a liquid 4He bath. The dilution refrigerator does therefore not require the

use of any external cryogens, apart from the liquid nitrogen trap outside the refrigerator.

The PTC is a two-stage cryo-cooler whose first stage reaches a temperature of ∼ 70 K while

the second stage reaches about 4 K (see also Fig. 4.1). During pre-cooling, the circulating
3He/4He mixture is first purified in a charcoal trap which is thermally connected to the first
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Figure 4.1.: Measurement and control setup for circuit QED experiments with electrons on helium, mounted
in a pulse-tube cooled dilution refrigerator. The different temperature stages of the cryostat are indicated by
colored boxes, together with approximate temperatures (l.h.s) and cooling powers (r.h.s). DC lines for electron
generation, trapping and manipulation are shown in magenta while MW and RF lines for cavity transmission
measurements are shown in black. The sample is mounted in a hermetic cell (see section 4.1.3) at base to which
4He is supplied through a capillary tube line (yellow, see section 4.1.2) The MW and RF drives are synthesized at
room temperature and transmitted to the sample via coaxial cables after attenuation at 4K and base. The signal
transmitted through the cavity is passed through cryogenic isolators before amplification by a low-noise ampli-
fier at 4K. Back at room-temperature, the signal is further amplified and mixed-down to 1 - 10 MHz using an IQ
mixer, at which point it is acquired digitally in a data acquisition card. The DC gate signals for electron control
are low-pass filtered to 0.5 GHz using eccosorb filters at 4K and base. Electrons are generated thermionically by
applying voltage pulses to a tungsten filament (see section 4.1.4).

107



4. Experimental Setup and Device Fabrication

stage of the PTC and is then pre-cooled by a heat exchanger at the second stage of the PTC

to about 4 K. In the condensing phase, milli-Kelvin temperatures are reached by the dilution

of liquid 3He into 4He like in a regular cryostat. Fully automated cooldowns to ∼ 15 mK

are possible in which the switch between pre-cooling and condensing phase is handled au-

tomatically by the software. For more details on the design and operation of cryostats and

dry dilution refrigerators see Refs. [125, 189, 190].

Probing the interaction of electrons on helium with superconducting cavities down to the

few photon level requires signals of extremely low powers which can only be generated,

modulated and resolved by careful filtering, amplification and attenuation. The system is

driven and measured in transmission at frequencies of 1 - 10 GHz through coaxial cables

which are thermally anchored at each stage of the dilution refrigerator. At those frequencies,

thermal Johnson noise can be significant down to a few hundred mK. To suppress thermal

photons from the higher stages from reaching the sample at base, we use 20 and 30 dB

of attenuation on the RF input line at 4 K and base, respectively. In addition, the coaxial

cables themselves give some frequency-dependent attenuation, depending on their lengths

and material properties. At ν ∼ 5 GHz total cable attenuation in our setup is typically

about 10 dB for semi-rigid stainless steel cables (UT 85-SS), giving a total attenuation of ∼ 60

dB before the RF drive reaches the sample input. Depending on the cavity quality factor,

the transmitted power P � n�ω0κ can be extremely low for small photon numbers n. To

measure such small signals, a cryogenic low-noise amplifier (Low Noise Factory LNC4_8A) is

used on the output line at the 4 K stage, providing about 43 dB of gain at 5 GHz. Two in-series

cryogenic isolators (QuinStar CWJ1019-K414) are used at base instead of regular attenuators

such that thermal photons from the higher temperature stages (S12) are attenuated before

reaching the sample output while the small signal from the cavity (S21) is transmitted nearly

without loss. The isolators provide about 30 dB of isolation (S12) each in the 4-8 GHz range.

To minimize the attenuation of the signal between the cryogenic isolators and the input of the

amplifier, we use superconducting Nb coaxial cables on the output line between base and

4K stage, which provide good thermal isolation and small electrical attenuation. At room

temperature, two more stages of amplification are used before the signal is mixed down (see

below).

The filtering of the DC and low-frequency lines (magenta in Fig 4.1) used for electron

generation, trapping and tuning can be achieved using low-pass filters which provide atten-

uation at RF and microwave frequencies but not at DC. We can get away with this since most
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of the thermal noise power is located at RF frequencies and the required bandwidth is much

smaller than for the cavity transmission signals. The filament electron source (section 4.1.4)

is biased through DC wires (Nb-Ti loom), while the trap and gate electrodes are controlled

through coaxial cables, which allows applying additional RF pulses through the gates using

a bias tee if needed (not shown in Fig. 4.1). The trap bias lines are filtered by custom-made

Eccosorb filters at the 4 K and base stages with 3 dB cutoffs of ∼ 600 MHz and > 40 dB

attenuation at 5 GHz, see Refs. [155, 191] for details on design and construction of this type

of filter. The various filters and attenuators serve the dual purpose of thermally anchoring

the coaxial cables to the stages of the cryostat, in particular they thermalize the center pins

of the cables.

RF and Microwave Measurement Circuit

At room temperature, the microwave signals are generated and modulated on the input side

before entering the cryostat (upper left in Fig. 4.1) and subsequently down-converted and

analyzed after amplification on the output side (upper right in Fig. 4.1). This signal synthe-

sis and readout infrastructure is common to many circuit QED experiments and discussed in

detail in Refs. [48,154]. Hence, we limit ourselves to a brief description here, with the digital

homodyne and heterodyne signal processing principles reviewed in section 4.2. Microwave

signals for cavity transmission measurements are generated by an Agilent E8257D analog

signal generator with an operating range of 250 kHz to 20 GHz. DC blocks are used at the

outputs of all generators to maintain a common experiment ground. On the output side, the

signal is down-converted and mixed with the LO signal (offset by 1 - 10 MHz from the orig-

inal RF signal) after two stages of room temperature amplification. Before sampling in the

data acquisition card (ADC), the down-converted 1 - 10 MHz signal is further filtered (DC -

22 MHz low-pass filters by Mini-Circuits) and amplified by a DC - 350 MHz pre-amplifier by

Stanford Research Systems. The down-conversion and demodulation is necessary to acquire

the amplitude and phase information of the signal digitally since no commercial acquisi-

tion boards exist that can stably acquire at 5 - 10 GHz frequencies. Note that all microwave

sources and generators are coherent and phase-locked. A 10 MHz rubidium frequency stan-

dard by Stanford Research Systems is used as a frequency reference to all RF sources and the

data acquisition card.
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Electron Generation and DC Control Circuits

To control the DC potentials of the single- and many-electron trap electrodes, high-stability

DC sources (Yokogawa 7651 and GS200) are used. As mentioned before, the DC lines are

filtered by Eccosorb filters at 4 K and base, low-passing the gate signals to ∼ 600 MHz. A

pulsed, voltage-biased tungsten filament is used to generate electrons via thermionic emis-

sion, which is discussed in detail in section 4.1.4.

4.1.2 Capillary Lines and Helium Supply System

Supplying 4He gas at room temperature to a sample cell at the 15 mK base stage of a cryo-

stat, where it condenses into superfluid form, poses a number of practical challenges. The

unique properties of superfluid helium (see section 2.3) such as its vanishing viscosity and

the formation of mobile van-der-Waals films make it especially difficult to transport and con-

tain helium across large temperature gradients, in particular when non-permanent interface

seals are required. Containing a fixed volume of superfluid in a sample cell at base tem-

perature can be achieved using hermetically-sealed components with conventional indium

joints, see section 4.1.3 for details. In this section we briefly discuss the capillary tube setup

that is used to supply helium from room temperature to the sample cell.

The helium supply system built for this thesis (shown schematically in yellow in Fig. 4.1

with images in Fig. 4.2) consists of a custom liquid nitrogen (LN2) trap and pumping line

at room temperature and a series of stainless steel capillary tubes by IDEX Stainless Steel

Tubing, mounted at each stage inside the cryostat and connected to the sample cell at base.

The supply line is evacuated prior to each cooldown and room temperature helium is first

passed through the LN2 trap to remove any residual air and other contaminations prior to

entering the cryostat. In a typical experiment, helium is supplied in gas form in small incre-

ments of size V � 0.01 cm3 at 1 atm pressure, which is defined by the dead volume between

two in series KF16 valves mounted at the top of the cryostat (upper right in Fig. 4.1). The

stages of the dilution refrigerator span four orders of magnitude in temperature (20 mK -

300 K) with cooling powers ranging from 3μW to several hundred mW. All coaxial lines and

microwave components must be properly heat sunk at each stage and care must be taken

to keep the thermal load below the cooling powers of the individual stages as indicated in

Fig. 4.1. As discussed in section 2.3, superfluid helium forms a saturated van-der-Waals of

about 30 nm thickness coating all surfaces, including the inner walls of the sample cell and
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Figure 4.2.: Annotated images of the cryogenic setup and control instrumentation at room temperature: (a)
Lowest three stages of the dilution refrigerator (700 mK, Still and 15 mK base from top to bottom), showing
the stainless steel capillary line mounted on copper posts and the RF coaxial lines including attenuators. (b)
Measurement and control instrumentation at room temperature, showing the DC and low-frequency voltage
sources used for electron gate control and filament excitation (top), the Rubidium 10 MHz frequency reference,
AWG for card triggering and the room-temperature amplifier (center) and the RF and LO generators (bottom).

the capillary tube. Due to the vanishing viscosity this film is mobile and creeps towards

regions of higher temperature where it eventually transitions into gas form. In the case of

a capillary tube connected to a large sample volume at base temperature, this means that

the inside of the tube will be covered with superfluid, potentially creating a thermal short

between different stages of the cryostat. This is especially problematic due to the exception-

ally high thermal conductivity of liquid helium, see section 2.3.1. In addition, low-frequency

mechanical vibrations due to the pulse tube and turbo pump mounted at the top of the cryo-

stat can propagate along the semi-rigid capillary and lead to further heating. To minimize

the overall heat load, the capillary is hard-soldered 1 into spiral grooves on copper posts

mounted at each stage, which serve both to thermalize the capillary and to stabilize it me-

chanically. Annotated pictures of the capillary tubes, copper posts and the coaxial lines in

the cryostat are shown in Fig. 4.2 a. As can be seen, significant excess length of capillary

tube (20 - 50 cm) is left between successive stages to account for thermal expansion and to

1We use silver solder (75% Ag, 25% Cu), silver brazing paste (No. 601BA411) and boron modified flux by
Superior Flux & Mfg. Co. and Nicrobraz white stop-off mixture, soldered at about 1200◦ F with a torch.
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Figure 4.3.: Annotated images of the hermetic sample cell, capillary lines and interfaces and tungsten filament
electron source: (a) Bottom part of the cell, showing the cylindrical helium reservoir of radius r = 3.175 mm and
depth H = 5 mm and the 2×7 mm superconducting chip on a PC board with a Copper shim on top, (b) Top half
of the cell, showing the tungsten filament mounted on a PC board with the bias pads connected to SMP bullets,
(c) Top and bottom half before sealing, (d) Top view of indium-sealed cell, showing hermetic SMA connectors
and the 4He supply capillary hard-soldered into the cell, (e) Capillary tube interfaces, (f) Optical microscope
picture of a tungsten filament electron source with d ∼ 25μm diameter.

further mitigate the temperature gradient across stages. Different sections of capillary tube

are connected using custom stainless steel interfaces, shown in Fig. 4.3 e. The inner diameter

of the capillary tube should be kept small to reduce heat load, but at the same time large

enough to avoid clogging of the line due to residual air or helium accumulations in the line.

The optimal diameter of 0.04 inch (1.016 mm) was found by trial and error (no excessive

heat load on the stages and no plugs observed). Smaller diameters (< 0.76 mm) were found

to result in frequent plugs. In the final configuration, the dilution refrigerator is capable of

maintaining base temperatures of 15 - 20 mK with a completely helium-filled sample cell

and capillary tube. No superfluid leaks were found in the capillary supply system in over

30 consecutive cooldowns. Film burners have been found not to be necessary but could be

useful in the future to increase the capillary diameter and decrease the length of the line.
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4.1.3 Hermetically-Sealed Sample Cells

Containing a fixed volume of superfluid helium in a sample cell at base temperature poses

a number of experimental challenges, some of which were already pointed out in section

4.1.2. Due to its vanishing viscosity, helium in the superfluid phase can flow through narrow

constrictions with zero flow resistance, penetrating even nm-size pores [192, 193]. A well-

established method of making cryogenic seals between interfaces is to use indium metal O-

rings [194, 195]. Indium is a soft metal at room temperature and when compressed between

two solid surfaces fills any gaps between them, creating a reliable gas and liquid seal that

retains its integrity down to mK temperatures. We have designed and constructed a sample

cell made of copper that consists of two parts which can be mated together with an indium

seal. Pictures of a sample cell are shown in Figs. 4.3 a (bottom part), b (top part) and c.

The cell design is inspired by the "octobox" introduced in [155]. The superfluid seal between

top and bottom is made by squashing a 0.762 mm (30 mil.) diameter indium wire ring with

overlapping ends between the two surfaces. The surfaces are pressed against each other by

evenly and progressively tightening stainless steel screws. The helium-supply capillary is

hard-soldered into a small hole at the top of the sample holder, see Fig. 4.3 d, using the same

procedure as in section 4.1.2. The sample cell also contains eight hermetic SMA connectors

(GPO Male FD to GPO Male FD Thread-in Hermetic Feed-thru by Corning Gilbert, DC -18

GHz) for DC, microwave and RF signal input and output, see Fig. 4.3 d. The connector

feedthroughs each have their own indium seal, which remains unbroken once the connectors

have been mounted. Note that the connectors are nominally only specified to be vacuum-

tight (down to 77 K), but we generally have found them to be superfluid leak-tight down

to 10 mK. This leaves only a single indium joint which has to be remade when exchanging

samples between experiments. Our hermetic setup has proven to be extremely reliable and

robust with no detectable superfluid leaks in well over 30 cooldowns.

4.1.4 Low-Energy Cryogenic Electron Sources

There is a wide variety of methods for generating large numbers of free electrons, including

photoemission from Zinc and other metals [196], Fowler-Nordheim emission from a sharp

conducting tip [197], corona discharges [198], nuclear beta decay via ionization of helium

atoms and thermionic emission from filaments [199–201]. However, not all techniques are

suitable for operation in cryogenic environments where any excess heating needs to be min-
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Figure 4.4.: Experimental IV curve of a thoriated tungsten filament with diameter 12.5μm operated in the vapor
phase of helium at T ∼ 1.3 K, taken from Ref. [201]. The dashed curve indicates the IV curve for a filament
operated in vacuum, where the slope is the resistance R of the filament. The data points shown in red represent
measurements in constant voltage operation mode, with the corresponding constant current mode indicated by
the dotted line. The low and high resistance branches and the negative resistance region are clearly visible, with
critical current and voltage indicated by Ic and Vc, respectively.

imized due to limits in cooling power. For experiments with electrons on helium, another

important practical constraint comes from the relatively low electron injection barrier of 1

eV for superfluid helium. In order to form bound surface states, electrons have to reach the

helium surface with a kinetic energy lower than the injection barrier needed to penetrate the

superfluid.

For the experiments presented in this thesis we use a low-energy electron source in which

free electrons are generated by thermionic emission from a voltage-pulsed tungsten filament.

Tungsten filaments have been used as reliable and robust sources in electrons on helium ex-

periments for decades, although the physics behind them was not well understood until

recently [201, 202]. Remarkably, a tungsten filament covered by a superfluid helium film

(or immersed in vapor phase helium) can be operated at temperatures of several thousand

Kelvin, emitting electrons by thermionic emission in a cryogenic environment that never-

theless remains at temperatures T < 1 K. The reason for this behavior lies in a complex

combination of electrical properties of the filament and heat transport mechanisms in super-

fluid helium [201], which is briefly discussed in the following. Applying a voltage across

a tungsten filament leads to Ohmic heating and heat dissipation via blackbody radiation.

As the voltage is increased, the center of the filament eventually becomes glowing hot at

temperatures of T � 1500 − 2500 K and starts emitting electrons following a Richardson
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law [201, 202]

J =
4πmek2B

h
(1−Rs)T

2e−φ/kBT (4.1)

where J = I/A is the current density emitted from the surface area A, φ is the work function

of the material, Rs the electron reflection coefficient of the emitting surface and kB and h are

Boltzman’s and Planck’s constants, respectively. Tungsten is most commonly used because

of its relatively low work function of φ = 4.53 eV and high melting temperature of Tm = 3695

K. Other materials such as thoriated or cesiated tungsten have been used by experimenters

as well because of their lower work functions (2.7 and 1.0 eV, respectively), although they

generally also have lower melting temperatures and are more difficult to handle [202]. A

filament covered by a film of superfluid helium or operated in the vapor phase of liquid

helium has simple ohmic IV characteristics below a certain critical voltage Vc, similar to a

filament in a conventional vacuum tube. However, above Vc the IV curve becomes strongly

non-linear and branches out into a high resistance curve. Once the filament bias reaches Vc

in constant voltage mode, the current falls back to a lower value (i.e. a negative resistance

region) and the filament starts emitting electrons [201]. Electron emission increases with

increasing voltage above Vc as the wire glows hotter, similar to electron emission from a

filament in a vacuum tube. The value of Vc ultimately depends on the material, length and

diameter of the wire.

The behavior of filaments immersed in bulk or thin-film superfluid helium is in stark con-

trast to filaments operated in vacuum, which show no negative resistance branches. While

electron emission takes place both in vacuum tubes and for filaments immersed in liquid

helium, the difference lies in the extremely efficient heat transport mechanisms for the im-

mersed helium case. An example of a measured IV curve of a filament in vapor phase he-

lium taken from Ref. [201] is shown in Fig. 4.4. Biased below Vc, the filament is on a low

resistance branch of operation, where it is cool and no measurable electron emission takes

places. In this state, heat is removed from the filament in a highly efficient way since it is

in direct contact with superfluid helium, which has the highest known thermal conductivity

of all substances. The ohmic behavior below Vc is similar to that of a filament in vacuum.

Above Vc, the behavior changes abruptly as the filament switches to a high resistance branch

of operation where the distributed resistance of the wire is high and it emits electrons at a

temperature of several thousand K. The occurrence of low and high resistance branches was

explained by Silvera and Tempere in terms of a first-order phase transition as a consequence
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Peak-to-peak Amplitude, Vf 3.0 - 4.2 V
Frequency, νf 110 - 120 kHz
Pulse Duration, τ 20 - 40 ms
Pulse Delay, Δt 0.25 - 1 s
DC offset, Voff - 0.1 to - 0.5 V
Number of pulses, Np 5 - 20

Table 4.1.: Typical tungsten filament biasing parameters for thermionic electron emission. The filament is oper-
ated in pulsed mode where short voltages pulses of duration τ are applied to the filament using an Agilent AWG
33259A arbitrary waveform generator. The pulse duration is set by the number of burst cycles and the frequency
and the peak-to-peak amplitude is adjusted according to the critical voltage of the filament, see discussion in
text.

of changes in the mode of heat transport in superfluid helium [201]. For filaments immersed

in superfluid helium, it was shown that a stable vapor sheath of radius ∼ 100μm forms

around the filament above Vc to insulate it from the superfluid [199, 200]. The vapor sheath

has a much lower thermal conductivity than the superfluid and the filament temperature

jumps to a higher value once the liquid can no longer carry the heat and starts to evaporate.

Images of tungsten filament electron sources used in our experiments are shown in Fig. 4.3 b

and f. Our filaments have diameters of d ∼ 25μm, typical room temperature resistances of

R ≈ 15− 20Ω and critical voltages for electron emission of Vc ≈ 3.0− 4.2 V. The ends of the

filament source are soldered to two copper pads on a PC board, fabricated by wet etching.

Contact resistances from the leads have been found to be negligible in this configuration. As

can be seen in Fig 4.3 b, the pads are connected to the coaxial bias lines via SMP bullets, with

the PC board mounted on the top wall of the sample cell approximately 4.5 mm above the

chip. In order to minimize heat load during electron emission, the filament is operated in

pulsed voltage mode, with a small negative DC offset with respect to the trap electrodes on

the chip. We use a pulsed arbitrary waveform generator (Agilent AWG 33250A) and bias the

filament with sine voltage waves of frequency νf = 100− 120 kHz and peak-to-peak ampli-

tudes of Vf ∼ 3.5 − 4.5 V, depending on the critical voltage of the filament. The generator

is triggered at ∼ 2200 burst cycles, which at νf = 110 kHz corresponds to voltage pulses of

τ = 20 ms duration. For electron emission, we typically pulse the filament multiple times

with delays of Δt ∼ 0.5 s between pulses to temporarily increase the vapor pressure in the

sample cell, which helps to decrease the electron kinetic energy after emission. A C = 1.68μF

capacitor serves as a bias tee, allowing us to apply additional DC offsets to the filament and

the pads through the same lines. A summary of typical filament parameter ranges is given in

Tab. 4.1. Here, the pulse amplitude Vf is primarily set by the critical voltage of the filament,

while the pulse duration and number of pulses influence the amount of heating in the cell.
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The electron energy can be controlled both by changing the DC offset Voff between filament

and on-chip electrodes as well as by changing the pulse delay Δt. Shorter delays lead to

higher temporary increases in vapor pressure and hence lower electron kinetic energy. As

discussed in more detail in the context of density measurements in chapter 6, we have found

surface electron densities to depend somewhat on all of these parameters. The optimal set

of parameters for a desired surface density varies from filament to filament because of small

differences in resistance and length. In addition, the density also depends on the superfluid

film thickness. Fortunately, the parameter range was found to be quite wide and installing

a new filament typically requires only a short characterization sequence. We find that elec-

trons can be loaded into the chip region successfully at the 15 mK base temperature of the

cryostat, implying that the electron kinetic energy is sufficiently reduced before they reach

the helium surface after emission from the filament. Additional pre-heating of the sample

cell to T ∼ 1 K prior to electron emission is typically reported to be necessary to temporarily

increase the vapor pressure and cool the emitted electrons by collision with helium atoms,

see e.g. [101]. Filament pulsing and electron emission lead to small temporary increases in

base temperature of 40 - 80 mK, but the system usually cools back to 15 mK within a few

minutes.

4.2 RF, Microwave and Audio-Frequency Signal Process-

ing

In this thesis electrons on helium have been measured and detected both at audio (10 - 100

kHz) and microwave frequencies (4 - 8 GHz). The Sommer-Tanner electron detection and

density measurements presented in chapter 6 were carried out at audio frequencies and

are based on detecting small currents of a few pA induced on submerged electrodes. The

circuit QED detection presented in chapter 7 on the other hand is based on the coupling of

collective excitations of the electron system to the quantized electromagnetic field in a cavity.

Even though the underlying physical coupling mechanisms to the readout devices are quite

different in the two experiments, the measurements in both are based on the same principle

of phase-sensitive detection. This section provides a brief review of lock-in amplification

and homo- and heterodyne detection principles.
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4.2.1 Phase-Sensitive Detection and Lock-in Amplification

Lock-in amplifiers are designed to detect and measure small AC current and voltage signals,

down to a few nA or nV, even in the presence of noise sources many orders of magnitude

larger than the signal. The underlying technique is known as phase-sensitive detection in

which the component of the signal at a specific reference frequency and phase is singled out.

Noise signals at frequencies other than the reference frequency are rejected and do not affect

the measurement. Phase-sensitive detection allows measuring the signal of interest with an

extremely small bandwidth, much smaller than the best band pass filters can achieve. The

currents induced by capacitive coupling of a two-dimensional electron system on helium to

submerged planar electrodes (chapter 6) are extremely small (pA or less) for our trapping

geometries and thus require a lockin-type measurement.

To perform a lock-in measurement, a frequency reference is required. Typically, the exper-

iment is excited at a fixed frequency from an oscillator or function generator and the lock-in

amplifier then detects the response from the experiment at the reference frequency by mix-

ing the experiment signal with the reference signal. For the Sommer-Tanner experiments of

chapter 6, a SR830 DSP lock-in amplifier by Stanford Research Systems was used where the

excitation signal is provided by an internal oscillator (50 mHz to 100 kHz) and an internal

lock-in reference gives the reference signal for mixing. The RF and microwave measure-

ment setup of section 4.1 can be thought of as a lock-in amplifier "on steroids" operated at

microwave frequencies.

Let the experiment excitation signal be a sine wave of the form VS sin(ωSt + θS) and the

corresponding reference signal be VR sin(ωRt + θR). The lock-in amplifier amplifies the ex-

periment signal and multiplies it by the reference using a phase-sensitive detector (PSD).

The output of the PSD is simply the product of the two sine waves

VPSD = VS · VR · sin(ωSt+ θS) sin(ωRt+ θR) (4.2)

which can also be written as

VPSD =
1

2
VSVR {cos ([ωS − ωR]t+ θS − θR)− cos ([ωS + ωR]t+ θS + θR)} (4.3)

The PSD output therefore consists of two AC signals, one at the difference and the other

at the sum frequency of the signal and reference. If the output signal is passed through a

118



4. Experimental Setup and Device Fabrication

low-pass filter, the AC components of the signal are removed and in general nothing will be

left. However, if the signal and reference frequencies are equal ωS = ωR, called homodyne

detection, we have

VPSD =
1

2
VSVR cos(θS − θR)− 1

2
VSVR cos(2ωSt+ θS + θR) (4.4)

If this is passed through a low-pass filter with cutoff < 2ωS , the AC component is removed

and we end up with a pure DC signal proportional to the experiment signal amplitude VS ,

VPSD =
1

2
VSVR cos(θS − θR) . (4.5)

The combination of a PSD and a low-pass filter thus only detects signals whose frequencies

are very close to the reference frequency ωS ≈ ωR. Noise at frequencies far away from the

reference are attenuated by the low-pass. On the other hand, noise at frequencies close to the

reference will result in low frequency AC outputs from the PSD whose attenuation depends

on the bandwidth and roll-off of the low-pass filter. For the lock-in principle to work, the

reference must be phase-locked to the excitation signal since otherwise the phase difference

θ = θS − θR = f(t) is subject to drifts and will be a function of time. Lock-in amplifiers

therefore use a phase-locked loop (PLL) which locks the internal reference oscillator to an

external or internal excitation source (a signal generator) with a fixed phase shift θ. Since the

PLL actively tracks the excitation signal, phase drifts do not affect the measurement. Most

commercial lock-in amplifiers have a built-in signal generator that is always phase-locked to

the internal reference oscillator.

The output of the PSD-low pass filter combination (4.5) can be controlled by adjusting the

phase difference θ between signal and reference. If θS = θR, we have VPSD = (1/2)VSVR.

Conversely, if θ = π/2 the output will be zero. In order to be able to measure the 90◦ phase-

shifted signal as well, lock-ins usually have a second PSD-low-pass filter combination in

parallel to the first PSD. This parallel PSD mixes the signal with the reference oscillator signal

shifted by 90◦, i.e. VR sin(ωRt+ θR + π/2). The filtered output of the second PSD is then

V
(2)
PSD =

1

2
VSVR sin(θS − θR) ∼ VS sin θ . (4.6)

Hence, in combination with the output of the first PSD, we get two output signals, one

proportional to cos θ and the other one to sin θ. These two outputs are called the quadratures
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of the signal

I = VS cos θ , Q = VS sin θ (4.7)

where I is the in-phase and Q the out-of-phase component. The magnitude and phase of the

signal can then be obtained from

R =
√

I2 +Q2 = VS , θ = arctan(Q/I) (4.8)

as desired. In the audio-frequency electron measurements presented in chapter 6, the elec-

tron induced currents are almost purely capacitive in nature and hence most of the signal

lives in the out-of-phase component.

4.2.2 Heterodyne and Homodyne Detection

The measurement setup used in most Yale circuit QED experiments, including the ones pre-

sented in this thesis, is based on the phase sensitive detection technique discussed in the

previous section. In a typical transmission measurement, the signal from the RF generator

(upper left in Fig. 4.1) is used to drive the cavity at frequency ωRF. The returning signal is

then mixed in an IQ mixer with the 0◦ and 90◦ phase-shifted local reference oscillator (LO)

signals at frequency ωLO. The IQ mixer thus produces two output signals, the products of

the experiment signal At sin(ωRFt + φt) with the LO signal and the π/2 phase-shifted LO

signal at ωLO. Like in section 4.2.1, the two output signals are low-passed such that we get

the two quadratures

It = At cos(ωIFt+ φt) , Qt = (At + εa) sin(ωIFt+ φt + εφ) (4.9)

where ωIF = ωRF − ωLO and εA and εφ account for small imbalances between the 0◦ and the

90◦ phase-shifted arms of the mixer. Like in a regular lock-in amplifier, there are in general

two types of measurements, homodyne (ωIF = 0) and heterodyne detection (ωIF �= 0). In either

case, the signal of interest is down-converted by means of the IQ mixer, which makes it easier

to sample and process. Homodyne detection produces pure DC signals (two quadratures of

the form (4.7)) as the final output from which the phase and amplitude of the signal can be

extracted digitally via (4.8). The down-conversion to DC is done by the hardware in that case

and averaging and conversion to phase and amplitude can be done digitally directly from

that signal. Unfortunately, DC signals are much more prone to 1/f noise and slow drifts.
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In a heterodyne measurement, RF and LO frequencies are typically offset by 1 - 10 MHz to

get an intermediate signal at frequency ωIF at the output of the mixer. For non-zero ωIF, the

conversion to DC can be achieved digitally rather than in hardware. We sometimes refer to

this as digital homodyne [44]. The amplitude At and phase φt of the signal can be extracted

using either one or both of the two quadratures in (4.9) for ωIF �= 0. In the first method,

referred to as single-channel digital homodyne, we keep only one of the quadratures and mix

it down digitally. Low-passing is achieved via integration of the signal over one period of

the IF frequency T = 2π/ωIF, which yields the averages of both amplitude At and phase

φt. This method has the advantage of being insensitive to imbalances and offsets between

the two arms of the IQ mixer since only one branch is used, but it has the downside that

the bandwidth is reduced to the IF frequency ωIF [44]. In order to take the full bandwidth

of the IQ mixer, both branches need to be used, which is referred to as dual-channel digital

homodyne. In this method, one can extract the full amplitude and phase information from a

single IQ point rather than a whole IF period. The disadvantage is that we are now sensitive

to imbalances in the arms of the mixer. In this thesis, both single- and dual-channel digital

homodyne have been used for the cavity measurements presented in chapters 5, 6 and 7.

4.3 Nano- and Microfabrication of Superconducting De-

vices

One of the key advantages of circuit quantum electrodynamics lies in the ability to engineer

many of the system parameters (transition frequencies, coupling strengths, quality factors)

using well-established nano- and micro-fabrication techniques similar to those used in to-

day’s classical silicon-based processors. In this thesis, we use a variety of advanced fab-

rication techniques for superconducting resonators and electron traps. The fabrication of

devices for electrons on helium experiments is very much analogous to those used in con-

ventional circuit QED experiments [44, 45, 203]. There are, however, a number of additional

challenges such as the need for thicker metallization layers (800 nm - 1 μm vs. 150 - 200 nm),

which set the micro-channel geometry, the requirement of insulating overlaps and long, nar-

row constrictions to guarantee electron confinement and the need for multi-layer processes

to achieve different metallization film thicknesses for high aspect ratio traps. This section

provides an overview of the nano- and micro-fabrication methods used to address these
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Figure 4.5.: Optical and electron scanning microscopy images of superconducting devices fabricated by two-
layer optical lithography (a - c) and two-layer electron beam lithography (d - f). (a) DC-biased center pin waveg-
uide with Nb ground planes of 700 nm thickness and a 40 nm thick Al center pin (false-colored in magenta),
(b) Constriction gate for electron confinement, (c) Large micro-channel electron reservoir, (d) Single-electron
quantum dot formed by a 40 nm Al center pin, 800 nm Nb ground planes and a 40 nm Al gate electrode, (e) Few-
electron trap electrode fabricated next to a center pin, (f) Large-scale Sommer-Tanner micro-channel geometry,
serving as a reservoir for a single-electron trap. See text for details on fabrication recipes.

challenges.

Dielectric Substrate

The dielectric substrate used for all devices presented in this thesis was sapphire. Silicon and

thermally oxidized silicon have also been used for test devices. Sapphire has an anisotropic

dielectric constant that depends on the direction of the cut with respect to the principal axes

of the crystal. Sapphire has a hexagonal lattice structure and the principal planes are c-plane

(cut parallel to the bottom of the hexagon), a − b plane (cut length-wise) and r-plane (cut

diagonally). Most of the wafers used for our experiments are c-plane sapphire of thickness

500 μm with a dielectric constant of εsub = 9.4. Sapphire cut along the a-b plane has a slightly

higher dielectric constant of εsub = 11.5. The r-plane dielectric constant is in between those

two values but is difficult to determine exactly.

Coplanar Waveguide Resonators

The inductively- and capacitively coupled coplanar waveguide resonators used in our exper-

iments are fabricated using hard-contact optical lithography on sputter-deposited Nb films.
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A Nb film of thickness d = 200− 1000 nm is first deposited on a 2" dielectric substrate wafer

in a sputter deposition system (by DC magnetron sputtering in CMS 18 and Super System 3

machines by Lesker). A layer of photoresist (S1813 or S1818 by Shipley) is then spun at 4000

rpm for 90s and baked at 110 − 120◦ for 120s on a hot-plate, which gives a resist thickness

of ∼ 1.3μm. The UV-sensitive resist system is then exposed through a hard-contact chrome

lithography mask in an EVG 620 mask aligner machine, which defines the coplanar waveg-

uide structures and coupling capacitors and inductors. The exposed resist regions are then

removed in a developer solution (MF-319 for typically 70s) and subsequently etched away

in a reactive ion etcher (Ar/SF6 plasma in an Oxford Plasmalab 80 machine). Resolutions

and minimum feature sizes of 1 - 2 μm on up to 800 nm thick Nb can be achieved with this

process. More details on optical lithography of CPW structures can be found in Ref. [44].

Optical microscopy images of coupling inductors and capacitors fabricated by this process

are shown in Fig. 3.7.

DC-biased center pin resonators, in which electrons can be trapped directly inside the

coplanar waveguide gap (see chapter 7), require two metallization layers of different thick-

nesses. In this type of device, the resonator ground planes of thickness dg ∼ 500 − 1000

nm form a micro-channel geometry (section 2.3.4) that supports a self-stabilized capillary

action film of thickness ∼ dg. The center pin of thickness dcp ∼ 20 − 50 nm acts as a sub-

merged gate electrode. High aspect ratios dg/dcp � 20 are desirable to reduce metallic image

charge effects and improve many electron transport properties. More details on the physics

of this particular trap design can be found in section 3.7, while chapters 5 and 7 present two

experiments with DC-biased center pin resonators. To fabricate such devices, we have de-

veloped two processes, a two-layer all-optical lithography process and a two-step electron

beam lithography process with better alignment properties and higher resolution. In both

processes, the ground planes consist of 500 - 1000 nm of sputter-deposited Nb while the

center pin is made of ebeam evaporated Al of thickness 20 - 50 nm.

Two-Layer Optical Lithography

For the two-layer all-optical lithography process we use two chrome hard-contact lithogra-

phy masks, the first one defining the ground planes and the second one the center pin and

other thin submerged electrodes. The first layer (Nb ground planes) is fabricated by reac-

tive ion etching using the same recipe as for the single-layer resonator devices (see above).

The second layer (Al electrodes) is fabricated using a lift-off process and ebeam evaporation
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of Al. For this step we use a bi-layer photo-resist system consisting of a sacrificial bottom

layer (LOR5A by Microchem spun at 4000 rpm for 60s and baked at 195◦ C for 15 min.) and

a primary layer (S1808 by Shipley spun at 4000 rpm for 60s and baked at 115◦ C for 60s).

The bi-layer resist system creates a natural undercut profile after UV exposure and devel-

opment, which was found to be critical for the lift-off step as it leads to a discontinuous Al

film. Following exposure and development, sublimated Al is deposited in a Plassys MEB550s

ebeam evaporation system. Alignment between the two fabrication steps is achieved in the

EVG 620 mask aligner. We use a set of orthogonal alignment markers that allow for 0.5 -

1 μm alignment precision between the two layers, which is sufficient for resonator struc-

tures, albeit not for single or few-electron quantum dots. Whole 2" wafers are processed at

once, which are then diced into individual chips using a ProVectus ADT dicing saw. Opti-

cal microscopy and scanning-electron microscopy (SEM) images of devices fabricated by the

two-layer photolithography process are shown in Fig. 4.5 a - c.

Two-Layer Electron Beam Lithography

To achieve better alignment precision and higher feature resolutions, an alternative all-ebeam

process was developed for the fabrication of DC-biased center pin resonators and devices

with electron traps. This process allows for an alignment precision of ∼ 10 nm and min-

imum feature sizes of ∼ 20 nm across a 2" wafer, which is particularly crucial for devices

with sub-μm-size single- and many-electron traps. In analogy to the devices fabricated by

optical lithography (see above), the ground planes defining the micro-channels are made of

sputter-deposited Nb while the submerged gate electrodes consist of electron-beam evap-

orated Al. The resist patterns, however, are written using electron-sensitive resist systems

rather than UV-sensitive resist. To define the ground plane micro-channels, we use a single-

layer polymer resist of thickness ∼ 900 nm (Microchem PMMA A7 (950) spun at 1200 rpm

for 150s and baked at 175◦ C for 20 min.). Prior to e-beam exposure, a ∼ 20 nm gold layer

is sputtered on top of the resist to avoid charging effects due to the insulating sapphire sub-

strate, see Ref. [155] for more details on e-beam fabrication on insulating substrates. The

gold layer is removed after exposure but prior to development using a gold etch solution

(∼ 30 s and rinsed in DI water). After development in an MIBK:IPA solution (for ∼ 50 s),

the exposed regions are etched away in the reactive ion etcher. Similar to the resist system

used for the second layer in the optical lithography above, we use a bi-layer resist system

for the second lift-off layer consisting of a sacrificial co-polymer bottom layer of thickness
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Figure 4.6.: Optical microscope images of silicon-oxide based insulating overlaps between gate electrodes. The
silicon-oxide patterns are defined using ebeam lithography and deposited by sublimation sputtering. Thick-
nesses of ∼ 100− 150 nm are typically used, depending on the thickness of the bottom electrode.

∼ 800 nm (Microchem EL13 MAA spun at 2500 rpm for 90s and baked at 175◦ for 1 min.) and

a primary polymer resist layer of thickness ∼ 500 nm (Microchem PMMA A7 (950) spun at

2500 rpm for 90s and baked at 175◦ for 20 min). The resist thicknesses used in this thesis are

unusually thick due to the much thicker ground plane metallizations necessary for deeper

micro-channel structures. The increased resist thickness was required to create a uniform

resist film and to allow using the same plasma etch process as in the optical lithography pro-

cess. RIE etch rates of ∼ 87 nm/min for single- and ∼ 95 nm/min for bi-layer ebeam resists

have been measured for standard etch parameters using a stepper, both of which are below

typical Nb etch rates of ∼ 130 nm/min. Following e-beam exposure and development, the

Al gate electrodes are deposited by ebeam evaporation in analogy to the optical lithography

process above. The ebeam patterns for this thesis were written using two different systems,

a modified scanning electron microscope (FEI XL30) and an electron beam pattern generator

(Vistec EBPG-5000) capable of writing entire 2" wafers in one session with an alignment pre-

cision down to ∼ 10 nm. Optical and SEM images of devices fabricated by two-layer electron

beam lithography are shown in Fig. 4.5 d - f.

Insulating Layers and Electrode Overlaps

Confining electrons on helium to well-defined regions on the chip requires guard ring struc-

tures which are at negative potential with respect to the trapping electrodes. Guard rings

have been realized for this thesis in two different forms: (1) Overlapping electrodes sepa-

rated by deposited insulating layers, (2) Narrow constrictions that realize effective poten-

tial barriers. For the Sommer-Tanner electron detection and density measurement devices

(chapter 6), we use guard ring electrodes that overlap the trapping electrodes with dielectric

layers in between, while for the cavity electron detection experiments a simple constriction
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gate was used. While the overlapping guard electrodes have the advantage of being con-

tinuous, the need for an additional dielectric layer inevitably introduces another fabrication

step that further complicates the device. In addition, many dielectrics have poor microwave

and RF frequency loss characteristics that can severely impact the quantum coherence prop-

erties of superconducting devices and trapped electron states. A variety of dielectric layers

and methods of fabrication have been explored in this thesis, including enhanced aluminum

oxide growth through plasma oxidation in a reactive ion-etcher (Oxford Plasmalab 80) and

a barrel asher (MES HF-6) as well as through heating and UV light exposure at room tem-

perature. Unfortunately, such natively grown aluminum oxides have turned out to be quite

fragile and unreliable, leading to frequent shorts even at modest relative voltages between

overlapping electrodes. As an alternative, we have used deposition of sublimated silicon-

oxide (SiOx) in a high-vacuum sputtering system (Super System 3 by Lesker). Such deposited

insulating layers can be made to have thicknesses of several hundred nm, making them ro-

bust and capable of withstanding voltages of � 10 V. Optical images of deposited SiOx layers

of 150 nm thickness and several μm2 area are shown in Fig. 4.6.
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5 Superfluid Helium on Coplanar Waveguide

Cavities

AKey step towards circuit QED experiments with electrons on helium is to understand

the effects superfluid helium on the resonance frequencies and quality factors of

transmission line cavities. As we will show in this chapter, the resonance frequency is highly

sensitive to the thickness of superfluid films on the chip surface, making it possible to use

CPW resonators as high-precision meters of superfluid helium levels. In analogy to parallel-

plate capacitor-based level meters, the method presented here is based on small changes in

the capacitance per unit length C	 and the characteristic impedance Z0 of the waveguide.

The high sensitivity of the resonance frequency to changes in C	, in combination with the

exceptional frequency resolution of high-Q resonators (line widths of δν � 5 kHz at ν0 = 5

GHz are possible), allows measuring superfluid films as thin as ∼ 30 nm.

This chapter presents a number of experiments aimed at understanding the resonance

behavior of coplanar waveguide cavities covered by superfluid helium films ranging from

30 nm to 20 μm in thickness. Section 5.1 starts with a discussion of the underlying physics

of the helium-induced shifts (section 5.1.1) and describes ways of numerically calculating

them in the thick (section 5.1.2) and thin-film limits (section 5.1.3). Section 5.2 presents an

experiment in which the helium fill dynamics and the different regimes of superfluid film

formation are resolved. Finally, section 5.3 shows how a voltage-biased center pin can be

used to tune the helium level in a waveguide gap in-situ. The experiments discussed in

this chapter represent a first proof of principle, providing us with a basic understanding of

superfluid films required for the electron trapping experiments in chapter 6 and 7. There is

much room to push this technique further to higher levels of precision, potentially paving

the way for more advanced superfluid helium experiments such as detection of ripplons and

classical vibrations with superconducting resonators.
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Figure 5.1.: Superfluid helium filling the gaps of a coplanar waveguide structure by capillary action: (a)
Schematic cross-section of a waveguide on a substrate of thickness h2 and a superfluid level h1 in the gaps.
(b) Equivalent lumped element LCR circuit for a capacitively coupled CPW resonator, showing the additional
capacitances CHe and CHe

κ in parallel due to the presence of the superfluid film, see discussion in text.

5.1 Superconducting Resonators as Helium-Level

Meters

This section presents the underlying theory for the experiments discussed in sections 5.2

and 5.3. Following a derivation of general frequency shift expressions, various methods for

estimating the shifts analytically in the thick-film limit (section 5.1.2) and numerically by

finite-element simulation in the thin-film limit (section 5.1.3) are presented.

5.1.1 Helium-Induced Frequency Shifts

A film of superfluid helium covering a coplanar waveguide resonator acts like an additional

layer of dielectric that results in observable shifts in resonance frequency. The coplanar

waveguide structure represents a micro channel geometry as discussed in section 2.3.4 and

can therefore be filled with liquid helium by capillary action, provided the radius of curva-

ture exceeds the gap width Rc � w where w = (b− a). The situation is shown schematically

in Fig. 5.1 a. The presence of the dielectric liquid (εHe � 1.057) increases the energy density

E in the gaps and therefore the effective capacitance per unit length C	 of the resonator. The

effect of the superfluid can be modeled as an additional capacitance per unit length in par-

allel C∗
	 = C	 + CHe

	 (h1), where h1 is the thickness of the superfluid film in the gaps with

CHe
	 (0) = 0. For Rc � w the thickness h1 is to a good approximation uniform, but CHe

	

depends in general on the curvature profile in the gap. Using the parallel LCR oscillator

mapping of section 3.2.3 for a capacitively coupled resonator, this corresponds to a shift in
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resonance frequency that depends on the amount of superfluid in the gaps:

ω0(h1) =

√
1

L	(C	 + CHe
	 (h1))

· π
�
≈
√

1

L(C + CHe(h1))
(5.1)

where L and C are the mapped quantities from eq. (3.50) and CHe(h1) = (1/2)CHe
	 (h1)�. The

mapped LCR circuit is shown in Fig. 5.1 b. For an interdigitated or gap coupling capacitor

such as the ones discussed in section 3.2.5, the coupling capacitor structures will be filled

with superfluid as well, which leads to an additional coupling capacitance CHe
κ in parallel.

The resulting effect on ω0 and the external quality factor is small since CHe
κ << C and will

be neglected for the moment. The characteristic impedance of the resonator in the presence

of superfluid helium is given by

Z0 =

√
L	

(C	 + CHe
	 (h1))

(5.2)

From eq. (5.1) we find for the helium-induced shift in resonance frequency

Δω(h1) = ω0 − ω0(h1) = ω0

(
1−
√

1

1 + CHe
	 (h1)/C	

)
(5.3)

which shows that the frequency shifts down in the presence of superfluid, as expected. As

shown in section 2.3.4, the gap level h1 depends on the radius of curvature and the absolute

level of superfluid in a reservoir below the chip. In the following two sections we will discuss

different ways of calculating the magnitude of the helium-induced capacitance CHe
	 (h1) and

the frequency shifts Δω(h1). Since most of the electromagnetic field is concentrated in the

gap region the sensitivity of the resonance frequency to small changes in the helium level h1

can be substantial. At moderate quality factors of Q ∼ 2.5 − 5 × 104 we have line widths of

δν0 � 50−100 kHz at ν0 = 5 GHz , making it in principle possible to resolve relative shifts as

small as a fraction of a percent δν0/ν0 � 10−5 %. This method of helium level measurement

is similar to the capacitance measurements in conventional electrons on helium experiments

[101, 204, 205]. However, here we take advantage of the high quality factors possible in

superconducting resonant structures to significantly increase the achievable resolution of

such measurements. As shown in section 5.2 this allows resolving the reservoir fill dynamics

on a superconducting chip, detecting level changes down to a few nm.
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Figure 5.2.: Conformal mapping calculations of liquid helium effects in the thick-film limit. (a) Capacitance per
unit length of a waveguide with a = 1μm, b = 4μm on a c-plane sapphire substrate εsub = 9.4 as a function of
helium film thickness h1. (b) Calculated frequency shift for a ω0/2π = 5 GHz resonator obtained via eq. (5.3).

5.1.2 Analytic Approximations: Thick-Film Limit

In the limit of thick films of superfluid h1 � d where the film thickness exceeds the depth

of the waveguide microchannels, we can model the helium-waveguide system as a CPW

structure sandwiched between two different dielectrics of height h1, h2 and dielectric con-

stant ε1 = εsub and ε2 = εHe (see Fig 5.1 a). In the limit of vanishing metallization thickness

d � h1, h2, we have via conformal mapping for the capacitance per unit length due to the

dielectric substrate [161] (see also section 3.2.5)

Csub = 2ε0(εsub − 1)
K(k2)

K(k′2)
(5.4)

where K(·) denotes the complete elliptical integral of the first kind and the geometry-dependent

quantities are given by

k2 =
sinh
(

πa
2h2

)
sinh
(

πb
2h2

) , k′2 =
√

1− k22 (5.5)

with a, b, h2 as shown in Fig. 5.1 a. Analogously, the capacitance due to the liquid helium

film is given by

CHe = 2ε0(εHe − 1)
K(k1)

K(k′1)
(5.6)

with

k1 =
sinh
(

πa
2h1

)
sinh
(

πb
2h1

) , k′1 =
√

1− k21 (5.7)
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where h1 is the helium film thickness. Finally, the vacuum capacitance is written as

Cvac = 4ε0
K(k0)

K(k′0)
, k0 =

a

b
, k′0 =

√
1− k20 (5.8)

The total capacitance to ground per unit length is the parallel combination of the different

contributions CT = CHe+Csub+Cvac. The frequency shifts in the thick-film regime can then

be calculated using eq. (5.3) with CHe
	 = CHe and C	 = Csub+Cvac. The total capacitance per

unit length in the presence of helium and the corresponding resonance frequency shifts for

a 5 GHz resonator on a sapphire substrate εsub = 9.4 of thickness h2 = 500μm are shown in

Fig. 5.2 as functions of film thickness h1. The shifts are on the order of Δω/ω0 � 0.1− 0.3%,

well within the frequency resolution of typical resonators with line widths of δν0 ∼ 100 kHz

at GHz frequencies. The shift saturates as h1 increases since the capacitance per unit length

becomes insensitive to the level. This is as expected since most of the electromagnetic field

is concentrated in the CPW plane and the gap region.

5.1.3 Numerical Simulations: Thin-Film Limit

For thin films of superfluid h1 � d on the order of the metallization thickness, the profile of

the waveguide structure becomes important and the analytic expressions of section 5.1.2 are

no longer applicable. In that case, we can use numerical simulations of the energy density

in the waveguide structure to calculate the change in effective capacitance and the shifts in

resonance frequency as functions of helium level. The method presented here assumes a flat

helium surface with uniform h1 in the gaps. Dependence on curvature and film profile are

discussed in section 5.2 below. The total capacitance per unit length of a coplanar waveguide

can be approximated by

CT =
2

V 2
rms

∫
A
E(r)dA =

2EA

V 2
rms

(5.9)

where Vrms is the rms voltage between center pin and ground plane, A is the cross-sectional

area of the waveguide, EA the total energy and E(r) the energy density in the plane with

r = (x, z)T . The total energy density can be divided into the energy density in the dielectric

substrate, in the vacuum and in the dielectric superfluid:

E =

∫
substrate

E(r)dA+

∫
vacuum

E(r)dA+

∫
helium

E(r)dA = Esub + Evac + EHe (5.10)
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Figure 5.3.: Helium-induced frequency shifts in the thin film limit, obtained by finite-element simulation us-
ing the method outlined in section 5.1.3. Results for two different CPW geometries are shown, a conventional
Z0 = 50Ω CPW with metallization thickness d = 200 nm, a = 5μm, b = 9.5μm and ω0/2π = 5 GHz (blue),
and a high-aspect ratio CPW (red) with different ground plane (d = 800 nm) and center pin (d = 40 nm) metal-
lization thicknesses and Z0 = 80Ω. The high-aspect ratio design (with a DC-biased center pin) was used in the
experiments of sections 5.2 and 5.3.

such that we can split the total capacitance up into different contributions CT = Cvac+Csub+

CHe. The energies can be calculated from the in-plane electric field and displacement vectors

E = (Ex, Ey, 0) and D = (Dx, Dy, 0):

EA =
1

2

∫
A
E ·D dA =

1

2

∫
A
(ExDx + EyDy) dA (5.11)

We can determine the total energy of each of the different regions using finite-element sim-

ulations in Ansoft Maxwell 2D. Mapping out the frequency shifts as a function of superfluid

level in the gaps can then be achieved with the following procedure:

1. Determine the total energies in substrate and vacuum Esub and Evac by FE simulation

of the geometry in the absence of any helium. The FE simulation gives the field vec-

tors E = (Ex, Ey, 0) and D = (Dx, Dy, 0) at every point of the simulated mesh. The

total energy in the waveguide cross-section can then be calculated using eq. (5.11) by

integrating over the entire simulated region 1. This fixes C	 in equation (5.3).

2. Set a helium level in the gap h1, simulate the electric field and displacement vectors,

calculate the total energy per unit length E and the total capacitance per unit length

CT via (5.9) and get the change in capacitance per unit length due to the superfluid via

ΔCHe = CT −C	 where C	 was determined in step 1. Use eq. (5.3) to find the frequency

1Note that in Maxwell 2D the integral over the dot product can be calculated directly after completion of the
simulation using the Field Calculator tool.
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shift for a given bare frequency ω0/2π.

3. Repeat 2. for desired set of helium levels hj . Calculate frequency shift for each level.

Care must be taken to avoid mesh regeneration between successive simulation runs as the

position and number of mesh nodes influences the energy density. That is, when changing

the film thickness h1 the field and displacement vectors have to be evaluated at the same

points in the plane. The results of such frequency shift simulations for two different waveg-

uide geometries are shown in Fig. 5.3. A conventional 50 Ω CPW with metallization thick-

ness d = 200 nm, a = 5μm, b = 9.5μm and ω0/2π = 5 GHz (blue) as well as a high-aspect

ratio CPW with different ground plane (d = 800 nm) and center pin (d = 40 nm) metalliza-

tion thicknesses (red) are shown. The frequency shifts are roughly linear in superfluid level

h1 in the thin-film regime for both structures. The high-aspect ratio CPW geometry, which

was used in the experiments of sections 5.2 and 5.3, is more sensitive to the helium level,

which makes sense since the energy density is more strongly concentrated in the gap for this

design. Taking the derivative of the interpolation function yields a theoretical sensitivity of

∂Δν/∂h1 ∼ 4 kHz/nm for the conventional geometry and ∂Δν/∂h1 ∼ 8 kHz/nm for the

high-aspect ratio design.

5.2 Fill Dynamics and Level-Meter Measurements

In the previous sections we saw that the resonance frequency of a coplanar waveguide cav-

ity is highly sensitive to the level of superfluid in the resonator gaps, both in the limit of

thin (section 5.1.3) and thick films (section 5.1.2) . In this section we demonstrate how such

helium-induced frequency shifts can be used to accurately measure the film thickness. Fol-

lowing a discussion of reservoir fill dynamics and the dependence of the film profile on

radius of curvature, we present measurements in which the different filling regimes can

be distinguished by resolving film thicknesses ranging from 30 nm to 20 μm. The ability

to accurately monitor and adjust the superfluid level is a key ingredient for experiments

in the single- and many-electron regimes. We will make use of this technique in both low

frequency lock-in measurements (chapter 6) and GHz detection of electrons trapped in a

resonator (chapter 7).

In section 2.3.4 we saw how the gaps in a micro-channel structure or fractionated sur-

face can be filled by capillary action provided the radius of curvature Rc � w exceeds the
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Figure 5.4.: Illustration of superfluid helium reservoir filling regimes. The gaps of a coplanar waveguide res-
onator structure are filled with superfluid helium from a low-lying reservoir by capillary action. (a) Empty
reservoir and gaps with the electric field lines indicated in orange. (b) Low levels of superfluid in the reservoir
lead to a thin, continuous van-der-Waals film of 30 nm thickness coating the surface of the waveguide due to the
zero viscosity in the superfluid phase. (c) At higher levels (smaller H), the radius of curvature starts to exceed
the gap width and the gaps are filled by capillary action. Further decreasing H increases Rc and the film thick-
ness at the center of the gap. (d) Once the reservoir is completely filled, we enter the thick film regime where the
helium level on the chip increases linearly. The capacitance per unit length becomes insensitive to film thickness
in this regime.

distance between elevations on the surface. The radius of curvature Rc(H) = σ/ρgH is de-

termined by the distance H between the channel top and the bulk superfluid surface in a

liquid helium reservoir positioned below the device. The film profile in the gaps has a semi-

circular shape given by eq. (2.38) and the film thickness at the gap center is linear in H ,

see eq. (2.39). In our high-aspect ratio CPW implementation, the coplanar waveguide gaps

form a micro-channel geometry of width wG = 8 − 10μm and depth 500 − 1000 nm with a

wCP = 2 − 5μm wide center pin electrode, similar to the channel geometries typically used

in electrons on helium experiments [129, 206, 207]. The superfluid reservoir is realized as a

cylindrical container of height H = 5 mm and radius r = 3.175 mm (1/4 inch drill), drilled

into the bottom plate of the hermetically-sealed sample holder, see Fig. 4.3. The 2×7 mm

chips are positioned ∼ 5.5 mm above the bottom of the cylindrical reservoir, mounted on a

PC board in a hermetically-sealed copper box at 20 mK. Depending on the bulk superfluid

level in the reservoir, we can distinguish between several different filling regimes which cor-

respond to different curvature radii and film profiles on the chip. Increasing the reservoir

level in small increments and monitoring the cavity resonance frequency will allow us to
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transition from thin van-der-Waals films to capillary action profiles to flat bulk films. The

four main filling regimes are illustrated in Fig. 5.4 and briefly discussed below:

• (0) Empty Reservoir (Fig. 5.4 a): Without superfluid helium, the field in the waveguide

gaps is just the unperturbed electromagnetic field and the resonator is at its unshifted

resonance frequency ω0/2π.

• (I) Saturated van-der-Waals Film (Fig. 5.4 b): At low levels of helium in the reservoir

(large H), a thin, continuous van-der-Waals film of about ∼ 30 nm thickness forms

as the superfluid evenly coats all surfaces of the chip due to the vanishing viscosity,

see section 2.3 for details. As a consequence, the frequency of the resonator will shift

by a small amount Δω(h � 30nm) according to (5.3), see also the numerical results in

Fig. 5.3. In this regime, the level in the reservoir is too low for the radius of curvature to

exceed the gap width and hence the waveguide gaps are not filled by capillary action.

• (II) Capillary Action/Surface Tension (Fig. 5.4 c): As the reservoir level increases (de-

creasing H), the radius of curvature Rc increases to a point where surface tension over-

comes gravity and the gaps are filled with a self-stabilized capillary action film (section

2.3.4). In this regime, we expect the resonance frequency to shift by a few MHz initially

but to remain stable and mostly unchanged as more helium is added to the cell. The

shift Δω(h1) remains roughly constant even though the reservoir level changes since

the gaps are already fully filled once Rc � w. Further decreasing H only increases the

radius of curvature, which changes the meniscus of the film profile in the gaps by a

small amount but does not significantly change the film thickness h1 anymore. Elec-

trons on helium experiments are typically operated in this regime because the film is

thick and self-stabilized and the profile is flat up to some small curvature (finite Rc).

• (III) Linear Filling (Fig. 5.4 d): Once the reservoir is completely filled, adding more

helium to the cell just linearly increases the helium film thickness above the resonator.

In this regime, the film is no longer self-stabilized by capillary action and we expect the

level of helium to fluctuate as a consequence of vibrations in the setup. The fluctuating

helium level h = h0+ δh translates into a fluctuating capacitance per unit length of the

waveguide and hence we expect the resonance frequency to fluctuate about Δω(h0).

The time scales of such classical level oscillations (e.g. due to vibrations from the turbo-

pumps or pulse tubes connected to the dilution refrigerator) are typically in the low
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Figure 5.5.: (a) Capillary radius of curvature Rc as a function of reservoir helium level relative to the chip surface.
Rc diverges as the reservoir fills up. (b) Superfluid film thickness at the center of the waveguide gap as a function
of relative reservoir level for a gap of depth d = 800 nm, calculated using expression (2.39). The film thickness
is linear in H in this approximation.

frequency regime on the order of a few Hz. Since the amplitudes of such level fluctu-

ations is presumably small compared to the absolute helium level, we expect them to

be noticeable primarily at low levels of helium in the linear filling regime. As we go to

thicker films h � d, the frequency shift will saturate at some point Δωmax(h) since the

capacitance per unit length becomes insensitive to the helium level, as expected from

the models discussed in section 5.1.

Device and Reservoir Geometry

To observe the fill dynamics and resolve the different regimes experimentally, we measure

the resonance frequency of a capacitively-coupled coplanar waveguide resonator in trans-

mission and increase the amount of superfluid helium in the sample cell in small increments.

Helium is supplied to the cell mounted at 20 mK via the hermetically-sealed capillary line

setup discussed in section 4.1.2. The data presented in this section was taken using a DC-

biased center pin resonator. Helium filling experiments have also been performed with a

variety of other resonator designs, including inductively-coupled λ/2 and λ/4 resonators

(see the low-frequency density experiments in chapter 6) and regular capacitively-coupled

resonators. The DC-biased center pin device consists of 1000 nm of sputtered Nb on a c-plane

Sapphire substrate, which defines the ground plane, and 100 nm of deposited Al defining the

center pin. The ground planes form a single gap of depth d = 1000 nm and width w = 8μm.

The capillary radius of curvature and the film thickness at the center of the gap are shown

in Fig. 5.5 for the device and reservoir geometry used in this experiment. A DC bias lead is
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Figure 5.6.: Superfluid helium level-meter experiment: Resonance frequency shift Δω0/2π (blue) and loaded
quality factor QL (red) measured as functions of the number of helium doses supplied to the sample cell, which
translates to the relative bulk reservoir levels shown on the top axis. Here, the levels H have been estimated by
determining the dose index at which the reservoir is completely filled (H ∼ 0 at N = 86). Four different regimes
can be clearly distinguished, indicated by dashed lines and numbers: (I) Van-der-Waals film (N = 1 − 9),
(II.a) capillary action filling of the gaps (N = 10 − 75), (II.b) capillary action film suspended from the shim
(N = 76 − 86) and (III) linear filling (N > 87), see text for details. Data for this specific device taken from
measurements performed at the University of Chicago.

connected directly to the center pin of the resonator at a voltage anti-node of the fundamen-

tal mode such that loss of microwave photons through the bias port is effectively suppressed

by symmetry. This design allows applying a tunable DC voltage offset to the center pin, in

addition to microwave and RF voltages at the input port, while maintaining high quality fac-

tors. The DC-biased resonator design and its use in many-electron experiments is discussed

in more detail in chapter 7. For the remainder of this section the center pin is held at DC

ground potential. We will take advantage of the biasing capabilities in section 5.3 to tune the

helium level and film meniscus in-situ.

Resolving the Filling Regimes

The device is characterized by a bare resonance frequency of ω0/2π = 4.792 GHz and a

loaded quality factor of QL � 17760 at Pin = −45 dBm (output power of the RF generator),

measured using the setup described in section 4.1. We increase the amount of superfluid

helium in the sample cell in small increments of ΔV ∼ 0.01 cm3 liquid volume and fill up
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Figure 5.7.: Raw transmission spectra S21 and Lorentzian fits in different filling regimes, measured at different
positions in Fig. 5.6: (I) Van-der-Waals thin film regime (black, N = 5 increments in Fig. 5.6), (II.a) first (red,
N = 40) and (II.b) second capillary action film (green, N = 82) and (III) linear filling regime (blue, N = 95).

the reservoir (i.e. decrease H). The resonance frequency and quality factor of the cavity are

monitored in transmission during the filling. The results of such a helium filling experiment

are presented in Fig. 5.6, which shows frequency shift Δω/2π and quality factor QL as func-

tions of the number of increments and the estimated reservoir level H , the distance between

the bulk superfluid level and the chip surface. Sample transmission spectra and Lorentzian

fits for different helium levels are shown in Fig. 5.7, at the helium levels indicated by dashed

lines in Fig. 5.6. Each datapoint in Fig. 5.6 corresponds to adding one dose of helium.

We can clearly distinguish four different regimes in the frequency shift data of Fig. 5.6.

Starting from the left at N = 0, the first few increments lead to small frequency shifts of

−100 to −200 kHz, corresponding to the van-der-Waals thin-film regime shown in Fig. 5.4 b.

The frequency is largely constant here as the film thickness quickly saturates at h1 ∼ 30

nm. The observed shift of Δω/2π � −150 kHz is consistent with the thin-film numerical

simulations of section 5.1.3. As more helium is added, the level in the reservoir increases

and the radius of curvature Rc becomes on the order of the gap width w, which manifests

itself in a rapid increase in frequency shift from Δω/2π � −200 kHz to −7.4 MHz as the gap

starts filling up by capillary action. Using the finite-element simulations of section 5.1.3, a

shift of Δω/2π � −7.4 MHz maps to an estimated film thickness in the waveguide gap of

h1 ∼ 900 nm, indicating that the gap has been filled almost completely 2. Further increasing

the amount of helium in the cell, we enter a regime where the frequency stays roughly con-

stant, increasing over a small range Δω/2π � −7.4 to −8.1 MHz over the following 50 doses

2Note that curvature effects are ignored in the finite element simulations.
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(N = 20 − 70 in Fig. 5.6). This region corresponds to the capillary action regime (Fig. 5.4 c)

where the gap is filled with a self-stabilized film of helium. The observed shifts in this regime

are in good agreement with the numerical simulations carried out for this device geometry,

see Fig. 5.3. The small increases in frequency shift in this "flat" regime are due to further

increases in capillary radius Rc = σ/ρgH and decreases in curvature of the helium surface

in the gap. Once Rc � w, the gap is essentially filled and further changes in Rc have only

a small effect on the film thickness in the gap. Based on the thin-film simulations of section

5.1.3, the small increase in frequency shift in the flat capillary regime of ∼ 0.7 MHz corre-

sponds to a change in film thickness of Δh1 ∼ 180 nm. As the reservoir level increases and

H → 0, the radius of curvature becomes on the order of the chip dimensions and eventually

starts to diverge. We attribute the abrupt jump in frequency after N = 74 doses to the forma-

tion of a thick self-stabilized film which spans the entire chip and is supported by the shim

covering the sample (the shim can be seen in Fig. 4.3 a). The reservoir is not completely filled

at this point but the radius of curvature Rc � 2 mm is large enough to support a curved

film across the entire chip, leading to a second capillary action regime of relatively constant

frequency shifts Δω/2π � −11.04 to −11.23 MHz (N = 75 − 85 in Fig. 5.6). As the radius

of curvature diverges, the stability of the film decreases and the superfluid film on the chip

becomes sensitive to mechanical vibrations and classical fluctuations in the reservoir level.

This manifests itself in a perceived drop in quality factor QL in the second capillary regime,

which remains otherwise constant in the van-der-Waals and first capillary action regimes.

Once the reservoir has been completely filled (H = 0), the helium level on the chip simply

increases linearly with each dose, leading to a corresponding increase in frequency shift from

Δω/2π � −11.4 to −14 MHz over the next 7 doses. The frequency shift eventually saturates

at −14.145 MHz as the capacitance per unit length of the resonator becomes insensitive to

the level, in agreement with the thick-film calculations of section 5.1.2 which show frequency

shift saturation at ∼ −14 MHz above h1 � 20μm. Raw transmission spectra recorded in the

four different regimes are shown in Fig. 5.7. The transmission peaks are separated by many

line widths across the different regimes and can be easily resolved.

Estimating Film Thickness Sensitivities

One can to map frequency shifts directly to superfluid film thicknesses and estimate the

sensitivity of the resonance frequency to changes in film thickness ∂f0/∂h in the different

filling regimes. In the van-der-Waals regime, we have a final film thickness of h1 ∼ 30 nm
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with a measured frequency shift of Δω0/2π = −190 kHz, giving a sensitivity of ∂f0/∂h ∼ 6.4

kHz/nm. In the subsequent capillary filling regime we observe a sharp increase in frequency

shift from −190 kHz to −7.4 MHz (N = 10 − 22 in Fig. 5.6), which maps to an increase in

film thickness in the gap to h1 ∼ 900 nm based on the finite-element simulations. In the

subsequent ‘flat’ capillary regime (N = 22 − 70 in Fig. 5.6) we find a further increase in

frequency shift to a final value of Δω0/2π ∼ −8.1 MHz. Assuming the gap is completely

filled at this point (h1 = 1μm), this equates to a total change in thickness in the capillary

regime of Δh1 ∼ 970 nm and a sensitivity of ∂f0/∂h ∼ 8 kHz/nm.

Film Stability and Reservoir Level Fluctuations

As shown in section 2.3, the sensitivity to fluctuations in the bulk reservoir level can be

reduced by several orders of magnitude in a micro-channel filled by capillary action:

∂Rc

∂H

∂d

∂Rc
=

w

H
∼ 2.6× 10−3 (5.12)

for a channel width of w = 8μm and H = 3 mm. We can place an estimated upper bound

on the size of level fluctuations in the micro-channel and reservoir region using the mea-

sured quality factors. As can be seen from Fig. 5.6, no noticeable decrease in quality factor

is observed in the capillary action regime (II.a), which implies that fluctuations in resonance

frequency are limited to at maximum one linewidth δω0/2π � κ/2π or

δω0

ω0
� 1

Q
≈ 0.5× 10−4 , δω0/2π � 240kHz (5.13)

for the measured device. Assuming a sensitivity to changes in the gap film thickness of 8

kHz/nm this implies maximum fluctuations of about δh1 ∼ 30 nm, which translates into

bulk reservoir fluctuations on the order of 10 − 20μm using (5.12). This simple estimate is,

however, likely excessively conservative. Using single-shot measurements of the cavity in

transmission (with a network analyzer) and extracting ω0/2π from each measurement, we

estimate the root-mean square frequency fluctuations at a fixed gap level of h1 ∼ 900 nm

in the capillary action regime at δω(rms)
0 /2π ≈ 16.6 kHz based on over 16000 consecutive

measurements. This in turn implies rms level fluctuations in the gap of only δh
(rms)
1 ≈ 2.6

nm.
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Figure 5.8.: Illustration of helium level tuning in a DC-biased CPW resonator. (a) Curved capillary helium film
of thickness h at the gap center at zero center pin bias Vcp = 0. The meniscus is determined by the radius of
curvature Rc, which is set by the relative bulk reservoir level H . (b) Capillary film for non-zero DC bias |Vcp| > 0.
The curvature decreases as more superfluid is drawn into the high-field region in the gap, leading to an increase
in level h and corresponding frequency shift Δω/2π. DC electric field lines are sketched in orange.

5.3 Helium-Level Tuning

In this section, we demonstrate how the superfluid level in the resonator gaps can be tuned

in-situ by an applied DC voltage, using a high-aspect ratio resonator with a DC-biased center

pin. This type of device was already introduced in the previous section and will be discussed

in more detail in chapter 7 in the context of electron trapping experiments. In this section,

the response of the superfluid to applied voltages is measured using frequency shifts of the

resonator, as discussed in section 5.2. We first derive a simple electromechanical model for

the frequency shift as a function of voltage bias in section 5.3.1. Measurements of helium

level tuning curves are presented in section 5.3.2.

5.3.1 Electromechanical Force on Helium Film Surface

In the absence of any applied voltages, the equilibrium radius of curvature Rc = σ/ρgH

and the helium film profile in a micro-channel geometry are determined by surface tension

and gravity. As shown in section 2.3.4, the thickness of a self-stabilized superfluid film in a

micro-channel gap can be expressed in terms of the channel geometry and reservoir level by

assuming a semi-circular surface profile

h = d− z(w/2) = d− σ

ρgH

⎛
⎝1−

√
1−
(
ρgHw

2σ

)2
⎞
⎠ ≈ d− w2

8

ρgH

σ
(5.14)

where h is the film thickness at the center of the gap, d the height and w width of the gap and

H the liquid level in the reservoir, see the illustration in Fig. 5.8a. The force per unit length
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on the film surface at the gap center due to surface tension is approximately given by

Fst � σw

Rc
=

8σ

w
Δh , Δh = d− h (5.15)

which is determined by the ratio of channel width to capillary radius. In a DC-biased res-

onator such as the one used in section 5.2, the center pin can be biased with a DC voltage Vcp

in addition to any electromagnetic fields at RF and microwave frequencies. The situation is

shown schematically in Fig. 5.8 b for |Vcp| > 0. An applied DC voltage in the gap leads to an

additional electromechanical force on the superfluid film, analogous to a piece of dielectric

pulled into the high field region in a parallel plate capacitor. We expect an increase in DC

voltage to lead to an increase in film thickness in the gap as the superfluid experiences a

larger effective field in the gaps, resulting in a pressure to raise the helium level. The exact

electric field vectors can be obtained numerically by finite-element simulations. As a first

crude approximation we can take the field to be that of a parallel plate capacitor E = Vcp/w

such that the energy difference between an empty gap and one filled with helium of thick-

ness Δz is approximated by

ΔΦem = −1

2
(εHe − ε0)E

2wΔz� (5.16)

where � is the length of the resonator. The corresponding electromechanical force per unit

length on the film surface is thus given by

Fem = −(1/�)(∂Φem/∂z) ≈ −(1/�)(ΔΦem/Δz) =
1

2
(εHe − ε0)

V 2
cp

w
(5.17)

The equilibrium film thickness at the center of the gap is found by equating surface tension

and electromechanical force per unit length Fst = Fem:

Δh = d− h =
V 2
cp

16σ
(εHe − ε0) (5.18)

where h is the film thickness at zero voltage bias. This translates into a voltage-dependent

frequency shift of the resonator. Let f(h) be the resonance frequency of the coplanar waveg-

uide cavity for a given fixed level of helium h at the gap center at zero bias. Applying a DC

voltage to the center pin increases the amount of superfluid in the gap such that to lowest
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order

f(h) ≈ f(d) +
∂f

∂h
Δh = f(d) +

(
∂f

∂h

)
V 2
cp

16σ
(εHe − ε0) (5.19)

and the frequency therefore shifts according to

f(h)− f(d) ≈
(
∂f

∂h

)
V 2
cp

16σ
(εHe − ε0) (5.20)

Here ∂f/∂h is the sensitivity of the frequency with respect to the helium level. In section

5.2, we found for the sensitivity ∂f/∂h ≈ 5− 10 kHz/nm in the capillary action regime. As

shown in the next section, this simple electro-mechanical model is in fairly good agreement

with experiment for the given sensitivities.

5.3.2 Level Tuning in a DC-biased Center Pin Resonator

We can study the electromechanical effects on the helium surface and modulate the helium

film thickness in the gap using the DC-biased center pin resonator design introduced in the

fill dynamics measurements of section 5.2. The center pin of width w = 2μm and thickness

t = 40 nm is connected to a Yokogawa 7651 DC voltage supply via standard coaxial cables

and eccosorb filters, see section 4.1 for details on the cryogenic circuitry. The lead electrode

connects to the center pin of the resonator at a voltage node of the resonator such that cou-

pling to the outside world and energy loss are minimized and high quality factors can be

achieved. More details on this device design are presented in chapter 7. The ground planes

have a thickness of d ∼ 800 nm, realizing a micro channel of the type shown in Fig. 5.8

with an aspect ratio of about 20. We start at a fixed helium level in the gap in the capillary

action regime (see Fig. 5.4 c and Fig. 5.6 in the range of N = 20 − 70 dose increments) by

adding N = 40 doses of superfluid to the sample cell, which corresponds to a helium level

of ∼ 0.7 − 0.8μm at the center of the gap at zero voltage bias. We then monitor the cavity

resonance in transmission while sweeping the center pin voltage from Vcp = +12 to −12

V in 50 mV increments. The measured resonance frequency and loaded quality factor are

shown in Fig. 5.9 as functions of Vcp. The simple electromechanical model expression (5.19)

is plotted as a solid black line in Fig. 5.9 using a typical sensitivity of ∂f/∂h ∼ 2 kHz/nm for

the capillary regime, which gives good agreement with measured frequency shifts. As ex-

pected, the frequency response is quadratic in applied voltage while the quality factor shows

no dependence on Vcp. Maximum frequency shifts of Δω0/2π = 468 kHz at Vcp = ±12 V are
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Figure 5.9.: Helium level tuning experiment in the capillary action regime: Frequency shift Δω0/2π (blue) and
loaded quality factor QL (red) as functions of the DC bias Vcp applied to the resonator center pin. The simple
electromechanical model (5.20) is shown as a black solid line for an estimated sensitivity of ∂f/∂h ∼ 2 kHz/nm.
The voltage dependence is parabolic and roughly symmetric about Vcp = 0, as expected. For this device, we
observe an offset of ΔVcp � 800 mV. Data for this device taken at Yale University.

observed for this device. Using the thin film simulations of section 5.1.3, the frequency shift

between zero bias and ±12V corresponds to a change in film thickness of Δh � 120 nm at

the center of the gap. While the frequency shifts generally agree with the simple quadratic

model, we observe a noticeable asymmetry with respect to zero voltage bias. Under ideal

conditions the superfluid response is expected to be independent of the sign of the bias. Only

the magnitude of Vcp should matter. Offset voltages are discussed in more detail below.

The superfluid response to a DC bias on the center pin is expected to depend on the ab-

solute level of liquid in the gaps at zero bias. The frequency response is most sensitive to

applied voltages in the thin-film van-der-Waals regime where we can go from thin films

h ∼ 30 nm to completely filled gaps h ∼ 800 nm by applying a sufficiently large voltage. On

the other hand, in the capillary action regime the gap is largely filled already and the applied

voltage will lead only to small frequency shifts such as the ones shown above. Finally in the

linear filling regime we expect there to be no response to applied voltages as the waveguide

is already covered with a thick film of several μm at Vcp = 0 and the frequency is insensitive

to the small level variations caused by the non-zero bias.
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5.3.3 Voltage Offsets

Positive and negative offsets from Vcp = 0 are commonly observed during voltage sweeps

in our DC-biased center pin devices. Those offsets are noticeable both in helium level tun-

ing sweeps and experiments with trapped electron ensembles (see chapter 7). For example,

from the data in Fig. 5.9, we extract an offset of ΔVcp � −800 mV from zero bias. While

the observed voltage offset stays constant once the sample has reached base temperature, it

varies from run to run between warmups of the cryostat and from device to device. Analy-

sis of different devices and runs shows that the voltage offsets are typically on the order of

ΔVcp � −0.5 to +0.5 V and appear random in magnitude from run to run but constant over

the duration of each experiment.

There are a variety of possible mechanisms that could be responsible for the observed

offsets. Random offset charges and stray or patch potentials on electrode surfaces are com-

monly observed in μm-scale particle traps, for example in microchip ion traps [208, 209].

Stray and patch offsets largely result from non-uniform surface potentials due to the ad-

sorption of oxides and surface contamination of the electrodes, as well as from the random

crystallographic orientations present on real metal surfaces [210]. Another possible cause

are thermoelectric voltages on the coaxial cables connecting the chip at 15 mK and the room

temperature DC sources, which are the result of thermal differences between dissimilar met-

als. A temperature gradient across a metal interface leads to the diffusion of charge carriers

from the high to the low temperature side, which in turn leads to a corresponding voltage

(Peltier-Seebeck effect).

The origins of the observed offsets are not well understood at this point and will re-

quire further experimental investigation in the future, possibly by varying device geome-

tries. While it is in principle possible to compensate for those offsets once they have been

measured, they are likely non-uniform along the length of the resonator if caused by patch

potentials or offset charges on the chip. In that case, the offset, measured for example in

a helium level tuning experiment, represents an average across the resonator length. Non-

uniform potentials near trap electrodes can lead to local deformations of the effective poten-

tial seen by electrons on the helium surface, which are difficult to compensate for and will

require careful measurement of the electron motional energy spectra. This can be particu-

larly problematic for trap loading schemes which rely on simulated electrostatic potentials,

a point which we will come back to in chapter 8.
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6 On-Chip Detection of a Two-Dimensional

Electron Gas on Helium

AN important prerequisite for circuit QED experiments with electrons on helium con-

sists of demonstrating that electrons can be generated and trapped on a supercon-

ducting chip at sufficiently high densities and milli-Kelvin temperatures. While experiments

with electrons on helium have been carried out routinely for some time, the implementation

of the circuit QED architecture proposed in this thesis presents several new challenges due

to the much smaller confining geometries (sub-μm size quantum dots, few-electron traps)

and ultra-low temperature environment at T ∼ 10 mK. Historically, electrons on helium ex-

periments have used geometries several hundred μm to mm in size, making it easier to trap

electrons even at low densities, and have mostly been carried out in the range of 0.5 - 1.2

K where scattering off of vapor atoms provides a natural cooling mechanism that decreases

electron kinetic energy after emission.

The first transport measurements of electrons on helium as well as many subsequent ex-

periments were performed using an electrode configuration known as the Sommer-Tanner

architecture [67,71], which represents a robust and effective way of detecting and measuring

two-dimensional electron states on liquid helium. The Sommer-Tanner setup can be thought

of as the analog of a field-effect transistor (FET) for electrons on heliums. The motion and

transport of electrons between different regions is controlled by applied gate voltages. Trans-

port properties such as mobility, relaxation times and effective mass are measured via the

AC response of the electron gas at kHz frequencies. In this chapter, we discuss the imple-

mentation and measurement of such an electrons on helium FET with an integrated cavity

helium-level meter fabricated on the same chip. This serves as an important first experi-

ment that demonstrates the ability to achieve high electron densities at mK temperatures

and allows us to test many of the components of our on-chip setup using a well-established
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detection scheme. In section 6.1, we start by discussing the underlying theory and basic idea

behind the Sommer-Tanner method and show how it can be used for transport measure-

ments of electrons on helium. In section 6.2, we characterize our on-chip implementation of

the Sommer-Tanner configuration and discuss the measurement setup. Several experimental

results including electron density measurements are presented in sections 6.3 and 6.4.

6.1 Sommer-Tanner Method

The Sommer-Tanner detection method has been a mainstay of electrons on helium experi-

ments since the early 1970s. Originally developed by W. Sommer and D. Tanner for the first

electron mobility measurements [71], it has since been used in a wide variety of electrons on

helium experiments, including density-dependent mobility measurements [74], observation

of dynamical ordering in confined Wigner crystals [206] and point-contact transport mea-

surements [207, 211]. The Sommer-Tanner configuration has also been successfully adapted

for electrode-less conductance measurements in thin film semiconductors [212]. The tech-

nique is based on the phase-sensitive detection of a two-dimensional electron gas excited at

low frequencies and capacitively coupled to a transmission line-like configuration. Electrons

on helium have to be detected capacitively since it is not possible to attach leads directly to

the electron gas, as opposed to transport measurements in semiconductors and metals. In

this section we focus on the physics behind the Sommer-Tanner method and various ways

of analyzing the signals. The geometry and basic measurement principle are discussed in

section 6.1.1. Section 6.1.2 presents an equivalent lumped element circuit model valid at low

excitation frequencies and section 6.1.3 maps the combination of electron-gas and measure-

ment circuit to a transmission line model.

6.1.1 Geometry and Measurement Principle

The basic Sommer-Tanner configuration is shown schematically in Fig. 6.1. It consists of

a two-dimensional array of three planar electrodes (drive, gate and sense) of width w sub-

merged under a film of liquid helium of thickness dHe and separated by gaps of width

de � dHe < w. The superfluid surface above the electrodes is charged with electrons via

thermionic emission from a tungsten filament mounted a distance dfil � dHe above the he-

lium surface, see section 4.1.4 for details on cryogenic electron sources. As discussed in
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Figure 6.1.: Sommer-Tanner four-electrode configuration: A planar array of electrodes (drive, gate, sense) each
of width w submerged under a film of superfluid helium of thickness dHe. The superfluid surface is charged via
thermionic emission from a filament or other cryogenic electron source mounted a distance dfil � dHe above the
surface. The electron gas is excited via an AC voltage applied to the drive electrode which induces a current on
the sense electrode that is measured by a lockin amplifier, see text for details. Drive, gate and sense electrode
are surrounded by a guard electrode at ground potential that confines the 2DEG to a region of size A ∼ 3w × �
where � is the length of the configuration.

chapter 2, the electrons collect on the surface as a two-dimensional sheet in the form of a

2DEG or Wigner crystal (illustrated by orange dots in Fig. 6.1), depending on temperature

and electron density. The drive-gate-sense configuration is surrounded by a guard ring elec-

trode biased at ground or negative potential relative to the other electrodes. It serves the

purpose of confining the electron gas to a well-defined region of size A ≈ 3w × �, where

� is the length of the configuration, and protect it from possible electrostatic sinks in other

parts of the sample cell. The drive electrode is connected to an AC oscillator and typically

excited at audio frequencies f ∼ 100 kHz and a few Volts amplitude. The central gate elec-

trode is connected to a tunable DC voltage source (i.e. it is at AC ground potential) and

has the dual purpose of reducing the direct geometric cross-capacitance between drive and

sense electrode as well as providing a way of modulating the electron density at the center

of the electrode array. The sense electrode (far right in Fig. 6.1) is connected to the input

of a lock-in amplifier. Both drive and sense electrode usually have an additional DC volt-

age superimposed with the AC excitation voltages to create a vertical holding field for the

electrons, although this is not strictly necessary provided the guard ring is at a sufficiently

negative relative voltage. Drive and lock-in amplifier are phase-locked for phase-sensitive

current measurements. The basic measurement principle is as follows: An AC voltage at
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Figure 6.2.: Equivalent lumped element circuit model for the Sommer-Tanner configuration: (a) Cross-
capacitance network in the absence of electrons where C13 � C12, C23. (b) Two-dimensional electron gas
capacitively-coupled to drive and sense electrode modeled as a series combination of equivalent capacitors and
resistors at low excitation frequencies. The capacitance is purely geometric and the resistor models the finite
mobility of the gas, see discussion in text.

frequency fd = ωd/2π ∼ 10 − 100 kHz applied to the drive electrode couples capacitively

to the charge on the helium surface and leads to a redistribution of the electrons floating on

the helium film, corresponding to a local charge density modulation above the drive elec-

trode at frequency fd. This leads to a charge accumulation above the sense electrode and

alters the density in that region after a time delay τ that is determined by the effective mass

of the electrons and their finite relaxation time due to scattering off of helium vapor atoms

or elementary superfluid excitations such as ripplons. The modulation in charge density

above the sense electrode induces a current in the electrode. The relative phase of input and

output signals depends on the energy dissipation in the surface layer. The effective mass

can be determined from the in-phase component of the signal and the mobility from the

out-of-phase component, see below for details. Depending on the DC voltage applied to

the gate electrode, the propagation of the density modulations can be controlled. For suffi-

ciently negative voltages, we expect the propagation to be suppressed as the region above

the gate is depleted and the induced current on the sense electrode goes to zero. We can

express the surface electron gas properties effective mass m∗, mobility μ, conductivity σ and

electron density ne in terms of the measured reactance, admittance and geometric capaci-

tance by mapping the Sommer-Tanner configuration to a transmission line (section 6.1.3) or

a lumped element circuit (section 6.1.2).

6.1.2 Lumped Element Circuit Model

The Sommer-Tanner geometry of Fig. 6.1 can be analyzed in terms of an equivalent lumped

element circuit model, shown in Fig. 6.2, in the limit of low drive frequencies. The validity of
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this approximation depends on the ratio of the two-dimensional skin depth δe of the electron

gas and the physical length of the electrodes δe � �, which is equivalent to ω � σ/CA as

shown below. First, consider the equivalent circuit in the absence of electrons as shown in

6.2 a. The electrodes are close de � w but planar and hence the direct coupling capacitances

C12 and C23 are small. For example, finite element simulations for an electrode thickness of

150 nm and length � = 1 mm give C12 = C13 ∼ 0.15 pF. The center gate electrode is an AC

ground and shields sense from drive electrode, minimizing the geometric cross capacitance

C13 between the two. This is important as the capacitive coupling between drive and sense

mediated by the electron gas is expected to be small. Next, consider the case of a 2DEG

floating on top of a helium film above the submerged electrodes, shown in Fig. 6.2 b. Within

a simple Drude model approach where the 2DEG is a metal of conductivity σ = ne ·e·μ = 1/ρ

with μ being the electron mobility and ne electron density, the electron gas coupled to drive

and sense electrode is modeled as a resistor in series with two capacitors

Re = � ·R	 , R	 =
1

neeμw
Ce = � · C	 , C	 =

ε0εHew

dHe
(6.1)

where εHe = 1.057, w is the width and � the length of the electrodes (see Fig. 6.1) and R	, C	

are per unit length quantities. The inductance of the 2DEG is purely kinetic:

1

2
L	I

2 =
1

2
L	(neevw)

2 =
m∗v2

2
→ L	 =

m∗

nse2w
(6.2)

where m∗ is the effective mass of the electrons. At low frequencies, the kinetic inductance

contribution can be neglected and the total admittance of the circuit in Fig. 6.2 b is

Y =

(
Re +

1

jωC

)−1

=
Re + j 1

ωC

R2
e + 1/ω2C2

(6.3)

where C = Ce/2. To get a better idea of the frequency range in which kinetic inductance

contributions can be neglected, consider the AC conductivity of an electron gas [104]

σ(ω) =
σ0

1− jωτ
=

nee
2τ/m∗

1− jωτ
=

nee
2τ

m∗(1 + ω2τ2)
+ j

nee
2ωτ2

m∗(1 + ω2τ2)
(6.4)

where τ is the scattering time. The imaginary part describes kinetic inductance contribu-

tions while the real part describes resistive contributions. For metals we have τ ∼ 10−15

s−1 [104] such that the inductance term can be neglected even for high excitation frequencies
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up to ω/2π � 100 GHz. However, electrons on helium have much longer relaxation times

τ � μm/e ∼ 10−10 s−1, especially at low temperatures where vapor atom scattering is sup-

pressed exponentially. We see that kinetic inductance contributions should still be small for

frequencies ω/2π � 10 MHz which is the case for the experiments presented in this chap-

ter where we typically have frequencies ωd/2π ∼ 10 − 100 kHz. Measurements at higher

frequencies allow estimating the effective mass of the 2DEG electrons via (6.2).

In the limit of a perfect conductor ρ = 0, the mediated coupling between drive and sense

electrode is purely capacitive and the current induced on the sense electrode is at a Δφ = π/2

phase angle relative to the excitation voltage on the drive electrode. For finite conductivity,

the relative phase contains information on σ and hence the electron mobility. For small

angles we have

Δφ = arctan

[
Re(Y )

Im(Y )

]
≈ Re(Y )

Im(Y )
= RωC =

ωC�

neeμw
(6.5)

Now the electron density can be controlled through the DC voltage difference Vdc between

the filament electrode and the submerged electrodes (see Fig. 6.1) and is to a good approxi-

mation given by [213]

ne � CVdc

e�w
=

Vdcε0εHe

e · dHe
(6.6)

This follows from the fact that saturation is reached once the charge accumulated on the

surface has reduced the field between filament electrode and surface to zero, in which case

the entire potential difference Vdc appears only between the surface and the submerged elec-

trodes [213]. Eq. (6.6) then follows by making a parallel plate capacitor approximation. Us-

ing this in combination with (6.5) shows that the mobility can estimated from the measured

phase difference between the drive and sense signals

μ ≈ �2ω

VdcΔφ
(6.7)

which is the expression originally used by Sommer and Tanner [71]. The lumped element

approximation is valid provided the skin depth of the electron gas is much less than the

physical length of the electrodes, δe � �. Following Ref. [214], it is instructive to derive an

expression for the 2D skin depth for electrons on helium in this setup and show explicitly

why δe � � is satisfied at the typical excitation frequencies used in our experiments. Let

CA = εHeε0/dHe be the capacitance per unit area between drive electrode and the electron

gas. An AC voltage applied to the drive electrode Vd = V0e
jωt couples capacitively to the
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Figure 6.3.: Transmission line mapping of the Sommer-Tanner geometry: The submerged electrode array and the
top filament electrode form a capacitively-coupled transmission line in combination with the surface electron
layer, with a characteristic impedance Z0 and propagation coefficient γ that depend on the transport properties
of the electron gas.

2DEG and leads to a redistribution of the electron potential of the form Ve = v(x, y) · ejωt.
Let Je = (Jx, Jy) be the in-plane current density. Conservation of current then implies

∂Jx
∂x

+
∂Jy
∂y

= −jωCA(Ve − Vd) (6.8)

such that writing the current density in terms of the in-plane electric field Je = σ·E = −σ∇Ve

gives
∂2Ve

∂x2
+

∂2Ve

∂y2
= −jωCA(Ve − Vd)

σ
(6.9)

For a one-dimensional voltage wave propagating along the x-axis in the 2DEG Ve = A0 ·
ejωte−jkex we thus get for the dispersion relation at zero drive Vd = 0

k2e = −jωCA

σ
→ ke =

1− j

δe
where δe =

√
2σ

ωCA
(6.10)

which defines the 2D skin depth via the dispersion relation for a damped voltage wave.

Analogous to 3D conductors , δe can be regarded as the length scale over which an AC

density fluctuation will propagate. If δe � � the phase of the density modulations does not

change significantly over the length of the electrodes � and hence a lumped element model

can be used. This condition is equivalent to low frequencies ωCAρ � 1.

6.1.3 Transmission Line Mapping

The lumped element circuit analysis in the preceding section was limited to low excita-

tion frequencies. As shown in Ref. [215], an expression for the complex admittance of the

Sommer-Tanner cell, and hence the current induced on the sense electrode, can be derived
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for arbitrary frequencies by mapping the geometry to a capacitive transmission line whose

characteristic impedance depends on electron density and mobility. The mapping is illus-

trated in Fig. 6.3. Using the per unit length quantities defined in section 6.1.2, the transmis-

sion line has characteristic impedance (see section 3.2.1)

Z0 =

√
R	 + jωL	

jωC	
(6.11)

and propagation coefficient

γ =
√

jωR	C	 − ω2L	C	 (6.12)

For a one-dimensional transmission line of length x, the input voltage and current are related

to the output quantities by a scattering matrix [158]

⎛
⎝ Vin

Iin

⎞
⎠ =

⎛
⎝ cosh(γx) Z0 sinh(γx)

1
Z0

sinh(γx) cosh(γx)

⎞
⎠
⎛
⎝ Vout

Iout

⎞
⎠ (6.13)

Neglecting the small kinetic inductance, the output current measured at the sense electrode

can be expressed in terms of the voltage applied to the drive electrode and the skin depth

and wave vector introduced in eq. (6.10). One finds after some algebra for the complex

normalized current [214, 215]

I∗ =
I

I0
= (1 + j)

3

2

δe
w

sinh2(jk0w)

sinh(j3k0w)
(6.14)

with current amplitude

I0 = ωCA
�w

3
V0 (6.15)

where V0 is the amplitude and ω the frequency of the drive voltage, � and w are the length

and width of the electrodes and the skin depth δe and wave vector k0 are given in eq. (6.10).

Since the geometry and helium level are known or can be determined to high accuracy, the

measured in-phase component (Re[I∗]) and the 90◦ phase-shifted component (Im[I∗]) can be

fitted to eq. (6.14) as functions of excitation frequency to determine the density and mobility

of the electron gas. Alternatively, one can vary the helium film thickness dHe and hence

the capacitance per unit area CA at fixed frequency. This method has been used for high-

precision conductance measurements in semiconductors [212].
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6.2 Device & Measurement Setup

For this thesis, we have realized an on-chip Sommer-Tanner setup consisting of a four-

electrode configuration and an integrated high-Q coplanar waveguide resonator fabricated

on the same 2 × 7 mm chip. Optical microscope pictures of the device and a simplified di-

agram of the measurement setup are shown in Fig. 6.4. The inductively-coupled resonator

on the l.h.s of the chip is used as a liquid helium level meter (see chapter 5) while the four

electrodes on the r.h.s of the chip realize a standard Sommer-Tanner configuration consist-

ing of drive, gate and sense electrodes surrounded by a guard ring. The main components of

the on-chip and measurement setup are discussed below. Details on the RF and microwave

circuitry, filtering and phase-sensitive detection can be found in chapter 4. All experiments

were performed at 20 mK in the pulse-tube cooled dilution refrigerator setup discussed in

section 4.1.

6.2.1 Inductively-Coupled Cavity Helium Meter

To monitor the helium film thickness on the chip and adjust it such that dHe � de, where de is

the separation between the Sommer-Tanner electrodes, we use a symmetrically, inductively-

coupled λ/2 coplanar waveguide resonator (section 3.2), see l.h.s of the chip shown in Fig. 6.4.

The resonator is characterized by nominal shunt inductances of Lκ = 6.91 pH and a bare

resonance frequency and loaded quality factor of ω0/2π = 5.5752 GHz and QL = 5993, re-

spectively. The resonator is measured in transmission using the phase-sensitive microwave

measurement setup discussed in section 4.2. The bare cavity transmission in the absence

of superfluid helium at input power of Pin = −45 dBm is shown in Fig. 6.5 a. The high-

sensitivity helium level detection method is described in detail in chapter 5. Helium filling

curves measured in this experiment are shown in Fig. 6.5 b , see discussion below.

6.2.2 Sommer-Tanner Configuration

In this section we discuss our implementation of the Sommer-Tanner setup for electron de-

tection and density measurements, starting with the on-chip configuration and then walking

the reader through the measurement setup, progressing from room temperature down to the

base stage of the cryostat, as shown in Fig. 6.4. The device was fabricated using a four-step

procedure consisting of an optical lithography step defining the resonator structures and the
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Figure 6.4.: On-chip Sommer-Tanner electron measurement setup with integrated cavity helium-level meter:
The optical microscope image of the 2 × 7 mm Nb/Al on sapphire chip shows the inductively-coupled λ/2
resonator (meandering structure on the l.h.s) and the Sommer-Tanner four electrode configuration (r.h.s of the
chip) consisting of drive, sense, gate and guard ring electrode. The simplified measurement setup and wiring
are shown as well. The drive electrode is connected to the internal oscillator of a lockin amplifier which excites
the electron gas with a voltage sine wave of amplitude V0 ∼ 10− 200 mV and frequency f0 ∼ 10− 100 kHz. The
sense electrode is connected to the current input of the lockin amplifier for phase-locked measurements of the
electron gas-induced current. All four electrodes are in addition connected to DC sources at room temperature
and filtered inside the cryostat with echo-sorb filters. The resonator is measured in transmission using the
standard phase-sensitive RF-LO setup discussed in section 4.2.

bias leads, followed by two e-beam lithography steps and an intermediate silicon-oxide de-

position step, see section 4.3 for fabrication recipes. The resonator structures and bias leads

are made of 200 nm thick etched Niobium sputtered on a sapphire substrate while the drive,

sense and gate electrodes are made of 150 nm thick deposited Aluminum. To guarantee

good confinement of the electron gas to a square region of size ∼ 1 × 1 mm the guard ring

has a thickness of 500 nm deposited separately after a second e-beam lithography step. The

guard electrode overlaps the drive, sense and gate leads, which are insulated from the guard

by 150 nm of deposited SiOx. The electrodes each have width w = 0.284 mm and length

� = 0.86 mm and are separated by gaps of size de = 4μm. Finite-element simulations yield

geometric capacitances between adjacent plates of C12 = C23 = 0.12 pF and negligible C13

(see Fig. 6.2 a).

For phase-sensitive current and voltage measurements we use a SR830 DSP lock-in am-

plifier by Stanford Research Systems, see section 4.2.1 for an introduction to low-frequency

phase-locked detection. In order to apply additional DC bias voltages to the drive and
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sense electrodes we use two custom made bias tees at room temperature with low cutoff

frequencies. The bias tees consist of a C = 10μF capacitor and a R = 500 kΩ resistor, large

enough to look like an RF short at the typical excitation frequencies ω/2π ∼ 100 kHz. The

DC ports of the bias tees are connected to high-stability Yokogawa 7561 programmable DC

sources and the RF inputs are connected to the input and output of the lock-in amplifier.

To perform measurements of small currents induced by the electron gas, the drive is con-

nected to the sine output of the SR830 lock-in amplifier and excited at voltage amplitudes of

V0 = 10− 200 mV and frequencies ωd/2π = 10− 100 kHz. The sense electrode is connected

to the low-impedance current input of the amplifier. We opted to use the internal oscillator

of the lock-in for signal generation in these measurements as it is intrinsically phase-locked

with the input reference. The current input has a small input impedance Zin = 1 kΩ and a

current gain of 106 − 108 V/A and allows measuring full-scale currents down to 2 fA. For

high source impedances and small currents it is advantageous to use a low input impedance

as it reduces amplitude and phase errors due to the cable capacitance-source impedance time

constant. The cable capacitance in this setup (Cc ∼ 50 pF per ft.) is typically much larger

than the capacitance of the electron gas (Ce ∼ 1 pF for a source impedance of Zs ∼ 1.6 MΩ

at 100 kHz). Inside the cryostat, each coaxial line for the Sommer-Tanner setup is filtered by

eccosorb filters, mounted at the 4K and 20mK base stage of the cryostat, respectively.

6.3 Field-Effect Transistor on Superfluid Helium

The Sommer-Tanner geometry essentially represents the analog of a field-effect transistor

(FET) for electrons on helium. In addition to suppressing direct cross-capacitive coupling

between drive and sense electrode, the center electrode can be used as a gate electrode to

create a depletion region. Below a certain relative threshold voltage V
(th)
g , electron transport

and propagation of density modulations between drive and sense electrode will be sup-

pressed and the current induced on the sense electrode will be switched off. In a first set of

experiments, we use this FET effect to detect the presence of electrons in a phase-sensitive

lock-in measurement.

We start by filling the sample holder at 20 mK with superfluid helium through the cap-

illary setup presented in section 4.1.2. This is done in a controlled way by monitoring the

frequency shift of the CPW resonator on the l.h.s of the chip in transmission, exactly as in

the experiments described in chapter 5. Conformal mapping calculations (section 5.1) show
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Figure 6.5.: Cavity helium-level measurements: (a) Normalized bare cavity transmission in the absence of su-
perfluid helium at Pin = −45 dBm input power. Datapoints are in blue and the red line is a fit to a Lorentzian,
which yields a resonance frequency of ω0/2π = 5.5752 GHz and a loaded quality factor QL = 5993. (b) Super-
fluid helium filling curve, showing measured shift of the cavity resonance frequency as a function of the number
of liquid helium doses supplied to the sample cell. A dose corresponds to ∼ 0.016 cm3 of liquid helium, see
chapter 5 for details on the level-meter method.

that a frequency shift of Δω0/2π � −15.5 MHz corresponds to a helium film thickness of

about 20 μm above the chip for this type of resonator. The device has to be operated in a

regime where the film thickness exceeds the gap between the drive, sense and gate elec-

trodes dHe � de to avoid image charge pinning effects. For thin films dHe < de , the electrons

are bound to their image charges in the metal and unable to cross the inter-electrode gap

such that transport across different electrodes would be largely suppressed. At the same

time, however, dHe should be kept to a necessary minimum to maximize the capacitive cou-

pling between the 2DEG and the drive and signal electrodes. The helium level-meter fill

curve for this experiment is shown in 6.5 b. We reach a frequency shift of Δω0/2π = −15.7

MHz after 27 doses, indicating a sufficiently thick layer of superfluid above the chip. Free

electrons are generated using thermionic emission from a pulsed tungsten filament (see sec-

tion 4.1.4). Biasing the drive, gate and sense electrodes at Vd = Vg = Vs = +2 V and the

guard ring at Vgr = −0.5 V, the helium surface is charged to saturation using the following

filament pulse parameters: offset bias Voff = −1V , pulse duration τ = 40 ms, pulse delay

δτ = 1s, frequency f = 113 kHz and number of pulses Np = 10. It should be pointed out that

electrons were successfully loaded at T = 20 mK without the need to temporarily increase

the base temperature of the cryostat to T � 0.5 K. In most experiments with electrons on

helium, free electrons are typically first generated at higher temperatures of 0.5 - 1.2 K where

scattering off of vapor atoms provides a natural cooling mechanism that decreases electron

kinetic energy after emission. This did not appear to be necessary in our setup, presum-
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Figure 6.6.: Field-effect transistor with electrons on helium: (a) 90◦ phase-shifted current Y as a function of time
in the presence (blue) and absence (red, control experiment) of electrons. Low currents coincide with negative
gate voltages (depletion of center region), high currents with positive gate voltages (electron transport between
drive and sense electrode, indicated by dashed line). See text for discussion. (b) Measured in-phase current in
the presence (blue) and absence (red) of electrons, same gate biasing sequence as in (a). The small in- and out-of-
phase currents in the absence of electrons can be attributed to the residual geometric cross-capacitance between
the drive and sense electrode.

ably because the temporary heating effects from the filament pulses generate enough vapor

atoms to slow down the electrons. After electrons have been loaded into the 1×1 mm region

above the Sommer-Tanner electrodes, we monitor the in-phase (X) and 90◦ phase-shifted

lock-in signals (Y ) between drive and sense electrode as a function of time. An AC voltage

of frequency ωd/2π = 100 kHz and amplitude Vd = +10 mV is applied to the drive electrode,

which couples to the electron gas capacitively as explained in section 6.1. The resulting den-

sity modulation of the gas at frequency ωd/2π then propagates to the signal electrode after a

time delay determined by the electron relaxation time and effective mass, where it induces

a current. We detect the presence of electrons in an FET-style measurement by modulating

the gate voltage bias. At negative gate voltages, we expect the induced current measured on

the sense electrode to disappear as the region between drive and sense electrode is depleted

and electron transport is suppressed. At positive gate voltages, we expect to measure in-

creased current signals. Most of the signal is expected to be in the out-of-phase component

as the effect is predominantly capacitive due to the high electron mobility (small resistance)

and the low excitation frequencies (small kinetic inductance). The sequence of switching be-

tween negative and positive gate voltages is expected to be fully reversible as the guard ring

should prevent dissipation of electrons from the Sommer-Tanner region. The results of such

a gate-based switching experiment are shown in Fig. 6.6, which shows in- and out-of-phase

lock-in signals as functions of time for both charged (blue) and uncharged surfaces (red,

control experiments). Starting at t = 0 the gate voltage is first held at Vg = −2 V, negative
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Figure 6.7.: Illustration of FET effect based electron density measurements: Electrons initially distribute uni-
formly across drive, gate and sense electrode for Vd = Vg = Vs (bottom). As the gate voltage is swept towards
negative voltages electrons start to redistribute (middle), eventually leading to complete depletion of the gate
region and a redistribution of the electrons above drive and sense electrode (top). The threshold voltage ΔVgate

at which the induced current disappears is proportional to the areal electron density ne.

relative to drive and sense Vd = Vs = +2 V. Electron transport is suppressed and we measure

small in- and out-of-phase currents due to the residual geometric capacitance between the

electrodes (blue data points in Fig. 6.6). We then switch the gate voltage to Vg = +2V and

observe an abrupt increase in out-of-phase current. After holding the gate at Vg = +2V for

a few minutes where the current stays constant, we adjust the bias back to Vg = −2V and

observe that the current switches back to the original level at t = 4 min. This sequence is

then repeated a number of times, with the same behavior being observed each time. While

the electron induced currents are clearly visible in the 90◦ phase-shifted signal, the in-phase

component remains unchanged, which indicates the almost purely capacitive behavior of

the electron gas at the given excitation frequencies. In the control experiments, shown in red

in Fig. 6.6, we conduct the same sequence of gate biases in the absence of electrons under the

same conditions and observe no current switching behavior, which demonstrates that the

measured currents are indeed due to electron density modulations. The 2DEG appears to

be highly stable with no noticeable decrease in measured induced current even after several

hours of operation. This simple implementation of a FET on liquid helium has recently been

extended to one-dimensional conduction channels in a device analogous to metal-oxide-

semiconductor FETs [216].
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6. On-Chip Detection of a Two-Dimensional Electron Gas on Helium

Figure 6.8.: Out-of-phase lock-in current signal as a function of gate voltage Vg . Starting from the r.h.s at Vg =
+4.5 V, the gate electrode is initially biased at the same voltage as drive and sense electrode (Vd = Vs = +4.5
V) and subsequently swept towards negative voltages. The induced current vanishes once the cutoff voltage
difference ΔVg is reached, at which point the gate region is depleted and propagation of density modulations
between drive and sense electrode is suppressed. ΔVg is proportional to the electron density, see discussion in
text.

6.4 Density Measurements

The field-effect transistor effect presented in section 6.3 can be used to determine the density

of the electron system. The basic idea of this density measurement scheme is illustrated in

Fig. 6.7. Starting with all three electrodes at the same positive DC bias Vd = Vs = Vg and a

negative guard ring relative to that (bottom in Fig. 6.7), the electrons are initially evenly dis-

tributed across the three electrodes with a uniform density ne except, possibly, at the edges

of the region. Decreasing Vg relative to Vd,s and sweeping towards negative voltages, the

electrons will start to redistribute above the outer drive and sense electrodes as the center

region is depleted. At a certain threshold voltage difference ΔVg = Vg − Vd,s, we expect the

center region to be depleted entirely and transport to be suppressed. We can express this

threshold voltage in terms of the areal electron density ne using a simple capacitor approx-

imation. The negative relative voltage ΔVg required to remove all electrons from the center

region is

ΔVg · Cg = ne · e → ne ≈ εHeε0ΔVg

e · dHe
(6.16)

where Cg = εHeε0/edHe is the capacitance per unit area between electron gas and the gate

electrode. Hence, the electron density can be estimated by sweeping the gate voltage relative

to drive and sense bias until the electron induced current on the sense electrode vanishes.
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The results of such a density measurement are shown in Fig. 6.8. Electrons are initially

loaded with all three electrodes at the same positive voltage Vd,g,s = +4.5 V and the guard

negative at Vguard = −0.5 V. The gate voltage is then swept from Vg = +4.5 V to -1 V while

Vd and Vs are held at constant bias. The 90◦ phase-shifted lock-in signal for the current in-

duced on the sense electrode is measured as a function of gate voltage Vg during the sweep.

We observe an abrupt drop in current signal at Vg � +1.72 V, corresponding to a negative

voltage ΔVg = −2.78 V relative to drive and sense electrode. This pinch-off in current can

be attributed to the depletion of the gate region and a suppression of electron transport be-

tween drive and sense electrode. Using eq. (6.16), the measured threshold voltage difference

corresponds to an estimated areal electron density of ne ∼ 8.1 × 108 cm−2 where we have

assumed a liquid helium thickness of dHe � 20μm as measured independently in section

6.3. This first result is in good agreement with previously reported densities for electrons

on helium generated by thermionic tungsten filament emission [74, 213, 217]. Note the ini-

tial increase in signal magnitude before the cutoff point as the gate voltage is decreased from

Vg = 4.5 V to ∼ 2.5 V. We attribute this effect to the field dependence of the electron mobility

μ, whose absolute value has been shown to be a decreasing function of holding electric fields

E⊥ [113, 114].

Controlling Density with Loading Voltage

In section 6.1.2 it was shown that the areal electron density should scale linearly with the

voltage difference Vdc = Vf−Vd,g,s between filament and the drive, sense and gate electrodes

on the chip,

ne � Vdcε0εHe

e · dHe
. (6.17)

To test this relation, we load electrons onto the chip at different values of Vdc and perform

a gate voltage-based density measurement at each step. The results of such an experiment

are presented in Fig. 6.9, where the different colors correspond to different loading voltages

Vdc and each trace represents one density measurement sweep. For each trace, we first bias

all three on-chip electrodes at a given voltage V
(i)
dc relative to the tungsten filament and load

electrons by pulsing the filament. The gate electrode is then swept form V
(i)
dc to -1 V while

drive and sense are held constant at the initial loading voltage Vd = Vs = V
(i)
dc . The out-of-

phase current signal is measured and the threshold voltage ΔVg is recorded for each sweep,

which allows inferring the density via eq. (6.16). For the purposes of density determination,
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6. On-Chip Detection of a Two-Dimensional Electron Gas on Helium

Figure 6.9.: Electron density measurements for different loading voltages: Out-of-phase current signal as a func-
tion of gate bias Vg where the different colors correspond to different loading voltages ranging from Vdc = +1
to +7 V. Each trace represents one density measurement sweep, analogous to the one shown in Fig. 6.8.

the threshold voltage ΔVg is defined as the point where the out-of-phase current drops to

within 20% of the current noise floor. The extracted areal electron densities from this exper-

iment are shown in Fig. 6.10 a as a function of loading voltage Vdc. The range of obtained

densities is ne = 108 − 109 cm−2, again in good agreement with those typically found for

tungsten filament electron sources [68]. The density shows a linear dependence on loading

voltage, as expected from the simple parallel-plate capacitor approximation (6.17).

Loading Individual Regions

As a final electron density experiment we show that individual electrodes can be selectively

loaded with a density that scales with area. This is achieved by biasing one or more elec-

trodes at a negative voltage during the loading process. To charge only one third of the total

area, we initially apply negative voltages to the gate and sense electrode Vg,s = −1V while

the drive electrode is positively biased at a given loading voltage Vd = Vdc. Pulsing the tung-

sten filament, only the area above the drive electrode will be charged initially in this case. We

then adjust the bias on the gate and sense electrode to match that of the drive Vg,s = Vd such

that the electrons will redistribute across all three electrodes. A gate voltage-based density

measurement is then performed as outlined above. The same procedure is used to charge

two electrodes initially (drive and gate), loading two thirds of the total area. We expect the

electron density after redistribution to scale with the size of the area that was initially loaded.

The results of such a selective loading experiment are shown in Fig. 6.10 b, which shows that
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Figure 6.10.: Measured areal electron densities as a function loading voltage Vdc applied to the submerged elec-
trodes. Densities are extracted from gate threshold voltage measurements ΔVg as discussed in the text, see also
eq. (6.16). (a) Densities after loading all three electrodes, showing a linear scaling with loading voltage in agree-
ment with eq. (6.17). (b) Fractional loading of one third of the total trap region (green), two thirds (red) and the
entire region (blue).

the electron density ne is linear for all three cases (loading one, two and three electrodes)

and does indeed scale with the area that was initially charged. The measured density curves

roughly overlap when rescaled by the fractional area that was loaded initially. The results of

this experiment show that the electron density in our setup can be varied over an order of

magnitude ∼ 108 − 109 cm−2 by adjusting the gate voltages and hence the electric holding

field seen by the electrons after emission. In addition, the filament loading parameters pulse

duration τ , pulse delay Δt and number of pulses Np (see Tab. 4.1) also influence the electron

density and provide further variability in the range of available electron densities.
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7 Trapping Electrons in a Superconducting

Resonator

THE experiments of chapter 6 have demonstrated the trapping and detection of elec-

trons on helium on a superconducting chip at milli-Kelvin temperatures. In those low-

frequency measurements we took advantage of the capacitive coupling of surface electrons

to submerged electrodes and the differential voltage they induce as result of their motion

driven at a few hundred kHz, a technique originally developed by Sommer and Tanner [71].

While this device also contained an integrated coplanar waveguide cavity for measuring

the superfluid level on the chip, the electron trapping region was far from the cavity mode

volume and no interaction with the cavity field was observed. This chapter presents experi-

ments in which an ensemble of electrons is trapped directly in the gap of a superconducting

coplanar waveguide cavity. There are a number of ways an electron ensemble trapped in

a waveguide gap can potentially couple to the cavity field, including dipole interaction of

collective in-plane motional excitations (transverse and longitudinal modes) and vertical Ry-

dberg states. This allows detecting electrons on helium in cavity transmission measurements

where their presence manifests itself through shifts in resonance frequency and increases in

linewidth of the fundamental mode of the cavity. Section 7.1.1 starts with a discussion of the

DC-biased center pin resonator design and the devices used in our experiments. Potential

coupling mechanisms of the electron ensemble in such a resonator are discussed in section

7.1.2, together with numerical simulations of coupling strengths and positional configura-

tions in the resonator. In section 7.2 we present experiments detecting electrons on helium

in a CPW cavity through voltage-dependent shifts in frequency of up to 10 cavity linewidths

with a decrease in quality factor of ∼ 30 %. Electron loss and dissipation at low trapping

voltages are investigated in section 7.3 using stability and voltage hysteresis measurements.
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Figure 7.1.: Schematic layout and measurement setup for a capacitively-coupled, DC-biased center pin resonator.
(a) Top view of the resonator, showing the voltage distribution of the fundamental mode (red) and the simplified
measurement and control circuit. The center pin (magenta) is directly attached to a bias lead at a voltage node
of the fundamental mode, minimizing loss of microwave photons through the bias port. A bias tee is used for
transmission measurements through the DC port. (b) Cross-sectional view of the waveguide gap in a DC-biased
resonator. The ground planes (blue) form a micro-channel of height d ∼ 1μm and width wG ∼ 10μm filled with
superfluid by capillary action. The submerged, voltage-biased center pin (magenta) of width wCP ∼ 2μm and
thickness t ∼ 40μm creates a parabolic trapping potential for electrons above the surface. RF electric field lines
are indicated by arrows.

7.1 Device and Simulations

7.1.1 DC-biased Center Pin Resonators

Experiments with electrons on helium require precise control of the DC potentials and the

electromagnetic environment on the chip. This was the original motivation behind the devel-

opment of inductively-coupled transmission line resonators (section 3.2), where the center

pin electrode of the CPW is at DC ground potential at all times. A natural extension of this

idea is to directly attach a voltage bias line to the center pin which allows tuning the DC po-

tential on the electrode to desired values. To realize such a device we take advantage of the

symmetry of the voltage distribution in a capacitively-coupled transmission line resonator

at microwave frequencies. Such a DC-biased coplanar waveguide cavity was already intro-

duced in the helium level-tuning experiments in chapter 5. In this section we discuss this

type of device design in some more detail and show how it can be used as a large planar

electron trap capable of confining a significant number of electrons (∼ 104 − 106) in the gap

region of a CPW.

The schematic layout of a DC-biased center pin resonator and the basic measurement and
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Figure 7.2.: Optical and SEM images of a DC-biased center pin resonator device. (a) Full top view of the 2 × 7
mm four-port device, (b) interdigitated gap capacitor (gap width of 2μm) for coupling on the input side, (c) DC
bias port connection to center pin, (d) constriction of width 1μm and length 30μm on the bias port input, (e)
μm-size single electron trap with separate gate electrode. The DC-biased center pin of thickness t = 40 nm and
width wCP = 2μm is shown false-colored in magenta for clarity. The ground planes of thickness d = 800 nm
define a micro-channel geometry of width wG = 10μm that can be filled with superfluid helium by capillary
action from a reservoir below the chip. The gap capacitors and bias port constriction act as implicit guard rings
suppressing dissipation of electrons out of the resonator mode volume. The device was fabricated on a sapphire
substrate using a two-layer electron beam lithography process (see section 4.3), with the ground plane consisting
of sputtered Nb and the center pin and trap electrodes defined by deposition of Al in a lift-off process.

control circuit are shown in Fig. 7.1 a. Optical and SEM images of one of the devices used

in our experiments are presented in Fig. 7.2. As shown in Fig. 7.1 a and Fig. 7.2 c, a DC bias

electrode is directly connected to the center pin of a symmetrically, capacitively-coupled λ/2

resonator at a voltage node of the fundamental mode. The center pin is biased by a Yokogawa

GS200 high-stability DC voltage source through a low-pass filter. In addition, an RF line

with a cryogenic low-noise amplifier for microwave leakage measurements is connected to

the DC port through a bias tee. The cavity is measured in transmission using heterodyne

and homodyne detection with the standard circuit QED setup presented in chapter 4. This

device design allows applying a tunable DC voltage offset to the center pin, in addition to

microwave and RF voltages at the input port, while maintaining high quality factors of the

mode used for electron detection. As discussed in more detail below, loss of microwave

photons through the bias port is effectively suppressed by symmetry. The transverse cross-

section of the waveguide gap is shown schematically in Fig. 7.1 b. The design is characterized

by a high aspect ratio of ground plane to center pin metal thickness of t : d = 1 : 20 with

d = 800 nm and t = 40 nm. The resonator gap forms a micro-channel geometry of width

wG = 8−10μm with a wCP = 2μm wide bias electrode. This design is similar to the channel
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Device ID Frequency, ω0/2π QL wG wCP d t
B13 6.11231 GHz 20800 10 μm 2 μm 800 nm 40 nm
I5 6.08241 GHz 20010 10 μm 2 μm 800 nm 40 nm
L3 4.791583 GHz 17750 8 μm 2 μm 1000 nm 100 nm

Table 7.1.: Overview of devices used in many-electron trapping experiments, showing measured resonance
frequency ω0/2π and loaded quality factor QL as well as the geometric parameters gap width wG, center pin
width wCP, ground plane thickness d and center pin thickness t. Resonance frequencies and quality factors
are bare values measured in the absence of any superfluid helium or electrons. Devices B13 and I5 have been
measured at Yale and device L3 has been measured at the University of Chicago (Schuster Lab), using nominally
identical cryogenic setups for transmission measurements, electron generation and DC control.

geometries typically used in electrons on helium experiments [129, 206, 207] and supports a

self-stabilized capillary action film of superfluid helium, as discussed in sections 2.3.4 and

5.2. While the resonator gap is filled by capillary action, the ground plane is covered by a

thin saturated van-der-Waals film of thickness ∼ 30 nm. Electrons above the ground plane

drain away through the van-der-Waals film while electrons in the gap are bound vertically to

the helium surface by their induced image charges in the liquid with a hydrogen-like spec-

trum En = −R/n2 (see section 2.1) . In the transverse direction (along the x-axis in Fig. 7.1),

a DC voltage applied to the submerged center pin creates a parabolic trapping potential

which confines the electrons in the x-direction to the gap region of the CPW. At the typical

equilibrium electron separations of xc ∼ 0.1− 1μm at saturated densities, the resonator gap

therefore forms a few-electron trap in the transverse direction similar to the ones discussed

in section 3.7.1. Motion along the lateral direction (y-axis) is essentially unconstrained for

typical transmission line resonator lengths of L � 9000 − 10000μm. The interdigitated gap

capacitors of the resonator with a spacing of 2μm (Fig. 7.2 b) act as implicit guard rings at the

input and output of the resonator while dissipation of electrons through the center pin bias

port is suppressed by a narrow constriction of width 1μm and length 50μm (see Fig. 7.2 d).

No explicit DC biases are applied to the input/output leads of the cavity in this set of exper-

iments, which could be achieved using additional bias tees should electron loss over the gap

capacitors turn out to be problematic. In addition to the large electron trap formed by the

center pin, the devices also contain smaller sub-μm-size electron traps positioned near the

voltage maxima of the fundamental mode for future single-electron experiments (Fig. 7.2 e).

The single-electron traps were set to ground potential throughout the experiments discussed

in the rest of this chapter 1.

1Numerous attempts have been made at loading a variety of single-electron trap designs over the course of this
PhD project, but no signatures of single-electron-cavity coupling have been observed so far. See discussion
in chapter 8.
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Figure 7.3.: Transmission spectra and behavior around resonance for a DC-biased center pin resonator (device
I5): (a) Comparison of transmission through the cavity (S21, blue) and from cavity input through DC bias port
(S31, red) over 4 - 12 GHz range, (b) Cavity transmission S21 on resonance with Lorentzian fit (red), giving a
loaded quality factor of QL = 20010 and resonance frequency ν0 = 6.0824 GHz. Loss of photons through the
bias port is suppressed by symmetry of the voltage distribution of the fundamental mode such that high quality
factors can be maintained.

The resonator structures have been fabricated on a sapphire substrate using the two-

layer electron beam lithography technique described in section 4.3. The resulting 2 × 7 mm

chips are positioned 5.5 mm above the bottom of a cylindrical superfluid reservoir of radius

r = 3.175 mm, mounted in a hermetically sealed copper cell at 15 mK (see Fig. 4.3 and sec-

tion 4.1.3). As shown in the helium level experiments in chapter 5, the distance H between

the bulk surface level in the reservoir and the chip surface sets the radius of curvature of the

superfluid film in the gaps. For the experiments presented here, we use coplanar waveguide

geometries with center pin widths of wCP = 2 − 4μm and gap widths of wG = 8 − 10μm,

corresponding to characteristic impedances in the range of 60 − 80Ω, slightly higher than

usual for circuit QED experiments. The devices are over-coupled by design (Qint � Qext)

with measured loaded quality factors of QL = 1.5 − 2.5 × 104 and resonance frequencies

ω0/2π = 4.5− 6.5 GHz. The datasets presented in this chapter were taken using three differ-

ent devices (labelled I5, B13, L3), all with the same constriction-gate based, center pin-biased

design but slight variation in trap and cavity parameters. An overview of the device param-

eters and geometries is given in Tab. 7.1. Devices B13 and I5 have been measured at Yale

and device L3 has been measured at the University of Chicago (Schuster Lab), using nomi-

nally identical cryogenic setups for transmission measurements, electron generation and DC

control.
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Bias Port Leakage at Microwave Frequencies

Leakage of microwave photons through the DC bias port is suppressed by symmetry of the

voltage distribution of the fundamental mode. The extent to which high quality factors can

be maintained depends on the geometric symmetry of the device and the precision to which

it can be fabricated in practice. Finite-element simulations of whole 2 × 7 mm chips with

intentional asymmetries (carried out using Sonnet) show that leakage through the bias port

remains small for asymmetries as large as ∼ 0.06 % (bias lead offset from center relative to

total resonator length) such that high quality factors can be maintained even for several μm

asymmetry on a L = 10000μm resonator. This is well within the alignment precision of

the two-layer electron beam lithography process discussed in section 4.3, which can achieve

alignment between layers of ∼ 20 nm. In addition to electrical symmetry, care must be

taken to also ensure geometric symmetry of the chip itself as spurious modes on the chip can

influence the quality factors. We can measure microwave leakage through the bias port using

an additional bias tee as shown in Fig. 7.1 a. A comparison of transmission spectra over a 4 -

12 GHz range through the cavity (S21) and the bias port (S31) is shown in Fig. 7.3 for device

I5. As can be seen, the fundamental mode transmission is not reduced in any significant way

by the presence of the bias port and quality factors of QL � 2×105, reasonably close to design

values of 2.5 × 105, can be achieved. As expected, transmission of the first harmonic mode

(n = 2) is reduced as the voltage distribution of that mode has an anti-node at the center of

the resonator. The ∼ 20 % deviation from the designed Q values can most likely be attributed

to the broken geometric symmetry of this chip design. As can be seen in Fig. 7.2 a, the single

electron trap and the attached bias line slightly break the symmetry of the device, leading

to small differences in the effective input impedances seen from the center looking into the

r.h.s and the l.h.s of the resonator. Simulations of the on-chip current density profile using

Sonnet can help understand this effect in more detail. The cavity linewidths possible with

our simple implementation of a DC center pin bias proved sufficient for the experiments

presented in this chapter. More careful engineering of the microwave environment and the

geometric symmetry of the chip will likely allow this design to achieve higher quality factors.

7.1.2 Many-Electron Cavity Coupling Mechanisms

At saturated bulk film electron densities of ns � 2 × 109 cm−2, a DC-biased center pin

resonator with total gap area A ∼ 10μm×10000μm can trap on the order of 106 electrons
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Figure 7.4.: (a) Finite-element simulation of transverse electric field component along the resonator cross-section
for a DC-biased resonator (red) with aspect ratio 1/20 (ground plane to center pin thickness) and a regular
coplanar waveguide resonator (blue) with aspect ratio 1, assuming a typical rms voltage between center pin and
ground plane of 2 μV. A resonator geometry with center pin and channel widths 2μm and 10μm was used for
the simulations. (b) Numerically calculated coupling strengths as a function of center pin voltage bias for the
center-of-mass (blue), scissor (green) and stretch mode (red) of an N = 3 electron linear chain (see section 3.7.1),
using the same device geometry as in (a).

2. At low temperatures and high densities, the trapped electrons form a Wigner crystal or

Coulomb liquid as discussed in section 2.2. There are a variety of ways the electron system

can potentially couple to the cavity and impact its resonance frequency and quality factor. In

this section we explore some of these mechanisms and estimate the corresponding coupling

strengths, with particular focus on the dipole interaction of collective electron excitations

and the electromagnetic field in the cavity.

Both collective in-plane motion, along the transverse and longitudinal resonator axis, and

vertical motion orthogonal to the resonator plane can couple to the cavity via dipole interac-

tion. This type of coupling is similar to the Jaynes-Cummings interaction of lateral motion in

single-electron quantum dots discussed in section 3.4 and would manifest itself in dispersive

shifts in cavity frequency off resonance. In addition, there are a number of classical ways the

presence of electrons can potentially impact the cavity frequency such as electrostatic pres-

sure on the helium surface. Which type of coupling is realized will in general depend on the

configuration and density of the electron ensemble as well as its orientation with respect to

the electromagnetic field in the cavity. In particular, the spectrum of any in-plane modes of

the ensemble is a function of geometry and the ordering of electrons in the trap.

2As shown in section 2.3.4, the critical electron density can be significantly increased in micro-channel geome-
tries, by up to 1 - 2 orders of magnitude compared to the bulk film case.
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Electromagnetic Field Orientation

We can simulate the electromagnetic field for the DC-biased resonator cross-section using

finite-element simulations (Ansoft Maxwell 2D). Fig. 7.4 a shows a comparison of the simu-

lated transverse field components of a DC-biased resonator with an aspect ratio of t : d = 1 :

20 (red) and a regular transmission line resonator with an aspect ratio of t : d = 1 : 1 (blue),

where t and d are the thickness of the center pin and ground plane, respectively, see Fig. 7.1.

The transverse field components are shown at position z = 10 nm above a flat helium surface

flush with the ground plane, which is the approximate position of electrons in their vertical

ground states for a completely filled micro-channel. A typical rms voltage of Vrms = 2μV

was assumed. At the center of the resonator gap (x = 0), the field vector is parallel to the

z direction and the transverse component is zero. The magnitude of the transverse field

component is maximized around the edges of the ground plane and center pin. Compared

to the regular resonator geometry (shown in blue in Fig. 7.4 a), the DC-biased resonator has

a larger transverse field component around the center of the trap (±1μm), which could be

favorable for dipole coupling of transverse collective modes localized in the region about the

center, as shown below.

Electron Configuration and Molecular Dynamics Simulations

In section 2.2 we saw how an electron ensemble on liquid helium assumes an ordered state

at low temperatures and high densities in the absence of external fields. In this regime,

the electrons become localized in the lattice sites of a Wigner crystal. In the presence of

external holding potentials, the configuration of electrons in the ensemble is in general de-

termined by the combination of the confining electric fields, the repulsive electron-electron

Coulomb interactions and the attractive interactions with image charges in the superfluid

and surrounding metal electrodes. Determining the positions of surface electrons in such

a trap represents a complex many-body problem that has to be tackled numerically, even

for the simple one-dimensional case with N > 3 electrons (see section 3.7.1). To simulate

the equilibrium electron configuration in two dimensions and obtain information on the or-

dering of the ensemble in the parabolic trapping potential we can use molecular dynamics

simulations. Molecular dynamics (MD) represents a class of deterministic, iterative algo-

rithms that can be used to find solutions to many-body problems [218]. Particles at positions

ri(t) are displaced in small increments ri(t + Δt) = ri(t) + δri subject to an acceleration
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Figure 7.5.: Molecular dynamics simulations of electron configurations in a short section of a DC-biased center
pin resonator of length L = 15 mm, gap width wG = 8μm and center pin width wCP = 2μm for four different
trap voltages (columns) and electron densities: ne = 2.6 × 108 cm−2 (top row, Ne = 288 electrons total), ne =
5.1× 108 cm−2 (center row, Ne = 576) and ne = 8.6× 108 cm−2 (bottom row, Ne = 960). The region above the
center pin between +1μm and −1μm is indicated by dashed lines. The simulations take into account electron-
electron interactions as well as image-charge effects in both liquid helium and the metal electrodes. Simulation
data courtesy of G. Yang, Schuster Lab, University of Chicago.
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ai = (−1/mi)∇V (r = ri), where δri is calculated using a chosen integrator based on the

equations of motions in a force field with potential V (r). More details on MD simulations for

electrons on helium in micro-channel geometries can be found in [219]. The results of such

simulations for different electron densities and voltage biases are shown in Fig. 7.5 for a short

section of a DC-biased center pin resonator of length L = 15μm, gap width wG = 8μm and

center pin width wCP = 2μm. Electrons are seeded initially at uniform random positions in

the trap at the start of each simulations.

As can be seen in Fig. 7.5, at low trap voltages Vcp the electrons are spread out over the

waveguide gap with some weak ordering present. As Vcp increases, the confining potential

compresses the electron ensemble and ordering effects start to emerge more clearly. For both

low and high densities, the electrons form longitudinal linear chains at high trap voltages

and are localized in a small region around the center of the trap, directly above the center pin

of the resonator (indicated by dashed lines in Fig. 7.5). In combination with the finite-element

electric field simulations, the MD simulations indicate that as the trap voltage decreases a

significant number of electrons are localized in a region where the electric field has a large

in-plane, transverse component while at high trap voltages they tend to be concentrated in

a region where the RF electric field is mostly oriented in the vertical direction orthogonal

to the surface. Note that the ordering of electrons at the top and bottom of the simulated

region, visible as horizontal linear chains at y = 15μm and y = 2μm, is a consequence of

edge effects in the simulations as a result of the finite extent of the region.

Transverse Mode Coupling

The coupling of the cavity field to collective vibrational modes in one-dimensional many-

electron traps was investigated in section 3.7.2. Following section 3.7.1, the motional excita-

tions in a parabolic trap, such as along the transverse resonator direction, can be modeled as

linear N electron chains. There it was shown that an N electron chain has N independent

modes. For N = 2 we found a center-of-mass and a ’stretch’ mode with different effective

mass and oscillation frequencies while for N = 3 we obtained an additional ’scissor’ mode.

For general N , the lowest mode is always the CM mode where the crystal oscillates like a

rigid body at the fundamental trap frequency while the next highest mode is always the

stretch mode where the displacement of each electron is proportional to its distance from the

trap center. Since the wave functions of the many-electron modes are concentrated about the

center of the CPW gap where the transverse field component is close to zero (see Fig. 7.4 a),
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we expect this type of dipole coupling to be small. However, at typical saturated electron

densities there are potentially many such electron chains in parallel along the longitudinal

direction. The coupling could therefore be enhanced by a factor proportional to the overall

number of electrons Ne. In addition, at high densities a significant portion of electrons can

be located in the gap region away from the center pin where the transverse field component

is larger. Whether or not such modes are realized in our geometry depends on the specific

electron configuration which is a function of density and center pin voltage, as indicated

by the MD simulations shown above. Observing the transverse mode-cavity coupling in

transmission measurements will also depend on the relative detuning between cavity and

vibrational mode. For large detunings, the electron modes would cause a dispersive shift in

cavity frequency and any changes in quality factor would depend on coupling strength and

the linewidths of the cavity and the modes.

Using the simulated transverse electric field (Fig. 7.4 a) and the transverse mode wave

functions (section 3.7.1), we can estimate the coupling strength of the different modes via

numerical integration of (3.145). Care must be taken here to use the correct coordinate sys-

tem for both the simulated field and the wave functions. The collective mode coordinates

Qk for the stretch modes derived in section 3.7.1 contain additional offset terms that must be

taken into account. To estimate the coupling strength of a single one-dimensional transverse

mode, we first simulate the DC potential along the transverse axis for a given voltage bias

and obtain the fundamental trap frequency for Vcp = 1 V by fitting to a harmonic oscillator

potential, similar to the method used for single-electron quantum dots in section 3.3.3. Us-

ing the vibrational mode wavefunctions derived in section 3.7.1, the coupling strength �gk

is then obtained by evaluating the matrix elements (3.145) numerically using the simulated

transverse electric field. The coupling strength is a function of trap voltage bias since the

size of the vibrational wavefunctions (and hence the size of the dipole moment) changes

with voltage. Large voltages lead to tight confinement around the trap center, decreasing

the equilibrium electron spacing, as also evidenced by the molecular dynamics simulations.

Lowering the voltage bias decreases the vibrational mode frequency and increases the size

of the wave functions. Numerically calculated coupling strengths for the N = 3 electron case

are shown in Fig. 7.4 b as functions of center pin voltage bias. As expected coupling is small,

with the center-of-mass and scissor mode coupling three to four orders of magnitude smaller

than for the stretch mode. The stretch mode couples more strongly since the corresponding

vibrational oscillator is offset from the trap center by an amount proportional to the equilib-
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rium electron separation (see section 3.7.1), slightly shifting the dipole into regions with a

higher transverse electric field component.

To estimate the collective coupling for Nk transverse modes in parallel along the longitudi-

nal resonator direction, we can treat the modes as independent single-mode harmonic oscil-

lators in a first approximation (sometimes referred to as the Tavis-Cummings Model [220,221]).

In the dispersive limit of large detunings Δk = ωk − ωR where ωk is the frequency of the kth

mode, this gives a dispersive shift in cavity resonance frequency of

δωR = ωR ± g2eff
Δk

, geff =
√

Nkgk (7.1)

where geff is the effective, collective coupling strength, gk the coupling strength of a single

kth order transverse mode and Nk the number of modes. Here, the mode frequencies ωk

can be tuned through the center pin voltage. The quality factor of the cavity in this simple

single-mode harmonic oscillator model can be written as

Q =
Δ2

k + γ∗2k
2g2effγ

∗
k + κ(Δ2

k + γ∗2k )
(7.2)

where κ/2π = ωR/2πQ is the cavity decay rate and γ∗k/2π is the effective line width of the

kth collective transverse mode. This expression is a good approximation in the limit of γ∗k , κ

or Δk large compared to geff . Note that both Δk and geff are functions of center pin voltage

here. The above expressions will be used in section 7.2 for fitting to experimentally observed

frequency shifts and quality factors.

The coupling of vertical Rydberg states (section 2.1) can be treated in a similar manner

as for the in-plane motional excitations. The transition frequencies between the ground and

first excited vertical states ω10 can be Stark-tuned through the center pin voltage as discussed

in section 2.1.2 and the coupling strength depends on the magnitude of the vertical compo-

nent of the electric field. Qualitatively, the coupling strength of those transitions is expected

to be larger than for the transverse modes as the electrons are localized above the center pin

where the RF electric field vector is mostly parallel to their vertical motional axis, leading to

larger dipole coupling matrix elements. However, with transition frequencies of > 100 GHz,

the detuning Δ = ω10 − ωR will be on the order of hundreds of GHz and the corresponding

dispersive cavity shifts δωR are expected to be small for a single electron. As for the trans-

verse modes, the collective coupling can be enhanced by a factor of
√
Ne in an independent
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Figure 7.6.: Detection of trapped electrons on helium in a cavity transmission measurement (device L3): (a)
Measured cavity transmission as a function of center pin voltage bias Vcp plotted versus probe frequency ω/2π,
(b) Measured cavity transmission as a function of probe frequency ω/2π at two different center pin biases Vcp =
+0.91V and Vcp = +2.80 V, indicated by dashed vertical lines in (a). Fits to Lorentzian line shapes are shown
as solid red lines. Electrons are initially loaded into the gap of the coplanar waveguide cavity by thermionic
emission, where they are bound vertically to the surface of a capillary action film of superfluid helium and
confined laterally by the parabolic holding potential created by a Vcp = +3 V bias on the center pin. The center
pin bias is swept from +3 to −1 V in ΔVcp = 4 mV steps and a full cavity transmission trace is taken at each
step.

oscillator model.

7.2 Electron-Induced Frequency and Q Shifts

In this section we present experiments demonstrating how electrons on helium can be trapped

in the gap region of a DC-biased center pin resonator. Their presence manifests itself in the

form of trap voltage-dependent shifts in cavity resonance frequency of up to ∼ 10 linewidths

and quality factor reductions of up to ∼ 30 %, corresponding to an increase in cavity loss of

Δκ/2π = 125 kHz. Tuning the center pin voltage changes the effective electron holding po-

tential, which affects all of the coupling mechanisms discussed above in a voltage-dependent

way and therefore represents an effective way of detecting electrons.

The data presented in this section was taken from devices L3 and B13 (see Tab. 7.1). De-

vice L3 has a bare resonance frequency of ω0/2π = 4.791583 GHz, loaded quality factor

QL = 17750 and corresponding linewidth κ/2π = ω0/2πQ = 270 kHz in the absence of any

superfluid or electrons, while for device B13 ω0/2π = 6.11231 GHz and κ/2π = 294 kHz. The

devices are characterized by slightly different channel geometries as indicated in Tab. 7.1. We

start by filling the superfluid helium reservoir below the chip to H � 2.6 mm, where H is the

distance between the bulk surface in the reservoir and the top of the micro-channel on the
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Figure 7.7.: Electron induced shifts in resonance frequency Δω0/2π and loaded quality factor QL for devices
L3 (a, b) and B13 (c, d): (a) Measured frequency shift Δω0/2π as a function of center pin voltage bias Vcp in
the presence (blue) and absence (red) of electrons in the resonator mode volume. (b) Measured loaded quality
factor QL as a function of center pin bias Vcp. (c) and (d) Measured frequency shifts and quality factors for
device B13. For device L3, electrons are loaded into the gap of the coplanar waveguide cavity at an initial bias
of Vcp = +3 V which is then swept to −1 V in 4 mV steps (solid blue lines). The sweep direction is subsequently
reversed −1 → +3 V (solid blue lines at top) and no frequency or quality factor shifts are observed, indicating
that the resonator mode volume has been depleted of all electrons at negative voltages. Control measurements
without electrons in the waveguide gap are shown in red. For device B13, electrons are loaded at an initial bias
of Vcp = +1.8 V and the bias is swept in 50 mV steps.
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chip. This corresponds to a radius of curvature of Rc = σ/ρgH � 96μm such that the CPW

gap is filled by capillary action in a self-stabilized way. The superfluid level in the gap was

determined using the level-meter detection method discussed in chapter 5. For the given

level of helium we observe a frequency shift of Δω0/2π = −7.56 MHz in device L3 such that

the cavity resonance is located at ω0/2π = 4.784021 GHz in the absence of electrons. This

establishes a film of known thickness in the gap that is relatively insensitive to fluctuations

in the reservoir (see section 5.2). The level is kept fixed for the remainder of the experiment.

Electrons are generated via pulsed thermionic emission from a tungsten filament, mounted

about 4.5 mm above the device in vacuum covered by a 30 nm van-der-Waals film of liquid

helium, see section 4.1.4 for details. As shown in chapter 6, the saturated electron density

can be estimated by ns � εHeε0Vcp/eh where h � 1μm is the helium film thickness and Vcp

the center pin voltage bias when pulsing the filament. This corresponds to areal densities of

ns ∼ 1−5×109 cm−2 for our device geometry, depending on Vcp. The presence of electrons is

detected by measuring the cavity resonance in transmission while tuning the electron hold-

ing potential through the center pin voltage Vcp. The results of such electron cavity-detection

experiments are shown in Figs. 7.6 and 7.7. Electrons are first loaded into the resonator gap

at an initial center pin bias of Vcp = +3 V. We subsequently sweep the DC bias in ΔVcp = 4

mV steps from +3 to -1 V and take a full transmission trace at each step, going from right

to left in Fig. 7.6 a. As can be seen in Fig. 7.6, the presence of the trapped electron ensemble

leads to a voltage-dependent shift of the cavity resonance towards lower frequencies before

reverting back to its original frequency at negative voltages. The resonance shifts by up to

∼ 10 cavity linewidths in frequency while transmitted amplitude is reduced by a factor of 2

(Fig. 7.6 b).

The extracted frequency shift and quality factor are shown in Fig. 7.7 a and b as functions

of center pin bias for device L3. The electron-induced frequency shift reaches a maximum

of Δω0/2π = −2.47 MHz at V (max)
cp = +0.91 V with an overall reduction in quality factor

of 5300 or about 30%, which corresponds to an additional cavity loss of Δκmax/2π = 125

kHz. Below V
(max)
cp , both frequency and quality factor revert to their uncharged values and

the signal disappears completely at negative voltages. The reduction in signal below V
(max)
cp

can be attributed to the dissipation of electrons out of the trapping region, which is inves-

tigated in more detail in section 7.3 below. Subsequently reversing the sweep direction and

going back to positive voltages Vcp = −1 → +3 V (left to right in Fig. 7.7, top blue traces),

the cavity resonance stays constant with no frequency or quality factor shifts, indicating
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the gap region has been depleted of all electrons at negative voltages. Control experiments

with uncharged superfluid films under the same conditions, shown in red in Figs. 7.7 a

and b, show no voltage-dependent frequency or quality factor shifts. Note that the small

voltage-dependent changes in helium level observed in the level tuning experiments of sec-

tion 5.3 lead to frequency shifts that are an order of magnitude smaller than the observed

electron-induced shifts and hence are not visible on the scale of Fig. 7.7. In summary, the

data provides strong evidence that the observed shifts are indeed caused by the presence

of electrons in the cavity mode volume. The electron-induced frequency and quality factor

shifts have been reproduced in independent experiments using three different devices (see

Tab. 7.1). Maximum shifts generally vary between 1 - 3 MHz with V
(max)
cp = −0.5 to 1.0

V depending on helium level, device geometry and electron density. Measured frequency

shifts and quality factors for device B13 are shown in Fig. 7.7 c and d, which has been loaded

with electrons at an initial center pin bias of Vcp = +1.8 V and a helium-induced shift of

Δω0/2π = −6.914 MHz indicating to a self-stabilized capillary action film. The maximum

electron-induced frequency shift for this device was Δω0/2π � −0.9 MHz with an increase

in cavity linewidth of Δκmax/2π = 78 kHz or about 27 % at V (max)
cp = −0.3 V. While observed

frequency and Q shifts are qualitatively similar and consistent across devices, we find large

differences in the values of the maximum shift bias voltages V
(max)
cp , both between devices

as well as between cooldowns of the same device. This is likely a consequence of the same

random voltage offsets already observed in the helium level tuning experiments of section

5.3, see the discussion in section 5.3.3. As pointed out earlier, the origin and nature of these

voltage offsets is not yet well-understood.

While the observed shifts have been shown to be consistent with the presence of a trapped

electron ensemble in the waveguide gap, the coupling mechanisms are not fully understood

quantitatively at this point and will likely require further investigation. As a first attempt,

we can fit the independent oscillator model for the dipole coupling of transverse vibrational

modes of the ensemble as discussed in section 7.1.2. In the limit of large detunings, the

coupling of transverse modes leads to dispersive cavity frequency shifts of the form (7.1) and

impacts the quality factor according to (7.2). The transverse mode frequencies are tuned by

the applied center pin voltage with a dependence ∼ V 1/2, see section 3.7.1. The dispersive

cavity shift increases with decreasing detuning (decreasing voltage bias) as the transverse

modes are tuned closer to resonance with the cavity. In addition, lower trapping voltages

lead to a higher electron density in regions of larger transverse field away from the center
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Figure 7.8.: Fits of N = 3 electron transverse mode dispersive shifts to measured frequency and quality factor
shifts based on an independent oscillator model (see section 7.1.2): (a) Fit of eq. (7.1) to measured frequency shift
with fit parameters electron number Ne = 9050 and voltage offset Voff = −0.31 V, (b) Fit of eq. (7.2) to measured
quality factor with fit parameter γ∗

k/2π = 885 MHz using the electron number extracted from the frequency shift
fit in (a).

pin. Using the wave functions and transverse field components obtained from numerical

simulations as outlined in section 7.1.2, we can fit eqs. (7.1) and (7.2) for a given mode index

k to the measured frequency and Q shifts above V
(max)
cp and estimate the electron density in

the resonator and the line width γ∗k . Note that this simple model assumes a uniform coupling

strength along the longitudinal resonator axis. Fig. 7.8 shows fits of eqs. (7.1) and (7.2) for the

N = 3 electron transverse stretch mode to the data of device L3. We obtain a total number of

electrons of Ne = 9050 from the dispersive shift fit, which corresponds to an electron density

of ne ∼ 107 cm−2. A voltage offset of Voff = −0.31 V was used to obtain the fits. The quality

factor fit yields a line width for the N = 3 electron transverse mode of γ∗k/2π = 885 MHz.

The coupling strengths of the center-of-mass and scissor modes are generally too small and

do not fit the data well for any meaningful values of electron density and linewidth. While

the transverse mode model fits the data reasonably well, the obtained electron densities are

one to two orders of magnitude lower than expected. The molecular dynamics simulations

of section 7.1.2 suggest that the true in-plane mode structure is likely more complicated

than that of a simple linear chain in the transverse direction since the configuration of the

electrons in the ensemble is a strong function of density and voltage bias. Spectroscopic

measurements with an additional RF tone have not shown any direct resonant excitation of

collective in-plane or vertical modes in the frequency range 4 - 12 GHz.
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Figure 7.9.: Electron loss and voltage hysteresis measurements (device L3): (a) Measured frequency shift Δω/2π
as a function of time (proxied by trace index), (b) Triangular voltage sweep sequence as a function of trace
index, (c) Measured frequency shifts as a function of center pin voltage bias Vcp, showing the same data as
in (a) with sweep directions indicated by arrows. Starting at a positive trapping voltage V

(start)
cp = +3 V the

voltage bias is swept to a positive endpoint V (start)
cp → V

(end)
cp and the sweep direction is subsequently reversed

V
(end)
cp → V

(start)
cp . This cycle is repeated for different endpoints V

(end)
cp = +0.8, 0.7, 0.5 and −1 V, giving the

triangular sequence shown in (b). Each color corresponds to one cycle V
(start)
cp → V

(end)
cp → V

(start)
cp .

7.3 Loss and Hysteresis Measurements

To further investigate the origin of the electron-induced shifts in frequency and linewidth

and the gradual reduction in signal at voltages below V
(max)
cp , a series of hysteresis experi-

ments has been carried out. In those measurements we start at a large positive trapping volt-

age (Vcp ∼ +3 V), sweep the voltage bias to a positive endpoint V (start)
cp → V

(end)
cp < V

(max)
cp

and subsequently reverse the sweep direction V
(end)
cp → V

(start)
cp . The resonance frequency

shift Δω0/2π is monitored during such a sweep and the sweeps are repeated for successively

lower endpoints. The purpose of such an experiment is to determine the threshold voltages

at which electrons start to leave the resonator mode volume and whether or not electron dis-

sipation happens in a gradual or abrupt fashion. A triangular voltage sweep sequence for

a typical hysteresis experiment is shown in Fig. 7.9 b as a function of time (proxied by trace

index) for V (start)
cp = +3 V and V

(end)
cp = +0.8, 0.7, 0.5 and −1 V. The frequency shift measured

during such a sequence is shown in Fig. 7.9 a as a function of time and in Fig. 7.9 c as a func-

tion of voltage Vcp, where each color corresponds to one cycle V
(start)
cp → V

(end)
cp → V

(start)
cp .

In each cycle, we observe a sharp reduction in frequency shift near the endpoint (Fig. 7.9 c),

which we attribute to the loss of electrons from the resonator mode volume below V
(max)
cp .

At low trapping voltages, the holding potential is shallow enough such that it becomes en-

ergetically favorable for some electrons to leave the trap region. The resulting reduction in
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electron density leads to a redistribution of the remaining electrons in the resonator mode

volume with an increased equilibrium spacing, which manifests itself in a reduction in fre-

quency shift below V
(max)
cp . The most likely electron dissipation paths are through the 2μm

gap capacitors at the input/output of the resonator and the constriction gate at the bias port,

which represent relatively low potential barriers. The signal exhibits hysteretic behavior

with respect to voltage bias. As can be seen in Fig. 7.9 c, where the sweep directions are

indicated by arrows, each subsequent downward sweep V
(start)
cp → V

(end)
cp exactly retraces

the previous upward curve, which indicates that the number of electrons remains constant

above V
(max)
cp as no reduction in signal is observed between sweeps. The final sweep to

V
(end)
cp = −1 V depletes the resonator mode volume of all electrons as evidenced by the

vanishing frequency shift on the reverse sweep. The gradual reduction in frequency shift

Δω0/2π, which can be assumed to be proportional to surface electron density ne, shows that

it is possible to decrease the number of electrons in the resonator in a controllable fashion by

tuning the trap voltage to positive values below V
(max)
cp . We will take advantage of this in

the lifetime measurements below. However, a more detailed understanding of the coupling

mechanisms and the exact relation between frequency shift Δω0/2π, electron density ns and

trap voltage Vcp is required to quantitatively exploit this effect.

Ensemble Stability Measurements

In a final experiment, we investigate the stability and dissipation of the electron ensemble in

the resonator trap over longer time-scales at low trapping voltages. To this end, we conduct

a simple experiment in which the trap is biased at a constant voltage close to the maximum

shift voltage V
(max)
cp and the cavity is monitored in transmission over the course of several

hours. The results of such a stability measurement for device L3 are shown in Fig. 7.10

together with a diagram of the experiment protocol. Electrons are first loaded into the res-

onator mode volume at +3 V by thermionic emission from the filament. The electron density

is subsequently decreased by briefly reducing the bias to Vcp = +0.8 V and swept back to +3

V, taking advantage of the controlled unloading demonstrated qualitatively in the hysteresis

experiments above. We then bias the center pin at Vcp = +1.25 V where the electron-induced

signal is significant at a measured frequency shift of Δω0/2π = −1.45 MHz. The trapping

voltage is then held constant and the cavity is measured in transmission for 5.5 hours. At the

end of this period, we deplete the resonator mode volume of electrons by applying a large

negative bias of Vcp = −1 V to the center pin such that the resonance frequency of the cavity
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Figure 7.10.: Electron lifetime measurement over long time-scales: (a) Measured frequency shift as a function of
time, (b) Diagram of experiment protocol illustrating the sequence of center pin biases. Electrons are initially
loaded into the waveguide gap at Vcp = +3 V and the electron density is subsequently reduced by biasing
the center pin at Vcp = +0.8 V, below the maximum shift voltage V

(max)
cp = +0.91 V, which lowers the electron

holding potential to the point where it becomes energetically favorable for some electrons to leave the waveguide
gap region. The bias is then kept constant at Vcp = +1.25 V over the course of 5.5 hours. The gap region is
depleted of electrons at the end of this period by applying a negative voltage Vcp = −1 V to the center pin.

returns to its original unshifted value.
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8 Conclusion & Outlook

THE concepts and experiments discussed in this thesis represent the first major step to-

wards circuit QED experiments with electrons on helium, laying the foundation for a

variety of future quantum optics experiments using the lateral motional and spin degrees of

freedom of trapped electrons. While the results presented in this thesis are encouraging and

many of the technical hurdles towards ‘eonHe cQED’ have been cleared, they represent only

a first proof principle with many more exciting experiments to come. This chapter provides

some reflections on extending the work presented in this thesis and highlights some of the

obstacles that have to be overcome towards cavity QED in the single-electron regime and the

implementation of a true hybrid circuit QED system.

Reaching the Single-Electron Regime

The ultimate goal is to construct quantum dots with electrons on helium operated in the

single-electron regime, where the lateral quantized motion couples to the electromagnetic

field in a CPW cavity via dipole interaction. The theoretical basis for such single- and few-

electron quantum dots was discussed in detail in chapter 3. Such integrated sub-μm size

electrostatic traps have also been fabricated in practice in a variety of designs during this

PhD project, some of which are shown in Figs. 4.5 and 7.2 e. However, despite many attempts

at coupling single-electron dots to cavities no signatures of strong-coupling cavity QED (g �
κ, γ) have been observed so far, which would manifest itself either in the form of cavity

frequency shifts in the dispersive regime of large detunings (Δ � g) or as avoided crossings

near resonance (Δ ∼ 0), see section 3.1. There are a number of areas that likely require

improvements in design, fabrication and theoretical understanding:

• Efficient Trap Loading: Our early attempts focused on loading the traps directly with

thermionically emitted electrons from the filament. Those attempts were unsuccessful,
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in part because the effective electrostatic field of the trap seen by the emitted electrons

is too small to attract them to the trapping region (the filament is mounted a distance

d ∼ 4.5 mm above the chip and the trap biased at Vt ∼ 1 V is only about 1 μm2

in size). A more promising approach is to load the trap from a larger on-chip reser-

voir, possibly taking advantage of the CCD clocking techniques developed at Prince-

ton [102,217,222]. The key idea here is to first load electrons into a large area of size 100

- 1000 μm2 by applying a positive bias to a set of submerged electrodes, giving on the

order of Ne ∼ 2× 103 − 104 electrons at saturated density ne ∼ 2× 109 cm−2, and then

shuttle electrons individually into the dot along a gate-defined path. The reservoir

ideally provides some way of detecting the presence of electrons and measuring their

density, for example using the Sommer-Tanner method discussed in chapter 6. This

has the advantage of providing an additional, more well-understood electron detec-

tion method in addition to that based on cavity QED effects alone. Several attempts at

a reservoir-based loading scheme have been made during this PhD project, including

a design in which the reservoir is realized in the form of a large micro-channel based

Sommer-Tanner geometry, similar to the ones used in Refs. [206, 207]. A section of one

such device is shown in Fig. 4.5. Unfortunately, those types of devices introduce signif-

icant complexity into the fabrication process and were challenging to realize in practice

at the time. More advanced electron beam lithography equipment with better resolu-

tion and alignment, such as the one used for the final batch of devices made for this

PhD project, might make these designs easier to implement. Furthermore, care must

be taken in designing these more complicated structures to maintain the microwave

"hygiene" of the chip and avoid parasitic modes. Our second generation of reservoir-

based devices lead to the design of the DC-biased transmission line resonators which

have been successfully used in the superfluid helium and electron ensemble experi-

ments of chapters 5 and 7. In this design, the gap of the CPW cavity itself can act as

an electron reservoir and the presence of electrons can be detected through frequency

and quality factor shifts before attempting to load the single-electron trap.

• Motional Frequency and Trap Design: The design-specific simulations in section 3.3.3

have shown that it should be possible to tune the motional frequencies of trapped elec-

trons over a wide range of GHz frequencies, in particular into resonance with a cavity

at ∼ 5 GHz. However, electrode surface impurities, inhomogeneities and roughness,
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stray or patch potentials and image charge effects can lead to deviations and offsets in

the trap potential that are not captured by the simulations. For example, such effects

are commonly observed in micro-fabricated planar ion traps, where large offsets poten-

tials are often present, leading to additional micro-motion of trapped ions as they are

offset from the trap potential minimum [208, 209]. Here, the offsets largely result from

charge build-up during ion loading and stray laser light, in addition to patch potentials

caused by different crystal planes at the surface of electrodes, which can produce sur-

face potential variations on the order of ∼ 100 mV [208]. The extent to which some of

these effects are present in our geometry and devices remains to be determined. While

the effect of additional image charges in the metal electrodes and the substrate can be

taken into account in simulations (see Appendix C), irregularities from stray and patch

potentials are difficult to predict and will have to be investigated experimentally. Some

indications of electrostatic offsets in DC-biased resonators have been observed in the

experiments of chapters 5 and 7.

Many-Electron Coupling Mechanisms

The many-electron trapping experiments of chapter 7, originally designed as a stepping

stone for single-electron experiments, have revealed a rich set of phenomena caused by the

interaction of collective excitations of electron ensembles with the cavity field. While we

have successfully demonstrated that electrons can be detected in cavity transmission mea-

surements through frequency shifts and increases in cavity loss, the origin of those effects is

not fully understood at this point. Some of the possible causes have been explored in sec-

tions 7.1.2 and 7.2 but a more quantitative understanding of the underlying coupling mecha-

nisms will likely require further experimental and theoretical investigation. A crucial part of

solving this puzzle appears to require a more precise knowledge of the surface electron den-

sity in our micro-channel geometries. The molecular dynamics simulations in section 7.1.2

indicate that the electron configuration in the resonator trap is highly sensitive to electron

density, which would in turn determine the mode structure of any in-plane motional ex-

citations. Direct spectroscopic measurements of collective excitations, such as plasmons or

Wigner crystal phonons, could reveal a great deal about the nature of the observed frequency

shifts and the ensemble-cavity interactions. Such measurements, performed by sweeping an

additional RF tone above the cavity, have been attempted during the experiments of chap-

ter 7, but so far no direct excitation of collective modes has been observed in the accessible
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Figure 8.1.: Schematic layout of a hybrid circuit QED architecture. A superconducting coplanar waveguide
cavity covered with superfluid helium acts as a mesoscopic electrical interface between a transmon qubit (inter-
digitated structure at top) and a single-electron quantum dot on helium (bottom, trap electrode shown in red).
The cavity functions as a quantum bus allowing for the coherent exchange of microwave photons between the
two qubit implementations. Both can be made to couple strongly to the cavity by placing them at opposite ends
of the resonator at voltage anti-nodes of the fundamental mode.

frequency range. A better understanding of electron ensemble coupling mechanisms could

pave the way for a number of interesting applications such as spin-ensemble based quan-

tum memories with electrons on helium or studying quantum optics phenomena with many

emitters.

Coupling to Superconducting Qubits

Circuit QED with Josephson junction-based qubits, such as transmon or phase qubits, has

been widely successful over the last decade . The promise of a true hybrid circuit QED ar-

chitecture capable of interfacing single-electron quantum dots and superconducting qubits

was the main motivation behind this PhD project. Conceptually, the on-chip realization of

such a system is simple, as shown schematically in Fig. 8.1. A supercondcuting coplanar

waveguide cavity covered with superfluid helium acts as a mesoscopic electrical interface

between a superconducting qubit and a single-electron quantum dot on helium. The cavity

functions as a quantum bus, allowing for the coherent exchange of microwave photons be-

tween the two systems. The fabrication of such devices will likely pose a number of practical

challenges but there appear to be no fundamental barriers to the implementation once the

single-electron regime has been reached with quantum dots on helium.
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Some Final Thoughts

Electrons on helium represents an intriguing and exotic system where many phenomena,

in particular in the single-electron regime, remain to be observed. While I had some back-

ground in circuit QED, I personally had never heard of electrons on helium before coming to

Yale but the last five years have convinced me that it is a system well-worth studying, with

many exciting applications to come in the future. I hope to have conveyed this excitement

to the reader. Much of what has been presented in this thesis is theoretical and experimental

groundwork, leaving the many more advanced, and certainly no less challenging, experi-

ments to my collaborators and others who may choose to work on this system in the future.

Building an electrons on helium experiment from scratch and integrating it with a circuit

QED setup has been a challenging, at times exhausting but ultimately rewarding experience

that has taught me a great deal about what matters in research, science and engineering.
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A Electron-Field Interactions

The dynamics of a charged particle of spin �σ and charge q in a classical electromagnetic field

is described by the non-relativistic Pauli-Hamiltonian in Coulomb gauge (∂μAμ = 0) [94]

H =
1

2m

(
�σ
[
�p+ q �A

])2
+ qΦ (A.1)

where �A(�r) is the vector potential and V (�r) = qΦ(�r) the electrostatic potential. As usual, the

minimal substitution i�∂μ → i�∂μ − qAμ, i.e. �p = −i��∇ → �p− e
c
�A and E = i�∂t → E − e

cΦ,

guarantees gauge invariance. Using Maxwell’s equations and the usual commutators, the

Hamiltonian reads

H =
p2

2m
− q

m
�A · �p+ q2

2m
�A2 + qΦ− q�

2m
�σ · �B (A.2)

or in CGS units for an electron (q = −e)

H =
p2

2m
+

e

mc
�A · �p+ e2

2mc2
�A2 − eΦ+ μs�σ · �B (A.3)

This Hamiltonian is used repeatedly and implicitly throughout this thesis to describe the

different aspects of electrons on helium spin and motional qubits. The electron interacts with

the electrostatic field via its dipole moment d (for a homogenous field we have Φ = −Ez so

that H = ezE = dzE). Furthermore, its spin degree of freedom couples to the magnetic field

components via its magnetic spin moment μs = e�/2mc in the paramagnetic term μs�σ �B. The

diagmagnetic term proportional to �A2 does not couple to the electronic degrees of freedom

and is thus dynamically irrelevant and usually neglected. The interaction term �Ȧ�p couples

the electron angular momentum to the magnetic field. To see this explicitly, we can use
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A. Electron-Field Interactions

Maxwell’s equations in Coulomb gauge

�A =
1

2
�B × �r, �∇ · �A = 0 →

[
�p, �A
]
= 0 (A.4)

which yields

�A�p+ �p �A = �B(�r × �p) = �B�� (A.5)

where �� is the angular momentum of the electron. Finally, the Hamiltonian for an electron in

a general electromagnetic field is written as

H =
p2

2m
+

e2

2mc2
�A2 − eΦ+

e

2m

[
��+ ��σ

]
�B

=
�p2

2m
+

e2

2mc2
�A2 − eΦ+ ( �μs + �μ	) �B (A.6)

with the orbital and spin moments

�μ	 =
e

2m
��, �μs =

e

m
�s . (A.7)

In the absence of any magnetic fields and neglecting the diamagnetic term, the electron-field

interaction greatly simplifies and the Hamiltonian collapses to the standard form

H =
�p2

2m
+ V (�r) . (A.8)
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B One-Dimensional N Electron Chains

Here, we discuss a general framework for finding the modes of an N electron crystal in a

parabolic trap closely following the method used in Ref. [185] for one-dimensional ion chains

in linear Paul traps. The framework presented here allows us to extend the N = 2 and N = 3

electron cases of section 3.7 to arbitrary number of electrons. We start by determining the

electron equilibrium positions by minimizing the potential, in analogy to the N = 2 and

N = 3 electron cases. The general normal modes of the electron crystal are then found

by making the usual harmonic approximation and expanding the Coulomb potential in the

Lagrangian about the equilibrium positions to second order. General expressions for the

normal modes are then obtained by solving the eigenvalue problem given by the Euler-

Lagrange equations.

The Hamiltonian for N electrons in a parabolic potential of frequency ω0/2π coupled via

Coulomb interaction is given by

H =
N∑
i=1

p2i
2m

+
N∑
i=1

1

2
mω2

0x
2
i (t) +

1

2

N∑
i �=j=1

e2

4πε0

1

|xi(t)− xj(t)| = Hkin + V (B.1)

Just like in the N = 2 case, the equilibrium position x
(0)
k of the kth electron is determined by

[
∂V

∂xk

]
xk=x

(0)
k

= 0 (B.2)

We describe the motion of the kth electron as a small displacement qk(t) from its equilibrium

position xk(t) ≈ x
(0)
k + qk(t). Eq. (B.2) is a coupled set of N non-linear equations. Defining

the length scale

� =

(
e2

4πε0mω2
0

)1/3

, � ≈ 0.64μm at ω0/2π = 5GHz (B.3)
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and introducing the dimensionless equilibrium positions uk = x
(0)
k /�, we can evaluate the

derivatives and write the coupled set of equations as

uk −
k−1∑
j=1

1

(uk − uj)2
+

N∑
j=k+1

1

(uk − uj)2
= 0 (B.4)

This set of equations can be solved analytically for N = 2 and N = 3, which gives the results

derived above. For N ≥ 4 we have to resort to numerical methods to find the equilibrium

position of the kth electron. The values for N = 4 and N = 5 are [185]

N = 4 : u1 = −1.4368, u2 = −0.4544, u3 = 0.4544, u4 = 1.4368

N = 5 : u1 = −1.7429, u2 = −0.8221, u3 = 0, u4 = 0.8221

u5 = 1.7429

The smallest separation always occurs between the electrons at the center with the minimum

electron separation given by the numerically estimated power law [185, 223]

Δxmin(N) =

(
e2

4πε0mω2
0

)1/3
2.018

N0.56
(B.5)

In analogy to the N = 2 and N = 3 cases, the Coulomb potential in (B.1) can be expanded

about the equilibrium position x
(0)
k of each electron to second order in the displacement qk(t).

The truncated Lagrangian in harmonic approximation is then

L =
1

2

N∑
i=1

m
( �

qi
)2 − 1

2

N∑
i,j=1

qiqj

(
∂2V

∂xi∂xj

)
0

(B.6)

with
�

qi = ∂qi/∂t and where we have dropped a constant term equal to the rest energy of

the crystal, which does not affect the dynamics of the system. Evaluating the second order

partial differentials, we can rewrite the Lagrangian algebraically in the usual form (see e.g.

[224])

L =
1

2

N∑
i,j=1

Mij

�

qi
�

qj − 1

2

N∑
i,j=1

Aijqiqj (B.7)

where M = m · 1 is an N -dimensional diagonal matrix and A is a real symmetric, positive
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semi-definite matrix whose elements are given by

Aij = mω2
0 ×
⎧⎨
⎩ 1 + 2

∑N
p=1

1
|uj−up|3 , i = j

− 2
|ui−uj |3 , i �= j

The Euler-Lagrange equations can then be written in matrix form

� �

q+
(
M−1A

)
q = 0 (B.8)

where q ≡ |q〉 = (q1(t), q2(t), . . . , qN (t))T . Hence we see that eq. (B.8) has harmonic oscillator

solutions with frequencies that are determined by the eigenvalue problem

A |a(p)〉 = mω2
0λp |a(p)〉 (B.9)

where |a(p)〉 is the eigenvector with eigenvalue mω2
0λp and p = 1, . . . , N . Since A is Hermi-

tian, the eigenvalues are guaranteed to be non-negative real numbers and the eigenvectors

form an orthonormal system

〈a(n)|a(p)〉 = δnp ,
N∑
p=1

|a(p)〉 〈a(p)| = 1 (B.10)

The normal modes of the system are given by projections of the displacement vector onto

the eigenvectors

Qp(t) = 〈a(p)|q〉 =
N∑
j=1

a
(p)
j qj(t) (B.11)

The Lagrangian can therefore be expressed as

L =
m

2

N∑
p=1

(
�

Qp

2 − ω2
pQ

2
p

)
. (B.12)

The frequency of the pth mode is determined by the corresponding eigenvalue ωp =
√

λpω0.

Using Pp = m ·
�

Qp we get the final Hamiltonian

H =
N∑
p=1

[
P 2
p

2m
+

1

2
mω2

pQ
2
p

]
(B.13)

which consists of p uncoupled harmonic oscillators. The lowest two eigenvectors |a(1)〉 and
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|a(2)〉, and hence the lowest frequency normal modes, can be found analytically from (B.9)

while higher eigenvectors have to be found numerically. The N = 2 and N = 3 modes de-

rived explicitly above can be recovered from the general formalism. Solving the eigenvalue

problem analytically for N = 2 we get

|a(1)〉 = 1√
2

⎛
⎝ 1

1

⎞
⎠ , |a(2)〉 = 1√

2

⎛
⎝ −1

1

⎞
⎠ (B.14)

with eigenvalues λ1 = 1 and λ2 = 3. Thus the center of mass and stretch modes have

frequencies ω1 = ω0 and ω2 =
√
3ω0, in agreement with the results obtained above. Further-

more, using the equilibrium positions of the two electrons given in eq. (3.129) and translating

back from the displaced frame qk(t) = xk(t)− x
(0)
k , the normal modes are given by

Q1(t) =
1√
2
(x1(t) + x2(t)) , Q2(t) =

1√
2

(
x1(t)− x2(t)− 42/3�

)
(B.15)

and the resulting Hamiltonian agrees with (3.134), as expected. Likewise, for N = 3 we get

the modes

Q1(t) =
1√
3
(x1(t) + x2(t) + x3(t)) , Q2(t) =

1√
2

(
x3(t)− x1(t)− 101/3�

)
Q3(t) =

1√
6
(x1(t)− 2x2(t) + x3(t)) (B.16)

in agreement with the result derived directly above. For values N ≥ 4, the eigenvalue prob-

lem (B.9) has to be solved numerically (e.g. using QR decomposition or numerical inversion).

For N = 4 the eigenvalues and eigenvectors are [185]

λ1 = 1 , λ2 = 3 , λ3 = 5.81 , λ4 = 9.308

|a(1)〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

α

α

α

α

⎞
⎟⎟⎟⎟⎟⎟⎠

, |a(2)〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−β

−γ

γ

β

⎞
⎟⎟⎟⎟⎟⎟⎠

, |a(3)〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

α

−α

−α

α

⎞
⎟⎟⎟⎟⎟⎟⎠

, |a(4)〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−γ

β

−β

γ

⎞
⎟⎟⎟⎟⎟⎟⎠

where α = 1/2, β = 0.6742 and γ = 0.2132. The first two modes are the center of mass and

stretch modes already encountered in the N = 3 case, both with the same frequencies as in

that case, ω1 = ω0 and ω2 =
√
3ω0. The third and fourth mode are different types of scissor
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modes with higher frequencies. Compared to the N = 3 case, the normal mode oscillators

generally have different masses and charges. The normal mode coordinates in terms of the

individual electron positions are

Q1 = α(x1 + x2 + x3 + x4) , Q2 = β(x4 − x1) + γ(x3 − x2) + δ2

Q3 = α(x1 − x2 + x4 − x3) , Q4 = γ(x4 − x1) + β(x2 − x3) + δ4

where the constant offsets for the two stretch modes are

δ2 = 2
(
βx

(0)
1 + γx

(0)
2

)
, δ4 = 2

(
γx

(0)
1 − βx

(0)
2

)
(B.17)

At ω0/2π = 5 GHz we have δ2 ≈ −1.36μm and δ4 ≈ 0.04 nm and the equilibrium positions

x
(0)
1 = −x

(0)
4 = −0.91μm , x

(0)
2 = −x

(0)
3 = −0.29μm . (B.18)

Compared to the N = 2 and N = 3 electron case, we see that the equilibrium electron

spacing decreases with trap population. Note, however, that there is a limit to the number of

electrons that can be stored in a given confining potential as the transverse vibrational states

become unstable. Above a critical number of electrons, the electron crystal will adopt a zig-

zag type configuration in two dimensions that minimizes overall energy, which has been

studied in for ions in the context of structural phase transitions using molecular dynamics

simulations [187].
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C Image Charge Effects

In addition to any image charges induced in the superfluid film, the presence of electrons

also leads to image charges in the surrounding metal electrodes. Depending on device ge-

ometry, those metallic images are typically orders of magnitude farther away from the elec-

tron than the corresponding charges in the helium. However, because of the unit dielectric

constant . We can calculate the change in effective potential due to the presence of images in

the metal by considering the Poisson equation with appropriate boundary conditions. The

field due to a single electron at position re = (xe, ye, ze) in the vicinity of a grounded metallic

surface S is governed by

ΔΦ(r) = − q

ε0εr
δ(r − re) , Φ(r ∈ S) = 0 (C.1)

We can reformulate the problem by writing the total potential as a combination of the single

electron potential and an image charge potential

Φ(r) = Φim(r) +
q

4πε0εr

1

|r − re| (C.2)

where Φim(r) is the potential the electron feels due to image charges induced in the bounding

surface S. This yields for the total potential

ΔΦ(r) = ΔΦim(r)− q

ε0εr
δ(r − re) (C.3)

such that the image potential is governed by a Laplace equation

ΔΦim(r) = 0 (C.4)
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C. Image Charge Effects

with surface boundary conditions

Φim(r ∈ S) = Φ(r ∈ S)− q

4πε0εr

1

|r − re| = − q

4πε0εr

1

|r − re| (C.5)

Analytic solutions for Φim(r) in general do not exist for all but the simplest bounding ge-

ometries. We can, however, find solutions for the effective potential numerically using the

following algorithm:

1. Define a geometry and the electrostatic potentials on the different surfaces

S = {S1, S2, . . . , SN}. For a surface with an applied voltage, the boundary condition

reads

Φim(r ∈ Sj) = V − q

4πε0εr

1

|r − re| (C.6)

2. Solve the system numerically using a PDE solver:

ΔΦim(r) = 0 , Φim(r ∈ S) = − q

4πε0εr

1

|r − re| (C.7)

3. Recover the full potential Φ(r) using eq. (C.2).

The software package FlexPDE has a numerical PDE solver that allows specification of the

equations and arbitrary boundary conditions on a modeled surface using finite-element

methods. Extending the above calculations to multiple discrete charges is straightforward.

Let ρ(r) denote the charge density corresponding to n electrons at positions ri, i = 1n . . . , n

such that

ΔΦ(r) = −ρ(r)

ε0εr
= − q

ε0εr

n∑
i=1

δ(r − ri) , Φ(r ∈ S) = 0 (C.8)

Due to the linearity of the equations we find in analogy to the single electron case

Φ(r) = Φim(r) +
q

4πε0εr

∑
i

1

|r − ri| (C.9)

and

ΔΦim(r) = 0 , Φim(r ∈ S) = − q

4πε0εr

∑
i

1

|r − ri| (C.10)
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