
Abstract

Extending Coherence in Superconducting Qubits:
from microseconds to milliseconds

Adam Patrick Sears
2013

Circuit quantum electrodynamics (circuit QED) is the extremely successful framework for
studying quantum devices developed along with the transmon, a superconducting charge
qubit with an insensitivity to several types of dephasing. It involves the description of
superconducting qubits and harmonic oscillators as quantized circuits. This thesis describes
the implementation of two experiments that reduce circuit QED to its simplest components.
Both experiments utilize elements that are known to have low dissipation: excited electron
spin defects in crystals may take seconds to decay at cryogenic temperatures and the Josephson
junction in superconducting qubits is nearly lossless; we begin by discussing the proper
perspective for the remaining lossy elements. In the first experiments, a collection of magnetic
dipoles is coupled as an ensemble to a superconducting resonator to investigate their suitability
as a quantum memory; in the second a transmon “artificial atom” is placed inside a three-
dimensional superconducting box. We further extend the study of the “3D transmon” and the
harmonic oscillator modes of its rectangular waveguide cavity in terms of a new description
of their hybridization (Black-box Quantization). Finally, we identify and resolve issues
of photon induced dephasing in the first new devices. This thesis follows the evolution of
superconducting qubits from coherence times of several microseconds to nearly a millisecond.



Extending Coherence in Superconducting Qubits:
from microseconds to milliseconds

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Adam Patrick Sears

Dissertation Director: Professor Robert J. Schoelkopf

May 2013



© 2013 by Adam Patrick Sears
All rights reserved.



Contents

Contents iv

List of Figures viii

Acknowledgements xii

Publication list xiii

1 Introduction 14
1.1 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Resonators and Dissipation 20
2.1 Circuit Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Participation Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Transmission Line Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Quarter-wave Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Coplanar Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Rectangular Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Rectangular Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 Dielectric Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Conductor Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.4 Power Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Circuit QED 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Cooper-pair Box and Transmon . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iv



CONTENTS v

3.2.1 Circuit Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Cooper-pair Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Dipolar coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.4 Transmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.5 Dispersive Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.6 Coherent Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Black-box Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Two coupled LC Resonators . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 HFSS Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.3 Far detuned cavity modes . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.4 Purcell Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Experimental Techniques 62
4.1 Resonator Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Coplanar waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.2 3D Resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.3 Qubit Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.1 Reflective Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Absorptive Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Sample Holder and 3D Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.1 Octobox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.2 Rectangular waveguide cavity . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Pulse Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Spins 78
5.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 ESR of DPPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3 ESR of Diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4 ESR of Ruby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5 Considerations for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 3D Transmon 102
6.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.1 Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1.2 Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.1 Cavity Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2.2 Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.3 Saturation spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



CONTENTS vi

6.2.4 Rabi Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2.5 Coherence Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.6 Pulsed cavity experiments . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2.7 Qubit Anharmonicity and Excited State Population . . . . . . . . . . 116
6.2.8 Temperature dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.1 Qubit S (SQUID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.2 Qubits J1, J2, J3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.3 Qubits J4, J5, and J6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.4 D1, D2, and D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.5 Qubits SP1, SP2, and cQED457 . . . . . . . . . . . . . . . . . . . . . . . 124

7 Introduction to Dephasing 126
7.1 Dephasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2 Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3 Random Telegraph Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3.1 Exact solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4 Mechanisms of Dephasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4.1 Charge Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.4.2 Critical Current Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.4.3 Photon Induced Dephasing . . . . . . . . . . . . . . . . . . . . . . . . 135

8 Photon Induced Dephasing 137
8.1 Strong Photon-Induced Dephasing . . . . . . . . . . . . . . . . . . . . . . . . . 138
8.2 Photon Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.3 Temperature Dependencence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.4 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9 Conclusions and Outlook 153
9.1 Expanded Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.2 Conclusive Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.3 New experiments and hybrid systems . . . . . . . . . . . . . . . . . . . . . . . 155

Bibliography 158

Appendices 170

A Input-OutputTheory of Transmission 170

B ESR of Substrates 172

C Ramsey Incoherent Response 174



CONTENTS vii

Copyright Permissions 178



List of Figures

1 Introduction
1.1 Exponential coherence increase . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Resonators and Dissipation
2.1 An LC resonator coupled to the environment . . . . . . . . . . . . . . . . . . . 21
2.2 Transmission line resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Shunt resonator transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Details of coplanar waveguide resonators . . . . . . . . . . . . . . . . . . . . . 26
2.5 Resonator quality and dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Rectangular Cavity TE10n Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7 Location of lossy dielectric surfaces . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 Measurements of Coupling Q compared to HFSS . . . . . . . . . . . . . . . . 37

3 Circuit QED
3.1 Cooper-pair Box Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Coplanar Waveguide current and field profiles . . . . . . . . . . . . . . . . . . 47
3.3 Charge Dispersion in the Transmon . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Jaynes-Cummings Energy Levels . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Circuit model of the qubit and cavity . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 HFSS Simulation of the qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7 Thermal baths connected to a resonator . . . . . . . . . . . . . . . . . . . . . . 61

4 Experimental Techniques
4.1 Spins block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 SEM image of Josephson junction . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Block diagram of qubit experiments . . . . . . . . . . . . . . . . . . . . . . . . 67

viii



LIST OF FIGURES ix

4.4 Reflective attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Eccosorb filter housing and performance . . . . . . . . . . . . . . . . . . . . . 69
4.6 Sample holder construction and transmission . . . . . . . . . . . . . . . . . . 71
4.7 Rectangular cavity transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.8 Fridge base plate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.9 Coupling Q Measurement in Reflection . . . . . . . . . . . . . . . . . . . . . . 74
4.10 Block diagram of microwave components . . . . . . . . . . . . . . . . . . . . . 76
4.11 Properties of mixed up RF noise . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Spins
5.1 Spins block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 An ESR spectrum of diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Millikelvin ESR of DPPH on a chip . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Picture of the DPPH Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Anti-crossings between DPPH and Coplanar Waveguide Resonators . . . . . 88
5.6 A nitrogen doped diamond placed on a Coplanar Waveguide chip . . . . . . 89
5.7 Anti-crossing of diamond P1 centers with coplanar resonators . . . . . . . . . 90
5.8 Observing field localization in CPW resonators . . . . . . . . . . . . . . . . . 91
5.9 Saturation of a diamond spin ensemble . . . . . . . . . . . . . . . . . . . . . . 92
5.10 P1 center anti-crossings with CPW resonators and the return of polarization 92
5.11 The symmetries and energy levels of sapphire and ruby in ESR . . . . . . . . 93
5.12 Issues of coupling strength and energy levels in ruby . . . . . . . . . . . . . . 94
5.13 The transitions of ruby at millikelvin temperatures . . . . . . . . . . . . . . . . 96
5.14 Dipolar broadening limits to spin linewidth . . . . . . . . . . . . . . . . . . . . 97
5.15 Magnet field homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.16 Coplanar waveguide resonator quality factors in a magnetic field . . . . . . . 99

6 3D Transmon
6.1 Cavity Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Cavity dissipation and wafer issues . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3 Charging energy of qubit pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Junction Resistance and Qubit Frequency . . . . . . . . . . . . . . . . . . . . . 107
6.5 The non-linear cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.6 Incremental high power readout fidelity . . . . . . . . . . . . . . . . . . . . . . 110
6.7 Cavity spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.8 Cavity sidebands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.9 Fluctuations of power Rabi experiments . . . . . . . . . . . . . . . . . . . . . . 113
6.10 Coherence measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.11 Cavity decay details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.12 Measurement of qubit steady-state excitation . . . . . . . . . . . . . . . . . . . 117
6.13 Temperature response of qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.14 Tunable Qubit S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



LIST OF FIGURES x

7 Introduction to Dephasing
7.1 Gaussian noise from a TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2 Critical current fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8 Photon Induced Dephasing
8.1 Qubit spectroscopy showing photon number splitting . . . . . . . . . . . . . . 139
8.2 Power Rabi measurement of a cavity thermal state . . . . . . . . . . . . . . . . 141
8.3 Qubit dephasing due to photon noise . . . . . . . . . . . . . . . . . . . . . . . 143
8.4 Decoherence due to thermal photons . . . . . . . . . . . . . . . . . . . . . . . 146
8.5 Decoherence due to noise on weakly couple modes . . . . . . . . . . . . . . . 148
8.6 The global maximum in dephasing with respect to coupling quality factor . . 149
8.7 Improvements with proper heatsinking and filtering . . . . . . . . . . . . . . 150
8.8 Cavity ground state measurement . . . . . . . . . . . . . . . . . . . . . . . . . 151

9 Conclusions and Outlook
9.1 Thesis abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B.1 Oxford ESR of our common substrates . . . . . . . . . . . . . . . . . . . . . . . 173

C.1 A set of Ramsey experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175



for my parents



Acknowledgements

My physics Ph.D. owes the most to my parents Howard and Lynne Sears. I would also
like to thank my labmates, Luigi Frunzio, and my advisor Rob Schoelkopf.

xii



Publication list

This thesis is based in part on the following published articles:

1. A. P. Sears, A. Petrenko, G. Catelani, L. Sun, H. Paik, G. Kirchmair, L. Frunzio, L. I.
Glazman, S. M. Girvin, and R. J. Schoelkopf, “Photon shot noise dephasing in the
strong-dispersive limit of circuit QED,” Physical Review B 86, 180504 (2012).

2. H. Paik, D. Schuster, L. Bishop, G. Kirchmair, G. Catelani, A. Sears, B. Johnson,
M. Reagor, L. Frunzio, L. Glazman, S. Girvin, M. Devoret, and R. Schoelkopf, “Ob-
servation of high coherence in josephson junction qubits measured in a three-
dimensional circuit QED architecture,” Phys. Rev. Lett. 107, 240501 (2011).

3. D. Schuster, A. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. Morton, H. Wu, G. Briggs,
B. Buckley, D. Awschalom, and R. Schoelkopf, “High-cooperativity coupling of
electron-spin ensembles to superconducting cavities,” Phys. Rev. Lett. 105, 140501
(2010).

xiii

http://dx.doi.org/10.1103/PhysRevB.86.180504
http://dx.doi.org/10.1103/PhysRevLett.107.240501
http://dx.doi.org/10.1103/PhysRevLett.105.140501
http://dx.doi.org/10.1103/PhysRevLett.105.140501


CHAPTER 1

Introduction

The Quantum mechanics has its roots in the explanation of several technical problems [1, 2]
in physics; it was developed a century ago and is quite possibly the most successful

scientific theory in history. Its canonical system is the hydrogen atom [3], which provides
an exquisite study in quantization and interaction of light and matter. Its spectrum has
components calculated to a precision of better than a part per million [4]. One may ask about
its broader application to larger systems: is it a useful theory for objects as large as a thimble or
tea kettle? As the description of a system grows in size the quantum nature quickly disappears,
scattered by bits of dissipation and ultimately it behaves classically. Today, researchers in the
field of quantum information and quantum computation are developing larger and more
controllable quantum systems, motivated not simply by technical questions but to provide
revelations about information [5], probabilities, and the limits of the knowable [6].

The miniaturization of transistors and accompanying expansion of computing has been a
great boon to the modern era, changing nearly every part of civilization. Moore’s Law is the
exponential increase in computer chip transistor density, both enhancing device operation
and depressing costs. But physical limits make it conceivable that within the next decade this
growth may not continue, when gate sizes reach atomic dimensions. Rather than compete in
size and density, quantum computers are intended to transcend the capabilities of classical
computers. They may allow reduction of complicated intractable problems to ones solvable
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with more reasonable requirements. Richard Feynman discussed [7] the problem of simulat-
ing quantum Hamiltonians, which must keep track of not just 0’s and 1’s, but superpositions
of them as well. These can create entangled parts that are correlated with each other, even if
individual measurements produce random results. A true quantum information processor
will preserve these superpositions, allowing coherent interference using quantum logical
gates before a readout step which summarizes the parallel processing performed by the su-
perpositions. The extremely large solution space makes similar computation using a classical
computer with 2N bits intractable. However, its power makes moderate growth in quantum
computing a reasonable alternative to keeping up with the pace of Moore’s law.

Specific interest in quantum computing was sparked with the publication of Peter Shor’s
number factorization algorithm [8]. The difficulty of reducing a number to its prime fac-
torization is the basis of one of the most common encryption schemes, RSA public-key
cryptography [9], and the successful implementation of Shor’s algorithm would release a
treasure trove of information locked up by mathematics. While the most visible example of
the power of quantum computers, it is not the only one, and there may be ways to leverage
quantum mechanics in engineered systems differently. Fantastic protocols exist that allow
secret or encrypted communication [10], money impossible to counterfeit [11], and the fast
search of information databases [12].

However, this thesis is not about carrying out these wondrous possibilities using a quan-
tum computer, nor even the construction of a suitable device; instead it is an investigation into
several strategies for creating useful quantum bits (qubits) from microscopic systems that are
more naturally decoupled from the environment. In fact great progress has been made already
using exotic systems, building larger quantum information processors to ensure quantum
coherence remains in the final configuration. The building block of a qubit is the electron
and its dipole interaction with the electromagnetic field, forming a nominally a two-level
(↑ or ↓) microscopic system. Quantum dots, which rely on single electrons with very weak
magnetic dipole moment [13], are naturally decoupled from the environment to the point
where strong enough radio-frequency pulses become infeasible due to cryogenic restrictions.
Other electron spins come naturally connected to even weaker systems: nuclear spins [14].
Trapped ions [15] and some solid-state electron spins such as NV-centers in diamond may
have a large optical moment [16] that allows manipulation with fast pulses of light, while
retaining low rates of dissipation unrivaled by other systems. Alternatively, the electric dipole
of a spin may be enhanced, such as with the Rydberg atom [17] where it has been enlarged to
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Figure 1.1: Schoelkopf ’s Law: the coherence of superconducting qubits has increased an order
of magnitude every 3 years. State-of-the-art devices are nearly at the threshold of 104 operations
per error.

a thousand times that of the basic atomic unit, permitting interesting experiments with a
resonant cavity.

The Schoelkopf and Devoret labs at Yale specialize in artificial atoms made from super-
conducting circuits, a field that has made tremendous progress. In the superconducting
transmon qubit [18], for example, the electric dipole moment is a product of fabrication
parameters, and strong enough to demonstrate already proofs of concept for many of the
major requirements of a quantum computer. Many have been coupled together [19], with
interactions mediated by a quantum bus, and readout techniques have steadily improved [20].
More generalized evaluations of quantum gates have been developed, suitable for extension
to larger combinations of qubits. There are several proposed schemes to scale these ideas for
larger projects in quantum information processing.

In parallel with this push for complexity, there has been increased attention put towards
eliminating or understanding the decoherence in superconducting devices. The first task
after assembling a collection of quantum bits is to ensure that each qubit retains its individual
coherence, immune from decay and dephasing. It must be able to keep its own “time”, and
in addition,in any difference frequency (when it is paired with any other spin) is constant.
More fundamentally, it must store its energy in lossless media such as vacuum, high quality
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crystals, Cooper-pair supercurrents, or Josephson junctions. Superconducting devices are
robust due to the frictionless flow of superconductivity and the dissipationless Josephson
effect [21]. As our understanding of remaining loss mechanisms has grown over the years (see
Fig. 1.1), coherence times have increased several orders of magnitude. A qubit must retain
its information without fail during read, write, wait, and other usage, and superconducting
qubits are approaching a ratio of gate duration to coherence time that should allow an error
rate of ∼ 10−4 necessary to implement error correction procedures, creating a persistent
logical bit or further extending its usefulness at the expense of complexity.

Reaching this threshold is a tough bill for any hardware to satisfy, as the requisite isolation
can be tough to engineer alongside the ability to precisely control qubit interferences. In
particular, at least one part of the quantum computer must be strongly coupled to the outside
world for state readout, which must ideally be fast and accurate. Superconducting circuits
achieve this in part by using microwave tones whose strength can be controlled over ten
orders of magnitude, leaving only the residual cryogenic temperature as the main source of
unintended measurement photons. Both trapped ions and solid-state systems like diamond
NV-centers achieve the same effect using lasers, and enabling this sort of dynamic range
is a large portion of what makes one particular exotic physical system a good platform for
quantum computing. Future progress may require the combination of these systems in hybrid
configurations; this is already being attempted [22–24]. While the ultimate goal requires
stringing together devices in a scalable way that combines coherence with entanglement,
communication, feedback, and readout, there is much to be learned from simplification as
well; in fact, the first experiments with the 3D transmon, the focus for the second half of this
thesis, are an example of what can be learned by removing as many distractions as possible.

1.1 Thesis Organization

This thesis covers the implementation of several new ideas in circuit QED for the purpose of
increasing coherence times in superconducting qubits. I first review classic results from the
field of high quality microwave resonators. Ch. 2 discusses the theory of lumped element
circuit representation of a harmonic oscillator and the various locations and materials that
store and dissipate energy. Power coupling out of a resonator is particularly important, and
the ability to tune this property in situ is a useful feature for experiments. In fact, this is
used in chapter 8 to investigate the dominant source of dephasing in a newly implemented
superconducting qubit design.
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Ch. 3 outlines the physics of coupling electric and magnetic dipoles to an electromagnetic
cavity mode, explaining the difficulty of matching the interaction strength of electric dipoles
using magnetic dipoles. The equivalence of coupling to reasonably sized three-dimensional
(3D) cavities motivates the construction of a classic superconducting transmon device in a
3D resonator. The new architecture motivates a closer examination of the qubit Hamiltonian,
and a brief consideration of the new environment presented by a cavity with many modes.

In Ch. 4, I describe the fabrication procedure for planar resonators on sapphire and
ruby substrates, as well as the traditional Dolan-bridge recipe used for the 3D transmon. I
will also detail the extra filtering used to correct thermalization issues and obtain the best
qubit coherence times, the first mechanically adjustable coupler for the 3D cavities, and
experimental details for the artificial heat bath generated for chapter 8.

Ch. 5 begins with the coupling an ensemble of simple organic spins to a superconducting
resonator as a proof of concept. This verifies several bits of physics known but untested in our
lab: that superconducting films may have high quality factors even with large magnetic fields
applied in parallel, and that strong coupling is achievable using large numbers of magnetic
spins in an ensemble. After this, we use more exotic spins such as nitrogen substitutions in
diamond and observe the hyperfine splitting with carbon-13, before demonstrating low-field
resonance by utilizing the zero-field-splitting in ruby and obtaining gorgeous broadband
spectra. We conclude that the true promise of hybrid spin systems may lie in low-number
isotopically enriched samples.

In Ch. 6 we return to superconducting devices and try a radically simple architecture for
the transmon, placing a standard device on a sapphire chip inside a much larger rectangular
waveguide cavity. This removes all non-qubit lithography and makes the device “wireless”
without wirebonds, circuit boards, or solder. The resulting 10x increase in energy decay times
broke coherence records for superconducting devices and quickly became the most popular
superconducting qubit design in experiments across the world.

The increased coherence interestingly exposed the entanglement of the qubit with several
fluctuating parts of the system: trapped charges, Josephson junction conduction channels,
and errant cavity photons. The effect of these fluctuations is summarized in Ch. 7. The 3D
transmon was designed with the same classic parameters as the planar transmon, but the
lengthened timescale of dephasing and decay revealed sensitivities to correspondingly weaker
fluctuations. We pick one of them to study in the final experimental chapter.

The first 3D transmons were placed in high-Q cavities to prevent rapid energy decay from
the Purcell effect. Their improved coherence times in combination with this design choice



CHAPTER 1. INTRODUCTION 19

meant that a single cavity transit of a microwave photon would completely dephase the qubit.
In Ch. 8, I explore this by changing both the rate and number of photons in the exterior
mode, by raising the fridge temperature, and by adding extra filtering to eliminate this effect.

The thesis ends in Ch. 9 with some final thoughts about coherence.



CHAPTER 2

Resonators and Dissipation

In circuit quantum electrodynamics (circuit QED) quantum devices are often protected from
dissipation and decoherence by microwave resonators. They shield outside interference,

inhibit spontaneous emission, and often share locations of energy storage and loss with
their embedded qubits. In fact, we know resonators of different geometries have a different
distribution of energy among bulk dielectrics, surface dielectrics, and conductors. Conscious
engineering to place the majority of this energy in a lossless or high quality material has the
potential to improve useful qubit lifetimes substantially; alternatively, concentrating it in
small volumes may allow us to magnify interactions with isolated devices.

In this chapter we first define the quality factor for an ideal electromagnetic resonator,
then broaden the definition in the presence of a dissipative environment. We give a crucial
relation that defines the resonator quality factor while accounting for storage and dissipation
of energy in its different parts. Then, we study two physical geometries for resonators used in
experiment later in this work: planar and three-dimensional cavities. In considering their
respective mechanisms of dissipation, we evaluate their suitability for embedded, simple
lumped devices within these cavities in Ch. 3.

20
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Y Ytot

Figure 2.1: A parallel resonator with some connection to the environment will have a finite
quality factor

2.1 Circuit Resonators

Energy storage in an oscillator can be defined through a description of admittance Y = Ĩ/Ṽ
with the time-dependent phasors Ṽ = ∣V ∣e jϕV and Ĩ = ∣I∣e jϕI and initial phases ϕV and
ϕI , which give the current and voltage across the oscillator I(t) = R [Ĩe jωt] and V(t) =
R [Ṽ e jωt]. When composed of an inductor L and a capacitor C, it has resonant frequency
ω0 = 1/√LC, and stores a constant total energy U = Ue +Um = 1

2 CV(t)2 + 1
2 LI(t)2, of which

the time-averaged capacitive and inductive energies are:

Ue = 1
2

C⟨V(t)2⟩ = 1
4

C ⋅R[Ṽ Ṽ∗] (2.1)

= 1
4

C∣V ∣2 (2.2)

and

Um = 1
2

L⟨I(t)2⟩ = 1
4

L ⋅R[Ĩ Ĩ∗] (2.3)

= 1
4

L∣I∣2 (2.4)

= 1
4
∣V ∣2 1

ω2L
(2.5)

When a dissipative element is added, the device has a quality factor defined by the ratio of
energy storage to dissipation per cycle:

Q = ωU
Pdiss

(2.6)

where Pdiss is the time-averaged rate of dissipation. More generally we add an admittance
Y = G + iX connected in parallel (see Fig. 2.1); then clearly for a purely resistive shunt Y = G
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giving time-averaged dissipation Pdiss = 1
2 G∣V ∣2 we have

Q = 1
2
I [ jω(C + 1

ω2L)] ∣V ∣2
R [G] ∣V ∣2 (2.7)

and in fact more generally for total admittance Ytot we have

Q = 1
2
I[Ytot]
R[Ytot] (2.8)

for total admittance Ytot. For a circuit the characteristic energy decay time τ is related to the
quality factor by Q = ωτ.

2.1.1 Participation Ratio

Understanding and localizing dissipation (and noting the attendant Joule heating) is impor-
tant for increasing the coherence times of quantum devices. The concept of participation
ratio is convenient for keeping an account of the effect of specific materials and processes
on the total quality factor of a device. Of the total energy stored in a device, a fraction pi is
stored in volume i, subject to a decay process at rate γi which would limit the device to a
quality factor Qi if 100% of the stored energy were subject to it. The rate of total energy loss
is γ = ∑i piγi and the total quality factor is:

1
Q

= ∑
i

pi

Qi
(2.9)

In the remainder of the chapter, we examine two geometries for resonators with particular
interest in their mechanisms for dissipation and the participation ratio of each process.

2.2 Transmission Line Resonators

Transmission lines are long microwave structures with a cross-section small in the transverse
direction (relative to the signal wavelength at frequencies of interest), giving them a capac-
itance and inductance per unit length which can be determined by electrostatic integrals
and precisely controlled by photolithography. Their geometry determines a capacitance and
inductance per unit length, Cl and Ll of order ε0 and µ0, and may be calculated through
field integrals. They realize a device with a characteristic impedance Z0 = √

L l
C l

which can
be different from vacuum, even without the use of any dielectric material, and wavenumber
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λ/4
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B

E

Figure 2.2: a) Integrals of the field E⃗ and B⃗ field lines of a transmission line define the ca-
pacitance Cl and inductance Ll per unit length. b) A λ/4 length of line, shorted at the end,
forms a transmission line resonator. c) Arrangement of such a resonator as a shunt allows the
simultaneous testing and use of many resonators.

β = ω
√

Ll Cl . Voltage waves propagate V(z, t) exp(γt) with propagation factor γ = α + iβ,
where α is the amplitude attenuation per unit length.

When electromagnetic waves impinge upon a load with impedance different from the
characteristic impedance of the transmission line Z0, reflections are created; when loaded
on both sides, multiple reflections produce standing waves which collect electromagnetic
energy. This creates a λ/2 resonator (for the fundamental mode) with both ends open, and a
λ/4 resonator (for the fundamental mode) with one end shorted.

2.2.1 Quarter-wave Resonators

For a line of length l with load ZL, the input impedance is: (Pozar p274):

Zin = Z0
ZL + Z0 tanh γl
Z0 + ZL tanh γl

(2.10)

Choosing a microwave short ZL = 0 creates a resonance when l ≈ λ/4 with additional
harmonics at (2n+1)ω0 of the fundamental. Following Pozar, a λ/4 resonator has impedance:

Zsh
in = Z0 tanh(γl) = Z0

1 − j tanh αl cot βl
tanh αl − j cot βl

(2.11)

whose resonance at ω0 we can expand about βl = (2n + 1) π
2 :

βl = [(2n + 1)ω0 + ∆ω] l
v

= (2n + 1)π
2
+ π

2
δx (2.12)
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where δx = (ω − ω0)/ω0. For small loss tanh αl ≈ αl , and we approximate:

Zsh
in ≈ Z0

αl + j π
2 δx

(2.13)

= Z0/αl
1 + 2 j (2n+1)π

4αl δxn
(2.14)

where δxn = (ω − ωn)/ωn.
This has an equivalent parallel circuit which is:

Rn =Z0

αl
(2.15)

Cn = π
4ω0Z0

(2.16)

Ln = 4Z0(2n + 1)2ω0π
(2.17)

with characteristic impedance and internal quality factor:

Zn = 4Z0(2n + 1)π
(2.18)

Qn = (2n + 1)π
4αl

(2.19)

Resonator Coupling

Furthermore, following [25], we can limit the coupling of this resonator to the port or feedline
by adding a capacitor in series that serves as an impedance mismatch or mirror. The Norton
equivalent transformation of this capacitor places in parallel:

Yk = jωCκ

1 + jωCκ Zport
= jωCκ + q2

in/Zport

1 + q2
in

(2.20)

where qin = ωCκ Zport and Zport is the impedance of the input port.
For small qin, this slightly reduces the resonant frequency (which we neglect for Q ≫ 1)

and gives it a coupling quality factor:

Qc = 1
ZnR[Yk] = 1

q2
in

Zport

Zn
(2.21)

= π
4(2n + 1) 1

ω2
0C2

κ Z0Zport
(2.22)
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Figure 2.3: The transmission of a coupled λ/4 shunt resonator with Qc = 650, 000 and Qi =
80, 000.

which combines in parallel with the intrinsic quality Qn from Eqn. 2.15 to give:

1/Q = 1/Qn + 1/Qc (2.23)

Power Absorption

A coupled λ/4 resonator can be useful to deliver power to a localized area using small band-
width; it modifies the transmission between two ports by partially absorbing and reflecting
power (following [26]) where:

∣S21∣2 = Smin
21 + 4Q2δx2

1 + 4iQδx2 (2.24)

Smin
21 = Qc

Qi + Qc
(2.25)

and the power dissipated in the resonator is

Pabs = Pin(1 − Smin
21 ) (2.26)

In practice (see Fig. 2.3), the transmission can be modified by cabling or components other
than the device under test. Often in measurements of shunt admittances, we will be interested
in the natural frequency ω/2π of a shunt resonator, and its quality factor due to the coupling
out of power as well as power dissipated internally. On occasions when Eqn. 2.2.1 is insufficient,
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Figure 2.4: a) Approximate frequency of λ/4 resonator higher resonances, given shunt length,
for w = 10 nm,s = 5 nm a) A schematic of a capacitively coupled length of coplanar waveguide,
including gaps s and centerpin width w.

we will use a formula that assumes a 2-port device with only a single pole and dissipation
only provided by the resonator, but with the possibility of nearby reflections [? ], accounted
for by the complex Q̃c.

S21 = Tmax [ −Q̃c(Qiδx − i)
iQi − Q̃c(2Qiδx − i)] (2.27)

= Tmax [1 − iQi

iQi − Q̃c(2Qiδx − i)] (2.28)

for δx = (ω − ω0)/ω, ω0 the frequency of the resonator (loaded only by Qi). Then the true
coupling quality factor quantifying power loss is 1/Qc =R[1/Q̃c].
2.2.2 Coplanar Waveguide

A coplanar waveguide (CPW) is the 2D analog of a coaxial transmission line. In fact it is
easy to fabricate, and readily assembled into an array of shunt resonators for many useful
purposes. Their properties and design tradeoffs have been reviewed in depth in several recent
publications [25, 27]. Its capacitance and inductance per unit length are given by:

Ll = µ0

4
K(k′

0)
K(k0) (2.29)

Cl = 4ε0εeff
K(k′

0)
K(k0) (2.30)
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where K is the complete elliptic integral of the first kind with arguments combining the center
strip width w and gaps s, and the effective dielectric constant εeff and:

k0 = w
w + 2s

(2.31)

k′
0 = √

1 − k2
0 (2.32)

This allows us to compute the characteristic impedance Z0 = √
Ll Cl and lengths necessary

for practical resonators. The frequency and Qc of a device can easily be controlled with the
resolution of achievable photolithography.

Kinetic Inductance

Because of the geometry in thin film coplanar waveguides, there is the potential for a large
fraction of the resonator inductance to come from the kinetic energy stored in the charge
carriers. A length of CPW has a total capacitance C = Cl l and L = Lm + Lk, the sum of
magnetic inductance Lm = Ll l (noted above) and a kinetic inductance Lk. These determine
the resonant frequency ω0 = 1/√LC. Following [25] the kinetic energy of a supercurrent is

Ukin = ∫ 1
2

nsmv2dV (2.33)

= 1
2

nsm
Ae2 I2 (2.34)

= 1
2

µλ2
L

l
A

I2 (2.35)

for an area A = wt, using λL = √
µm/nse2 the London penetration depth, and yielding a total

kinetic inductance which is

Lk = µ
λ2

L
wt

g(s, w , t) (2.36)

where g(s, w , t) depends upon the CPW centerpin and spacing widths and film thickness [28];
for our devices it is of order unity, and as an example with our standard choices for dimensions
and geometry (w = 10 µm, s = 5 µm, sapphire thickness 450 µm), niobium film (λL = 40 nm)
resonators have Lk ∼ 1 nH/m whereas Lm = µ0 l is 1 nH/mm.

The kinetic inductance can be modified in situ by the application of a magnetic field in
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parallel with the superconducting film such that:

Lk(B) = Lk(0)
1 − ( B

Bc
)2 (2.37)

Here the quadratic functional form is suggested by non-linearities in the London Equations,
caused by pair breaking in response to increased current [29]. Then the frequency of the
resonator depends on magnetic field:

ω(B) = ω0√
1 + α B2

c
B2

c−B2

(2.38)

where we define the geometric kinetic inductance fraction:

α = Lk(0)/Lm (2.39)

which captures the sensitivity of the device to fluctuations in quasiparticles and stray magnetic
fields. For our resonators, the kinetic inductance fraction is small, on the order of 10−3, making
us relatively insensitive to poor quality films. However other researchers have leveraged
kinetic inductance for interesting applications such as wideband parametric amplifiers [30]
or photon detection through quasiparticle sensing [31].

Dielectric losses

Coplanar waveguide stores much of its field in the bulk substrate and a large portion in surface
materials. The half-plane substrate is often of high-ε silicon or sapphire; this is accounted
for in resonators through the εeff, where for sapphire ε = 10.5 and in practice on our devices
εeff ≈ 5.2. We will exploit this in Ch. 5, where the substrate is doped with spins and we wish
for the majority of the resonator electromagnetic energy to interact with them. In addition,
this planar geometry stores much of the mode energy at the surface of the substrate, an area
subject to violent electron beam currents in lithography, adsorbed water molecules, and other
contaminants whose lossiness may damp the cavity quality factor.

In fact, several experimental surveys of loss in coplanar waveguides have identified the
surface as the likely region which whose dissipation limits resonator quality factors [33–35],
with improved results for devices with larger and wider features. It is with this in mind that we
consider 3D cavities with large mode volumes that “dilute” the importance of thin dielectric
films.
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Figure 2.5: a) Coplanar waveguide resonators store most of their energy in the surface di-
electric [32]. b) The participation of a lossy dielectric film is t/L, where for a 3D resonator
whose cross-section we illustrate, L approaches λ. c) A layer of dielectric on the surface of
CPW is predicted [33] to induce a frequency-shift in the resonator frequency as its complex
dielectric constant changes with temperature. This effect varies for different center-pin width
(above: 30 µm, below: 10 µm) d) The power dependence of resonator quality factor indicates
the presence of saturable two-level systems which otherwise leech energy.

2.3 Rectangular Cavities

Several styles of 3D resonators are well-known, including notably the pillbox cylinder, but we
will study a rectangular cavity composed of or a length of rectangular waveguide shorted on
both ends. It can be designed with resonant modes in the microwave frequencies, stores the
majority of the electromagnetic energy in vacuum, and is readily machined.

2.3.1 Rectangular Waveguide

Rectangular waveguide is useful for its power transmission capability, with smaller conductor
losses than other geometries due to the large wall area. For perfectly conductive walls the
fields of the resonator standing modes are particularly easy to describe. Solutions to Maxwell’s
Equations can be divided into two families, the Transverse Electric (TE) and Transverse
Magnetic (TM) modes, dependent upon which component parallel to propagation, Hz or Ez,
is null throughout. Rectangular waveguide has solutions for traveling TE waves:

Hz = H0 sin(mπx
a

) sin(nπy
b

) e− jβz (2.40)
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TE101 TE102 TE103

Figure 2.6: The lowest three resonant modes of a length of shorted rectangular waveguide

and TM waves:

Ez = E0 cos(mπx
a

) cos(nπy
b

) e− jβz (2.41)

with

γ =
√

ω2µε − (mπ
b

)2 − (nπ
b
)2

(2.42)

given a filled volume with dielectric constant ε and magnetic permeability µ, and a cutoff
wavenumber which limits propagation below a certain frequency to evanescent waves

kc = √
k2

x + k2
y (2.43)

and with wavenumbers:

kx = (mπ/a),ky = (nπ/b), kz = (pπ/d) (2.44)

When bounded by conductive walls, these give standing wave solutions, similar to trans-
mission line resonators. Fig. 2.6 displays the field magnitude for the first few TE10n modes of a
rectangular cavity. We can generally describe the fields of the TEmnp mode with the following
equations [36] for a waveguide cavity filled with the magnetic permeability µ and electric
permittivity ε and of the material filling the waveguide (see Fig. 2.6):

Ex = jE0
ky

kc
cos(kx x) sin(ky y) sin(kzz) (2.45)

Ey = − jE0
kx

kc
sin(kx x) cos(ky y) sin(kzz) (2.46)

Ez = 0 (2.47)
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and

Hx = −H0
kx kz

kkc
sin(kx x) cos(ky y) cos(kzz) (2.48)

Hy = −H0
kykz

kkc
cos(kx x) sin(ky y) cos(kzz) (2.49)

Hz = H0
kc

k
cos(kx x) cos(ky y) sin(kzz) (2.50)

with resonant frequencies:

ω = 1√µε
√(mπ/a)2 + (nπ/b)2 + (pπ/d)2 (2.51)

We have normalized these to an energy:

UE = 1
8

abdεE2
0 (2.52)

UH = 1
8

abdµH2
0 (2.53)

for m, n, p > 0, or 1
4 abdεE2

0 when an index m or n is zero.

2.3.2 Dielectric Loss

A vacuum-filled rectangular cavity may nevertheless have dielectric loss due to a thin layer
of lossy material which is placed on the sidewalls (see Fig. 2.7). Dielectric loss at the walls for
the TE101 consists solely of loss for Ey field, which is only nonzero at the x = 0, a walls. The
complex electric energy in a dielectric layer of thickness t at the walls is:

Udiel = 1
2 ∫ t

0
dx ∫ b

0
d y∫ d

0
dz [εE⃗ ⋅ E⃗∗]x=0 (2.54)

= t
2

ε∣E0∣2 ∫ b

0
d y∫ d

0
dz [sin2 (πy

b
) sin2 (πz

d
)] (2.55)

= t
b

V
8

ε∣E0∣2 (2.56)

such that the time averaged dissipation for ε = ε′ + iε′′ is:

Pdiel = Vε

8
ωε′′∣E0∣2 (2.57)
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Figure 2.7: A cross-section of a rectangular waveguide cavity. Lossy dielectric material may
cover the surface of the embedded sapphire substrate (dark purple) the top and bottom of the
cavity, or the sidewalls. Substrate and sidewall surfaces share the same TE101 mode participation.

Because of the uniformity of the fields a substrate we place in the center of the cavity, a wafer
of thickness t which stretches the full width has the same amount of dissipation. Comparing
to the total electric energy:

WE = 1
2 ∫ [εE⃗ ⋅ E⃗∗] dV (2.58)

= V + (εr − 1)Vε

8
ε′∣E0∣2 (2.59)

which approximately gives a total quality factor due to the lossy dielectric proportional to its
participation ratio:

Qdiel ≈ (εr
Vε

V
) / tan δ (2.60)

for dielectric volume Vε and tan δ = ε′/ε′′. By purposely providing a dielectric, such as the
sapphire we use as a substrate for devices, a measurement of cavity Q gives a lower bound
on the 1/ tan δ or the quality factor. Our measurements indicate that bulk sapphire has at
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least Qsap ≥ 1.7 × 106. Many other lossy dielectrics or oxides, whether undiscovered or simply
unavoidable, have much less importance in a 3D cavity. The added dimension of rectangular
waveguides reduces the participation of surface contaminants from pdiel ≈ 10−2 − 10−3 in
CPW or striplines to pdiel ≈ 10−6 or less in 3D resonators. If we are concerned about surface
dielectrics, we have come to the right place.

2.3.3 Conductor Loss

Standing waves allowed in a rectangular waveguide resonator do not all vanish at the walls,
there is some finite magnetic field tangent to them. This creates a current in the metal which
dissipates energy according to its conductivity. For very good conductors, dissipation in
lossy wall conductivity is proportional to H∥, the tangent magnetic field, and to first order we
can use this magnitude to estimate the dissipation due to finite conductivity with a surface
current.

Surface Impedance

The complex average power entering a conducting surface is:

Pav = ∮
S′
(E⃗ × H⃗∗) (2.61)

= ∮
S′

η∣H∣2 (2.62)

where η is the complex impedance of the conductor. Because transverse magnetic fields are
screened and disappear rapidly inside the surface, this is simply:

= ∫ η∣H∥∣2 (2.63)

and for good conductors with conductivity σ or skin depth δs:

η = (1 + j)√ωµ
2σ

(2.64)

= (1 + j)/σ δs (2.65)

Then, for normal metals, the extra energy effectively increases the resonator dimensions by
δs, and all Qs = I[η]/R[η] = 1 such that essentially all of the stored energy within the normal
metal is dissipated each cycle. Although finite, the conductivity of copper is sufficient to
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permit 3D cavities with Q ≈ 104 at millikelvin temperatures because of their small magnetic
participation ratio α, defined in analogy with Eqn. 2.9 through

Qcond = ωµ0λ
Rs

∫V ∣H∣2dV
∫S ∣H∣2dA× λ

(2.66)

= Qs

α
(2.67)

where λ is the skin depth, Rs =R[η] is the surface resistance, and α is also called the kinetic
inductance fraction in superconducting resonators. As we saw with CPW, energy can be
stored losslessly as a supercurrent of Cooper pairs. We described this using a complex
conductivity which leads to a complex surface impedance and surface quality factor that can
be greater than unity. In resonator geometries, we often combine the participation ratio of
the conductive walls with the surface resistance to express the overall contribution to the
quality factor:

Qcond = Γ
R[η] (2.68)

This Γ geometric factor varies by mode even for the same cavity, and is related to the kinetic
inductance fraction by αΓ = ωµ0λ. It can range from 10−2 Ω for lumped element cavities to∼ 103 Ω for rectangular waveguide.

The kinetic inductance fraction for 3D cavities is very small, although its effect can be
observed for temperatures near the critical temperature Tc of the superconductor. While a
superconductor ideally has an infinite surface Q (or one that increases exponentially with the
superconducting gap frequency), our most refined devices have Qs ∼ 5000, with improvement
by using better quality aluminum and through chemical etching, and there is ongoing work
both to quantify and improve this for our resonators.

2.3.4 Power Coupling

Because we must design a way to get power out of our resonator, we study the effect of a wire
antenna inserted into an aperture of the rectangular cavity. Collin defines the solutions to
the electromagnetic field inside a perfectly conducting, closed cavity [37]. Here the electric
field has two orthonormal sets of field modes. The solenoidal modes satisfy the Helmholz
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Equation:

∇2En + k2
nEn = 0, in the volume (2.69)

n × En = 0, on the walls (2.70)

and there are an additional set of irrotational modes Fn defined by lnFn = ∇Φn using scalar
function Φn.

Similarly, the magnetic field inside the cavity can be expanded in terms of orthonormal
magnetic modes Hn following:

∇2Hn + k2
nHn = 0 (2.71)

n ⋅ Hn = 0, on the walls (2.72)

n ×∇ × Hn = 0, on the walls (2.73)

as well as a set of irrotational modes Gn defined by pnGn = ∇ψn using scalar function ψn.
These modes are orthonormal as determined, for example, by:

∫ En ⋅ EmdV = δnm (2.74)

∫ En ⋅ FmdV = 0 (2.75)

(2.76)

giving En , Fn , Hn , Gn the units of
√

V
−1

. We can express the total field by:

E⃗ = ∑
n

enE⃗n + fnF⃗n (2.77)

H⃗ = ∑
n

hnH⃗n + gnG⃗n (2.78)

For the TE modes of a rectangular waveguide cavity, the electric field modes are:

En =
√

4
abd

⋅ ( cos [nπx
a

] sin [mπy
b

] sin [ pπz
d

] x̂+ (2.79)

sin [nπx
a

] cos [mπy
b

] sin [ pπz
d

] ŷ) (2.80)
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while the total electric and magnetic field energy are:

We = ε
4 ∫ ∣E∣2dV = ε

4 ∑
n
∣en∣2 ∫ E∗

n ⋅ EndV (2.81)

= ε
4 ∑

n
∣en∣2 (2.82)

and

Wm = µ
4 ∫ ∣H∣2 dV = ∑

n

µ
4
∣hn∣2 ∫ H∗

n ⋅ HndV (2.83)

= µ
4 ∑

n
∣hn∣2 (2.84)

For a current element exciting a cavity electric orthonormal mode En with amplitude en, we
find:

en = − jωµ0 (1 + 1− j
Qn
) ∫ J ⋅ En

k2
n − k2

0(1 + 1− j
Qn
) (2.85)

When driving on resonance for high Q modes this gives an average stored electric energy:

We = ε
4
[ω2µ2

0/k4
0 (∫ J ⋅ En)2]Q2 (2.86)

(2.87)

Using the approximation that there is a sinusoidal current distribution I(y), in the wire and
defining Ēn = En(x , y, z) the strength of the mode at the coupling probe assuming it has little
variation along its short length, we derive for J the volume current density in the wire:

∫ (J ⋅ En)dV = ∫ dA∫ h

0
I(y) ⋅ Ēnd y (2.88)

= ∫ h

0
I(y) ⋅ Ēnd y (2.89)

= Ēn ∫ h

0
I0 sin[k0(h − y)]d y (2.90)

= I0Ēn (cos k0h − 1
k0

) (2.91)
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Figure 2.8: a) Evanescennt coupling through circular waveguide with radius a has cutoff
wavenumber 2.405/a for TM01. The increase is largely independent of frequency, but shown
for 8 GHz. b) The exponential increase of evanescent Qc as the coupler is retracted as simulated
by HFSS (red) and in experiment (blue) using a = 1.18 mm.

where I0 has units of Amperes. The time averaged power coupled out is:

Pcoup = 1
2

I2
0 sin2[k0h] ⋅ ZL (2.92)

where ZL is the characteristic impedance of the transmission line feeding the port. Based on
the dissipation principle (Eqn. 2.1) we find:

Q = ω 2We

Pcoup
(2.93)

= ωε
2

[ω2µ2
0Q2/k4

0 ⋅ (I0Ēn
cos[k0h] − 1

k0
)2] /Pcoup (2.94)

= 1
2

Q2 [ ωµ0

k0ZL

Ē2
n

k3
0

tan[k0h/2]2] (2.95)

which when solved self-consistently gives:

Q = 2(ZL/η)(Ē2
n/k3

0) tan[k0h/2]2 (2.96)

As expected Q increases when a probe is placed near a node of Ē, for shorter length, for
larger volumes and for higher frequencies.
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Evanescent Coupling

Without a pin in the vicinity of the aperture, the cavity couples inductively to the circular
waveguide. Collin’s dipole excitation formula above does not work as J = 0, and power must
couple out through the circular waveguide, below cutoff. The power Pc lost through the
aperture defines Qc according to Eqn. 2.1, and may have a complicated analytical expression.
However, below the cutoff frequency of the lowest frequency mode of the waveguide, TM01,
complex power S = 1

2R[E×H∗] flows only evanescently. We expect it will evanescently decay
for a length ∆z before reaching the coaxial probe and finally scattering into the TM00 (TEM)
mode of the transmission line and dissipating in a load ZL at the end of the line. We can
determine the coupling quality factor from Eqn. 2.1

Qc = ωU
1
2R[∫ (E⃗ × H⃗∗) ⋅ dÂ] (2.97)

Below cutoff both E and H are attenuated by a factor exp(iβ∆z) for β = √
k2 − k2

c , leading
to an exponential increase in Qc as the probe is retracted a distance 1/2β (see Fig. 2.8). The
suppression per unit length is determined by kc = pnm/a the cutoff wavenumber for a circular
waveguide in terms of pnm the mth root of Jn and the waveguide radius a.

2.3.5 Conclusions

There are many mechanisms of loss for resonant cavities. The use of superconductors mitigates
some, and the choice of geometry can alter participation of lossy materials by several orders of
magnitude. Furthermore the identification of sources of dissipation is difficult, and knowing
the participation enables sound judgement and prioritization of further research. A 3D
cavity geometry allows us to remove many of the prime suspects of dissipation in planar
cavities and qubit experiments: the damaged possibly polycrystaline surface of a wafer, or
cavity wall oxidized. The wireless interaction removes the need for wirebonds and solder.
Nevertheless we retain planar resonators for Ch. 5 where the large percentage of energy stored
in the substrate of planar resonators is used for the coupling of extremely weakly interacting
magnetic spins. But first, we further develop the behavior of simple dipoles embedded within
cavity resonators, which benefit as well from the lack of dissipation.



CHAPTER 3

Circuit QED

Circuit quantum electrodynamics (circuit QED), in analogy with cavity QED, is the use
of circuits as artificial atoms coupled to microwave resonators and often in modeling

the resonators themselves. The physics of atoms, electrons and the fluctuations of discrete
electromagnetic modes are explored instead using superconducting devices with effective
dipole moments. There have been many dissertations in the Schoelkopf Lab and at Yale
that develop this correspondence, addressing (among other things) issues of design [25],
extended descriptions of the Hamiltonian [38], techniques of quantum measurement [39], and
implementation of quantum algorithms [40]. This work concentrates on the implementation
circuit QED in three-dimensional (3D) cavities.

In this chapter we introduce cavity QED and review the recreation of its classic Jaynes-
Cummings Hamiltonian using superconducting circuits coupled to a microwave cavity. We
then express the limitations to coupling strength for magnetic spins (which we implement
experimentally in Ch. 5) and derive equivalence of electric dipoles in a 3D cavity with tradi-
tional circuit QED (see experiments in Ch. 6). We discuss the transmon as an electric dipole,
leaning heavily on a recent review [41] We then proceed to a new description of coupled
circuit behavior that better captures the multimode environment presented by 3D cavities
to a qubit. This model uses a pole decomposition of the environment which motivates a
discussion of dissipation in this new picture.

39
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3.1 Introduction

In cavity QED the electromagnetic field modes are quantized as harmonic oscillators. We
write the electric field operators in terms of the vacuum electric field E0 and a factor f⃗ (r)
containing polarity and amplitude normalization [17]:

Ê(r) = iE0 [ f (r)â − f ∗(r)â†] (3.1)

where â and â† are the annihilation and creation operators, and the quantum harmonic
oscillator Hamiltonian is H = ħωc(a†a + 1/2). The normalization is related to the vacuum
energy found by integrating over the volume:

⟨0∣ ∫ ε0
1
2
∣Ê∣2dV ∣0⟩ = 1

4
ħωc (3.2)

which for effective volume

V = ∫ ∣ f (r)∣2dV (3.3)

defines the rms electric field amplitude of the mode:

E0 =
√

ħωc

2ε0V
(3.4)

The potential energy of a point-like dipole is U = −d⃗ ⋅ E⃗ leading to an interaction Hamilton-
ian [41] (assuming the atom is a two-level system):

H = ħg(â + â†)σx (3.5)

where g is the vacuum Rabi coupling which quantifies the dipole matrix element between
ground and excited states is

ħg = −E0 ⟨e∣ d̂ ⋅ f⃗ (r) ∣g⟩ (3.6)

and is proportional to the zero-point electric field at the dipole. The dimensionless ratio g/ω
determines the regime of interaction between dipole and cavity, and in the limit of when g is
larger than the decay rate of every dissipative element of the system (the cavity decay rate κ,
the spontaneous emission γ or captive lifetime of the atom γ⊥), we enter the strong coupling
regime of the Jaynes-Cummings Hamiltonian [42], which in the rotating wave approximation
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is given by:

H = ħωa†a + 1
2

ħωqσz + g(aσ+ + a†σ−) (3.7)

3.2 Cooper-pair Box and Transmon

Replicating the Hamiltonian Eqn. 3.7 and its generalization for a superconducting qubit with
many energy levels has been the subject of much previous work [38]. The transmon qubit
has become the dominant variety of superconducting qubit due to its ease of fabrication,
control, measurement, and performance as a coherent quantum device. It is an evolution of
the Cooper-pair box (CPB), a superconducting island coupled to the environment through a
Josephson junction and was designed to eliminate several mechanisms of decoherence while
having a large electric dipole coupling with its host cavity.

3.2.1 Circuit Quantization

In circuit QED, experiments with the transmon qubit involve a superconducting circuit
instead of an atomic dipole, although the interaction with the cavity mode is similar. Rather
than handle the electric field directly, we model the cavity with an equivalent LC circuit. In
fact, by quantizing the modes of an LC oscillator here, we can extend the treatment in a later
section to a multimode description of the environment as a generalized impedance.

The charge and flux (integrated voltage) parameters of an LC oscillator can be quantized
much as can a mass on a spring [43]. The Hamiltonian is written

HLC = 1
2C

Q̂2 + Φ̂2

2L
(3.8)

where

Q̂ = −iQZPF(â − â†) (3.9)

Φ̂ = ΦZPF(â + â†) (3.10)

for charge Q̂, flux Φ̂, and Z0 = √
L/C, in terms of the unitless ladder operators and the
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Figure 3.1: a) The bias configuration of the CPB. b) Planar and c) 3D cavity coupling to the
CPB, including electrodes that provide CΣ and voltage division β.

root-mean-squared zero-point fluctuations

QZPF =
√

ħ
2Z0

(3.11)

ΦZPF =
√

ħZ0

2
(3.12)

and give the usual Hamiltonian

H = ħωc(a†a + 1/2) (3.13)

The effective LC circuit is determined by the resonant frequency ωc and the requirements of
geometry.

3.2.2 Cooper-pair Box

The transmon exists in a special regime of CPB parameters where EJ ≫ EC . The CPB
Hamiltonian is

H = 4EC(n̂ − ng)2 − EJ cos ϕ̂ (3.14)

where EC = e2/2CΣ is the electrostatic energy to add a single electron to the island, EJ is
the Josephson energy, and ϕ̂ is the superconducting phase across the junction. It is coupled
capacitively via a voltage Vg , which applies a voltage across the junction VJ = βVg , where
β = Cg/CΣ is a voltage division factor and Cg is the gate capacitance. This voltage alters
the energy of the CPB, and when coupled to a quantized cavity mode with V̂ = Q̂/C and
Vg = VDC + V̂ allows for both a classical charge bias and quantum state control of the
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observable N̂ . Expanding the electrostatic Hamiltonian:

Hel = 4EC (N̂ − ng/2)2 + 4EcC2
gV̂(2Vg + V̂)

e2 − 4ECCgV̂ N̂
e

(3.15)

where the last term couples cavity ladder operators (V̂ ) to junction charge number (N̂).
The particular bias charge determines the transition matrix elements, but for ng = 1, the

charge number operator has matrix elements ⟨e∣ N̂ ∣g⟩ = ⟨e∣ σx ∣g⟩; in this case we replace
N̂ ≈ σx = σ− + σ+, approximating the interaction Hamiltonian using the rotating wave
approximation

Hi = ħg(a† + a)σx (3.16)

= ħg(a†σ− + aσ+) (3.17)

as that of a dipole coupling to the cavity. Then the Hamiltonian for the CPB matches Eqn. 3.7
with

g = eVrms

ħ
β (3.18)

The coupling g can be hundreds of MHz, sufficient to perform quantum operations in
nanoseconds yet still small enough that counter-rotating terms in the Hamiltonian can often
be ignored.

3.2.3 Dipolar coupling

The strength of coupling between atom and cavity is important and has significant physical
limitations. In particular, the dimensionless g/ω is restricted by geometry and remarkably
involves the fine structure constant α. We now calculate g semi-classically by beginning
with the power emitted as the dipole radiates into free space and instead forcing it instead to
couple with a 1D transmission line.
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Electric dipole

An oscillating electric dipole p0 emits radiation power [44] which may be expressed as

⟨P⟩ = µ0 p2
0ω4

12πc
(3.19)

= µ0

ε0

p2
0

λ2
πω2

3
(3.20)

after replacing two factors of frequency ω/2π = c/λ with the wavelength λ. In the semi-
classical approximation this radiated power obeys

⟨P⟩ = Γħω (3.21)

and we may simplify further using the terms for the vacuum impedance η0 = √
µ0/ε0 and

the resistance quantum RK = 2πħ/q2
e ≈ 26 kΩ, giving:

Γ = 2π2

3
η0

Rk

p2
0

λ2q2
e

ω (3.22)

= 4π2α
3

∆x2

λ2 ω (3.23)

where the fine structure constant is α = η0/2RK ≈ 1/137 and p0 = qe ∆x is the dipole moment.
Fermi’s Golden Rule for decay to a continuum of states determines Γ = g2

ω according to
coupling strength g. We are interested primarily in the order of magnitude of the electrostatic
coupling of such a dipole; although we began with a formula for the 3D radiation of a dipole,
we will now approximate a solution for a 1D transmission line by simply substituting w2 (the
approximate cross-sectional area for the dipole to emit into) for λ2. Furthermore define a
voltage division factor β = ∆x/w to obtain

g
ω
= 2πβ

√α
3

(3.24)

An alternative derivation yields a similar but more precise relation [25, 45], and suggests that
we may use the root-mean-squared electric field Erms as in Eqn. 3.6 to determine g for an
electric dipole in a 3D cavity.
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Since we know the electromagnetic mode structure (the TE and T

1
2
( 1

2
ħω) = 1

2 ∫ a

0
dx ∫ b

0
d y∫ d

0
ε0 [E0 sin(πx/a) sin(πz/d)]2 dz (3.25)

= 1
8

abdε0E2
0 (3.26)

taking a, b, d → λ for the generic 3D resonator, we note that Erms = E0/√2 and substitute 1,
such that

g
ω
= qe ∆x

ħω
Erms (3.27)

= (∆x
λ
)√2α (3.28)

= β
√

2α (3.29)

which retains the fine structure constant, and is very close to Eqn. 3.24, so indeed we can
expect 3D cavities to couple to electric dipoles with a g of the same order of magnitude.

Magnetic dipole

We can show that an electron coupling through its magnetic moment has an interaction
which is miniscule in comparison using a similar semi-classical calculation of the dipole
radiation. From Griffiths we know the power radiated by a magnetic dipole in free space is:

⟨P⟩ = µ0m2
0ω4

12πc3 (3.30)

where c is the speed of light and for a spin-1/2 particle m0 = gS
1
2

ħqe
me

is the transition mag-
netic dipole moment, and gS ≈ 2 is the Lande g-factor. We can make the semi-classical
approximation again to get:

Γ = µ0m2
0ω3

12πc3ħ
(3.31)

= π
3

η0

ħ/q2
e
( m0

cqe λ
)2

ω (3.32)
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after substituting ω2 = ( 2πc
λ )2. Using the continuum decay rate Γ = g2

ω before replacing the
wavelength λ2 → w2 we obtain

gm

ω
= m0

wqec

√
π
3

η0

ħ/q2
e

(3.33)

= 2πm0

wqec

√α
3

(3.34)

and gm ∼ 50 Hz for the typical w = 5 µm gaps in our coplanar waveguide. Here there
is no perfect equivalent of β with magnetic spins, but one analog is the filling factor ν of
the mode with spins. Alternatively, we may calculate the strength of coupling via the rms
current vacuum fluctuations of our resonators. Using Eqn. 2.15 the effective parameters of a
quarter-wave shorted resonator are:

Lλ/4 = 4Z0

πω0
(3.35)

Cλ/4 = π
4Z0ω0

(3.36)

Zλ/4 = 4Z0

π
(3.37)

An effective circuit model produces the root-mean-squared B field using the zero-point
current in the resonator. At 1/2 photon, half the energy is magnetic, such that

I0 =
√

ħω
2L

(3.38)

= 1
2

√
πħω2

2Z0
(3.39)

A current creates a magnetic field B = µ0I
4πr2 which couples to an electron spin at rate 2.86 MHz/gauss,

and when placed just above the stripline may have only gm = 5 Hz for typical coplanar wave-
guide shunt parameters. This too suggests coupling many orders of magnitude smaller than
that which we can create using a CPB. In fact, comparing Eqn. 3.33 and Eqn. 3.24 for stripline
gaps w = 5 µm:

g
gm

= qe ∆x
2µB

c (3.40)

≈ 107 (3.41)
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Figure 3.2: a) Current distribution in coplanar waveguide with w = 5 µm, d = 10 µm b) the
approximate magnetic field 5 µm within the substrate, with 1 mA current flowing.

where µB = ħ
2

qe
me

is the Bohr magneton. Quantum operations between a qubit or cavity and a
single magnetic spin are infeasible with such a small coupling.

One strategy to overcome this deficiency is to organize a collective coupling through the
use of an ensemble of electron spins. Because they must be distributed throughout the mode,
they all experience a different coupling gm (this complicates other matters, including the use
of Hahn echo pulses). We can simulate the rms gm by considering the field profile of the
coplanar waveguide, modelling with Sonnet, a semi-2D finite element simulator∗. Plotting
the estimated current and field profiles at representative positions, we see that there are
small regions close to the gaps that have divergent B next to the superconductor. Regardless,
drawing at random from points in the substrate along a 50 Ω, ω/2π = 14 GHz resonator, we
find:

Brms = ⎡⎢⎢⎢⎢⎣I0

√
∫ π/2

0
sin[x]2dx

⎤⎥⎥⎥⎥⎦
√

1
M ∑B(r⃗i)2 (3.42)

≈ 20 Hz (3.43)

We can then expect an ensemble of M spins couple collectively with gtot = grms
√

M; because
of their small size, it is reasonable to imagine the 1012 necessary to reach coupling strengths
on par with the CPB, and the prospect of using spins for a quantum memory makes for an
interesting object of study. Our experimental work in implementing them is presented in
Ch. 5. In the remainder of the present chapter, having justified the use of electric dipoles in

∗ www.sonnetsoftware.com
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Figure 3.3: a) The first four levels of the transmon in units of EC . Reproduced from [38]. b)
Quasiparticle parity permits two different transitions ωge, with difference no greater than the
charge dispersion ħε.

circuit QED, we summarize the useful properties of the transmon and introduce black-box
quantization in order to more accurately model a qubit inside a 3D cavity.

3.2.4 Transmon

While the Cooper-pair box may couple with a large electric dipole to the cavity, its sensitivity
to fluctuations in charge offset ng is inconvenient, and the CPB is often implemented in the
transmon limit where the Josephson energy EJ is much greater than the charging energy
EC [45]. This flattens the electrostatic energy levels (see Fig. 3.3a), effectively removing the
dependence on ng and increasing the frequency stability of the qubit against the presence
of trapped electrons on the sapphire surface, piezoelectric effects driven by mechanical
oscillations, quasiparticle tunneling across the junction or otherwise uncontrolled gate voltage.
The charge dispersion for each level ∣m⟩ of the qubit is suppressed exponentially as EJ/EC

increases

εm = Em(ng = 1) − Em(ng = 0) (3.44)

∼ (−1)mEC
24m+5

m!

√
2
π
( EJ

2EC
) m

2 +
3
4

exp(−√8EJ/EC) (3.45)

Neglecting gate charge ng , we may expand the Hamiltonian for small values of ϕ, in the form
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of an effective LC circuit:

H = H0 + V (3.46)

= 1
2CΣ

Q2 + 1
2LJ

Φ2 + Vnl (3.47)

where CΣ is the electrostatic charging energy of a pad and the effective inductance is LJ =( ħ
2e)2 /EJ , the linear part of the Josephson potential. Furthermore, in the transmon limit

where large EJ/EC , ϕZPF = √
2EC
EJ

is small and the quartic term in the remaining Josephson
potential gives

V (4)
nl = − 1

24
EJ ϕ4 (3.48)

= − 1
12

EC(a + a†)4 (3.49)

≈ −EC

2
(a†a†aa + 2a†a) (3.50)

which renormalizes the harmonic oscillator frequency and introduces an anharmonicity of
approximately EC/ħ. This allows us to use qubit pulses as fast as a few nanoseconds without
unintentionally addressing higher levels, although these can in fact can be a resource for
quantum gates between multiple qubits [46].

The reduction of the anharmonicity to α ≈ EC which can be 100-500 MHz means that the
transmon has many addressable levels and its interaction with the cavity is best described by
a generalization of the the Jaynes-Cummings Hamiltonian (see Fig. 3.4):

Ĥ = ħ∑
j

ω j ∣ j⟩ ⟨ j∣ + ħωr â†â + (ħ∑
i

gi ,i+1 ∣i⟩ ⟨i + 1∣ â† + h.c.) (3.51)

where ħω j are the qubit energy levels and we neglect for a moment the anharmonicity of the
cavity. Energy levels ∣i⟩ , ∣i ± 1⟩ are connected through the ladder operators while connection
between non-adjacent levels is omitted to first order. Because it is so nearly a harmonic
oscillator, driving higher transitions becomes easier, with matrix elements ∼ √

N ; in addition,
the dipole interaction energy increases slightly with larger EJ/EC as the number operator
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from Eqn. 3.14 changes

ħgi j = βeVrms ⟨ j∣ N̂ ∣i⟩ (3.52)

∼ −iβeVrms√
2

(EJ/8EC)1/4 ⟨ j∣ b̂ − b̂† ∣i⟩ (3.53)

through the participation of many charge states (or many Cooper pairs).

Hybridization

The physics of the cavity-qubit interaction described in Eqn. 3.51 can take on a different
characters depending upon how close to resonance the two are, as the systems hybridize,
and altering the detuning within an experiment or on the fly can be very useful. The classic
transmon design includes two junctions in a SQUID configuration that allows us to change
the frequency of the qubit by modulating the Josephson term in Eqn. 3.14 with applied flux.
The new Josephson potential

V = EJΣ cos(πϕ
ϕ0

)
¿ÁÁÀ1 + d2 tan2 (πϕ

ϕ0
) (3.54)

where

EJΣ = EJ1 + EJ2 (3.55)

d = EJ1 − EJ2

EJ1 + EJ2
(3.56)

describes the joint effect of individual junctions J1 and J2. We can tune over a wide range,
altering among other things the degree of hybridization between qubit and cavity. The effect
can be seen in the new eigenbasis for the diagonalized Hamiltonian, which is already available
in a block-diagonal form:

H(n+1) = ħ
⎛⎝ nωc + 1

2 ωge g
√

n + 1
g
√

n + 1 (n + 1)ωc − 1
2 ωge

⎞⎠ (3.57)

(3.58)
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Figure 3.4: a) Vacuum-rabi splitting of energy levels for a resonant cavity and qubit. b) Energy
levels in the dispersive case ωc = ωge + ∆ showing repulsion which leads to a qubit frequency
shifts down when the cavity is in an excited state (dashed lines are dressed states).

which conserves total photon and qubit excitation number n + 1, and has eigenvalues

E(n+1)
± = (n + 1

2
) ħωc ± ħ

2
√

∆2 + 4g2(n + 1) (3.59)

The new eigenkets are

∣−, n⟩ = cos(θn) ∣e , n⟩ + sin(θn) ∣g , n + 1⟩ (3.60)

∣+, n⟩ = − sin(θn) ∣e , n⟩ + cos(θn) ∣g , n + 1⟩ (3.61)

where ∆ = ωge − ωr is the detuning between qubit and cavity and the degree of hybridization
of the qubit with the cavity is given by

tan(2θn) = (2g
√

n
∆

) (3.62)

One important consequence of this exact solution is that on resonance the cavity and qubit
each contain half of the system energy, and so dissipation occurs at the average of their
individual rates of energy decay. Conversely, we can potentially decrease any decay of the
qubit through a lossy cavity by more than an order of magnitude by detuning the qubit far
enough from the cavity.



CHAPTER 3. CIRCUIT QED 52

3.2.5 Dispersive Regime

As we have seen, the Jaynes-Cumming Hamiltonian (Eqn. 3.7) can be diagonalized exactly,
yielding dressed qubit-cavity states. In the dispersive regime where the qubit-cavity system is
operated with g

∆ ≪ 1 for qubit detuning, we can make this more clear by making the unitary
transformation [47]:

U = exp [ g
∆
(aσ+ − a†σ−)] (3.63)

to find

UHU† = ħ [ωr + g2

∆
σz] a†a + ħ

2
[ωq + g2

∆
] σz (3.64)

such that the qubit transition has been shifted, and the cavity transition frequency depends
on the qubit state. Or equivalently,

Heff = ħωa†a + ħ
2
[ωq + g2

∆
(1 + 2a†a)] σz (3.65)

Here it is clear that the qubit transition frequency changes with photon number by an amount
χ = 2g2/∆. In fact it can be shown more precisely that the transmon dispersive shift of qubit
frequency is χ = 2g2α/∆(∆ − α) [45], where α is the qubit anharmonicity. Because g can
be rather large due to the transmon’s electric dipole coupling to the cavity, χ can be 10’s of
MHz, and much larger than the qubit or cavity linewidth γ or κ. This is the strong-dispersive
regime of cavity QED, and it has striking consequences for qubit coherence which will be
explored further in Ch. 8; in particular, any photon which transits the cavity will contain in
its frequency complete information about the qubit state.

In the dispersive regime, the slight g/∆ hybridization of cavity and qubit gives for the
one-excitation dressed states

∣−, 0⟩ ∼ − g
∆
∣e , 0⟩ + ∣g , 1⟩ (3.66)

∣+, 0⟩ ∼ ∣e , 0⟩ + g
∆
∣g , 1⟩ (3.67)

and consequently a portion of the decay occurs at some fraction of the rate of other system’s
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intrinsic rate:

κγ = ( g
∆
)2

γ (3.68)

γκ = ( g
∆
)2

κ (3.69)

In fact the qubit and cavity may be connected to several dissipation baths; the cavity decays
through input and output couplers (κin, κout) as well as internal losses (κint). The energy decay
rate of the qubit is the sum of many processes, including contributions from the cavity Purcell
effect (γκ), junction quasiparticle damping, or some other intrinsic limit:

γtot = γκ + γqp + γi + ... (3.70)

3.2.6 Coherent Drive

Coherent control of the cavity or qubit quantum state is achieved through an additional drive
Hamiltonian, following [38]

Hdr = ε(a + a†)(d + d†) (3.71)

where ε describes the coupling between the cavity ωa and reservoir harmonic oscillator ωd .
Approximating a stiff drive with d ∣α⟩ = α ∣α⟩ we have

Hdr = (a + a†)(ξe−iωd t + ξ∗e iωd t) (3.72)

= aξ∗e iωd t + a†ξ∗e−iωd t (3.73)

where to allow the rotating wave approximation the interaction energy ξ = εβ is not so strong
compared to the driven transition energies ħωi j. Transforming into the frame rotating with
the drive using the operator

U(t) = exp
⎡⎢⎢⎢⎢⎣iωd t

⎛⎝a†a +∑
j

j ∣ j⟩ ⟨ j∣⎞⎠
⎤⎥⎥⎥⎥⎦ (3.74)

we find

Ĥ = U(H + Hdr)U† − iUU̇† (3.75)

= ∆r a†a +∑
j

∆ j ∣ j⟩ ⟨ j∣ +∑
j

g j, j+1(∣ j + 1⟩ ⟨ j∣ a + h.c.) + (aξ∗(t) + a†ξ(t)) (3.76)
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for detunings ∆r = ωr−ωd , ∆ j = ω j− jωd , and allowing for a slowly varying ξ(t). In particular
when the qubit is far detuned ∆ ≫ g from the qubit we may drive the cavity on resonance,
creating an interaction which reduces to the slowly varying terms

Hint = aξ∗(t) + a†ξ(t) (3.77)

effecting a displacement D[β] of the cavity from the vacuum state where β = ∫ ξ(t)dt, and
placing the cavity in a coherent state. If the cavity is sufficiently anharmonic we substitute(σ− + σ+) for (a + a†), and a similar expression applies for driving of a qubit. Placement of
the qubit inside a resonator alters its spontaneous emission rate through the Purcell effect. In
fact, the same pseudo-resonator or mode which allows a means of driving the Hamiltonian
also provides a thermal bath into which the qubit and cavity dissipate.

3.3 Black-box Quantization

There have been several attempts at extensions of circuit QED [48–50] with the goal of
modelling a small number of harmonics or parasitic modes of the cavity and their influence
on the qubit. In planar experiments with coplanar waveguide resonators there are an infinite
number of harmonics in addition to the electromagnetic mode structure of the sample
holder itself. However after the move from planar to 3D cavities, where the existence of
a large (possibly infinite) number of modes can be examined more accurately, a group of
colleagues at Yale developed a serious treatment of a Josephson junction in the presence of
an environmental admittance. This landmark paper [51] on Black-box quantization (BBQ)
successfully described the spectrum of all the early 3D transmons and holds great promise
for application in more diverse cavities and multiple-qubit experiments.

3.3.1 Two coupled LC Resonators

In classic circuit QED, the qubit is a coupled to a single mode of a resonator. In fact, we may
reduce the problem by linearizing the qubit and deal only with two coupled LC resonators.
Given flux and charge parameters Φ1, Φ2, Q1, and Q2, the Hamiltonian is

H0 = 1
2

L1ω2
1 Q2

1 + 1
L1

Φ2
1 + 1

2
L2ω2

2Q2
2 + 1

2L2
Φ2

2 (3.78)

V = β
√

L1L2ω1ω2Q1Q2 (3.79)
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Figure 3.5: a) Schematic of a Josephson junction and its coupling to an environmental imped-
ance b) Replacement of Josephson junction with linearized CJ , LJ (both absorbed into Z), and
nonlinear "spider" element. c) pole-decomposition of environment Z(ω).

where the potential mixes operators between the two circuits with bare frequencies ωq and ωc .
We may find the normal modes of the two dressed harmonic oscillators by using a Bogoliubov
transformation to find the dressed frequencies

ω± = [ 1
2
(ω−2

1 + ω−2
2 ±√(ω̃−2

1 + ω̃−2
2 )2 − 4 [ω−2

1 ω̃−2
2 + ω̃−2

1 ω−2
2 − ω−2

1 ω−2
2 ])]−1/2

(3.80)

for ω̃1 = 1/√L1(C0 + C1) and ω̃2 = 1/√L2(C0 + C2). These procedures find the normal coor-
dinates of the circuit. More complex circuit designs are quantized using the spanning-tree
technique [43]. Starting with selected nodes and their flux variables we may find the La-
grangian, before defining the canonical momenta. In order to deal with a cavity environment
which may include many modes with fields solutions not quite as analytic as the rectangular
cavity’s TEnml, we turn instead to a numerical solution of the normal modes of the circuit
model for the qubit environment.

3.3.2 HFSS Solution

By Foster’s Theorem, any admittance can be decomposed into an equivalent circuit of parallel
LCR oscillators in series. In fact, modern finite-element electromagnetic simulations can be
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Figure 3.6: a) The imaginary part of the admittance Y(ω) of the cavity seen by a port at the
Josephson junction. Frequencies where I[Y(ω)] = 0 are resonances, emphasized here with a
red circle. The circle at 8 GHz is the qubit mode. b) the magnitude of the qubit mode electric
field near the device. c) Meshing of the cavity surface in HFSS. d) Meshing near the qubit
junction and antenna.

used to produce the normal mode field solutions by solving the S parameters or impedance
of a single-port junction device. This simplifies calculation of the dressed qubit and cavity
mode frequencies, anharmonicities, and state-dependent energies.

We begin by replacing the qubit with an LC circuit in parallel with a "spider" element
representing the remaining anharmonicity from cos(ϕ). The circuit has

CJ = e2

2EC
(3.81)

LJ = ħ2

4e2EJ
(3.82)

and in Fig. 3.5b, we absorb this into Z(ω). Each pole of the impedance

Z(ω) = M∑
p=1

( jωCp + 1
jωLp

+ 1
Rp

)−1

(3.83)

is a zero of the admittance Y(ω) = 1/Z(ω) and
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Lp = 2
IY ′(ωp) (3.84)

Rp = 1
RY(ωp) (3.85)

Cp = IY ′(ωp)
2

(3.86)

Zeff
p = 2

ωpIY ′(ωp) (3.87)

where Y ′(ωp) = ∂I[Y(ω)]
∂ω ∣ω=ωp . This simplifies the calculation of the mode quality factor when

lossy materials are simulated:

Qp = ωp

2
IY ′(ωp)
RY(ωp) (3.88)

In Fig. 3.6a we show the simulated port admittance for a lossless rectangular waveguide
cavity with an inserted sapphire wafer and transmon device. Here the lowest zero-crossing
is the qubit mode, whose ∣E⃗∣ is displayed in Fig. 3.6b. When the exact dimensions and loss
tangents of surface contaminants and lossy materials are unknown at the time of simulation,
their participation in the qubit mode may still calculated after the fact. As these provide the
ultimate limit to qubit quality factor (after detuning from cavity modes that might spoil it
through the Purcell effect), this is an important topic for future work.

Finally, the flux variable (or time integral of voltage) across the junction is just the sum of
the voltage across each resonator in Fig. 3.6c, ϕ(t) = ∑p ϕp(t), or

ϕ̂ = M∑
p=1

√
ħ
2

Zeff
p (âp + â†

p) (3.89)

where annihilation and creation operators âp, â†
p produce a linearized Hamiltonian H0 =

∑p ħωp â†
p âp. Because measured modes are a linear combination of qubit and cavity modes

(which are independent of ng), the effects of charge dispersion are expected to be reduced
compared to the bare (uncoupled) case. However, as higher levels of the transmon (known to
have increased charge dispersion) are also hybridized, exact calculation of charge dispersion
is still an open problem.
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Josephson Non-linearity

The remaining non-linear part of the Josephson potential is written in the ϕ basis, and a
simple evaluation in perturbation theory gives the anharmonicities χpp and cross-mode
energies, χpp′ . Using the perturbation

H(4)
nl = −ϕ4/24ϕ2

0LJ (3.90)

and assuming the linear Hamiltonian H0 has eigenstates ∣n1, n2, ..., nM⟩ with non-degenerate
energies

E(0)
n1 ,n2 ,...,nM = ∑

i
niħωi (3.91)

we apply first order perturbation theory using E(1)
n1 ,n2 ,...,nM = ⟨n1, n2, ..., nM ∣Hnl ∣n1, n2, ..., nM⟩

giving, in addition to fast-rotating terms which we drop,

H1 = H0 +∑
p

∆pn̂p + 1
2 ∑

pp′
χpp′ n̂pn̂p′ (3.92)

determining the Lamb shift correction ∆p as well as the state-dependent frequency shifts χp.
To lowest order this gives each mode ωp an anharmonicity

χpp = −Lp

LJ

CJ

Cp
EC/ħ (3.93)

which is proportional to the ratio of the linear mode characteristic impedances, and a state-
dependent frequency shift

χpp′ = −2√χpp χp′p′ (3.94)

which is twice their product. Of these parameters, Lp, Cp, and EC can be solved numerically
using HFSS, and EJ can be controlled by junction design. The geometric capacitance of the
junction CJ ≈ ε0 l is of order a few femotofarads. When considering a single cavity mode
interacting with the qubit, the new effective Hamiltonian is

Heff/ħ = ωc a†a + (ωq − χa†a) b†b − α
2

b†b†bb, (3.95)

where a and b are the cavity and qubit annihilation operators, α is the qubit anharmonicity,
and χ is the cross-Kerr or state-dependent shift.
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3.3.3 Far detuned cavity modes

Returning to the example of two coupled LC oscillators, we can consider the shunted
Josephson junction capacitance CΣ and inductance LJ linked through an effective capac-
itor Cg = CJ/CΣ, along with an effective L,C for the TEM modes of the 3D resonator. The
constant Ey electric field of the TE101 mode of a rectangular cavity with dimensions a,b,d is
described using an effective LC circuit with

L101 = a
εbdω2

r
(3.96)

C101 = εbd/a (3.97)

and explains the particularly simple coupling of the mode to the typical 3D transmon antenna
with length d0/2. We can calculate χn in the dispersive limit. The admittance from the
junction port is

Y(ω) = 1
iωL j

+ iωC j + 1
1

iωC0
+ 1

iωCr+(iωLr)
−1

(3.98)

We can verify using Eqn. 3.80 that I[Y(ω±)] = 0. In the fully buffered limit where β ≈
C j/C0 ≪ 1, we have using Eqn. 3.94

χ = C2
0q2

eωgeω4
r Zr

C2
j(ω2

ge − ω2
r)2 /ħ (3.99)

Using the Eqn. 3.96 for the effective LC circuits of the rectangular cavity TE101 and in fact all
TE10n modes, this is for volume V ,

χn = a3

V
q2

e
ħεd0

ωqω3
r(ω2

ge − ω2
r)2 β (3.100)

which in the limit of large detuning decreases as 1/ωn. A similar estimate can be obtained
using the vacuum fluctuation electric field of the mode as in Eqn. 3.25.

3.3.4 Purcell Decay

Using the black-box circuit model we can re-introduce dissipation in a quantized LC circuit
which qualitatively follows the Purcell effect in Eqn. 3.68. A lossless LC resonator can be
given a finite quality factor Q = ωτ and ringdown time τ with the addition of a parallel
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admittance Y with real conductance G = 1/R. Current fluctuations Î in the resistor induce
corresponding fluctuations in the flux Φ̂ parameter of the LC, with interaction

Hint = Φ̂Î (3.101)

In fact, Fermi’s Golden Rule gives that there are transitions in the oscillator:

Γm→n = 1
ħ2 ∣ ⟨n∣ Φ̂ ∣m⟩ ∣2SII[ω] (3.102)

for current noise two-sided spectral density

SII[ω] = 2ħωR[Y]
1 − exp(−ħω/kbT) (3.103)

For an LC oscillator in parallel with a conductance Gint, the transition rates from state ∣n⟩ at
T = 0 we evaluate the matrix elements and the spectral density for both positive and negative
frequencies, finding

Γn
↑ = (n + 1)κ

1 − exp(ħω/kbT) (3.104)

Γn
↓ = nκ

1 − exp(−ħω/kbT) (3.105)

(3.106)

where κ = 1/τ for τ = RC = 1/Γ0 the exponential time constant of the circuit. At zero
temperature, Γn

↑ = 0 and fluctuations only stimulate decay, but for finite temperature the rates
produce a thermal state, with steady-state probability of finding N excitations given average
number n̄ [52]

P(n̄, N) = n̄N/(n̄ + 1)N+1 (3.107)

and mean excitation number which is the Bose-Einstein occupancy, n̄ = 1/(exp(ħω/kbT)−1)
from a detailed balance of the transition rates of the harmonic oscillator. With the addition
of a coupling impedance (see Fig. 3.7) to an outside bath, we may use Foster’s Theorem to
represent transformed conductances Gin and Gout which may be at different temperatures Tin

and Tout, distinct from Tint, the temperature of lossy cavity materials internal to the cavity.
These are only effective temperatures, as often they describe the black-body radiation from
higher stages, and we prefer to use mean photon numbers n̄in, n̄out, or n̄int. Then the sum of
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Figure 3.7: A circuit model for thermal baths connected to a resonator.

rates determines the steady state population n̄eff of the cavity:

n̄eff = ∑i niκi∑i κi
(3.108)

which is balanced by the total decay rate of the cavity. Typically these κi are fixed, but a
crucial component of this work is the implementation of a variable coupler (see Sect. 4.3.2)
which allows the adjustment of κout over several orders of magnitude. With it we investigate
the influence of n̄eff on qubit coherence. In addition, we observe how an oscillator that is
overcoupled to a cold output mode can have low steady-state population even if the cavity
itself is hot. When a non-equilbrium noise temperature is enforced, as we do in Ch. 8 with
an incoherent drive, photons from one mode can overwhelm all others, and we may write

n̄eff = n̄drκc/κ (3.109)

for a mode with coupling rate κc and mean photon number n̄dr. Also note that when the
entire apparatus has its temperature raised, n̄eff is given by this physical temperature.
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Experimental Techniques

Circuit QED experiment already has large legacy of experimental techniques. Much
of the work for this thesis was done in dilution refrigerators installed two generations

of graduate students ago, whose microwave components are largely unchanged. But, 2010
saw a number of transitional forms in the Schoelkopf laboratory. We received installation of
several new dry (4He cryogen-free) refrigerators, and experiments moved from circuit boards
and planar resonators to cavities that themselves appeared very much like our traditional
sample holders. In many ways the experiment design, measurement scheme and cryogenic
techniques were largely unchanged, and much of it has been exquisitely described in past
dissertations [25].

In this chapter, I will discuss a few interesting experimental details needed for this thesis
and on examples that are pertinent to the transition between the old and new eras and deserve
to be emphasized. First I will describe the fabrication of our coplanar resonators in Sect. 4.1.
Then I will recount the prototyping and fabrication of the 3D transmons samples in Sect. 4.1.3.
Next, I will give a description of the typical dilution fridge setup in Sect. 4.2, with closer
examination of steps taken to ensure cryogenic thermalization. Finally, I note changes to
the sample holder design in Sect. 4.3 and give a brief overview of the pulse generation and
measurement chain in Sect. 4.4 and 4.5.

62
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4.1 Resonator Fabrication

Device fabrication for circuit QED can have several steps with long lead times; despite the
excellent cleanroom facilities a few doors down the hallway, it is often useful to create a large
reserve of partly completed devices. This pipelining of the whole process minimizes idle time
when starting a new experiment. Fabrication for planar circuit QED devices has traditionally
begun with an optical lithography step. Starting with a wafer with sputtered niobium or
aluminum, we use a mask (which itself can take a few weeks to design, a month to order)
to pattern several dozen chip designs, dice the developed wafer, and store the results until a
design is selected for further processing. A similar bank of useful printed circuit (PC) boards
exists, and this process has an analog for 3D resonator experiments in which first we must
obtain a supply of high-purity aluminum and then send out various designs for machining.
This modularity of our experiments quickened the pace of new experiments.

Recently, much of this pipeline has moved in-house. The Becton cleanroom has purchased
a mask making tool (Heidelberg), which allows laser printing of a mask with reasonable
dimensions. Custom PC boards can now be made on demand by an LPKF MiniContac RS,
instead of ordering large batches from Hughes Circuits or Bay Area Circuits. In fact the
new 3D transmon design, with an entirely “wireless” qubit needs no circuit board for simple
experiments. While machining its cavity might have been a slow step in the past, the cost
of rapid machining has also decreased with the proliferation of CNC technology, allowing
the ordering of sample holders (the “octobox”) and more recently 3D cavities from 3D Pros,
Zero Hour Machining, and a handful of other machine shops in half the delivery time of the
Yale Machine Shop (which is, however, of unrivalled quality).

4.1.1 Coplanar waveguide

The microwave platform for all early experiments in the lab has been coplanar waveguide. In
fabrication of resonators for spin experiments, we needed cavities spread along a broad band
of frequencies to match the diversity of spin species and their tunable range. To additionally
take advantage of broadband spin ensembles, we chose a configuration which included a
feedline with shunt resonators (see Sect. 2.2.1) rather than a chip with several cavities [54].
Using either capacitive finger [27] or inductive [55] couplers we create fixed coupling quality
factors that ranged from several thousand to a million.

One possibility for added convenience in the process is to leave the cavity coupling
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Figure 4.1: a) A closeup of chip AW08J1, used as a control for the spin experiments. For
many of the spin experiments, we used 180 nm of DC sputtered niobium film, etched using
a Reactive Ion (RIE) process in an Oxford 80, etching for ≈ 120 seconds, with an endpoint
detected optically. The wafer is then diced and stored with protective resist until needed. b)
different cavity coupler geometries (left to right: inductive, single finger, multiple finger) to
reach desired quality factors. c) block diagram of spin apparatus with magnet.

capacitors unwritten until the experiment design is fixed. These capacitors affect the rate
of energy decay through the cavity, which can alter behavior of precision readout schemes
or limit the performance of qubits too close to resonance through the Purcell effect (see
Sect. 3.3.4). Until recently this has required an extra step involving lengthy calibration because
of the large distance between couplers and qubits on a chip, however the new e-beam writer
installed in 2012 is able to scan a much larger distance and would be able to write couplers
separately as it is capable of writing devices across a full wafer.

4.1.2 3D Resonators

Machined 3D resonators have a very similar process to the coplanar waveguide. In order to
achieve a base level of reproducibility (and time-effectiveness!), rectangular cavities are pro-
vided to one of several mail-order companies for machining according to CAD instructions.
Luckily, there is built in modularity that allows us to choose the cavity Q after fabrication
simply choosing different lengths for SMA coupling pins. Turn-around time for a new 3D cav-
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Figure 4.2: An SEM image of a Josephson junction from a 3D transmon test wafer.

ity design is 2-4 weeks, allowing rapid prototyping of new ideas. Electromagnetic resonator
design is a classic field of physics [56, 57], the replication of which is an active area of interest
for our lab and issues of material purity, electroplating, chemical polishing, and magnetic
shielding have been discussed; however the experiments in this thesis are the results of our
typical procedures as described in past work, and new best practices are still being developed.

4.1.3 Qubit Fabrication

Fabrication procedures for the classic transmon (described in [25] in detail) and the 3D
transmon are nearly identical. All qubits for this thesis were on 450 or 500 µm thick sapphire.
This substrate is spun with two layers of resist, PMMA and PMA-MAA, in order to allow for
construction of a Josephson junction using the Dolan bridge technique. Because sapphire is
a good insulator and has little ability to dissipate charge, an initial layer of ∼ 10 nm Al was
deposited to sink the electron beam current to ground while patterning.

All qubits except SP1 and SP2 (see Table 6.2 for a list of 3D qubit devices) were patterned
using a Sirion SEM using a 30 keV beam and Nabity e-beam conversion software. Most
lithography difficulties were due to overexposure and cross-dosing from the large coupling
pad area; avoiding use of the largest beam spot size often reduced the number of shorted
junctions. After e-beam resist development with Shipley MF-312, we deposited aluminum
(purchased from Alfa Aesar, at 99.999% purity) in three steps: first a layer of Al, an oxidation,
and a final layer deposited at an angle. Oxidation time, temperature, and pressure are crucial
parameters that are carefully controlled so that only junction area varies in the fabrication
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process. Becton has two excellent, automated, fully logged Plassys deposition and oxidation
systems, and qubits J4, J5, and J6 were the first to utilize the newer one with a separate
oxidation chamber. Hopefully its expanded Josephson junction formation capabilities will be
further tested in the near future.

4.2 Experimental Setup

All experiments were performed with similar cryogenic apparatus, at ≈ 10 − 30 mK, the base
temperature of a dilution refrigerator. Spin experiments used both a Cryoconcept fridge with
100 µW at 100 mK and a Kelvinox fridge with 400 µW at 100 mK cooling powers, while 3D
transmons experiments were performed in these as well as several varieties of dry fridges
(without the need for 4He consumption) from Vericold and Oxford Instruments. Microwave
coaxial UT-85 lines connected the experiment with the top of the fridge; measurements
were done in transmission, with two lines per experiment (fewer with the use of microwave
switches from Radiall). All copper sample holders and brackets were seated firmly and
made of OFHC copper for high thermal conductivity with plentiful copper braid straps to
provide additional points for thermal anchoring, and both spin (Ch. 5) and qubit (Ch. 6
and 7) experiments used cryogenic attenuation to eliminate Johnson-Nyquist noise emitted
by room-temperature electronics.

The large bias magnetic field used in spins experiments was created using massive super-
conducting magnets at the bottom of the Kelvinox and Cryoconcept fridges, immersed in
liquid helium, and had a field per ampere which peaked near the samples at approximately
985 G/A and ≈ 330 G/A, respectively. The magnets included a secondary coil to cancel field
at higher stages and prevent damage to sensitive microwave components like our circulators.
They were driven first by an American Magnetics programmable current source, and later by
a Kepco BOP 20-10M-4886, and had persistent switch elements to create a long-term stable
field disconnected altogether from the supplies. Since the magnetic field tolerances for the
first 3D transmon SQUID experiments were much more stringent, we drove the magnets
through a 10 kΩ resistor with a Yokogawa 7651 DC Voltage Source.

4.2.1 Reflective Attenuation

Cryogenic attenuation is a critical part of superconducting qubit experiments, and the basics
have not changed. Each fridge is first wired with both dissipative and reflective attenuation
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Figure 4.4: a) Reflective attenuation. Clockwise from top left: Pamtech isolator, Pamtech
circulator, Lorch cavity filter. b) Diagram of filtering on cavity input lines, including directional
coupler to redirect power to 4K stage.

to isolate the experiment at the base plate from blackbody radiation above. Several reflective
microwave components were incorporated into the lab’s standard drive and measurement
lines as experiments with the 3D transmon progressed. We used, for example, a K&F low-pass
tubular filter with a passband below either 10 or 12 GHz (6L250-10000 and 6L250-12000), to
reflect power at frequencies much higher than the qubit and cavity (up until self-resonance
at ∼ 20 GHz). Reflective elements have the benefit of being more narrow band than many
absorptive components, allowing us to block incidence or emission of radiation at specific
frequencies. We tested multistage cavity filters from Lorch or K&L with precise passbands
100 MHz to several GHz wide. Placed on the typically overcoupled output port of a cavity,
these allow fast readout while limiting Purcell decay rates of the detuned qubit.

In early 3D transmon experiments, directional couplers were used to redirect some
incident drive power to stages of the fridge with surplus cooling power. Although potentially
a four-port device, these had one 50 Ω termination, and were used as shown in Fig. 4.4b,
to replace 10 dB-20 dB of absorptive attenuation at the base plate by routing drive signals
through the weakly coupled port and sending the rest to be dissipated at 4K. Although a
useful idea, one should be careful with this implementation; the broadband performance the
directional coupler is unclear and it may no longer reject noise above ∼ 18 GHz. Microwave
switches have been suspected of allowing either extra broadband noise or infrared light to
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Figure 4.5: a) Eccosorb filter housing and jacks b) Broadband performance of the filters (purple:
S21, red: S11)

reach the sample, and have been integrated into the modern generation of fridges at the
base plate, possibly harming qubit coherence times; it may also be inappropriate to rely
on directional couplers and microwave switches for blocking power (perhaps they must
always be paired with resistive filters as described in the next Section)∗. On the output side,
cryogenic isolators and circulators (manufactured by Pamtech) are used to reject blackbody
noise from the HEMT amplifier and above; although they do a very good job at providing
20-30 dB isolation at 8 GHz (suppressing thermal excitations of the qubit and fundamental
cavity mode), they have unknown behavior at microwave frequencies above 18 GHz.

4.2.2 Absorptive Attenuation

Absorptive attenuation is used at different stages of the fridge, simultaneously fulfilling several
purposes. First, a resistive connection from a coax centerpin to the ground shield (which
is itself clamped and connected to a fridge plate) allows the centerpin to be thermally sunk.
Providing a point of thermalization at as many stages as possible ensures cooling from plates
with most cooling power; since cooling power in a fridge is generally quadratic in temperature
T , it is beneficial to “sink early, sink often”. In addition to thermal sinking, resistors also
reduce blackbody photons emitted from plates above the mixing chamber base plate. A
resistor at a fixed temperature T will in steady state fill all modes with the Bose-Einstein
population PBE(T) = 1/(exp(ħω/kbT) − 1). An attenuator at a lower stage in the fridge but

∗ We also remain suspicious of hand-formable coaxial cables (such as from rfcoax.com), whose mesh outer
conductor may allow infrared light to enter the coax.
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with finite temperature will eliminate much of the photon power which continues toward the
sample; the remainder is added with its own contribution.

At high temperatures with kBT > ħω summing the different n̄ is equivalent to adding
effective temperatures, however, once we reach the cryogenic regime this is no longer true.
We are concerned with the final average photon number in our cavities; assuming only
thermalized sources and an overcoupled cavity, this number is

n̄eff = n̄base + Abase ⋅ (n̄4K + A4K ⋅ (n̄300K)) (4.1)

= PBE(Teff) (4.2)

where PBE(T) is the Bose-Einstein distribution, A4K and Abase are the attenuation at the
4 K stage and at the base plate, and Teff is the effective temperature, and obeys a simple
scaled addition like Eqn. 4.1 with T ∼ n̄ only for temperatures much larger than ħω/kb. To
determine the steady state photon number actually inside the cavity, we calculate instead the
temperature of the mode just outside the coupler (by neglecting n̄base) and use Eqn. 3.109.
Reducing the expression to the contribution from only the input side of the cavity and to

n̄eff = AbasePBE(T4K) κ
κc

(4.3)

In particular, for the standard attenuation setup of 20 dB at 4K, 30 dB at the base plate,
and an extra 10 dB of loss in the long coaxial cables at the top of the fridge, we can expect
n̄eff = (0.008 + 0.01 + n̄base) at 8 GHz, outside the couplers. An additional 10 dB at the base
plate would reduce this to a total of 0.001, an effective temperature of 55 mK.

One way to supplement the reflective attenuation with finite bandwidth from the previous
section is to include wideband absorption, such as the eccosorb filter developed by Daniel
Santavicca [58] and based on the humble properties of iron particles. The filter is constructed
from a large copper cold-finger (see Fig. 4.5a) capped with two SMA jacks, and is filled with
Eccosorb CR-110 epoxy from Emerson-Cuming, which has a typical attenuation of 2 dB/cm at
10 GHz which increases at higher frequencies (see Fig. 4.5b). While it has not been measured
above 18 GHz, it has already improved the thermalization of our 3D transmon devices (see
Sect. 8.4) and enabled our best qubit coherence times.
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4.3 Sample Holder and 3D Cavity

Experiments were typically enclosed in either an OFHC in order to allow magnetic field, or
in superconducting aluminum.

4.3.1 Octobox

The sample holder for coplanar waveguide experiments is a piece of OFHC copper called the
“octobox” after its eight microwave ports. Each allowed for a Rosenberger connector, which is
particularly tolerant of blind mating. Although not used for these experiments, glass bead
feedthroughs along with an indium wire seal can make the holder hermetic, sealed even to
superfluid helium.

Spurious modes have always been a concern with coplanar waveguide, where λ or 3λ/4
(for λ/2 or λ/4 resonators) harmonics are not so far detuned from the cavity fundamental that
they can be ignored. In fact, the Purcell effect from harmonics clearly limits planar transmons
tuned above the cavity [50]. The slotline mode has also been noted [40], and capacitance to
the opposite ground plane is included in network calculations for the charging capacitance CΣ

of planar transmon; this is the basis for several speculative “balanced” transmon designs [49].
But box modes of the sample holder too can interfere with qubit coherence, and are

clearly seen in transmission spectra of our planar cavities (see Fig. 4.6b). These can be
squeezed into a higher frequency range by filling them with conductor; as a stopgap solution
I machined some additions for the sample holder, including a “flip chip” made from an
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Figure 4.7: a) Simulated transmission through the original (V1, below), and a slight evolution
(V2, above) of the rectangular waveguide cavity used for the 3D transmon experiments. The
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overturned spare pcb, and a metal shim that filled the remaining vacuum of the box (see
Fig. 4.6a). This, along with extra wirebonds connecting the CPW ground planes, cleaned
up the transmission spectrum significantly (with the expectation that extra coupling of the
qubit may be suppressed as well). These lessons provided part of the inspiration for using a
simplified 3D cavity with clear resonator mode structure for the 3D transmon.

4.3.2 Rectangular waveguide cavity

The rectangular waveguide (“3D”) cavity we used for transmon experiments is particularly
simple, and deviates slightly from a rectangular design by having rounded sides only out
of machining necessity. The cavity is split in half to allow insertion of a substrate with the
qubit, and we originally chose to place the couplers on a single half of the cavity. Out of an
abundance of caution, later versions of rectangular cavities moved the coupling pins to be in
the center, substantially nulling transmission through the TE102 and other even modes. This
is seen in Fig. 4.7 where simulations indicate that transmission no longer occurs from pin
to pin at ∼ 10 GHz, however the change has not been shown to have a significant effect on
qubit coherence or decay. Practically, this decouples the even modes from the output coaxial
mode, such that their Q is set by the internal quality factor and the mode is populated at the
internal temperature.
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Figure 4.8: Base plate configuration. Left: directional coupler leads to eccosorb filter and XMA
attenuator at base plate. Shown with cryoperm magnetic shield completely removed. Right:
variable coupler in brass for experiment with qubit J3 in aluminum cavity, with half of shield
installed.

The coupler pins of a 3D cavity and the finger capacitors of a planar resonator may reject
incoming photons by providing an impedance mismatch; power that reaches an undercoupled
cavity is mostly reflected. Amazingly, the coupling quality factor for the 3D cavities can be
adjusted in situ using a variable coupler developed by Andrei Petrenko and shown in Fig. 4.8.
In practice, the cavity coupling rate varies by much more than the quality factor itself, which
reaches an internal Q limit, and can be between 500, 000 − 2, 000, 000 for cavities with a full
sapphire chip inside; our stock rectangular waveguide cavity achieves Qint up to a factor of 10
higher with a specialized chemical etch [? ] or perhaps 50 after removing the sapphire. The
coupling quality factor increases exponentially as less and less power escapes evanescently into
a withdrawn SMA pin; the scaling of this effect agrees well with theory for superconducting
and normal cavities, with and without sapphire substrates, and has been measured for both
2.33 mm and 5 mm diameter holes. There is some concern that having a physical hole opening
in the cavity allows infrared light to produce quasiparticles in the junction, reducing qubit
coherence, prompting us to cover it with something impenetrable yet flexible∗.

∗ This is an interesting conjecture but it has not been proven using a control experiment. For comparison, a
former colleague has qubits in “open space”, and places them on top of coplanar waveguide using a mechanical



CHAPTER 4. EXPERIMENTAL TECHNIQUES 74

9.0 9.2 9.4 9.6 9.8-100
-90
-80
-70
-60
-50
-40

a)

|S
21

|  
 (d

B
)

2

10.0

-0.40

-0.35

-0.30

-0.25

-0.20

ta
n 
φ

9.5129.5109.5089.5069.504
f (GHz)f (GHz)

b)

Figure 4.9: a) Insertion loss measurement of Qc for an undercoupled resonator b) Qc mea-
surement in reflection for g ≈ 10 (red, with theory in black). For undercoupled ports (green,
g = 100 and blue g = 1000, the phase measurement is progressively more difficult.

Phase Measurement of Qc

We use two methods to extract Qc from Q the total quality factor, in preparation of a new
experiment. The first involves the phase shift of the reflected signal S11. The admittance of a
parallel resonator near resonance is:

Y = Gint(1 − 2iδQi) (4.4)

and so its reflection coefficient is:

Γ = Yout − Yres

Yout + Yres
(4.5)

= 1 − g(1 − 2iδQi)
1 + g(1 − 2iδQi) (4.6)

for g = Qc/Qi . This gives us on resonance a reflection Γ = 1−g
1+g and nearby a phase difference:

tan ϕ = I[Γ]/R[Γ] (4.7)

= tan ϕ = tan ϕ0 + −4Qδ(1 − g) − 4(Qδ)2(1 + g) (4.8)

where g = Qext/Qint, with which we may fit the S11 of our cavity. This method is only useful
for overcoupled to slightly-undercoupled cavities g ∼ 1, otherwise calibration errors make
the reflection traces unusable (see Fig. 4.9b)

stage [59], however their coherence times do not reach those of the 3D transmon. Alternatively, there is some
evidence from the Devoret lab that a hermetically sealed “light-tight” cavity improves qubit coherence
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Magnitude of Insertion Loss

Alternatively, the insertion loss for a coupled resonator depends upon the internal and
coupling quality factors Qi, Qin, and Qout (see Fig. 4.9a). Transmission through the device is
given by:

S∣21∣2 = IL
1 + 4Q2δx2 (4.9)

where δx = (ω − ω0)/ω0 and the insertion loss is [27]

IL = 4Q2

QinQout
(4.10)

for negligible internal loss. We can use this to estimate the Qc of two identical couplers, even
when room-temperature prevents Qi from reaching superconducting values.

All qubit experiments include a Cryoperm shield around the sample that expels magnetic
field as the fridge cools; there is some evidence that magnetic shielding is necessary for
resonator quality factor measurements [56] and that many experiments naturally have a small
magnetic field nearby [60]. Better shielding of cavities and local field nulling is a work in
progress.

4.4 Pulse Generation

Pulses were generated by mixing a shaping envelope from an arbitrary waveform generator
(AWG) with a center local oscillator (LO) tone; a Tektronix AWG5014 provides this IF
waveform at 1 GS/s, allowing single sideband mixing (SSB) up to ≈ 100 MHz from the carrier
frequency. Because its internal trigger is unreliable, in qubit experiments this equipment is
triggered every 2 ms or less often, permitting cavity and qubit to return to a cold equilibrium
state. We use a Tektronix AWG520 (which does not have this problem) or an Agilent 33250A
function generator as master triggers, and the AWG5014. All equipment gets its phase
reference from an SRS FS725 rubidium clock source. The steady LO tone is generated by
Agilent E8267D and MXG N5183A family generators, powering low-power Marki Microwave
IQ0618LXP IQ mixers. These mixers naturally have some leakage of the LO tone which is
dependent upon the offset voltage for the diodes on each arm; it must be nulled using the
AWG5014 channel offsets and has different optimal settings as the LO frequency changes.
The quality factor of cavities in early 3D transmon experiments was 1000x larger than typical
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experiments in traditional circuit QED, and excessive caution meant that they may have been
undercoupled as well. So early on we discovered the necessity of a high-power amplifier such
as the Minicircuits ZVE-3W-183+ for driving fast qubit pulses.

A Micronetics NOD-5200 1 GHz RF noise source was used along with a Labbrick pro-
grammable attenuator in Ch. 8 to automate the production of microwave noise with narrow
bandwidth. Performance of the attenuator varied with frequency, especially above its rated
specifications (see Fig. 4.11). An IQ mixer mixed a large spectrum of noise up to the cavity
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transition frequency, while several low-pass filters ensured that power at the qubit frequency
had been excluded before sending it into the fridge.

4.5 Measurement

Measurement was performed using a heterodyne scheme with two arms, one of which was
a reference for the phase. This allows the measurement of phase shifts, for example as a
function of generator frequency when the relative phase between two experiments might
be scrambled and in addition removes the potential for several intrinsic types of phase drift
(such as between an LO and RF generator). This configuration is a best-practice for dispersive
qubit readout in which the qubit state is encoded in the phase of tone transmitted through
the cavity, and when measurements are not heavily averaged (averaging on the acquisition
card prevents us from more intelligently combining the phase measurements from further
software processing). An IQ mixer produces a signal which is multiplied by a sine wave at the
IF frequency of 10 MHz in software (digital homodyne) before being integrated to produce
the phase and amplitude of the signal.

Signal from the cavity first went through several circulators and then a Caltech HEMT
cryogenic amplifier with gain G > 30 dB and a noise temperature TN ≈ 4 K, before being
input into two Miteq low-noise amplifiers (typically AFS4-08001200-10-10P-4 and AFS3-
00101200-35-ULN). The microwave signal from the fridge was mixed down to 10 MHz with
the reference arm signal, and amplified using an Stanford Research SR445A pre-amplifier
before entering a two-channel Agilient Acqiris AP240 digitization card along with another
copy of the reference arm. More recently, use of the Alazaar card (ATS-9870) has enabled
shot-by-shot analysis of cavity transmitted phase and amplitude, allowing histograms and
application of thresholds to the readout signal. The room-temperature control configuration
is displayed in Fig. 4.10. To prevent ground loops that can disrupt thermometry and other
sensitive measurements, all cables to the fridge are interupted by an Inmet 8309 DC block (a
DC open on both inner and outer conductors). Wideband measurements on the spins used
an Agilent E5071C Network Analyzer because of its superior power-leveling and broadband
calibration for long measurements.



CHAPTER 5

Spins

There are many approaches to the construction of a solid-state quantum computer, which
might ultimately be composed of a variety of physical systems, specialized for different

tasks. Among the possible approaches, spin-based quantum information processing has
enjoyed a large amount of research in recent years [25, 61–64]. In particular, ensembles of
electron spins in crystals have been well-studied and complement superconducting spins
particularly well. As was mentioned in Chapter 3, the collective moment of many spins can
interact with the electromagnetic field of a resonant cavity to form an effective harmonic
oscillator, featuring similar transition frequencies to our qubits. They need not be actively
trapped, may be densely packed in space, and may even be utilized in momentum-space [65]
for the storage of multiple bits of information as spin-waves. Our requirements for suitable
spins are similar to those for the implementation of useful qubits: they must have a large
coupling to other systems so that quantum operations can be performed quickly, yet they
must be protected from decay into the environment and isolated from sources of decoherence.

The study of spins through the use of microwave probes is the field of Electron Spin
Resonance (ESR) or Electron Paramagnetic Resonance [36]. Where dielectrics and even
metal surfaces may be rough and disordered, crystals provide a very ordered and predictable
environment with excellent materials properties, and the disturbance by small numbers of
defects can lead to consistent results. Dopants in silicon and diamond are common, for

78
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Figure 5.1: Defects and dopants in the crystal substrate provide electron spins to be biased by
a magnetic field B and controlled using the microwave signal in a resonator.

example phosphorus substitutions in silicon [66, 67] in a crystal lattice, have been studied
and shown to have particularly long T2 (with echo) of seconds and T1 of hours at liquid helium
temperatures. Impurities in diamond have not only microwave but optical transitions [61].

For the most part, ESR experiments have been performed at room temperature with
macroscopic samples in solution or powder form, or occasionally at LN2 or liquid helium
temperatures. The field has a long history, with an especially fruitful examination of the
substitutions, vacancies, and defects of crystals like diamond and sapphire. Early samples
were often procured from natural lodes in South Africa, however recently crystal growing
technology has improved to become commercially viable for a variety of industrial and
consumer purposes.

Chapter Organization

In this chapter, we report on experiments [68] that perform ESR at millikelvin temperatures
on a platform that could integrate with our other circuit QED experiments. Circuit QED
allows for many optimizations that might enhance the maximum sensitivity to spins in ESR
experiments and in fact the traditional coplanar waveguide (CPW) cavities are in many ways
excellent for the design of an ESR spectrometer which detects extremely small numbers of
spins. At the same time, the exquisite sensitivity may be put to use by engineering stronger
interactions in the support of the rest of our quantum computing effort. So in developing
ESR techniques in our devices, we hope to understand what makes a spin suitable for use as a
quantum memory and what limitations spins might place on future cavity QED experiments.

In the next section of this chapter we derive the limits of operation for ESR using our
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platform, describing its extreme sensitivity in familiar terms of cavity QED. In subsequent
sections we perform some proof of principle experiments integrating CPW cavities via several
preparation methods with spins of increasing coherence properties. Beginning with DPPH,
a very well-characterized ESR standard, we see that our devices permit spectrometry over
a wide bandwidth when applied topically to the planar chips. Then we detail attempts to
couple simple paramagnetic spin ensembles of P1 nitrogen substitutional defects in diamond,
and observe the the anisotropic hyperfine splitting from 14N nuclei. Finally we use ruby to
demonstrate the utility of a finite Crystal Field Splitting (CFS) in a spin species, reducing the
degradation of our superconducting resonators which occurs in a strong magnetic field. We
find that by densely filling the mode volume with spins, we achieve a type of strong coupling
between spin ensembles and resonators and consider the prospects of spin ensembles for use
as a quantum memory.

5.1 Sensitivity

In conventional ESR we couple microwave power into a resonant cavity to be dissipated by a
spin sample. The amount of power coupled is limited by the magnetic participation of the
spins, and the absorption of incident power is typically viewed in reflection. When the spins
have been tuned into resonance with the cavity, the reflected power has a Lorentzian profile as
impedance matching limits power transfer off-resonance, similar to the dip in transmission of
our shunt resonators. In commercial spectrometers, typically a lock-in oscillating magnetic
field is applied as well, such that the final signal appears to be the derivative of transmission
vs frequency.

A single electron spin has a magnetic dipole moment m0 whose coupling to free space
g0 ∼ 1 Hz, determined by the weak power radiated by a magnetic spin (see Sect. 3.2.3 and
Eqn. 3.30) is difficult to detect alone. In fact, even placing it inside a resonant cavity to
enhance its emission through the Purcell effect only results in gs ∼ 20 Hz.

While the presence of a single spin or defect may be too little to detect, this collection of
M spins has a coupling gs

√
M which can be many MHz. When in resonance, this leads to a

hybridization and vacuum Rabi splitting. The frequency dispersion is often disregarded in
classic ESR; feedback systems automatically compensate to track the repulsion and fixate on
the frequency of maximum absorption. This is effectively an anachronism due to historical
frequency instability of klystron microwave generators.
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Figure 5.2: An ESR spectrum taken of synthetic, single crystal diamond using the Bruker
machine in the Sterling Chemistry Laboratory at Yale. The trace is the derivative (with respect
to magnetic field) of the absorption spectrum at different bias fields. The center transition is
that of a nearly-free 14N electron spin conserving mI = 0, while the satellites show different
sub-populations of mI = −1 and mI = 1 spins.

Small volumes

The great advantage of using coplanar waveguide resonators for the purpose of ESR is their
large filling factor ν, and the opportunity to maximize the amount of our chosen material that
interacts with the magnetic field energy, thereby increasing our sensitivity to the resonance or
damping of our microwave fields. This sensitivity is dependent upon both the participation
ratio of the magnetic energy in the sample and in part upon the orientation of the B0 fields,
and we may define:

ν = ∫ ∣B⃗0(r) × Ŝ∣dVsample

∫ ∣B⃗0∣2dV
(5.1)

where B0 is the zero-point magnetic field and Ŝ is the spin quantization axis. Inside the mode
volume, this coupling has strength gs = ħm0B0 for a single spin, where m0 is the transition
magnetic dipole moment of the spin. The value ν for spins contained in coplanar waveguide
is ≈ 0.25: with 1/2 to begin with because sample fills less than a half-plane, and another factor
of 1/2 due to the non-orthogonality of the spins axes to B0. Placing ∼ 1012 spins to achieve a
many-MHz coupling, creates what is effectively a harmonic oscillator which may exchange
energy within an interaction time comparable to coherence times of a superconducting qubit
or resonators. Amazingly, because B0 ∼ √

V
−1

and geff ∼ √
V , the total coupling geff depends
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on the filling factor in a volume-independent way:

geff = m0

ħ
√

µ0ħωc ρν/4 (5.2)

where ωc is the cavity frequency, and ρ is the spin density. As we can see, the coupling is
independent of volume, and more strongly dependent upon ρ, the density.

Ultimate limits

Weil gives the general sensitivity for an ESR spectrometer as [69]:

Nmin = 6πVc kbTs

µ0 g2β2
eS(S + 1)Qu

∆B
Br

(FkbTdb
P0

)1/2

(5.3)

where Vc is the volume of the cavity, kb is Boltzmann’s constant, Ts is the temperature of
the sample, ∆B is the FWHM of the absorption line in gauss, Br is the bias field, Qu is the
unloaded quality factor, Td the noise temperature of our amplifier, b the bandwidth of the
detection scheme, F is a dimensionless efficiency factor, and P0 the incident microwave
power.

This derives from a model in which a linear voltage detector observes the absorption of
power by the sample as it is tuned into resonance with the cavity. The quality factor Q of the
cavity is (following [36]):

1/Q = 1/Qu + 1/Qχ (5.4)

where

Qχ = ∫cavity H2
1 dV

χ′′ ∫sample H2
1 dV

(5.5)

= 1
χ′′η

(5.6)

On resonance the change in quality factor is

∆Q = χ′′ηQ2
u (5.7)

and for a critically coupled cavity in which the maximum power is dissipated in the sample,
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Description ESR Term Equivalent cQED Term
Cavity and spin energy gµBBr ħωc

Vacuum magnetic energy 1
2

B2
0

µ0
Vc

1
4 ħωc

Saturation power P0
ħωγγ∗2 κ

2g2
s

Amplifier photon noise Fkb Td
ħωc

Namp

Spin linewidth gµB∆B/ħ γ∗
2

Table 5.1: Equivalent terms of substitution for Weil’s sensitivity equation

the fractional size of the detected voltage signal in transmission is

∆El = 1
8

χ′′ηQuE (5.8)

where the drive power P0 = E2

4R0
is described by the incident voltage E, and we note that in

the reflection scheme used by Weil, this is increased by a factor of 4. The sensitivity of the
spectrometer is determined by the minimum resolvable absorption χ′′, limited by the noise
temperature of the amplifier chain which produces

∆Er = √
4RkTdb (5.9)

after integration with bandwidth b. Finally, making several substitutions we find a suitable
expression for circuit QED:

Nmin = 6π
s(s + 1) [tanh( ħω

kbTs
)]−1 ⎡⎢⎢⎢⎢⎢⎣

√
2γ∗2

γ√
g2

s
κ τ

⎤⎥⎥⎥⎥⎥⎦
√

Namp (5.10)

which, respectively, has terms for: the geometric multiplicity of the spin, the inverse spin
polarization (expanded from the high-temperature approximation) affecting the contrast, the
number of scattered photons in the integration time (τ = 1/b) due to the Purcell enhanced
spin decay of a single spin, the fraction of the spin linewidth which is excited by the the drive
and the number of photons Namp = kBTd/ħω which must be scattered to achieve unity SNR.

Conventional ESR instruments have Q = 104, gs/2π ∼ 0.02 Hz with Vc = 10 µL) and
TK = 30, 000 K. With a limiting saturation power of Ps ∼ 100 mW, they are regularly operated
down to temperatures of 1 K and can detect Nmin ∼ 109

√
Hz. With our current devices,

we may reasonably achieve Q = 5000, gs/2π = 20 Hz with Vc = 10 nL, and TN ∼ 10 K at



CHAPTER 5. SPINS 84

temperatures from 4 K to 20 mK. Depending upon the spin linewidths, this currently allows
Nmin ∼ 104

√
Hz, and with further development (including the application of standard ESR

techniques such as field modulation), it should be possible to detect a single spin after a
reasonable integration time.

Although the detection of a single spin is an admirable goal, in quantum information
processing we must be able to perform operations at the speed of our slowest component.
Superconducting qubits typically have a coherence time of 1 − 100 µs, and swap operations
between a spin and a resonator occur at the rate geff, necessitating a coupling of many MHz.
In the remainder of the chapter we utilize the extreme sensitivity of our devices to instead
study larger ensembles of approximately ∼ 1012 spins at large coupling rates more suitable for
future use.

5.2 ESR of DPPH

We first discuss DPPH, or diphenyl-picryl-hydrazyl an organic radical with a simple Hamil-
tonian:

Hd = −m0B⃗ ⋅ S⃗ (5.11)

Every molecule of DPPH comprises a bound paramagnetic spin, with a g factor slightly
modified to be 2.0036 at room temperature. This gives a Zeeman splitting equal to ħω = gµBB
increasing at approximately 2.9 MHz / gauss and µB the Bohr magneton. Hence, for a magnetic
field of around 2 kG, we expect it to be absorptive at microwave frequencies. Its natural
linewidth is a few gauss (4-14 MHz) depending on the solvent it crystalizes from and it is
a superb standard for many assays in ESR. It is typically prepared in successively diluted
solutions in order to be used for magnetic field and spin number calibration.

We cooled down a sample of DPPH on chip J2 first in a Cryoconcept Dilution Fridge
to 10 mK, on resonators previously known to have high internal quality factor (See Fig-
ure 5.16). By tracking its resonance dip in the feedline transmission, we were able to detect
the approximate magnetic field to current ratio at the sample (see Figure 5.3).
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Power Absorption

We begin to saturate a single spin when the drive Rabi frequency equals the natural spin
linewidth, Ωr = γ, with:

Ωr = 2gs

√
2
ω

P
ħω

(5.12)

where γ = √
2γ1γ∗

2 , γ1 the spin energy relaxation rate and γ∗
2 the dephasing rate. A sufficient

power to eliminate spin polarization is then:

Psat = γ1γ∗
2 ω2ħ

4g2
s

(5.13)

and for spin resonances as wide as 100 MHz requires a watt, which is unreasonable in
cryogenic experiments. A more modest nanowatt would saturate a 6 kHz linewidth transition,
exciting only Ω2

r/γ2 = 10−9, or one part in a billion of the more incoherent spin. Inside a cavity,
we have instead a finite κ, which significantly limits the necessary power after enhancing the
Rabi rate by a factor of

√
Q.

An ensemble of spins interacts with the field with the enhanced coupling geff = gs
√

M,
giving a dip in feedline power transmission from which we can estimate the number of spins:

Pin(1 − Smin
21 ) = Ω2

r
γ2 ħωγ1 (5.14)

= (2g)2( 2
ω

p
ħω)

2γ1γ2
Mħωγ1 (5.15)

(5.16)

By fitting the frequency linecuts as a pseudo shunt resonator, where on resonance (see Ch 2):

Qc = Q
1 − Smin

21
(5.17)

Qi = Q
Smin

21
(5.18)

We can retrieve the number of spins by equating with the Purcell enhanced rate of energy
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Figure 5.3: (a) Microwave transmission through a coplanar device covered with DPPH. The
spins absorb power when tuned into resonance via the bias magnetic field. The slope of the
absorption line gives our conversion from current in our persisting superconducting magnet of
0.844 kG / Ampere for the Kelvinox and 0.330 kG / Ampere in the Cryoconcept. (b) a linecut at
7.5 GHz, where there is a dip of ∼ 1% in transmission. There are approximately 1013 spins, with
a FWHM of 150 MHz. (c) A linecut at constant magnetic field of 2.54 kG, with the subtraction
of a nearby trace.

loss g2

γ :

M ≈ ω2

g2Qc
(5.19)

γ = ω/Qi (5.20)

The strength of the absorption suggested a number of spins ∼ 3 × 1012, consistent with
the deposited density. This number of spins ∼ 1013 over a mode volume of 1mm × 10µm2

yields a density of 1021 cm−3, on the high end of commonly found substrate doping rates.
While well-behaved at room temperature, DPPH undergoes a phase transition at cryogenic
temperatures and becomes antiferromagnetic [70], with a linewidth that can be hundreds
of MHz wide. We measured a total linewidth of around 180 MHz, with precision limited by
experimental details of the fridge and wiring, such as reflections and the long experiment
duration.
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Figure 5.4: a) Optical picture of DPPH chip. We used toluene to dissolve 38 g of DPPH
into 10 ml of solvent, then placed 2 drops (approximately 0.2 ml) on the chip. At an area of
10µm × 10µm × 1cm, we estimate a spin density of ≈ 1019/cm2 within the actual mode volume.
b) Diagram of shunt resonator, including a λ/4 resonator terminated by a superconducting
short. The capacitive coupler sets the coupling Q of the resonator.

Resonant Interaction

In addition to a feedline interaction, the DPPH covered several CPW resonators, leading
to a resonant interaction and hybridization that allowed power to be transferred into the
spin ensemble at a large rate. In the accompanying Fig. 5.5, we see transmission through the
feedline in a window about the few lowest frequency CPW resonators. Because of the large
spin coupling geff and damping rate γ, the quality factor of the CPW resonators is depressed
off-resonance, while there is a splitting of 2g in the frequency of the two hybridized oscillators,
at resonance. At a field of 2 kG, the resonator Q has begun to diminish, therefore here we fit
only the frequency repulsion, using the equations for hybridization discussed in Ch. 3, where
the two resonant frequencies are:

f±[B] = 1
2

fr[B] + fDPPH[B] ±√( fr[B] − fDPPH[B])2 + 4g2 (5.21)

and allowing for the reduction of resonator frequency due to kinetic inductance.
Using our estimated gs = 20 Hz/spin, this gives M ∼ 1012, on the same order as the number

in the feedline. Our experiments with DPPH were a first proof of principle: using an EPR
standard, we could apply sufficient magnetic field to our devices to tune spins into resonance
with our superconducting cavities, and approach a high enough g to make qubit operations
feasible. In addition, they demonstrate the viability of depositing small samples on top of our
CPW resonators for ESR detection and investigation.
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Figure 5.5: (a) Resonances with 3 shunt resonators, shown in transmission amplitude. The
resonator can be seen in a curved arc induced by the extra kinetic inductance which is provided
by a larger parallel bias field; the dark red dip is not repelled, and represents a distinct ensemble
of spins in the feedline which does not interact with the superconducting resonator, while
a similar sized ensemble hybridizes with the superconducting resonator. (b) Frequency and
quality factor of the resonators, along with theory curves.
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Figure 5.6: a) An image of a diamond chip on a sapphire chip fabricated with 8 coplanar
waveguide resonators. b) the diamond P1 center energy levels

5.3 ESR of Diamond

As another approach we used well-studied nitrogen substitution defects in a diamond crystal
lattice. These P1 centers have a Hamiltonian, detailed in Fig. 5.6b:

Hd = −m0,d B⃗ ⋅ S⃗ + AS⃗ ⋅ I⃗ (5.22)

with a hyperfine coupling tensor A/2π = (81.33, 81.33, 114.03)MHz and m0,d/2π = 2.804 MHz/gauss.
Here the ẑ direction corresponds to the diamond ⟨111⟩ axis, S⃗ is the electron spin-1/2 operator
and I⃗ is the spin-1 operator for the nucleus.

The spins in diamond act as several different ensembles of nearly-free electron spins,
with the addition of the hyperfine splitting, and thus requires magnetic fields on the order
of ∼ 2 kG to reach a transition frequency of ∼ 6 GHz. It is distinguished from DPPH in the
sense that its defects or spins are organized in a rigid lattice, and has been of great historical
interest in ESR [71]. We studied two samples with nitrogen substitutions, or P1 centers∗, both
mounted on top of a sapphire chip with lithographically fabricated niobium CPW resonators.

The first sample of diamond was synthetically grown in a high-pressure nitrogen at-
mosphere and was acquired from the Awschalom group at UCSB. Feedline absorption of∼ 3% and γ = 20 MHz suggested an ensemble of 1.9 × 1012 spins, confirming a density of≈ 1019 − 1020/cm3 nitrogen substitution P1 centers, and featured three clear absorption lines
corresponding to the hyperfine splitting, observable in Fig. 5.8 for example.

We tune spins into resonance with cavity to observe the hyperfine splitting in Fig. 5.7. Be-
cause there are in fact different spin ensembles which hybridize separately with the resonator

∗ “Color” centers in diamond were originally named after the first letter of the laboratory where they were
discovered, followed by the order of identification.
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Figure 5.7: a) Diamond P1 spins in resonance with a hanger, measured through transmission
of our waveguide chips. b) a linecut with constant bias field, far from resonance c) a linecut at
constant bias field at the point of mI = 0 hybridization with the cavity.

Line f
(GHz)

g/2π
(MHz)

γ/2π
(MHz)

mI = −1 5.121 7.5 21.5
mI = 0 5.325 8.2 20.0
mI = 1 5.509 9.8 22.2

Table 5.2: Coupling strengths g for ensembles with different mI in Fig. 5.7

(differentiated by the nuclear spin and orientation), the total microwave probe transmission
is described by using the input-output theory (see Appendix):

∣S21∣2 = ⎡⎢⎢⎢⎢⎣1 + κc
⎛⎝ 1

i∆c − (κc + κi) +∑I
∣gI ∣2

i∆I−γ/2

⎞⎠
⎤⎥⎥⎥⎥⎦

2

(5.23)

where ∆c = ω − ωc the frequency detuning between the probe and bare cavity frequency, κi

and κc are the internal and coupled cavity decay rates, γ is the spin linewidth, and ∆I = ω−ωmI ,
is the probe detuning from the mI hyperfine transition. For saturation and transmission
measurements, we neglect the inhomogeneity of gs, which is more important for pulsed
experiments.

For our sample however, because g/A ∼ 1 the full equation is of limited use. From a global
fit we find geff/2π ∼ 8 MHz and γ∗

2 /2π ∼ 20 MHz listed in Table 5.2 using the approximation
that only a single ensemble at a time interacts with the resonator. This gives the spin-ensemble
a cooperativity of C = 1.6, limited here by dipolar broadening (see Section 5.5).

In Fig. 5.8, it is clear we have allowed only one or two resonators to interact with the spins.
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Figure 5.8: a) A superconducting CPW resonator whose mode volume does not intersect with
the diamond, superimposed upon the feedline absorption of all three hyperfine ensembles. b)
The anti-crossing of a box mode of the sample holder with a large number of bulk diamond P1
spins, also superimposed upon the feedline absorption.

This is observed as the spin resonant frequency crosses that of a CPW resonator (uncovered
by the diamond chip) without any size anti-crossing or hybridization. Coplanar waveguide
localizes the excitation field to within 10’s of microns from the chip surface, but box modes
of the sample holder involve a much larger volume and may confound this!

Saturation experiments

We used an alternate sample obtained from Apollo Diamond to investigate the energy decay
and dissipation properties of P1 centers.

Although typically when 1012 spins are used for collective coupling as a harmonic oscil-
lator only a small fraction are excited, we examined this sample’s saturation power and its
characteristic return to polarization afterwards. In the figure above, we saturated the middle
transition, probing the mI = 0 transition after placing it in resonance with the cavity. An
exponential fit gave a time constant τ ∼ 4 s for the return of polarization to the spin ensemble.
A followup experiment might have saturated the spins using one resonator while probing
another, or measured one of the satellite peaks which is distinct in frequency from nearby
spin defects with g ≈ 2.
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Figure 5.10: a) This device was mounted with the bias field tilted from the [111] axis, and
its hyperfine splitting demonstrates the anisotropic properties the diamond Hamiltonian.
Although difficult to fit analytically, the data is consistent with g for satellite peaks of 3.5 MHz,
5 MHz for the central peak, and 30 MHz linewidths. b) Theory simulation to match the
estimated parameters. c) we apply a large saturation pulse, and then probe the cavity with
which it is in resonance. At a time τ after the saturation, we see that the Q of the cavity is
damped due to the return of spin polarization. The recovery time is several seconds, even at
the enhanced Purcell rate. This time constant matches approximately the spin γ1 obtained from
cw saturation of the spins.
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Figure 5.11: a) The crystal structure of sapphire allows three different cleaving planes, which
produces an anisotropic dielectric constant. Each vertex in the lattice is occupied by an
aluminum atom, which has a nuclear spin I=5/2. The angle of Bbias from the ĉ axis defines
the energy levels. b) An ESR spectrum of our ruby wafers, done by collaborators at Oxford
University. c) An iso-frequency plot of the resonances of ruby, matching the resonances in the
ESR scan.

Saturation experiments can tell us about the γ1 or energy relaxation of the spins according
to Eqn. 5.2, which is not necessarily related to the γ∗

2 linewidth. In fact subsequent work
by former colleagues [? ] has validated these values, using a dispersive technique. In these
experiments, the spins are pumped while off-resonant from the cavity, whose frequency is
repelled as the polarization returns.

5.4 ESR of Ruby

Ruby is sapphire doped with Cr3+ ions, leading to a crystal with effective spin-3/2 magnetic
spins within its matrix. In addition, the substrate creates a finite crystal field, such that even
with no applied magnetic field the spins have energy levels separated by ħω in the microwave
regime. The Hamiltonian is:

Hr = −m0,rB ⋅ Ŝ − D(Ŝ2
z − 5/4) (5.24)

where m0/2π =2.7811 MHz/gauss, Ŝ is the spin-3/2 operator, z is defined along the ĉ crystal
axis, and 2D/2π = 11.46 GHz is the crystal field splitting that separates Sz = ±3/2 levels from
Sz = ±1/2 even with no external field B applied.

We obtained a sample with high doping ∼ 1019−20cm−3, and fabricated resonators on top
in our standard sapphire process. Applying Bbias we spectroscopically measured Hamiltonian
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Figure 5.12: a) In a coax, B0 is always perpendicular to an axial Bbias. However, the strength
of the zero-point field B0 varies with distance from the center-pin. b) Coplanar waveguide,
while similar to coax does not have the same symmetric geometry, and B0, Bbias are often non-
orthogonal. c) The rough transition strength proportions for ruby at θ = 45 deg, proportional
to ∣⟨ψ f ∣ S2

x + S2
y + S2

z ∣ψi⟩∣
2 d) The energy levels of ruby at θ = 67 deg, showing hybridization of

the ∣J = 3/2⟩ (lower) and ∣J = 1/2⟩ (upper) levels.

transition lines due solely to their absorption in the feedline of the coplanar waveguide chips,
using a standard network analyzer. Power absorption of about 5%, indicated approximately
1013 spins interacting with the feedline for a concentration of ≈ 1020/cm3. Having such a high
concentration maximizes geff, but also increases the dipolar energy of the nearest neighbor,
causing a broader linewidth (see Sect. 5.5).

For a magnetic field applied at an angle with respect to ĉ, the levels mix and allow
transitions between the ∣J = 3/2⟩ and ∣J = 1/2⟩ spin states. From the Figure above, we see the
transmission in a ruby chip, which shows an array of spin transitions over a wide band of
frequency and bias field, with an angle θ = 67 deg from ĉ.

Transition strength varies, reflecting a small contrast due to either a smaller population
difference or diminished transition rates due to selection rules. For a thermalized ruby crystal,
the population difference between two levels i, j is:

∆i j(T) = exp(−ħωi/kbT) − exp(−ħω j/kbT)∑k exp(−ħωk/kbT) . (5.25)

Because of the meanders of the CPW resonator and the non-uniform direction of B0, we might
approximate the absorption amplitude to be proportional to the average of matrix element
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transition rates though the exact absorption could be calculated numerically. The variation
of local gs complicates the usage of the ensemble beyond the low-excitation limit, such as
with a Hahn echo, as the effective g changes according to the location of each individual spin.

In early experiments with a ruby chip it was difficult to determine the crystal orientation
of the sample by using multiple transitions as reference points. Additional data including
those shown in Fig. 5.13 improved with evolving microwave equipment (a high-end VNA)
which contributed to the better visibility of transitions. Within the broadband scan are
resonances with the λ/4 and 3λ/4 modes of the superconducting waveguide cavities (the
thin lines shown in the Figure). In addition, we observe large resonances with bulk spin
collections in the box modes of the cavity.

In Fig. 5.13, we observe the 1 − 4 transition as it interacts with the second mode of a
superconducting shunt resonator at 14.35 GHz. According to the hybridization equations
from Ch. 3, the resonator Q is:

Q = ∆2 + γ2
2

2g2
s,effγ2 + κ(∆2 + γ2

2) (5.26)

from which we extract an effective coupling rate for spin gs,eff = 38 MHz, with linewidth
γ2/2π = 96 MHz primarily due to hyperfine interactions with 27Al nuclear spins in the
sapphire substrate. Like the diamond sample, the ruby experiences dipolar broadening as
well, except that in this case it can be substantially from the 27Al nuclear spins which comprise
the substrate, instead of the Cr dopants. The ruby broadening paper gives a linewidth of 10-12
G.

The largest cooperativity is achieved (see Fig. 5.13b) with a harmonic of one of the coplanar
waveguide resonators, with a cavity linewidth of κ = 1.3 MHz, giving

C = g2/κγ∗
2 ≈ 11.5 (5.27)

As a measure of measure of the coupling strength between two oscillators in cavity QED, a
C > 1 indicates the spins have reached the threshold of utility in cavity QED. The coupling here
is strong in the sense that nearly every photon entering the cavity is coherently transferred
into the spins. Unfortunately, because of the the large spin linewidth, it is too difficult to
retrieve the excitation before it decays, and future work must focus on preparing a substrate
that itself does not induce broadened transitions due to the excessive or random influence of
nuclear spins.



CHAPTER 5. SPINS 96

14.30

14.35

14.40

14.45

14.50

Fr
eq

ue
nc

y 
(G

H
z)

0.4        0.5

1000

2000

3000

4000

5000

6000

Q
ua

lit
y 

Fa
ct

or
, Q

b)

cavity

feedline
spins

a)

Magnetic Field (kG)
0.6         0.7 0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0
7

8

9

10

11

12

13

14

Magnetic Field (kG)

Fr
eq

ue
nc

y 
(G

H
z)

1-2

1-3

1-4

3-4

2-4

2-3

SC Cavity 3λ/4

Box modes

Box mode

SC Cavities

c)

Figure 5.13: a) The broadband transitions of ruby, measured through transmission of our
coplanar waveguide on a ruby chip. b) a closeup of the anti-crossing of the spins with the 3λ/4
mode of one of our superconducting resonators. c) the quality factor as it is damped by the
resonant spins.

5.5 Considerations for Future Work

Dipolar Broadening

There are two possible goals for future work with spins in cQED systems. First is the engi-
neering of suitable spin species to rival the coherence times of electromagnetic cavities, for
integration with our qubit experiments. This will require a precise control over the substrate
and its impurities, as well as the introduction of the spins themselves.

The random distribution of spins in the crystal leads to a natural broadening of the
Larmor transition frequency. Following Kittel and Van Vleck [72], the second moment from
summing over every possible defect vertex k of the crystal from an occupied site j separated
by r⃗ jk is:

⟨∆ν2⟩ = [S(S + 1)/3h2] f ∑
k

B2
jk (5.28)

B jk = −3g2µ2
Br−3

jk [3
2

cos(θ jk)2 − 1
2
] (5.29)

where θ jk is the angle between r⃗ jk and the bias field, g is the spin’s g-factor, µB is the Bohr
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(b) The maximum geff/γ depends on the limitations of residual nuclear spins.

magneton, h is Planck’s constant, f is the probability of a lattice site being occupied, and we
sum over all lattice sites.

For single crystal diamond there is a term of order one with respect to the average
angle between occupied lattice points and the bias magnetic field, and in all cases f <
0.1 the lineshape is Lorentzian with width proportional to concentration. In addition, a
contribution from 13C nuclei whose natural abundance of 1.1% limits the floor of γ∗

2 due
to dipolar broadening from the random nuclear spin environment. When the nuclei are
removed from consideration (see Figure 5.14), the maximum g/γ is of course obtained for
a single spin, otherwise this background determines the maximum ratio. For diamond P1
centers, the optimum without isotopic enrichment is on the order of Ne = 1018/cm3.

Many articles report coherence times for spin samples that can be many milliseconds.
However these reports primarily measure T2E = 1/γ2, the decoherence time with a Hahn
echo pulse, where nuclear spin effects are nullified. Researchers looking for a useful species
must be careful when sifting through the literature. A Hahn echo pulse no longer draws
from the collective enhancement of g for spins. Thus, instead of relying on 1012 spins for
a 106 enhancement of the Rabi rate, we must use an extra 1012 photons, which is often an
unreasonable amount of power in cryogenic experiments (although it has been done [73]).

Field inhomogeneity

Because most of our spin systems were limited by dipolar broadening, we can only put an
upper limit on the field homogeneity in the vicinity of the spin ensembles. Typically there



CHAPTER 5. SPINS 98

1.0 0.5 0.5 1.00
0.993
0.994
0.995
0.996
0.997
0.998
0.999
1.000

Z from Center (cm)
B

 / 
B

m
ax

Figure 5.15: Field homogeneity near the sweet spot of the superconducting magnet in our
Kelvinox fridge, from original documentation.

are concerns that, due to the partial Meissner effect of thin-film superconductors or the
presence of a cancellation coil in our persistent magnet, there might be a gradient ∆B which
smears the spin across some linewidth γB. As the smallest linewidth we have measured would
limit inhomogeneity to ∆B = 5.5 G across a distance 1 cm, however, there is no reason yet
to suspect that this is occurring. With the present magnets field profiles, we expect a worst
case spread of ≈ 0.4%, for the feedline chip oriented along the bias field, reduced by an order
of magnitude for a shunt resonator, and perhaps another if we abandon meanders used to
shorten resonators. This would begin to limit experiments with g = 2 spins and the current
magnet to linewidths of a few hundred kilohertz. In addition, the superconducting film of
our resonators could distort the bias magnetic field through the Meissner effect; this is not
too troubling, because it produces only a static difference in bias field, or an inhomogeneous
line broadening that can be corrected with an echo pulse.

Resonator Quality

Our coplanar waveguide resonators are made of thin-film superconducting niobium. This
has the advantage of allowing quality factors up to 106 at high powers. It has the disadvantage
of distorting the magnetic field due to the Meissner effect, and being sensitive to the applied
bias magnetic field. However, as a thin film, its sensitivity to field applied in-plane is reduced,
and the major effect is a downward pull in frequency due to increased kinetic inductance,
seen in Fig 5.16.

The magnetic field applied to our CPW resonators increases the energy stored in the
supercurrents of the resonators by increasing the penetration depth λ and increasing the
supercurrent density. This leads to a change in frequency proportional to α the kinetic
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Figure 5.16: (a) Behavior of niobium coplanar waveguide resonators in the presence of an
applied magnetic field. a) Frequency shift, in MHz for a typical array of λ/4 shunt resonators.
b) Fractional frequency shift, demonstrating the magnitude of the kinetic inductance fraction
α = (1.2 ± 0.3) × 10−3 and Bc = 3.2 ± 0.3 kG c) Internal quality factors. Without extreme
measures or a vector-axis magnet, our resonators still retain Qi > 10000 in 2 kG field. d) The
extracted quality factor Qb due to magnetic losses.

inductance fraction:

fr[B] = f0
⎛⎝1 − α 1

1 − ( B
Bc
)2
⎞⎠ (5.30)

where f0 is the zero-field frequency, and Lk ≈ Li for some Bc field amount. For low values of
magnetic field our resonators have constant frequency but they acquire a quadratic pull at
higher fields as seen in the Figure 5.5 anti-crossings.

Other groups have studied the use of different films for the purpose of limiting loss in
low magnetic field, and in our specific application of high parallel field [? ].

5.6 Outlook

We have demonstrated the coupling of several different spin species, fabricated in distinct
ways, showing the robustness of our coplanar waveguide cavities as a platform for broadband
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Element Spinless Isotope N.A. Contaminants
Helium 4He > 99% 3He (trace)
Carbon 12C 99% 13C (1%)
Neon 20Ne,22Ne > 99% 21Ne (0.3%)
Silicon 28Si,30Si 95% 29Si (5%)
Argon 40Ar > 99% 39Ar (trace)
Uranium 238U 99% 235U (< 1%)

Table 5.3: A table of the isotopes of select elements which are naturally uncontaminated with
nuclear spins (or with potential for enrichment) and their natural abundances.

ESR of picoliter samples, at millikelvin temperatures and attowatt powers. The coupling is
strong enough to exceed all qubit and cavity decay rates, leaving open to possibility for future
use in a quantum memory.

ESR at millikelvin temperatures is extraordinarily promising, perhaps even too good to
be true – some spins have inconveniently long T1 times requiring infinitesimal excitation
powers to avoid saturating them (or optical pumping to reset). While inhomogeneous broad-
ening from nuclear spins threatens to disrupt any coherence advantage that may have been
conferred by the crystal structure, isotopic enrichment is being employed more regularly
in industry, increasing availability for researchers. Although the possibility of correcting
inhomogeneous broadening by Hahn echo is tantalizing (nuclear spin relaxation rates at mil-
likelvin temperatures may be immeasurably long), it would require pulses with an extremely
large amount of energy, a factor of ∼ 1012 larger than similar pulses on a superconducting
qubit. With careful attention to blanking and repetition rates, these might be viable in a
special dilution fridge, but a more tractable first approach is simply to isotopically enrich the
substrate material to ensure there are no nuclear spins. In fact this plan is being executed
in the leading room-temperature spin experiments, has been enacted in the past using the
naturally spin-free noble gasses [74], and experiments in progress benefit from the absence
of 3He in experiments with electrons on superfluid Helium. See Table 5.3 for a summary of
specific elements with a natural abundances (N.A.) of isotopes lacking nuclear spin.

The pace of research in diamond in particular has been particularly impressive, with
single spins at room temperature having extraordinary coherence times, especially when
removed from the influence of 13C nuclear spins. Several groups [16, 75–77] have been
investigating spins optically at room temperature and more recently at convenient liquid
nitrogen temperatures, where individual electron and nuclear spins have been manipulated.

In addition our collaborators, at Oxford, have continued to push the boundaries of
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coherent ensembles without superconducting cavities, studying exotic species like N@C60 [78]
as well as rare-earth ions and Bismuth. Several groups have employed isotopically enriched
substrates, obtaining nearly inconveniently long coherence times for simple phosphorus
doped silicon [66]. Meanwhile, additional work (much by former colleagues) continues
at other institutions to integrate special diamond defects like the Nitrogen Vacancy (NV)
centers (which have a useful zero-field splitting), with cavity QED systems. Kubo et. al have
begun to bridge the gap between ESR and cQED [23, 79], using a superconducting qubit
for spin detection, doing swap operations between a superconducting qubit, cavity and the
spin ensemble. The use of ensembles complicates pulse protocols [80], but the wealth of
knowledge in related fields encourages creative application in this new frontier.



CHAPTER 6

3D Transmon

The transmon has had tremendous success in allowing the design and execution of quan-
tum algorithm experiments [19, 81]. In Ch. 3 we saw its simple coupling to a cavity permits

easy simulation and design of devices including the participation of many modes and their
sharing of the Josephson junction-derived anharmonicity. The 3D transmon was created
to exploit this simplicity, turning the sample holder itself into the resonant cavity and the
input/output coaxial lines into probes. In Ch. 2 we examined the sources of dissipation which
could influence the spontaneous decay of our transmon, and concluded that a rectangular
waveguide cavity might offer several practical ways to limit dissipation and control coupling
to the environment. The simplicity, combined with minimization of surface dissipation,
narrowed the field of suspect components in modern superconducting qubits, and it instantly
provided an increase in coherence over planar designs.

In this Chapter, we detail the implementation of the transmon in a 3D rectangular wave-
guide cavity [82]. We first report design considerations for the cavity and qubit, and then
describe the experiments used to characterize qubit performance, including pulsed measure-
ments of qubit and cavity excited state populations. Finally, we give an account of the first
fabricated 3D transmon qubits and their properties. The electrode antenna length must be
increased from the scale of 10 µm to 1 mm.

102



CHAPTER 6. 3D TRANSMON 103

2-56 UNC - 2B .125

.092 .40

4-40 UNC - 2B .50

.481
.2405

.500

1.000

1.800

.600

.280

.200

.200

.160

1.00

.400

.200 .338.0120

.350

1.4801.4001.400

.200

Figure 6.1: CAD drawing of the cavity (units are inches) with an isometric view of two cavity
halves

6.1 Design

The transmon can be transplanted from the planar geometry to a 3D cavity with very few
changes to the design. The Josephson junction itself is identical to that used in the planar
qubit, and what remains is to design the cavity and qubit electrodes using classic design
parameters such that the resonant frequencies, anharmonicities, and charge dispersion are
acceptable for the experiment

6.1.1 Cavity

The cavity is a closed section of rectangular waveguide, with a recess for a dielectric substrate
and a rounded edge for ease of machining. It is designed to have its fundamental frequency
at 8 GHz, within the bandwidth of many of our cryogenic circulators and amplifiers. The first
few TE10n harmonics (n = 2: 10 GHz, n = 3: 13 GHz, n = 4: 15 GHz, and n = 5: 18 GHz), and
TE201 (∼ 18 GHz) should be observable with a vector network analyzer. Transverse Magnetic
modes are far detuned from the cavity fundamental, and the lowest, TM110 is expected to be at∼ 30 GHz. A transmon placed in the center of the cavity and oriented along the short y-axis
by symmetry only couples weakly to the even-n TE10n modes. Optimal frequency placement
for harmonics by adjusting cavity sides has not been sufficiently studied. For suppression of
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Figure 6.2: a) Cavity TE101 frequency for sapphire chip length, with fixed width 7 mm ×

37.6 mm × 500 µm. b) Chip dielectric participation ratio for different lengths. c) Frequency
dependence of TE101 as a function of chip participation ratio d) Geometric factor Γ for first
three cavity harmonics of our 3D cavity; Right: open cavity before assembly and TE101 current
density showing no J⊥ current flow across the two halves.

Purcell decay, it may be important to design the first odd-n harmonic to be far detuned from
TE101, before optimizing those which do not couple to the qubit. However, any further design
strategy is complicated by the infinite mode structure of the cavity. Future work may need to
be guided by study with a finite element simulator with confirmation from actual devices.

Two holes for SMA coupling probes deliver power to and from the cavity. Standard
chassis SMA jacks with a soldered length of wire extend through the cavity body and form
a coaxial transmission line. They may be retracted, forming a short length of cylindrical
waveguide before the wire. Power from the TE101 mode either couples directly to the coax or
evanescently (see Sect. 2.3.4) through an effective circular waveguide with cutoff frequency
ωc/2π ≈ 50 GHz. The designed hole diameter produces a 10x increase in Qc for every 0.5 mm
of waveguide.

Conductor loss in the cavity walls scales with the cavity surface resistance Rs. The geomet-
ric factor Γ describing the total surface inductance of a rectangular cavity with our nominal
dimensions is 106 Ω, while HFSS simulations give similar results (see Fig. 6.2). Devices were
measured in cavities machined from three types of metal: OFHC Copper, aircraft aluminum
(Alloy 6061-T6), and high-purity 4N or 5N (99.99% or 99.995%) aluminum. Cavities were
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typically kept covered, and rinsed with acetone, methanol, and IPA before assembly. Joining
two cavity halves in the z-y plane minimizes conductor loss at the cut as any TE101 magnetic
field produces current parallel to but none across the cut; furthermore, the cavity is sealed
with indium wire∗ to minimize contact resistance for any residual cross-piece current.

The two cavity halves clamp a substrate on which the qubit is fabricated. For ease of
construction using our normal process, initially a full slab of sapphire was used, stretching
the length and width of the cavity. The substrate allows dissipation (see Fig. 6.2) in the
bulk sapphire (where the loss tangent is small) or from in lossy materials on the surface
(leftover resist, water molecules, or unknown contaminants; see Sect. 2.2.2). Later samples
were fabricated with smaller lengths of substrate; there is some indication that use of a small
sliver may improve qubit coherence. Although a partial sliver of substrate may disrupt the
symmetry of the modes and increase current across the cut, but this is unlikely to limit its
quality factor. The sensitivity to a small layer of wall dielectric is fairly small, with an average
participation ratio of 10−7/nm of thickness on surfaces.

6.1.2 Qubit

The standard qubit design consists of a Josephson tunnel junction with antenna pads as
seen in Fig. 6.3. The majority of the qubit mode energy is in the substrate. Its resonant
frequency is primarily determined by the antenna pad charging energy EC and the Josephson
junction energy EJ , which is known through the junction room temperature resistance. The
pad area determines the simple capacitance matrix [25, 49] which defines 1/CΣ = 1/C1c +(1/(C12 + CJ) + 1/C2c)−1, the charging energy of the pads, composed of the capacitance C12

between the each pad (with an allowance of ∼ 5 fF for the capacitance of the junction itself)
or the capacitance C1c or C2c of either pad to the cavity walls. This description using DC
capacitances has been superseded by the use of full-wave simulation (as described in Ch. 3),
which leads to more accurate qubit transition frequencies†, especially for antenna pads whose
inductance cannot be neglected.

In addition, the qubit effective dipole coupling ħg and cavity-qubit interaction ħχ are
strongly dependent on antennae length. For an effective dipole magnitude p0 ≈ 2el the two

∗ The necessity of this step has never been proven. Complete hermetic sealing is an interesting idea in part
because it might minimize transmission of IR light into the cavity

† For reasonable parameters, charge dispersion is suspected to be smaller in BBQ calculations than the classic
charge dispersion for charging energy EC and EJ . However, this is an open problem.
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Figure 6.3: a) Qubit Diagram. With the exception of Qubit S (which had a slightly different pad
structure), all qubits reported here had two 500 µm×250 µm antenna pads, with a stepdown
30 µm×30 µm pad, and a 20 µm×1 µm line to the central junction. The Josephson junction in
the center is typically (200 nm)2. b) Simulated capacitances for pad length 500 µs and varied
width: C12 between pads (orange), C1c between a pad and the cavity walls (yellow), and CΣ
total charging capacitance (purple) (including CJ = 5 fF for the junction itself), as well as EC
the total charging energy (blue). c) Contour plot of charging energy EC for different widths
and lengths. The (○) indicates the typical pad configuration.

electrodes determine g/2π = d⃗ ⋅ E⃗0/ħ through the voltage integral ∫ E⃗ ⋅dl across the junction.
For our 3D cavities where E0 ∼ 10−4 V/m, this gives g/2π ∼ 100 MHz for antennae with
0.5 mm length. The parameter g controls many effects including the Purcell decay rate, but
also more subtle design goals such as the qubit-cavity frequency shift χ (see Eqn. 3.94). For
better accuracy the newer black-box framework and simulation in HFSS should be used as
described in Ch. 3.

Junction Resistance

Junctions are designed to have room-temperature resistance Rn of several kΩ in order to
reach the desired EJ at 10 mK. They are typically (200 nm)2 in area with a critical current
of IC ≈ 40 nA. Their characteristic energy EJ = ħIC

2e depends on critical current through the
relation:

Ic = π∆
2eR′

n
tanh [ ∆

2kbT
] (6.1)
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where R′
n = Rn/0.87 is the correction for resistance at 10 mK from room temperature mea-

surements [83]. The small signal junction inductance LJ = ħ
2eIc

and EC/2π = e2

2ħCΣ
determine

the energy of the first transition of the qubit:

ħωge ∼ √
8EJ EC − EC (6.2)

We design this to be below the TE101 cavity frequency to avoid complications from higher-
order terms in the Hamiltonian such as the straddling regime [45].

6.2 Measurements

In this section, we recount the typical experiments done on each sample to characterize the
cavity and qubit energy levels and coherence properties. They are presented approximately
in the order in which they are performed upon cooldown. Actual results are presented in the
next section, where a narrative of lessons learned accompanies each fabricated device.
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6.2.1 Cavity Nonlinearity

The first confirmation of qubit viability in transmon experiments is to observe its non-linear
interaction with the cavity, as in Fig. 6.5. Driving at the bare cavity frequency, at high power
there is a bifurcation in cavity transmission as the cavity transition frequency becomes
the bare frequency. This is usually measured with a 1 µs pulse, and we explain in the next
section how integrating the transmission allows a very robust measurement of the qubit
state. The difference δ between the bare frequency and the low-power shifted frequency of
the cavity indicates the approximate frequency detuning of the qubit ∆ = ωge − ωc = g2

ge/δ
(using Eqn. 3.51 and second order perturbation theory). In practice the power at which the
cavity response is non-linear depends on cavity Q, however the process is robust even for
overcoupled Q ∼ 1000 cavities.
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6.2.2 Readout

Qubit readout is very robust, and is typically performed with a 1 µs pulse at the bare cavity
frequency. The resonant pulse will ring up in the cavity before decaying through the output
coupler for homodyne signal integration; the shift of the cavity frequency by χ with an excited
qubit provides a striking contrast in readout voltage, visible on a single shot basis without
averaging. This recently developed technique [84] works for planar geometry transmons
as well, and often can have fidelity F > 90% with appropriate tuning of pulses. The readout
provides discrimination of qubit states without the need for significant averaging. For higher
quality factor cavities, a longer pulse or integration time may increase fidelity (see Fig. 6.6c);
the optimum in power also varies (see Fig. 6.6d. Because it is state destructive and dissipates
in the cavity many orders of magnitude more power than the dispersive readout [85], some
caution may be advised. A slower repetition rate can lower the thermal load on the sample.

6.2.3 Saturation spectroscopy

In first experiments, low-power saturation spectroscopy pulses (typically 300 µs in length),
show the dressed cavity transition frequency ωg

01/2π in transmission, and bring the cavity
to a steady state probability of excitation; the same sequence with a readout pulse at the
end performs spectroscopy on the qubit. The linewidth of the cavity at frequency ω01 in
transmission gives a reliable measurement of κ for sufficiently weak spectroscopy power.

Together, they allow measurement of the one-excitation manifold of the full Hamiltonian
(see Eqn. 3.3.2:

Heff/ħ = ωc a†a + (ωq − χa†a) b†b − α
2

b†b†bb, (6.3)

where the energy difference χ = ω0
ge − ω1

ge for qubit transitions with an additional cavity
photon is the same as that for the cavity shift ωg

01 − ωe
01 with an excited qubit (see Fig. 6.7).

With a second tone (see Fig. 6.8, we can clearly see the energies beyond the first excited
states. Spectroscopy also reveals sideband transitions of the cavity-qubit system with a change
in the state of both, and virtual transition frequencies detuned an additional frequency δ.
Measurement of not only ωge but ωg f /2 aids in fitting of the classic Hamiltonian parameters
EC and g from energy levels in experiment.
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several different powers; the cavity ringdown allows for better discrimination than the first few
microseconds, for high Q cavities. Pulse lengths may also be adjusted. d) Readout fidelity at
constant integration time increases with power until a threshold is reached.
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b) Cavity transmission frequencies ωe

01 and ωg
01 are separated by χ as well. This qubit (J3) is

far detuned from the cavity, whose anharmonicity diminishes to 30 kHz, making it difficult
to address the transition in pulsed experiments, but in other designs this may be as large as
several MHz.

6.2.4 Rabi Experiments

Transitions driven on resonance with increasing microwave power proportionally increases
the Rabi rate of qubit Bloch vector rotation [86]; for sufficient drive power there is coherent
excitation of the cavity or qubit on timescales t ≪√

T1T∗
2 . The Rabi rate is ΩR = 2g

√
M for

M drive photons and in the regime ΩR > γ∗
2 the qubit is power broadened; alternatively a

long pulse spins the qubit or cavity vector until it dephases. Alternatively, we may sweep
the power of a fixed-length pulse, in a “power Rabi” experiment. A Gaussian pulse with
frequency width σ f = 1/(2πσt), and a pulse with detuning ∼ 3σ f excites the transition with
miniscule amplitude. This can be exploited to perform a controlled-NOT (CNOT) [5] on the
combined cavity-qubit system using pulses that selectively rotate the qubit Bloch vector for
specific values N of photons in the cavity [49].

In fact, this allows a measurement of the cavity photon number by comparing the readout
signal for power Rabi experiments on different photon peaks, using the amplitude of the
sin(ΩRt) oscillation as a lock-in reading of photon number N probability (see Fig. 6.9). By
measuring to high enough N , we can estimate α for a coherent state or Teff for a thermal
state of the cavity. Its accuracy is influenced by fluctuations in the readout fullscale and
this measurement of the photon probability distribution P(N) is only effective for large
dispersive shift χ compared to κ, γ the cavity and qubit linewidth. Notably, this technique
does not detect photons in modes with dispersive shifts smaller than σ f ; in the limit of small
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averaging for precise measurements of P(N). This is a consequence of finite cavity and qubit
population, and individual shot analysis would may be necessary for measurements of less
than a part per thousand.

bandwidth (with long weak pulses) we have recreated saturation spectroscopy, and the peak
area integral is proportional to probability.

We may worry about driving transitions nearby our intended target using fast pulses, in
which case the Rabi rate is often less important than the probability of excitation. We can
calculate the driving of nearby photon peaks at ωn using a Dyson expansion. A pulse with
center frequency ω0 and slowly varying envelope A(t) evolves as

ψ̇n = −i (ωn
σz

2
+ A(t) cos(ω0t)σx)ψn (6.4)

Shifting to the rotating frame using

ϕn = exp(iω0
σz

2
t)ψn (6.5)

we have

ϕ̇n = −i [δn
σz

2
+ A(t)

2
σx]ϕn (6.6)

using δn = ωn − ω0. Shifting once more using ξn(t) = exp (iδnσz/2t)ϕn(t)
ξ̇n(t) = − iA(t)

2
(e−iδn σz/2t ⋅ σx ⋅ e iδn σz/2t) ξn(t) (6.7)
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Figure 6.10: A suite of coherence time measurements. a) Saturation and pulsed T1 experiments
measure the energy decay of the qubit. Here T1 = 28 µs b) Ramsey experiment composed of
two π/2 pulses with a stepped delay between. This trace shows a beat frequency of 13 kHz
in addition to the typical fringes from detuning, and exponential envolope with T∗

2 = 26 µs
c) A Ramsey experiment with Hahn echo cancels some fluctuations in qubit frequency. This
measurement of T2E = 32 µs improved further with the addition of low-pass filtering on the
input and output lines (see Fig. 8.7).

and in the weak driving limit

ξn(t) = ξn(0) − i ∫ t

0

A(t′)
2

e−iδn σz/2t′σx e iδn σz/2t′ ξ(0)dt′ (6.8)

= ∣g⟩ − i [∫ t

0

A(t)
2

exp(−iδnt′)] ∣e⟩ (6.9)

giving an excitation of the detuned transition that is proportional to the Fourier component
of the envelope at the detuning. It is important to be mindful of the imperfections of our
pulses; they are not true Gaussians, but often have been truncated at 4σt length, and SSB
modulation further distorts the spectrum.

6.2.5 Coherence Measurements

We measure the decay of the qubit ∣e⟩ state and the frequency stability of the ωge transition
using T1 and Ramsey experiments described in Fig. 6.10. The characteristic energy decay
time T1 can be measured through a saturation pulse or as a pulsed measurement. For pulsed
measurements and Ramsey experiments in particular it is important to be conscious of the
bandwidth σ f of the pulse. Because often γ∗

2 /κ ≪ 1 for the 3D transmon, a narrow qubit
pulse may project the combined cavity-qubit state onto a fixed photon number subspace
(see Sec. 6.2.4). The Ramsey with echo T2E can additionally include a rotation about an axis
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followed by a π-pulse on the qubit ω0
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in the next panel. b) Cavity decay experiment with which involves a single such pulse with a
delay which is swept, before a π-pulse on the qubit ω0

ge. c) Simulated cavity decay experiment
for ∣α∣2 = 0.1 (black), 1 (red), and 10 (blue), with 1/κ = 1 µs. For small mean photon number,
the exponential rise time constant is τ = 1/κ, while it appears longer for increased ∣α∣2, and
yields a very different experimental trace when ∣α∣2 ≫ 1.

θ from the x̂, where θ is stepped for different time delays∗. A Hahn echo is used to cancel
some of the random noise in the qubit transition frequencies. It has differing effectiveness
depending on the spectral components of this noise and in particular for non-gaussian noise
(see Ch. 7 and Ch. 8 for an example from experiment). Echoes are particularly effective at
cancelling fluctuations due to low frequency processes, such as charge noise from quasiparticle
tunneling.

6.2.6 Pulsed cavity experiments

Transmission spectroscopy of the cavity (see Sect. 6.2.3) can be complicated by its non-
linearity, and the most reliable method for determining cavity quality factor is a time-domain
measurement similar to a qubit T1 decay. Three simple experiments together measure the
cavity τ decay time, (shown in Fig. 6.11) all of which use a final qubit N = 0 π-pulse to provide
readout contrast.

First, we perform a cavity Ramsey experiment to verify the cavity transition frequency
matches that found in spectroscopy. Pulses driving the cavity ω01 are often 40 dB weaker than
a qubit pulse and if possible we use a frequency width σ f smaller than the cavity anharmonicity,
in which case the experiments are completely analogous to qubit coherence measurements.

∗ This provides a lock-in signal for fitting which is comfortably similar to T∗
2 Ramsey traces, but is probably not

the best practice for measurement as it may obscure the form of the envelope damping function or complicate
processing of shot-by-shot measurements.
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Otherwise, pulses displace the cavity state, creating a coherent state with a distribution of
possible photon numbers. As in a qubit Ramsey experiment, interference fringes form after
two detuned displacements but vanish on resonance.

Afterwards, we perform a cavity power Rabi on the cavity ω0
ge resonance and choose a

strength which weakly excites the cavity, measuring the return of P(N = 0) probability over
time. If this is impractical because of large κ or small χ, the pulse prepares the cavity in a
coherent state ∣α⟩ (see Ch. 3) which has photon number probabilities:

P(n, α) = e−∣α∣2 α2n

n!
(6.10)

or in particular P(0, α) = e−∣α∣2 . The state decays as ∣ψ(t)⟩ = ∣αe−κt⟩ for t > 0, giving:

P(0, t) = exp(−e−κt ∣α∣2) (6.11)

as the mean photon number ∣α∣2 decays at a rate κ = 1/τ. A stepped delay and final π-pulse on
the N = 0 qubit transition allows us to measure the time-domain probability 1 − P(0, t). For
small but finite excitations of the cavity there is a downward correction of the observed τ due
to complication by the coherent state; for larger ∣α∣ the rise is very clearly non-exponential
(see Fig. 6.11).

As a check, it is useful to halve the power again – in the low-power limit, the fit will
yield the same value for the exponential decay time constant. This measurement can also be
performed using the two-photon sideband transition ∣g , 0⟩ → ∣e , 1⟩ followed by a π-pulse on
ω1

ge, however this is often experimentally difficult, as it requires either a specially purposed
generator or one with high dynamic range. For low Q cavities in which χ/κ ∼ 1 (as is typical
for the classic planar transmon) it is more appropriate to use a low-power spectroscopy
measurement of the cavity rather than this time-domain experiment.

6.2.7 Qubit Anharmonicity and Excited State Population

Qubit anharmonicity is measured using two-tone spectroscopy, often by applying a π-pulse on
the ωge transition before sweeping the second tone to find ωe f . Every 3D transmon has shown
some small steady-state population of the qubit excited state, and we may measure this using
a special protocol [35]. Because the high power readout has little ability to distinguish ∣e⟩
from ∣ f ⟩, we must perform two experiments (see Fig 6.2.7); the first gives the normalization
of the readout contrast between ∣g⟩ and ∣ f ⟩. Initially a ωge π-pulse swaps the initial ∣g⟩ and ∣e⟩
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Figure 6.12: a) Excited state measurement procedure, composed of two experiments; they
differ by the inclusion of an initial ωge π-pulse. Afterwards, a power Rabi is performed on ωe f
(θ2 = π is shown in population) followed by a final ωge π-pulse. b) Experimental traces with
(blue, full contrast) and without (red, small contrast) an initial π-pulse on ωge.

populations, and then a Rabi experiment with varied rotation angle θ2 on ωe f is performed,
before a final ωge π-pulse. The experiment is repeated without the initial π-pulse to find the
fraction of the population already excited. The transmons higher levels are assumed to be
much less populated, as a thermal state has decreasing probability P(e) > P( f ) > P(h) at
higher levels, similar to a harmonic oscillator. This has been shown more precisely in newer
experiments using the dispersive readout, where the qubit state can be directly determined.

6.2.8 Temperature dependence

The 3D transmon is composed of an Al-AlO-Al junction with Al electrodes. When held at any
finite temperature, quasiparticles may be created by exciting the superconducting Cooper-
pair fluid near the junction over the superconducting gap ∆. The density of such equilibrium
quasiparticles is temperature-dependent, and can be increased raising the temperature of the
sample holder or dilution fridge base plate. These produce a quasiparticle-induced relaxation
and frequency shift [87] of the qubit modeled as complex shunt admittance. They are also
effectively a thermal bath which may increase the qubit excited state population as they begin
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thermal activation of quasiparticles in the junction which damp the qubit mode. The decline in
T∗

2 and T2E are due to measurement by thermal photons, similar to experiments in Ch. 8. The
plateau in T1 can be attributed to a non-equilibrium quasiparticle fraction xne or an effective
temperature of the junction, Teff

to damp the qubit mode∗. The inverse quality factor of a junction due to quasiparticles is:

1
Q

= xne

π

√
2∆
ħω

+ 2
π

e−∆/kb T eħω/2kT K0 ( ħω
2kbT

) [1 + e−ħω/kB T] (6.12)

Total quasiparticle number is usually separated into equilbrium and non-equilibrium parts;
where xne is the non-equilibrium quasiparticle fraction, K0 is the modified Bessel function of
the second kind, and ∆ is the gap in the absence of quasiparticles. Using the same model, the
temperature dependence of the relative frequency shift of the qubit is:

−δω(T)
ω

= xne

2π

√
2∆
ħω

+ e−∆/kB T e−ħω/2kB T I0 ( ħω
2kBT

) + 1
2
[xne + xeq] (6.13)

It is important to note that the presence of non-equilibrium quasiparticles has not been
demonstrated in our devices; quasiparticles are not known to limit T1 for fridge temperatures
below 100 mK, at which point their damping follows Eqn. 6.12. Their invocation here only

∗ Non-equilbrium quasiparticles likely cause only qubit Γ↓, not Γ↑ transitions; they have other places to dump
excess energy.
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Qubit f
(GHz)

∆/2π
(µV)

xne
(10−9)

J1 6.808 195±1 400
J2 7.772 195±2 810
J3 7.058 194±1 470
J3 (κ) 6.657 194±3 760
D2 6.4775 281±5 1000
SP1 6.077 187±5 250

Table 6.1: The gap ∆ fit to T1 during temperature sweeps. Qubit D2 (cQED445) used oxygen
doped Al, and therefore has a much higher gap.

represents an upper bound as the minimum detectable fraction, limited by the quality factor
or T1 of the device. A measurement of T1 and δω(T) has been performed for several qubits
(see Fig. 6.1), including one in which the gap energy ∆ is much higher due to oxygen doping
of the aluminum in the junction. Independent verification requires a companion device
whose superconducting transition is monitored. Non-equilibrium quasiparticles are created
in the course of some other superconducting qubit experiments [88], and it may be possible
to produce them with infrared light from an LED near the sample holder.

6.3 Devices

Many 3D transmon devices have been fabricated and measured. They are largely robust to
thermal cycling, transfer between fridges and even cavities, although some degradation of
coherence times occurs. On the other hand, as best practices developed, some qubits found
better performance with time. A summary of their first or most significant and complete
measurements is found in Table 6.2. In a recent publication [51], the energy levels and
anharmonicities are fit using HFSS simulations, predicting χ and α to within ∼ 5%. The
properties EC , EJ , and gge recorded here have been calculated from a least-squares fit between
the measured transition frequencies and those of a combined cavity-qubit system whose
manifold is truncated at 30 energy levels [89].
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Figure 6.14: a) Qubit S is tunable in a copper cavity, with fmax = 7.4 GHz. b) Interestingly,
when far detuned for the cavity the amplitudes in spectroscopy of the ∣e⟩ peaks were nearly
the size of the ∣g⟩ peaks. This may be due to Purcell cooling or simply a complication of the
readout. c) Its T1 increases with cavity detuning, but not as much as predicted by Purcell decay
(green). The low-power cavity linewidth was 800 kHz for Q ≈ 10, 000. Dissipation producing
a constant Q of 150,000 as a separate process has been added (red dashed).

6.3.1 Qubit S (SQUID)

Qubit S was the first transmon measured in a 3D cavity. It had two junctions in a 4 µm×8 µm
SQUID loop, was contained in an aluminum rectangular cavity, and was cooled down in the
Cryoconcept Fridge on July 13th 2010. It had an extraordinary T1 > 30 µs, with T∗

2 = 7.3 µs and
T2E = 11.3 µs. Because of conservative high Qc couplers it required the use of a power amplifier
to perform pulsed measurements (which would become standard in later experiments), and
pulses heated the fridge to 40 mK; subsequent experiments would use directional couplers to
allow some of the reflected power to be dissipated at 4 K. Low power spectroscopy may have
shown some excited state population in the qubit, however most data was initially taken at
fast repetition rates; later we would change this down to ∼ 1 kHz, and prompting the highest
measured values of T1 as well.

The qubit was removed from its Al cavity, remounted in a copper cavity, and placed in the
Kelvinox fridge. Its T1 was found to be 2 − 4 µs at several frequencies via saturation pulses,
while we varied its frequency by applying a current using a large superconducting magnet.
In Fig. 6.14a we see the frequency tuning of the qubit from high-power spectroscopy. These
early scans, as well as most of the pulsed T1 measurements performed later (see Fig. 6.14c),
were done at a fast repetition rate ∼ 20 kHz, and the excited state of the qubit was clearly
visible in spectroscopy. In the rush to return the qubit to a superconducting cavity Ramsey
experiments were not performed; the minimum (though power-broadened) spectroscopy
linewidth gave T∗

2 > 450 ns.
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Several irregularities could have influenced the performance of the qubit in the Kelvinox
and may account for the order of magnitude drop in T1 after transplantation from an Al cavity.
A recent retrofit of the fridge had left a light-ray path from nearly from room temperature to
inside the vacuum can, potentially exposing it to infrared light that can create non-equilibrium
quasiparticles near the junction. In addition, the copper cavity into which it was placed had
been used for many cycles in liquid helium dunk tests, and had abundant surface oxidation
(although it was washed thoroughly with acetone, methanol and IPA before assembly). It is
possible a more aggressive cleaning of the oxide buildup would have provided better results,
however the several other appropriate experimental techniques (the use of a much longer
repetition rate and nulling of mixer LO leakage) had not yet been put into practice.

At far detuned frequencies the spectroscopy peak height of ωe f was only slightly smaller
than ωge (see Fig. 6.14b). This is consistent with heating of the internal damping materials
of the cavity, due to the large amount of energy being dissipated internally from readout
combined with the fast repetition rate. On the other hand, the high power qubit readout can
have complications that mimic this effect, rendering the relative peak heights at ωge and ωef

inappropriate on their own for estimation of qubit excited state population. A qubit materially
connected to a hot cavity would have diminished T1 due to damping by quasiparticles (see
Sect. 6.2.8).

Qubit S was immediately placed into a different superconducting Al cavity and measured
in the Kelvinox and found to be at its fmax = 7.433 GHz, confirming little aging and low
local magnetic field. Its T1 recovered to 18.3 µs in this new cooldown in the Kelvinox, and
a particularly high P(e) = 16% and P(1) = 6.5% were measured, suggesting that IR light
indeed may have been excessive. Ramsey fringes exhibited a 50 kHz beat (too large to be
attributable to charge dispersion) which when corrected with echo yielded T2E = 8 µs.

In principle, there is little reason to doubt the performance of a transmon in a copper 3D
cavity (or a suitably designed SQUID transmon), as has been shown in experiments by other
groups. If necessary, the complications of Purcell decay due to the finite Q of a copper cavity
can perhaps be overcome with a deposited or electroplated layer of superconductor; further
experimentation is warranted.

6.3.2 Qubits J1, J2, J3

J1, J2 and J3 were the first single-junction qubits measured in a 3D cavity. J1 was originally
mounted in an aluminum cavity and placed under vacuum in the Cryoconcept on September
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26, 2010, however cooldown was delayed by a failure in the fridge pump system. To mitigate
warming of the fridge due to pulse power, a 20 dB directional coupler was installed on the
input line. J1 was measured, then thermal cycled to add a second sample∗. In this new run, the
qubit e-f transition was visible in spectroscopy and a qubit-excitation pulsed measurement
found P(e) ∼ 10%. Temperature sweeps were performed to be used for publication [82], as
well as randomized benchmarking which achieved an optimized single gate error of 2.5× 10−3.

J2 and J3 were fabricated in December 2010. J2 was measured in the Cryoconcept, and
after being moved to a cryogen-free fridge (and suffering temperature sweeps from another
experiment over APS March Meeting 2011) had significantly reduced coherence times T1 =
6 µs and T∗

2 = 6 µs, which remained after a thermal cycle. J3 is the first 3D transmon cooled
down in a cryogen-free fridge. Its original coherence times were measured to be T1 = 42 µs,
and T∗

2 = 12 µs, before it was placed in a cavity with a variable coupler. In Ch. 8 we show that
its phase coherence was limited by photon dephasing from a coupled heat bath.

6.3.3 Qubits J4, J5, and J6

Qubit J4 was installed in a newer version aluminum cavity with couplers at the nodes of the
TE102, yet used one of the earliest wafers diced for qubit fabrication. The cavity required extra
machining in order for the wafer to fit and coherence times were miserable: T∗

2 = 2 µs with
T2E = 8 µs. It is a lesson both in the robustness of the 3D transmon and in the importance of
taking basic care in their assembly.

Qubit J5 was the first qubit measured with extra filtering. It used an eccosorb filter on
both the input and output sides of the cavity to thermalize high frequency modes, and had a
record Hahn echo Ramsey time T2E = 32 µs (discussed more extensively in Ch. 8). During
its measurement we developed the qubit excitation experiment and it was the first qubit with
a quantified excited state population (as opposed to noticing the presence of ωe f transitions
in spectroscopy). It was later moved to a different fridge, where with a full set of filters
(including KL low-pass on both input and output), qubit and cavity excited state population
dropped sharply. The simultaneous increase in coherence and a new TϕE > 800 µs discussed
in Fig. 8.7 are good evidence that photon dephasing in the 3D transmon has nearly been
eliminated through awareness of cryogenic hygiene and proper filtering for a larger number
of cavity modes.

∗ The sample did not work, and the junction was later found to have failed open.
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Qubit J6 initially had average coherence times in a 6061 aluminum cavity, with T1 = 13 µs.
It was later placed in a high-purity 5N aluminum chemically etched cavity, with which our
highest measured cavity τ = 42 µs with a qubit was measured. With a full slab of sapphire this
measurement gives our best upper bound value tan δ = 1.2 × 10−6 of sapphire in the quantum
regime (at millikelvin temperatures and single-photon excitations).

6.3.4 D1, D2, and D3

Qubits D1, D2, and D3 were fabricated using a special tri-layer approach [90] which allowed
for a large superconducting gap ∆ using dirty aluminum as one layer of the junction. D1 was
nearly resonant with the cavity, which created difficulties in measurement and calibration
beyond the intentions of the experiment. D2 was extremely undercoupled, difficult to measure,
and had a T1 of only a couple microseconds; the large proportion of power dissipated in
driving it may have heated the qubit, making its coherence times inappropriate for useful
deductions. However, D3 was measured with T1 = 19 µs at base temperature and allowed
us to use measurements in a temperature sweep to observe quasiparticle damping above
200 mK.

6.3.5 Qubits SP1, SP2, and cQED457

Qubit SP1 and SP2 were fabricated with special silver pads on the edge of a small, double-
polished substrate. SP1 had record coherence times and a small excited state qubit population;
its cavity population was tracked to less than a part in 1000, using a temperature sweep to
verify the measurement process (see Fig. 8.8). At ≤ 37 mK (also the fridge temperature)
this is the coldest a 3D cavity has been observed, requiring considerable averaging; it is
most likely significant that the cavity is relatively overcoupled, as one concern is that our
high readout power heats the internal temperature of the cavity (or its lossy elements). The
sample cQED457 was fabricated by H. Paik with two qubits on a single double-polished
chip. After re-cooling with a lower coupling Q, coherence times for one of the pair increased
substantially.

Conclusions

The 3D transmon offers revolutionary insight into issues of coherence through eliminating
many distracting components found in earlier superconducting qubit experiments, such as PC-
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boards, lossy oxides, and thin films. The fabrication, assembly, and measurement procedures
are very robust. Much optimization remains for cavity and qubit design, from a large space of
possible modifications: qubit superconductor, g, substrate size and composition, coupler type,
cavity preparation, sealing, and material. Its modularity also encourages experimentation
and the swapping of parts.

The 3D transmon achieved record superconducting charge qubit coherence T1 times
without special engineering of the cavity or junction materials. Its increasing coherence
times have spurred the adoption of additional microwave components and hardware. Their
measurements provide a first test of black-box quantization and a challenge to include charge
dispersion within the model.

In the next chapter we discuss briefly the various dephasing processes which may affect
it, before investigating photon shot noise dephasing in Ch. 8.



CHAPTER 7

Introduction to Dephasing

This The dual of qubit energy decay is pure dephasing, the loss of phase coherence over
time as the energy levels of a device fluctuate. Phase coherence is ultimately limited not

just by Tϕ processes but also by dissipation T1 processes, through the standard equation

1
T∗

2
= 1

2T1
+ 1

Tϕ
(7.1)

There are many sources of dephasing known to affect superconducting qubits: charge noise,
critical current noise, and fluctuating cavity photon number among others. In this brief chap-
ter we elaborate the influence of mostly classical fluctuators on qubit transition frequencies
and the Ramsey experiment, the Hahn echo, and its effectiveness for different types of noise.
This is followed by a description of the current estimates of dephasing from recent literature.

7.1 Dephasing

We can simplify the influence of the environment by considering an interaction with only
the first two transmon energy levels via the Hamiltonian

H(t)/ħ = [ωq + δω(t)] σz (7.2)
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These fluctuations in the qubit energy levels cause decoherence as the qubit state accumulates
a random amount of phase over time, or as off-diagonal terms in the qubit density matrix
decay after experiment repetitions are averaged. The Ramsey experiment (see Sect. 6.2.5)
is a simple procedure to quantify the noise spectrum of a transmission frequency. We can
characterize the fluctuations δω(t) using the “Physicist” spectral density (often normalized
with the qubit frequency ωge)

S[ω] = 1
ω2

ge
∫ ∞

−∞
dt⟨δω(t)δω(0)⟩e iωt (7.3)

describing the intensity of fractional fluctuations, with units [Hz]−1. The magnitude and rolloff
of δω the distribution determines the decay rate Γϕ = 1/Tϕ and the form of the experimental
Ramsey envelope FR. In the rotating frame of the qubit, the Ramsey envelope is determined
by the time-averaged correlation of the extra qubit phase ϕ(t) derived from fluctuations in
qubit frequency:

[ϕ(t) − ϕ(0)] = ∫ t

0
δω(t1)dt1 (7.4)

An ensemble average of the fluctuations gives the phase variance

FR = ⟨e i[ϕ(t)−ϕ(0)]⟩ (7.5)

or expressed in terms of the cn cumulant expansion of the random variable δω(t):

FR = ⟨exp [i ∫ t

0
δω(t)]⟩ (7.6)

= exp [∞∑
1

in

n!
cn] (7.7)

where for example c1 = ⟨δω(t)⟩ = 0 and c2 = ⟨δω(t)2⟩ − ⟨δω(t)⟩2 is the fluctuation variance.

7.2 Gaussian Noise

Assuming that fluctuations in qubit frequency are Gaussian greatly simplifies calculations of
qubit dephasing; the random variable ϕ(t) can be expanded in terms of its cumulants, all of
which vanish except for the mean and variance. The ensemble average gives an envelope

FR = e⟨[ϕ(t)−ϕ(0)]2⟩/2 (7.8)
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determined by the nature of the frequency fluctuations

⟨[ϕ(t) − ϕ(0)]2⟩ = ∫ t

0
dt1 ∫ t

0
dt2⟨δω(t2)δω(t1)⟩ (7.9)

= ω2
ge

2π ∫ t

0
dt1 ∫ t

0
dt2 ∫ ∞

−∞
S[ω]e−iωtdω (7.10)

= ω2
ge

t
2π ∫ ∞

−∞
S[ω]sin2(ωt/2)(ωt/2)2 d(ωt/2) (7.11)

where the weighting factor WRamsey = sin2(x)/x2 arises due to the specific correlation mea-
sured in Ramsey experiments and limits the influence of higher frequency noise. This
envelope is an exponential for a noise process that creates broadband white, Gaussian fluc-
tuations S[ω] = S0 independent of frequency lead to an exponential decay in the Ramsey
signal

FR = e−Γϕ t (7.12)

with Γϕ = ω2
geS0/4.

Hahn Echo

The use of multiple echo pulses can prolong qubit coherence by eliminating the influence
of low-frequency noise; the weighting function for a Hahn echo experiment with only a
single pulse vanishes at zero frequency. Information about the spectral density S[ω] may be
recovered through additional experiments with different weighting function W [91]. Most
of our qubits display some improvement T2E > T∗

2 of coherence in Hahn echo experiments.
Here a Hahn or spin-echo π-pulse is applied to the qubit in between the two π/2-pulses,
negating any accumulated phase and removing the influence of noise processes which produce
identical phase drift on either side of the echo. The Ramsey with echo signal is

Fecho = ⟨e[ϕ(−t)+ϕ(t)−2ϕ(0)]⟩ (7.13)

≈ e⟨[ϕ(−t)+ϕ(t)−2ϕ(0)]2⟩/2 (7.14)

again using the approximations of Gaussian noise. Integrating the ensemble average it can be
shown that

⟨[ϕ(−t) + ϕ(t) − 2ϕ(0)]2⟩ = ω2
ge

2t
π ∫ ∞

−∞
S[ω]sin(ωt/2)4

(ωt/2)2 d(ωt/2) (7.15)
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2ν

γ

Figure 7.1: Weak fluctuator model for a two-level system, in which δω = ±ν is smaller than the
switching rate γ.

where the weighting function vanishes at zero frequency, in contrast to Eqn. 7.11. For white
noise it too produces an exponentially decaying signal with a time constant Γecho = ω2

geS0/4,
but for distributions with noise power with more intensity at lower frequencies we expect the
envelope decay time to be longer.

7.3 Random Telegraph Noise

One comparatively well understood instance of non-Gaussian noise is that of a Random
Telegraph Process (RTP). Its simplest model consists of a two-level classical fluctuator or
property A which switches between two states ξA = ±1 at a rate γ, and interacts with the qubit
via the Hamiltonian [92]

HTLS = νξA(t)σz (7.16)

The fluctuator then has a single-pole Lorentzian spectrum with ω0 cutoff frequency which
we approximate by a Gaussian process with variance σ 2

A = ν2 and a low-frequency cutoff
ω0 = γ

SA = 4σ2
A/ω0

1 + (ω/ω0)2 (7.17)
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and we find via contour integral for S0 = 4σ2
A/ω0

⟨[ϕ(t) − ϕ(0)]2⟩ = ω2
ge

t
2π ∫ ∞

−∞

4σ2
A/ω0

1 + (ω/ω0)2
sin(ωt/2)2

(ωt/2)2 d(ωt/2) (7.18)

= S0

2
ω2

get(1 − 1
ω0t

(1 − e−ω0 t)) (7.19)

which in the limit of large ω0t (weak intensity or experiment times long compared to the
noise bandwidth) simply reproduces the white noise result. For small ω0t we get

⟨[ϕ(t) − ϕ(0)]2⟩/2 ≈ ω2
ge

S0

4
ω0t2 (7.20)

= ω2
geσ2

At2 (7.21)

The Ramsey decay is no longer described by a rate, it has a characteristic time 1/ωgeσA and a
“Gaussian” envelope. Many physical processes are dominated by low-frequency contributions
and the sum of many Lorentzian distributions over many octaves produces flicker or 1/ f
noise. Depending on the actual distribution the envelope decays with exponent t2 (gaussian)
or tα (1 < α < 2), and these indeed arise as valid explanations in other superconducting [93]
and alternative solid-state [94] qubits. Such an envelope has been observed once clearly in a
3D fluxonium device made in the Devoret lab, and once in a low-T∗

2 3D transmon where α > 1
better described the Ramsey trace. More sophisticated analyses including multiple echoes
and specialized experiments [95] have been used to measure the wider noise spectrum for
superconducting qubits.

7.3.1 Exact solution

Non-gaussian fluctuations of the qubit transition frequency have been studied far less exten-
sively, and are often treated only briefly. In spectroscopy the lineshape of such a transition is
neither Gaussian nor Lorentzian; in the above model the spectrum becomes non-gaussian as
ν > γ, we leave the motional narrowing regime [96], and we can no longer approximate the
noise by its variance.

In the RTP model, γ is symmetric and each state is equally likely. Analytical calculations
have determined the qubit dephasing induced by the energy level fluctuations as well as the
effectiveness of echo pulses in correcting it [97]. They construct and solve a master equation
for the probability P(ϕ, t) for the accumulated phase to be ϕ at time t. There are two regimes:
weak and strong coupling, depending on the value of ν/γ. In both, the dephasing rate which
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describes the decay of off-diagonal terms in the qubit density matrix, can be described by:

Γϕ = γ (1 −R[√1 − ν2/γ2]) (7.22)

This expression has a maximum at ν = γ, and decreases for smaller ν (into the "motional
narrowing" regime approximated by Gaussian noise) or for smaller γ (in which case dephasing
events become less common, but the fluctuator and qubit are entangled). With echo pulses
of sufficient frequency 1/τ it can be reduced. In their model for dynamical decoupling they
consider π-pulses equally spaced in time and infinitely sharp so as to cover all fluctuations in
qubit frequency.

For weak fluctuators ν/γ < 1, the corrected dephasing rate at long timescales is

Γdd
2 = ν2

2γ
(1 − 1

γτ
tanh γτ) (7.23)

and effective decoupling requires echoes more frequently than the switching rate 1/τ > γ. For
strong fluctuators, ν/γ > 1, they find instead

Γdd
2 = Min [γ (1 ± 1

ντ
sin(vτ))] (7.24)

where effective decoupling requires echoing at a rate faster than the frequency shift 1/τ > ν.
A more general solution for RTP dynamical decoupling is an open problem, for models
with asymmetric rates and unequal populations for the two states; it may be soluble simply
by adjusting the parameters of the master equation. Nevertheless, the model is useful in
describing the two regimes (weak and strong coupling) which arise in dephasing phenomena.

7.4 Mechanisms of Dephasing

In the remainder of this chapter we revisit several currently known dephasing processes
for the 3D transmon: charge noise and quasiparticle tunneling, critical current noise, and
photon-induced dephasing. One particularly interesting result is that the strongly coupled
regime ν/γ > 1 is important for all three.

7.4.1 Charge Noise

In a charge qubit increased EJ/EC for the Cooper-pair box leads to a charge dispersion of the
energy levels while in the transmon energy levels have exponentially reduced sensitivity to ng
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(see Eqn. 3.44). A change in gate charge ng nevertheless modulates ωge with finite amplitude,
primarily through the contribution from the first excited level [45]:

∂ωge

∂ng
≈ π

ħ
ε1 sin(2πng) (7.25)

Motion of trapped charges on the nearby substrate, DC fluctuations on input couplers, or
when a quasiparticle tunnels from one pad to another through the junction all may dephase
qubit superpositions. For several 3D transmons in Table 6.2 the dispersion may be many kHz
and is approaching the natural qubit linewidth, indicating the qubit transition frequency can
be sensitive to the quasiparticle tunneling rate.

A 3D transmon with elevated charge dispersion has recently been used to intentionally
measure the rate of such quasiparticle tunneling, which follows the above RTP model quite
closely [? ]. The populations of even and odd parity branches and the transition rates between
them seem to be similar, and they find the tunneling times to be about 1 ms (rates Γeo

g /2π ≈
Γeo

e /2π ≈ 160 Hz). Each tunneling event shifts the qubit ωge frequency by approximately ε1/ħ
as charge dispersion increases with transmon level m. Even in the absence of significant
dephasing from charge or quasiparticle fluctuations, Ramsey experiments using pulses too
short to discriminate between the quasiparticle parity will include an oscillating beat at the
difference frequency ∆ f = fo − fe of the two parity branches; this is a possible explanation
for the beat frequency in some of our Ramsey experiment traces.

When this splitting is larger than Γe0, each tunneling event dephases the qubit completely
and the total dephasing rate is simply

γqp
ϕ = Γeo (7.26)

This holds until charge dispersion is suppressed below 160 Hz and we enter the motional
narrowing regime, which for ε1/h = 10 Hz gives Tϕ ≈ 1 s. In fact, their device was not limited
by quasiparticle tunneling but by background charge fluctuations. These have increasing
noise power at low frequencies, with estimates of the charge spectral density Sng = 2π∣B∣2/ f
amplitude at 1 Hz of B ≈ 10−4 − 10−3e [98]. In between tunneling events in the same exper-
iments, Riste instead measures directly the qubit fluctuation spectral density suspected to
be due to charge noise S f = 8.1 × 107/∣ f ∣1.7 Hz which when integrated accounts for the short
T∗

2 < 25 µs for their device. The spectrum seems to have included a contribution from the
fridge mechanical pulse tube, and such measurements may be useful in identifying the origins
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Figure 7.2: Josephson junctions have a number of tunneling channels proportional to their
area. Fluctuating two-level systems may intermittently block this process, reducing the effective
area altering the critical current IC which determines qubit parameters.

of other charge fluctuations. Ultimately, however, this is not an untreatable issue; it can be
avoided by simply increasing the EJ/EC ratio during the design process, particularly for sets
of qubits with varied frequency.

7.4.2 Critical Current Noise

Critical current noise is the rearrangement (in effect, the closing and opening) of individual
conductance channels through the Josephson junction barrier (see Fig. 7.2); this switching
can lead to a fluctuation of IC and therefore EJ (see Eqn. 6.1) and hence ωge, and tends to
modulate the effective cross-sectional area of the junction rather than the barrier thickness
or other properties. These events seem to be more frequent at higher temperatures [99], with
a noise spectrum that may be problematic for junctions at finite temperature if it continues
to scale with the universal behavior. The most recent measurements have indicated a linear
T dependence of fractional fluctuations in the critical current which scale with the junction
volume [100]

SIc

I2
c
≈ (δA)2ρt 1

A
T
f

(7.27)

where ρ is the density of two-level system fluctuators, T is the temperature in Kelvin, A and
t are the junction area and thickness. Nugroho et al. posit a universal scaling with ρTLS ≈
1017 cm−1 K−1, with abnormalities for small-dimensioned junctions, suggesting that individual
defects may cause fluctuations on the order of δA ∼ 0.1 nm2 in junction conductance area.
The typical volume for our transmon junctions is 150 nm x 300-500 nm (depending upon
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the resistance goal) or less than 0.1 µm2, with a t ≈ 1 nm tunnel barrier thickness, and have
IC ∼ 40 nA, such that individual fluctuators may modulate the qubit frequency by ∼ 15 kHz.
If such a large frequency shift is present, the TLS switching rate then determines dephasing.

Instead, in the limit of small δA fluctuations we may calculate the decay time of weak
1/ f fluctuators by restricting the frequency span, as the integral for SIc otherwise diverges.
Limiting the bandwidth to some number of octaves (set by the finite single experiment or
total acquisition times, for example), the normalized frequency variance is

σ 2
ω = (∂ωge

∂Ic
)2 ∫ fT∗2

fexp
( SIc

ω2
ge
) d f (7.28)

= 1
ω2

ge
(ωge

2Ic
)2

B2 ln[ fT∗

2
/ fexp] (7.29)

where we have approximated for large EJ/EC , and B is the density of the 1/ f noise at 1 Hz.
The integral accrues a factor of ∼ 5x over the experimental bandwidth and produces a mostly
Gaussian decay with time constant T∗

2 = 1/ωgeσω = 1/4ωgeB. However, because 1/ f spectra
are dominated by low-frequency noise the qubit benefits from echo pulses, and we can show
that the phase correlator for an echo experiment obeys

⟨[ϕ(−t) + ϕ(t) − 2ϕ(0)]2⟩ = ω2
ge

t
2π

⋅ ∫ ∞

−∞

B2

∣ f ∣ sin4(ωt/2)(ωt/2)2 d(ωt/2) (7.30)

= 1
2

ω2
get2 ⋅ 2B2 ln(2) (7.31)

such that

Fecho = exp[−ω2
geB2t2 ln(2)/2] (7.32)

and the effective decay time with echo is T2E = 1/ωgeB
√

ln(2)/2, such that Techo/TRamsey ∼ 5.
These studies are the most comprehensive dataset on critical current noise, yet were

performed at temperatures above 300 mK; because our devices are held closer to 30 mK their
applicability may be limited. In fact our best devices may reach this limit, depending on the
assumed value of T . The mean T∗

2 for qubits that have been measured at 100 mK (where
thermalization can be guaranteed) have T∗

2 = 13 ± 3 µs, with quality factors Q < 650, 000
and below the upper bound for this value of ρTLS . However, most of this degradation comes
from photon dephasing, so it is not clear that we have seen any effects of critical current
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noise. Verifying the T or T2 scaling of critical current dephasing at low temperatures would
illuminate the microscopic origin of the fluctuations [101].

7.4.3 Photon Induced Dephasing

The transmon cavity has been engineered to suppress dissipation but also to facilitate measure-
ment using photons and the cavity-qubit state dispersive shift. Modern microwave generators
and amplifiers allow us to control the dynamic range of interaction over many orders of
magnitude but there may be stray photons that we are unable to eliminate from thermal
population of the cavity. Through the same interaction and dispersive shift, these photons
can cause dephasing. From the Hamiltonian Eqn. 3.3.2

Heff/ħ = ωc a†a + (ωq − χa†a) b†b − α
2

b†b†bb, (7.33)

we see that the qubit frequency shifts by χ ∼ 2g2/∆ for each photon in the cavity, decreasing
with large detuning ∆ or small coupling g. In one classic example [102], a coherent measure-
ment tone applied to the cavity creates a superposition of photon states of the cavity, each
with its own AC-Stark shift, giving the qubit a linewidth that corresponds to the measurement
rate of the qubit state. In their weak dispersive case where χ/κ ≪ 1, the strength of the photon
measurement is diminished. In this limit, a coherent tone gives

Γϕ = 4θ2
0n̄κ (7.34)

where θ2
0 ≈ χ2/κ2 accounts for the information per photon which is carried away at a rate n̄κ

proportional to mean transmitted photon number n̄. A cavity thermal bath with population
n̄ = 1/(exp(ħωc/kT) − 1) from effective temperature T and cavity frequency ωc induces
dephasing at rate∗

Γϕ = n̄(n̄ + 1) χ2

κ
(7.35)

and limits coherence to less than a microsecond for a quality factor Q = 150 cavity connected
to a bath at 70 mK, used for the original study in flux qubits [103]. These are not unreasonable
parameters for classic planar transmon cavities, fabricated to have low Q cavities for readout.
The most accurate measurements to date come from the analysis of resonant vacuum-Rabi

∗ The quadratic dependence arises in the derivation [103] for thermal fields because of the larger variance in
photon number for a given n̄ compared to the coherent drive. It only applies in the weak limit. See also Eqn. 8.7
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peaks [104], where there is an upper bound of n̄ < 0.003 for some experiments; however, the
temperature of the internal baths has not been well-studied.

In contrast, most 3D transmon experiments have been designed with cavity decay rate
κ reduced to ensure qubit lifetimes are not shortened through the Purcell effect. For the
fundamental mode of the cavity typical parameters are χ/2π ≈ 10 MHz, while κ/2π ≈
10 kHz, such that photon dephasing is similar to the strong fluctuator limit. In fact a careful
examination in Ch. 8 demonstrates that χ ≫ κ, γ for more than just the fundamental cavity
mode, significantly affecting predictions for coherence. More recent experiments have even
used the photon number split spectrum with selective addressing of the qubit conditional on
photon state, or included the anharmonic cavity as a new manifold. It is important to note
that here proper dynamical decoupling similar to Sect. 7.3.1 is only achieved when echo pulses
are fast enough to cover the full manifold of photon number states (in addition to being more
frequent than χ), so slow pulses may be particularly ineffective at cancelling photon induced
dephasing.

In the next chapter, we explore photon induced dephasing in the strong dispersive regime.
Here, each photon transiting the cavity acquires complete information about the qubit state
(the information per photon saturates) and the dephasing rate is no longer proportional to
χ2/κ, but is simply n̄κ. Photon dephasing is the primary source of decoherence in the first
3D transmons, and although the rate per photon saturates in this regime, the potential for
decoherence from all modes of the cavity requires our extra diligence in keeping connected
baths cold.



CHAPTER 8

Photon Induced Dephasing

In this chapter we investigate the nature of photon induced dephasing in the 3D transmon.
Although the energy relaxation time T1 of qubits in the new 3D geometry increased

by over an order of magnitude with respect to that of planar transmons, their Tϕ phase
coherence time increased by a smaller factor. In seeking to explain this discrepancy, and
identify the cause, we make use of their excellent performance characteristics to perform
new measurements of the cavity as well, and quantitatively examine of the role of photon
shot noise in dephasing the transmon.

Historically the flux of photons from a thermal bath has been known to affect qubit
coherence times. This was first demonstrated [103] in flux qubits, where a variation in
dispersive χ with a thermalized mode lead to increased dephasing rates in a flux qubit. While
decoupling from the multiple mode description of the electromagnetic environment [105, 106]
has been one fruitful way to eliminate dissipation, such a focus can have side-effects that
increase the residual decoherence if one is not careful!

In this chapter we observe photon induced dephasing using several different techniques [107],
from applying noise at the cavity transition frequency to physically raising the temperature of
the cavity and of all of its linked thermal baths. Furthermore, we make use of a novel moveable
coupler to modulate the rate of this process, directly manipulating the interaction between
bath and cavity. We learn that indeed, even a very small number of photons could efficiently

137
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dephase the qubit. In addition, confirming our growing understanding of the multi-mode
sensitivity of our devices [50], we found that photons in more than one mode affected qubit
coherence. This implies that exquisite care should be taken over a wide band of frequencies
to keep temperatures low and photons few, and that contemporary best cryogenic practices
were either not carefully followed or insufficient and in need of updating. These results also
provide evidence that flux noise and critical current noise are not the most important issues
to address for evolutions of our design in the near future. Finally, they may reveal that the
limit to coherence of the early 3D qubit samples is provided by charge noise or some other
slow fluctuating noise.

We begin by reviewing photon induced dephasing in the strong-dispersive limit. We
then demonstrate that the dephasing rate of a qubit is directly tied to the cavity decay rate
and average photon number by adjusting each over an order of magnitude, observing qubit
pure dephasing rates from 1 µs to nearly 100 µs. We confirm that qubit dephasing follows
theory first with photons we inject (calibrated in a process similar to Section 6.2.4) and then
by generally raising the temperature of the apparatus. Finally we discuss the transition from
strong to weak dephasing and draw conclusions based on the change in qubit coherence with
cavity κ even in the seeming absence of photons.

8.1 Strong Photon-Induced Dephasing

In the spirit of Sect. 7.4.3, let us consider photon-induced dephasing in the strong-dispersive
limit In a transmon which is coupled to a cavity, a change in the cavity photon number
shifts the qubit transition frequency by χ. A transmitted or reflected photon contains in its
frequency or phase shift information about the qubit, such that this change is a measurement
of its state. Alternatively, such an event results in a random accumulation rate of phase in
superpositions which takes ∣ψ(t0)⟩ = 1√

2 (∣g , 0⟩ + ∣e , 0⟩) to:

∣ψ(t)⟩ = 1√
2
(∣g , 1⟩ + e i χ(t−t0) ∣e , 1⟩) , for t > t0 (8.1)

and which if undetected effectively dephases the qubit. Classically, we see this as the diffusion
of the accumulated qubit phase as it drifts about a center frequency. When the accumulation
is many times the natural cavity and qubit linewidths (χ ≫ κ,γ), this is observed as altogether
a shift in qubit frequency.

The transmon in a 3D cavity was designed to have approximately the same χ as original



CHAPTER 8. PHOTON INDUCED DEPHASING 139

ω c

g
e0

1

2
ω  - 2χ 

q
ω  - χc

(b)(a)

ω  - χ 
q

ω  q

ω c
ω  - χc

18

12

6

0

V H 
(m

V
)

6.6556.6486.641
Spectroscopy Frequency (GHz)

n = 0.0*

n = 0.35

n = 2.0

(c)

2

1

0

Figure 8.1: a) Spectroscopy of qubit J3 showing a photon number splitting with χ/2π = 7 MHz,
with various mean photon numbers n̄. (*) As a reminder, we measured steady-state excitations
of P(1) ≈ 0.02 in the cavity, at base temperatures and without extra driving during the exper-
iment. b) The level diagram of the combined qubit and cavity system, describing the qubit
∣g⟩ → ∣e⟩ transition shift by −χ for each cavity photon, and the corresponding shift in cavity
transition frequecny. c) Photon number has 2N + 1 ways to change, enhancing dephasing when
starting with high N .

transmons in coplanar waveguide architectures, but due to the virtues of its geometry suffers
from dramatically smaller decoherence rates γ1 and γ∗

2 . This leads to well-resolved peaks
in the qubit spectrum (as seen in Fig. 8.1) with ħχ larger than κ, γ often by a factor of 1000.
While this allows conditional manipulation of the qubit depending on cavity photon number,
it also saturates the information which is extracted during a photon transit and the dephasing
that accompanies it (alternatively, the presence of a photon for even a small fraction of 1/κ
leads to a rapid phase accumulation). Consequently, the original design parameters of the 3D
transmon leave it exposed to photon induced dephasing in the presence of a heat bath, but
now at an increased level of sensitivity as other decoherence mechanisms have been removed.

Thermal Baths

A cavity connected to a thermal bath obeys a system of equations which govern the probability
P(N) of a harmonic oscillator having N photons [52]:

dP(N)/dt = κ(n̄ + 1)(N + 1)P(N + 1) + κn̄NP(N − 1) − ΓoutP(N) (8.2)
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where the cavity decay rate κ is the inverse of its decay time τ, n̄ is the average number of
photons, and

Γout = κ [(n̄ + 1)N + n̄(N + 1)] (8.3)

combines spontaneous emission with stimulated emission due to incident thermal photons.
Because in the strong dephasing limit each change in photon state carries complete

information about the qubit state, the pure dephasing rate becomes γϕ = Γout, the rate at
which the cavity photon number changes. This rate is intimately tied to both the cavity decay
rate κ and n̄, the average photon number in the cavity, and in order to demonstrate this we
adjust literally by hand the cavity coupling in situ, altering the rate of dephasing events. In
the remainder of this chapter, we compare and contrast the measurements of a single qubit
as its 3D cavity is decoupled from the environment and thermal excitations in the cavity are
either simulated or created, imposing dephasing.

8.2 Photon Injection

We may create a heat bath connected only to the cavity by using an IQ mixer to shift RF
noise up to the cavity frequency using a microwave tone, as described in Section 4.11. This
simulates blackbody or Johnson-Nyquist noise but over a small bandwidth, where the effective
temperature of the input mode of the transmission line has temperature T and a mean photon
number n̄in given by the Bose-Einstein population probability PBE(T) = 1/(exp(ħω/kbT)−1)
of that mode. We can raise the effective cavity temperature to over 1 Kelvin without directly
driving any transitions of the qubit by restricting the noise bandwidth to be ∼ 100 MHz and
cover ωg

01, ωg
12, ωg

23, ωe
01, etc. while remaining several GHz from ω0

ge (see Fig. 6.7 and Fig. 8.1b).
The average number of photons excited in the cavity itself, n̄ is proportional to the incident

power within the cavity bandwidth, κ, and as we saw in Ch. 3, with n̄ = APBE(T)Q/Qc.
As described by n̄, at any given time the photon number fluctuates, with a probability

distribution determined by detailed balance of the harmonic oscillator population [52]:

P(n̄, N) = n̄N/(n̄ + 1)N+1 (8.4)

and places the cavity into a mixed state independently of the qubit.

ρ = ∑
N
[n̄N/(n̄ + 1)N+1] ∣N⟩ ⟨N ∣ (8.5)
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Figure 8.2: a) Rabi calibration of thermal state. Power within the cavity bandwidth is directly
proportional to n̄, and the probability for N photons follows a thermal distribution. b) An
example Rabi set for n̄ = 0.8, showing the progressively decreasing occupation of N=0 (red),
N=1 (green), and N=2 (blue). In the axes we note that the equilibrium excitation of the qubit
for the duration of the experiment was ≈ 5%

Because each distinct number produces a different shift in qubit transition frequency, we
may determine these probabilities by interrogating the qubit.

We first calibrate our measurement of the cavity photon state via a procedure similar to
Sect. 6.2.4 as seen in Fig. 8.2. Then, for each input power, we may measure the probability that
there are N photons in the cavity, by addressing these transitions using long pulses on the
photon peaks of the qubit in a power Rabi experiment to confirm the probability distribution
Eqn. 3.107. By combining experiments for the different N we can find a scaling from voltage
in the homodyne readout signal (see Sect. 6.2.2) to probability, and power at the top of the
fridge to n̄ inside the cavity.

Repetitions of this procedure yield a scaling factor which varied by ∼ 5%, primarily due to
the variance in full-scale readout, and most clearly evident in the N = 0 Rabi experiment. The
full-scale difference in homodyne readout voltage between qubit ∣g⟩ and ∣e⟩ may fluctuate
or even disappear, necessitating the use of averages simply to obtain a correct reading. In
addition, for any given experiment, the cavity has been projected into a photon state N – not
a superposition or fraction – by the first selective pulse and simply due to binomial statistics,
we need a certain number of averages to reconstruct accurately the probability of occupation.
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Dephasing in Ramsey Experiments

We studied qubit J3, one of the first few qubits fabricated for the new 3D geometry in our
laboratory. Its χ/2π = 7 MHz meant that the light shift per photon could be 1000 times larger
than the qubit linewidth, which was varied from 5 − 12 kHz, and the cavity linewidth κ/2π =
6 − 120 kHz. We found that the qubit T1 was unaffected by κ and the Purcell effect within the
range of our variable manipulator, but that its T∗

2 and T2E would change in illuminating ways
both with and without our stimulus.

For a given n̄, Eqn. 8.1 gives the rate of change of the cavity state and thus, in the strong-
dispersive regime, the pure dephasing due to photon shot noise in the qubit frequency. The
consequences are evident in our Ramsey experiments, where the absorption (emission) of
a photon from the input mode (cavity) completely measures the qubit state, projecting any
superposition and providing full information in the absorption (emission) spectrum.

Our Ramsey experiments begin with a cavity whose TE101 mode is in a thermal state,
due to the continuous application near ω101 of microwave noise. Using gaussian pulses with
σt = 100 ns, we first select for an empty cavity or the starting photon number with a π/2 pulse
on the N photon number split peak. A second selective pulse on the same photon number
after a stepped waiting time completes the Ramsey experiment. For the case of N = 0, and 1,
we can plot the dephasing rate γ versus n̄ for many values of κ. Here we saw good agreement
between theory and experiment (see Fig. 8.3), where the increase of the dephasing rate of the
qubit was equal to the rate of change of the photon state. Ramsey experiments on N=2 and
higher are infeasible through creation of a thermal state: the contrast decreases exponentially
with an accompanying factor of (2N + 1)n̄κ increase in dephasing rate.

In fact the same procedures can be followed for not only TE101 but TE103 as well, which
we find to have χ103/2π = 1 MHz, still much greater than γ,κ. This confirms that our qubit is
strongly coupled to several modes of the cavity, as predicted in Ch. 3 and that we must take
care to use isolators and broadband attenuation that covers more than just the obvious ω101

and ωef frequencies of the cavity and qubit.
In the next section we will cover an experimental detail of the Ramsey experiments in

the presence of photon noise.

Post-selection by readout

Initial conditions of the Ramsey experiments are prepared by simply waiting for stabilization
in steady-state. The selectivity of the first π/2 pulse ensures that only repetitions of the
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Figure 8.3: Qubit dephasing due to photon noise. (a) Qubit coherence time, determined from
Ramsey experiments on the N = 0 or N = 1 (△) photon peaks, as a function of both cavity Q
and n̄. The dashed lines are theory, with an offset due to residual dephasing. Each has a slope
proportional to κ (or 3κ for N = 1 experiments), according to Eqn. 8.1. The (○) are coherence
times vs. population in TE103 mode, which also dephases the qubit. b) Universal dephasing
plot: an alternative presentation of our measurements of qubit dephasing versus noise. Here
the horizontal axis is 1/n̄κ, scaled for each trace, which according to Eqn. 8.1 we expect to be
equal to Tϕ for the qubit. The vertical offsets correspond to residual dephasing even for n̄ = 0,
which will be discussed in Section 8.4. (c) Ramsey with no noise injected, fundamental mode
Q = 1 × 106, and T∗

2 = 26 µs. The solid line is a fit with an exponentially decaying sine. (d) A
Ramsey with moderate noise. Contrast and T∗

2 are reduced. Fundamental mode Q = 2.5 × 105,
n̄ = 0.25, T∗

2 = 7.7 µs. (e) Ramsey with high noise. Fundamental mode Q = 1 × 106, n̄ = 3.1,
T∗

2 = 5.2 µs. Our selective (N = 0) pulses produce a loss of contrast and a non-oscillating
signal addition (orange) as photon population returns to a thermal distribution. The dashed
black line is a numerical simulation (see Appendix C)
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experiment that begin with the specified value of N add contrast to the Ramsey interference
fringes, however both π/2 pulses are photon-state selective, to simplify pulse calibration.

As one consequence of this scheme, the contrast of our Ramsey traces is proportional to
the population P(N) of the peak whose coherence times we are measuring; more repetitions
fail to add contrast as 1−P(N) increases. In addition, because the second π/2 pulse is selective,
an additional signal is present in averaged traces, which can be described by:

PB(t) = 1
2

n̄(1 + n̄)2
1 − e−κt

1 − n̄
1+n̄ e−κt ⋅ e−t/T1 (8.6)

where T1 is the qubit energy relaxation time. This is due to T1 decay and photon number
transitions during the experiment, and appears in Fig. 8.3; the effect must be removed from
the trace in order to recover the true dephasing rate, with analysis in further detail found in
Appendix C.

The importance of this effect lies in the fact that it can occur as well for any perturbation
that strongly splits the qubit frequency. For example, charge dispersion in the transmon
creates two frequencies depending on the parity of the number of quasiparticles in the
junction. If a quasiparticle tunnelling (or any other event which takes the qubit temporarily
out of our state space) occurs between Ramsey pulses and the charge dispersion is more than
κ, we may expect to see similar effects.

Technical Discussion

The photons here are from non-equilibrium baths, since we generally expect that modes
at 20 mK have exponentially suppressed excited populations. However, because the link
between room temperature and the base plate of the fridge is only sparingly attenuated (due
to the need for efficient drive or readout), it is more appropriate to think in terms of effective
number than of effective temperature.

It is important to note that the mere presence of photons in the cavity doesn’t automatically
cause decoherence. For example, in the case that the cavity state is stable (κ → 0), a Ramsey
on a photon peak does not experience an intrinsic decoherence, because no measurement
is performed. Even for a non-selective pulse with wide bandwidth over several peaks, a
superposition acquires phase at different rates but not in an irretrievable way. Using a Hahn
echo, for example, cancels individually the phase acquired by each portion, such that the
final Ramsey experiment sees no ill effects from the photons. On the other hand, we cannot
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avoid dephasing by simply disconnecting the visible ports of our cavity, by perhaps filling
them with superconductor. The cavity retains an internal quality factor Qi with temperature
Ti which provides a dephasing heat bath.

Because each mode contributes, we must be wary of accidental population of higher
frequency modes outside the operating range of the circulators, and as long as χ > κ each
photon transit carries complete information and should be avoided, and as we have seen
there may be many modes that couple in this regime. In fact, the strong coupling between the
qubit and TE103 enables state readout, with 50% fidelity, using the same high-power pulses
we use on the fundamental mode.

Ramsey experiments are rarely the final goal in a laboratory, and the dephasing we see
here should carry over to other experiments. As a subtlety however, here the Ramsey decay
is in a sense because of the selective pulse completely missing the qubit; it is a consequence
of the measurement and recording. A short π/2 pulse would have instead captured the more
essential dephasing, with loss of Ramsey contrast without loss of signal contrast.

8.3 Temperature Dependencence

When the temperature of the entire apparatus is uniformly raised, we can use Eqn. 8.1 and
the summation γtot

ϕ = ∑ γϕ,i to make specific predictions about the effects on coherence. A
temperature T populates all harmonic oscillators with a population PBE = 1/(exp(ħω/kbT)−
1), decreasing at higher frequency. In particular, it places every mode of the cavity in a mixed
thermal state. In Fig. 8.4, we show this coherence time for a cavity coupler setting with low Q
of τ = 2 µs alongside one with τ = 20 µs. Occupation in the TE101 and TE103 modes explain
the majority of the dephasing, confirming our model.

These considerations limit the allowable temperature range of our devices, should we wish
them to have a certain amount of coherence. For a single mode dominating qubit coherence
in the strong-dispersive regime, Tϕ = τ/n̄. In particular, a 100 µs coherence time is impossible
with cavity population of 10% when τ = 10 µs, 1% when τ = 1 µs, or 0.1% when τ = 100 ns∗.
This total thermal decoherence rate is shown as the red dashed line in Fig. 8.4b, for typical
parameters. Since these modes have ħωn ≫ kBT , the predicted dephasing time is in excess
of 100 microseconds below 80 mK due to the exponentially suppressed number of blackbody

∗ Motional narrowing begins to reduce the severity of photon-induced dephasing at χ = κ, and usually around
τ = 100 ns for typical qubits.
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Figure 8.4: (a) Decoherence due to thermal photons. The coherence times extracted from
Ramsey (T∗

2 ) and Hahn echo (T2E) experiments measured as a function of cryostat temperature.
To model dephasing (dashed lines), we predict population in the TE101 and TE103 modes of
the cavity. Then, we sum the total dephasing rate using the measured quality factors for each
mode (High Q: τ101 = 20 µs, τ103 = 4 µs; Low Q: τ101 = 2 µs, τ103 = 400 ns). For high Q, the
use of a Hahn echo pulse leads to a large T2E because either the photon state has much longer
correlation time or the remaining dephasing similarly occurs at low frequencies (see Sect. 7.3.1).
Although the decline in T1 (see Sect. 6.2.8) [108] contributes to the trend, population in both
TE101 and TE103 are needed for a good fit. A more general description based on population in
all modes might describe the residual dephasing. (b) Bose-Einstein population of the first two
odd-n TE10n modes at 8 and 12.8 GHz (green) and the coherence limits they impose individually
(blue) and collectively (dashed red) for the low Q values measured above.

photons. However, since any particular mode coupling to the qubit in the strong-dispersive
limit may have a relatively fast decay time τ, even very small (∼ 10−3 − 10−2) non-thermal
populations n̄ could easily satisfy n̄κ ≫ 1/2T1, limiting the coherence through pure dephasing
alone to T∗

2 ≈ 1/γϕ = τ/n̄.
In fact, the reduction of photon induced dephasing for this device reveals the presence of

much lower-frequency dephasing noise which is highly correctable by a Hahn echo, which is
apparent in the spectacular improvement with echo in the high Q trace. Also seen in Fig. 8.6c,
this suggests either the photon state has much longer correlation time or the remaining
dephasing (such as charge noise) similarly occurs at low frequencies.
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8.4 Generalization

For fast enough cavity decay rates, the assumptions made at the beginning of this Chapter
break down. As κ increases beyond χ the qubit is no longer number-split, and similarly
a photon transit neither completely dephases it nor does it contain complete information
about the qubit state. In this limit in fact the random accumulation of phase due to qubit
frequency shift is motionally narrowed, with the dephasing rate becoming: γϕ ≈ 4n̄(n̄+1)χ2/κ,
significantly reducing the importance of the effect. In general, as recently derived [109, 110],
the dephasing rate of a qubit connected by rates κ j with baths of mean photon number n̄ j is:

γtot
ϕ = κ

2
R

⎡⎢⎢⎢⎢⎣
¿ÁÁÀ(1 + 2i χ

κ
)2 + (8i χ∑ j n̄ jκ j

κ2 − 1)⎤⎥⎥⎥⎥⎦ (8.7)

When the qubit is no longer photon number-split due to either a larger γ (as in planar
transmon experiments) or κ (perhaps for fast qubit readout) the cavity decay experiment
must be replaced with a frequency-domain low-power spectroscopy measurement of κ and
photon number is calibrated via the Stark shift [102].

Weakly coupled modes

Several harmonics of the 3D cavity are coupled weakly to the qubit by symmetry, among
them the TE102 and TE104 modes at 12.867 GHz and 15.742 GHz. We can apply noise as above
and see dephasing, even if we cannot measure n̄ in pulsed experiments. Additionally, we can
only simulate the Qc , which may reflect much of the noise power. Fig. 8.5 shows the scaling
of dephasing rates these small χ modes, which although quadratic in n̄ as expected could
simply be represent the heating of fridge attenuators. The presence of both high and low
quality factor modes could be utilized for dispersive readout without the complications of a
physically separate cavity.

Residual Dephasing

One striking consequence of Eqn. 8.7 is the existence of a global maximum in dephasing, a
set of parameters from which any change in κ or χ will lead to increased coherence times. In
fact this configuration, where χ = κ is often used for dispersive readout of the qubit. But it
has implications in the interest of increasing qubit coherence times: does a cavity need to
be high Q or can can it be low Q for maximum qubit coherence? Photon dephasing can be
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Figure 8.5: Noise on higher modes. a) TE102 at 10.167 GHz has g/2π ∼ 20 MHz. Because
absolute photon number calibration was not performed (and Qc was unknown), the qua-
dratic [103] is a guide to the eye. Not shown, TE104 is at 15.742 GHz with g/2π ∼ 30 MHz and
has a similar sensitivity to incident power. b) High power spectroscopy of the cavity leads to a
removal of the cavity-qubit dispersive shift, as typical for readout using TE101 c) The dispersive
shift is small and notably of opposite sign to the readout cavity χ01 (see Fig. 6.5)).

minimized as long as you choose between the two. For χ/κ ≫ 1, photon measurements are
rare but devastating, while for χ/κ ≪ 1, the entanglement between the two systems is small
and the total measurement rate induced by the environment is small. In Fig. 8.6 we show a
model describing this phenomenon for a fixed exterior mode T or photon number n̄.

In the device studied in this Chapter, we observed a monotonic increase in T∗
2 as the output

port coupling quality factor increased. Assuming the dominant source of dephasing is non-
equilibrium photons from a noisy amplifier or improper heatsinking, there are consequences
to that source being of broadband origin compared to κ. The increase indicates it is the
output mode itself that provides the non-equilibrium photons and that dephasing is caused
by a mode with a χ > κ, such as that for the TE101 or TE103 for example. It also suggests that it
is not flux noise or critical current noise which limit many of our early 3D qubits, but photon
noise itself, as it is difficult to draw a stronger connection between the T∗

2 behavior and these
mechanisms than to κ and photon induced dephasing.

Fig. 8.6a shows that for a thermal bath connected to the input port, coherence times only
decrease as the output coupler is extracted from the cavity, decoupling a hypothetically cold
mode. In contrast, decoupling from a hot output mode decreases both n̄ and κ, which will
suppress γϕ if χ > κc for the coupler. Sweeping the coupling of a port has great utility not only
in allowing us to assign the location of a thermal bath, but also to determine the dispersive
shift of the qubit with the mode responsible for the dephasing.
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Figure 8.6: Control of the coupling quality factor is important for diagnosing the source of
incident photons. a) When, as in this experiment, decoupling the output port while connected
on the input (or internal) port to a heat bath which emits radiation at a wideband compared to
kappa, dephasing rates of the qubit only increase. b) The same experiment, with heat bath on
the output (variable) port. Along with c), this suggests the qubit is coupled to a hot cavity mode
with χ/2π < 1 MHz c) Coherence times versus TE101 mode decay τ. The TE103 cavity, which
naturally decays more strongly through the couplers, increases in Q as the entire resonator is
decoupled from our coaxial lines. While T1 is nearly constant due to the large qubit detuning
from the cavity, its T∗

2 and T2E increase as the coupling pin is withdrawn from the 3D resonator.
This is consistent with diminishing dephasing from cavity modes with κ < χ, where a photon
transit strongly measures [111] the qubit state.
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Figure 8.7: (a) Series of non-simultaneous measurements of T1, T∗
2 , and T2E for qubit J5. The

filled points represent the original measurements with only absorptive low pass filters. The
open points were taken after the addition of reflective low pass filters. (b) Cavity population
before and after adding reflective filters. Similar to the measurements in Fig. 8.3, the horizontal
axes show the qubit rotation angle while the vertical axes are scaled to show the change in qubit
excited state population. The lower (red) traces are Rabi experiments on the N=1 photon peak
of the qubit, while the upper (green) traces address the N=0 transition.

Modifications

In order to verify a solution to the problem of unexpected photon measurement, we tested a
qubit of similar design to the one studied in the main text. Qubit J5 had ωq/2π = 6.384 GHz
for a cavity with ωc/2π = 7.82 GHz and fixed couplers leading to a cavity decay time τ = 5.5 µs.
We initially measured a T1 = 28 µs, T∗

2 = 12 µs, and T2E = 32 µs, with qubit excited state
population P(e) = 6% and cavity photon occupation of P(1) = 2.7% (which, it should be
noted, is sensitive to cavity population in any mode with χ/2π ≈ 5 MHz). These measurements
were done using an apparatus equivalent to Fig. 4.3 with the addition of prototype lossy low-
pass filters on both the input and output ports, adjacent to the cavity. After transferring the
device to a new cryostat and installing both the low-pass absorptive [58] (3 dB in band and
15 dB at 40 GHz) and reflective (KL Microwave low-pass, 50 dB rejection at 14 GHz) filters we
measured a P(e) = 3.3% and P(1) = 0.12%, and verified that the cavity decay time remained
unchanged.

We measured a series of coherence times independently in this new configuration in
order to place a lower bound on the dephasing time. As shown in Fig. 6, we obtained average
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Figure 8.8: After proper thermalization, qubit SP1 had undetectable cavity population at the
base temperature of the fridge; here it measured T1 = 87 ± 7 µs and T2E = 132 ± 12 µs (data
provided by L. Sun and A. Petrenko.)

T1 = 49 µs, T∗
2 = 16 µs, and T2E = 87 µs. With such a large ratio T2E/T1 = 1.8, the dephasing

time can depend strongly on the accuracy of our measurements. We estimate the residual
dephasing rate not corrected by a Hahn echo to be (1.2 ± 1.5) kHz, with 800 µs for a best
estimate of the dephasing time with echo.

These measurements suggest that extra heatsinking and filtering measures have mitigated
the problem of photon induced dephasing from exterior thermal baths, although they do
nothing for and may even exacerbate the effect of a lossy interior. Careful budgeting of power
and dissipation is necessary to avoid its reemergence.

Conclusions and Epilog

We have performed experiments involving precise thermal photon populations to quantita-
tively induce qubit dephasing in good agreement with simple theory. The sensitivity of the
qubit to photons at many frequencies requires that we either keep all modes of the cavity in
their ground state, or else minimize the influence of non-thermal populations by reducing
their measurement rate [20]. Inclusion of the cavity harmonics in dephasing calculations
leads to an understanding of the earlier, anomalous, temperature-dependent decoherence
in our devices [82]. Finally, we see that residual photons in our 3D cavity likely mask the
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intrinsic coherence time of the Josephson junction, suggesting they may do so for many
other superconducting qubit designs [112, 113], quantum dots [114], and more generally any
Quantum Information system coupled to a bosonic mode [115]. As qubit linewidths shrink
in the future, other effects such as quasiparticle parity [90, 116? ] or far in the future even
interactions with nuclear spins may further split the qubit spectrum, inducing dephasing in
a similar manner.

We have identified and resolved the mechanism which prevented early 3D transmons
from matching their dramatic increase in T1 times with an equally improved dephasing times.
In fact, the inclusion of better filtering and thermalization has led to the smallest population
measurement to date of one of our transmons, seen in Fig. 8.8. The accompanying coherence
measurements, in which T1 and T2E are well above 100 µs, validate our conclusions about
dephasing in the first 3D transmons, and suggest that photon induced dephasing can be
eliminated with best practice cryogenic techniques.



CHAPTER 9

Conclusions and Outlook

The The experimental work in this thesis has been the study of two radically simple
attempts to improve coherence in solid-state quantum devices. In the first (Ch. 5), we

tried to coax natural electron spins to couple more strongly than they are typically inclined
and in the second (Ch. 6) we removed coupling to extraneous, lossy electromagnetic modes.
In this final Chapter, I will briefly describe future directions for this research, most already in
progress.

9.1 Expanded Hamiltonians

We often use simple energy levels for qubits and their resonators, but a truly exhaustive
description of the system Hamiltonian can be intimidating. In fact, the recent modeling of
resonant qubit and cavity systems using an astonishingly large state manifold was a tour de
force [89]; the general numerical technique is robust even for more complicated situations
such as the “straddling regime” [45]. On the other hand, black-box quantization (BBQ),
while powerful, ignores at the moment subtle effects like charge dispersion [116] which have
been directly implicated in some of the most recent 3D transmon experiments with distinct
frequency fluctuations [? ]. A precise account of charge dispersion in BBQ due to the multiple
modes of a cavity has not been completed yet; complications arise as the larger dispersion of
higher levels εm competes with the limited hybridization of cavity and qubit modes, and it

153
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is not clear whether the result is larger or greater than the standard EJ/EC prediction. The
expansion of the black-box quantization treatment here and its routine use at higher order
promise to be immensely useful for precision planning of qubit experiments, required for
design down to the last 1% or 0.1% precision of parameters.

In addition, as experiments look beyond the treatment of single devices, the development
of BBQ for multiple cavities [117] or qubits [Paik et al., in prep] should be extremely useful
in predicting more realistic behavior for systems that may not have a simple analytic descrip-
tion. Combinations of storage and readout cavities, logical and ancilla qubits, and spatially
separated yet interacting systems require as much attention as single devices. For example,
we may ask how far away is 99% of the qubit energy stored, and how closely can two qubits
be placed? Many laboratories are considering schemes where hundreds or thousands [49]
of devices form logical qubits based on their dressed interactions – at what density can this
be done? Starting from the isolation of two qubits in physically separated cavities, how can
their separation be relaxed in order to form dense networks for surface codes [118] or other
computational topologies [119]? The effective use of commercial simulation software can
help us approach these questions as well.

9.2 Conclusive Dissipation

One of the lessons of the 3D transmon is that the sample holder or generally neglected
environment can unexpectedly be the source of problems. In Ch. 2 we detailed several mech-
anisms for dissipation as well as the incredibly powerful concept of participation ratio, where
the rate of energy total energy loss is proportional to the linear combination of individual
participation ratios and loss rates γ = ∑i piγi , and

1
Q

= ∑
i

pi

Qi
(9.1)

Much time has been spent making small adjustments to experiments hoping for improvement,
and a rigorous accounting using participation ratios allows for real conclusions. What is
needed now is a concerted effort to quantify the quality of different materials, done in such
a way that we verify their participation in the qubit mode. Amazingly, the participation
can be calculated in modern finite element simulation software like HFSS, predicting pi

for substrate and cavity surfaces, bulk materials, oxide layers, conductors, and junctions.
With the proper control experiments, it should be possible to identify and make appropriate
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conclusions about the real sources of dissipation in superconducting qubits–not only for
charge qubits, but flux, phase, fluxonium, and perhaps even quantum dots. It is a challenge
to make a single qubit device as coherent as possible; what are the ultimate limitations? Our
devices leverage the lossless Josephson junction and dissipationless superconducting cavities,
but quasiparticle tunneling damps the qubit mode at any finite temperature [108]. Measuring
cryogenic temperatures can be technically difficult; our measurements have been limited to
temperatures above ∼ 40 mK (see Fig. 8.8), although most cavities and qubits are hotter. Can
extremely decoupled qubits with long decay times be thermalized?

9.3 New experiments and hybrid systems

But coherence is not an end-goal, merely something that is useful for most experiments. The
3D resonator architecture enables investigations of materials science [56] and superconduct-
ing qubit design by stripping away many distracting components. Meanwhile, the transmon,
which is correspondingly simple to fabricate, can be immediately put to use studying issues in
quantum optics [120] and hybrid systems [23] utilizing its extraordinary coherence. Together,
increased solid-state qubit coherence allows enough latency to integrate modern electronics
into feedback loops with reduced degradation from fridge transit times [121], and allow
for us to study things with longer natural timescales (such as critical current switching or
quasiparticle generation, recombination, and tunneling [? ]). Some groups are continuing to
investigate strongly coupled spin ensembles [80], but we may also try to incorporate single
spins into our devices [63]; room-temperature spin experiments can have inconveniently
long coherence times [77], which would be an entirely novel experience for us at cryogenic
temperaures (requiring driven [? ] or tunable reset [122]). Already the maturity of circuit
QED allows quantum dots coupled to coplanar resonators [24], and transmons coupled to
NV center ensembles; it may be possible to translate these experiments into different cavity
geometries.

Future of decoherence

It is true there are no novel mechanisms of dephasing presented in this thesis; charge noise,
photon induced dephasing, critical current noise have all been studied before. However, this
work discusses dephasing as it enters a novel regime in which the fluctuator becomes entangled
with the qubit, acquiring complete information on its state with every change. The first 3D
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transmons are proofs of concept that retained many of the classic design parameters of planar
transmons even as the increased coherence exposed sensitivities to smaller contributions
from these effects. There are several immediate corrections to be made: coherence times will
likely increase after raising EJ/EC slightly and diligently correcting thermalization; the rest is
left as an exercise for the reader.

❧
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Figure 9.1: The thesis in abstract cookie form (2012). Mixed media: cookie, icing, gummi bear,
sprinkle, edible marker.
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APPENDIX A

Input-Output Theory of Transmission

Numerical we can derive the transmission of a resonator coupled to several differnt
populations of spins through input-output theory [123]. We begin with the system

Hamiltonian in the rotating frame:

H = ω0a†a + Ns∑
n=1

Ωnsn +∑
n
(gn ⋅ a†sn + g∗

n ⋅ s†
na) (A.1)

Then in the Heisenberg picture, we can describe the time dependent operators a and s
via:

ȧ = −iω0a − (κc + κci)a − i
Ns∑
n=1

gnsn −√
κcbine−iωd t (A.2)

ṡn = −iΩnsn − κs

2
sn − ig∗a (A.3)

which, after moving to the drive frame, ∆0 = ω0 − ωd , ∆n = Ωn − ωd , making it static:

ȧ = −i∆0a − (κtot)a − i
Ns∑
n=1

gnsn −√
κcbin (A.4)

ṡn = −iΩnsn − κs

2
sn − ig∗a (A.5)
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In order to address the frequency domain, we apply a Fourier transform:

[i(ω − ∆0) − κtot]a − i
N∑

n=1
gnsn = √κcbin (A.6)

[i(ω − ∆n) − κs/2]sn = ig∗
n a (A.7)

From which

sn = ig∗
n

i(ω − ∆n) − κs/2 a (A.8)

Then:

[(i(ω − ∆0) − κtot) + Ns∑
n=1

∣gn∣2
i(ω − ∆n) − κs/2] a = √

κcbin (A.9)

and finally:

bout = bin

⎡⎢⎢⎢⎢⎣1 + κc
⎛⎝ 1

i(ω − ∆0) − κtot +∑Ns
n=1

∣gn ∣2

i(ω−∆n)−κs/2

⎞⎠
⎤⎥⎥⎥⎥⎦ (A.10)

∣bout

bin
∣2 = ⎡⎢⎢⎢⎢⎣1 + κc

⎛⎝ 1
i(ωm − ω0) − (κc + κci) +∑Ns

n=1
∣gn ∣2

i(ωm−Ωn)−κs/2

⎞⎠
⎤⎥⎥⎥⎥⎦

2

(A.11)



APPENDIX B

ESR of Substrates

As part of our collaboration with Oxford University, they measured the ESR spectra of
several of our typical substrates as part of our collaboration with Oxford University; in

Fig. B.1 we see the spectra of c-plane and r-plane sapphire, as well as a high-resisitivity silicon
wafer and a doped silicon with SiO2 sample. Cr dopants in sapphire and other ZFS spins
present a possible mechanism for dissipation of qubit energy without necessarily having a
finite magnetic bias field.
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Figure B.1: Oxford ESR of our common substrates. These spectra are taken in a cavity at
9.5 GHz, so the peaks at ∼ 2.5 kG are for typical paramagnetic spins. The sapphire peaks
correspond to unintentional Chromium doping, much like the ruby sample in the next figure.
The r-plane sapphire was found to have trace Cr dopants. The results are provided without
concentration calibration, which requires the simultaneous measurement of a standard material
and close attention to filling factor, etc.
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Ramsey Incoherent Response

In this section we give a brief explanation of the procedure used to fit the Ramsey experiments.
The energy level diagram in Fig. 8.1b can be interpreted as showing that for a given qubit
state the cavity is effectively a harmonic oscillator with frequency ωc, or ωc − χ when the
qubit is excited. Assuming long qubit relaxation time T1 ≫ 1/κ, the qubit does not relax
during the evolution of the cavity occupation. Then for a given qubit state the dynamics of
the probability P(N) of having N photons in the cavity at any time t is governed by the rate
equations:

dP(N)
dt

= κ(n̄ + 1)(N + 1)P(N + 1) + κn̄NP(N − 1) − κ [n̄(N + 1) + (n̄ + 1)N]P(N)
(C.1)

and the steady-state probability Ps(N) is

Ps(n̄, N) = n̄N/(n̄ + 1)N+1 (C.2)

Now we can introduce the occupation probability P(σ , N ; t) for each qubit population σ at
time t. After starting in the qubit ground state, a π/2 pulse at the N = 0 peak will coherently
split the occupation probability between ground and excited states, leading to an initial
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Figure C.1: A set of Ramsey experiments similar to those used for the series in Fig. 8.3. Each
graph has the same axes and is labelled by the n̄eff, as calibrated by the Rabi thermometry
experiments. The horizontal axes are the delay time between π/2 pulses, and the vertical axes
are integrated readout signal and final qubit excitation probability. The adjusted data (red) has
had the incoherent readout response (orange) subtracted from the readout signal, before being
fit with a exponentially decay sine (dashed). Additionally, the original data after subtracting
the final fitted decaying sine is shown (green). At a cavity Q of 2.5 × 105, the photon induced
dephasing is much larger than that from (*) the natural cavity population n̄eff ∼ 0.02 which we
find even without applying noise.
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excited state probability distribution after the π/2 pulse at t = 0

P(e , N ; 0) = ⎧⎪⎪⎨⎪⎪⎩
1
2

1
1+n̄ , N = 0

0 , N > 0
(C.3)

After the second π/2 pulse at time t f , the probability distribution for N > 0 is simply
P(e , N ; t f ) as determined by the evolution of P(N) from the above initial conditions, while
P(e , 0; t f ) is the usual Ramsey fringe signal [124] which we denote SR(t f ), exhibiting decay
times which scale according to 1/n̄κ (see Fig.8.3). As the readout sums over all photon number
states, the signal S(t f ) is

S(t f ) = SR(t f ) + PB(tF) (C.4)

with the “bump” PB defined as

PB(t f ) = ∑
N>0

P(e , N ; t f ). (C.5)

To fit the signal, we need to calculate the function PB(t). This can be done by solving the
rate equations (C.1) with the initial conditions (C.3) giving

PB(t) = 1
2

n̄(1 + n̄)2
1 − e−κt

1 − n̄
1+n̄ e−κt (C.6)

So far we have ignored the qubit and its relaxation. A more detailed analysis gives a
reduction of the amplitude of the bump (which we account for with the factor M in Eq. 8
below) and its relaxation over the T1 time scale. Then the actual signal is given by

S(t f ) = SR(t f ) + SB(t f ) (C.7)

with

SB(t f ) = MPB(t f )e−t/T1 , (C.8)

consistent with the dashed curves in Fig. 8.3c-e.
We account for this signal with the following process. First we simulate the system using

values obtained via experiment: cavity decay time τ, and n̄ obtained through calibration.
Then, we take the expected SB(t f ) (the excited qubit population with N > 0) and remove it
from the Ramsey signal, fitting the remainder to a decaying exponential. This typically leads
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to a correction to γ that is ∼ 10− 30% from the naive Ramsey fit. The products of this process
are shown in Fig. C.1 for a series with the same κ = 1/τ as that in Fig. 8.3.
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