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Circuit quantum electrodynamics (circuit QED) is a system that allows for strong coupling
between microwave photons in transmission line cavities and superconducting qubits or
artificial atoms. While circuit QED is often studied in the context of quantum information
processing, it also provides an attractive platform for performing quantum optics experiments
on-a-chip, because the level of control and coupling strengths available in circuit QED opens
a vast array of possibilities for the creation, manipulation, and detection of quantum states
of light. In this thesis, the extension of circuit QED to two cavities is examined, including
design issues for cavities with very different Q-factors, and a new qubit design is proposed
that couples to both cavities. The qubit-cavity interaction, while providing much of the
utility of circuit QED, also introduces additional qubit relaxation. A powerful formalism
for calculating this energy decay due to the classical admittance of the electromagnetic
environment is presented in the context of circuit QED. Measurements of a wide range of
samples validate this theory as providing an effective model for relaxation. A new circuit
element, called the ‘Purcell filter’, is introduced and demonstrated to decouple the relationship
between cavity Q and qubit relaxation. Finally, a new method for performing quantum non-
demolition measurements of microwave photons is demonstrated.
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CHAPTER 1

Introduction

The past decade has witnessed a remarkable convergence of advances in two distinct
fields of low-energy physics. In superconducting circuits, there is an increasing body of

evidence demonstrating that macroscopic quantities, like the voltage on a wire, can behave
quantum mechanically [–]. This was rather surprising given that voltages are determined
by an ensemble of many (> ) particles, and such large numbers of particles have typically
been thought to behave classically. The evidence for macroscopic quantum coherence in
superconductors lead to the development of many flavors of ‘artificial atoms’, which are
electrical circuits that have discrete quantum energy levels, analogous to natural atoms. These
circuits are often referred to as ‘superconducting qubits’ because of their natural applications
to quantum computing. There has been rapid progress in using these circuits for this purpose,
with several qubit designs, including the quantronium [], transmon [] and fluxonium [],
now routinely having decoherence times ∼ ,  times longer than the first superconducting
qubits. Furthermore, multiple qubits can be wired together [, ], and one can run simple
quantum algorithms on processors with a few qubits [–].

The other advance occurred in the atomic physics community, where atoms have been
strongly coupled to microwave cavities in an architecture known as cavity quantum electro-
dynamics (cQED) []. Photons normally interact very weakly with atoms, but by trapping
photons in a cavity, the effective interaction becomes much stronger because the photons have
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many chances to be absorbed by the atoms. The field of cQED has seen extraordinary success
performing increasingly complex manipulations of atoms and cavities, with state-of-the-art
experiments demonstrating counting of the number of photons stored in the cavity, and
watching the decay of those photons as they leave one at a time [].

In 2003, Steve Girvin, Rob Schoelkopf, and co-workers realized that these two advances
could be combined in a completely electrical structure on a chip. They replaced the natural
atoms and 3D cavities of standard cQED architecture with superconducting qubits and planar
transmission line resonators. Thus, the field of circuit QED was born.

The operation of circuit QED devices is sufficiently different from other solid-state systems
that when describing these systems it is often easier to use terminology from the field of
quantum optics. We call our qubits ‘artificial atoms’ and the quantized energies stored in
the currents and voltages in our cavities we call ‘photons’. Some members of the community
have resisted this language; however, a photon is still a photon whether its wavelength is a
micron or a centimeter, and our superconducting ‘qubits’ display rich, multi-level structure
which is reminiscent of natural atoms. The beauty of these devices, however, is that they are
fully engineered quantum systems. Unlike natural atoms with their God-given level structure,
dipole moments, and so forth, these superconducting circuits have properties chosen by
the experimenter. Even better, these circuits can be designed such that their parameters
are adjustable with various ‘knobs’. The price one pays for this marvelous flexibility is that
these same knobs are also channels for energy decay and decoherence, whereby quantum
information stored in these systems is lost to the surrounding environment. Part of this thesis
will address understanding these effects and engineering new ways to overcome them. This
is of principal importance toward using these circuits to build practical quantum computers.
However, quantum computing is but one application of quantum control and measurement.
It turns out that the use of quantum optics language was not solely a convenience, but that
these same devices are powerful components for doing real quantum optics experiments
on-a-chip. Some already demonstrated examples are discussed in the theses of David Schuster
and Lev Bishop [, ], including number splitting [], production of single-photons on
demand [], and multi-photon transitions in the Jaynes-Cummings ladder [].

The principal focus of this thesis will be understanding and developing these solid-state
quantum optics experiments. These experiments seek to create, manipulate, and detect
quantum states of light. This naturally begs the question: what is quantum light? This
seemingly simple question turns out to be remarkably difficult to answer precisely. One can
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Figure 1.1: Viewing light on an accumulation oscilloscope. Cartoon sketches of what different
kinds of light might look like on an accumulation oscilloscope. a Coherent light, like from a
laser or a microwave generator, b thermal light, like sunlight, c a ‘cat state’, or superposition of
coherent states with opposite phases, and d a single photon ‘Fock state’, like the light produced
by the decay of a single atom.

develop a certain amount of intuition, though, by considering what various kinds of light
would look like if we could directly capture the field voltage on the screen of an oscilloscope.

To be more specific, suppose that we have access to an ensemble of identically prepared
states of light traveling down a transmission line, and that our oscilloscope is uncoupled
from the line until the precise moment in which we sample the voltage on the wire. We
repeat many such measurements for various delays and accumulate the measured voltages
on the screen of the scope. Figure 1.1 shows a cartoon of the oscilloscope screen for various
ensembles of classical and quantum light sources. The first image (a) results from a coherent
state, which describes the light produced by a laser or a microwave generator. As viewed
on the oscilloscope, it appears as a sine wave with a well-defined average amplitude and
phase. The width of the line is not a deficiency of the oscilloscope, but rather is caused by
quantum fluctuations that are always present. Another light source is thermal light (b), such
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as light from the sun, an incandescent light bulb, or any black body at non-zero temperature.
On the oscilloscope this light appears as a flat band around zero volts. Though quantum
fluctuations are still present, in this case, the width of the line is primarily determined by
the temperature of the source. The thermal state has a well-defined root mean square (RMS)
amplitude, but a fluctuating phase. We can compare these two classical light sources with
two other quantum ones. The first, shown in (c), is a so-called ‘cat state’∗. This particular cat
is a superposition of coherent states with opposite phases, which on the oscilloscope screen
appears as two interwoven sine waves. Unfortunately, we cannot use this measurement to
verify the quantum nature of the light, because despite being consistent with a cat state, the
quantum nature of this cat is actually not visible on the screen. A malicious party could have
replaced our cat state ensemble with a classical mixture of the constituent coherent states
and it would appear identical for this measurement. Evidently, one needs to build a very
different ‘oscilloscope’ to observe a coherent superposition. The last state is a Fock state or
photon number state (d), like what is produced when a single atom decays. Its appearance
on the oscilloscope screen bares some resemblance to the thermal state, because like the
thermal state, the Fock state has a definite RMS amplitude (power) without a well-defined
phase. However, whereas the lack of phase of the thermal state arises from a classical mixture
of signals with random amplitudes and phases, the Fock state is a coherent superposition
of all phase states. Thus the apparent noise in this measurement is completely quantum.
The absence of points at V =  (for odd-numbered Fock states) is a result of the particular
nature of this noise.† The difficulty in distinguishing quantum from classical with such an
oscilloscope, however, reveals the need for better tools, several of which have been fully
developed in the quantum optics community and which I review in section 2.4.1. For now, I
hope you will accept that quantum light is light that has a fundamentally different character
than coherent or thermal light.

Putting this issue aside for the moment reveals another important question: why is
quantum light interesting? Whereas the development of superconducting qubits has a specific
technological goal of building a scalable quantum computer, the applications for quantum
light are not nearly so obvious. It is possible that quantum states of light could be useful

∗ This label appears to be used in quantum optics to describe any superposition state of some macroscopic
quantity. Thus, there can be amplitude cats, phase cats, and so on. It is also common to refer to the distance
between the superposed states as the ‘size’ of the cat.

† Amazingly enough, if we were to plot the average signal on our oscilloscope for either the thermal, cat, or Fock
states, at any point in time the signal would average to zero despite the presence of the light!
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for novel communications protocols, such as quantum cryptography [] which allows two
parties to exchange encryption keys that cannot be secretly intercepted. There is also ‘squeezed’
light which has applications to ultra-precise measurements [, chapter 8]. These applications
require ‘flying’, or itinerant photons, which are photons traveling through vacuum or down a
wire. In contrast, for the most part this thesis deals with stationary photons—photons that are
trapped in a cavity. Furthermore, these photons are at microwave frequencies, which makes
them more difficult to send losslessly over long distances compared to optical photons.∗

Consequently, there are remaining technological hurdles before the techniques presented
here could be used for quantum communication.

Even before these technological hurdles are overcome, there is reason to take interest
in systems that store quantum information in stationary photons. Continued progress
in quantum information processing has shown increasing sophistication in the control,
entanglement, and measurement of fermions (qubits). Meanwhile, bosonic systems (cavities)
have fallen behind in terms of these metrics, despite having longer coherence times than
many qubits. It may turn out that these bosons are equivalently good constituent elements
in a quantum information processor. In the meantime, though, there is incredible power in
coupling even a few cavities. Consider that the size of the Hilbert space for N coupled qubits
is N , while coupled cavities can have many more accessible levels. The number of states in
experimentally realizable cavities is limited by energy thresholds, such as the critical current
of the superconducting wires carrying the current. Even considering cavities truncated to just
5 levels, though, if N such cavities of different frequencies are coupled, then the dimension
of the resulting Hilbert space is N . One would need five qubits to have a larger Hilbert space
than even two such cavities. Consequently, multi-cavity circuit QED opens up a vast area for
exploring quantum control and entanglement in spaces with large degrees of freedom while
requiring very few ‘moving parts’. This makes multi-cavity circuit QED an attractive frontier
for further research and growth in quantum information.

The trade-off for this rapid growth is that the full Hilbert space of coupled cavities is
not easily accessible. Qubits are needed in order to load excitations into the cavities one at
a time. Recently, Strauch et al. [] have extended earlier work by Law and Eberly [] to

∗ This limitation is partly an issue of economics. Superconducting transmission lines are better than most
optical fibers, but the need for cryogenics makes superconducting transmission lines much more expensive.
Note that this limitation is not relevant to on-chip communication where the distances are much smaller.
Microwave photons can be efficiently routed around superconducting circuits, making them potential useful
for communication between ‘distant’ qubits in a quantum computer.
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show that one can prepare an arbitrary state of two cavities with one qubit that is coupled
to each. In addition to the resonant SWAP gate recently demonstrated by several groups
[, ], Strauch’s scheme requires a photon-number selective qubit gate of the type first
demonstrated in chapter 8. This thesis thus lays the groundwork for this new direction in
quantum information.

1.1 Overview of thesis

This thesis largely deals with extensions to the circuit QED architecture for the purpose of
creating, detecting, and manipulating quantum light. Before embarking into unexplored
waters, we begin in chapter 2 with a review of circuit QED with transmon qubits. This
review discusses the resonant and dispersive regimes of the Jaynes-Cummings Hamiltonian
before introducing a new ‘quasi-dispersive’ regime in section 2.2.4. The quasi-dispersive
regime presents a rich level structure that can be easily understood in terms of a smooth
connection between the resonant and dispersive regimes. It will turn out that this regime is
incredibly useful for photon-number-dependent quantum logic, which is used in chapter 8
to perform quantum non-demolition photon measurements. To fully appreciate this, one
needs to understand quantum measurements, which are reviewed in section 2.3. Section 2.4.1
recalls powerful mathematical tools for phase space descriptions of cavity states, allowing us
to provide a definition of quantum light. Finally, section 2.5 examines recent experiments
that create and measure various quantum states of light.

Chapter 3 develops the theory for circuit QED with two cavities. Any circuit involving
more than one cavity naturally involves some kind of direct or indirect coupling between
the cavities. Section 3.2 discusses the effects of a classical coupling, while section 3.3 and
section 3.5 describe quantum coupling mediated by a qubit. The latter section reveals a Kerr-
type interaction between the cavities that is tested experimentally in chapter 7. Sometimes the
cavity-cavity coupling is not desired, so section 3.4 introduces a modified transmon design,
called the ‘sarantapede’, that serves to couple a single qubit to two cavities while minimizing
the indirect coupling through the qubit.

Cavity-qubit coupling provides the useful physics of circuit QED, but it also introduces
additional qubit relaxation that cannot be fully described by a single-mode theory. Chapter 4
examines relaxation from the full multi-mode Purcell effect by applying a powerful formalism
for calculating relaxation due to the classical admittance of the electromagnetic environment.
With this improved understanding of relaxation, we are poised to suggest two ways to
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ameliorate it: a ‘balanced’ qubit design in section 4.1.1 and the ‘Purcell filter’ in section 4.1.2.
The same admittance issues affect the introduction of fast flux bias lines to the circuit for qubit
frequency control. Section 4.2 looks at design issues for these flux bias lines, and estimates
the additional relaxation and dephasing from adding them. Even after finding a design
which minimally affects qubit performance, these control lines do not respond perfectly.
Consequently, we apply deconvolution methods in section 4.3 for improving the outputs
from the flux control system.

In chapter 5, I describe advances in the fabrication of circuit QED devices, done in collab-
oration with Luigi Frunzio, for making an array of tranmon designs and for making samples
on sapphire substrates. Modifications to the measurement setup required for two cavity
experiments are detailed in section 5.2. The following experiments require precise microwave
pulses. A limited quantity of expensive vector microwave sources spurred the development
of some custom hardware for pulse generation, which is described in section 5.2.3.

After all the build-up we move onto actual experiments in chapter 6, which looks at
relaxation in real circuit QED devices. Section 6.1 applies the previously developed classical
admittance formalism to measurements on a wide variety of circuit QED samples with
transmon qubits. From these data a consistent explanation of qubit relaxation is found in the
multi-mode Purcell effect acting in parallel with a constant-Q source that is consistent with
dielectric loss. This work required collecting data from a large number of samples, a task
which I performed together with Jerry Chow and Joe Schreier, while Andrew Houck had the
insight to see the thread connecting these many different devices. In section 6.2, we go on to
demonstrate a new circuit element called the ‘Purcell filter’ that decouples qubit relaxation
from cavity decay. The idea for this filter originated with Andrew Houck, though Matt Reed
did most of the legwork to carry it to fruition, with assistance from me. The use of this filter
as a means to provide qubit reset emerged from experiments that Matt and I did together.

Chapter 8 describes a true quantum optics on-a-chip experiment that demonstrates a
quantum non-demolition (QND) method for detecting photons in a cavity. It operates by
means of a qubit-photon logic gate that maps information about the number of photons in a
cavity onto a qubit state. The idea for this experiment emerged out of many discussions with
Andrew Houck, David Schuster, and Jay Gambetta. This chapter shows repeated measure-
ments of single photons using this logic gate, whereby I am able to claim that the method is
at least 90 QND.

The thesis ends in chapter 9 with some thoughts on extensions to the photon detection
experiment and possibilities for circuit QED with multiple cavities.



CHAPTER 2

Circuit QED and Quantum Optics

This thesis is meant as a follow-up to Circuit Quantum Electrodynamics, Vols. I and II by
David Schuster and Lev Bishop, respectively. Consequently, I expect the reader to be

largely familiar with the material contained in those volumes. Nonetheless, I will present a
brief overview of some topics covered there in order to establish certain nomenclature, as
well as to refer you to the relevant sections of those volumes to learn more about topics with
which you are less familiar.

2.1 Cooper-pair Box and Transmon

By now, there are many established flavors of superconducting quantum bits (qubits). It
used to be that superconducting qubits could be easily classified as charge, flux, or phase
qubits based upon the quantity in each that served as a good quantum number. However, the
community as a whole has increasingly moved toward qubits like the quantronium, transmon,
capacitively shunted flux qubit, and fluxonium, which cannot easily be put into one of these
categories, but instead exist in intermediate regimes between charge, flux, and phase. It is
worth noting that all of these devices are really many-level devices. They are called “qubits”
because all have sufficient anharmonicity between levels that some pair of levels can be
individually addressed. Thus, they can be operated as two-level systems, though often is
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a b

Figure 2.1: The Cooper-pair box. a The standard Cooper-pair box is a superconducting island
coupled to a reservoir by a Josephson junction. The charge on the island is modulated by a gate
voltage, Vд, which is capacitively coupled to the island via Cд. b In the split Cooper-pair box,
the single junction is replaced with a SQUID, allowing the effective Josephson energy of the
two junction loop to be tuned by the flux, Φ.

easier to think of these devices as artificial atoms, in reference to their engineered atom-like
level structures.

In my own graduate student career I have participated in the development and character-
ization of the transmon, which though topologically identical to a charge qubit, has basis
states which are largely localized in phase. This gives the transmon the remarkable advantage
of being immune to charge noise, which is a persistent problem for devices fabricated on sub-
strates, without increased sensitivity to flux or critical current noise. The transmon transition
energies can also be tuned in situ by application of a local magnetic field. Slow drifts of field
are not a major concern if the devices are sufficiently shielded, so the transmon can be stably
operated at a chosen frequency for many days at a time.

Cooper-pair box

In order to describe transmons quantitatively, it is useful to start with the Cooper-pair box
(CPB). The CPB is a simple circuit consisting of an island connected to a reservoir by a
Josephson junction (see figure 2.1(a)). The island is also capacitively coupled to a voltage
source, Vд, which can modulate the electrostatic energy of charges stored on the island. The
device energies are determined by two parameters, the Josephson energy, EJ, for Cooper-
pairs to tunnel across the junction, and the charging energy, EC, which is the energy cost of
bringing an additional electron onto the island from infinitely far away. The Hamiltonian
describing this circuit is

H = EC(n̂ − nд) − EJ cos φ̂, (2.1)
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where n̂ is the operator for the number of charges on the island, nд = CдVд/e is the applied
gate voltage, Vд, expressed in units of Cooper-pairs, and φ̂ is the gauge-invariant phase which
is equal to the time integral of the voltage across the junction.∗ A useful modification of this
circuit adds an additional Josephson junction in parallel with the first, shown in figure 2.1(b).
In this configuration, the effective Josephson energy of the pair of junctions can be modulated
by the flux Φ penetrating the loop formed by the junctions. The Hamiltonian for such a loop
can be written, following the spanning tree procedure described in [] and [, chapter 2],
as

H = −EJ cosφ − EJ cos(φ + πΦ/Φ), (2.2)

where EJ and EJ are the Josephson energies of the junctions, φ is the node phase of the
island, and Φ = e/h is the magnetic flux quantum. With trigonometric identities, this can
be rewritten as [, ]

H = −EJΣ cos(πΦ
Φ

)√ + d tan (πΦ
Φ

) cos(φ − φ), (2.3)

where EJΣ = EJ + EJ is the total Josephson energy, d = (EJ − EJ)/(EJ + EJ) describes the
asymmetry between junctions, and φ is given by tan(φ + πΦ/Φ) = d tan(πΦ/Φ). When
the junction asymmetry is small, typically d ∼ .–., the two junction loop behaves like a
single junction with a flux-dependent Josephson energy

EJ(Φ) ≃ EJΣ cos(πΦ/Φ). (2.4)

The residual asymmetry presents a term proportional to d sin(πΦ/Φ), which opens a chan-
nel for relaxation because it allows coupling between states of opposite parity. This is discussed
in the section on flux bias lines in section 4.2.

When the charging energy is much larger than the Josephson energy, EC ≫ EJ, the CPB
eigenstates are essentially charge states. In this regime, the first term of (2.1), EC(n − nд),
gives rise to parabolic energy levels as a function of the gate charge nд, and the Josephson
energy lifts the degeneracy between charge states at half-integer values of nд. At these values
of gate charge, the transition energies are also first-order insensitive to fluctuations in nд;
consequently, this is called a “sweet-spot” []. The energy spectrum of the CPB is highly

∗ I have used hats over the variables in (2.1) to emphasize that the charge on the island and phase across the
junction are quantum variables. Having established this, I will drop the hats in the remainder of the thesis.
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Figure 2.2: Charge dispersion. CPB energy levels, E j, for the lowest 5 charge states of (2.1) are
shown in units of EC. Energy bands are shown for EJ/EC = , , , and . At small EJ/EC, the
system is in the charge regime and the bands have a parabolic shape. The avoided crossing
between the two lowest levels at nд = ±. is a ‘sweet spot’ where the transition energy, E is
first-order insensitive to fluctuations in the gate charge. As EJ/EC increases the bands flatten
and the device enters the transmon regime. Reproduced from [, ].

anharmonic, so one can construct a two level approximation that treats the lowest two levels
of the CPB as an effective spin-/. To find out more about this procedure, see [, section
3.2].

Transmon

By increasing the ratio of energies EJ/EC one enters a rather different regime. When the
Josephson energy is the dominant energy scale, EJ ≫ EC, then the device becomes a weakly
anharmonic oscillator. To achieve this ratio of energies, it is sufficient to keep a similar EJ

and add a large capacitance in parallel with the junction in the CPB circuit. The increase of
EJ/EC causes the charge bands of figure 2.2 to flatten. In fact, defining the charge dispersion
as the spread in transition energy between adjacent energy levels,

єm = Em,m+(nд = /) − Em,m+(nд = ) (2.5)
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where Ei j = E j − Ei is the energy difference between levels i and j, then the residual charge
dispersion decreases exponentially with increasing EJ/EC. In fact, []

єm ∼ EC exp(−√EJEC). (2.6)

Consequently, even at moderate values of EJ/EC, the charge dispersion can be suppressed to
less than  kHz, making the transmon effectively immune to charge noise.

Whereas the charge dispersion is exponential in EJ/EC, the remaining anharmonicity is
only algebraic in EJ/EC. The anharmonicity is defined as the difference between adjacent
transition energies. For operation as a qubit, the relevant levels are the bottom three, so it
makes sense to define

α = E − E. (2.7)

As EJ/EC →∞, the anharmonicity asymptotically approaches α ≃ −EC. A typical transmon
has EC ≃  MHz, which provides sufficient anharmonicity for fast manipulation of the
transmon state. Thus, one can treat the transmon as a qubit for quantum information
processing. However, unlike a CPB that has relative anharmonicity, αr = α/E, that is greater
than 1 at the charge sweet spot, the higher transmon levels often play a important role in
qubit-qubit or qubit-cavity coupling.

Since we will need to refer frequently to these higher levels, from this point forward I
will label the transmon states with the “alphabetical” order: д, e, f , h, etc.∗ This will help
in avoiding confusion when we proceed to label joint qubit-cavity states, where I will use
numbers to label cavity states.

2.2 Circuit Quantum Electrodynamics

Cavity quantum electrodynamics (cavity QED) describes the interaction of matter with light
trapped in an cavity. Typically, light interacts very weakly with matter, but by trapping the
light in a cavity, this interaction can be amplified many times such that a single photon in the
cavity will be absorbed and re-emitted by the atom many times before the photon escapes
from the cavity.

∗ The somewhat odd choice allows referring to the ground and excited states as ∣д⟩ and ∣e⟩ while wrapping a
mostly alphabetical order around it.
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In 2004, Rob Schoelkopf, Steve Girvin, and others realized that the techniques of cavity
QED could be used with superconducting qubits and transmission line cavities, creating
the field of circuit QED. The CPB and transmon eigenstates have effective dipole moments
which allow these qubits to couple to an electric field. If one of these qubits (treating it, for
the moment, as a two level system) is placed in a 1D transmission line cavity, the combined
system is described by the Hamiltonian (see [] and [, sections 3.3 and 4.3.4])

H = ħωr(a†a + /) + ħ

ωqσz + ħд(a + a†)σx , (2.8)

where ωr and ωq are the cavity and qubit frequencies, respectively, and д parameterizes
the interaction strength. Writing σx = σ+ + σ− and taking the rotating wave approximation
(RWA) to throw away terms that do not conserve energy (like a†σ+), we arrive at the Jaynes-
Cummings Hamiltonian

H = ħωra†a + ħ

ωqσz + ħд(aσ+ + a†σ−). (2.9)

The Jaynes-Cummings Hamiltonian has been used to effectively model the physics in a wide
range of experiments in cavity QED with both natural and artificial atoms. The simple form
of the coupling means that the Hamiltonian can be written in a  ×  block-diagonal form.
This allows the Hamiltonian to be solved analytically giving the dressed eigenstates

∣n,+⟩ = cos(θn) ∣n − , e⟩ + sin(θn) ∣n, д⟩ , (2.10a)∣n,−⟩ = − sin(θn) ∣n − , e⟩ + cos(θn) ∣n, д⟩ , (2.10b)

and eigenenergies

E = −ħΔ


, (2.11a)

En,± = nħωr ± ħ


√
дn + Δ, (2.11b)

where Δ = ωq − ωr is the detuning between the qubit and cavity, and θn is given by

tan(θn) = д
√
n

Δ
. (2.12)

So far, we have not said anything about dissipation. In practice, photons which enter the
cavity will eventually decay, either leaving by traveling out one of the “mirrors”, or the photons
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a
b

Figure 2.3: Resonant and Dispersive Jaynes-Cummings Regimes. a Resonant regime when
ωr = ωq. The qubit-cavity coupling lifts the degeneracy such that the splitting is д

√
n. b

Dispersive regime with ωq > ωr . In this regime the photon-like transitions are ωr±χ, depending
on the qubit state. The qubit-like transitions are also photon-number dependent, ωq+(n+)χ.

can dissipate by radiative or dielectric loss. The sum of all these processes is characterized by
a rate, κ. Similarly, energy stored in the qubit can also decay, and we characterize this by the
rate, γ. When the coupling strength is larger than these decay channels, i.e. д > γ, κ, then the
system is in the strong coupling regime. In this regime, even a single excitation in the qubit or
cavity exerts a strong influence on the other. These effects are explored in the next sections.

2.2.1 Resonant regime

Returning to the case of a simple two-level system coupled to a cavity, we can understand
the Jaynes-Cummings Hamiltonian through various regimes. When the qubit and cavity are
in resonance, ωr = ωq, then θn = π/ and the eigenstates and eigenenergies from (2.10) and
(2.11) are

∣n,±⟩ = (∣n − , e⟩ ± ∣n, д⟩) /√, (2.13a)

En,± = nħωr ± ħд
√
n. (2.13b)

This situation is depicted schematically in figure 2.3(a). The eigenstates are equal superposi-
tions of qubit and cavity states with the coupling lifting the degeneracy such that the splitting
is ħд

√
n, where n is the number of photons in the cavity. This

√
n scaling has been observed

spectroscopically up to n =  in [] and up to n =  in []. It can also be probed in the
time-domain, because a bare qubit or cavity state which is brought into resonance with the
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Figure 2.4: AC-Stark effect. a Spectroscopy vs. measurement drive power. The color scale
is the phase shift of a drive at the cavity frequency. b A slice at low power (n = ), shows a
Lorentzian lineshape for the qubit. b At higher drive power (n = ), the qubit response is
shifted and has a broader Gaussian shape. In each plot, the red and orange traces are Lorentzian
and Gaussian fits, respectively. Reproduced from [].

other will undergo Rabi oscillations between qubit and cavity states at the rate д
√
n. This

technique was used to create and measure photon states in [, , –].

2.2.2 Dispersive regime

When the qubit and cavity are far detuned they can no longer directly exchange energy.
Instead, they interact by a dispersive interaction that slightly modifies the energy levels. When
д/Δ ≪ , the JC Hamiltonian can be expanded in powers of (д/Δ). The result to second
order is []

H′ ≈ ħ (ωr + χσz) a†a + ħ

(ωq + χ) σz , (2.14)

where χ = д/Δ. This has the form of a cavity with a qubit-state dependent frequency,
ω′r = ωr ± χ and a qubit that is slightly renormalized by the Lamb shift, ω′q = ωq + χ. The
dispersive interaction is depicted schematically in figure 2.3(b). The qubit-state dependent
cavity frequency provides a means to perform non-destructive readout of the qubit state,
which is used for qubit measurement throughout this thesis.
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AC-Stark effect

If we group the terms of (2.14) differently, we obtain

H′ ≈ ħωra†a + ħ

(ωq + χ + χa†a) σz . (2.15)

In this form it is apparent that the qubit frequency depends on the number of photons in the
cavity. This AC-Stark effect shifts the qubit frequency proportionally to n = a†a, the number
of photons in the cavity. Fluctuations in the photon number dephase the qubit and broaden
the linewidth. For instance, if the cavity is populated with a coherent state, then the cavity
state is described by a Poisson distribution of photon numbers, with fluctuations that scale
like

√
n. Figure 2.4 shows a measurement of the AC-Stark effect in a circuit QED system

with a CPB qubit. At low measurement power, there are very few photons in the cavity, so the
qubit lineshape is Lorentzian with a width, γ, determined by relaxation and dephasing. At
higher measurement power, the qubit shifts to higher frequency. Since the shift per photon,
χ, is smaller than the linewidth, the peaks for the individual populated photon numbers are
not discernible, instead, smearing together into a Gaussian lineshape. For further discussion
of this behavior, see [, section 8.3] as well as [, ].

Number splitting

When the Stark shift per photon gets larger than the qubit and cavity relaxation rates, i.e.
χ > γ, κ, the system enters the strong dispersive regime. Here, the Stark shift exerts a
sufficiently strong pull on the qubit that a single photon entering the cavity shifts the qubit by
more than a linewidth. In this case, when the cavity is populated with a coherent or thermal
distribution, the quantized nature of the light is directly manifest in the qubit spectrum. Since
the Stark shift is χ = д/Δ, increasing the shift requires increasing the coupling strength
or decreasing the detuning. In the work of [], the Stark shift was made larger by using a
transmon qubit, which, because of its larger size, tends to have a larger coupling strength.
Figure 2.5 shows measurements of this sample for various cavity populations. In figure 2.5(a),
the cavity is populated with coherent states of increasing amplitude. Since the nth photon in
the cavity decays at a rate nκ, the nth photon number peak inherits this decay rate such that its
linewidth is γn = γ+nκ. Consequently, as the amplitude of the coherent field is increased, the
spectrum evolves from sharp distinguishable peaks to a broad, nearly Gaussian, spectrum.

The height of the peaks also reveals information about the cavity population. When
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Figure 2.5: Number splitting. Spectroscopy of a transmon coupled to a cavity. a Spectroscopy
with a coherent drive populating the cavity. b Coherent population. b Thermal population.
Reproduced from [].

the spectroscopic drive weakly perturbs the qubit state, the resulting phase shift is directly
proportional to the population of a particular photon number state. Thus, the height of the
peaks correspond with the statistics of the populating field. In figure 2.5(b and c), the cavity
is populated with the same average photon number of n̄ ∼ , but in one case the populating
tone is a coherent field and in the other it is a thermal field. For the coherent population
the peaks heights are clearly non-monotonic and are consistent with a Poisson distribution:
P(n) = e−n̄n̄n/n!, whereas the thermally populated cavity has monotonic peaks that are
consistent with a Bose-Einstein distribution: P(n) = n̄/(n̄ + )n.

This experiment shows how a coupled qubit-cavity system serves as a photon statistics
analyzer. However, it is not ideal. In this single cavity experiment, the same cavity is used for
population and qubit readout. The same photons that shift the qubit frequency also carry
information about the qubit state when they leave the cavity. This re-use of photons makes the
system nonlinear, causing squeezing of the cavity states at high drive powers. Furthermore,
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this re-use means that information is acquired about the photon state at the same rate as the
photons leave the cavity. In chapter 8, I will show how to extend this work into a fast, QND,
photon detector.

2.2.3 Generalized Jaynes-Cummings Hamiltonian

As mentioned previously, the transmon has a nearly harmonic level spectrum. Consequently,
to effectively model the coupling of a transmon to a cavity, the Jaynes-Cummings Hamiltonian
must be generalized to include higher transmon levels. These other states also couple to the
electric field in the cavity, so we obtain []

H = ħωra†a + ħ∑
j
ω j ∣ j⟩ ⟨ j∣ + ħ∑

i
дi,i+(a† ∣i⟩ ⟨i + ∣ + h.c.), (2.16)

where ħдi j = βeV 
rms⟨ i ∣ n ∣ j ⟩, V 

rms is the RMS of the zero-point voltage fluctuations in the
cavity, and β = Cд/CΣ is the voltage division ratio determined by the gate capacitance com-
pared to the total capacitance. In this expression, I have dropped transmon-photon couplings,
дi j, for non-nearest-neighbor transmon states because the matrix elements, ⟨ i ∣ n ∣ j ⟩, rapidly
vanish as EJ/EC → ∞ for j ≠ i ± . As before, one can make a dispersive approximation
when the transmon levels are far detuned from the cavity transition. Making a two-level
approximation of the transmon gives an expression like (2.14), but now with []

χ = ддeα
Δ(Δ + α) , (2.17)

where α is the transmon anharmonicity, and Δ = ωдe −ωr. Since α < , when the detuning is
large compared to the anharmonicity, the transmon χ has the opposite sign compared to the
CPB.

2.2.4 Quasi-dispersive regime

The dispersive regime is convenient because the Hamiltonian separates into qubit and cavity-
like terms, with corrections that are linear in the number of excitations added to the system.
The price of working dispersively, though, is that most of the effects are small (there is a
factor (д/Δ) in front of everything because of the perturbative expansion). Consequently,
in situations which benefit from larger energy shifts, it is advantageous to work in a quasi-
dispersive or nearly-resonant regime where . < д/Δ < .
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Figure 2.6: Energy levels of a transmon qubit coupled to a cavity. Numerical calculation of
the energy levels of a transmon qubit coupled to a cavity, plotted as a function of the д → e
transmon transition frequency in the absence of coupling. Colors are a guide to the eye,
and do not identify particular states. Parameters used to make this plot are д/π =  MHz,
ωr/π = . GHz, and EC/h =  MHz. Levels that are mostly flat, like ∣, д⟩, are cavity-like
levels. Sloped lines are transmon-like levels, where lines of greater slope are higher up the
transmon ladder. Due to the transmon’s negative anharmonicity, higher states of the transmon
intersect cavity levels at positive detunings of the lowest transmon transition, Δ = ωдe −ωr > .

A simple way to understand the quasi-dispersive regime is that it smoothly connects
the resonant and dispersive limits which we have just examined. In the resonant limit, the
transition energy between states with opposite parity is ∼ ħд

√
n, and in the dispersive limit,

these transitions are ħд/Δ. Consequently, as the qubit comes into resonance with the cavity,
the transition energies grow and become non-linear in the photon number, n. This picture
becomes a little more complicated when we replace the qubit with a transmon, because the
higher levels of the transmon are resonant with the cavity at various small detunings, Δдe , of
the lowest transmon transition and the cavity.

Consequently, we need to return to calculating energy levels from the full Hamiltonian
(2.16). This is relatively straightforward with Mathematica using the transmon package
developed by Lev Bishop [], and can be done efficiently as long as the Hilbert space is
truncated to contain a modest number (100–1000) of energy levels. It is useful to consider a
few example energy level diagrams to develop some intuition about the qualitative features
of this regime.

Figure 2.6 shows numerically calculated energy levels of a transmon qubit coupled to a
cavity. Finding eigenvalues in Mathematica provides the locations of the energy levels, but
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Figure 2.7: Extension of the AC-Stark Shift in the Quasi-dispersive Regime. Calculation of
photon-number-dependent transition frequencies for the д → e. The presentation is split for
positive (top) and negative (bottom) detunings to allow for state labeling as described in the
text. The large difference in apparent photon-number-dependent energy shifts at Δ/д =  is
due to a change of state labels.

without meaningful labels. One can identify the various transitions with some simple rules,
though. First of all, in figure 2.6 the parameter that is changing is the Josephson energy of
the transmon; therefore, levels which contain only cavity excitations should be flat because
they are independent of the transmon frequency. Conversely, levels containing transmon
excitations have slope, and higher levels of the transmon are more strongly dependent on EJ ,
so the slope of the levels increases with the number of excitations in the transmon. Armed
with these rules, one can apply the labels shown on the right of figure 2.6.

The notion of the AC-Stark shift can be extended into the quasi-dispersive regime by
computing the transition energies ħωn

д,e = En,e − En,д. Before doing this, however, one needs
to decide how to extend the state labeling scheme of the last paragraph into regions where
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there are avoided crossings between states. For instance, the correspondence between energy
level and label is rather murky in the 3-excitation manifold for ωд,e/π between 5.2–5.5 GHz.
The various choices for how to proceed involve choosing a parameter to adiabatically vary
until the system returns to a state where the labeling is “easy”. For instance, one possibility
is to imagine a means to adiabatically adjust the qubit-photon coupling rate, д, and to find
the resulting state when д → . This choice is conceptually straightforward, but it is less
useful in practice because д is not a parameter which can typically be varied in situ in current
experiments. Another possibility is to adiabatically vary Δ until ∣Δ∣ /д ≫ . The direction Δ
is tuned depends on the particular experimental protocol being considered, but a reasonable
choice is to go to more positive (negative) detuning if Δ is initially positive (negative).∗

This last choice of labeling by adiabatically varying the detuning is used to calculate the
AC-Stark effect in the quasi-dispersive regime, shown in figure 2.7. The cases of positive and
negative detunings are considered separately because the labeling protocol is only consistent
if sgn(Δ) is constant. In both cases you see a transition from a region where the Stark shift
is approximately linear in the photon number, to regions where it is highly nonlinear. This
change is especially evident in the case of positive detunings, where the negative anharmonic-
ity of the transmon implies that higher transmon levels will come into resonance with cavity
states as the detuning is decreased. This causes a large shift in the ωn

д,e , a useful feature for
spectrally resolving these transitions in a fast, pulsed experiment. However, the negative
transmon anharmonicity also creates a proliferation of other transitions which are nearly
resonant with the ωn

д,e when Δ > . This spectral crowding complicates experiments involving
several-quanta excitations, which are discussed further in chapter 9.

2.3 QND measurements

Undergraduate and graduate quantum mechanics courses often present a very simple model
of measurements. They teach that a quantum measurement collapses a system into the
eigenstate corresponding to the observed measurement result. However, this idealized view
of measurements is not automatically satisfied in practice. In particular, many measurements
are destructive, leaving the system in the ground state or an unknown state. For example,
a photo-multiplier tube absorbs the photons that it measures. Quantum non-demolition

∗ The effect of the direction of the adiabatic change of Δ is particularly apparent when the starting condition
is resonance, Δ = , where, for instance the highest energy level in the 2-excitation manifold becomes ∣, f ⟩
when sweeping towards positive detunings, or ∣, д⟩ if one sweeps to negative detunings.
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(QND) measurements, on the other hand, allow repeated measurements that give the same
eigenvalue. The name QND emphasizes that the probe minimally perturbs the system. Note
that this is not the same as saying that the probe has no back-action. For example, if a
quantum oscillator is in a coherent state, it occupies a superposition of energy eigenstates
with a well-defined phase relationship. When one performs a QND measurement of the
energy of the oscillator, the state is projected into an energy eigenstate and the phase of the
oscillator (the conjugate variable to the energy) is now completely uncertain. Consequently,
the QND measurement has perturbed the system. Importantly, however, the probe has not
demolished the state, and so a subsequent measurement of the oscillator energy will return the
same result. This example is particularly relevant to the measurements described in chapter 8,
where I present a QND method for measuring the photon number in a cavity. In this section
I will give a brief summary of the requirements for QND measurements. For a more in-depth
treatment, see Refs. [, ].

To adequately describe quantum measurements, one should consider a system + meter
model, where the system, S, with Hamiltonian HS , and meter, M, with Hamiltonian HM , are
coupled by an interaction Hamiltonian, HSM . The total Hamiltonian of the system + meter is

H = HS +HM +HSM . (2.18)

The interaction, HSM , should be such that it couples an observable of the system, OS , to an
observable of the meter, OM . A necessary and sufficient condition for a QND measurement
of OS is that []

[OS ,U] ∣ψM⟩ = , (2.19)

where U is an operator describing the joint evolution of the system and meter, and ∣ψM⟩ is
the initial quantum state of the meter. Often it is difficult to find U exactly, so it is common
to make the additional assumption that OS is a constant of the motion, i.e.

iħ
∂OS

∂t
+ [OS , H] = . (2.20)

When OS is also a constant of motion of HS , (2.20) is equivalent to

[OS , HSM] = . (2.21)

This last condition is the one most often associated with QND measurements; however, it is
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merely a sufficient, not necessary, condition for QND. Nonetheless, all QND measurements
discussed in this thesis will approximately satisfy the more stringent (2.21).

Equation (2.21) is an ideal that is never completely satisfied in practice because no ex-
periment implements perfect control on a system. Thus, for real experiments it is useful
to also define the demolition of a measurement. One sensible definition of demolition is
the probability that the measurement process, U , changes the observable, OS . Thus, for a
particular value of OS = v, with system eigenvector ∣v⟩, the demolition is

D = ∑
u≠v

∣⟨u ∣U ∣ v ⟩∣ . (2.22)

This definition serves as a figure of merit for comparing QND measurement protocols, as
it determines the number of repetitions of a measurement protocol that may be performed
before additional measurements do not reveal additional information about an initial state.

2.4 Quantum Optics Background

The last chapters of this thesis primarily deal with creating and detecting non-classical states of
light in a cavity. This leads naturally to two specific issues. The first is, what is a ‘non-classical’
state of light? The second is, how does one go about detecting these states, or how does one
perform tomography of a cavity state? It turns out that we can answer both questions by
introducing the concept of quasi-probability distributions, including a few particular examples
which are commonly used in the quantum optics community. What follows is a brief overview
that is largely drawn from [] and []. For a more complete discussion, I refer you to those
sources.

2.4.1 Representations of cavity modes

A single-mode cavity is a harmonic oscillator. Consequently, it has an equivalent description
in terms of a particle with position X and momentum P described by the Hamiltonian

H = P

m
+ mω


X. (2.23)

A classical description of this oscillator gives a definite value for X and P at any moment
in time, but since X and P are conjugate variables, the Heisenberg uncertainty principle
prevents complete, simultaneous knowledge of both. Thus, if we represent the state of the
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a b c d

Figure 2.8: Phase space representation of cavity states. a Vacuum state. b Coherent state of
amplitude α = √N . c Squeezed state. d Fock state of N photons.

oscillator in the X-P plane, the quantum description requires that the state be described by a
region of finite volume, rather than with a point.

Figure 2.8 shows some example phase space representations of cavity states.∗ Figure 2.8(a)
and (b) show a vacuum state and a coherent state, respectively. These cavity states are
represented as fuzzy disks where the displacement from origin is equivalent to the average
amplitude and phase of the field. They are conventionally considered ‘classical’ because in the
limit of large N , the quantum fluctuations are proportionally very small, so the representation
becomes nearly point-like. Figure 2.8(c) shows a ‘squeezed’ state, where the disk is now
elongated because the vacuum noise has been reduced in one direction and amplified in the
other. Such states are useful because they allow a measurement of one quadrature of a field
with a precision that is beyond the ‘standard quantum limit’. Consequently, squeezed states
are usually considered quantum states, despite having strictly positive Wigner functions,
which we will define in a moment. Figure 2.8(d) shows a Fock state (an energy eigenstate
of the oscillator) with exactly N photons. Fock states have definite amplitude, but no phase
information, so they are circles in phase space. These various states clearly look very different
in their phase space representations, but we have not yet given a precise way to distinguish
quantum from classical.

In both the quantum and classical cases, the expectation value of any operator O which
is a function of the field quadratures can be computed by integrating over phase space with a
weighting function f (X , P),

⟨O⟩ = ∫ O(X , P) f (X , P)dXdP. (2.24)

For classical states, f (X , P)must be strictly positive, and so it has the meaning of a probability

∗ Due to the ‘blob’ or lollipop appearance of coherent states, this is sometimes colloquially referred to as ‘blob
space’.
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distribution. For quantum states, however, f can also take on negative values, so it is called
a quasi-probability distribution. There are several such quasi-probability distributions, the
most common of which are the Wigner W and Husimi Q functions.

To my taste, the Q function is actually the easiest to understand. The set of coherent states,
α, form a complete basis (actually, an over-complete basis) for the space of cavity states. Thus,
if the density matrix ρ describing the cavity state is written in the basis of coherent states,
then Q is simply related to the expectation value of the diagonals of the density matrix,

Q(α) = 
π
⟨ α ∣ ρ ∣ α ⟩, (2.25)

Introducing the displacement operator,

D(λ) = exp(λa† − λ∗a), (2.26)

which displaces a cavity state by a coherent state ∣λ⟩, we can write,

Q(α) = 
π
⟨ ∣D(−α)ρD(α) ∣ ⟩. (2.27)

This form presents an alternate interpretation that Q(α) is the projection onto the vacuum
state when the field is displaced by −α. Unlike W , the Q function is strictly positive, though
it theoretically contains the same information.∗

The Wigner function essentially takes the form of a Fourier transform of the density
matrix, ρ. When expressed in the position basis, it is written as†

W(x , p) = 
π ∫ du e−ipu⟨ x + u/ ∣ ρ ∣ x − u/ ⟩. (2.28)

Since the Fourier transform can be inverted, the Wigner function contains the same in-
formation as the density matrix. The Wigner function can be written in another form by
introducing the parity operator P = exp(iπa†a) that reflects a state about the phase space

∗ The Q function is essentially the convolution of W with a Gaussian. In principle, one can deconvolve a
measurement ofQ to findW , though in practice the presence of added noise maymake it impossible to recover
the negative (quantum) features inW by this method. Thus, to verify the quantum nature of a cavity state, it is
preferable to measureW directly.

† Due to the usual ambiguity in defining the Fourier transform, there are several conventions for the definition
ofW . The definition here has −/π ≤W(α) ≤ /π, but other sources define it such that − ≤W(α) ≤ .
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origin, then []

W(α) = 
π

tr [D(−α)ρD(α)P] . (2.29)

Since W is the expectation value of an operator, it is a measurable quantity, and because the
parity operator has eigenvalues ±, the Wigner function is bounded with −/π ≤ W(α) ≤ /π.
Continuing by expressing P in the number basis,

P = ∑
n
(−)n ∣n⟩ ⟨n∣ , (2.30)

we have

W(α) = 
π
tr [∑

n
D(−α)ρD(α)(−)n ∣n⟩ ⟨n∣] , (2.31a)

= 
π ∑

n
(−)ntr [⟨n∣D(−α)ρD(α) ∣n⟩] , (2.31b)

= 
π ∑

n
(−)npα(n), (2.31c)

where pα(n) is the probability to be in Fock state ∣n⟩ after displacing the field by −α. This
reveals a prescription for measuring the Wigner function by summing Fock state probabilities.
This method has already been used in experiments[, , –] which will be discussed in
section 2.5.

The Wigner function has several properties that make it similar to the classical probability
distribution discussed previously. In particular, if W(x , p) is integrated along either the x or
p direction, the result is the probability distribution in the conjugate variable, i.e.

P(x) = ⟨ x ∣ ρ ∣ x ⟩ = ∫ ∞

−∞
dpW(x , p), (2.32a)

P(p) = ⟨ p ∣ ρ ∣ p ⟩ = ∫ ∞

−∞
dxW(x , p). (2.32b)

Furthermore, for any observable O(x , p), which is a symmetric function of x and p,

⟨O(x , p)⟩ = ∫ dxdpO(x , p)W(x , p). (2.33)

These features make the Wigner function analogous to a classical probability distribution.
However, certain cavity states, like Fock states, have nodes in their probability distributions.
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That is, there exists some x for which P(x) = . By (2.32) this implies that

P(x) = ∫ ∞

−∞
dpW(x, p) = . (2.34)

Consequently, W(x , p) must also take on negative values. One can show [] that this is only
true of non-Gaussian states. Consequently, we can say that having a Wigner function with
negative values is a clear signature that a cavity state is non-classical. Some example Wigner
functions appear in section 2.5

2.5 Creating and measuring quantum states of light

There has been tremendous progress in the past decade in the preparation and detection of
non-classical states of light in cavities. In the following section, I will discuss prior experiments
demonstrating preparation and Wigner tomography of quantum states of electromagnetic
cavities where a qubit is used to ‘measure’ the field.∗ Additional state preparation techniques
will be discussed in section 2.5.1. Before diving into cavity experiments, I should mention
that the first measurement of a negative Wigner function was actually tomography of the
quantized motional state of an ion in a harmonic trap. Leibfried et al.[] used a resonant
technique that is analogous to methods employed with photons in electromagnetic cavities
[, , ], so I will focus on these later experiments because we have already developed all
the physics needed to understand their workings.

Resonant Rabi oscillations

One Wigner tomography technique uses a resonant interaction between a cavity field and
a qubit. The cavity state is prepared with the qubit initially far detuned, then the qubit is
brought suddenly into resonance for a time τ. Since the resonant Jaynes-Cummings states
of (2.13) are split by ħд

√
n, the qubit and cavity undergo coherent oscillations. When the

cavity state is a pure Fock state, these Rabi oscillations are between ∣n, д⟩ and ∣n − , e⟩ and
have a single frequency component. For a general cavity-qubit state written in the Fock basis
and initialized with the qubit in ∣д⟩,

∣ψ⟩ = ∑
n
cn ∣n, д⟩ , (2.35)

∗ It is also possible to performWigner tomography by homodyne detection of the emitted radiation. Such a
technique was used in [] for tomography of squeezed states.
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Figure 2.9: Wigner tomography by resonant Rabi interaction. a Time-domain Rabi oscilla-
tions of a phase qubit with a resonant cavity for Fock states with n = –. b Fourier transforms
of the time-domain data of a show peaks at the expected д

√
n frequencies (white curve). c

Calculated (top) and measured (bottom) Wigner functions for ∣⟩ + ∣N⟩ states for N = –.
Reprinted from [] and [] with minor modifications.
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where the {cn} are complex amplitudes, the resonant interaction produces the state

∣ψ′⟩ (τ) = ∑
n
cn (ei(ωr−д

√
n)τ ∣n, д⟩ + ei(ωr+д

√
n)τ ∣n − , e⟩) . (2.36)

Performing subsequent qubit read-out thus gives a probability to find the qubit in ∣e⟩ of

Pe(τ) = ∑
n
∣cn∣ ( + cos(д

√
nτ)


) . (2.37)

The Fourier transform of this probability with respect to τ gives peaks at frequencies д
√
n

with amplitudes ∣cn∣, which are the occupation probabilities of the Fock states. Consequently,
if one prepares an ensemble of identical states ∣ψ⟩ and averages the resulting qubit state of the
time-domain Rabi oscillations for many τ, the Fourier transform of these oscillations reveals
the photon number probabilities. The Wigner function, W(α), is found by displacing the
cavity with a coherent state ∣α⟩ and using (2.31) to compute W(α) with the measured photon
number probabilities.

Preparation of cavity states is done with an inverse procedure, where photons are added
to the cavity one at a time by preparing the qubit in ∣e⟩ and bringing it into resonance with
the cavity to perform a full SWAP gate. Since the Rabi frequency increases as

√
n, each

subsequent SWAP is shorter in duration. Law and Eberly found a deterministic method for
synthesizing arbitrary states using just this interaction by varying the initial qubit state before
each SWAP []. The sequence of steps required to create any state is constructed by starting
with the final state, and then finding the operations which remove a photon at a time. The
sequence is then inverted to reveal the preparation procedure. See [] and [] for details.

Figure 2.9 shows data from two experiments [, ] from the Martinis group at UCSB. In
these experiments, a superconducting phase qubit is coupled to a high-Q microwave cavity
with a coupling rate д/π ≃  MHz. The researchers prepare Fock states in the cavity for
n =  to  and measure the resulting time-domain Rabi oscillations between the phase qubit
and cavity, shown in figure 2.9(a). Sinusoidal oscillations of the qubit excited state probability
are observed with a frequency that increases with n. The Fourier transform of these data in
figure 2.9(b) show peaks at the expected д

√
n frequencies, demonstrating the use of the

resonant interaction to extract photon number probabilities. In figure 2.9(c), Hofheinz et
al. proceeded to measure the Wigner functions of ∣⟩ + ∣N⟩ states for N = – by applying
coherent microwave pulses at the cavity frequency before measuring the time-domain Rabi
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oscillations. The correspondence between the calculated (top) and measured (bottom) W(α)
demonstrates that this is an effective technique.

Recently, Fink et al. showed a variant of this technique that uses sideband transitions to
directly drive Rabi oscillations between a qubit and cavity [] while they are detuned. In
effect, a strong drive replaces qubit frequency excursions. This has been used to create Fock
states with n =  to , though they have not yet demonstrated full Wigner tomography.

Despite the clear success of the resonant swap method, it has a substantial weakness in
that it demolishes the cavity state. For example, imagine a cavity that is prepared in a Fock
state, ∣N⟩. In any particular realization of a time-domain Rabi experiment, there are many
interaction times for which the qubit occupies the excited state with unit probability. For
these interaction times, exactly one photon is subtracted from the cavity, leaving the cavity
in the state ∣N − ⟩. One could modify the procedure to only sample the time-domain Rabi
oscillation at intervals that leave the photon in the cavity, i.e. sample at τm = πm/(д

√
N)

for integer m. When m is odd this corresponds to a π rotation, causing the qubit ∣д⟩ state
to pick up a global phase factor of −. This can be detected if the experiment has access to
an additional qubit and a two-qubit gate or additional levels of the ‘qubit’, as was used for
QND detection of ∣⟩ and ∣⟩ using Rydberg atoms in []. However, this only works for a
particular N and modifies the cavity state when the cavity is prepared in other Fock states.

It is important to realize that the photon demolition of the resonant scheme does not
detract from Wigner tomography. Since the Wigner function has the full information of the
density matrix, it cannot, even in principle, be measured in a single realization. Rather, it
explicitly requires access to an ensemble of identical states in order to average. Therefore, the
resonant scheme is sufficient for Wigner tomography. It is not usable, though, to perform
continuous monitoring of the evolution of a cavity state. For example, the resonant scheme
cannot be used to observe the quantum jumps of the decay of a Fock state in a cavity.

Dispersive Ramsey interferometry

Dispersive Ramsey interferometry is another method which uses a dispersive interaction
between a qubit and cavity to perform QND detection of photon number. This scheme
uses the AC-Stark shift discussed in section 2.2.2 that causes the qubit frequency to shift
linearly with the photon number, ω′q = ωq + χn. Consequently, one can construct a photon
number measurement by performing a Ramsey experiment. For simplicity, let us initially
consider the cavity to be in a Fock state, such that the initial state is ∣N , д⟩ and the qubit
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Figure 2.10: Wigner tomography by dispersive Ramsey interferometry. a Experimental
setup for a Ramsey interferometer that probes the state of a microwave cavity, C, by repeated
Ramsey experiments on Rydberg atoms produced by the oven, B, and detected with an ionizing
detector, D. The two smaller cavities, R and R allow for π/ pulses on the qubit formed
by the n =  and n =  orbital states of the atoms. b Measured histogram showing the
distribution of phases around the Bloch sphere when the cavity is populated with a coherent
state. Peaks corresponding to photon numbers – are labeled. c Measured density matrices
and Wigner functions for Fock states with (from left to right) N = , , and . The negative
values of the Wigner function for ∣⟩ and ∣⟩ are clear signatures of the quantum nature of the
light. Reprinted from [] and [] with minor modifications.

and cavity are far detuned. Then we perform a Xπ/ pulse on the qubit∗, taking the state
to (∣N , д⟩ − i ∣N , e⟩) /√. Next, the AC-Stark interaction is turned on for a fixed time τ by
reducing the qubit-cavity detuning or physically passing the qubit through the cavity. Writing
the resulting state in a frame rotating at the the bare qubit frequency, ωq, gives

√

(∣N , д⟩ + ei(−π/+θN) ∣N , e⟩) , (2.38)

∗ I use the convenient notation of referring to a rotation, RX(θ), as Xθ .
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where θ = χτ. Consequently, after its interaction with the cavity, the qubit takes on one of a
discrete set of phase shifts corresponding to the number of photons in the cavity. This phase
can be measured by ensemble averaging the qubit excited state probabilities after applying a
second π/ pulse around X or Y . The ensemble average probabilities after the second pulses
reveal the projections of the qubit state vector along the Y and −X directions of the Bloch
sphere, respectively, thus measuring the photon number. ∗ If the cavity is in a superposition
of several photon number states, this same procedure gives a distribution of phases from
which the photon number probabilities, p(n), can be extracted. Calculation of the Wigner
function then proceeds exactly as with the resonant scheme.

Data from a cavity QED experiment from the Haroche group implementing this method
is shown in figure 2.10. Their setup sends a stream of Rydberg atoms, atoms excited to the
n ≃ , l = n −  orbital, through a high-Q Fabry-Pérot cavity. The Ramsey interferometer is
formed by a pair of additional low-Q cavities that allow for π/ pulses on the atoms before
and after they interact with the high-Q cavity, C. Figure 2.10(b) shows a histogram of the
average phase shift of an atom passing through the cavity initially prepared in a coherent
state. The discrete peaks in the phase clearly show the quantized nature of the light. The
cavity field is displaced by means of a microwave source, S, which allowed the researchers to
measure Wigner functions for several quantum states of light, such as the Fock states shown
in figure 2.10(c).

Unlike the resonant method, this dispersive scheme is QND. This is evident from the form
of the interaction between the meter (the atom or qubit) and the system (the photons in the
cavity), which in the dispersive limit is HSM = ħχσza†a. Consequently, [HSM , ħωra†a] = .
The QND nature of the Ramsey interferometer method allows it to be used for essentially
continuous monitoring of the photon number in the cavity. Since each measured atom carries
partial information about the phase, the dynamics of how the cavity states evolves with each
measurement is quite complex and beyond the scope of this thesis. To read about that topic,
see [, ]. It is sufficient to say that the experimental setup of the Haroche group allows
thousands of atoms to cross the cavity on the timescale of the decay of a single photon. This
allows analyzing 10’s or 100’s of atoms to converge on a particular photon number, and then
watch the discontinuous jumps of the state as the photons decay [, ]. Note that this
allows the preparation of Fock states through measurement, as the repeated measurement

∗ There has been substantial work developing optimal procedures to minimize the number of measurements
needed to determine the phase when the phase can only take on a small number of discrete values. See, for
example, [].
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procedure collapses any initial state onto a Fock state. To create a particular Fock state, the
cavity is initially populated with a coherent state. This cavity state is then repeatedly measured,
and iterations which converge to the wrong state are thrown out. The resulting Fock state is
random, coming from the Poisson distribution of photon numbers in the initial coherent
state. To increase the probability of collapsing onto the desired state, the amplitude of the
initial coherent state is adjusted to maximize the population of the target Fock state.

The are several other methods for Wigner tomography in the dispersive regime. One
is a minor modification of the above procedure where the cavity-qubit interaction time, τ,
or the detuning, Δ, is changed such that the phase shift per photon is exactly θ = π. Then
all odd numbered photon number states impart a π phase shift to the qubit, while even
number states impart a π phase shift. Consequently, one can choose the phase of the second
π/-pulse in the Ramsey interferometer to map odd numbered photon states to σz = − and
even numbered photon states to σz = +. Then,

Pe − Pд = ⟨σz⟩ = ∑
n
(−)np(n) = tr [P ∣n⟩ ⟨n∣] . (2.39)

Consequently, when the phase shift per photon is π, the Ramsey interferometer maps a
measurement of the parity operator onto ⟨σz⟩, allowing a direct measurement of the Wigner
function after applying displacement fields. This method has not been used in experiments
because, in practice, the phase shifts are not completely linear in the photon number. The
Haroche experiments, for instance, have Δ/д ≃ , for which there is approximately %
non-linearity []. To remove this source of error, they use smaller phase shifts and calculate
the Wigner function from the extracted photon number probabilities.

A qualitatively different method can be achieved by going to the strong dispersive regime
where the Stark shift is much larger than the qubit linewidth. In this case, qubit manipulations
can be made photon-number dependent by using narrow bandwidth pulses and choosing
pulse frequencies to select a single transition. Details of this method and its implementation
are presented in chapter 8.

2.5.1 Rapid Adiabatic Passage

The task of cavity-state preparation is one that admits many possible solutions. For full
arbitrary state preparation, the most straightforward approach is to use time-domain vacuum
Rabi oscillations to transfer excitations from qubit to photon, one at a time using the Law
and Eberly protocol [, , ]. Despite the power of this technique, it is not always the most
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efficient means to create a particular state. For instance, if one is interested in synthesizing
a pure state with a definite photon number, n, then there are alternate approaches which
can create such states in fewer steps. For instance, the post-selection technique used in the
Haroche experiments [, ] uses repeated measurements to prepare Fock states. In that case,
several measurements are required to converge on a number state because each measurement
carries information about several Fock states. Chapter 8 demonstrates a new QND detection
protocol that is highly selective to particular number states, improving the efficiency of the
post-selection method to succeed or fail in a single step. Despite this improvement, the
resulting method is still probabilistic.

Rapid adiabatic passage is an efficient, and deterministic method for creating Fock states
when coupling a multi-level atom to a cavity. In this approach, an atom-like state is adia-
batically transferred into a photon-like state by sweeping through an atom-photon avoided
crossing. For instance, for a transmon qubit coupled to a cavity, there are many such crossings,
as shown in figure 2.6. To create the state ∣n = , д⟩ one first prepares ∣n = , e⟩ by Rabi driving
the transmon. Then EJ is adjusted through a local flux bias to tune the ωдe transition through
its avoided crossing with the n =  state of the cavity. The timing of the sweep is very robust
to jitter, so long as the sweep is sufficiently slow as to prevent Landau-Zener tunneling to the
other branch of the avoided crossing.

Landau and Zener independently derived an asymptotically exact solution to the tunnel-
ing probability for the situation of two coupled levels where the sweep is of infinite duration
and the initial and final states are at infinite detuning [, ], i.e. Δ(t) = Γt. In this case they
found that the probability to tunnel from one branch to the other is given by

P ≃ exp(−π
(д)

Γ
) , (2.40)

where Γ = dΔ/dt is the sweep rate. This expression is asymptotically exact in the limit Γ ≪ д.
While (2.40) is only exact for the particular idealized case considered by Landau and

Zener, it also provides a fairly good approximation in situations where the sweep duration is
finite. To check this one can numerically solve the time-dependent Schrödinger equation
with the generalized Jaynes-Cummings Hamiltonian,

H = ħωra†a + ħ∑
j
ω j ∣ j⟩ ⟨ j∣ + ħ∑

i
дi,i+ (a† ∣i⟩ ⟨i + ∣ + h.c.) . (2.41)

In order for this to be numerically tractable, one has to choose a finite subset of the full



CHAPTER . CIRCUIT QED AND QUANTUM OPTICS 

� �

� �

� �

� �

� �

� �

� �

� �

��

� � �

a

b

Figure 2.11: Numerical Simulation of Rapid Adiabatic Passage for Preparing ∣, д⟩. a Popu-
lations vs time of the upper and lower branches of the ∣, д⟩ and ∣, e⟩ avoided crossing when
starting in lower branch at t = . States are labeled by the corresponding final state when
Δ/д≫  (see section 2.2.4). b Final populations of ∣, д⟩ and ∣, e⟩ vs sweep time Δt. The qubit
frequency is adjusted linearly from ωдe/π = . GHz to . GHz in time Δt. Dashed line
in b is the analytical expression (2.40) for an equivalent sweep rate to the finite duration simu-
lations. Parameters (chosen to match the experiment of chapter 8) are: ωr/π = . GHz,
EC/h =  MHz, and ддe/π =  MHz. Calculation Hilbert space is truncated to 5 cavity
and 5 transmon levels. Simulation does not include relaxation.
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Hilbert space. Figure 2.11 shows the result of one such numerical calculation keeping 5 cavity
and 5 transmon levels. The parameters for the simulation are chosen to match the experiment
discussed in chapter 8.∗ From the time evolution of the populations of the two branches,
one sees that there is some dynamics to the evolution—the sweep rates are such that there is
some part of the wavefunction that oscillates between the two states. However, since only
the final populations matter, it may be possible to use these oscillations to modify the ramp
shapes to create faster ramps with a small final probability to be in the other branch. I did not
explore this much since the calculation already shows that it is possible to have a very low
probability to tunnel with a linear sweep which is fast relative to qubit and cavity decay times.
Figure 2.11b shows the final populations as a function of the sweep rate. For comparison, the
Landau-Zener formula (2.40) is also plotted as a dashed line. It has similar behavior and is of
the same order of magnitude, but does not capture the oscillatory dynamics, which serve to
suppress the tunneling rates for the parameters chosen in the simulation.

For crossings of more than 2 levels, (2.40) is of less utility. For instance, consider the case
of attempting to prepare ∣, д⟩ by rapid adiabatic passage. One might expect to be able to
sweep faster when preparing n =  than when preparing n = , because the higher photon
number splittings in the standard Jaynes-Cummings ladder are ддe

√
n. In the generalized

J-C, though, with ħддe ∼ EC , the transmon ∣ f ⟩ state comes into resonance with the cavity
in the same vicinity as the avoided crossing between ∣, e⟩ and ∣, д⟩ (see figure 2.6). This∣, e⟩ and ∣, f ⟩ splitting goes like дe f ≈ ддe

√
. Consequently, the state which connects with∣, д⟩ is actually ∣, f ⟩. A simulation of this situation is shown in figure 2.12. One can see that

very fast sweeps actually tunnel through both crossings to the highest branch. The avoided
crossings are bigger, but there are now two of them. So, at least for the simulated parameters,
one actually needs to sweep slower in order to stay in the same branch.

This procedure can easily be extended in order to examine state preparation of higher
photon number Fock states, so long as one increases the size of the Hilbert space to include
the relevant levels.† Investigating whether this method can be turned into a scheme for
arbitrary state preparation could be an interesting avenue for further research. Regardless,
this method provides a robust method for preparing Fock states without requiring precise
timings of flux pulses. This is particularly important when the vacuum Rabi frequency is

∗ The Mathematica code used to generate these plots is in appendix A.
† There probably is a simple method to re-truncate the Hilbert space to only include those energies levels which
participate in the relevant avoided crossings.
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Figure 2.12: Numerical Simulation of Rapid Adiabatic Passage for Preparing ∣, д⟩. a Popu-
lations vs time of the 3 branches of the ∣, д⟩, ∣, e⟩, ∣, f ⟩ avoided crossing when starting in the
lowest branch at t = . States are labeled by the corresponding final state when Δ/д≫  (see
section 2.2.4). P, f ≈  for the simulated parameters, so it is not shown. b Final populations
of ∣, д⟩, ∣, e⟩, and ∣, f ⟩ vs sweep time Δt. The qubit frequency is adjusted linearly from
ωдe/π = . GHz to . GHz in time Δt. Parameters are the same as in figure 2.11.
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very large, where the duration of a SWAP gate may be faster than can be reliably produced
with room temperature electronics. This was the driving motivation for using the adiabatic
passage technique for the experiment of chapter 8.



CHAPTER 3

Theory of Two-Cavity Architecture

The theory of circuit QED with one qubit and one cavity has been well documented
elsewhere [, , ]. This chapter will extend the existing formalism to two cavities and

one qubit, and explore the consequences of this architecture, such as the cross-Kerr effect
and new cavity relaxation channels from coupling to a qubit. I also introduce a modified
transmon design that couples to two cavities while introducing minimal indirect capacitive
coupling between the cavities.

3.1 The Two Cavity Hamiltonian

The usual Jaynes-Cummings Hamiltonian can be extended to describe two cavities coupled
to a single qubit by simply adding additional cavity and cavity-qubit coupling terms. The
resulting Hamiltonian is

H = ∑
i=

ħωia†i ai + ħ

ωqσz + ∑

i=
ħдi(a†i σ− + aiσ

+), (3.1)

where we neglect, for the moment, direct cavity-cavity coupling terms of the form λ(a†i a j +
a†j ai).

To get the dispersive (д/Δ, д/Δ ≪ ) two-cavity Hamiltonian, one can extend the

53
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method used in [] and apply the unitary transformation H′ = UHU†, where

U = exp [∑
i

дi
Δi

(aiσ+ − a†i σ
−)] . (3.2)

After using the Baker-Hausdorff lemma and a lot of algebra, one obtains (to order дi /Δ
i )

H ≈ ∑
i
ħωia†i ai + ħ


(ω′q +∑

i

дi
Δi

a†i ai) σz + ħдσz(a† a + aa
†
), (3.3)

where ω′q = ωq +∑i дi /Δi is the Lamb-shifted qubit frequency and

д = дд(Δ + Δ)
ΔΔ

(3.4)

is the qubit-mediated cavity-cavity coupling rate. In (3.3) one can identify the second set of
terms as the AC-Stark shift from photons in each cavity. The final term allows for qubit-state
dependent mixing of photons between the cavities. Section 3.3 describes one effect of this
mixing, which is to introduce a new mechanism for photon decay in each cavity. For now,
however, we want to remove this term in order to diagonalize the Hamiltonian. Therefore,
we try an additional transformation of the form

U ′ = exp [β(aa† − a† a)] (3.5)

and solve for β. To carry out the expansion it is useful to note that

[aa† − a† a, a† a] = a† a + aa
†
 (3.6a)[aa† − a† a, a†a] = −(a† a + aa

†
) (3.6b)[aa† − a† a, a† a + aa

†
] = . (3.6c)

Using these commutators, to first order in β one gets

H ≈ ∑
i
ħωia†i ai + ħ


(ω′q +∑

i

дi
Δi

a†i ai) σz + ħ(д + βΔ)(a† a + aa
†
), (3.7)

where Δ = ω−ω.∗ If the qubit is in the dressed ground state, one can chose β = −д/Δ to
arrive at a diagonal Hamiltonian that no longer displays coupling between the cavity modes.

∗ Mariantoni et al. derive a similar result through a different path [].
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a

b
c

Figure 3.1: Coupling Geometries. a Inline geometry. b T geometry. c H geometry.

3.2 Separation of Cavity Modes

All implementations of the two-cavity Hamiltonian of (3.1) involve some kind of cavity-cavity
coupling. This coupling takes on several different forms: there is direct capacitive coupling,
indirect capacitive coupling through a qubit, and the quantum coupling that was just derived.
The first two are described by the same physics, since both result in an effective capacitance
between the cavities. This section examines the effects of this capacitive coupling. Relaxation
from the quantum coupling is treated in section 3.3.

Possible geometries for capacitively coupling a qubit to the fundamental or first harmonic
of two cavities include: inline, T, or H, as shown in figure 3.1. Only the inline geometry
couples to the fundamental mode of each resonator, though, which has the advantage of
minimally affecting the qubit decay by the presence of other modes (see section 4.1). All of
these geometries involve some kind of direct coupling between the cavities themselves which
hybridizes the eigenmodes such that the energy is shared between the two cavities. This is
undesirable if one wants cavities with very different decay rates, since increased coupling
pushes the frequencies and decay rates of the modes together (in the limit of infinite coupling
the modes collapse onto a single mode). Consequently, it is useful to compute the coupling
Q of each resonator due to its coupling to the other.

Figure 3.2 shows the most basic capacitive coupling between two cavities without a qubit.
For each cavity, one can calculate Qcouple given capacitive coupling to  Ω and to the other
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Cavity 1 Cavity 2

Figure 3.2: Schematic of coupled cavities with fundamental resonance frequencies ω and
ω, and characteristic impedance Z.

Cavity 1Cavity 1 Cavity 2 Cavity 1

a

b

Figure 3.3: Reducing the coupled cavities circuit to calculate Qcouple for cavity 1.

cavity. We proceed by reducing the circuit, following figure 3.3(a):

Z = 
iωC

+ Z (3.8a)

Z = Z
Z + iZ tan(πω/ω)
Z + iZ tan(πω/ω) (3.8b)

Zright = 
iωC

+ Z (3.8c)

Zleft = 
iωC

+ Z. (3.8d)

To find the Q of cavity 1, we approximate the λ/ transmission line resonator as a parallel
RLC circuit near its resonance frequency, where the damping is determined by the total
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parallel conductance (see [, chapter 6]):

Gleft
c = Re(/Zleft) = ωC

 Z

 + ωC
 Z


≈ (ωC)Z (3.9a)

iωCleft
c = Im(/Zleft) = iωC

 + ωC
 Z


≈ iωC (3.9b)

Gright
c = Re(/Zright) (3.9c)

iωCright
c = Im(/Zright) (3.9d)

Qcouple = ωC
Gleft

c +Gright
c

= π
Z(Gleft

c +Gright
c ) . (3.9e)

In the limit of weak coupling, ωCZ ≪ , the imaginary part of the admittance, Yleft, is purely
capacitive with Cleft

c = C, pulling the resonance frequency of cavity 1 down. The coupled Q
depends on the real part of the total admittance, which we can separate into contributions
from the coupling at the input port (C) and from the other cavity. Thus, Qcouple splits into
two terms

/Qcouple = /Qleft + /Qright, (3.10)

Qleft = π
ZGleft

c
≈ π

(ωCZ) , (3.11)

Qright = π
ZG

right
c

. (3.12)

The full expression for Gright
c is not particularly illuminating, but I can simplify the

expression for the special case ω/ω = n/ (for n odd). Then,

Zright = 
iωC

+ Z


Z
, (3.13a)

Gright
c = 

Z

(ωCCZ
)( − ωCCZ

) + (ωCZ) ≈ (ωCC)Z
 . (3.13b)

In the last line I have used the fact that typical coupling capacitors are 1–100 fF, and cavity
frequencies are on the order of 5 GHz. This gives ωCZ ∼ −–−, so I can drop such terms
in the denominator of (3.13).

Alternatively, away from an nλ/ resonance one can approximate cavity 2 as a parallel
LC oscillator with L = Z/(πω) and C = π/(ωZ). Keeping terms of the same order as
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Figure 3.4: Coupled Q vs Inter-cavity Coupling. For this calculation, ω/π =  GHz and
C =  fF. When Δω = ω −ω is + GHz, this corresponds to Qex ∼ ,  for cavity 2. When
Δω = − GHz, cavity 2 has Qex ∼ , . It is apparent that the LC oscillator approximation of
(3.14) works fairly well as long as C ≲ C.

above, one has

Gright
c ≈ (ωCC)Z



πZ(C + C)ω−ω


ω + π

 (ω−ω


ωω
) . (3.14)

Roughly speaking, this is the product of the conductances one would calculate for C and
C directly coupled to  Ω, so it is clear that the presence of a cavity in between C and C

does provide some protection.
A comparison of the exact and approximate expressions for Qcouple is shown in figure 3.4.

From this one can see that building cavities with vastly different Qs requires that the coupling
between the cavities remains small. For instance, one might like to have one cavity with a Q
which is limited by internal (dielectric) losses. For CPW resonators on silicon or sapphire,
present techniques can achieve Qint ∼ –. If this same cavity is coupled to a Q ∼ , 
cavity, the coupling between the cavities should be less than C ≲  fF. In section 3.4, I
explore the consequences of this for qubit design.
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3.3 Qubit-mediated cavity relaxation

In addition to the classical relaxation channel of coupled cavities which was just derived,
coupling two cavities to the same qubit also introduces a quantum relaxation channel through
the hybridization of the cavity-qubit-cavity eigenmodes. Reference [] calculates the eigen-
modes of a single cavity-qubit system in the dispersive regime∗. Writing the dispersive
eigenstates in the uncoupled basis,

∣д, ⟩ ≃ −(д/Δ) ∣e , ⟩ + ∣д, ⟩ , (3.15a)∣e , ⟩ ≃ ∣e , ⟩ + (д/Δ) ∣д, ⟩ . (3.15b)

This gives corresponding relaxation rates of

κ′ = κγ + κ = (д/Δ)γ + κ, (3.16a)

γ′ = γκ + γ = (д/Δ)κ + γ, (3.16b)

where γ and κ are the bare relaxation rates of the qubit and cavity, respectively. The κγ and
γκ terms of (3.16) describe the single-mode Purcell effect. For two cavities, we apply the
transformations U and U ′ from equations (3.2) and (3.5) to the uncoupled eigenstates. To
order дi/Δi and д/Δ this gives

∣, , e⟩ = U ′U ∣, , e⟩ ≃ ∣, , e⟩ − (д/Δ) ∣, , д⟩ − (д/Δ) ∣, , д⟩ , (3.17a)∣, , д⟩ ≃ ∣, , д⟩ − (д/Δ) ∣, , д⟩ + (д/Δ) ∣, , e⟩ , (3.17b)∣, , д⟩ ≃ ∣, , д⟩ + (д/Δ) ∣, , д⟩ + (д/Δ) ∣, , e⟩ . (3.17c)

Consequently, the approximate qubit and cavity relaxation rates are

γ′ = γ + (д/Δ)κ + (д/Δ)κ, (3.18a)

κ′ = κ + (д/Δ)γ + (д/Δ)κ, (3.18b)

κ′ = κ + (д/Δ)γ + (д/Δ)κ. (3.18c)

When a qubit is coupled to two cavities, there is a Purcell effect due to each cavity which
increases the qubit decay rate. Each cavity also inherits a complementary relaxation due to its

∗ This assumes that the qubit couples only to a single mode of the cavity. The effects of higher modes will be
studied in section 4.1.
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Figure 3.5: Qubit-mediated cavity-cavity hybridization. The line shows the hybridization
fraction (д/Δ) when д/π = д/π =  MHz, and Δ/π =  GHz (Δ = Δ + Δ). The
cavity mode hybridization limits the ratio of κ’s for the cavities. This is a fairly weak effect, even
for the moderately large qubit coupling strengths used here. However, as cavity technology
improves to the point where one can make Q ≳ , this effect will become a limitation.

hybridization with the qubit. Besides these effects which one might expect from single-cavity
cQED, one also sees that the qubit-mediated cavity coupling (derived in section 3.1) leads to
a hybridization of the cavity modes. Consequently, each cavity inherits some relaxation from
the other cavity.

Figure 3.5 shows this hybridization vs. the detuning between the cavities for typical
qubit coupling rates and detunings. The ratio (д/Δ) is fairly small for the plotted set of
parameters. However, one can already see that this limits the ratio Q/Q. For example, for a
cavity-cavity detuning Δ/π =  GHz the ratio of Q’s cannot be more than – for the
parameters used in the figure. The particular number strongly depends on the value of д,
and thus on д and д through (3.4).

The qubit-mediated cavity-cavity coupling can also be used as a resource. A direct
capacitive coupling between the cavities would enter (3.3) as another term proportional to
a† a + aa

†
 . When the qubit is in the ground state (σz = −), these cavity coupling terms have

opposite signs. Consequently, one could adjust qubit detunings to make д cancel the direct
capacitive coupling, effectively switching it off. Mariantoni et al. have proposed using this
mechanism to create a quantum mechanical switch [].
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Cavity 1 Cavity 2

Cavity 1 Cavity 2

a

b c

d

Figure 3.6: Capacitance network for a transmon qubit coupled to two cavities. a The most
straightforward way to couple a single transmon qubit to two cavities. b The associated capaci-
tance network of components in the dashed box of (a). c An alternative to the standard design
replaces the large shunt capacitance between the islands of the transmon with capacitance to
ground. d Possible layout of the “sarantapede” transmon. Pictures of real devices are shown in
figure 5.1 and figure 8.1.

3.4 The Sarantapede Qubit

Considerations of cavity coupling has practical import to the design of a qubit which can
couple to two cavities. In particular, placing a standard transmon between the cavities (see
figure 3.6(a)) results in a capacitance network like figure 3.6(b). For a typical transmon design,
the shunt capacitor Cs is quite large, in the range of 25–50 fF. The series combination of this
shunt capacitance with the coupling capacitors, Cд and Cд, results in a substantial coupling
capacitance C between the cavities. As shown in section 3.2, this level of coupling is in the
region where the direct capacitance between the cavities begins to limit the Qs. One can
ameliorate this problem to a certain extent by modifying the capacitance network of the
transmon.

One possibility is to shrink the size of the shunt capacitor Cs. However, in order for a
Cooper pair box qubit to be in the transmon regime, it must have a large EJ/EC ratio [].
When Cs gets smaller, it raises the charging energy, EC . Consequently, to maintain a constant
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a b

U

1 2

Figure 3.7: Relevant capacitance network for a sarantapede-style transmon qubit. a The
local capacitance network for a “sarantapede” qubit. b Reduced capacitance network for finding
the sarantapede coupling strength. Cs = CJ + Cs.

EJ/EC ratio would require a corresponding increase in EJ . However, there is a simultaneous
design constraint that the device should have a ωдe transition frequency which is comparable
to the 5–10 GHz cavities which we use. Since ħωдe ≈ √

EJEC − EC , increasing both EJ and
EC would push ωдe above the typical frequencies of the cavities.

Another possibility is to replace the large shunt capacitor between the islands of the
transmon with capacitors to ground (see figure 3.6(c)). Since each island now has its own
shunt capacitor, each capacitor can be half the size and still give the same charging energy for
the device. When computing the effective cavity coupling through this network, however,
these capacitors add in series. So, the resulting inter-cavity coupling is reduced by a factor of
4. This is not an enormous gain, but it does offer some protection.

One possible 2D layout of this kind of transmon has interdigitated capacitors between
the transmon islands and the surrounding ground planes, as shown in figure 3.6(d). An
initial iteration of this insect-like qubit design had 40 “legs”; consequently, Luigi Frunzio
nicknamed it the “sarantapede” because saranta is the Greek word for forty.

To find the charging energy, EC = e/CΣ, for a sarantapede qubit coupled to two cavities,
one should consider a capacitance network like the one shown in figure 3.7(a). This differs
somewhat from the usual network that is considered for a transmon because, in this case, we
can neglect the capacitances between the left island and right cavity, and vice versa∗. Then the
Cдi and Csi on each side add in parallel with the direct shunt capacitors CJ and Cs, resulting

∗ A Maxwell simulation shows that other capacitances are of the order – fF, while the capacitances we
neglect are much less than  fF.
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in

CΣ = CJ + Cs + (Cд + Cs)(Cд + Cs)
Cд + Cs + Cд + Cs

. (3.19)

To find the coupling rates дi of (3.1), we calculate the voltage drop β = (V−V)/U across
islands 1 and 2 of the qubit when a voltage U is applied to one of the cavities, as shown in
figure 3.7(b) for cavity 1. The large capacitance to ground of the transmission line resonator
of cavity 2 causes Cд to look like an effective coupling to ground; consequently, it adds
in parallel with Cs. Following the procedure in [, section 5.2] and [, appendix 1] we
consider only the reduced capacitance matrix of the qubit islands 1 and 2,

C = ⎛⎝Cд + Cs + Cs −Cs−Cs Cд + Cs + Cs

⎞⎠ , (3.20)

where Cs = CJ + Cs. To find β, we apply a polarization charge to island 1: Q̃ = (CдU , ).
Then, solving for V = (V,V) = C−Q̃ and β we get

V = CдU(Cд + Cs)(Cд + Cs) + Cs(Cд + Cs + Cд + Cs) ⎛⎝Cд + Cs + Cs

Cs

⎞⎠ , (3.21a)

β = Cд(Cд + Cs)(Cд + Cs)(Cд + Cs) + Cs(Cд + Cs + Cд + Cs) . (3.21b)

Converting this to a coupling rate requires multiplying by a transmon matrix element, which
is best done numerically. The expression is (see [, section 4.3.4])

д = βω

√
Z

Rk
⟨ д ∣ n̂ ∣ e ⟩, (3.22)

where Rk ≈ . kΩ is the resistance quantum and the matrix element is calculated for
ωдe = ω.

3.5 Self- and Cross-Kerr Effects

Thus far I have only looked at the dispersive two cavity Hamiltonian to second order in (дi/Δi).
However, since the cavity-qubit coupling causes the cavity and qubit states to hybridize, one
might also expect that the cavities would inherit some anharmonicity from the qubit (i.e. the
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cavities should become more qubit-like). To see this effect, one must expand the dispersive
Hamiltonian to fourth order.

Before going there, however, it is simpler to start by returning to the usual Jaynes-
Cummings case of a single cavity and qubit. Here, the dispersive Hamiltonian can be
diagonalized exactly [], giving

H/ħ = ωra†a + ωq


σz − Δ


( −√

 + λNq) σz , (3.23)

where λ = д/Δ and Nq = a†a + ∣e⟩ ⟨e∣ is the number of excitations in the system. Expanding
to third order in λ, one finds

H/ħ ≃ (ωr + ζ)a†a + 

[ωq + χ(a†a + /)] σz + ζ(a†a)σz , (3.24)

where χ = д( − λ)/Δ and ζ = −д/Δ. This last term causes a photon-number dependent
shift of the cavity frequency, known as the self-Kerr effect.

One should expect to find an analogous effect for two cavities, but where the cavity
frequencies also depend on the photon number in the other cavity. Unfortunately, the two-
cavity Hamiltonian of (3.1) does not share the simple  ×  block diagonal form with the
single-cavity case. This prevents one from finding an exact diagonalization which can be
expanded. Instead, I will compute the corrections to system energy to 4th order, where I start
with the initial Hamiltonian and perturbation H = H + λV where

H = ∑
i
ħωia†i ai + ħ


ωqσz , (3.25a)

λV = ∑
i
ħдi(a†i σ− + aiσ

+). (3.25b)

If your education was like mine, then you probably only learned how to do perturbation
theory to second order in your quantum class. Fortunately, you can look up the expressions
for higher orders in many references, including Wikipedia. Defining the perturbed energies
as En = E()n + λE()n + λE()n +⋯, one has

E()n = ∑
i, j≠n

VniVi jVjn

EniEnj
−∑

i≠n

VnnVin

E
ni

, (3.26a)
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E()n = ∑
i, j,k≠n

[VniVi jVjkVkn

EniEnjEnk
− ∣Vni ∣ ∣Vnk ∣

E
niEnk

−Vnn
VniVi jVjn

EniE
nj

− Vnn
VniVikVkn

EnkE
ni

+ V 
nn
∣Vnk ∣
E
nk

], (3.26b)

where Vi j = ⟨ i ∣V ∣ j ⟩ and Ei j = E()i − E()j . Computing the matrix elements is relatively
straightforward because V only connects states which differ by one excitation, i.e.

⟨ n, n, д ∣V ∣ j, j, e ⟩ = δnj+δ
n
j д̃

√
n +  + δnj δ

n
j+ д̃

√
n + , (3.27)⟨ n, n, e ∣V ∣ j, j, д ⟩ = δnj−δ

n
j д̃

√
n + δnj δ

n
j− д̃

√
n, (3.28)

where д̃i = дi/λ. Consequently, all the terms in (3.26) proportional to Vnn vanish. In addition,
the first term of (3.26a) involves a product of an odd number of matrix elements, where the
initial and final states are the same. However, an odd number of applications of V cannot
return to the initial state, so the entire 3rd order correction term, E()n , is zero.

With respect to the 4th order corrections, the cross-Kerr terms only involve combinations
of intermediate states in the sum of (3.26) which change both cavity photon numbers. Keeping
only such terms, one obtains

λE()n ,n ,д = д д (n(n + )
Δ
Δ

− (n + )n

Δ
Δ

+ nn

Δ
Δ

+ nn

ΔΔ

) . (3.29)

Collecting terms proportional to nn, this simplifies to

λE()n ,n ,д ≈ д д(Δ + Δ)
Δ
Δ


nn, (3.30)

which gives the cross-Kerr energy shift from population in each cavity. One can easily check
that the above procedure reproduces the self-Kerr correction of (3.24) by computing the
terms proportional to n

 or n
.



CHAPTER 4

The Electromagnetic Environment and Fast Qubit Control

Control and readout of superconducting qubits necessitates interactions between qubits
and other circuits. This coupling, which provides control and measurement, also intro-

duces channels for energy relaxation and dephasing. Consequently, it is crucial to understand
how these processes work in order to design circuits that do not impair the performance
of qubits. This chapter presents a general formalism for calculating energy relaxation from
coupling to an electromagnetic environment modeled as a classical admittance. This theory
is not new, but it is presented here in the context of circuit QED with transmons, where it
allows us to generalize the Purcell effect to a model that includes all higher harmonics of a
cavity. Using this theory, a new circuit element, the ‘Purcell filter’, is proposed to mitigate the
Purcell effect.

We then turn to the design of a fast flux bias line (FBL) to control qubit frequencies
on nanosecond timescales. Issues of relaxation and dephasing from this control knob are
examined. With appropriate design choices, this FBL minimally affects qubit lifetimes. Even
with these issues resolved, control systems sometimes respond in unexpected ways, so the
final sections apply deconvolution methods to correct the output from the FBL.

66
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4.1 Multi-mode Purcell Effect

In section 3.3 I considered the relaxation of a qubit coupled to one or two single-mode
cavities. The cavity does not just support a single electromagnetic mode, though, but also
all higher harmonics of the fundamental mode. A single-mode description gives a fairly
good understanding of the observed relaxation in cQED experiments at small qubit-cavity
detunings, where one mode of the cavity(ies) dominates. At larger detunings, however, the
presence of higher harmonics of the transmission line resonator matters. In fact, one might
expect that these higher harmonics play a significant role because the coupling, дneд, to the
nth mode increases with the mode number, дneд = дeд

√
n + . Furthermore, the input and

output capacitors of the cavity act as frequency-dependent mirrors, such that the decay rate
of the nth harmonic, κn = (n + )κ, is faster than the fundamental.

There are ongoing efforts to provide a full quantum mechanical description of the multi-
mode Jaynes-Cummings ladder, which are, at present, incomplete because the calculations
of quantities like the coupling rate between two qubits lead to divergent sums.∗ Presumably
this can be fixed by truncating the sums to a finite number of modes, but we do not yet have
a good understanding of an appropriate choice for this cut-off. Nonetheless, there is a quite
elegant formalism which treats the dissipation of macroscopic degrees of freedom using the
classical admittance of the environment. As I will show experimentally in chapter 6, this
provides a very good model for understanding transmon relaxation over a wide range of
parameters.

The formalism which I consider here was developed by Esteve et al. following earlier
work by Leggett[, ]. In their work, Esteve et al. consider an equation of motion for a
single degree of freedom X in a potential V(X) and subject to friction through coupling to
many degrees of freedom in a energy reservoir. The general equation of motion for X is

Ẍ + K̂{X} = − ∂
∂X

V(X) (4.1)

where K̂ is some linear operator which is given by the properties of the energy reservoir. They
treat this system quantum mechanically by representing K̂{X} as an infinite set of series
LC oscillators chosen to match the spectral density of the environment[], as shown in

∗ For instance, if you use non-degenerate perturbation theory, in principle there are an infinite number of
non-zero matrix elements which contribute to qubit-qubit coupling via virtual exchange with every cavity
mode. So, the resulting sum is ∑n дn дn (Δn

 + Δn
)/Δn

 Δn
 ≈ ∑n(−)n(

√
nд)(

√
nд)n(Δ + Δ)/nΔΔ,

which is proportional to∑n(−)n .
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Figure 4.1: Quantum LC oscillator with an environment Y(ω). Circuit diagram for a har-
monic oscillator with node coordinates Q and Φ and an admittance Y(ω). The right hand side
shows the equivalent Caldeira-Leggett representation of Y(ω) in terms of an infinite set of LC
oscillators[].

figure 4.1. Having a Hamiltonian description for X, they proceed to calculate the energy
shifts of the eigenstates due to coupling to the reservoir. The imaginary part of the energy
shift is identified as −/(τn), where τn is the lifetime of level n. For a harmonic oscillator,
V(X) = /ω

X, they calculate

/τn = −n Im[K∗(ω)]/ω. (4.2)

This result (4.2) is particularly useful for calculating the relaxation of a transmon, because
the transmon is nearly harmonic (see section 2.1). In fact, if we expand the cosine term in
the usual CPB Hamiltonian (2.1) to second order, we have

H ≈ EC ( ∂
∂ϕ

) + 

EJϕ (4.3)

where eϕ/ħ is the phase difference across the Josephson junction. This is exactly the Hamil-
tonian of a quantum LC oscillator provided one makes the correspondence C ↔ /(EC)
and L ↔ /EJ . When this LC oscillator is coupled to an environment with admittance Y(ω)
(see figure 4.1), the resulting circuit has an equation of motion of the form (4.1)[] with
X = C(e/ħ)ϕ and K(ω) = iωY(ω)/C.

Consequently, the decay time of the nth harmonic oscillator level is

τn = ω

n Im[iωY(ω)/C] = C
nRe[Y(ω)] . (4.4)

Thus, one arrives at the remarkably simple result that the decay of the first excited state is
given by an RC time constant where /R is the real part of the classical admittance of the
coupled environment.

To illustrate a few additional issues with typical cQED circuits, I will explicitly compute
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Figure 4.2: Single cavity multi-mode Purcell effect. a Circuit model for a qubit coupled to a
single cavity with asymmetric input and output couplers, Cin and Cin. To couple to a voltage
antinode of the fundamental resonance, the qubit is placed near the input (black) or output
(grey). b The calculated T for the qubit at the input side (solid) or output side (dashed). The
specifics of how the transmission line modifies the admittance of the input and output circuits
causes different relaxation for these positions. For comparison, the calculated T from the
simple single-mode theory is also plotted (dotted). The single-mode theory overestimates the
relaxation when the qubit is below the first cavity mode, but underestimates the relaxation when
the qubit is above. Parameters used for this calculation are: Cin =  fF (κin/π = . MHz),
Cout =  fF (κin/π =  MHz), Cд = . fF (д/π =  MHz), CΣ =  fF (EC/π =
 MHz), and ωr/π = . GHz.
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the decay rate for several examples. In each case, I want to reduce the total circuit to one of the
form shown in figure 4.1. In practice, carrying out these calculations can be a bit tedious. One
can do it by hand (not recommended) or with a computer algebra system like Mathematica.
In Rob Schoelkopf ’s lab, we frequently use packages like Microwave Office because it allows
one to drop circuit elements onto a diagram and calculate admittances with sliders for seeing
real-time updates to relaxation as parameter values are adjusted. This is incredibly useful,
especially when designing circuits like the Purcell filter which is discussed in section 4.1.2
and section 6.2.

Figure 4.2(a) shows a circuit diagram for a typical single-cavity cQED experiment where
the cavity is probed in transmission. In a transmission configuration, it is often advantageous
to use asymmetric coupling capacitors so that photons in the cavity will preferentially leak out
toward the amplification chain on the output side. However, the asymmetry of the coupling
capacitors causes qubits to relax at different rates depending on where they are placed in the
cavity. Transmon qubits are dipole coupled, so for maximal coupling strength, they are placed
near voltage antinodes. For the fundamental mode of a transmission line cavity, this implies
that the transmon is placed near either coupling capacitor (the black and grey harmonic
oscillators of figure 4.2(a) illustrate this placement). The calculated relaxation for these two
positions is shown in figure 4.2(b). Notice that when the qubit is at the “input side” (solid
line), and thus farther from the large output capacitor, it actually has greater Purcell-induced
relaxation. The transmission line transforms the admittance of the output circuit in a way
which is unfavorable for dissipation. For both qubit positions, though, the calculated Purcell
T has a strong asymmetry for qubit frequencies above and below the cavity frequency. One
should expect this feature because as the qubit frequency increases, its effective coupling to
higher modes increases. Surprisingly, the higher modes actually reduce dissipation compared
to the single-mode theory (dotted line) when the qubit frequency is below the fundamental
mode.

Another relevant example in the context of this thesis is the multi-mode Purcell effect for
two-cavity circuits, as shown in figure 4.3 for a high-Q cavity at  GHz and a low-Q cavity
at  GHz. Having seen the equivalent effect in a single-cavity circuit, the T vs. frequency
profile is not too surprising—there are simply more locations where the T drops sharply.
One should be a little careful in interpreting the depths of these sharp drops. An important
requirement for using the admittance formalism of Esteve et al. is that the degree of freedom
should only be weakly coupled to any particular mode of the environment. This is certainly
not the case when the qubit is resonantly coupled to a cavity mode. In fact, in the resonant
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Figure 4.3: Two cavity multi-mode Purcell effect. a Circuit model for a qubit coupled to two
cavities. The qubit is coupled at the ends of the cavities opposite to their respective inputs
to protect from dissipation. b The calculated multi-mode Purcell T for the circuit shown
in a. Parameters are similar to those of the experiment of chapter 8. They are: C = . fF
(κ/π = . MHz), C =  fF (no direct coupling), C =  fF (κ/π =  MHz), Cд = . fF
(д/π =  MHz), Cд = . fF (д/π =  MHz), CΣ =  fF (EC/π =  MHz),
ω/π = . GHz, and ω/π = . GHz.

Jaynes-Cummings model the eigenstates are equal superpositions of cavity and qubit with
a total decay rate given by the average of the individual qubit and cavity decay rates, i.e.
/T = (γ + κ)/. Throughout this discussion, I only treat cavity-induced decay, which is
equivalent to assuming that γ = . Consequently, in resonance, the decay rate should be
κ/. In figure 4.3(b), I take κ/π = . MHz which gives T ∼  μs. Thus, the dips at  GHz
and  GHz should have minima of ∼ − s. A more complete model would take this into
account.

With that caveat aside, in figure 4.3(b) I have calculated the relaxation for the case
where the low-Q cavity is at a higher frequency than the high-Q cavity. This is a preferable
arrangement for experiments which operate with the qubit frequency in-between the cavity
frequencies, since the asymmetry of the relaxation means that the Purcell T would be smaller
if the cavity frequencies were swapped. As we have seen in section 2.2.4, however, there are
situations where it may be more convenient to work at negative detunings from a high-Q
cavity (e.g. the quasi-dispersive regime is simpler below a cavity for qubits with negative
anharmonicity). Consequently, it would be useful to have a means to modify the admittance at
some frequency or range of frequencies. This will be the topic of section 4.1.2 and section 6.2.
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4.1.1 Balanced Transmons

Given that the admittance of the environment seen by a qubit can have a dramatic effect on
its T, one should be very careful to eliminate coupling to chip or package modes which add
in parallel to the admittance of the CPW cavity. In particular, the CPW transmission lines
frequently used in RSL designs can also support a slotline mode between the ground planes.
This mode is not interrupted by a capacitor, so it is directly coupled to ∼  Ω. Furthermore,
the ‘standard moose’ transmon design∗ is asymmetric with respect to the center pin and
ground planes of the CPW transmission line, so it couples fairly strongly to the slotline mode.

There are several ways to go about fixing this. One is to try to suppress the slotline mode
by ensuring that the top and bottom metallizations of the CPW are tightly grounded together.
In part, this is the purpose of the densely packed wire bonds around the periphery of the chip
which are common practice in RSL. Unfortunately, these wire bonds are very far away on the
scale of the CPW gap, so they are not very effective at suppressing the mode. Crossovers that
connect at the edge of the CPW gap would work better, and are actually used in designs by
the NIST and UCSB groups. However, fabrication of these crossovers requires a dielectric
spacer material which typically has a detrimental effect on cavity and qubit T from dielectric
losses†.

Another possibility is to modify the transmon design such that it couples symmetrically to
the top and bottom ground planes. Figure 4.4 shows the relevant geometry and capacitance
network. The symmetric solution equates Ca = Ca and Cb = Cb. This can be done
geometrically, as is the case for the sarantapede design, where the two transmon islands have
equal capacitance to each ground plane. This is not the only solution, though. In particular,
since the capacitance matrix has a form similar to a Wheatstone bridge we can look for a
solution that exploits the relationships between the arms of the diamond. One way to proceed
is to apply a voltage between islands 1 and 3, and solve for the capacitance relation that ensures
the voltage drop Va − Vb = . Since 1 and 3 are held at fixed voltages, we consider only the
reduced capacitance matrix, C, for the floating islands: A, B, and 2. That is,

C = ⎛⎜⎜⎜⎝
Cab + Ca + Ca + Ca −Cab −Ca−Cab Cab + Cb + Cb + Cb −Cb−Ca −Cb Ca + Cb + C + C

⎞⎟⎟⎟⎠ . (4.5)

∗ see zoology of transmon qubits in section 5.1.1.
† There has been some success in making air-gap crossovers which might eliminate this problem [].
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Figure 4.4: Capacitance network for transmon coupled to CPW. a In the standard geometry
of coupling a transmon to a CPW transmission line, there are five pieces of metal, the two
transmon islands (labeled A and B), the CPW center pin (2), and the two ground planes (1
and 3). By virtue of being closer to the bottom ground plane, A and B typically are more
strongly coupled to 1. b The capacitance network for this set for this geometry represented
as a diamond, where every edge represents a capacitor. ‘Balancing’ the transmon means that
a voltage between 1 and 3 does not create a voltage drop between A and B. This can be done
simply by symmetrically coupling A and B to 1 and 3, i.e. the edges shown in orange and red
should be equal. There is a also a bridge solution, given in the text.

Applying a voltage, V, between 1 and 3 is equivalent to applying a polarization charge
Q̃ = V(Ca,Cb,C). The bridge solution is found by solving for V = C−Q̃ and setting
Va = Vb. Since the capacitances between the CPW elements, C, C, and C, are much
larger than the capacitances to the transmon islands, we can replace C = C = C′ and
C = єC′, where є is a proportionality factor of order 1. Taking the limit C′ →∞ gives

CaCb + CaCb + CaCb = CaCb + CaCb + CaCb. (4.6)

Figure 4.5 shows two example realizations of ‘balanced’ transmon designs with minimal
coupling to the slotline mode. Both designs approximately satisfy (4.6) by increasing Ca and
Cb while decreasing Ca and Cb. As a side effect of the capacitance modifications, these
designs tend to have a smaller ддe because of a reduced voltage division ratio, β ∼ .. This
results in ддe ∼ – MHz, as opposed to ддe ∼ – MHz for the ‘typical’ transmon
design. Consequently, these designs have utility beyond reduced coupling to the slotline mode
for experiments which require a smaller coupling rate. Unfortunately, devices employing
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Figure 4.5: Balanced transmon designs. The bridge solution of (4.6) can be satisfied by
increasing the capacitance of the upper island to the lower ground plane and the lower island
to the center pin. a The ‘crocodile’ transmon used in cQED167 achieves this by wrapping
around asymmetrically, whereas b the ‘moose with helmet’ transmon from cQED186 is mirror
symmetric in one direction.

these designs have not shown a substantial change in T compared to standard transmon
designs, suggesting that the slotline coupling is not the dominant source of relaxation in
current circuit QED experiments.

4.1.2 Purcell Filter

Equation (4.4) typically implies a trade-off between the cavity decay rate, κ, and T, because
fast cavities present a fairly large Re[Y(ω)] to the qubit. This constrains certain design
goals, such as optimizing the readout fidelity, because one often wants T to be as large as
possible while simultaneously maximizing the information collection rate by increasing
κ. The signal to noise ratio for the dispersive cQED read-out is given by a product of the
information collection rate and the integration time divided by the number of noise photons
of the amplifier. For a signal at the frequency of maximum distinguishability in phase and
integrating for a time T, the SNR is []

SNR = sin(θ)nħωrκT

kbTN
(4.7a)

= χT

κ
nħωr

kbTN
, (4.7b)
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Figure 4.6: Purcell filter. a Circuit model for a filter to make Y(ω) purely reactive at the
qubit frequency. A λ/ open-circuited transmission line stub effectively shorts out the  Ω
environment at the quarter-wave frequency. b Calculated T using the admittance formalism
of section 4.1 with and without the filter. Parameters are the same as those used in figure 4.2
with the addition of vp/(πλ) =  GHz. The filter creates a large band around  GHz where
the T is significantly improved compared to the circuit without the filter.

where θ is the phase difference between the signals when the qubit is in ∣д⟩ and ∣e⟩, and
the last line follows in the small phase shift limit where sin(θ) ≈ (χ/κ). Consequently,
the SNR depends on the ratio of T to κ. The Purcell effect links these two parameters,
but since the qubit and cavity frequencies are typically detuned, one can look for a way to
modify Re[Y(ωq)] without changing Y(ωr) by introducing additional circuit elements to
the network of figure 4.2.

One method for achieving this is to place a λ/ open-circuited transmission line stub∗

outside of the output capacitor, Cout, as shown in figure 4.6(a). A λ/ transmission line acts
as an impedance transformer, so by choosing vp/λ = ωq/π, the stub shorts out the  Ω
environment at ωq. The calculated T for this circuit is shown in figure 4.6(b) for a filter
centered around  GHz. The filter creates a region of qubit frequencies of approximately 10
bandwidth where the T is significantly improved compared to the circuit without the filter.
The realization and measurement of such a filter is presented in section 6.2.

4.2 Flux Bias Lines

Initial cQED experiments relied upon large bandwidth control of the gate charge on the CPB
to do fast manipulations of the qubit frequency. The difficulty in controlling the low-frequency

∗ A λ/ short-circuited stub would work as well, but it takes up more space on the chip.



CHAPTER . Re[Y(ω)] AND FAST QUBIT CONTROL 

AWG

RT 4K 20 mK

20 dB 20 dB eccosorb

a b

Figure 4.7: Flux bias line setup. a Geometry used for estimating the mutual inductance
between the bias line and the SQUID loop, calculated using Biot-Savart and assuming uniform
current sheets. Here, the SQUID loop is approximated as a  μm ×  μm rectangle that is  μm
away from the edge of a  μm ×  μm bias line. b Schematic showing the connection between
room temperature control electronics and the chip. The 20 dB attenuator at room temperature
attenuates noise from the AWG and effectively transforms the voltage output into a current
output. A 20 dB attenuator at 4 K serves to thermalize the line. At the base temperature of the
dilution refrigerator, a series combination of a reflective  GHz low-pass filter and an eccosorb
filter attenuate high frequency noise and thermalize the line.

charge environment was an impetus for the development of the transmon. However, the
move to the transmon temporarily involved a loss of this control, since the first few levels of
the transmon have very little sensitivity to gate charge. Instead, the transmon frequency is
modified by changing the flux which penetrates the SQUID loop that connects the islands.
In the first transmon experiments, this field was provided by a large superconducting bore
magnet outside the vacuum can of the dilution refrigerator. This magnet has significant
inductance (>  Henry), and the normal metal leads driving it have ∼  Ω resistance,
leading to an L/R time in the millisecond range. Furthermore, the field that the bore magnet
provides is global, so it simultaneously changes the frequencies of all qubits on a chip. Adding
local on-chip flux bias lines can fix both of these problems, by allowing individual tuning of
the qubit frequencies on nanosecond timescales.

The basic design approach pursued at Yale, shown in figure 4.7(b) uses a  Ω transmission
line which is terminated in a short near the transmon SQUID loop. The line is placed off-
center, such that one arm of the short couples more strongly to the SQUID loop. Maintaining
 Ω in the bias line makes it compatible with commercial arbitrary waveform generators for
producing fast pulses. The short termination allows one to bring the bias current very close
to the qubit SQUID loop, at the price of a factor of two in the current since the current is split
in two directions at the short. In addition, the short termination causes the entire chip (in
fact, for our setup it is the entire frame of the fridge) to serve as the return path. This means
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that the current travels through a rather uncontrolled path, which may be the cause of the
anomalous time-domain response which will be discussed in section 4.3.

To have complete control of the qubit frequency, the flux bias line must have sufficient
mutual inductance with the SQUID loop in order to thread one flux quantum without
requiring an excessive amount of current on the line. The current limits are set by many
factors, including current sourcing ability of room temperature electronics, the critical
current of the narrowest section of the short, and the available cooling power at the dilution
refrigerator stages where the line is thermalized with resistors. For the setup shown in
figure 4.7(b), an RF voltage pulse of amplitude V produces a current

I =  ⋅ 


⋅ V
 Ω

= V
. kΩ

, (4.8)

where the factor of 2 comes from the short circuit termination and the factor of 1/100 is the
voltage division ratio for two 20 dB attenuators. The maximum amplitude pulse one can
produce with a Tektronix AWG5014 is  V, which by (4.8) gives a current of  mA. This
implies that the flux bias line should, at minimum, have a mutual inductance of  Φ/A.
With sufficiently quiet electronics, one could remove the attenuator at room-temperature to
get an extra factor of 10 in current.

The primary design variables for a flux bias line are the distance between the short and
loop, and the area of the loop. Typically, the SQUID loop areas have been kept fairly small,
on the order of  μm ×  μm, in order to limit sensitivity to flux noise and crosstalk. Rather
counterintuitively, measurements of flux noise in SQUID loops has shown a “universal” value,
independent of loop size []. Nonetheless, increasing the loop size does increase the mutual
inductance with other loops on the chip, increasing “cross-talk” between different flux bias
lines. One can estimate the mutual inductance, M, by treating the short as an infinite wire.
This gives the appropriate intuition that, since the field goes as /r, M should be related to
log(r/r), where r and r are the distances to the near and far edges of the loop, respectively.
Consequently, M is only weakly dependent on the distance between the short and loop. To get
a better estimate, one can use Biot-Savart to numerically calculate the fields from a simplified
geometry, shown in figure 4.7(a). This calculation∗ gives a mutual inductance of ∼  Φ/A.
The observed inductive coupling for such a loop is ∼  Φ/A. This difference is likely due to
“flux focusing”, where the Meisner effect in the surrounding superconductors concentrates the
magnetic field in the gaps of the CPW. The focusing effect is difficult to account for precisely

∗ This work was done in collaboration with Hannes Majer.
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for any given geometry. Consequently, the numerical calculations can only be relied upon
for a rough estimate.

Relaxation

One might worry that coupling a large bandwidth (∼  GHz, limited by cold filters)  Ω
line to the qubit would shorten the qubit T or T. This noise couples in two different ways:
i) it directly modulates the Josephson energy of the SQUID loop, and ii) it modifies the
admittance seen by the effective LC circuit. Koch et al. calculate the relaxation from channel
i) using the fluctuation-dissipation relation. They separate the applied flux into a constant
term plus noise, Φ = Φe + Φn. Then the transmon Hamiltonian becomes H → H + ΦnÂ,
with []

Â = ∂H
∂Φ

∣
Φe

= EJ
π

Φ
[sin(πΦe

Φ
) cos ϕ̂ − d cos(πΦe

Φ
) sin ϕ̂] , (4.9)

where d is the junction asymmetry. Then the fluctuation-dissipation theorem gives []

Γ = 
T

= 
ħ

⟨ e ∣ Â ∣ д ⟩MSIn(ωдe). (4.10)

The matrix element in this expression has terms proportional to ⟨ e ∣ cos ϕ̂ ∣ д ⟩ and ⟨ e ∣ sin ϕ̂ ∣ д ⟩.
Since the transmon basis states are nearly harmonic oscillator states, ∣д⟩ and ∣e⟩ have opposite
parity in the charge basis. Consequently, the first matrix element vanishes, and the remain-
ing term is due to the asymmetry between the two junctions of the SQUID loop. Junction
fabrication tests with 10’s of junctions on a chip typically show a spread of 5–10 in room
temperature junction resistance, so it is reasonable to assume a similar spread in the EJ’s of
the two junctions when cold. If the bias line is appropriately filtered and thermalized, the
spectral density of the noise is the quantum noise of a zero-T resistor, SIn(ω) = Θ(ω)ħω/R.
Figure 4.8 shows the dependence of (4.10) on the junction asymmetry, the mutual induc-
tance, and the static flux bias. For parameters corresponding to real samples, d = . and
M =  Φ/A, the T due to this coupling is ≳  ms.

Channel ii) can be calculated using the admittance formalism (section 4.1) with estimates
of the capacitive coupling, Cc, between the flux bias circuit and the transmon, as well as
the inductance of the short, Ls. The capacitance can be simulated in Maxwell by modifying
the simulated geometry to introduce gaps in the short circuit termination, as shown in
figure 4.9(a), to separate the flux bias line center pin from the ground plane. This simulation
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Figure 4.8: Relaxation from inductive coupling to SQUID loop. a T vs. junction asymmetry,
d. b T vs. mutual inductance, M. c T vs. flux bias Φe .

a b

Figure 4.9: Relaxation from charge coupling to transmon. a Maxwell geometry for calcu-
lating the capacitive coupling to the flux bias line. Gaps are introduced in the short circuit
termination in order to separate the center pin of the flux bias line from the ground plane. b
Equivalent circuit for modeling the admittance Y(ω).



CHAPTER . Re[Y(ω)] AND FAST QUBIT CONTROL 

0.0 1.00.80.60.40.2
10

-7

10
-6

10
-5

10
-4 8

6

4

2

0

 

Figure 4.10: Tϕ due to flux noise. The inferred dephasing from (4.12) is plotted as a function
of flux bias, Φ, for / f noise spectra with amplitudes A = − Φ (light green) and A = − Φ
(dark green). Reprinted from [].

gives a capacitance Cc ∼  fF. Similar simulations give Ls ∼  pH. Calculating the real part
of the admittance for this circuit (shown in figure 4.9(b)) gives

Y(ω) = ZωL
sC

c

ωL
s + Z

( − ωLsCc) ≈ 
Z

( ω
ωs

) , (4.11)

where ωs = /√LsCc. Plugging this into (4.4) results in T >  μs, though due to the ω
s

dependence, this estimate is extremely sensitive to the values of Cc and Ls (an increase in Ls

or Cc by a factor of 2 decreases T by a factor of 4). For instance, if Cc =  fF and Ls =  pH,
then T at  GHz would be ∼  μs. Consequently, it is rather important to limit the capacitive
coupling and inductance of the flux bias line.∗

Dephasing

The current-noise induced fluctuations of EJ also cause ωдe fluctuations, which causes dephas-
ing. Since ωдe ∝√

cos Φe/Φ, the sensitivity of ωдe to flux noise is periodic in the externally
applied flux. Analogous to the charge “sweet-spots” in the CPB, there are flux sweet-spots
where the transmon is first order insensitive to flux noise. Ref. [] calculates the effect of flux
noise at and away from the sweet spot, assuming a / f noise spectrum, SΦ(ω) = πA/ω.

∗ Jerry Chow’s thesis contains further simulations of the admittance of the entire chip using Sonnet, which
reveals that the presence of the bias lines allows an additional “wiggle-waggle” mode on the chip. This can be
suppressed with wirebonds and a new package design that eliminates empty volume.[]
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Away from the sweet spot, the dephasing time is given by

Tϕ = ħ
A
∣∂Eдe

∂Φ
∣− = ħ

A
Φ

π
(ECEJ ∣sin

πΦe

Φ
tan

πΦe

Φ
∣)−/ . (4.12)

Consequently, the dephasing from flux noise depends on the magnitude of A. Figure 4.10
is a plot of dephasing vs. flux bias, Φ, showing the dependence of Tϕ on the derivative
of the qubit frequency. In the absence of additional coupling, various experiments have
shown a “universal” value of A ∼ −–− Φ from local flux sources []. Finding the
source of this noise, and eliminating it, is a crucial requirement for improving T times
in superconducting qubits. Noise which travels down the flux bias line adds on top of
this background, such that the total noise spectrum is SΦ(ω) = MSI(ω) + Suniv.Φ (ω). One
should filter the flux bias line such that this added noise is negligible compared to the
“universal” background. Assuming that the room temperature electronics has a / f voltage
noise spectrum, SV(ω) = πA

V/ω, then for the observed mutual inductance, M =  Φ/A
and the voltage to current conversion factor of (4.8), this implies that

( Φ/A) A
V(. kΩ) ≪ (− Φ) ⇒ AV ≪  × −V . (4.13)

The Yokogawa 7651 programmable DC source has a noise spectrum which depends on the
selected output range. On its  V range setting it is specified to have  μV peak-to-peak
voltage noise from DC to 10 Hz. This corresponds to AV ∼  × − V/√Hz, which is right at
the level where one should expect to see some effect from the added noise. Less information
is available for the Tektronix 520 and 5014 arbitrary waveform generators, which are used
in RSL for fast flux control. Other members of the lab have reported observing a lower T

when biasing a qubit with a Tek AWG compared to biasing with a Yokogawa. This has led to a
modification of the schematic of figure 4.7(b), where a bias tee is used at room temperature to
allow DC flux control with a Yokogawa and fast flux control with a Tek AWG. Regardless, the
noise of current electronics is likely already limiting observed T’s in transmon experiments.

4.3 Classical Control Theory (Deconvolution)

After carefully designing this local control line to manipulate qubit frequencies on fast time
scales, the natural question is: how well does it work? The answer, it turns out, is pretty
well, but with a few annoyances. The photon detection experiment discussed in chapter 8
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puts some extraordinary demands on the accuracy and precision of the flux control. In
particular, that experiment requires that the qubit frequency is changed by ∼ . GHz in
10’s of nanoseconds, and that the local flux is sufficiently precise to dial-in a specific qubit
frequency to within – MHz. From the perspective of the room temperature electronics, this
means that voltage steps need to be correct to a part in . Unfortunately, when attempting
to carry this out, I ran into problems with both the room temperature electronics (in this case
a Tektronix AWG) and with the time-domain response of the flux bias circuit (meaning
the entire path from the input at the top of the dilution refrigerator, through the filtering, onto
the chip, and out whatever path the current takes through experiment ground). This section
serves to document these problems as well as their resolution, which takes the common form
of basic classical control theory and deconvolution of linear response. I will introduce the
general concept, and then show how it is applied to the TekAWG and flux bias circuit.

In classical control theory, one uses the response of a system to modify its input until
the desired response is obtained. The response, o(t), of a linear system to an arbitrary input,
i(t), is determined by its transfer function, h(t), through the relation

o(t) = ∫ ∞

−∞
h(t − τ)i(τ)dτ. (4.14)

If the system is causal, then h(t) =  for t < , and the integral has a natural upper limit of t. In
general, one cannot make this assumption as there exist linear devices which are a-causal. For
instance, many digital electronics devices apply a-causal linear filters to their inputs, resulting
in a-causal transfer functions. An “ideal” system has δ-function-like transfer function, such
that the output is identical to the input, perhaps with some gain factor. However, most
systems, at minimum, have a finite bandwidth which causes h(t) to have some width. The
transfer function of a system can be measured by suitable choice of input, i(t). For instance,
if the input is itself a δ-function, i(t) = δ(t), then (4.14) gives

O(t) = ∫ ∞

−∞
h(t − τ)δ(τ)dτ = h(t). (4.15)

Unfortunately, δ-functions are hard to produce experimentally in practice. A more convenient
choice is given by a step function input, I(t) = Θ(t). Then,

O(t) = ∫ ∞

−∞
h(t − τ)Θ(τ)dτ = ∫ ∞


h(t − τ)dτ ⇒ O′(t) = h(t). (4.16)

Once h(t) is known, one can modify the system input to get the desired output. That is, I
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want to find the inverse transfer function h−(t) such that

ĩ(t) = ∫ ∞

−∞
h−(t − τ)i(τ)dτ (4.17)

produces o(t) = h(t) ○ ĩ(t) = i(t).
Equation (4.14) is a convolution, so in the Fourier domain,

O(ω) = H(ω)I(ω), (4.18)

where I use uppercase letters to denote the Fourier transform of a function. Then the inverse
transfer function can be simply computed by division, H−(ω) = /H(ω), and transformed
back into the time domain. This procedure fails if H(ω) vanishes for some ω. Fortunately,
for many situations of interest, this is not the case.

A further detail of note is that the expressions above are all for continuous functions, but in
practice the inputs and outputs are sampled at discrete time steps. The deconvolution method
still works, but integrals become sums, and Fourier transforms become discrete Fourier
transforms. The details of appropriate choices of π’s and units in numerical derivatives are
given in the recipes of the next sections, where the above method is applied to the Tektronix
AWG and the flux bias circuit.

Tektronix AWG5014

The Tektronix AWG is a very fast (. GS/s), multi-channel digital-to-analog converter.
It is ideally suited for testing large bandwidth communications devices, like cellphones and
Wi-Fi routers. For these applications, speed is paramount, while accuracy and precision are
of lesser concern. Consequently, the TekAWG does not automatically match the required
specifications for driving a flux bias line in some experiments. The typical response of an
analog output channel for a step function input is shown in figure 4.11(a). This response
displays several anomalous features. The first is that after the initial sharp rise which travels
99 toward the programmed value in under  ns, there follows a slow (>  μs) rise until the
output reaches the final value. Stranger yet, the output of the AWG anticipates the step with
a small 0.5 rise ∼  ns before the step. This second feature suggests that the AWG applies
some kind of digital filtering to its output.∗ These two features scale linearly with the step
size, so it is likely that they can be fixed through deconvolution methods. It is important to

∗ Somewhat ironically, this same hardware could be used to fix these issues.



CHAPTER . Re[Y(ω)] AND FAST QUBIT CONTROL 

1.0

0.8

0.6

0.4

0.2

0.0

Fo
ur

ie
r A

m
pl

itu
de

4003002001000
Frequency (MHz)

 Raw Transfer Function
 Filtered Transfer Function

-0.005

0.000

0.005

N
or

m
al

iz
ed

 A
m

pl
itu

de

2.01.51.00.5
Time (μs)

1.010

1.000

0.990

0.980

 Raw
 Corrected

 

1.0

0.8

0.6

0.4

0.2

0.0

N
or

m
al

iz
ed

 A
m

pl
itu

de

3.02.52.01.51.00.5
Time (μs)

1.004
1.000
0.996
0.992

A
m

p

2.01.51.00.5
Time (μs)

0.004
0.002
0.000

A
m

p

0.60.50.40.30.2
Time (μs)

a

b c

Figure 4.11: Correcting the output of the Tektronix AWG. a The issue. b The raw and
filtered transfer functions. c Applying the deconvolution kernel to fix the response.

remember, however, that the TekAWG is not a completely linear device. As alluded to in Refs.
[, ], the TekAWG also has additional anomalous behavior on the sub- ns timescale
that is non-linear, and consequently cannot be corrected with deconvolution. Thus, we need
to modify the deconvolution procedure to only deal with the linear part of the response
function.

The following recipe can be used to find a deconvolution kernel for the linear response of
a Tektronix AWG:

1. Measure the response, ri of a step function input at the same sample rate as the desired
output (usually  GS/s), making sure to sample the regions before and after the step
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edge. Subtract any DC offset and scale the data such that the step goes from 0 to 1 in
normalized units.

2. Compute the transfer function hi by doing a numerical derivative, hi = ri − ri−. Do
not divide by the sampling interval, Δt, so that hi is in units of Δt.

3. Rotate the points of hi such that h is the beginning of the step edge. Compute the FFT
of hi , H( fi).

4. The resulting spectrum, shown in red in figure 4.11(b), is noisy. We do not want to
introduce additional noise in the output, so fit the real and imaginary parts of H( fi) to
nth order polynomials where n is some small number, like 5–20. Construct Hsmooth( fi)
by pulling from the data for the low frequency points and from the polynomial fits for
the high frequency points, i.e.

Hsmooth( fi) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
H( fi) fi <  MHz

fit of H( fi) fi ≥  MHz
, (4.19)

to ensure that the relevant data remains while smoothing out the rest of the spectrum.

5. The spectrum still contains high frequency information, including the roll-off from
the ∼  MHz analog bandwidth of the AWG. Apply a filter which removes this high
frequency information by pushing H( fi) to 1. The particular form of this filter does
not matter. One such choice is

Hsmooth, filtered( fi) = Hsmooth( fi) ⋅ F( fi), (4.20)

where

F( fi) =  + 

( 
Hsmooth( fi) − )(tanh( fi − f

σ
) + ) , (4.21)

with f ≈  MHz and σ ≈  MHz. The resulting spectrum is shown in blue in
figure 4.11(b).

6. Find the inverse, G( fi) = /Hsmooth, filtered( fi), and perform an inverse FFT.

7. Finally, rotate the result such that the point representing t =  is the central point in
the list.



CHAPTER . Re[Y(ω)] AND FAST QUBIT CONTROL 

This recipe produces a deconvolution kernel which works quite well in practice, improving
the accuracy of programmed voltage levels by a factor of 5–10. Figure 4.11(c) shows the result
of applying this kernel to a step function input. One can see that the step is now much flatter—
the anomalous features before and after the step edge are gone. Importantly, subsequent steps
no longer depend on the previous – μs of output. However, the step edges now display
some overshoot due to the gain of the inverse transfer function at intermediate frequencies.
This can be removed by slightly rounding pulse edges before applying the deconvolution
kernel.

Flux bias circuit

With the response of the room temperature electronics under control, we can move on to
examining the response of the rest of the flux bias circuit. Characterizing this circuit is not as
straightforward as hooking up a fast oscilloscope, since we are interested in the local flux on
the chip. Instead, the qubit itself can be used as a local magnetic field probe.∗

Figure 4.12(a) shows a schematic of an experimental protocol to measure the time-domain
flux response. A voltage pulse of widthw and height h is applied to the bias line, then the qubit
frequency is tracked as the local flux returns to its original value. Ideally, the width w should
be chosen such that the flux bias reaches steady-state. In this case, the procedure is equivalent
to testing the step function response of the bias line. To track the qubit frequency, a weak∼  ns spectroscopy pulse is scanned in frequency for each value of delay from the trailing
edge of the flux pulse. The resulting spectrum, shown in figure 4.12(b), displays a rather broad
Gaussian profile because of the large bandwidth of the spectroscopy pulse. Nonetheless, the
center frequencies of these Gaussians can be extracted with high precision, giving the time
domain response of the qubit frequency after the step edge, shown in figure 4.12(c).

This method has some limitations. First of all, it requires a frequency sweep for every
measured delay. This is sufficiently time consuming that one typically needs to examine a
small frequency window, which is equivalent to zooming in on the flat section of the step
response, rather than recording the entire step. Second, this method has a much restricted
bandwidth compared to the flux bias control. The time resolution of the qubit frequency
measurement is roughly equivalent to the spectroscopy pulse duration. One can use a shorter
pulse, but this leads to a broader Gaussian response, and thus greater uncertainty in the

∗ The supplement of Ref. [] describes a similar method for charactering flux response.
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Figure 4.12: Flux bias line response. a “Qubit scope” experiment pulse sequence. b Measured
homodyne phase shift as a function of spectroscopy frequency and delay from the trailing edge
of the flux pulse. c The center frequencies of data such as b for various flux pulse heights. d The
flux bias line also has a millisecond timescale behavior which can be observed by alternating
between repeated flux scope experiments of fixed delay but different step widths or heights.

center frequency. Therefore, deconvolving the linear response will require resampling or
interpolation at the AWG sampling rate.

Nonetheless, this “qubit scope” method is sufficient to reveal a number of flux bias response
features. First of all, the data of figure 4.12(c) show the qubit response to voltage steps which
change the qubit frequency by ∼ + GHz and − MHz, respectively. In each case, the qubit
response has an exponential tail of roughly 3 amplitude and a time constant τ ≈  ns. This
behavior consistently scales with the amplitude of the flux bias step, which is a good indication
that it is a linear effect which can be corrected by deconvolution. Unfortunately, the flux bias
line also has a much slower response behavior which is not apparent in figure 4.12(c). If the
“qubit scope” procedure is repeated many times for one step width, w, and then switched to a
different width, w, in a square wave pattern, figure 4.12(d) shows that the qubit frequency
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Figure 4.13: Flux balancing. The slow flux bias behavior is compensated by replacing current
pulses that enclose a positive area A with a pair of pulses with the second mirrored about the
DC value, such that the average current integrated over the entire pulse sequence is equal to
the DC current. This second pulse does not need to immediately follow the first, so long as the
time between the pulses is short compared to the slow flux bias response time.

actually changes despite nominally measuring the same thing many times. What is really
happening is that the average value of the current on the bias line is different for the two pulse
widths, and the bias line responds to this change in average value on a timescale of roughly
a millisecond. This response points to the existence of a large effective inductance, Leff in
the bias circuit. The origin of this inductance is currently unknown, but fortunately, the
Leff/R time for the slow response is 2–3 orders of magnitude larger than a typical experiment.
Consequently, we can employ a trick and reprogram any sequence of flux bias pulses to
maintain a constant average value of current, as shown in figure 4.13. This prevents the flux
in Leff from changing when looping through a sequence of pulses.

The fast time scale behavior can be deconvolved using a similar recipe to the one presented
for the Tektronix AWG, but with a few modifications. First, due to the windowing and
sampling issues discussed above, I find that it is easier to use an effective transfer function
model than it is to try to convert qubit frequencies back into voltages at the output of AWG.
Consequently, instead of starting with the measured step response, I use a model of an
instantaneous rise with a residual exponential tail, where the amplitude and time constant are
given by fits to the measured “qubit scope” response. One can proceed as before, but omitting
steps 4 and 5 since they are not necessary with the idealized model. The resulting qubit
frequency control is precise to – MHz. This is good enough for the experiment of chapter 8,
but leads to substantial phase errors in extended pulse sequences. Consequently, it will be
necessary to find and remove the sources of non-ideal flux bias response as experiments grow
in duration and complexity.



CHAPTER 5

Device Fabrication and Experiment Setup

The realization of a circuit QED experiment involves the coordination of many elements.
From the perspective of smallest to largest size, this begins with the electrical design of

the qubits and cavities. These circuits are fabricated on a silicon or sapphire substrate, with
optical lithography used to define the resonator and bias ports, and e-beam lithography to
define the qubits. The chip is mounted in a package which consists of a PC board that plugs
into a sample holder. The sample holder, in turn, is mounted on the base plate of a dilution
refrigerator, and filtered, large-bandwidth transmission lines connect the sample ports to
room temperature electronics. The electronics include modulated microwave sources, fast
pattern generators to modulate the input signals, amplifiers, filters, and a fast analog-to-
digital converter to digitize the output signals. All of this is controlled by custom software
written in LabVIEW and Mathematica. Much of this infrastructure is independent of the
particular experiment, and so many of the details regarding fabrication and experiment setup
can be found in [, ]. Rather than repeating that material, I will describe changes and
developments to the circuit QED infrastructure that are new to this work. The principal
developments include: a modified e-beam lithography process to make devices on sapphire
substrates, a sample holder which allows for up to 8 control ports, filters for flux bias lines,
microwave setup to facilitate reflection measurements, pulse modulation techniques with
external I/Q mixers, and a domain specific language for programming pulse sequences.

89
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5.1 Circuit QED devices

All devices presented in this thesis are made with a fairly simple process that uses optical
lithography to define large features and e-beam lithography for small features. The basic
process is as follows: niobium is DC sputter deposited on a silicon or corundum (sapphire)
substrate. Then two layers of photoresist are spun and the large features, including the
resonators, flux bias lines, and input and output ports, are defined with contact optical
lithography, after which the Nb is dry etched by fluorine-based reactive ion etching. The
wafer is then diced into individual chips before two layers of e-beam resist are spun on a
single chip. E-beam lithography defines the qubit geometry, and aluminum is deposited
with a double-angle e-beam evaporation step to create Al-AlOx-Al Josephson junctions by
the Dolan bridge technique. The details of this process for silicon substrates are presented
in []. In the following sections I will describe two developments to this process. The
first is a proliferation of qubit designs, the reasoning behind several of which are presented
in chapter 3 and chapter 4. The other development is a change to fabricating devices on
corundum substrates. This change is motivated by loss tangent measurements which suggest
that corundum presents less intrinsic loss than silicon for high-Q devices [, ].

5.1.1 Transmon zoo

The history of circuit QED with transmon qubits has seen the evolution of the original
transmon design to suit different needs. Consequently, there are now many different ‘species’
of transmon in the wild. Figure 5.1 presents many of these designs along with tongue-in-cheek
names derived from similarities in appearance to various animals. Figure 5.1(a) is the original
transmon design that has EC/π ≃  MHz and coupling strength ддe/π ∼ – MHz
to the CPW mode, but that also has significant undesired coupling to the spurious slotline
mode. Figure 5.1(b and c) are variations on ‘balanced’ transmons (see section 4.1.1) that
attempt to reduce this spurious coupling. The constraint of fitting these designs into the same
 μm ×  μm slot required reducing the coupling to the desired mode to ддe/π ∼ –
 MHz. For some experiments, such as the strong driving of the vacuum Rabi measurement
of [], a smaller ддe is desired, and so these balanced designs are also useful in such cases.
Figure 5.1(d) is made for a deeper  μm ×  μm slot in order to make a larger shunting
capacitor. This decreases EC/π to ∼  MHz, which is useful for maintaining large EJ/EC

ratios at smaller ωдe . Figure 5.1(e and f) are ‘flux bias’ transmons that increase the size of
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Figure 5.1: Optical images of transmon designs. a The original ‘standard moose’ transmon.
b The ‘crocodile’ balanced transmon. c The ‘moose with helmet’ transmon. d The ‘deep slot’ or
‘long antler moose’ transmon. e and f ‘Flux bias’ transmons with the SQUID loop at the top or
bottom. f The ‘sarantapede’ transmon.

the SQUID loop and bring it to the edge of the slot nearest to the short on the flux bias line.
Since (e) is below the center pin and (f) is above, in order to fabricate Josephson junctions
for (e) and (f) simultaneously and with nearly-identical EJ, the SQUID loop design in (f)
had to be modified slightly. Figure 5.1(g) shows a ‘sarantapede’ qubit, which edge-couples to
the center pins of two separate resonators (the forks on the left and right) while minimizing
the capacitance between the resonators (see section 3.4).
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5.1.2 Qubit fabrication on sapphire substrates

Electron-beam (e-beam) lithography requires accurate control of a focused beam of electrons.
Almost all of the charge delivered to a small area of resist is due to ‘secondary electrons’, which
are electrons that scatter off the substrate. For conducting substrates, the remaining electrons
are carried away to the edges of the substrate and into grounding clips, which also serve
to hold the chip in-place. On highly insulating substrates, however, the charge is trapped
near the surface, causing the substrate to accumulate localized pockets of charge. This is
problematic because these trapped charges can deflect the beam, making it impossible to
precisely define small features.

Lightly doped silicon with resistance greater than  kΩ cm is sufficiently conductive
at room temperature to not affect e-beam lithography. Corundum substrates, on the other
hand, do not work with an unmodified e-beam process. Luigi Frunzio and I developed a
simple fix by depositing a thin (∼  nm) layer of metal on top of the resist. In our case, since
we were already using Al in the deposition system, we used e-beam evaporation to cover
the MMA/PMMA resist stack with – nm of Al. This layer of metal provides an effective
channel to carry away excess charge once the sample is clipped down to the SEM stage. After
the device is exposed, the Al top layer is removed before development. We use a common
photoresist developer, Shipley Microposit MF-312, which is also an effective wet etch for Al.
After the Al is removed, we continue with the standard MMA/PMMA development process of
MIBK:IPA followed by double-angle e-beam evaporation of aluminum in the Plassys system.
These steps modify the e-beam resist such that exposure dose must be increased –%
compared to the silicon process.

Initial tests of junctions made on R-plane corundum displayed an anomalous aging effect.
Usually, the diffusion of oxygen into the surrounding aluminum of the Al-AlOx-Al junction
is a self-limiting process that evolves on a timescale of a few hours. In practice this means that
the normal resistance, or RN , of Josephson junctions made on silicon increases by ∼ –%
over the course of a few days after the deposition and lift-off process is finished. After this,
the resistance stops increasing. This junction ‘aging’ is sufficiently repeatable that it can be
accounted for when choosing junction area and opacity, the latter being determined by the
duration and pressure of the oxidation step of the deposition process. In contrast, initial aging
tests of junctions made on R-plane corundum continually increased in resistance for weeks
without stopping, as shown in figure 5.2. This is undesirable because the device properties
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Figure 5.2: Josephson junction aging on silicon and corundum. Junctions made on corun-
dum substrates without an additional cleaning step (red) display a runaway effect with aging
that appears not to be self-limiting after 15 days. By adding an argon/oxygen plasma cleaning
step, the junction aging is controlled (orange), but results in junctions with much lower resis-
tance than given by the usual recipe on silicon (blue). Increasing the pressure in the oxidation
step to  Torr gives junctions with similar transparency (green) to the silicon recipe. Error
bars are the standard deviation in measured resistance across ∼  devices.

are then largely determined by the time between fabrication and cool-down, which is not
always predictable.

The source of this run-away aging remains a mystery; however, Luigi and I did find a
way to prevent it with a modified deposition recipe. We added a gentle argon/oxygen ion
milling/cleaning step prior to depositing the base layer of aluminum. With this added step,
junction aging on corundum displayed similar behavior to aging on silicon (see figure 5.2).
Later tests have shown that this recipe also works with c-plane corundum, though we have
never tried aging tests on c-plane corundum without the additional cleaning step. For the
full e-beam process and deposition recipe, see appendix C.

5.2 Measurement setup

Performing microwave measurements on superconducting samples at  mK requires ex-
treme care in the design of the cryogenic measurement setup. Filtering, attenuation, thermal
anchoring, cable choice—all of these play a role in separating the signals which are intended
to interact with the samples from the thermal background provided by the room temper-
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Figure 5.3: Schematic of cryogenic measurement setup. The two cavity experiments have 5
ports: each cavity has an input and output port, provided by directional couplers, plus there is
an additional port for the qubit flux bias line.

ature and intermediate temperatures that contact the cables connected to the sample. The
experiments discussed in this thesis all used a cryogenic measurement setup similar to the
design discussed in [, chapter 6]. This design was modified for the two-cavity experiment
of chapter 8 to allow for amplification and the measurement of the reflected signal off of the
input ports of each cavity, and for fast control of the qubit frequency via the flux bias line.

There are two common microwave tools for measuring reflected signals: circulators and
directional couplers. The first is a 3-port, non-reciprocal device. In cryogenic experiments,
circulators are frequently found between the cold sample and the amplifier which is thermal-
ized to  K. In this use, the third port of the circulator is terminated with  Ω, such that the
resulting device acts like a one-way valve for microwave photons. Then signal photons from
the sample pass through with little-to-no attenuation, while noise photons from the amplifier
are heavily attenuated (∼  dB) when passing through in the opposite direction. The effective
2-port device formed when the third port is terminated is sometimes called an isolator. In fact,
the components shown in front of the HEMT amplifiers in figure 5.3 are Pamtech broadband
– GHz isolators (model CWJ1019), where the third port is internally terminated, so it
is not accessible to the experimenter. In a standard circulator, however, the third port can
also be used to send signals the other way, providing a means to separate incoming and
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Figure 5.4: A directional coupler is a four port device that splits a signal between multiple
outputs. A signal injected at port 1 is largely transmitted to port 2, with a much smaller fraction
of the signal going to port 3 (the coupled port). Ideally, no signal arrives at port 4 (the isolated
port). There is nothing special about the labeling of ports in the diagram: signal can be injected
into any port. For instance, if port 4 is the input, then 3 is the transmitted port, 2 is the isolated
port, and 1 is the coupled port.

outgoing signals to and from the device. Circulators are typically very narrow-band devices;
the broadband variety used in these experiments are very expensive, costing several thousand
dollars each. Fortunately, for the purpose at hand, a much less expensive directional coupler
will suffice.

A directional coupler, schematically illustrated in figure 5.4, is a reciprocal 4-port device
that splits a signal sent into any port onto two outputs. The division ratio is typically very
asymmetrical, such that the strongly coupled (or transmitted) port receives a nearly un-
affected signal, while the other port gets a copy which is attenuated by – dB. The ratio
of this coupling, and the bandwidth over which the component works, are the primary
specifications of any directional coupler. The couplers shown in figure 5.3 are  dB models.
When strong attenuation of one direction of photons is acceptable, a directional coupler
can be used to measure reflected signals by connecting the sample and amplifier to a pair
of strongly coupled ports, and using the port which weakly couples to the sample port for
the drive. A  Ω terminator (from XMA) is connected to the fourth port, which is strongly
coupled to the drive. It serves as an effective sink for the majority of the power sent down the
‘input’ cable. For sufficient attenuation∗ of thermal photons coming from higher temperature
stages, one typically needs ∼  dB of attenuation of the input at the mixing chamber. Since
the directional coupler already provides  dB of attenuation, an additional  dB attenuator
is sufficient.

The other modification of the cryogenic setup is the addition of the flux bias line, which
requires a very different kind of filtering than the microwave lines. Whereas the input and

∗ ‘Sufficient attenuation’ is application specific, but in this case we designed for a thermal photon number,
nth < ..
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output ports for the cavities need to transmit – GHz signals, the flux bias line only requires
sufficient bandwidth to be fully controlled by a Tektronix AWG520 or AWG5014, which
fast arbitrary waveform generators. Each instrument is specified to output signals at  GS/s;
however, both devices have ∼  MHz of analog bandwidth, which is significantly below
the Nyquist frequency of  MHz. The flux bias lines also control the DC flux seen by
qubit, so these lines should have bandwidth DC– MHz. Unfortunately, the usual tool
for filtering DC lines in cryogenic experiments, the copper powder filter, has a much lower
cutoff frequency of a few 10’s of MHz. Fortunately, recent work by Daniel Santavicca []
has produced a new kind of filter, called an Eccosorb filter, which is discussed below in
section 5.2.2. This absorptive filter gives attenuation of more than  dB above  GHz, which
is likely sufficient to filter out thermal noise. Before learning about Eccosorb filters, we used
‘chocolate’ filters, which are modified powder filters that pack copper powder around an
embedded microstrip transmission line, rather than the long coil of wire of the traditional
powder filter∗. These filters have cutoff frequencies ∼  MHz, but the attenuation in the
stopband is rather weak, with a slope on the order of  dB/octave. To supplement the
chocolate filter, a Minicircuits VLFX-1050 low-pass filter was used in series. The Mini-Circuits
filter has a much sharper cutoff, but is a reflective filter. Consequently, it was placed with the
chocolate filter in-between it and the sample to prevent forming a cavity. The Eccosorb filters
have a much steeper stopband slope of nearly  dB/octave, but we have not tried it without
the Mini-Circuits filter, so it is not known if the Eccosorb filter alone is sufficient.

5.2.1 Sample holders

As frequently discussed in chapter 4 and chapter 6, careful control of the electromagnetic
environment is crucial to protect qubits from additional relaxation channels. This same type
of care must be taken in designing the package to mount a circuit QED sample. The ‘coffin’
sample holders presented in [] are a very simple rectangular design, that display a clean
electromagnetic environment up to ∼  GHz. For experiments with more than one qubit or
cavity, however, a new package is required that provides more than two ports. The ‘octobox’
sample holder, shown in figure 5.5, is a new design that I developed with David Schuster†. It

∗ The name ‘chocolate’ filter comes from the light-brown appearance of the copper powder and epoxy mixture. I
would not recommend eating it, though.

† Continuing the tradition of naming sample packages after sea creatures, the name references the octopus-like
appearance of the package when it is closed up and has cables hanging from all eight ports.
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Figure 5.5: Octobox sample holder. The ‘octobox’ is a compact quasi-cylindrical design for
circuit QED devices with up to 8 ports. In this design iteration, the lid (left) fills up the majority
of the volume, except for cylindrical gaps for the Rosenberger SMP launchers and the ‘bullets’
which are intermediaries in SMP connections. The shim (center) and PC board completely
occupy the remaining volume, helping to suppress spurious modes. The base (right) with
mounted PC board and sample fits into the lid with a unique orientation determined by the
flats on two sides.

is a very compact quasi-cylindrical design with eight ports that can be connected to a sample.
The size and shape of the box were motivated by an effort to design a package which could be
used in a hot-swap system where samples could be mounted and un-mounted at the base
of a dilution refrigerator while the fridge was running. The cylindrical package allows it
to fit inside a line-of-sight port on an Oxford Kelvinox or Triton dilution refrigerator. The
flats on two sides define a unique orientation for blind mounting. While some effort has
been spent designing this hot-swap system, it turns out that the new cryogen-free, or ‘dry’,
dilution refrigerators can be turned around sufficiently quickly that there is less demand for
a hot-swappable package.

In the current design iteration, the octobox consists of three separate pieces: a lid, a base,
and a shim. The shim is a recent addition to the package design from Leo DiCarlo after
a careful study of the mode structure in a previous iteration of the design. It is a copper
spacer that is mounted flush with the top of the PC board. Trenches are milled over the CPW
traces and sample pocket to prevent shorting out any traces or wire bonds. Otherwise, the
shim fills the gap between the PCB and the lid to suppress forming Helmholtz resonator and
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Figure 5.6: Eccosorb filter. The filter is based upon a simple geometry of a microstrip em-
bedded in a lossy dielectric []. a Filter box before adding the CD-124 epoxy, showing the
suspended copper strip. b The box after the epoxy has cured and has been milled down so
that the lid will mount flush with the top of the box. The filter can be allowed to cure with the
lid on as well, as long as one takes care to avoid filling the mounting holes with epoxy. c, d
The transmission and reflection measurements of the filter at room temperature taken with
a network analyzer. This particular filter has a  dB point at  MHz and is well matched to
 Ω as evidenced by the S and S which are below − dB over the range .– GHz.

whispering gallery-type modes in the cylindrical space. With the lid and shim filling almost
all empty volume, the octobox sample holder functions quite well, delivering performance
similar to the previous coffin box but with eight ports. See [, chapter 5] for discussion of
parasitic modes in the octobox and the use of wire bonds for improved performance.

5.2.2 Eccosorb filters

The Eccosorb filter has recently been developed by Daniel Santavicca [] to fill a gap in
the space of existing cryogenic filters. The metal powder filter is the workhorse for trans-
port measurements requiring bandwidth from ∼ DC– MHz, but building absorptive filters
that transmit radio frequencies while still providing sufficient attenuation of microwaves is
extremely challenging due to the difficulty in controlling impedances over many orders of
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magnitude in frequency. In particular, most lumped element filters have resonances at fre-
quencies in the nominal stopband, which are undesirable for qubit experiments. In contrast,
distributed element filters based on microstrip transmission lines can have well-controlled
impedances far into the microwave without resonances. The addition of a lossy dielectric
material to the transmission line provides increasing attenuation as the frequency increases.
In the Eccosorb filter, the dielectric is a commercially available magnetically-loaded silicone
or epoxy material which is produced by Emerson & Cummings. The Eccosorb dielectric
provides much greater attenuation per octave in the stopband than similar filters made with
copper or stainless steel powders.

Construction of the filter is straightforward (see figure 5.6). Its properties are determined
by the dimensions of the box, with the width and height controlling the impedance, and
the length setting the  dB frequency. I followed the recipe for the CD-124 epoxy material
described in [], designing a box of length . inches to get a cut-off frequency above
 MHz. A piece of copper foil is soldered to two push-mounted SMA connectors before
the volume of the box is filled with CD-124. The epoxy is cured overnight at ○C, and
then the surface is milled such that the lid mounts flush to the box. Room temperature
measurements of this filter with a network analyzer show that it has a  dB frequency of∼  MHz and that it provides nearly  dB/octave attenuation in the stopband. The device
is also well-matched to  Ω as evidenced by S, S < − dB. This particular filter has not
been separately measured cold, though similar devices in [] displayed an increase of the
 dB frequency of roughly  % when cooled to  K.

One of the concerns with using magnetic materials is that they could have very long
thermal relaxation times, providing a heat source that could warm up the sample. This issue
was investigated in [], where the authors show that filters made with the silicone Eccosorb
material quickly thermalize to the base temperature of a dilution refrigerator. I have not
done equivalent measurements with the CD-124 epoxy, but having used these filters in many
experiments, I can report no evidence of spurious heating from these filters.

5.2.3 Pulse Generation

The fast single-qubit manipulation is achieved by modulating the in-phase (I) and quadrature-
phase (Q) components of a microwave carrier signal at the qubit frequency. The usual way this
is done in Schoelkopf lab (as in [, , , ]) is to use the Agilent E8267D vector microwave
generator which has a built-in IQ mixer. This is a remarkable instrument, providing highly
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Figure 5.7: Microwave pulse generation setup. An Agilent E8257D microwave source drives
the LO port of an IQ mixer. Baseband signals (pulse envelopes) are generated using two channels
of a Tektronix AWG5014, which is a fast arbitrary waveform generator. Step attenuators control
the output power of the pulses.

linear control of both quadratures with  GHz of IF bandwidth, carrier suppression above
 dB, and . degree phase adjustments of the baseband signals. Unfortunately, the cost of
the ‘vector’ feature is prohibitively expensive, adding roughly $20,000 to the price of the
generator. Consequently, I endeavored to find an alternative solution.

The pulse generation setup employed in the experiment of chapter 8 is shown in figure 5.7.
The internal IQ mixer of the Agilent E8267D is replaced with a Marki IQ0307MXP IQ mixer.
This external mixer can perform nearly as well as the internal mixer of the 8267D by making
a few modifications. First, the output of the mixer is linear in the voltage applied at the I and
Q inputs as long as the mixer is appropriately biased. Since mixers derive their bias from the
power supplied on the LO, this input power must be held constant and within the designed
range of the mixer. For the Marki IQ0307MXP, this means that the LO power is fixed between+– dBm. To achieve control of the output power over many decades, step attenuators
are placed at the output (the RF port) of the IQ mixer. Component mixers also tend to have
poor carrier leakage performance, meaning that even when  V is applied at both I and Q
inputs, there is significant power emitted at the RF port. For the Marki mixer, this carrier
leakage is roughly − dB. This can be greatly improved by performing fine adjustments of
the I and Q voltages to zero the carrier leakage. In practice, this was done by connecting the
RF output port to a spectrum analyzer and searching over the I and Q offset voltages on the
TekAWG until a minimum output power was found. This method is sufficient to achieve
carrier suppression on the order of  dB. The limiting factor is the precision of the voltage
offsets in the DAC outputs of the TekAWG, which provide a minimum step size of  mV.

Somewhat annoyingly, the I and Q voltages that optimally suppress the carrier leakage
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Figure 5.8: Custom electronics for IQ mixer calibration. a Mixer calibrator schematic. b
Photo of first-generation electronics. In this iteration, the on-board bias tees on the ‘DAC
Drive’ board suffered from several resonances, so external Mini-Circuits bias tees are used
instead. Future versions of the system will integrate the bias tees.

are not constant throughout the LO bandwidth of the mixer. In fact, the LO bandwidth over
which the carrier leakage is below − dB is only ∼  MHz∗. Consequently, the I and Q
offsets should be re-optimized every time the LO frequency is changed. The drift of the offsets
is much better; I was able to operate for severals days at a time at the same LO frequency
without observing a change in the carrier suppression of more than a few dB.

In an effort to automate and improve the carrier suppression process, I built some custom
electronics together with Jerry Chow and Brian Vlastakis, shown in figure 5.8. The electronics
offload the function of providing DC offset voltages onto a dedicated ‘DAC drive’ board that
uses an Analog Devices digital-to-analog converter to provide two outputs from ± mV in

∗ I have not studied this systematically, but I make this claim off of similar measurements done by Nick Masluk
with another IQ mixer. It is certainly the case that when the LO frequency is changed by more than MHz
that the optimal I and Q offsets change dramatically.
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Figure 5.9: Single sideband modulation. a Schematic for a single sideband modulator. The
signal is sent to the I port of an IQ mixer, while the Hilbert transform of the signal goes to the Q
port. An optional inverter controls the sideband selection. b The input signal is at a frequency
fm and it is multiplied by a carrier of frequency fc . c At the output of the SSB modulator, only
the upper sideband (USB) or lower sideband (LSB) is present. The LSB is selected by adding
the inverter between the Hilbert transformer and the Q channel of the mixer.

 μV steps. Bias-tees with RF bandwidth .– MHz allow the addition of small DC
voltages to the modulation pulses defining fast qubit rotations. A separate board serves as a
basic spectrum analyzer to examine the leaked power with a  MHz bandwidth around the
LO frequency. An Arduino microcontroller, based off the Atmel ATMEGA328, provides a
USB interface to a computer, as well as feedback control to optimize the I and Q offsets by
minimizing the leaked power with a Nelder-Mead downhill simplex search. This project is
still a work in progress, but initial tests have already shown that this package can achieve
carrier suppression of ∼  dB.

Single sideband modulation

Carrier suppression can also be mitigated by means of single-sideband modulation (SSB),
which is like amplitude modulation (AM) but with the modulated signal either entirely above
or below the carrier frequency. SSB allows the pulse output to be centered around a frequency
that is shifted away from the LO carrier frequency, meaning that any residual carrier leakage
is now off-resonance with the driven system. For sufficiently large detunings, this heavily
suppresses the effects on a qubit system from the carrier. As shown in figure 5.9(a), SSB is
implemented with a simple circuit, where a signal, s(t), is directly multiplied by a carrier of
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frequency fc by the I port of an IQ mixer, while the Hilbert transform of s, ŝ(t), is multiplied
by a  degree phase-shifted carrier on the Q port. The result is that the signal is shifted up
in frequency by fc, which is equivalent to producing only the upper sideband (USB) in an
AM system (see figure 5.9(b and c)). To produce the lower sideband (LSB), ŝ(t) is multiplied
by −.

One can think of the Hilbert transform as applying a +○ phase shift to the negative
frequency components of a signal, and a −○ phase shift to the positive frequency compo-
nents. The additional ○ phase shift from the Q quadrature causes the positive frequency
components to add in-phase while the negative frequency components cancel. Actually
calculating the Hilbert transform of an arbitrary signal is a difficult problem numerically.
However, we can use the fact that

H(sin(ωt)) = − cos(ωt), (5.1)

H(cos(ωt)) = sin(ωt), (5.2)

to approximately calculate ŝ(t) when the signal takes the simple form

s(t) = Re[m(t)] cos(ωmt) + Im[m(t)] sin(ωmt), (5.3)

where m(t) is the pulse envelope phasor and ωm is the desired frequency shift of the carrier.
In fact, if m(t) is slow compared to cos(ωmt), which is to say that the Fourier transform,
M(ω), vanishes for ω ≥ ωm, then by Bedrosian’s theorem [],

ŝ(t) = Re[m(t)] sin(ωmt) − Im[m(t)] cos(ωmt). (5.4)

When M(ω) has frequency content above ωm, (5.4) is only approximately valid. When it
does apply, the resulting I and Q channel signals are

I±(t) = Re[m(t)] cos(ωmt) ± Im[m(t)] sin(ωmt), (5.5)

Q±(t) = Im[m(t)] cos(ωmt) ∓ Re[m(t)] sin(ωmt), (5.6)

where I+(t) and Q+(t) are the signals for selecting the USB and the other pair select the LSB.

Pattern generation

Producing the baseband signals for an experiment involving many qubit operations and flux
pulses, like the photon detection experiment discussed in chapter 8, is a non-trivial task. In
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order to simplify this process, I extended the work started by Jerry Chow [] and developed
a domain-specific language for constructing pulse sequences from simple building blocks
indicated by symbols, like ‘X90p’ for a π/ rotation around +X. Example usage and a full
code listing are presented in appendix B.



CHAPTER 6

Purcell Effect, Purcell Filter, and Qubit Reset

Coherence poses the most important challenge for the development of a superconducting
quantum computer. As the dephasing time T∗ can never exceed twice the relaxation

time T, it is the relaxation time which ultimately sets the limit on qubit coherence. Although
T∗ turned out to be small compared to T in the earliest superconducting qubits [], steady
progress over the last decade has significantly reduced this gap [, –], such that it is
now possible for qubits to exhibit homogenous broadening (T∗ ≃ T) at parameter sweet-
spots []. Therefore, understanding relaxation mechanisms is becoming critical to further
improvements in both T and T∗ . This chapter will apply the classical admittance technique,
presented in section 4.1, to understand relaxation in circuit QED experiments. The following
section will show how the classical admittance can be modified to protect the qubit from
relaxation with a ‘Purcell filter’, which was examined theoretically in section 4.1.2. Excellent
agreement over a wide range in frequency is found between measured qubit relaxation times
and the predictions of a circuit model for the filter. Using fast (nanosecond time-scale) flux
biasing of the qubit, we demonstrate in-situ control of qubit lifetime over a factor of 50,
allowing for implementation of qubit reset with 99.9 fidelity in 120 ns.

105
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6.1 Multi-mode Purcell Effect

One of the main advantages of superconducting qubits is their strong interaction with the
wires of an electrical circuit, making their integration with fast control and readout possible
and allowing for large, controllable couplings between widely separated qubits []. The
large coupling also implies a strong interaction between the qubits and their electromagnetic
environment, which can lead to a short T. However, careful control of the coupling to the
environment has been shown to allow prevention of circuit dissipation [, ]. Relaxation
times have been studied in a wide variety of superconducting qubits, created with different
fabrication techniques, and measured with a multitude of readout schemes. Typically, values
of T vary strongly from sample to sample as they can depend on many factors including
materials, fabrication, and the design of both readout and control circuitry. In some instances
a separation of these components has been achieved [–], but typically it is difficult to
understand the limiting factors, and T often varies strongly even among nominally identical
qubit samples.

Here, we demonstrate that in a circuit QED architecture, where qubits are embedded
in a microwave transmission line cavity[, ], transmon qubits have reproducible and
understandable relaxation times. Due to the simple and well-controlled fabrication of the
qubit and the surrounding circuitry, involving only two lithography layers and a single cavity
for both control and readout, we are able to reliably understand and predict qubit lifetimes.
This understanding extends to a wide variety of different qubit and cavity parameters. We
find excellent agreement between theory and experiment for seven qubits over two orders
of magnitude in relaxation time and more than an octave in frequency. The relaxation
times are set by either spontaneous emission through the cavity, called the Purcell effect
[], or a shared intrinsic limit consistent with a lossy dielectric. Surprisingly, relaxation
times are often limited by electromagnetic modes of the circuit which are far detuned from
the qubit frequency. In the circuit QED implementation studied here, the infinite set of
cavity harmonics reduces the Purcell protection of the qubit at frequencies above the cavity
frequency.

Generally, any discrete-level system coupled to the continuum of modes of the electro-
magnetic field is subject to radiative decay. By placing an atom in a cavity, the rate of emission
can be strongly enhanced [, ] or suppressed [–], depending on whether the cavity
modes are resonant or off-resonant with the emitter’s transition frequency. This effect is
named after E. M. Purcell [], who considered the effect of a resonant electrical circuit
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on the lifetime of nuclear spins. Suppression of spontaneous emission provides effective
protection from radiative qubit decay in the dispersive regime, where qubit and cavity are
detuned []. Specifically, the Purcell rate for dispersive decay is given by γκ = (ддe/Δ)κ,
where ддe denotes the coupling between the lowest transmon levels and cavity mode, Δ their
mutual detuning, and κ the average photon loss rate.

The suppression and enhancement of decay rates can alternatively be calculated within
a circuit model. For concreteness, we treat the system as a harmonic oscillator capacitively
coupled to an arbitrary environment with impedance Z(ω), see figure 6.1(a). This approxi-
mation is appropriate because of the nearly harmonic level-structure of the transmon. The
coupling circuit may be reduced to an effective dissipative element, as in figure 6.1(b). Specifi-
cally, replacing the coupling capacitor Cд and the environment impedance Z by an effective
resistor R = /Re[Y(ω)], one finds[, ] that the T is given by RC, where C is the qubit
capacitance, as discussion in section 4.1. Choosing a purely resistive environment, Z =  Ω,
yields a decay rate γ ≃ ωZC

д/C. If instead we couple to a parallel LRC resonator, the
calculated radiation rate can be reduced to that of the atomic case, γκ = (ддe/Δ)κ, thus
reproducing the Purcell effect.

The qualitative features of the Purcell effect are apparent in measurements of T, shown
for 3 qubits in figure 6.2, measured with a dispersive readout by varying a delay time between
qubit excitation and measurement [, ]. Near the cavity resonance at . GHz, spontaneous
emission is Purcell-enhanced and T is short. Away from resonance, the cavity protects the
qubit from decay and the relaxation time is substantially longer than expected for decay into
a continuum. However, at detunings above the cavity frequency, the measured T deviates
significantly from the single-mode Purcell prediction. This deviation can be directly attributed
to the breakdown of the single-mode approximation.

The cavity does not just support a single electromagnetic mode, but also all higher
harmonics of the fundamental mode. This has a striking impact on relaxation times. At
first glance, it would appear that the effects of higher modes could be ignored when the
qubit is close to the fundamental frequency and detuned from all higher modes. However,
the coupling дn to the nth mode of the cavity increases with mode number, дn = д

√
n + .

In addition, the input and output capacitors act as frequency-dependent mirrors, so that
the decay rate of the nth harmonic, κn = (n + )κ, is larger than that of the fundamental.
As a result, higher modes significantly contribute to the qubit decay rate, and the simple
single-mode quantum model turns out to be inadequate for understanding the T of the
system.
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Figure 6.1: Circuit model of qubit relaxation. a Generalized model for a qubit coupled to
an environment. b Reduced model of dissipation. The coupling capacitor and environment
impedance are replaced by an effective resistance R = /Re[Y(ω)], where Y(ω) is the ad-
mittance of the rest of the circuit seen by the qubit. The T for the qubit is RC, where C is
the qubit capacitance. c Full circuit diagram. Qubits are capacitively coupled to either end
of a transmission line cavity. Both the input and output of the cavity are connected to a  Ω
environment. The cavity is asymmetric in the sense that the input capacitance is smaller than
the output capacitance.

Here, we follow an alternative route of calculating T, using the admittance formalism of
section 4.1, and show that this accurately reproduces the measured T. The full calculation
includes a transmission line cavity rather than a simple LRC resonator, see figure 6.1(c). The
results from this are shown in figure 6.2, and reveal two striking differences as compared to
the single-mode model: First, there is a strong asymmetry between relaxation times for qubit
frequencies above (positive detuning) and below (negative detuning) the fundamental cavity
frequency. While the single-mode model predicts identical relaxation times for corresponding
positive and negative detunings, T can be two orders of magnitude shorter for positive
detunings than for negative detunings in the circuit model. Second, the circuit model
shows a surprising dependence of T on the qubit position in the cavity. While qubits
located at opposite ends of the cavity have the same T within the single-mode model, the
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Figure 6.2: Comparison of circuit and single-modemodels of relaxation. Spontaneous emis-
sion lifetimes into a single-mode cavity are symmetric about the cavity frequency, while within
the circuit model lifetimes below the cavity are substantially longer than above. The measured
T for three similar qubits deviates substantially from the single-mode prediction, but agrees
well with the circuit model. The expected decay time for radiation into a continuum is shown
for comparison.

circuit model correctly captures the asymmetry induced by the differing input and output
coupling capacitors and leads to vastly different T. The circuit model accurately resolves the
discrepancy between the experimental data and the single-mode model, see figure 6.2.

The predictive power of the circuit model extends to all of our transmon qubits. Here,
we present T measurements on a representative selection of seven qubits. The qubits were
fabricated on both oxidized high-resistivity silicon and corundum substrates, and coupled
to microwave cavities with various decay rates and resonant frequencies. Table 1 provides
parameters for each of the seven qubits. Qubits are fabricated via electron beam lithography
and a double-angle evaporation process ( nm and  nm layers of aluminum), while cavities
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ID Res. ωr (GHz) κ (MHz) д (MHz) Pos.
1 Al on Si .  107 In
2L Al on Si .  105 In
2R Al on Si .  105 Out
3L Nb on Corun .  166 In
3R Nb on Corun .  50 Out
4L Nb on Corun . . 150 In
4R Nb on Corun . . 55 Out

Table 6.1: Qubit parameters. Sample 1 is a single-qubit sample, all others are two-qubit samples.
The Res. column indicates material and substrate for the cavity. The Pos. column indicates the
position of the qubit at the input or output end of the cavity.

are fabricated by optical lithography with either lifted-off Al or dry-etched Nb on a Si or
corundum substrate as discussed in Refs. [, ] and section 5.1.

Predictions from the circuit model are in excellent agreement with observed qubit life-
times (see figure 6.3), up to a Q ≃ ,  for qubits on sapphire. The agreement is valid over
more than two orders of magnitude in qubit lifetime and more than an octave of frequency
variation. We emphasize that the circuit model does not correspond to a fit to the data, but
rather constitutes a prediction based on the independently measured cavity parameters ωr

and κ, and the coupling ддe .
In the qubits on silicon, coherence times of no more than  ns are observed above the

cavity resonance, far below predictions from the single-mode model, but consistent with
the circuit model. Initially, this caused concern for the transmon qubit: it appeared as if the
transmon solved the / f -noise dephasing problem for charge qubits, but introduced a new
relaxation problem [, , ]. However, with the circuit model of relaxation, it is now clear
that the  ns limit originated from the surprisingly large spontaneous emission rate due to
higher cavity modes. By working at negative detunings instead, it is possible to achieve long
relaxation times, here observed up to  μs.

All qubits on corundum substrates reach a shared intrinsic limit of Q ≃ ,  when
not otherwise Purcell limited. The constant-Q frequency dependence of the intrinsic limit
(T ∝ /ω) is suggestive of dielectric loss as the likely culprit. While the observed loss
tangent tan δ ∼ − is worse than previous high-power measurements on corundum, it is not
unreasonable depending on the type and density of surface dopants that might be present
[, ]. The overall reproducibility of the intrinsic limit gives hope that future experiments
may isolate its cause and reveal a solution. It is instructive to re-express the relaxation times
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Figure 6.3: Relaxation times for seven superconducting qubits. Predictions for qubit lifetime
based on the circuit model (colored lines) agree well with observed relaxation times (points).
Solid lines represent predictions for input side (L) qubits, while dashed lines correspond to
output side (R) qubits. All sapphire qubits (blue and green) reach the same common intrinsic
limits (black line), with lifetimes limited to a constant Q ∼ , . Some deviation is seen
in the lowest frequency silicon qubits, though it is unclear if this is an intrinsic limit. Qubit
lifetimes are accurately predicted over a wide range of frequencies and more than two orders
of magnitude in time.

in terms of a parasitic resistance, see figure 6.3. Note that here a T of a microsecond roughly
corresponds to a resistance of  MΩ. To build more complex circuits with still longer T, all
dissipation due to parasitic couplings must be at the GΩ level.

Transmon qubits benefit greatly from the increased relaxation times, as they are insensitive
to / f -charge noise, the primary source of dephasing in other charge qubits. As a result,
coherence is limited primarily by energy relaxation and transmons are nearly homogeneously
broadened (T∗ ≃ T). Improvements in T thus translate directly into improvements in
dephasing times T∗ . This is demonstrated in figure 6.4, showing a comparison of relaxation
and dephasing times. Here, T∗ is measured in a pulsed Ramsey experiment and without
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Figure 6.4: Dephasing times for four sapphire qubits. Measured dephasing times for each of
the four sapphire qubits are nearly homogenously broadened, with T∗ (open symbols) similar
to T (closed symbols) over a wide range of frequencies, even away from the flux sweet spot
(the maximum frequency for each qubit). Charge noise, is suppressed exponentially in the
ratio of Josephson to charging energies EJ/EC (top axis), tuned along with qubit frequency
(bottom axis) by changing an applied magnetic field. For small EJ/EC charge noise dephasing
is relevant and causes short T∗ . Onset of significant charge noise is indicated by the dashed
vertical line.
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echo []. The gain in coherence time is most striking in samples with a higher-frequency
cavity, ωr/(π) ∼  GHz, where it is easier to operate at negative detunings and attain long T.
In all these samples, we observe consistently long dephasing times of nearly a microsecond,
with the largest T∗ exceeding two microseconds without echo.

There are two main effects determining the observed dependence of T∗ on the qubit
frequency. First, away from the maximum frequency for each qubit, i.e. the flux sweet spot [],
the sensitivity to flux noise increases. This can cause additional inhomogeneous broadening.
Despite this, T∗ remains close to two microseconds, even away from the flux sweet spot.
Second, tuning the qubit frequency via EJ directly affects the ratio of Josephson to charging
energy, EJ/EC , which dictates the sensitivity to charge noise. At low qubit frequencies, the
qubits regain the charge sensitivity of the Cooper Pair Box, thus explaining the strong drop
in dephasing times seen in figure 6.4.

Future improvements in T∗ require further improvements in T. The accurate modeling
of relaxation processes will be essential as quantum circuits become more complicated.
In particular, the addition of multiple cavities and individual control lines may introduce
accidental electromagnetic resonances. As we have shown here, even far off-resonant modes
of a circuit can have a dramatic impact on qubit lifetimes. However, with careful circuit
design, it should be possible not only to avoid additional accidental resonances, but to utilize
the circuit model of relaxation to build filters to minimize dissipation. The next section
presents one such method for effectively decoupling qubit relaxation from decay through the
cavity.

6.2 Purcell Filter and Qubit Reset

In this section, we introduce a design element for cQED termed the ‘Purcell filter’, which
protects a qubit from spontaneous emission while maintaining strong coupling to a low-Q
cavity. We demonstrate an improvement of qubit T by up to a factor of 50 compared to
predicted values for an unfiltered device with the same κ/π ≈  MHz. Combining the
large dynamic range of almost two orders of magnitude in T with fast flux control, we then
demonstrate fast qubit reset to 99 (99.9) fidelity in 80 ns (120 ns).

In cQED, qubits are generally sufficiently detuned to have suppressed relaxation, but T

can still be limited by decay through the cavity. As qubit lifetime is of paramount importance
in quantum computing [], a means of further inhibiting radiative decay is desirable.
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Figure 6.5: Design, realization, and diagnostic transmission data of the Purcell filter. a
Circuit model of the Purcell-filtered cavity design. The Purcell filter, implemented with twin
λ/ open-circuited transmission-line stubs, inhibits decay throughCout near its resonance ωf . b
Optical micrograph of the device with inset zoom on transmon qubit. Note the correspondence
of the circuit elements directly above in a. c Cavity transmission measured at 4.2 K and
comparison to the circuit-model prediction. The Purcell filter shorts out the  Ω output
environment at ωf , yielding a 30 dB drop in transmission (arrow). A circuit model involving
only the parameters Cin, Cout, ωc, and ωf shows excellent correspondence.

The Purcell decay rate can be significantly reduced by increasing either the cavity quality
factor Q or the detuning Δ between the qubit (ωq) and cavity (ωc) frequencies, but these
solutions have unwelcome implications of their own. For example, reducing the cavity decay
rate κ = ωc/Q can diminish qubit readout fidelity [] because fewer signal photons are
collected in a qubit lifetime. A large κ is also beneficial for resetting a qubit to its ground state
by bringing it near to the cavity resonance and exploiting the Purcell-enhanced decay rate.
Increasing Δ similarly has adverse effects on readout fidelity and applications that exploit
large state-dependent frequency shifts [, , ]. A better solution would improve qubit T

independent of the cavity Q, leaving its optimization up to other experimental concerns.
The filter works by exploiting the fact that the qubit and cavity are typically far detuned.
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We can therefore modify the qubit’s electromagnetic environment (e.g. the density of photon
states at ωq) without, in principle, affecting the cavity Q or resonant transmission. The
relationship between qubit T due to spontaneous emission and admittance Y of the coupled
environment is

TPurcell
 = C

Re[Y(ωq)] . (6.1)

The relevant admittance network with the filter is shown in figure 6.5(a). The previous section
demonstrated that (6.1) accurately models the observed TPurcell

 when all modes of the cavity
are taken into account in the calculation of Y . As the relationship holds for any admittance,
this decay rate can be controlled by adjusting Y with conventional microwave engineering
techniques. In particular, by manipulating Y to be purely reactive (imaginary-valued) at
ωq, TPurcell

 diverges and the Purcell decay channel is turned off. This solution decouples the
choice of cavity Q from the Purcell decay rate as desired, and, as we will see, has the advantage
of using only conventional circuit elements placed in an experimentally convenient location.

We implement the Purcell filter with a transmission-line stub terminated in an open
circuit placed outside the output capacitor Cout [figure 6.5(a)]. The length of this stub is
set such that it acts as a λ/ impedance transformer to short out the  Ω environment
at its resonance frequency ωf . We choose Cout to be much larger than the input capacitor,
Cin ≈ Cout/, to ensure that the qubit would be overwhelmingly likely to decay through
Cout. The Purcell filter eliminates decay through this channel, leaving only the negligible
decay rate through Cin. The combined total capacitance Ctot ≈  fF results in a small cavity
Q. We use two identical stubs above and below the major axis of the chip [Fig. 6.5(b)] to
keep the design symmetric in an effort to suppress any undesired on-chip modes. The cavity
resonates at ωc/π = . GHz, the filter at ωf/π = . GHz, and a flux bias line (FBL)
is used to address a single transmon qubit [] with a maximum frequency of . GHz, a
charging energy EC/π of  MHz, and a resonator coupling strength ддe/π of  MHz.
Transmission through the cavity measured at 4.2 K was compared with our model to validate
the microwave characteristics of the device [figure 6.5(c)]. There is a dip corresponding to
inhibited decay through Cout at ωf . The predicted and measured curves are also qualitatively
similar, lending credence to the circuit model. This method provided a convenient validation
before cooling the device to 25 mK in a dilution refrigerator.

We measured the qubit T as function of frequency and found it to be in excellent agree-
ment with expectations. T is well modeled by the sum of the Purcell rate predicted by our
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Figure 6.6: Qubit T as a function of frequency measured with two methods, and compari-
son to various models. The first method is a static measurement (circles): the qubit is excited
and measured after a wait time τ. The second (triangles) is a dynamic measurement: the qubit
frequency is tuned with a fast flux pulse to an interrogation frequency, excited, and allowed
to decay for τ, and then returned to its operating frequency of . GHz and measured. This
method allows for accurate measurement even when T is extremely short. Measurements using
the two methods show near perfect overlap. The top dashed curve is the predicted TPurcell

 , while
solid curve includes also non-radiative internal loss with best-fit QNR = π f TNR

 ≈ , .
The two lower curves correspond to an unfiltered device with the same Cin, Cout, and ωc, with
and without the internal loss. In this case, the Purcell filter gives a T improvement by up to a
factor of ∼50 (. GHz).

filtered circuit model and a non-radiative internal loss QNR ≈ ,  (Fig. 6.6). The source
of this loss is a topic of continuing research, though some candidates are surface two level
systems [, ], dielectric loss of the tunnel barrier oxide [] or corundum substrate, and
non-equilibrium quasiparticles []. It is also unknown why this sample followed a lower
QNR value than the group of samples studied in the last section. Nonetheless, this model
contains only the fit parameter QNR combined with the independently measured values of
ддe , EC, ωc, ωf , Cin, and Cout. An improvement to T due to the Purcell filter was found to
be as much as a factor of 50 at . GHz by comparison to an unfiltered circuit model with
the same parameters. This would be much greater in the absence of QNR. The device also
exhibits a large dynamic range in T—about a factor of 80 between the longest and shortest
times measured.

This range in T can be a challenge to quantify because measurements made at small
detunings, where T is a few tens of nanoseconds, have a very low SNR. This issue was avoided
through the use of fast flux control. For measurements at small Δ, the qubit is pulsed to
the detuning under scrutiny, excited and allowed to decay, then pulsed to . GHz where
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Figure 6.7: Fast qubit reset. a Schematic of a pulse sequence used to realize a qubit reset
and characterize its performance. The fidelity of reset was quantified using a modified Rabi
oscillation scheme. The qubit is first rotated around the x-axis by an angle θ at the operating
frequency of . GHz and then pulsed into near resonance with the cavity (solid line) or left
at the operating frequency (dashed line) for a time τ. The state of the qubit is measured as a
function of θ and τ after being pulsed back to . GHz. b The Rabi-oscillation amplitude as a
function of τ, normalized to the amplitude for τ=0. This ratio gives the deviation of the qubit
state from equilibrium. Curves are fit to exponentials with decay constants of 16.9 ± 0.1 ns and
540 ± 20 ns respectively. Insets: Measured Rabi oscillations for τ=0 (lower left) and τ=80 ns
(top right). The vertical scales differ by a factor of 100.

measurement fidelity is higher, and interrogated. In the cases where the qubit is nearly in
resonance with the cavity, the T is actually so short that it constitutes an interesting resource.

The ability to reset, or quickly cool a qubit to its equilibrium state on demand, is an
important capability with a diverse set of applications. Using a qubit to make repeated
measurements of a coupled system, for example, requires resetting the qubit between inter-
rogations []. Similarly, experiment repetition rates can be greatly enhanced when they
are otherwise limited by T. Fast reset is also vital for measurement-free quantum error
correction []. In this scheme, an error syndrome is encoded in two ancilla qubits and
conditionally corrected using a three qubit gate. The ancillas, which now hold the entropy
associated with the error, are then reset and reused. The Purcell filter is an ideal element with
which to demonstrate reset as it allows for a relatively short reset time through the use of a
low-Q cavity without limiting T at the operating frequency.
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The efficacy of reset in this device is readily quantified using a modified Rabi oscillation
sequence, described in figure 6.7(a). Each experiment measures the degree to which the qubit
is out of equilibrium after some reset time τ; the protocol is insensitive to any equilibrium
thermal population of the qubit. The non-equilibrium population is found to exhibit pure
exponential decay over three orders of magnitude. The qubit can be reset to 99.9 in 120 ns or
any other fidelity depending on τ. The sequence is also performed with the qubit remaining
in the operating frequency during the delay to demonstrate the large dynamic range in T

available in this system. In the case of multi-qubit devices, it is possible that this reset process
would affect other qubits coupled to the same bus, but this issue could be avoided by using
separate coupling and reset cavities.

6.3 Chapter Summary

This chapter shows that the classical admittance formalism is an effective means to understand-
ing relaxation in real devices. It also shows how effective modeling of a circuit admittance
can lead to the development of ways to manipulate that admittance to improve relaxation.
In particular, we showed how the Purcell filter allows for the use of low-Q cavities without
adversely affecting qubit T. This ability is well-suited for in-situ qubit reset, a prerequisite for
measurement-free quantum error correction and other applications. Hopefully, the concise
understanding of spontaneous emission lifetimes in our system, and the reproducibility of
intrinsic lifetimes will open pathways for a systematic exploration of limits on relaxation and
coherence.



CHAPTER 7

Measurement of the Self- and Cross-Kerr Effects in

Two-Cavity Circuit QED

This chapter presents preliminary investigations into the presence of self-Kerr and cross-
Kerr effects in two-cavity circuit QED, which were examined theoretically in section 3.5.

Observation of these effects presents strong evidence that the experimental two-cavity system
is well described by the Hamiltonian of (3.1). The device used for these measurements, shown
in figure 7.1, has cavities at frequencies ω/π = . GHz and ω/π = . GHz, with
associated decay rates κ/π = . MHz and κ/π = . MHz. Both cavities are coupled to
a sarantapede qubit, with EC/h ≈  MHz. Unfortunately, the maximum EJ for the device
was such that the qubit did not cross either cavity. The maximum qubit frequency, as seen in
the spectroscopy map of figure 7.2(a), was ωдe/π = . GHz, meaning that it was impossible
to directly measure д or д from the vacuum Rabi splittings with each cavity. Consequently,
other methods were used to infer д and д.

Near the qubit’s maximum frequency, pulsed spectroscopy displayed number splitting []
when cavity 1 was populated with a coherent state, as shown in figure 7.2(b and c). One can
use this spectrum to find д. Precise fitting of number splitting data is notoriously tricky, in
practice requiring slow numerical simulations (see refs. [] and []). However, the distance
between peaks, which is much easier to extract, is χ + δ, where δ = ωd −ω is the detuning
between the populating drive and the cavity frequency. Since χ = дα/Δ(Δ + α), where

119
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Figure 7.1: Optical image of cQED274. The chip has two CPW cavities with frequencies
ω/π = . GHz and ω/π = . GHz. Coupling capacitors controlling the decay rates
κ/π = . MHz and κ/π = . MHz are shown in red and blue. A transmon qubit, shown
in green, is coupled to each cavity with rates д and д.

Δ = ωq −ω is the qubit-cavity detuning and α is the transmon anharmonicity, knowledge of
χ allows one to find д. When driving at ωd/π = . GHz, the distance between peaks
is χ + δ ≃  MHz. I estimate the drive-cavity detuning, δ, from reflection measurements of
the cavity with the transmon in the ground state, giving δ/π =  MHz. This implies that
д/π =  ±  MHz. The estimated error in д is determined by uncertainty in the precise
values of δ and χ.

At no detuning was the qubit close enough to the higher frequency cavity to display
number splitting when cavity 2 was populated. However, χ is also directly observable in the
qubit-state-dependent cavity shift, which can be observed in a time-domain experiment as
done in []. In this type of measurement, the qubit is prepared in ∣e⟩ and the reflected cavity
response is scanned to find the shifted cavity frequency. With this method and the qubit at its
maximum frequency, I measured χ/π ≃ . MHz, implying that д/π =  ±  MHz. Both
inferred coupling strengths are within % of the values calculated using Maxwell simulations
of the capacitance matrix and (3.21).

The Kerr effect was measured for three different qubit frequencies ωдe/π = (., .,
.)GHz, and thus three different detunings to each cavity, Δ and Δ. For each choice of
qubit frequency, the response of cavity 1 was probed in reflection with a weak tone (⟨n⟩ < )
as a function of the power of a second populating tone at ωd ≃ ω or ωd ≃ ω. Traces for
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a

b c

Figure 7.2: Spectroscopy of cQED274. a Tracked qubit spectroscopy vs. voltage applied to the
flux bias line. The color scale shows the reflected heterodyne phase. The discontinuity near
. V is a flux jump which is not repeatable. b Near the maximum transmon frequency, pulsed
spectroscopy vs. drive power at ωd/π = . GHz that populates cavity 1. c A cut of b at
drive power of . nW (black arrow), showing a number split spectrum with ∼  MHz peak
separation.
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b

Figure 7.3: Cavity Response vs Self- and Cross-Power. a Reflected cavity phase response vs
frequency for various drive powers at ωd/π = . GHz. b Reflected cavity phase response
vs frequency for various drive powers at ωd/π = . GHz. In both a and b, the center
frequency of the response shifts down to lower frequencies as the drive power is increased. The
S-shaped curve with a ∼  degree excursion is typical of an over-coupled harmonic oscillator.
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Figure 7.4: Self- and Cross-Kerr Effect. a, b Shift of cavity center frequency vs. circu-
lating power when the qubit is at 4.87 (blue), 5.08 (magenta) or . GHz (gold). In a,
the drive frequency is ωd = (., ., .)GHz, whereas in b the drive is ωd =
(., ., .)GHz. A linear relationship is evident between the cavity shift and the
circulating powers, a clear signature of the self- and cross-Kerr effects.

ωдe/π = . GHz are shown in figure 7.3. For all displayed choices of populating power, the
response shows a 360 degree phase shift as the signal frequency passes through resonance,
consistent with an over-coupled harmonic oscillator. Each trace can be fit to the function []

arg[S(ω)] =  arctan(ω − ω, κ/), (7.1)

to extract the cavity resonance frequency ω and linewidth κ, where the factor of 2 comes
from the additional 180 degree phase shift imparted by reflection, and the two argument
arctangent gives arctan(x , y) = arctan(y/x), taking into account the quadrant of the point(x , y).

A plot of the center frequency shifts of cavity 1 as a function of the circulating power in
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Figure 7.5: Comparisonofmeasured self- and cross-Kerr effectwith theory. Measured values
of the self- and cross-Kerr are inferred from figure 7.4 by using the AC-Stark shift to calibrate
the photon number in each cavity. The error bars are determined by the uncertainties in the
photon number calibration. Theory bands are plotted using (3.24) and (3.30), where the upper
and lower bounds come from the uncertainty in д and д. The theory predicts the correct sign
and order of magnitude of the effects.

cavities 1 and 2 is shown in figure 7.4. For an over-coupled cavity, the circulating power is
solely determined by the loaded cavity Q and a Lorentzian filter factor from the detuning of
the drive from the cavity resonance frequency, i.e.

Pcir = QPin
 + δ/(κ/) , (7.2)

where δ = ωd − ω, and Q, κ, and ω refer to the relevant cavity. It is readily apparent,
both when populating at ωd ≃ ω and ω, that the resonance frequency is shifted down
proportionally to the populating drive power. In order to compare the Kerr effects with
the theoretical predictions, one should rescale the data of figure 7.4 in terms of the average
cavity populations ⟨n⟩ and ⟨n⟩. For this, the best tool to use is the AC-Stark effect. As
described in detail in [, , ], for small average photon numbers and χ ≪ γ, where γ is
the qubit linewidth, the qubit frequency depends linearly on the photon number with Δωдe =
χn̄ = χPin/Pphoton. Consequently, knowledge of χ allows one to extract Pphoton = ħωκ by
measuring the qubit frequency shift as a function of Pin.

Using the extracted дi and fitting the cavity shifts to a line, I obtain the self- and cross-
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Kerr effects reported in figure 7.5. Uncertainty in the extracted device parameters prevents a
detailed numerical comparison between data and theory; nonetheless, these initial measure-
ments show the self- and cross-Kerr effects to be of the right sign and order of magnitude as
the predictions of (3.24) and (3.30).

This preliminary experiment serves to demonstrate some basic features of the two-cavity
architecture. In particular, all the single-cavity circuit QED physics is still present, includ-
ing dispersive qubit readout, the AC-Stark effect, and number splitting. The ‘sarantapede’
geometry also functions as a standard transmon that is coupled to each cavity. Furthermore,
these initial measurements of the cross-Kerr effect give credence to the Hamiltonian (3.1)
and open the door to using cross-Kerr for photon detection, a method which is discussed
in chapter 9. The next chapter uses the two-cavity architecture to demonstrate a different
photon detection method that is based on qubit-photon quantum logic.



CHAPTER 8

Quantum Non-Demolition Detection of Single Microwave

Photons in a Circuit

Thorough control of quantum measurement is key to the development of quantum infor-
mation technologies. Many measurements are destructive, removing more information

from the system than they obtain. Quantum non-demolition (QND) measurements allow
repeated measurements that give the same eigenvalue []. They could be used for several
quantum information processing tasks such as error correction [], preparation by mea-
surement [], and one-way quantum computing []. Achieving QND measurements of
photons is especially challenging because the detector must be completely transparent to the
photons while still acquiring information about them [, ]. Recent progress in manipu-
lating microwave photons in superconducting circuits [, , ] has increased demand for
a QND detector which operates in the gigahertz frequency range. Here we demonstrate a
QND detection scheme which measures the number of photons inside a high quality-factor
microwave cavity on a chip. This scheme maps a photon number, n, onto a qubit state in a
single-shot via qubit-photon logic gates. We verify the operation of the device for n =  and
 by analyzing the average correlations of repeated measurements, and show that it is 90
QND. It differs from previously reported detectors [, , , , ] because its sensitivity is
strongly selective to chosen photon number states. This scheme could be used to read-out
the state of a photon-based memory in a quantum computer.
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Several teams have engineered detectors which are sensitive to single microwave photons
by strongly coupling atoms (or qubits) to high-Q cavities. This cQED architecture can be
used in various ways to detect photons. One destructive method measures quantum Rabi
oscillations of an atom or qubit resonantly coupled to the cavity [, , ]. The oscillation
frequency is proportional to

√
n, where n is the number of photons in the cavity, so this

method essentially measures the time-domain swap frequency.
Another method uses a dispersive interaction to map the photon number in the cavity

onto the phase difference of a superposition of atomic states (∣д⟩ + e iϕ ∣e⟩)/√. Each photon
number n corresponds to a different phase ϕ, so repeated Ramsey experiments [] can be
used to estimate the phase and extract n. This method is QND, because it does not exchange
energy between the atom and photon. However, since the phase cannot be measured in
a single operation, it does not extract full information about a particular Fock state ∣n⟩
in a single interrogation. Nonetheless, using Rydberg atoms in cavity QED, remarkable
experiments have shown quantum jumps of light and the collapse of the photon number by
measurement. [, ]

Here we report a new method which implements a set of programmable controlled-
NOT (CNOT) operations between an n-photon Fock state and a qubit, asking the question
“are there exactly n photons in the cavity?” A single interrogation consists of applying one
such CNOT operation and reading-out the resulting qubit state. To do this we use a quasi-
dispersive qubit-photon interaction which causes the qubit transition frequency to depend
strongly on the number of photons in the cavity. Consequently, frequency control of a pulse
implements a conditional π rotation on the qubit – the qubit state is inverted if and only if
there are n photons in the storage cavity. To ensure that this is QND, the qubit and storage
cavity are adiabatically decoupled before performing a measurement of the qubit state.

To realize this method we extend circuit-based cavity QED [] by coupling a single
transmon qubit [, ] simultaneously to two cavities. In this scheme, the transmon qubit
is used to interrogate the state of one cavity, then the transmon is measured with the other
cavity. This separation of functions allows one cavity to be optimized for coherent storage
of photons (high-Q) and the other for fast qubit readout (low-Q). Related work by Leek et
al. [] realized a single transmon coupled to two modes of a single cavity, where the two
modes were engineered to have very different quality factors. A schematic of the two-cavity
device is shown in Fig. 8.1(a). The cavities are realized as Nb coplanar waveguide resonators
with λ/ resonances at ωs/π = . GHz and ωm/π = . GHz, respectively. The cavities
are engineered, by design of the capacitors Cs and Cm, to have very different decay rates
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Figure 8.1: Circuit schematic and cQED291 device. a, Circuit schematic showing two cavities
coupled to a single transmon qubit. The measurement cavity is probed in reflection by sending
microwave signals through the weakly coupled port of a directional coupler. A flux bias line
allows for tuning of the qubit frequency on nanosecond timescales. b, Implementation on a
chip, with ωm/π = . GHz measurement cavity on the left and its large coupling capacitor
(red), and ωs/π = . GHz storage cavity on the right with a much smaller coupling capacitor
(blue). A transmon qubit (green) is strongly coupled to each cavity, with дs/π =  MHz
and дm/π =  MHz. It has a charging energy EC/π =  MHz and maximal Josephson
energy EJ/π ≈  GHz. At large detunings from both cavities, the qubit coherence times are
T ≈ T ≈ . μs.

(κs/π =  kHz and κm/π =  MHz) so that the qubit state can be measured several times
per photon lifetime in the storage cavity. By having these cavities at different frequencies,
the fast decay of the readout cavity does not adversely affect photons in the storage cavity.
A transmon qubit is end-coupled to the two cavities, with finger capacitors controlling the
individual coupling strengths (дs/π =  MHz and дm/π =  MHz). The usual shunt
capacitor between the transmon islands is replaced with capacitors to the ground planes to
reduce direct coupling between the cavities. Additionally, a flux bias line [] allows fast,
local control of the magnetic field near the transmon. This facilitates manipulations of the
detunings Δs = ωд,e − ωs and Δm = ωд,e − ωm between the transmon and cavities, where we
use the convention of labeling the transmon states from lowest to highest energy as (д, e, f ,
h, ...).
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Figure 8.2: Pulsed spectroscopy with coherent state in storage cavity (⟨n⟩ ≈ ) vs. qubit-
cavity detuning Δs = ωд,e − ωs. Calculated transition frequencies are overlaid in color. Red
and orange lines are the ∣д⟩ ↔ ∣e⟩ transitions of the qubit when n =  and 1, respectively.
Transitions to higher transmon levels (∣ f ⟩ and ∣h⟩) are visible because of the small detuning.
The arrow indicates the flux bias current used during the CNOT operations.

To achieve high photon number selectivity of the CNOT operations, there must be a
large separation between the number-dependent qubit transition frequencies. To obtain this,
we use small detunings (Δs/дs < ) between the qubit and storage cavity. Figure 8.2 shows
spectroscopy in this quasi-dispersive regime as a function of flux bias when the storage cavity
is populated with a coherent state (⟨n̂⟩ ∼ ). A numerical energy-level calculation is overlaid,
showing the positions of various transitions. We define ωn

д,e as the photon number-dependent
transition frequency ∣n, д⟩ → ∣n, e⟩. Other transitions, such as ∣, д⟩ → ∣, h⟩, are allowed
due to the small detuning. Fortunately, we also see that the separation between ω

д,e and ω
д,e

grows rapidly to order ∼ д =  MHz as the qubit approaches the storage cavity.
To test the photon meter, we generate single photons in the storage cavity with an adi-

abatic protocol. Our method uses the avoided crossing between the ∣, e⟩ and ∣, д⟩ levels
to convert a qubit excitation into a photon. The preparation of a photon begins with the
qubit detuned below the storage cavity (Δs ≃ −дs), where we apply a π-pulse to create the
state ∣, e⟩. We then adiabatically tune the qubit frequency through the avoided crossing
with the storage cavity, leaving the system in the state ∣, д⟩. The sweep rate is limited by
Landau-Zener transitions which keep the system in ∣, e⟩. The preparation protocol changes
the qubit frequency by  MHz in  ns, giving a spurious transition probability less than
0.1 (calculated with a multi-level numerical simulation). This protocol actually allows for
the creation of arbitrary superpositions of ∣, д⟩ and ∣, д⟩ by changing the rotation angle of
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Figure 8.3: Single photon preparation and CNOT selectivity. a, Pulsed spectroscopy vs. Rabi
angle of preparation pulse, showing the reflected phase of a pulse at the measurement cavity
frequency after a ∼  ns pulse near the qubit frequency. Traces are offset vertically for clarity
and labeled with the rotation angle of the control pulse used in the preparation step. The
dips correspond to ω

д,e ≈ . GHz and ω
д,e ≈ . GHz, respectively. b and c, Rabi driving

the qubit transitions after preparing ∣n = ⟩ (b) and ∣n = ⟩ (c). The red (blue) traces show
the measured qubit excited state probability after applying an interrogation Rabi pulse with
varying angle at ω

д,e (ω
д,e). The residual oscillation of R(θ) in c is mostly due to preparation

infidelity.

the initial pulse. For example, if we use a π/-pulse, after the sweep we end up in the state(∣, д⟩ + e iϕ ∣, д⟩)/√, where ϕ is determined by the rotation axis of the π/-pulse. One
could also use a resonant swap scheme, which has been successfully used to create Fock
states [] up to ∣n = ⟩. The method used here has the advantage of being very robust to
timing errors.

After the photon is prepared in the storage cavity, the qubit frequency is adjusted such
that Δs/дs ≃ . At this detuning, the separation between ω

д,e and ω
д,e is ∼  MHz. In

Fig. 8.3(a), we show pulsed spectroscopy at this detuning for several rotation angles of the
initial preparation pulse. We observe well-resolved dips in the reflected phase of a pulsed
signal sent at the measurement cavity frequency. The locations of these dips correspond to
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the qubit transition frequencies for n =  (ω
д,e) and n =  (ω

д,e), and the relative heights
match expectations from the different preparation pulse rotations (e.g. a π/-pulse results in
equal height signals).

To show selective driving of these transitions, we perform Rabi experiments at ω
д,e and

ω
д,e for the cases where we prepare ∣, д⟩ and ∣, д⟩. In each experiment we ensemble average

measurements of the resulting qubit state after further decoupling the qubit from the storage
cavity. For the ∣, д⟩ case [Fig. 8.3(b)] there is a large amplitude oscillation when the drive is at
ω

д,e [red, R(θ)] and almost no oscillation when the drive is at ω
д,e [blue, R(θ)]. When we

prepare ∣, д⟩ the situation is reversed [Fig. 8.3(c)]; however, in this case the residual oscillation
of R(θ) (red) is substantial due to small errors in the preparation of ∣, д⟩ associated with
the initial rotation of the qubit and, more importantly, the ∼ % probability of energy decay
during the subsequent adiabatic sweep through the cavity.

The responses Ri(θ) are a result of driving ωi
д,e and the far off-resonant drive of ω j

д,e ,
where j ≠ i. The cross-talk is seen in the small residual oscillation of R(θ) in Fig. 8.3(b).
Section 8.0.1 derives a method for extracting a selectivity and preparation fidelity from
these data, giving a selectivity ≥ % for both interrogations and a preparation fidelity of∣⟨n = ∣ψ⟩∣ ≈ %. These numbers were confirmed by doing equivalent experiments over a
range of preparation pulse rotation angles between 0 and π (not shown).

If π-pulses are used in the interrogation step, measurement results of the average qubit
state directly correlate with the probability of being in the states ∣n = ⟩ or ∣n = ⟩. Details of
the scaling needed to do this transformation when the selectivity is < % are presented
in section 8.0.1. These are the desired CNOT operations of the photon meter. If we now
insert a variable delay before interrogating, we find that P (P), the probability of being
in ∣n = ⟩ (∣n = ⟩) decays exponentially towards  (), as shown by the red (orange) trace
in Fig. 8.4(b). The decay constant of T ≃ . ± . μs agrees with the linewidth of the
storage cavity, /κs = /(π  kHz) = . ± . μs, measured in a separate, low power (n̄ ∼ )
reflection experiment.

Strong QND measurements are projective, such that if the measurement observable
commutes with the Hamiltonian, the system will remain in an eigenstate of both operators
between measurements. Consequently, comparing the results of successive interrogations
provides a mechanism to test whether a particular protocol causes additional perturbations
on the system. Here, we only compare ensemble average results, because the single-shot qubit
readout fidelity for the device is ∼ %. This is sufficient to reveal processes which change the
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Figure 8.4: Repeated measurements of photons. a, Experiment protocol. A microwave pulse
and adiabatic sweep load a single photon into the storage cavity in the preparation step. This
photon is interrogated repeatedly by number-selective CNOT gates on the qubit, followed
by adiabatic decoupling, qubit readout, and reset. b, Single and repeated interrogation after
preparing ∣n = ⟩ (top) or ∣n = ⟩ (bottom), ensemble averaged over ∼ ,  iterations. The
near-perfect overlap between single and repeated results demonstrate that the protocol is highly
QND. c, Transition probability diagrams for the interrogate n =  (I) and interrogate n = 
(I) processes. We extract γ (γ) =  () ± % and δ (δ) =  () ± %.
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photon number, and technical improvements to interrogation speed or qubit readout fidelity
should allow for real-time monitoring of the photon state.

The protocol cannot be repeated immediately, though, because the first interrogation may
leave the qubit in the excited state. To circumvent this problem, we use the fast decay rate of
the measurement cavity to cause the qubit to spontaneously decay into the  Ω environment.
The “reset” protocol brings the qubit into resonance with the measurement cavity for a time,
τreset =  ns, which is sufficient to reset the qubit with probability ∼ %, as described in
section 6.2 and in [].

After resetting the qubit, we can interrogate a second time. The full protocol for a repeated
interrogation sequence is shown in Fig. 8.4(a). The combination of a CNOT (CNOT), a
qubit measurement, and a qubit reset define an interrogation process I (I). Data for the
four possible combinations of interrogating ∣n = ⟩ and ∣n = ⟩ are shown in Fig. 8.4(b) as
a function of delay between the first and second interrogations. The data are ensemble
averaged over all results from the first interrogation, so we do not observe projection onto
number states. Instead, we again observe exponential decay, where the result of the second
measurement is essentially indistinguishable from the first, indicating that the interrogation
is highly QND.

Small deviations between first and second interrogations stem from finite photon life-
time in the storage cavity and non-QND processes which cause transitions to other photon
numbers [Fig. 8.4(c)]. A single interrogation takes ∼  ns, which accounts for the time gap
between the single and repeated interrogation points in Fig. 8.4(b). Recording the second
interrogation results for different delays allows us to subtract the effect of photon T and
calculate the transition probabilities for the I and I processes []. In principle, I and I
can cause transitions to photon numbers outside of the n ∈ {, } manifold; however, the
absence of statistically significant deviations from P+P =  suggests that any such effects are
negligible. Instead, we consider only transitions from ∣n = ⟩ → ∣n = ⟩ or ∣n = ⟩ → ∣n = ⟩,
characterized by the probabilities γi and δi , respectively, where i references the interrogation
process I or I. We observe γ (γ) =  () ± % and δ (δ) =  () ± %, demonstrating
that this protocol is highly QND.

The protocol presented here is a fast and highly QND measurement of single photons,
which we believe can be extended to detect higher photon numbers. It should be possible to
demonstrate the projective nature of the interrogation and create highly non-classical states
of light via post selection, and eventually with higher fidelity readout one could observe
quantum jumps of light in a circuit.
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8.0.1 Measured Voltage Scaling

When the interrogation selectivity is less than 100, we need to account for undesired
rotations to correctly calculate the state probabilities from the measured voltages. The details
of our calibration procedure follow.

If we prepare ∣n = ⟩ or ∣n = ⟩ at time t = , when we interrogate at some later time there
is an additional probability pd to decay, giving the density matrices

ρ = ∣д⟩ ⟨д∣ ⊗ ∣⟩ ⟨∣ , (8.1a)

ρ = ∣д⟩ ⟨д∣ ⊗ {pd ∣⟩ ⟨∣ + ( − pd) ∣⟩ ⟨∣} , (8.1b)

where ρi indicates preparing state ∣i⟩ at t = . We can model the interrogation pulses as
operations which act on ρi :

U = Ry(π) ⊗ ∣⟩ ⟨∣ + Ry(є′) ⊗ ∣⟩ ⟨∣ ,
U = Ry(є) ⊗ ∣⟩ ⟨∣ + Ry(π) ⊗ ∣⟩ ⟨∣ ,
UI = 1,

where є and є′ are small angles. After interrogation, the integrated homodyne response is

Wn
r = Vд + ΔV ⋅ tr(ΠeUrρPUr),

where n ∈ {, } is the Fock state of the cavity, r ∈ {, , I}, Vд (Ve) is the voltage measured
when the qubit is in ∣д⟩ (∣e⟩), ΔV = Ve −Vд, and Πe = ∣e⟩ ⟨e∣.

By abusing the notation slightly and treating є, є′ as probabilities rather than rotation
angles, we can calculate the Wn

r

W
I = Vд ,

W
 = Vд + ΔV ,

W
 = Vд + ΔV ⋅ є,

W 
 = Vд + ΔV (є′( − pd) + pd) ,

W 
 = Vд + ΔV (( − pd) + єpd) .

We measure these five voltages in calibration experiments and invert the equations to
find the parameters Vд, ΔV , pd , є, and є′. Note that this does not require perfect preparation
fidelity because the model includes decay between preparation and interrogation pd which



CHAPTER . QND PHOTON DETECTION 

will also capture any fixed preparation infidelity. This gives the selectivities, (−є) and (−є′),
as well as the preparation fidelity, ( − pd).

An unknown mixture of n =  and n =  is characterized by a single probability p,

ρ = ∣д⟩ ⟨д∣ ⊗ {p ∣⟩ ⟨∣ + ( − p) ∣⟩ ⟨∣} ,

which produces the responses

W ρ
 = Vд + ΔV (p + є′( − p)) ,

W ρ
 = Vд + ΔV (є ⋅ p + ( − p)) .

This leads to a simple rescaling to transform W ρ
 and W ρ

 into P and P

P = W ρ
 − (Vд + ΔVє′)

ΔV( − є′) ,

P = W ρ
 − (Vд + ΔVє)

ΔV( − є) .

8.0.2 Error Estimate

The primary challenge in these experiments is obtaining sufficiently accurate and precise
control of the qubit frequency to do high-fidelity operations. The narrow bandwidth pulses
used in the CNOT operations means that even a few MHz error in frequency control results
in a significant rotation error. We use deconvolution techniques similar to those described in
the supplement of Ref.  and in section 4.3; however, the flux bias current response function
drifts on a time scale of about one day, making it difficult to eliminate all classical control
errors. Even after applying corrections, there is a remaining spread of  −  MHz in the qubit
frequencies over the various realizations of preparation to interrogation delay. This translates
into a  − % error in the probability to find the qubit in ∣e⟩ after applying a conditional
π-pulse. The errors bars reported in the lower panel of Fig. 8.4(b) are due to this systematic
error.



CHAPTER 9

Conclusions and Outlook

The demonstration of QND photon detection presented in chapter 8 is only the first step
in photon creation and detection experiments in two-cavity circuit QED. That work can

be expanded upon in a number of directions, many of which I believe will be fruitful.

Faster, higher-fidelity readout

Since the photon detection work of chapter 8, recent experiments in Schoelkopf Lab have
demonstrated a new readout technique that uses the non-linearity of the Jaynes-Cummings
ladder to selectively drive the cavity to a ‘bright’ state with a large average photon number
[, ]. The power needed to drive this state is ∼ ,  larger than the power used for the
usual linear dispersive readout with only a few photons. The result is a fast, high fidelity
(∼ %) qubit readout. This technique is likely not QND to the qubit, but the photon
measurement protocol of chapter 8 does not require the qubit readout to be QND, since
the qubit state is reset after each measurement.∗ Use of this new measurement protocol will
shorten qubit readout time, increasing the number of QND measurements that can be done
in a cavity T, and increase the information gained per measurement. This might open the

∗ A bigger unknown is whether it will take longer to reset the qubit since it is believed that the high-power
readout also highly excites the transmon.
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Figure 9.1: Transmission readout geometries. a A single-ended transmission coupler which
asymmetrically couples a cavity (that is extended to the left) to two ports. The cavity is driven
through the top port, and the amplifier connects to the bottom port. b In this variation, the
transmon is coupled to the first harmonic of the readout cavity in the center of the mode.

way to experiments analogous to the observation of quantum jumps in Rydberg atom cQED
[, ].

In order to use this ‘bright-state’ readout, the two-cavity circuit design should be modified
to probe the readout cavity in transmission. To see why, consider that in an ideal reflection
measurement, the reflected amplitude is always the same. The ‘bright’ state might be visible
in the phase of the reflected signal, but even though the high-power readout excites the cavity
to a large photon number n ∼ , , an even larger number of photons (∼ , ) reflect off
the input coupler without entering the cavity. Consequently, the bright state signal adds with
a very large background, making it difficult to distinguish. Furthermore, when the cavity
switches to the bright state, it responds at the bare cavity frequency. For typical circuit QED
parameters, the frequency shift of the cavity is substantially more than the cavity linewidth.
The reflected phase also undergoes a π rotation when probing the cavity response through
its resonance frequency. Consequently, for most choices of drive frequencies, the reflected
phase actually returns to the same value!

Fortunately, modifying the two-cavity circuit to probe the readout cavity in transmission
is a relatively minor change. One possibility leaves intact the basic geometry of coupling
to each cavity at the far end from the sarantapede transmon, but replaces the coupler on
the readout cavity with something like the sketch shown in figure 9.1(a). The idea here is
to achieve the same kind asymmetric coupling that is typical in single-cavity circuit QED
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Figure 9.2: Single shot histograms of photon readout. a Histograms of the integrated homo-
dyne voltage after preparing ∣⟩ (red), ∣⟩ (blue), and (∣⟩ + ∣⟩)/√ (yellow) after performing
a CNOT gate, showing the voltage probability in 20,000 shots. The integration time τ, is
roughly similar to the transmon T; consequently, the ∣⟩ state histogram has an extra bump
corresponding to qubit relaxation. The histogram of the superposition state looks very much
like the average of the 0 and 1 histograms. The photon readout fidelity is ∼ %. b Histograms
of a second measurement conditioned on the result of the first with thresholds V = . and
V = −..

devices, but just place the two finger capacitors on the same end of the cavity. Clearly, this
kind of design gives a strong channel to directly couple the input and output ports, which
might be undesirable. Another possibility is to couple the transmon to the first harmonic
of the readout cavity by placing it in the center, as shown in figure 9.1(b). This gives better
isolation between the input and output ports, but presents a larger classical admittance to
the qubit since the qubit frequency is necessarily above the first mode. Consequently, this
second design would benefit from the additional of a Purcell filter as well.

State Projection

Already, the linear, dispersive qubit measurement gives a single-shot qubit readout fidelity of
–% when using fast pulses to prepare the qubit in ∣e⟩. The longer pulses necessary for
the selective CNOT operations result in a reduced photon readout fidelity of ∼ %, as shown
in figure 9.2(a), simply because CNOT pulse is a larger fraction of the qubit T. Even with this
fidelity, one can observe evidence of state projection in repeated measurements. With Brian
Vlastakis, we have begun exploring single-shot repeated measurements of photons using
the existing cQED291 sample. The three histograms in figure 9.2(a) show the distribution of
integrated homodyne voltage after a CNOT gate for ∣⟩ (red), ∣⟩ (blue), and (∣⟩ + ∣⟩)/√
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(yellow) states in the storage cavity. Since the CNOT gate rotates the qubit into the ∣e⟩ state
when there are no photons in the cavity, the red histogram displays an extra ‘bump’ due to
qubit relaxation during the integration period∗. The histogram for the superposition state
displays the expected average of the other two histograms.

Since the CNOT gate entangles the qubit and cavity states, readout of the qubit state
causes projection of the cavity state. Even with mediocre single-shot fidelity, it is possible to
observe evidence of this state collapse with repeated measurements. Given a particular first
measurement result, one can assign that result to the ∣⟩ or ∣⟩ distribution with a probability
which depends on the value of the measurement. Voltages which come from the tails of
the distributions can be assigned to one state or the other with much higher confidence
than voltages in the center of the distributions where it is nearly equally likely to correspond
to either state. If one insists on keeping all measurement results, the best one can do is
to set a threshold at the point where the two distributions intersect. However, with the
given measurement fidelity, this will give a relatively high probability to misidentify the
state. Instead, we set two thresholds, V and V, and say that all voltages greater than V

belong to the ∣⟩ distribution, and voltages less than V belong to the ∣⟩ distribution. Results
between V and V are discarded as ‘unknown’. Given these first assignments of ‘0’ and ‘1’, we
analyze the resulting distributions of second measurements for these two bins. These second
measurement histograms are shown in figure 9.2(b) for V = . and V = −.. One sees
that the sorting from the first measurement splits the histograms into distinct shapes that
closely match the results for measurements of ∣⟩ and ∣⟩ states. In theory this separation can
be improved as the thresholds are pushed further out into the tails, at the cost of throwing
out increasing amounts of data. Brian is working on ways to more efficiently collect this data
for further study of many repeated measurements.

Readout of higher photon numbers

The photon detection experiment of chapter 8 demonstrated QND readout of the n =  and
 photon states. A fair criticism of that work is that when limited to a two-state manifold,
the bosonic character of the cavity system is not apparent. Consequently, one would like to
extend the detection system to higher photon numbers. This is also a requirement for Wigner
tomography using the photon number probability counting method presented in section 2.5.

∗ See [] for more information on protocols for readout using weak continuous measurement.
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Figure 9.3: Quasi-dispersive spectroscopy of ∣ψ⟩ ≃ ∣, д⟩. Spectroscopy after initially prepar-
ing ∣, f ⟩ with the qubit below the storage cavity, and then ramping through the avoided
crossing in  ns before doing pulsed spectroscopy vs. flux bias. The x-axis has been rescaled
to match the predicted uncoupled ωдe/π frequency of the transmon. This spectroscopy map
reveals a host of transitions, some of which have small detunings from transitions we would
like to use, such as ω

дe . Dashed lines are calculated numerically using the generalized Jaynes-
Cummings Hamiltonian for a single cavity and transmon. The spectrum closely matches the
calculation except for avoided crossings that are visible in the ω

дe (green) and ∣, д⟩ → ∣, f ⟩
(turquoise) lines. The source of these avoided crossings is unknown.

In this vein, I have begun initial investigations into preparing and detecting higher photon
numbers with the same cQED291 sample used in the previous experiment.

To extend to n = , one needs to find the appropriate transition to drive for the CNOT

gate. One way to do this would be to populate the storage cavity with a coherent state and then
perform quasi-dispersive spectroscopy. The disadvantage of this approach is that population
of higher photon numbers has a multiplicative effect on the number of allowed transitions.
To minimize the chance of mis-identifying these transitions, I pursued a different approach
of performing pulsed spectroscopy after attempting to prepare only the ∣n = ⟩ state. As
discussed in section 2.5.1, the ∣, д⟩ state can be prepared by rapid adiabatic passage by first
driving to ∣, f ⟩ and then sweeping through the avoided crossing with the cavity. Figure 9.3
shows pulsed spectroscopy vs. flux bias after such a preparation sequence with a  ns sweep.
Since the spectroscopy pulse length is  ns and preparation takes  ns, we also expect
to see transitions from populating ∣, д⟩ and ∣, д⟩. As figure 9.3 shows, even in this reduced
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complexity situation, there are many allowed transitions. Overlaid on top of the data are
numerically calculated transition frequencies and labels identifying them using the scheme
of section 2.2.4.∗

Unfortunately, in addition to the desired ωn
дe transitions(red, orange, and green), there

are other transitions like ∣, д⟩ → ∣, f ⟩ (purple) that are nearly overlapping. There is another
set of well-separated number-dependent transitions at higher frequencies (light blue and
pink); however, these are not-photon number preserving, so they cannot be used for the
CNOT gates. Driving these transitions with π-pulses can be used for destructive readout,
though. Furthermore, these transitions could be used in a modified protocol akin to []
where π rotations are done on these transitions. If the transmon is initially prepared in a
superposition of levels, such a rotation will cause one of the states to pick up a minus sign.
For instance, if the transmon is initially prepared in (∣д⟩ + ∣ f ⟩)√ and the ∣, д⟩ → ∣, h⟩
transition is driven with a π-pulse, then the transmon will end up in (− ∣д⟩ + ∣ f ⟩)/√ if
the cavity is in the ∣n = ⟩ state. This minus sign can be detected by inverting the transmon
preparation procedure. Such a scheme adds substantial of complexity, however.

An easier path forward may be to swap the cavity frequencies such that the storage cavity
is at a higher frequency than the measurement cavity. This allows storage cavity state to be
read out at negative detunings. As discussed in section 2.2.4, the ωn

дe transitions have nearly
linear shifts at negative detunings. Furthermore, the negative anharmonicity of the transmon
causes the undesired transitions to have larger negative shifts, so they do not overlap the ωn

дe

transitions. As with the discussion of transmission readout in the previous section, having
the low-Q readout cavity negatively detuned from the qubit has adverse consequences on
relaxation. Consequently, as with the previous case, I would recommend adding a Purcell
filter for this situation.

Cross-Kerr readout

The cross-Kerr effect discussed in section 3.5 presents an alternative method to implement
QND photon detection. Instead of mapping photon states to qubit states, in this protocol
the qubit remains in the ground state, and the presence of photons in the storage cavity is
detected through the qubit-mediated frequency shift (cross-Kerr) of the readout cavity. In
principle, one should be able to continuously monitor the phase of a reflected signal from the

∗ It turns out that such a spectroscopy map is a good way to find system parameters like д and EC, since the
position of these transitions in the quasi-dispersive regime depends quite sensitively on these parameters.
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Figure 9.4: Coherent state minus a Fock state. Plot of the conditional probabilities (red) to
occupy Fock states n = – when starting with a coherent state with n̄ =  and observing a
negative result from probing the occupation of n = . For comparison, the standard Poisson
distribution is shown in blue.

readout cavity to detect the presence of photons in the storage cavity. In practice, however, the
cross-Kerr effect is fairly week, leading to a substantial trade-off between cavity Q and readout
speed. Initial investigations by Eran Ginossar assuming weak driving (n̄ ∼ ) of a moderate
Q (∼ , ) cavity showed insufficient SNR to convincingly detect photon jumps given
the noise of the following HEMT amplifier. If the HEMT amplifier is replaced with a lower
noise device, like a DC-SQUID amp [] or a JPC [], this scheme might become feasible.
Another alternative is to attempt using the cross-Kerr effect as the source of nonlinearity for
the bright state readout already demonstrated with transmons [, ]. Given that the ‘size’
of the nonlinearity required for this readout is not yet well understood, it is unclear if this
will work. One possibility to increase the size of the effect is to adiabatically bring the qubit
into resonance with the storage cavity before turning on the high power readout. Since the∣±⟩ = (∣, e⟩ ± ∣, д⟩)/√ states present different dispersive shifts to the readout cavity, one
might expect this to work similarly to the bright state readout of the transmon.
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State preparation

In addition to using single-shot measurements to demonstrate the projective nature of the
photon readout, one can also prepare quantum states by post selection on measurement
results. For example, the standard way to prepare Fock states in the Rydberg atom experiments
is to initially populate the cavity with a coherent state, then do Ramsey experiments on a
series of atoms (∼  of them) as they pass through the cavity until the phase shift imparted
by the cavity is projected onto a definite value, at which point the cavity is in a Fock state.
With the photon number selectivity of the qubit-photon CNOT gates, though, one can do
something more unusual such as prepare a state like a coherent state ‘minus’ a Fock state,
i.e. ∣ψ⟩ = (I − Πn)/√pn ∣α⟩, where Πn = ∣n⟩ ⟨n∣ is the projector onto Fock state ∣n⟩ and
pn = ∣ ⟨ n ∣ α ⟩ ∣ is the prior probability to be in state ∣n⟩. This state is simply created with a
single measurement by conditioning on a negative result after performing a CNOTn gate.
The resulting photon number distribution, shown in figure 9.4, is very strange looking, as it
is very Poisson-like, but a single photon number ‘knocked out’. The selectivity of the CNOT
gates allows very efficient conditional generation of such states.

With highly selective gates one can also tailor the information gained per measurement
by using different photon-number dependent gates. For instance, instead of doing a π-pulse
on a single ωn

дe transition, one did π/N-pulses on N transitions, measurement of the final
qubit state reveals joint information about all N number states. In fact, it is in principle
possible to construct a photon readout which is sensitive to an arbitrary sum of diagonal
elements of the density matrix (written in the Fock state basis). This can be used to create a
broader class of quantum states by post-selection.

Of course, Hofheinz et al. [] have already demonstrated the Law and Eberly protocol []
for deterministic generation of arbitrary cavity states. Given this, one might wonder if state
preparation is a ‘solved’ problem. As I have just argued, though, for certain quantum states
there are much more efficient state preparation protocols, so long one accepts a conditional
rather than deterministic method. Consequently, we could ask if there is a way to get the best
of both worlds by combining deterministic preparation to certain initial states followed by
QND measurement. There is a sense in which the methods are incompatible because resonant
swap requires a small coupling д to accurately control the swap time, while the selective
QND detection requires large д to get sufficient separation of the number-dependent qubit
transitions. Consequently, to be able to do swaps and QND detection, one either needs to
have two qubits coupled to the storage cavity, one with a large д and the other with a small
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Figure 9.5: State transfer with tunable mirrors. a A quantum state of one cavity can be
transferred to another by making cavities with tunable mirrors. The coupling rate of the left
cavity is increased while it is decreased on the right cavity. If the timing is done correctly,
the photons are completely captured in the right cavity. b A sketch of an implementation
using CPW cavities by using inductive rather than capacitive coupling. Each tunable inductor
represents a SQUID loop with two Josephson junctions.

д. Or, one should design a means to have a tunable coupling strength between qubit and
cavity. In fact, the TIE Fighter or Three Island Qubit (TIQ) proposed in [] with David
Schuster, and also independently developed by Jay Gambetta and Andrew Houck, has just
such a tunable coupling. Consequently, I think it would be extremely attractive to use such a
qubit for cavity state preparation.

Finally, moving beyond state preparation of a single cavity, one can begin to think about
preparation of arbitrary states of two or more cavities. Strauch et al. [] have extended the
Law and Eberly protocol for arbitrary state preparation of two cavities. Their scheme requires
exactly the number-dependent qubit transitions which are available in circuit QED with
large coupling strengths. One way to realize this protocol with transmon qubits is to create a
three cavity, two qubit device where two of the cavities are high-Q for storing the prepared
state, and the third cavity is low-Q for qubit readout. Both qubits are strongly coupled to the
readout cavity, but one qubit has weak coupling to the storage cavities for performing swaps,
while the other qubit is strongly coupled for the number dependent operations. Building
a device with this many cavities and qubits will require understanding some of the issues
with scaling circuit QED to larger systems. Consequently, this type of experiment is a useful
stepping stone for pushing in that direction.

Quantum state transfer

Continuing the idea of state preparation in multiple cavities, on might consider possibilities
to distribution prepared states among a network of cavities. One method proposed (in the
optical domain) in [] suggests using cavities with tunable mirrors, as shown in cartoon
form in figure 9.5(b). The idea is to have time-domain control of the decay rates of the cavities,
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such that one effectively has valves that can be opened or closed to controllably trap photons
in a cavity or let them leak out. In a chain of such cavities, one can prepare a state in one
cavity, and then send that state to another cavity by slowly increasing the decay rate while
simultaneously decreasing the decay rate of the next cavity in the chain. Said differently, one
starts with the ‘valve’ on the first cavity fully closed and the valve on the next cavity fully
open. The valve of the first cavity is slowly opened while the next valve is slowly closed. Noh
shows that under certain conditions, this provides perfect state transfer.

I do not know how to make a tunable capacitor; however, tunable inductors are easy to
make in superconducting circuits—they are just SQUID loops with two Josephson junctions.
Inductors make perfectly good ‘mirrors’ for CPW cavities, so one might imagine implement-
ing this idea with a design like figure 9.5(b). One also probably needs qubits coupled to each
cavity for state preparation and readout, respectively. For this to work, one first needs to
show that it is possible to make high-Q cavities with tunable couplers. After that, verifying
that it works requires some combination of the state preparation and detection techniques
discussed in this thesis. Consequently, this is a difficult experiment, but it is an exceedingly
simple way of thinking about quantum state distribution in a network of cavities.

Final thoughts

I hope to have convinced you that circuit QED is a field with abundant possibilities for
producing, manipulating, and detecting quantum light. The work of this thesis has added
several new tools to the circuit QED toolbox, including a two-cavity architecture with a qubit
that couples to multiple cavities, fast control methods, improved understanding of relaxation,
and a QND photon detection protocol. And yet, I hope that this is just the beginning of a
vast array of increasingly sophisticated experiments involving networks of cavities and qubits
with the ability to create and shuttle quantum light around a chip at-will. The challenges
of building these experiments are formidable, but the promise of new understanding of
entanglement and potential technologies are sufficiently exciting that I expect people will
find ways of overcoming these challenges in eager anticipation of what is to come.

�
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APPENDIX A

Mathematica code for Landau-Zener simulations

Numerical code for solving the transmon–cavity time-dependent Schrödinger equation
follows. This calculation makes use of Lev Bishop’s transmon package, which is listed in

the appendix of his thesis []. The first part constructs the full transmon–cavity Hamiltonian
for a finite number of levels. T. Felbinger’s qmatrix package is used for convenience, to manage
the book keeping of writing operators that span composite Hilbert spaces. After constructing
the Hamiltonian, the code numerically solves the time-dependent Schrödinger equation as
the transmon EJ is changed. In order to analyze the results of the numerical solution, the
code also finds the instantaneous eigenstates for all values of EJ considered in the sweep.
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Initialize

SetOptions@8Plot, ListLinePlot, ListPlot<,8PlotRange Ø All, Frame Ø True, Axes Ø False, PlotRangePadding Ø None<D;
$HistoryLength = 0;

<< qmatrix.m

Needs@"transmon`"D
<< "êUsersêbjohnsonêDocumentsêPhysicsêcalculationsêPlot Exporting Options.m"

MediumPlots

<< "êUsersêbjohnsonêDocumentsêPhysicsêcalculationsêLegend.m"
Hamiltonian

Get transmon energies from Lev Bishop's transmon package.8ef, gf< = makeinterp@.2, 20, 8, 82, 400, 5<D;
Simulate 5 transmon and 5 cavity levels

nq = 5;
nc = 5;

setSystem@sys = 8q1, cav<D;
setModeType@Ò, 8bosonic, nq<D & êü 8q1<;
setModeType@cav, 8bosonic, nc<D;8ao, ado< = 8matrix@op@a, cavDD, matrix@op@ad, cavDD<;
HQfull@q_?modeQ, Ej_, Ec_, g_D :=

matrix@
DiagonalMatrix@Table@ef@iD@Ej, EcD, 8i, 0, nq - 1<DD, 8ket@qD, bra@qD<D +

g Hao + adoL ** matrix@Table@gf@i, jD@Ej, EcD, 8i, 0, nq - 1<, 8j, 0, nq - 1<D,8ket@qD, bra@qD<D;
HQrwa@q_?modeQ, Ej_, Ec_, g_D :=

matrix@
DiagonalMatrix@Table@ef@iD@Ej, EcD, 8i, 0, nq - 1<DD, 8ket@qD, bra@qD<D +

g HÒ + hc@ÒD &LüHao ** matrix@DiagonalMatrix@
Table@gf@i, i + 1D@Ej, EcD, 8i, 0, nq - 2<D, -1D, 8ket@qD, bra@qD<DL;

HQnrwa@q_?modeQ, Ej_, Ec_, g_D :=
matrix@

DiagonalMatrix@Table@ef@iD@Ej, EcD, 8i, 0, nq - 1<DD, 8ket@qD, bra@qD<D +
g Hao + adoL ** HÒ + hc@ÒD &LüHmatrix@DiagonalMatrix@

Table@gf@i, i + 1D@Ej, EcD, 8i, 0, nq - 2<D, -1D, 8ket@qD, bra@qD<DL
HH@wc_,8Ej1_, Ec1_, g1_<D :=
wc ado ** ao + HQ@q1, Ej1, Ec1, g1D

APPENDIX A. MATHEMATICA CODE: LANDAU-ZENER 



orderm = 8ket@cavD, ket@q1D, bra@cavD, bra@q1D<;
orderv = 8ket@cavD, ket@q1D<;
tomatrix@m_?properMatrixQD :=

Developer`ToPackedArrayüflatten@reorderMatrix@m, ordermDD@@1DD;
tovector@v_?properMatrixQD := Developer`ToPackedArrayü

flatten@reorderMatrix@v, ordervDD@@1DD8H0full, H0rwa, H0nrwa< = Table@FullSimplifyütomatrix@HH@wc, 8Ej1, Ec1, g1<DD,8HQ, 8HQfull, HQrwa, HQnrwa<<D;
Block@8Ec1 = 0.317`, Ec2 = 0.2958`, Ej1 = 28.457`,

g1 = 0.199`, g2 = 0.1833`, oo2 = -1.14`, oo = -1.035`,
wc = 6.8934`, x0b = 20.5`, x0 = 2.87`, Ej2 = 42.465`<,

HermitianMatrixQ êü 8H0full, H0rwa, H0nrwa<D8True, True, True<
barevec@c_, i_D := basisKet@cav, c + 1D ** basisKet@q1, i + 1D;
closest@vecs_?HMatrixQ@Ò, NumericQD &L, v_?HVectorQ@Ò, NumericQD &LD :=

OrderingAAbsAv.vecs E, -1E@@1DD;
Now define the  valvec[wc,  Ej,  Ec,  g]  function to  return the  eigenvalues  and eigenvectors  of  the  coupled
transmon-cavity system.

Block@8
H0this = H0full,
wc, Ej1, Ec1, g1, comp, nl<,

With@8
H0 = H0this,
H0sp = SparseArrayüH0this,
sp = 8wc, Ej1, Ec1, g1<<,

With@8ssp = Sequence üü sp,
DH = Transpose@D@SparseArrayüevalinterpüH0, 8sp<D, 82, 3, 1<D<,

With@8C0 = Developer`ToPackedArrayü
evalinterp@H0sp ê. HoldPatternüSparseArray@__, 8__, a_<D ß aD,

DC0 = Developer`ToPackedArray@DH ê.
HoldPatternüSparseArray@__, 8__, a_<D ß aD<,

valvec =
Function@
Evaluateüsp,
Module@8eval, evec, oo<,8eval, evec< = Eigensystem@H0D;
oo = Ordering@evalD;
eval = HÒ - Ò@@1DDL &üeval@@ooDD;
evec = evec@@ooDD;
evec = Ò ê NormüÒ & êü evec;8eval, evec<DD;DDDD

EjFromEc@Ec_, n_D :=
HEc + nL2

8 Ec

Spectrum = Table@
valvec@5.05, EjFromEc@0.25, nD, 0.25, .075D êê First, 8n, 4.75, 6.5, .05<D;
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ListLinePlotASpectrum , PlotRange Ø 84, 28<, DataRange Ø 84.75, 6.5<,
FrameLabel Ø 8"Transmon w01 Frequency HGHzL", "Energyê— HGHzL"<,
BaseStyle Ø 8Thick<, LabelStyle Ø 8FontSize Ø 14<E
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Landau - Zener

The Landau-Zener simulation numerically solves the time-dependent Schrödinger equation as the transmon Ej
is changed in time. In order to view results, we also construct a function to return the instantaneous eigenvec-
tors at any time point during the sweep.

ü Slow linear sweep

csol = BlockB8
H0 = H0full,
wc = 5.062,
Ec1 = .300,
g1 = .068,
n0 = 4.828,
nf = 5.4,
tf = 20<,

ModuleB8vals, vecs, X0<,8vals, vecs< = valvec@wc, EjFromEc@Ec1, n0D, Ec1, g1D;
X0 = vecs@@2DD;
NDSolveB:

Â X'@tD ã 2 p H0.X@tD ê. Ej1 Ø EjFromEcBEc1, n0 + Hnf - n0L t

tf
F,

X@0D ã X0>, X, 8t, 0, tf<, MaxSteps Ø 1 000000F êê FirstFF8X Ø InterpolatingFunction@880., 20.<<, <>D<
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WithB8
H0 = H0full,
wc = 5.062,
Ec1 = .300,
g1 = .068,
n0 = 4.828,
nf = 5.4,
tf = 20<,

sweepvecs = FunctionBt,
ModuleB8vals, vecs, n<,
n = n0 + Hnf - n0L t

tf
;8vals, vecs< = valvec@wc, EjFromEc@Ec1, nD, Ec1, g1D;

vecsFF;F
colors = 8ColorData@20, 1D, ColorData@20, 2D<8RGBColor@0.745098, 0.0666667, 0.00392157D,
RGBColor@0.901961, 0.196078, 0.129412D<

WithA8tf = 20<,
ListLinePlotATableA9Abs@X@t * tfD.sweepvecs@t * tfD@@2DD ê. csolD2,

Abs@X@t * tfD.sweepvecs@t * tfD@@3DD ê. csolD2=,8t, 0, 1, 1 ê 100.<E , PlotRange Ø 80, 1<, DataRange Ø 80, 1<,
FrameLabel Ø 9"Time têDt", "Population »a 2"=, PlotStyle Ø colorsEE
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The final probability to stay in the same state is:

WithA8tf = 20<, Abs@X@tfD.sweepvecs@tfD@@2DD ê. csolD2E
0.999434
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Table of sweeps

Now we look at the dependence on the sweep duration.

sweepPts = 81, 5, 10, 15<;
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LZplots = TableB
csol = BlockB8

H0 = H0full,
wc = 5.062,
Ec1 = .300,
g1 = .068,
n0 = 4.828,
nf = 5.4,
tf = sweepPts@@iiDD<,

ModuleB8vals, vecs, X0<,8vals, vecs< = valvec@wc, EjFromEc@Ec1, n0D, Ec1, g1D;
X0 = vecs@@2DD;
NDSolveB:

Â X'@tD ã 2 p H0.X@tD ê. Ej1 Ø EjFromEcBEc1, n0 + Hnf - n0L t

tf
F,

X@0D ã X0>, X, 8t, 0, tf<, MaxSteps Ø 1000000F êê FirstFF;
WithB8

H0 = H0full,
wc = 5.062,
Ec1 = .300,
g1 = .068,
n0 = 4.828,
nf = 5.4,
tf = sweepPts@@iiDD<,

sweepvecs = FunctionBt,
ModuleB8vals, vecs, n<,
n = n0 + Hnf - n0L t

tf
;8vals, vecs< = valvec@wc, EjFromEc@Ec1, nD, Ec1, g1D;

vecsFF;F;H*colors=8ColorData@20,2*sweeptimeê5-1D,ColorData@20,2*sweeptimeê5D<;*L
colors = 8Hue@Hii - 1L ê Length@sweepPtsDD, Hue@Hii - .5L ê Length@sweepPtsDD<;
color = Hue@.9 * Hii - 1L ê Length@sweepPtsDD;
WithA8tf = sweepPts@@iiDD<,
ListLinePlotATableA9Abs@X@t * tfD.sweepvecs@t * tfD@@2DD ê. csolD2,

Abs@X@t * tfD.sweepvecs@t * tfD@@3DD ê. csolD2=,8t, 0, 1, 1 ê 100.<E , PlotRange Ø 80, 1<, DataRange Ø 80, 1<, FrameLabel Ø8"Time têDt", "Population"<, PlotStyle Ø 8color, 8color, Dashed<<EE,8ii, 1, Length@sweepPtsD<F;

APPENDIX A. MATHEMATICA CODE: LANDAU-ZENER 



mylabels =

FlattenA9"P1,g Dt=" <> ToString@ÒD <> "ns", "P0,e Dt=" <> ToString@ÒD <> "ns"= & êü
sweepPtsE9P1,g Dt=1ns, P0,e Dt=1ns, P1,g Dt=5ns, P0,e Dt=5ns,

P1,g Dt=10ns, P0,e Dt=10ns, P1,g Dt=15ns, P0,e Dt=15ns=
fig1a = AddLegend@Show@LZplotsD, mylabels,

LegendLabelSide Ø Right, LegendItemWidth Ø .5D
P1,g Dt=1ns
P0,e Dt=1ns
P1,g Dt=5ns
P0,e Dt=5ns

P1,g Dt=10ns
P0,e Dt=10ns
P1,g Dt=15ns
P0,e Dt=15ns
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ü Final Probability vs sweep time

LZprobs = TableB
csol = BlockB8

H0 = H0full,
wc = 5.062,
Ec1 = .300,
g1 = .068,
n0 = 4.828,
nf = 5.4<,

ModuleB8vals, vecs, X0<,8vals, vecs< = valvec@wc, EjFromEc@Ec1, n0D, Ec1, g1D;
X0 = vecs@@2DD;
NDSolveB:

Â X'@tD ã 2 p H0.X@tD ê. Ej1 Ø EjFromEcBEc1, n0 + Hnf - n0L t

tf
F,

X@0D ã X0>, X, 8t, 0, tf<, MaxSteps Ø 1000000F êê FirstFF;
WithB8

H0 = H0full,
wc = 5.062,
Ec1 = .300,
g1 = .068,
n0 = 4.828,
nf = 5.4<,

sweepvecs = FunctionBt,
ModuleB8vals, vecs, n<,
n = n0 + Hnf - n0L t

tf
;8vals, vecs< = valvec@wc, EjFromEc@Ec1, nD, Ec1, g1D;

vecsFF;F;9Abs@X@tfD.sweepvecs@tfD@@2DD ê. csolD2,
Abs@X@tfD.sweepvecs@tfD@@3DD ê. csolD2=

, 8tf, 1, 20, .25<F;

APPENDIX A. MATHEMATICA CODE: LANDAU-ZENER 



fig1bsim = ListLinePlotALZprobs , PlotRange Ø 80, 1<, DataRange Ø 81, 20<,
FrameLabel Ø 8"Sweep Time Dt HnsL", "Final Population"<,
PlotStyle Ø 8Hue@0D, Hue@.65D<E
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We can compare this result to the analytic Landau-Zener result with the same sweep rate.

5.4 - 4.828

0.572

fig1theory = PlotBExpB- H2 gL2
G

F ê. 8g Ø 2 p * .068, G Ø 2 p * 0.572 ê Dt<,8Dt, 1, 20<, PlotRange Ø 80, 1<, PlotStyle Ø 8Hue@.65D, Dashed<F
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fig1b = AddLegendAShow@fig1bsim, fig1theoryD, 9"P1,g", "P0,e", "LZ P0,e"=,
LegendLabelSide Ø Left, LegendItemWidth Ø .6, LegendPosition Ø 8Right, Top<E
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fig1 = GraphicsColumn@8fig1a, fig1b<D
P1,g Dt=1ns
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Prepare n=2 (transfer |0,f> to |2,g>)

sweepPts2 = 810, 25, 50, 75<;
LZplots2 = TableA

csol = Block@8
H0 = H0full,
wc = 5.062,
Ec1 = .300,
g1 = .068,
n0 = 4.8,
nf = 5.4,
tf = sweepPts2@@iiDD<,

Module@8vals, vecs, X0<,8vals, vecs< = valvec@wc, EjFromEc@Ec1, n0D, Ec1, g1D;
X0 = vecs@@4DD;
NDSolve@8

Â X'@tD ã 2 p H0.X@tD ê. Ej1 Ø EjFromEc@Ec1, n0 + Hnf - n0L t ê tfD,
X@0D ã X0<, X, 8t, 0, tf<, MaxSteps Ø 1000000D êê FirstDD;

With@8
H0 = H0full,
wc = 5.062,
Ec1 = .300,
g1 = .068,
n0 = 4.8,
nf = 5.4,
tf = sweepPts2@@iiDD<,

sweepvecs = Function@t,
Module@8vals, vecs, n<,
n = n0 + Hnf - n0L t ê tf;8vals, vecs< = valvec@wc, EjFromEc@Ec1, nD, Ec1, g1D;
vecsDD;D;

color = Hue@.9 * Hii - 1L ê Length@sweepPtsDD;
WithA8tf = sweepPts2@@iiDD<,
ListLinePlotATableA9Abs@X@t * tfD.sweepvecs@t * tfD@@4DD ê. csolD2,

Abs@X@t * tfD.sweepvecs@t * tfD@@5DD ê. csolD2,
Abs@X@t * tfD.sweepvecs@t * tfD@@6DD ê. csolD2=,8t, 0, 1, 1 ê 100.<E , PlotRange Ø 80, 1<, DataRange Ø 80, 1<,

FrameLabel Ø 8"Time têDt", "Population"<,
PlotStyle Ø 8color, 8color, Dashed<, 8color, Dotted<<EE,8ii, 1, Length@sweepPts2D<E;

mylabels2 =

FlattenA9"P2,g Dt=" <> ToString@ÒD <> "ns", "P1,e Dt=" <> ToString@ÒD <> "ns",

"P0,f Dt=" <> ToString@ÒD <> "ns"= & êü sweepPts2E;
mylabels2 = FlattenA9"P2,g Dt=" <> ToString@ÒD <> "ns", "P1,e Dt=" <> ToString@ÒD <> "ns", None= & êü

sweepPts2E;
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fig2a = AddLegend@Show@LZplots2D,
mylabels2, LegendLabelSide Ø Right, LegendItemWidth Ø .5D

P2,g Dt=10ns
P1,e Dt=10ns
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P2,g Dt=75ns
P1,e Dt=75ns
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With@8tf = 100<, Abs@X@tfD.sweepvecs@tfD@@4DD ê. csolDD
0.998457
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ü Final Probability vs Sweep Time

LZprobs2 = TableB
csol = BlockB8

H0 = H0full,
wc = 5.062,
Ec1 = .300,
g1 = .068,
n0 = 4.828,
nf = 5.4<,

ModuleB8vals, vecs, X0<,8vals, vecs< = valvec@wc, EjFromEc@Ec1, n0D, Ec1, g1D;
X0 = vecs@@4DD;
NDSolveB:

Â X'@tD ã 2 p H0.X@tD ê. Ej1 Ø EjFromEcBEc1, n0 + Hnf - n0L t

tf
F,

X@0D ã X0>, X, 8t, 0, tf<, MaxSteps Ø 1000000F êê FirstFF;
WithB8

H0 = H0full,
wc = 5.062,
Ec1 = .300,
g1 = .068,
n0 = 4.828,
nf = 5.4<,

sweepvecs = FunctionBt,
ModuleB8vals, vecs, n<,
n = n0 + Hnf - n0L t

tf
;8vals, vecs< = valvec@wc, EjFromEc@Ec1, nD, Ec1, g1D;

vecsFF;F;9Abs@X@tfD.sweepvecs@tfD@@4DD ê. csolD2,
Abs@X@tfD.sweepvecs@tfD@@5DD ê. csolD2,
Abs@X@tfD.sweepvecs@tfD@@6DD ê. csolD2=

, 8tf, 1, 80, 1<F;
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fig2b =

AddLegendAListLinePlotALZprobs2 , PlotRange Ø 80, 1<, DataRange Ø 81, 80<,
FrameLabel Ø 8"Sweep Time Dt HnsL", "Final Population"<E,9"P2,g", "P1,e", "P0,f"=, LegendLabelSide Ø Left,

LegendItemWidth Ø .6, LegendPosition Ø 8Right, Top<E
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fig2 = GraphicsColumn@8fig2a, fig2b<D
P2,g Dt=10ns
P1,e Dt=10ns
P2,g Dt=25ns
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ü Export

figurepath = "êUsersêbjohnsonêDocumentsêPhysicsêThesisêfiguresêrawê";
Export@figurepath <> "LZ-sim1.pdf", fig1DêUsersêbjohnsonêDocumentsêPhysicsêThesisêfiguresêrawêLZ-sim1.pdf
Export@figurepath <> "LZ-sim2.pdf", fig2DêUsersêbjohnsonêDocumentsêPhysicsêThesisêfiguresêLZ-sim2.pdf
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APPENDIX B

Mathematica code for pulse sequence generation

This appendix provides a Mathematica code listing for pulse sequence generation. The
method used here specifies a domain-specific language for describing pulse sequences in

terms of labels that identify pulses as well as lists that indicate how parameters change in an
experiment. Pulses are defined using the function Pulse[]. This function takes an argument
which is a pulse label, such as Xp or Y90p for π and π/ rotations about the positive X- and
Y-axes, respectively. The Pulse[] function accepts many more arguments (all of which are
optional) to specify the amplitude, angle, width, duration (a pulse can exist in a time bin
longer than the pulse itself), sigma (for Gaussian or hyperbolic tangent pulses), pulse type
(square, Gaussian, etc.), and several other parameters. All of these optional arguments can be
specified with a scalar value, or a list of values. A list of Pulse[]’s is passed to the GetSeq[]
function along with a sequence number n, which produces the list of points corresponding
to the concatenated pulses, selecting the nth value of any parameter that was specified with a
list.

For instance, a Ramsey experiment is defined by two π/-pulses about the same axis, with a
variable time delay in the middle. To create a Ramsey pulse sequence, one creates a list of delay
times (e.g. DelayTimes = Range[0,1000,10]), and then constructs the pulse list: seq =
{Pulse[X90p], Pulse[QId, width->DelayTimes], Pulse[X90p]}, where QId speci-
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fies the identity (do nothing) operation. The seq list is then passed to GetSeq[] to construct
the pattern tables. See the last two sections of the code listing for complete examples.



Sequence Functions

Options�Pulse� � �amp � 0, width � SpecPulseLength,
duration � same, angle � 0, sigma � GaussWidth, align � right,
offset � 0, buffer � 0, delay � 0, pType � Gauss, index � 0,
MotzoiScale � 0, SSBmod � 0, IQphase � 0, SSBmod2 � 0�;

Pulse�p_, OptionsPattern��� :� Module�
�a, w, dur, L, s, al, o, b, pulseType, pdelay, DACoffset,
qubitPulses, fluxPulses, measPulses, pf, in, ms, ssbm, ssbm2�,
�� set defaults ��
a � OptionValue�amp�;
w � OptionValue�width�;
dur � OptionValue�duration�; If�dur ��� same �� dur � w, dur � w�;
L � OptionValue�angle�;
s � OptionValue�sigma�;
al � OptionValue�align�;
o � OptionValue�offset�;
b � OptionValue�buffer�;
pdelay � OptionValue�delay�;
pulseType � OptionValue�pType�;
pf � FullSpecPulse;
in � OptionValue�index�; �� added by mdr	ldc ��
ms � OptionValue�MotzoiScale�; �� added by mdr Jan 13, 2010 ��
ssbm � OptionValue�SSBmod�; �� added by ldc Jan 17, 2010 ��
ssbm2 � OptionValue�SSBmod2�; �� added by ldc Jan 21, 2010 ��
qubitPulses � �QId, Xp, Xm, X90p, X90m, X45p, X45m, Yp, Ym, Y90p,

Y90m, X45p, X45m, XΘ, YΘ, Xs, Ys, X90s, Y90s, Up, Um, U90p, U90m�;
fluxPulses � �ZId, Zf�;
measPulses � �MId, Ms�;
If�MemberQ�qubitPulses, p�,
DACoffset � DACoffsetX;
�;
If�MemberQ�fluxPulses, p�,
DACoffset � DACoffsetZ;
�;
If�MemberQ�measPulses, p�,
DACoffset � 0;
�;
�� Single Qubit Pulses ��
If�p ��� QId, �a � o��;
If�p ��� X90p, �L � 0, a � ampX90p��;
If�p ��� X90m, �L � 0, a � ampX90m��;
If�p ��� Y90p, �L � Π 	 2, a � ampY90p��;
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If�p ��� Y90m, �L � Π 	 2, a � ampY90m��;
If�p ��� Xp, �L � 0, a � ampXp��;
If�p ��� Xm, �L � 0, a � ampXm��;
If�p ��� Yp, �L � Π 	 2, a � ampYp��;
If�p ��� Ym, �L � Π 	 2, a � ampYm��;
�� Single Qubit Arbitrary Rotation Pulses ��
If�p ��� XΘ, �L � 0��;
If�p ��� YΘ, �L � Π 	 2��;
�� Special angles ��
If�p ��� X45p, �L � 0, a � ampX90p 	 2��;
If�p ��� Y45p, �L � Π 	 2, a � ampY90p 	 2��;
If�p ��� X45m, �L � 0, a � ampX90m 	 2��;
If�p ��� Y45m, �L � Π 	 2, a � ampY90m 	 2��;
�� Arbitrary axis angle ��
If�p ��� Up, �a � ampXp��;
If�p ��� Um, �a � ampXm��;
If�p ��� U90p, �a � ampX90p��;
If�p ��� U90m, �a � ampX90m��;
�� Arbitrary length square pulses ��
If�p ��� Xs, �L � 0, a � ampXp, pulseType � Square��;
If�p ��� Ys, �L � Π 	 2, a � ampYp, pulseType � Square��;
If�p ��� X90s, �L � 0, a � ampX90p, pulseType � Square��;
If�p ��� Y90s, �L � Π 	 2, a � ampY90p, pulseType � Square��;
�� Single Qubit Z�Pulses ��
If�p ��� ZId, �a � o��;
If�p ��� Zf, �pf � FluxPulse��;
�� Measurement pulses ��
If�p ��� Ms, �a � 1; pulseType � Square��;
If�p ��� MId, �a � 0, pulseType � Square��;
Function��n�, Module��angle, amp, offset, width, sigma,

delay, duration, buffer, quadratures, mScale, ssb, ssb2�,
�angle, amp, offset, width, sigma, delay, duration, buffer,

mScale, ssb, ssb2� � �If�Head�	� ��� List, 	��n��, 	�� & 	

�L, a, o, w, s, pdelay, dur, b , ms, ssbm, ssbm2�;

�� adjust delay to align the pulse within its time window ��
If�duration � width,
Switch�al,
right, delay �� 0,
center, delay �� Round��duration � width� 	 2�,
left, delay �� �duration � width�
�
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�;
quadratures � RotationMatrix�angle�.

pf�amp, width, sigma, pulseType, mScale, ssb, ssb2�;
�offset � PadLeft�Join�N
quadratures��1��, Delay�delay��, duration�,
offset � PadLeft�Join�N
quadratures��2��, Delay�delay��, duration�,
DACoffset, duration, buffer�
���phase,amp,offset,width,sigma,delay,duration���
�
�
�

Options�GetSeq� � �modf � 0, phaseError � 0, IQscale � 1�;
GetSeq�seq_, n_, delay_, fPoint_, cLength_, OptionsPattern��� :�
Module��xpattern, ypattern, xpulse, ypulse,

offset, duration, buffer, toffset, f, phase, iqs�,
toffset � 0; xpattern � 0; ypattern � 0;
Scan�
��xpulse, ypulse, offset, duration, buffer� � 	�n�;

xpattern �� MakePattern�xpulse, fPoint � delay � toffset, ��, cLength�;
ypattern �� MakePattern�ypulse, fPoint � delay � toffset, ��, cLength�;
toffset �� buffer � duration;� &,

Reverse�seq��;
f � OptionValue�modf�;
phase � OptionValue�phaseError�;
iqs � OptionValue�IQscale�;
If�f 
 0,
�xpattern, ypattern� � SSB�FastRound�xpattern�, FastRound�ypattern�, f��;

If�phase 
 0, �xpattern, ypattern� �
PhaseCorrect�xpattern, ypattern, N�phase���;

If�iqs 
 1, �xpattern, ypattern� �
DiagonalMatrix��iqs, 1��.�xpattern, ypattern��;

�NormalizePattern�xpattern, offset�, NormalizePattern�ypattern, offset��
�

ConcatenateSeqs�seqs__� :� MapThread�Join, �seqs��
Options�AddPulses� � �DACoffset � DACoffsetX�;
AddPulses�p__, OptionsPattern��� :�
Apply�Plus, �p� � OptionValue�DACoffset�� � OptionValue�DACoffset�

NormalizePattern �

Compile
��pat, _Real, 1�, offset�, Round
Clip
pat � offset, �0, 214 � 1�


;
FastRound � Compile���pat, _Real, 1��, Round�pat��;
Convert14to10bit �

Compile
��pat, _Real, 1��, Round
Clip
�pat � 8192� � 24 � 512, �0, 1023�


;
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Options�BalancePattern� � �endLength � 100�;
BalancePattern�pat_List,

offset_?NumberQ, opts : OptionsPattern�BalancePattern�� :�
Block
�total, amp, numpoints, elength�,
elength � OptionValue�endLength�;
total � Total�pat � offset�;
amp � If
total � 0, �offset � 100, �214 � 1� � offset � 100
;
numpoints � Floor
Abs�total 	 amp�;
Join�
Take�pat, Length�pat� � numpoints � elength � 1�, �� replace numpoints �
final corrector � elength offset levels at the end ��

ConstantArray�offset � amp, numpoints�,
�offset � �amp � numpoints � total��,
ConstantArray�offset, elength�
�



Pattern Generation

MakePattern::usage �
"MakePattern�leftPat_,fixedPoint_,rightPat_,totalLength_�:\n

This function makes it easy to create patterns with a fixed point.\n
leftPat is pattern data before fixed point\n
fixedPoint is the location to be fixed �leftPat will be left padded�\n
rightPat is pattern data after the fixed point\n
the whole pattern will

be padded to the right to a length � totalLength";

MakePattern�leftPat_, fixedPoint_, rightPat_, totalLength_� :�
PadRight�Join�PadLeft�leftPat, fixedPoint�, rightPat�, totalLength�;
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Pulse Functions

� General

FluxPulse::unknown � "Unknown pulse type `1`.";
FluxPulse�amp_, length_, sigma_,

type_: Square , MotzoiScale_: 0, SSBmod_: 0, SSBmod2_: 0� :�
Switch�type,
Gauss, �GaussianPulse�amp, length, sigma�, ConstantArray�0, length��,
Exp, �ExpPulse�amp, sigma, length�, ConstantArray�0, length��,
GaussOn, �GaussOn�amp, length, sigma�, ConstantArray�0, length��,
GaussOnOff,
�Join�GaussOn�amp, 3 � sigma, sigma�, SquarePulse�amp, length � 6 � sigma�,

GaussOff�amp, 3 � sigma, sigma��, ConstantArray�0, length��,
GaussOff, �GaussOff�amp, length, sigma�, ConstantArray�0, length��,
Square, �SquarePulse�amp, length�, ConstantArray�0, length��,
Tanh,
�TanhPulse2�amp, sigma, sigma, 2, length�, ConstantArray�0, length��,
Over, �OverPulse�amp, sigma, 1, length�, ConstantArray�0, length��,
Ramp, �RampPulse�amp, length�, ConstantArray�0, length��,
��TanhB,
�TanhPulse3�amp,sigma, sigma, 2, length�,ConstantArray�0,length��,��
_, Message�FluxPulse::unknown, type�
�;

FullSpecPulse::unknown � "Unknown pulse type `1`.";
FullSpecPulse�amp_, length_, sigma_,

type_: Gauss , MotzoiScale_: 0, SSBmod_: 0, SSBmod2_: 0� :�
Switch�type,
Gauss, �GaussianPulse�amp, length, sigma�, ConstantArray�0, length��,
Exp, �ExpPulse�amp, length, sigma�, ConstantArray�0, length��,
Square, �SquarePulse�amp, length�, ConstantArray�0, length��,
Tanh, �TanhPulse2�amp, sigma, sigma, 3, length�, ConstantArray�0, length��,
Deriv, �GaussianPulse�amp, length, sigma�,
DerivGaussianPulse�MotzoiScale � amp, length, sigma��,

Motzoi, StarkyPulse�amp , length, sigma, MotzoiScale, SSBmod, SSBmod2�,
GaussOn, �GaussOn�amp, length, sigma�, ConstantArray�0, length��,
GaussOff, �GaussOff�amp, length, sigma�, ConstantArray�0, length��,
GaussOnOff,
�Join�GaussOn�amp, 3 � sigma, sigma�, SquarePulse�amp, length � 6 � sigma�,

GaussOff�amp, 3 � sigma, sigma��, ConstantArray�0, length��,
_, Message�FullSpecPulse::unknown, type�
�;
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� Motzoi

GetPhase�amp_, n_, Σ_, ssb_� :� Module��midpoint, Ex, PhaseVec, FreqVec�,
midpoint � �n � 1� 	 2;
Ex � Table� Exp�� �x � midpoint�

2

2 Σ2
�, �x, 1, n��;

FreqVec � Table�2 � Pi � Ex��x��^2 �amp 	 amp180�^2 � ssb 	 1000 , �x, 1, n��;
��instantaneous angular frequency ��
PhaseVec � Accumulate�FreqVec�;
N�PhaseVec��n��� �

GetPhaseTable�amp_, n_, Σ_, ssb_� :� �GetPhase�	, n, Σ, ssb� &� 	
 amp;

StarkyPulse�amp_, n_, Σ_, scaleD_, ssb_, ssb2_� :�
Module��midpoint, Ex, Exdot, PhaseVec, FreqVec, IPhvec, QPhvec, OutVec�,
midpoint � �n � 1� 	 2;
Ex � Table�amp Exp�� �x � midpoint�

2

2 Σ2
�, �x, 1, n��;

Exdot � Table�� amp � �x � midpoint�
Σ2

� Exp�� �x � midpoint�
2

2 Σ2
�, �x, 1, n��;

IPhvec � Ex;
QPhvec � scaleD � Exdot;
OutVec � �IPhvec, QPhvec�;

FreqVec � Table�

2 � Pi � �Ex��x�� 	 amp180�^2 � ssb � Exp�� �x � midpoint�
2

2 Σ2
� ^2 � ssb2 � 1000,

�x, 1, n��;
PhaseVec � Accumulate�FreqVec�;
OutVec � �IPhvec � Cos�PhaseVec� � QPhvec � Sin�PhaseVec�,

QPhvec � Cos�PhaseVec� � IPhvec � Sin�PhaseVec��;

Round�OutVec� �
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SimpleMotzoiPulse�amp_, n_, Σ_, scaleD_, ssb_� :�
Module��midpoint, Ex, Exdot, PhaseVec, IPhvec, QPhvec, OutVec�,
midpoint � �n � 1� 	 2;
Ex � Table�amp Exp�� �x � midpoint�

2

2 Σ2
�, �x, 1, n��;

Exdot � Table�� amp � �x � midpoint�
Σ2

� Exp�� �x � midpoint�
2

2 Σ2
�, �x, 1, n��;

IPhvec � Ex;
QPhvec � scaleD � Exdot;
OutVec � �IPhvec, QPhvec�;
PhaseVec � Table�2 � Pi � ssb 	 1000 � x, �x, 1, n��;
OutVec � �IPhvec � Cos�PhaseVec� � QPhvec � Sin�PhaseVec�,

QPhvec � Cos�PhaseVec� � IPhvec � Sin�PhaseVec��;

Round�OutVec� �
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MotzoiPulse�quad_, amp_, n_, Σ_, order_,
lambda_, delta_, lever_, doquad_, dophase_� :�

Module��rate, prefacA1, prefacA3, prefacA5, prefacB1, prefacB3,

prefacC2, prefacC4, midpoint, Ex, Exdot, IPhvec, QPhvec,
DetVec, PhaseVec, OutVec�,

rate � 10^9;

�� First, prepare the prefactors ��
prefacA1 � 1;
prefacA3 � 0;
prefacA5 � 0;
prefacB1 � 0;
prefacB3 � 0;
prefacC2 � 0;
prefacC4 � 0;
If�order � 3, prefacA3 � �lambda^2 � 4� 	 2 � �lever 	 delta�^2�;
If�order � 5,
prefacA5 � ��13 � lambda^4 � 76 � lambda^2 � 112� 	 8 � �lever 	 delta�^4�;

If�order � 1 && doquad � 1, prefacB1 � � rate 	 delta 	 �2 � Pi � 10^6��;
If�order � 3 && doquad � 1,
prefacB3 � rate � 33 � �lambda^2 � 2� 	 6 � lever^2 	 delta^3 	 �2 � Pi � 10^6��;

If�order � 2 && dophase � 1, prefacC2 �
1 	 rate � �lambda^2 � 4� � �lever^2 	 delta� � �2 � Pi � 10^6��;

If�order � 4 && dophase � 1, prefacC4 � �1 	 rate �
�lambda^4 � 7 � lambda^2 � 12� � lever^4 	 delta^3 � �2 � Pi � 10^6��;

�� Second, calculate gaussian pulses and their derivative ��
midpoint � �n � 1� 	 2;
Ex � Table�amp Exp�� �x � midpoint�

2

2 Σ2
�, �x, 1, n��;

Exdot � Table�� amp � �x � midpoint�
Σ2

� Exp�� �x � midpoint�
2

2 Σ2
�, �x, 1, n��;

��
IPhvec�prefacA1�Ex �prefacA3�Ex^3�prefacA5�Ex^5;
QPhvec�prefacB1�Exdot�prefacB3�Ex^2�Exdot;
DetVec�prefacC2�Ex^2�prefacC4�Ex^4;
PhaseVec�Accumulate�DetVec�;
��
IPhvec � prefacA1 � Ex;
QPhvec � prefacB1 � Exdot;
DetVec � prefacC2 � Ex^2;
PhaseVec � Accumulate�DetVec�;
OutVec � Which�quad � 0,

IPhvec � Cos�PhaseVec � dophase� � QPhvec � Sin�PhaseVec � dophase�, quad � 1,
QPhvec � Cos�PhaseVec � dophase� � IPhvec � Sin�PhaseVec � dophase��;

;

Round�OutVec� �

� Pulse Shapes

SquarePulse�amp_, n_� :� amp � Table�1, �n��;
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Delay�n_� :� Table�0, �ii, 1, n��;

GaussianPulse�amp_, n_, Σ_� :� Module��midpoint�,
midpoint � �n � 1� 	 2;
Round �Table�amp Exp�� �x � midpoint�

2

2 Σ2
�, �x, 1, n����

GaussOn�amp_, n_, Σ_� :� Round �Table�amp Exp�� �x � n�
2

2 Σ2
�, �x, 1, n���

GaussOff�amp_, n_, Σ_� :� Round �Table�amp Exp�� �x�
2

2 Σ2
�, �x, 1, n���

BufferPulseGen�list_, zeroLevel_, padding_, reset_, delay_� :�
Module
�result�,
��buffer to the left��
result � PadRight�ListCorrelate�ConstantArray�1, 1 � padding�, list�,

Length�list�, �1 � padding� � zeroLevel�;
��buffer to the right��
result � PadLeft
ListConvolve�ConstantArray�1, 1 � padding�, result�,

Length�list�, �1 � padding�2 � zeroLevel
;
��convert to on	off��
result � If
	 
 �1 � padding�2 � zeroLevel, 1, 0
 & 	
 result;
��keep the pulse high if the
delay between pulses is less than the reset time��

result � Flatten�Module��l � Length�	��,
ConstantArray�If�l � reset, 1, First�	��, l�� & 	
 Split�result��;

��shift to the left by the delay amount��
result � PadRight�Drop�result, delay�, Length�list��

;

IQBufferPulseGen�Ipts_, Qpts_, zeroLevel_, padding_, reset_, delay_� :�
BufferPulseGen�	, 0, padding, reset, delay� & 	

MapThread�If�	1 
 zeroLevel �� 	2 
 zeroLevel, 1, 0� &, �Ipts, Qpts�, 2�;

DerivGaussianPulse�amp_, n_, Σ_� :� Module��midpoint�,
midpoint � �n � 1� 	 2;
Round �Table�� amp �x � midpoint�

Σ2
Exp�� �x � midpoint�

2

2 Σ2
�, �x, 1, n����
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ExpPulse�amp_, Σ_, length_� :�
Round�Table�amp � Exp��t 	 Σ�, �t, 0, length � 1���;

TanhPulse2�amp_, Σup_, Σdown_, numΣ_, length_� :� Module��t0, t1�,
t0 � numΣ � Σup � 1;
t1 � length � numΣ � Σdown;
Round�Table�amp �Tanh��t � t0� 	 Σup� � Tanh���t � t1� 	 Σdown�� 	 2,
�t, 1, Round�length����

�;
OverPulse�amp_, overA_, overL_, length_� :�

Round�Join�Table��1 � overA 	 100� � amp, �t, 1, Round�overL���,
Table�amp , �t, 1, Round�length � 2 � overL���,
Table���overA 	 100� � amp, �t, 1, Round�overL���
��;

RampPulse�amp_, length_� :�
Round�Table�amp � t 	 length, �t, 1, length���
�� Measurement Pulse ��
MeasPulse�MeasPulseLength_, fixedPoint_, cycleLength_� :�

MakePattern���, fixedPoint, SquarePulse�1, MeasPulseLength�, cycleLength�;
MeasPulseArray�n_, MeasPulseLength_, fixedPoint_, cycleLength_� :�

Join 

 Table�MeasPulse�MeasPulseLength, fixedPoint, cycleLength�, �n��;

� Single Sideband Modulation

�� modf in units of MHz ��
SSB::usage �

"SSB�Ipat, Qpat, modf� returns the SSB modulated signal at frequency modf
�in units of MHz when the time step is ns�. Use positive modf to get
the upper sideband and negative modf to get the lower sideband.";

SSB�Ipat_ 	; Depth�Ipat� � 1 � 1, Qpat_ 	; Depth�Qpat� � 1 � 1, modf_� :�
Module��t, f�,
t � Range�0, Length�Ipat� � 1�;
f � modf 	 1000.0;
SSBC�Ipat, Qpat, t, f�
�;

SSB�Ipat_ 	; Depth�Ipat� � 1 � 2, Qpat_ 	; Depth�Qpat� � 1 � 2, modf_� :�
Transpose�MapThread�SSB�	1, 	2, modf� &, �Ipat, Qpat���;

SSBC � Compile���Ipat, _Real, 1�, �Qpat, _Real, 1�, �t, _Real, 1�, f�,
�Ipat � Cos�2 Π � f � t� � Qpat � Sin�2 Π � f � t�,
Qpat � Cos�2 Π � f � t� � Ipat � Sin�2 Π � f � t��

�;

� Phase Correction

PhaseCorrect::usage �
"PhaseCorrect�Ipat, Qpat, phase� corrects phase errors from I	Q

mixers. 'phase' is defined in radians as the offset from Π	2
separation between the quadratures. phase � 0 means that the
separation is � Π	2, phase � 0 means that the separation � Π	2.";

PhaseCorrect � Compile���Ipat, _Real, 1�, �Qpat, _Real, 1�, phase�,
�Ipat � Qpat � Tan�phase�, Qpat � Sec�phase���;
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Example Usage

numsteps � 80;
rabistep � 17 	 2.;
fluxstep � �2^14 	 80.;
RabiPoints � Range�0, rabistep � �numsteps � 1�, rabistep�;
AnglePoints � Range�0, 2 Π, 2 Π 	 �numsteps � 1��;
fluxPoints � Range�0, fluxstep � �numsteps � 1�, fluxstep�;
qubitSeq � �

Pulse�XΘ, amp � RabiPoints�,
Pulse�X90p, align � center, duration � 50�,
Pulse�U90p, angle � AnglePoints�,
Pulse�QId, width � 30�
�;

fluxSeq � �
Pulse�ZId�,
Pulse�Zf, amp � fluxPoints, width � 50, pType � Square�,
Pulse�ZId�,
Pulse�Zf, amp � fluxPoints, width � 30�
�;

�patTableCh1, patTableCh2, patTableCh3, null� � Transpose�Table�
Join�
GetSeq�qubitSeq, ii, SpecPulseDelay, fixedPointCh1, cycleLength�,
GetSeq�fluxSeq, ii, FluxPulseDelay, fixedPointCh1, cycleLength�
�
, �ii, numsteps���;

plotnum � 70;
ListPlot��patTableCh1��plotnum��,

patTableCh2��plotnum��, patTableCh3��plotnum���, Joined � True,
PlotRange � ��6800, 7100�, �0, 2^14 � 1��, Axes � False, Frame � True�

6800 6850 6900 6950 7000 7050 7100
0

5000

10000

15000
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Full Rabi Ramsey Experiment Example

basename � "RabiRamsey";
datapathAWG5014 � RootAWG5014 �� basename �� "_5014\\";
CreateDirectory�datapathAWG5014�;
filePrefix5014 � basename �� "_5014";

numsteps � 80;

RabiCenter � 0; RabiStep � 17;
RabiPoints �

Table�RabiCenter � �ii � numsteps 	 2� � RabiStep, �ii, 0, numsteps � 1��;
RamseyStep � 5;
RamseyPoints � Range�0, RamseyStep � �numsteps � 1�, RamseyStep�;
Exp1QubitSeq � �

Pulse�XΘ, amp � RabiPoints�
�;

Exp1FluxSeq � �
Pulse�ZId�
�;

Exp2QubitSeq � �
Pulse�X90p�,
Pulse�QId, width � RamseyPoints�,
Pulse�X90p�
�;

Exp2FluxSeq � �
Pulse�ZId�,
Pulse�ZId, width � RamseyPoints�,
Pulse�ZId�
�;

�patTableCh1Exp1, patTableCh2Exp1, patTableCh3Exp1, null� � Transpose�Table�
Join�
GetSeq�Exp1QubitSeq, ii, SpecPulseDelay, fixedPointCh1, cycleLength�,
GetSeq�Exp1FluxSeq, ii, FluxPulseDelay, fixedPointCh1, cycleLength�
�
, �ii, numsteps���;

�patTableCh1Exp2, patTableCh2Exp2, patTableCh3Exp2, null� � Transpose�Table�
Join�
GetSeq�Exp2QubitSeq, ii, SpecPulseDelay, fixedPointCh1, cycleLength�,
GetSeq�Exp2FluxSeq, ii, FluxPulseDelay, fixedPointCh1, cycleLength�
�
, �ii, numsteps���;
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�� Join the experiments ��
patTableCh1 � ConcatenateSeqs�patTableCh1Exp1, patTableCh1Exp2�;
patTableCh2 � ConcatenateSeqs�patTableCh2Exp1, patTableCh2Exp2�;
patTableCh3 � ConcatenateSeqs�patTableCh3Exp1, patTableCh3Exp2�;
patTableCh4 � Table�ConstantArray�0, 2 � cycleLength�, �ii, numsteps��;
�� AWG5014 Markers ��
�� Marker 1 is the measurement buffer ��
markerTable1 � Table�

MeasPulseArray�2, MeasPulseLength,
fixedPointCh1 � MeasPulseDelay, cycleLength�, �ii, numsteps��;

�� Marker 2 is the spec buffer for Qubit 1 Channels ��
markerTable2 � IQBufferPulseGen�patTableCh1, patTableCh2,

DACoffsetX, specBuffer, specBufferReset, specBufferDelay�;
�� Marker 3 is a trigger ��
markerTable3 � Table�

PadRight�Join�Delay�1�, SquarePulse�1, triggerWidth��, 2 � cycleLength�,
�ii, numsteps��;

�� Marker 4 is the population buffer ��
markerTable4 � Table�ConstantArray�0, 2 � cycleLength�, �ii, numsteps��;
��1�BufferPulseGen�	,DACoffsetZ,specBuffer,specBufferReset,MeasPulseDelay�&	


patTableCh3;��
�� Markers 5�8 are triggers ��
markerTable5 � markerTable6 � markerTable7 � markerTable8 � markerTable3;

thisNum � 60;
ListPlot�
�patTableCh1��thisNum��, patTableCh2��thisNum��, patTableCh3��thisNum��,
800 � markerTable1��thisNum��, 800 � markerTable2��thisNum���,

Joined � True, PlotRange � ��15750, 17 500�, All�, Axes � False, Frame � True�

16000 16500 17000 17500
0

200

400
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800

1000

�� Export pulses ��
steps � Range�numsteps�;
ExportTekPatternsAWG5014�datapathAWG5014, filePrefix5014,
patTableCh1, markerTable1, markerTable2, patTableCh2, markerTable3,
markerTable4, patTableCh3, markerTable5, markerTable6,
patTableCh4, markerTable7, markerTable8, steps, parameterList�

basename
DateString��
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APPENDIX C

Fabrication recipes

This appendix provides the detailed electron beam lithography and deposition recipes.
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APPENDIX C. FABRICATION RECIPES 

Table C.1: PMMA/MMA bilayer with aluminum cap

1. Clean chip with NMP, acetone, and methanol by sonicating in each solvent for 60
seconds.

2. Spin MMA EL13 at 4000 rpm for 60s

3. Bake at ○C for 60s (under petri dish propped up on slides and using local ther-
mometer to measure temperature)

4. Spin PMMA 950k A3 at 4000 rpm for 60s

5. Bake at ○C for 30min

6. Load into Playssys deposition system and pump the minimum time allowed to open
the load lock to the main chamber (∼ 45 minutes).

7. Deposit  nm Al at ∼  nm/s.

Table C.2: PMMA/MMA development

1. Shake chip in MF312 for 60s or until aluminum is no longer visible anywhere on the
surface

2. Shake chip back and forth in MIBK:IPA 1:3 for 50s

3. Immediately place chip in IPA for 10s

4. Dry with N gas



APPENDIX C. FABRICATION RECIPES 

Table C.3: Electron beam evaporation

1. Pump out chamber to . x −, takes 4 hours

2. Clean the device with 3.5:1 argon:oxygen plasma with power of  mW/cm.

3. With the shutter closed, deposit titanium for  min at . nm/s to lower the chamber
pressure

4. Deposit  nm aluminum at  nm/s

5. Oxidize with 85:15 argon:oxygen at a pressure of 15 Torr for 12 minutes

6. Pump down to . x − Torr in load lock and  x − Torr in chamber

7. Deposit  nm aluminum at  nm/s with 36 degree tilt

8. Oxidize with 85:15 argon:oxygen at 3 Torr for 10 minutes

9. Vent
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