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Abstract
Quantum Information Processing with Superconducting Qubits
Jerry Moy Chow
2010

This thesis describes the theoretical framework, implementation, and measurements of a
quantum processor comprised of superconducting qubits coupled in the circuit quantum
electrodynamics (QED) architecture. In the realization of circuit QED, two superconducting
‘transmon’ charge qubits are capacitively coupled to a one-dimensional microwave transmis-
sion line resonator which serves as a quantum bus. Single-qubit rotations can be applied
through the resonator and their operation is characterized using various benchmarking
techniques. Through a virtual photon interaction via the quantum bus, the two qubits can
coherently swap a single excitation. A separate two-qubit conditional phase interaction is
also observed which is attributable to an interaction in the two-excitation manifold of the
transmons. Furthermore, the same quantum bus which couples the qubits can be used as a
joint detector of the full two-qubit quantum state. Entanglement witnesses and a violation
of a Bell-type inequality are found using this joint detector on highly entangled states. Fi-
nally, combining the single-qubit rotations, conditional phase interaction, and joint readout,
allows the realization and characterization of simple quantum algorithms, specifically the

Deutsch-Jozsa and Grover’s search algorithms.
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Abbreviations:

CHSH  Clauser-Horne-Shimony-Holt, see section 2.7.
CPB Cooper-pair box, see section 3.1.2.

c-Phase conditional-phase gate, see section 2.3.2.

cNOT  controlled-NOT, see section 2.1.

DJ Deutsch-Jozsa, see section 2.4.2.

FBL flux-bias line, see section 5.3.3.

IC integrated circuit, see chapter 1.

]JC Jaynes-Cummings, see section 3.3.

NMR nuclear magnetic resonance, see section 1.2.

PCB printed circuit board, see section 5.4.1.

POVM  positive operator-valued measure, see section 2.5.
QED quantum electrodynamics, see section 1.3.

QFT quantum fourier transform, see section 2.4.4.
QIP quantum information processing, see section 1.3.
RF radio-frequency, see section 1.2.

RSA Rivest, Shamir, and Adleman, see section 1.1.
RWA rotating wave approximation, see section 3.3.
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Xxii NOMENCLATURE
SQUID  superconducting quantum interference device, see section 3.1.2.
>’
Latin Letters:
B bound to concurrence, see section 2.6.2.
Ce qubit-cavity coupling capacitance, see (3.34).
C Clauser-Horne-Shimony-Holt operator, see section 2.7.
C concurrence, see section 2.6.1.
cUjj conditional-phase gate, conditioned on state ij, see section 2.3.2.
Cs total capacitance to ground of charge qubit, see section 3.1.2.
D derivative pulse-shape amplitude scale factor, see section 6.4.3.
Ec electrostatic charging energy, see section 3.1.2.
E; Josephson energy, see section 3.1.2.
E. energy of m-th transmon level, see section 4.2.4.
state fidelity, see (2.42).
G Grover iteration, see section 2.4.3.
9ij transmon dipole coupling energy between charge levels i and j, see (3.36).
g vacuum Rabi coupling frequency, see (3.27).
H® Hadamard gate on qubit i, see section 2.2.
Her n-qubit simultaneous Hadamard gate, see section 2.4.1.
I single-qubit identity operator, also defined as 1, see section 2.2.
iISWAP  i-swap gate, see section 2.3.3.
1 single-qubit identity operator, also defined as I, see section 2.2.
] virtual photon qubit-qubit swap interaction strength, see (4.34).
M measurement operator, see sections 2.5 and 4.4.1.
7] integer-valued Cooper pair number operator, see section 3.1.2.
7 mean number of photons in the cavity, also defined as (n), see section 3.4.3.
Ng gate charge, see section 3.1.2.



NOMENCLATURE xx1ii

Py
P
RQ

Q
R;(0)

qubit excited state population, see ?2.
state purity, see section 2.6.

two-qubit Pauli operators, where R, Q € I, X, Y, Z, and also referred to as R ® Q,
see section 2.5.2.

quality factor of cavity, see section 5.2.

rotation around the axis i by angle 0, also defined as R?, see (2.3).

V iISWAP square-root of i-swap gate, see section 2.3.3.

T
Ty
T;
Vo
W
X,Y,Z

qubit relaxation time, see section 3.5.1.

qubit dephasing time, see section 3.5.2.

qubit decoherence time, see section 3.5.2.

zero point root mean squared voltage in the cavity, see (3.34).
entanglement witness, see section 2.6.2.

single-qubit Pauli operator, also defined as o, ., see (2.2).

z-cNOT  zero controlled-NOT gate, see section 2.4.2.

>

Greek Letters:

Bi

€m

Xmn

absolute anharmonicity of the m-th transmon level, see (3.18).
relative anharmonicity of the m-th transmon level, see (3.19).
voltage division ratio, see (3.34).

sensitivity of the measurement to a specific Pauli operator indexed by i, see
section 4.4.1.

charge dispersion of the m-th transmon level, see (3.15).
state dependent cavity shift, see (3.45).

positive superoperator process determined by quantum process tomography, see
section 6.3.5.

external magnetic flux, see section 3.1.2.
Josephson phase operator, see section 3.1.2.

magnetic flux quantum, see section 3.1.2.
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0, z-rotation phase of the qubit, see (4.30).

p density matrix, see section 2.5.

Ox,y,z single-qubit Pauli operator, also defined as X, Y, Z, see (2.2).
wc cavity excitation frequency, see (3.27).

W transmon transition frequency to level k, see (3.21).

wq qubit transition frequency, see (3.20).

wq qubit drive frequency, see section 7.2.2.

¢ two-qubit 0, ® o, interaction strength, see section 4.3.3.



CHAPTER 1

Introduction

HE ubiquity of computers and other devices with microprocessors reflects one of the more
Tsuccessful technological developments over the past few decades. When the first solid-
state transistor was made in 1947 by John Bardeen, Walter Brittain, and William Shockley at
Bell Laboratories, it is fair to say that not even they would have imagined the proliferation
of and extent to which computing has reached. Yet, science and society continue to march
forward, looking for ever more computational power and faster processors. Before consid-
ering the future of computing however, we can obtain some perspective about the scope of
computers today through looking at the historical development of information processors.

Computers were not always silicon based nor made up of transistors. Rather, the earliest
processors were made up of vacuum tubes and electromechanical relays, physically taking up
large amounts of space. Arguably the first critical implementation of computers was during
World War II, with the British Colossus computers [1] used to break German wartime codes.
The war stimulated the scientific progression of digital computing and fortunately, scientists
responded to the challenge, helping decrypt intercepted Nazi transmissions.

Subsequently, new technological advances in transistors and integrated circuits changed
the classical computing landscape forever. Instead of a single bit of information taking an
individual vacuum tube, a solid-state chip only a tiny fraction of the volume of the vacuum

tube could hold millions of transistors, each representing a bit. Computers no longer needed
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to take up entire floors of a building, but could even begin to become personalized for use in
the everyday home.

So how many bits can we fit into a microprocessor and how does information processing
scale? The well-known Moore’s law has predicted that the number of transistors which can
be placed onto an integrated circuit (IC) doubles approximately every two years [2]. The
trend has been traced for the past half century and demonstrates the ability of technology
to continue improving at exponential levels. Yet, there is a fundamental physical limit to
Moore’s law because as we continue to increase the density of bits, we eventually reach the
level of the individual atoms of silicon. At these scales, standard solid-state physics breaks
down, transitioning into the physics of the atomic scale. Specifically, quantum mechanics
begins to play a role: interactions between the atoms become no longer negligible, and
quantum tunneling between parts of the IC can occur. Already in our smallest present-
day processors, quantum mechanics is responsible for substantial gate leakage, resulting in
significant heating.

Therefore, in the terms of computing progress moving forward, there are two paths to
consider. The first is to understand what will be the fundamental limits to Moore’s law and
what techniques within classical computation and semiclassical solid-state engineering can
be done to continue improvement, even if not at Moore’s law levels. The second is to start
from quantum mechanics, perhaps even at the atomic level, and think about computing
and information processing by directly employing the quantum effects. The first path is
the task of electrical engineers, materials scientists, and computer engineers to figure out
different physical architectures for constructing ICs, improved materials to minimize loss
mechanisms while continuing to scale down, and shift towards more parallel processors
which will require more efficient and adapted computer programs. The second path has
resulted in the burgeoning field of quantum information processing, which we will motivate
in the next section. The experimental implementation in a solid-state system is the subject of
this thesis.

1.1 Computing with quantum mechanics

Devices which perform quantum information processing are called quantum computers. The
concept of quantum computing can be traced back to the early 1980s, first with the suggestion
by Richard Feynman for quantum mechanics simulations [3] and then for the solution of a

toy problem with a quantum algorithm developed by David Deutsch [4].
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Feynman noted that classical computers would not be able to simulate quantum mechani-
cal systems efficiently. The general direction of quantum simulation using classical computers
is to describe the mean behavior of a system comprised of more than a million degrees of
freedom. However, in nuclear physics, atomic physics and chemistry, it is often important to
be able to simulate systems made up of tens to hundreds of quantum objects. In this case,
the mean field approach does not give a complete enough picture. Rather, it was suggested
that having control over quantum systems would permit the first principles construction of
many-body systems.

The first simple quantum algorithm was proposed by David Deutsch in 1985, using
quantum mechanics to solve essentially the problem of determining if a coin is fair or biased
more efficiently than any classical computing algorithm could [4]. But the proposed problem
was very limited in scope, and although Deutsch’s algorithm demonstrated a concrete way
in which quantum computers could beat a classical computer, it was not yet enough to
push forward with a major physical research effort to investigate and implement a quantum
computer.

The landscape of quantum information processing quickly changed, however, when Peter
Shor introduced an integer factoring algorithm which could exponentially outperform any
known classical computational algorithm [5]. The problem of factoring large numbers is in fact
very computationally difficult, with even the most complex classical computers requiring the
lifetime of the universe to complete the task. Interestingly enough, the factorizing problem
in reverse, integer multiplication, is very simply implemented with classical computers.
These two features, simplicity to multiply and the difficulty to factor, have led to the public-
key encryption scheme developed by Rivest, Shamir, and Adleman (RSA), widely used for
electronic business communication and transaction applications [6]. Furthermore, new
quantum information based encryption schemes were developed by Charles Bennett and
researchers at IBM [7]. Such quantum encrypted systems become unbreakable via classical
means, relying on the concepts of quantum entanglement and measurement. The possibility
that a quantum computer implementing Shor’s algorithm could be used for breaking one of
the most powerful classical encryption algorithms stimulated considerable interest in both
quantum computing theory and physical implementations to try to implement Shor’s or
develop new quantum encryption protocols. The combination of intellectual interest from
scientists in a variety of disciplines, and the realization that quantum computing might have
national security implications in the future, made it a topic of increasing importance.

Subsequently, in addition to a lot more quantum computing theory devoted towards
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the development of new algorithms and novel applications of quantum information, there
was also a new theoretical emphasis on how to physically and experimentally implement a
quantum computer. The basic building block of such a quantum computer is the quantum bit
or qubit. It is similar to the classical bit in that it is a system comprised of two discrete states,
|0) and [1). However, these states need to be any set of two quantum mechanical levels, such
as an electron spin or nuclear spin, or a pair of energy levels in an atom, ion or molecule. We

next briefly review some of the experimental realizations of quantum processors.

1.2 Experimental implementations of quantum processors

Building a quantum processor first requires a physical pair of quantum levels which are
addressable to form a qubit, the ability to couple multiple qubits, and a way to measure the state
of the qubits, all while maintaining quantum coherence, such that the quantum information is
not degraded and lost. Details about the various aspects of a quantum information processor
will be described later in this thesis in chapter 2.

Shortly following the discovery of Shor’s algorithm, the first successful experimental im-
plementation of quantum processors was realized using ensembles of nuclear spins in a single
molecule as the qubits [8]. The techniques of nuclear magnetic resonance (NMR), which
were already developed at a very high level for other applications such as magnetic resonance
imaging for medicine and chemistry, were easily transferred for performing operations on
the collection of spins. Another important property of NMR qubits was the ability to have
long coherence times (on the timescales of seconds) despite being composed of an ensemble
of spins. NMR quantum computers progressed very rapidly, moving from simple two-qubit
algorithms [8-10] up to ultimately a seven-qubit quantum computer capable of factoring
the number 15 and demonstrating the first experimental instance of Shor’s algorithm [11].
However, the scalability past seven qubits became very challenging as a result of increasing
complexity of experimental controls along with each qubit not being very ‘pure’ due to being
composed of a statistical distribution of molecular spins [12].

Another quantum computing experiment which matured very rapidly was trapped-ion
qubits, first proposed by Cirac and Zoller in 1995 [13]. The qubits are defined in the electron
or nuclear energy states of ions which are confined and trapped using electromagnetic fields.
Multiple qubits couple with one another through the collective motion of all the ions in the
trap, mediated via Coulomb interaction. The controls on each trapped-ion qubit and the

coupling of multiple qubits are performed via optical excitation using lasers. Here, again the
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progress of trapped-ion quantum computing was very rapid owing to the strong experimental
foundations in atomic clocks and long coherence times [14] of ions. Currently, trapped-ion
quantum computers have demonstrated the ability to couple up to 8 calcium ions [15, 16].
There are also proposals involving the shuttling of ions between arrays of ion traps, and
chip-based trap schemes to scale the system further. Nonetheless, the increasing amount of
resources necessary to control a large-scale trapped-ion quantum computer is a daunting
challenge which will need to be addressed in its own right moving forward.

Although NMR and trapped ions have been relatively successful quantum processor
technologies, as we have alluded, the scalability and controls have still remained an out-
standing challenge. Another research approach has been solid-state quantum computing,
attempting to define and address the qubits on a chip, much like the transistors which are
now packed into an integrated circuit on a silicon microprocessor. In terms of qubits there
are solid-state approaches which aim to isolate single electron spins as in GaAs quantum
dots [17], nitrogen-vacancy centers in diamond [18, 19], and implanted phosphorous donors
in silicon [20] as well as approaches which use the collective quantum coherence of Cooper
pairs in superconducting tunnel junctions.

The benefits of solid-state approaches are the flexibility and volume of production which
current lithographic fabrication techniques provide. Technological development in electron
beam lithography has allowed for circuits to be defined with nanoscale precision. This type
of control over circuits allows for tailorable qubit energy levels as well as the possibility for
tunability in-situ. This is especially the case for the superconducting qubit architecture, which
uses macroscopic sized circuits to define the energy levels and coupling strengths of the qubits.
Here, the quantum mechanical states can be discrete Cooper-pair charge states on a type of a
superconducting tunnel junction known as a Josephson junction. The energy levels of the
superconducting qubit are tunable and tailorable via lithography of the Josephson junctions.
Another benefit of the superconducting qubit architecture is the all-electrical control using
standard microwave and radio-frequency (RF) engineering techniques. The well-developed
fabrication protocols and electrical controls could possibly allow for superconducting qubits
to be made in large numbers and have tailored and controllable properties.

Yet, in terms of real quantum processors, the superconducting qubit architecture has
lagged behind. The primary issue has been reduced coherence times. When the first super-
conducting qubits arrived on the scene around ten years ago [21], energy relaxation times
were on the order of nanoseconds. Recent progress has increased these times to the order

of micro-seconds. One standard goal in practice is for the probability of error when per-
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forming a quantum operation to be very small, and below what is called the “fault-tolerant
threshold” Quantum computing theorists have placed this threshold at being able to perform
over ten-thousand operations before encountering a single error. When a qubit architecture
is capable of reaching this low error rate, there are a number of quantum error correcting
codes which can be enacted to make the quantum computer fault-tolerant. Whereas trapped-
ions and NMR systems have long coherence times making this threshold within reach, the
superconducting qubit architecture is still working to catch up.

Nonetheless, with the current state of the art, we will show, in this thesis, the ability to
perform simple quantum information processing on a quantum computer built with two
superconducting qubits. To some degree the results presented here help put the superconduct-
ing qubit architecture on the same map as other more developed quantum systems. Moving
forward, however, reaching the ultimate realization of a scaled-up quantum computer is still

a hefty challenge.

1.3 Overview of thesis

This thesis work demonstrates the first solid-state implementation of a quantum processor.
The qubits which we will work with are superconducting charge qubits, specifically the trans-
mon, which is a modified version of the Cooper-pair box. Coherence times of the transmon
qubit have now reached 1 - 2 us setting up the possibility of the quantum information experi-
ments presented in this thesis. The architecture for the multi-qubit coupling will be circuit
quantum electrodynamics (QED), an on-chip version of cavity quantum electrodynamics
which is the fundamental interaction between a photon and an atom. We will see that this
architecture will allow us to use a separate quantum degree of freedom, namely the photons
in the cavity, to act as a quantum bus to mediate interactions between non-local qubits.

To be able to fundamentally understand the requirements of building a rudimentary
quantum processor, we will start this thesis with some of the basics of quantum information
processing (QIP) in chapter 2. This involves identifying a universal set of quantum gates,
including single-qubit and two-qubit gates, and how to concatenate them to construct simple
quantum algorithms to run on the processor. Chapter 2 will also describe the general quantum
state measurement process, including state tomography and entanglement quantification,
such that at the end of a set of quantum operations, we may identify the state of the system

and the degree of entanglement contained.
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That will be followed by chapter 3, in which we will review superconducting qubits, and
especially describe the transmon qubit used in this work. There will also be discussion about
some of the basics of coupling to a microwave transmission line cavity in circuit QED. We
will be able to associate a number of key concepts from cavity QED, including the strong
and dispersive coupling regimes, which will be useful for quantum information processing.
Furthermore, there will be a discussion about the transmon qubit decoherence properties in
the circuit QED regime. Then, in chapter 4, we will describe how the language and concepts of
quantum information processing can be defined in our circuit QED system. We will provide
a description of how to build a quantum processor with transmon qubits in a microwave
cavity, understanding how to implement a universal set of gates. Details for how to generate
two-qubit entangling gates will be given, as well as a discussion which expands the idea of
the strong dispersive limit of cavity QED to a joint quantum state readout.

The experimental details about building up the quantum processor will be described
in chapter 5. We will review some of the sample fabrication details, including optical and
electron-beam lithography procedures, performed with the help of Luigi Frunzio, Blake
Johnson, and Joseph Schreier. We will also discuss considerations for designing the transmon
qubits and the microwave cavities. There will be a specific emphasis on the design of a qubit
with incorporated on-chip magnetic flux biasing (developed together with postdoc Johannes
Majer, and implemented with postdoc Leonardo DiCarlo). The whole experimental setup
from the chip-level up through the cryogenic circuitry and out to the room temperature
control electronics will also be described.

The next four chapters, chapter 6—chapter 9, will highlight experiments which progress
towards the implementation of quantum algorithms on our solid-state quantum processor.

First, in chapter 6 we describe experiments which point to a very good initialization of
the qubits to the ground state. Through a unique strongly-driven vacuum Rabi experiment,
we will characterize the average photon number of our microwave cavity, and translate that
to an equilibrium ground-state polarization of our qubit at the 99.99% level. Furthermore,
the chapter will also describe a number of metrics for characterizing single-qubit gates,
demonstrating gate fidelities of 99%, not yet reaching, but approaching the fault-tolerant
threshold. We will also highlight some preliminary work towards optimized pulse-shaping
to further reduce certain single-qubit gate errors.

Chapter 7 presents the first two-qubit quantum bus experiment, performed with Johannes
Majer, and shows the ability to reach both the strong and dispersive regimes of circuit

QED with two qubits. The coupling between two qubits via the cavity is demonstrated
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spectroscopically via an avoided crossing and the presence of a ‘dark-state! We also describe
how this two-qubit coupling, which is a virtual-photon cavity-mediated two-qubit interaction,
can be used for coherent oscillations between states of the two qubits. These coherent swaps
represent a precursor for an entangling two-qubit gate.

Then, chapter 8 presents a new experiment performed together with Leonardo DiCarlo,
exploiting qubits with better coherence times and the ability to tune a novel two-qubit
coupling on and off with fast timescales. This new interaction is derived from the presence of
higher energy levels in the transmon charge-based qubits. Using on-chip magnetic flux bias
lines, the transition energies of the qubits are tunable, such that the two-qubit interaction can
be turned on and off at nanosecond timescales. This interaction is used to make an entangling
conditional-phase gate, permitting the generation of high fidelity two-qubit states, including
highly entangled two-qubit states. We further describe how the circuit QED architecture can
be used for determining these two-qubit states and characterizing the degree of entanglement
in our system.

Chapter 9 culminates with the implementation of two simple quantum algorithms on
our superconducting processor, again in work performed together with Leonardo DiCarlo.
Specifically, we describe how we program in the two-qubit Deutsch-Jozsa algorithm as well
as the four state Grover’s search algorithm, representing the first-ever solid-state quantum
processor.

Finally, chapter 10 will present some future directions for superconducting quantum

computing, specifically detailing anticipated experiments on three to four qubits.



CHAPTER 2

Quantum Information Processing

UANTUM computing, once merely a casual thought by a few notable scientists, including
Q Richard Feynman [3], in the 1980s, has blossomed into an interdisciplinary research
field encompassing wide areas of physics, computer science, and mathematics. Practical
aspects of realizing a physical quantum computing platform are now the subject of countless
research programs, with implementations spanning naturally occurring to man-made quan-
tum systems. As introduced in the previous chapter (chapter 1), this thesis will present in
detail the first solid-state demonstration of a simple quantum processor. However, before
delving into the physical system of circuit quantum electrodynamics (chapter 3 and chapter 4)
in which we realize such a processor, it is useful to review and understand the language of
quantum operations and algorithms for the sake of perspective and foundation.

Certainly, one could pick up a standard text on this subject, such as Nielsen and Chuang
[12], Mermin [22], or Kaye, Laflamme, and Mosca [23], to learn about all the nuances of
quantum information processing, from as simple as single-qubit operations to as complex as
Shor’s factoring algorithm and quantum error correcting codes. Such texts give a broad scope
of both the monumental prospects and challenges for making a quantum computer. Whereas
long range dreams of breaking RSA encryption and simulating real quantum systems are

worth keeping in the back of one’s mind for motivation, the practical quantum experimentalist
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has to start with building a quantum processor from the ground up and learn the basic
quantum algorithms and measurements for only a few qubits.

This chapter will describe quantum information processing on a more fundamental
level of quantum operations of a few qubits, picking relevant parts from the standard texts
mentioned previously. This will allow us to have a solid point of reference for the actual
experimental implementation to be described later in this thesis. We will start by describing
a set of single and two-qubit gates which form a universal set for computing (section 2.1,
section 2.2, section 2.3). Then we describe the general quantum computing process in terms
of building up simple two-qubit algorithms (section 2.4), including the Deutsch-Jozsa and
Grover’s search. Next, it is important to overview the quantum measurement problem and
how we can characterize a quantum state (section 2.5). Then, we demonstrate how to go from
simple state identification to the ability to measure the degree of entanglement in a system
(section 2.6). Finally, we end the chapter with a discussion about Bell inequalities and its role

in quantifying entanglement (section 2.7).

2.1 Universal quantum computing

In classical computing, the most basic unit of information is the bit, with two discrete states
0 and 1. Computational algorithms are comprised of binary logic operations, such as the
AND, OR, and NOT gates. The concept of universality refers to the ability to comprise any
computational algorithms with a closed set of simple gates [12]. For example, the NAND gate
and the NOR gate are each universal, such that using only combinations of each gate, one
can accomplish all basic binary logic operations which may be in an algorithm.

In quantum computing, instead of bits, we have qubits, which can be in not only the
discrete quantum states |0) and |1), but in fact arbitrary superposition states. Similar to uni-
versal logic operations, there also exists a set of quantum gates which are universal, such that
combinations of gates can realize complex quantum algorithms. However, unlike the classical
computational case where only a single gate is necessary, in the quantum case universality can
only be achieved with the combination of arbitrary single qubit gates and a two-qubit gate
such as the controlled-NOT (¢NOT). The proof for this universality construction of quantum
computing is given in Ref. [24], showing that any unitary operation can be approximated to
arbitrary accuracy through a quantum circuit.

One of the key differences between the construction of a quantum computation and a

classical computation is reversibility. Classical gates such as the NAND, NOR, AND, and
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OR are destructive, or irreversible, in the sense that they take two inputs and return a single
output. However, reversible classical computing is certainly possible, and requires only a
function which takes an n-bit input to an z-bit output. Understanding reversible classical
computing is one way to step towards building a quantum computer, as quantum computing
is based upon the action of reversible unitary operations in quantum mechanics. For example,
the two-qubit gate cNOT is not only a unitary transformation within a two-qubit Hilbert
space, but also a two-bit reversible classical operation. Perhaps one of the most interesting
wrinkles is that although the ctNOT is part of a universal set of gates for quantum computing,
it is not universal for classical reversible computation. Rather, it takes at the least a 3-bit
Toftoli gate or a ccNOT [25]. The reason that a quantum computer would require fewer
number of qubits per gate is the ability to generate entanglement and superposition between
qubits using certain gates, such as the Hadamard gate, or Hadamard combined with a cNOT.
These aspects will be explored in detail in the rest of this chapter.

The operations of a quantum computer can thus be summarized as the combination of
unitary operations on multiple qubits, and built up in a quantum circuit formalism [12]. The
operations on an n-qubit quantum circuit will be sequences of quantum gates, all of which
will be reversible transformations on the n-qubit register. Next, we build up this model of
quantum computing with the introduction of the most basic building blocks, the single-qubit

gates.

2.2 Single-qubit gates

Perhaps the simplest quantum operations to consider are those for just a single qubit. A single
qubit is comprised of only two quantum states, |0) and |1), and single-qubit gates traverse
through the Hilbert space spanned by these two states. We can represent a single qubit by

the state vector
ly)=al0)+b1), (2.1)

with complex amplitudes a and b which are normalized |a|? + |b|?> = 1. All single-qubit gates

can be represented as 2 x 2 unitary matrices. The space of such matrices are spanned by the
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. .|1>

Figure 2.1: The Bloch sphere. Geometrical representation of the state space of a single qubit
(two-level quantum system). The state of the qubit is represented by the Bloch vector, which is
a unit vector within the sphere, describe by two numbers, 6 and ¢.

identity (referred to as 1l or I in this thesis) along with the three Pauli matrices,

0, =X= ((1) (1)) (2.2a)
0 i

o,=Y = (i Ol) (2.2b)

0,=7 = ((1) _01) . (2.2¢)

These Pauli matrices can be used to generate rotations about the x, y, and z axes to traverse the
entire two-qubit space, often pictorially represented by the Bloch sphere (shown in figure 2.1).

The rotation operations, which are also unitary gates, are given by

o) s 0
. COS 5 —181n =
—lSlI‘lE COSE
o) : .0
_ _ _ibo COS5 —SIn3
R}’(e) = Yg =e J’/Z = (Slné cos Qz) (23b)
2 2
) e—i9/2 0
R.(0) = Zg= e 0%:/2 = ( 0 eior)’ (2.3¢)

where 0 is the angle of rotation.
We can combine the Pauli operators and the identity to form a generalized rotation about
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any axis 71 given by
A = 6. .. 0
R;(0) = exp(-ifn-G/2) = cos 511 —isin (nyo, +ny0, +n,0,). (2.4)

Some important single-qubit gates are rotations of 6 = +7 and 0 = +7/2, often referred to
as 7m-pulses and 77/2-pulses, respectively. We can identify certain rotations with the Pauli
matrices, R, () = —ioy, Ry(m) = —ioy, R,(m) = —io,. Experimentally, it is often simpler to
access rotations about the three Cartesian axes and to use the set of rotation operators to build
up the more standard single-qubit gates which are used throughout the theoretical literature
and quantum computing texts. Specifically, quantum circuits often feature the single-qubit

gates such as the Hadamard, X gate, Z gate, phase gate, and 77/8 gate, given by

1 1
= % (1 _1) Hadamard gate (2.5a)
0 1 .-
X = ( ) bit-flip gate (2.5b)
1 0
1 0 .
Z = (O 1) phase-flip gate (2.5¢)
1 0
S= (0 ) phase gate (2.5d)
i
1 0
T = /8 gate. .
(o exp(iﬂ/4)) /8 gate (25¢)

The Hadamard gate is very significant because it enables the qubit interference which is
necessary for many quantum algorithms. As we will show later in section 2.4, the Hadamard
gate allows one to access quantum parallelism, such that a single function may be evaluated for
a whole set of computational states at once. In terms of single-qubit rotations, the Hadamard
reflects a 71/4 rotation around the y axis followed by a 7 rotation around the z axis.

The X gate, also commonly referred to as the NOT or bit-flip gate changes the compu-
tational basis value from one state to the other. It is equivalent to the o, Pauli operator, or
a rotation around the y axis by 7. The Z gate, or the phase-flip gate, is simply the Pauli o,
operator and represents an azimuthal rotation of the Bloch vector by 7. The phase gate can

be seen to be the square root of the Z gate, as $? = Z, and reflects an azimuthal rotation by
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7/2. The T or /8 gate is the square root of the phase gate, T? = S. As noted in Ref. [12], this
is quite an unfortunate name given that it is a rotation of 77/4 which enters.

Therefore, although a lot of the literature presents algorithms with a specific library of
single-qubit gates, in the end, they are all simply combinations of rotations about x, y and z,
which can be more easily accessible in particular experimental architectures. In Ref. [12] the
Hadamard, S, and T gates are part of the universal set for quantum computing. Here, we will
later show (chapter 4) that we can experimentally access the Cartesian rotation operators,
and we will use the appropriate combinations of such gates to eventually build up simple
algorithms (chapter 9). Furthermore, the specific set of rotations of /2 about x, y, and z
generate the single-qubit Clifford group [26]. Later in this thesis we will discuss Clifford
group operations with regards to determining the average fidelity of single-qubit operations
(chapter 6).

2.3 Two-qubit entanglement gates

The previous section dealt with only single qubit logic. We can now expand to two qubits,
and investigate unique gates in this expanded Hilbert space which are not simply products
of single-qubit operations. One class of such gates are controlled operations. One qubit can
be labeled the control qubit and the other the target qubit. Controlled operations involve
an action on the target qubit which will change depending on the state of the control qubit.
Such two-qubit gates are the basis of generating entanglement and along with arbitrary
single-qubit rotations, complete the universal set (section 2.1) for approximating multi-qubit

unitary operations.

2.3.1 ¢NOT gate

The controlled-NOT or ¢NOT is the “canonical” two-qubit entanglement gate, used through-
out theoretical constructions of quantum algorithms as well as described in depth in standard
quantum computing texts [12, 22, 23]. The circuit representation for the cNOT gate is shown
in figure 2.2, with two inputs corresponding to the control and target qubits and then two
outputs. This two-in, two-out operation reflects a difference from a classical computing oper-
ation where two-bit gates end with a single output bit. For example, the classical analog of the

cNOT is the XOR gate, which takes two bits A and B and returns a single bit corresponding
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control qubit |A) |A)

target qubit |B) o |A) @ |B)

Figure 2.2: Circuit representation for the controlled-NOT gate. In the quantum circuit
model, operations on different qubits are represented on different horizontal tracks. For
the cNOT gate, there are two qubits and two tracks, a control qubit along the upper track and
a target qubit along the lower track. In the ctNOT gate, the control qubit is symbolized with a
solid black circle and the target qubit is symbolized with an open circle.

to the modulo 2 addition operator @,

A®0=A

B} (2.6)
Aol=1-A=A.

Classically, this is an irreversible process. However, the cNOT gate achieves a similar result,
but is reversible and describable by a unitary matrix. The action of the c(NOT gate is to leave
the target qubit alone if the control qubit is in state |0) and to flip the target qubit if the control
qubit is in state [1). We can write this for two qubits as |A)|B) — |A)|B® A). Therefore,
cNOT can be written in a 4 x 4 unitary matrix representation with the columns and rows

being the computational basis states of two-qubits, |0,0), |0,1),|1,0), and [1,1) as

1 0 0O

Ucnor = 0100 (2.7)
0 0 0 1
001 0

We can recognize the difference between the cNOT and the XOR in that the cNOT is a
reversible operation, whereas the XOR actually has erased the information in the control bit,
leaving only a single bit of information in the target bit. However, it is also the association
of the ctNOT with the classical XOR operation which makes it a ubiquitous reference in
quantum circuits, as it permits the possibility of transferring computation schemes written
for reversible classical computation over into the quantum language.

Therefore, given single-qubit gates and the cNOT two-qubit gate, we can start to ex-
plore more complex quantum algorithms through their concatenation in quantum circuits.

However, when we try to relate the quantum circuit formalism to a particular experimental
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implementation of qubits, the cNOT may or may not be the most natural selection for a
two-qubit primitive entangling gate. Rather, as practical quantum engineers, it is critical to
recognize the type of qubit interactions present, and then to employ the appropriate gate
which makes the most efficient use of resources. The formally solved quantum protocols and
algorithms which are simply broken down into single qubit unitaries and cNOT gates can
then be recompiled into the gates which are most easily accessible in a particular experimental

architecture.

2.3.2 c-Phase gate (cUj))

A particular coupling that arises in many experimental architectures such as nuclear magnetic
resonance (NMR), as well as flux [27] and charge superconducting qubits [28], is the ZZ-
interaction, where the interaction Hamiltonian between qubit 1 and 2 is given by

E
H = o @ a?, (2.8)

where ® is the outer product. This interaction thus corresponds to a unitary time-evolution
given by UZ = exp[-iH{Zt]. Given the ability to turn on and off this interaction over a time

of t = hm/EFf corresponds to

1 0 0 O
0 -i 0 O
U?? = explin/4 , 2.
1,2 P[ /] 0 0 —-i 0 (2.9)
0O 0 0 1

where we have used the computational basis states |0, 0) [with corresponding vector (1,0, 0,0)],
|0,1) [with corresponding vector (0,1,0,0)], |1,0) [with corresponding vector (0,0,1,0)],
and |1,1) [with corresponding vector (0, 0,0,1)] where |1, n,) denotes excitation level n; on
qubit 1 and #, on qubit 2. This unitary operation can be combined with rotations around z of

each qubit, RY (-m/2) and R® (7/2), so that we arrive (up to a global phase factor) at the
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control qubit

1 0 0 O

01 0 O
1 0 01 O

0 0 0 -1

target qubit

Figure 2.3: Circuit representation for the controlled-Phase gate. In the c-Phase gate, also
commonly labeled as cUj;, both the control and target qubit are symbolized with a solid black
circle, and the specific computational basis state which picks up the —1 phase shift is written to
the side as 7. In the case shown here ij = 11.

conditional-phase or c-Phase gate,

1 00
. . 010
_|p,_ O zz _ .
CUH—[RZ (-7/2) ® R’ ( 71/2)] U/ = explin/4] 00 1 0 (2.10)
00 0 -1

This particular c-Phase gate corresponds to a phase shift of 7 on the target qubit excited
state when the control qubit is in the excited state [1). The circuit representation is shown in
figure 2.3. Through manipulating the rotation around z of either qubit, we can form any of

the three other c-Phase gates as well,

10 0 1 0 00 -1 0 0 O

CU10 = 01 0 ’ CU()I = 0 -100 , CU()() = L oo 5 (2.11)
00 -10 0 10 010
00 0 1 0 0 1 0 0 0 1

reflecting the control qubit state being |0) and then also swapping the roles of the control
and target qubits.

The ¢cNOT gate and c-Phase gate are intimately related, differing by only single-qubit
rotations. The cNOT can be built (see figure 2.4) from the c-Phase with Hadamard gates on
the target qubit,

U.nor = H® cUyH® . (2.12)

Therefore, although many quantum algorithms are written in terms of cNOT operations

as the two-qubit operation, it is not too difficult to translate these sequences in terms of c-
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control qubit

target qubit — H H —

€

Figure 2.4: Circuit form for constructing a cNOT from a c-Phase gate. A cNOT gate can
easily be constructed from the c-Phase gate cUy; by performing single-qubit Hadamard gates
on the target qubit before and after.

Phase along with single-qubit rotations. Examples are the Grover’s search and Deutsch-Jozsa
algorithms (section 2.4) discussed later in this chapter. Ref. [22] refers to the c-Phase gate in
fact as a more natural and efficient gate compared to cNOT and we will find that in the circuit
QED charge qubit architecture which is the experimental focus of this thesis, the c-Phase
will be the two-qubit gate of choice (section 4.3.3).

2.3.3 iSWAP and /iSWAP gates

Another interaction scheme which arises quite frequently in experimental quantum comput-
ing implementations is the XY or transverse qubit-qubit coupling. The relevant interaction

Hamiltonian is given by

EYY 1 (2 1) _(2)
HYY = T (ax oy ) 4 ay( ay ), (2.13)

and often written in terms of Pauli raising and lower operators,

EXY
HYY = % (051)052) + 051)052)) ) (2.14)

This type of coupling can be realized in quantum dot spins [17], nuclear spins interacting via a
two-dimensional gas [29], as well as Josephson charge qubits coupled either by a transmission
line resonator [30] or other Josephson junctions.

The time-evolution of the two-qubit system due to this type of coupling does not simply
result in a controlled operation, such as cU;; or cNOT. Instead, it is most suited for generating
the iISWAP and \/iSWAP two-qubit gates, which can also form part of a universal set when

combined with appropriate single-qubit rotations.



2.3. TWO-QUBIT ENTANGLEMENT GATES 19

control qubit —Rz_% | Rg? |
= iSWAP iSWAP
target qubit — RE | Rz% 1 i Rz% I
control qubit _ Ré H RT H H R ———
= ViSWAP iSWAP

™

target qubit — RZHR

[2
3

| RS HR: %

31w

2

Figure 2.5: Circuit form for constructing a cNOT from an iSWAP or \/iSWAP gate. When
the accessible two-qubit interaction is XY and not ZZ, the natural two-qubit entangling gates
are either the iSWAP or \/iSWAP. Creating a cNOT gate then requires the concatenation of at
least two of each of the gates, combined with multiple single-qubit rotations around various
directions.

By turning on the XY interaction for a time ¢ = 741/ E{\)’, we arrive at the iSWAP operation,

. n
Uiswap = €xp [—zHiXZYW] = ‘ (2.15)
1,2 1

0

o O O =
—_ o O O

One cannot construct a c(NOT from just simple single-qubit rotations along with a single
iSWAP. However, if we are allowed to use two iSWAP gates, then we do have this possibility,
Uavor = [10 © R (/2) | [RY (-7/2) R (7/2) | Uiswar

[R,(Cl)(n/Z) ® ]1(2>] Uiswap []1(1) 2 R (n /2)] , (2.16)

and shown in quantum circuit form in figure 2.5.

Similarly, the same XY interaction can be turned on for half of the time t = wh/2E),
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which then gives rise to the \/iSWAP gate

0 0

1\V2 il\V2

ilvV2 12
0 0

U /iswap = (2.17)

o O o~
- o O O

Again, just as for the iSWAP, it takes two \/iSWAP gates to construct a cNOT gate along

with single-qubit rotations,

Uavor =¢RP (1/2)RY (n/3)RY (7/3)V/iSWAP
RY (m)ViSWAP[RY (/2) ® RS (n/2) ][RP (-7/2)

where 7i; = (1,1, -1)/v/3 and 71, = (-1,1,1)/\/3.

The constructions of cNOT in terms of iSWAP and \/iSWAP can get quite expensive in
terms of the time it takes to perform all the operations. Although single-qubit rotations are
relatively simple to implement, at present they certainly take up a non-trivial fraction of the
relaxation lifetime of the qubit. In addition, the recipes above require two copies of either
iSWAP or \/iSWAP. The time it takes to perform either gate is dependent on the interaction
strength and the ability to turn the interaction on and oft very rapidly. Depending on the
qubit architecture, implementing longer gate sequences, which is necessary for performing
quantum algorithms, will require a careful economy of the total gates used, both single-qubit

rotations and entangling gates.

2.4 Quantum algorithms

With access to a universal set of quantum gates, we can now construct algorithms which
exploit superposition and entanglement to perform specific computations. Here, we will be
able to see how quantum computers can theoretically solve certain problems more efficiently
than classical computers. To get a feel for how such quantum algorithms can be built, we can
first investigate how a quantum computer can be programmed to evaluate some function
f(x) for multiple values of x simultaneously, or what is known as quantum parallelism. Then,
we move on to discuss a few quantum algorithms which are implementable in the most basic

quantum processors made up of only two qubits.
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2.4.1 Quantum parallelism in an algorithm

Suppose we start with a register of n + m qubits, where n qubits can be thought of as control
qubits on which we can give a specific set of inputs, to then perform a computation on m
target qubits which will be the output. The separate registers allow for reversibility of the
computation. Now suppose we have an (n + m) x (n + m) unitary transformation U in

which we encode a function f(x) such that its action on any computational basis state gives

Ur (1), 9),) = 1), [y @ £ (), (218)

where x and y are n and m bit integers and @ represents bitwise addition mod 2. By starting
with the output register of qubits in |0) it is possible to evaluate f(x) and have the result in

the output register,

Uy (1), 10),,) = %), [f (), - (2.19)

However, now we can employ the ability to produce superpositions of each qubit to operate
Uy only after applying a Hadamard transformation on all the input qubits. The n-qubit
Hadamard gives the maximal superposition state of the full register. For example, with two

qubits,

(o) +|1>>%<|o>+ 1))

(]00) + |01) + [10) + [11))
(|0>2 + |1>2 + |2>2 + |3>2) (2.20a)

(HY @ H®)(|0)|0)) =

Sl

NN e

giving a maximal superposition state involving all the computational states in the 2-qubit
input register. Therefore, now by applying Uy after the n-qubit Hadamard, H®" = H®) ®
H® ® ...® H™, on the ground state of the n-qubit register, we find

Us(H®*" ®1,,)10),10),,

\/— Z %), [f (%)), (2.21)

which now contains all evaluations of the function f, despite having only operated f once by
applying Uy.
Note that the problem remains in how to access all this information about f. It is possible

to measure in the computational basis states of each of the individual qubits. Yet, to simply
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Figure 2.6: Anatomy of a quantum algorithm. The general quantum algorithm can be broken
down into four main parts. The first stage takes an initialized register of qubits into a superpo-
sition state via single-qubit operations, such as Hadamard gates. Then, a multi-qubit function
f is applied through a multi-qubit unitary operation which can be comprised of single-qubit
and two-qubit gates. Next, a processing step also made up of single-qubit and two-qubit gates
is performed to allow interpretation of the qubit register in the computational basis. Finally,
measurements are performed on all or some of the qubits.

measure all of the m qubits in the output register would only randomly reveal with equal
probability some choice of x, < 2". Therefore, we would only find out about the function
f(xo) at a particular random x,. In this case, we have only performed what a classical
computer could easily have done.

However, quantum algorithms often employ a further stage applying additional unitary
gates which serve to form relationships between multiple evaluations of f for different values
of x. Here, to be able to know the values of certain combinations of f also means losing
the ability to know about individual values of f(x). A classical computer could only give
the values of relationships by making all of the individual independent evaluations. The
advantage gained through quantum algorithms is through the quantum mechanical concept
of interference, being able to tradeoff one kind of information for another.

Therefore, we can summarize the general computation structure with primarily four
stages of a quantum algorithm: the register of qubits must be placed into a superposition;
then a unitary function which encodes a function is applied; next a processing step to transfer
relational information into a form which can be readout; and finally a multi-qubit state

readout. These steps are summarized in figure 2.6 in a quantum circuit model.
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2.4.2 Deutsch-Jozsa algorithm

One of the simplest demonstrations of how a quantum algorithm can outperform a classical
computation is with the Deutsch-Jozsa (D]) algorithm [31]. It represents a situation with a
quantum tradeoft of one particular information for a different global information. It is also
an example of quantum phase kick-back, where the target qubit can be placed in an eigenstate
of a controlled unitary such that an eigenvalue can be associated with the state of the control
register.

The DJ algorithm solves Deutsch’s problem [4] which can be succinctly described as
finding out whether a function f which takes a single bit x to a single bit f(x), is constant or
balanced. There are only four possible functions that take one bit to one bit, two of which
are constant, f(x) = 0, f(x) = 1, and two of which are balanced, f(x) = x, f(x) =1-x.
Another way of motivating the problem is to consider the case of finding out whether a coin
is biased (constant) or fair (balanced). There are two possible fair coins, with heads and tails
on each side, and two possible biased coins, with two heads or two tails.

Classically Deutsch’s problem is solved by querying f(x) for all values of the input bit
x = 0,1, or looking at both sides of the coin. However, the DJ algorithm will allow us to
avoid finding out the information of specifically f(x = 0) or f(x = 1), in favor of knowledge
about the nature of the function, as balanced or constant. This is especially relevant when
evaluating f might be very computationally expensive.

Consider a unitary transformation which applies one of the four possible functions,
operating on two qubits, one of which serves as a control qubit, and the other as the target

qubit,

Us (Ix)Iy) = Ix) Iy @ f(x)) . (2.22)

The two constant functions are reflected by always giving 0 or always giving 1 regardless
of the input bit. These functions are implemented using Ugy = 1 ® 1 and U, = 1 ® X, for
results 0 and 1, respectively. The two balanced functions are reflected by always returning the
same value, such that f(x) = x, or always returning the opposite value, where f(x) =1- x.

These functions are applied using Uy, = ctNOT, and Uy; = z-cNOT, respectively. The unitary




24 QUANTUM INFORMATION PROCESSING

matrix corresponding to z-cNOT is

U;.cnot = , (2.23)

S o = O
S O O =
S = O O
— o O O

where the state of the target qubit is flipped when the control qubit is in the state |0).

The DJ algorithm is given in quantum circuit form as in figure 2.7. The algorithm is very
simple. Let qubit 1 be the control and qubit 2 be the target. We first apply rotations around
the y axis of 77/2 on the target qubit and —7/2 on the control qubit to start, placing them into
the superpositions |y), = (|0) + [1))/v/2 and |¢), = (|0) - [1))/v/2. That is then followed by
the application of any of the four unitary transformations that implement either a balanced
or constant function.

For illustrative purposes, suppose we apply the identity unitary Usy = 1 ® 1l for one of the
constant functions. In this case, the two superpositions remain the same. The processing step
consists of applying a R, (—7/2) rotation on the target qubit and a R, (7/2) rotation on the
control qubit, which in the case nothing is done in the unitary transformation stage, simply
undoes the original superpositions created and return the register to the initial states.

However, suppose we instead have a balanced function, such that the unitary is Uy, =
c¢NOT. An interesting thing occurs in this case, as the superposition state of qubit 2 is actually

an eigenstate of cNOT, with an eigenvalue of —1, no matter the state of qubit 1:

cNOT |x) (%) = (-1)"|x) (%) . (2.24)

This can be interpreted as the eigenvalue giving a phase ‘kick back’ to the control qubit. Here,
an entangled state of the two qubits is not an intermediary step, but rather the entangling gate
serves to return a phase onto the control register. Therefore, in the case of the D] algorithm,
the original positive superposition on qubit 1, [y}, = (|0) +[1))/\/2, gets turned into a negative
superposition, [), = (|0) - [1))/v/2. Then, the final set of rotations in the processing step will
place the control qubit into the state |1) and allow the target qubit to return to the state |0).
A final measurement of the state of the control qubit is in fact all which is needed at the
end of the algorithm. From the state being either |0) or |1), we are able to discern whether the

applied unitary corresponds to a balanced or constant function. Throughout the algorithm,
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Figure 2.7: Deutsch-Jozsa algorithm. The two qubits are initialized in their ground states. The
first superposition step involves only single-qubit rotations. The functions, either constant or
balanced, are encoded through applying the appropriate two-qubit unitary. The processing stage
involves only single-qubit rotations, serving to rotate the qubits to either |0) or [1) depending
on the form of the function. The final measurement need only be performed on the control
qubit to determine the nature of the function.

the target qubit simple goes along for the ride, providing the quantum phase kick-back
necessary in the case of the balanced functions.

With the DJ algorithm, we thus extract information about f(0) + f(1), instead of finding
out specifically what f(0) or f(1) are, which would be necessary for any classical computation
process. A classical algorithm would have required two calls to the function to determine the
flavor of the function, whereas here we can succeed deterministically with a single call. Note
that the DJ algorithm can be extended to more qubits for functions which deal with inputs
greater than a single bit. In this case, it also remains a deterministic algorithm requiring a
single call to the multi-qubit unitary, so long as the entire space of functions can be split into
either balanced or constant functions. Chapter 9 will demonstrate the implementation of the

DJ algorithm in our superconducting circuit QED processor.

2.4.3 Grover’s search algorithm

Another class of algorithms are for search with a quantum computer. Consider the problem
of searching for a specific name in an unordered database of N names. Classically, the best
that one can do is to choose names sequentially or at random, a process which takes on
average N /2 queries. However, Grover’s quantum search algorithm [32] can give a polynomial
speed-up on the classical case. Specifically, for searching an n-bit integer out of alist of N = 2"
different integers, Grover’s algorithm does better than random classical queries by a factor of
1/v/N.

Suppose we start with log, N qubits, and represent each of the database entries with a

ket, {|1),2),...,|N)}. Next, we can imagine a quantum oracle which will be a black box for
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performing the search over the N entries. We can think of the oracle as applying a unitary

transformation Uy to the entire qubit register, with the properties that

Uo |a) = —|a) (2.25a)
Uolx) =1|x), forallx +a. (2.25b)
The transformation thus has the effect of marking with a phase the specific entry |a), which
is the entry we are searching for from the entire database. The processing of the search

is performed with the application of another unitary transformation U, which induces a

conditional phase shift on every single state except for the first state, |1),

Uy 1) = 1) (2.26a)
Uylx)=—1|x), forallx+L (2.26b)

Grover’s algorithm is then implemented as follows:

« Create an equal superposition state, by applying the n-qubit Hadamard, H®":
1 N
|s) = —= D, Ix). (2.27)
N

o Perform a Grover iteration R ~ /2" / 4 times, where a Grover iteration involves

1. Apply the oracle transformation U.
2. Apply the n-qubit Hadamard, H®"
3. Apply the conditional phase transformation Uy

4. Apply the n-qubit Hadamard, H®"

« Measure the final qubit register, which should give the computational basis state we

are searching for |«).

In terms of the generalized quantum algorithm, the Grover iteration (figure 2.8) contains
both the function encoding part as well as the processing. However, it must be repeated
multiple times due to the nature of the algorithm, which can be understood as a routine which
turns a phase into a detectable amplitude. With only conditional phase transformations and
n-qubit Hadamard gates, multiple Grover iterations serve to amplify the amplitude of the

target state each time.
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Figure 2.8: Grover’s search algorithm. The algorithm consists of an initial n-qubit Hadamard
H®" for generating a full superposition of all the qubit states. The rest of the algorithm requires
repeating the Grover iteration G until the amplitude of the searched state is ~ 1. The Grover
iteration consists of the application of an oracle unitary function Up which performs the search,
followed by processing steps involving H®" and a conditional phase transformation Uy, whose
properties are discussed in the main text.

The first part of the Grover iterate, the multi-qubit oracle Uy does all of the encoding
work, by marking the phase of the searched for target state. If such a phase could easily be
detected then the entire search problem would be finished. Unfortunately, to distinguish that
phase requires the processing stages of the other three parts of the Grover iterate, which we
will call U, = H®"U4,H®". This operator can be written as (2|s) (s| - 1). We can understand
what the operator does by applying it to an arbitrary superposition state |¢) = > a, |x) where

the mean of the amplitudes is given by m = ¥ a,/N. In this case,
U.l¢) = 2 (m =) [x), (2.28)

which represents returning a superposition state that has mean (N — 1)m, by flipping the
amplitude of all the states around the mean m.

It is precisely this mean inversion which allows an amplitude amplification of the target
state |a) in the Grover iteration. We can use a picture to represent the action of the Grover
iteration. In figure 2.9a, we start off with having applied the first H®", taking us to the
equal superposition state with all basis states having the same amplitude of 1//N. The
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Figure 2.9: Cartoon state illustration of Grover iteration. The search space starts off in an
equal superposition of all states in the qubit register Hilbert space as in (a). The appropriate
oracle U for finding target state |a) is applied, inverting the phase of only |a).

mean amplitude value of all the states here is /N and indicated by the dashed line. Next in
figure 2.9b, the oracle Uy has flipped the sign of the target state |a), which slightly lowers
the overall mean. Then, applying U, will invert all the states about the mean, increase the
size of the amplitude on |a) while diminishing the amplitudes on all the rest of the states
(figure 2.9¢). Now, repeating the application of Uy followed by U, will continue to push the
overall mean down and increasing the size of the amplitude of |a). It can be shown that it
then takes ~ 77v/N /4 repetitions to obtain an amplitude for |a) of ~ 1.

For the simplest search of only 4 entries using a two-qubit register, it is possible to perform
the Grover’s search algorithm to find the target state through only 1 iteration. This has been
implemented in NMR, linear optics, and trapped-ion quantum computer implementations.
In chapter 9 of this thesis, we will present the first implementation of such an algorithm with

superconducting qubits and go into a step-by-step breakdown of its operation.
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2.4.4 Shor’s and other quantum algorithms

Besides the DJ and Grover's algorithms, there are a number of other quantum algorithms that
similarly exploit properties such as phase kick-back and amplitude amplification. We group
the rest of these algorithms in this subsection, without going into detail into any of them, as
they represent a class of quantum computing beyond the scope of this experimental thesis.
Nonetheless, it is still important to recognize for completeness and future motivation the exis-
tence of more complex algorithms which might even lie on the horizon for superconducting
quantum processors.
Many of the more complex quantum algorithms are built up from the quantum Fourier
transform (QFT), which is defined as the map
1 2

"1
- e¥mizny ly). (2.29)
X

The QFT can be performed on an n-qubit register through a decomposition into only

[x)

Hadamard gates and conditional-phase gates. By operating the QFT on a superposition
of quantum states, we effectively apply the classical discrete Fourier transform to all 2" input
states in parallel. A full treatment of the QFT can be found in Ref. [23]. The QFT is applied in
various algorithms for estimating mathematical quantities, providing exponential speed-ups
over classical algorithms. For example, it is used for estimating eigenvalues of a unitary oper-
ator using the quantum phase estimation algorithm, as well as for finding discrete logarithms
[23].

Perhaps the most well-known quantum algorithm which employs the QFT is Shor’s
algorithm for factorization of a number N into prime numbers. Shor’s algorithm consists
of two primary phases, the first phase being a translation of the factoring problem into a
problem of finding the period of a function, and second phase using the QFT for finding
the period. The exponential speed-up occurs during the second quantum phase. Again,
details about both of these stages can be found in any of the listed quantum information texts
[12, 22, 23].

The discovery of Shor’s algorithm in 1994 actually represented a serious historical para-
digm shift in regards to experimental efforts for quantum computing. The primary use of
factoring large numbers is in fact for breaking the very widely used public-key encryption
scheme of RSA. RSA is a very ubiquitous protocol for cryptography which relies on the

difficulty for classical computers for factoring large numbers. Shor’s algorithm showed that it




30 QUANTUM INFORMATION PROCESSING

could be broken efficiently using a quantum computer. Subsequently, the quantum computers
gained a lot of visibility, pushing forward numerous experimental efforts.

Shor’s algorithm is in fact the most complex algorithm to have been implemented in an
experimental quantum processor. Using an NMR system of seven qubits, researchers at IBM
Almaden Laboratory managed to factor 15 into 5x 3 [12]. With the superconducting two-qubit
processor described in this thesis, we cannot yet implement Shor’s algorithm. However, the
further development of the superconducting qubit architecture will hopefully lead to this
possibility.

2.5 Quantum measurement

At the end of performing the operations which comprise a quantum algorithm on a qubit
register, the final step is a quantum measurement of the register, by which we gain access to
information about the underlying quantum state, and hence the result of the computation.
Measurements can be considered to have an associated observable, which is Hermitian and
has real eigenvalues with corresponding eigenkets to span the state space. Historically, the
action of measurement has been a sensitive issue, with regards to how a classical macroscopic
channel can be used to infer microscopic quantum states.

In the earlier days of quantum mechanics, the Copenhagen interpretation presented
quantum measurement as wavefunction collapse. For a single qubit in a superposition state,
lv) = a|0) + a1|1), a measurement of the qubit projection onto state [0), P = |0) (0] will
return the qubit in the state |y) = |0) with probability |a|? and in the state |y) = |1) with
probability |a;|? =1 - |ao|?. Here, it is the act of measurement which forces the state into one
of the two eigenbasis states of P.

Although numerous thought experiments [33] have challenged the ideas of this awkward
measurement formalism, actual experimental progress in quantum information has led to
real measurements of quantum mechanics. Such experiments do not have perfect projective
measurements; rather, there can be statistical noise which results in the incorrect identification
of a measurement result. Therefore, it becomes crucial to obtain measurement statistics
on starting quantum mechanical states and a completely general framework for describing
quantum measurements has been developed, known as the Positive Operator-Valued Measure
(POVM) formalism [12]. This takes into account the possibility of weak (non-projective)
measurements, as well as statistical noise on the measurement process, allowing for the

probability of misidentifying one basis state as another. POV Ms are related to the statistical
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treatment of the state vector describing a quantum system, which is the density matrix
formalism.

For the results presented in this thesis, we only deal with ensemble-averaged measure-
ments, giving a simpler version of measurement theory. Specifically, by repeating the two-step
process of preparation of a quantum state and then performing a subsequent measurement,
we obtain expectation values of the form tr(pM) where p is the density matrix of the quan-
tum state and M is a Hermitian measurement operator. The problem thus becomes one of
identifying what is the the measurement operator corresponding to the system, and then to
use ensemble measurements of the state to identify components of the state in a technique
known as quantum state tomography. We first start with a description of representing the

state using the density matrix formalism.

2.5.1 Density matrix

The density matrix representation can be a more powerful tool than the standard wavefunc-
tion formalism for real experimentally generated quantum states. It is especially useful for
describing ensembles of quantum states, for example, a qubit coupled to an environmental
bath, or a system of multiple qubits. Furthermore, processes such as relaxation and decoher-
ence can lead to statistical mixtures of pure quantum states, and can be accounted for with
non-equilibrium time-evolution of the density matrix through master equations [34].
Suppose a quantum system is comprised of many states |n), with probability p, of being

in each. Then, the most general density matrix of the system is given by
o= puln) (n, (230)

where the sum is performed over all states n and }_, p, = 1. Similar to the state vector, the

density matrix evolves under unitary transformations,
p =2 pa(U|n))({n|U") = UpU". (2.31)

Furthermore, this formalism provides a classification of the types of quantum states produced.
If the state of the system is known exactly to be describable by a state vector |y), then it is a pure
state, with a density matrix given by p = |w) (v|. If only partial information about the state is
known, then the system can be described by a mixed state, or a statistical ensemble of the

pure states. As the wavefunction formalism is limited to only describing a state which is pure,
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in the case of a mixed state we use the density matrix as defined in (2.30). The probabilistic
mixing of pure states can arise due to noise processes such as relaxation, decoherence, or
heating.

Some properties of the density matrix which are useful to keep in mind are

. tr(p) =1L

-

2. p is Hermitian.
3. p is always a positive operator, such that for any state |¢), we have (¢ |p|¢) > 0.

4. 'The full joint density matrix of separable individual systems is the tensor product of

the individual density matrices, p; ® p, ® ... ® p,.
5. A pure state has Tr(p?) = 1. A mixed state has Tr(p?) < L

Specifically with regards to mixed states of single qubits, the density matrix representation

allows one to see that there is also a Bloch sphere, described by a Bloch vector 7, where

p= 5 (2.32)

and 7 is now a real three-dimensional vector with || < 1. A pure state will have |7| = 1 whereas
a mixed state will be a vector within the interior of the Bloch sphere.
The density matrix formalism is also a good way to represent ensemble measurements in

a quantum system. For example, the expectation value of the operator A, can be written as
(A) = an< Yn |A | Y ) = tr(pA). (2.33)

One other feature of the density matrix of composite systems is the ability to describe
a subsystem through a partial trace. Namely, if we have a quantum state comprised of two
systems A and B, described by p4p, then the average properties of subsystem A can be

represented by a density matrix,

pPaA = trB(pAB) (2-34)

where trp reflects a partial trace over the elements of subsystem B. This partial density matrix
formalism can be especially useful in the case of entangled quantum systems, where there is

no way to associate a pure wavefunction state to the subsystem A.
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Section 2.5.2 will demonstrate how combinations of ensemble measurements can actually
be used to retrieve the density matrix of the quantum system with a technique known as

quantum state tomography.

2.5.2 State tomography -

Quantum state tomography involves finding the elements of the density matrix which repre-
sents an unknown quantum state. Given a single copy of p it is impossible to fully determine
the state. But we can estimate p by preparing ensembles of the same state and then measuring
a whole host of observables.

For a single qubit state, the density matrix p can be written in terms of the orthonormal

set of Pauli operators, {0y, 0, 0, } along with the identity, 1 as

tr(p)l + tr(o.p)oy +tr(oyp)o, +tr(o.p)o,
p =

5 , (2.35)

which is simply an expansion of (2.32) using the components of the Bloch vector [12].

The trace expressions, i.e. tr( o, p), are simply the expectation values of the Pauli operators.
On any single qubit measurement, the value returned will either be +1 or —1. However,
upon looking at the same measurement over and over on N copies of the same state, the
expectation can be determined with Gaussian statistics and hence standard deviation given
by 1//N. Note that the decomposition of p into the Pauli basis here is not a unique one.
There are in fact an infinite number of choices of bases which span the entire single-qubit state
space. However, it is often simpler to think about the decomposition in terms of the Pauli
measurements, which are easily attainable in many systems, especially the case for circuit
QED to be described later in this thesis. Specifically for a single qubit, only 3 observables
are necessary for complete state characterization, since the density matrix has 4 entries
along with the constraint tr(p) = 1. Therefore, to perform single-qubit state tomography
requires the ability to repeat measurements of 3 observables which determine the single-qubit
polarization.

Expanding the state tomography to two qubits, there are then 16 matrix elements of the
density matrix to be determined. Therefore, we find a set of 15 linearly independent operators

{M;} which span the two-qubit density matrix space. Then, p can be decomposed as

p = M, (2.36)
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where we can estimate {¢; } from measurements of { M;}. Obtaining the expectation values

m; = tr(M;p), we then have
m; = Ztr(M,M])c] (237)
J

Analogous to the single-qubit case, one choice we can make for the { M;} is to use all of the
two-qubit Pauli operators, which are all pairwise combinations of the Pauli operators on each
qubit R ® Q, where R, Q € {I, X, Y, Z}. Then, the density matrix is given by

tr (R @ Q@ p) (RM & Q@)

(2.38)
R,QE{I,X,Y,Z} 4

p=
Therefore, the two-qubit quantum state tomography is now reduced to measuring two-qubit
correlation terms, such as XX, YY, ZZ, etc., in addition to single-qubit Pauli observables,
such as X1, IX, etc.

From the linearly independent measurements, p could be obtained through simply in-
verting tr(M;M;). However, this method neglects the Hermiticity and positivity properties
which p must have. To account for this, we use the Cholesky decomposition to search for a
lower triangular matrix T which can be used to parametrize any Hermitian and positive-semi
definite matrix p as

_ ﬂ (2 )
P w(T'T) 39

In the two qubit case, we have

3] 0
ts + it t 0 0
ro| Bt B , (2.40)
ty + it t; + itg 13 0

t15 + it16 t13 + it14 tg + itlo t4

where the t; can be found from Maximum Likelihood Estimation (MLE) of the likelihood

function

16
L= a;(m; —tr(M;p))?, (2.41)

i=1

with «; as weighting factors depending on the sensitivity of certain measurements in the
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experiment [35]. We will go into more detail with respect to the merits and demerits of MLE
for two-qubit state determination in chapter 8.

Now given an experimentally determined density matrix p, we can try to quantify how
close it actually is to the ideal state we expected |y). This performance metric is known as

the state fidelity J, and is given by

F={vlply), (2.42)

with values 0 < J < 1. The actual definition of fidelity varies throughout the literature,
sometimes actually given by \/W [36]. The distinction comes in as to whether the
quantity desired is a probability or a probability amplitude. Nonetheless, it is important to
note which of the definitions is used before comparing quoted values of the fidelity. As we will
see later in this thesis, the fidelity will be an important experimental metric for determining
the quality of states and we will be further discussing errors in its attainment in chapter 8.
Quantum state tomography becomes increasingly difficult with an increasing number of
qubits due to the increased state matrix space. Specifically, for a system of n qubits, the number
of measurements required to specify the states is 22* — 1. As a result, for systems of three
qubits or more, it can become prohibitively time-consuming to experimentally determine
the entire density matrix*. Instead, it may be favorable to obtain reduced information about
subsystems of the entire state, or to measure joint operators of multiple qubits, such as the
parity [37, 38], as opposed to the density matrix. Furthermore, as we will see in the next
section, entanglement metrics which are based upon a complete identification of p can be
difficult to compute, and other simpler experiments for entanglement quantification will

need to be developed.

2.6 Entanglement metrics

With quantum state tomography (section 2.5.2), we are able to completely reconstruct a quan-
tum state, whether it is pure or mixed and entangled or separable. As previously introduced,
a metric for quantifying the purity of experimentally produced states is P = tr(p?). Given a
d dimensional Hilbert space, we have the property 1/d < P(p) < 1. Another property of the

purity of a quantum state is that it remains invariant under unitary transformation, such as

* The current record is 8 qubits in a trapped-ion system requiring considerable computational effort [15]
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single-qubit and two-qubit operations. Experimentally, the purity can be a good indicator of
the decoherence present in the quantum system.

Although P and the fidelity to the targeted state J (2.42) give a considerable amount
of quantitative information about the quality of the states produced, we would like to have
further metrics which can quantify the degree of entanglement in the system. Note that this
entanglement which we wish to discuss will be bipartite entanglement, as a strict formalism
beyond two qubits is still an on-going topic of theoretical research [39-41].

To characterize and quantify entanglement, we introduce the concept of an entanglement
monotone E(p). Formally, it is defined as a functional that characterizes the strength of

genuinely quantum correlations with the following properties [42]

. E(p) = 0if p is a separable state.

Ju—y

. E(p) =1if p describes a Bell state, which is maximally entangled.

N

. E(p) is invariant under all local unitary operations.

w

. E(p) cannot be increased by any combination of local operations with classical com-

N

munication channels operating on p.

Given any state p, E(p) will quantify the degree of entanglement between separable and
maximally entangled with a monotonic mapping. Entanglement monotones theoretically
only exist for bipartite entanglement[39], and so always refer to two-body density matrices.
Next, we discuss a relatively well-known entanglement monotone, known as the concurrence,
used as a metric across many quantum information experiments. Here, we will describe how

to calculate it given the case of pure or mixed states.

2.6.1 Concurrence

The concurrence is an example of an entanglement monotone for bipartite entanglement
characterization which is bounded between 0 and 1 [43]. Any pure two-qubit state |y) can be

represented in terms of the computational basis states as
|l//> = Koo |OO> + Qo1 |01) + X0 |10> + an |11> . (243)
Then, the concurrence is defined as

C(v) = 2|agoan — ag10o] - (2.44)
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Figure 2.10: Entanglement of formation versus concurrence. All entanglement monotones
for two qubits can be one-to-one mapped to each other. Here we see the relationship between
the concurrence and the entanglement of formation, two commonly quoted entanglement
monotones.

Another way of calculating the concurrence is from the matrix of correlations, or T

matrix, given by

XX XY Xz
T:< YX YY YZ ) (2.45)
X ZY ZZ

It can be shown [39, 42] that

C=1/ % (2.46)

The concurrence is closely related with another entanglement monotone, known as the

entanglement of formation [43, 44], via the relation

E(p) = h {50+ VI=C(p)). (2.47)
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where h(x) = —xlog,(x) — (1 - x)log,(1 - x). Figure 2.10 shows the relationship between
concurrence and entanglement of formation from separable to maximally entangled states.
The concurrence is an especially interesting entanglement monotone because it can be
computed for mixed states as well. Given the full density matrix p, we first form the matrix
product R = p(0, ® 0,)p*(0, ® 0,). Taking the eigenvalues of R and arranging them in

decreasing order as {1;, A, A3, A4}, the concurrence is then given by

C(p)zmax(O,\//\—l—\//\_—\/A_g,—\//\—Ll). (2.48)

Here, one of the drawbacks of C as an entanglement metric is the need to determine the full
quantum state p. Specifically as the number of qubits coupled together grows, determining
multipartite entanglement through determining the state becomes costly both in experimental
terms and computational requirements. Another caveat of needing to determine p is the
non-linear processing which is done, including maximum-likelihood estimation as well
as eigenvalue decomposition, resulting in convoluted error propagation. As a result, an
alternative method for quantifying entanglement can be sought, and that is to use witnesses,

which will be the subject of the next section.

2.6.2 Entanglement witnesses

Entanglement witnesses are observables which give expectation values that determine whether
a prepared state is entangled. It is formally defined as a Hermitian operator W, such that its
expectation value tr(pW) > 0 for every separable state, but tr(pW) < 0 for some entangled
states. This means that any negative expectation value guarantees entanglement, i.e. the
entanglement is ‘witnessed, whereas a positive value does not shed any information on the
state [39, 45].

We can visualize the full state space as in figure 2.11, with a central convex set of separa-
ble states, surrounded by concentric convex sets of increasing degree of entanglement. A
measurement of an entanglement witness is then given by a hyperplane slicing through the
space, which gives a value tr(Wp) = c. All of the states which the hyperplane touches will
give that value. Therefore, a witnesses W can be thought of as parallel hyperplanes cutting
through the space, with different measured values ¢ < 0 when the state is definitely not in the
separable set. When the hyperplane touches the separable state space or goes through it, then

¢ > 0, indicating that the state is not necessarily entangled. Hyperplanes which are tangent
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separable
states

Figure 2.11: State space and entanglement witnesses. A convex set of separable states is sur-
rounded by concentric convex sets of increasing entanglement. The measurement of an en-
tanglement witness W is represented by a straight hyperplane which cuts through the space.
All states p along the hyperplane give a value tr[p] = ¢, where ¢ < 0 for some entangled state.
Any witness which pierces through the separable state set will give ¢ > 0. (Figure used with
permission from [45]. See Copyright Permissions.)

to the entangled states at the outer most edge of the entire space are optimal entanglement
witnesses to those states, as ¢ takes the minimum possible value [41].
Perhaps the most well-known maximally entangled states are the Bell states,
1 1

!‘P*>=ﬂ(l0,0)ill,1)) |<D*)=\/§(\0,1)i|1,0)). (2.49)

We can find a set of entanglement witnesses which, written in terms of two-qubit Pauli

operators as

1
Wy, =~(IIFXX+YY - 22),
‘11 (2.50)
Wey = L—}(II?XX%E YY+ZZ),

would be optimal to these Bell states. Here, we can see that each Bell state has a unique
optimal witness which corresponds to it, and gives a minimum value of —1. These witnesses
demonstrate that in order to measure the expectation values tr(pW), it is in fact not necessary
to have the full density matrix p, but just the expectation of some of the two-qubit Pauli
operators, XX, YY,and ZZ.
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These witnesses, although not entanglement monotones, can be used to place bounds on

measures such as the concurrence. In Ref. [45], it is shown that the quantity given by
B =-2tr(pW) (2.51)

is a lower bound on the concurrence of the system. Therefore, from a reduced set of measure-
ments of the quantum system, entanglement witnesses can be measured which quantitatively
restrict the degree of entanglement in the system. Furthermore, as most witnesses are simple
linear combinations of measurements, errors can be easily propagated, rather than forced
through layers of non-linear processing. These concepts of entanglement witnesses will be

applied to experimentally generated entangled states in chapter 8.

2.7 Bell tests

Traditionally, the idea of a Bell test is to devise an experiment which attempts to validate Bell’s
theorem that quantum mechanics is incompatible with local realism [46]. It was Bell who
showed that the presence of entanglement in quantum mechanics rules out the possibility
of pre-determined physical quantities prior to measurement. The test often involves the
violation of a Bell inequality, and finding a maximum value of correlation measurements
for distant objects. Here, coming from a different angle, we wish to extend the previous
section on entanglement witnesses and demonstrate that in fact a Bell test measurement need
not be applied as a validation of quantum mechanics but instead serve as another metric
of entanglement. From the point of view of quantum engineers, entanglement can be seen
as a resource, and having a high degree of entanglement will lead to a violation of a Bell

inequality.

2.7.1 Clauser-Horne-Shimony-Holt inequality

One of the more well-known Bell inequalities is the Clauser-Horne-Shimony-Holt (CHSH)
inequality [47]. It is often the inequality of choice in experimental violations as it has well-
defined classical and quantum mechanical bounds. To motivate this test, consider a source
of two particles which is capable of preparing the same set of two particles repeatedly. The
two particles are separated and sent to two distant parties, Alice and Bob.

Now suppose Alice and Bob can each perform two different projective measurements,
{Ma, M} and {Mg, My}, respectively (figure 2.12). Neither decides in advance which of
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Figure 2.12: Schematic for the CHSH test. Alice and Bob each receive one of a pair of particles
that have been prepared in an unknown state |y). After performing various measurements
of the particles, they can compare answers and calculate the CHSH quantity given in (2.54).
For two classical or completely separable particles, i.e.|y) = |y), |y)z, there can be no set
of measurements which Alice and Bob can perform that would give a quantity larger than 2.
However, if the particles are initialized in an entangled state such as a Bell state 2.49, then for a
certain choice of measurement angles, they can beat the bound of 2, reaching a maximal value

of 2\/2.

the two measurements to perform but rather chooses randomly with a probability of 0.5 for
each. Upon performing a measurement simultaneously with Bob (Alice), Alice (Bob) obtains
either A (B) or A’ (B’), either of which can take on the outcomes +1 or -1.

Now let us form the quantity C = AB + A’B + A’B’ — AB’ and investigate its properties. C
is often referred to as the CHSH operator, and the measurements A, A’, B, B’ can be thought
of as different axes onto which Alice and Bob can project their state. We can re-group the

terms of C into
AB+A'B+A'B' - AB' =B(A+A') + B'(A- A'), (2.52)

and since A, A’ = +1, one of the two terms on the right hand side must be zero. As a result,
any single realization of measurements will necessarily give AB + A'B + A’'B’ — AB’ = +2. We

can take an expectation of the quantity, which must still be bounded,
E(C)=E(AB+A'B+ A'B'— AB') < 2. (2.53)

The expectation value of the C can then be distributed, and then we are left with the CHSH

inequality,

E(AB) + E(A'B) + E(A'B') — E(AB') < 2, (2.54)
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where the terms on the left side are found by Alice and Bob repeating the experiment multiple
times and then classically multiplying their measurements.
However, if we let the particles that Alice and Bob share be quantum mechanical, now
they can be initialized as a Bell state,
1

Iw>=ﬂ

before we separate the particles and send them to Alice and Bob for measurement. Now, as

(o1) ~10)), (2.55)

a result of the two particles being in an entangled state, Alice and Bob will actually violate
the CHSH inequality (2.54) with an appropriate choice of measurements. Specifically, we
can use the Cartesian (or Pauli) basis with Alice measuring A -~ Z(), A’ - X1 and Bob
measuring observables that are 45° rotated, B - (-Z(? - X(®)/\/2, B’ - (Z(® - X®)/\/2.

In this case, we then find expectation values

1 1 1 1
AB) = —, A'B) = —, A'B'y = —, AB') = ——. 2.56
(AB) 7 (A'B) 7 (A'B’) 7 (AB') (2.56)
Placing these quantities into the left hand side quantity of (2.54), we then get
(AB) + (A'B) + (A'B') - (AB') = 2\/2. (2.57)

This is not a unique realization either, as other choices of measurements and other entangled
states can be used to violate the CHSH inequality (2.54) as well. However, the example given
above is the maximal violation and the value 2v/2 is termed Cirelson’s bound [48].
Quantum mechanics thus violates the CHSH inequality (2.54). So what went wrong with
the classical derivation? We assumed that the values A, A’, B, and B’ all existed indepen-
dently of measurement, suggesting pre-determined realism. We further assumed that Alice’s
measurement does not in any way affect Bob's measurement, suggesting locality. Therefore,
violation of a Bell's inequality supports the idea that nature is non-deterministic and non-local.
These aspects of Bell’s tests are the focus of numerous theoretical studies, looking to reconcile
quantum mechanics with non-local realism, and more recently, they are also the focus of
many experimental studies [49-51] looking to close certain loopholes in tests for ruling out
local hidden-variable theories, which we will not go into detail in this thesis. Instead, the
measurement of the CHSH operator can be thought of in terms of the entanglement in the

system.
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2.7.2 CHSH entanglement witness

In the interests of building a quantum information processor, we take a less controversial
point of view regarding the measurement and violation of a CHSH inequality. We can sweep
foundational issues of quantum mechanics under the rug momentarily, and look at the
violation of a Bell inequality not as a test of quantum mechanics, but as a measure of the
degree of entanglement in the system.

Although the violation of the CHSH inequality is traditionally found for a Bell state as a
45° rotation of the measurements performed between Alice and Bob, we can instead let Alice
and Bob keep their measurements 90° apart and perform a single-qubit rotation of 45° on
the Bell state. So suppose we select the Cartesian axes such that C = XX -XZ+ZX+ZZ. In
fact, for this choice of measurements, the state that maximally violates the CHSH inequality
with a value of 21/2 is a single-qubit rotation of 45° on one of the qubits in a Bell state, or
R)(,l)(—ﬂ/4) |¥, ). In this case C is actually an optimal entanglement witness [45] for this
specific state.

We can therefore see that the classical threshold for (C) = 2 is simply an offset value
of an entanglement witness: any measurement of (C) > 2 necessarily implies that the state
prepared is entangled and not separable; any measurement (C) < 2 just tells us that we
cannot comment on whether the state is separable or entangled. The maximal entanglement
attainable is signified by a measurement of (C) which approaches Cirelson’s bound of 21/2.

The CHSH operator is thus an extension of the entanglement witnesses discussed previ-
ously. Having the ability to measure two-qubit Pauli operators will permit the construction
of C and chapter 8 will demonstrate its measurement on a variety of generated separable and

entangled states.

2.8 Chapter summary

The previous discussions of this chapter have been general for any qubit implementation.
Building any simple quantum information processor will require single-qubit gates, an
entangling two-qubit gates, and a way for reading out the quantum state. For good single-
qubit control, we will want to have the ability to perform arbitrary rotations around the Bloch
sphere, perhaps combining rotations around the Cartesian axes x, y, and z. We have also now
seen how some two-qubit gates, such as the c-Phase and ViSWAP, can arise from two-qubit

interaction Hamiltonians. These sets of gates can be a universal set for quantum computing
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and at the level of two-qubits, should permit the operation of some simple algorithms, such
as the Deutsch-Jozsa and four-level Grover’s search. Rounding out the quantum system with
a good quantum state measurement and we can be ready to develop a rudimentary two-qubit
quantum processor. Therefore, we will now leave the realm of general quantum computing,
and over the next few chapters motivate how we will bring some of these concepts to life in a

superconducting qubit architecture.



CHAPTER 3

Superconducting Qubits and Circuit QED

HYSICAL implementations of qubits have taken many forms: nuclear spins, trapped-
P ions, photons, and even electrical circuits. Yet, the operating principle of the qubit is
independent of its experimental formulation. The physics of the qubit i.e., of a simple two
level system, makes the quantum information processing described in the previous chapter
(chapter 2) possible. For an experimental realization, the challenge has been to find a pair of
quantum levels that can be addressed, coupled, protected from the environment, and scaled
up to a large number of qubits.

Achieving these often conflicting goals in circuit-based superconducting qubits has been
experimentally challenging. However, the potential of engineerable intrinsic qubit properties
and eventual mass-producibility based on a circuit design employing standard lithographic
fabrication techniques with all-electrical controls has driven continued progress. A particular
route for quantum computing with superconducting circuits has been to implement the
relatively new field of circuit quantum electrodynamics (QED) [30, 52-54], where quan-
tum optics is brought to a solid-state chip, coupling superconducting qubits to microwave
frequency photons.

This chapter will lay the foundation for superconducting circuit-based qubits and the
circuit QED architecture. It will serve as important background leading into chapter 4,

which will detail how circuit QED can be an excellent platform for quantum information

45
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processing. First, section 3.1 will discuss the primary building blocks for the solid-state
quantum processor of this thesis, namely superconducting charge qubits. That is followed by
section 3.2 which will be an introduction to coupling multiple qubits. A review of basic cavity
quantum electrodynamics in section 3.3 will serve as a springboard for the concepts that will
be used in circuit QED (section 3.4), such as the strong and dispersive coupling regimes. We
end the chapter with a discussion about the relevant relaxation and decoherence properties

in circuit QED (section 3.5).

3.1 Superconducting qubits

Superconductivity provides an interesting foundation on which to study quantum effects. In
contrast to other solid-state implementations of qubits that aim to confine a small number
of microscopic quantum degrees of freedom, such as quantum dots, superconductors are
composed of a large number of paired electrons, or Cooper pairs, all of which have condensed
into a single ground state [55]. Quantum effects are then the result of macroscopic degrees of
freedom, and circuit elements comprised of these superconductors can be constructed with
tailorable interactions with other elements as well as the environment.

Ideally, non-dissipative circuit elements such as inductors and capacitors can be con-
structed with superconductors. However, combining these elements can only result in the
harmonic oscillator, which has evenly spaced energy levels, falling short of the two-level
addressability required for a qubit. Fortunately, superconductors also provide the only known
simultaneously non-linear and non-dissipative circuit element, known as the Josephson
junction, which will generate the necessary anharmonicity for artificial atoms. Artificial
atoms possess a rich non-uniformly spaced set of quantum mechanical levels, from which
two of them can be individually addressed for use as a qubit. The following sections will
review the non-linear Josephson junction and its application in the charge-based Cooper-pair

box and transmon qubits.

3.1.1 Josephson junction as a non-linear inductor

Physically, a Josephson junction consists of two superconducting electrodes separated by an

insulating oxide. Cooper pairs can tunnel coherently across the insulating barrier, with a
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supercurrent I that is given by
I =1Iysin ¢(t) (3.1)

where I is the critical current (the maximum sustainable junction supercurrent), and ¢(t)
is a time-dependent phase difference across the junction [55]. The phase difference evolves
in time in the presence of a potential V across the junction according to

d¢

E = ZeV (32)

Now by taking the time-derivative of the supercurrent, we find what is commonly termed

the Josephson effect,

I=(Iycos¢)¢ (3.32)
= 26;_1/10 cos ¢. (3.3b)

Faraday’s law gives V = —L1, which lets us identify the Josephson inductance as

)

Ly= ———,
2mlycos ¢

(3.4)

where @ = h/e is the magnetic flux quantum. This non-linear inductance combined with the
intrinsic capacitance of the Josephson junction, given by Cj, thus results in an anharmonic

oscillator which serves as the basis for a number of superconducting qubit topologies [56].

3.1.2 The Cooper-pair box qubit

One of the simplest Josephson junction based qubit designs is the Cooper-pair box (CPB)
[53, 57, 58]. This charge-based circuit is formed when a superconducting island is connected
to a reservoir of Cooper pairs through a junction. The Josephson effect permits the coherent
tunneling of the Cooper pairs between the island and the reservoir, while a gate voltage (V)
can also electrostatically modulate a Coulomb blockade tunneling effect. A standard CPB
geometry is shown in figure 3.1a.

Through circuit quantization [57, 59], the CPB Hamiltonian can be found to be

Hcpp = 4Ec(f — ng)* - E; cos ¢ (3.5)
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Figure 3.1: The Cooper pair box (CPB). The standard CPB (a) consists of an island connected
to a superconducting reservoir through a tunnel junction and is capacitively coupled to a
electrostatic voltage bias. In the split CPB (b), the island is connected to the superconducting

reservoir via two split junctions, with Josephson energies E](I) and E](Z). The superconducting

loop gives the ability to tune the effective Ej (3.8)b by threading an external magnetic flux ®.

where 71 is the integer-valued Cooper pair number operator, n, is the continuously variable
offset gate charge due to a dc bias, and ¢ is the conjugate operator to #, representing the
Josephson phase. The first part of the Hamiltonian can be interpreted as the electrostatic
charging component with the relevant charging energy scale given by E¢ = e2/2Cs, where
Csz = C4+Cjisthe total capacitance to ground of the CPB. The second term of the Hamiltonian
reflects the energy across the non-linear inductor in the junction due to the Josephson effect,
with a scale given by the Josephson energy Ej = I,®,/27.

The CPB is more commonly designed with a pair of junctions in parallel (figure 3.1b),
forming a superconducting loop which allows the tunability of the tunneling (Ej) portion of
the Hamiltonian. The split-pair of junctions forms a superconducting quantum interference
device (SQUID) such that an externally applied magnetic flux ® piercing the loop will control
the rate at which Cooper pairs tunnel in and out of the CPB. Now including the two junctions

with different Josephson energies Ej,, Ej,, we have a new Hamiltonian

H=Ej cong)—E]2 cos(q@—Zn(i)/CDO). (3.6)
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This can be rewritten as [53]

( qs)
cos | m—
O

where d = (Ej, - Ej,)/(Ej, + Ej,) reflects differences in the junctions, and ¢, is a phase offset

B \\ 2
H = (Ej, + Eyp,) (1 + d? tan? (ﬂa)) cos(d - ¢o), (3.7)
0

given by tan(¢, + 7®/®,) = d tan(n®/d,). For standard experimentally made junctions
(chapter 5) that are aimed to be identical, the junction asymmetry is typically d ~ 0.1, small

enough to give the approximate flux-tunable CPB Hamiltonian:

Hepp = 4Ec(f — ng)2 - E;(D) cos(qAS — o) (3.82)
Ey(®) = E"™ cos(n®/Dy). (3.8b)

We can explicitly write this Hamiltonian in the charge basis by using the relations

9
f= i% (3.92)
fei® = e (5 +1) (3.9b)
to get
E
H=4Ec(f-ng) - gZ(Ian 1)+ |n+1)(n]). (3.10)

The CPB can be operated as a charge qubit in the regime where Ej << 4E, such that the
Josephson coupling gives a small perturbation to lift the degeneracy at integer charge states.
By operating the CPB at a gate charge n, = +0.5, the system can be reduced into a two-level

qubit system with a reduced Hamiltonian given by

E;(®)
2

H ~2Ec(1-ng)o, - O (3.11)

where we idenfity the standard spin 1/2 Pauli matrices 0, - 2fiand 0, — |n) (n + 1|+|n + 1) (|
in the two charge manifold. This Hamiltonian can be interpreted as a single spin in a magnetic
field given by B = E;% + 4Ec(1 - ng)Z. Here, the eigenstates are superpositions of the charge
states with 7 = 0, 1, given by (]0) + [1))/v/2. Furthermore, another key aspect of the operating

point with n, = +0.5 is the first-order insensitivity to fluctuations in n,, as can be seen in the
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Figure 3.2: Charge dispersion. The energies of the lowest 5 levels of the charge qubit Hamil-
tonian (3.5), in units of the charging energy Ec. For low Ej/Ec ratio, we are in the Cooper
pair box regime, and the energies are parabolic functions of the offset charge n,, with avoided
crossings. Here, operation as a qubit is performed at charge ‘sweet spots’ n, = +0.5 where the
energy levels are first-order insensitive to charge fluctuations. As the ratio of Ej/Ec is increased
the levels become exponentially flatter, as we enter the transmon regime. Figure reproduced
from [61, 62].

dispersion diagram of figure 3.2. Performing experiments at this charge ‘sweet-spot’ is crucial

for obtaining longer coherence times [53, 60].

3.1.3 The transmon qubit

Starting with the charge-qubit Hamiltonian of (3.5), by operating in a different regime of the
ratio Ej/Eg, it is possible to have a qubit that is optimized [61, 63] with respect to 1/ f charge
noise effects [64]. Specifically, when Ej > Ec, the CPB system switches to a system that is
best described as an anharmonic oscillator. In terms of physical realization, the transmon
modification involves the addition of a large shunting capacitance to increase the overall
capacitance to ground of the network, reducing E¢ (more transmon design details are given
later in this thesis in chapter 5).

To be more quantitative with regards to the dependence of the energy levels to E;/Ec, it is
useful to write out the full energy level expressions for (3.5). Switching over to the phase basis

[61, 62], analytical solutions can be expressed in terms of the special Mathieu’s functions
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me,(q, z) as,
1 . -E
(¢1m) = = explinggIme xr,om (5555 ) (12)
and the eigenenergies are then given by
Em(”g) = ECa2(ng+k(m,ng))(_E]/ZEC)) (313)

where a,(q) is Mathieu’s characteristic value and k(m, ng) is an integer-valued function
which orders the eigenvalues. The effect of increasing Ej/E¢ can be seen in the level disper-
sion curves in figure 3.2. As the ratio increases, the levels flatten considerably and the n,
dependence of the first few levels disappears.

This flattening does not come for free, however, as another feature of the increasing Ej/Ec
ratio is a reduced anharmonicity: the change in level spacing between adjacent transitions
decreases. Having sufficient anharmonicity is critical for operation as a qubit, since the case
of zero anharmonicity equates to a harmonic oscillator with levels that cannot be individually
addressed.

The Mathieu functions can be evaluated numerically through a truncated set of charge

basis states [62]. From these eigenenergies, we then define the charge dispersion,
€m = Em(ng = 0) - Em(ng = 1) (3.14)

for the mth energy band. In the CPB case with Ej < Ec, €, ¥ 4Ec. However, when Ej/Ec > 1,

an exponentially reduced charge dispersion can be found from the Mathieu solutions [61],

D4m+5 2( E L AT
~ (-1)"E 2 By ~VBE [Ec .
w0 ) s 69

which is illustrated in figure 3.2. In practice however, determining the dispersion from
the Mathieu solutions can become unwieldy and numerically intensive. Instead, we often
diagonalize the full charge qubit Hamiltonian using a truncation of up to ~ 30 levels [62]. In
the limit of large Ej/Ec, this treatment agrees very well with (3.15).

Now with regards to the anharmonicity, it is sufficient to use a perturbation to a harmonic
oscillator, expanding the cos ¢ in (3.5) to 1 - $2/2 + ¢*/24. The Hamiltonian then takes the
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form of the Duffing oscillator
H = V/8EcE;(b'h +1/2) - E; - %(bT +b)*, (3.16)

where b' and b are now creation and annihilation operators for simply the harmonic oscillator
portion of the cos ¢ expansion. Using perturbation theory and keeping only quartic terms of
the form (b'b)?, the energy of the mth level can be found to be

1 E
E,, :—EI+\/8E1EC(m+§) —1—2C(6m2+6m+3). (3.17)

The absolute anharmonicity between a transition between levels m + 1 and m and the next

lowest transition m and m —11is given by
X = Em+1,m - Em,m—l ~=—Ec, (318)

where E,,,, = E, — E,,. Comparing this absolute anharmonicity to the ground to first excited

state transition of the transmon energy levels, Eq; ~ \/8EjEc, gives the relative anharmonicity,
af = &t /Eor = —(8E;/Ec) /2. (3.19)

This reflects an algebraic decrease in the anharmonicity with increasing Ej/Ec. Although
as Ej/Ec — oo, the anharmonicity will be reduced «af, — 0, typical transmon performance
will be obtained without needing to reach this extreme. Since the charge dispersion reduces
exponentially with increasing Ej/Ec, there is already sufficient band suppression before the
anharmonicity becomes small enough to make two-level addressability an issue. Henceforth,
we will interchange between notation in which we treat the transmon as a simple two-level

system, such that its Hamiltonian is just that for a simple spin 1/2,

h
H, = 5 ©q0z (3.20)

and notation in which the full energy spectrum of the transmon is taken into account,
Hy=h) wilk)(k|, (3.21)
k

where |k) are the exact Mathieu’s solutions from (3.12) and wy = Ex/h, with E; from (4.2.4).
The higher levels of the transmon will play a critical role in some of the interactions which

will be described later in this thesis.
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3.2 Coupling superconducting qubits

Having introduced the charge-based superconducting qubit, we now move towards scaling
up the circuit, since for quantum information processing (chapter 2), coupling multiple qubits
is necessary. A circuit-based architecture makes this coupling an engineering challenge, and
just as fabrication procedures govern the relevant parameters in the single-qubit Hamiltonian
(3.5), they will also determine the strength and form of multi-qubit interactions. Furthermore,
analogous to the tunability of individual qubit parameters, a circuit-based approach will
permit dynamical electronic control to turn on and off interactions in-situ.

Given the circuit element nature of the qubits, the simplest way to couple them is to use
another lumped circuit element, such as either a capacitor or inductor. In this section, we

will discuss a few possible coupling schemes that have been suggested for charge qubits.

3.2.1 Fixed capacitive coupling

A mutual capacitance C,, can be used as in figure 3.3a to couple two charge qubits, which have
Josephson energies Ej; and Ej, and charging energies Ec;, and Ec,. The resulting Hamiltonian

for this two-qubit device is given by [65]

EOO —%EH _%EIZ 0
-1E E 0 -1F
H = f ) 10 21 J2 ; (3.22)
—2En 0 Eg —3En
0 —%E]z —%EH Ey

where E,1,; = Eci(ng — m)* + Eco(ng — 12)* + E,y(ng — ny)(ng — n,). Here, ny and n, are
the excess Cooper pairs in the two CPBs, 1, and n,, are gate charges. The mutual coupling
energy term is given by E,, = 4¢2C,,/(CsCss — C2). The four computational basis states are
for |ny, ny), ny, ny €0, 1.

This type of shared linear capacitance interaction can be used to perform a controlled
operation such as a ¢NOT (section 2.3.1). The diagonal elements of (3.22) point to the
presence of a gate-controlled ZZ-interaction. The oft-diagonal Josephson energy terms result
in avoided crossings at the charge degeneracy points ng = ng = 0.5, split by Ej; and Ej,
between the symmetric and anti-symmetric charge states |0) + [1) of each qubit. A controlled

operation is possible through applying a gate pulse that would take |0, 0) to |0, 1), but would
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Figure 3.3: Superconducting charge qubit coupling schemes. (a) Fixed capacitive coupling.
A mutual capacitance C,, connects two CPB circuits, resulting in an always-on interaction.
(b) Tunable inductive coupling. Two split-CPB circuits are joined by a mutual inductance L,
which allows independently tunable loops via external magnetic fluxes @; and @,.

not be commensurate with the gate pulse frequency necessary to take |1, 0) to |1,1) (More
details on actual operation can be found in [66]).

The direct capacitive coupling scheme has the topological advantage of requiring no
additional control lines for the two-qubit coupling. However, the capacitive interaction E,, is
fixed and always on. Although the effective strength of the coupling is tunable via changing
the qubit frequencies, the gate charge modulation will necessarily move the qubits away from
their optimal charge gate bias points, resulting in significant coherence time degradation.
Furthermore, this scheme is limited in its scope and error performance as the number of
qubits scales up since it only couples nearest neighbors, making operations between far apart
qubits in a chain of multiple qubits (figure 3.4a) costly in terms of resources.

Nonetheless, such fixed capacitive coupling has resulted in the first superconducting
qubit coherent dynamics experiments [65], as well as the first demonstration of a cNOT in
a solid-state system [66]. Similarly, fixed capacitive coupling has been implemented with

Josephson phase qubits, with the generation and state tomography of entangled states [67].

3.2.2 Tunable inductive coupling

Another choice for coupling is to share a common inductance between multiple Josephson
charge qubits. The shared inductor L combined with the capacitance of the charge qubits will
form an LC-oscillator mode for the coupling. Such a scheme [68, 69] lends itself towards
a more scaleable architecture, as it is not limited to just nearest-neighbor qubit coupling.

Figure 3.3b shows such a circuit where now the interbit coupling strength is flux-controllable.
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By tuning the gate voltage and threaded flux of each CPB, it is possible to turn on either a
single-qubit or a two-qubit interaction regime. By setting the flux through the second qubit
(one on right hand side) loop to @, = ®,/2 and the gate voltage to V; = (2ng, +1)e/C,,, qubit
1 (one on left hand side) in the lowest two charge states |0) and [1) is individually addressable

with a Hamiltonian given by
1 -
H = EEQ(I — 1) — Ep(®,, d, L) (3.23)

where ng = Cy Vg /e and the Josephson energy scale is tunable by both the external flux
through the common inductance ® as well as the local flux ®@;. At any flux bias which is not
®,/2 in both loops there is a separate two-qubit interaction which is due to the persistent
current I = I + I, circulating through the common inductance. The two-qubit coupling

Hamiltonian is then given by

1
Hip = EL(Il +1)?, (3.24)

where the current through each CPB loop is given by

CD1+CD2+L(II+12)) (3 25)

Lz) = 211(2) COS () SIN (71
D,

In the first two charge level basis, this can be simplified into an XX interaction term, which
is similar to a ZZ interaction (section 2.3.2), but with a re-labeling of states.

By tuning the gate charge such that the first two charge levels are degenerate at ng; = ng, =
1/2 for each qubit, the o, terms can be turned off, and the reduced Ising-like Hamiltonian of

the system is then
H = -Ejoy - Epo? +Iogol, (3.26)

where IT encapsulates the coupling (details given in [69]). The eigenstates of this Hamiltonian
are |+, +), [+, =), |- +), |- =) where |£) = (|0) ¥ [1))/\/2, representing having rotated to
the basis of the XX interaction. In this four level manifold, it is then possible to produce a
conditional phase gate by tuning all of the energies to be the same, Ej; = Ej, = II = —-nh /4t
for a fixed amount of time 7, where the two-bit states |+, +), |+, =) , |-, +) are left the same,
but |-, -) = |-, -).

It is important to note the fundamental difference of this scheme having a switchable

coupling (without needing to move the qubit frequencies) as opposed to the effective tunable
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coupling in the capacitive case (via detuning the qubits from the interaction point). Similar
mutual inductance schemes with tunable coupling have been implemented in flux qubits,
where the shared inductance is further enhanced with the addition of a Josephson junction in
series [70-72]. In such systems, the coupling occurs through a magnetic-dipole interaction

and can be relatively stronger than in charge qubits.

3.2.3 Quantum bus coupling

The previously discussed qubit coupling schemes deal with using explicit lumped elements in
the circuits, using either a capacitor or an inductor. Experimentally controlling fixed coupling
designs such as the capacitor have been challenging due to electrostatic cross-talk between
different parts of the coupled circuit, while the inductive coupling can result in many mutual
qubit couplings requiring more complicated pulsing schemes for turning on and oft specific
interactions. The coupling via the shared inductor circuit as discussed in the previous section
is actually an interesting direction, as it uses the idea of coupling to an electromagnetic mode
of the induced LC-oscillator. One can take this idea a step further to achieve the coupling
through the distribution of quantum information over an entirely separate quantum degree
of freedom. In such a scheme, multiple qubits would be coupled to a shared quantum bus, in
analogy to classical bits of information transmitted along a data bus in a classical processor.
Multi-quanta interactions can then be non-local, permitting operations over an arbitrary
pair of qubits.

A bus coupling differs from the linear, or nearest-neighbor arrangement of qubits (fig-
ure 3.4a), in which performing a two-qubit interaction between non-connected qubits requires
multiple pair-wise operations. This direct coupling can result in a rapid build-up of errors due
to the large number of gates required to communicate between distant qubits, or by analogy
to classical computers, an increased number of clock cycles per operation. The bus coupling
also differs from a full mutually coupled network of qubits, as depicted in figure 3.4b. In such
a scheme, every single qubit is coupled to every other qubit, forming a matrix of interactions.
This makes the ability to simply address a single qubit difficult, and requires a switchable
coupling to turn on and off interactions between qubits.

So how could one physically realize a quantum bus? There has been pioneering work
with a quantum bus coupling of trapped-ion qubits, where the quantized motion of the ions
as phonons serve as the bus. The phonon quantum bus has led to the ability to perform

universal quantum operations as well as quantum algorithms in ion qubits [73]. Another
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Figure 3.4: Charge-qubit coupling networks. (a) As the coupling between two charge qubits
can be achieved through a discrete lumped element, such as a capacitor or an inductor, the
simplest scheme for scaling up to more elements is to chain up more discrete lumped elements
between each charge qubit. (b) One of the situations which can arise from attempting to couple
charge qubits on a circuit with capacitances is the possibility of mutual couplings between all
pairs of charge qubits. This makes the network of coupled charge qubits very large, and to
address only a single qubit can become quite difficult.
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Figure 3.5: Quantum bus coupling cartoon. A quantum bus coupling attempts to use a separate
quantum degree of freedom. Schematically, it has its analog in a classical instruction bus, with
multiple bits locked into the same bus. Here, we can imagine the capacitive coupling of multiple
charge qubits to a some feedline which will contain the quantum bus.

natural candidate for carrying quantum information is the photon. Photons can be highly
coherent and interact with objects over distances greater than their wavelengths. To have
increased interaction strength with a photon bus, we can employ the techniques of cavity
quantum electrodynamics (QED) [74, 75], in which a single atom is coupled to a single cavity
mode.

For the purposes of quantum computing with a quantum bus in superconducting qubits,
cavity QED [74, 75] has been adapted into circuit quantum electrodynamics [30, 52, 53],
where the photon bus is realized as a microwave frequency on-chip resonator and the atoms
are replaced with superconducting qubits, such as Cooper pair boxes or transmons. It is
with this architecture that we have realized a full two-qubit solid-state quantum processor.
However, to motivate the quantum bus coupling in circuit QED, it is thus important to first

review the key aspects of atomic cavity QED.

3.3 Cavity quantum electrodynamics

In cavity QED, individual atoms are passed through a Fabry-Perot cavity and interact co-
herently with the harmonic oscillator excitations, which are optical [76] or microwave [77]
photons. Figure 3.6 illustrates the atom-photon field interaction. The full coupled photon-

atom system is described by the Jaynes-Cummings (JC) Hamiltonian

1 a
H = howc (a*a+5)+h%az+hg (a'o_ +ao,) (3.27)
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Figure 3.6: Illustration of cavity QED. A two-level atom passes through a Fabry-Perot cavity
over a transit time ¢, during which the atom undergoes a coherent interaction with photons
contained in the cavity with a strength g. Photons can leave the cavity at a rate x and the atom
decays via non-cavity modes at a rate y.

where the first term corresponds to photons with excitation fiwc comprising the electro-
magnetic energy of the cavity, the second term represents the individual spin-1/2 atom with
transition energy w,, and the third term represents a dipole interaction between the cavity
and the atom within the rotating wave approximation (RWA). The interaction term, com-
monly known as the vacuum Rabi coupling, is the result of the quantization of the electric
dipole coupling, and corresponds to coherent absorption (0, a)/ emission (0_a') of a photon
from/to the electromagnetic field at a rate g.

Although the Jaynes-Cummings Hamiltonian only describes a general two-body interac-
tion between an atom and photon-field, a real quantum system inevitably couples to objects
in the classical environment. Some of these incoherent processes in the cavity QED system
include photon leakage and absorption, given by a rate ¥ which is often encapsulated by
the transparency of the mirrors. This photon decay is actually paramount for probing the
system, as photons which enter and transmit through the cavity reveal the internal dynamics
of the system. The atom can also be subject to decay, either through a radiative decay via
a coherent interaction with the cavity photons, or through interaction with modes outside
of the Jaynes-Cummings realm. We can denote the decay of the atom due to all non-cavity
channels as y.

Depending on the values of the atom and photon energies, there can be different signatures
of the interaction in cavity QED. Understanding these regimes will be critical to successfully

operate the quantum bus for quantum information processing.
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3.3.1 Strong coupling regime

The atom and cavity are in what is termed the strong coupling regime when the interaction
g is much stronger than the atom and cavity decay rates, y and «, respectively. When the
photons in the cavity and atom are in resonance with each other (w¢ = w,), the interaction
tully hybridizes the energy levels of the combined atom and photon field system, resulting in

dressed-state eigenstates in the one-excitation manifold as follows

1

[+) = 7 (I1,0) +[{,1)) (3.28a)
1

=) = 7 (I1,0) = [1,1)). (3.28b)

These are simply the symmetric and anti-symmetric combinations of a single excitation
in either the atom or the cavity. Here, the atom and photon can freely exchange a single
quanta at a rate g as a vacuum Rabi oscillation. Later in this chapter, such a direct cavity
swap interaction will be an important mechanism for inducing coupling between multiple
quantum degrees of freedom.
In the strong coupling regime, more generally, there can be any number of excitations,
resulting in a ladder of states with eigenstates in the n-excitation manifold given by
)= 5 (It n=1) 1)) (3299)

¥

1
=), = ﬁ(ﬁ’n—l)—

The energies of these states are split by 2gy/n and demonstrate a built-in anharmonicity

L,n)) (3.29b)

which can allow the strong-coupling regime of cavity QED to behave as a multi-level qubit.

3.3.2 Dispersive coupling regime

The cavity QED system can also be operated in a dispersive regime in which the atom and
cavity do not directly exchange energy. This is achieved through detuning the atom from the
cavity such that A = w, — wc > g. Given this condition, this regime can be studied using a

second-order perturbative expansion in g/A, to give the dispersive JC Hamiltonian,

2
Hw~h [wc + %az] (a*a + %) + hwg 0. (3.30)
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This new Hamiltonian reflects a re-diagonaliation of the full JC Hamiltonian given the
dispersive condition. To second order, the eigenstates of this dispersive Hamiltonian coincide
with those of the full Hamiltonian. The interaction is now transferred into an atom state
dependent shift of the harmonic oscillator frequency (the first term), which can now take
either of two values, wi. = wc + g/A. The dispersive shift plays the central role for atom state
interrogation in this regime via a quantum non-demolition (QND) measurement and will be
the basis for multiple qubit readout in the framework of circuit QED to be discussed later.

Another way of interpreting the interaction is to re-order the terms in the Hamiltonian
of (3.30) to be

1 h 24> 2
Hmhwc(a*a+§)+5(wa+%a*a+%)az. (3.31)

With this arrangement, the interaction has now been moved to the right most term, behaving
as a shift of the atom transition frequency. Specifically, the first term 2g?/An, where n = a'a,
reflects a photon number-dependent Stark shift while the g?/A term is a Lamb shift due to the
electromagnetic vacuum [30, 78]. The Stark shift is a critical feature of the dispersive regime
as it allows for an effective means to tune the atom transition frequency with microwave
pulses, which will be discussed in more detail in regards to multi-qunta interactions for

circuit QED later in this thesis (section 3.4.2).

3.4 Circuit QED

With some of the basic concepts of cavity QED under our belt, we can now move on to its
analog with superconducting circuits and develop the framework for its use as a quantum
bus architecture. Specifically, this section will deal with circuit QED using transmon charge

qubits section 3.1.3 and we will revisit the strong and dispersive coupling regimes.

3.4.1 Coupling a transmon to a coplanar waveguide resonator

We can translate the cartoon of cavity QED (figure 3.6) into a circuit geometry as shown in
figure 3.7. The Fabry-Perot cavity is now replaced by a microwave-frequency co-planar wave-
guide (CPW) transmission line resonator. The CPWs can be made out of superconducting
material which can be low loss below their critical superconducting temperatures, allowing
for high quality factor (Q) resonators. The gaps in the center-pin transmission line serve

as the mirrors of the cavity, with microwave radiation forming standing waves within the
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Figure 3.7: Illustration of circuit QED. A two-level atom passes through a Fabry-Perot cavity
over a transit time ¢, during which the atom undergoes a coherent interaction with photons
contained in the cavity with a strength g. Photons can leave the cavity at a rate x and the atom
decays via non-cavity modes at a rate y.

center-stripline. Through careful engineering of these capacitive gaps and the length of the
center stripline, the resonant frequency and quality factor of the resonators can be designed
(chapter 5).

Following Ref. [62], the transmission line resonator circuit can be quantized. For a
transmission line of length d, capacitance per unit length ¢, and inductance per unit length I,

the Hamiltonian can be expressed as
L1
H=h Z wylaha, + 2 (3.32)
n

with resonant frequencies w, = nm/d\/Ic. For the purposes of the experiments discussed
in this thesis, we will be working in the vicinity of just the first mode, with n =1, and as a
result we will write the cavity Hamiltonian with frequency wc = 7z/d+/Ic, without the sum
and subscripts.

The coupling between a transmon qubit and the transmission line resonator is an elec-
trostatic capacitive interaction*. We can place the transmon near either end of the CPW to
couple to a voltage antinode for the n = 1 mode (1/2) of the resonator. The Hamiltonian for
this combined system will be the sum of the transmon Hamiltonian (3.21), the transmission

line resonator Hamiltonian (3.32) and a dipole interaction term from the product of the

This is due to the physical size of the transmon being much smaller than the wavelength of the resonator,
allowing a lumped element interpretation.
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Ca

Figure 3.8: Reduced transmon coupling to CPW schematic. The transmon is coupled to the
CPW transmon line via a gate capacitance Cy. A split pair of junctions with Ej and Ec are in
parallel with a shunt capacitance Cg.

voltage in the cavity, Vy(a + a™), where Vj is the zero point root mean-squared voltage, with

the charge of the transmon, 2ne,
H = 4E; (n - ng)2 — Ejcos ¢ + hwca'a + 2fneVy(a’ + a). (3.33)

Here, f8 is a voltage division ratio, defined by the ratio of the gate capacitance to the total
capacitance. We can view the reduced capacitance network of the transmon in a CPW as
shown in figure 3.8. The entire transmon coupled CPW circuit is presented in detail in

chapter 5. We can express the values of the parameters of (3.33) in terms of the reduced

network as,
Eo- &
c*= E (3.34a)
hw
Vo=1/— (3.34b)
cL
Cg
B = roN (3.34¢)
C
Cy=——9 34d
s G +C,+Cs (3.34d)

where Cp is the shunt capacitance, C, is the gate capacitance, c is the capacitance per unit

length of the resonator, and L is the length of the resonator. We can write the Hamiltonian in
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the basis of the eigenstates of the transmon |j) as,
H=hoca'a+h) w;|j)( |+thU| ]|(a+a) (3.35)
J

where fig; j = 2eV, 3 (i| n|j) are dipole coupling energies which involve many charge states,
as the matrix elements for different transitions will all explicitly contribute. In the asymptotic

large Ej/Ec limit, the dipole coupling is given by

Vo, B\
9~ VIS () tilCe=ehli (336)

where ¢ and ¢ are lowering and raising operators for the transmon energy levels. For nearest-

neighbor energy levels the coupling is given by

v E \/*
gj,j+1=%ﬁ(v2( +1)(8E ) )) (3.37)

and is the dominant contribution to the coupling in the large E;/Ec limit [61].
When there is sufficient anharmonicity such that the transmon can be operated as a qubit,

we can keep just the first two levels and use the Pauli spin operator notation:

how
H =hwca'a + quz + goy (a + aT) . (3.38)

By making the rotating wave approximation (RWA), given that wc ~ wq and w¢ > g, counter-
rotating terms, a'o, and ao_ can be neglected (where 0, = (o, + ig,)/2), so that then we

recover the Jaynes-Cummings Hamiltonian as discussed in section 3.3,
H = hwca® f h t
= hwca a+§wqaz+ g(aa++a a,). (3.39)
More generally for the multi-level transmon, the Hamiltonian is given by

H=hoca'a+h) w;|j)(jl+h) gjm(j+1)(jla+hc). (3.40)
J J

Similar to cavity QED, we will be able to access a dispersive regime in circuit QED, described

in the following section.
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3.4.2 Dispersive regime of circuit QED

We have seen now that the transmon qubit can be in a strong coupling regime with a trans-
mission line cavity. By tuning the energy levels of the transmon away from resonance with
the cavity, we enter a dispersive regime (section 3.3.2) when gj,j+1 < Wjy1j — wc. A unitary
transformation, H - UHUT, similar to the one used for the simple atom case can be made,

with
U =exp lz/\j lj+1) (j|a—h.c.] (3.41)
J

and expanding to second order in the small parameter A; = g; j.1/(w;,j1 — wc). We are then

left with a diagonalzed Hamiltonian,

Hih =3 w;lj) (jl + wca'a+ 3 xjjuli+1) (j+1 - xna'al0) (0|
J J

+ Z (XJ'—LJ' - Xj»j+1) a'alj)(jl (3.42a)

Jj=1

with dispersive couplings y;; given by

2
9ij

— (3-43)
(U,'j e

Xij =

Taking a two-level approximation for using the transmon as a qubit, the dispersive Hamilton-

ian then takes the form
h
H = 5“’:1‘72 + h(wg + xo,)a'a, (3.44)

where the qubit transition frequency Wgq = Wor + Yor and the cavity frequency w; = wc — y12/2
are both Lamb-shifted. The dressed transitions here give a dispersive Hamiltonian similar to
the one from traditional cavity QED (3.30) but with a different transmon state dependent

shift given by

X = Xo1— % (3.45)

Using the asymptotic expression for g;;, the shift can be approximated as

9> Ec

k. S 46
X A 7A - Ee (3.46)
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where A = wqy; — wc.

3.4.3 Strong dispersive regime

The strong dispersive regime refers to the situation when the dispersive shift y (3.45) is
greater than the linewidths of the qubit, y, and of the cavity, «. Figure 3.9 shows both the
representative spectra of the cavity and of a single qubit system (using simplified two-level
transmon approximation) signifying the strong dispersive limit. With y > y, the spectrum of
the qubit can be resolved into individual photon number peaks. This qubit number-splitting
pattern theoretically allows for the determination of the mean photon number state of the
cavity. The qubit frequency peaks will be located at w,, = wq + 21y, and multiple peaks will be
observed given a thermal or coherent distribution of photons in the cavity. For a transmon,
these photon number dependent shifts will be slightly different due to the non-linearity
introduced into the cavity by the relatively smaller anharmonicity [79, 80]. Nonetheless, the
qubit spectrum can therefore be used to measure the photon number in the cavity.

With the cavity shift greater than the cavity linewidth, the transmission through the cavity
becomes a non-linear function of the state of the qubit. The cavity transmission is Lorentzian,
centered around frequency wc + y with the qubit in the ground state and centered around
frequency wc — y when in the excited state. Here, the state-dependent transmission can be
written as
K/2

T = .
w — (wc £ xo,) + ix/2

(3.47)

Now, when y > «, the transmission of an applied drive at w¢ + y will be a nonlinear function
of the qubit state, which permits a projective QND readout very much in the way a Stern-
Gerlach experiment can distinguish a spin polarization. This will be discussed in more detail

with respect to the joint readout of a multi-qubit state in chapter 4.

3.5 Qubit decoherence

As the transmon qubits are electromagnetic circuits, there are a number of factors in their
environment which can degrade their performance as quantum degrees of freedom. All qubit

errors can be classified as either relaxation and dephasing.
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Figure 3.9: Strong dispersive regime of circuit QED. (a) Theoretical state dependent cavity
transmission reveals two Lorentzian peaks for the case of |0) and 1), separated by 2y (Here
assuming x/m = 20 MHz). (b) Qubit spectroscopy shows multiple peaks corresponding to
different cavity-photon number. The weighting of these peaks is given by a simple Poisson
distribution as a function of the mean number of photons in the cavity i1 = 2.
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3.5.1 Relaxation and the Purcell effect

Relaxation and heating, are processes which result in the de-excitation and excitation of the
qubit, respectively. Fluctuations in some environmental parameter M (such as the flux ®
or voltage V), can be treated as a perturbation to the qubit Hamiltonian as H = EM , where
£isan operator which couples to the qubit eigenstates. The noise that specifically results
in relaxation and heating of the qubit occur at the qubit frequency wg. By using first-order
time-dependent perturbation theory (Fermi’s golden rule), transition rates between the levels
can be found to be [81]
1 s g2

T = 35 (gl €le)| Su(zwy), (3.48)
where Sy (Fwq) reflects the spectral density of the noise associated with environmental para-
meter M at the frequency of the qubit. The relaxation time is given by T; = 1/(T; + I}). Here,
the qubit acts as a spectrometer of noise at its transition frequency [81]. Note also that the
qubit will distinguish between a positive frequency component of noise, corresponding to re-
laxation of the qubit and excitation of the environment, and a negative frequency component,
corresponding to excitation of the qubit and relaxation of the environment. To understand
the qubit relaxation process thus requires investigating the environmental sources of noise at
the qubit transition frequency and determining how strongly they couple to the qubit.

For a charge-based qubit, an intrinsic relaxation rate can be associated with a number of
noise processes, including flux fluctuations, quasiparticle tunneling, and dipolar radiation.
These are dealt with in detail for Cooper pair box qubits in Ref. [53] and for transmon qubits
in Ref. [61]. However, the estimated relaxation rates due to these factors are small compared to
the relaxation rate due to voltage coupling to the electromagnetic environment. Particularly,
in the circuit QED setup, in which the environmental impedance is well-controlled, the qubit
relaxation rate can be completely understood up to an intrinsic limit suggestive of a lossy
dielectric [82].

Starting with a two-level truncation to the transmon qubit, let us formally treat the
relaxation due to voltage noise. By capacitively coupling the qubit to an environmental
impedance Z(w), voltage fluctuations v on this line couple via the charge degree of freedom

n. Here, the voltage noise coupling operator is

E=2epovi (3.49)
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where f is the voltage division ratio, given by C,/Cs. With an environmental impedance
Z(w), the zero-temperature voltage spectral density can be found from the Johnson-Nyquist

formula,
Sy(w) =2hwRe[Z(w)]. (3.50)

Then, from Fermi’s golden rule (3.48), the eftective decay rate I' due to voltage coupling is
then determined to be
Re[Z(wq)]

I =16me’*f’w, -

[ {0l A1) . (3.51)

For the transmon qubit, the charge matrix element between the first two levels (3.37) is [61]

) ) 1 E; 1/4
n 1) = ﬁ (E) . (3-52)

Then, by using the expressions Ec = €2/2Cs, wq = \/8EjEc, I can be simplified to

(0

o (@Cy)Re[ Z(w)]
Cs

. (3.53)

Therefore, the voltage noise effect on the relaxation rate occurs through the form of the
dissipative environmental impedance Re[Z(w)].

Interestingly enough, the above result can be found using a simple circuit model as
well [82]. For the capacitive coupling circuit shown in figure 3.10, we can combine the gate
capacitance C, with the environmental impedance Z(w) into an effective resistor given by
R =1/Re[Y(w)] where the admittance Y(w) is

W CiZ(w) +iwC,
1+ w?C22%(w)

Y(w) =

(3.54)
The relaxation rate is then simply found from the decay time 1/RC.g, where Ce = Cs — C,
giving the effective capacitance of the transmon without the effect of the gate. Then, we find
the same result as in (3.53) with this treatment.

This formalism is very powerful, as it tells us that by identifying the environmental
impedance Z(w), we are able to predict the relaxation rates of the qubit. Specifically in the

case of a qubit placed within a single-mode cavity, this reproduces the well-known Purcell
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Cg
|
|

Figure 3.10: Environmental coupling of transmon. The voltage relaxation rate of the transmon
qubit can be found from a simple RC decay time. The transmon capacitance C is coupled to an
environmental impedance of Z(w) through a coupling capacitor C,.

[83] result,

g°K

- (wc_—wq)z (3.55)

Vx

The Purcell effect reflects the altered spontaneous emission rate due to coupling to cavity
photons which decay at a rate k. For the case of circuit QED, this simplified single-mode
Purcell treatment is unfortunately inadequate as a result of strong coupling to higher modes
of the transmission line cavity. Heuristically, this strong dependence on higher modes can be
seen from the increasing coupling strength with mode number g, = gv/n + 1 as well as the
increasing decay rate of the nth harmonic, k,, = (n +1)?x. The multi-mode cavity effects on
the Jaynes-Cummings physics is still a topic of ongoing theoretical research. However, it is
possible to still predict the relaxation rates due to the multi-mode Purcell effect by using the
circuit formalism and considering the coupling of the qubit to a distributed transmission-line
resonator. These calculations have been shown to agree strikingly well with experimental
predictions, up to a global lossy limit with a Q ~ 50,000 — 70, 000, as described in Ref. [82].
For the purposes of this thesis, the investigations of Ref. [82] demonstrate that our current T;

is modeled and well-understood, and improvements are the subject of current research.

3.5.2 Dephasing

Dephasing is generally understood as the fluctuations of the qubit transition frequency due
to coupling to the environment. Low frequency noise far below the transition frequency can

cause the qubit to accumulate a random phase. Qubit relaxation will dephase the qubit at a
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rate I'|/2, which can be shown from a Bloch equation treatment [62]. In addition, there can
be fluctuations to the transition frequency which occur over the course of a decay lifetime,
labeled with a dephasing rate of I';. We can call the total dephasing the sum of these rates
I, =T,/2 +Ty. In the case that T, = 0, the total dephasing rate is given by I';/2, such that the
dephasing time T, = 27T;.

Dephasing can be interpreted as the decay of oft-diagonal density matrix elements. In a

two-level system, given a noise power Sy (w), this exponential decay is given by [61, 84],

Pm(t)ZeXP(—% 5 M( )SHE (/a;t)/zZ))'

A specific noise spectrum that can contribute to dephasing is 1/ f noise in the parameters

(3.56)

that determine the qubit transition frequency wq;. The 1/ f power spectrum is given by

A2
Su(w) = 2|7;| (3.57)

and is a typical noise spectrum for charge, flux, and critical current, all of which can vary
wor. The parameter A determines the overall amplitude of the fluctuations and have been
measured in various separate experiments [85-88]. In the case of 1/ f noise, the limits of the
integral in (3.56) are between fii, and wg /27, where fi,i, corresponds to a low-frequency
cutoff determined by the repetition rate of an experiment [84].

A comprehensive theoretical treatment of these different noise processes which dephase
charge qubits is presented in Refs. [53, 61, 64]. We will review both the charge noise and flux
noise contributions for the transmon qubit. In fact, in current transmon experiments, the
charge noise is sufficiently suppressed from operating in the transmon regime [63] that we

find flux noise to be the dominant culprit for dephasing.

Charge noise

In the Cooper pair box, with Ej/Ec ~ 1 the dephasing is primarily caused by slow fluctuations
of the offset charge 1y, even while operating at the ‘sweet-spot’ [53, 60] which is first-order
insensitive to charge noise. The transmon qubit operates in a different regime, with Eyj/Ec > 1,
resulting in the exponential suppression of the charge fluctuations. For 1/ f charge noise, the

typical amplitude is A = 10~* — 10~°¢ [85]. From Ref. [61] the dephasing time dependence on
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small fluctuations of the charge dispersion is given by

-1
h
& (3.58)

T, ~ v
¢ Artle|

1 |y
A

ong

where ¢, is given by (3.14). Therefore, T, exponentially increases with Ej/Ec and becomes
very insensitive to charge fluctuations in the transmon regime. For typical sample parameters
of Ey = 25GHz, E¢ = 350 MHz, gives a dispersion ¢; ~ 3kHz and using A ~ 10~*, we find
dephasing times due to charge noise to be Ty, ~ 170 us, far above 27T;.

Flux noise

Whereas charge noise is effectively removed by operating with Ej/Ec sufficiently in the
transmon regime, flux noise can still be a significant dephasing mechanism. Specifically,
noise in the externally applied flux can result in fluctuations of the effective Josephson
coupling energy Ej. Recall the external flux-dependent functional form for E;(®) given in
(3.8)b. Here, Ej is periodic in ®, and there are maximal values at which it becomes first-order
insensitive. These applied flux bias locations are ‘sweet-spots’ in 8.

In Ref. [61], the effect of flux noise is computed at and away from flux sweet-spots. Away

from the sweet-spots, the dephasing time due to flux noise is

1 |2En
Al 0D

L0 D
sin — tan —
(ON (ON

-1
h @
= (ZECE}“‘”‘

T¢: A

)_1/2 ; (3.59)

where the relevant noise parameter A has been found historically to be 10 ®,, [86]. Figure 3.11
shows the frequency, relevant frequency slope versus flux, and inferred T for both A = 10 ®,
and A = 107°®, for E; = 25GHz and Ec = 350 MHz. Simply detuning to @ /4, results in
a Ty ~ 1.5 us for the 10°®, case, which is now on the order of Purcell limited relaxation
times. However, at the flux sweet spot, the dephasing time can be estimated with the second

derivative of the transition frequency as

242 2E,, | ! h®?2
T¢ o~ ﬂ——gl =— 0 (3.60)
Fl BCD D=0 AZT[Z\ /ZEIEC

and with the same parameters as above will give T ~ 40 ms.
Experimentally, we have found across multiple transmon qubit samples that detuning
away from the flux-sweet spots results in dephasing times that are in agreement with the

flux-noise treatment. We also find that the noise parameter A is in the range of 10> —107°®,,.
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Figure 3.11: Ty due to flux noise. (a) The qubit frequency wy (solid black) and its derivative
with respect to flux dw,/0® (solid red) are shown versus flux ®. (b) Assuming a flux noise
spectrum amplitude A = 10°®y, the inferred flux-dependent Ty (solid green) is plotted versus

.
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Sensitivity to changes in the external flux (moving dewars, magnetic shoes) is reduced in
the experimental setup by using cryogenic magnetic shielding (detailed further in chapter 5).
Most experiments currently aim to operate the qubits at their flux sweet-spots in order to
reduce the effect of the flux noise. Specifically in the experiments in chapter 8 and chapter 9,
the qubits are parked at their flux sweet-spots, where the coherence times are ~ 1 — 2 us, for

performing state initialization, single-qubit operations and a joint readout.

3.6 Chapter summary

In this chapter we have reviewed the superconducting charge-based transmon qubit and
discussed its coupling to a microwave resonator in circuit QED. We have also introduced
some of the basic regimes of circuit QED and made an association with the well-known cavity
QED architecture. Thus far we have only considered circuit QED with a single transmon
qubit. To build a simple quantum processor, we look to scale this up, and use the microwave
resonator as a quantum bus. The next chapter continues the treatment of circuit QED, but
associates the quantum information processing protocols of chapter 2 with the coupled qubit

and microwave cavity system described in this chapter.



CHAPTER 4

Circuit QED: Quantum Information Processing with a
Photon Bus

He circuit QED architecture discussed in chapter 3 can be used as a quantum bus coupling
Tscheme for multiple qubits. As previously described, transmon qubits can be coupled
to a microwave coplanar waveguide resonator. We can investigate the case of having two
transmons, both of which can interact with a single quantum bus by being placed at opposite
ends of the microwave resonator. If we drive the A/2 resonance, there are anti-nodes in
the voltage at both ends of the resonator, which give the strong electric dipolar coupling as
described in section 3.4. Therefore, we can consider a two-qubit cavity bus device, and try to
understand how to perform some of the quantum information processing protocols from
chapter 2.

Specifically, we will need to demonstrate a universal set of gate operations (section 2.1) as
well as a full quantum-state readout (section 2.5.2). This chapter will start with a discussion
about the initialization of qubits in circuit QED and the effect of residual cavity excitations
on the starting state of the transmon qubits (section 4.1). Next, we will describe how we
can incorporate microwave driving to implement single-qubit operations in circuit QED
(section 4.2). Then, in section 4.3 we will discuss how the photon quantum bus provides
a number of interactions that will be useful for implementing multi-qubit entanglement

operations. These interactions can be turned on and off through fast tuning of the qubit

75
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transition frequencies. Although we will be performing quantum logic treating the transmons
as simple qubits, we will describe an interesting two-qubit interaction involving the higher
excited levels (section 4.3.3). Finally, in section 4.4, we will expand on the single-qubit
dispersive readout described previously (section 3.4.3) and present a joint two-qubit readout
mechanism, where the same bus used for multiple qubit coupling can also be used for their

multiplexed state detection.

4.1 Initialization

For the purposes of initializing a quantum register of m qubits in a circuit QED system, we

require two starting conditions:

1. Qubits dispersively detuned from cavity, |w§lj ) wc| > g, Vj € m and qubits detuned

from one another by larger than the transmon anharmonicity to the second excited
()
q

state, |wg’ — wfli)| > oy, Vi, jem.

2. Mean cavity photon number exceedingly small, 7 ~ 0, and all intrinsic, non-cavity,

transition processes take the qubit to the ground state.

Condition 1imposes the dispersive regime of circuit QED, with the qubit transitions separated
from one another in frequency space. Furthermore, this condition also avoids possible
excitations due to virtual photon exchange with the cavity (see section 4.3.2). In addition,
different qubit transition frequencies will allow independent driving of the qubits for single
qubit rotations (see section 4.2). The computational basis states will then be very simple,
{|k1, k2, ..., ki) }, where k; € {0,1}. For an m-qubit register, there are thus 2 basis states.
Condition 2 enforces that the qubit register will start from the joint ground state, |0, 0, ...0).
The mean photon number in the cavity 7 is directly related to the temperature of the bath to
which it is connected. Assuming a bath temperature T, the 7 at the cavity frequency is given

by the Bose-Einstein distribution,

i - 1 (4)
"= exp(hwc/kgT) -1 +

For typical experimental situations, T = 15 — 50 mK, corresponding to dissipative 50 Q)
attenuators and microwave circulators anchored to the base temperature of the dilution
fridge (more details of the experimental setup in chapter 5). In the case of our experiments,
1 < 0.003 [89] (further details will be given in chapter 6).
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Although this is the average excitation number for a photon only at the single cavity
frequency wc, we also need the second part of condition 2 to hold such that the dominant
excitation mechanism would be via the cavity, or that all other reservoirs to which it may
decay are at the same or lower temperature than the cavity. As discussed in section 3.5.1
and in detail in Ref. [82], the relaxation of the transmon qubits can be mostly attributable to
spontaneous emission through the cavity, y,, via the multi-mode Purcell effect. However,
also recall that there is an intrinsic loss due to a constant Q ~ 50,000 — 70,000 which sets
in at qubit transition frequencies such that y, < wq/Q. At this time the temperature of the
reservoir to which this unknown loss mechanism is connected to is neither characterized
nor known. Nonetheless, what we can say is that at locations where the qubit is multi-mode
Purcell limited, the qubit resets through the emission of a photon in equilibrium with a very
cold reservoir characterized by 72 < 0.003. Assuming that the qubit is only in equilibrium
with this photon bath, the residual excited state polarization, P, will be bounded bt 0.003,
giving an initial qubit polarization in the ground state, P, of at least 99.7%.

A strong-driving experiment while in the strong coupling regime of circuit QED can
be used with precise master-equation simulations to determine the mean photon number
[89]. This experimental demonstration of the initialization also provides a detailed view of
Jaynes-Cummings physics and will be discussed in chapter 6. For the purposes of this chapter,
from hereforth we assume that our initial state will be in the mutual ground state of all the
qubits, |0, 0, ..., 0).

4.2 Single-qubit gates in circuit QED

In this section we will develop the groundwork for single-qubit gates, with rotations around
the three Cartesian axes of the Bloch sphere (section 2.2). A simple microwave drive with
controllable phase can be used for x and y rotations whereas either an oft-resonant drive

which induces an ac-Stark shift or fast flux tuning can be used to perform direct z rotations.

4.2.1 Introducing a drive

We can include a separate external drive term to the Jaynes-Cummings Hamiltonian of (3.40).

Consider multiple classical time-dependent coherent drives with a Hamiltonian

o, ()
Hdrive = Z(a + aT) ('Eke gt + gkelwd l‘) (4-2)
k
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where & is the strength, wgk) is the frequency of the kth drive, and a and a' are the cavity
annihilation and creation operators. When the drive strengths are weak compared to the
other relevant energies (wc, g) the rotating-wave approximation (RWA) can be applied to
give,

(k)

Hdrive = Z a&'zeiwd ‘ + aT'fke—iw
k

()
d t.

(4.3)

For the moment, let us consider the case of just a single drive on a single qubit in circuit QED.
When combined with (3.40), we can remove the time-dependence of the full Hamiltonian

by making the following unitary transformation to enter the rotating frame of the drive:

J

U(1) = exp [iwdt(a*a 5 |j>j<j|>] . (44)
The full Hamiltonian now takes the form

H=U(H + Hgye\ U - iUU" (4.52)
=h(we - wa)a'a+ Y [(w; - jwa) |j) (i + gijn (1) (G + 1 +alj+1) (j])]
J
+(a&* +a'?)
=hAcata+ by Alj) (Gl + 1Y gia (@' 1) G+ 1+ alj+1) (j])
] J
+(af(t)*+aT£(t)), (4.5b)

where we have introduced the frequency differences A; = wc — wgand A; = w; - jwg and
allowed for the drive strength to be a slow function of time &(t).

The drive here still reflects transitions to the cavity. We can instead enter a frame such
that the drive Hamiltonian acts on transitions of the transmon by performing a Glauber

displacement transformation (details in Refs. [62, 79]), with displacement operator given by
D(«) =exp[oc(t)aT —cx*(t)a]. (4.6)
By choosing a(t) as the solution to the differential equation

—ia(t) + Aca(t) + &(t) =0, (4.7)
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the Hamiltonian takes the simple form

H=Acaa+ 3 i) G+ 30 g (a7 (G +1 + alj+1) ()
J J

1 (4.8)
+5 Z Q) G+1+ Q) [i+1) (D),

where Q(t) = 2ga(t) gives the Rabi frequency. For a time-independent drive, this Rabi
frequency is given by Q) = 2£g/A,. Here in the limit where the detuning A, is large compared
to the cavity half-width /2, we can write the average photon number 71 = (£/A,)? such that
the Rabi frequency recovers the Jaynes-Cummings form Q ~ 2g\/7.

Now going to the dispersive regime as described in section 3.4.2, the Hamiltonian is given
by

Hih =) wilj) (jl + wcata+ ., xjjulj+1) (j+1] - xma'al0) (0]
J J
+ 2 (g = xijer) a'alj) {jl (4.9)
I

+%@ruy+guﬁw.

If we treat the transmon as just a qubit, we can write the driven dispersive JC using Pauli

matrix notation,
h : .
H= EAqaz+h(Ar+Xaz)a a+(Q*(t)o. +Q(t)o,), (4.10)

where we see the first term as a re-normalized qubit, the second term reflects a qubit state
dependent cavity, and the third term is time-dependent raising and lowering of the qubit

excitation.

4.2.2 X-Y gates for a qubit

Staying in the qubit approximation of the transmon and assuming a drive of the form

OX*(t) cos(wgt) + QY (t)sin(wgt), 0<t<t
op) | @O eos(@at) + @ (@) sin(aat) ; .
0, otherwise,
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which has two independent quadrature controls, Q*(¢), and Q' (t), with ¢, being the total

time for a gate to take place, (4.9) can be re-written as
h e ho )
H= A0 + h(Ac+ xo,)ata+ 2 (Q*(t)o. + Q¥ (t)ay). (4.12)

Since we apply the drive far from the frequency band w¢ + y where the cavity population
can be significant, the Lorentzian transmission damps the average photon number, giving
(afa) ~ 0. Now by choosing the detuning between the drive and the qubit frequency to be 0,
Aq = 0, the above Hamiltonian generates rotations either around the x or y axes depending
on the choice of O*(t) and Q¥ (t). For example, choosing a drive Q* = Q7 and (¥ = 0, which
is on for a time ¢, with fotg Q"dt = m, will be a m-pulse, or bit-flip gate oy, that takes the qubit
population from the ground state to the excited state and vice versa. The 7-pulse can similarly
be performed as a y-rotation just by switching, Q¥ = Q" and Q* = 0. Moreover, /2 pulses
around x and y can also be performed to make superpositions of the qubit, (|0) = [1))/v/2
and (|0) + i [1))/\/2, respectively. Combinations of x and y rotations can be used to perform

arbitrary rotations about any axis.

4.2.3 X-Y gates for a transmon multi-level atom

In practice, the transmon is not a simple two-level qubit, as discussed in section 3.1.3, but a
rich anharmonic multilevel system. It is a generalized atom which is subject to the problem
of leakage out of the qubit subspace. This is especially an issue when the bandwidth of
the control is comparable to the anharmonicity. For the case of the transmon, the typical

anharmonicity between the second excited state and the first excited state is

o —~ —E¢ (4.13)

for large Ej/Ec. Typical design parameters result in charging energies ~ 300 — 400 MHz,
which can be on par with the bandwidth of the shortest experimentally applied microwave
control pulses (~ 1 - 2ns).

In Ref. [90], a proposal to reduce higher-level leakage due to shorter control pulses is
presented in which optimized control pulses can permit high fidelity single-qubit gates. The
system is described with a truncation to three levels, from which an error due to the leakage to
the third level can be interpreted as a phase accumulation within the two-level qubit subspace.

For simplicity, we drop the cavity and consider a single qubit with three levels and a drive
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given by the Hamiltonian

H=hY [w;lj)(jl+&H)A; (0] +07)], (4.14)
12
where o7 = [j—1)(jl and ¢ = |j) (j - 1| are lowering and raising operators, iw; denote

transition energies with the ground state energy set to zero, and

1, j=1
Aj= (4.15)
A’ _] = 2)

is a weighting parameter on the relative strength between the 0-1 and 1-2 transitions. The
anharmonicity of this reduced system «; is given by w, - 2w;.
Now we allow quadrature control again over the drive, resulting in an effective driven

Hamiltonian given by

O~ AQ

m=n Y a0 X oyt iy o« 2 gy 1+ )y )
o (416)
2 oy o+ i1y (o + 22 (ol + iy .

Ideally A = 0, and (4.16) recovers the single-qubit driven Hamiltonian as discussed previously
(4.9). However, more generally when A is nonzero, leakage out of the qubit subspace will be
dictated by the bandwidth of Q*(¢) and ”(t) in comparison to the anharmonicity «;. To

quantify the leakage to the third level, one can apply an adiabatic transformation V/,
V(1) = exp [-iQ*(¢) (1) {0 = #]0) (1] + A([2) (1] = £ |1) (2[)) /200 ] . (417)

The drive is turned on at t = 0 and off at ¢ = ¢,, such that the effect of the applied pulses are

identical in both frames. By transforming the driven Hamiltonian of (4.16), we now have to
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first order in the small parameter Q*/ay,

H/h=VHV'/h+iVVT
~ Sy o] + o) + “E22 (12 o]+ 2) 0 + (

1

(- BN 4><Qx>2) L

40(1

L (2+2)(00)

(%5

)2

" (Q + Q_) [(I1) (o] = #[0) (1]) + A([2) (1] - i [1) (2])].

2 20(1
(4.18)

From this expression, we can see that a drive which performs a rotation around the x axis in
the simple two-level picture can actually result in both a phase error via a residual y-rotation
(([1) (0] - i]0) (1]) term), and a leakage to the second excited state (A(|2) (1] — i [1) (2|) term).

However, this effect can be adiabatically eliminated by using the other quadrature by
setting

X

- s

and furthermore, a phase shift error to the first excited state is removed by detuning the drive
such that

(2 -9 (@ ()

AI =
4oy

(4.20)

Further corrections can be found by taking the transformation out to higher order. These
other terms are detailed in Ref. [90]. For the purposes of this thesis, we will be discussing
in chapter 6 the experimental implementation of this first-order correction by applying the
derivative of the drive on the quadrature during the pulse. This technique has been denoted
DRAG for Derivative Removal by Adiabatic Gate.

Experimentally, it has been common practice to shape the pulses with truncated Gaussian
(Qg) envelopes,

(t B tg/ 2)2

Qg(t) = Aexp [—T] [O(t) -0(t-t,)] (4.21)

where o is the standard deviation for the Gaussian, A is determined by the amount of rotation

desired, and ©(¢) is the Heaviside function to indicate the truncation at t = 0 and ¢ = ¢,. The
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Figure 4.1: Frequency bandwidth of Gaussian pulse shapes. For the Gaussian pulse shapes
given in (4.21), the fourier transform can be taken to determine the frequency extent. Given a
Gaussian with standard deviation o given in time, the equivalent frequency Gaussian standard
deviation is given by o; = (277¢)~". Here in this figure we can see that for o = 1ns, there can
be a significant o = 159 MHz which can cause unwanted errors via higher-order transmon
excitations.

Gaussian pulse-shape has been chosen as opposed to simple square pulses due to its small
frequency response bandwidth, minimizing the excitations at the transition frequency of
the second excited state. Figure 4.1 shows the bandwidth of the Gaussians for different pulse
lengths. We can see that for longer pulses, the frequency bandwidth can be much smaller
than the anharmonicity of the third level, which in standard practice is ~ 300 — 450 MHz.
Nonetheless, at the shortest pulse lengths, such as o = 1 — 2ns the third-level effects can
become significant, as we will detail in chapter 6.

We can characterize the quality of a gate using the single-qubit gate fidelity, which is
defined as [90]

F =

g Tr[ Uigealp Uiea X (1) 15 (4.22)

1

6 JEEX, £y, 22

where Ujgea is the unitary transformation in the three-dimensional Hilbert space correspond-
ing to the idealized gate, p; are the six axial states of the qubit Bloch sphere, and y(p;) is the
actual experimental process. More details about determining the process matrix will be given

later in this thesis in chapter 6 in regards to gate characterization protocols.
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Figure 4.2: Error per gate with and without DRAG. Standard Gaussian pulses with standard
deviation o, and total gate time ty = 20, result in an error per gate (blue solid line) which
increases with decreasing gate time (neglecting relaxation processes) due to leakage to the
second excited state of the anharmonic qubit spectrum. DRAG pulses result in an error per
gate which decreases (red dashed line) down to a minimum value of ~ 107°, well at the fault
tolerant threshold. Simulation is performed assuming a drive coupling strength to the second
excited state of A = \/2 and anharmonicity a; = 277(~400 MHz) and no decoherence properties.
(Figure used with permission from [90]. See Copyright Permissions.).

Based off of Ref. [90], we can simulate the effect of the pulse shaping. Specifically, by
assuming no relaxation processes (for the purposes of seeing the effect of the shaping), drive
coupling strength A = \/2, and third level anharmonicity given by a; = 27(-400) MHz,
F, is limited to 99% when the total gate time f, is 6 ns and using standard Gaussian pulse
shaping. Figure 4.2 shows in blue the error per gate, defined as 1 - F, for Gaussian pulses
with a standard deviation chosen to be 0.5¢,. However, by using DRAG for the pulse shaping,
1 - F,; can be reduced to the curve in red, achieving a minimum gate error of ~ 107°. An
experimental implementation of derivative pulse-shaping for single-qubit gates based on

DRAG will be discussed in chapter 6, which will show a similar improvement in gate fidelity.
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4.2.4 Z (phase) gates

Although concatenations of arbitrary x and y rotations are sufficient for traversing the entire
single-qubit Bloch sphere, it can also be useful to directly perform rotations about the z axis.
This is especially the case when the ratio of coherence times (T;, T3) to the gate time () is
not very large, such that having full control over the three axes allows for an optimized gate

sequence which takes up less time.

ac-Stark gate

One option for performing a direct rotation on the z axis is by employing the off-resonant
ac-Stark shift effect. A drive which is sufficiently detuned from the qubit to not induce
direct transitions via the o, term (Rabi frequency is small wq — wq > 20Q) will shift the qubit
transition frequency due to virtual photon transitions. Starting with the driven transmon
circuit QED Hamiltonian of (4.8), we can obtain an effective Hamiltonian which removes

the effect of direct transitions via the drive by using the unitary transformation

U=exp| B;(1j+1) (il -1} {j+1) (4.23)

where ; = Q(t)/2A;. This effective Hamiltonian to second order in f3; is then given by

H=UHU' (4.242)
= Avaa+ (8o +10)[0) (0] + 3 (A + 175,50) ) (]
j=1
+ Zgj,jﬂ (‘1 j+1) (il +a’[j) (i + 1|) s (4.24b)
]
with
O2(2A¢ + Ay)
=" (4.25a)
O2(2A;+Ajy)  Q2(4A 4+ A))
i = 4JAZ. — - 4A]2. 1 : (4.25D)
J -
y 02 0?2 02 giu
Py - . 1_ _ . .
g]’] 1 g] ( 4A§ 8A§+1 + 4A]AJ+1 g] ) (4 25C)
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Next, we can follow this with another dispersive transform to second order, and we are left

with the Hamiltonian
Hw Awa'a+ 3017 (1 (A)+ 1) + 3 X li + 1) (j+1] = fma’al0) (0]
j j

+ 2 (i = Kign) a'alj) (i (4.262)

=
where the f;; are now calculated using g;;. Therefore, for the transmon, operating with an
off-resonant drive, the 0-1 transition frequency can be ac-Stark shifted by an amount #; — #,.

When taking just a two-level truncation of the transmon, the effective Hamiltonian is then

2
HmAraTa+%(Aq+X+%i)—q)az (4.27)
and the last term can be used to produce controlled rotations about the z axis. Although this
is a useful procedure for shifting the phase of a single-qubit, note that when multiple qubits
are coupled to the same bus, each qubit will suffer a frequency shift even when the other
qubits are driven. Furthermore, for the transmon qubits, coupling to the higher levels cannot
necessarily be ignored, and the Stark shift can become non-linear with respect to power of
the drive due to different Stark shifts of the higher levels [79].

Flux gate

Another method for direct z rotations is to use the non-linear dependence of the qubit
transition frequency on the applied flux to shift the qubit transition frequency by a controlled

amount. Recall that the transmon Hamiltonian is given by
H=h}) w;j){jl (4.28)
i

where the w; are given in . However, in the transmon limit, where E; > E¢ and for a two-level

truncation, the qubit Hamiltonian is simply

H, = h\/SE}naX|cos(ﬂ(D/CD0)|Ecaz. (4.29)
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In the dispersive regime the full Hamiltonian is still flux-tunable, and a controlled amount of

z-phase 0, can be obtained by controlling ® over a gate period ¢, such that,

6, = [)tg dt\/SE}“aX|cos(n®(t)/d)0)|. (4.30)

In chapter 8, these flux-based z rotations will be an important part of tuning large amounts of
dynamical phase which are accumulated during a separate flux excursion used for a two-qubit

c-Phase gate.

4.3 Two-qubit gates in circuit QED

We now switch our attention to two qubits in a circuit QED system and focus on how to realize
entangling gates (section 2.3) to complete the suite of gates necessary for universal quantum
computing (section 2.1). A full treatment of two qubit gates is given in Ref. [91]. In this
section we will only highlight one of those gates, the virtual swap interaction (section 4.3.2).
Besides the virtual swap, there can also be an indirect swap between qubits by tuning into
direct interaction with the resonator, experimentally implemented in phase qubits [92, 93].
In circuit QED, it is also possible to use sideband transitions to perform two-qubit gates, in a
scheme similar to the coupling of trapped-ion qubits, and experimentally investigated for
generating Bell states [94], as well as multiple fixed off-resonant drives in a scheme called
FLICFORQ [95]. However, even with the numerous two-qubit entangling gates for circuit
QED described in Ref. [91], the other gate which we describe in section 4.3.3 is a completely
different approach that relies on the multi-level structure of transmon qubits. Later in this
thesis in chapter 8, we will demonstrate the experimental implementation of this two-qubit

gate and generate highly-entangled states.
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4.3.1 Two-qubits in the dispersive regime

With two transmons, the standard Jaynes-Cummings Hamiltonian is modified to include the

strong coupling of the photon field with both transmons,
fﬁFwMW+ZwPWM%+ZWQWM%
ZgJ Do(at i) G ali+ 1), () (4.31)

+Zg11+1( | l+1|2+a|i+1>2<i|2)'

To get to the dispersive regime, the resonant Jaynes-Cummings interaction is eliminated

using the transformation
U=exp|) A (@), (j+1], —hee) + > AP (at i), (i +1], - h.c.) (4.32)
] 1

where /\( ) = 1(1511/(“’;“] wc) = gj(ljil/AEk) <« 1. To second-order in A(¥), the two transmon

dlsperswe Hamiltonian is then given by
Hh wcaa+z( DU G+ i+ 1), (1)
+Z(“| i+ X li+ 1), G +1,)
Ta (X&' 10); (0l + x5 10), (0l,)

sata) X (165 = 1) 1 U+ 2 (12~ X622 12 4
2

i=1
1 2 1 2
+ Z g](])+lgz(z-)+—l+(A§ ) + A( ))
ji 2(A§.1)A1(.2))

) G+ @i+ 1) (i, + [+ 1) (I, ® |i) (i +1],].
(4.332)

If we consider both transmons as only qubits, the effective dispersive Hamiltonian is then

simplified to

H/h :(wC+X10z + 12 azz))a a+ 2w 02(1) + 2w az(z)

G119 (A + A7) [ EI RO INC)
+—2A1A2 (0 +00; )
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where the first term is the cavity dispersively shifted by both qubits, the second and third
terms are the bare qubit Hamiltonians, and the final term is a two-qubit swap which occurs

via virtual interaction with the cavity.

4.3.2 Virtual qubit-qubit interaction

Working within the two-qubit subspace with four independent levels, |0, 0), |0,1), |1, 0), and
|1,1), we can see that the virtual swap interaction of the dispersive Hamiltonian is of the form
described in section 2.3.3 such that we can realize an entangling \/iSWAP gate. We introduce

the parameter ] to represent the strength of the swap interaction,

_ 9192 (A1 +4y)

/ 2A:A,

(4.34)

Now by operating in the dispersive regime, the cavity population can be small so (ata) ~ 0.

We now have a two-qubit unitary with the following time evolution,

_'t
Uyg(t) =exp [TI (wla,fl) ®1? + 0,1V @ Gf))]

1 0 0 0
0 cos(Jt) isin(Jt) 0 (4.35)
0 isin(Jt) cos(Jt) Of

0 0 0 1

The first piece is simply made up of single-qubit phases which are removable via the appro-
priate single-qubit rotations while the second piece in the large parantheses corresponds to
the \/iSWAP logical operation at ¢ = 77/(4]). The level diagram in figure 4.3 visually depicts
the virtual photon exchange with the cavity, from which we can see the cavity only acting as
a spectator to the interaction, never being actually populated with a photon.

Since the value of ] governs the time for performing the entangling gate, the detuning
between the two qubits plays a critical role for the swap interaction. As the interaction term
oMe® +ocWe® s energy swapping, we can see that when the qubits are not near resonance
but far detuned, the swap will be suppressed. The maximal interaction occurs with the qubits
tuned into resonance with one another, such that A; = A, = A and J = g19,/A. The ability for
this interaction to be strong and weak depending on the qubit detuning provides a recipe
for operating a full set of universal qubit gates. One can detune the qubits for performing

single-qubit logical operations where the interaction is effectively off. Then, to perform the
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Figure 4.3: Scheme of the virtual photon swap interaction. When the qubits are detuned from
the cavity (’A(l)’(2)| = g(-(2)) the qubits both dispersively shift the cavity. The excited state
in the left qubit |1, 0) ® |n = 0) interacts with the excited state in the right qubit |0,1) ® |n = 0)
via the exchange of a virtual photon |0,0) ® |# = 1) in the cavity.

two-qubit logic gates, the qubits are tuned into resonance with one another for the appropriate
amount of time to realize the \/iSWAP.

To use the \/iSWAP gate as an two-qubit entangling gate reduces to being able to change
the detuning between the qubits on fast time-scales. The circuit QED architecture with
transmon qubits fortunately provides this tunability through either an off-resonant ac-Stark

shift or a fast dc-flux tuning.

Two-qubit ac-Stark swap gate

The off-resonant ac-Stark shift, which was introduced as a generator of rotations about the
z-axis in section 4.2.4, can also be used to tune the qubits in and out of resonance with one
another to effectively turn the swap interaction on and off. The treatment is similar to the
case of including an off-resonant drive, except now there are two transmons which each can
be Stark shifted differently due to their different interaction strengths and detunings.

The effect of applying a drive will is to shift the qubit transition frequencies for both of
the transmon qubits to

() _ (k) @
wq —wq +E

q

+ 70 (4.36)

where § = Yo1 — {12/2. The Stark swap gate can be performed by starting with the qubits

' — 0@| > J, and then to turn on

the appropriate amplitude drive at a frequency wq4 such that cb,(;) = cb,(f), turning on the J

effectively uncoupled from one another, such that |w
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interaction. Although in the simplest two-level picture, the value of the Stark shift has a
simple relationship with the detuning of the drive from the qubit frequency, for transmon
qubits, higher-level couplings contribute to the Stark shift, especially at large drive powers
resulting in non-linear frequency shifts.

The operation of the Stark swap gate also relies on a low enough drive power that direct
transitions of the cavity do not occur, which would otherwise result in heating of the cavity
and an enhancement of decoherence. Another possible error is for the Stark shift to cause
direct transitions of the qubit due to insufficient detuning. The effective Rabi frequency of a
detuned drive is given by Q} = \/m, where Qp is the Rabi frequency corresponding to
the applied drive power if it were on resonance with the qubit, wg = w,.

Furthermore, although the Stark effect can be an effective method for turning on a two-
qubit interaction, if the system expanded to more than two, there could be even higher-order
Stark shifts which can make the tunability unwieldy. An experimental implementation of

this Stark gate with two-qubits is described in chapter 7.

Fast flux swap gate

Another option for turning on the virtual flip-flop interaction is to directly tune the qubit
frequencies into resonance with one another using independent flux control on each of the
qubits. As described in section 4.2.4 in regards to the single-qubit phase gate via flux-tuning,

similarly the two qubits transition frequencies,

o (£) = \/8(E™™D |cos(nd( (1) /Dy )| E - EL, (437)

can be tuned with a flux pulse such that at t = 0 with w(()i) (0) # w(()f) (0) and at some later
time ¢’ they are tuned to be equal, w(()i) (1) + w(()f) (¢'). The flux pulse rise-time needs to be
faster than the swap rate, but still adiabatic with respect to the qubit transition frequencies.
Of course the ability for this gate to be used relies also on pre-determined device parameters,
such as the charging energies and maximum Josephson energies of both qubits. Nonetheless,
with fast independently tunable flux, this is a candidate for realizing the two-qubit entangling
swap gate, and can be extended to systems with more qubits. In chapter 8 we will show an

implementation of the swap using fast flux tuning.
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4.3.3 o0, ® g, higher level transmon interaction

The swap interaction discussed in the previous sections arises from the second order ex-
pansion of the Jaynes-Cummings Hamiltonian in the dispersive regime (4.3.1). By taking
the dispersive approximation to higher orders in A; = g; ;.1/(wj,js1 — wc), there are other
two-qubit interactions which emerge.

For example, we can consider the case of going to fourth order for a two-level approxima-
tion of both qubits. This can be done by using fourth-order perturbation theory. Although
all of the two-qubit interactions arising from this further expansion are much weaker than

the swap interaction, one which is of particular interest is a 02(1) ® 02(2) term, an interaction
which can be used to generate a c-Phase gate (section 2.3.2). The coupling strength of this

two-qubit interaction is given by (, involving a two-excitation process such that

¢ = 9795 (A1 + Ay)

(4.38)
ATAS

We can easily see that this coupling is smaller than J, by a factor of g,g,/A;A,. The relative

weakness of this interaction to the swap-interaction thus makes such a oz(l) ® 02(2)

interaction
not very useful for performing a two-qubit gate. However, this situation changes significantly
when considering multiple levels in the transmons.

For a transmon qubit, the presence of higher levels can actually boost up the strength
of this interaction. Since the ( is a result of a two-excitation process, specifically the second
excited state of the transmon qubit can also interact. Consider a set of two transmons, which
have a negative anharmonicity, arranged such that their single excitation transition energies
do not coincide, or w;y # we;. We will use the notation here that w;; corresponds to the
transition energy for the two transmon state with the first transmon in state |i) and the second
transmon in state |j). Now, suppose wg; > wyg. Then, by varying the applied flux on the qubit
with the higher single-excitation transition energy will generate an interaction in the two
excitation manifold, as shown in figure 4.4.

This interaction can be calculated using fourth order perturbation theory for a pair of

qutrits coupled to a cavity, and now takes a very different form from the simple two-level
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Figure 4.4: Two excitation manifold. (a) By varying @,, the external flux on the transmon with
the higher Ej, the transition energy level corresponding to |0, 2) can be tuned into an avoided
crossing with |1,1), where both transmons are in the first excited states. (b) Zoom-in of the
avoided crossing region shows the deviation of the transition energy of |1, 1) (solid purple) from
the sum of the transition energies of |0,1) and |1, 0) (solid black). This interaction strength of {
is the generator of a two-qubit conditional phase interaction. These simulations are performed
via numerical diagonalization of a Jaynes-Cummings model with two transmons, assuming
Epn = 28 GHz, Ej; = 42GHz, Ec; = 320 MHz, Ec; = 300 MHz, wc = 7, GHz, and « = 1 MHz.
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