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This thesis presents measurements of time resolved single electron tunneling events in a metallic

thin film circuit. The single electron trap is a circuit consisting of two small metallic islands connected

in series with two tunnel junctions and can be fabricated to have tunable microsecond tunneling

rates. Capacitively coupling this circuit to the island of a radio frequency single electron transistor,

I have time resolved these tunneling events. The trap is operated in a regime where tunneling

due to thermal fluctuations is completely suppressed, and tunneling proceeds fluctuations that are

purely quantum in nature. I present here the first measurements of the dynamics of these quantum

fluctuations, or cotunneling events, with excellent agreement with theoretical predictions, which were

developed more than two decades ago. These measurements provide insight into charge fluctuations

in nanostructures and demonstrate the possibility to measure higher moments of charge fluctuations

in metallic systems.
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Chapter 1

Introduction

Over the past two decades, investigations of single charge devices, where the Coulomb interaction of

electrons in nanostructures determine the electron transport, have revealed a wealth of interesting

physics and spawned applications in precision measurement, metrology, and detectors. However,

nearly all experiments with these systems have probed steady-state time-averaged properties such

as the average current flow. More recently, there has been increased interest in noise properties of

mesoscopic systems, and it has become clear that the current noise of quantum mesoscopic conduc-

tors can provide powerful new insight into the behavior of electrons on the nanoscale. There are

numerous experiments on current fluctuations but very few on charge fluctuations. I present in this

thesis time resolved single electron tunneling events that allow us to probe the dynamics of charges

in nanostructures. These experiments provide a basic test of the theory of cotunneling, or quantum

fluctuations. The cotunneling theories were developed two decades ago but the dynamics have never

before been tested experimentally.

Early mesoscopic physics experiments focused on transport measurements to study the underly-

ing interactions of electrons. It has more recently been clear that there is much to be learned from

studying the fluctuations, or the noise in these systems [Beenakker2003]. For example, current noise

has been used to identify the charge of fractionally-charged quasiparticles in the fractional quan-

tum Hall effect [Saminadayar1997, dePicciotto1997, Reznikov1999]. While current noise probes the

question of how electrons are partitioned into reflected and transmitted beams by a phase coherent

scattering region, charge noise probes the issue of how long electrons spend in the scattering region.

Insights revealed studying charge noise may prove to be as powerful as those derived from studying

current fluctuations. Also, for typical mesoscopic detectors such as the single electron transistor and

11



CHAPTER 1. INTRODUCTION 12

the quantum point contact, it is the charge fluctuations which are responsible for the backaction, or

the unavoidable disturbance of the measured system caused by the detector. Detailed measurements

of charge fluctuations can serve as probe for measuring the backaction of the detector, the knowledge

of which will aid in the design of more efficient quantum detectors and amplifiers.

In single electron systems, such as the single electron transistor or the quantum point contact,

transport can be strongly affected by small changes in potential or by the motion of individual

charges nearby. The current through these devices flows via tunneling between a small number of

single-particle or single-charge states, but there are very few experiments in which the dynamics

of the tunneling of single charges have been directly observed. There are two main reasons for

this, and both are related to the smallness of the electron’s charge, e. First, the typical rates of

tunneling are very fast (MHz to GHz or higher), since they are limited by the size of a measurable

current (f=I/e = 6.24 MHz/pA) or by the timescale of thermal fluctuations (kT/h = 1 GHz at 50

mK). Second, the signal created by motion of a single electron is very small. This thesis works to

overcome these obstacles by working at the problem from both sides. First, I make use of the radio

frequency single electron transistor (RF-SET) developed by Robert Schoelkopf [Schoelkopf1998],

which possesses single-electron sensitivity and 100 MHz of bandwidth. Secondly, I have fabricated

circuits that can slow the electron tunneling rates down into a measurable range. The combined

effect of the fast electrometer and the circuit with relatively slow tunneling events is that single

tunneling events can be resolved in the time domain. More specifically, I have been able to directly

resolve the cotunneling, or quantum fluctuations, in a single electron circuit. This serves as a basic

test of our understanding of cotunneling theory in a single electron trap, which will aid in improving

the performance of single electron pumps and turnstiles.

1.1 Charge Detection with the RF-SET

The single electron transistor, shown in Figure 3.1, consists of two small ( 50 × 50 nm2) tunnel

junctions in series with a small island between them. A typical charging energy for this circuit is in

the range of 1-2.5 K, and at sufficiently low temperatures (∼ 50 mK), no current can flow between

the drain and the source. This is known as Coulomb blockade and is extremely sensitive to the

potential of the island. If the correct voltage is applied to a nearby gate Qg = CgVg = e/2, this

blockade can be lifted, allowing current to flow, switching on the transistor. The potential of the

SET island is periodic in this gate with a period of one electron. It is also sensitive to any nearby
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Figure 1.1: Circuit diagram for the single electron transistor, consisting of two tunnel junctions in
series with a small metallic island between them. The potential of the island is tuned with the
nearby gate.

gate, so in addition to the intentional gate, we can couple another single electron device, such as the

single electron box.

The SET was first proposed in 1986 by Averin and Likharev [AVERIN1986], and was first

measured at Bell Laboratories in 1987 by Fulton and Dolan [FULTON1987]. Measurements of the

drain-source current flow through the SET enable high precision charge measurements of nearby

devices. The SET is capable of detecting signals much smaller than a single electron. These devices

have quite high resistances (> 26 kΩ), however, so long RC times limit these measurements to ∼kHz

ranges. Despite the limitations of bandwidth and sensitivity of these DC-SETs, they have been

used to measure macroscopic charge quantization [LAFARGE1991], characterize and operate single

electron pumps and traps [Keller1996, DRESSELHAUS1994], and to measure the local chemical

potential in semiconductor systems [Wei1997, Yoo1997].

Improvements to the bandwidth and sensitivity of the SET were made with the invention of the

RF-SET [Schoelkopf1998], which utilizes a measurement technique in which the SET is embedded

in an LC resonant circuit. This not only increases the measurement bandwidth to >100 MHz, but

also moves the measurements away from the ubiquitous low frequency 1/f noise. The best charge

noise obtained with the RF-SET is about 5×10−6e/Hz, only a factor 3 greater than the theoretical

limit [Devoret2000].

The RF-SET has both the speed and sensitivity required for rapid electron counting measure-

ments. The particular RF-SET used in the main section of this thesis has a charge sensitivity of

7×10−5 e/Hz. The signal size on the SET comes from the amount of polarization charge caused by

a change in one electron on the measured circuit, for example, a single electron box. The figure of

merit is the dimensionless coupling ratio κ = Cc/CΣ, where Cc is the coupling capacitance and CΣ
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is the sum capacitance of the measured island. Given a coupling of 10%, the maximum rate that

electrons can be time resolved with the RF-SET with a single to noise ratio of 1 is greater than 1

MHz.

1.2 Measurements of Average Charge

Using the circuit shown in Figure 1.2, where a single electron transistor is used as an electrometer,

measurements of the average charge state of a small metallic island, in the single electron box, can be

performed with exquisite precision. The box is the simplest single electron circuit [LAFARGE1991],

consisting of a single island connected to a reservoir through a small capacitance tunnel junction.

A voltage on a capacitively coupled gate allows adjustment of the electrochemical potential of the

n
B
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VdsC
gB
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C
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Figure 1.2: Circuit diagram showing the single electron transistor capacitively coupled to the single
electron box. The size of the signal on the SET is determined by the coupling capacitor Cc, which
sets the amount of polarization charge is induced on the SET due to a change in one electron on the
box.

island. The electrostatic energy of the box, E = EC(ngb − n)2, depends on the number of excess

electrons on the island, n, and the applied gate, expressed as an effective gate charge, ngb = CgbVgb/e.

The energy scale of this circuit is the charging energy of the box, Ec = e2/2Cbox (typically 1-2 K),

where Cbox is the sum capacitance of the box island. The electrostatic energy is plotted as a function

of gate charge for different charge states in Figure 1.3a, and consists of a series of parabolas which

cross at charge degeneracy points where ngb takes on half integer values. In the absence of thermal

or quantum fluctuations, the charge state should then change in a step-wise fashion shown in Figure

1.3b at these degeneracy points, and a measurement of the average charge < n > will display the

Coulomb staircase [LAFARGE1991]. At finite temperature, there can be a thermal occupation of

higher energy charge states, which leads to a thermal broadening of the transitions in the staircase.

The first measurements of the Coulomb staircase using the RF-SET were performed in our
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a)

n = -1 n = 0 n = 1

b)

Figure 1.3: a) Energy level diagram for the single electron box. The Coulomb energies for several
values of the charge state on the box, n, are plotted as a function of applied gate charge. The points
at which these curves cross are the charge degeneracy points. b) The average charge on the box is
plotted as a function of trap gate for a box with charging energy Ec = 1.5 K at 50 mK. This is
known as the Coulomb staircase of the single electron box. The charge on the box increments by
one at each of the charge degeneracy points.

group [Lehnert2003]. Using the high sensitivity of the RF-SET and an integration time of several

seconds per point, the staircase as a function of gate voltage, temperature, and magnetic field was

measured to a precision of about a part in 1,000, about two orders of magnitude improvement over

measurements [LAFARGE1991] with a conventional SET. These measurements revealed that the

broadening and the detailed shape of the staircase were distinctly different from that predicted by

a simple model of thermal activation to higher charge states. The presence of the tunnel junction

coupling the island to the reservoir, which allows the charge state to change, also couples the charge

states to quasiparticle excitations in the Fermi seas of the reservoir and island themselves. This

coupling means that even at zero temperature, there can be quantum fluctuations of the charge

state of the island, leading to a rounding of the staircase and a logarithmic renormalization of the

charging energy. These were the first measurements of this physics in the single electron box and

there was excellent agreement with theory with no adjustable parameters as shown in Figure 1.4. A

significant body of theoretical work [Goppert2001] has addressed this problem for the single electron

box. What makes this different from what has been done in quantum dots is that there are many

conduction channels in a metallic junction, each with small transparency, but combining to give

a conductance comparable to the quantum conductance. Also, the single-particle level spacing in

these metallic islands is negligibly small.
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Figure 1.4: Precision measurement of the Coulomb staircase of the single electron box (adapted from
Lehnert et al. [Lehnert2003]. The average charge on the box as a function of gate charge is shown
for one step of the box near charge degeneracy. The data is measured at two different bias points
of the SET. The dashed lines show thermal broadening of the staircase at 30 mK and 125 mK, and
the solid lines shows the theoretical prediction for the quantum charge fluctuations [Goppert2001]
with no adjustable parameters.

These measurements revealed some non-trivial effects of charge fluctuations in mesoscopic metal-

lic systems, but there is still no information about the actual dynamics of the island charge state,

since the SET is measuring the ensemble averaged charge state on timescales of seconds. Other work

in our group has used the RF-SET to measure the Cooper-pair box, which acts as a coherent two

level system. The RF-SET was used to temporally resolve the relaxation of the charge state (still

an ensemble average over thousands of repetitions, however) on sub-microsecond timescales, and to

measure the relaxation time (T1) of these solid state qubits [Lehnert2003a]. The actual dynamics

for the single electron box, however, are typically much faster (ns), and take place in a random,

Poisson distributed manner, making it very difficult to time resolve single electron tunneling events.

At low temperatures, we can consider the dynamics between the two lowest charge states of the

box. If we were able to time resolve the charge on the box island, we would observe random telegraph

noise with the charge fluctuating in a Poisson-distributed manner between the two charge states.

At ngb = 0, the box spends almost all of its time in the n = 0 state with rare excursions into the

n = 1 state. At this point, the tunneling rate Γ0→1 is negligibly small, but this causes Γ1→0 to be

extremely high. An illustration of this is shown in Figure 1.5. Here, the downward tunneling rate is

of order gEC/h (typically 10 GHz or more), where g is the dimensionless conductance of the junction
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Figure 1.5: Illustration of the charge fluctuations in the single electron box. At low temperatures,
only the two lowest energy levels need to be considered. A time resolved measurement of the charge
on the box would reveal random telegraph noise as shown in the two figures on the right. Away from
charge degeneracy, one rate can always be made small. For example, as shown in the upper green
curve, Γ0→1 << Γ1→0, but this comes at the cost of one rate that is very large resulting in series of
near delta-functions in the time record. The best point to measure is near charge degeneracy, shown
in the lower time record. For a metallic box, however, rates here are still ∼1 GHz

and is of order 0.1-1. The best case scenario for detection, would be at the charge degeneracy point,

where the box spends an equal amount of time in each state. Even here, however, the rates are still

of order gkBT/h, which is about 1 GHz for a dimensionless conductance of 1 and a temperature of 50

mK. This makes measurements of time resolved tunneling events in a metallic box with an RF-SET

technically infeasible. Such measurements have been performed with a semiconductor quantum dot

[Lu2003, Fujisawa2004, Gustavsson2006, Fujisawa2006], where a gate can be used to pinch off tunnel

coupling between the dot and reservoir in-situ, making the rates of sequential tunneling measurable

(< 1 MHz).

The fast tunneling events in the single electron box were appreciated early on. Since the di-

mensionless conductances in a metallic junction can only be fabricated reliably in a narrow range

of 0.01 − 1, the solution to slowing down the tunneling rates has been to add several junctions in

series.

1.3 Charge Dynamics

In multi-junction single electron systems such as the single electron trap and the single electron

pump, tunneling rates are greatly reduced by putting many tunnel junctions in series. Charges
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are transferred into an intermediate state with a large Coulomb energy cost, leading to a strong

suppression of the sequential tunneling rates. The dynamics should then be dominated by rates of

virtual tunneling via the forbidden intermediate states, a process known as cotunneling [Averin1992].

The single electron pump is a device that uses multiple junctions to suppress sequential tunneling.

Shown in Figure 1.6a, the pump consists of an island connected to a reservoir, as in the electron box,

but in this case, this connection is via a series of several small capacitance islands and junctions. By

1000 seconds

1e

Time

Vg

Vds

a) b)

Figure 1.6: The single electron pump. a) Schematic of the seven-junction electron pump, with an
SET electrometer which measures the last island. The six islands are biased in a sequential fashion
to pump charge on and off the island. b) Measurement of single electron changes in the pump’s
charge state, in the ”hold mode” where the gates are fixed (adapted from Keller et al. [Keller1996]).
Very rare jumps of size 1e are observed on timescales of minutes to hours, representing ”errors” in
the pump due to high order tunneling processes. The error rates and their mechanism are not fully
understood.

pulsing the gates of the intervening islands in a sequential manner, an electron can be transferred

in a ”bucket-brigade” fashion, and pumped from reservoir to island. The pump is a very successful

device which can transfer electrons (in its seven-junction implementation) with an absolute accuracy

[Keller1996] of about 10 parts per billion, and is being adopted as a new quantum standard for

capacitance [Keller1999].

The pump can be placed in ”hold” mode, where an electron is transferred to the end island and

the gates are held fixed. The pump is then operated as an electron trap, and the lifetime of the

charge on the island can be measured, as shown in Figure 1.6b, by measuring the island’s charge with

a conventional dc SET. Individual tunneling events take place randomly, on a timescale of seconds

to hours, which is required for these slow charge measurements. Similar experiments observing very

slow tunneling events in multi-junction traps were also performed by earlier groups at Stonybrook

[DRESSELHAUS1994] and Saclay [LAFARGE1992].

The dynamics of these multi-junction devices are not fully understood. The error rate of the five



CHAPTER 1. INTRODUCTION 19

junction pump was deemed sufficient for operation at metrological accuracy for the capacitance stan-

dard, but the measured rates disagreed with those due to sequential and cotunneling events predicted

by theory by 17 orders of magnitude during operation in ”hold” mode [Kautz2000]. Metrological

accuracy was attained only after increasing the number of junctions to seven. The measured error

rates in this setup were extremely small, but still disagreed with theoretical predictions by several

orders of magnitude. The errors in the pump were attributed to photon-assisted tunneling, and

the tunneling rates are due to sequential, single-junction tunneling [Kautz2000]. These dynamical

studies of metallic junctions do not shed much light on the problem of mesoscopic charge noise, nor

do they provide a direct test of cotunneling.

Recently, the first experiments observing single tunneling events in simple semiconductor quan-

tum dots using high speed electrometers have been performed. Rimberg and co-workers at Rice

University [Lu2003] integrated a metallic RF-SET on top of a semiconductor dot, and were able to

resolve sequential tunneling events due to thermal activation, by pinching off the tunnel coupling of

the island to the reservoir, reducing g and therefore the tunneling rate. Fujisawa and coworkers at

NTT [Fujisawa2004] used two semiconductor SETs, the first configured as an RF-SET electrometer,

to measure the single thermal tunneling events in the second SET, and to observe the speed-up of

tunneling due to a current passed through its drain and source. Quasiparticle tunneling rates onto

the island of an SET were measured by Naaman and Aumentado at NIST [Naaman2006a]. These

are impressive technical demonstrations that the RF-SET can indeed measure single charge tun-

neling events at MHz rates. These results show the technical possibility of probing single-electron

dynamics, but do not yet offer much new information about the physics of single charge devices.

Also, the processes in all of these cases being studied are only that of ordinary sequential tunneling.

A recent experiment by Per Delsing and co-workers at Chalmers University [Bylander2005] has

used an RF-SET to observe the correlation of tunneling events in a long 1-dimensional array of

metallic junctions. In such arrays, charges are predicted to move as interacting solitons, leading

to a moderate correlation of electron tunneling times, which were sensed by a direct (rather than

capacitive) connection to the measuring island of an RF-SET. This correlation leads to a noise

spectrum with a peak at frequency f = I/e, observed in the output of the RF-SET. This result

demonstrates the kinds of non-trivial physics, due here to electron-electron interactions, which a

dynamical measurement can reveal.
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1.4 Electron Counting with the Single Electron Trap

In the experiments performed for this thesis I used an RF-SET to look at more rapid, intrinsic

tunneling dynamics in a two junction trap, a device that is far simpler to operate than the multi-

junction traps and pumps. This device has the possibility for reduced tunneling rates from those

seen in the single electron box, but still has measurable microsecond time scale dynamics which in

this case are dominated by quantum fluctuations. Because I am able to detect tunneling events much

more rapidly than was possible with the dc SET in the case of the traps and pumps, rare, anomalous

events are relatively unimportant and the statistics are vastly improved. The calculations are also

much less complicated for the trap as compared with the pump because of the reduced number of

islands. Four charge states of the trap must be considered at low temperature to understand the

tunneling rates, while 254 configurations must be considered to calculate the tunneling rates in the

7-junction pump [Kautz2000].

The single electron trap, shown in Figure 1.7a, consists of an intermediate island with charge

state nIsl and the trap island with charge state nTrap, and has two separate voltages which bias these

islands with gate charges ngi = CgVgi. An RF-SET is connected capacitively to the second island,

to measure the charge state on microsecond timescales. As shown in the energy level diagram in

Figure 1.7b, and the charge configuration picture in Figure 1.7c, in order to change the charge state

of the trap from (nIsl, nTrap) = (0, 0) → (0, 1), charge transfer must proceed via tunneling first to an

intermediate state (1, 0) of the first island that has a high Coulomb energy. Another possibility is to

tunnel through the second junction first (nIsl, nTrap) = (0, 0) → (−1, 1) → (0, 1). For temperatures

less than the charging energies of both islands, kT < ECTrap, ECIsl, one need only consider these

four states (two for each island) to understand the transport. Charge fluctuations of an electron

on and off the trap see this large energy barrier for at least one of the two tunneling steps, so that

transport is uphill both ways. This greatly reduces the sequential tunneling rates to negligible levels

at low temperatures. Tunneling proceeds via a virtual occupation of this intermediate state, which

is a purely quantum process. The rates for this process are in the kHz range over a wide range of

trap gate voltages and temperatures and are easily resolved using the RF-SET.

The trap circuit is relatively simple compared to the long arrays of junctions in the other experi-

ments measuring dynamics in metallic system, which allows for an easier characterization of the gate

voltages. We can map out the full parameter space of this circuit as a function of the gate controls
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Figure 1.7: a) Circuit diagram of the single electron trap capacitively coupled to a single electron
transistor (red). The trap circuit consists of two junctions in series with two islands. The potential
of each island can be tuned with capacitively coupled gate voltages Vgi. The gates apply an effective
charge to the islands, written in terms of the number of applied electrons, ni = CgiVgi/e. b) Energy
level diagram showing the four lowest charge states for the trap near the trap energy degeneracy
point ngT = 1/2. In order to change the charge state on the trap from (0,0) to (0,1), electrons first
must tunnel to an an intermediate state with a high Coulomb energy, (1,0) or (-1,1). c) The charge
configuration space picture of the trap. This diagram highlights the fact that the electrons must go
up hill both ways tunneling on or off of the trap island.

and are able to precisely bias the circuit within this space for measurements of both the statics or

time averaged properties as well as the dynamics. The parameter space is mapped out with mea-

surements such as the Coulomb staircase and the hexagonal stability diagram of the trap, as shown

in Figure 1.8. We measure the dynamics of the circuit in several different ways, including swept

averaged measurements, as shown in Figure 1.8, pulsed gate measurements to observe the relaxation

time of electrons on and off the trap island, or we can fix the bias on both gates while making time

resolved measurements of the charge with the RF-SET as shown in Figure 1.9. The theory used for

predicting the rates of sequential and cotunneling was developed about two decades ago, but there

have been few direct measurements of the individual rates for in simple circuits, and no experiments

have accessed the mesoscopic charge fluctuations associated with cotunneling. Most experiments

have instead probed the current passed through single electron transistors [GEERLIGS1990]. This

work presents measurements of the dynamics of the cotunneling rate in the single electron trap and

comparisons to these theoretical predictions.
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Figure 1.8: The hexagonal stability diagram for the trap is shown on the left. The color blocks
represent the ground state of the trap. The lines separating the color blocks indicate a change in the
charge state of one of the two islands. The right figure shows the tunability of the tunneling rates.
In the top curve, the trap island is maximally blockaded and the rates are low. When the trap gate
is swept faster than the characteristic rate, the Coulomb staircase measurement is hysteretic. The
lower curve is measured at a bias point where the rates are fast, and for the same trap gate sweep
rate, no hysteresis is observed.
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Figure 1.9: Time resolved measurements of trap charge as a function of time.
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1.5 Overview of the Thesis

The work done for this thesis contains the entire process for the experiment, from experiment and

circuit design, theoretical predictions, electronics and cryogenics, fabrication, and finally measure-

ments. Chapters 2 provides an introduction to single electron circuits, focusing in detail on the

single electron box and trap. Chapter 3 continues this discussion to the SET, describing how it is

used as an electrometer. This chapter includes a detailed example of how we use the SET to mea-

sure charge on a single electron box and how this circuit is used to make high speed measurements.

These chapters provide the framework with which we can start to develop an understanding of the

dynamics of these circuits.

The dynamics are the focus of chapters 4 and 5. Chapter 4 focuses on the sequential tunneling

model, also known as orthodox theory or the global rule. This is the regime in which most ex-

periments operate and where other measurements of dynamics in single electron circuits have been

performed. I will show in this chapter that the predicted rates using this model are unrealistically

low for the single electron trap. This will then take us to chapter 5 which explores the quantum

fluctuations in the trap. These quantum fluctuations are higher order tunneling events that involve

cotunneling, or simultaneous tunneling of two electrons. This is a purely quantum process as it pro-

ceeds through virtual occupation of a higher energy intermediate state. In this chapter, we will set

up the theoretical predictions for the tunneling rates and analyze the feasibility of the measurements.

Careful circuit design is required to achieve the circuits for which the predicted rates are at a

measurable level. Chapter 6 discusses the design and realization of circuits that meet these require-

ments. Simulations for capacitance design will be discussed as well as the electron beam lithography

process used to fabricate aluminum thin film circuits with tunnel junctions. Chapter 7 introduces

the experimental methods including the setup, cryogenics, and RF circuit design. Measurements to

characterize the RF-SET will be presented here.

The main results for this thesis will be presented in Chapter 8. Here I will present measurements

characterizing two trap samples. Then, I will go on to discuss the dynamics in these circuits,

measured in a variety of ways, including time resolved measurements of single tunneling events. I

will show comparisons with the theoretical predictions from chapters 4 and 5 as well as a discussion

of the effects of the backaction of the SET. Chapter 9 will present possibilities for future work and

concluding remarks.



Chapter 2

Single Electron Circuits

Detection of single tunneling events is difficult for a variety of reasons, mostly having to do with

the smallness of the charge of the electron. For even quite small currents, the rates are extremely

fast. Taking a naive view of electrical current as individual electrons flowing through a wire, the

flow rate is 6.24 MHz/pA. High energy physics experiments involve beams of discrete particles, but

in conductors, electrons exist as a quantum fluid of charge and are completely delocalized. The

simplest example of this is charging a capacitor with a voltage source. The capacitor acquires a

charge Q = CV , which depends only on the applied voltage and the capacitance. The charge on the

capacitor plates takes on continuous values as the voltage source can be tuned in arbitrarily small

increments. More sophisticated techniques are required in mesoscopic systems to break up this fluid

into discrete droplets of charge one electron. The requirement is that we have a single electron

device. A second difficulty is the small signal size (1.6× 10−19C) of one electron which necessitates

an ultra-sensitive detector. We will exploit the charge sensitivity of a RF-SET of 7× 10−5e/
√

Hz.

Because the signals for even small currents are quite fast, we work at this problem from both sides.

First we use the fastest, most sensitive electrometer. Second, we slow the currents down to be in the

detectable range of the RF-SET. We also want to be able to compare measurements with theoretical

predictions, so we limit the complexity of the design, looking for the simplest circuit that meets

these requirements.

A single electron device is a circuit that manifests charge quantization, or ”notices” when an

additional electron is added or removed. To break up the fluid into discrete droplets of charge, a

section of the circuit needs to be separated from the long metallic leads. This is done by fabricating

small ( 100 nm × 1µm) metallic islands. Second, there must be a way to add or remove charge

24
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from the area in question. If this is not the case, then the charge on the island is always just the

continuous polarization charge from neighboring voltage sources which are capacitively coupled to

the island. This is done in metallic systems with tunnel junctions, which are comprised of two layers

of metal separated by a thin insulating layer, in our case Al:AlOx:Al. The total capacitance, C,

of the island can be small enough so that the energy required to add an additional electron to the

island, e2/C, is large compared with the temperature of the system. The junction itself should be

thought of as a capacitor with a finite number of conduction channels. If the junction separating

the island from the leads has a resistance much larger than the resistance quantum RK = h/e2,

then the wavefunction of the electron will be localized to the island. When these two conditions

together are met, the charge on the island is a good quantum number and takes on integer values n

[MATVEEV1991, Devoret1992, Grabert1992].

This chapter will review the single electron box, which is a building block of more complex single

electron circuits. Many experiments in mesoscopic physics and quantum computation are based on

the single electron box. From there, we will analyze more complicated single electron circuits such

as the single electron transistor and the single electron trap. This chapter focuses on the box and

the trap, and the next chapter will cover the single electron transistor. This will provide the tools

with which we can study the statics and then the dynamics of the electrons in these systems.

2.1 The Single Electron Box

The simplest single electron circuit is the single electron box, shown in Figure 2.1, consisting of

a small metallic island connected to a gate voltage through a capacitor and to ground through a

tunnel junction. The box is characterized by the charging energy which is defined to be the energy

required to add one excess electron to the island, EC = e2

2CΣ
, where CΣ is the sum capacitance of

the island1. In the single electron box, this is just the sum of the gate capacitor and the junction

capacitance, Cj + Cg. A typical single electron box could have a charging energy in the range of

1-3K whereas 30 mK is a temperature easily reached in a dilution refrigerator.

The total electrostatic energy of the circuit is the sum of the energy from the discrete charge

states plus the energy added by the voltage supply through the gate capacitor

E = EC(n− ng)2 (2.1)

1Charging energies will be written in terms of equivalent temperatures, for example EC = 1 K is used only as a
shorthand for EC/kB = 1 K.
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Figure 2.1: Circuit diagram for the single electron box. The box consists of a metallic island
coupled to a reservoir through a tunnel junction with capacitance Cj and resistance Rj . The total
electrostatic energy of the box is determined by the integer number of excess electrons on the box
island, n, and the continuous applied gate charge ng = CgVg/e.

where ng is the polarization charge added through the gate capacitor, ng = CgVg/e. The energy level

diagram is shown in Figure 2.2. The discrete charge states, n, give energy levels which are a series of

n
=
0

n
=
1

n
=
-1

Figure 2.2: Energy levels of the single electron box. The Coulomb energies for several values of the
charge state on the box, n, are plotted as a function of applied gate charge. The points at which
these curves cross are the charge degeneracy points, at which the charge on the box will increment
by one electron, to remain in the ground state.

parabolas as a function of gate charge that cross at the charge degeneracy points, ng = 1/2, 3/2, . . ..

In the absence of thermal or quantum fluctuations, the charge on the box increases in a stepwise

fashion by one electron at exactly these charge degeneracy points. This staircase is the stability

diagram for the trap as it indicates the ground state of the circuit as a function of the control gate.

At finite temperature, thermal fluctuations allow excursions out of the ground state. The average
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charge on the island is then described by a Boltzmann weighted average of charge states

〈n〉 =

∞∑
n=−∞

n exp(−En/kBT )

∞∑
n=−∞

exp(−En/kBT )

(2.2)

Away from the zero temperature limit, the average charge is no longer discretely quantized and the

staircase becomes broadened. We can rewrite this formula in terms of a dimensionless parameter χ.

χ =
2kBT

EC
(2.3)

〈n〉 =

∞∑
n=−∞

n exp(−2χ(n− ng)2)

∞∑
n=−∞

exp(−2χ(n− ng)2)

(2.4)

Plotting 1/χ versus the temperature give us a way to fit the measurements to extract the charging

energy of the box and observe any electron temperature saturation at low temperatures. Figure 2.3

shows a plot of the Coulomb staircase for several values of χ, which was first measured by Lafarge, et

al. [LAFARGE1991] at Saclay in 1991. Note that even though the average charge n is not quantized
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Figure 2.3: Coulomb staircase for several values of the dimensionless parameter χ. The average
charge on the box island is plotted as a function of applied gate charge ng = CgVg/e. Note that at
χ = 2, the temperatures is equal to the charging energy.
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at finite temperatures, the instantaneous charge n remains quantized. For example, at ng = 1/2, we

would measure 〈n〉 = 1/2, but the charge on the box is rapidly switching between 0 and 1, spending

an equal amount of time in each state. The typical rates in this circuit are always in the range of

50 MHz - 1 GHz regardless of temperature, which is too fast to be able to time resolve the single

tunneling events. In addition to the thermal fluctuations in this circuit, there are also quantum

fluctuations, or cotunneling. I will discuss this in more detail for the single electron trap in Chapter

5, it should be noted that they also occur in the box and have been measured to high precision by

Lehnert, et al [Lehnert2003]. I will discuss the details of the rate calculations in Chapter 4, and

we will find that we need a more complex circuit to slow the electrons down to the range that is

measurable with the RF-SET (discussed in detail in Chapter 3). In the next section, I will introduce

the single electron trap which has rates that are tunable down into a measurable range.

2.2 Statics in the Single Electron Trap

The single electron trap circuit is the next level up in complexity from the single electron box. The

trap, shown in Figure 2.4a, consists of an intermediate island with charge nIsl and a trap island with

charge nTrap. This circuit has two gate voltages to bias these islands, each applying gate charges
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Figure 2.4: a) Circuit diagram of the single electron trap. b) Energy level diagram as a function
of trap gate charge ngT at island gate charge ngI = 0 showing the four lowest charge states for the
trap near the trap energy degeneracy point ngT = 1/2 normalized by the trap charging energy. This
is calculated for a circuit with trap charging energy 0.7 K and island charging energy 2.5 K. c) The
charge configuration space picture of the trap shows how the electrons must go up hill both ways to
reach the trap.
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ngi = CgiVgi/e. The energy level diagram for a trap with ECIsl = 2.5 K and ECTrap = .7 K at a

gate charge ngI = 1/2 is shown in Figure 2.4b as a function of ngT . This diagram has a parabolic

shape similar to that of the box but with one important difference. The presence of the intermediate

island adds an additional energy level that the electrons must overcome. Electrons can be added

onto the trap island in one of two ways. One possibility is that an electron can tunnel first onto the

intermediate island and then onto the trap island:

(nIsl, nTrap) = (0, 0) → (1, 0) → (0, 1) (2.5)

The other possibility is that the order of the tunneling events can be reversed with an electron

tunneling from the island to the trap, and another electron tunneling from the reservoir onto the

island:

(nIsl, nTrap) = (0, 0) → (−1, 1) → (0, 1) (2.6)

At the trap charge degeneracy point, ngT = 1/2, each of these paths corresponds to tunneling into

an energetically forbidden level, shown in the charge configuration picture (Figure 2.4c). The same

is true for the reverse rate to tunnel from the trap back to the reservoir, so the electrons must travel

up hill both ways on and off of the trap island.

The time averaged behavior of the trap is similar to the single electron box, except that the

stability diagram has a third dimension which is the extra gate. The stability diagram of charge as

a function of each gate forms a hexagon pattern which is shown for the idealized zero temperature

limit in Figure 2.5. The hexagon pattern of charge is closely related to the well-known hexag-

onal patterns in conductance previously observed in single-electron pumps [POTHIER1992] and

turnstiles [URBINA1991] as well as those observed in double quantum dots [Wiel2003, Chan2003,

Fujisawa2006, Sigrist2006]. The boundaries between the hexagons are the locations in the gate bias

space where the charge on one of the two islands changes by one, and the hexagons can then be

identified by the indexing (nisl, ntrap) shown. As with all metallic single electron devices, the actual

number of electrons on each island is very large, so the choice of zero is arbitrary. This pattern also

provides a mapping of the gate settings to allow us to correctly bias the circuit.

Measuring the average charge on the trap island as a function of ngT at ngI = 0 gives the

Coulomb staircase as was shown in Figure 2.3 for the box. The tunneling rates in the trap become

significantly slower than those in the box at the degeneracy point due to the fact that there is an

energetically forbidden state between the cells of the honeycomb. Because of the extra island, the
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Figure 2.5: Idealized zero temperature stability diagram of the single electron trap. Plotted is the
ground state of the single electron trap as a function of both gate voltages. The lines of the hexagons
correspond to the locations in gate charge where the charge on one of the islands changes by one
electron. This model is calculated for a trap circuit with trap charging energy of 0.7 K and island
charging energy of 2.5 K.

characteristic rates for this circuit can be brought down into the range of 500 Hz-1 MHz which is

slow enough to be detected with the RF-SET. The rates depend on energy differences between the

charge states which are determined by the charging energies of the islands and the settings of the

gate voltages. Our ability to tune the rates within this range will be determined both by our circuit

design and by our ability to tune the gate voltages with some precision.

To go beyond the many experiments that measure statics in these systems, one needs to develop

an understanding of the dynamics. The other important aspect of the experiments will be the charge

detection, implemented using the RF-SET. Chapter 3 introduces the single electron transistor and

the techniques used for rapid charge measurement. Also presented are figures of merit for judging the

viability of detection of single tunneling events in various circuits based on sensitivity and maximum

detectable tunneling rates.



Chapter 3

Charge Detection with the
RF-SET

3.1 Introduction to the Single Electron Transistor

The single electron transistor (Figure 3.1) consists of two ultra-small tunnel junctions (50× 50 nm)

with resistances R1,2 >> RK in series with a small metallic island (100 nm×1 µm). This device was

first proposed in 1986 by Averin and Likharev [AVERIN1986], and the first experimental realization

was in 1987 at Bell Laboratories by Fultan and Dolan [FULTON1987]. We call this device a single

n

Vg

Vds

I
ds

N
2

C
g

C
j1
,R

1

C
j2
,R

2

N
1

Figure 3.1: The circuit diagram of the SET. The SET consists of two small tunnel junctions in series
with an island between them. Current, Ids, flows through the transistor. The charge state of the
island takes on discrete values, n, and electrons tunnel on and off of the island one by one. The
number of electrons that have tunneled through the first and second junction are N1 and N2.

electron transistor because the current flow through the device is modulated by a gate voltage.

We borrow the nomenclature from field-effect transistors (FETs) and say that it is voltage biased

through the drain and grounded through the source and the electrostatic energy of the circuit is

adjusted through a gate coupled nearby. At temperatures lower than the charging energy of the SET,

31
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electrons flow one by one from source to drain. The SET functions much like the single electron

box at Vds = 0. The number of excess electrons on the SET island, n, changes when electrons

tunnel through either junction. The total number of electrons that have tunneled through each of

the junctions are N1 and N2. We can write this in terms of a charge advance number k, which will

allow us to write down the current through the transistor:

k =
N1 + N2

2
(3.1)

Ids = e

〈
dk

dt

〉
(3.2)

Just as in the trap and the box the number of electrons on the island switches between two charge

states:

n → n + 1 → n → n + 1 → n → n + 1 . . . (3.3)

In the SET the frequency of tunneling events is related to the total drain-source current, f=I/e ∼
GHz. This is too high to time resolve, but we will exploit other properties of the SET, using it as a

fast sensitive electrometer in order to detect single tunneling events on the trap.

Electrons can only tunnel onto the SET island when it is energetically allowed. The total

electrostatic energy of the SET depends on n, the drain-source voltage Vds, and the applied gate

charge ng = CgVg and is given by

E = EC(n− Cj1Vds/e− ng)2 (3.4)

plus terms that do not depend on the number of electrons on the island which have been dropped

(energy differences between states determine whether or not tunneling will occur, so the other terms

will cancel out). With no applied gate voltage, at Vds = 0, tunneling is energetically forbidden and

we have what is called Coulomb blockade. This is shown in the center region of the blue curve in

Figure 3.2. This blockade can be lifted with the correct potential applied to any nearby electrode

or gate allowing current to flow through the SET, turning on the transistor. The potential required

is e/2Cg or half of an electron of gate charge qg = CgVg. The maximum and minimum values of

the blockade are shown in Figure 3.2, which determines the amount of modulation in a current

measurement taken at a particular bias point. Just as in the box, the gate charge is a continuous

variable, and the behavior of the SET is periodic in gate charge, with a periodicity of one electron.

Figure 3.3 shows the current through the SET as a function of Vg.
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Figure 3.2: Drain-source current, Ids through the SET measured as a function of drain-source
voltage, Vds. At zero applied gate charge, Qg = 0, around Vds = 0, tunneling is energetically
forbidden, so no current can flow, and we have what is called Coulomb blockade (blue curve). This
blockade can be lifted with the correct applied gate charge, Qg = e/2, shown in red, and the I-V
curve becomes nearly linear. A particular bias point is indicated by the arrow where the current
through the SET is dependent on any changes in the applied gate charge, and the SET can be
operated as an electrometer. This particular curve is for an SET with a normal state resistance
RN = 90kΩ.
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Figure 3.3: Drain-source current through the SET measured as a function of gate voltage. The gate
capacitance can be calibrated using the fact that the SET signal has a period of 1 electron. The
SET is used as a sensitive electrometer when it is biased anywhere there is a measurable slope in
the current as a function of gate voltage.
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The high sensitivity of the SET current to gate charge, or any charge coupled nearby is what

allows the SET to act as a sensitive electrometer. Figure 3.4 shows an example of this with the SET

capacitively coupled to the island of a single electron box. A typical SET measurement detects a

n
B

n
S

VgB VgS

VdsC
gB

C
C

C
gS

Figure 3.4: The SET capacitively coupled, via CC to a single electron box. The blue lines denote
box island with nB electrons and the red lines denote the island of the SET with nS electrons. The
green dot indicates the signal being measured by the SET, which is a single electron tunneling onto
the box island.

change in potential corresponding to a gate charge of approximately 10−4 e/
√

Hz. The high output

impedance, which is at least on the order of RK = h/e2 ∼ 26 kΩ, however, limits measurements to

the kHz range. The next section will discuss high frequency measurement techniques that increase

both the bandwidth and the sensitivity of the SET.

3.2 High frequency measurements

The long RC time due to the high impedance SET and capacitance of the cables limit measurements

to the kHz range of measurement frequencies. The low frequency operation of these devices also

limits their sensitivity, since measurements are made in the rage of high 1/f noise due to the motion

of charge impurities in the substrate and tunnel barriers. The radio frequency SET (RF-SET)

measurement technique works around these both of these problems by embedding the SET in a

resonant LC circuit (shown in Figure 3.5) [Schoelkopf1998]. With this setup, we measure the change

in damping of the resonant circuit due to changes in drain-source current through the transistor.

Measuring the reflected power is an analogous to measuring the conductance through the device.

This device has demonstrated measurement bandwidths of greater than 100 MHz. The sensitivity is

also greatly improved, giving charge noise measurements as low as 5× 10−6 e/
√

Hz [Devoret2000].

Faster bandwidth equates to shorter integration times, which also improves the sensitivity.

The response of the SET circuit as a function of Vds and Vg is shown in Figure 3.6. This is
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Figure 3.5: Schematic of the RF-SET with microwave circuitry. The single electron box is capac-
itively coupled to the SET just as in the previous figure. The high frequency measurements are
performed with the SET embedded in an LC resonant circuit.

known as the Coulomb diamond. The black areas of the figure indicate low conductance and the

SET is blockaded in a single charge states within these diamonds. The white numbers indicate the

charge on the SET in these regions. The slant in the diamond pattern, indicated by the ratio of

slopes of the green dashed lines in the figure, indicates the degree of symmetry of the capacitances of

the two junctions. The SET can be biased anywhere on this diagram where there is a color change

in the horizontal direction. Those are the locations where the SET is sensitive to small changes in

gate voltage and can thus be used as an electrometer. A particular choice for the operating point is

indicated by a white dot in Figure 3.6.

The important quantity in this measurement is the strength of the coupling capacitor which

is the amount of polarization charge induced on the SET island due to a change of one electron

on the capacitively coupled circuit such as the single electron box. The signal size is qsig = κe,

where κ = CC/CSΣ (see Figure 3.4) is the dimensionless coupling ratio of the coupling capacitance

of the two islands to the sum capacitance of the box island. A typical coupling strength of 10%

allows for resolution of single tunneling events in the time domain with a signal to noise ratio of

1 with a maximum bandwidth Bmax = κ2/Sq ∼ 2 MHz, if we assume a charge sensitivity of

7 × 10−5e/
√

Hz1. This number Bmax=2MHz will serve as a high frequency cut-off for evaluating

the feasibility of measurements of time resolved tunneling events in various circuits. We will look for

a circuit that has tunneling in a range of frequencies that are far below this maximum bandwidth.
1Note that the units here are not Coulombs2/Hz, but e2/Hz, which gives the correct dimensionality for the

bandwidth.
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Figure 3.6: Coulomb diamond of the SET. Reflected power is plotted as a function of drain source
voltage Vds and SET gate charge, showing areas of conductance (blue-white) and areas of Coulomb
blockade (black). Within these black diamonds, the SET is blockaded in a single charge state, and
the white numbers indicate the charge on the SET island in these regions. The ratio of the slopes of
the two green lines can be indicates the amount of capacitance asymmetry between the two tunnel
junctions. The SET is sensitive to changes in gate voltage anywhere in the diagram where there is a
color change in the horizonal direction. One particular operating point of the SET as an electrometer
is indicated by the white dot.
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More specific details of the RF measurement setup will be given in Chapter 7. Now that I have

introduced the RF-SET, I will use the terms SET and RF-SET interchangeably and future references

to the SET should not be confused with the dc-SET.

3.3 Measuring the Charge on the Single Electron Box

This section outlines the process of using the RF-SET as an electrometer to measure the average

charge on the single electron box. It will be important to understand the mechanics of the measure-

ment process to be able to evaluate the feasibility of measuring proposed circuits. I have already

stated, and will show in Chapter 4, that the tunneling rates in the box are too fast to be time

resolved by the SET. Nonetheless it is important to see how the number of islands in the problem

affects the complexity of the measurements.

The circuit diagram shown in Figure 3.1 does not tell the whole story of the box-SET coupling.

Realizing this circuit diagram in an actual thin-film circuit results in extra capacitances not typically

drawn into the diagram. Figure 3.7 shows the more complete circuit diagram with the added parasitic

capacitances and Figure 3.8 is an SEM micrograph of a real device. The procedure for measuring

VgB VgS

VdsC
B

C
BS

C
SB

C
C

C
S

Figure 3.7: The full circuit diagram of a single electron box coupled to a single electron transistor.
The extra capacitances in this diagram, CSB and CBS , are parasitic, or unwanted, cross capacitances
of the gates to the opposite islands and have to be cancelled out in the operation of the experiment.

the charge on the box is to sweep the applied box gate charge and measure the response of the

SET. We are unable to fabricate isolated gates that bias each island independently (see Chapter

6 for more details), so when the box gate is swept, it changes the operating point of the SET. A

measurement that keeps the operating point of the SET constant involves finding the capacitance
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Box SET

Box Gate SET Gate

Figure 3.8: SEM micrograph showing a single electron box coupled to a single electron transistor
fabricated at Yale by Johannes Majer. In this device, the capacitive coupling of the box gate to the
box is nearly equal to that of the box gate to the SET. Independent biasing of the gates requires
the gate biasing procedure described in the text.

matrix of the circuit and applying a gate voltage to the SET island to cancel the effects of the direct

capacitance from the box gate to the SET island. The total charge applied to the two islands by

the gate voltages is given by:

(
qgS

qgB

)
=

(
CS CBS

CSB CB

) (
VgS

VgB

)
(3.5)

The gate charges are more typically expressed in terms of number of electrons ngSET = qgSET /e, or

(
ngS

ngB

)
=

1
e

(
CS CBS

CSB CB

)(
VgS

VgB

)
(3.6)

Starting out, all of the elements of the capacitance matrix are unknown. Simulations provide us

with a starting point (see Chapter 6), but we require a much more precise characterization of the

circuit in order to proceed. This formulation will be done assuming CC is small enough that the

signal qsig from electron tunneling is a small perturbation on the SET response.

The first step is to find the capacitance of the SET gate to the SET island (CS). To do this, we

apply a voltage ramp corresponding to several electrons in gate charge to the SET gate and measure

the reflected power as a function of time. The applied voltage ramp and the measured reflected
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Figure 3.9: a) The applied gate voltage VS is plotted as a function of time on the right axis while the
measured reflected power signal is plotted on the left axis. b) Plotting these two quantities against
each other gives the SET transfer function. The periodicity of the signal is one electron, and we find
the SET gate capacitance CS = 32 aF .
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power signal are shown in Figure 3.9a. We can re-plot this as SET response (reflected power) as a

function of applied gate charge (Figure 3.9b). The SET response as a function of gate is called the

SET transfer function. The periodicity is one electron, from which we can calibrate the SET gate

capacitance. We repeat this measurement to find the capacitance of the box gate to the SET island,

applying the voltage sweep to the box gate and measuring the response of the SET. We then have

two elements of the capacitance matrix, CS and CBS .

To find the capacitances of each gate to the box island we apply a voltage sweep of magnitude

VgBox = VB and cancel this gate on the SET with a voltage sweep of −CBS

CS
VB . Plugging these

into equation 3.6, we see that the SET charge remains constant allowing us to stay at the sensitive

operating point:

(
ngS

ngB

)
=

1
e

(
CS CBS

CSB CB

)( −CBS

CS
VB

VB

)
=

1
e

(
0

VB

(
CB − CSBCBS

CS

)
)

(3.7)

The signal measured on the SET will be due to the changing average charge on the box island.

The resulting graph is a sawtooth, shown in Figure 3.10. We get this function because the average

DV
STS

DV
B

Figure 3.10: The raw measurement of the sawtooth for the single electron box. The single electron
box has a periodicity of one electron, ∆VB = 1e. The second sawtooth comes from shifting the SET
gate by a small amount ∆q and measuring the resulting sawtooth shift (STS) ∆VSTS .

behavior of the box is that the capacitor is charged by the gate voltage increasing the potential on

the box island until an electron tunnels at the charge degeneracy point and the box is reset. Setting
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the period of the sawtooth, ∆VB , equal to one electron, we find

∆VB =
e

CB − CSBCBS/CS
(3.8)

This is not enough yet to get both capacitances out. We have two unknowns so we need one more

equation. Adding a small dc shift, ∆q, to the SET voltage shifts the sawtooth by a small amount

in apparent box gate voltage, VB = ∆VSTS .
(

ngS

ngB

)
=

1
e

(
CS CBS

CSB CB

)( −CBS

CS
VB + ∆q

CS

VB

)
(3.9)

=
1
e

(
∆q

CSB∆q
CS

+ VB

(
CB − CSBCBS

CS

)
)

(3.10)

∆VSTS = − CSB∆q

CSCB − CSBCBS
(3.11)

This gives us two equations with the last two capacitances as unknowns. Solving these for the last

two capacitances we have

CB = e

(
∆q − CBS ∆VSTS

∆q ∆VB

)
(3.12)

CSB = −e CS∆VSTS

∆q ∆VB
(3.13)

Now that we have each element in the capacitance matrix, we can sweep the box gate some

number of electrons while keeping the SET at a fixed bias. The end goal is a measurement of

average charge on the box as a function of box gate, but what is directly measured is the reflected

power signal from the SET as a function of box gate. The SET transfer function provides a mapping

between reflected power and charge on the SET, and we make a lookup table to map between these

two quantities (Figure 3.11). The resulting sawtooth is shown in Figure 3.12. From this measurement

we can infer the charge on the box and construct the Coulomb staircase,

QB =
ngBeκ−QSET

κ
(3.14)

The inferred staircase is shown in Figure 3.13, measured at several temperature.s

The number of elements in the capacitance matrix, all unknown, is equal to the square of the

number of islands in the circuit. The SET-box circuit has two islands and 4 unknown elements. We

measure the charge on the box directly with the SET and are able to determine all four elements.

The single electron trap has one island directly coupled to the SET, but the circuit has three islands

and three gates. The capacitance matrix contains nine elements, but since we do not have direct
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Figure 3.11: The raw measurement of the sawtooth for the single electron box and the mapping
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Figure 3.12: The sawtooth of the single electron box. Here we plot the charge on the SET as a
function of applied gate charge on the box.
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Figure 3.13: Measurements of a staircase of a single electron box with charging energy 1.6 K per-
formed by Konrad Lehnert at several temperatures.

access to the intermediate island, the determination of the additional elements becomes much more

complicated. If it is important to determine all of the elements of the capacitance matrix in order

to effectively perform an experiment, then it would be wise to limit the number of islands and gates

that must be characterized. Chapter 6 of this thesis goes into more detail on the design elements

of the trap experiment that aim to simplify the measurement process. But first, Chapters 4 and 5

discuss the rate calculations that will go into the circuit designs.



Chapter 4

The Sequential Tunnelling Model

4.1 Introduction

This chapter presents the framework for calculating the rates using the sequential tunneling model.

After an overview of the model, calculations will be shown for the single electron box and the single

electron trap. We will see at the end of this chapter that there is more to learn about the tunneling

rates, and this will take us to the next chapter which will discuss the quantum fluctuations. This

first order calculation is more straightforward, and will provide a first cut with which we can filter

out prospective circuits. We will compare results found in this chapter to the figure of merit for the

SET (SNR=1 < 2MHz) explained in the preceding chapter.

4.2 Orthodox Theory

The total tunneling rate across a junction will be calculated in the framework of the ”global

rule”, or ”orthodox theory” which was established by [NAZAROV1989, Devoret1990, Girvin1990,

GRABERT1991]. This framework has been widely used, for example, to calculate measurable

quantities such as the current-voltage characteristics of tunnel junctions at finite temperatures

[Devoret1990, INGOLD1991] and predict the backaction of the single electron transistor onto a

single electron box [Turek2005]. The global rule states that the probability for tunneling is a func-

tion of the entire state of the environment in which the circuit is embedded. In the case of the

experiments in this thesis, the impedance of the environment is small compared with the resistance

quantum, RK , and we will have a special case of the overall framework of rate calculations explored

in the references above. In this case, the first order calculations simplify to the rate calculated using

conventional techniques neglecting the coupling of the circuit to the environment (see e.g. Tinkham

44
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[Tinkham1996]). In this approach, we assume that tunneling occurs only through sequential tunnel-

ing events, and that multiple tunneling events, or cotunneling (explored in more detail in the next

chapter) are negligible. We also assume that the tunneling is an uncorrelated stochastic process.

The sequential tunneling rate depends only on the energy difference between the initial and final

states of the circuit before and after the tunneling event has occurred.

The rate for an electron to tunnel across a junction is calculated using Fermi’s golden rule. From

Sakurai [Sakurai1994], the rate for a transition between two single particle states i and f is given by

Γi→f =
2π

~
∑

f

|Tif |2δ(εf − εi) (4.1)

where |Tif | is the matrix element for this transition and εi and εf are the energies of the electrons in

the initial and final states. This expression is integrated over the total density of states
∫

Enρ(En)

available to a tunneling electron. In our case, for single tunneling events across a high impedance

(with respect to RK) tunnel junction in a low impedance environment, this matrix element is equal

to an average value describing the barrier. To obtain the total tunneling rate across the junction,

we assume that the density of states on each side of the junction is constant as a function of energy,

and integrate over all possible energies. The probability that there is a filled state on the left side

of the junction is just the Fermi function,

f(ε) =
1

1 + exp(−βε)
(4.2)

where β = 1/kBT , and the probability that there is an unfilled state on the right hand side is

[1− f(ε)]. The total tunneling rate across the junction from left to right is then

ΓL→R =
g

h

∫ ∞

−∞
f(ε)[1− f(ε′)]dεdε′ (4.3)

This expression can be integrated analytically yielding a Bosonic type expression, essentially the

rate to create an electron hole pair

=
g

h

∆E

1− exp(−β∆E)
(4.4)

where ∆E is the total energy difference between the initial and final states of the circuit and

g = h/e2Rj is the dimensionless conductance of the junction. A dimensionless conductance of

1 corresponds to a junction resistance of 25.8 kΩ. At zero temperature, tunneling is forbidden

for negative ∆En−n′ but at finite temperatures, tunneling becomes energetically allowed at even
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negative energy differences due to thermal fluctuations. Tunneling rates as a function of ∆En−n′

are shown in Figure 4.1, assuming g = 1.
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Figure 4.1: Orthodox theory tunneling rates as a function of the energy difference between charge
states n and n′ for g = 1. Increased temperature allows energetically forbidden transitions at
negative energy differences. At ∆En−n′ = 0, the rates are linear in temperature and go as gkBT/h.

4.3 Tunnelling Rates in the Single Electron Box

The total electrostatic energy in the single electron box is given by

E(n, ng) = EC(n− ng)2 (4.5)

and the rate to tunnel between two states n and n′ is written

Γ =
g

2π

∆En−n′/~
1− exp(−∆En−n′/kBT )

(4.6)

For temperatures that are small compared with EC , in the range of ng = [0, 1], we only need to

consider the two lowest energy states, with charge 0 and 1, as shown in Figure 4.2. At the charge

degeneracy point, ng = 1/2, we would measure the average charge on the box to be 〈n〉 = 1/2 (see

Figure 2.3) with n, the instantaneous charge on the box island, fluctuating rapidly between 0 and

1 with a 50% duty cycle. If we were able to time resolve this perfectly, we would see telegraph

noise that looked like Figure 4.3a. Moving away from this point would change the duty cycle as

shown in Figure 4.3b. This would slow one of the rates, but would significantly increase the other

toward the limit that the telegraph noise would resemble a series of delta functions. Tunneling
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2

Figure 4.2: Energy level diagram for the single electron box. The Coulomb energy is plotted as a
function of the applied gate charge ng = CgVg/e for four charge states of the single electron box.
The energy levels are quadratic in gate charge and cross at the charge degeneracy points.
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Figure 4.3: Charge fluctuations between two charge states, known as telegraph noise. a) Telegraph
noise at charge degeneracy with 50% duty cycle is the easiest to detect. b) Far from charge degeneracy
the rate to go from 0 to 1 is slower, but the reverse rate is much faster. The chance to miss events
in the detection scheme becomes higher.
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rates as a function of temperature are shown for a gate bias of 0.7e as a function of temperature

in Figure 4.4. The tunneling rate from the ground state to the excited state is suppressed at low

temperature, and can be made quite small, but this comes at the price of the return rate staying

at an almost constant high rate (500 MHz at 50 mK) for a box with charging energy EC = 0.7 K

and a dimensionless conductance of 0.1. The best case scenario for any detection scheme would be
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Figure 4.4: Tunneling rates as a function of temperature in the single electron box plotted at gate
charge ng = 0.7e. The rate to tunnel from the ground state to the excited state (in this case n=1
to n=0) is suppressed at low temperatures. This slow tunneling rate comes at the price of a high
reverse tunneling rate from the excited state back to the ground state that is nearly independent of
temperature. At 50 mK, this rate is still at 500 MHz. The charge on the box is almost always in
the ground state, with rare, short excursions into the excited state.

to have equal tunneling rates on and off the island, with the electrons spending a maximal amount

of time in either state. We will see that in all of the circuits, both rates are lowest at the charge

degeneracy point.

To calculate the rates, we find the energy difference between the two applicable states

E(1)− E(0) = EC(1− 2ng) (4.7)

E(0)− E(1) = −EC(1− 2ng). (4.8)

The tunneling rates between the 0 and 1 states for a box with EC = 0.7 K are shown as a function

of gate charge in Figure 4.5a1. Figure 4.5b shows the temperature dependence of the tunneling rates
1The charging energy of the box shown in this example is chosen for ease of comparison with the single electron

trap in the next section.
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at the charge degeneracy point. The rates are far above the 2 MHz cutoff at all temperatures which

a) b)

G
10

G
01

Figure 4.5: a) Orthodox theory tunneling rates for a single electron box with EC = 0.7 K and
g = 0.10 at 50 mK. b) The thermal rates in the box are plotted at the charge degeneracy point where
the forward and reverse rates are equal. At charge degeneracy, the rates are linear in temperature
and equal to gkBT/h. Tunneling events are too rapid to be detected by the single electron transistor
at any temperature.

we can see looking at the limiting behavior of the rate equation: as T → 0, Γ → g
∆En−n′

h and as

∆En−n′ → 0, Γ → g kBT
h . The rates are linearly dependent on the dimensionless conductance, which

in a metallic system is typically in the range 0.05− 1. Outside of this range, junction fabrication is

difficult to control. It is also a fixed number in experiments with tunnel junctions, in contrast with

a quantum dot with a tunable tunnel coupling.

4.4 Tunneling Rates in the single Electron Trap

The energy equation for the trap is slightly more complicated now that there are more islands

involved. Due to the addition of the extra island, there are cross terms that have to be considered.

Each piece of metal in the problem is considered to be a node. A simplified version of this picture

along with the circuit diagram for the trap ignoring cross capacitances are shown in Figure 4.6. The

cross capacitances will be be cancelled in the experiment, as outlined for the box in Chapter 4.

Following the formulation in [Lafarge1993], we write down the full capacitance matrix, C, for the
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Figure 4.6: Schematic for the single electron trap. a) Circuit diagram for the single electron trap. b)
Diagram showing the nodes used for the energy calculation. The red circles indicate the islands and
the blue boxes indicate voltage sources. Cross capacitances between nodes that are not shown are
assumed to be zero, which can be achieved through cancelling procedures similar to the one outlined
in Chapter 3.

single electron trap. The matrix elements are

Cii =
∑

i6=j

Cij (4.9)

Cij = −Cij (4.10)

where Cij is the direct capacitance between nodes i and j, where i, j are either islands or voltage

sources. In general, the capacitance matrix C links the potential of the nodes v to the charge of the

nodes q by

q = Cv (4.11)

where q and v are vectors containing the charges and voltages, respectively, of the nodes of the

circuit. The gate charges applied to the islands can be written as

q̃α =
∑

s

Cαsvs (4.12)

where s is the set of voltage sources and α are the islands.

I will drop terms in the energy equation that do not depend on the charges on the islands

because the rates depend only on energy differences between charge states2. We take the subset of

the capacitance matrix, C̃

C̃αβ = Cα,β (4.13)

for the set of α, β which are islands. The energy (including only the relevant terms) as a function of

the charge on each island is

E =
1
2

∑

α,β

C̃−1
αβ (nα − q̃α)(nβ − q̃β) (4.14)

2The more complete calculation that was done for the experiments in this thesis also includes the SET, which will
be neglected here for simplicity. A full expression of the energy including the SET is given at the end of Chapter 5 in
the discussion of the backaction of the SET
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For the trap, this is

E =
e2

2

(
C̃−1

1,1(nIsl − ngT )2 + C̃−1
2,2(nTrap − ngI)2 + 2C̃−1

1,2(nIsl − ngT )(nTrap − ngI)
)

. (4.15)

Analyzing this equation, we can see that the charging energy of the island is

ECIsl =
e2

2
C̃−1

2,2 . (4.16)

and for the trap

ECTrap =
e2

2
C̃−1

1,1 (4.17)

We can rewrite the total electrostatic energy as

E = ECTrap(nTrap − ngTrap)2 + ECIsl(nIsl − ngIsl)2 (4.18)

+ 2ECoup(nTrap − ngTrap)(nIsl − ngIsl)

where ECoup is the coupling energy between the two islands. This is similar to the single electron

box with the addition of the extra cross term, which comes in from the fact that the excess charge

one island acts as gate to the other island.

For temperatures that are low compared with the charging energies of both islands, kT <

ECTrap, ECIsl, we can calculate the rates considering the four lowest energy levels, shown in Figure

4.7, which are (nIsl, nTrap) = (0, 0), (1, 0), (−1, 1), and (0, 1).

Figure 4.7: Coulomb energy level diagram showing the four lowest energy levels for the single electron
trap, normalized to the charging energy of the trap, ECTrap. This energy level diagram is achieved
for a circuit with ECIsl = 2ECTrap = 2K and shown for an island gate bias at ngIsl = 0. The
intermediate states (1,0) and (-1,1) have a high energy cost.
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At ngIsl = 0, and ngTrap = 1/2, in order to change the charge state in the circuit from (0, 0) to

(0, 1), we must first go either through state (1, 0). An alternative is to tunnel through the second

junction first, taking the path (nIsl, nTrap) = (0, 0) → (−1, 1) → (0, 1). In order to transfer an

electron from the reservoir to the trap island, we must first overcome a higher energy intermediate

state. The rate for this process, which is energetically forbidden at zero temperature, is quite small.

The total time for an electron to tunnel is the sum of the time to tunnel onto the island (long) plus

the time to tunnel onto the trap (short). The second rate is very fast because the energy difference

is positive and large. The total rate will be low since it is limited by the long time for the first

tunneling event. The tunneling rate for the process proceeding through the first path is given by ΓA

ΓA =
Γ(0,0)→(1,0)Γ(1,0)→(0,1)

Γ(0,0)→(1,0) + Γ(1,0)→(0,1)
(4.19)

The rate for the alternate path is given by ΓB

ΓB =
Γ(0,0)→(−1,1)Γ(−1,1)→(0,1)

Γ(0,0)→(−1,1) + Γ(−1,1)→(0,1)
(4.20)

This is again the addition of a slow rate and a fast rate, resulting in a slow net rate. In the rate

calculations above, we were computing the total rate for two tunneling events in series. The two

paths A and B add in parallel, so the total tunneling rate onto the trap island is the incoherent sum

of the two tunneling rates

Γ(0,0)→(0,1) = ΓA + ΓB (4.21)

The rate for electrons to tunnel off of the trap island, Γ(0,1)→(0,0), is an analogous calculation.

Tunneling rates for a trap circuit with island charging energy ECIsl = 2.5 K and trap charging

energy ECTrap = 0.7 K are shown in Figure 4.8 for 50 mK and 150 mK as a function of trap

gate charge, ngTrap. The temperature dependence of the rates at the charge degeneracy point is

shown in Figure 4.9. The effect of adding an intermediate island has the effect of significantly

decreasing the first order sequential tunneling rates both as a function of gate and of temperature.

Sequential tunneling rates in the trap are exponentially suppressed, and at 50 mK are effectively

zero. This model is linear in the dimensionless conductance, g, which typically means that these

rates will dominate over those described by the next order in perturbation theory. In this case, that

is no longer true, and we must consider the next order, which is quadratic in g and involves the

simultaneous tunneling of two electrons. These quantum fluctuations are the subject of the next

chapter.
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Figure 4.8: Sequential tunneling rates for a single electron trap with g = 0.1, ECIsl = 2.5 K,
ECTrap = 0.7 K at two temperatures, 50 mK and 150 mK. The solid line represents the Γ(0,0)→(0,1)

and the dashed line represents the reverse rate, Γ(0,1)→(0,0). At 50 mK, there is an exponential
suppression of the tunneling rates. The rates for sequential tunneling in the trap remain at levels
measurable by the SET until above 150 mK, a relatively high temperature in these systems.
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Figure 4.9: Temperature dependence of sequential tunneling rates at the charge degeneracy point
for the second island in a single electron trap with g = 0.1, ECIsl = 2.5 K, ECTrap = 0.7 K.



Chapter 5

Cotunnelling Theory: Higher
Order Quantum Events

5.1 Introduction

The orthodox theory calculations detailed in the last chapter showed that the tunneling rates in

the trap become quite small at low temperatures. These rates are linear in the dimensionless

conductance, g, and are typically the dominant tunneling process. When these rates are completely

supressed, however, we have to go to the next order, which is outlined in this chapter.

Cotunneling, in general, is the coherent tunneling of multiple electrons through multiple junc-

tions. It is essentially quantum in nature, as it involves the virtual occupation of intermediate,

energetically forbidden states. As long as energy is conserved overall, this process enables the decay

of locally stable configurations. In this chapter, I outline the calculation for the cotunneling rates

in the single electron trap. In this case, the process involves the tunneling of two electrons through

two junctions, creating in the process two electron-hole pairs. Unlike in orthodox theory, where the

rate of electrons to tunnel onto the trap island was a sum the rates of various independent tunneling

events, the total rate for cotunneling cannot be written as a sum of independent rates. Instead,

the two possible paths for cotunneling onto the trap island are added coherently, and cannot be

separated. Because it involves two electrons simultaneously tunneling through two junctions, the

cotunneling rate is quadratic in the dimensionless conductance. The calculation presented here fol-

lows the explanation of Averin and Nazarov in Chapter 6 of the Nato series book, Single Electron

Tunneling [Grabert1992].

Cotunneling was first described by Averin and Odintsov in 1989 [AVERIN1989], where it was

54
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used to explain the finite current measured in the blockaded region of single electron transistors later

measured by Geerligs et al. in 1990 [GEERLIGS1990] and Eiles in 1992 [Eiles1992]. It is a process

in which tunneling progresses through virtual occupation of energetically forbidden intermediate

states, rather than through the sequential tunneling model presented in Chapter 4. Calculations

of cotunneling rates in multi-junction circuits were performed by P. Lafarge and D. Esteve in 1993

to calculate the transition between the blockaded and finite voltage states of the single electron

transistor at zero temperature in a non-divergent way [Lafarge1993a]. Measurements have shown

agreement with these calculations in the case of a two dimensional electron gas electrometer in

the zero temperature limit [Pasquier1993]. Additionally, calculations of the cotunneling rates in

multijunction pumps have been performed [Martinis1994, Keller1998, Kautz1999, Kautz2000], but

comparisons with measured rates have revealed that cotunneling is not the dominant source of errors

in these systems. More recently, experiments by Lehnert et al. have demonstrated measurements

of the quantum fluctuations in the single electron box [Lehnert2003]. Transport in the cotunneling

regime in quantum dots, which depends on the level spacing, has also been studied [Sigrist2006,

Golovach2004, Wegewijs2001]. There are no known experiments, however, that probe the dynamics

of the cotunneling process.

5.2 Cotunnelling in the Single Electron Trap

The cotunneling process in the single electron trap proceeds via one of two possible virtual inter-

mediate states. These are shown in the charge configuration space picture in 5.1. This can either

1,0

0,0 0,1

-1,1

0,0 0,1

I II

Figure 5.1: An illustration of the cotunneling process in charge configuration space. The result of
the process is a real tunneling event from the (0,0) state to the (0,1) state, with a intermediate
virtual excitation in either state I (1,0) or state II (-1,1).

start with a virtual tunneling event through the first junction to state (1,0) or through the second

junction to state (-1,1). In the first case, labelled I, there is a virtual electron excitation on the
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central electrode with energy ε1, while in the second case, labelled II, there is a virtual hole created

on the central electrode with energy ε3. The final real tunneling event leaves behind either a hole or

an electron with energies ε2 and ε4, so that the net result of the real tunneling event is an electron

hole pair excitation on the central electrode and a real electron on the trap island. A diagram illus-

trating these two cases is shown in Figure 5.2. Because of the virtual nature of these two processes,

I II

e
1

e
2

e
3

e
4

Figure 5.2: An illustration of the cotunneling process. In this diagram an electron tunnels from the
reservoir onto the trap island via one of two intermediate virtual occupations of the center island.
The energies indicate the final state of the cotunneling process. In the first path, I, there is a virtual
tunneling event across the first junction, creating a virtual electron on the intermediate island and
leaving a hole behind. In the second process, the first tunneling event is across the second junction,
creating a virtual hole excitation on the middle electrode, leaving an electron on the trap island.
The final process is the second tunneling event, which ends with a real electron on the trap island.

the two paths are indistinguishable and cannot be separated. We can write down an expression

for the tunneling rate using Fermi’s Golden rule. In this case we will have the matrix elements for

tunneling through each junction as well as an energy denominator due to the fact that these are

virtual transitions. These elements are then multiplied by the probability to find an electron state

ε1 and an unoccupied state ε2. These terms are then multiplied by equivalent terms for the alternate

process. We then integrate over all possible intermediate energies, resulting in the expression

γ =
~

2πe4Rt1Rt2

∫ ∞

−∞
dε1dε2dε3dε4f(ε1)(1− f(ε2))f(ε3)(1− f(ε4)) (5.1)

×
(

1
ε1 + ε2 + EI

+
1

ε3 + ε4 + EII

)2

δ(∆E − (ε1 + ε2 + ε3 + ε4))

where

EI = E(1, 0)− E(0, 0) (5.2)

EII = E(−1, 1)− E(0, 0) (5.3)

∆E = E(0, 1)− E(0, 0) (5.4)
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EI and EII are the energy costs for each of the intermediate states, and ∆E is the total energy differ-

ence between the initial and final states. The total electrostatic energy of the trap is E(nIsl, nTrap),

which was defined in Chapter 4. At zero temperature, this integral can be solved explicitly and the

tunneling rate is given by

γ =
g2

4π2h




(
1 +

2
∆E

EIEII

EI + EII + ∆E

) 
 ∑

i=1,2

ln(1 + ∆E/Ei)


− 2


 ∆E (5.5)

which is plotted as a function of trap gate in Figure 5.3. The cotunneling process will only occur if
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Figure 5.3: Cotunneling rates for the trap at zero temperature. The tunneling rates at zero tem-
perature diverge at the charge degeneracy point where the energy difference between the two charge
states goes to zero. If the total energy difference between the initial and final state is less than zero,
the process will not proceed. This means that only the rate to tunnel from the excited state to the
ground state is defined at zero temperature. This would also be true for orthodox theory.

there is an overall energy gain. At zero temperature, there is no thermal activation of cotunneling,

and there will rate is only defined for tunneling from the excited state to the ground state. At energy

degeneracy, or for negative energy difference, there is no rate defined for cotunneling, and the rates

diverge to zero.

At finite temperatures, we must work to simplify the integral expression and integrate it numer-

ically. Making use of the relation
∫ ∞

−∞
f(E)(1− f(E + x))dE =

x

1− e−βx
(5.6)



CHAPTER 5. COTUNNELLING THEORY: HIGHER ORDER QUANTUM EVENTS 58

we can rewrite this expression as

γ =
~

2πe4Rt1Rt2

∫ ∞

−∞

E

1− exp(−βE)
E′

1− exp(−βE′)
(5.7)

×
(

1
E + EI

+
1

E′ + EII

)2

δ(∆E − E′ − E)dEdE′

where E and E′ are the energies of the electron-hole pairs created in this process. The energy

denominator contains a real divergence for certain high energies of the intermediate states. We can

remove this divergence by taking into account the finite lifetimes of the intermediate states. The

correct way to add these in would be to go to higher orders in perturbation theory, but to first order,

I will calculate these using the sequential tunneling model (see Chapter 4), to find the tunneling

rates out of each virtual intermediate state. These rates are given for each process as Γ1 and Γ2

where

Γ1 = Γ(1,0)→(0,0) + Γ(1,0)→(0,1) (5.8)

Γ2 = Γ(−1,1)→(0,0) + Γ(−1,1)→(0,1) (5.9)

and Γ is just the equation for first order, sequential tunneling. Adding in the lifetimes of the

intermediate states changes the energy denominator term in the following way1

1
E + EI

→ E + EI

(E + EI)2 + (~Γ1)2
(5.10)

1
E′ + EII

→ E′ + EII

(E′ + EII)2 + (~Γ2)2
(5.11)

The final integral expression we are left with is then

γ =
~

2πe4Rt1Rt2

∫ ∞

−∞

E

1− exp(−βE)
E′

1− exp(−βE′)
(5.12)

×
(

E + EI

(E + EI)2 + (~Γ1)2
+

E′ + EII

(E′ + EII)2 + (~Γ2)2

)2

× δ(∆E − E′ − E)dEdE′

This expression is plotted as a function of trap gate charge at 50 mK in Figure 5.4 and as a function

of temperature in Figure 5.5 using the expected parameters for the devices measured for this thesis.

The total rate calculated using this method is not highly dependent on the exact value for the

lifetimes of the intermediate states. As long as the inverse lifetimes are small enough, they do not

affect the final answer as shown in Figure 5.6, where the tunneling rate in the trap (calculated at a



CHAPTER 5. COTUNNELLING THEORY: HIGHER ORDER QUANTUM EVENTS 59

10
-11

10
-10

10
-9

10
-8

T
u

n
n

e
lin

g
 R

a
te

 [
s

-1
]

0.80.70.60.50.40.30.2
ngTrap [e]

10
3

10
4

 50 mK OT
 50 mK Cot.

Figure 5.4: The top curve shows the cotunneling rates for the trap at as a function of gate voltage
for a device at 50 mK. These calculations are for a trap with charging energy 0.7 K, island charging
energy of 2.5 K, and dimensionless conductance g=0.1.
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Figure 5.5: The top curve shows the cotunneling rates for the trap at as a function of temperature.
These predictions are for an island bias of ngIsl = 0 and trap bias of ngTrap = 0.55 for a trap with
charging energy 0.7 K, island charging energy of 2.5 K, and dimensionless conductance g=0.1. Also
plotted are the Orthodox theory rates for the same bias conditions.
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Figure 5.6: Tunneling rate of the trap calculated at the charge degeneracy point at 50 mK as
a function of the inverse lifetime of the intermediate state. The divergence in the cotunneling
calculation is removed by considering the finite lifetime of the intermediate state, which comes into
the energy denominator as ~ times the rate to tunnel out of the intermediate state. The equations
are not dependent on the value of this quantity until it starts to dominate the energy denominator.

particular gate voltage) is plotted as a function of this inverse lifetime. I will present measurements

and results from two specific devices, called A and B in Chapter 8, and the parameters used for

cotunneling rate curves correspond to these two devices.

5.3 Incorporating the Backaction of the SET

The backaction of the SET also contributes to the shape of the rate curves. For the two devices that

have been measured, the forward and reverse couplings for each device to the SET are shown in table

5.1. The forward coupling corresponds to the strength with which the SET measures the trap island,

or what percentage of each trap electron is coupled to the SET island, and is given by CC/CΣTrap.

The reverse coupling is the strength with which the trap measures the SET island, or how much the

potential of the trap is shifted with an additional electron added to the SET island. The reverse

coupling is given by CC/CΣSET . Device A was not coupled strongly enough to the SET to allow for

time resolved measurements of single tunneling events. Device B was much more strongly coupled
1The calculation presented here is a result of private conversations with Aashish Clerk at McGill. Similar methods

for removing this divergence are presented in Lafarge et al. [Lafarge1993a].
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κTrap = CC/CΣTrap κSET = CC/CΣSET

Device A 2.3% 10%
Device B 10.3% 23%

Table 5.1: Forward and reverse coupling for the two devices measured in this thesis. The size of
the signal is determined by κTrap, which was much larger in device B than in device A. This comes
at the price of the reverse coupling, which is also much higher in device B than in device A. The
reverse coupling is the percentage on electron on the SET island that couples to the trap island.

to the SET, but this comes at a price of a much higher reverse coupling, and more backaction from

the SET. As long as the tunneling rates of the electrons on and off of the SET island are much

faster than the tunneling rates on the trap, we can just use a simple weighted average of the trap

tunneling rates with the SET having 0 and 1 electrons. The change in charge of the SET island

by one electron acts as an effective gate bias for the trap island, shifting the rate curves slightly

with respect to the ngTrap axis. The rate of tunneling on and off of the trap island is calculated for

the two possible charge states of the SET. We then add them together, weighting each rate by the

probability of the SET to be in that particular charge state, given the bias conditions of the SET

and the initial charge state of the trap. The total tunneling rate of the trap between charge states

(0,0) and (0,1) is

Γ(0,0)→(0,1) = Γ(0,0)→(0,1)|nSET =0P0 + Γ(0,0)→(0,1)|nSET =1P1 (5.13)

The first term is the tunneling rate from (0,0) to (0,1) given that the charge on the SET is 0,

multiplied by the probability that the SET island has 0 excess electrons. The second term is

calculated given that the SET is in the 1 state. The reverse rate is given by an analogous equation.

The probabilities to find the SET in the 0 or 1 states are calculated using the sequential tunneling

model to calculate the tunneling rate between the two states, 0 and 1. The probabilities are then

given by detailed balance

P0 =
Γ1→0

Γ0→1 + Γ1→0
(5.14)

P1 =
Γ0→1

Γ0→1 + Γ1→0
(5.15)

We also must account for the RF-bias of the SET with a maximum voltage Vmax centered around

Vds = 0, so we calculate these probabilities as a function of voltage, e.g. P0(V ), multiply by the

probability of that voltage P (V ), and integrate over the range of voltages. This gives the total
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probabilities for the 0 and 1 states

P0 =
∫ Vmax

−Vmax

P0(V )P (V ) (5.16)

P0 =
∫ Vmax

−Vmax

P1(V )P (V ) (5.17)

where

P (V ) =
1
π

1√
V 2

max − V 2
(5.18)

The full electrostatic energy equation including the SET as well as the trap circuit is given by

E = ECTrap(nTrap − ngTrap)2 + ECIsl(nIsl − ngIsl)2 (5.19)

+ ECSET (nSET − ngSET − CjSET Vds/e)2

+ 2ECoupTI(nTrap − ngTrap)(nIsl − ngIsl)

+ 2ECoupST (nTrap − ngTrap)(nSET − ngSET − CjSET Vds/e)

− peV

where CjSET is the junction capacitance of the SET, ECoupTI is the coupling energy between the

trap and the island, and ECoupST is the coupling energy between the SET and the trap. The last

term, −peV , corresponds to the work done by the voltage source for p electrons to tunnel through

the SET circuit. All of the other terms were introduced in Chapter 4.

The cotunneling rates including the backaction are plotted as a function of trap gate charge in

Figure 5.7 and as a function of temperature in Figure 5.8. The original calculations, not including

the backaction, are shown for comparison.
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Figure 5.7: Cotunneling rates for the trap with and without the backaction of the SET as a function
of trap gate. These predictions are for an island bias of ngIsl = 0 and trap bias of ngTrap = 0.55 for
a trap with charging energy 0.7 K, island charging energy of 2.5 K, and dimensionless conductance
g=0.1.
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Figure 5.8: Cotunneling rates for the trap with and without the backaction of the SET as a function of
temperature. These curves are for a trap gate bias slightly away from charge degeneracy at ngTrap =
0.55 for a trap with charging energy 0.7 K, island charging energy of 2.5 K, and dimensionless
conductance g=0.1.



Chapter 6

Circuit Design and Fabrication

6.1 Overview

The samples used in the experiments presented in this thesis are created using standard techniques

for electron beam lithography and double angle aluminum evaporation [Dolan1977]. The majority

of this chapter will focus on the elements of the process that proved to be important for fabricating

my samples in particular, but I will outline the entire process. I will start by discussing the specific

requirements for this experiment as well as useful design considerations. Then I will present my

fabrication process. The important elements for this process were careful circuit design, as the

experiment requires somewhat specific ratios for the capacitances in the problem as well as a stable

method for fabricating the small junctions I required. The specifics of the recipes are detailed in

appendix A.

6.2 Design Considerations

The tunneling rates in the trap experiment depend on energy differences between charge states

and the detection sensitivity depends on the SET parameters as well as the coupling between the

trap and SET islands. Many of the experiments rely on the independent biasing of the islands

with the gate electrodes. This is difficult to fabricate in two dimensional metallic circuits, but,

as explained in Chapter 3 in the example of the charge measurement of the box using the SET,

this can be accomplished with various gate sweeps to counter the unintentional effects of gates.

This process becomes more complicated as the number of islands increase, because the size of the

capacitance matrix which must be solved for and diagonalized increases as the square of the number

of islands. The degree to which the islands can be biased independently of each other depends on

64
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all of the parasitic, or unwanted, capacitances in the problem. All of these depend on the physical

characteristics of the circuit. Here I will go into detail on the specific requirements, in order of

importance to the experiment while keeping in mind the feasibility in terms of the fabrication. The

discussion will be qualitative, as there are trade-offs between the different priorities, and it comes

down to judgement calls and preferences for operating the experiment. The process of fabricating

the small junctions required by the experiment is an inexact science which I try to parameterize as

specifically and stably as possible.

The most important design parameter is the ratio of the charging energy of the island, ECIsl,

to that of the trap, ECTrap. In order to achieve the energy level diagram shown in Figure 2.4b, the

island charging energy must approximately double that of the trap. This condition produces the

intermediate, higher energy, barrier state over which the electron must go to make it to the trap

island. The overall scale of the tunneling rates is also set in part by the charging energy of the

intermediate island, which sets the height of the energetically forbidden intermediate charge state,

so it is beneficial to make this value reasonably large. The island charging energy is determined

primarily by the size of the junctions with the size of the island and the gate capacitor contributing

to a lesser extent, so we make the junctions as small as can be fabricated reliably.

The first test of a fabrication process in the case of the SET is to probe the junctions at room

temperature. The resistance scales with the area of the junctions and the thickness of the barrier,

so an estimate can be made of the junction size from this test. Unlike a SET, there is no drain-

source current in the trap that can be probed at room temperature to determine the viability of the

junctions. These small junctions can also be damaged in the process of imaging with the scanning

electron microscope (SEM), so when the sample is cooled down in the dilution refrigerator, it is done

so blindly. For this reason, the trap island and junctions are made to be very similar to those of the

SET which can be probed at room temperature. Typically, if the fabrication process went well for

SET junctions it will have also gone well for the trap junctions. For the same deposition parameters,

smaller junctions have higher resistance which helps to lower the tunneling rates. The sequential

tunneling rates go as g while the cotunneling rates go as g2, so this is an important parameter that

sets the overall scale of the rates. Typical current densities that are achieved by this fabrication

process approximately 25− 30 A/cm2.

The considerations for the SET design are analogous to those for the island in that we also want

to have small junctions, both to make the SET similar to the island for the reasons described above,
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and because the gain of the SET used as an electrometer improves with the SET charging energy.

Optimally, the SET would have a high charging energy with low (∼ 50 − 100 kΩ) series resistance

of the tunnel junctions. In practice, we have not achieved this with our deposition system, and the

two junctions that are 50 × 50 nm typically have a series resistance of (∼ 500 kΩ). Such a high

resistance is difficult to match to the 50 Ω cabling at the center frequency of our amplifiers, which

will be discussed in more detail in the next chapter. To achieve a balance between charging energy

and junction resistance, the SET junctions are fabricated to be just slightly larger than those for

the island, and I try to make something that is ∼ 50× 70− 100 nm, with a series resistance that is

slightly lower.

For the trap design, I require ECTrap < ECIsl/2. The trap only has one junction, so to increase

the total capacitance the trap island must be much larger. Two other priorities also increase the

capacitance of the trap. The first is to have high coupling between the trap and the SET and the

second is that the gates are coupled to their corresponding islands as strongly as possible while

minimizing the capacitance to neighboring islands. Strong coupling to both the trap gate and the

SET will increase the total capacitance of the trap.

6.3 Modelling Capacitances

To achieve the desired circuit that was outlined in the last section, it is crucial that we are able to

simulate the coupling between the metallic leads and islands in the circuit. Fabrication of nanoscale

circuits is time consuming and constrained by other users. If the non-junction related capacitances

can be carefully designed in software, the only elements to be tuned in the fabrication process are

the junctions themselves.

In order to effectively design a set of capacitances in a 2-D thin film circuit it is useful to develop

an intuition for how these circuits behave. The circuits themselves are 2-D Aluminum thin films,

but all of the field lines are in 3-D. This necessitates a 3-D field simulator and makes it impossible

to shield different sections of metal from each other by depositing more metal in the same plane.

The other limitation of the lithography process is the substrate we are using. In order to be able to

probe the devices (the SET in particular) at room temperature, we use an insulating layer on top of

the silicon as it is conducting at room temperature. In our case this is a thin (200− 400 nm) layer

of SiO2. The effect of the bilayer substrate, with Si having ε ∼ 12 and SiO2 with ε ∼ 3, is that

the metals close together, that we want to couple strongly, have a relatively smaller coupling with
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respect to those that are farther away than they would on a uniform substrate.

The software used for these simulations is the Maxwell Electromagnetic Field Simulator. The

simulation process is to import the proposed lithography pattern, assign each element a material,

and each metallic element a voltage. This program uses finite element analysis to solve for the

fields and can also be set to solve for the capacitance matrix. I have been fairly successful using

this method to design my capacitances, as shown in table 6.1, which shows the simulated values of

a particular design along with experimentally determined capacitances. It is not useful to try to

simulate the tunnel junctions with this model so these capacitances are added back in by hand.

Capacitor Measured Value [aF] Simulated Value [aF] Error %
SG-S 32.3 24 -26
SG-T 100.8 100 -0.8
SG-I * 7.5 -
TG-S 26 17 -35
TG-T 383 400 4
TG-I 24 19 -21
IG-S 11.3 9.5 -16
IG-T 258 178 -31
IG-I 33 45 36

Table 6.1: Simulated and measured values for capacitances for one device measured for this thesis.
The labelling notation for the capacitors is gate-island, e.g. SG-S is the capacitance from the SET
gate to the SET island. The * indicates quantities that are too small to measure. The third column
lists the error in the simulation as a percentage of the measured value. It is not surprising that
many of the values measured, especially capacitances of metals which are physically far from each
other are simulated to be too small because only a small area of the circuit is simulated.

Figure 6.1 shows a completed design for device A, and Figure 6.2 shows the design for device B.

In both designs, the island is designed to be as similar to the island of the SET and the island gate

capacitor wraps around it to increase direct coupling. The trap island is made much larger than

the other two islands to reduce the trap charging energy through increased capacitance to ground

as well nearby electrodes. Device A had a much smaller coupling of the trap island to the SET

island. This coupling of the trap to the SET is strengthened in device B by wrapping the trap island

around the SET island. Similarly, a finger capacitor gives a high coupling between the trap gate

and the trap island. In general, the capacitances increase with the longest linear dimension, which

explains the particular shapes I have chosen. The strong trap gate capacitor helps to separate the

gates by coupling the trap gate 50 times more strongly to the trap island than to the island. In the

experiment, this means that the island gate will not need to be counter-swept for small changes in
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SET Island
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Trap Gate

Island Gate
Island

Trap Island

5 mm

Figure 6.1: Detailed view of the active center section of the circuit diagram for device A. The
magenta areas are the larger features of this section of the circuit and are given a constant dose.
Red elements are the SET island and the barrier island, and the blue elements are the fingers. Cyan
indicates the areas where undercut dose is applied. The doses red, blue, and cyan elements are found
by the dose array that is outlined in the final section of this chapter.

SET Island

SET Gate

Trap GateIsland Gate

Island Trap Island

5 mm

Figure 6.2: Detailed view of the active center section of the circuit diagram. The magenta areas are
the larger features of this section of the circuit and are given a constant dose. Red elements are the
SET island and the barrier island, and the blue elements are the fingers. Cyan indicates the areas
where undercut dose is applied. The doses red, blue, and cyan elements are found by the dose array
that is outlined in the final section of this chapter.
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trap gate charge, which greatly simplifies the operation of the experiment. I have also positioned

the island far from the SET island both to separate the gates and to try to shield the island from

the SET island. The measured signal on the SET is then almost entirely due to electrons tunneling

on and off the trap island, which is coupled 100 times more strongly than the intermediate island

to the SET island in device B. The final design complete with bonding pads and connecting wires

is shown in Figure 6.3.

250 mm

Figure 6.3: Circuit layout for for the single electron trap. The yellow lines are the wiring from the
central area of the circuit out to the large blue squares which are the pads for the wire bonds.

6.4 Fabrication Using Electron Beam Lithography

Sample fabrication follows a standard technique of electron beam (or e-beam) lithography, as illus-

trated in the cartoon in Figure 6.4. Our particular technique is to expose a positive bilayer resist

with a 30 keV electron beam to create a mask of the pattern shown in Figure 6.3. We then create

the junctions using the double angle evaporation, or Dolan bridge technique, which makes use of

suspended structures in the top layer of the resist. Here, I will outline each step of the process of

the fabrication, and a detailed recipe can be found in the appendix.
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a)  Spin resist

b)  Write

c)  Develop

d)  Evaporate

e)  Lift-off

Figure 6.4: Cartoon diagram of the electron beam lithography fabrication process. a) The first step
in the process is to spin a bilayer of resist on a two inch silicon wafer. This wafer is then diced
into smaller chips. b) The second step is to write the pattern by exposing the resist with 30 keV
electrons in a SEM. c) The exposed regions of the resist are removed during the development process.
d) Metal is evaporated using a double angle technique with an oxidation step in between the two
layers. Only the first depositions step is shown here. e) The final step in the process is to remove
the remaining resist from the silicon chip, leaving behind only the aluminum that was deposited
directly onto the silicon.
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6.4.1 Wafer Preparation

The junction fabrication technique requires a bilayer resist shown in Figure 6.4a. The areas of the

resist exposed to the e-beam will be removed upon development, and the differing sensitivities to

exposure of the two layers allow us to achieve an undercut in the bottom layer, as shown in Figure

6.4c. We start with a clean two inch silicon wafer onto which a native oxide has already been

grown by wet oxidation of the silicon at 1000 C for about one hour. The wafer is rinsed in acetone

and methanol and spun with MicroChem MMA(8.5) MAA EL12 1 to a thickness of about 550 nm.

The MAA first layer acts as a copolymer for the top layer. The wafer is then baked on a hotplate

fitted with a flat aluminum plate to ensure temperature uniformity across the wafer at 170 C for 5

minutes. It is cooled on a room temperature aluminum plate for 60 s and the second layer of resist,

MicroChem 950K PMMA A32, is spun to a thickness of about 100 nm and then baked at the same

temperature for 30 minutes and cooled for 60 s. The wafer is diced into chips each approximately

1 cm2, each of which is patterened separately in the SEM. This yields many chips with which to

perfect the fabrication process, with a high uniformity in resist thickness across the samples.

6.4.2 Electron Beam Lithography

Electron beam lithography is performed with an FEI Sirion scanning electron microscope model XL

30 outfitted with the Nabity Pattern Generation System (NPGS). This microscope has a minimum

viewing resolution of 4 nm, and lines can be etched reliably in a bilayer resist as described above

down to about 40 nm. The Nabity system allows us to write a script for the microscope setting the

patterns to be used, writing order, and exposure doses of each design element. Because the small

junctions are near the performance limits of the microscope and have a high degree (∼ 100%) of

variability, I write as many samples on a chip as possible to have the highest likelihood of having a

sample that meets the needs of the experiment. The exposure is done using an accelerating voltage

for the electrons of 30 keV which we have found allows us the most control in writing the very

narrow lines needed for constructing the junctions. The pattern written is shown in Figure 6.3 with

a higher magnification view in Figure 6.2. The colors in the diagram indicate the groupings that are

exposed with the same dose. The magenta areas of the circuit have a fixed dose of 350 µC/cm2, and

the red, blue, and cyan areas are tuned by writing a large scale dose array as discussed later in this
1Methyl methacrylate (MMA) 8.5% by weight in methacrylic acid (MAA) in a 12% by weight solution in ethyl

lactate (EL)
2950,000 Dalton Poly-methyl methacrylate (PMMA) in a 3% by weight solution in Anisole (A)
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chapter. In this diagram, the magenta, red, and blue sections will be etched through both layers

of resist, while the cyan is written at a much lower dose (∼ 60 µC/cm2), only exposing the lower

layer. There is a natural undercut in the lower layer because it is more sensitive to the exposure,

and the cyan areas are written to allow more precise control over the lower layer. The need for this

will become more apparent in the discussion of the double angle evaporation.

After writing, the chip is developed in a solution of MIBK:IPA 1:3 3 kept at 25 C in a heated

water bath to ensure temperature consistency between runs. A photograph taken in an optical

microscope of the resist after development is shown in Figure 6.5.

a) b)

Si

Si

resist

resist 250 mm
20 mm

Figure 6.5: Image taken in the optical microscope of the resist after exposure and development. a)
Detail of the circuit. b) Wider view showing connections to bond pads.

6.4.3 Aluminum Evaporation

The most important part of the aluminum evaporation is the junction creation, using the Dolan

bridge technique [Dolan1977], [Niemeyer1974]. The advantage of this technique is that our junctions

are self aligned and can be kept under vacuum for the entire process. We are starting with a bilayer

that has strategically placed areas of PMMA that are completely suspended above the silicon. Figure

6.6a shows the top view of this structure with the dark red indicating the PMMA/copolymer bilayer

and the lighter areas indicating the suspended structures. A side profile of this structure is shown in

Figure 6.6b. The sample is loaded in the Plassys e-beam evaporator and the load lock and chamber

are pumped to a base pressure of 3 × 10−7 Torr. A short titanium evaporation (with a shutter
3Methyl isobutyl ketone (MIBK) and Isopropilic alcohol (IPA) in a 1:3 ratio in volume
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Resist Bilayer

Si

UC

a)

d) Oxidation of aluminum e) 2nd aluminum evaporation

b) Profile of resist c) Aluninum evaporated

f) Resist is lifted off

junction region

Figure 6.6: a) A pattern exposed in a bilayer resist. This view is looking down from the top through
the resist onto the silicon below. The bilayer exists in the red region while there is only a single
layer in the lighter regions. b) A side profile view along the white dotted line in the first frame. As
is visible here, there is a single layer between the finger and the island that is completely suspended.
c) Aluminum is evaporated at 0 degrees through the resist mask. d) The first layer of aluminum is
oxidized. e) The second layer of aluminum is evaporated at an angle so that the fingers extend onto
the island, forming an overlap region which is the tunnel junction.



CHAPTER 6. CIRCUIT DESIGN AND FABRICATION 74

shielding the sample) lowers the pressure to 1× 10−7 Torr. The shutter is moved and a 35 nm layer

of aluminum is deposited straight through the mask as shown in 6.6c. A SEM image taken just

after this step is shown in Figure 6.7a. In this image, you can see the top bright areas of the mask,

1 mma) b)

Figure 6.7: SEM micrograph midway through the fabrication process. a) 10 nm of aluminum
deposited on resist at 0 degrees, viewed directly from above. The bright edges outline the holes
in the mask, and everything visible is aluminum. b) Same chip, viewed at 35 degrees. Here we
are looking through the resist mask and can see where the second layer would have landed. To
accentuate the image, the viewing angle is larger than the deposition angle.

and looking inside the trenches, you can see a layer of aluminum. The aluminum layer inside the

trench is more visible in Figure 6.7b, which is tilted slightly. Figure 6.8 shows another SEM image

taken with a wider zoom in which the PMMA/copolymer profile is also visible. The chamber is

1 mm

Si

PMMA MAA

Al

Figure 6.8: SEM micrograph midway through the fabrication process. Aluminum has been deposited
at 0 degrees. The sample is tilted at about 40 degrees looking through the resist mask where the
second layer of Aluminum would be deposited. In the lower part of the image, the MAA/PMMA
resist profile is visible.

filled with an Ar:O2 (85% : 15%) mixture for 12 minutes at 3 Torr and an oxide is grown on the first
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aluminum layer. The oxidation is a very delicate step in this process, and the addition of the argon

to the oxygen serves to raise the total pressure in the chamber, reducing the outgassing from the

resist bilayer. Without breaking vacuum, the sample is tilted by approximately 30◦, and the second

layer of aluminum is deposited on the substrate. The second, shadow image of the fingers now is

shifted to make contact with the island, making an Al:Al0x:Al tunnel junction at the overlap. The

circuit has been designed to cause the shadow island to be deposited onto the resist wall so that

it does not appear in the final circuit. The deposition of the second layer is more clearly shown in

Figure 6.7b. The sample is tilted at 35◦ to show the destination of the second layer of aluminum.

The actual deposition angle would expose just the edge of the island to make the overlap as small

as possible. This image is taken with a steeper angle to give a more clear image of the island. The

chip is removed from the deposition system, submerged in a hot (∼ 55 C with the hot plate set to 70

C) acetone bath for 15 minutes, and sonicated for 30 seconds. A SEM micrograph of the junctions

formed on the island is shown in Figure 6.9, and Figure 6.10 shows the a micrograph of the final

Figure 6.9: Close up image of the island junctions. Tunnel junctions are formed by the overlap of
the fingers (vertical bars) and the island (horizontal bar).

circuit for device A, and Figure 6.11 shows the final circuit design for device B. As I said at the

beginning of this chapter, I never view the devices in the SEM before they are measured to avoid

damaging the small junctions4. For many reasons, none of which related to the circuit design or the

junctions themselves, I had a much tougher time fabricating circuits reliably during the time when

I fabricated the second device presented here. The actual circuit, viewed after the measurement
4I have not found viewing to be a problem with larger junctions (50 x 100 nm2), but I have found that the small

junctions in these circuits can be damaged in the SEM.
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Figure 6.10: SEM micrograph of trap device A with false colors indicating the various circuit ele-
ments. The SET island is colored in red and the SET gate is yellow. The trap island is blue, with
purple trap gate. The island is green with the gate tinted orange.

Figure 6.11: SEM micrograph of the final design for trap device B with false colors indicating the
various circuit elements. The SET island is colored in red and the SET gate is yellow. The trap
island is blue, with purple trap gate. The island is green with the gate tinted orange. The main
difference between devices A and B is the higher coupling of the SET to the trap island in device B.
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is shown in figure 6.12. The device has shadow islands, designed to be deposited onto the resist

Figure 6.12: SEM micrograph of the actual circuit measured for device B with false colors indicating
the various circuit elements. The SET island is colored in red and the SET gate is yellow. The trap
island is blue, with purple trap gate. The island is green with the gate tinted orange. The island is
shorter than what was intended because it is broken near the end, past the tunnel junctions.

wall that fell back onto the substrate. In addition, the island is broken in a non-critical (but close

to being critical) way, which caused it to be shorter than it was designed to be. The experiments

worked as planned, but I would not have assumed that the extra metal on the circuit would not have

caused problems, and would not have chosen this device if I had seen it before the measurements.

Once the fabrication process is complete, the SETs are probed at room temperature with a digital

volt meter (DVM) with a 1 MΩ resistor in series.

It takes a few iterations of writing the devices after going through the dose array procedure

described in the next section to fine tune the circuit. Once the doses are set, I write as many devices

as possible. The devices are extremely sensitive to electrostatic discharge and many are destroyed in

the process of mounting them in the fridge. Having many copies increases the chance of successfully

cooling down a ”live” device. The devices are stored in a dry box in the lab until I am ready to

mount them in the fridge, in order to minimize the aging of the junctions, which increases their

resistance. Left in air, these junctions can experience aging that increses the resistance by as much

as 100% over approximately 2-3 days. Especially for the SET, it is important to minimize any

resistance increases.
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6.4.4 Finding the Doses

Junction fabrication is the most time consuming and delicate aspect of this process and is integral

to the experiment. As I have pointed out in the sections above, I require junctions that are near

the performance limit for our microscope. There are many variables in this process, some of which

we have more control over than others, for example temperature, humidity, and vibrations in the

building. My method for finding the doses for the junctions is an effort to make this a more

controlled, scientific process. The total time to go from a circuit diagram to a completed circuit

ready for fabrication can be as little as two weeks using this method when the fabrication equipment

is functioning normally, but even during that time, the parameters of the process can drift, and we

adjust the doses to compensate. While I try to minimize the effects of these parameters that we

do not directly have control over (for example, by storing the developer in a temperature regulated

water bath), it is crucial to minimize the sensitivity of the fabrication to these variables. The goal

of this process is to find an area of parameter space that is maximally insensitive to this drift.

Once the design is finalized, the first step in the fabrication process is to make a massive dose

array. I fabricate many copies of the center area of the circuit, without the bond pads and connecting

wires, with varying doses. Figure 6.13 shows an example SET circuit. The magenta regions of the

undercut
finger

island

drain source

gate

Figure 6.13: An example test device written as one element of a larger dose array. The central
part of the circuit including the fingers, island, and undercut are the elements that most directly
determine the size of the junctions, and are the elements varied in the dose array. The magenta
leads are exposed with a fixed dose such that they can always be fabricated reliably.

circuit have a fixed dose that I have found is high enough so that the features are always well defined.

The blue elements are the ”fingers,” the red elements are the islands, and the cyan elements are

undercut boxes. In Figure 6.8 above, you can actually see where the resist boxes have weakened the

top layer of the resist, but do not penetrate all the way though. It is these three elements for which
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I will do a thorough search of parameter space to find the best doses. The parameter space that is

searched for each is the entire range for which there is exposure in the resist. I start with a dose

where, for example, the islands won’t be exposed and the silicon will be bare and go all the way up

to the point where the island is over-exposed and starts to bulge and become wider than the design.

The resulting pattern is a 3-D matrix of devices (written one slice at a time on a 2-D chip) shown

diagrammatically in Figure 6.14. Each x in the diagram represents a device such as the one shown
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Figure 6.14: Diagram illustrating the dose array that is written to explore all of parameter space for
the fabrication of small islands and ultra-small tunnel junctions. The black outlines indicate areas
of this space where there are viable tunnel junctions and both the islands and junctions have the
intended size and shape. The point of the dose array method for finding the doses is to find the
region of parameter space that is least sensitive to drift in any of the fabrication parameters.

in Figure 6.13, and in this case they are written in groups of 9 because that is the area of the field

of view of the microscope at the particular magnification chosen for the devices, i.e. the maximum

area that can be written without moving the stage. I view nearly all of the devices, spending more

time on the areas with viable junctions. The spacing of the doses is a trade-off between precision

and time. I will typically write about 400 devices, which in this case took about 2.5 hours to write

and more than four hours to view.

The result of this work is that there will be several areas of parameter space that have viable

junctions. I have found that it is often the case that the areas have different shapes, and that there

is one area in particular that is particularly large and insensitive to dose, as quantified by the sizes

of the resulting fingers and islands. These areas of viable parameter space are indicated in Figure

6.14 by the black outlines. It is important to find this stable area of parameter space because there



CHAPTER 6. CIRCUIT DESIGN AND FABRICATION 80

is always drift from sample to sample, on the time scale of hours to days, in the parameters of the

process. If the smallest area of parameter space is found accidentally or through a small scale dose

array, it can lead to a longer fabrication effort in trying to follow this drift. The other huge advantage

of the dose array method, is that it is not uncommon to misdiagnose under- or overexposure as the

opposite effect. All three parameters (finger, island, and undercut dose) are highly related, and you

can trick yourself into making wrong choices as you vary the doses if you don’t have the additional

information that the dose array provides.

Once I find the stable area of parameter space, I write ”real” devices, meaning full circuits with

bond pads and connecting wires as shown in Figure 6.3. These are much larger (1 mm x 1 mm),

and I can typically fit 25 on a chip. Here, I vary the doses over a small range around the center

value found in the dose array to fine tune the doses. I will also make a small scale dose array of test

devices off to the side for additional diagnostic purposes. I can view the side dose array to get an

idea as to what I might have in the real devices without viewing them directly, which is of particular

importance for the trap circuit which is cooled blindly. I also have the chance to see what could

have gone wrong if there were problems, and have a better idea of how to change the parameters

since the small dose array is written under the same conditions as the real devices.



Chapter 7

Experimental Methods and Setup

7.1 Experimental Setup

All of the samples measured in this thesis were cooled in a custom built Cryoconcept dilution

refrigerator. The base temperature of this fridge with the magnetic field applied was 18 mK. Early

diagnostic measurements for the fabrication process and circuit design were done in a pumped He3

Heliox system that can reach temperatures around 260 mK. Most measurements were done in the

normal state of aluminum, with a magnetic field of 1/2 Tesla applied perpendicular to the aluminum

film to suppress the superconductivity. This corresponds to persistent current of 15 A through the

superconducting magnet installed in the dewar of the dilution refrigerator. This section will describe

the details of the experimental setup.

7.1.1 Sample Holder

The sample is mounted into a ”jellyhog”1 sample holder that was designed to be a standard for all

experiments in the Schoelkopf lab. This sample holder consists of a light-tight copper box to shield

the sample from RF noise. The chip rests on an interchangeable printed circuit board as shown in

Figure 7.1, and a photograph of the jellyhog installed in the fridge is shown later in this chapter in

Figure 7.9. The circuit board has standard 50 mil pins soldered perpendicular to the board that

bring high frequency signals onto the board. These pins go through the sample holder to SMA

connectors and can be connected to the fridge wiring. Traces A-D are these high frequency lines,

and the wider strip labeled G is the RF ground for the circuit. Typically there is also a copper trace

sitting under the sample in the center of the board, but in this particular case I have removed this
1The name comes from the similarity in appearance of this sample to both a hedgehog and a jellyfish due to the

tentacle-like cabling sticking out of the top. It can also be referred to as just the ”hog” for short.
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D
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Figure 7.1: Sample mounted on jellyhog board. The chip in the center of the board holds the main
device for the experiment. On the circuit board surface, traces A-D connect to high frequency lines
through connectors that come out of the under side of the board and are wirebonded to the central
chip. Trace G provides an RF ground. Trace B is the RF line as well as the DC bias for the SET,
and is wire bonded to a surface-mount inductor and then to the sample. The DC wiring connects
to the twisted pair wiring installed in the fridge and is used to bias an additional test circuit on the
extra chip.

strip to reduce the capacitance of the bonding pads. I will go into the details of the tank circuit in

the next section, where this will prove to be important. The thin lines on the lower part of the board

are for supplementary DC measurements. These are low frequency leads that connect to twisted

pair wiring installed in the fridge. They go to a connector that is also soldered to the board that

goes out to a filter designed in our lab called the tape worm. More details about this filter can be

found in Lafe Spietz’s thesis [Spietz2006] and in a cond-mat manuscript [Spietz2006a]. This is not

important for this work other than the fact that it allowed me to cool down test diagnostic circuits

in addition to the main experiment. In Figure 7.1, you can see such a test circuit sitting across these

traces. The chips are held down with a thin layer of vacuum grease and the bond pads are wire

bonded to traces on the circuit board. Circuit mount components can also be added to the board,

and the small inductor mounted just above the chip provides most of the inductance for the tank

circuit.

7.1.2 Tank circuit

This section will explain the coupling of RF signals to the SET through a tank circuit, an integral

component of the RF setup. This is a resonant LC circuit in which the SET is embedded, as shown in
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the diagram in Figure 7.2. The purpose of the tank circuit is to transform the impedance of the SET

to match the 50 Ω impedance of the transmission line at a particular frequency with some bandwidth.

One can always make a transformer that matches two impedances at a particular frequency, but we

will need to optimize the tradeoff between match and bandwidth taking into consideration the band

of the amplifier. This section will outline the general formalism for designing the tank circuits used

in these experiments. More details on RF design and tank circuits can be found in John Teufel’s

thesis [Teufel2007].

Figure 7.2 shows a schematic of the tank circuit with respect to the impedance of the lines. For

RR

L

C
0

Figure 7.2: Schematic diagram with the tank circuit, consisting of an inductor and capacitor, loaded
on the left with the characteristic impedance of the cables R0 and on the right with a real impedance
R.

the purpose of this discussion, I will assume that the lines have a characteristic impedance that is

real and equal to R0, and that the SET has a real characteristic impedance equal to R. The resonant

circuit is comprised of an inductance L and a capacitance C. The inductance is mostly from the

surface mount inductor shown in Figure 7.1, and the capacitance comes mostly from that of the

inductor bond pad and the SET bond pad on the chip. We say that the tank circuit is loaded with

this resistance R, and looking in from the transmission line, the input impedance is

Zin = ıωL +
R(1− ıωRC)
1 + ω2R2C2

(7.1)

On resonance, the imaginary part of the impedance goes to zero, so we separate this expression into

real and imaginary parts and solve for the resonant frequency

ω0 =

√
1

LC
− 1

R2C2
(7.2)

For most of our devices, R is large enough that

ω0 ≈ 1√
LC

(7.3)

If this is not the case, then R will tend to pull the resonant frequency down. Also, if R <
√

L/C,

the imaginary part of the impedance will not go to zero, and there will be no resonance.
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On resonance, Zin is purely real and equal to

Zin[ω = ω0] =
R

1 + ω2
0R2C2

=
L

RC
(7.4)

The magnitudes of the imaginary impedances of the inductor and capacitor are equal and we can

write down the characteristic impedance of the transformer, which gives us the ratio of the voltage

to the current at that particular frequency

ZLC =

√
L

C
= ω0L =

1
ω0C

(7.5)

Rewriting Zin in terms of ZLC we have

Zin[ω = ω0] =
Z2

LC

R
(7.6)

When this is matched to the impedance of the line

R0 =
Z2

LC

R
(7.7)

ZLC =
√

R0R (7.8)

In other words, the characteristic impedance of the transformer on match is the geometric mean

of the two loads, and ideally we would choose a tank circuit that had this exact characteristic

impedance to match our device perfectly to the transmission lines. There are two additional issues

to consider however, when designing the tank circuit. The first is the bandwidth of the resonance.

There will often be a tradeoff in the experiment between bandwidth and match. We define the bare

Q, which is the quality factor the LC circuit loaded by R0 of the transmission line of this circuit as

Q =
ZLC

R0
(7.9)

which on match

R

ZLC
=

ZLC

R0
(7.10)

Q2 =
R

R0
(7.11)

giving a bandwidth of B = ω0/2πQ. The loaded quality factor, which is additionally damped by

the resistance of the device is given by

QL =
(

R0

ZLC
+

ZLC

R

)
(7.12)



CHAPTER 7. EXPERIMENTAL METHODS AND SETUP 85

The bandwidth of the tank circuit depends both on the resonant frequency and on square root of

the ratio of impedances. Especially as the device resistances become high, a good match is achieved

with a sacrifice in bandwidth. The other consideration is that we cannot choose arbitrary values

of L and C for the tank circuit. The capacitance does not come from a separate component but

is from the SET bond pad as well as any other stray capacitance after the inductor. To minimize

this, I have removed the copper trace from the circuit board on which the chips typically sit. I have

also mounted the surface mount inductor upside down with it’s solder pads sticking up so that I

don’t add any metal by soldering them down. With these chip inductors that we use, a copper wire

is wound to make the inductance and is stuck into the solder pad, and I wire bond directly to the

wire itself. The inductor is also mounted up on a teflon brick to keep it further away from the metal

traces on the board. The size of the SET bond pads on the chip contributes to the capacitance, but

they are made to be just large enough to have 2, possibly 3 bonding attempts and cannot be made

smaller. (Bonding to the SET bond pad is not difficult, but bonding to the inductor wire with the

inductor up on the teflon brick is very difficult.) As for the value of the inductances, the surface

mount components come in discrete values, which also limits the selection for the tank circuit. It

would be possible to make a lithographically defined tank circuit, but this was not pursued for this

work.

The process of designing the tank circuit to have the best combination of match and bandwidth

is to minimize the capacitance and estimate what it is likely to be. Then pick an inductor that

will get closest to match. A rough estimate of the tank circuit resonance is made by measuring

the reflected power as a function of frequency before bonding up the device. The main effect that

bonding the device will have is to pull the resonant frequency down, but this is a useful first step,

especially if the resonance frequency is already too low for the band of the amplifier. The tank

circuit can really only be tested cold, because the conductance of the silicon will alter the results

at room temperature. It is hard to get this exactly right the first time, and this was part of the

characterization that was done in the Heliox, which is a smaller system than the dilution refrigerator

with a faster turn around time.

The chip inductors we use are from Coilcraft, and for the latest experiment, the particular

inductor I used was the 0805-CS-471 with a nominal inductance of 470 nH. The chip inductors

aren’t perfect lumped elements, and the inductance is frequency dependent. We do not measure the

impedance of the tank circuit directly, but measure the reflection coefficient Γ, or S11 as measured
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with the network analyzer. The reflection coefficient is given by

Γ(ω) =
Z(ω)− Z0

Z(ω) + Z0
(7.13)

where Z(ω) is the frequency dependent impedance of the tank circuit and Z0 is the impedance of the

line. The reflection coefficient as a function of frequency is shown in Figure 7.3 for two bias points

of a SET. Taking the difference between these curves and plotting in linear power units give Γ2 as a
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Figure 7.3: Measurement of the reflection coefficient for a tank circuit that matches to an SET
with normal state resistance RN = 454kΩ at the maximum and minimum match. These two points
correspond to different locations in drain-source voltage bias. The extra curvature in these two
traces is due to standing waves in the setup which are not calibrated out in the network analyzer
measurement.

function of frequency shown in Figure 7.4. The half-width at half max gives the Q of the tank circuit

(the full width at half max, FWHM, gives the loaded Q). The total inductance, including that of

the wire bonds, ended up being about 660 nH at ω0 = 354 MHz. The amplifier I used has a center

frequency of 350 MHz. The quality factor Q of the resonance measured cold was approximately

300, giving ZLC = 1.5 kΩ,which corresponds to a capacitance of 0.3 pF .

7.1.3 Wiring

An important aspect of the setup of this experiment is keeping the sample cold, and this is partic-

ularly important to keep in mind when installing transmission lines to bring the signals from room
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Figure 7.4: Measurement of the reflection coefficient describing the match of the SET to the 50 Ω
lines. This measurement is the difference between the two curves shown in figure 7.3, plotted in linear
units and squared. The half-width at half-max of this curve is the quality factor of the resonance.
Standing waves in the total circuit which includes all of the cabling in the cryostat complicate this
measurement. The fact that |Γ|2 goes above 1 indicates that the circuit is not exactly described by
this simple model, but is not important for the measurements.
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temperature to and from the sample. Semi-rigid 0.085” cables bring signals down to the jellyhog in

several stages. These particular cables are chosen because they have 50 Ω impedance over a wide

range of frequencies and work well with commercially available connectors. They can also be pur-

chased in several different varieties, depending on the thermal and signal requirements. The three

types used in this cryostat are UT-085-TP, UT-085-SS, and UT-085-SSSS. UT stands for the original

manufacturing company, Uniform Tube Incorporated. The TP cables have silver plated copper weld

(SPCW) inner conductors with a tin plated (TP) outer conductor. These are used anywhere there

is no thermal gradient, e.g. connecting components at base temperature or for room temperature

electronics. These cables have the highest thermal conductivity and are also the cheapest (∼ $2/ft)

and easiest to work with. The SSSS cables have stainless steel inner and outer conductors. These

cables are the most difficult to work with, are the most expensive (∼ $45/ft), and have the lowest

electrical conductivity. They also have the lowest thermal conductivity and are required to make the

steep thermal gradient between 4 K and base temperature (18 mK). This distance is approximately

1.5 feet, and the transmission through these cables as a function of frequency is shown in Figure

7.5. A photo of the SSSS cables installed in the fridge is shown in Figure 7.9. The cables are looped
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Figure 7.5: Attenuation as a function of frequency of SS-SS semi-rigid cables. This type of cable has
the lowest thermal and electrical conductances per unit length and is used to carry signals between
4K and the base temperature of the cryostat. The total length used is approximately 1.5 feet.

at the top into ”trumpets” to minimize the stress on the connectors from thermal expansion and

contraction of the cables. The cables are clamped at each temperature stage of the cryostat to
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thermalize them on the way down to base. The clamps also provide mechanical stability for the

connectors. This is helpful because any twisting of the cables tends to either crack the solder joint

to the connector, or, depending on the type of connectors used, can cause it to become unscrewed.

In the location where the cables connect to the bottom of the 4K plate, the connectors are not

visible, so it is important to take extra precautions to prevent cable and connector damage. The SS

cables have a SPCW inner conductor with a stainless steel outer conductor. These cables are used

to connect from room temperature feed-throughs down to the 4 K plate and are ∼ $21/ft. These

cables are about 5 feet long and go directly through the helium bath. Since the RF signal has to

pass twice through these cables, we do not want to have the high attenuation that the SSSS cables

have. These cables are also submerged in liquid helium and are used at higher temperatures, so we

can tolerate a slightly higher heat load here. Note that the attenuation as a function of frequency of

these cables (figure 7.6) is similar to that of the SSSS cables, but these are almost four times longer.
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Figure 7.6: Attenuation as a function of frequency of SS semi-rigid cables. These cables have both
higher thermal and electrical conductivity than the SS-SS cables shown in Figure 7.5. These cables
are used in the helium bath between room temperature and the 4K plate of the cryostat. The total
length is approximately 5 feet.

These cables are heat sunk through copper clamps attached at alternating baffles through the bath.

We bring the cables into the fridge from room temperature with a set of feed-through flanges

with hermetic glass beads. Similar feed-throughs are used to go through the 4 K plate into the inner

vacuum chamber of the cryostat. These beads must be a special type manufactured by Tyco, and are

vacuum tight to liquid helium. If the same glass beads that were used at room temperature are used
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here, they will typically start to leak after about five thermal cycles. These beads are expensive and

difficult to find because the manufacturing company is out of business and they were not designed

for cryogenic use, which is why they are not used at the room temperature stage. A photograph of

this flange, with and without the SMA connectors is shown in Figure 7.7.

Figure 7.7: Feed-through flanges for the 4K plate. The flange on the right shows the hermetic beads
soldered in place, and the flange on the left has the SMA connectors in place. These hermetic beads
are a particular type, manufactured by Tyco, that is leak tight to liquid helium.

Two main types of connectors were used for these experiments. This fridge is used by several

different people with different experiments. We try to keep as much of the cabling the same to

minimize wear and tear on the components. For the cables that stay in the fridge, I have used

connectors from Huber + Suhner, part number 11 PC35− 50 − 2− 2/199. These connectors have

a central part that is soldered to the cable and an outer part that screws onto this part. The

advantage having two pieces to the connector is that if the cable is torqued, it is more likely that

the connector will simply come unscrewed from its base rather than breaking at the solder joint.

Over the past couple of years of using these connectors, I have found this to be the case. Another

advantage of these connectors is that the gender of the connector can be changed without having to

remove the cable or solder any parts together. The downside is that they are approximately three

times the price of the AEP sma connectors, part number 9401-1583-010. We use these connectors

on the cables that are removed from the fridge when the experiments are switched and for the room

temperature cables. The Huber + Suhner connectors also work to higher frequency than those from

AEP, but this is not a concern for this experiment.

7.1.4 RF Measurement Chain

A schematic diagram of the RF measurement chain for this experiment is shown in Figure 7.8.

Photos of the setup are also shown in Figure 7.9. Radio frequency signals are launched from
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Figure 7.8: Schematic of RF setup used in dilution refrigerator experiments.
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Figure 7.9: Photographs of cryostat with wiring and components inside the inner vacuum chamber.
Two angles are provided to have different views of the components. The configurations in the two
pictures are also slightly different.
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a vector network analyzer (VNA) or RF generator at approximately -20 dBm. The signals are

attenuated at room temperature by 40 dB with an additional 20 dB attenuator just before the

signal goes into a directional coupler2. After the directional coupler, the signals continue down

through an Anritsu K250 bias-T, which allows us to add any DC signals from the left port to a

high frequency signal from the top port. The signal then goes through a 600 MHz low pass filter

to eliminate high frequency photons and down into the jellyhog. The signals are reflected back and

travel back through the directional coupler through to the amplification stage.

This experiment has three stages of amplification. The first is a low noise temperature cryogenic

high electron mobility transistor (HEMT) amplifier with a center frequency of 350 MHz. This

particular amplifier was constructed by Rich Bradley at the National Radio Astronomy Observatory

(NRAO). The gain and noise temperature curves for this amplifier are shown in Figure 7.10. As

Figure 7.10: Noise temperature and gain as a function of frequency for NRAO 350 MHz room
temperature amplifier. This amplifier is located just above the 4K plate submerged in the liquid
helium bath and is the first stage of amplification for the experiment. This measurement was supplied
by Rich Bradley at NRAO and was taken at 14 K.

shown in Figure 7.8, this amplifier is installed just above the 4 K plate and sits in the helium

bath. The next two amplification stages are grouped together in Figure 7.8 as the ”Room Temp

RF Amps.” The first stage of this amplifier group is a relatively low noise temperature (∼ 20 K)

350 MHz NRAO room temperature amplifier whose gain and noise temperature are shown in Figure

7.11. This amplifier is followed by two stages of higher noise temperature Minicircuits LN500 wide
2The directional coupler does exactly what its name suggests: the signals going through the port on the left travel

down through the lower port. On the way back, signals entering the lower port go straight up through the top port.
The particular one used in this experiment is model C4238-10 manufactured by MAC Technology Inc.
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Figure 7.11: Noise temperature and gain are plotted as a function of frequency for the NRAO 350
MHz room temperature amplifier. This is a relatively low noise amplifier that follows the low noise
HEMT amplifier shown in figure 7.10. In the measurement, this amplifier is followed by the two
Minicircuits LN500’s shown in Figure 7.12.

band amplifiers (see Figure 7.12 for gain and noise temperature). Small attenuators (3 dB) are

connected between each stage of room temperature amplification to damp any standing waves. The

signal is then demodulated using a HP E4407 spectrum analyzer (SA). We take the signals from the

video out port with tunable bandwidth that can be set depending on the needs of the experiment.

Signals are read into the computer using an 8-bit pci Acqiris Digitzer card, model DP110. More

details about the measurement process will be given in the section on RF Measurements.

A parallel set of semi-rigid cables installed in the cryostat carry the gate signals for the experiment

as well as the drain-source bias for the SET. These lines connect through the helium bath and go all

the way to the cold finger of the fridge. At base temperature they go through two stages of powder

filters which consist of about a meter of wire going through a copper block filled with metallic powder

suspended in epoxy [MARTINIS1987]. The first set is filled with stainless powder and the next with

copper powder. The two stages are somewhat redundant, with the copper stage providing better heat

sinking and the stainless having less temperature dependence in its filtering behavior. These are low

pass filters with a cutoff frequency around 100 MHz and the frequency dependence of the transmission

through these filters is shown in Figure 7.13. In addition to filtering out thermal noise from the

higher temperature stages in the fridge, they are excellent heat sinks providing thermalization for

the center conductors of the coax lines. The gate lines are then connected directly to the top of the

jellyhog, while the SET drain-source lead connects to the left port of the bias-T. The gate signals
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Figure 7.12: Noise temperature and gain are plotted as a function of frequency for the final stage
of room temperature amplification. These measurements consist of two Minicircuits LN500 room
temperature amplifiers with the two 3dB attenuators that are used in the experiment to damp
standing waves between amplifier stages.
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Figure 7.13: Transmission through a copper powder filter as a function of frequency. The copper
powder filters serve both as low pass filters to filter out high frequency noise and as thermal heat
sinks for the center pins of the transmission lines. These filters are used on all of the gate lines as
well as the dc-bias for the SET. These filters are low loss at low frequencies until they cut off steeply
above 100 MHz.
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are generated by a set of Agilent 33250A arbitrary waveform generators.

7.1.5 DC Measurement Chain

The main DC component of this measurement setup is the drain-source bias for the SET which is

biased with a high precision Yokogawa 7651 voltage source. The SET is typically biased through

the circuit shown in Figure 7.14 which is enclosed in a metal box at the top of the cryostat. The

Voltage Divider

INA-

110

INA-

110
Device

V
IN

I
OUTR

bias

V
OUT

Figure 7.14: Schematic of DC bias electronics for the SET drain-source. A high precision voltage
source first divided by a voltage divider with a selectable value, and then applied across the sample
through a bias resistor, Rbias. Current measurements are made by measuring the voltage drop across
the bias resistor, and voltage measurements are taken at room temperature across the sample. Both
the current and voltage taps are amplified by INA-110 instrumentation amplifiers. This circuit is
contained in a metal box located at the top of the cryostat.

first stage of this circuit is a voltage divider where the signal from the Yokogawa is typically divided

down by a factor of 1000. This minimizes the effects of any noise picked up in the cabling outside

the cryostat because the signals can be kept larger than needed up until this point. The other

component is a selectable bias resistor for doing DC current measurements and is turned to zero

for the high frequency measurements. The bias box also has controls for safely shorting the device.

Current measurements are taken by measuring the voltage drop across the bias resistor, and the

voltage measurements are a measurement of the voltage drop across the device at room temperature.

Both the Iout and Vout leads are amplified by INA110 instrumentation amplifiers and measurements
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are taken with Keithley 2000 digital volt meters (DVMs). The DVMs are connected to a PC running

Labview via GPIB.

There is also a set of 20 twisted pair wires (10 pairs) that connect through the jellyhog to the

tape worm. The wires come out to a breakout box with BNC connectors and can be used with

the same bias electronics that are used to bias the SET. This wiring is useful for characterizing

additional test circuits, but is not used in the main experiment.

7.2 RF-SET Operation and Characterization

In this section, I will describe the characterization of the SET in the normal and superconducting

state. I will start with brief DC characterization, but the bulk of the measurements are done at high

frequency (350 MHz) because of the increased bandwidth and sensitivity. I will show the parameters

of the SET and how we find the optimal bias points for doing sensitive charge measurements. I will

wait to tabulate the capacitances of the entire device, including the trap, until the next chapter,

which goes into more detail about the trap measurements and results.

7.2.1 DC Measurements

Measurements of drain-source current as a function of drain-source voltage are done using the bias

electronics described above using a 100 kΩ bias resistor. Figure 7.15 shows one such measurement

done with a slow modulation of the SET gate to show the envelope of current modulation. The

normal state resistance of this device is 454 kΩ, measured in the linear region of the IV curve.

7.2.2 RF Measurements

The RF measurements are taken with the spectrum analyzer set to zero span mode at the resonance

frequency, in this case 354 MHz. In this mode, the 354 MHz signal is demodulated with a bandwidth

set by the resolution bandwidth of the spectrum analyzer. The signal on the screen is the time domain

signal, and is output to the computer using the video out port. There is also a video bandwidth

that is typically chosen to be equal to the resolution bandwidth.

The first high frequency characterization of the SET is the calibration of the SET gate capacitor.

An example of one such measurement is shown in Figure 3.9b. Once this gate is calibrated in terms

of applied electrons on the gate capacitor, we measure the Coulomb diamond, which is the reflected

power as a function of both drain-source voltage, Vds, and gate voltage, Vg. This is shown for an
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Figure 7.15: SET drain-source current (Ids) versus drain-source voltage (Vds) measured with a slow
modulation of the gate voltage by one electron to show the envelope of modulation.

SET in the superconducting state in Figure 7.16 with labels indicating the charging energy and

the superconducting gap. The features in the superconducting diamond are sharper than those in

the normal state diamond, and there are also additional features that are not present in the normal

state, such as the superconducting gap, the lines indicating the Josephson quasiparticle (JQP) cycle,

and the peaks of the double Josesphson quasiparticle (DJQP) cycle. These features are not present

in the normal state, but provide additional checks on the value of the charging energy. The Coulomb

diamond is also shown again in the normal state in Figure 7.17. The rest of the measurements are

done in the normal state, so unless it is indicated otherwise, this should be assumed for the rest of

the thesis.

Most of the charge measurements done in this thesis are performed at Vds = 0. The transfer

function of the SET is the measurement of reflected power versus Vg. At low temperature and

low carrier power, the Coulomb peaks of the transfer function are very sharp as shown in Figure

7.18. As we apply higher carrier powers, these peaks become broader and smoothed out into a near

sinusoidal form out as shown in Figure 7.19. This is a well understood process, and is not heating

of the sample. The large ac amplitude from the high applied carrier power samples a wider range

of drain-source bias voltage. The fractional variation of the reflection remains unchanged.

The SET is to be used as a sensitive electrometer, so we need to find the carrier power that

optimizes the charge sensitivity. This is done by tuning the carrier power while measuring the
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Figure 7.16: A measurement of the Coulomb diamond of the SET in the superconducting state
shows the reflected power versus Vds and Vg. The diamond measured in the superconducting state
typically has sharper features than the diamond measured in the normal state, and is useful to
characterize the SET. There are also additional features not present in the normal state diamond,
such as the superconducting gap, the lines from Josephson quasiparticle (JQP) cycle, and the peaks
(and valleys) from the double Josephson quasiparticle (DJQP) cycle. The distance between the
DJQP peaks is 4EC . The total width of the subgap is equal to 8∆, where ∆ is the superconducting
gap. This particular SET has EC = 2.24 K and ∆ = 188µV .
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Figure 7.17: A measurement of the Coulomb diamond of the SET in the normal state shows the
reflected power versus Vds and Vg measured at the base temperature of a dilution refrigerator (18
mK). The white diamonds in this picture are the regions of Coulomb blockade, and their width is
given by 4EC . This particular SET has EC = 2.24 K.
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Figure 7.18: Reflected power measurements as a function of SET gate voltage trace out sharp
Coulomb peaks. This is a cut from figure 7.17 taken at Vds = 0 and a carrier power of -45 dBm, not
including the attenuation of the signal into and through the cryostat.
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Figure 7.19: Increasing the carrier power broadens the Coulomb peaks. At high carrier power the
signal is smoothed out into a near-sinusoidal form because the high ac carrier power samples a wider
range of the transfer function. Note that increasing the carrier power from -30 dBm to -20 dBm
does not change the fractional variation of the reflection.

charge spectral density of the SET. We measure the charge spectral density by measuring the

voltage spectrum of the SET biased at a point that is sensitive to small changes in gate voltage. The

voltage spectral density is converted to the charge spectral density by means of a small oscillatory

test signal superimposed on the SET gate at a chosen frequency. Since we have calibrated the gate

in terms of the number of electrons applied to the SET island, we know exactly how large this signal

is in terms of charge. A charge noise measurement for the SET is shown in Figure 7.20. This graph

shows the characteristic low frequency charge noise of these devices known as 1/f noise due to the

motion of charge impurities in the substrate near the device or in the junction barriers. The optimal

carrier power gives the highest signal to noise measurements of charge coupled to the SET, so this

is the power setting that we will use for most measurements of the trap shown in the next chapter.
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Chapter 8

Time Resolved Single Electron
Dynamics

This chapter presents the measurements of the single electron trap. The primary results were

achieved with two different samples which I will call A and B. Sample A was measured in the winter

of 2006, and sample B was measured in the summer/fall of 2006. Earlier experiments led the way to

these results, but will not be presented here. I achieved the first good measurements of the dynamics

of the trap with sample A, but was unable to time resolve the tunneling dynamics because the SET

from sample A did not have high enough charge sensitivity, and the coupling to the trap was too

small. The second sample had an SET with better charge sensitivity and higher coupling to the trap,

giving the signal to noise ratio required for measurements in the time domain. The key parameters

for these two samples is shown in Table 8.1.

Description Symbol Device A Device B
SET Charging Energy EC,SET 2.24 K 1.66 K

SET Normal State Resistance RN 530 kΩ 453 kΩ
Coupling Strength κ 2.3% 10%

Charge Noise SQ (2× 10−4)2e2/Hz (7× 10−5)2e2/Hz

Table 8.1: Parameters for devices A and B. The feasibility of the experiments were the combination
of the coupling strength to the trap and the charge sensitivity which determine the signal to noise
ratio. Both the SET charging energy and the normal state resistance contribute to the charge
sensitivity.

This chapter will go through the measurements of the statics of trap experiments and then continue

on to look at the dynamics. Both data and comparisons with theory will be presented.

103
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8.1 Statics of the Single Electron Trap

The first step in the trap experiments is careful characterization of the circuits. The circuit diagram

is shown again in Figure 8.1. The distinguishing measurement of a single electron trap is the

V

C
j

C
j

C
C

C
g

C
g

n n

S E TV

TrapIsl V gs

gTgI

Figure 8.1: Circuit diagram showing the single electron trap measured by the SET.

hexagonal stability diagram introduced in Chapter 2. The technique for measuring the hexagons is

analogous to the one I outlined in Chapter 3 in the SET-box example but now I have the added

complication of the additional gate. The SET and the trap are biased in the same way that the

SET and box were biased in Chapter 3. For fixed island gate, small changes in the trap gate only

change the island potential a small amount. The capacitance between the trap gate and the island

was intentionally designed to be as small as possible so that I would not have to also countersweep

the island gate while sweeping the trap gate. The measurement procedure is to sweep the trap gate,

counter-sweeping the SET gate to offset changes in bias to the SET island caused by the trap gate.

We record the response of the SET during each sweep. The island gate is then stepped, and the

trap and SET gate are offset manually to compensate. I incorporated software that was developed

over the last 8 years for the experiments on SET measurements of the single electron box by Konrad

Lehnert, Ben Turek, and Johannes Majer to bias the SET and trap gates. It would have been

possible to incorporate the third gate into this software, but this was not required to operate the

experiment successfully and not worth the added complexity in the software.

Just as in the staircase measurements of Chapter 3, the measured quantity is the sawtooth from

which the charge on the measured island is inferred. Figure 8.2a shows the sawtooth measurement

for the trap for many values of the island gate charge. I will show more details about these slices

and how they are used to characterize the trap, but for now I would like to focus on the hexagon

as a whole, as it provides a map of the device parameter space. Figure 8.2b shows the inferred

charge on the trap, with labels indicating the charge states of both islands. The sawtooth picture

is presented because it provides a higher contrast picture for looking at the hexagon. Focusing on
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this first graph (figure8.2a), notice that there is additional noise in cuts of island gate charge near

ngIsl = 0 that decreases in the direction of ngIsl = 1/2. This is not an artifact of the measurement,

but offers a hint at the dynamics that underlie this measurement. As I stated in Chapter 2 and

discussed in more detail in Chapters 4 and 5, the tunneling rates on and off of the trap island are

slowest when the island is in the most blockaded state, at ngIsl = 0. The rates are also slowest at

the charge degeneracy point of the trap (ngTrap = 1/2). This is exactly where the extra noise shows

up in the hexagon plot. These measurements are performed sweeping the trap gate as slowly as

possible, in this case 100 ms. Between states (0, 0) and (0, 1), for example, there is the energetically

forbidden intermediate state (1, 0). This means that on the time scale of the sweep rate, the trap

is not always found in the ground state. As the tunneling rates increase with respect to the sweep

rate (a constant in this graph), the noise decreases and the charge on the trap is able to follow the

charge applied by the gate.

Another measurement taken over many periods of the hexagonal structure is shown in Figure 8.3.

This diagram also illustrates the fact that the capacitance between the trap gate and the island
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Figure 8.2: a) The hexagon stability diagram of the trap as measured directly. Shown is the SET
response as a function of island and trap gates. b) The inferred charge on the trap as a function
of both gate voltages. The sawtooth Figure is shown because of the higher contrast that picture
provides.

is quite small. If it were not, we would see a tilt in the hexagon pattern, tilting in the direction of

positive island gate charge with increased trap gate charge. These hexagons were taken using device



CHAPTER 8. TIME RESOLVED SINGLE ELECTRON DYNAMICS 106

-2

-1

0

1

2

Is
la

nd
 G

at
e 

C
ha

rg
e 

[e
]

210-1

Trap Gate Charge [e]

Figure 8.3: The stability diagram of the single electron trap measured with less averaging over many
periods. Near the areas of integer charge on the island gate, the rates are very slow (kHz) on the
trap island, and the trap island charge cannot keep up with the applied gate charges.

B. In device A, the trap gate was more strongly coupled to the island, and this tilt is more apparent

as shown in Figure 8.4.

The hexagon measurements provide a map of the parameter space of the trap and are performed

prior to any measurement. There is charge offset noise in all of these devices, so all of the gate

biases are relative and can change. The main source of change is the SET, which I will show in

more detail in the dynamics section of this chapter. If the charge on the SET changes, then the

gate bias must be changed to keep the SET biased at a sensitive operating point. Changing this

gate, however, affects all of the islands and changes the location in the hexagon diagram. There is

enough stability to take measurements over several tens of minutes, but these conditions will change

over the course of the day. A quick hexagon measurement is used between measurements of other

quantities to ensure that the trap has not shifted and to correct for any changes that have occurred.

Slices of the hexagon pattern in island gate give the familiar Coulomb staircase of the trap

island. One such measurement, performed at 18 mK, is shown in Figure 8.5 with a fit to a weighted

Boltzmann distribution (see Chapter 2 for more details). The coupling between the trap and the

SET island for this measurement is 10.3%. The rounding of the Coulomb staircase depends on

temperature, as expected, but also shows a dependence on the bias point with respect to trap island.



CHAPTER 8. TIME RESOLVED SINGLE ELECTRON DYNAMICS 107

210

0
-.

5
.5

-1-2

Trap Gate Charge [e] 

Is
la

n
d
 G

a
te

 C
h

a
rg

e
 [

e
] 

Figure 8.4: The stability diagram of the single electron trap in device A. The cross capacitance
between the trap gate and the island is larger in this sample and this causes a slight tilt in the
hexagonal pattern.
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Figure 8.5: Coulomb staircase at of the single electron trap. The average charge on the trap island
is measured as a function trap gate,ngT at 18 mK. Shown in red is a fit to a weighted Boltzmann
distribution.
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This is due to the fact that the trap must be measured much more slowly at the high blockade state

because the tunneling rates are so slow at that point. The noise is higher here because the trap

does not always settle into the ground state (i.e. we can never sweep slowly enough) and because

the measurements take longer and the trap is more susceptible to charge noise over longer periods

of time. Figure 8.6a shows staircase measurements for three temperatures, and Figure 8.6b shows

measurements taken at 18 mK for the high and low blockade states of the island.
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Figure 8.6: a. Coulomb staircase of the trap. The average charge on the trap island as a function
of trap gate, measured at 18 mK, 100 mK, and 200 mK with low blockade on the island gate. These
measurements, taken at many temperatures, are fit to a weighted Boltzmann distribution (shown
in Figure 8.5), and used to extract the charging energy of the trap (see Figure 8.7. b. Coulomb
staircase of the trap at 18 mK measured at high blockade of the island gate (middle of hexagon)
and low blockade (edge of hexagon).

I have measured the staircase at many temperatures, and use the Boltzmann fits to extract the

parameter χ = EC/2kBT . When this is inverted and plotted against the fridge temperature, we see

the linear temperature dependence and can extract the trap charging energy as shown in Figure 8.7

for the low blockade state of the island. The experiment is well filtered, and the saturation of 1/χ

is not thought to be heating. In our group we have been able to measure temperature quantities

such as the temperature dependence of the shape of the single electron box [Lehnert2003] and the

electron temperature in a shot noise thermometer [Spietz2006] down to temperatures well below this

saturation point. This observed rounding comes from two places. The first is that the measurements
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Figure 8.7: The staircase measurements are fit to a weighted Boltzmann distribution as shown in
Figure 8.5, and the parameter 1/χ is extracted and plotted as a function of the fridge temperature.
A linear fit gives a value for EC of the trap of 0.727 ± .007 K. The error bars for most points on
this graph are smaller than the plotted point size.

are taken slowly, and any charge noise in the trap will cause the position of the charge degeneracy

point to shift slightly, rounding the staircase. The second place additional rounding comes in is

from the backaction caused by the SET. For this device, the forward coupling of the trap island to

the SET island is 10%. The reverse coupling, or the percentage of each SET electron that couples

to the trap island is higher at 20%. In Figure 8.8, I show the extracted value of 1/χ as a function

of temperature for staircases measured both at the low island blockade (shown above) and the

high island blockade shown in Figure 8.6b. These additional measurements are even more rounded

than the sharp staircases measured for at low island blockade for the reasons described above in

the discussion of the staircase measurements. In order to compare the effects of the sweep to that

of integrating in additional charge noise, I have measured the high island blockade staircases in a

”DC” way. These points are taken by acquiring long ( 1 s per point in trap gate) time traces of raw

data (see the section on time resolved tunneling events in this chapter), and extracting the average

charge on the trap directly. Because these traces are acquired so slowly, they are prone to having

additional noise integrated in, but they do not suffer from effects caused by sweeping the trap gate

too quickly. These points are in agreement with the swept trap gate. Unfortunately, I only have one
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Figure 8.8: This graph shows the linear fit of 1/χ vs fridge temperature plotted in Figure 8.7 as
well as the additional staircase measurements at higher island blockade. The fastest tunneling rate
occur in the region with low island blockade. In the regions of high island blockade, the rates are so
low that it is difficult to sweep the trap gate slowly enough. These measurements take longer than
in the region of fast rates because of the low required sweep rate, and any charge motion nearby will
cause rounding of the staircase. The data points labelled ”DC” were measured without sweeping
the trap gate and are taken by acquiring a time trace 1 second long from which the trap charge is
inferred.
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point acquired using the ”DC” method at low island blockade to use to compare the fast rate data

to the slow rate data.

8.2 Dynamics of the Single Electron Trap

This section of the thesis will explore the dynamics of the single electron trap that have been

measured using several different methods. The first section discusses measurements taken of the

charge relaxation time of the trap. I was able to measure the dynamics of the device using averaging

techniques to extract the underlying rates. The second section details the time resolved single

tunneling measurements, which are the core results of this thesis.

8.2.1 Charge Relaxation Time of a Single Electron

The hexagons have already shown us hints at the dynamics in the trap circuit, as we are never able

to really sweep slow enough to keep the trap in the ground state. If we intentionally sweep the

trap gate much faster than the characteristic tunneling time and measure the Coulomb staircase,

we would expect to see a hysteresis. This is shown for two different settings of the island gate in

Figure 8.9. The top axis of the staircase plot is the sweep time, which is the same for both traces.

The red staircase (top), is taken at the high blockade point and is very hysteretic because there is a

time delay for the trap to relax into the ground state. The blue (lower) staircase is taken at a low

blockade point where the rates are much higher and we do not see the same hysteretic behavior. This

is a good indication that this is a device that truly has tunable tunneling rates that are adjusted by

the bias of the two gates.

To obtain a more quantitative measurement of the tunneling rates as a function of the trap gate,

I performed a series of pulsed gate measurements. I first find the highest blockaded island state by

performing a measurement of the hexagon, as outlined above. Once the island bias is set, a trap

bias is chosen, as indicated by the tick mark at ”t=0” in Figure 8.10a. I wait for a time that is long

enough to find the trap in its ground state with a high probability. Then, a fast step function is

applied to the trap gate, and I measure the charge as a function of time. I repeat this measurement

thousands of times, and the end result is shown in Figure 8.10b. For short times, the charge of the

trap remains unchanged from the original ground state. Over time, on average, the charge relaxes

into the new ground state with some time constant τ . The instantaneous charge on the trap island

is still quantized and is equal to 0 or 1. We can think of this as a measurement of the relaxation
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Figure 8.9: At the highest blockaded state of the trap (ngI = 0), sweeping the trap gate faster
than the characteristic tunneling rate results in a staircase measurement that is hysteretic, shown
in the top staircase measurement in red. If the island is not biased at this blockaded state, but at
another point where the blockade is lower (blue line), then the tunneling rates are faster, resulting
in a staircase measurement swept at the same rate, that does not show hysteresis.



CHAPTER 8. TIME RESOLVED SINGLE ELECTRON DYNAMICS 113

t = 0 t = 100 ns

a b

Figure 8.10: Measurements of the charge relaxation time of the trap. a) The measurement starts
with a gate bias at some position at t=0, as indicated by the tick mark on the graph. A fast pulse is
applied to the gate, shifting it over to the next tick mark within 100 ns. b) The charge of the trap
is recorded for 1 ms. The experiment is repeated thousands of times and the resulting measurement
of the charge relaxation time of a single electron on to the single electron trap in this case is equal
to 47 µs.

time of a single electron onto (or off of) the trap island. We can show that this is not just an RC

time in the system both by changing the bias conditions and seeing that these rates change, but

also by just applying a fast pulse to the SET gate and observing a much faster response, as shown

in Figure 8.11.

This technique is a way to extract the tunneling rates when there is not the signal to noise ratio

to time resolve tunneling events, as was the case for device A. This experiment is repeated for many

values of trap gate bias and the tunneling rates are plotted as a function of the trap gate bias in

Figure 8.12. Also shown in this graph is a theoretical prediction for the tunneling rates in this

device. This theoretical model has no adjustable parameters and shows quite good agreement with

the data.

8.2.2 Time Resolved Tunnelling Events

This section is the main result of this thesis which is time resolved measurements of single tunneling

events in the single electron trap. These measurements were all completed using device B. Because of

combined effects of the higher coupling between the trap and the SET and the increased sensitivity
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Figure 8.11: This graph shows the fast response time of the SET to a 0.02e gate applied at 200 µs.
This response is much faster than the relaxation time of the trap shown in Figure 8.10b.
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Figure 8.12: Tunneling rates for the trap as a function of trap gate acquired using the relaxation
time measurements. The blue theory curve is the 0-parameter cotunneling prediction. The green
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of the SET, I had the sensitivity with this device required to time resolve single tunneling events.

In this regime, we can explore measurements that are not possible when averages are required. For

example, in all of the measurements of the Coulomb staircase, the quantity measured is always the

average charge. If we were able to time resolve the charge on the trap island, we would be able to

measure the charge on trap as a function of trap gate, as shown in Figure 8.13. There is still noise in
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Figure 8.13: A single shot measurement of the Coulomb staircase for the trap. The charge on the
trap is quantized in discrete states n. For this data, the trap is swept over 8 electrons in 50 ms.

the measurement, but the quantized nature of the trap charge starts to be visible. On average, the

trap charge state changes at the charge degeneracy point, but tunneling is a stochastic process that

occurs at a certain rate. Thus, there is always a finite probability to tunnel either before or after

the degeneracy point, yielding on average, a smooth transition between charge states. The rest of

this chapter will focus on measurements of time resolved single tunneling events and extracting the

intrinsic rates for electrons tunneling on and off of the trap island.

The measurement process starts with acquisition of the time domain data as shown in Fig-

ures 8.14a,c for two different bias points of the trap gate. The amplitude histograms for these two

traces are shown in Figures 8.14b,d. In order to extract the intrinsic rates for electrons tunneling

on and off of the trap island, we must work to discriminate between these two states in this noisy

telegraph signal. The most obvious thing to do, and what you would actually do if you only had
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Figure 8.14: Raw time domain measurement of the charge on the trap. Figures a and c show a small
segment of the total time trace that is half a second long. Figures b and d show the histograms for
the entire time traces. The top graphs are positioned at the charge degeneracy point of the trap,
where the tunneling rates are equal and the trap spends an equal amount of time in each charge
state. The lower Figures show measurements for a gate bias away from trap charge degeneracy.
Here, the trap spends much more time in the 1 state than in the 0 state.
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one data point and wanted to make a single shot measurement, would be to set a threshold at the

middle of the histogram between the two peaks. Then, everything below that threshold would be

counted in the 0 state, and everything above would be counted in the 1 state. You could digitize

the data into a stream of 1’s and 0’s and extract the lifetimes. If the signal to noise ratio is high

enough so that there are two distinct, non-overlapping peaks in the amplitude histogram, this is the

way to go. If there is any overlap, a statistical approach must be used to separate the events in the

overlapping region, which amounts to setting a double, latching threshold for the discrimination.

The technique used to analyze the data in this thesis is called a Schmidt trigger, and the procedure

that I have used is detailed in Yuzhelevski et al. [Yuzhelevski2000]. The assumptions of this model

are that the single electron tunneling events are Markov processes and that the noise in each state

is Gaussian. This model would give two delta functions in amplitude broadened by Gaussian noise,

which is exactly what I have observed. This procedure aims to assign each point in the time trace

to one of the two states, creating a digital record from the raw time record. It is an iterative process

to find the thresholds for the two states, which I will describe briefly here.

After recording the time traces and constructing the amplitude histograms, we fit the histograms

to a sum of Gaussians as shown in Figure 8.15. Because the two Gaussian functions are overlapping,
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Figure 8.15: Amplitude histograms with fits to a sum of gaussians for two bias settings of the trap
gate. Shown are the fits to the sum of the two Gaussians as well as the individual Gaussian curves
to show the overlap between the two states.

we must use a statistical approach to sort out the events that fall in the overlapping region. Assuming
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that the first event in the series starts out in the 0 state of the trap, we can calculate the probability

that the next point in the time series is also in the down state, given its amplitude. We also calculate

the probability that it is in the 1 state, given that the previous point was in the 0 state and compare

these probabilities. We do the same for the trace starting in the 1 state, and the result is a double

threshold. More simply stated, once the trap is determined to be in the 0 state, we record it as being

in that state until the amplitude crosses above threshold T0 as shown in Figure 8.16. Likewise, once

n
u

m
b

e
r 

o
f 

c
o

u
n

ts

signal amplitude

0 1

T
1

T
0

Figure 8.16: An example of a double histogram indicating the double threshold used for the Schmidt
trigger. The left Gaussian is comprised of events recorded in the 0 state of the trap and the right
Gaussian represents events in the 1 state. Once an event is recorded as being in the 0 state, for
example, it will not be recorded as being in the 1 state until there is a recorded amplitude that lies
above threshold T0. Likewise, once an event is recorded in the 1 state, it will not be recorded as
being in the 0 state until there is a recorded amplitude that lies below threshold T1.

the trap is recorded to be in the 1 state, we continue to record it as being in the 1 state until the

amplitude of the signal crosses below threshold T1.

Given the amplitude histogram, we can calculate what these thresholds should be given the area

under each gaussian, their mean values and standard deviations, and the lifetimes of each state.

The goal of this problem is to find the lifetimes of each state, however, so of course we do not have

that information. We could calculate the mean lifetimes if we knew the total number of transitions,

but we also do not know that. What we do instead, is estimate the thresholds from the amplitude

histograms. We use these to distribute the data into a digital time series consisting of 0’s and 1’s

and then count the number of transitions. This gives a first estimate of the average lifetimes, which

we can then use to calculate the thresholds. This process repeats and typically converges in five
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iterations.

The result of this process is a digital record of the time trace, which is shown overlayed on the

time trace shown above in Figure 8.17. The dwell times in each state are histogrammed and fit to a
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Figure 8.17: Raw time resolved random telegraph noise (blue) with digitized time trace overlayed
showing the charge on the trap island (green).

decaying exponential to extract the average lifetime in each state. Examples of this are shown near

trap charge degeneracy in Figure 8.18a and at a point far from trap degeneracy in Figure 8.18b.

The fact that the decaying exponential fit agrees well with the data indicates strong agreement with

the fact that the underlying physical process is Poissonian.

The measurement is repeated for many values of trap gate, in order to determine the gate

dependence of the tunneling rates. The amplitude histograms for a measurement sequence, which

recorded time traces over several periods in trap gate charge, are shown in Figure 8.19. This figure

shows that the measurement process, including the performance of the SET, is stable over the course

of the measurement. When there is a charge jump during the measurement process, it shows up in

this type of diagram. One such example is shown in Figure 8.20. After the point of the charge jump,

the SET is biased at a different operating point, and the data is thrown out. What is interesting

to note is that when there is a charge jump, I have always observed that it occurs in the SET, and

not in the trap device, meaning that the stability of the SET seems to be the limiting factor in the

stability of these measurements.

The measured rates are plotted as a function of trap gate charge for three temperatures in

Figure 8.22. Comparisons with theory are made for the 50 mK data in Figure 8.22. In these plots I

show comparisons with a zero parameter theoretical model, with bands indicating the uncertainty in
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Figure 8.18: Dwell time histograms are constructed from digital time traces and fit to a decaying
exponential. The squares represent counts in the 0 state and the circles represent the 1 state. a)
Histogram constructed from a time trace away from the charge degeneracy point. b) Dwell time
histogram constructed from a time trace measured near the charge degeneracy point of the trap.
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Figure 8.19: Amplitude histograms as a function of trap gate. The x-axis is the measured SET
response, the y-axis is the trap gate bias, and the color scale represents the number of counts in each
bin of SET response. The trap is stable and time domain measurements can be taken consistently
over several periods in trap gate charge.
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Figure 8.20: Amplitude histograms as a function of trap gate. The axes are the same as in Fig-
ure 8.19, but this time there was a jump in SET response. It is clear from looking at these graphs
for many measurements that the SET is the most unstable element as the trap remains stable even
if there is a jump in the SET.
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Figure 8.21: Tunneling rates measured in the trap as a function of trap gate at 50 mK, 100 mK,
and 150 mK.
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Figure 8.22: Tunneling rates for the trap as a function of trap gate. The shaded region bounded
by the solid and dashed lines represents zero parameter calculations of the cotunneling rate over a
range of the expected values for the parameters of the calculation.

the parameters of this model. Two main parameters were not possible to measure in this experiment:

the charging energy of the island and the dimensionless conductance of the junctions, both of which

set the overall scale of the tunneling rates. In addition to fabricating the device used for this

experiment, I also fabricated test devices in which the trap island was shorted to the trap gate

capacitor, turning the trap into an SET. From these test devices, I was able to put bounds on

the expected parameters for this device as well as from viewing the sample after the measurements

were taken. From this additional data, it is much more likely that the actual parameters for the

measured device lie at the lower end of these bands. At 50 mK we see fairly good agreement with the

cotunneling predictions for the rate to tunnel from the excited state to the ground state (the higher

rate). This is especially true if we compare these with the predicted Orthodox theory curves at 50

mK, which are 14 orders of magnitude lower. The reverse rate, however, is not well described by the

theoretical predictions. The measured temperature dependence of the rates is shown in Figure 8.23.

Here, the agreement with the theoretical predictions is not as good, but still shows a qualitative

agreement with the cotunneling theory as opposed to Orthodox theory. Still not well understood in

either of these graphs, however, is the return tunneling rates. These are expected to be much lower

than the measured values.
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Figure 8.23: Tunneling rates for the trap as a function of temperature show a qualitative agreement
with the cotunneling theory predictions. Both the data and the theoretical predictions are taken
slightly away from the charge degeneracy point of the trap, at ngTrap = .55. Orthodox theory rates
are orders of magnitude lower for these temperatures.

As I mentioned earlier in this chapter, and discussed in detail in Chapter 5 in the discussion

of cotunneling rates, it is necessary to consider the backaction of the SET when comparing the

measured rates with expected theoretical values of the rates. These measurements of time resolved

single tunneling events were possible because of the strong coupling between the trap island and

the SET (in addition to the higher sensitivity of the SET). This increased coupling comes at a cost,

however. The SET signal comes from having 10% of each trap electron coupled to the SET island.

The SET is an electrometer, and there is a change in reflected power associated with any small

changes in gate. Each electron tunneling onto the trap island is effectively a small gate on the SET,

shifting the operating point slightly which allows us to conduct the measurement. The cost is that

the trap is also measuring the SET. These devices are made up of the same parts and the problem

is completely reversible. Each electron tunneling onto the SET shifts the operating point of the

trap slightly. This reverse coupling is actually much stronger than the forward coupling of the trap

electrons to the SET. Each SET electron is coupled with a strength of 20% to the trap island. This

is the backaction of the SET onto the trap island, and this interaction modifies the rate curves.

With the second device, which is much more strongly coupled to the SET, we see a slight

improvement in the agreement between the predicted theoretical rates and the measured rates if
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we include the backaction of the SET into the calculation. The gate dependence of the rates is

plotted in figure 8.24 along with theoretical bands of the calculations including the backaction.

These calculations are done for the same range of device parameters as those shown in the graphs

neglecting the backaction, and again, I expect that the parameters for this device lie in the lower

range of these bands. The temperature dependence of the rates are shown with comparisons to

Figure 8.24: Tunneling rates for the trap as a function of trap gate. The shaded region bounded
by the solid and dashed lines represents calculations of the cotunneling rate with no free parameters
over the range of the expected values for the parameters of the calculation including contributions
from the backaction of the SET.

theory in Figure 8.25. The shapes of the rate curves in both the gate and temperature dependence

plots are more closely aligned with the data than those that did not account for the SET’s backaction

onto the trap. While the return rates are still not well explained by the theoretical predictions at

low temperature, the forward rates and both rates at higher temperatures show excellent agreement

with theoretical predictions. At increased temperatures, both the forward and reverse rates agree

well with the theoretical predictions. Overall, the addition of the SET backaction only changes the

predictions slightly, and the data show good agreement with both models, within the uncertainty of

the model parameters.
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Figure 8.25: Tunneling rates for the trap are plotted as a function of temperature. We compare
the data with a model of the cotunneling theory including the backaction of the SET with no free
parameters. The data shows good agreement with the theory over a wide range of temperatures.



Chapter 9

Conclusions

9.1 Summary of Results

The work presented in this thesis is the time resolved measurements of single tunneling events in a

metallic thin film circuit. I have designed and fabricated a circuit that has rates in the microsecond

range that are tunable over almost two orders of magnitude. Using a RF-SET capacitively coupled

to a single electron trap, I was able to time resolve single electron tunneling events. In the 400

microsecond average lifetime of the charge state with one excess electron on the trap island, 80 data

points with SNR=10 can be obtained. In addition, I have made comparisons with both orthodox

theory, or global rule, and cotunneling theory.

The measurements presented here are the first time resolved measurements of non-thermal tun-

neling events in a metallic system or quantum dot. They are also the first quantitative comparisons

with cotunneling theory. Prior explorations of cotunneling dynamics [Kautz2000] disagreed with

theory by many orders of magnitude and were complicated with the many-junction geometry and

sensitivity to anomalous rare events. I was able to explore the dynamics of this circuit in several

self-consistent ways. The first two methods were time averaged measurements that probed the

underlying dynamics. This was first demonstrated in a qualitative way with measurements of the

Coulomb staircase swept faster than the characteristic tunneling time. The hysteresis of the stair-

case measured as a function of the gate voltages illustrated the tunable nature of the rates, and

the full two dimensional stability diagram provided a map of parameter space which allowed precise

positioning for further measurements. I then performed pulsed gate measurements to obtain a more

quantitative rate measurement that agreed favorably with cotunneling theory. In a second sample

that had higher coupling to the SET island, giving higher measurement sensitivity, I was able to time
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resolve the single electron tunneling events on the trap. I measured the tunneling rate as a function

of gate and temperature, giving excellent agreement with cotunneling theory. It is well known that

there is backaction from the SET which affects the measured device. We have assembled a prelim-

inary model to incorporate this into our theoretical predictions, which changes the predictions and

the agreement with the model only slightly. These measurements also demonstrate the possibility

to extend this work to measurements of correlations and higher moments of charge fluctuations in

metallic systems.

9.2 Future Work and Applications

A possibility of further research is to change the coupling to the SET and study the dynamical

nature of the backaction of the SET. The mechanism for the backaction in the operation regime

where the tunneling events in the SET are much more rapid than those in the trap has not been

widely studied. In addition, the return rates of the trap at the lowest temperatures do not agree

with the theoretical predictions. It is possible that more could be learned about this mechanism by

modifying the strength of the interaction between the two circuits.

This research could also be further extended by studying the dynamics electron turnstile. This

is a tunable circuit with four junctions and three islands, which can flow a current. The techniques

developed for the trap experiments presented here can be applied to this similar circuit to do high-

sensitivity low-noise measurements of single electron dynamics with application to current metrology

and precision measurements. A quantum standard for the Ampere that depends only on quantum

mechanics and the charge of the electron e could be accomplished with rapid counting of single

electrons.



Appendix A

Fabrication Recipes

The recipes for the fabrication process outlined in Chapter 6 are presented here.

A.1 Wafer Preparation

1. Sonication in acetone 60s

2. Sonication in methanol 60s

3. Dry with N2 and spin dry

4. Spin MMA-(8.5)MAA EL12 at 4000 rpm for 80s

5. Bake at 170 C for 5 minutes on hot plate fitted with aluminum plate to ensure temperature

uniformity across the wafer. Cover with petri dish.

6. Cool 60 s on room temperature metal plate.

7. Spin PMMA 950K A3 at 3000 rpm for 80s

8. Bake at 170 C for 30 minutes (same setup as step 5)

9. Cool 60 s on room temperature metal plate.

A.2 Development

1. Prepare two small beakers:

A. 30 mL MIBK:IPA 1:3 at 25◦ C

B. 30 mL IPA at 25◦ C
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2. Hold chip with tweezers, and gently agitate in beaker A for 48 s.

3. Quickly remove from beaker A, and gently agitate for 10 s in beaker B.

4. Gently dry with N2 gas.

A.3 Aluminum Evaporation and Lift-off

1. Fill Plassys cold trap.

2. Load sample into load lock of Plassys.

3. Pump down chamber and load lock to ∼ 4 × 10−7 Torr. This step takes approximately 1.5

hours.

4. Evaporate a few nm of titanium to lower the pressure to ∼ 2× 10−7 Torr.

5. Evaporate 35 nm aluminum at 0◦ from normal to the sample.

6. Wait 2 minutes

7. Oxidation step with Ar:O2 85:15 at 3 Torr for 12 minutes.

8. Let the chamber pump back down. A second titanium deposition is optional here.

9. Evaporate 70 nm aluminum at 30◦ from normal to the sample. The angle here depends on

the required shift.

10. Wait 2 minutes.

11. Remove sample from the Plassys and place in vertical sample holder in hot (70 C) acetone

beaker on hot plate.

12. Squirt hot acetone on sample through a syringe removing the top layer of aluminum.

13. Sonicate sample in same aluminum bath for 30s.

14. Remove sample holder with tweezers from acetone bath, while spraying with fresh acetone

from squirt bottle to prevent stray flakes of aluminum from finding their way back onto the

silicon substrate.
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