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S Quantity of classical information 

s Circuit size 

sc Connection size 

SI(ω) Power spectral density noise in a field along the I axis 

nbS  Branch current orientation matrix elements 

Sq Quantity of quantum information 

t Insulator thickness 

T Temperature 

1T  Depolarization time 

2T  Decoherence time 

Tϕ  Dephasing time 

td Dead time 

tm Measurement time 

U Cubic approximation to the washboard potential in a JTJ 

Ug Cooper Pair Box gate voltage 

V̂  Island potential 



 xvi

( )bv t  Branch voltage 

nv  Node voltage 

v(t) Voltage 

W Number of configurations 

ˆ ˆ ˆ, ,x y z  Unit vectors of the three orthogonal axis of the Bloch sphere 

ˆ ˆ ˆ, ,X Y Z  Unit vectors of the three orthogonal axis of the eigenframe in a Bloch sphere 

Xc Magnitude of the qubit coupling in unit of Ez 

ˆ ˆ,R Rx z  Unit vectors of the rotating frame 

Y(ω) Frequency dependent admittance 

YC Admittance of a capacitor 
C
iny  Open transmission line admittance 

yo Transmission line characteristic admittance 
L
inz  Shorted transmission line impedance 

ZL Impedance of an inductor 

zo Transmission line characteristic impedance 

Zo Harmonic oscillator characteristic impedance 



 xvii

Acknowledgements 

I would like to thank my thesis director Michel Devoret. I could not have asked 

for a better one. He has been supportive of my efforts, has encouraged my pursuits, when 

appropriate, and discouraged them, when appropriate. He has been an inexhaustible mine 

of knowledge and has continuously stimulated my thirst for more. He has been a friend to 

talk with of things other than science, from family and politics to art and history, and best 

of all as a French man, a true European French, the closest person I found as a 

Neapolitan, a true European Italian. 

I would like to thank Rob Schoelkopf. I thought I had boundless energy and 

attention at details before bumping into him and realizing the difference between a 

Ferrari and a car. 

I would like to thank Dan Prober, my first advisor as a post-doc here at Yale, he 

has always impressed me with his profound knowledge of physics and his ability to make 

me feel I could understand it and he has developed in me an appreciation for the practical 

aspects of science and for the continuous honest search for applications of whatever we 

think we do. 

I worked with a number of graduate students directly or indirectly and I found in 

all of them sincere interest in science and in most of them friendship. Training some of 

them in the craft of superconducting electronics fabrication has given to me more than 

one reason to rejoice: Chris Wilson, David Schuster, Matthew Reese, Veronica Savu, 

Minghao Shen, Julie Wyatt Love, Joe Schreier. Each of them has added to my experience 

and knowledge at least as much as they believe they learned from me. Additional 

learning has been provided by interactions with Frederic Pierre, Lafe Spietz, Mike 

Metcalfe, Chad Rigetti, Simon Fissette. Developing new devices with and for Ken Segall, 

Thomas Stevenson, Liqun Li, Andreas Wallraff, Hannes Majer, Ben Turek, John Teufel, 

Daniel Santavicca, Etienne Boaknin, Rajamani Vijayaraghavan has been sometime a 

challenge and always a lot of fun. A special thank to Irfan Siddiqi with whom I shared 

seven years in the same Department and a lot more. 



 xviii

I would also like to acknowledge the “invisible” contribution to this work from 

our Department staff during the long time it took to be completed: Jayne Miller, Pam 

Patterson, Pat Brodka, Maria Gubitosi and Theresa Evangeliste. 

I would like to thank my advisor at Orsay Marc Gabay, without his patience and 

reliable help this effort could not even have started. 

I would like to thank Roberto Cristiano, my thesis advisor of sixteen years ago 

and then a beloved friend and collegue, and Settimo Termini, my Institute director at 

CNR in Pozzuoli, Naples, Italy, to support me in getting the leave of absence during 

which this work has been developed. 

I would like to thank the other components of my thesis jury Antonio Barone, my 

first employer with an unjustified trust in my skills, Carlo Cosmelli, a friend and a 

collegue for more than ten years, and Daniel Esteve, whose friendship and guidance I am 

honored to acknowledge. 

I would like to thank my parents for being always supportive for almost half a 

century, my parents-in-law for being patient with me in spite of stealing and exporting 

their daughter and my brother Paolo for encouraging me even when he had better things 

to do. I would like to thank the young Italian émigré community for the good time they 

always provide me with. I need to thank my children Carlo and Paola for not complaining 

for the many hours I subtracted from their playtime. Most of all, I need to thank my 

wonderful wife Giusy for still loving me in spite of altering her life and filling it with a 

lot of work during these first eight years, especially the last few months while writing this 

thesis. This work would not have been possible without her. 

 

 

 



 1

1. Outline of this work 

Quantum mechanics has been developed more than eighty years ago as a 

revolutionary framework for understanding the atomic and subatomic world. It has 

repeatedly shown an exceptionally good agreement with experiments and its predictions 

have been confirmed in fields as varied as astrophysics, quantum optics, condensed 

matter physics, and chemistry. But for all these successes, it has not yet produced an 

application which we can properly call a quantum mechanical machine. It is true that 

many devices we intensively use in our daily life have been developed thanks to research 

in quantum physics: lasers, transistors, photo-detectors etc. However, the collective 

variables controlling the dynamics of these objects at the macroscopic level (current, 

voltage, electric and magnetic fields) are completely described by the equations of 

classical mechanics. In these equations, quantum mechanics is present only through the 

value of certain basic parameters like the material dependent work function, transition 

frequencies and the semiconductor energy gap, which involve the Planck constant and the 

electron mass and charge. These latter quantities appear in the Hamiltonian of those 

devices as consequences of fundamental aspect ratios of our Universe and they are in no 

way tunable by an engineer. Some of the readers may have had a chance to enjoy a 

beautiful series of books written in the 1940’s by George Gamow [G40, G44]. There, the 

main character, a bank clerk called Mr. Tompkins, amazed by the progresses that physics 

had done in the previous forty years, dreamed of life experiences in a world where, time 

by time, either the Planck constant or the velocity of light in vacuum or the gravitational 

constant had completely different values. We would like to show that in some sense Mr. 

Tompkins’ dreams were not completely meaningless and that in fact they may be realized 

by truly quantum machines, i.e. devices whose functions are entirely described by 

quantum mechanics and for which the quantum parameters are fully tunable. These 

quantum machines may indeed be thought as the product of the work of a new character: 

the quantum engineer. 

In order to support this claim, we have to take a step back and consider two of the most 

important breakthroughs of quantum physics in the last thirty years: the idea of a 
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quantum computer and the extension of quantum mechanics to macroscopic degrees of 

freedom. In Chapter 2, we will briefly introduce these two subjects.  

We will introduce the basic requirements for a quantum computer, which in this work 

plays the role of the ideal archetypal quantum machine. In order to realize it, we need as 

its elementary parts new quantum circuits with proper input and output ports. It will 

become clear that these new circuits will have to be operated at very low temperature 

with very low dissipation. Cryogenic engineering has developed quickly in the last 

twenty years but, at present, getting and keeping sensible volumes of matter cold in a 

relatively easy and cheap way is still only possible at temperatures down to about 10 mK. 

This implies that the scale of the energy level separation for a system that could exhibit 

quantum phenomena without being washed out by thermal fluctuations, is at least of the 

order of 10 µeV, which we can express also as a frequency of a few GHz. Even if nano-

mechanical devices have been greatly developed in recent years, the natural choice for a 

low dissipation system in that frequency range is a superconducting electrical circuit. In 

Chapter 2, we will show that, indeed, superconducting electrical circuits may exhibit 

quantum behavior. 

We will also find that in order to be able to easily access and observe these quantum 

phenomena we need to introduce some non-linearity in our circuits and in Chapter 3 we 

will show how to do this in a natural way with the help of Josephson tunnel junctions. In 

Chapter 4, we will show that the elementary parts of a quantum computer, the qubits, 

may be realized among other ways by a very simple circuit, the “elementary atom” of our 

quantum engineering, the so-called Cooper Pair Box (CPB). We will then describe the 

properties of this circuit. 

In Chapter 5, we will present examples of the weak-coupling read-out strategies that have 

been realized for this simple electrical circuit in the past. We will then introduce a new 

strategy based on purely dispersive measurements of the qubit susceptibility. These 

measurements are realized by microwave irradiation of the read-out port of the circuit 

and then by probing the transmitted or reflected photons. One can think of the qubit as a 

nonlinear quantum system having a state-dependent admittance (capacitive or inductive), 

which changes between the ground and excited states. It is this change in polarizability 

which is measured in the dispersive measurement, which is also a quantum non-
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demolition (QND) type of measurement because it does not modify the qubit state. This 

new strategy in two different configurations, with capacitive and inductive coupling to 

the CPB, has been the focus in the last four years of the groups involved in research on 

superconducting circuit for quantum information processing in the Departments of 

Applied Physics and Physics at Yale. We took part in this collective effort by principally 

contributing in the design and fabrication techniques of devices testing this strategy. 

In Chapter 6 and 7, we reprint articles, already published by international scientific 

journals, containing the results obtained pursuing two different versions of this dispersive 

read-out strategy. 

In Chapter 6, we reprint a published article presenting the RF version of the Quantronium 

architecture, which is the natural extension of what was developed in the Quantronics 

group at CEA in Saclay, France [VAC02]. This “RF-Quantronium” has been realized 

coupling the Quantronium circuit to a new amplifier for quantum measurement based on 

a nonlinear electrodynamic resonator with two metastable oscillation states: the 

Josephson Bifurcation Amplifier (JBA). The read-out is performed energizing with a 

microwave beam the JBA to a level where its oscillation state acts as a sensitive pointer 

of the qubit state, without generating any on-chip dissipation. This represents another 

valuable example of nonlinear dispersive measurements on a superconducting qubit 

circuit. The other published works reprinted in this Chapter focus on presenting the 

characteristic and properties as understood at the present stage of the development of this 

new amplifier. 

In Chapter 7, we present the circuit quantum electrodynamics (QED) architecture 

[BHW04], which can be thought of as an electrical circuit version of the well-known 

cavity QED experiments [RBH01, MD02]. Of course, because we will be talking about 

frequencies in the range 2-50 GHz, we will have to take into serious consideration the 

need of realizing these superconducting electrical circuits out of distributed components 

rather than simple lumped components. In fact in the circuit QED, a one dimensional 

(1D) transmission line resonator consisting of a full-wave section of a superconducting 

coplanar waveguide plays the role of the cavity and is coupled within a simple circuit 

fabricated on a single chip to a superconducting CPB qubit that plays the role of the 

atom. 
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In Chapter 8, we describe in details our design considerations and the fabrication 

techniques to realize the various parts of the quantum circuits used in our work. These 

techniques together with the microwave engineering necessary to set up the 

measurements on these circuits represent the “nuts and bolts” of this new exciting field of 

scientific research. 

In Chapter 9, we will conclude summarizing our results and presenting the perspectives 

for our new characters, the quantum engineers, of realizing quantum machines which will 

in turn generate new and even more exciting dreams in the next generations of Mr. 

Tompkins around the world. 

In the final version of this manuscript, the text and the slides used for the defense 

presentation have been added in an Appendix. 
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2. Motivation: two breakthroughs of quantum physics 

2.1. Quantum computation is possible 

In the 1980’s, Richard Feynman [F82, F85, F86, F96] demonstrated theoretically 

that the components of a computer could be reduced to individual atoms or even 

elementary particles, like electrons. The quantum uncertainty associated with non-

commuting variables would not prevent such a computer from working properly. Even 

better, such a quantum computer would work with a minimal energy cost. 

These results went essentially unnoticed outside a small community of theoretical 

physicists for at least two reasons: computers were much further than today from 

reaching the atomic scale and the message did not contradict mainstream views. In fact, 

that “miniaturization could just keep going on” was already part of the chipmakers gospel 

according to Moore. 

However, a revolutionary discovery was made in 1994 by a Bell Labs computer scientist. 

Peter Shor [S94] discovered that a quantum computer would not just perform as well as a 

classical computer but would solve certain problems which were impossible tasks on a 

classical computer. He exhibited [S97] an algorithm for factoring numbers into prime 

ones in times which increased only polynomially with the number of digits. That was a 

formidable piece of mathematical physics. In fact, up until then, most computer scientists 

thought that the complexity of a problem was independent of the type of machine you 

could use. Some computers may run faster than others but the differences are only 

quantitative, not qualitative. The quantum computer was apparently able to do in a few 

hours what would take millions of years to do on a classical computer. 

This discovery caused quite a sensation initially, but it was quickly dissipated when it 

was recognized that the computer had to operate in an almost perfect way in order to be 

useful. The quantum computer was infinitely superior, but also infinitely difficult to 

realize. Then in 1995, Peter Shor [S95], and at the same time independently Andrew 

Steane [St96, St98] at Oxford in UK, made an even more revolutionary discovery: they 

found that quantum error correction codes, which most physicists thought impossible, 

were in fact possible. This last invention is perhaps more profound than the first Shor’s 

algorithm. It means that quantum machines, which have truly astounding properties, obey 
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the same construction principles than ordinary machines. The status of the construction of 

a quantum computer had suddenly shifted from being impossible to being extremely 

difficult. 

The quantum computer has become the driving force of a new direction in quantum 

physics. Quantum mechanics does not only restrict the amount of information you can 

acquire on a system. On the contrary, by using subtle, but basic, quantum principles you 

could, in principle, build machines that treat this information faster and better than what 

classical mechanics allows. 

 

2.1.1. Classical information 

A classical binary information unit, a bit, is thought of as a binary digit, but it 

always consists of some physical system with two minimum energy states, “0” and “1”, 

separated by a tall barrier and with a lot of friction in order to make the bit insensitive to 

small perturbations. All implementations of this bit, either electric, magnetic or 

mechanical, are analogous to a bistable switch. In this latter case, the state variable is the 

position of the switch with some threshold to define either ON or OFF conditions. In a 

RAM computer memory, the state variable is a charge on a capacitor. In a magnetic disk-

drive, the state variable is the magnetization of a little domain on the surface of the disk. 

The system is set to a particular state by some external force and then stays in that state. 

If we measure the system, submitting it to en external perturbation and measuring its 

response, we should find exactly the state that has been written in. In principle, if the bit 

is correctly constructed, the read-out operation reproduces the information stored during 

the write in operation. Copying is then always possible. 

The quantity of information contained in set of N bits or N-register is S=log2W=N, where 

W=2N represents the number of configurations the N-register can have. The classical 

algorithms are executed using Boolean logical gates. Only one type of elementary gate, 

called the “universal” gate, is needed to perform all calculations: the NAND (or NOR) 

gate. 
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2.1.2. Quantum information unit: the qubit 

The unit of quantum information, a quantum bit or qubit, has properties radically 

different from the classical bit [NC00]. Every bound microscopic particle has quantized 

energy levels. The electron in an atom has energy levels corresponding to different 

electronic orbitals. A single electron in a magnetic field has two energy levels 

corresponding to the two possible orientations of its spin with respect to the field. Usually 

these levels are not evenly separated. In fact, we do not want for quantum computation a 

system with regularly separated energy levels like a harmonic oscillator. The best 

situation for realizing a qubit is when two levels, for example the ground and first excited 

level, have a smaller separation than that between them and all the other levels. 

These set of two levels forms the qubit. If the system is in the ground level the qubit is 

said to be in the 0  state, using Dirac’s notation. Conversely, the first excited level 

corresponds to the 1  state. 

The great difference from the classical bit is that, even if all the other energy states are 

forbidden, the quantum bit can be prepared in more than only these two states. It can be 

prepared in what is called a “normalized quantum superposition” of these two states, ψ : 

 
Figure 2.1.1. The Bloch sphere for a single qubit. The North Pole represents 
the ground state of the qubit or state 0 , while the South Pole represents the 

excited state or state 1 . Each point on the sphere represents a possible 
superposition of the two basis states and is characterized by latitude, θ, and a 
longitude, ϕ. 
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0 1ψ α β= +  

with 2 2 1α β+ =  or without losing any generality: 

( ) ( )2 2cos / 2 0 sin / 2 1i ie eϕ ϕψ θ θ−= +  

If we represent the two basis states as the South and North poles of a sphere, then all the 

possible superpositions can be mapped into points at the surface of this so-called Bloch 

sphere, as shown in Fig. 2.1.1. The latitude, θ, corresponds to the average energy of the 

state. The longitude, ϕ, is called the phase of the qubit. Each point on the sphere can be 

associated to a unit norm state vector centered in the sphere origin: 

ˆ ˆ ˆ ˆsin cos sin sin cosx y zψ θ ϕ θ ϕ θ= + +  

where x̂ , ŷ  and ẑ  are the unit vectors of the three orthogonal axis of the coordinate 

system of the Bloch sphere. 

 

2.1.3. Two new properties of qubits 

The first new and interesting property of a qubit consists of losing the mutual 

exclusion character of its states typical of the classical bit, since infinite intermediate 

possibilities between the classical results “0” and “1” exist. 

The second surprising property of a qubit is that writing and reading its state are now 

completely asymmetric operations. By exciting the system with a force which oscillates 

at the transition frequency between the two states, and by adjusting the amplitude and 

duration of this excitation, we can prepare any superposition. We can thus write into the 

qubit a particular state with arbitrary accuracy. 

The surprise comes when we measure the energy of the system, as represented in Fig. 

2.1.2. We always find only one of two values: either the value associated with the state 

0  or the one associated with the state 1 . If we prepare the same superposition over 

and over again, each reading operation will find randomly the 0  value or the 1  value 

with probabilities corresponding to P0 ( )ψ =cos2(θ /2) and P1 ( )ψ =sin2(θ /2), 

respectively. The superposition appears to have collapsed either at the North or at the 

South Pole through the act of measurement. 
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Figure 2.1.2. The collapse of the Bloch sphere at measurement. The result 
of an energy measurement on the qubit is always only one of two values: either 
the value associated with the state 0  or the one associated with the state 1 . 
For each state on the Bloch sphere, that is superposition of the basis states, the 
result will be randomly the 0  value or the 1  value with probabilities 

corresponding to P0 ( )ψ =cos2(θ /2) and P1 ( )ψ =sin2(θ /2), respectively. Only 

the pure states 0  and 1  will be read-out as such with certainty. 
 

One never measures an intermediate energy value, corresponding to one of the 

superposition states. The collapse prevents the read-out to be faithful. Only if we write 

the pure states 0  or 1 , does the read-out give us back the initial information with 

certainty. It is, thus, impossible in general to copy quantum information. To copy we 

must read, which in general cannot be performed without destruction of the qubit state. 

Nevertheless, the information contained in the superposition exists. In fact, we can 

prepare an arbitrary superposition, and instead of reading it right away, we can rotate the 

sphere as a whole and bring the written state in the place of the pure 0  or 1  state. 

Then we can faithfully read the information. This is how we know that the information 

carried by arbitrary superpositions has some, albeit hard to fathom, existence. 
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2.1.4. Unique property of quantum information 

A quantum register, like a classical register, is just a set of qubits. The quantum 

register generalizes the superposition phenomenon to an amazing degree: the general 

state of a quantum register is a superposition of all the possible configurations of the 

register. This means that whereas a classical N bit register store only one N digit number, 

an N qubit register can in a sense store all numbers between 0 and 2N-1, and we can do 

operations on all these numbers at once. This is truly massive parallelism! 

In more mathematical terms, the state of the N-register is now a point on a hypersphere, 

whose number of dimensions, D=2N+1-2, grows exponentially with the number of qubits 

in the register. If we have for instance 3 qubits, the hypersphere lives in a space with 14 

dimensions. For 150 qubits, the number of dimensions of the hypersphere is greater that 

the total number of particles in the universe. 

Since the surface of the Bloch hypersphere grows exponentially with the number of 

dimensions, the quantity of quantum information grows exponentially with the number of 

qubits, Sq=log2M
D≈2N+1-2, where M is of order 104 based on considerations from error 

correction codes. This property confers tremendous advantage to quantum information 

over classical information. The quantity of information that can be stored grows 

exponentially with the resources, whereas classically it grows only linearly. If we want to 

double the amount of the quantum information carried by a quantum register, we just 

need to add only one qubit! 

Until a decade ago, almost all physicists were somehow convinced that this prodigious 

amount of information was just a mirage. In fact, because of the collapse of the Bloch 

hypersphere in reading it, all this wonderful quantum information vanishes at 

measurement time and only one binary number is left in the register. The miracle of 

quantum mechanics, that Peter Shor was the first to witness, is that quantum information 

can still be put to practical use, despite its fragility. 

 

2.1.5. Quantum algorithms 

Certain problems, like answering the question “Is X a prime number?”, have a 

solution which contains very little information. In all the cases where the answer may 



 11

only be “Yes” or “No”, the solution has just one bit of information. David Deutsch [D85, 

D89], working at the University of Oxford, was the first to understand that for such 

problems, the collapse of quantum information, due to the read-out operation, was not 

such a severe limitation. The trick is not to perform any read-out until the very end of the 

computation. In the last stages, the information is “distilled” in such a way that the output 

register will not contain a superposition of answers, but is instead rotated so that “Yes” or 

“No” appears as pure state which can be read-out faithfully. Deutsch demonstrated that 

such distillation is possible on some very particular and not very interesting class of 

problems. Peter Shor [S97] was the first to show that the distillation was possible for an 

important practical problem, the decomposition of a number into prime factors. 

Moreover, he showed that such distillation could be performed in a way which is so 

efficient that all the parallel power of quantum computation is retained until the solution 

is reached. 

 

2.1.6. Quantum gates 

Quantum gates are rotations in a continuous complex vector space, unlike their 

classical counterparts which act in a discrete space. Nonetheless, it has been shown that a 

universal gate set consists of arbitrary one-qubit rotations plus a single two-qubit gate 

[NC00]. 

Using the Pauli operators, ˆ xσ , ˆ yσ , we introduce the 2x2 unitary matrices which 

represent the rotation operators around x̂  and ŷ : 

( ) ˆ 2 2 2

2 2

cos sin
sin cos

xi
x

i
R e

i

ϑ ϑ
ϑσ

ϑ ϑϑ − −⎛ ⎞
= = ⎜ ⎟−⎝ ⎠

 

( ) ˆ 2 2 2

2 2

cos sin
sin cos

yi
yR e

ϑ ϑ
ϑσ

ϑ ϑϑ − −⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

 

A general rotation for a two level system can then be executed as: 

( ) ( ) ( )x y xU R R Rα β γ=  

and an example of a single two qubit gate is the so-called controlled-NOT or CNOT gate: 
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1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

CNOT

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

which performs a 180 degrees rotation on the target qubit if and only if the control qubit 

is in the “1” state. But be aware that this gate has a very strange property: it will take any 

quantum superposition of the four possible input configurations: 

0 ,0 1 ,0 0 ,1 1 ,1t c t c t c t cψ α β γ δ= + + +  

and transform it into a superposition of the four possible output configurations: 

0 ,0 1 ,0 1 ,1 0 ,1t c t c t c t cCNOT ψ α β γ δ= + + + . 

There are experimental protocols [RBD05] for realizing universal gates in registers of 

superconducting qubits with fixed qubit coupling which employ irradiation of individual 

qubits with precisely tuned strength and duration. 

 

2.1.7. Basic requirements for a quantum computer 

Before describing specific possible implementations of the quantum computer, let 

us first establish the basic requirements that a system has to satisfy to be considered a 

good candidate for this task. In doing this, we will follow the indications expressed in a 

survey work by David DiVincenzo [Di95, Di00], at the IBM T.J. Watson Research 

Center in Yorktown Heigths, NY. He pointed to four main basic requirements, which we 

have adapted here to our actual circuit implementations: 

 

a) A scalable physical system with well characterized qubits 

A well characterized qubit means that its physical parameters are accurately known. 

The first necessary step is to know the internal Hamiltonian of the qubit, which 

determines the two eigenstates or just states of the qubit. Knowing the Hamiltonian 

will also allow determining the existence of other possible states of the qubit and their 

coupling to the two basic states. In order to have a qubit, the transition frequency 

between state “0” and “1” must be sufficiently different from the transition between 

other eigenstates. This is what we previously called non-linearity or anharmonicity of 
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the system. The knowledge of the Hamiltonian may guide the understanding of how 

the qubits interact among themselves and how we may be able to manipulate their 

states by external fields. The scalability of the system is an important property if we 

want to realize registers of qubits in large enough numbers to be able to perform any 

non-trivial quantum computation. This implies that even if the effort to realize larger 

registers grows with the number of qubits, it has to do so in a way that would not 

throw away the advantage of quantum computation over the classical one. 

 

b) A system with the ability to initialize and control the qubits 

For any two level system, the three Pauli operators, ˆ xσ , ˆ yσ , ˆ zσ , and the identity 

operator, Î , represent a complete basis for the operators acting in a two dimensional 

Hilbert space. Any operator can be written as:  

{ } ( ) { }1 1 1 1ˆ ˆ ˆˆ ˆˆ ˆ ˆ
2 2 2 2x x y y z zA a Tr A I a a a Tr A Iσ σ σ σ= − ⋅ + = − + + +  

where the vector a  is the unique representative vector of the operator Â . 

If we now limit ourselves to the two states of the qubit, we can in general write the 

qubit Hamiltonian as that of a pseudo-spin 1/2 particle:  

( )ˆ ˆ ˆ
2

z
qubit z c x

EH Xσ σ= − +  

where Ez represents the minimum energy splitting of the two states. The natural 

coupling variable for the qubit is what defines the x direction and Xc represents the 

magnitude of the coupling energy normalized to Ez. In Chapter 4, we will show that 

both Ez and Xc are functions of externally tunable parameters. We can now send 

signals in the form of NMR-type pulses through the control variable and prepare 

arbitrary superpositions of states. This operation will correspond to writing into the 

qubit. This same operation by itself or in association with some sort of cooling to the 

ground state also defines a possible initialization procedure for the qubit. The 

Hamiltonian also shows that at the “sweet spot” Xc=0, the qubit transition frequency is 

to first order insensitive to the noise of the control variable. 

For the Hamiltonian introduced above, we have ˆ ˆˆ ˆx z z c zh h x h z E X x E z= + = + . 
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We can always diagonalize the 2x2 matrix Hamiltonian and introduce a new reference 

frame for the Bloch sphere with Ẑ  along the eigenvector with eigenvalue 01 2ω− , 

where ( )1 22
01 1z cE Xω = +  is the transition angular frequency between the qubit 

states. This eigenframe is obtained considering a simple rotation of the axis such that: 

ˆ ˆY y= , ˆ ˆ ˆsin cosZ x zγ γ= + , with tan cXγ = , and ˆ ˆ ˆcos sinX x zγ γ= − . In this 

new reference frame the qubit Hamiltonian becomes:  

01ˆ ˆ
2qubit ZH ω σ= −  

and its representative vector is 01
ˆh Zω= , which represents a pseudo-magnetic field. 

This field produces a precession of the state unit vector around it with an angular 

frequency ω01.  

 

c) A system with the ability to read-out the qubits with high fidelity 

For a system to be a valid candidate for quantum computer, it has to be able to read-

out the information contained in the qubits. Then, we need to be able to open a 

coupling channel to the qubit for extracting information without at the same time 

submitting it to noise. An important quantity to optimize is the read-out fidelity. At the 

end of the read-out procedure, we should have reached one of the only two possible 

results. The read-out fidelity or discriminating power is defined as: 

F=P0 ( )0 +P1 ( )1 -1. 

 

d) A system with a long decoherence time 

For a system to be a valid candidate for quantum computer, it has to have states which 

do not lose coherence while the computation is running. Let us discuss this crucial 

point in more detail in the next section. 
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2.1.8. Qubit decoherence 

A quantum computation is performed by first writing the input data, and then by 

running a sequence of gate operations. In this second stage, the quantum processor should 

be left undisturbed by parasitic influences which would either collapse the quantum 

information into classical information or alter irreversibly the superposition states in 

interactions with the degrees of freedom of the surrounding environment, including the 

read-out circuit. This fundamental alteration which reduces the description of a quantum 

system toward classical equations is called decoherence. 

In general, these interactions generate an entanglement between the qubit and the 

environment. However if the interactions are weak, their effects on the qubit can be 

described in simpler terms. In the following we assume that this hypothesis is always 

verified in our case. As we said before, a generic quantum state of a qubit, ψ , is 

represented by a unit vector ψ̂ centered in the Bloch sphere origin and pointing to the 

sphere location with latitude θ and longitude ϕ. Let us assume the representative vector 

of our Hamiltonian is oriented along the Z axis. 

Under the generic name of decoherence, there are two main classes of effects induced by 

the environmental degrees of freedom in the definition of the state. The first one 

corresponds to the tip of the unit vector diffusing in the latitude direction, which is the 

direction along the arc joining the two poles of the sphere. This process is called energy 

depolarization or state-mixing. In particular, the process is called relaxation if the unit 

vector is realigning with the ground state unit vector. It is called excitation if the unit 

vector is realigning with the excited state unit vector. The second class corresponds to the 

tip of the unit vector diffusing in the longitude direction, which is the direction 

perpendicular to the line joining the two poles. This process is called dephasing. 

The depolarization process can be seen as resulting from unwanted transitions between 

the two qubit eigenstates induced by fluctuations in the effective fields along the X and Y 

axes. For weak fluctuations [ICJ05], we introduce the power spectral density noise of this 

fields, respectively SX(ω) and SY(ω), and demonstrate using Fermi’s Golden Rule that the 

depolarization time and rate are: 
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( ) ( ) ( ) ( )01 01 01 011
1 1 2

X X Y YS S S S
T

ω ω ω ω− + − + + −
= Γ = . 

A depolarization quality factor can be introduced 1 1 01Q T ω= . 1 2Q π indicates the 

average number of depolarization free precession turns. 

The dephasing process, on the other hand, is induced by fluctuations in the effective field 

along the Z axis. If these fluctuations are Gaussian, with a power spectral density noise 

SZ(ω) frequency independent up to frequencies of the order of several time the dephasing 

rate, we can show that dephasing time and rate are: 

( )1
2

0ZS
Tϕ ϕ

ω− = Γ =  

In presence of a low frequency noise with a 1/f behavior, the formula is more 

complicated. If the environment producing the low frequency noise consists of many 

degrees of freedom, each of which is very weakly coupled to the qubit, then one is in 

presence of classical dephasing which, if slow enough, can in principle be fought using 

echo techniques. If, on the other hand, only a few degrees of freedom like magnetic spins 

or glassy two-level systems are dominating the low frequency dynamics, dephasing is 

quantum and not correctable, unless the transition frequencies of these few perturbing 

degrees of freedom are themselves very stable.  

These two decoherence rates and times are related to the NMR spin decay rate and time: 
1 1 1

2 1 1 22 2T T Tϕ ϕ
− − −Γ = Γ + Γ = + =  

which can be seen as the net decay time and rate of quantum information, including the 

influence of the decoherence processes. By analogy, a decoherence quality factor 

2 2 01Q T ω=  can be introduced. 2 2Q π indicates the average number of decoherence free 

precession turns. Since a gate operation takes several precession turns to be performed 

(m~100), Q2/m indicates also the average number of such operations a qubit can undergo 

before quantum superpositions lose coherence. 

 

2.1.9. Quantum error correction codes 

A very beautiful and very important application of basic quantum gates is the 

correction of errors due to decoherence. Such processes were at first thought to be 



 17

impossible, since in order to correct, you first have to measure. Quantum error correction 

codes are based on redundancy and partial measurements. Many different versions had 

been proposed until 2002 when Daniel Gottesman [Go02], then at the California Institute 

of Technology, demonstrated that all possible one-qubit errors can be detected by 

encoding one logical qubit in five physical qubits at minimum. Interestingly, this 

detection leaves the quantum information untouched but reveals if an error has occurred 

or not. Furthermore, it allows you to know how the logical qubit has been altered and to 

correct it. However, the number of gate operations, which is needed to perform the entire 

routine for such error detection and correction, is of order of 104. Once the gate operation 

time is taken into account, Q2’s of order of about 106 are needed before attempting the 

construction of an actual quantum information processor. 

 

 

2.2. Macroscopic quantum mechanics: a quantum theory of electrical 

circuits 

Since the late 1970’s, Anthony Leggett [L80], then at the University of Sussex in 

UK and few years after at the University of Illinois at Urbana-Champaign in USA, was 

looking for answers to the following questions: 

• are macroscopic degrees of freedom governed by quantum mechanics? 

• and if so, would it be possible to observe quantum phenomena, like tunneling, energy 

level quantization and coherent superpositions, before unavoidable interactions with the 

environment decoheres the macroscopic wavefunction of the system? 

• can we obtain quantitative predictions for those phenomena, assuming a simple and 

general description of the environment as a source of energy dissipation? 

Our experience tells us that a classical description of the everyday physical world appears 

to be completely satisfactory. We predict wonderfully well by classical mechanics the 

trajectories of the celestial bodies as well as that of billiard balls. The fall of a heavy rock 

and the Brownian motion of a speck of dust in a drop of water are all purely classical 

phenomena. While quantum mechanics appears to manifest itself at the macroscopic level 

through collective phenomena such as superfluidity, superconductivity, flux quantization 
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or the Josephson effect, these macroscopic quantum effects are in fact all generated by 

the classical cooperation of large numbers of microscopic degrees of freedom each 

governed by quantum mechanics. Leggett was instead looking for macroscopic quantum 

phenomena generated by a single macroscopic degree of freedom, i.e. a single collective 

variable. The minimum temperatures, which are relatively easily and cheaply available, 

are of the order of 10 mK. This consideration induced Leggett to look into electrical 

circuits to find the optimal candidate for answering his questions. At the same time, 

Leggett and others had realized that they could model the environment, in which such a 

circuit operates, by a very large number of microscopic degrees of freedom, behaving as 

a collection of harmonic oscillators. In general, their effect on the circuit can be 

represented by impedances with non zero real part inserted in appropriate branches of the 

circuit. 

 

2.2.1. A natural test bed: superconducting electronics 

For a circuit to behave quantum mechanically, the first requirement is the absence 

of internal dissipation. All metallic parts need to be made out of a material that has no 

resistance at the operating temperature and frequency. This is essential in order for 

electronic signals to be carried from one part of the quantum circuit to another without 

energy loss, a necessary but not sufficient condition for the preservation of quantum 

coherence. Superconductors are ideal for this task. Even if in principle any condensed 

electron phase with an energy gap could be used, the better understanding of dissipation 

in low temperature superconductors, like aluminum, tantalum and niobium, makes them 

the natural candidates in actual circuits. Superconducting circuits are built on substrates 

and their observations are made by means of leads connecting them to some sort of read-

out device. Substrate, leads and read-out circuit have to be considered as part of the 

surrounding environment, which introduces dissipation in the quantum circuit. 

In the last twenty years, using several different superconducting circuits, several groups 

have contributed to demonstrate experimentally that macroscopic degrees of freedom are 

governed by quantum mechanics and to improve and generalize the theory of the 

interaction with the environment in order to refine the agreement between predictions and 

observed phenomena such as macroscopic quantum tunneling [DMC85], macroscopic 
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energy level quantization [MDC85] and macroscopic quantum coherence [NPT99, 

FPC00].  

 

2.2.2. Operational criteria for quantum circuits 

In order to design and operate quantum circuits, we have to satisfy three criteria. 

The first criterion is that the typical energy of thermal fluctuations at the operating 

temperature has to be 01Bk T ω<< . For reasons which will become clear later, the 

energy level separation for superconducting circuits is in the 10-250 µeV range, which 

corresponds to transition frequency in the 2-50 GHz range. Therefore, the operating 

temperature must be around or below 20 mK. These temperatures may be readily 

obtained by cooling the quantum circuit with a dilution refrigerator. It is important to 

notice that the “electromagnetic temperature” of the leads allowing control and read-out 

of the quantum circuit has also to be small compared to 01ω . This requires careful 

electromagnetic ultra-low noise filtering with techniques that have been developed in the 

last twenty years [MDC87]. Note that at low temperatures electromagnetic damping 

mechanisms are usually stronger than those originating from electron-phonon coupling. 

The second criterion is that the macroscopic degree of freedom has to be well decoupled 

from the environment so that the lifetime of the quantum states is longer than the 

characteristic time scale of the circuit. 

The third criterion is that 01ω << ∆ , where ∆ is the energy gap of the superconducting 

material. In the fabrication of quantum circuits, this criterion implies that we have to use 

superconducting materials with energy gap of at least 100 µeV. The low temperature 

superconductors, we mentioned above, satisfy this requirement. In fact, the energy gap 

for niobium is ∆Nb=1.52 meV, for tantalum is ∆Ta=700 µeV and for aluminum is in the 

range ∆Al=180-250 µeV depending on the impurity content of the material. 

 

2.2.3. Quantum harmonic LC oscillator 

To illustrate the application of these criteria, we consider the simplest quantum 

circuit, the harmonic oscillator, as shown in the left side of Fig. 2.2.1, which consists of 
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an inductor with inductance L, connected in parallel with a capacitor with capacitance C, 

all metallic parts being superconducting. This simple quantum circuit is the lumped 

element version of a superconducting cavity or of a transmission line resonator. The 

magnetic flux Φ in the inductor plays the role of the position coordinate in the 

mechanical version of the harmonic oscillator. The charge q on the capacitor plays the 

role of its macroscopic conjugate momentum, such that as quantum operators they obey 

ˆ ˆ,q i⎡ ⎤Φ =⎣ ⎦ . The Hamiltonian of the isolated circuit is simply the sum of the energy 

stored in the two elements, expressed as a function of the pair of conjugated variables: 

 

 
Figure 2.2.1. Electrical circuit version of a harmonic oscillator. Left: LC 
circuit. Right: LC circuit connected to an electromagnetic environment modeled 
by an admittance Y(ω) in parallel with the circuit. 
 

2 2ˆˆˆ
2 2
qH
C L

Φ
= +  

If we introduce two operators defined as: 

( )1 ˆˆ ˆ
2 o

o

a iZ q
Z

= Φ +     and    ( )† 1 ˆˆ ˆ
2 o

o

a iZ q
Z

= Φ −  

with †ˆ ˆ, 1a a⎡ ⎤ =⎣ ⎦ , where Zo=√L/C is the characteristic impedance of the circuit, we may 

define an operator n̂  that represents the number of photons in the oscillator as: 

†ˆ ˆ ˆn a a=  

Then, with some algebra, we can obtain the expression: 

1ˆ
2oH nω ⎛ ⎞= +⎜ ⎟

⎝ ⎠
 

where ωo=1/√LC is the resonant angular frequency of the oscillator. 
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Observations of this circuit can only be made by leads that unavoidably couple it to the 

environment. The substrate on which the circuit has been realized is also coupling the 

circuit to a surrounding environment. Moreover, the circuit could also lose energy toward 

the environment by radiation. The combined effect of all these possible couplings to the 

environment can be described by a lumped element, whose frequency dependent 

admittance Y(ω) is in parallel with the LC circuit, see right side of Fig. 2.2.1. We now 

introduce the ratio of the energy stored in the unperturbed oscillator to the energy 

dissipated in one oscillation, the so called quality factor, Q=1/Re{Y(ωo)}Zo. The 

Hamiltonian for the harmonic oscillator and the environment together can be written 

following the Caldeira-Leggett prescription, which we will briefly introduce in 2.2.7. We 

then obtain that, if Q>>1/2, the resonant angular frequency of the oscillator is shifted to: 

{ } ( ){ } ( ){ }( )2

2

ImIm 1Re 1
2 4 4

o oo o
s o

Y ZY Z
Q

ωω
ω ω

⎡ ⎤
⎢ ⎥= − + − −⎢ ⎥
⎢ ⎥⎣ ⎦

 

and that the excited states have a decay rate: 

{ }Im
2

o
s Q

ωωΓ = =  

These equations do not take in consideration terms higher than second order in Y(ω). 

When the admittance is purely real the quality factor becomes Q=ωoRC and the two 

previous equations become: 

{ } 2

1Re 1
4s o Q

ω ω= −  and 
1

2RC
Γ =  

It is important to note that the parameters of the quantum system are not fundamental 

constants of Nature. They are engineerable quantities with a large range of possible 

values which can be modified easily by changing the dimensions of the elements in the 

electrical circuit. 

To satisfy the three criteria introduced above defining a quantum circuit, we need: 

- 0 Bk Tω >>  which, for operating temperature of about 20 mK, implies ωo/2π≥ 2 GHz; 

-Z>>Zo, which means that the circuit impedance has to be significantly larger than the 

characteristic impedance of the leads, whose typical value is 50 Ω; 
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− 0ω << ∆  which implies ∆>100 µeV. 

This circuit may be fabricated using planar components with lateral dimensions around 

10 µm, giving values of L and C approximately 100 pH and 1 pF, respectively, and with 

ωo/2π=15.9 GHz and Zo=10Ω. If we use aluminum, a good BCS superconductor with a 

transition temperature Tc=1.2 K and an energy gap ∆≃190 µeV, dissipation from the 

breaking of Cooper pairs will begin at a frequency 2 / 88GHzω ≥ ∆ = . According to 

the Mattis-Bardeen formula [MB58], the residual resistivity of a BCS superconductor is: 

( ) ( ), / exp /o B BT k T k Tρ ω ρ ω= −∆  

where ρo is the resistivity of the metal in the normal state and therefore the intrinsic 

losses of the superconductor at our operating temperature can be safely neglected. 

 

2.2.4. Limits of circuits with lumped elements: need for transmission line resonators 

Using the lumped element approximation carries some limitations. Any real 

component contains more than just one ideal lumped element. When we are dealing with 

non-static electromagnetic fields, the phase of the field change along the component if the 

scale of the component, l, is not much smaller than the wavelength of the field, λ. Even 

better, the total extension of the circuit, s, should be s<< λ. Let us establish stricter 

conditions on the elements in the inductive and capacitive cases. For a lumped inductor 

with inductance L, the magnitude of the impedance is: 

2 2L o r r o
c lZ L lπω µ π µ ε η

λ λ
= ≈ =  

where o r o rc µ µ ε ε= is the propagation velocity of the field in the inductor medium 

and 376.7o o oη µ ε= = Ω  is the electromagnetic wave impedance in vacuum. Since 

we are in the lumped element approximation this implies an upper limit on the impedance 

amplitude beyond which the approximation breaks down: 

1
2

L

r r o

Zl
λ π µ ε η

=  
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The same can be shown in the case of a lumped parallel plate capacitor, with capacitance 

C and insulator thickness t, where the amplitude of the admittance is: 

2
12 2C o r r o

c l lY C
t

πω ε π µ ε η
λ λ

−= = =  

that puts an upper limit on the admittance amplitude before the lumped element 

approximation breaks down and parasitic effects cannot be any longer neglected: 

1
1

2
C

r r o

Yl
λ π µ ε η −

= . 

In the frequency range of interest for this work, 2-50 GHz, which means λ~0.6-15 cm in 

vacuum, we may be able to realize elements of sub-millimeter size, which we can 

describe as lumped element, or circuits of millimeter size, which we can model as 

transmission line, but we are going to face a technical challenge in dealing with 

connections among them or with the rest of the experimental set-up. For quasi-static 

fields the connections can be thought of as wires of negligible impedance, but this is not 

true anymore if we deal with connections, whose dimension, sc, is comparable with the 

wavelength of the non-static field. 

For instance, if we use a simple wire to connect the experimental set-up to a circuit which 

could be modeled as small impedance, we may treat the wire as an inductive connection 

realized by a shorted transmission line with characteristic impedance zo: 

tan 2L c
in o

sz jz π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

Alternatively if the connected circuit could be modeled as small admittance, we may treat 

the wire as a capacitive connection realized by an open transmission line: 

tan 2C c
in o

sy jy π
λ

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

where zo and yo are the characteristic impedance and admittance of the transmission line. 

If we want to neglect respectively the impedance or the admittance of the wire respect to 

that of the connected element, even only for d<< λ, we obtain in the two cases: 

2 1
L
in o c

z z s
z z

π
λ

=   2 1
C
in o c

y y s
y y

π
λ

=  
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In both cases, these results put an even stronger constraint on the dimension of the 

connections since: 

2
c

o

s z
zλ π    2

c

o

s y
yλ π  

In conclusion, we cannot in general neglect without consequences the parasitic elements 

of a lumped element circuit and it is then in general better to design them using the well-

known transmission line and waveguides techniques bringing at the same time ease of 

fabrication and full understanding of the dynamics of the circuit. This strategy has been 

applied in the work described in Chapter 6. 

 

2.2.5. Hamiltonian of a classical electrical circuit 

For the harmonic LC oscillator, a straightforward application of the Hamiltonian 

formalism can easily be generalized to obtain a quantum description of the circuit. It is 

much less obvious how to do so in complicated circuits that may even include non-linear 

elements. We will briefly introduce a systematic procedure [YD84, De97] for setting up 

the Hamiltonian of an arbitrary electrical circuit. 

An electrical circuit can be described as a network of branches connected at nodes. 

Several independent paths formed by a succession of branches can be found between 

nodes. The circuit can therefore contain one or several loops. Each branch consists of a 

two-terminal element, which we will consider as a lumped component. The element of 

each branch is characterized by two variables, see Fig. 2.2.2. One is the voltage across the 

branch defined as: 

 
Figure 2.2.2. Convention on the branch variables. An arbitrary branch, b, of 
an electrical network circuit with the sign conventions for the voltage and the 
current associated to it. 
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( ) ( )
end of b

b beginning of b
v t E t dl= ⋅∫  

where E and dl are the electric field and a line path element inside the component. The 

other variable is the current flowing through the branch: 

( ) ( )b around b
i t H t dl= ⋅∫  

where H and dl are the magnetic field and a line path element around the component. 

Because we consider lumped elements, we can make voltages and currents independent 

from the integration path once we impose for the line integral of the electric field to be 

outside the wire of the inductors and the loop integral of the magnetic induction field to 

be outside the dielectric of the capacitors. 

A Hamiltonian description of an electrical circuit requires the definition of branch flux 

and branch charge as follows: 

( ) ( )
t

b bt v t dt
−∞

′ ′Φ = ∫  

( ) ( )
t

b bQ t i t dt
−∞

′ ′= ∫  

We have, of course, supposed that electric and magnetic fields have been adiabatically 

turned on starting at t = −∞ , so that there were no voltages or currents at that initial time. 

We have also to define a constitutive relation linking voltage and current for each 

element. A capacitive element will have a relation of the type ( )b bv f Q= , where for a 

usual linear capacitor ( ) /b bf Q Q C= . An inductive element will have ( )b bi g= Φ , 

where for a usual linear inductor ( ) /b bg LΦ = Φ . 

Since the power flowing into each branch is b b b b b bv i v Q i= = Φ , we have that the energy 

stored in a capacitor is: 

( )
2

0 2
bQ b

b
Q Qh Q dQ
C C

= =∫ , 

while the energy stored in an inductor is: 

( )
2

0 2
b b

bh d
L L

Φ Φ Φ
Φ = Φ =∫ . 
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The branch variables are not independent variables and must follow constraints imposed 

by the network topology. These constraints, called Kirchhoff’s laws, state that the sum of 

the branch voltages around each loop, l, and the sum of the branch currents arriving at 

each node, n, should be zero as long as the flux through the loop, lΦ , imposed by 

external flux bias sources and the charge at the node, nQ , imposed by charge bias 

sources are constant: 

b l
all b around l

Φ = Φ∑   b n
all b arriving at n

Q Q=∑  

We have now to choose a set of independent variables corresponding to the degrees of 

freedom of the electrical circuit. In the following, we will use node variables because 

they are more adapted to treat circuits involving tunnel elements, like the ones will be 

dealing with in the rest of this work. We could have instead used loop variables without 

losing any generality. Unlike branch variables, node variables depend on a particular 

description of the circuit topology. The one we will adopt is generated by the following 

procedure: one node of the circuit is first chosen as reference node or ground while the 

others are called active nodes. Then, from the ground, a loop-free set of branches called 

spanning tree is selected applying the following simple rule: each node of the circuit must 

be linked to the ground by one and only one path belonging to the tree. In general, 

inductors are preferred as branches of the tree but this is not necessary. 

Once one of the many possible spanning tree is chosen, we associate to each node a node 

voltage, nv , which is the algebraic sum of the branch voltages between ground and the 

node. The conjugate variable is the node current, ni , which is the algebraic sum of all the 

branch currents flowing to the node through capacitors only. The dynamical variables 

appearing in the Hamiltonian of the electrical circuit are the node fluxes and node charges 

defined as: 

( ) ( )( ) ( )
t t

n n nb b nb b
b b

t v t dt O v t dt O t
−∞ −∞

′ ′ ′ ′Φ = = = Φ∑ ∑∫ ∫  

where nbO  are matrix elements whose value is equal to 1 or -1 depending if the branch 

voltage has been considered with the right or the wrong orientation. It could also be equal 

to 0 if the branch does not belong to the path between ground and the node; 
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( ) ( )( ) ( )
t t

n n nb b nb b
b b

Q t i t dt S i t dt S Q t
−∞ −∞

′ ′ ′ ′= = =∑ ∑∫ ∫  

where nbS  are matrix elements whose value is equal to 1 or -1 depending if the branch 

current through the capacitor has been considered with the right or the wrong orientation. 

It could also be equal to 0 if the branch is either not connected to the node or does not 

contain a capacitor. 

Using Kirchhoff’s laws, it is possible to express the flux and the charge of each branch as 

a linear combination of all the node fluxes and charges, respectively. In this inversion 

procedure, lΦ  and nQ  will appear. 

If we now sum the energies of all branches of the circuit expressed in terms of node 

fluxes and charges, we will obtain the Hamiltonian of the circuit corresponding to the 

representation associated with that particular spanning tree. In this Hamiltonian, capacitor 

energies behave like kinetic terms while the inductor energies behave as potential terms. 

The Hamiltonian of the LC circuit, we have previously introduced, is an elementary 

example of this procedure. 

 

2.2.6. Quantum description of an electric circuit 

The transition from the classical to the quantum description of an electrical circuit 

is straightforward once the Hamiltonian has been obtained. The classical variables have 

to be replaced by the corresponding quantum operators in the Hamiltonian, which 

becomes a function of operators. The node flux and charge operators have the relation: 

, ,
ˆ ˆ, 0n i n j⎡ ⎤Φ Φ =⎣ ⎦  , ,

ˆ ˆ, 0n i n jQ Q⎡ ⎤ =⎣ ⎦  , ,
ˆˆ ,n i n j ijQ i δ⎡ ⎤Φ =⎣ ⎦  

One can also show that the branch flux and charge operators share the same commutation 

relations. 

 

2.2.7. Caldeira-Leggett model for dissipative elements 

In our description of electrical circuits we have restricted ourselves to non-

dissipative components. We would like now to extend our treatment of circuits to 

dissipative elements like resistors. 
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Figure 2.2.3. Caldeira-Leggett model for a dissipative element. The 
dissipative element, representing the interactions with the surrounding 
environment, is represented by an admittance. This can then be treated as an 
infinite set of LC circuits added in parallel to each other [De97]. 
 

The essence of the Caldeira-Leggett model [CL83] is to replace, in the context of 

electrical circuits, a linear dissipative element characterized by a frequency dependant 

admittance, Y(ω), by an infinite set of LC oscillators added in parallel to each other, as 

shown in Fig. 2.2.3. The internal degrees of freedom of the admittance can be thought of 

as the node flux variables of the LC oscillators. The transition from a finite number of 

degrees of freedom to an infinite one reconciles the irreversible behavior of a dissipative 

element with the formal reversibility of the Hamiltonian formalism. In fact, even if the 

admittance of each individual oscillator is purely imaginary, its generalization to complex 

frequencies has a real part in an infinitesimally narrow region around its resonant 

frequency. 

The idea of Caldeira and Leggett thus consists in replacing the initial admittance with an 

infinitely dense set of oscillators reproducing the same total real part on the whole range 

of frequency of interest. Of course, this model does not reproduce the internal workings 

of a dissipative element, but it is helpful to evaluate the influence that this component has 

on the rest of the circuit. This influence can be taken into account by adding to the 

Hamiltonian of the rest of the electrical circuit the contribution of the infinite set of 

parallel LC oscillators, that replaces the admittance, coupled to the circuit: 

 

( )22

2 2
m Cm

Y
m m m

qh
C L

⎡ ⎤Φ − Φ
= +⎢ ⎥

⎢ ⎥⎣ ⎦
∑  
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where Cm and Lm represent the components of the m-th oscillator. Choosing one of the 

terminal of the admittance as ground, Φm, is the flux variable of the intermediate node for 

the m-th oscillator and the charge variable, qm, is its conjugate momentum. ΦC is the flux 

of the capacitor branch in the circuit coupled to the admittance, see Fig. 2.2.1. 

 

2.2.8. Beyond the harmonic oscillator: need for non-linearity 

It seems straightforward to realize a macroscopic harmonic oscillator circuit 

which will exhibit quantum phenomena using easily available fabrication technology. 

Unfortunately, it would not be easy to demonstrate that it is actually performing quantum 

mechanically. Indeed, transition frequencies between neighboring quantum states are all 

degenerate, as a result of the parabolic shape of the potential, and all equal to ωo, which is 

the frequency observed also classically. The harmonic oscillator is in the 

“correspondence limit” for all quantum numbers. Quantum mechanics would be revealed 

by measuring higher moments of its basic variables, but these are much more difficult to 

measure since we are dealing with a single quantum degree of freedom. We could try to 

observe the zero-point motion of the ground state, a unique quantum property, but this is 

a very difficult experiment requiring a quantum-limited amplifier. We could also try to 

measure with low temperature calorimetric experiments the specific heat dependence on 

temperature to show the difference between classical and quantum behavior, but also this 

measurement is a very difficult one for the high sensitivity required to reach conclusive 

results. On the other hand, we can escape the “correspondence limit” using a non-linear 

component which must obey the additional requirement of being non-dissipative.  
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3. A non-linear circuit element: the Josephson tunnel junction 

There is only one circuit element that is both non-linear and non-dissipative at 

arbitrarily low temperature: the Josephson tunnel junction [J62]. This component consists 

of a sandwich of two superconducting thin film electrodes separated by a very thin 

(typically ∼1 nm) insulating barrier, see Fig. 3.1, that allows tunneling of Cooper pairs 

through it, creating a non-linear inductive element [BP92]. The barrier is fabricated by 

thermal oxidation of one of the superconducting electrode. Aluminum oxide is formed in 

a self-terminating thermal oxidation process of a thin aluminum layer. If the electrode is 

fabricated out of some refractory material, then the surface is easily wet by few 

nanometers of aluminum, whose thermal oxide becomes the junction barrier, before some 

more metal is deposited to fabricate the top electrode. Aluminum oxide also has a high 

relative dielectric constant, εr=10, and a work function of about 1 eV. These favorable 

material properties have made it the most used barrier material for Josephson tunnel 

junctions. Unfortunately, the granularity of the film, shown also in Fig. 3.1, on which the 

extremely thin oxide is grown and the limits of the present fabrication techniques result in 

actual barriers whose amorphous and non-stoichiometric structure is far from ideal and 

needs further improvements [TMP05].  

  
Figure 3.1. Josephson tunnel junction. Left: Sketch of a Josephson tunnel 
junction: a sandwich of two superconducting thin film electrodes separated by a 
very thin (∼1 nm) insulating barrier. Right: SEM image of an actual junction 
realized at Yale by the commonly used Dolan bridge technique. In this technique, 
also known as double angle deposition, the two overlapping films are evaporated 
through a resist stencil. The width of the Al bottom electrode is 150 nm and its 
thickness is 40 nm. The barrier was realized by thermal oxidation of the bottom 
electrode. The thickness of the Al top electrode is 70 nm. 
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However, this barrier material still seems to be better than the natural oxides of other 

superconducting metals. In this work, we consider the junction area small such that the 

superconducting order parameter is homogeneous inside the electrodes [BP92]. 

 

3.1. A model for the Josephson tunnel junction 

The Josephson tunnel junction (JTJ) can be modeled as a pure superconducting 

tunnel component, called the Josephson element, which can be thought of as a non-linear 

inductor, in parallel with a capacitor, corresponding to the parallel plates formed by the 

two overlapping electrodes of the junction, see Fig. 3.2. 

 
Figure 3.2. Josephson tunnel junction circuit model. Left: Sketch of a 
Josephson tunnel junction. Center: Branch symbol for the JTJ. Right: Electrical 
circuit model: the Cooper pair tunneling is represented by a pure tunnel element, 
which acts as an ideal non-linear inductor, in parallel with a capacitor 
representing the overlapping electrodes separated by the insulating barrier. 
 

At the temperature of our interest (T=20 mK), all the electrons in the two 

superconducting electrodes are condensed in Cooper pairs. Since all the internal 

microscopic degrees of freedom are frozen, the Josephson tunnel junction is characterized 

only by two a priori independent collective degrees of freedom: the charge on the 

capacitor, Qc(t), and the number, N(t), of Cooper pairs having tunneled through the 

Josephson element. 

The charge flowing through the Josephson element up to a time t, QJ(t)=-2eN(t), does not 

in general correspond to Qc(t) if the junction is connected to an electrical circuit. In fact, 

Qc(t) is a continuous variable since it can be any fraction of the charge quantum, e, 

corresponding to a bodily displacement of the electron fluid with respect to the ion lattice 

background of the metal. In contrast, N(t) is an integer variable.  

The Josephson tunnel junction has a unique many-body ground state. Excited states of the 

electrode have a minimum energy of 2∆, where ∆ is the superconducting quasiparticle 
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gap, which we suppose large in comparison with environment energies like those of the 

temperature fluctuations. 

 

3.2. Josephson equations 

The Josephson element is characterized by the following non-linear inductive 

current-flux constitutive relation, often renamed the second Josephson equation [BP92]: 

( ) ( ) ( )0sin 2 ( ) / sinc J ci t I t I tπ δ= Φ Φ =  

Ic is a parameter called the critical current of the junction, which scales proportionally to 

the junction area and decreases exponentially with the barrier thickness. ΦJ(t) is 

generalized magnetic flux of the Josephson element, as already defined talking of branch 

variables. The constant Φ0=h/2e is the superconducting magnetic flux quantum. The 

variable δ is the dimensionless generalized flux also called the gauge invariant phase 

difference and appears in the so-called first Josephson equation [BP92], which is a 

differential form of the generalized flux definition: 

0 ( )( )
2

tv t
t

δ
π

Φ ∂
=

∂  

The phase difference θ between the two superconducting condensates on the two sides of 

a junction (supposed to be in equilibrium) is related to δ by mod 2θ δ π= . 

We now introduce two other parameters describing the same Josephson element. The first 

one is the Josephson inductance LJ0= Φ0/2π Ic, which can be naturally introduced 

expanding the sine function in the current-flux constitutive relation in the case 

ΦJ<<Φ0/2π. More generally, it is convenient to define the phase-dependent Josephson 

inductance LJ=LJ0/cosδ. Note that LJ not only depends on δ, it can actually become 

infinite or even negative. Thus, under the proper conditions, the Josephson element 

becomes a switch and even an active circuit element, as we will see below. 

The other useful parameter is the Josephson energy 0 2 2J c Q NE I R Rπ= Φ = ∆ , where 

RQ=h/(2e)2 is the quantum resistance for Cooper pair and RN is the resistance of the 

tunnel junction at voltages higher than 2∆. If we compute the energy stored in the 

Josephson element: 
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( ) ( ) ( )0( ) cos 2 ( ) /
t

J J Jh t i t v t dt E tπ
−∞

′ ′ ′= = − Φ Φ∫  

In contrast with the parabolic dependence on flux of the energy of an inductor in a 

harmonic oscillator, the potential associated with a Josephson element has the shape of a 

washboard, where the total height of the corrugation is 2EJ. 

 

3.3. Quantum Hamiltonian of an isolated Josephson tunnel junction 

Note that for the special case of the Josephson element, the phase operator, θ̂ , 

and the Cooper pair number operator, N̂ , have the property: ˆ ˆ, N iθ⎡ ⎤ =⎣ ⎦  

In the so-called charge basis, we have: 

ˆ
N

N N N N
∈

= ∑  

( )ˆ ˆcos 1 1
2

J
J J

N

Eh E N N N Nθ
∈

= − = − + + +∑  

while in the so-called phase basis, we have 

N̂
i

θ θ∂
=

∂  

Note that since N̂  has relative integer eigenvalues, its conjugate operator θ̂  has 

eigenvalues defined only in the interval [0, 2π[, like angles with support on the 

goniometric circumference. 

Then, the Hamiltonian of an isolated Josephson tunnel junction is the sum of the two 

contributions from the components of the model: 

( )2ˆ ˆˆ cosJTJ CJ off Jh E N N E θ= − −  

where the Coulomb charging energy for one Cooper pair on the junction capacitor, CJ, is: 

( )22
2CJ

J

e
E

C
=  

and Noff is the residual offset number of Cooper pairs on the capacitor. We cannot remove 

this time independent quantity from the Hamiltonian because the non-linearity does not 
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allow for a canonical transformation eliminating it to be performed, unlike in the LC 

oscillator where it was irrelevant to the dynamics of the electrical circuit. 
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4. Superconducting circuits based on the Cooper Pair Box 

4.1. Different competing implementations of quantum computers 

In 2001, Shor’s factorization algorithm for finding prime numbers has been 

implemented for the integer 15 using a system of 7 spin-1/2 nuclei in a system of ad hoc 

organic molecules by the IBM-Stanford collaboration [VSB01]. To obtain this impressive 

result, the system was manipulated and measured using NMR techniques. Unfortunately, 

this architecture does not allow to address and to measure each qubit independently. 

Because of the randomness in the initial thermal population of the system states, the 

NMR signal that comes from entangled states decreases exponentially with the number of 

qubits involved in it. This clearly sets an upper limit to the size of a register and does not 

satisfy the requirement of scalability. 

There are two classes of systems candidates to implement an actual quantum computer. 

On one hand, there are the systems coming from quantum optics and atomic physics, like 

trapped atoms, ions or molecule. They are so far the more advanced for the 

implementation of qubits and quantum gates. These systems have been manipulated 

individually in a controlled fashion for about 20 years and techniques have reached a high 

level of sophistication. They can have very large quality factors, but they are hard to 

couple and it is not clear yet if these proposals can be extended to the construction of a 

scalable quantum processor. 

Trapped ion systems, such as those developed by Rainer Blatt at the University of 

Innsbruck in Austria [GRL03] or by David Wineland at NIST in Boulder [LKS05], have 

remarkable level structures. The ground state is split by the hyperfine interaction, thus 

yielding basis states for the qubit, while well-resolved excited states hovers well above 

the ground state at energies corresponding to visible or infra-red photons, thus providing 

a very good isolation between the degrees of freedom representing the qubits and the 

ones perturbing the system. At the same time, the ground-to-excited state electronic 

transitions can be exploited to read-out the value of the qubit by fluorescence photons, 

which can be easily detected. 

On the other hand, there are the systems coming from solid state physics: quantum dots 

[LDi98], nuclear spin in doped silicon [K98] and superconducting integrated quantum 
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circuits. It is easier to think that they could be parallel produced using the techniques of 

micro and nanofabrication already developed in the semiconductor industry, hence 

benefiting of the same advantages that have made classical processors so powerful today. 

Most solid-state proposals however are still at a theoretical or very preliminary stage. 

Only for superconducting integrated quantum circuits, experimental demonstrations of 

quantum coherence both in frequency and the time domain have been performed on a 

single controllable qubit. The quality factors of these circuits have only recently been 

assessed and they seem to show decoherence limiting the number of quantum operations 

to about 100. The origins of the observed decoherence are not yet fully understood. 

 

4.2. The Cooper Pair box 

The simplest superconducting quantum circuit involving a Josephson tunnel 

junction is the so-called Cooper Pair Box (CPB), for which quantum coherence evidence 

was measured [BVJ98, Bo97] for the first time by the Quantronics group at CEA in 

Saclay, France. The basic CPB consists of a low-capacitance, Ci, superconducting 

electrode, called “island”, connected to a superconducting reservoir by a Josephson 

tunnel junction with capacitance CJ and Josephson energy EJ. The residual offset number 

of Cooper pairs, Noff, on the total capacitor CΣ =Ci +CJ+Cg is compensated by biasing the 

junction with a voltage source Ug through a gate capacitance Cg, see Fig. 4.1. The only 

degree of freedom of the system is the number of Cooper pairs on the island and N̂  is its 

   
Figure 4.1. The Cooper Pair Box. On the left: the electrical model of the 
Cooper Pair Box. On the right: sketch of the simplest version of this circuit in 
which the superconducting island is coupled to a superconducting reservoir 
through a Josephson tunnel junction and to a gate electrode by a capacitor. 
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associated operator. Using the techniques introduced before, it is easy to show that the 

Hamiltonian of the CPB is: 

( )2 ˆˆ ˆ cosCPB C g JH E N N E θ= − −  

where ( )22 2CE e CΣ= is the charging energy of the box and 2g off g gN N C U e= +  is 

the effective gate charge number. It is worth noticing that this Hamiltonian is very similar 

to that of a isolated Josephson tunnel junction we calculated in the previous chapter, and 

Ng can be understood as an externally controlled offset charge number. 

Moreover, the single junction can be split into two junctions, see Fig. 4.2, with respective 

capacitance CJ(1+d)/2 and CJ(1-d)/2, where d is a coefficient of asymmetry. Since they 

are in parallel the total split junction capacitance is still CJ. The two junctions have 

respective Josephson energies EJ(1+d)/2 and EJ(1-d)/2. The total Josephson energy of the 

split junction CPB is: 

( ) ( ) ( ) ( ),
ˆ ˆ ˆ ˆ ˆcos / 2 cos sin / 2 sinJ sCPB J Jh E dEδ θ δ θ= − +  

where 1 2 0
ˆ ˆ ˆ

lδ δ δ= + = Φ Φ  and ( )1 2
ˆ ˆ ˆ 2θ δ δ= −  are two linear combination of the 

operators of the two junctions, where Φl is a magnetic flux bias applied to the loop 

formed by the two tunnel junctions, the island and the superconducting reservoir.  

     
Figure 4.2. The split Cooper Pair Box. Left: sketch of the split version of the 
CPB. The circuit is voltage biased through its gate and flux biased through its 
loop [C02]. Right: SEM image of a CPB realized at Yale. The image has been 
artificially colored.  
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In the following δ will be considered as a classical parameter since the impedance of the 

junctions is always lower than the resistance quantum. For d=0 the split CPB has an 

effective Josephson energy, ( ) ( )0cos 2 cos /J J J lE E Eδ π∗ = = Φ Φ , proportional to the 

Josephson energy of the initial single junction, but it can now be tuned by varying Φl. In 

general, it is easy to reduce the asymmetry to d<0.1, with the positive effect of lifting the 

degeneracies existing for d=0 at Ng=1/2 and Φl =Φo/2. The Hamiltonian of the 

symmetrically split Cooper pair box is: 

( ) ( )
2

0
ˆˆ ˆ cos / cossCPB C g J lH E N N E π θ= − − Φ Φ  

The Schrodinger equations obtained using the Hamiltonians presented above have exact 

eigenvalues and eigenfunctions which are solutions of the Mathieu equation [C02]. In 

this way, we design superconducting quantum circuits whose energy spectra can be tuned 

in situ during the circuit operation by two externally controllable electrodynamic 

parameters: the voltage applied at the gate and the magnetic flux threaded through the 

superconducting loop. The other parameters Ec and EJ are engineered during the 

superconducting quantum circuit fabrication in two different way. As explained in more 

details in Chapter 8, in the device patterning stage of the fabrication, we modify the 

island and gate geometries, affecting only Ec, or the barrier area, which varies both Ec and 

EJ but in opposite directions. In the device deposition stage, we change either the 

deposition condition or even the material used in the electrode fabrication, in order to 

obtain different energy gaps for one or both the electrodes, affecting only EJ, or the 

condition of the barrier formation, in order to obtain different barrier transparency, which 

varies the two parameters in the same direction but with EJ being much more sensitive to 

these variations. 

The Cooper Pair Box are then considered by quantum engineers what the hydrogen atom 

is for atomic physicists, and the two external fields compared to the Stark and Zeeman 

fields. Two comments are in order at this point. In the first place, it is easy to observe that 

much smaller values of the external fields are required to change entirely the spectrum of 

the CPB, compared to the situation in atomic physics. Even more important is to notice 

that, in the case of the quantum circuit, the parameters are fully engineerable and are not 

constant given once and for all like the Rydberg constant or the Bohr radius in an atom. 
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We will hopefully be able to generate a wider and even more useful set of atom-like 

circuits in quantum engineering to match the future demands of many different quantum 

machines. 

 

4.3. Manipulation of the state of a Cooper Pair box 

Because the Hamiltonian is sufficiently non-linear, the ground and the first 

excited state of the CPB can be considered as a two-level system. Near the degeneracy 

point Ng=1/2, where the electrostatic energy of the two charge states with 0 and 1 excess 

Cooper pair on the island are equal, and Φ=0 where the Josephson degeneracy splitting is 

maximized, the tunable qubit is described by the Hamiltonian: 

( )ˆ ˆ ˆ
2

z
CPB qubit z c x

EH Xσ σ− = − +  

where, in the limit EJ/EC<<1, Ez=EJ and ( )2 1 2c C J gX E E N= − . Note that the x 

direction is chosen along the charge operator, the variable of the box we can naturally 

couple to. This is why the CPB is considered a “charge” qubit. The Hamiltonian also 

shows that at the “sweet spot” Xc=0→Ng=1/2, the qubit transition frequency is to first 

order insensitive to the charge noise. 

The state of the CPB can be manipulated within the subspace spanned by the two-level 

system using techniques inspired from Nuclear Magnetic Resonance (NMR). For the 

CPB qubit Hamiltonian in the eigenframe the representative vector is 01
ˆh Zω= . 

A radiofrequency voltage signal with angular frequency ωRF can be applied to the gate of 

the CPB. The voltage signal amplitude produces a change in the effective gate charge 

number, ∆Ng. Thus the free Hamiltonian of the CPB acquires a time dependent term, 

which in qubit bias is given by: 

( ) ( )ˆ ˆ2 cosRF C g RF xH t E N tω σ= − ∆  

In a rotating frame precessing with angular frequency RFω  around ˆˆRz Z= , the 

representative vector of the total Hamiltonian, Rh , becomes: 
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( ), 01
ˆ ˆ ˆ2 1 0R TOT C g R RF Rh E N N x zω ω= ∆ + −  

The components of this vector generate rotations around their axes, as mentioned in 

Chapter 2. Indeed, the state vector precesses around Rh  at the angular frequency: 

( ) ( )
2 2

01
ˆ2 1 0R C g RFE N Nω ω ω= ∆ + − . 

It is easy to observe that when 01RFω ω≈  the motion of the state vector becomes a 

precession around ˆRx  at the Rabi angular frequency: 

ˆ2 1 0Rabi C gE N Nω = ∆  

On the other hand, viewed in the rotating frame the CPB state vector precesses around 

ˆRz  at the Ramsey angular frequency: 

01Ramsey RFω ω ω= − . 

Then, by combining the free evolution and a radiofrequency excitation every possible 

state on the Bloch sphere, referred to a particular rotating frame imposed by the initial RF 

pulse, can be prepared. 

 

4.4. Brief summary on other superconducting quantum circuits 

Another superconducting quantum circuit based on Josephson tunnel junctions is 

the so-called RF-SQUID. It can be considered the dual of the CPB, employing a 

superconducting coil transformer instead of a gate capacitor to tune the Hamiltonian. The 

two sides of the junction with capacitance CJ are connected by a superconducting loop 

with inductance L, with an external magnetic flux Φext imposed through it. The RF-

SQUID Hamiltonian is: 

2 2ˆ ˆˆˆ cos
2 2

ext
RF SQUID J

J o

qH E
C L−

⎛ ⎞Φ Φ − Φ
= + − ⎜ ⎟⎜ ⎟Φ⎝ ⎠

 

The degrees of freedom of this circuit are the flux through the superconducting loop, Φ̂ , 

and the charge, q̂ , on the capacitance. Since the latter has continuous eigenvalues the 
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former one takes its values on a line and not on a circle. We now have three adjustable 

energy scales: EJ, ECJ and 2
0 2LE L= Φ . 

In the CPB the potential is cosine-shaped and has only one well since θ is defined only on 

[0, 2π[, in the RF_SQUID the potential is in general parabolic with a cosine corrugation. 

We can realize a RF-SQUID with a barrier transparency such that the Josephson 

inductance LJ is close to L and with an area such that EJ/ECJ>>1. If we now flux bias it at 

Φext=Φo/2, the potential would have two degenerate wells separated by a shallow barrier 

with height ( )23 1 2B J JE E L L= − . This corresponds to the case in which we voltage 

bias the CPB at the degeneracy value Ng=1/2, replacing the capacitive energy with the 

inductive energy. At Φext=Φo/2, the two lowest energy levels are then the symmetric and 

anti-symmetric combinations of the two wavefunctions localized in each well, and the 

energy splitting between the two states can be seen as the tunnel splitting associated with 

the quantum motion of a fluxon through the potential barrier between the two wells, 

bearing close resemblance to the dynamics of the ammonia molecule. The first few levels 

in the RF-SQUID potential have been seen experimentally for the first time by Jim 

Lukens and his group at University of New York in Stony Brook [FPC00].  

Since the Hamiltonian is sufficiently non-linear, the ground and the first excited state of 

the RF-SQUID can be considered as a two-level system. In the vicinity of the flux 

degeneracy point the RF-SQUID qubit Hamiltonian is described by [DM04]: 

( )ˆ ˆ ˆ
2

z
RF SQUID qubit z c x

EH Xσ σ− − = − +  

with { }expz B CJ B CJE E E E Eη ξ= −  and ( )2 1 2c L zX E E Nζ Φ= − . Ez represents 

the energy splitting, NΦ=Φext/Φo is the so called flux frustration. Because there are no 

analytical solutions for the RF-SQUID Hamiltonian, the numbers η, ξ and ζ have to be 

determined numerically in each individual case. Since the x direction is chosen along the 

flux operator, the variable of the RF-SQUID we can naturally couple to, the qubits 

derived from this basic quantum circuit are considered “flux” qubits. The Hamiltonian 

also shows that at the “sweet spot” Xc=0→NΦ=1/2, the qubit transition frequency is to 

first order insensitive to the flux noise. 
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Another basic superconducting quantum circuit is the Josephson tunnel junction biased 

with a DC-current source. This circuit can be thought as arising from a RF-SQUID with a 

loop inductance L→∞ biased by a flux Φ→ ∞ such that the bias current I= Φ/L stays 

finite. The Hamiltonian of the Current Biased Junction (CBJ) is given by [MNA03]: 

( )2 ˆ ˆˆ ˆ cosCBJ CJ JH E p E χδ δ= − +  

where δ̂  is the gauge invariant phase difference operator, its conjugate variable p̂  is the 

number of charges on the capacitor and χ=I/Ic. If we realize a CBJ with a barrier 

transparency such that EJ/ECJ>>1, we can neglect the effects of charge fluctuation and 

consider the system as a particle, representing the phase, in a washboard potential, whose  

tilt is given by α. When I approaches Ic, the potential is very well approximated by the 

cubic form: 

( ) ( )( ) ( )3, 1 2 1 6 2JU Eχ δ χ δ π δ π⎡ ⎤= − − − −⎣ ⎦  

For I≤ Ic, there is a well with a barrier height ( )3 / 24 2 3 1JU E χ∆ = − and the angular 

frequency at the bottom of the well is 
1/ 421b pω ω χ⎡ ⎤= −⎣ ⎦ . Energy levels in the CBJ 

have been seen experimentally for the first time by John Clarke and his group at 

University of California at Berkeley in 1985 [MDC85]. The first two levels can be used 

for qubit states and have an angular transition frequency ω01≈0.95 ωp. In practice, ω01 

falls in the 5-20 GHz range and it is determined only by material properties of the 

junction barrier, since the plasma angular frequency ωp=(LJ0CJ)-1/2 does not depend on 

junction area. The number of levels in the well is typically of the order of ∆U/ωp≈4-5. 

This qubit circuit has a unique feature: a built-in read-out. For every realization of the 

qubit in a specified energy level in the cubic potential, there is a probability that it would 

tunnel through the potential barrier into the continuum outside the barrier. Because the 

tunneling rate increases by a factor of approximately 500 each time we go from one 

energy level to the next, the population of the first excited state of the qubit can be 

reliably measured by sending a probe signal inducing a transition from this state to a 

higher energy state with larger tunneling probability. This procedure is the base of the 

qubit read-out. In fact, after tunneling the particle representing the phase accelerates 



 45

down the washboard. This is a convenient self-amplification process leading to a voltage 

2∆/e across the junction, which is proportional to the energy gap of the junction electrode 

material. Therefore after applying the probe signal, if a finite voltage suddenly appears 

across the junction, it would just imply that the qubit was in the first excited state, 

whereas no voltage implies that the qubit was in the ground state. 

Since the Hamiltonian is sufficiently non-linear, the ground and the first excited state of 

the CBJ can be considered as a two-level system and the CBJ qubit Hamiltonian is 

described by [DM04]: 

( ) ( )01

01

ˆ ˆ ˆ ˆ1
2 2CBJ qubit z c x z

J

H I r
C

ω σ χ σ σ
ω− = − − +  

where 01 3 0.28r Uω= ∆  for typical operating parameters. In contrast with the 

flux and charge qubit circuits, the CBJ qubit Hamiltonian cannot be cast into the NMR-

type form. However, a sinusoidal bias current signal ( ) 011 sint k tχ ω= + , where k is a 

proportionality constant, can still produce ˆ xσ  rotations, whereas a low-frequency signal 

produces ˆ zσ  operations. Since the x direction is chosen along the phase operator, the 

variable of the CBJ we can naturally couple to, the qubits derived from this basic 

quantum circuit are considered “phase” qubits. Note that in this case there is no obvious 

“sweet” spot where the qubit is first order insensitive to phase noise. 
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5. Read-out strategy with the Cooper Pair Box 

We have introduced in the previous chapter the CPB circuit and the methods to 

write and manipulate its quantum states. Another task we want to be able to perform with 

quantum circuits is the read-out of the information contained in the qubit. This can be 

realized by some system coupled to the qubit for extracting information from it without at 

the same time submitting it to noise. 

The first read-out for CPB qubit, achieving a projective measurement of the two qubit 

states, was developed in the late 1990’s by Yasunobu Nakamura and his group at NEC in 

Japan [NPT99]. They succeeded in observing the CPB spectroscopy and in preparing 

coherent superpositions of the qubit states. Their read-out simply measured the current 

through an auxiliary ultrasmall Josephson tunnel junction directly connected to the CPB 

island and permanently biased above the gap voltage by a constant voltage source. The 

spectroscopy was carried out by applying a continuous microwave voltage at the CPB 

gate, while sweeping the DC gate voltage. The manipulation of the states was performed 

by square pulses at the CPB gate. The measurement of the current through the auxiliary 

junction, while repeating these pulses with different time duration, revealed the coherent 

Rabi oscillations between the two energy states of the qubit. However, the coherence 

time of this superposition never exceeded few ns because of the decoherence induced by 

this invasive read-out and because of the charge noise generated by microscopic charges 

moving at random close to or in the qubit circuit. This charge noise exists in all charging 

devices and has a 1/f power spectrum probed up to 10 MHz with a typical amplitude for 

metallic devices of 10-7 e2/Hz at 1 Hz. 

 

5.1. Read-out requirements 

It is clear that a read-out based on a permanent measurement of the quantum state 

cannot achieve long coherence times. Thus beyond some sort of state measurement 

device, an ideal read-out system has to include a switch, which defines an OFF and an 

ON condition. During the OFF condition, initialization and gate operations can take 

place, while the measurement device should be completely decoupled from the qubit. 

During the ON condition, the measurement device should be maximally coupled to a 
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qubit variable that distinguishes between the two qubit states. Moreover, the back-action 

of the measurement device, while the switch is ON, should be weak enough to not 

produce any decoherence of the qubit state.  

Decoupling the qubit from the read-out in the OFF phase can be achieved balancing the 

circuit in the manner of a Wheatstone bridge, with the read-out variable and the qubit 

control variable corresponding to orthogonal electrical degrees of freedom. Indeed, 

establishing ways of operation for qubits which would have fully orthogonal modes is a 

major advancement in realizing easily operable qubit registers. 

In addition we should consider the possibility of protecting the system from noise by 

introducing circuit symmetries that allow neglecting noise contributions arising from one 

or more of the modes. 

The read-out system can be characterized by four parameters: 

1) the measurement time, tm, is the time taken by the measuring device to reach a signal-

to-noise ratio of one in the determination of the qubit state; 

2) the depolarization rate, 1
ONΓ , of the qubit caused by the measurement in the ON state; 

3) the decoherence rate, 2
OFFΓ , of the qubit information caused by the read-out even if it 

is in the OFF state; 

4) the dead time, td, needed to reset measuring device and qubit after a measurement. 

Minimizing all these parameters at the same time to improve read-out performance 

cannot be done without running into conflicts. An important quantity to optimize is the 

fidelity or discriminating power, F, of the read-out system. If F is of order unity the 

measurement is called “single-shot”. The condition for this to happen is: 

1 1ON
mtΓ <  

The speed of the read-out, determined both by tm and td, should be sufficiently fast to 

allow a complete characterization of all the properties of the qubit before any drift in 

parameters occurs and to automatically correct for them when they do. Rapidly pulsing 

the read-out ON and OFF with a large decoupling amplitude such that 

2 2 1OFFTΓ  

requires a fast, strongly non-linear element, which is provided by one or more auxiliary 

Josephson junctions. 
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5.2. Weakly coupled read-out of a Cooper Pair Box: charge strategy 

The first idea that comes to mind to read-out the state of a charge qubit is 

obviously to measure the charge on the CPB island. This was the strategy used in 1997-

2002 by the Quantronics group at CEA in Saclay [BVJ98, CVJ02], using a single Cooper 

pair transistor and in 2000-2003 by the Chalmers-Yale collaboration [AJW01, LSB03] 

using a radiofrequency superconducting single electron transistor (RF-SET). Both 

electrometers were capacitively coupled to the CPB and they were weakly coupled to the 

CPB in order to minimize the back-action. Because of the weakness of the coupling, we 

can describe the effect of the measuring system in simple terms as dephasing and 

depolarization, as introduced in the last chapter. This means that during the measurement 

the read-out device projects the CPB state on its charge eigenstates. Then, the measured 

value is the mean island charge of the two qubit states. In fact, the signal measured by a 

weakly coupled electrometer is proportional to the difference in charge between the 

ground and excited states: 

( )01 ,
ˆ ˆ, 1 1 0 0

g l
g l N

N N N N
Φ

⎡ ⎤∆ Φ = −⎣ ⎦  

To evaluate this quantity, we need to step back and calculate the island potential, V̂ , 

from the generalized Josephson equation and make use of the rules that link the 

conjugated operators describing a system and its Hamiltonian: 

( )
ˆ ˆ ˆ1 1 2ˆˆ ˆ ˆ, ˆ2 2 2 2

CPB CPB
CPB g

g

d i H H eV H N N
e dt e e e N CN

θ θ
Σ

∂ ∂⎡ ⎤= = = − = = −⎣ ⎦ ∂∂  

from the last equality we obtain: 

ˆ1ˆ
2

CPB
g

C g

HN N
E N

∂
= −

∂  

We now recast ∆N01 as: 

( ) 01
01

,
2

g l

g
C g N

N N
E N

ω

Φ

⎡ ⎤∂
∆ = −⎢ ⎥

∂⎢ ⎥⎣ ⎦
 

The two different electrometers used in this approach induce a back-action on the qubit 

with very different power spectra. In the RF-SET case, the back-action has a shot noise 
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spectrum coming from the charges tunneling in and out of the island through the 

junctions. In the single Cooper pair transistor, the supercurrent induces a back-action in 

the qubit which follows the phase fluctuations across the transistor. The noise in the 

phase arises from the thermal fluctuations in the dissipative elements of the read-out 

circuit. 

For both electrometers, it is clearly more favorable to manipulate the qubit state at 

Ng=1/2, where, since ∆N01 is zero, charge fluctuations have no effect on the transition 

angular frequency at the first order. But the severe drawback of the charge measurement 

strategy is that to measure a charge difference between the two qubit states, the CPB 

voltage bias has to be moved away from the “sweet” spot just before the electrometer 

performs any measurement. In addition to the back-action from the electrometer, this 

exposes the qubit to noise in the control variable, which induces decoherence in the CPB, 

through a coupling Hamiltonian between the CPB and the gate charge fluctuations, ∆Ng: 

ˆˆ CPB
c g

g

HH N
N

∂
= ∆

∂  

Furthermore, a better immunity to charge noise requires large ratio EJ/EC which reduces 

the charge difference between the two states making high resolution charge 

measurements more difficult. 

Using this strategy, the Yale-Chalmers collaboration was able to measure [LBS03] 

T1=1.3 µs and T2=325 ps for a transition frequency ν01=76 GHz, which implies 

Q1=6.2x105and Q2=155. 

 

5.3. Weakly coupled read-out of a Cooper Pair Box: loop current 

strategy 

Because of the weaknesses of the charge read-out strategy, a different strategy was 

proposed by the Quantronics group in 2002 [VAC02]. It consists in reading-out the state 

of the qubit by measuring the loop current in a split CPB. As we mentioned in the last 

chapter, the qubit energy spectrum is now controlled also by the phase difference, δ, 

across the two junctions, which is proportional to the magnetic flux threaded through the 

superconducting loop. Here, different persistent currents, whose sign depends on the 
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qubit state for a fixed value of δ, are present providing a new read-out port inductively 

coupled to the CPB and different, possibly orthogonal to the charge port used for state 

manipulation. It is possible in this circuit to decouple control and read-out operations. It 

is also possible to use CPB with higher EJ/EC ratio to reduce the sensitivity to charge 

noise. To measure the loop current and discriminate the qubit state, an extra Josephson 

tunnel junction with d
J JE E , called the detector junction, has been included in the 

superconducting loop of a split CPB. This large junction is shunted by a large capacitor, 

whose main effect is to reduce its plasma frequency. This new quantum circuit has been 

named Quantronium. 

 
Figure 5.1. The “Quantronium” architecture. Idealized circuit diagram of 
the Quantronium. The control system for the two tunable parameters of the 
circuit is represented in green. The preparation circuit is in blue. The split Cooper 
Pair Box qubit with non-linear inductive Josephson tunnel junction for the phase 
read-out are in black, while the read-out circuit is in red. This figure has been 
reproduced from [VAC02]. 
 

When a read-out operation is required, a suitable amplitude bias current is applied to the 

circuit and a loop current develops, which adds or subtract to the bias current in the 

detector junction. The detector junction can then be made to switch to a finite voltage 

with a large probability for one state of the qubit and a smaller one for the other. The 

outcome of each individual measurement is finite or zero voltage with a probability that 

represents the weight of that qubit basis state in the measured quantum superposition. 
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Of course, the current meter is weakly coupled to the CPB in order to minimize the back-

action. Because of the weak coupling, during the measurement the read-out device 

projects the CPB state on its loop current eigenstates measuring the mean loop current of 

the two qubit states. In fact the signal measured by a weakly coupled current meter is 

proportional to: 

( )01 ,
ˆ ˆ, 1 1 0 0

g l
g l N

I N I I
Φ

⎡ ⎤∆ Φ = −⎣ ⎦  

To evaluate this quantity, we need to calculate the current in the loop of the CPB, Î , 

which depends on the number of Cooper pairs having tunneled through the junctions, K̂ . 

Since this operator is conjugated to δ̂ , we use the rules that link the conjugated operators 

describing a system and its Hamiltonian: 

ˆ ˆ2 2ˆ ˆ ˆ2 , ˆ
CPB

CPB
dK e e HI e K H
dt i δ

∂⎡ ⎤= − = − =⎣ ⎦ ∂
 

We now recast ∆I01 as: 

( ) 01
01

,

, 2
g

g
N

I N e
δ

ωδ
δ

∂⎡ ⎤∆ = ⎢ ⎥∂⎣ ⎦  

Similarly to what happened in the charge strategy, it is clearly more favorable to 

manipulate the qubit state at δ=0, where, since ∆I01 is zero, current fluctuations have no 

effect on the transition angular frequency at the first order. However, to measure a current 

difference between the two qubit states, the flux bias has to be moved away from the 

“sweet” spot just before the current meter performs any measurement. In addition to the 

back-action from the current meter, this exposes the qubit to noise in the flux, which may 

induce decoherence in the CPB, through a coupling Hamiltonian between the CPB and 

the flux fluctuations, δ̂∆ : 

ˆ ˆˆ CPB
c

HH δ
δ

∂
= ∆

∂  

Spectroscopy has been successfully performed on a Quantronium circuit both as a 

function of δ at Ng=1/2, and as a function of Ng at δ=0, applying a weak continuous 

microwave irradiation at the gate suppressed just before the read-out pulse. At the double 
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“sweet” spot, quality factor of 2x104 has been observed for the resonance linewidth at a 

center transition frequency ν01=16.5 GHz [VAC02]. The peak height decay for different 

delays between the end of the irradiation and the read-out gave a measurement of the 

depolarization time T1=1.8 µs, which implies Q1=1.8x105. Coherent manipulation of the 

qubit state has been performed by applying microwave pulses at the gate electrode with 

frequency νRF close to the transition frequency, ν01,and with variable time duration. Rabi 

oscillations [R37] of the switching probability were observed for different pulse 

durations, whose frequency depended linearly on the pulse amplitude, as expected. 

To measure the decoherence time of the qubit state Ramsey experiments [Ra50] have 

been performed. The qubit has been prepared in the ground state and then driven in a 

linear superposition of both states with equal weight by a single microwave π/2 pulse. 

The qubit has been let free of evolve for different time intervals in the different 

realization of the experiment. Then a new π/2 pulse has been applied driving the qubit 

either in the ground or in the excited state depending only on the phase accumulated 

during the free evolution. 

Ramsey oscillations of the switching probability are observed at the detuning frequency 

νRF-ν01, and their decay allows to measure T2=0.5 µs, which implies Q2=5.2x104, which 

is still one of the best results obtained until now. 

There are two drawbacks for this strategy. Although a theoretical fidelity of 95% could 

be attained, which would allow “single-shot” measurement, only a maximum of about 

50% has been observed for reason that are still under investigation. Quasiparticles are 

generated in the split CPB loop every time the read-out procedure produces a switch to 

finite voltage of the detector junction, requiring dead time before resuming qubit 

operation. 

 

5.4. Dispersive read-out of a Cooper Pair Box: the non-linear inductive 

read-out in the RF-Quantronium architecture 

All the read-out circuits described until now include an on-chip amplification 

scheme producing high level signals, which can be read directly by high-temperature 

low-noise electronics but which also lead to non-equilibrium quasiparticles being 
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produced in the near vicinity of the qubit junctions. In general, large energy dissipation 

on the chip may lead to an increase in the noise. To remove non-equilibrium 

quasiparticles from the qubit circuit we introduced a new strategy based on a purely 

dispersive measurement of the qubit susceptibility (capacitive or inductive). 

In this dispersive strategy, the measurements are realized sending a microwave probe 

signal to the qubit. The signal is coupled to a qubit variable whose average value is 

identical in the qubit states. Rather than measuring this variable we measure the 

susceptibility. In fact, the susceptibility, which is the derivative of the qubit variable with 

respect to the probe, differs maximally from one qubit state to the other at the “sweet 

spot”. Thus, for instance, in the capacitive susceptibility measurement, the qubit variable 

is the island charge in the charge qubit at the degeneracy point. The resulting state-

dependent phase shift of the transmitted or reflected photon signal is thus amplified by a 

low-temperature amplifier and finally discriminated at high temperature against an 

adequately chosen threshold. In addition to being very thrifty in terms of energy being 

dissipated on chip, these new schemes also provide a further natural decoupling action: 

when the probe signal is OFF, the back-action of the amplifier is also completely shut off. 

Finally, the interrogation of the qubit in a frequency band excluding zero and relatively 

narrow compared to the center frequency reduces the noise to a negligible level. In 

addition, the presence of read-out filters, like cavities, suppresses noise at the input and 

output ports. 

One way in which we have realized this dispersive read-out strategy is to couple 

inductively our CPB qubit to a large Josephson tunnel junction shunted by a capacitor, 

which, when properly driven, is a nonlinear electrodynamic resonator with two 

metastable oscillation states. This nonlinear resonator can be seen as a new kind of 

amplifier very sensitive to the qubit state: the Josephson Bifurcation Amplifier (JBA), 

which will be presented in more details in section 5.6. The CPB and the JBA are 

fabricated on the same single chip using a mix of large and small scale electron beam 

writing techniques that we describe in Chapter 8. This architecture can be called “RF-

Quantronium” since it represents the natural extension of the loop current strategy we 

presented in section 5.3. 
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The high degree of symmetry of this circuit, which resembles that of a Wheatstone 

bridge, can achieve a large noise decoupling from the environment, when biased at 

special operating points. 

 
Figure 5.2. Dispersive read-out in the RF-Quantronium architecture. 
Idealized electrical diagram of a Josephson Bifurcation Amplifier reading-out a 
split CPB qubit. 
 

We control the CPB qubit by voltage biasing it through the gate capacitance and by flux 

biasing with an externally applied magnetic field. We can still make use of the NMR-like 

pulse technique to prepare and manipulate the qubit states through a capacitive (charge) 

port, while reading-out through an inductive (phase) port. 

Close to the optimal bias point where this combined system is, to first order, insensitive 

to fluctuations in the two bias parameters: the charge of the box island and the phase of 

the large junction, the Hamiltonian of the RF-Quantronium is given by [SVM06]: 

2
2

ˆ( )1 ˆˆ ˆ ˆ ˆˆcos cos cos ( )
2 2 2

g d d d
RF Q c J C J J

C U t
H E N E E p E E t

e
δ θ γ χ γ−

⎛ ⎞
= − + − + − −⎜ ⎟

⎝ ⎠
 

where U(t)=Urf(t) cosω01t and χ(t)=Irf(t)/I0 cosωdt are the control parameters respectively 

at the charge and phase port and d
CE  and d

JE  are respectively the charging energy and the 

Josephson energy of the large detector junction. γ̂  is the gauge invariant phase 

difference operator for the detector junction and its relation to δ̂  constitutes the coupling 

between the two parts of the system: 

0

2ˆˆ lπγ δ Φ
= +

Φ  

The restriction of this Hamiltonian to the two lowest states of the CPB, which represent 

the qubit states, leads to an effective Hamiltonian: 
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( )
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where: 
1/ 4

4 48 2

d d
dJ C C

RF Q Jd d
J J

E E Ef E
E Eχλ µ−

⎛ ⎞
= = = ⎜ ⎟
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The photon creation and annihilation operators †a , a  represent the decomposition of δ̂  

into operators of a plasma mode of the large detector junction, whose bare angular 

frequency is ωp, according to the relation: 

( )†ˆ
d
J

f
a a

E
χδ = +  

The first and last terms can be interpreted respectively as the excitation of the qubit by 

the charge port drive voltage and that of the resonator by the phase port drive current. 

The second term is the usual Larmor term 01 JEω =  where EJ has been properly 

renormalized to include the equivalent of the Lamb shift. The third term describes the 

dominant coupling between qubit and resonator: 

int †ˆ ˆRF Q p RF Q zH a aω λ σ− −=  

The effect of this interaction term is that the resonator frequency is dispersively shifted 

by a term ±ωpλRF-Q conditioned by the qubit state being such that ˆ 1zσ = ± . 

The fourth term describes a reduction in the resonator frequency when its photon 

population increases. It is a peculiarity of the RF-Quantronium and can be neglected if 

the resonator is populated by a small number of photons. When the current drive is 

increased while its frequency is sufficiently below ωp the system becomes metastable 

with two possible dynamical states and this gives rise to bistability and amplification, as 

we describe in the section 5.6. 

Since the probe Hamiltonian operator commutes with the total Hamiltonian if the photon 

number in the resonator is small and if U(t)=0 (which means if you are not writing at the 

same time), it is a constant of motion and then repeated observations will yield the same 
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results. This type of dispersive read-out is often called a quantum non-demolition (QND) 

measurement [BK92]. 

The results obtained in the last three years by our group using this dispersive read-out 

approach in the RF-Quantronium architecture are presented in detail in the next Chapter. 

 

5.5. Dispersive read-out of a Cooper Pair Box: the non-linear capacitive 

read-out in the Circuit QED architecture 

Another way in which we have realized the dispersive read-out strategy is to couple 

capacitively our CPB qubit to a one dimensional (1D) transmission line resonator 

consisting of a full-wave section of a superconducting coplanar waveguide, see Fig. 5.3. 

 

 
Figure 5.3. The Circuit Quantum Electrodynamics architecture. A Cooper 
Pair Box qubit capacitively coupled to a one dimensional transmission line 
resonator implements another dispersive read-out strategy. 
 

As it was in the RF-Quantronium, the CPB and the resonator are fabricated on the same 

single chip. This time the fabrication requires a mix of photolithographic and electron 

beam writing techniques that we will describe in Chapter 8. This architecture is now 

known as circuit quantum electrodynamics (QED) [BHW04]. It has indeed been 

presented as the electrical circuit version of the cavity QED architecture [RBH01, MD02] 

in which the basic properties of the interaction of an atom with light are studied. The role 

of the atom is played here by our artificial atom, the CPB, while that of the cavity is 

played here by the high intrinsic Q distributed element resonator. The latter is accessed 

by the microwave measurement apparatus by two coupling capacitors. We control the 

CPB qubit by voltage biasing it through the gate capacitance and by flux biasing with an 
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externally applied magnetic field. The Hamiltonian of this combined system close to the 

optimal bias point, where the system is, to first order, insensitive to fluctuations in the 

bias parameters, is given by: 

( )

( )

2
† †

†
'

( )1 1ˆˆ ˆ ˆcos cos
2 2 2 2

'( )

g
cQED c J r

U

C U t
H E N E a a g N a a

e

f U t a a

δ θ ω
⎛ ⎞ ⎛ ⎞= − + − + + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

+ +
 

where U(t)=Urf(t)cosω01t and U’(t)=U’rf(t)cosωrt are the control parameters at the charge 

port, ωr is the 1D transmission line resonator frequency, †a , a  are the ususal photon 

creation and annihilation operators and fU’ is a voltage-resonator coupling constant. 

The restriction of this Hamiltonian to the two lowest states, which represent the qubit 

states, leads to an effective Hamiltonian [BHW04]: 
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where σ + , σ −  are the spin creation and annihilation operators, and g is a coupling 

constant given by: 
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TL

eC
g

C C
ω

Σ

=  

with CTL the product of the capacitance per unit length and the length of the transmission 

line resonator. The first and last terms can be interpreted as the excitation of the qubit by 

the charge port drive voltages. The three central terms are the Jaynes-Cummings 

Hamiltonian common in atomic physics cavity QED. For large detuning ∆=ω01-ωr>>g, 

diagonalization of these three terms leads to: 
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The Larmor term is renormalized by the so-called Lamb shift that shifts the CPB 

transition angular frequency by ωrλcQED. In the second term, there is another contribution 

that shifts even more the CPB transition angular frequency and that is caused, as well as 

the previous one, by the resonator backaction. This contribution is called the a.c. Stark 

effect and induces a shift in ω01 of 2nωrλcQED, where n is the number of photons in the 

resonator. 

 
Figure 5.4. Dispersive read-out. Comparative schematics of the irradiation 
protocol in the circuit QED architecture (top) and in the RF-Quantronium 
(bottom). 
 

As we did in the RF-Quantronium case, we can write explicitly the coupling between 

qubit and resonator: 

int †ˆ ˆcQED r cQED zH a aω λ σ=  

that generates a dispersive shift of the resonator frequency by an amount ±ωrλcQED 

conditioned by the qubit state being such that ˆ 1zσ = ± . Since this probe Hamiltonian 

operator is a constant of motion also this type of dispersive read-out is a QND 

measurement. 
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The results obtained in the last three years by our group using this dispersive read-out 

approach in the circuit QED architecture are presented in detail in Chapter 7. 

There is a close relation between the two versions of the dispersive read-out we have 

presented, as shown in Fig. 5.4. The main resemblance is the similar form of the 

interaction Hamiltonian operator: 

int †ˆ ˆ zH a aω λσ=  

The main differences are: i) the resonators, which are lumped elements in one versus 

distributed elements in the other version, and ii) the modes for writing and reading. In the 

RF-Quantronium, they are orthogonal electrical modes which also differ in frequency. In 

circuit QED, the two modes are only separated in frequency and use the same 

transmission line. 

 

5.6. Non-linear amplification of quantum signals: the Josephson 

Bifurcation Amplifier 

The central element of the Josephson Bifurcation Amplifier is a Josephson junction, 

shunted with a lithographic capacitor fabricated on the same chip with electron beam 

lithography technique, see Fig. 5.5. 

The JTJ critical current I0 is modulated by an input signal at an effective input port, 

which in the case of the RF-Quantronium is the qubit as explained in section 5.4. 

Coupling between the junction and the input signal can be achieved through different 

schemes. The junction is driven with a pure AC signal iRF sinωt in the microwave 

frequency range fed via a transmission line through a circulator at the drive port. In the 

underdamped regime, for certain values of ω and iRF, two possible oscillation states 

which differ in amplitude and phase coexist. The reflected component of the drive signal, 

measured through another transmission line connected to the circulator at the output port, 

is a convenient signature of the junction oscillation state. 

At the bifurcation point where switching between oscillation states occurs, the system 

becomes infinitely sensitive, in the absence of thermal and quantum fluctuations, to 

variations in I0. 
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Figure 5.5. The Josephson Bifurcation Amplifier. Top: Idealized electrical 
diagram of a Josephson Bifurcation Amplifier. Bottom left: SEM image of a 
Quantronium circuit realized at Yale using the double angle deposition technique 
described in the Chapter 8. This image has been realized with a 10 keV electron 
beam. Bottom right: optical microscope picture of the same circuit to evidence 
the two capacitors used to tune the plasma frequency of the detector Josephson 
tunnel junction in the JBA amplifier.  
 

At finite temperature, the energy stored in the oscillation can always be made larger than 

thermal fluctuations by increasing the scale of I0, thus preserving sensitivity. Small 

variations in I0 are transformed into readily discernible changes in the escape rate from 

one oscillation state to the other. Back-action is minimized in this arrangement since the 

only fluctuations felt at the input port arise from the fluctuations of the 50 Ω drive port 

whose dissipative elements are physically separated from the junction via a transmission 

line of arbitrary length and can therefore be thermalized efficiently to base temperature. 

Additionally, the frequency band over which the back-action contributes is narrow, and 

well controlled. 

Part of the published works reprinted in the next Chapter focus on presenting the 

characteristic and properties as understood at the present stage of the development of this 

new amplifier. 
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6. Reprints of experimental and theoretical results on the 

Quantronium architecture with the JBA 

This Chapter contains reprints of published works. Be aware that in these articles 

the definition of 2 2CE e CΣ=  is different from that used in the body of this work. 

[SVM06] presents the results obtained using the RF-Quantronium architecture, 

introduced in section 5.5. 

We have used the quantronium phase degree of freedom to perform a nonlinear, 

dispersive measurement of its inductive response by measuring the phase of a microwave 

probe beam reflected in the Josephson bifurcation amplifier. This dispersive read-out 

projects the state of the qubit in a few nanoseconds, and its latching property allows us to 

record the resulting information in a few hundred nanoseconds. 

We have measured, using this technique, the probability of switching between the two 

states of the JBA, Psw, versus its driving current, Irf, for different qubit states. In different 

samples, a discrimination power in the range 48-61% was observed, defined as: 

( ) ( )maxmax 1 0
rf

sw swI
P Pη ⎡ ⎤= −⎣ ⎦  

We have observed Rabi oscillations of Psw with about 45% contrast. Decay experiments 

on the qubit excited state were performed on different samples. The best result was 

obtained with a qubit, whose ν01=9.5 GHz, where T1=5 µs was measured, which implies 

Q1=3.0x105. Ramsey fringe experiments on the same sample were performed measuring 

T2=320 ns limited by dephasing and improved up to T2=500 ns with echo techniques, 

implying Q2 in the range 1.9-3.0x104 and on a second sample, whose ν01=19 GHz, where 

T2=320 ns was measured, implying Q2=3.8x104. 

[SVP04] presents the idea and the realization of the Josephson Bifurcation Amplifier 

introduced in section 5.6. The bifurcation as well as the latching of the amplifier states 

were observed and understood based on the theory on non-linear oscillators developed in 

[DK80]. 

In [SVP05b], we performed a phase-sensitive microwave reflection experiment which 

directly probed the dynamics of the Josephson plasma resonance in both the linear and 

the nonlinear regime of the JBA. When the junction was driven below the plasma 
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frequency into the nonlinear regime, we observed the transition between two different 

dynamical states of the amplifier predicted for nonlinear systems. This transition 

appeared as an abrupt change in the reflected signal phase at a critical excitation power. 

The reflected phase was measured versus power and frequency of the incoming signal 

and its behavior was found in very good agreement with the expected one from [DS90]. 

In [SVP05b], we measured Psw versus junction critical current, drive current and 

temperature finding good agreement with the predictions. We also measured the drive 

current dependence of the escape rate in the range 280-500 mK which allowed us to 

estimate the effective potential barrier height. 
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The “quantronium” is a superconducting qubit consisting of a split Cooper pair box in which a large tunnel
junction is inserted. This circuit has a special bias point where the Larmor frequency is, to first order, insen-
sitive to fluctuations in the bias parameters—the charge of the box island and the phase of the large junction.
At this optimal working point, the state of the qubit can be determined by dispersive measurements that probe
the second derivative of the state energy with respect to these bias parameters. We use the quantronium phase
degree of freedom to perform a nonlinear, dispersive measurement of its inductive response using bifurcation
amplification. This dispersive readout projects the state of the qubit in a few nanoseconds, and its latching
property allows us to record the resulting information in a few hundred nanoseconds. We have measured, using
this technique, Rabi oscillations and Ramsey fringes with an improved signal-to-noise ratio and contrast. The
speed of this readout scheme also opens the door for a class of experiments that would characterize the
relaxation processes associated with the measurement protocol.
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I. INTRODUCTION

Superconducting tunnel junction circuits were first pro-
posed for quantum information processing several years ago,
and at present, are the most advanced solid state qubits with
the longest measured coherence times.1–7 Yet the physical
origin of the noise sources limiting coherence are still de-
bated, even though the theoretical formalism for treating the
effects of noise in general is well developed.8–10 It has been
conjectured that impurities or defects found on chip could act
as such noise sources.11 These parasitic elements may exist
in the junction tunnel barriers, the metallic electrodes, the
circuit substrate, or in some combination thereof. In addition,
the shadow-mask evaporation technique used to fabricate
many superconducting qubits typically generates extra elec-
trodynamic resonators in close proximity to the qubit
junctions.12 These resonators can have a characteristic fre-
quency comparable to the qubit Larmor frequency, and are
thus suspected to decohere the qubit. The precise manner in
which a qubit interacts with uncontrolled degrees of freedom
in its environment depends on the topology of the tunnel
junction circuit and how information is written to and read
from the qubit. Circuits which have a high degree of sym-
metry can be significantly decoupled from a noisy environ-
ment1,13 when biased at special operating points. The choice
of readout scheme is also highly significant. Dispersive mea-
surements of the qubit state14–17 probe the reactive part of the
response of the circuit, and are thus attractive since they
minimally excite the spurious degrees of freedom described
above.

We report coherence measurements of a superconducting
qubit with a nonlinear dispersive readout. Our approach in-
volves coupling the “quantronium” qubit1 to the Josephson
bifurcation amplifier �JBA�.18 The JBA is based on a nonlin-
ear electrodynamic resonator with two metastable oscillation
states.19 In order to perform a readout, the resonator is rf
energized to a level where its oscillation state now acts as a
sensitive pointer of the qubit state. This technique does not
generate any dissipation on chip since the resonator is only

damped by circuitry outside the chip, i.e., a 50 � transmis-
sion line with a matched circulator and amplifier, and enables
a high-fidelity qubit readout with a megahertz repetition rate.
We have measured Rabi oscillations and Ramsey fringes
with sufficient speed that real-time filtering to correct for
drifts in the charge and flux bias becomes possible. Also,
several successive readouts may be performed within the en-
ergy relaxation time of the qubit �T1�. This gives valuable
information on the readout-induced interaction between the
qubit and its environment, and accounts for the observed
contrast.

II. THE HAMILTONIAN OF THE QUANTRONIUM QUBIT
WITH JBA READOUT

The principle of our experiment is schematically depicted
in Fig. 1 and is based, as discussed above, on the quantro-
nium qubit, a three-junction circuit which is analogous to a

FIG. 1. �Color online� Schematic of the measurement setup. The
quantronium qubit is a split Cooper pair box with two small Joseph-
son junctions in which a large junction is inserted for readout. This
last junction is shunted by two capacitors in series and forms the
nonlinear resonator of the JBA readout. The qubit state is manipu-
lated by sending pulses to the charge port, while readout operation
is performed by sending a pulse to the phase port and analyzing the
phase of the reflected signal, which carries information on the qubit
state.
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one-dimensional atom. The set of three junctions consists of
two small junctions, which we assume to be identical and
which have a Josephson energy comparable to the charging
energy of the island between them, and a large junction,
whose Josephson energy is approximately 100 times larger
than that of each small junction. The gauge-invariant phase

difference �̂ of the island with respect to the midpoint of the
capacitance shunting the large junction is analogous to the
position of the electron relative to the nucleus of the atom,

while the gauge-invariant phase difference �̂ across the large
junction is the absolute position of the nucleus. Neglecting
the dissipation induced in the transmission lines, the total
Hamiltonian of the split Cooper pair box with a JBA resona-

tor is Ĥ�t�= Ĥbox�t�+ Ĥres�t� with

Ĥbox�t� = 4EC�N̂ −
1

2
+

CgU�t�
2e

�2

− �EJ cos
�̂

2
�cos �̂,

Ĥres�t� =
Q̂2

2C
− EJ

R cos �̂ − �0I�t��̂ .

Here, N̂ and Q̂ /2e are the momenta conjugate to the gener-

alized positions �̂ and �̂, respectively. The constants EC, EJ,
EJ

R, C, and Cg are the single-electron charging energy of the
island between the small junctions, the sum of the Josephson
energy of the two small junctions, the large-junction Joseph-
son energy, the total capacitance shunting the large junction,
and the gate capacitance, respectively. Here �0= � /2e is the
reduced flux quantum. The control parameters U�t�
=Urf�t�cos �t and I�t�= Irf�t�cos �t are analogous to electro-
magnetic probe fields in an atomic system and induce a
charge excitation of the write port and a phase excitation of
the read port, respectively. This Hamiltonian has been writ-
ten supposing that the offset gate charge and loop flux have
been compensated to operate at the optimal bias point where

the charge �Ĥ /�U and the flux �Ĥ /�I have zero mean value

in both the ground �0� and first excited �1� states of Ĥbox.
Under these conditions, the qubit is minimally sensitive to
charge and flux noise.1

If we keep these two lowest states in the Hilbert space of

Ĥbox,
10 and express Ĥres in terms of creation and annihilation

operators, we obtain an effective Hamiltonian

Ĥef f =
2CgU�t�

e
EC�X −

EJ

2
�Z + � �p�1 + ��Z�a†a

− 	�1 +
�

4
�Z��a + a†�4 − f�a + a†�I�t� , �1�

where

�p =� EJ
R

�0
2C

, � =
EJ

4EJ
R ,

	 =
EC

R

12
=

1

12

�e�2

2C
, f = �0�2EC

R

EJ
R �1/4

.

The photon annihilation operator a is related to �̂ by

�̂ =
a + a†

�EJ
R/2EC

R�1/4

which represents the decomposition of the gauge-invariant
phase difference into annihilation and creation operators of
the large junction “plasma” mode whose bare frequency is
�p. The operators �X and �Z are the Pauli spin operators and

EC
R is the single-electron charging energy of the readout junc-

tion. In this effective Hamiltonian, the expansion of cos �̂ is
carried out only to the first anharmonic term, which de-
scribes the nonlinear resonator dynamics with sufficient ac-
curacy for a bifurcation readout.

Let us describe the role of each term in �1�. The first term
describes the influence on the qubit of the charge port drive
which is used to manipulate its state. The second term is the
Larmor term �01=EJ /�. We have supposed here that the ra-
tio EJ /EC is sufficiently small that corrections to the Larmor
frequency involving EC are small. To model the behavior of
qubit samples with an appreciable EJ /EC ratio, we would
keep higher-order terms, yielding renormalized values of the
coefficients in �1�. The third term describes the dominant
coupling between the qubit and the resonator. Note that this
term commutes with the Hamiltonian of the qubit when U
=0, offering the possibility of quantum nondemolition mea-
surements. The fourth term describes a decrease in the fre-
quency of the resonator when its photon population
increases.20 Finally, the fifth term describes the excitation of
the resonator by the drive current applied through the phase
port. When the drive current is increased while its frequency
is sufficiently below �p the system becomes metastable with
two possible dynamical states with different oscillation am-
plitudes, i.e., two possible photon populations.18 We exploit
this bistability for our readout, which we describe in the next
section.

III. QUBIT READOUT

It is clear from the Hamiltonian �1� above that the dynam-
ics of the nonlinear resonator depend on the value �Z= ±1
corresponding to the state of the qubit. In particular, the
small oscillation “plasma” frequency �p

ef f =�p�1±�� varies
with the qubit state. We probe the nonlinear resonator by
sending down the phase port transmission line a microwave
pulse with carrier frequency �=�p−
�, such that the detun-
ing 
�� ��3/2Q��p where Q is the quality factor of the
plasma resonance.19 In our circuit, the damping of the
plasma resonance arises from the characteristic transmission
line impedance Zc=50 � and thus Q=ZcC�p�10–20. For
this value of detuning, when ramping up the drive current Irf
the resonator switches from one dynamical state to another
when

Irf � IB��,�p
ef f� ,

where IB is the bifurcation current with expressions given in
Ref. 21. Therefore, by choosing the maximum pulse ampli-
tude
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IB	�,�p�1 − ��
 � Irf
max � IB	�,�p�1 + ��


we can determine, by measuring if the resonator has
switched or not, whether the qubit was in state �0� or �1�.

The dynamical states of the resonator differ in both the
amplitude and phase of the forced oscillations at frequency
�. In this work, we have chosen to use a reflectometry setup
in which all the information about the resonator state is car-
ried by the reflected drive signal phase 
. This last property
occurs because the probed circuit is not intrinsically dissipa-
tive �in absence of quasiparticles, which is very well realized
in our measurements� and the power reflected from the chip
is equal to the incident power in steady state. A further ad-
vantage of our nonlinear resonator is that the switching is
strongly hysteretic. Once a switching event has occurred we
can decrease the drive current Irf to a value which, while
much smaller than IB	� ,�p�1−��
, is still higher than the
reverse bifurcation “retrapping” current IB̄. This latching
property conserves the information about the qubit state ac-
quired during a small time interval �m in the resonator and
allows us to probe the reflected phase 
 during a time typi-
cally longer than �m.

In Fig. 2, we present a typical histogram of the reflected
drive signal phase 
 corresponding to a drive current Irf
which causes the resonator to switch, on average, half of the
time. The histogram has 800 000 counts acquired in 200 ms.

For qubit measurements shown later, histograms with only
10 000 are used. The shape of the readout pulse used is sche-
matically shown in the inset of Fig. 2. The rise time of the
pulse is set by the quality factor of the resonator and is typi-
cally 20–40 ns. The maximum current Irf

max is applied for
40–120 ns and is optimized for maximizing readout fidelity.
The latched section lasts 120 ns, during which the recorded
reflected signal phase 
 is bimodal, with values differing by
124°. The latching time is set by the system noise tempera-
ture and is the time required to resolve this phase shift with
sufficient accuracy. We have chosen the phase reference so
that the value 
=
low=−62° corresponds to the resonator in
its initial state, while 
=
high=62° corresponds to the reso-
nator having switched. We define the switching probability
Pswitch�Irf

max ,
� , �� ��Z ����, where ��� is the state of the
qubit, as the weight of the histogram that lies above 

= �
low+
high� /2=0.

IV. COHERENCE RESULTS

We now present experimental results on two different qu-
bit samples whose characteristic parameters are listed in
Table I, along with a summary of our results. In the figures
that follow, we only show data for sample A. All measure-
ments were performed in a dilution refrigerator at a tempera-
ture of 10 mK. Shadow-mask-evaporated Al/AlOx/Al junc-
tions were used for both the qubit and the JBA. Fabrication
details can be found in Refs. 18 and 20.

We first characterized our readout by measuring Pswitch as
a function Irf

max and ���, as shown in Fig. 3. The blue circles
correspond to the qubit in its ground state, obtained by let-
ting the qubit relax spontaneously, while the red circles cor-
respond to the qubit in its first excited state obtained by
applying a � pulse, which will be discussed below. An im-
portant remark is that only a slight change in shape of
Pswitch�Irf

max� between the two qubit states is observed, which
indicates that the switching process itself does not contribute
strongly to the relaxation of the qubit. In cases where the
readout is suspected to induce significant relaxation, the
switching probability curve for the qubit excited state dis-
plays a pronounced kink and can be obtained by a weighted
average of the observed curve for the ground state and the
prediction for the excited state.7,22 The discrimination power
of the qubit readout is defined as

� = max
Irf
max

	Pswitch���Z�� = 1� − Pswitch���Z�� = − 1�


and its observed ��expt� and predicted ��calc� values are given
in Table I. Numerical simulations23 of the full circuit have

FIG. 2. Typical histogram of the phase of the reflected signal in
the JBA readout when the maximum rf drive current is chosen so
that the resonator switches approximately half of the time. The
switching probability Pswitch is defined as the fraction of the histo-
gram lying above 
=0. The inset shows schematically the envelope
of the readout pulse sent to the phase port. The qubit influences the
switching probability during the time interval �m which here was
40 ns.

TABLE I. Parameters for two measured qubit samples. The readout frequency was 1.55 and 1.70 GHz for
samples A and B, respectively. The detuning was 6% of �p. The parameter � is the discrimination power of
the readout.

Sample
�01/2�
�GHz� EJ /EC

T1,typical

�	s�
T2

�ns�
Techo

�ns� �expt �calc �expt /�calc

A 9.513 2.7 4.0 320 400–500 0.48 0.70±0.05 0.69

B 18.989 6.0 1.0 300 300 0.61 0.70±0.05 0.87
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been used to compute the predicted values of �. Note that
several competing factors enter this calculation, yielding
similar values for samples A and B. The error bars reflect
uncertainties in the values of stray reactances on chip and the
precise resonator temperature.

The observed discrimination power is about 15–30 %
smaller than expected, and we attribute this loss to spurious
on-chip defects. In a set of experiments to be described in a
later publication, we used two readout pulses in succession
to determine that a 15–30 % loss of qubit population occurs
even before the resonator is energized to its operating point.
As photons are injected into the resonator, the effective qubit
frequency is lowered due to a Stark shift via the phase port.24

When the Stark-shifted frequency coincides with the fre-
quency of an on-chip defect, a relaxation of the qubit occurs.
Typically, the qubit frequency spans 200–300 MHz before
the state of the qubit is registered by the readout, and 3–4
spurious resonances are encountered in this range.

For future measurements, we have developed a method to
counter this effect. When applying a readout pulse via the
phase port, we apply a compensating pulse via the charge
port which Stark-shifts the qubit to higher frequencies. When
balancing these pulses, we have successfully reduced the net
frequency shift to below 20 MHz and have minimized popu-
lation loss to defects before the resonator switches. To in-
crease the expected discrimination power to unity, we must
use samples with either a larger qubit EJ or a stronger phase
coupling between the qubit and readout resonator. The latter
can be accomplished by using a resonator with two Joseph-
son junctions in series.

Having characterized our readout discrimination power,
we performed a series of experiments to assess the coherence
of our qubit, namely, the measurements of T1, T2, Techo, and

T̃2. These times characterize the decay of the excited-state

population after a � pulse, the decay of Ramsey fringes, the
decay of the echo signal after a �� /2 ,� ,� /2� pulse se-
quence, and the decay of the Rabi oscillations, respectively.

We first applied to the charge port a pulse at the Larmor
frequency �01 of varying duration � and amplitude Urf

max,
which performs a �X rotation of the qubit, followed by a
readout pulse on the phase port. The resulting Rabi oscilla-
tions in the switching probability signal are plotted in Fig.
4�a� for varying � and fixed Urf

max. Near �=0 we observe the
Pswitch corresponding to the qubit being in the �0� state. As
the pulse length increases, Pswitch increases, goes through a
maximum where the qubit is purely in the �1� state, defining
at this point the length of a � pulse. The switching probabil-
ity then decreases back to the �0� state value, indicating a full
2� rotation of the Bloch vector. This pattern repeats itself but

with diminishing contrast. The decay time T̃2 is in the range

FIG. 3. �Color online� Switching probability as a function of
maximum drive current and qubit state for sample A. The vertical
dotted line represents the value of drive current at which maximal
discrimination power is observed. The width in current of the
curves is in reasonable agreement with numerical simulations �data
not shown�. The solid line connects the observed data points in the
�0� state and the dashed line is a copy of the solid line horizontally
shifted to overlap the �1� state data at low values of Pswitch.

FIG. 4. �Color online� �a� Rabi oscillations of the switching
probability of qubit sample A as a function of the duration � of a
square pulse applied on the gate with maximum amplitude Urf

max

=0.12 mV. Solid �green� curve is an exponentially decaying sinu-

soidal fit with T̃2=1.6 	s. Total acquisition time is 3 min and the
repetition rate is 16 	s, set by T1 �see below�. �b� Rabi oscillation
frequency measured in �a� as a function of Urf

max. Solid �green� line
is the expected linear dependence.
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0.8–1.7 	s depending on the sample and precise biasing
condition. The Rabi oscillation frequency �R is plotted as a
function of Urf

max in Fig. 4�b�. A linear dependence of �R with
Urf

max is observed, in agreement with theory. The shortest �
pulse we generated was 2 ns long, and was used in the echo
experiments described below.

Having calibrated the � pulse, we then performed a qubit
energy relaxation measurement by introducing a waiting
time tw between the � pulse and the readout pulse. The decay
of Pswitch with tw, shown in Fig. 5, is well fitted by a single
exponential, defining T1. For sample A, T1 was in the range
2.5–5 	s, and for sample B, T1 was between 1.0 and 1.3 	s.
The values of T1 obtained with our dispersive readout are
comparable with the results of Vion et al.,1 and are signifi-
cantly shorter than the values expected from coupling to a
well-thermalized 50 � microwave environment shunting the
qubit. The loss mechanisms giving rise to the observed en-
ergy relaxation are not understood at this time.

Following measurements of the qubit energy relaxation,
we performed a Ramsey fringe experiment to determine the
phase coherence of the qubit. In this experiment, two � /2
pulses were applied to the charge port of the qubit at a fre-
quency 10–20 MHz detuned from �01 followed by a readout
pulse on the phase port. A free evolution time 
t was intro-
duced between the two � /2 pulses. In Fig. 6, Pswitch is plot-
ted as a function of 
t. In the Ramsey sequence, the first � /2
pulse tips the Bloch vector from the north pole to the equa-
torial plane. During the time 
t, the Bloch vector precesses
around the equatorial plane and is then rotated again by the
second � /2 pulse. For 
t=0, the two � /2 pulses back to
back act as a single � pulse and the observed value of Pswitch
corresponds to the qubit being in the �1� state. As 
t in-
creases, Pswitch decreases until it reaches the value corre-
sponding to the qubit being in the �0� state, corresponding to
a free evolution time 
t in which the Bloch vector makes a �
rotation in the equatorial plane. The switching probability
then continues to increase for larger values of 
t until it
reaches a maximum value, corresponding to a time 
t where

the Bloch vector makes a full 2� rotation in the equatorial
plane. This oscillatory pattern then repeats but with decreas-
ing contrast corresponding to the loss of phase coherence
with time. The Ramsey fringes decay in a time T2 which has
a component due to energy relation and one due to pure
dephasing: 1 /T2=1/ �2T1�+1/T�, where T� represents pure
dephasing. In our measurements, T2 is dominated by pure
dephasing. For sample A, T2=320 ns, and for sample B, T2
=300 ns.

In order to correct dephasing of the qubit due to low-
frequency noise,2,25 we performed an echo experiment in
which we inserted a � pulse in the middle of the two � /2
pulses of the Ramsey sequence. A set of Ramsey fringes and
its corresponding echo decay are shown in Fig. 7 for sample
A. For this sample, the decay constant was increased to
400–500 ns using the echo technique. For sample B, the
echo technique did not increase the phase coherence time.

FIG. 5. �Color online� Decay of the excited-state switching
probability after preparing the qubit in the excited-state by a �
pulse, as a function of the waiting time tw between the preparation
pulse and the readout pulse. Data for sample A. Solid �green� curve
is an exponential fit with a 3.2 	s decay constant.

FIG. 6. �Color online� Ramsey fringes obtained with two � /2
pulses separated by the time interval 
t. The pulse frequency was
detuned from the Larmor frequency by 20 MHz. The �green� curve
is an exponentially decaying sinusoid fit. The decay time T2 is
320 ns. Same acquisition conditions as in Fig. 4.

FIG. 7. �Color online� Result of an echo experiment where a �
pulse was kept in the middle of the two � /2 pulses separated by
interval 
t �black dots�. The Ramsey fringe data, obtained without
the � pulse, is shown with �red� circles. The thick black curve is an
exponentially decaying fit.
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We believe that for sample B, which has a large ratio of
EJ /EC and is protected from 1/ f offset charge noise, the
dominant source of dephasing is due to broadband noise
emanating from residual photons in our readout resonator,26

thus explaining the inefficacy of the echo sequence. It is
possible that the 50 � environment shunting the qubit on the
phase port side was not fully thermalized to the refrigerator
temperature of 10 mK. For sample A, where an improvement
was observed with the echo sequence, there are likely two
contributing factors. First, the ratio EJ /EC is much smaller
and offset charge noise played a stronger role. The low-
frequency component of this noise can be corrected using an
echo sequence. Second, we added more cryogenic attenua-
tion in the transmission lines directly coupling to the phase
port to reduce the resonator temperature, thereby potentially
reducing the number of excess photons in the readout reso-
nator and their associated dephasing.

V. CONCLUSION

In conclusion, we have successfully implemented a non-
linear dispersive readout of the quantronium qubit using the

Josephson bifurcation amplifier. The readout speed and dis-
crimination power show a significant improvement when
compared with the dc switching readout used in the original
quantronium measurements.1 Perhaps even more important,
in the present readout scheme, the total measurement time is
much smaller than T1, and it is possible to carry out experi-
ments with multiple readout pulses to determine the informa-
tion flow during a qubit readout and to account for any losses
in qubit population. This important aspect can be used to
determine the degree to which the measurement is quantum
nondemolishing, and we hope to describe it in later publica-
tions.
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RF-Driven Josephson Bifurcation Amplifier for Quantum Measurement
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We have constructed a new type of amplifier whose primary purpose is the readout of super-
conducting quantum bits. It is based on the transition of a rf-driven Josephson junction between two
distinct oscillation states near a dynamical bifurcation point. The main advantages of this new amplifier
are speed, high sensitivity, low backaction, and the absence of on-chip dissipation. Pulsed microwave
reflection measurements on nanofabricated Al junctions show that actual devices attain the perform-
ance predicted by theory.

DOI: 10.1103/PhysRevLett.93.207002 PACS numbers: 85.25.Cp, 05.45.–a

Quantum measurements of solid-state systems, such as
the readout of superconducting quantum bits [1–7], chal-
lenge conventional low-noise amplification techniques.
Ideally, the amplifier for a quantum measurement should
minimally perturb the measured system while maintain-
ing sufficient sensitivity to overcome the noise of subse-
quent elements in the amplification chain. Additionally,
the drift of materials properties in solid-state systems
mandates a fast acquisition rate to permit measurements
in rapid succession. To meet these inherently conflicting
requirements, we propose to harness the sensitivity of a
dynamical system—a single rf-driven Josephson tunnel
junction—tuned near a bifurcation point. In this new
scheme, all available degrees of freedom in the dynami-
cal system participate in information transfer and none
contribute to unnecessary dissipation resulting in excess
noise. The superconducting tunnel junction is the only
electronic circuit element that remains nonlinear and
nondissipative at arbitrary low temperatures. As the key
component of present superconducting amplifiers [8–10],
it is known to exhibit a high degree of stability.

The operation of our Josephson bifurcation amplifier
(JBA) is represented schematically in Fig. 1. The central
element is a Josephson junction whose critical current I0
is modulated by the input signal using an application-
specific coupling scheme, such as a SQUID loop (see
inset of Fig. 1) or a superconducting single-electron tran-
sistor (SSET) like in superconducting charge qubits (in-
put port). The junction is driven with a sinusoidal signal
irf sin�!t� fed from a transmission line through a circu-
lator (drive port). In the underdamped regime, when the
drive frequency ! is detuned from the natural oscillation
frequency !p, the system can have two possible oscilla-
tion states that differ in amplitude and phase [11,12].
Starting in the lower amplitude state, at the bifurcation
point irf � IB � I0, the system becomes infinitely sensi-
tive, in absence of thermal and quantum fluctuations, to
variations in I0. At finite temperature, sensitivity scales
as kBT=’0, where ’0 � "=2e is the reduced flux quantum
and T the temperature. The reflected component of the
drive signal, measured through another transmission line

connected to the circulator (output port), is a convenient
signature of the junction oscillation state that carries with
it information about the input signal. This arrangement
minimizes the backaction of the amplifier since the only
fluctuations felt at its input port arise from the load
impedance of the circulator, which is physically sepa-
rated from the junction via a transmission line of arbi-
trary length and can therefore be thermalized efficiently
to base temperature. In this Letter, we present an experi-
ment that demonstrates the principle of bifurcation
amplification.

The dynamics of the junction are described by the time
evolution of the junction gauge-invariant phase differ-
ence ��t� �

R
t
�1 dt02eV�t0�= �h, where V is the voltage

across the junction. In presence of the microwave drive
irf sin�!t�, the oscillations of the junction phase can be
parameterized using in-phase and quadrature-phase com-
ponents ��t� � �k sin�!t� 	 �? cos�!t� (higher harmon-
ics of oscillation are negligible). When the detuning
� � �1�!=!p� and the quality factor Q � !pRC sat-
isfy �Q>

���
3

p
=2, then two steady-state solutions can exist

for ��t� (see Fig. 2). Here !p � �2eI0= �hC�1=2 is the junc-
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FIG. 1. Schematic diagram of the Josephson bifurcation
amplifier. A junction with critical current I0, parametri-
cally coupled to the input port, is driven by a rf signal
which provides the power for amplification. In the vicinity of
the dynamical bifurcation point irf � IB, the phase of the
reflected signal phase � depends critically on the input signal.
Inset: example of a parametric input coupling circuit.
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tion plasma frequency, C is the capacitance shunting the
Josephson element, and R � 50 � is the characteristic
impedance of the transmission line at the output and
drive ports. Figure 2 has been calculated for � � 0:122,
Q � 20, and irf=IB � 0:87, where IB � 16=�3

���
3

p
� �

�3=2�1� ��3=2I0 	O
1=��Q�2�. These values correspond
to operating conditions for measurements described be-
low. The dynamical switching from state 0 to 1 is char-
acterized by a phase shift given here by
tan�1
��1

k
��0

k
�=��1?��0?����139 deg. Using the junc-

tion phase-voltage relationship and the transmission line
equations, we can calculate the steady-state magnitude
and phase of the reflected microwave drive signal. The
change in the oscillation of � results in a shift of the
reflected signal phase ��01 � 89 deg. (In very recent
experiments, we have been able to optimize parameters
and achieve ��01 � 180 deg.) Since there is no source of
dissipation in the junction chip, there should be no change
in the magnitude of the reflected signal power, even

though
�����������������������������������������������������
��1

k
� �0

k
�2 	 ��1? � �0?�

2
q

� 0.

Our sample consisted of a single shadow-mask evapo-
rated Al=Al203=Al tunnel junction with I0 � 1:17 �A,
shunted with an on-chip lithographic capacitance C �

27:3 pF [12] to obtain a reduced plasma frequency
!p=2� � 1:80 GHz. The dynamics of the transition be-
tween the two oscillation states were probed using mi-
crowave pulses, generated by the amplitude modulation of
a cw source with a phase-locked arbitrary waveform
generator with 1 ns resolution. The reflected signal was
passed through a circulator at base temperature T �
0:25 K to a matched high electron mobility transistor
(HEMT) amplifier at T � 4:2 K. At room temperature,
the reflected signal was further amplified, mixed down to
100 MHz and finally digitally demodulated using a
2 GS=s digitizer to extract the signal phase �.

We first probed the drive current dependence of the
reflected signal phase ��irf� by applying a 4 �s long
symmetric triangular shaped pulse with a peak value
0:185I0. The demodulated reflected signal was divided
into 20 ns sections, each yielding one measurement of �
for a corresponding value of irf . The measurement was
repeated 6� 105 times to obtain a distribution of ��irf�.
In Fig. 3, the mode of the distribution is plotted as a
function of irf=I0. For irf=I0 < 0:125, the bifurcation am-
plifier is always in state 0 and � is constant and assigned
a value of 0 deg. As the drive current is increased above
irf=I0 � 0:125, thermal fluctuations are sufficiently large
to cause transitions to the 1 state. In the region between
the two dashed lines at irf=I0 � 0:125 and irf=I0 � 0:160,
� displays a bimodal distribution with peaks centered at 0
and 74 deg with the latter corresponding to the amplifier
in the 1 state, as we have demonstrated previously [12].
The dotted line in Fig. 3 is the average reflected signal
phase h�i. When irf=I0 is increased above 0.160, the
system is only found in state 1. In the decreasing part
of the irf ramp, the system does not start to switch back to
state 0 until irf=I0 � 0:065. The critical switching cur-0
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FIG. 2 (color online). Poincaré section of a rf-driven
Josephson junction in the bistable regime 
� � �1�!=!p� �

0:122; irf=IB � 0:87�. The coordinates �k and �? are the in-
phase and quadrature-phase components of the junction gauge-
invariant phase difference �. The color code gives the magni-
tude of the error current ie [18], which describes the ‘‘force’’ on
�. The two stable oscillation states, labeled by 0 and 1, are
indicated by white line segments. The basins of attraction
corresponding to the two states are separated by the blue dotted
line (separatrix). Point S, which lies on the separatrix, is the
saddle point at which the escape trajectory from state 0 (dashed
line) meets the retrapping trajectory into state 1 (solid line).
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rents IB for the 0! 1 transition and I �B for the 1! 0
transition, calculated from numerical simulations to treat
the inductance of wire bonds, are denoted with ticks in
Fig. 3, and are in good agreement with experiment. The
0! 1 transition at irf � IB is nearly irreversible, allow-
ing the bifurcation amplifier to latch and store its output
during the integration time set by the sensitivity of the
follower amplifier.

We have then characterized the switching phenomenon
in the vicinity of the 0! 1 transition. The drive current
was ramped from 0 to its maximum value in 40 ns and
was then held constant at a plateau for 40 ns before
returning to 0. Only the final 20 ns of the signal in the
plateau were analyzed to determine the oscillation phase,
the first 20 ns being allotted for settling of the phase.
Histograms taken at an acquisition rate of 10 MHz are
shown in Fig. 4. The 0 and 1 peaks can easily be resolved
with a small relative overlap of 10�2. We have also
‘‘latched’’ the state of the amplifier by reducing the drive
amplitude of the analysis plateau by 20% relative to the
settling plateau. Now, by increasing the analysis time to
300 ns, the overlap was reduced to 6� 10�5.

The switching probability P0!1�irf�, i.e., the weight of
the 1 peak in Fig. 4, was measured for different values of
the temperature T and I0, the latter being varied with a
magnetic field applied parallel to the junction plane (see
Fig. 5). Defining the discrimination power d as the maxi-
mum difference between two switching probability
curves that differ in I0, we find that at T � 340 mK, d �
57% for �I0=I0 � 1%—the typical variation between
qubit states in a ‘‘quantronium’’ circuit [2], which is in
essence a SSET coupled to a readout junction operated in
dc switching mode. The switching probability curves
should shift according to ��IB=IB�=��I0=I0� � 3=�4�� �
1=2	O
1=��Q�2�, which for our case takes the value 5.6.
In Fig. 5, the curves are shifted by 6%, which agrees well
with this prediction. For the case of the dc current-biased
junction, similar curves would shift only by 1% since the
switching current is I0 itself. Comparable discrimination

power using dc switching has only been achieved in these
devices at T & 60 mK. As the temperature is increased,
the switching probability curves broaden due to increased
thermal fluctuations and the discrimination power de-
creases: at T � 540 mK, d � 49%. With improved rf
filtering and a more optimized sample, we reached T �
250 mK and obtained d � 80%. This temperature depen-
dence of the discrimination power is in agreement with
both analytical predictions and independent measurement
of the rate of escape out of the dynamical well (data not
shown). The temperatures quoted above are inferred from
the measured escape rate and calculated barrier heights
using the method of Ref. [13].

With the Josephson bifurcation amplifier operating at
T � 340 mK, it is possible to resolve with a signal/noise
ratio of 1 a 10 nAvariation in I0 in a total time � & 80 ns,
corresponding to a critical current sensitivity of S1=2I0

�

3:3� 10�12 A=Hz1=2. This value is in agreement with
the analytical theory prediction S1=2I0

� ��irf=I0; ���

�kBT=’0� � �1=2, where � � 1:4 near the bifurcation
point. Dispersive readout in the linear regime has been
proposed [14] on account of its minimal effect on qubit
coherence and relaxation. Increasing the drive amplitude
near the dynamical bifurcation has the further benefit,
for a given Q, of maximizing the phase shift between the
two qubit states and thus eliminating any loss of fidelity
due to noise of the follower amplifier.

The JBA can also be operated in the nonhysteretic
regime when �Q &

���
3

p
=2. In this mode, it is straightfor-

ward to define conventional amplifier quantities such as
power gain and noise temperature, thus allowing direct
comparison with other ultra-low-noise amplifiers such as
the SQUID [15]. With the model shown in the inset of
Fig. 1, and assuming that the modulation of drive signal
has symmetric sidebands, we calculate the power gain
and the noise temperature to be 2!p=!s and "!s=kB,
respectively, where !s is the input signal frequency. We
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FIG. 4. Histograms of the reflected signal phase � at irf=I0 �
0:145. The histogram contains 1:6� 106 counts with an analy-
sis time �a � 20 ns. Data here have been taken under the same
operating conditions as in Fig. 3. The dashed line represents the
discrimination threshold between the 0 and 1 state.
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FIG. 5. Switching probability curves at T � 340 mK as a
function of the drive current irf . The discrimination power d �
0:57 is the maximum difference between the two curves. The
measurement protocol is the same as shown in the upper panel
of Fig. 4. Though the two curves differ by approximately 1% in
I0, they are shifted by 6% in drive current.
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believe that a more precise calculation, taking into ac-
count the single sideband modulation character found
at the bifurcation, would yield a quantum-limited tem-
perature "!s=2kB. These calculations, which follow step-
by-step the analysis of the SQUID [10], assume ideal
matching to the noise impedance of the device, with
components similar to those in conventional SQUID
circuits. Although these results do not differ from those
of the SQUID, the real advantage of our device lies in
the spectral content of the total backaction noise, which
is not contained in the usual definition of the noise tem-
perature at !s. Since there is no on-chip dissipation, the
only fluctuations contributing to the total backaction
originate from our matched circulator load, within a
band !p=Q centered at !p. In the SQUID, the total
backaction consists of a wide spectrum extending from
dc to several harmonics of the Josephson frequency.
Efficient filtering over this wide band, leaving only the
signal frequency unattenuated, is difficult. Moreover, it is
easier in the JBA to fully thermalize [16] the requisite
dissipation needed for amplification since it is completely
in the off-chip circulator. Finally, the bifurcation ampli-
fier does not suffer from quasiparticle generation associ-
ated with hysteretic SQUIDS [4] and dc current-biased
junctions [2] that switch into the voltage state. Long
quasiparticle recombination times at low temperatures
limit the acquisition rate of these devices while the re-
combination process itself produces excess noise for ad-
jacent circuitry [17].

In conclusion, we have developed a new amplification
principle harnessing the nonlinear, nondissipative induc-
tance of the Josephson junction to improve the perform-
ance of Josephson effect based amplifiers. The Josephson
bifurcation amplifier is competitive with the SQUID for
applications where low backaction is required. Its speed,
suppression of on-chip dissipation, and latching make it
ideal for the readout of superconducting qubits. At tem-
peratures such that T � 85 mK, the discrimination power
for quantronium would be greater than 95%, hence per-
mitting stringent tests of quantum mechanics, like the
violation of Bell’s inequalities.
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Direct Observation of Dynamical Bifurcation between Two Driven Oscillation States
of a Josephson Junction
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We performed a novel phase-sensitive microwave reflection experiment which directly probes the
dynamics of the Josephson plasma resonance in both the linear and the nonlinear regime. When the
junction was driven below the plasma frequency into the nonlinear regime, we observed for the first time
the transition between two different dynamical states predicted for nonlinear systems. In our experiment,
this transition appears as an abrupt change in the reflected signal phase at a critical excitation power. This
controlled dynamical switching can form the basis of a sensitive amplifier, in particular, for the readout of
superconducting qubits.

DOI: 10.1103/PhysRevLett.94.027005 PACS numbers: 85.25.Cp, 05.45.–a

As first understood by Josephson, a superconducting
tunnel junction can be viewed as a nonlinear, nondissipa-
tive, electrodynamic oscillator [1]. The question we ad-
dress in this Letter is whether the nonlinearity of the
Josephson junction can be harnessed controllably and ro-
bustly to provide an amplification mechanism that will
remain efficient in the quantum limit [2].

The tunneling of Cooper pairs manifests itself as a non-
linear inductance that shunts the linear junction self-
capacitance CJ, formed by the junction electrodes and
the tunnel oxide layer. The constitutive relation of the
nonlinear inductor can be written as I�t� � I0 sin��t�,
where I�t�; ��t� �

R
t
�1 dt0V�t0�=’0 and V�t� are the cur-

rent, gauge-invariant phase difference and voltage corre-
sponding to the inductor, respectively, while the parameter
I0 is the junction critical current. Here ’0 � �h=2e is the
reduced flux quantum. For small oscillation amplitude, the
frequency of oscillation is given for zero bias current by the
so-called plasma frequency !P � 1=

�����������
LJCJ

p
, where LJ �

’0=I0 is the effective junction inductance. As the oscilla-
tion amplitude increases, the oscillation frequency de-
creases, an effect which has been measured in both the
classical and the quantum regime [2–6]. However, a more
dramatic nonlinear effect should manifest itself if the
junction is driven with an ac current irf sin!t at a frequency
! slightly below !P. If the quality factor Q �

CJ!P=Re�Z�1�!P�	 is greater than
���
3

p
=2�, where Z�!P�

is the impedance of the junction electrodynamic environ-
ment and � � 1� !=!P is the detuning parameter, then
the junction should transit from one dynamical oscillation
state to another when irf is ramped above a critical value iB
[7]. For irf < iB, the oscillation state would be low ampli-
tude and phase lagging, while for irf > iB, the oscillation
state would be high amplitude and phase leading. This
generic nonlinear phenomenon, which we refer to as ‘‘dy-
namical bifurcation,’’ is reminiscent of the usual switching

of a hysteretic junction from the zero-voltage state to the
voltage state when the current bias exceeds the critical
current I0 [8]. However, an important distinction between
dynamical bifurcation and switching is that in the former,
the phase particle remains confined to only one well of the
junction cosine potential U��� � �’0I0 cos���, and the -
time-average value of � and _� is always zero in each state.
Note also that, unlike the critical current in switching, iB

depends both on Q and on the detuning �. In this Letter we
report the first observation of a controlled dynamical bi-
furcation effect in a Josephson junction. As with switching,
controlled dynamical bifurcation can be used for amplifi-
cation [9], but with the added advantage that no energy
dissipation occurs in the junction chip, a desirable feature
for the readout of superconducting qubits [10].

Typical junction fabrication parameters limit the plasma
frequency to the 20–100 GHz range where techniques for
addressing junction dynamics are inconvenient. We have
chosen to shunt the junction by a capacitive admittance to
lower the plasma frequency by more than an order of
magnitude and attain a frequency in the 1–2 GHz range
(microwave L band). In this frequency range, a simple on-
chip electrodynamic environment with minimum parasitic
elements can be implemented, and the hardware for precise
signal generation and processing is readily available. In our
experiment, we directly measure the plasma resonance in a
coherent microwave reflection measurement. Unlike pre-
vious experiments which measured only the microwave
power absorption at the plasma resonance [3,4,6], we
also measure the phase � of the reflected microwave
signal. Thus, we can detect the characteristic signature of
the transition between different oscillating states of the
junction—a change of oscillation phase relative to the
drive. Note that the phase � of the reflected signal which
probes the phase of the oscillation state should not be
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confused with the junction gauge-invariant phase differ-
ence �.

In the first step of sample fabrication, a metallic under-
layer—either a normal metal (Au, Cu) or a superconductor
(Nb)—was deposited on a silicon substrate to form one
plate of the shunting capacitor, followed by the deposition
of an insulating Si3N4 layer. Using e-beam lithography and
double-angle shadow mask evaporation, we subsequently
fabricated the top capacitor plates along with a micron
sized Al=Al2O3=Al tunnel junction. The critical current
of the junction was in the range I0 � 1–2 �A. By varying
both the dielectric layer thickness and the pad area, the
capacitance C was varied between 16 and 40 pF. Sample
parameters are listed in Table I.

The junction 
 capacitor chip is placed on a microwave
circuit board and is wire bonded to the end of a coplanar
strip line which is soldered to a coaxial launcher affixed to
the sidewall of the copper sample box. We anchor the rf
leak-tight sample box to the cold stage of a 3He refrigerator
with a base temperature T � 280 mK. The measurement
setup is schematically shown in Fig. 1. Microwave excita-
tion signals are generated by a HP 8722D vector network
analyzer and coupled to the sample via the �13 dB side
port of a directional coupler. The reflected microwave
signal passes through the direct port of the coupler and is
amplified first using a cryogenic 1.20–1.85 GHz high
electron mobility transistor amplifier with noise tempera-
ture TN � 4 K before returning to the network analyzer. A
bias current can be applied to the junction by way of a bias
tee and a passive filter network.

We locate the linear plasma resonance by sweeping the
excitation frequency from 1 to 2 GHz and measuring the
complex reflection coefficient ��!� � �1� ��ej� �
�Z�!� � Z0	=�Z�!� 
 Z0	, where Z0 � 50 � is the char-
acteristic impedance of our transmission lines and Z�!� is
the impedance presented to the analyzer by the chip and the
measurement lines. For an ideal LC resonator without
intrinsic dissipation, we expect a phase shift �!�!p

�

�!�!p
� 2�, which we verified by placing a chip capaci-

tor and an inductive wire bond in place of the junction chip.
An important aspect of our experiment is that Q is now

determined by the ratio Z0=ZJ 
 10, where ZJ ����������������������������
LJ=�CJ 
 C�

p
and not by the intrinsic junction losses

which are negligible. An excitation power P � i2rfZ0=4 �
�120 dBm (1 fW) corresponding to a current irf �
9 nA � I0 keeps the junction in the linear regime.

In Fig. 2, we present the reflected signal phase � as a
function of excitation frequency for sample 5. In order to
remove the linear phase evolution associated with the finite
length of the measurement lines, we have subtracted from

TABLE I. Sample parameters. LJ � ’0=I0 and !p are mea-
sured values. C and LS are fit values to the data. Samples 1, 2,
and 2a have a 100 nm thick Au underlayer, sample 3 has a 50 nm
thick Nb underlayer, sample 4 has a 1 �m thick Cu underlayer,
and sample 5 has a 200 nm thick Nb underlayer.

Sample LJ (nH) !p=2� (GHz) C (pF) LS (nH)

1 0.28 1.18 39� 1 0:20� 0:02
2 0.18 1.25 30� 4 0:34� 0:04
2a 0.17 1.66 18� 1 0:32� 0:02
3 0.32 1.64 16� 1 0:27� 0:02
4 0.38 1.81 19� 1 0:026� 0:02
5 0.40 1.54 19� 1 0:15� 0:02
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FIG. 1. Schematic of the measurement setup. Thick lines
correspond to 50 � coaxial transmission lines. A lumped ele-
ment model for the junction chip and measurement line is shown
in the lower right corner.
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our measurement in the superconducting state the reflec-
tion coefficient measured with the junction in the normal
state. The frequency where � � 0 thus yields the linear-
regime plasma frequency. For sample 5, !p=2� �

1:54 GHz.
The precise frequency and critical current dependence of

the reflected signal phase of our samples can be accounted
for by a three-element model for the electrodynamic envi-
ronment seen by the junction. This lumped element model
is shown in the lower right corner of Fig. 1. The parasitic
inductance LS and resistance RS model the nonideality of
the shunting capacitor C. They arise from the imperfect
screening of currents flowing in the capacitor plates and the
finite conductivity of these plates. The plasma frequency in
the linear regime is determined by the total inductance
LJ 
 LS and capacitance Ceff � CJ 
 C ’ C and is given
by the following relation:

�
1

!p

�
2
� C�LJ 
 LS� �

’0C
I0


 CLS:

We thus plot 1=!2
p versus 1=I0 � LJ=’0 in Fig. 3 for

samples 1, 2, 4, and 5. As the critical current is decreased
by applying a magnetic field, the junction inductance in-
creases, and the plasma frequency is reduced. For each
sample, a linear fit to the data of Fig. 3 yields the values of
C and LS (see Table I). The fit values for C agree well with
simple estimates made from the sample geometry.
Samples 1 and 2 have nominally the same capacitance
but a different critical current and hence lie approximately
on the same line in Fig. 3. A total of four capacitive pads
were used to make the shunting capacitor in samples 1 and
2, and after initial measurements, we scratched off two of

the pads from sample 2 to obtain sample 2a, and the
resulting capacitance is indeed halved. For samples with
a thin underlayer (1, 2, and 3), a stray inductance in the
range LS � 0:20–0:34 nH is observed. For samples 4 and 5
with a significantly thicker underlayer, LS was reduced to
0.026 and 0.15 nH, respectively. This behavior is consistent
with the calculated screening properties of our thin films.
To verify that the values of C and LS were not affected by
the magnetic field used to vary I0, we varied LJ by applying
a bias current [6] at zero magnetic field. The resonance
data obtained by this method agree with the magnetic field
data. Using LS and C we can accurately predict the ob-
served resonant line shape of Fig. 2, in which RS � 0. For
samples with a normal underlayer, we find the data are
accurately fit by RS � 0:8� for samples 1 and 2 and RS �
0:02 � for sample 4. Finally, we have independently veri-
fied the effect of the shunting capacitor on the plasma
resonance by performing resonant activation experiments
[5].

We now address our main interest: the nonlinear regime
of the plasma resonance. The reflection coefficient as a
function of frequency for increasing power for sample 5 is
presented in the lower panel of Fig. 4 as a two dimensional
color plot, in which each row is a single frequency sweep,
similar to Fig. 2. For small excitation power, we recover the
linear plasma resonance at 1.54 GHz, shown as a yellow
line corresponding to � � 0. As the power is increased
above �115 dBm, the plasma frequency decreases as is
expected for a junction driven with large amplitude [5].
The boundary between the leading-phase region (green)
and the lagging-phase region (red) therefore curves for
high powers. This curvature has an interesting conse-
quence: When we increase the drive power at a constant
frequency slightly below the plasma frequency, the phase
as a function of power undergoes an abrupt step, as pre-
dicted. For yet greater powers �> � 90 dBm�, we encoun-
ter a new dynamical regime (black region in Fig. 4) where
� appears to diffuse between the wells of the cosine
potential. This was confirmed by the presence of an un-
ambiguous audiofrequency ac resistance in the black re-
gion. In the lower panel of Fig. 4, we illustrate the sequence
of dynamical transitions by plotting � as a function of
incident power at !=2� � 1:375 GHz. For P <
�102 dBm, the phase is independent of power (� oscil-
lates in a single well in the harmonic-like, phase-leading
state (A)]. For �102 < P < �90 dBm, the phase evolves
with power and � still remains within the same well but
oscillates in the anharmonic phase-lagging state (B).
Finally, for P > �90 dBm, the average phase of the re-
flected signal saturates to �180�, corresponding to a ca-
pacitive short circuit (C). This last value is expected if �
hops randomly between wells, the effect of which is to
neutralize the Josephson inductive admittance.

The value of the current iB for the A-B transition, which
is a function of both the detuning � and power P, is in good
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FIG. 3. Inverse square of the plasma frequency 1=!2
p as a

function of the inverse critical current 1=I0 � LJ=’0 for
samples 1, 2, 4, and 5. Solid lines are linear fits to the data
corresponding to the model of Fig. 1, with a single best fit line
drawn for samples 1 and 2 which nominally differ only in I0.
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qualitative agreement with the analytical theory which
retains only the first anharmonic term in the cosine poten-
tial [11]. For instance, the slope of the A-B transition line at
the linecut in Fig. 4, dP �dBm�=d� �%� � 0:8 for the
experiment while we calculate its value to be 0.7.
Furthermore, in measurements in which the power is
ramped in less than 100 ns, we verified that the transition
between dynamical states is hysteretic, another prediction
of the theory. To explain the complete frequency and power
dependence of the transitions shown in the lower panel of
Fig. 4, we have performed numerical simulations by solv-
ing the full circuit model of the lower corner of Fig. 1,
including the exact junction nonlinear constitutive relation.

The result of this calculation is shown in the upper panel of
Fig. 4. It correctly predicts the variation of the plasma
frequency with excitation power, and the boundaries of
the phase diffusion region. The agreement between theory
and experiment is remarkable in view of the simplicity of
the model which uses only measured parameters, and only
small differences in the exact shape of region boundaries
are observed. It is important to mention that the overall
topology of Fig. 4 is unaffected by changes in the parame-
ter values within the bounds of Table I.

In conclusion, we have performed a novel, phase-
sensitive, microwave experiment demonstrating that the
Josephson plasma oscillation can transition between the
two dynamical states predicted for a driven nonlinear
system. Using different samples, we have shown that this
dynamical phenomenon is stable, reproducible, and can be
precisely controlled, thus opening the possibility for prac-
tical applications such as amplification. Following the
methodology invented for trapped electron systems [12],
we can use this dynamical effect as the basis for a single-
shot and latching qubit readout.
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Abstract We have constructed a new type of amplifier whose primary purpose is the read-
out of superconducting quantum bits. It is based on the transition of an RF-
driven Josephson junction between two distinct oscillation states near a dynam-
ical bifurcation point. The main advantages of this new amplifier are speed,
high-sensitivity, low back-action, and the absence of on-chip dissipation. Us-
ing pulsed microwave techniques, we demonstrate bifurcation amplification in
nanofabricated Al junctions and verify that the performance predicted by theory
is attained.

1. Introduction

Josephson first noted that the superconducting tunnel junction can be viewed
as a non-linear, non-dissipative, electrodynamic oscillator [1]. We exploit this
non-linearity to produce a new type of high-sensitivity amplifier, the Josephson
Bifurcation Amplifier (JBA). No shunt resistors are required in our amplifica-
tion scheme, and it is thus possible to take advantage of the elastic charac-
ter of the junction and eliminate on-chip dissipation, thereby minimizing the
back-action of the amplifier. The combination of high-sensitivity and minimal
back-action makes the JBA well-suited for measurements on quantum systems
such as superconducting qubits, and make it a strong candidate for reaching
the quantum noise limit.

The operation of the JBA is represented schematically in Fig. 1. The cen-
tral element is a Josephson junction, shunted with a lithographic capacitor,
whose critical currentI0 is modulated by an input signal (input port). Cou-
pling between the junction and the input signal can be achieved through dif-
ferent schemes, examples of which involve placing the JBA ina SQUID loop
[2] or in parallel with a SSET [3]. The junction is driven witha pure AC
signal iRF sin(ωt) in the microwave frequency range fed via a transmission



2

line through a circulator (drive port). In the underdamped regime, for certain
values ofω andiRF , two possible oscillation states which differ in amplitude
and phase (denoted "0" and "1") can coexist. The reflected component of the
drive signal, measured through another transmission line connected to the cir-
culator (output port), is a convenient signature of the junction oscillation state.
At the bifurcation point where switching between oscillation states occurs, the
system becomes infinitely sensitive, in the absence of thermal and quantum
fluctuations, to variations inI0. At finite temperature, the energy stored in the
oscillation can always be made larger than thermal fluctuations by increasing
the scale ofI0, thus preserving sensitivity. Small variations inI0 are trans-
formed into readily discernible changes in the escape rateΓ01 from state 0 to
1. Back-action is minimized in this arrangement since the only fluctuations
felt at the input port arise from the fluctuations of the50Ω drive port whose
dissipative elements are physically separated from the junction via a transmis-
sion line of arbitrary length and can therefore be thermalized efficiently to base
temperature. Additionally, the frequency band over which the back-action con-
tributes is narrow, and well controlled.

In section 2, simplified expressions adapted from the theoryof activated
escape in a driven non-linear oscillator [4] are presented.Details of the devices
and the measurement setup are presented in Section 3. Experimental results are
given in Section 3, and concluding remarks are in Section 4.

2. Theory

The tunnelling of Cooper pairs manifests itself as a non-linear inductance
that shunts the linear junction self-capacitanceCJ , formed by the junction
electrodes and the tunnel oxide layer. The constitutive relation of the non-
linear inductor can be written asI(t) = I0 sin δ (t), whereI(t), δ (t) =∫ t
−∞ dt′V (t′)/ϕ0 andV (t) are the current, gauge-invariant phase-difference

and voltage corresponding to the inductor, respectively, while the parame-
ter I0 is the junction critical current. Hereϕ0 = h̄/2e is the reduced flux
quantum. The dynamics of the junction are given by the time evolution of δ,
which exhibits the motion of a phase particle in a cosine potential U(δ) =
−ϕ0I0 cos(δ). For small oscillation amplitude about the potential minima,
the frequency of oscillation is given for zero DC bias current by the plasma
frequencyωP0 = 1/

√
LJCJ whereLJ = ϕ0/I0 is the effective junction in-

ductance. As the oscillation amplitude increases, the potential "softens" and
ωP decreases, an effect which has been measured in both the classical and
quantum regime [5–8]. A more dramatic non-linear effect manifests itself if
the junction is driven with an AC currentiRF sin ωt at a frequencyω slightly
below ωP0. If the quality factorQ = CJωP0/Re[Z−1(ωP0)] is greater than√

3/2α, whereZ(ωP0) is the impedance of the junction electrodynamic envi-
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ronment andα = 1−ω/ωP0 the detuning parameter, then the junction switches
from one dynamical oscillation state to another wheniRF is ramped above a
critical valueIB [9]. For iRF < IB , the oscillation state is low-amplitude
and phase-lagging while foriRF > IB , the oscillation state is high-amplitude
and phase-leading. This generic non-linear phenomenon, which we refer to
as "dynamical switching", is reminiscent of the usual "static switching" of the
junction from the zero-voltage state to the voltage state when the DC current
bias exceeds the critical currentI0 [10]. However, an important distinction be-
tween dynamical and static switching is that in dynamical switching, the phase
particle remains confined to only one well of the junction cosine potential, and
the time-average value ofδ is always zero. The junction never switches to
the voltage state, and thus no DC voltage is generated. Also,for dynamical
switching, the currentIB depends both onQ and on the detuningα.

In presence of the microwave driveiRF sin(ωt), the oscillations in the junc-
tion phase can be parameterized using in-phase and quadrature phase compo-
nentsδ(t) = δ‖ sin(ωt)+ δ⊥ cos(ωt) (higher harmonics of oscillation are neg-

ligible).The two oscillation states appear as two points inthe
(
δ‖, δ⊥

)
plane

and are denoted by vectors labelled 0 and 1 (see Fig. 2). The error-current [11]

Figure 1. Schematic diagram of the
Josephson bifurcation amplifier. A junc-
tion with critical currentI0, parametrically
coupled to the input port, is driven by an
RF signal which provides the power for
amplification. In the vicinity of the dynam-
ical bifurcation pointiRF = IB, the re-
flected signal phaseφ depends critically on
the input signal.

Figure 2. Poincare section of an
RF-driven Josephson junction in the
bistable regime(α = (1 − ω/ωp) =
0.122, iRF /IB = 0.87). The two stable
oscillation states, labelled by 0 and 1, are
indicated by white line segments. Point S
which lies on the separatrix is the saddle
point at which the escape trajectory from
state 0 (dashed line) meets the retrapping
trajectory into state 1 (solid line).
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which describes the generalized force felt by the system is also plotted in the(
δ‖, δ⊥

)
plane. Its value goes to zero at the attractors corresponding to states 0

and 1 and also at a third extremum which is the dynamical saddle point. Also
shown in Fig. 2 is the calculated escape trajectory [12] fromstate 0 (dashed)
and the corresponding retrappping trajectory [13] into state 1 (solid line). Fig.
2 has been computed forα = 0.122, Q = 20 and iRF /IB = 0.87. These
values correspond to typical operating conditions in our experiment. The dy-
namical switching from state 0 to 1 is characterized by a phase shift given here
by tan−1

[(
δ1

‖ − δ0

‖)/(δ
1

⊥ − δ0

⊥

)]
= −139 deg. Using the junction phase-

voltage relationship and the transmission line equations,we can calculate the
steady-state magnitude and phase of the reflected microwavedrive signal. The
change in the oscillation ofδ results in a shift of the reflected signal phase
∆φ01 = 89deg. Since there is no source of dissipation in the junction chip,
there should be no change in the magnitude of the reflected signal power, even
though

√
(δ1

‖ − δ0

‖)
2 + (δ1

⊥ − δ0

⊥)2 6= 0.

Both static and dynamical switching can be described by an Arhennius law
in which the escape rateΓ01 = (ωatt/2π) exp(−∆U/kbT ) is written as the
product of an attempt frequencyωatt/2π and a Boltzman factor which contains
the potential barrier height∆U and the system temperatureT . For the case of a
DC current bias, the cosine potential, near the switching point, is approximated
as a cubic potential with height∆Ust = (4

√
2/3) ϕ0I0 (1 − iDC/I0)

3/2 where
iDC is the bias current. The attempt frequency is the plasma frequencyωP . In
the absence of fluctuations, the characteristic current at which switching oc-
curs isI0. For the AC driven junction, the dynamical switching from oscilla-
tion state 0 to 1 can be cast in a similar form using the model ofa particle
in a cubic metapotential [4]. In this case, the effective barrier height is, to
lowest order in1/(αQ), ∆Udyn = udyn(1 − (iRF /IB)2)3/2 with udyn =

64h̄/(18e
√

3) I0 α(1 − α)3. The attempt frequency in the metapotential is
given byωa = ωa0 (1 − (iRF /IB)2)1/2 with ωa0 = 4/(3

√
3 RC) (ωp − ω)2.

The bifucrcation currentIB where the 0 state ceases to exist is given byIB =
16/(3

√
3) α3/2(1 − α)3/2 I0.

3. Devices and Setup

Typical junction fabrication parameters limit the plasma frequency to the 20
- 100 GHz range where techniques for addressing junction dynamics are in-
convenient. We have chosen to shunt the junction by a capacitive admittance
to lower the plasma frequency by more than an order of magnitude and attain
a frequency in 1-2 GHz range (microwave L-band). In this frequency range, a
simple on-chip electrodynamic environment with minimum parasitic elements
can be implemented, and the hardware for precise signal generation and pro-
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cessing is readily available. In the first step of sample fabrication, a metallic
underlayer – either a normal metal (Au, Cu) or a superconductor (Nb) – was
deposited on a silicon substrate to form one plate of the shunting capacitor,
followed by the deposition of an insulatingSi3N4 layer. Using e-beam lithog-
raphy and double-angle shadow mask evaporation, we subsequently fabricated
the top capacitor plates along with a micron sizedAl/Al2O3/Al tunnel junc-
tion. The critical current of the junction was in the rangeI0 = 1 − 2µA. By
varying both the dielectric layer thickness and the pad area, the capacitanceC
was varied between16 and40 pF.

The junction + capacitor chip is placed on a microwave circuit-board and is
wire-bonded to the end of a coplanar stripline which is soldered to a coaxial
launcher affixed to the side wall of the copper sample box. We anchor the RF
leak-tight sample box to the cold stage of a3He refrigerator with base temper-
atureT = 280mK. The measurement setup is schematically shown in Fig. 3.
Microwave excitation signals are coupled to the sample via the -13 dB side port
of a directional coupler. The reflected microwave signal passes through the di-
rect port of the coupler, and is amplified first using a cryogenic 1.20−1.85GHz
HEMT amplifier with noise temperatureTN = 4K. A DC bias current can be
applied to the junction by way of a bias tee. We use cryogenic attenuators, iso-
lators, and specially developed dissipative microstrip filters on the microwave
lines in addition to copper-powder and other passive filters[6] on the DC lines
to shield the junction from spurious electromagnetic noise. In the first set of
experiments which probe the plasma resonance, a vector network analyzer was
used to both source a CW microwave signal and to analyze the reflected power
[14]. The dynamics of the transition between the two oscillation states was then
probed using microwave pulses [15], generated by the amplitude modulation
of a CW source with a phase-locked arbitrary waveform generator with 1 ns
resolution. For the pulsed experiments, the reflected signal was mixed down
to 100MHz and digitally demodulated using a2GS/s digitizer to extract the
signal phaseφ.

4. Results

We first probed the drive current dependence of the reflected signal phase
φ (iRF ) by applying a4µs long symmetric triangular shaped pulse with a peak
value0.185 I0. The demodulated reflected signal was divided into20 ns sec-
tions, each yielding one measurement ofφ for a corresponding value ofiRF .
The measurement was repeated6×105 times to obtain a distribution ofφ(iRF ).
In Fig. 4, the mode of the distribution is plotted as a function of iRF /I0.
For iRF /I0 < 0.125, the bifurcation amplifier is always in state 0,φ is con-
stant and assigned a value of0 deg. As the drive current is increased above
iRF /I0 = 0.125, thermal fluctuations are sufficiently large to cause transitions
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Figure 3. Schematic of the measurement setup. Thick lines correspondto 50Ω coaxial trans-
mission lines. The network analyzer is used for CW measurements. For probing the dynamics,
the sample is switched to the pulse generator and phase detector. A lumped element model
for the junction chip and measurement line is shown in the lower right. The two ideal current
sources actually represent external sources.

to the 1 state. In the region between the two dashed lines atiRF /I0 = 0.125
andiRF /I0 = 0.160, φ displays a bimodal distribution with peaks centered at
0 and74 deg with the latter corresponding to the amplifier in the 1 state.The
dotted line in Fig. 4 is the average reflected signal phase〈φ〉. WheniRF /I0 is
increased above0.160, the system is only found in state 1. In the decreasing
part of theiRF ramp, the system does not start to switch back to state 0 until
iRF /I0 = 0.065. The critical switching currentsIB for the0 → 1 transition
andIB̄ for the1 → 0 transition, calculated from numerical simulations to treat
the inductance of wire bonds, are denoted with ticks in Fig. 4, and are in good
agreement with experiment. The hysteresisIB̄ < IB is a consequence of the
asymmetry in the escape barrier height for the two states. Thus, the0 → 1
transition atiRF = IB is nearly irreversible, allowing the bifurcation amplifier
to latch and store its output during the integration time setby the sensitivity of
the follower amplifier.

To determine the sensitivity of the bifurcation amplifier, we have character-
ized in detail the switching in the vicinity of the0 → 1 transition. We excited
the system with two different readout pulse protocols. In the first protocol,
the drive current was ramped from 0 to its maximum value in40 ns and was
then held constant for40 ns before returning to 0. Only the final20 ns of the
constant drive period were used to determine the oscillation phase with the first
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20 ns allotted for settling of the phase. Histograms taken with a10MHz acqui-
sition rate are shown in Fig. 5. In the upper panel, the two peaks corresponding
to states 0 and 1 can easily be resolved with a small relative overlap of10−2.
The width of each peak is consistent with the noise temperature of our HEMT
amplifier. In this first method, the latching property of the system has not been
exploited. In our second protocol for the readout pulse, we again ramp for
40 ns and allow a settling time of20 ns, but we then reduce the drive current
by 20% and measure the reflected signal for300 ns. In that latter period, what-
ever state was reached at the end of the initial60 ns period is "latched" and
time is spent just increasing the signal/noise ratio of the reflected phase mea-
surement. As shown in the lower panel of Fig. 5, the two peaks are now fully
separated, with a relative overlap of6 × 10−5 allowing a determination of the
state 1 probability with an accuracy better than10−3. This second protocol
would be preferred only for very precise time-resolved measurements ofI0 or
for applications where a low-noise follower amplifier is impractical.

A third experiment was performed to study the state 1 switching probabil-
ity P01 (iRF ) for different values of the temperatureT andI0, the latter being
varied with a magnetic field applied parallel to the junctionplane. Using the

Figure 4. Hysteretic variation of the re-
flected signal phaseφ with drive current
iRF /I0. Symbols denote the mode ofφ,
with up and down triangles corresponding
to increasing and decreasingiRF = IB,
respectively. The dotted line is〈φ〉. The
calculated bifurcation points,IB̄ and IB,
are marked on the horizontal axis. The 0
and 1 phase states are reminiscent of the
superconducting and dissipative states of
the DC current biased junction.

Figure 5. Histograms of the reflected
signal phaseφ at iRF /I0 = 0.145. The
upper histogram contains1.6× 106 counts
with a measurement timeτm = 20 ns. The
lower panel, taken with the latching tech-
nique, has1.5 × 105 counts with a mea-
surement timeτm = 300 ns. Data here has
been taken under the same operating con-
ditions as in Fig 4. The dashed line repre-
sents the discrimination threshold between
the 0 and 1 state.
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first readout protocol and the discrimination threshold shown in Fig. 5, we
obtain the switching probability curves shown in Fig. 6. Defining the dis-
crimination powerd as the maximum difference between two switching prob-
ability curves which differ inI0 we find that atT = 280mK, d = 57% for
∆I0/I0 = 1% – the typical variation observed in a superconducting charge-
phase qubit [16]. The switching probability curves should shift according to
(∆IB/IB)/(∆I0/I0) = 3/(4α) − 1/2 + O(1/(αQ)2), which for our case
takes the value 5.6. In Fig. 6, the curves are shifted by6%, which agrees well
with this prediction. For the case of the DC current biased junction, similar
curves would shift only by1% since the switching current isI0 itself. Com-
parable discrimination power using DC switching has only been achieved in
these devices atT ≤ 60mK. As the temperature is increased, the switching
probability curves broaden due to increased thermal fluctuations and the dis-
criminating power decreases: atT = 480mK, d = 49%.

Finally, we determined the escape rateΓ01(iRF , I0, T ) as a function ofiRF

by measuring the time dependence of the switching probability, using a method
previously applied to the determination of the static switching rates to the volt-
age state [17]. After the initial ramp (40 ns) and settling period (20 ns), the
reflected signal phase was extracted every20 ns for a duration of1µs. By
repeating this measurement, we generated switching probability histograms
which we analyzed asP01 (t) = 1 − exp(−Γ01 · t). To obtain the escape
rate at different temperatures, two different techniques were used. In the first
method, we varied the temperature of the cryostat and used a magnetic field
to keep the critical current constant atI0 = 1.12µA. In the second method,
I0 was kept fixed at1.17µA, and a1 − 2GHz white noise source irradiating
the junction was used to increase the effective temperature. In Fig. 7 we show
the drive current dependence of the escape rate as(ln(2πωa/Γ01))

2/3 plotted
versusi2RF for two different sample temperatures. Data in this format should
fall on a straight line with a slopes (T ) proportional to(udyn/kBT )2/3. A
trace taken atT = 500mK is also shown in Fig 7.

In parallel with these dynamical switching measurements, we ran static
switching measurements to obtain an escape temperatureT esc

st . Due to in-
sufficient filtering in our RF amplifier line outside the measurement band,
T esc

st exceededT by 60mK. Using ucalc
dyn and s(T ) we can cast the results

of the dynamical switching measurements into a dynamical escape tempera-
tureT esc

dyn = ucalc
dyn/kB s (T )3/2. We plotT esc

dyn versusT esc
st in the inset of Fig.

7. The agreement is very good, and only deviations at the highest temperatures
are observed. Analyzing the dynamical switching data withT esc

st in place of
T , we extract a value ofudyn = 10.7K from the T = 280mK data with
I0 = 1.17µA while the calculated value keeping higher order terms in1/αQ
is ucalc

dyn = 11.0K.
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Figure 6. Switching probability curves
at T = 280 mK andT = 480 mK as a
function of the drive currentiRF . The dis-
crimination power d is the maximum dif-
ference between two curves at the same
temperature which differ by approximately
1% in I0.

Figure 7. Escape rate as a function
of drive power for two different operating
temperatures withI0 = 1.12 µA. The
inset shows the relationship between dy-
namic and static escape temperatures when
varying either the sample temperature or
the injected noise power.

5. Conclusion

With the JBA operating atT esc
st = 340mK, it is possible to resolve with a

signal/noise ratio of 1 a10 nA variation inI0 in a total time≤ 80 ns, corre-
sponding to a critical current sensitivity ofS

1/2

I0
= 3.3×10−6 A · Hz−1/2. This

value is in agreement with the prediction from the analytical theory S
1/2

I0
=

η(iRF /I0, α) (kBT/ϕ0) · τ
1/2

m , whereη ≈ 1.4 near the bifurcation point and
ϕ0 = h̄/2e. The advantage of the bifurcation amplifier over SQUIDs [18]re-
sides in its extremely low back-action. Since there is no on-chip dissipation,
the only source of back-action is the matched isolator load,which is efficiently
thermalized atT = 280mK. An important point is that in the JBA, only fluc-
tuations from the load that occur in a narrow band centered about the plasma
frequency contribute to the back-action, whereas in the SQUID noise from
many high frequency bands is also significant. Finally, the bifurcation am-
plifier does not suffer from quasiparticle generation associated with hysteretic
SQUIDS [2] and DC current-biased junctions [3] which switchinto the voltage
state. Long quasiparticle recombination times at low temperatures limit the ac-
quisition rate of these devices while the recombination process itself produces
excess noise for adjacent circuitry [19].

In conclusion, the JBA is competitive with the SQUID for applications
where low back-action is required. Its speed, suppression of on-chip dissi-
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pation, and latching make it ideal for the readout of superconducting qubits.
At temperatures such thatT esc

dyn ≤ 60mK, the discrimination power would be
greater than 95%, hence permitting stringent tests of Quantum Mechanics, like
the violation of Bell’s inequalities.
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7. Reprints of experimental and theoretical results on the 

Circuit QED architecture 

This Chapter contains reprints of published works. Be aware that in these articles 

the definition of 2 2CE e CΣ=  and g g gN C U e=  are different from those used in the 

body of this work. 

[WSB04] presents experimental results obtained using the circuit QED architecture, 

introduced in section 5.4. We have achieved with this circuit a regime, called the strong 

coupling regime, in which the coupling between the CPB qubit and the quantized 

electromagnetic field in the resonator happens with an energy exchange rate much larger 

than the decoherence rate generated by coupling to external degrees of freedom. This 

regime is not easily accessible in atomic physics. 

The properties of this coupled system are determined by measuring the transmission 

amplitude and phase of a microwave probe beam transmitted through the resonator versus 

probe frequency. 

Measurements of the phase of the transmitted probe signal versus the bias voltage and 

bias flux show the response periodicity, respectively 2e and Φo, and allow to estimate for 

our circuit EJ=8.0 GHz and Ec=20.8 GHz. 

After preparing both the resonator and the qubit in their ground states, the resonator 

transmission is measured with a large detuning ∆. The probe beam populates the high 

intrinsic Q resonator with about one photon and the resonance at νr=6.045 GHz has a 

broadening Qtot=7.3x103, which shows that the total quality factor of the resonator is 

limited by the coupling load. 

When the probe beam is in resonance with the qubit transition frequency, ∆=0, two 

clearly well resolved spectral lines have been observed separated by νRabi=11.6 MHz. 

This means that the coupling constant between qubit and resonator is 2g/2π=5.8 MHz, 

while the photon decay rate is κ/2π=0.8 MHz and the qubit depolarization rate is γ/2π=0.7 

MHz. Indeed, the system is in the strong coupling regime. 

The resonator transmission has been measured changing probe frequency, but keeping the 

beam in resonance with the qubit via flux bias changes, and voltage bias around the 
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“sweet” spot. The system spectroscopy obtained shows avoided crossings between the 

single photon resonator state and the qubit excited state. 

Detailed measurements of the a.c. Stark effect have been presented in [SWB05]. In this 

work, the application of a second spectroscopy tone to the resonator allows to map the 

transition angular frequency between the energy levels of the qubit, ω01, in function of 

the spectroscopy tone frequency, νs, and the gate bias voltage. The experiment was 

carried on a CPB with EJ=6.2 GHz and Ec=19.2 GHz immersed in a resonator with 

νr=6.045 GHz. 

Photon shot noise in the spectroscopy field induces qubit level fluctuations leading to 

dephasing, which represents the backaction of the measurement on the qubit. From the 

broadening of the phase response at resonance a T2≈200 ns has been measured for a qubit 

transition frequency ν01=6.15 GHz, which implies Q2=7.7x103. 

In [WSB05] time-domain control of the qubit state has been demonstrated. A series of 

experiments is performed in which the qubit state is manipulated by a spectroscopy tone 

in resonance with the qubit transition frequency, ν01=4.3 GHz, while the phase and the 

amplitude of the transmission through the cavity of a coherent microwave beam at the 

resonator resonant frequency is continuously monitored. 

In performing Rabi-like experiments, the phase of the transmitted beam is measured 

versus time for a fixed time length of the Rabi pulse with a contrast, ratio of measured 

value to maximum value, of about 85%. The extracted level population oscillations have 

shown a visibility, defined as the maximum observed qubit population difference of 

about 95%, approaching unity. have been observed with a depolarization time T1=7.3 µs, 

which implies Q1=2.0x105. 

For that set-up the fidelity of a single shot measurement of the qubit state integrated over 

the depolarization time is about 30% and is limited by the noise temperature of the low-

temperature amplifier and by the small signal power. 

In Ramsey fringe experiments at charge degeneracy, population oscillations have been 

observed at the detuning frequency ν01-νs=6 MHz, which decay with T2=0.5 µs, which 

implies Q2=1.4x104, which is similar to the best values obtained in the Quantronium 

architecture. 



 91

[FWS05] presents design considerations for devices for circuit QED and details of the 

fabrication procedure for both the resonators and the CPB, together with a preliminary 

RF-characterization of the superconducting transmission line resonators versus 

temperature and magnetic field. A more complete treatment of the fabrication of this 

circuit is in Chapter 8. 

 



 92

 

 



coupled system by applying pulses of varying length. In Fig. 3b, Rabi
oscillations are shown for the j00. to j11. transition. When the
microwave frequency is detuned from resonance, the Rabi oscil-
lations are accelerated (bottom four curves, to be compared with
the fifth curve). After a p pulse which prepares the system in the
j10. state, these oscillations are suppressed (second curve in
Fig. 3b). After a 2p pulse they are revived (first curve in Fig. 3b).
In the case of Fig. 3c, the qubit is first excited onto the j10. state by
a p pulse, and a second pulse in resonance with the red sideband
transition drives the system between the j10. and j01. states. The
Rabi frequency depends linearly on the microwave amplitude, with
a smaller slope compared to the bare qubit driving. During the time
evolution of the coupled Rabi oscillations shown in Fig. 3b and c,
the qubit and the oscillator experience a time-dependent entangle-
ment, although the present data do not permit us to quantify it to a
sufficient degree of confidence.

The sideband Rabi oscillations of Fig. 3 show a short coherence
time (,3 ns), which we attribute mostly to the oscillator relaxation.
To determine its relaxation time, we performed the following
experiment. First, we excite the oscillator with a resonant low
power microwave pulse. After a variable delay Dt, during which
the oscillator relaxes towards n ¼ 0, we start recording Rabi
oscillations on the red sideband transition (see Fig. 4a for
Dt ¼ 1 ns). The decay of the oscillation amplitude as a function of
Dt corresponds to an oscillator relaxation time of ,6 ns (Fig. 4b),
consistent with a quality factor of 100–150 estimated from the width
of the u p resonance. The exponential fit (continuous line in Fig. 4b)
shows an offset of ,4% due to thermal effects. To estimate the
higher bound of the sample temperature, we consider that
the visibility of the oscillations presented here (Figs 2–4) is set by
the detection efficiency and not by the state preparation. When
related to the maximum signal of the qubit Rabi oscillations of
,40%, the 4%-offset corresponds to ,10% thermal occupation of
oscillator excited states (an effective temperature of ,60 mK).
Consistently, we also observe low-amplitude red sideband oscil-
lations without preliminary microwave excitation of the oscillator.

We have demonstrated coherent dynamics of a coupled super-
conducting two-level plus harmonic oscillator system, implying
that the two subsystems are entangled. Increasing the coupling
strength and the oscillator relaxation time should allow us to
quantify the entanglement, as well as to study non-classical states
of the oscillator. Our results provide strong indications that solid-
state quantum devices could in future be used as elements for the
manipulation of quantum information. A
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The interaction of matter and light is one of the fundamental
processes occurring in nature, and its most elementary form is
realized when a single atom interacts with a single photon.
Reaching this regime has been a major focus of research in
atomic physics and quantum optics1 for several decades and
has generated the field of cavity quantum electrodynamics2,3.
Here we perform an experiment inwhich a superconducting two-
level system, playing the role of an artificial atom, is coupled to an
on-chip cavity consisting of a superconducting transmission line
resonator. We show that the strong coupling regime can be
attained in a solid-state system, and we experimentally observe
the coherent interaction of a superconducting two-level system
with a single microwave photon. The concept of circuit quantum
electrodynamics opens many new possibilities for studying the
strong interaction of light and matter. This system can also be
exploited for quantum information processing and quantum
communication and may lead to new approaches for single
photon generation and detection.

In atomic cavity quantum electrodynamics (QED), an isolated
atom with electric dipole moment d interacts with the vacuum state
electric field E 0 of a cavity. The quantum nature of the field gives rise
to coherent oscillations of a single excitation between the atom and
the cavity at the vacuum Rabi frequency nRabi ¼ 2dE0/h, which can
be observed when nRabi exceeds the rates of relaxation and deco-
herence of both the atom and the field. This effect has been observed
in the time domain using Rydberg atoms in three-dimensional
microwave cavities3 and spectroscopically using alkali atoms in very
small optical cavities with large vacuum fields4.

Coherent quantum effects have been recently observed in several
superconducting circuits5–10, making these systems well suited for
use as quantum bits (qubits) for quantum information processing.

letters to nature

NATURE | VOL 431 | 9 SEPTEMBER 2004 | www.nature.com/nature162 ©  2004 Nature  Publishing Group



Of the various superconducting qubits, the Cooper pair box11 is
especially well suited for cavity QED because of its large effective
electric dipole moment d, which can be 104 times larger than in an
alkali atom and ten times larger than a typical Rydberg atom12. As
suggested in our earlier theoretical study12, the simultaneous com-
bination of this large dipole moment and the large vacuum field
strength—due to the small size of the quasi one-dimensional
transmission line cavity—in our implementation is ideal for reach-
ing the strong coupling limit of cavity QED in a circuit. Other solid-
state analogues of strong coupling cavity QED have been envisaged
in superconducting13–20, semiconducting21,22, and even micro-
mechanical systems23. First steps towards realizing such a regime
have been made for semiconductors21,24,25. To our knowledge, our
experiments constitute the first experimental observation of strong
coupling cavity QED with a single artificial atom and a single
photon in a solid-state system.

The on-chip cavity is made by patterning a thin superconducting
film deposited on a silicon chip. The quasi-one-dimensional co-
planar waveguide resonator26 consists of a narrow centre conductor
of length l and two nearby lateral ground planes, see Fig. 1a. Close to
its full-wave (l ¼ l) resonance frequency, qr ¼ 2pnr ¼ 1=

ffiffiffiffiffiffi
LC

p
¼

2p6:044 GHz; where n r is the bare resonance frequency, the reso-
nator can be modelled as a parallel combination of a capacitor C and
an inductor L (the internal losses are negligible). This simple
resonant circuit behaves as a harmonic oscillator described by the
hamiltonian H r ¼ "q r(a †a þ 1/2), where ka†al¼ kn̂l¼ n is the
average photon number. At our operating temperature of
T , 100 mK, much less than "q r/k B < 300 mK, the resonator is
nearly in its ground state, with a thermal occupancy n , 0.06. The
vacuum fluctuations of the resonator give rise to a root mean square
(r.m.s.) voltage V rms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"qr=2C

p
< 1mV on its centre conductor,

and an electric field between the centre conductor and the ground
plane that is a remarkable E rms < 0.2 V m21, some hundred times
larger than in the three-dimensional cavities used in atomic micro-
wave cavity QED3. The large vacuum field strength results from the
extremely small effective mode volume (,1026 cubic wavelengths)
of the resonator12.

The resonator is coupled via two coupling capacitors C in/out, one
at each end (see Fig. 1b), to the input and output transmission lines
that allow its microwave transmission to be probed (see Fig. 2a–c).
The predominant source of dissipation is the loss of photons from
the resonator through these ports at a rate k ¼ q r/Q, where Q is the
(loaded) quality factor of the resonator. The internal (uncoupled)
loss of the resonator is negligible (Q int < 106). Thus, the average
photon lifetime in the resonator Tr ¼ 1/k exceeds 100 ns, even for
our initial choice of a moderate quality factor Q < 104.

The Cooper pair box (CPB) consists of a several micrometre long
and submicrometre wide superconducting island which is coupled
via two submicrometre size Josephson tunnel junctions to a much
larger superconducting reservoir, and is fabricated in the gap
between the centre conductor and the ground plane of the resonator,
at an antinode of the field (see Fig. 1c). The CPB is a two-state
system described by the hamiltonian13 Ha ¼2ðEeljx þ EJjzÞ=2,
where Eel ¼ 4ECð12 ngÞ is the electrostatic energy and EJ ¼
EJ;maxcosðpFbÞ is the Josephson energy. The overall energy scales
of these terms, the charging energy E C and the Josephson energy
E J,max, can be readily engineered during the fabrication by the
choice of the total box capacitance and resistance respectively, and
then further tuned in situ by electrical means. A gate voltage Vg

applied to the input port (see Fig. 2a), induces a gate charge ng ¼
VgCg*=e that controls E el, where Cg* is the effective capacitance
between the input port of the resonator and the island of the CPB. A
flux bias Fb ¼ F/F0, applied with an external coil to the loop of the
box, controls E J. Denoting the ground state of the box as j # l and the
first excited state as j " l (see Fig. 2d), we have a two-level system
whose energy separation Ea ¼ "q a can be widely varied as shown in
Fig. 3c. Coherence of the CPB is limited by relaxation from the
excited state at a rate g1, and by fluctuations of the level separation
giving rise to dephasing at a rate gJ, for a total decoherence rate
g ¼ g1/2 þ gJ (ref. 13).

The Cooper pair box couples to photons stored in the resonator
by an electric dipole interaction, via the coupling capacitance Cg.
The vacuum voltage fluctuations Vrms on the centre conductor of
the resonator change the energy of a Cooper pair on the box island
by an amount "g ¼ dE 0 ¼ eVrmsCg/CS. We have shown12 that this
coupled system is described by the Jaynes–Cummings hamiltonian
H JC ¼ H r þ H a þ "g(a †j2 þ ajþ), where jþ (j2) creates
(annihilates) an excitation in the CPB. It describes the coherent
exchange of energy between a quantized electromagnetic field and a
quantum two-level system at a rate g/2p, which is observable if g is
much larger than the decoherence rates g and k. This strong
coupling limit3 g . [g, k] is achieved in our experiments. When
the detuning D ¼ q a 2 q r is equal to zero, the eigenstates of the
coupled system are symmetric and antisymmetric superpositions
of a single photon and an excitation in the CPB j^ l¼ ðj0; " l^
j1; # lÞ=

ffiffiffi
2

p
with energies E^ ¼ "(q r ^ g). Although the cavity

and the CPB are entangled in the eigenstates j ^ l, their
entangled character is not addressed in our current cavity QED
experiment which spectroscopically probes the energies E^ of the
coherently coupled system.

The strong coupling between the field in the resonator and the
CPB can be used to perform a quantum nondemolition (QND)
measurement of the state of the CPB in the non-resonant (dis-
persive) limit jDj.. g: Diagonalization of the coupled quantum
system leads to the effective hamiltonian12:

H < " qr þ
g2

D
jz

� �
a†aþ

1

2
" qa þ

g2

D

� �
jz

Figure 1 Integrated circuit for cavity QED. a, The superconducting niobium coplanar

waveguide resonator is fabricated on an oxidized 10 £ 3mm2 silicon chip using optical

lithography. The width of the centre conductor is 10 mm separated from the lateral ground

planes extending to the edges of the chip by a gap of width 5 mm resulting in a wave

impedance of the structure of Z ¼ 50Q being optimally matched to conventional

microwave components. The length of the meandering resonator is l ¼ 24mm. It is

coupled by a capacitor at each end of the resonator (see b) to an input and output feed

line, fanning out to the edge of the chip and keeping the impedance constant. b, The

capacitive coupling to the input and output lines and hence the coupled quality factor Q is

controlled by adjusting the length and separation of the finger capacitors formed in the

centre conductor. c, False colour electron micrograph of a Cooper pair box (blue)

fabricated onto the silicon substrate (green) into the gap between the centre conductor

(top) and the ground plane (bottom) of a resonator (beige) using electron beam lithography

and double angle evaporation of aluminium. The Josephson tunnel junctions are formed

at the overlap between the long thin island parallel to the centre conductor and the fingers

extending from the much larger reservoir coupled to the ground plane.
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The transition frequency q r ^ g2/D is now conditioned by the
qubit state j z ¼ ^1. Thus, by measuring the transition frequency of
the resonator, the qubit state can be determined. Similarly, the level
separation in the qubit "ðqa þ 2a†a g2=Dþ g2=DÞ depends on the
number of photons in the resonator. The term 2a†a g2/D, linear in
n̂, is the alternating current (a.c.) Stark shift and g2/D is the Lamb
shift. All terms in this hamiltonian, with the exception of the Lamb
shift, are clearly identified in the results of our circuit QED
experiments.

The properties of this coupled system are determined by probing
the resonator spectroscopically12. The amplitude T and phase f of a
microwave probe beam of power P RF transmitted through the
resonator are measured versus probe frequency qRF. A simplified
schematic of the microwave circuit is shown in Fig. 2a. In this set-
up, the CPB acts as an effective capacitance that is dependent on its
j z eigenstate, the coupling strength g, and detuning D. This variable
capacitance changes the resonator frequency and its transmission
spectrum. The transmission T2 and phase f of the resonator for a
far-detuned qubit ðg2=kD,, 1Þ; that is, when the qubit is effectively
decoupled from the resonator, are shown in Fig. 2b and c. In this
case, the transmission is a lorentzian of width dn r ¼ n r/Q ¼ k/2p at
n r, and the phase f displays a corresponding step of p. The expected
transmission at smaller detuning corresponding to a frequency shift
^g 2/D ¼ k are shown by dashed lines in Fig. 2b and c. Such small
shifts in the resonator frequency are sensitively measured as a phase
shift f ¼ ^tan21(2g2/kD) of the transmitted microwave at a fixed

probe frequency qRF using beam powers P RF which controllably
populate the resonator with average photon numbers from n < 103

down to the sub-photon level n ,, 1: We note that both the
resonator and qubit can be controlled and measured using capaci-
tive and inductive coupling only, that is, without attaching any d.c.
connections to either system.

Measurements of the phase f versus ng are shown in Fig. 3b, and
two different cases can be identified for a Cooper pair box with
Josephson energy E J,max/h . n r. In the first case, for bias fluxes such
that E J(Fb)/h . n r, the qubit does not come into resonance with
the resonator for any value of gate charge ng (see Fig. 3a). As a result,
the measured phase shift f is maximum for the smallest detuning D
at ng ¼ 1 and gets smaller asD increases (see Fig. 3b). Moreover,f is
periodic in n g with a period of 2e, as expected. In the second case, for
values of Fb resulting in E J(Fb)/h , n r, the qubit goes through
resonance with the resonator at two values of n g. Thus, the phase
shift f is largest as the qubit approaches resonance (D ! 0) at the
points indicated by red arrows (see Fig. 3a, b). As the qubit goes
through resonance, the phase shift f changes sign when D changes
sign. This behaviour is in perfect agreement with predictions based
on the analysis of the circuit QED hamiltonian in the dispersive
regime.

In Fig. 3c the qubit level separation n a ¼ Ea/h is plotted versus the
bias parameters n g and Fb. The qubit is in resonance with the
resonator at the points [n g, Fb], indicated by the red curve in one
quadrant of the plot. The measured phase shift f is plotted versus

Figure 2 Measurement scheme, resonator and Cooper pair box. a, The resonator with

effective inductance L and capacitance C coupled through the capacitor Cg to the Cooper

pair box with junction capacitance CJ and Josephson energy EJ forms the circuit QED

system which is coupled through C in/out to the input/output ports. The value of EJ is

controllable by the magnetic fluxF. The input microwave at frequencyqRF is added to the

gate voltage Vg using a bias-tee. After the transmitted signal at qRF is amplified using a

cryogenic high electron mobility (HEMT) amplifier and mixed with the local oscillator at

qLO, its amplitude and phase are determined. The circulator and the attenuator prevent

leakage of thermal radiation into the resonator. The temperature of individual components

is indicated. b, Measured transmission power spectrum of the resonator (blue dots), the

full linewidth dnr at half-maximum and the centre frequency nr are indicated. The solid

red line is a fit to a lorentzian with Q ¼ nr /dnr < 104. c, Measured transmission phasef

(blue dots) with fit (red line). In panels b and c the dashed lines are theory curves shifted by

^dnr with respect to the data. d, Energy level diagram of a Cooper pair box. The

electrostatic energy E C(n i 2 n g)
2, with charging energy E C ¼ e 2/2C S, is indicated for

n i ¼ 0 (solid black line),22 (dotted line) andþ2 (dashed line) excess electrons forming

Cooper pairs on the island. C S is the total capacitance of the island given by the sum of

the capacitances CJ of the two tunnel junctions, the coupling capacitance Cg to the centre

conductor of the resonator and any stray capacitances. In the absence of Josephson

tunnelling the states with n i and n i þ 2 electrons on the island are degenerate at

n g ¼ 1. The Josephson coupling mediated by the weak link formed by the tunnel

junctions between the superconducting island and the reservoir lifts this degeneracy and

opens up a gap proportional to the Josephson energy EJ ¼ EJ,max cos(pFb ), where

EJ,max ¼ hD Al/8e
2RJ, with the superconducting gap of aluminium DAl and the tunnel

junction resistance RJ. A ground-state band j # l and an excited-state band j " l are
formed with a gate charge and flux-bias-dependent energy level separation of Ea.
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both n g and Fb in Fig. 3d. We observe the expected periodicity
in flux bias Fb with one flux quantum F0. The set of parameters
[ng, Fb] for which the resonance condition is met is marked by a
sudden sign change in f, which allows a determination of the
Josephson energy E J,max ¼ 8.0 (^0.1) GHz and the charging energy
E C ¼ 5.2 (^0.1) GHz.

These data clearly demonstrate that the properties of the qubit
can be determined in a transmission measurement of the resonator
and that full in situ control over the qubit parameters is achieved.
We note that in the dispersive regime this new read-out scheme for
the Cooper pair box is most sensitive at charge degeneracy (ng ¼ 1),
where the qubit is to first order decoupled from 1/f fluctuations in
its charge environment, which minimizes dephasing6. This property
is advantageous for quantum control of the qubit at n g ¼ 1, a point
where traditional electrometry, using a single electron transistor
(SET) for example27, is unable to distinguish the qubit states. We
note that this dispersive QND measurement of the qubit state12 is
the complement of the atomic microwave cavity QED measurement
in which the state of the cavity is inferred non-destructively from the
phase shift in the state of a beam of atoms sent through the cavity3,28.

Making use of the full control over the qubit hamiltonian, we
then tune the flux bias Fb so that the qubit is at n g ¼ 1 and in
resonance with the resonator. Initially, the resonator and the qubit
are cooled into their combined ground state j0, # l; see inset in

Fig. 4b. Owing to the coupling, the first excited states become a
doublet j ^ l. Similarly to ref. 4, we probe the energy splitting of this
doublet spectroscopically using a weak probe beam so that n ,, 1:
The intra-resonator photon number, n, is calibrated by measuring
the a.c.-Stark shift of the qubit in the dispersive case. The resonator
transmission T 2 is first measured for large detuning D with a probe
beam populating the resonator with a maximum of n < 1 at
resonance; see Fig. 4a. From the lorentzian line the photon decay
rate of the resonator is determined as k/2p ¼ 0.8 MHz. The probe
beam power is subsequently reduced by 5 dB and the transmission
spectrum T 2 is measured in resonance (D ¼ 0); see Fig. 4b. We
clearly observe two well-resolved spectral lines separated by the
vacuum Rabi frequency nRabi < 11.6 MHz. The individual lines
have a width determined by the average of the photon decay rate k
and the qubit decoherence rate g. The data are in excellent agree-
ment with the transmission spectrum numerically calculated using
the given value k/2p ¼ 0.8 MHz and the single adjustable parameter
g/2p ¼ 0.7 MHz.

The transmission spectrum shown in Fig. 4b is highly sensitive to
the photon number in the cavity. The measured transmission
spectrum is consistent with the expected thermal photon number
of n & 0:06 (T , 100 mK); see red curve in Fig. 4b. Owing to the
anharmonicity of the coupled atom-cavity system in the resonant
case, an increased thermal photon number would reduce trans-

Figure 3 Strong coupling circuit QED in the dispersive regime. a, Calculated level

separation na ¼ qa /2p ¼ Ea /h between ground j # l and excited state j " l of qubit for
two values of flux biasF b ¼ 0.8 (orange line) andF b ¼ 0.35 (green line). The resonator

frequency nr ¼ qr /2p is shown by a blue line. Resonance occurs at na ¼ nr
symmetrically around degeneracy n g ¼ ^1; also see red arrows. The detuning

D/2p ¼ d ¼ na 2 nr is indicated. b, Measured phase shift f of the transmitted

microwave for values of F b in a. Green curve is offset by 225 deg for visibility.

c, Calculated qubit level separation na versus bias parameters n g and Fb . The resonator

frequency nr is indicated by the blue plane. At the intersection, also indicated by the red

curve in the lower right-hand quadrant, resonance between the qubit and the resonator

occurs (d ¼ 0). For qubit states below the resonator plane the detuning is d , 0, above

d . 0. d, Density plot of measured phase shift f versus n g and Fb . Light colours

indicate positive f (d . 0), dark colours negative f (d , 0). The red line is a fit of the

data to the resonance condition na ¼ n r. In c and d, the line cuts presented in a and b are

indicated by the orange and the green line, respectively. The microwave probe power PRF
used to acquire the data is adjusted such that the maximum intra-resonator photon

number n at nr is about ten for g
2=kD,, 1: The calibration of the photon number has

been performed in situ by measuring the a.c.-Stark shift of the qubit levels.
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mission and give rise to additional peaks in the spectrum owing to
transitions between higher excited doublets30. The transmission
spectrum calculated for a thermal photon number of n ¼ 0.5 (see
green curve in Fig. 4b) is clearly incompatible with our experimental
data, indicating that the coupled system has in fact cooled to near its
ground state, and that we measure the coupling of a single qubit to a
single photon. The nonlinearity of the cavity QED system is also
observed at higher probe beam powers, as transitions are driven
between states higher up the dressed state ladders (not shown).

We also observe the anti-crossing between the single photon
resonator state and the first excited qubit state by tuning the qubit
into and out of resonance with a gate charge near ng ¼ 1 and
measuring the transmission spectrum (see Fig. 4c). The vacuum
Rabi peaks evolve from a state with equal weight in the photon and
qubit at ng ¼ 1 (as shown in Fig. 4b) to predominantly photon
states for ng .. 1 or ng ,, 1: The observed peak positions agree well
with calculations considering the qubit with level separation na, a
single photon in the resonator with frequency n r and a coupling
strength of g/2p; see solid lines in Fig. 4c. For a different value of flux
bias Fb such that E a/h , n r at n g ¼ 1, two anti-crossings are
observed (see Fig. 4d) again in agreement with theory.

The observation of the vacuum Rabi mode splitting and the
corresponding avoided crossings demonstrates that the strong
coupling limit of cavity QED has been achieved, and that coherent
superpositions of a single qubit and a single photon can be
generated on a superconducting chip. This opens up many new
possibilities for quantum optical experiments with circuits. Possible
applications include using the cavity as a quantum bus to couple
widely separated qubits in a quantum computer, or as a quantum
memory to store quantum information, or even as a generator
and detector of single microwave photons for quantum
communication. A
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Entanglement is one of the key features of quantum information
and communications technology. The method that has been used
most frequently to generate highly entangled pairs of photons1,2

is parametric down-conversion. Short-wavelength entangled
photons are desirable for generating further entanglement
between three or four photons, but it is difficult to use parametric
down-conversion to generate suitably energetic entangled pho-
ton pairs. One method that is expected to be applicable for
the generation of such photons3 is resonant hyper-parametric
scattering (RHPS): a pair of entangled photons is generated in a
semiconductor via an electronically resonant third-order non-
linear optical process. Semiconductor-based sources of entangled
photons would also be advantageous for practical quantum
technologies, but attempts to generate entangled photons in
semiconductors have not yet been successful4,5. Here we report
experimental evidence for the generation of ultraviolet entangled
photon pairs by means of biexciton resonant RHPS in a single
crystal of the semiconductor CuCl. We anticipate that our results
will open the way to the generation of entangled photons by
current injection, analogous to current-driven single photon
sources6,7.

The material we used in this study was copper chloride (CuCl)
single crystal. Because CuCl has a large bandgap (,3.4 eV), it is
suitable for generating photon pairs in the short wavelength region
near ultraviolet. Furthermore, the material has large binding ener-
gies for the exciton (,200 meV) and biexciton (,30 meV). These
characteristics have made CuCl one of the most thoroughly inves-
tigated materials on the physics of excitons and biexcitons (ref. 8
and references therein). In particular, the ‘giant oscillator strength’
in the two-photon excitation of the biexciton results in a large
increase in RHPS efficiency, which is advantageous for our experi-
ment. In fact the RHPS in CuCl has been observed since the 1970s
(refs 8, 9 and ref. 10 and references therein). Figure 1a schematically
shows the RHPS process in resonance to the biexciton state. The
two pump (parent) photons (frequency q i) resonantly create the

biexciton, and are converted into the two scattered (daughter)
photons (qs , qs 0 ). The biexciton state (G1) created in this process
has zero angular momentum (J ¼ 0), so we expected the polariza-
tions of the daughter photons to be entangled so that their total
angular momentum is also zero. With this expectation in mind, we
note that polarization correlation between two classical pump
beams has been known since the early 1980s (ref. 11). In practice,
instead of the oversimplified picture in Fig. 1a, we must consider the
exciton-polariton picture; the RHPS obeys the phase-matching
condition that takes into account the polariton dispersion relation8.
The RHPS in this case is also called two-photon resonant polariton
scattering or spontaneous hyper-Raman scattering. In this process,
shown in Fig. 1b, the biexciton is created from a pair of parent
photons (polaritons, more accurately). The sum of the parent
photons’ energies matches the biexciton energy. The biexciton
progressively coherently decays into two polaritons, the sum of
whose photon energies, as well as the sum of momenta, is conserved
as that of the biexciton. Although the RHPS in CuCl has been
known for decades, the possibility of generating entangled photons
by this process was theoretically pointed out only lately12. In
addition, a large parametric gain via the biexcitonic resonance in
CuCl was reported recently13. Similar stimulated parametric scatter-
ing of polaritons has also been observed in semiconductor micro-
cavities, even at high temperatures14.

In the present experiment, we used a vapour-phase-grown thin
single crystal of CuCl. Figure 2 presents the schematic drawing of
our experimental set-up and Fig. 3 shows the spectrum of light
emitted from the sample. The large peak at the downward arrow in
Fig. 3 is the Rayleigh scattered light of the pump beam that was
tuned to the two-photon excitation resonance of the biexciton. The
two peaks indicated by LEP and HEP (lower and higher energy
polaritons) on either side of the pump beam originate from the
RHPS. The RHPS is very efficient (a few orders of magnitude higher
than that of typical parametric down-conversion): We got of the
order of 1010 photons s21 sr21 by using pump light of ,2 mW. A
pair of photons, one from LEP and the other from HEP, is emitted
into different directions according to the phase-matching con-
dition, so we placed two optical fibres at appropriate positions
and led each photon within the pair into two independent mono-
chromators followed by two photomultipliers (PMTs). A time-
interval analyser recorded the time interval (t) between the detected

Figure 1 Schematic diagram of the resonant hyper-parametric scattering (RHPS) via

biexciton. a, Two pump (parent) photons of frequency qi are converted to the two

scattered (daughter) photons (qs, qs
0 ). b, The polariton dispersion drawn in two

dimensions of momentum space. The biexciton decays into two polaritons that satisfy the

phase-matching condition so that both energy and momentum are conserved. The red

curve on the polariton-dispersion surface indicates the states on which the phase-

matching condition can be satisfied.
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ac Stark Shift and Dephasing of a Superconducting Qubit Strongly Coupled to a Cavity Field
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We have performed spectroscopy of a superconducting charge qubit coupled nonresonantly to a single
mode of an on-chip resonator. The strong coupling induces a large ac Stark shift in the energy levels of
both the qubit and the resonator. The dispersive shift of the resonator frequency is used to nondestructively
determine the qubit state. Photon shot noise in the measurement field induces qubit level fluctuations
leading to dephasing which is characteristic for the measurement backaction. A crossover in line shape
with measurement power is observed and theoretically explained. For weak measurement a long intrinsic
dephasing time of T2 > 200 ns of the qubit is found.

DOI: 10.1103/PhysRevLett.94.123602 PACS numbers: 42.50.Pq, 32.60.+i, 42.50.Lc, 85.35.Gv

The investigation of strong coupling between a single
quantum two-level system and a single photon, as first
realized in atomic cavity quantum electrodynamics
(CQED) [1], is not only at the forefront of research in
quantum optics and atomic physics [2] but also has great
prospects in the realm of quantum information processing
[3] where realizing entanglement between qubits and pho-
tons is essential for quantum communication. Recently, it
has been proposed [4] and demonstrated for the first time in
a solid state system that strong coupling CQED [5,6] can
be realized in superconducting quantum circuits [7].
Following these results, strong coupling has also been
achieved in a second solid state system, namely, semi-
conducting quantum dots embedded in microcavities
[8,9]. In this Letter we demonstrate the use of nonresonant
(dispersive) strong coupling between a Cooper pair box
(CPB) [10] and a coherent microwave field in a high
quality transmission line resonator to measure the quantum
mechanical state of the Cooper pair box in a quantum
nondemolition (QND) scheme [4,11,12]. The interaction
between the Cooper pair box and the measurement field
containing n photons on average gives rise to a large ac
Stark shift of the qubit energy levels, analogous to the one
observed in CQED [13], demonstrated here for the first
time in superconducting qubits. As a consequence of the
strong coupling, quantum fluctuations in n induce a broad-
ening of the transition linewidth, which represents the
backaction of the measurement on the qubit.

In our circuit QED architecture [4] [see Fig. 1(a)] a split
Cooper pair box [10], modeled by the two-level
Hamiltonian Ha � �1=2�Eel�x � EJ�z� [14], is coupled
capacitively to the electromagnetic field of a full wave (l �
�) transmission line resonator, described by a harmonic
oscillator Hamiltonian Hr � 
h!r�a

ya� 1=2�. In the
Cooper pair box, the energy difference Ea � 
h!a �
�E2el � E2J �

1=2 between the ground state j#i and the first
excited state j"i [see Fig. 1(b)], is determined by its electro-
static energy Eel � 4EC�1� ng� and its Josephson cou-
pling energy EJ � EJ;max cos���b�. Here, EC �
e2=2C� � 5 GHz is the charging energy given by the total

box capacitance C�, ng � C?
gVg=e is the gate charge con-

trolled by the gate voltage Vg applied through a gate with
effective capacitance C?

g , and EJ;max � 8 GHz is the maxi-
mum Josephson coupling energy of the two junctions
which is modulated by applying a flux bias �b � �=�0

to the loop of the split box [see Fig. 1(a)].�0 � 2e=h is the
magnetic flux quantum. Near its resonance frequency
!r � 1=

�������
LC

p
� 2� 6 GHz, the resonator is accurately

modeled as a harmonic oscillator with lumped inductance
L and capacitance C.

In the presence of strong mutual coupling between the
qubit and the resonator [5], their dressed excitation ener-
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FIG. 1 (color online). (a) Simplified circuit diagram of mea-
surement setup. The phase � and amplitude T of a microwave at
!rf transmitted through the resonator, amplified, and mixed
down to an intermediate frequency !IF � !rf �!LO using a
local oscillator at !LO is measured. An additional spectroscopy
microwave at !s is applied to the input port of the resonator.
(b) Ground j #i and excited j "i state energy levels of CPB vs gate
charge ng. (c) Calculated phase shift � in ground and excited
states vs ng for !a;r=2� � 100 MHz.
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gies ~!a and ~!r, are modified from their bare values !a and
!r. For large detuning !a;r � !a �!r the dressed energy
levels are determined by the Hamiltonian [4]

H � 
h
�
!r �

g2

!a;r
�z

�
aya�

1

2

h
�
!a �

g2

!a;r

�
�z; (1)

where g=2� � 5:8 MHz is the coupling strength between
a single photon and the qubit [5]. In this nonresonant case,
the dressed resonator frequency ~!r � !r 
 g2=!a;r de-
pends on the qubit state �z � 
1 and the detuning !a;r.
The qubit state can thus be inferred from the phase shift �
that a probe microwave transmitted through the resonator
at frequency !rf experiences because of the interaction
with the qubit [4,5]. In Fig. 1(c), the expected phase shift
� � 
tan�1�2g2=�!a;r�, where � � !r=Q is the decay
rate of photons from the resonator with quality factor Q �
104, is plotted versus gate charge ng. � is maximum at
ng � 1 where the detuning !a;r is smallest and falls off as
the detuning is increased with increasing ng. Moreover, �
has opposite signs in the ground j#i and excited j"i states of
the CPB.

Qubit state transitions can be driven by applying an
additional microwave of frequency !s, detuning !s;a �
!s � ~!a, and power Ps to the input port of the resonator
[see Fig. 1(a)]. On resonance (!s;a � 0) and for a continu-
ous (cw) large amplitude spectroscopy drive, the qubit
transition saturates and the populations in the excited and
the ground states approach 1=2. In this case, the measured
phase shift of the probe beam at !rf is expected to saturate
at � � 0 [see Fig. 1(c)]. By sweeping the spectroscopy
frequency !s and the gate charge ng and continuously
measuring �, we have mapped out the energy level sepa-

ration ~!a of the qubit (see Fig. 2). In the lower panel of
Fig. 2(a), the measured phase shift � is shown for the
nonresonant case, where !s < ~!a for all values of gate
charge ng. The measured phase shift is, as expected, a
continuous curve similar to the one shown in Fig. 1(c). In
the middle panel of Fig. 2(a), the spectroscopy microwave
at �s � !s=2� � 6:15 GHz is in resonance with the qubit
at ng � 1, populating the excited state and thus inducing a
dip in the measured phase shift � around ng � 1, as
expected. Note that, as predicted [4], our measurement
scheme has the advantage of being most sensitive at charge
degeneracy, a bias point where traditional electrometry,
using a radio frequency single electron transistor [15], for
example, is unable to distinguish the qubit states.

When �s is increased to higher values, resonance with
the qubit occurs for two values of ng situated symmetri-
cally around ng � 1, leading to two symmetric dips in �
[see upper panel of Fig. 2(a)]. From the �ng; �s� positions
of the spectroscopic lines in the measured phase �, the
Josephson energy EJ � 6:2 GHz and the charging energy
EC � 4:8 GHz are determined in a fit using the full qubit
Hamiltonian beyond the two-level approximation [14] [see
density plot of � vs ng and �s in Fig. 2(b)]. In this
experiment the flux bias �b has been chosen to result in
a minimum detuning of about !a;r=2� � 100 MHz at
ng � 1. The tunability of EJ (i.e., the detuning at charge
degeneracy) has been demonstrated previously [5]. It is
also worth noting that the spectroscopy frequency !s
typically remains strongly detuned (!s;r � !s �!r >
2�100 MHz) from the resonator, such that a large fraction
of the spectroscopy photons are reflected at the input port
and only a small number ns, determined by the Lorentzian
line shape of the resonator, populates the resonator.

Various other radio or microwave frequency qubit read-
out schemes have been developed recently [15–17]. In a
related experiment, the level separation of a split Cooper
pair box coupled inductively to a low frequency, moderate
Q tank circuit has been determined spectroscopically [18].

The width and the saturation level of the spectroscopic
lines discussed above depend sensitively on the power Ps
of the spectroscopic drive. Both quantities are related to the
excited state population

P" � 1� P# �
1

2

ns!2vacT1T2
1� �T2!s;a�

2 � ns!
2
vacT1T2

; (2)

found from the Bloch equations in steady state [19], where
!vac � 2g is the vacuum Rabi frequency, ns the average
number of spectroscopy photons in the resonator, T1 the
relaxation time, and T2 the dephasing time of the qubit. We
have extracted the transition linewidth and saturation from
spectroscopy frequency scans for different drive powers Ps
with the qubit biased at charge degeneracy (ng � 1). We
observe that the spectroscopic lines have a Lorentzian line
shape with width and depth in accordance with Eq. (2). The
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FIG. 2 (color online). (a) Probe microwave phase shift � vs
gate charge ng at spectroscopy frequency �s � 6:125 GHz
(lower panel), 6:15 GHz (middle panel), and 6:2 GHz (upper
panel). (b) Density plot of � vs ng and �s; white (black)
corresponds to large (small) phase shift. Horizontal arrows
indicate line cuts shown in (a); vertical arrows indicate line
cuts shown in Fig. 4(a). Measurements in (a) and (b) were
performed populating the resonator with n� 25 photons on
average.
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half width at half maximum (HWHM) of the line is found
to follow the expected power dependence 2� �HWHM �

1=T0
2 � �1=T22 � ns!2vacT1=T2�1=2 [19], where the input

microwave power Ps is proportional to ns!
2
vac [see

Fig. 3(a)]. In the low power limit (ns!2vac ! 0), the un-
broadened linewidth is found to be small,  �HWHM �
750 kHz, corresponding to a long dephasing time of T2 >
200 ns at ng � 1, where the qubit is only second order
sensitive to charge fluctuations limiting the dephasing time
in this sample. At a larger drive, the width increases
proportionally to the drive amplitude. The depth of the
spectroscopic dip at resonance (!s;a � 0) reflects the
probability of the qubit to be in the excited state P" and
depends on Ps as predicted by Eq. (2) [see Fig. 3(b)]. At
low drive the population increases linearly with Ps and
then approaches 0:5 for large Ps. From time resolved
measurements (data not shown), T1 is found to be on the
order of a few microseconds, a value which is much shorter
than that expected for radiative decay of the qubit in the
cavity [4], indicating the existence of other, possibly non-
radiative decay channels.

In the above we have demonstrated that the strong
coupling of the qubit to the radiation field modifies the
resonator transition frequency in a way that can be ex-
ploited to measure the qubit state. Correspondingly, the
resonator acts back onto the qubit through their mutual
strong coupling. Regrouping the terms of the Hamiltonian
in Eq. (1) one sees that the dressed qubit level separation is
given by ~!a � !a � 2 ng2=!a;r � g2=!a;r, where we note
that the resonator gives rise to an ac Stark shift of the qubit
levels of 
ng2=!a;r, proportional to the intraresonator
photon number n � hayai, as well as a Lamb shift

g2=2!a;r, due to the coupling to the vacuum fluctuations.
The ac Stark shift is measured spectroscopically at ng � 1
for fixed power Ps by varying the probe beam power Prf
which changes the average measurement photon number n
in the resonator (see Fig. 4). We observe that the qubit level

separation ~�a � ~!a=2� is linear in Prf [see Fig. 5(a)], i.e.,
that the ac Stark shift �ac � 2ng2=2�!a;r is linear in the
photon number n, as expected. In the limit of Prf ! 0 (n !
0), the bare qubit level separation !a � g2=!a;r � 2�
6:15 GHz is determined, where g2=!a;r is the small
Lamb shift which cannot be separated from !a in our
current experiments. Knowing the coupling constant g
from an independent measurement of the vacuum Rabi
mode splitting [5] and !a;r from spectroscopic measure-
ments in the n ! 0 limit, the dependence of the intra-
resonator photon number n on the input power Prf is
determined from the measured ac Stark shift �ac. We find
that an input microwave power of Prf � �29 dBm corre-
sponds to n � 1 which is consistent with an intended
attenuation of approximately 105 dB in the input coaxial
line. The ac Stark shift of the qubit at this particular
detuning is a remarkable 0:6 MHz per photon in the cavity
and is comparable to the linewidth. Using this method, the
intraresonator photon number was calibrated to a precision
of �
 1 dB for the vacuum Rabi mode splitting measure-
ments presented in Ref. [5].

Quantum fluctuations (photon shot noise)  n around the
average photon number n of the coherent field populating
the resonator give rise to random fluctuations in the qubit
transition frequency due to the ac Stark shift. This leads to
measurement-induced dephasing, and thus to a broadening
of the qubit linewidth (see Figs. 4 and 5). This is the
measurement backaction and can be understood quantita-
tively by considering the relative phase ’�t� �
2g2=!a;r

R
t
0 dt

0 n�t0� accumulated in time between the
ground and the excited states of the qubit. Following
Ref. [4], the measurement-induced phase decay of the
qubit is then characterized by
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hei’�t�i � exp
�
�
2g4

!2a;r

ZZ t

0
dt1dt2h n�t1� n�t2�i

�
; (3)

where the fluctuations  n are assumed to be Gaussian. In
the above expression, the photon correlation function
h n�t� n�0�i � n exp���jtj=2� of the coherent probe
beam in the resonator is governed by the cavity decay
rate � and physically represents the white photon shot
noise filtered by the cavity response. The spectroscopic
line shape S�!� is obtained from the Fourier transform of
hexp�i’�t��ie�t=T

0
2 , where 1=T0

2 takes into account dephas-
ing mechanisms independent of the measurement

S�!� �
1

�

X1

j�0

��4'�j

j!
1=T0

2� 2�'� j�=2

�!� ~!a�
2�� 1T0

2
� 2�'� j�

2 �
2
: (4)

The form of the line shape depends on the dimensionless
parameter ' � n(20, where (0 � 2g2=�!a;r is the trans-
mission phase shift describing the strength of the measure-
ment. For small ' the measurement rate is slow compared
to � and the phase diffuses in a random walk h’�t�2i �
4(20n�t, leading to a homogeneously broadened Lorentzian
line of HWHM of 2(20n�� 1=T0

2. For large ', i.e., strong
measurement, the measurement rate exceeds � leading to a
qubit transition frequency which depends on the instanta-
neous value of the cavity photon number and hence to an
inhomogeneously broadened Gaussian line [see Fig. 4(b)],
whose variance is simply

���
n

p
multiplied by the Stark shift

per photon. The full crossover from intrinsic Lorentzian
line shape with width / n at small n to Gaussian line shape
with width /

���
n

p
at large n as described by Eq. (4) with no

adjustable parameters is in good agreement with the mea-
sured dependence of the linewidth on n [see Fig. 5(b)]. The
slightly increased measured linewidth could be attributed

to fluctuations (e.g., charge noise) activated at high photon
numbers and to the nonlinearity of the ac Stark shift above
the critical photon number [4]. We note that this effect is
not seen in Fig. 4(a) because of compensation by the
change of the cavity pull at large n from the zero-photon
limit g2=!.

In our experiments we have demonstrated that the strong
coupling of a Cooper pair box to a nonresonant microwave
field in an on-chip cavity gives rise to a large qubit depen-
dent shift in the excitation energy of the resonator. The ac
Stark effect shifts the qubit level separation by about one
linewidth per photon at 2% detuning, and the backaction of
the fluctuations in the field gives rise to a large broadening
of the qubit line. Good agreement of the line shape with
theory indicates that the dispersive measurement is QND,
as expected.
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Approaching Unit Visibility for Control of a Superconducting Qubit with Dispersive Readout
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In a Rabi oscillation experiment with a superconducting qubit we show that a visibility in the qubit
excited state population of more than 95% can be attained. We perform a dispersive measurement of the
qubit state by coupling the qubit nonresonantly to a transmission line resonator and probing the resonator
transmission spectrum. The measurement process is well characterized and quantitatively understood. In a
measurement of Ramsey fringes, the qubit coherence time is larger than 500 ns.

DOI: 10.1103/PhysRevLett.95.060501 PACS numbers: 03.67.Pp, 42.50.Pq, 85.35.Gv

One of the most promising solid-state architectures for
the realization of a quantum information processor [1] is
based on superconducting electrical circuits [2]. A variety
of such circuits acting as qubits [1], the basic carriers of
quantum information in a quantum computer, have been
created and their coherent control has been demonstrated
[3–8]. Recent experiments have realized controlled cou-
pling between different qubits [9–13] and also first two-
qubit quantum logic gates [14].

An outstanding question for superconducting qubits, and
in fact for all solid-state implementations of quantum
information processors, is whether the qubits are suffi-
ciently well isolated to allow long coherence times and
high-fidelity preparation and control of their quantum
states. This question is complicated by inevitable imper-
fections in the measurement. A canonical example is a
Rabi oscillation experiment, where the experimenter re-
cords the oscillations of a meter’s response as a function of
pulse length to infer the qubit’s excited state population
immediately after the pulse. The measurement contrast
(e.g., the amplitude of the meter’s measured swing relative
to its maximum value) is reduced in general by both errors
in the qubit preparation and readout, and sets a lower limit
on the visibility of oscillations in the qubit population.
Most experiments with superconducting qubits to date
have reported only the measurement contrast, implying
only a lower limit on the visibility in the range of 10%–
50% [3–8,14].

A full understanding of the measurement process is
required to extract the qubit population from the meter’s
output. The qubit control is then characterized by the
visibility, defined as the maximum qubit population differ-
ence observed in a Rabi oscillation or Ramsey fringe
experiment. It is essential to demonstrate that a qubit can
be controlled without inducing undesired leakage to other
qubit states or entanglement with the environment. Some
experiments [15] observe a substantial reduction of the
visibility due to entanglement with spurious environmental
fluctuators [16]. In the few experiments in which the con-
trast has been characterized, it was close to the expected
value [17,18], which implies that high visibility should be
achievable with superconducting qubits.

In this Letter, we report results on time-domain control
of the quantum state of a superconducting qubit, where the
qubit state is determined using a dispersive microwave
measurement in a circuit quantum electrodynamics
(QED) architecture [19]. This novel technique has shown
good agreement with predictions in steady-state experi-
ments [20]. Here, we observe the measurement response,
both during and after qubit state manipulation, which is in
quantitative agreement with the theoretical model of the
system, allowing us to separate the contributions of the
qubit and the readout to the observed contrast. The ob-
served contrast of 85% and a visibility of greater than 95%
for Rabi oscillations demonstrates that high accuracy con-
trol is possible in superconducting qubits.

In our circuit QED architecture [19], a Cooper pair box
[21], acting as a two level system with ground j#i and ex-

cited states j"i and level separation Ea�@!a�
�����������������
E2
el�E2

J

q

is coupled capacitively to a single mode of the electromag-
netic field of a transmission line resonator with resonance
frequency !r; see Fig. 1(a). As demonstrated for this
system, the electrostatic energy Eel and the Josephson
energy EJ of the split Cooper pair box can be controlled
in situ by a gate voltage Vg and magnetic flux � [20,22];
see Fig. 1(a). In the resonant (!a � !r) strong coupling
regime a single excitation is exchanged coherently be-
tween the Cooper pair box and the resonator at a rate
g=�, also called the vacuum Rabi frequency [22]. In the
nonresonant regime (j	j � j!a �!rj> g) the capacitive
interaction gives rise to a dispersive shift �g2=		�z in the
resonance frequency of the cavity which depends on the
qubit state �z, the coupling g, and the detuning 	 [19,20].
We have suggested that this shift in resonance frequency
can be used to perform a quantum nondemolition (QND)
measurement of the qubit state [19]. With this technique
we have recently measured the ground state response and
the excitation spectrum of a Cooper pair box [20,22].

In the experiments presented here, we coherently control
the quantum state of a Cooper pair box in the resonator by
applying microwave pulses of frequency !s, which are
resonant or nearly resonant with the qubit transition fre-
quency !a=2� 
 4:3 GHz, to the input port Cin of the
resonator; see Fig. 1(a). Even though !s is strongly de-
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tuned from the resonator frequency !r, the resonator can
be populated with ns drive photons which induce Rabi
oscillations in the qubit at a frequency of 
Rabi ������
ns

p
g=�. Simultaneously, we perform a continuous disper-

sive measurement of the qubit state by determining both
the phase and the amplitude of a coherent microwave beam
transmitted through the resonator at frequency !RF which
is resonant or nearly resonant with the resonator frequency
!r=2� 
 5:4 GHz [19,22]. The phase shift � �
tan�1�2g2=�		�z is the response of our meter from which
we determine the qubit population. For the measurement,
we chose a resonator that has a quality factor of Q� 0:7

104 corresponding to a photon decay rate of �=2� �
0:73 MHz. The resonator is populated with n� 1 mea-
surement photons on average, where n is calibrated using
the ac-Stark shift [20]. All experiments are performed in a
dilution refrigerator at a temperature of 20 mK. The charg-
ing energy of the box is EC � e2=2C 
 h 5:2 GHz.
Details on the device fabrication can be found in Ref. [23].

We initially determine the maximum swing of the meter
in a calibration measurement by first maximizing the de-
tuning 	 to minimize the interaction (g2=	 ! 0) which
defines � � 0. We prepare the Cooper pair box in the

ground state j#i by relaxation, the thermal population of
excited states being negligible. The box is biased at charge
degeneracy (Eel � 0), where its energy is to first-order
insensitive to charge noise [4]. Using flux bias, the detun-
ing is adjusted to 	=2� 
 �1:1 GHz corresponding to a
maximum in the Josephson coupling energy of EJ=h 

4:3 GHz<!r=2�. In this case we measure a minimum
meter response of �j#i � �35:3 deg corresponding to a
coupling strength of g=2� � 17 MHz. Saturating the qu-
bit transition by applying a long microwave pulse which
incoherently mixes the ground and excited states such that
the occupation probabilities are Pj#i � Pj"i � 1=2, the
measured phase shift is found to be � � 0, as expected
[20]. From these measurements, the predicted phase shift
induced by a fully polarized qubit (Pj"i � 1) would be
�j"i � 35:3 deg . Thus, the maximum swing of the meter
is bounded by �j"i ��j#i.

In our measurement of Rabi oscillations, a short micro-
wave pulse of length 	t is applied to the qubit in its ground
state with a repetition rate of 20 kHz while the measure-
ment response � is continuously monitored and digitally
averaged 5
 104 times; see Fig. 1(b). The signal to noise
ratio (SNR) in the averaged value of � in an integration
time of 100 ns is approximately 25, see Fig. 2, correspond-
ing to a SNR of 0.1 in a single shot. For the present setup
the single shot readout fidelity for the qubit state integrated
over the relaxation time (T1 � 7 �s) is approximately 30%
[24]. Either a readout amplifier with lower noise tempera-
ture or a larger signal power would potentially allow a
high-fidelity single shot measurement of the qubit state in
this setup.

The time dependence of the averaged value of � in
response to a � pulse of duration 	t� 16 ns applied to
the qubit is shown in Fig. 2(a). Before the start of the pulse
the measured phase shift is �j#i 
 �35:3 deg correspond-
ing to the qubit being in the ground state. Because of the
state change of the qubit induced by the pulse, the resona-
tor frequency is pulled by 2g2=	 and, thus, the measured
phase shift is seen to rise exponentially towards �j"i with
the resonator amplitude response time 2=� 
 400 ns, i.e.,
twice the photon life time. After the � pulse, the qubit
excited state decays exponentially with its energy relaxa-
tion time T1 � 7:3 �s, as extracted from the decay in the
measured phase shift; see Fig. 2(a). As a result, the maxi-
mum measured response �max does not reach the full value
of �j"i. In general, the measurement contrast C � ��max �

�min	=��j"i ��j#i	 will be reduced in any qubit readout for
which the qubit lifetime is not infinitely longer than the
measurement response time. Additionally, in non-QND
measurements the contrast is reduced even further due to
mixing of the qubit states induced by the interaction with
the measurement apparatus. In our QND measurement
presented here, the qubit lifetime is about 15 times the
response time of the measurement, allowing us to reach a
high maximum contrast of C� 85% in the bare measure-
ment response �.
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bias tee RF amp mixer
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FIG. 1 (color online). (a) Simplified circuit diagram of mea-
surement setup. A Cooper pair box with charging energy EC and
Josephson energy EJ is coupled through capacitor Cg to a
transmission line resonator, modeled as parallel combination
of an inductor L and a capacitor C. Its state is determined in a
phase sensitive heterodyne measurement of a microwave trans-
mitted at frequency !RF through the circuit, amplified and mixed
with a local oscillator at frequency !LO. The Cooper pair box
level separation is controlled by the gate voltage Vg and flux �.
Its state is coherently manipulated using microwaves at fre-
quency !s with pulse shapes determined by Vp [8]. (b) Measure-
ment sequence for Rabi oscillations with Rabi pulse length 	t,
pulse frequency !s, and amplitude /

�����
ns

p
with continuous mea-

surement at frequency !RF and amplitude /
��������
nRF

p
. (c) Sequence

for Ramsey fringe experiment with two �=2 pulses at !s

separated by a delay 	t and followed by a pulsed measurement.
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In Figs. 2(b) and 2(c), the measured response � of the
meter to a 2� and a 3� pulse acting on the qubit is shown.
As expected, no phase shift is observable for the 2� pulse
since the response time of the resonator is much longer
than the duration 	t � 32 ns of the pulse. In agreement
with the expectations for this QND scheme, the measure-
ment does not excite the qubit, i.e., �min � �max � �j#i.
The response to the 3� pulse is virtually indistinguishable
from the one to the � pulse, as expected for the long
coherence and energy relaxation times of the qubit. In
the 2D density plot Fig. 3, Rabi oscillations are clearly
observed in the phase shift acquired versus measurement
time t and Rabi pulse length 	t.

The observed measurement response � is in excel-
lent agreement with theoretical predictions, see red lines
in Fig. 2, demonstrating a good understanding of the
measurement process. The temporal response ��t	 �
argfiha�t	ig of the cavity field a is calculated by deriving
and solving Bloch-type equations of motion for the cavity
and qubit operators [25] using the Jaynes-Cummings
Hamiltonian in the dispersive regime [19,20] as the starting

point. A semiclassical factorization approximation is done
to truncate the resulting infinite set of equations to a finite
set (e.g., haya�zi � hayaih�zi; all lower order products
are kept). This amounts to neglecting higher order corre-
lations between qubit and field which is a valid approxi-
mation in the present experiment. The calculations
accurately model the exponential rise in the observed
phase shift on the time scale of the resonator response
time due to a state change of the qubit. They also accu-
rately capture the reduced maximum response �max due to
the exponential decay of the qubit. Overall, excellent
agreement in the temporal response of the measurement
is found over the full range of qubit and measurement time
scales with no adjustable parameters; see Fig. 2.

The visibility of the excited state population Pj"i in the
Rabi oscillations is extracted from the time dependent
measurement response � for each Rabi pulse length 	t.
We find Pj"i by calculating the normalized dot product
between the measured response � and the predicted re-
sponse taking into account the systematics of the measure-
ment. This amounts to comparing the area under a
measured response curve to the theoretically predicted
area; see Fig. 2. The averaged response of all measure-
ments taken over a window in time extending from the start
of the Rabi pulse out to several qubit decay times T1 is used
to extract Pj"i. This maximizes the signal to noise ratio in
the extracted Rabi oscillations.

The extracted qubit population Pj"i is plotted versus 	t
in Fig. 4(a). We observe a visibility of 95� 6% in the Rabi
oscillations with error margins determined from the resid-
uals of the experimental Pj"i with respect to the predicted
values. Thus, in a measurement of Rabi oscillations in a
superconducting qubit, a visibility in the population of the
qubit excited state that approaches unity is observed for the
first time. Moreover, the decay in the Rabi oscillation
amplitude out to pulse lengths of 100 ns is very small
and consistent with the long T1 and T2 times of this charge
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qubit; see Fig. 4(a) and Ramsey experiment discussed
below. We have also verified the expected linear scaling
of the Rabi frequency 
Rabi with the pulse amplitude �s /�����
ns

p
; see Fig. 4(b).

We have determined the coherence time of the Cooper
pair box from a Ramsey fringe experiment at charge de-
generacy using �=2 pulses of 20 ns duration; see Fig. 1(c).
To avoid dephasing induced by a weak continuous mea-
surement beam [20] we switch on the measurement beam
only after the end of the second �=2 pulse. The resulting
Ramsey fringes oscillating at the detuning frequency
�a;s � !a �!s � 6 MHz decay with a long coherence
time of T2 � 500 ns; see Fig. 5(a). The corresponding
qubit phase quality factor of Q’ � T2!a=2� 6500 is

similar to the best values measured so far in qubits biased
at an optimal point [4]. The Ramsey frequency is shown to
depend linearly on the detuning �a;s, as expected; see
Fig. 5(b). We note that a measurement of the Ramsey
frequency is an accurate time resolved method to deter-
mine the qubit transition frequency !a � !s � 2�
Ramsey.

In conclusion, performing Rabi and Ramsey experi-
ments we have observed high visibility in the oscillations
of state population of a superconducting qubit. The tem-
poral response and the backaction of the readout are quan-
titatively understood and well characterized. Our charge
qubit, which is embedded in a well-controlled electromag-
netic environment, has T1 and T2 times among the longest
realized so far in superconducting systems. The simplicity
and level of control possible in this circuit QED architec-
ture makes it an attractive candidate for superconducting
quantum computation.
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Fabrication and Characterization of Superconducting
Circuit QED Devices for Quantum Computation

Luigi Frunzio, Andreas Wallraff, David Schuster, Johannes Majer, and Robert Schoelkopf

Abstract—We present fabrication and characterization proce-
dures of devices for circuit quantum electrodynamics (cQED).
We have made 3-GHz cavities with quality factors in the range
10

4–106, which allow access to the strong coupling regime of
cQED. The cavities are transmission line resonators made by
photolithography. They are coupled to the input and output ports
via gap capacitors. An Al-based Cooper pair box is made by
e-beam lithography and Dolan bridge double-angle evaporation
in superconducting resonators with high quality factor. An impor-
tant issue is to characterize the quality factor of the resonators.
We present an RF-characterization of superconducting resonators
as a function of temperature and magnetic field. We have realized
different versions of the system with different box-cavity couplings
by using different dielectrics and by changing the box geometry.
Moreover, the cQED approach can be used as a diagnostic tool of
qubit internal losses.

Index Terms—Distributed parameter circuits, Q factor, scat-
tering parameters measurement, superconducting cavity res-
onators.

I. INTRODUCTION

WE have recently demonstrated that a superconducting
quantum two-level system can be strongly coupled to a

single microwave photon [1], [2]. The strong coupling between
a quantum solid state circuit and an individual photon, analo-
gous to atomic cavity quantum electrodynamics (CQED) [3],
has previously been envisaged by many authors, see [4] and ref-
erences therein. Our circuit quantum electrodynamics architec-
ture [4], in which a superconducting charge qubit, the Cooper
pair box (CPB) [5], is coupled strongly to a coplanar trans-
mission line resonator, has great prospects both for performing
quantum optics experiments [6] in solids and for realizing ele-
ments for quantum information processing [7] with supercon-
ducting circuits [8]–[14] and also for other architectures [15],
[16].

In developing these qubit-resonator systems, one key ingre-
dient is to design and realize transmission line resonators with
high internal quality factor, , and with resonant frequency,

, in the 5–15 GHz range to match the other energy scales of
our device, and to be in the quantum regime
at mK. On the other hand, the resonator is loaded
with input and output capacitances and we need a loaded quality

Manuscript received October 4, 2004. This work was supported in part by
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factor in order to obtain reasonably fast rate of mea-
surement, MHz.

In fabricating the transmission line resonator, we opted for a
coplanar waveguide (CPW) for many different reasons. First, a
CPW has a simple layer structure with no need for deposited
insulators. Second, it has a balanced structure with a relatively
easy planar connection to the CPB. Third, a CPW has a that
is relatively insensitive to kinetic inductance and dominated by
geometrical distributed inductance. Last but not the least, CPW-
based structures, made by Al thin film deposited on sapphire,
have been recently shown [17] to allow very high ’s (order of

).
We decided to fabricate on passivated Si wafers because this

is the substrate on which we had previously developed the qubit
fabrication. We also decided to try as material for the resonators
both Al, for easy compatibility with the qubit process, and Nb,
because its higher critical temperature allows testing of res-
onators at higher temperatures.

In Section II, we present design consideration for devices for
circuit quantum electrodynamics (cQED). We will show that
we can engineer with different coupling of the resonator to
the input and output ports and that the internal losses can be
made negligible at the designed [1], [2]. Section III intro-
duces the fabrication procedures for both the resonator and the
CPB. Sections IV–VI present an RF-characterization of the su-
perconducting transmission line resonators versus temperature
and magnetic field.

II. CIRCUIT DESIGN

A picture of a mm chip containing a 3-GHz super-
conducting Nb CPW resonator is shown in Fig. 1(a). The length
of the meandering resonator is mm. The center con-
ductor is 10 m wide, separated from the lateral ground planes
extending to the edges of the chip by a 5 m gap, resulting in
a wave impedance of the coplanar waveguide of to
match the impedance of conventional microwave components.
The capacitance per unit length is m which
gives a total resonator capacitance of .
The resonator is coupled by identical capacitors at each end (see
solid line square in Fig. 1(a)) to an input and output feed line,
fanning out to the edge of the chip and keeping the impedance
constant. In Fig. 1(b) and (1d) are shown micrographs of two
of the coupling capacitors with different geometries. The one in
Fig. 1(b) consists of two 100- m long and 4- m wide fingers
separated by a 2- m gap. It has a capacitance, ,
larger than that in Fig. 1(d), which has a simpler geometry with
a 4- m gap and .

1051-8223/$20.00 © 2005 IEEE
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Fig. 1. Picture of a device for circuit QED. (a) The 3 GHz superconducting
coplanar waveguide resonator is fabricated using optical lithography. The length
of the meandering resonator is l = 24 mm. The center conductor is 10 �m
wide, separated from the lateral ground planes extending to the edges of the
chip by a 5 �m gap. The resonator is coupled by identical capacitors at each
end (solid line squares) to input and output ports. (b) Micrograph of a coupling
capacitance with two 100 �m long and 4 �m wide fingers separated by a 2 �m
gap. (c) Scanning electron micrograph of a Cooper pair box fabricated onto the
silicon substrate into the gap between the center conductor (top) and the ground
plane(bottom) in the center of a resonator (dashed line square) using electron
beam lithography and double angle evaporation of aluminum. (d) Micrograph
of a coupling capacitance with a 4 �m gap.

The capacitive coupling to the input and output lines, together
with the loading impedance, , are very important in
determining the loaded quality factor , defined by

(1)

where the external quality factor is

(2)

with

(3)

There are two possible regimes for the resonator. It can be
undercoupled when is small (like ) and then

. This is the regime in which it is possible to measure .
Otherwise, the resonator can be overcoupled when is large
(like ) and then . It is then possible to engineer
the to obtain fast measurement with much larger than the
qubit decay rates [1], [2].

In Fig. 1(c) an electron micrograph of a Cooper pair box is
shown. The CPB consists of a 7- m long and 200-nm wide su-
perconducting island parallel to the center conductor which is
coupled via two nm size Josephson tunnel junc-
tions to a much larger superconducting reservoir. The CPB is
fabricated onto the silicon substrate [see dashed line square in
Fig. 1(a)] in the gap between the center conductor (top) and the
ground plane (bottom) at an antinode of the electric field in the
resonator. The Josephson junctions are formed at the overlap
between the island and the fingers extending from the reser-
voir, which is capacitively coupled to the ground plane. The
CPB is a two-state system described by the Hamiltonian

where is the electrostatic energy and
is the Josephson energy. The overall

energy scales of these terms, the charging energy and the
Josephson energy , can be readily engineered during
the fabrication by the choice of the total box capacitance and
resistance respectively, and then further tuned in situ by elec-
trical means. A flux bias , applied with an external
coil to the loop of the box, controls . We have demonstrated
that changing the length of the CPB island and its distance to
the center conductor and changing the dielectrics (removing the
passivation step of the Si substrate), we can obtain stronger cou-
plings of qubit and resonator as predicted by simple electrostatic
calculations of the capacitances.

III. DEVICE FABRICATION

The pattern of 36 different Nb resonators is generated
exposing a bilayer photoresist (600 nm LOR5A and 1.2 m
S1813) through a mask with traditional UV photolithography.
Then a 200-nm thick Nb film is dc magnetron sputtered in Ar
at 1.5 Pa with a rate of 1 nm/s in an UHV system with a base
pressure of 20 . The substrate is a 300- m thick p-doped
(Boron) (100) oriented Si wafer with resistivity cm
previously passivated by thermal wet oxidation with a 470-nm
thick layer of . A lift-off process in NMP followed by
ultrasonic agitation completes the resonator fabrication.

Al resonators are fabricated on the same type of substrate de-
positing a 200-nm thick Al film by thermal evaporation at a rate
of 1 nm/s in the same UHV system. Then the same mask is used
to expose a single photoresist layer (1.2 m S1813) and then re-
alized by wet etching

the metal.
In both cases, chips containing individual resonators are ob-

tained by dicing the Si wafer. The CPB qubit [Fig. 1(c)] is
then fabricated on an individual resonator by a simple Dolan
bridge technique [18] exposing a bilayer resist (500 nm MMA-
(8.5)MAA EL13 and 100 nm 950 K PMMA A3) by e-beam
lithography and then e-beam evaporating Al (35 nm for the
base and 70 nm for the top electrode) at a rate of 1 nm/s in a
double-angle UHV system with a base pressure of 20 . The
junction barrier is realized with a 12 min thermal oxidation in
a 400 Pa of . A lift-off process in hot acetone and ultrasonic
agitation complete the device. To couple the qubit reservoir to
ground with a large capacitance, the base electrode is deposited
with a little angle taking advantage of the shadow of the thicker
Nb film to define the capacitor.

IV. MEASUREMENT TECHNIQUE

The frequency dependence of the transmission through the
resonators1 was measured using a vector network analyzer. The
equivalent circuit of the measurement setup is shown in the
inset of Fig. 3. The sample was mounted on a PC board in a
closed copper sample box (Fig. 2) equipped with blind mate
SMP connectors that launch the microwaves onto the PC board
CPW’s. The sample was cooled to temperatures ranging from

1The transmission is measured in dB = 10 log jV =V j , where V is the
voltage measured at the input port of the analyzer and V is the voltage applied
at the output port of the analyzer.
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Fig. 2. Picture of the copper sample box containing a resonator mounted on
the PC board.

Fig. 3. Measured transmission power spectrum of an undercoupled resonator.
The solid line is a fit to a Lorentzian line.

the critical temperature, of the superconducting films down
to mK.

The transmission through the resonator around its funda-
mental resonant frequency is shown in Fig. 3 at mK.
The curve was acquired using a 60 dBm input power2 and
a room temperature amplifier. The input power was lowered
until no distortion of the resonance curve due to excessive input
power could be observed. The network analyzer was response
calibrated up to the input and output ports of the cryo-
stat and the absorption of the cabling in the cryostat was deter-
mined to be approximately 7 dB in a calibrated and
reflection measurement. The quality factor of the resonator is
determined by fitting a Lorentzian line to the measured power
spectrum as shown by the solid line in Fig. 3. This is the power
spectrum of an undercoupled resonator and from the fit we have
extracted . At this frequency the insertion
loss is dB. The quality factor is determined from the
full width at half max of the fitted power spectrum and is found
to be .

V. TEMPERATURE DEPENDENCE OF AND

In Fig. 4, we show the measured temperature dependence of
the quality factor for an undercoupled resonator (solid dots)
and an overcoupled one (open dots). The lines in Fig. 4 are gen-
erated by summing a that scales exponentially with the re-
duced temperature, , in parallel with a constant . At

2The input power is in dBm where �60 dBm = 20 log(1 �W=1 mW).

Fig. 4. Temperature dependence of the quality factor Q of two 3 GHz
superconducting Nb coplanar waveguide resonators at their first harmonic
resonant frequency (6 GHz). Solid dots are data collected on a undercoupled
resonator and open dots are from an overcoupled one. The lines are generated
by summing a Q that scales exponentially with the reduced temperature,
T =T , in parallel with a constant Q .

Fig. 5. Temperature dependence of the resonant frequency � of a
superconducting Nb coplanar waveguide resonator. Solid line is a fit to a
kinetic inductance model.

low temperature, the coupling saturates the of the overcou-
pled resonator, while it seems that for the undercoupled one
has still some weak temperature dependence whose nature is
still unknown. We speculate that either vortices or losses in the
dielectrics could limit the of this resonator but neither of these
interpretations offer an easy understanding of the weak temper-
ature dependence.

We have observed a shift of the resonant frequency with
temperature as shown in Fig. 5, which can be understood in
terms of the temperature dependent kinetic inductance of the
resonator [17], [19]. is proportional to , where the total
inductance of the resonator is the sum of the temperature in-
dependent geometric inductance and the temperature de-
pendent kinetic inductance . The kinetic inductance scales
as , where is the temperature dependent
London penetration depth. The best fit in Fig. 4 was achieved for
a ratio and a critical temperature of K,
which we have independently measured on a test sample fabri-
cated on the same wafer.

VI. MAGNETIC FIELD DEPENDENCE OF

As explained in Section II, we need to apply a magnetic field
perpendicular to the qubit loop in order to tune . Then, we
measured the quality factor of two resonators as a function of
the magnetic field at mK, as shown in Fig. 6. It is evi-
dent that the Nb film (upper part) is less sensitive to the applied
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Fig. 6. Magnetic field dependence of the quality factor Q of two different
superconducting coplanar waveguide resonators at T = 300 mK. In the upper
part data refer to a Nb resonator, while in the lower part they refer to an Al
resonator. Arrows indicate the direction in which the magnetic field was swept
in both case starting from zero.

field than the Al film (lower part). In both cases there seems to
be a reproducible and irreversible hysteretic behavior that can be
reset by thermal cycling the sample. In our recent works [1], [2]
we have observed a focusing effect on the magnetic field such
that the effective field in the gap of the resonator was approxi-
mately two orders of magnitude larger than the applied magnetic
field. We believe that the hysteretic phenomena could be in fact
a result of vortices being trapped in the resonator film due to
these large effective fields.

VII. CONCLUSION

In summary, we have designed and fabricated devices for re-
alizing a circuit quantum electrodynamics architecture in which
a qubit can be strongly coupled to a single microwave photon.
We have shown that we can engineer with different coupling
of the resonator to the input and output ports and that the in-
ternal losses can be made negligible at the designed . Indeed,
we have achieved high in the undercoupled
CPW resonators and in the overcoupled ones, which
allow fast measurement of the qubit.

To help determine the mechanism of the losses, one can fab-
ricate resonators on different substrates [Si with different resis-
tivity, sapphire, )], or in different superconductors (Ta,
Al). In fact, quality factor measurements in this type of res-
onant circuits serve as a sensitive probe of material losses in
dielectrics and superconductors in the GHz frequency range at
millikelvin temperatures. These presently unknown properties
may in fact pose a serious limit for all superconducting qubits,
though the large internal ’s already observed are highly en-
couraging. Better knowledge of the material losses, and tech-

niques to characterize them, may be crucial not only for future
improvements of circuit QED devices, but also for designing
and realizing robust, long-lived superconducting qubits.
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8. Fabrication techniques used for this work 

Superconducting circuits including Josephson tunnel junctions and connecting 

wires are fabricated using techniques developed for conventional semiconducting 

integrated circuits. Using these methods circuits containing up to several thousands 

junctions have been successfully fabricated for applications like the Josephson processor 

and the voltage standard. In our case, the challenge comes from junction areas that need 

two to four orders of magnitude smaller than in those applications. In fact, the fabrication 

of reliable devices, whose typical junction size (0.1x0.1 µm) is comparable to the grain 

size of the superconducting materials used for realizing the electrodes, implies dealing 

with grain and perimeter effects, barrier properties changing in time and so on. We 

indicat in this chapter the main features of the fabrication protocols of our devices. 

 

8.1. Substrates 

Typically superconducting circuits have been fabricated on silicon substrates, 

which allow for conducting layer at room temperature to reduce effects of statical 

discharge, while becoming insulators at low temperature.  

To start, we use as substrates single side polished 2” silicon wafer doped with boron 

(acceptor type p) with medium resistivity (>1 kΩcm) cut out of a single crystal, realized 

by Floating Zone process, with orientation (100) and thickness of 300 µm. The wafers 

have been bought from Siltronix SAS, a French-Swiss company. They are used as they 

come out of the package with just a very thin natural oxide on their surface, which does 

not withstand the following metal depositions. Whenever, instead, we want to perform 

room temperature resistance measurements on our samples, we need electrical insulation 

between the different parts of the circuit. We achieve this result either by oxidation of the 

substrate surface or by using insulating substrates. 

In the first case, the surface of the wafers is thoroughly cleaned immersing it in two 

solvents, first acetone and then methanol, while ultrasounding it at each step. It is then 

immersed in a hydrofluoric acid based buffer oxide etching solution to remove the natural 

oxide and washed with de-ionized water. Immediately after, a wet oxidation process in a 

oven at 1000 C follows to grow a good silicon dioxide insulating layer. In some circuit 
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QED experiments, we wanted to modify the coupling between resonator and CPB and we 

did that also varying the oxide thickness. We realized silicon dioxide thickness of 230, 

360 and 470 nm keeping the substrate in the hot oven for respectively 60, 80 and 100 

minutes. 

In the second case, we use single side epipolished 2” sapphire wafers with a (1102) R-

plane orientation and a thickness of 430 µm, obtained from CrysTec, a German substrate 

provider. Sapphire may also improve the quality of the metal deposition because of the 

better lattice match with aluminum, niobium and tantalum we can achieve. 

We wanted also to test if the resistivity of the substrate affects our circuit QED 

experiments. The idea is that higher resistivity substrates, as we could obtain from less 

doped silicon, could modify the charge noise experienced by the qubit. For these 

experiments, we use single side polished 2” silicon wafer doped with boron but this time 

with high resistivity (>20 kΩcm), without changing single crystal process, orientation 

and thickness. 

In circuit QED experiments, to eliminate some of the possible modes in the sample set-up 

which may be affecting the quality of the resonators, we decided to modify the RF-tight 

box in which the sample is allocated. The new set-up requires thicker substrate and in it 

we use single side polished 2” silicon wafer doped with boron with high resistivity (>20 

kΩcm) and thickness of 500 µm, all the other properties unchanged.  

Also in the case of high resistivity silicon wafers, we fabricated circuits on the bare 

substrate but also on substrates that had been oxidized with the process described before. 

 

8.2. Optical photolithography for resonator patterning 

At the beginning of any lithographic process, the first thing to do is to make sure 

that the substrate surface is clean. This is essential to achieve a good resist adhesion and 

to remove specks of dust, which obstruct the proper spinning and patterning of the resist. 

To clean the substrate surface, we immerge the substrate in two solvents, first acetone 

and then methanol, and we ultrasound it in each step. Then in the case of optical 

photolithography, we wash the substrate with de-ionized water and we blow nitrogen on 

it to quickly dry the sample. 
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The resonators, used in this work, have been realized using a lift-off technique. In this 

technique, a resist is spun and patterned on the substrate. After that, a thin film is 

deposited and it will stick to the substrate only on the portion of it where the resist has 

been removed. On the contrary, the parts of the film deposited on the resist are lifted-off 

together with the resist when the latter is removed by an immersion in the proper solvent. 

The lift-off works well if the resist profile has the right “mushroom” shape, shown in Fig. 

8.1, so that the thin metal film cannot be deposited on the side wall of the patterned resist. 

We realize this profile by using a double layer resist process. 

The first layer is made by a pre-exposed resist, Microchem-LOR 5A, composed by 

propylene glycol methyl ether solved in cyclopentanone. We spin this resist at 4000 rpm 

for 60 s to obtain a thickness of about 500 nm. This resist is removed during the 

development stage at a rate which is inversely proportional to the baking temperature. 

Because we want to obtain low development speed we bake it at 195 C for about 15 

minutes. The prolonged high temperature baking also helps to harden the resist layer to 

reduce intermixing with the next layer, since the two resist have a very similar chemistry. 

After that, we spin a second layer with a common photo-sensitive resist Rohm and Haas-

S1808, containing propylene glycol monomethyl ether acetate, at 4000 rpm for 60 s to 

obtain a thickness of about 750 nm. We bake the double layer again at 115 C for 1 

minute. This resist will be developed and removed only in the region where the polymer 

bonds are weakened by the exposure to energy delivered by photons in the 350-450 nm 

wavelength region. The pre-exposed resist is instead insensitive to exposure giving some 

level of “orthogonality” between the two resist layer behaviors that allows for properly 

shaping them. 

The UV exposure of the resist covered sample is done in an EVG620 maskaligner 

through a chromium-on-soda lime glass mask with a mercury lamp light whose energy 

density is about 31 mJ/cm2, as measured at a wavelength of 365 nm. 
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Figure 8.1. The double layer resist “mushroom”. SEM image of a resist 
bilayer realized at Yale. The two resists used are 500 nm thick Microchem-
LOR5A and 720 nm thick Rohm and Haas-S1808. In order to realize a good lift-
off, the lower part of the resist complex has been developed more than the upper 
part. Indeed, this profile obstructs the thin metal film directional deposition on 
the resist side wall, improving the separation with the film deposited on the 
substrate. This image has been realized after depositing few nm of copper on the 
resist bilayer and using a 2 keV electron beam for the shortest time possible to 
avoid overcharging of the insulating surface and the consequent melting of the 
resist. 
 

Then, we develop the double layer resist by immersion in a developer called MF-319, 

which is a 0.237 N solution of tetra methyl ammonium hydroxide (TMAH, (CH3)4NOH) 

in water, for 140 s. This developer dissolves the resist where the mask was not protecting 

it from the UV photon exposure. After 25 to 40 s the top resist is fully developed and the 

remaining time allows us to obtain the desired undercut size in the lower resist layer. 

Optical microscope inspection of the sample verifies the quality of the process each time. 

At this point, we proceed to the metal deposition. We have fabricated some of the 

resonators by depositing 180 nm of aluminum by e-beam evaporation, a very directional 

deposition procedure. 

The e-beam evaporation is performed in a UHV Plassys system with a liquid nitrogen 

trap. The base pressure is about 4.4x10-6 Pa, immediately after a short titanium getter 

deposition. The aluminum deposition rate is 0.5 nm/s, while the sample is rotating at a 

speed of 10 rpm and was oriented 3.5 degree off the normal from the crucible to obtain a 

side wall profile of the resonator with a nice 35 degree slope out of the vertical, shown in 
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Fig. 8.2. This slope will be used to facilitate the step coverage during the deposition of 

subsequent metal or insulating layers. 

 
Figure 8.2. Aluminum profile after lift-off. SEM image of the profile of an 
aluminum resonator realized at Yale. The film thickness is 180 nm. The slope 
size is 130 nm, which gives for the side wall an angle of 35 deg out of the 
vertical. This image has been realized with a 10 keV electron beam. 
 

The lift-off process is completed by one hour immersion in 50 C Microchem-PG 

Remover, based on 1-methyl 2-pyrrolidinone, followed by 60 s in ultrasound bath. This 

step completely remove the metal film deposited on the resist surface. 

Other resonators have been fabricated depositing 200 nm thick niobium by dc magnetron 

sputtering, which on the contrary is an isotropic deposition procedure. The dc sputtering 

is performed in a UHV K.J. Lesker system with a base pressure of 1.3x10-6 Pa. The 

deposition rate is 1.25 nm/s in an argon plasma with a pressure of 0.17 Pa and a power 

density of 17.5 W/cm2. 

Because of the non-directionality of the sputtering deposition we have observed an 

“apron” at the film edge, due to the deposition of niobium in the undercut region, see Fig. 

8.3. Sometimes we also observe also the presence at the edge of the sample of the so-

called “flags”, which are the residues of the niobium film deposited on the resist wall and 

has not been completely removed during the lift-off step. 

We believe these defects could be eliminated patterning niobium by reactive ion etching 

and we are equipping our fabrication facility for this purpose. 
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Figure 8.3. Edges of a Niobium resonator. SEM image of the edges of a 
niobium resonator realized at Yale. The film thickness is 200 nm. A very thin 
“apron” is visible almost everywhere around the thicker film. In few places also 
residue from the niobium deposited on the resist wall are visible. This image has 
been realized with a 10 keV electron beam. 

 

8.3. Capacitor fabrication 

In order to reduce the plasma frequency of the detector junction in the 

Quantronium architecture, we have fabricated capacitors using an e-beam version of the 

lift-off technique. The bottom plate of the capacitor is essentially copper, which plays 

also the role of a groundplane for the superconducting connections between the 

capacitors and the junction. The capacitor insulator is silicon nitride, deposited by Plasma 

Enhanced Chemical Vapor Deposition (PECVD) in a GIS system, and the top plate of the 

capacitors is the same aluminum deposited in the junction fabrication. 

We clean the 2” silicon wafer with the same procedure explained in the previous section, 

but we do not use de-ionized water, which is believed incompatible with e-beam resist. 

Since we will use a beam of electrons instead of UV photons to expose the resist double 

layer, we need to adopt electron beam sensitive resists. The first resist layer is made by 

Microchem-MMA (8.5) MAA EL15, Poly-(Methylmethacrilate /Methacrylic Acid) 

solved in ethyl lactate. This copolymer is very sensitive to electron beam exposure. So for 

the same electron dose we will obtain a higher dissolution rate during the development 

stage and that will give us the desired undercut profile. We spin the copolymer at 3000 

rpm for 60 s to obtain a thickness of about 1100 nm and we bake it at 170 C for 60 s to 
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harden it. We use a shorter baking time in this case because the two resist layer use 

different solvents making the intermixing less relevant. 

After that, we use a second layer with a common e-beam sensitive resist Microchem-950 

PMMA A4, containing 950 kDa Poly-Methylmethacrilate solved in anisole. We spin it at 

4000 rpm for 60 s to obtain a thickness of about 190 nm. We bake the double layer again 

at 170 C for 30 minutes to remove most of the solvents and harden the resists. This long 

baking time also improves the resolution we achieve in the exposure/development 

process. 

Then, using the 30 keV electron beam of a converted XL40 SFEG FEI scanning electron 

microscope, we write the desired geometry on the sample located at 10 mm from the final 

microscope aperture, exposing with a dose of about 400 µC/cm2 the area where we want 

the resist to be removed. 

Then, we develop the double layer resist by immersion in a solution of 1:3 methyl 

isobutyl ketone and isopropanol for 50 s and we stop the development by immersion in 

pure isopropanol for 10 s. We blow nitrogen on the sample to quickly dry it. Optical 

microscope inspection of the sample verifies the dimension of the desired undercut and 

the quality of the process each time. 

At this point we are ready to deposit the bottom plate of the capacitor. We noticed that if 

this plate was fabricated using only copper, it was subsequently deformed and damaged 

in the deposition of the silicon nitride insulator. This happens because of the 400 C 

temperature at which the PECVD is realized. In fact at that temperature, copper is too 

soft and cannot stop either gases or water vapors, trapped during its deposition on the 

silicon surface underneath it, from bubbling through it. In order to avoid this problem, we 

decided to add two containment layers for copper and to fabricate them using a metal 

with high melting point, like chromium. In order to help the adhesion of the next silicon 

nitride layer to the top chromium film, we covered it with a titanium film.  

We deposit the multilayer chromium-copper-chromium-titanium by e-beam evaporation 

in a UHV Plassys system with a base pressure of about 2x10-5 Pa. The deposition rate is 1 

nm/s for copper and 0.2 nm/s for the other two metals. The four layers have a thickness 

respectively of 20, 800, 20 and 15 nm from bottom to top. 
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Figure 8.4. Josephson Bifurcation Amplifier capacitor fabrication. Sketch 
not to scale of the multilayer structure of the bottom electrode and insulator of 
the capacitor used to reduce the plasma frequency of the Josephson tunnel 
junction in the JBA. 
 

The lift-off process is completed by one hour immersion in 50 C acetone followed by 60 

seconds in ultrasound bath to completely remove the metal films deposited on the resist 

surface. 

Then, the silicon nitride (Si3N4) insulator is deposited all over the capacitor bottom plate 

and the silicon substrate by PECVD at 400 C with a rate of 0.65 nm/s using a gas mix of 

silane (SiH4), ammonia (NH3) and nitrogen (N2) with a total pressure of 160 Pa. 

By Atomic Force Microscopy (AFM) measurements, we observed that the silicon nitride 

layer in few micrometers from the edge of the capacitor bottom plate is almost 

completely flat. We have now to fabricate the junction using a variation of the lift-off 

technique, which we will introduce in the next section. At that stage, the insulator flatness 

helps to obtain uniformity of the next thick resist double layer both on the surface of the 

bottom plate and a few micrometers from it, where the JTJ-based circuit will be realized. 

Thus, the following lift-off process defines at the same time the aluminum top plate, the 

junction-based circuit and a short wiring connecting them. 

Two capacitors in series are fabricated each time with a total capacitance between 16 and 

40 pF. Fine tuning of the capacitance value is provided by properly sizing the capacitor 

area during the resist exposure. 
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20 nm Cr 
15 nm Ti
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Figure 8.5. Capacitors for a Quantronium circuit. Optical microscope 
picture of a Quantronium circuit. In the center in green is the bottom plate of the 
two capacitors used to reduce the plasma frequency of the Josephson tunnel 
junction detector of the JBA. The top plate is realized in aluminum at the same 
time of the rest of the circuit by lift-off. 

 

8.4. Dolan bridge technique to fabricate JTJ-based circuits 

In this work, we fabricated different circuits in which the Josephson tunnel 

junctions are the basic ingredients like CPB, Quantronium, JBA. Let us now describe in 

general how we fabricate the junctions using the famous Dolan bridge technique [Do77], 

which is a special type of lift-off technique, and the double angle deposition procedure. 

In all cases, we clean the substrate in the same way we did for our capacitor fabrication. 

This step is extremely important if something has already been fabricated on the 

substrate, like capacitors or resonators, because residues from previous step of the 

fabrication process can really impair the results. 

In general, we first spin the desired resist double layer for the lift-off on a whole wafer 

and then we cleave a piece of the desired size from the wafer on which the JTJ-based 

circuit will be fabricated. This order in the two operations optimizes quality and 

uniformity of the resist on the substrate and improves reliability and repeatability of the 

fabrication process on each individual chip. 

For circuit QED experiments, we fabricate the resonator first and then we fabricate the 

CPB inside the resonator gap. In this case, we have to spin the resist double layer on the 

individual resonator chip, whose size is either 3x10 mm2 or 2x7 mm2. This operation 
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requires extra care and precision to obtain a good degree of reliability and repeatability, 

because the resist tends to be strongly non-uniform toward the edges of the sample. 

At this point, we spin Microchem-MMA (8.5) MAA EL13, a thinner version of the 

copolymer used in the capacitor fabrication, at 5000 rpm for 60 s to obtain a thickness of 

about 500 nm and we bake it at 170 C for 60 s to harden it. 

After that, we spin a second layer with Microchem-950 PMMA A3, a thinner version of 

the e-beam sensitive polymer used in the capacitor fabrication, at 4000 rpm for 60 s to 

obtain a thickness of about 100 nm. We bake the double layer again at 170 C for 30 

minutes. This long baking time of a thin resist layer gives the high resolution we need in 

the exposure/development process to fabricate 40 nm wide trenches. With an even 

thinner polymer film, about 70 nm, we achieved the best resolution with 20 nm lines 

written in the resist double layer. 

In the Quantronium experiments, we fabricate the JTJ-based circuit close to the thick 

bottom plate and insulator multilayer of the capacitor. Then, we have to use a thicker 

resist double layer, as mentioned in the previous section, to overcome that thickness and 

realize a good step coverage with the resist double layer. We obtain that by spinning the 

copolymer at 3000 rpm for 60 s to achieve a thickness of about 900 nm. 

  
Figure 8.6. Resist bilayer patterned for a double angle deposition. SEM 
image of a e-beam sensitive resist bilayer realized at Yale. The two resists used 
are 500 nm thick Microchem-MMA (8.5) MAA EL13 and 720 nm thick 
Microchem-950 PMMA A3. Left: trenches and suspended bridges have been 
dug in the resist to fabricate a SQUID. The two suspended bridge are 5 mm long 
and 500 nm wide and no sagging is visible. Right: detail of the side of a bridge 
underneath which is visible some non completely removed copolymer. These 
images have been realized after depositing few nm of copper on the resist bilayer 
and using a 1 keV electron beam for the shortest time possible to avoid 
overcharging of the insulating surface and the consequent melting of the resist. 
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In general, the two thin metal films that constitute the two overlapping electrodes of the 

superconducting junction are fabricated using the double angle deposition technique 

[Do77]. The resist needs to be patterned with a geometry that includes trenches, in which 

the metal will be deposited, and suspended bridges. In order to fabricate a suspended 

bridge into a double layer resist, we have to develop and remove, in some location, the 

lower resist layer without damaging the upper resist layer, see Fig. 8.6. The presence of a 

suspended bridge obstructs the two step metal deposition obtained by orienting, for each 

deposition step, the substrate at a different angle respect to the normal to the metal 

evaporation source. This procedure realizes the overlap between two thin films that 

constitutes the junction. 

 
Figure 8.7. Undercut double layer resist. SEM image of a e-beam sensitive 
resist bilayer realized at Yale. The two resists used are 500 nm thick Microchem-
MMA (8.5) MAA EL13 and 720 nm thick Microchem-950 PMMA A3. The 
undercut in this image is about 200 nm. This image has been realized after 
depositing few nm of copper on the resist bilayer and using a 1 keV electron 
beam for the shortest time possible to avoid overcharging of the insulating 
surface and the consequent melting of the resist. 
 

Using the 30 keV electron beam of our converted SEM, we write the desired geometry on 

the sample located at 10 mm from the last microscope aperture. We expose the locations 

where we want the resist to be removed. We are able to write features with different 

width using different electron doses in the range 150-600 µC/cm2. To find the exact dose 

to be used, we fabricate test samples looking for the best result in terms of feature size, 

especially if they are close to the minimum size we can fabricate with our equipment 

(≈20-30 nm). In these calibration tests we have to take into proper account the proximity 

effect and the different exposure sensitivity of the two layers. Of course, the desired 
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undercut profile, see Fig. 8.7, will be obtained due to the different sensitivity of the two 

resist layers and to local additional exposure we may perform. 

We need also to carefully design the exposure mask in order to obtain only the desired 

geometries. In fact, the double angle deposition generates double layers of all the features 

which are parallel to the evaporation direction and reduced double images of those 

orthogonal to it. We remove some of those undesired double images using little or no 

undercut in the double layer resist, which becomes as a wall on which one image is going 

to be deposited and then removed during the lift-off. We can also use the undercut profile 

and some easy trigonometry to exactly evaluate the shift of the different parts of the 

design and to counter the size reduction. 

In some circuit QED experiment, we have also intentionally used the thickness of the 

resonator film to produce a shadow effect in the junction fabrication. In this way, it is 

possible to fabricate gate capacitors for the CPB with plate distance of less than 20 nm. 

In general, to fabricate suspended resist bridges, we collect an additional dose in the 

region where the bridge has to be realized either using the proximity effect from close by 

feature or exposing with low doses, usually in the range 40-100 µC/cm2. In this way we 

are able to completely remove the copolymer without poking a hole through the upper 

resist layer. 

In the next step, we develop the double layer resist by immersion in a solution of 1:3 

methyl isobutyl ketone and isopropanol for 50 s and we stop the development by 

immersion in pure isopropanol for 10 s. We blow nitrogen on the sample to quickly dry 

it. Optical microscope inspection are required to verify the quality of the results and in 

test run also SEM imaging of the resist profile may be useful to identify problems. 

Once the resist is patterned, we e-beam evaporate, frequently at zero degree, which 

means with the substrate and the evaporation plane parallel, 30-50 nm thick aluminum 

film to fabricate the junction bottom electrode. The e-beam evaporation is performed in a 

UHV Plassys system. In order to reduce water vapor and oxygen content we use a liquid 

nitrogen trap to cryopump into the chamber and a short titanium getter deposition. The 

aluminum is evaporated at a rate of 1 nm/s starting from a base pressure of about 4.4x10-6 

Pa. 
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In order to realize the insulating barrier, a thermal oxidation of the bottom electrode 

surface takes place in a mixture of 15% oxygen in argon gas with total pressure ranging 

between 130 and 2600 Pa for a time between 5 and 20 minutes depending on the desired 

critical current density. The presence of the argon, increasing the total pressure, helps to 

contain degassing from the resist and then barrier contamination during the oxidation 

time. We have obtained critical current densities ranging between 30 A/cm2 with oxygen 

exposure of 1.9x106 Pa s and 175 A/cm2 with 5.6x104 Pa s, with a scaling similar to a 

root square behavior. 

Without breaking vacuum and as soon as the system pressure drops under 1.5x10-4 Pa, a 

50-90 nm thick aluminum top electrode is evaporated at a different angle with the same 

rate used for the bottom one. The lift-off process is completed by one hour immersion in 

50 C acetone followed by 10 s in ultrasound bath. 

 

         
Figure 8.8. Josephson tunnel junction fabricated by double angle 
evaporation. Top: Sketch of the complete device with the charge carrier path. 
Bottom: SEM image of a device realized at Yale. The two aluminum electrodes 
are 40 and 70 nm thick. The intended junction is clearly visible in the center as 
well as the two others on the two sides. This image has been realized with a 10 
keV electron beam. 
 

 

e- 

e- 
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An unavoidable effect of this double angle deposition technique is the presence of 

undesired large junctions in the final circuit, which come out of the topology of the two 

layers, see Fig. 8.8. 

Of course, if the area of the intended junction is much smaller than that of the undesired 

one, this larger device is always biased on the supercurrent branch and will not generate 

quasiparticles in the device. However, the undesired junction, even if unbiased, can still 

be a source of noise. If we accept the idea of breaking vacuum we could fabricate the 

junction-based circuit without generating any unintentional junction. Of course, this 

comes with an additional cost in terms of barrier quality and reproducibility.  

A different way to go would be taking advantage of the trilayer fabrication technology, 

which has already been developed for micron sized niobium-based superconducting 

electronics. The two electrodes and barrier are all deposited without breaking vacuum on 

the bare substrate. This reduces the possible sources of contamination and non uniformity 

in the electrode as well as in the barrier. It requires the use of reactive ion etching, which 

for niobium is performed using a fluorine-based chemistry. The equivalent for aluminum 

can only be done with chlorine-based chemistry which is more dangerous and corrosive 

and requires an expensive treatment of the reaction gas products. We are planning to 

expand our fabrication facility with two reactive ion etching systems to perform both 

fluorine and a chlorine based processes. 
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9. Conclusion and perspectives 

In this work, we have presented a new type of dispersive qubit read-out in two 

different, but also closely related versions (RF-Quantronium and circuit QED). The 

principle of this type of read-out is to couple the photon number operator of a microwave 

resonator to the energy operator of the qubit. In the circuit QED version, the resonator is 

linear and is read-out by a very low noise out-of-chip HEMT amplifier. In the RF-

Quantronium version, the microwave resonator incorporates a non-linear element in the 

form of a large Josephson tunnel junction and provides some in-situ amplification. This 

last scheme can achieve a larger read-out speed and gain at the expense of a more 

complex operation. 

These two dispersive read-out schemes offer: 

1) the ability of realizing quantum non-demolition measurements: since the probe 

operator commutes with the qubit Hamiltonian, the read-out does not change the state. 

The measurement can be done in principle with very high fidelity. Although in the 

present single-shot experiments fidelity has reached a maximum of about 60%, 

improved experiments could yield fidelity deviating from unity by only few percent. 

2) access to the strong coupling regime of cavity QED, which is not easily achievable in 

present atomic physics experiments. The advantage of the superconducting circuits is 

that the mode volume can be much smaller than in the cavities used in atomic and 

molecular optics. In fact, the difficulty of working with superconducting qubits is to 

provide them with enough isolation from unwanted degrees of freedom, rather than the 

opposite as in atomic physics. 

However, although the Q1 measured with these read-out schemes are among the best ones 

obtained up to now in solid state qubits, their numerical values are lower than predicted 

by theory. The same can be said about Q2 [VAC02, CIA04, CBS04, BCB05]. 

Nevertheless, several interesting gate experiments can be performed with the qubits in 

their present state. In particular, we would like to demonstrate the entanglement between 

two superconducting qubits and the violation of Bell’s inequalities [B87, A02] in this 

case. In this latter project, the read-out fidelity is a crucial ingredient to close all 

loopholes. 
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To reach these goals, we propose to orient our research activity in two directions, which 

we believe deserve great attention. On one side, we will explore material science 

suggestions for the control of the many parameters influencing tunnel junction 

fabrication. For instance, as recently suggested by [TMP05], we would like to apply 

energy to the oxygen molecules during the barrier growth using either UV photons or 

high energy electrons to move the aluminum oxide stoichiometry toward the ideal one 

and in this way improve, hopefully, the quality of the tunnel barrier. We are also 

fabricating resonators on sapphire to improve their quality factor and we have 

measurements of losses in insulating layers in process aiming at improving the resonator 

and qubit performances. 

On the other side, we will develop new circuit design. For instance, we can integrate 

several CPB qubits in different superconducting transmission line resonators, as already 

done for a single qubit in the circuit QED. These resonators, with proper coupling 

elements, will act as quantum bus to couple distant frequency multiplexed qubits which 

will be read-out using JBAs. They will be manipulated by frequency-selective RF pulses 

to perform one and two-qubit gates. This design will fully exploits the advantages of our 

QND probe operators and will orient a search toward a fully scalable architecture for 

superconducting qubits.  

The results of these future experiments may give answers to the key question of quantum 

engineering: do fully entangled quantum superpositions still exist for complex systems 

like computers with many hundreds of qubits? 
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Appendix: text and slides from the defense presentation 

(Slide 1 - Title) 

Good afternoon, I would like to thank the jury members for accepting to participate in my 

thesis defense about design and fabrication of superconducting circuits for amplification 

and processing of quantum signals.  

I will begin by introducing the motivation of this work: to realize quantum machines we 

need to develop a new branch of physics: quantum engineering. I will then talk about 

quantum measurement, a little bit more in detail, to clarify what we mean by Quantum 

Non-Demolition (QND) measurement. The concept of QND measurement is in fact 

central in understanding our experiments. 

I will then present the actual design and fabrication of the two versions of 

superconducting circuit architecture for dispersive read-out, we have realized. I will 

present actual experimental data measuring their quality factors in order to evaluate these 

circuits. I will then conclude indicating some perspectives for future work. 

 

(Slide 2 – Do quantum machines exist?) 

In the last eighty years quantum mechanics has generated a large number of new devices: 

lasers, transistors, photo-detectors and so on. They have changed the way in which we do 

physics as well as the way in which we conduct our everyday life. Quantum mechanics 

has been instrumental in understanding and predicting the values of the basic parameters 

of these machines: material dependent work functions, transition frequencies, 

semiconductor energy gap, which involve the Planck constant and the electron mass and 

charge. These quantities are consequences of fundamental aspect ratios of the Universe 

and are in no way tunable by an engineer. On the other side, the dynamics of these 

devices at the macroscopic level is completely described by classical equations of motion 

for collective degrees of freedom, like current, voltage, electric and magnetic fields. 

 

(Slide 3 – An example of quantum machine: superconducting integrated quantum circuit) 

On this slide I am showing a superconducting integrated quantum circuit which has been 

designed and fabricated as an elementary component of a quantum computer at CEA in 
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Saclay. In fact in this talk, I will use the idea of a quantum computer as an archetype of a 

quantum machine. A quantum machine is a machine whose working is entirely described 

by quantum mechanics and for which quantum parameters are fully tunable. We would 

like to convince you that such machines are feasible and that it will be the quantum 

engineer job to realize them practically. 

These quantum circuits will have to be operated at very low temperatures to reduce 

thermal fluctuations and with very low dissipation, which means very little interactions 

with the environment, since interactions can scramble the state of our quantum circuit. It 

is then a quite natural choice to fabricate quantum circuits using superconducting 

electrical circuits, whose quantum behavior is well known. 

 

(Slide 4 - Information units) 

In a classical computer the basic information unit is the bit, which can be realized by any 

implementation of a bistable switch. It has two energy states, “0” and “1”, separated by a 

tall barrier with lot of dissipation to make the bit insensitive to small perturbations. It can 

be thought as a capacitor with or without charges, as a MOSFET in one of our CCD 

cameras. 

The quantum information unit, “qubit”, is a two-level quantum system. It may be thought 

as a complex system, like an atom, with quantized energy levels, two of which are very 

well separated by all the others and can then be treated as a two-level system, usually 

called a pseudo-spin, in an effective magnetic field. Once we restrict the description of 

this system to the subspace of the total Hilbert space defined by the two energy levels of 

interest, the “qubit” Hamiltonian is the product of a quantum of energy at the Larmor 

frequency times the Pauli operator σz. 

The great difference with the classical bit is that the qubit can be prepared in any possible 

quantum superposition of the two basic states. We are then losing the mutual exclusion 

character of the classical bit states.  

 

(Slide 5 – Surprising properties of quantum information) 

In general, the quantum superposition or qubit state can be written as shown in the slide 

and represented by a point on a Bloch sphere with a latitude and a longitude. If let free, 
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the qubit state will precess at the Larmor frequency around the z axis. We can now 

“write” or “prepare” a qubit in a particular state by exciting the system with a force 

oscillating at the qubit transition frequency and adjusting amplitude and duration of the 

excitation properly, generating in such a way a rotation of the qubit state or a one-qubit 

gate by using an interaction which do not commute with σz, that is any combination of σx 

and σy. 

The surprising properties of quantum information derive from the deep asymmetry 

between the “write” protocol and the read-out of a state. In fact, when we measure the 

energy of the qubit, we always find only one of the two eigenvalues associated to the two 

eigenstates, |0> and |1>. And if we prepare the same superposition over and over again 

we will randomly find one eigenvalue or the other with the probability shown. Only the 

eigenstates will be read-out with certainty. As you see, the read-out operation destroys 

any information about the longitude and out of the infinite set of values of the latitude, it 

only produces a single bit of information, either up or down. The collapse of the 

superposition prevents the read-out to be in general faithful and the qubit to be copiable. 

But the information contained in the superposition exists, in fact we can prepare a 

superposition and instead of reading it out right away, we can rotate the state until it 

coincides with an eigenstate and read it out faithfully. We need then to think to a smart 

way of reading-out whatever information is encoded in the qubit state 

 

(Slide 6 – The power of quantum information) 

Let me describe the power of quantum information. If we consider a classical register 

with N bits, and let’s say that N=10, we know we can use it to store a single N digit 

binary number between 0 and 2N-1, which means between 0 and 1023. If we consider the 

state of a quantum register with N qubits, it will be represented by 2N+1-2 independent 

real numbers each of which can assume an infinite number of values. For 1 qubit that 

means two real numbers, as we have seen in the latitude and longitude of the Bloch 

sphere representation. For two qubits, it becomes 6 real numbers, for three 14 and so on. 

So, the quantity of information grows exponentially with the number of qubits, where 

classically it grows only linearly in the number of bits. If we want to double the amount 

of quantum information carried by a quantum register we just need to add one more 
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qubit. But as I told you before this massive amount of information would be lost and 

wasted if not properly read-out. 

It is then clear that algorithms which are able to exploit the properties of quantum 

information are not easy to produce, still there are some examples of them, but it is not 

my intention to talk about them. I will instead concentrate on the read-out strategy. 

 

(Slide 7 – Elementary quantum processor) 

Let us now look at an elementary quantum processor. It needs logic qubits, the two level 

systems we introduced in the beginning, to realize a quantum register. Each of them 

needs a port to prepare the qubit state or implement one-qubit gates. This port has to be 

realized in such a way to avoid interactions with the environment, while not in use. The 

effect of these unwanted interactions is to induce decoherence in the qubit state, like 

depolarization or state flip and dephasing or state fuzzyness. We can define quality 

factors that tell us the average number of qubit state precession before depolarization or 

in general decoherence occur. 

In order to be able to perform error corrections on our register of N logic qubits, we will 

need at least five qubits to encode for each single logic qubit, but this is only a small 

price to pay. The real problem is that performing these corrections will also require about 

104 gate operations and since each gate operation requires about 10-20 precessions to be 

realized, we will need at least 105 decoherence free precessions, implying Q2 of the order 

of 106. 

A quantum processor will also need qubit-qubit interactions, at least between neighbor 

qubits, to realize two-qubit gates, which are required to obtain a universal gate set.  

But now, let us concentrate on the focus of this talk. For each qubit, we also need another 

port connected “on demand”, with some sort of switch, to a meter that has to read-out the 

information contained in the qubits, introducing the less possible noise and not altering 

the qubit state so that computation can go on. 

 

(Slide 8 – The meter system: an oscillator) 

Let us now talk about the concept of QND measurement. In the first place, to measure we 

need a meter. We use the most elementary meter: a quantum harmonic oscillator, for 
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instance a single mode of an oscillating electric field or an electrical LC circuit, or a 

Josephson tunnel junction, which we can model as a pendulum oscillating with small 

angles around its equilibrium position. The Hamiltonian of this system is well known and 

its dynamics is represented by a phasor, or Fresnel vector, in the plane of its conjugated 

observables. We can set the oscillator in a frame rotating at its frequency so that the 

vector would be fixed in a certain position. Now when we close the switch to perform a 

measurement, the meter interacts with the two-level system changing its oscillation 

frequency in such a way that the final frequency depends on the state of the qubit, phasor 

lagging for qubit in ground state, or leading for qubit in the excited state. This way we 

have obtained the meter we wanted with a needle pointing in different directions 

depending on the qubit state. 

 

(Slide 9 – The meter system: an oscillator with anharmonicity) 

We can wonder if we can make the two objects, qubit and meter, interchangeable, so that 

one acts as a meter or as a qubit depending on our needs. Well, this is possible as soon as 

we add a little anharmonicity to our meter, enough to separate two energy levels from the 

others and then we can treat it as a qubit or as a meter. It will be become clear by the end 

of the talk, that in this framework we can think of qubit as computational element as well 

as carrier able to transport and exchange information among different computational 

sites. 

 

(Slide 10 – We want a QND read-out) 

We now have a good meter, to be able to read-out the qubit without altering the qubit 

state we have to define the right interaction. A sufficient condition for a measurement to 

be QND is that the operator we want to measure commutes with the total Hamiltonian 

including the meter and the interaction operators.  

 

(Slide 11 – We want a QND read-out) 

In our case this means that the qubit and the interaction operators commute. It also 

implies that the energy of the qubit is conserved in the measurement process. It means we 

have to implement a measurement without dissipation, a dispersive measurement. 
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(Slide 12 – How to measure without dissipation?) 

This is not in general a new kind of measurement in physics. For instance in optics, the 

dielectric constant of a material is measured by evaluating the ratio of the difference and 

sum of the two orthogonal components read-out by photo-detectors at the outputs of a 

Mach-Zender interferometer, with or without the material inserted along one of the arms.  

 

(Slide 13 – How to measure without dissipation?) 

This ratio is a sinusoidal curve whose shift in presence of the dielectric material is 

proportional to the value of the dielectric constant. This is a measurement of the 

susceptibility, either electric or magnetic, of the material which does not require any 

energy to be left behind in the interferometer and does not change the state of the 

material. 

 

(Slide 14 – Correspondence between oscillator and spin S>>1) 

We now have all the ingredients for a measurement: qubit, meter, the type of interaction. 

But, do we really need to consider the qubit as a spin and the meter as an oscillator? Are 

they really that different? 

Here the energy levels of an oscillator are represented in the energy-position-momentum 

space by slices in a paraboloid surface where all of the oscillator dynamics takes place. 

On the other side energy levels of a spin system with a large S are represented in the 

same way. 

Well, it is true that the Hilbert space of a spin is bounded while that one of an oscillator is 

not. But we can approximate the first N energy levels of an oscillator with the 2S+1 

energy levels of the spin system. And we can make our approximation better, if we need 

it, either taking a larger spin number or considering other terms in the expansion of the 

oscillator Hamiltonian beyond the Pauli matrices, like quadrupole or hexapole and so on. 

So our meter can be treated as a pseudo-spin as well as our qubit. We will se that this 

correspondence has some relevance in the rest of the talk. 
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(Slide 15 – Possible “natural” qubit-meter interactions) 

Let us now look into which interaction satisfies the QND requirement. Here I wrote the 

most natural interaction I could think of between a qubit (spin) and a meter (oscillator) 

and then I reformulated it for the different cases in which either the qubit is itself an 

oscillator (with a little anharmonicity) or the meter is represented as a second spin. These 

are some of the most common interactions in mechanics and atomic physics, but 

unfortunately none of them is satisfying our requirement to commute with the qubit 

Hamiltonian and to not change the qubit state. 

 

(Slide 16 – A new QND read-out interaction) 

Here is a simple form that the interaction operator may take in order to commute with the 

qubit operator defining a QND measurement but also commuting with the meter operator 

so that the total system is completely symmetrical. 

 

(Slide 17 – Magnetomechanical analog) 

To drive you a little closer to my intention of making the two objects, qubit and meter, 

interchangeable, let me start showing you an ideal experiment in which the QND read-out 

is in fact realized. It is the magnetomechanical classical analog of the situation I would 

like to achieve. Here two rigid magnetic pendula oscillate around their equilibrium 

position, one of them is on top of a magnetic slab mounted with the attracting polarity up. 

The slab sits on springs that bring the slab back in its own equilibrium position. The 

pendulum and the slab attract each other depending on their distance and on the 

pendulum oscillation amplitude. Let us assume for simplicity that the line is inextensible 

and that there is no friction in the system. 

Let us see what happens if we modify the state of the left pendulum increasing the 

amplitude of its oscillations. The magnetic slab will be less attracted and will move down 

due to the spring action. Its movement through line and pulleys is transferred to a small 

weight sliding down along the axis of the other rigid pendulum. The latter will then have 

its frequency decreased. The right pendulum frequency would instead increase if the left 

pendulum oscillation amplitude was initially reduced. So, the pendulum on the right 

measures the oscillation amplitude change of the left one, without changing its energy.  
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(Slide 18 – Magnetomechanical analog) 

Moreover, the experiment can easily be made symmetric, as shown in this slide. The two 

pendula may exchange role between them, the left can become the meter of the right. 

 

(Slide 19 – A new symmetric QND read-out interaction) 

So if we want to explicit this symmetry between qubit and meter we can write the 

interaction Hamiltonian in a QND way which is also fully symmetric. 

Well, staring at this formula, it looks very easy to read and understand, but as I have 

shown you with the magnetomechanical analog example, this does not mean in any sense 

that it is easy to implement. 

 

(Slide 20 –Fabrication) 

I am now going to switch gear and explain to you briefly how we have realized the things 

I have been talking about until now. 

As I told at the beginning, I will describe quantum mechanical circuits realized using 

superconducting thin films, whose preview is shown in the slide, and operated at very 

low temperature, lower than 0.5 K, to reduce dissipation and thermal fluctuations. We 

also need, as I mentioned before, some non-linearity in our circuit to define two energy 

levels well separated from all the others. 

I will only tell you few words about the techniques we have developed to be able to 

fabricate the superconducting integrated quantum circuits, which I will properly 

introduce briefly. I will not present any fabrication recipe because, as you may know, 

fabrication is an opportunistic activity which adapts to the available equipment following 

their drifts. 

I grew up in Naples, in southern Italy, just along the Mediterranean seashore. There I 

learnt that in order to sail you cannot perform a predetermined sequence of operation, 

since there are never two identical waves, or gusts of wind or undersea streams. To be a 

good sailor, you need to know where to go and you need to feel the elements around you 

to use them at your best toward the goal of reaching the harbor. You need to hold the 

helm of your boat and adjust to the sea. This practice makes you humble in 
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acknowledging the power of the sea, while teaches you to enjoy and harness the change 

around you. 

 

(Slide 21 –Fabrication) 

I will then present what we have done and I want you to really to understand that to 

fabricate these circuits it is necessary the best possible control over all the ingredients 

used, substrates, metal films, resists, equipments, like keeping the helm for a good sailor, 

and that this control must be effective over dimensions that go from the nanometers of 

the barrier thickness of the junctions to the millimeters of the connections of the chip to 

the rest of the experimental set-up. Six orders of magnitude, like wanting to be able to 

landscape your own backyard and the entire country where you live and all it may be in 

between, at the same time. Quite a task, but we managed to sail through it !!! 

 

(Slide 22 – Josephson junction: the only non-linear and non-dissipative component) 

Let us go back to our superconducting quantum circuits. There is only one circuit 

component that can satisfy the quantum engineer’s need for non-linearity and for no 

dissipation and it is the Josephson tunnel junction, a masterpiece in most superconducting 

electronics circuits. The SEM image here is that of an actual Al-based junction fabricated 

at Yale by lift-off using the Dolan bridge patterning and double angle deposition 

technique. Ideally, a Josephson junction is made by overlapping two thin films made out 

of superconductors, separated by a nanometer thick insulating barrier, which allows for 

the tunneling of Cooper pairs without any potential difference. This is the well-known dc 

Josephson Effect. The current-flux constitutive relation shows the non-linearity of its 

inductance, which we will use to build up our qubit. We model the Josephson junction as 

an ideal non-linear inductor in parallel with a capacitor that represents the electrodes 

separated by the tunnel barrier. 

I think that it is interesting to notice how something, that looks quite different from the 

idealized version of it, actually works in a way which is very well described by that 

idealization. There is maybe here something deep about the fundamental nature of 

condensed matter physics, but this is the subject of another talk. 
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(Slide 23 – Split Cooper Pair Box Qubit) 

A quantum engineer, using Josephson junctions, a thin film superconducting reservoir 

and capacitors, realizes what it is considered one of the basic elements in 

superconducting quantum circuits: the split Cooper Pair Box. I am showing on the left a 

SEM artificially colored image of an actual realization fabricated at Yale of this ideal 

circuit component and its idealized electrical diagram. The 40 nanometers thick and six 

microns long line deposited, in this case on a silicon substrate, is called the 

“superconducting island” and it is in fact a piece of superconductor (Al in this case) 

connected to the Al circuit through two Josephson tunnel junctions in parallel and 

separated from the Nb around it by capacitors. Using the quantum theory of electrical 

circuits, presented in my thesis, it is possible to write down a Hamiltonian that describes 

the circuit dynamics of the split Cooper Pair Box in the case of symmetric junctions. It 

contains two terms: the first one represents the electrostatic energy of the Cooper pairs on 

the total circuit capacitance and is tuned by the bias voltage applied to the gate capacitor 

and the second one is the contribution of the Josephson elements and is tuned by the 

magnetic flux threaded through the circuit loop. The two quantities in red are the 

charging energy and the Josephson energy and are tunable during fabrication by 

patterning and positioning the circuit elements, adjusting the barrier thickness or 

changing the electrode material. 

 

(Slide 24 – Split Cooper Pair Box Qubit) 

This is the artificial atom I introduced at the very beginning of my talk, and its energy 

levels are fully tunable by a quantum engineer either during fabrication or in situ. If 

properly realized, the two lowest energy levels are well separated by the others and can 

be treated as a two-level system and his Hamiltonian becomes the one written on the 

slide. We eventually meet the practical realization of a pseudo-spin ½. 

 

(Slide 25 – Meter using electrical microwave resonators (1)) 

As I told you before, we need meters for being able to read-out our qubits. I am, indeed, 

showing to you an optical microscope image of a distributed resonator we have fabricated 

at Yale. It hosts the photons, the single mode oscillating electric field whose phase and 
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amplitude after transmission through it provide the meter we need. The fabrication of this 

resonator has been realized by lift-off techniques using optical lithography and by 

deposition of a thin film Nb layer using dc magnetron sputtering. The niobium 

transmission line resonator is shown together with some detail of the coupling capacitor, 

whose role will become clear in few slides. The location of the qubit in the resonator is 

also shown. 

 

(Slide 26 – Meter using electrical microwave resonators (2)) 

In this slide I am showing an optical microscope image of a lumped resonator together 

with a SEM image showing the detail of the split Cooper Pair Box in the quantum 

superconducting electrical circuit. In this case, reflection measurements of the phase and 

amplitude of a single mode oscillating electric field provide the meter. The fabrication of 

the resonator has been realized at Yale by lift-off techniques using either e-beam 

lithography and by deposition of thin film metal layers using e-beam evaporation for the 

metals and Plasma Enhanced Chemical Vapor Deposition for silicon nitride used as 

insulator. On the right an out of scale sketch of a cross-section of the bottom electrode 

and insulator of one of the lumped element capacitor we have fabricated is shown.  

Let me know spend few words on why we have developed this multilayer structure as a 

small example of the control required in quantum engineering. Silicon nitride, the 

capacitor insulator, is known to have high dielectric constant and good insulating 

properties if deposited by PECVD and it also demonstrated good step coverage. These 

are important properties for us since we wanted a leak-less thin capacitor and we wanted 

to deposit the capacitor Al top electrode at the same time of the junctions without risking 

any interruption in the connecting wires. Our silicon nitride is deposited by PECVD at 

400 C, this required the base electrode to be resistant to heat induced stress, but at the 

same time it needed a low resistivity to suppress stray inductances in the circuit on top of 

it. We obtained all of that by developing a multilayer. The first Cr layer plays the role of 

stopping degassing from the substrate from moving through the softer copper layer, 

which carries the image currents. The upper Cr/Ti layer reduces the stress transferred 

from Cu to the nitride layer while increasing at the same time the nitride adhesion to the 

metal underneath. By patterning the area, the capacitance is adjusted to obtain the 
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intended value to reduce the plasma frequency of a Josephson junction down in a range 

compatible with the rest of the experimental set-up. 

 

(Slide 27 – Two versions of the dispersive read-out strategy) 

As we already established, we want to perform a dispersive read-out of our split CPB 

qubit. Actually, we have realized two versions of this dispersive read-out strategy. In both 

cases, the measurements are realized sending a microwave signal to the qubit, while the 

qubit is biased at the optimal point where it is insensitive to first order to noise in the 

probe variable. The signal is coupled to a qubit variable whose average value at the 

optimal point is identical in the two qubit states. We measure the derivative of that qubit 

variable with respect to the probe, the susceptibility, which differs maximally between 

qubit states at the optimal point.  

The resulting state-dependent phase shift of the transmitted or reflected photon signal is 

thus amplified by a low-temperature amplifier and finally discriminated at high 

temperature against an adequately chosen threshold. 

In addition to being very thrifty in terms of energy being dissipated on chip, these new 

schemes also provide a further natural decoupling action: when the read-out signal is 

OFF, the back-action of the amplifier is also completely shut off. 

Finally, the interrogation of the qubit in a frequency band excluding zero and relatively 

narrow compared to the center frequency reduces the noise to a negligible level. In 

addition, the presence of read-out filters, like cavities, suppresses noise at the input and 

output ports. 

 

(Slide 28 – Inductively coupling qubit and meter: “RF-Quantronium” architecture) 

Let me know introduce the first of the two versions of the dispersive read-out in which 

the qubit and the meter have been inductively coupled. Here there are a SEM image and 

an idealized electrical diagram of this “RF-Quantronium” architecture. It is composed by 

a split Cooper Pair Box, our qubit of choice, read-out by a meter represented by a non-

linear lumped element resonator, made by a larger Josephson junction in parallel to a 

capacitance series.  
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This circuit has been invented in Saclay, few kilometers from where we are. In the 

original work they read-out the direction of the current, which depends on the qubit state, 

circulating in the loop biased close to the optimal point by observing the switching 

probability to a finite voltage state of the current biased large junction. They manipulate 

the state of the qubit by NMR-style pulses through the gate capacitor, which acts as the 

input port. 

The main modification we made was to introduce a dispersive read-out for it. Using 

different oscillation states at zero voltage of the non-linear resonator, large junction plus 

capacitors, driven by a pure RF signal, we measure the inverse inductance of the circuit, 

which depends on the qubit state, by observing the acquired phase shift of the reflected 

signal. The non-linear resonator acts also as our amplifier and has been named Josephson 

Bifurcation Amplifier. 

 

(Slide 29 – The RF-Quantronium reduced Hamiltonian) 

The Hamiltonian of this circuit restricted to the first two levels of the CPB, which are the 

states of our qubit, shows the terms we have been talking about in the first part of the 

talk: in green we have the qubit term, in magenta the meter term and in red the interaction 

term. The only new terms are those in brown which represent the input (charge) and 

output (phase) control of the circuit and the black term which represents the 

amplification.  

The interaction term in red clearly commutes with the qubit term, and as we pointed 

before this means the measurement is a Quantum Non-Demolition one. 

 

(Slide 30 – The RF-Quantronium reduced Hamiltonian) 

It also commutes with the meter term which indicates a further symmetry. We can better 

represent this symmetry by writing the interaction operator in a more symmetrical way 

using the equivalence between meter and spin, I introduced before. 

 

(Slide 31 – Capacitively coupling qubit and meter: “circuit QED” architecture) 

Let me now introduce the other architecture in which we have realized the dispersive 

read-out strategy by capacitively coupling the CPB qubit to the meter, which here is 
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represented by a 1-D transmission line resonator, with the qubit fabricated in the 

resonator gap. The resonator consists of a full-wave section of a Nb superconducting 

coplanar waveguide and it is connected to the rest of the experimental set up through 

coupling capacitors. 

The qubit and the resonator are fabricated on the same chip, which requires mastering 

optical (for the resonator) and e-beam (for the qubit) lithography techniques. 

The dispersive read-out is realized by measuring at the optimal point the capacitance of 

the circuit, which depends on the qubit state, by observing the acquired phase shift of an 

RF signal transmitted through the cavity at its resonant frequency.  

We have named this architecture “circuit Quantum ElectroDynamics” since it could be 

seen as the electrical circuit version of the well-known cavity QED. In the case of the 

cavity QED, an atom passing through a Fabry-Perot cavity interacts with the photon in 

the cavity with a coupling g, the vacuum Rabi frequency, absorbing or emitting a photon 

at the transition frequency, where γ and κ are respectively the decay rate of the excited 

state of the atom and the rate at which photons leak out of the cavity. In the electrical 

circuit version, the split Cooper Pair Box plays the role of the atom and the cavity role is 

taken by the transmission line resonator terminated on the two sides by coupling 

capacitors playing the role of mirrors. 

In the electrical version, the strong coupling regime where g is much bigger than γ and κ 

has been realized, a regime that is not easily accessible in atomic physics. 

From the point of view of a quantum engineer the electrical circuit version is clearly 

more interesting because the “artificial atom” does not have the God-given parameters of 

real atoms but can indeed be tuned almost at will both at the fabrication level (Ec and EJ) 

and at the measurement level by the voltage bias at the gate capacitance and the flux bias 

with an externally applied magnetic field. 

 

(Slide 32 – The circuit QED reduced Hamiltonian) 

I am not going in any more detail of this architecture, except showing the Hamiltonian for 

the full circuit at the optimal point restricted to the first two states of the CPB, which are 

the states of our qubit.  
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This Hamiltonian contains the brown terms which, as before, represent the input and 

output control, the green term of the qubit, the magenta of the meter but the term in red, 

the interaction term, is actually one of those we discarded in our initial discussion. 

However, if we limit our measurement at large detuning between the qubit and the 

resonator frequency, larger than g, we can expand the Hamiltonian at the second order in 

g and arrive at the more friendly form on the slide, where the brown term have been 

omitted for simplicity. 

Here the red interaction term clearly commutes with the qubit term indicating a Quantum 

Non-Demolition measurement, at least up to the second order in g. 

 

(Slide 33 – The circuit QED reduced Hamiltonian) 

Here too the interaction term commutes with the meter term and can be presented in a 

form which underlines this further symmetry, using again the concepts I introduced 

before. 

 

(Slide 34 – Rabi oscillations: latitude control) 

I would like to show only some of the results of experiments that have been run using the 

two dispersive architectures I just presented. 

The first set of results deals with latitude control of the qubit state, generating what are 

called Rabi oscillations. The experiment consists in applying at the input (charge) port a 

voltage pulse at the qubit transition frequency and varying its amplitude and time 

duration. This pulse performs a σx rotation of the qubit starting from the ground state, 

where the qubit was prepared just by waiting and letting it relax. Then in the RF-

Quantronium case, each time a read-out pulse follows. The figure on the left shows all 

the data accumulated by performing this experiment 32 million times in about 10 

minutes. It reports the results as switching probability between the two oscillation states 

at zero voltage of the JBA versus pulse duration. On the right hand side, results of a 

similar group of experiments in the case of circuit QED are shown. Here, simultaneously 

with the detuned input pulse, a continuous dispersive measurement of the qubit state is 

performed by determining phase and amplitude of a very weak coherent microwave beam 

(about one photon populating the resonator on average) transmitted through the resonator 
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at its resonant frequency. The data accumulated over more than 5 millions repetitions of 

this experiment are presented as occupation probability of the excited state versus pulse 

length.  

In the RF-Quantronium case a discrimination power of about 61%, which is 87% of the 

calculated value, was observed. In the circuit QED case, the measurement showed a 

transmitted beam phase contrast of about 85%, and gave a level population oscillation 

with a visibility approaching unity. 

 

(Slide 35 – Excited state relaxation: measuring Q1) 

The second set of results deals with measuring the time it takes for the qubit excited state 

to decay. This is a measurement of Q1, the depolarization quality factor, we defined early. 

The experiment consists in applying at the input (charge) port a calibrated σx rotation, a π 

pulse, to flip the qubit state from ground to the excited state. On the left side, in the “RF-

Quantronium” case the data have been plotted versus a waiting time between the π pulse 

and the read-out pulse. The figure reports the data as switching probability between the 

two oscillation states of the JBA over about 50,000 realizations of the experiment for 

each point. The exponential decay defines T1. 

On the right hand side, results of a similar group of experiments in the case of circuit 

QED are shown. Here, the same weak continuous measurement is performed and the data 

are presented as the time dependence of the transmitted beam phase shift averaged over 

about 50,000 realizations of the experiment. Here too, the exponential decay defines T1. 

 

(Slide 36 – Ramsey fringes: longitude control    measuring Q2) 

The third and last set of results deals with longitude control of the qubit state, observing 

what are called Ramsey fringes in order to measure Q2, the decoherence quality factor, 

which is crucial to evaluate the possibility of using the qubit in an actual computation. In 

this experiment, two π/2 pulses are applied at the input port of the qubit at a frequency 

slightly detuned from the qubit transition frequency (20 MHz on the left side, 6 MHz on 

the right) followed in both cases by a read-out pulse. A free evolution was introduced 

between the two pulses and the data are plotted versus pulse separation. In the RF-

Quantronium case, the oscillation of the switching probability gave a T2=300 ns, which 
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implies Q2=38,000. In the circuit QED case, T2=500 ns has been measured with 

Q2=14,000. 

 

(Slide 37 – Comparison with published results) 

How these results compare with the ones published in literature regarding 

superconducting qubits? This is the question I tried to answer with the table presented in 

this slide. In the first place I think that the best way to compare results obtained using 

qubits with different transition frequencies is to compare quality factors. So, in green are 

the experiments I have been talking about and the Q1 and Q2 columns are the one to 

compare. 

It is evident that if we look at Q1 only few set of experiments (six to be precise, the two 

we did, and the ones done at Saclay, Delft, NTT and by the Yale/Chalmers collaboration) 

present similar results, and if we then look at the more relevant Q2 only three of them are 

in the same range (the two we did and the one done in Saclay). By the way, none of them 

obtains results for either Q1 or Q2 that match the theoretical predictions and even if there 

have been a lot of fingerpointing to some of the possible reasons, I am not sure we know 

so much about them.  

 

(Slide 38 – Perspectives: improving the parts) 

Of course, there is always room for improvements both in the qubit and in the meter. 

Material science may help in dealing with better control of the barrier properties or with 

different choice of substrates for our circuits as well as going beyond lift-off technique 

can help in eliminating “inactive” junctions and optimizing electrode patterning and 

resonator quality. 

 

(Slide 39 – Perspectives: good enough for new experiments) 

But at the same time I think that what we have achieved can be considered good enough 

for some new gate experiments and to demonstrate entanglement between qubits and 

eventually Bell’s inequalities violation. I also think we are ready to develop some new 

circuit design toward fully scalable architectures for superconducting qubits. For 

instance, integrating several qubits in different transmission line resonators, properly 
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coupled to act as quantum bus to couple distant frequency multiplexed qubits, read-out 

using JBAs and manipulated by RF pulses to perform universal gate protocols.  

I believe that these future experiments may help quantum engineers to get closer to their 

Holy Grail: 

 

(Slide 40 – Acknowledgement) 



Design and fabrication of 
superconducting circuits for amplification 

and processing of quantum signals

Luigi Frunzio

Thesis Defense, Orsay, May 18th, 2006

Outline

Motivation: quantum engineering for quantum machines

Quantum non demolition (QND) measurement

Design and fabrication of practical architectures

Experimental results

Perspectives



Do quantum machines exist ?

Bandstructure of Si

Laser CMOS transistor

Discrete energy levels

Quantum mechanics determines material parameters
but

collective degrees of freedom remain classical …



An example of quantum machine: 
superconducting integrated quantum circuit

Elementary part of quantum information processor
Courtesy of Quantronics Group

operates quantum-mechanically
and

quantum parameters are engineerable



Information units

01
ˆ ˆ zH ω σ=

Classical bit

Two-level quantum systemBistable switch

Quantum bit (or “qubit”)

0 1ψ α β= +“0” or “1”

E

}



Surprising properties of quantum information

( ) ( )2 2cos 2 0 sin 2 1i ie eϕ ϕψ θ θ−= +

latitude longitude

Write

Read-out

x

y

z



The power of quantum information

One number between 0 and 2N -1=1023

REGISTER WITH N=10 BITS:

2 1
( ) ( )

0

N

N N
n n

n

aψ ψ
−

=

= ∑

REGISTER WITH N QUBITS:

There are 2N+1-2 independent 
real numbers specifying the 
wave function

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1

1 1 1 1 1 1

1 1 0

0 0 1

0 1 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 1 1

1 1 1

0

0

0

0

0

1

1



Elementary quantum processor

1 01 1Q Tω=

2 01 2Q Tω=



The meter system: an oscillator

† 1
20

ˆ ( )H a aω= +

int
ˆ ˆ ˆˆ

tot qubit meterH H H H= + +

In the rotating frame



The meter system: an oscillator
with anharmonicity

† 1
20

ˆ ( )H a a higher order termsω= + +



We want a QND read-out

ˆ 0ˆ ,qubit totHH⎡ ⎤ =⎣ ⎦

int
ˆ ˆ ˆˆ

qubit metertotH H H H= + +

Quantum Non-Demolition measurement:



We want a QND read-out

t
†

0 inˆˆ ˆ
tot L zH Ha aω σ ω= + +

ˆ 0ˆ ,qubit totHH⎡ ⎤ =⎣ ⎦

Quantum Non-Demolition measurement:

int, ˆˆ 0qubit HH⎡ ⎤ =⎣ ⎦



How to measure without dissipation?

A dispersive measurement – measures susceptibility, not losses
“leave no energy behind !”



How to measure without dissipation?

A dispersive measurement – measures susceptibility, not losses
“leave no energy behind !”



Correspondence between oscillator and spin S>>1

zS S N= − +

†ˆ
LH a aω=

N

ˆˆ
L zH Sω=



Possible “natural” qubit-meter interactions

Interaction between oscillators
† †

int int 1 1 2 2
ˆ ( )( )H a a a aω= + +

Interaction between spins

int int 1 2Ĥ S Sω= ⋅
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The circuit QED reduced Hamiltonian
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The circuit QED reduced Hamiltonian
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Rabi oscillations: latitude control

“RF-Quantronium” “Circuit QED”



Excited state relaxation: measuring Q1

tw

π

READOUT

“RF-Quantronium” “Circuit QED”
T1=5.0 µs @ ν01=9.5 GHz -> Q1=3.0×105

T1=1.3 µs @ ν01=19 GHz  -> Q1=1.6×105
T1=7.3 µs @ ν01=4.3 GHz 

-> Q1=2.0×105



Ramsey fringes: longitude control
measuring Q2

RF-Quantronium Circuit QED

∆t



Comparison with published results

Duty et al., PR B69, 140503 (2004)0.0163.6Charge/ChargeChalmers

Astafiev et al., PRL 96, 137001 (2006)
Astafiev et al., PR B69, 180507 (2004)

0.00050.075Charge/ChargeNEC

Lehnert et al., PRL 90, 027002 (2003)0.0166.276Charge/ChargeYale/Chalmers

Johansson et al., PRL 96, 127006 (2006)0.031.34.35Flux/FluxNTT

Plourde et al., PR B72, 060506 (2005)0.040.14.0Flux/FluxUCB

Bertet et al., PRL 95, 257002 (2005)0.71.45.5Flux/InductanceDelft

Xu et al., PR B71, 064512 (2005)0.0060.0049.8Phase/PhaseMaryland

Martinis et al., PRL 95, 210503 (2005)0.40.144.7Phase/FluxNIST-UCSB

Sillanpää et al., PRL 95, 206806 (2005)0.0030.00511Charge/CapacitanceHelsinki

Vion et al., Science 296, 886 (2002)
Collin et al., PRL 93, 157005 (2004)

5.2
3.1

1.9
0.5

16.5
16.4

Charge/Phase
Quantronium

Saclay

Wallraff et al., PRL 95, 060501 (2006)1.42.04.3Charge/Capacitance 
Circuit QED

Yale

Siddiqi et al., PR B73,054510 (2006)1.9
3.8

3.0
1.2

9.5
19

Charge/Inductance
RF-Quantronium

Yale

ReferenceQ2
[×104]

Q1
[×105]

ν01
[GHz]

Qubit
(write/read)

Institution



Perspectives: improving the parts

qubit

• Eliminating the “inactive” junctions

• Improving barrier stoichiometry

• Changing electrode patterning

• Substrate quality

meter

• Resonator quality

• Losses at microwave frequencies

• Coupling to qubit



Perspective: good enough for new experiments

• Controlled two qubits experiments: universal gate set

• Photon number splitting: Fock’s states

• Multilayered structures: fully scalable qubit architectures

• Bell’s inequalities violation

Quantum Engineer’s Holy Grail

Do fully entangled quantum superpositions still exist for 
complex systems like computers with many hundreds of 
qubits?
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