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Real-time quantum error correction beyond 
break-even

V. V. Sivak1,2,3,6 ✉, A. Eickbusch1,2,3, B. Royer1,2,3,4,5, S. Singh1,2,3, I. Tsioutsios1,2,3, S. Ganjam1,2,3, 
A. Miano1,2,3, B. L. Brock1,2,3, A. Z. Ding1,2,3, L. Frunzio1,2,3, S. M. Girvin1,2,3, R. J. Schoelkopf1,2,3 & 
M. H. Devoret1,2,3 ✉

The ambition of harnessing the quantum for computation is at odds with the 
fundamental phenomenon of decoherence. The purpose of quantum error correction 
(QEC) is to counteract the natural tendency of a complex system to decohere. This 
cooperative process, which requires participation of multiple quantum and classical 
components, creates a special type of dissipation that removes the entropy caused by 
the errors faster than the rate at which these errors corrupt the stored quantum 
information. Previous experimental attempts to engineer such a process1–7 faced the 
generation of an excessive number of errors that overwhelmed the error-correcting 
capability of the process itself. Whether it is practically possible to utilize QEC for 
extending quantum coherence thus remains an open question. Here we answer it by 
demonstrating a fully stabilized and error-corrected logical qubit whose quantum 
coherence is substantially longer than that of all the imperfect quantum components 
involved in the QEC process, beating the best of them with a coherence gain of 
G = 2.27 ± 0.07. We achieve this performance by combining innovations in several 
domains including the fabrication of superconducting quantum circuits and 
model-free reinforcement learning.

Implementing a single correctable logical qubit requires a physical 
system with a large state space. It should accommodate the code 
subspace and its redundant replicas where the logical information will 
be transferred without distortion when physical errors occur8. This 
redundancy is inextricably associated with an additional operational 
cost of QEC, known as the control overhead. In the search for an effi-
cient way to alleviate the detrimental effects of the overhead, bosonic 
codes9–11 based on the state space of a harmonic oscillator have been 
proposed as a promising alternative to the standard approach based 
on registers of physical qubits12–14. In hybrid architectures, these two 
approaches are complementary, with qubit-register codes built on 
logical qubits dynamically protected with efficient base-layer bos-
onic QEC15,16.

Although some aspects of QEC have been demonstrated with 
superconducting circuits1–7,17, trapped ions18–20 and spins in solid-state  
systems21–23, the control overhead has prevented current-day experi-
ments from getting to the heart of what QEC promises to achieve—
extending the lifetime of quantum information stored in the system. 
This extension is quantified by the gain G, defined as the ratio between 
the coherence time of an actively error-corrected logical qubit and the 
best passive qubit encoding in the same system. The break-even point 
is reached at G = 1. A bosonic cat-code experiment17 managed to achieve 
G = 1.1, but with a code that continuously shrinks to the vacuum state. 
Other experiments with various bosonic codes1–3 and qubit-register 
codes4–7 have achieved G = 0.1−0.9.

We demonstrate full code stabilization and error correction with 
gain G = 2.27 ± 0.07 using the Gottesman–Kitaev–Preskill (GKP) encod-
ing9 of a logical qubit into grid states of an oscillator. The QEC of this 
code was previously realized in superconducting circuits3 and trapped 
ions18. In our work, similarly to ref. 3, the oscillator is an electromagnetic 
mode of a superconducting cavity whose quantum state is manipulated 
using a transmon auxiliary qubit (Fig. 1a). Our system has an average 
relaxation and dephasing time of T = 280 μst

1  and (echo) T = 240 μsE
t

2  
for the tantalum-based transmon24, and T = 610 μsc

1  and T = 980 μsc
2  

for the high-purity aluminium cavity25. We implement in this system a 
‘trickle-down’ QEC scheme based on the proposals in refs. 18,26, which 
includes real-time classical processing and measurement-based feed-
back. We train the QEC circuit parameters in situ with reinforcement 
learning (RL)27–29, ensuring their adaptation to the real error channels 
and control imperfections of our system. At peak performance, the 
achieved lifetimes of logical Pauli eigenstates are TX = TZ = 2.20 ± 0.03 ms 
and TY = 1.36 ± 0.03 ms, and the logical Pauli error probabilities per 
QEC cycle are pY = (4.3 ± 0.4) × 10−4 and pX = pZ = (1.81 ± 0.04) × 10−3. With 
such low logical error probabilities, we explore the QEC process on a 
previously inaccessible timescale of thousands of cycles, subjecting 
to scrutiny the standard assumptions of the theory of QEC, such as the 
stationarity of error rates and absence of leakage-induced correlations. 
Finally, we carry out error injection experiments to identify the main 
factors limiting logical performance and chart the path towards the 
next-generation logical qubit.
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Engineering error correction
We now explain the principles of our experiment. Its core idea is to real-
ize an artificial error-correcting dissipation that removes the entropy 
from the system in an efficient manner by prioritizing the correction 
of frequent small errors, while not neglecting rare large errors. This 
idea is illustrated in Fig. 2a for a cartoon system in which redundancy 
is achieved with only four orthogonal subspaces in total, in which 0C  is 
the code subspace and C1–C3 are the error subspaces. The error sub-
spaces of our actual infinite-dimensional system are described in Sup-
plementary Section  IV.B. In this cartoon example, the standard 
dissipation scheme, no. 1, is maximally efficient from the perspective 
of entropy removal, because it corrects any error in a single step. Such 
an approach is taken by all qubit-register stabilizer codes, for which 
measurement of the stabilizers, syndrome decoding and recovery, when 
composed, realize a dissipation channel of high Kraus rank. Although 
this approach can also be applied to the oscillator grid code (Methods), 
its implementation entails large control overhead, which in practice 
might bring more errors than it is designed to correct. By contrast, the 
trickle-down dissipation scheme, no. 2, has the capacity to correct all 
of the same errors, but it is not able to do so in a single step. Impor-
tantly, the most probable small errors, corresponding to the error space 
C1, are still corrected in a single step. Owing to this simplification, such 
an approach reduces control overhead in the grid code, and therefore 
it was adopted in our work. The continuous-time version of approach 
no. 2 was also demonstrated for other bosonic codes in refs. 2,30.

The stabilizer generators of an ideal square grid code are S D l= ( )X
S0  

and S D il= ( )Z
S0 , in which l = 2πS  is the length of a grid unit cell, and 

D α αa α a( ) = exp( − * )†  is the displacement operator for an oscillator 
with creation and annihilation operators a† and a. Logical Pauli opera-
tors of the ideal code are defined as X S= X

L 0  and Z S= Z
L 0 . The ideal 

codewords obey perfect translation symmetry in phase space and thus 
contain an infinite amount of energy. The finite-energy code is obtained 
by applying a normalizing envelope operator N a a= exp(−Δ )Δ

2 †  to the 

ideal codewords, in which Δ parametrizes the code family that 
approaches the ideal code in the Δ → 0 limit. In phase space, this para-
meter controls the extent of the codewords and the squeezing of their 
probability peaks. Our experimental Wigner functions of the code-
words with Δ = 0.34 are shown in Fig. 1c. The operators of the finite-
energy code are obtained through the similarity transformation 
induced by the envelope operator26 (for example, S N S N=X Z X Z

Δ
/

Δ 0
/

Δ
−1).

To realize an error-correcting dissipation channel RΔ for the finite- 
energy code, there is at our disposal a single auxiliary qubit and a clas-
sical controller. In principle, with such resources, it is possible to imple-
ment arbitrary quantum channels of Kraus rank 2M by recycling the 
auxiliary qubit M times and using feedback operations conditioned on 
the state of the classical M-bit memory of the controller31,32. Here we 
construct a rank-4 error correction channel as a composition of two 
rank-2 dissipators R R R∘= X Z

Δ Δ Δ  that drive the system towards the  
+1 eigenspace of the finite-energy code stabilizers S X Z

Δ
/ . A general rank-2 

dissipation can be implemented as a unitary U∅ that entangles the sys-
tem with the auxiliary qubit, followed by a projective measurement of 
the auxiliary qubit with outcome b and a classically conditioned unitary 
Ub (Fig. 2b).

In our experiment, any unitary is compiled down to a set of primitive 
operations: qubit rotations around any equatorial axis R θ( ) =φ  

i θ φ φexp[− ( /2)(cos σ + sin σ )]x y  implemented as 32-ns Gaussian pulses 
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Fig. 1 | Experimental system. a, The sample consists of a superconducting 
aluminium cavity and a sapphire chip with a transmon circuit, readout 
resonator and Purcell filter. The electromagnetic mode of the cavity 
implements a harmonic oscillator, and ∣ ∣g e{ ⟩, ⟩} levels of the transmon are used 
as an auxiliary qubit to assist in oscillator QEC. b, The sample is cooled in a 
dilution refrigerator and controlled with microwave and digital electronics. 
The QEC process is orchestrated by a field-programmable gate array (FPGA), 
and its parameters are optimized in situ by an RL agent implemented on a 
graphics processing unit (GPU). c, Experimental Wigner functions of the Pauli 
eigenstates of a grid code with Δ = 0.34 measured after six QEC cycles. Image of 
the dilution refrigerator was adapted from ref. 37.
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Fig. 2 | QEC implementation and optimization. a, Cartoon comparison of 
error-correcting dissipation channels. The standard dissipation scheme, no. 1, 
corrects any error in a single step, whereas the ‘trickle-down’ dissipation 
approach, no. 2, can be viewed as directional hopping between error spaces 
that eventually brings the quantum state to the code space 0C . The colours of 
the arrows correspond to unique Kraus operators, whose number is equal to 
the channel rank. Higher-rank dissipation removes entropy more efficiently, 
but incurs larger control overhead. b, Implementation of a general rank-2 
channel on the oscillator using a single auxiliary (aux.) qubit. The unitary U∅ is 
approximated as a parametrized circuit consisting of N layers of qubit rotations 
and oscillator conditional displacements. Each conditional displacement gate 
utilizes a large intermediate displacement of magnitude ∣α∣ to enhance the gate 
speed. c, Evolution of reward of the RL agent during the training. The black 
arrow indicates the start performance based on independent calibrations. 
Expectations (denoted with E) of Pauli operators are taken in their respective 
eigenstates and include state preparation and measurement (SPAM) errors.  
d, One realization of the learning trajectory of the intermediate photon 
number used to execute the big conditional displacement gate (‘B’ in the SBS 
circuit). Light blue shade shows the variance of the sampled parameter values 
during the training, and dark blue line shows the mean.
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with spectral corrections33; oscillator displacements D(α) implemented 
as 40-ns Gaussian pulses; relatively slow conditional rotations θCR( ) = 

iθ a aexp( σ )z
†  implemented by waiting a certain amount of time  

under the dispersive coupling Hamiltonian Hd/ħ = χσza†a/2, with 
χ = 2π × 46.5 kHz; and virtual oscillator rotations ϑ ϑR i a a( ) = exp( )V

†  
implemented dynamically on the field-programmable gate array in 
448 ns. These primitives are used to construct a fast echoed conditional 
displacement gate ECD(β) = σxD(σz β/2) as shown in Fig. 2b, whose speed 
∂t∣β∣ = ∣α∣χ is enhanced compared to the native interaction strength χ 
by a large factor ∣α∣—the magnitude of the intermediate displacement 
in phase space3,34.

Both rank-2 dissipators are then implemented as follows: the unitary 
U∅ is decomposed as a parametrized circuit consisting of layers of qubit 
rotations Rφ(θ) and entangling ECD(β) gates, whereas the unitary Ub is 
realized as only a virtual rotation (Fig. 2b). The role of Ub is twofold: to 
implement switching between X

ΔR  and Z
ΔR  by changing the quadrature 

of the oscillator by π/2, and to compensate for a spurious rotation due 
to the always-on dispersive coupling Hd. The role of U∅ is to approximate 
the mapping of the finite-energy stabilizer onto the state of the auxil-
iary qubit together with autonomous back-action that pushes the state 
from the error spaces towards the code space. Several ansatze for the 
decomposition of U∅ were proposed in ref. 26. We adopt a modified 
version of the so-called small–big–small (SBS) protocol, named to 
reflect the relative amplitudes of the three conditional displacement 
gates that it contains: β l i i= × ( Δ /2, 1, Δ /2)S

2 2  (see Supplementary Sec-
tion IV.C for further details).

A single application of the resulting composite dissipator RΔ realizes 
a QEC cycle; we refer to applications of constituent dissipators X Z

Δ
/R  as 

even/odd cycles. In our implementation, the duration of a QEC cycle 
is tc = 2 × 4.924 μs, which includes execution of unitary gates, measure-
ments of the auxiliary qubit, and real-time processing and decision- 
making by the controller.

Learning QEC circuit parameters
Although the SBS ansatz and gate calibrations lead to a functioning 
QEC process, the highest level of performance cannot be achieved with 
a crude model of the system based on a few independently calibrated 
parameters—any such model will inevitably contain unrealistic assump-
tions. Some model inaccuracies and unknown control imperfections 
can be compensated by closed-loop optimization with direct feedback 
from the experimental setup. Previously, pulse-level optimization was 
successfully utilized to improve gate fidelities35,36, but it was never 
applied to enhance the performance of QEC. Here we apply a real-time 
RL agent to this task, as illustrated in Fig. 1b. We use the proximal policy 
optimization algorithm28,29, which was shown in simulations to out-
perform other approaches when applied to high-dimensional prob-
lems with stochastic objectives that arise in quantum control37. We 
parametrize the QEC circuit with P = 45 parameters that include the 
amplitudes of various primitive pulses in the circuit decomposition, 
parameters of the auxiliary qubit reset, and so on.

The training episodes begin with dissipative pre-cooling of the oscil-
lator followed by feedback cooling to prepare the system ground state 
g⟩ 0⟩∣ ∣  (Methods). Then, a logical Pauli eigenstate X+ ⟩∣  or ∣ Z+ ⟩  is initial-

ized with a method from ref. 34, and a candidate QEC protocol is run for 
T = 160 cycles. We chose this duration to enhance the signal-to-noise 
ratio of the reward, similar to the technique used to sample randomized 
benchmarking cost functions35,36. At the end of the episode, the reward 
for the RL agent is obtained by measuring the logical Pauli operator XL 
or ZL (depending on the initial state), which provides a proxy for the 
logical lifetime. This logical measurement is carried out with one-bit 
phase estimation of the ideal-code Pauli operators3,38, and its fidelity 
is intrinsically limited to (1 + e )/2−πΔ /42

 (ref. 16). Although there exist 
methods of logical readout adapted to the finite code envelope18,26,39, 
we use the phase estimation method to avoid biasing the RL agent 

towards a particular finite envelope size and to let it pick the optimal 
size given the error channels of our system.

By construction, the reward incentivizes the RL agent to find a QEC 
protocol that leads to the longest logical qubit lifetime. The typical 
evolution of the average reward during the training is shown in Fig. 2c. 
The performance level indicated with a black arrow is achieved with 
independent calibrations of the system and control parameters (Sup-
plementary Section II). The RL agent substantially improves on this 
baseline performance in two stages: typically, in the first hundred train-
ing epochs, the agent corrects large errors in the initial parameter 
values, and in the subsequent few hundreds of epochs, it fine-tunes 
the circuit parameters to achieve the highest performance.

Several trends in the learning trajectories showcase the benefits 
of the model-free RL approach (see Supplementary Section IV.D for 
further details). Here we highlight only a single illustrative example. In 
our implementation of the ECD gate, there exists a nontrivial tradeoff 
between coherent and incoherent errors: the gate can be implemented 
faster by displacing the oscillator further in phase space (that is, popu-
lating it with more intermediate photons), but this makes the gate more 
susceptible to high-order nonlinear effects34. Moreover, some choices 
of this intermediate photon number can result in a Stark shift of the 
auxiliary qubit into resonance with a spurious degree of freedom (for 
example, a two-level defect40). How these tradeoffs translate into logical 
qubit performance is difficult to model, but the RL agent can learn the 
optimal value of the large intermediate displacement without a model. 
As shown in Fig. 2d, it chose to reduce the intermediate photon number, 
improving the performance of QEC at the cost of a much slower gate.

Observing QEC beyond break-even
After the training is finished, we pick the best-performing QEC circuit 
for further characterization. Here we focus on the ability of QEC to 
create a good quantum memory (that is, to convert the effect of passage 
of time into an identity channel I ρ ρ: →  that preserves all qubit states).

A metric quantifying the deviation of any quantum channel E  from 
the identity is the average channel fidelity, F E E∣ ∣ ∣ ∣∫ ψ ψ ψ ψ ψ[ ] = d ⟨ ( ⟩⟨ ) ⟩,  
in which the integral is over the uniform measure on the qubit state 
space, normalized so that ∫ ψd = 1. In general, this fidelity decays over 
time in a nontrivial way, but to leading order it evolves as t Γt( ) ≈ 1 − 1

2F , 
in which the decay rate Γ is equivalent to an average decoherence rate 
of all pure states on the qubit Bloch sphere. Conveniently, it suffices 
to average across the six Pauli eigenstates alone41, leading to an exper-
imental procedure for extracting Γ that can be applied to any kind of 
qubit irrespective of its error channel. In Fig. 3, we show the results of 
such an experiment, conducted for three different qubit encodings in 
our system: the g e{ ⟩, ⟩}∣ ∣  subspace of the transmon, the { 0⟩, 1⟩}∣ ∣  sub-
space of the oscillator, and the grid code of the oscillator (with and 
without QEC).

Both the ∣ ∣{ 0⟩, 1⟩} and g e{ ⟩, ⟩}∣ ∣  qubits are subject to amplitude damp-
ing and white-noise dephasing channels, captured by their respective 
T1 and T2 times, with a fidelity decay constant given by Γ = (1/T1 + 2/T2)/3. 
From the perspective of a quantum memory, the best uncorrectable 
physical qubit in our system is ∣ ∣{ 0⟩, 1⟩}, shown in Fig. 3b, which achieves 
Γ{01} = (800 μs)−1. The g e{ ⟩, ⟩}∣ ∣  qubit, shown for completeness in Fig. 3a, 
achieves only Γ{ge} = (250 μs)−1.

Higher excited states of the oscillator have a shorter lifetime due to 
bosonic enhancement of spontaneous emission. Therefore, as with 
any QEC code, encoding a qubit using grid states incurs an immediate 
penalty in the fidelity decay rate. Moreover, this natural decay, shown 
in Fig. 3c with open circles, takes the grid states outside the logical 
manifold and eventually towards the vacuum state 0⟩∣ .

Our error-correcting dissipation stabilizes the grid-code manifold 
and, together with naturally occurring dissipation, leads to a logical Pauli 
channel within this manifold, with the lifetimes of logical Pauli eigen-
states of TX = TZ = 2.20 ± 0.03 ms and TY = 1.36 ± 0.03 ms. Under the Pauli 
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channel, the fidelity decay constant is given by Γ = (1/TX + 1/TY + 1/TZ)/3, 
which in our experiment amounts to ΓGKP = (1.82 ms)−1.

The principal metric characterizing the quality of QEC from the 
perspective of quantum memory is the coherence gain of an actively 
error-corrected logical qubit over the best passive qubit encoding. In 
our experiment, the highest achieved gain is G = Γ{01}/ΓGKP = 2.27 ± 0.07, 
confidently beyond break-even.

QEC process characterization
Having characterized the logical qubit as a quantum memory, we next 
examine the properties of the QEC process. Auxiliary qubit measure-
ment outcomes, referred to as syndromes, inform us which stochastic 
path the QEC process has taken in each cycle. In Fig. 4a we show a (sta-
tistically unrepresentative) sample of these outcomes that comprise 
trajectories of different experimental shots. Such a dataset contains an 
immense amount of information about the QEC process, not available 
in previous experiments with the grid-code QEC3,18.

To interpret this dataset, we adopt here a simplified model of 
trickle-down dissipation such as depicted in Fig. 2a, which captures 
the essence of our QEC process. The caveats of this model and the exact 
Kraus decomposition of our QEC circuit are provided in Supplementary 
Section IV.B. In this simplified model, the g outcome indicates that the 
state was projected onto the code space, whereas an e outcome indi-
cates that the state was transferred one level down the error hierarchy, 
partially or completely correcting an error.

From the dataset in Fig. 4a, we observe that most outcomes are g 
(green), which means that errors are rare. The stochastic pattern of e 
outcomes (yellow) reflects randomly occurring errors. Most errors are 
small and, when corrected, leave single isolated e outcomes. An exam-
ple syndrome string probably generated by a large error in one quad-
rature is indicated with an arrow: it has a characteristic eg/eg/... pattern. 
We also observe isolated auxiliary qubit leakage events (red). Leakage 
to ∣ f ⟩ is reset in the same cycle with high probability. Sometimes,  

leakage persists for multiple cycles (streak of red), owing to the trans-
mon escaping to a state higher than f ⟩∣ , which is not addressed in our 
reset scheme.

The average probability of each outcome as a function of time is 
shown Fig. 4b, in which the process starts from a ∣ X+ ⟩ state. After about 
10 cycles of initial state correction, the process settles into a dynamical 
equilibrium that persists for at least a hundred thousand cycles  
(the longest measured here) without any notable increase of the error 
rates over time. Detailed analysis reveals that the QEC process is nearly 
stationary, with residual deviations from stationarity caused by the 
transmon leakage to states higher than ∣ f ⟩ at a rate 1.3 × 10−4 per cycle 
(Supplementary Section IV.F).

In this dynamical equilibrium, physical errors excite the quantum 
state out of the code space with probability perr = 0.13 ± 0.02 per QEC 
cycle, as deduced from the statistics of syndrome outcomes. The com-
petition between physical errors and error-correcting dissipation 
results in a ‘thermal’ distribution across the subspaces with probabil-
ity ⟨Π ⟩ = 0.82 ± 0.020  of occupying the code space (Methods). Having 
perr ≪ 1 justifies the use of low-rank error-correcting dissipation in our 
system, which is sufficient to prevent physical errors from accumulat-
ing and causing logical errors. At the highest achieved QEC gain, the 
logical Pauli error probabilities per QEC cycle are pY = (4.3 ± 0.4) × 10−4 
and pX = pZ = (1.81 ± 0.04) × 10−3. By comparing the total logical error 
probability, pX + pY + pZ, to the physical error probability, perr, we con-
clude that 97% of the errors are successfully corrected by our process.

As rare large errors require several cycles to be corrected, the QEC 
process is weakly time-correlated with a correlation length of 3.9 ± 0.1 
cycles (Supplementary Section IV.F). To understand these correlations, 
in Fig. 4c we inject displacement errors along the position quadrature 
and monitor the syndromes that they produce as a function of time. 
Such errors leave traces of e outcomes in proportion to their distance to 
the closest logical operation. For example, a displacement of length 0,  
equivalent to a logical identity, leaves no syndrome trace; a displace-
ment of length lS/2 is close to a logical bit flip of the finite-energy code, 
and hence it leaves only a small syndrome trace; on the other hand, a 
midway displacement of length lS/4 makes a large-distance error that 
takes the longest time to correct with a low-rank dissipator, generating 
a lasting trace of e outcomes.

This displacement error injection experiment confirms that errors 
indeed generate the e syndromes. To verify whether these syndromes 
herald the occurrence of errors, we carry out post-selection of trajec-
tories with different syndrome patterns. In particular, we discard tra-
jectories that have ≥d consecutive e outcomes in the same-quadrature 
cycles, with resulting post-selected decay of Pauli eigenstates shown in 
Fig. 4d. In the case d = 5, post-selection eliminates rare large-distance 
errors and improves the fidelity lifetime only by a factor 1.2, but at the 
cost of rejection probability of 7 × 10−4 per cycle. On the other hand, 
in the case d = 1, post-selection eliminates relatively frequent small 
errors that are close to identity, as well as rare large uncorrectable 
errors that are close to a logical operation. It is because of the latter that 
the fidelity lifetime in this setting improves by a factor 6.3, but with a 
more severe rejection probability of 6 × 10−2 per cycle. These favour-
able post-selection results indicate that such a method can be used 
for probabilistic preparation of high-fidelity logical states, including 
the magic states required for universal quantum computing42, which 
is left for future investigation.

Conclusion and outlook
In this work, we used real-time error correction to realize a fully stabi-
lized logical qubit whose lifetime is more than doubled compared to 
the best passive qubit encoding in the system, marking the transition 
of QEC from proof-of-principle studies to a practical tool for enhancing 
quantum memories. Our work improves on previous QEC experiments, 
which do not protect the logical identity operator IL (ref. 17), protect only 
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corrected GKP qubit are fitted to a Pauli channel. In c, the X+ ⟩∣  data are 
symmetrically reflected with respect to 0 for better visibility. Open circles 
represent evolution in the absence of QEC, when grid states decay towards 
vacuum. d, Lifetime of average channel fidelity for these three qubits.



Nature | www.nature.com | 5

one of the logical Pauli operators XL or ZL (refs. 30,43,44), implement cor-
rection in post-processing4,5,7, require post-selection45 and do not reach 
break-even1–7. Instrumental for this achievement, among other fac-
tors, was the adoption of a model-free learning framework, improved 
fabrication techniques for the transmon auxiliary qubit and a new 
grid-code QEC protocol.

Carrying out additional experiments, we identified the core chal-
lenges that need to be addressed to ensure future progress of grid-code 
QEC. In particular, by studying long-time system stability, we found that 
occasional collapses of the logical performance are strongly correlated 
with appearance of spurious degrees of freedom in the system. Their 
resonant interaction with the Stark-shifted transmon qubit degrades the 
fidelity of our operations (Supplementary Section IV.J). In the short term, 
this effect could be mitigated by adopting a tunable auxiliary qubit and 
periodically re-training the QEC circuit to find better spectral locations. 
In the long term, the behaviour of these defects needs to be understood, 
as they pose even greater danger for scaled-up quantum devices4,5,7.

In addition, we expect that considerable enhancement can be gained 
by tailoring the QEC process not only to error channels of the oscillator, 
but also to those of the auxiliary qubit. Our QEC circuit is fault-tolerant 
with respect to auxiliary qubit phase-flip errors by design26. With the 
transmon qubit used here, the sensitivity of the logical lifetime to aux-
iliary qubit phase flips is 65 times smaller than to auxiliary qubit bit 
flips, as found with noise injection experiments (Supplementary Sec-
tion IV.I). Future development should incorporate robustness against 
auxiliary qubit bit flips, either through path-independent control46,47 
or by adopting an auxiliary qubit with biased noise48.

Note added in proof: In parallel with our work, a gain G = 1.16 was 
demonstrated with a binomial code realized in a microwave cavity49.
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Methods

QEC of the ideal grid code
To understand the error-correcting properties of the ideal code,  
consider an error channel E  decomposed in the displacement  
basis. An ideal grid code with code projector Π0 satisfies the Knill– 
Laflamme conditions8 Π0D†(εα)D(εβ)Π0 ∝ δ(εα − εβ)Π0 for all errors in a 
correctable set E D ε ε ε l= { ( ) : Re( ) , Im( ) < /4}S+ . A displacement error 
of amplitude ε creates an error state ∣ ∣ψ D ε ψ⟩ = ( ) ⟩ε , in which ∣ψ⟩ is any 
state from the code space. As a displaced grid state is still translation-
ally invariant, it remains an eigenstate of the ideal-code stabilizers, and 
the phase of its eigenvalue encodes a continuous error syndrome: 
S ψ il ε ψ⟩ = exp(2 Re[ ]) ⟩Z

ε S ε0 ∣ ∣  and S ψ il ε ψ⟩ = exp(−2 Im[ ]) ⟩X
ε S ε0 ∣ ∣ . Error cor-

rection of an ideal grid code can be carried out in a similar manner to 
that for any stabilizer code: first, measure the stabilizers to obtain the 
error syndrome, which here corresponds to phase estimation of S X Z

0
/  

that yields the error amplitude ε. This step projects the state onto one 
of the orthogonal error spaces. Then, apply the recovery operation, 
here a simple displacement D(−ε), to correct the error. This procedure 
realizes an artificial dissipation R of an infinite rank that corrects any 
error from E+ in a single cycle, R E ρ ρ( )( ) ∝∘ , analogously to the cartoon 
high-rank dissipation in Fig. 2a. In contrast to this approach, our exper-
iment realizes low-rank dissipation that asymptotically satisfies 

ρ ρ([ ] )( ) ∝n→∞ ∘R E .

Dissipative cooling to vacuum
We utilize the dissipation engineering framework50 to design fast cool-
ing of the oscillator to the vacuum state in the weak-coupling regime 
for which previous known cooling methods51 fail. We also expect this 
new method to be applicable to cooling of trapped ions, for which 
conditional displacement can be realized through sideband driving, 
and auxiliary qubit reset through internal state repumping18. As in 
error-correcting dissipation, we realize this cooling as a composition 
of two rank-2 channels that shrink the oscillator state in the orthog-
onal quadratures. The unitary U∅ in this case is realized as a three- 
layer circuit obtained from the first-order Trotter decomposition of 
U iε a a= exp[− ( σ + σ )]+

†
− , in which ε ≪ 1 controls the cooling rate. This 

unitary swaps the excitations of the oscillator into the auxiliary qubit, 
which is reset in every cycle. The duration of one full cooling cycle 
(including both quadratures) is tc = 2 × 3.38 μs. With ε = 0.4, we achieve 
cooling at a rate 20 times faster than the natural energy damping rate 
of the oscillator. In our experiment, 25 full cycles of such a dissipative 
cooling are then followed with a feedback cooling protocol adapted 
from ref. 17 to remove any residual thermal population. See Supplemen-
tary Section II.F for more details.

RL implementation
The QEC circuit is parametrized with a vector p. Instead of optimizing 
p directly, the RL agent learns parameters of the probability distribu-
tion from which p is stochastically sampled during the training to 
ensure adequate exploration of parameter space. To this end, we use 
a factorized multivariate Gaussian distribution N( , )µ σ  with mean μ 
and covariance matrix σdiag[ ]2 . To capture the pattern of relations 
between different components of p, the mean and covariance are rep-
resented as parametrized functions θ( )µ  and θ( )σ  of common hidden 
variables θ. In this work, μ and σ are produced at the output of a neural 
network with two fully connected layers of 50 and 20 rectifier linear 
unit neurons. Starting with the initial vector of parameters iµ  found 
with independent calibrations, during the course of learning the agent 
gradually deforms the distribution and localizes it on the new vector 

fμ , the final result of the optimization. Typically, as it proceeds, the 
agent also reduces the entropy of the distribution to have a finer con-
trol over the mean. These features of learning are observed in the exam-
ple evolution of one component of p in Fig. 2d. During one training 
epoch, we evaluate 10 QEC circuit candidates with 300 episodes (that 

is, experimental shots) per candidate. The collected information is 
used to update the neural network parameters θ according to the 
proximal policy optimization algorithm, which completes the epoch. 
One epoch takes approximately 16 s, with most time spent on recom-
pilation of instruction sequences for the field-programmable gate 
array, and its reinitialization. See Supplementary Section III.B for more 
details.

Steady state of the QEC process
We carry out Wigner tomography of the logical states after a varying 
duration of the QEC process, reconstruct the density matrix, and from 
its spectral decomposition extract the expectation value of the code 
projector ⟨Π ⟩ = 0.825 ± 0.0030 , in which the uncertainty represents 
the standard deviation with respect to different process durations of 
100, 200, 400 and 800 cycles. In addition to the code space, only one 
error space is occupied in the steady state with an appreciable prob-
ability of 0.170 ± 0.005. The logical decoherence within this error space 
happens at the same rate as within the code space. For more details, 
see Supplementary Section IV.H.

The expectation value of the code projector in the steady state can 
be estimated independently, using the statistics of syndrome out-
comes. Under the approximations discussed in Supplementary  
Section IV.E, the probability that a syndrome string of length 2n con-
sists only of g outcomes asymptotically approaches p⟨Π ⟩(1 − )n

0 err
−1   

for large n. Using this method, we extract ⟨Π ⟩ = 0.81 ± 0.020  and 
perr = 0.13 ± 0.02. The uncertainty in this case represents the inaccuracy 
of the model for the string probability, which is valid to first order in 
perr. The value of ⟨Π ⟩0  quoted in the main text is the average of the  
two methods. Constructing a detailed error budget of the aggregate 
error probability perr based on the system-level simulation of the known 
error processes is an avenue left for future work.
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