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The design of quantum hardware that reduces and mitigates errors is essential for
practical quantum error correction (QEC) and useful quantum computation. To this
end, we introduce the circuit-Quantum Electrodynamics (QED) dual-rail qubit in
which our physical qubit is encoded in the single-photon subspace, {|01〉 , |10〉},
of two superconducting microwave cavities. The dominant photon loss errors can
be detected and converted into erasure errors, which are in general much easier to
correct. In contrast to linear optics, a circuit-QED implementation of the dual-rail
code offers unique capabilities. Using just one additional transmon ancilla per dual-
rail qubit, we describe how to perform a gate-based set of universal operations that
includes state preparation, logical readout, and parametrizable single and two-qubit
gates. Moreover, first-order hardware errors in the cavities and the transmon can be
detected and converted to erasure errors in all operations, leaving background Pauli
errors that are orders of magnitude smaller. Hence, the dual-rail cavity qubit exhibits
a favorable hierarchy of error rates and is expected to perform well below the relevant
QEC thresholds with today’s coherence times.

quantum computing | superconducting circuits | quantum information | quantum error correction

There has been remarkable progress in the physical implementation of quantum
information processing devices over the past two decades. Several platforms, including
trapped ions (1–5), neutral atoms (6–9), and superconducting circuits (10, 11), have
advanced to the stage where systems with dozens or hundreds of physical qubits can be
assembled and programmed (12, 13) to perform simple algorithms. But even for the
so-called Noisy Intermediate Scale Quantum (NISQ) applications (14) that are being
investigated today, significant improvements are necessary in the error rates for all types
of operations, including initialization and measurement as well as single and two-qubit
quantum gates. Moving beyond the current NISQ era will require the implementation of
quantum error correction that performs well enough to realize significant gains in logical
fidelity. While some of the performance levels of physical qubits are now approaching
the theoretical thresholds that are required (15), when and how practical error correction
might be achieved remains an outstanding question.

Quantum error correction (QEC) is challenging because of many simultaneous
requirements. These include a significant overhead in the number of physical qubits
used to encode logical information, the rapid operation of a complex sequence of gates
and measurements to detect errors, and the high fidelity and precision of the components
and operations that make up the system. Finding more efficient schemes for QEC that can
ease these requirements is a very active area of current research. A wide range of approaches
has been explored, including more efficient codes (16), qubits that have structure or
bias (17–23) in their noise processes and the modifications of encoding schemes to utilize
this structure (24–32), code switching or “pieceable” constructions (33, 34) that do not
require fully transversal operations, and correction schemes that can flag (35, 36) certain
errors. One can even build redundancy into a single physical system, replacing the usual
qubits with multilevel systems such as qutrits (37). Bosonic encodings (38) such as the
GKP code (39–43), cat codes (17, 44–47), or binomial codes (48–51) have proven to be
especially hardware efficient.

When choosing an error correction architecture, it is important to remember that
there is a natural hierarchy of physical and logical errors. Not all errors occur with
equal probability nor are they equally harmful to the code. On the logical level,
detected erasure errors are especially benign, having both significantly higher thresholds
and more favorable scaling with code distance (52–56). Pauli errors, the most well-
studied error model, are also correctable but have lower thresholds and a less favorable
scaling with code distance. Finally, the accumulation of undetected leakage errors out
of the code space is an uncorrectable error and therefore most damaging (57–64).
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from quantum optics to a
superconducting quantum circuit
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benefit from the error detection
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superconducting circuits, which
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qubit has an error, making error
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such that most of their errors can
be detected, we believe that
practical quantum error
correction can already be
achieved with the coherence
times of today’s superconducting
circuits.

Competing interest statement: R.J.S. and L.F. are founders
and shareholders of Quantum Circuits, Inc. S.M.G. and
S.P. are equity holders of Quantum Circuits, Inc. Yale
University has filed patent applications related to this
work.

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed.
Email: james.teoh@yale.edu, patrick.winkel@yale.edu, or
robert.schoelkopf@yale.edu.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2221736120/-/DCSupplemental.

Published October 6, 2023.

PNAS 2023 Vol. 120 No. 41 e2221736120 https://doi.org/10.1073/pnas.2221736120 1 of 11

SEE CORRECTION FOR THIS ARTICLE

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
Y

A
L

E
 U

N
IV

E
R

SI
T

Y
 , 

C
T

R
 F

O
R

 S
C

I 
&

 S
O

C
IA

L
 S

C
I 

IN
FO

" 
on

 M
ay

 3
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

12
8.

36
.7

.1
13

.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2221736120&domain=pdf&date_stamp=2023-12-14
https://orcid.org/0009-0009-3086-3513
https://orcid.org/0000-0001-6457-6971
https://orcid.org/0000-0003-1248-7568
https://orcid.org/0000-0002-6711-4585
https://orcid.org/0000-0003-1111-4460
https://orcid.org/0009-0002-4587-5620
https://orcid.org/0009-0002-7965-6135
https://orcid.org/0000-0002-7785-8297
https://orcid.org/0000-0002-0272-5481
https://orcid.org/0000-0002-6470-5494
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:james.teoh@yale.edu
mailto:patrick.winkel@yale.edu
mailto:robert.schoelkopf@yale.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2221736120/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2221736120/-/DCSupplemental
https://doi.org/10.1073/pnas.2320127120


Aligning the physical behavior of gates and qubits to respect this
hierarchy is therefore another important strategy for efficient
QEC. Erasures are the dominant errors for some platforms
such as linear quantum optics (65–67). An important recent
insight (68) is that one may also choose or design physical qubits
and operations where additional measurements can detect certain
errors and then allow them to be converted to erasures, easing
the thresholds and overhead requirements for QEC.

Superconducting microwave cavities are attractive candidates
for hardware-efficient error correction. Microwave resonators
can be implemented in planar or 3D geometries and typically
have longer lifetimes (69–72) than nonlinear qubits containing
Josephson junctions. Moreover, they exhibit little or no intrinsic
dephasing (42, 72–74), with the predominant error mechanism
simply being photon loss. This means that they naturally
have a type of bias in their decoherence. Over the last few
years, these properties have allowed experiments that demon-
strate quantum memories (38, 42, 47), single-qubit quantum
gates (75, 76), and remote entanglement (77) where the error
correction approaches or even exceeds the breakeven point and
logical fidelity begins to improve. Just as qubit-based codes
incur an overhead because they require multiple physical qubits
per logical qubit and additional measurement ancillae, bosonic
codes do incur an increase in the decay rate proportional to the
number of photons stored in the system. In addition, transmons
or other traditional superconducting qubits are still required
to enable the nonlinear operations necessary for control and
measurement in the codespace. These ancillae then introduce
additional error channels that can limit fidelity unless they can be
managed and prevented from propagating to the bosonic logical
qubit (18, 73, 76).

Here, we propose a platform for bosonic error correction
by combining the previously developed techniques of circuit
QED and an implementation of the dual-rail encoding with
a single photon stored in a pair of coupled microwave cavities.
Employing microwave cavities for the dual-rail encoding uses a
small number of photons and preserves the noise bias, where
photon loss only appears as a detectable erasure. We argue
that this system can have a remarkable and highly favorable
hierarchy of error rates, with Pauli errors that are orders of
magnitude weaker than erasures, and leakage that is even smaller.
In addition, we describe a complete set of one- and two-
qubit operations that use a beamsplitter interaction between the
cavities and a dispersively coupled transmon ancilla to enable
high-fidelity preparation, measurement, and nonlinear control.
We show how the dominant physical errors, including decay,
heating, and dephasing in the transmon ancilla, can be effectively
detected and converted to erasures, with only second-order
contributions to a residual rate of Pauli errors. Even with current
levels of decoherence and previously demonstrated operation
speeds (78, 79), this scheme will allow postselected algorithms
with fidelity significantly beyond that of today’s NISQ machines.
Finally, this approach should perform well in concatenated QEC
schemes such as the surface code (25, 68, 80–82), enabling a
faster path to fault-tolerant quantum computing.

1. Results
A. Dual-Rail Cavity Qubit. The concept of the superconducting
dual-rail cavity qubit is based on the intrinsic noise bias of
superconducting cavities, for which single-photon loss is the
dominant physical error channel and the pure dephasing caused
by fluctuations in cavity frequency is orders of magnitude smaller,

at least for an isolated cavity. Furthermore, the single-photon
loss rates for superconducting cavities are among the smallest
error rates measured in any superconducting device (83) and
are likely to improve at least as rapidly as qubits based on
Josephson junctions with continuing advances in material science
and fabrication.

The dual-rail superconducting qubit we present here has
a similar encoding to that used in linear quantum optics
platforms (84), where logical information is encoded in two
distinguishable bosonic modes, but with access to a set of
quantum nondemolition (QND) measurements and nonlin-
ear controls afforded by the circuit quantum electrodynamics
(cQED) (11, 121) toolkit. Crucially, we can use the nonlinearity
of a transmon (or other) ancilla to directly perform two-qubit
entangling gates and also QND measurements such as joint
photon-number parity measurements on two cavities. These
capabilities mean, in contrast to other implementations, we can
realize a gate-based approach for the dual-rail qubit with no need
for heralding, with the ability to detect many types of physical
errors at the hardware level.

Dual-rail encodings based on superconducting qubits have
been previously suggested (29, 31) and implemented using trans-
mon qubits (32, 85). Unlike microwave cavities, transmons have
little inherent noise-bias, with dephasing rates often comparable
to their decay rates. While we could detect decay events in this
transmon dual-rail qubit, dephasing will remain the dominant
error source, introducing both Pauli X and Z errors. In recent
implementations (32, 85), the desired noise-bias was engineered
by tuning two transmons on resonance with each other.

Instead of two propagating optical modes, we choose the two
rails to be superconducting standing-wave cavity modes with
distinct microwave frequencies. These could be two modes of
the same resonator (86), but here, we will discuss the case where
they are in separate but adjacent resonators, as shown in Fig. 1.
The logical codewords are |0〉L = |01〉 and |1〉L = |10〉. By
encoding the logical state of the qubit in the single-photon
subspace of the joint cavity Hilbert space with odd joint photon-
number parity, we are able to convert the dominant errors in
the cavity system, namely single-photon loss to the common
ground state |00〉, into detectable erasure errors by means of
joint-parity measurements. In addition, photon gain events in
the cavities, which are generally rare in thermal equilibrium,
are also detectable by the same measurement, leaving cavity
dephasing as the dominant Pauli error in the system. The error
probability and scaling during idling time are summarized in
Table 1. This shows a remarkable physical error hierarchy that
follows the optimal structure for quantum error correction codes
that include erasure conversion. In following sections, we will
see that Pauli errors remain small even when we introduce the
transmon ancilla and cavity–cavity coupler needed for a full set of
operations.

Compared to other bosonic codes (39, 48, 87), there is little
increase in the photon number when using the dual-rail encoding
relative to the simple “single-rail,” or Fock {|0〉 , |1〉} encoding.
The main cost is we now need two cavity modes per qubit
instead of one, and we double the number of photons (from
n̄ = 0.5 to n̄ = 1). Single-qubit gates for Fock {|0〉 , |1〉} cavity
qubits are more difficult and slower, requiring extensive use of
a transmon ancilla (75). In a dual-rail cavity qubit, arbitrary
single-qubit rotations are achieved with a simple switchable
beamsplitter interaction between the cavities, by pumping a
dedicated nonlinear coupler (78, 79). This is another vast
simplification compared to other bosonic encodings.
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Fig. 1. The cavity dual-rail qubit is composed of two standing superconduct-
ing cavities taking the role of the two waveguide modes in linear quantum
optics. The cavities are coupled by a switchable beamsplitter interaction.
The logical code words are encoded in the single-photon subspace of the
cavity system, with |0〉L = |01〉 and |1〉L = |10〉, for which the beamsplitter
interaction is sufficient to facilitate arbitrary single-qubit rotations. Energy
relaxation events into the common ground state |00〉 as well as single heating
events into the higher energy states |11〉, |20〉, and |02〉 bring the system
into a leakage space distinguished from the logical subspace by the joint
photon-number parity. Therefore, the dominant error in the cavity system,
single-photon decay, can be converted into erasure errors by measuring the
joint-parity. A single transmon ancilla is dispersively coupled to one of the
cavities and acts as a resource for non-Gaussian operations. By operating
the transmon in the g-f-manifold, we are able to detect decay events in
the ancilla, expected to be the most dominant error in the system for
state-of-the-art realizations, and convert them into erasure errors as well.

Since the (frequency-converting) beamsplitter interaction is
activated using parametric processes, the cavities are not on
resonance during the idling time, resulting in a large on–off
ratio. The amplitude and phase of the beamsplitter pumps are
analogous to the usual RF drives used to control transmon qubits,
enabling techniques such as dynamical decoupling (88, 89) to
further suppress dephasing errors as well as unwanted effects
such as no-jump backaction arising from differences in cavity
single-photon decay rates (SI Appendix, Section D).

Non-Gaussian operations on the dual-rail cavity qubit use the
transmon ancilla as the source of nonlinearity. This includes
state preparation, logical readout, QND cavity loss (joint-parity)
detection, and the two-qubit entangling gates. Since transmon
errors occur more frequently than all cavity idling errors, we
design protocols to preserve the error hierarchy that exists for

idle dual-rail qubits by detecting first-order transmon errors after
the sequence.

B. State Preparation and Measurement. We now describe how
to perform preparation and readout of logical states on a dual-
rail qubit, which may also be constructed to avoid first-order
sensitivity to most physical errors. The general approach is to
use the dispersive interaction between one of the cavities and the
ancilla transmon to learn logical state information from repeated
photon-number parity measurements. We may then majority
vote on many rounds of measurement outcomes to reach high
assignment fidelity (91) by using the most common outcome
to decide the overall measurement result. This exponentially
suppresses the effects of transmon errors and transmon readout
errors at the cost of a small increase in the ongoing erasure rate
due to cavity photon loss. For the proposed measurement scheme,
logical readout fidelity for a dual-rail qubit is expected to be better
than any other known qubit platform.

The QND nature of parity measurements performed on single
cavities (92) means we can also use them to verify logical state
preparation to very high fidelity. Preparing a state in the logical Z
basis is simply a matter of loading a single photon into one of the
two cavities. This may be done via optimal control pulses (75) or
cavity-transmon sideband drives (91, 93–95) and then verified
with subsequent parity measurements to achieve error-robust
state preparation with success probability > 99%. Unsuccessful
state preparation may be treated as an erased qubit, or we can
allow for multiple attempts at state preparation to boost the
success probability. Due to low idling error rates of the dual-rail
(Table. 1), the additional measurement time need not introduce
logical errors at a substantial rate. Once again, the dominant
errors are detectable leakage errors, i.e., erasures.

For logical readout of a dual-rail qubit, we must ascertain
whether a photon is in cavity Alice, |0〉L, or Bob, |1〉L, or in the
case of a leakage event due to photon loss, neither cavity. One
simple way to do this is to measure the photon number parity in
both cavities sequentially using the g-e-manifold of the transmon
ancilla (45, 92), which requires a time∼ 1/�ge ∼ 0.1−1 µs and
is shown in Fig. 2. We may measure the parity sequentially using
the same ancilla and swapping the cavity states in between each
parity measurement, or an additional ancilla transmon for the
second cavity can be added to the architecture if desired. If we are
in the logical |0〉L state, we should obtain the transmon measure-
ment string (ea, gb) since we read out state |e〉 when there are an
odd number of photons in the cavity. In the case of prior photon
loss, we obtain (ga, gb) and flag the measurement as an erasure.

The probability of mistaking |0〉L for |1〉L (and vice versa)
should be exceedingly small even in the presence of decoherence.
First-order errors in the transmon and cavities give measurement
outcomes (ga, gb) and (ea, eb), which we flag as additional erasure
errors. A combination of at least two errors is necessary for logical
misassignment, a probability we estimate to be below 10−4 for
realistic coherence times and transmon readout fidelities (96, 97).

Dephasing on the cavity is not an issue when preparing
and measuring dual-rail qubits in the Z basis, so we may
operate the transmon ancilla in the g-e-manifold without the
need to flag transmon errors. Even though transmon decay can
corrupt an individual parity measurement outcome, we may
still correctly measure logical information via subsequent parity
measurements to increase readout fidelity. Alternatively, we can
map information about the cavity states onto the transmon
using photon-number selective � pulses. In combination with
shelving the transmon excitation into higher states, we expect to
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Table 1. The dual-rail cavity qubit is composed of multiple hardware components—two superconducting cavities,
a single parametric coupler, and a single transmon ancilla, as shown in Fig. 1
Error process Scaling Probability in 1 µs Noise bias Effective lifetime Error type Detection

Cavity photon loss �̄t 10−3 1 1 ms Erasure JP
Cavity heating n̄th�̄t 10−5 102 100 ms Erasure JP
Cavity dephasing 't 10−4 101 10 ms Phase flip -
Ancilla heating n̄th,AΓ1,At 10−4 101 10 ms Phase flip M

No-jump backaction
(

1
4Δ�t

)2
10−6 103 1 s Phase flip -

Cavity photon loss + heating n̄th (�̄t)2 10−8 105 100 s Bit flip -
Cavity heating ×2 3 (n̄th�̄t)2 10−9 106

∼ 1 h Leakage JSP

To estimate the physical error rate of the proposed dual-rail qubit during idling time, and the logical errors in the encoded qubit they can cause, we assume typical performances
achievable for the individual components today. By construction, the hierarchy of these events, i.e., their probability of occurrence, aligns with the desired scaling for an outer QEC layer:
The dominant error is photon loss out of the computational space caused by cavity relaxation at rate �̄ = (�a + �b)/2, which, by measuring the joint-parity (JP), can be converted into
erasure errors. As a consequence, erasure errors, though still rare, are significantly more likely than Pauli errors. During the idling time, phase flip events are predominantly caused by
dephasing events in the cavity system or heating events in the transmon, where n̄th,A is the average thermal ancilla population and Γ1,A the energy relaxation rate. By measuring the
transmon (M) and ensuring that it remains in its ground state, we can detect ancilla heating events, at least to first order. No-jump backaction arises when there is a finite difference
between the single-photon decay rates of the cavities given by Δ� = �b − �a . Over time, the weighting of a dual-rail qubit superposition changes to increase the probability of the photon
being in the longer-lived cavity, despite no photon loss being detected. This is a second-order effect and is a type of phase flip type error. Unlike cavity dephasing, this error can change
the qubit’s populations. The closest error that resembles a bit flip error is the unlikely combination of a cavity decay and heating event, resulting in an indirect transition between the
logical codewords at extremely low rates. Leakage events undetectable by the joint-parity measurement are extremely rare, as they require two heating events in the cavities to bring the
dual-rail qubit into a state with odd joint-parity outside the logical codespace. However, these events could still be detected with a QND measurement (90) of the joint “superparity,” (JSP)
as they have a different value for (na + nb)mod4. For the calculation of the error probabilities, we assume single-photon decay rates of �a = (1.5 ms)−1 and �b = (0.5 ms)−1 for the
cavities, Γ1,A = (100 µs)−1 for the ancilla transmon, pure dephasing rates ',a = ',b = (20 ms)−1 , and a thermal population n̄th = n̄th,A = 0.01 for all quantum elements. The noise
bias of the dual-rail specifically refers to erasure errors happening much more frequently than all other types of errors such as Pauli and leakage errors. The noise bias is quantified for
each error process by comparing to the cavity photon loss error rate, the dominant source of erasure errors in the system when idling.

achieve high logical readout fidelities even with a single round of
measurements (91).

By repeating each round of parity measurements three times,
we can majority vote on the outcomes to further suppress
the effects of transmon errors. Practically, this means fewer
unnecessary erasure flags due to transmon errors along with a
small increase in erasure flags due to cavity photon loss. We also
note that majority voting suppresses the infidelity of the transmon
measurements themselves. Here, we consider the consequence
of two types of measurement errors: a misassignment of the
transmon state due to the finite SNR of the measurement and
transmon decay during readout. In both cases, the inferred

transmon state does not coincide with the physical state,
which can corrupt the subsequent measurement outcome after
resetting into the ground state (98). Alternatively, we can use
an unconditional reset (99) or no reset at all and instead update
the expected measurement outcomes. A quantitative comparison
of two particular measurement strategies is shown in Fig. 2,
assuming state-of-the-art experimental hardware.

In general, the optimal measurement strategy is highly context
and device dependent, with tradeoffs between total measurement
time, additional erasure rate, and measurement fidelity. Measure-
ment of ancilla dual-rail qubits in a surface code may prioritize
measurement speed over assignment fidelity, whereas postselected

Fig. 2. The logical state of the dual-rail cavity qubit can be extracted from local parity measurements of the individual cavities. The table shows the three most
likely input states |01〉, |10〉, and |00〉 together with their input probability, where p is the probability of a photon loss event prior to the measurement, leaving
the system in |00〉. We set p = 1%, which is the erasure probability due to photon loss in the cavities after approximately ten two-qubit gates. Depending on
the input state, the outcome of the measurement is either correctly assigned to the actual input state (green ticks), incorrectly flagged as an erasure (orange),
or incorrectly assigned to the logical states (red cross) resulting in a Pauli error. By repeating the measurement protocol n times, the measurement errors
can be significantly reduced, as shown in the Right panel. For a single round of measurements (blue bars), ancilla readout errors are mainly converted into
false-positive erasure errors. With three rounds of measurements and majority voting (SI Appendix, Section B), we become much more robust to transmon
errors, leading to a factor of five reduction in the additional erasures and orders of magnitude reduction in the logical assignment error. As we increase the
number of measurement rounds even further, the total measurement time gets longer, and so the probability of cavity photon loss increases, eventually
increasing the chance of erasure again (not shown). Hence, due to finite transmon coherence times and readout fidelities, there can be improvement in
measurement performance when using 3 rounds instead of 1 round. The simulation models transmon decay during readout and other measurement errors
(SI Appendix, Section A). We set Tge1 = 100 µs, Tee' = 100 µs, and �a = �b = (1 ms)−1.
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short-depth circuits may favor assignment fidelity above all
else. More measurement strategies are discussed in SI Appendix,
Section B. The examples in Fig. 2 show the minimum needed to
suppress transmon errors and the benefits from majority voting.
An experimental implementation of the state preparation and
logical readout of a dual-rail cavity qubit has been recently
reported in ref. 100, demonstrating a logical misassignment error
of (1.7± 0.3)× 10−4 for a single round and (3± 1)× 10−5 for
two rounds of measurement.

C. Single-Qubit Rotations. Single-qubit gates in the dual-rail
subspace are realized by a simple beamsplitter interaction between
the cavities using a dedicated coupling element (78, 79). The
combination of beamsplitter strength and duration, which are
controlled by microwave pump signals in an experiment, define
the polar angle of the rotation, while arbitrary rotations around
the Z-axis can be implemented in software by changing the phase
of the pump(s). This parametrizable control is in many ways
analogous to typical use of RF signals for transmon single-qubit
gates. A SWAP gate between the cavities is equivalent to a�-pulse,
and a 50–50 beamsplitter corresponds to a �/2-pulse. Changing
the pump phase changes the equator axis we rotate around on the
Bloch sphere. Techniques for suppressing control errors, such as
composite pulses, can be directly transferred to our beamsplitter
control (101, 102). Moreover, we can also make use of dynamical
decoupling (88, 89) to further enhance the dephasing time of our
dual-rail qubit.

High-speed beamsplitters (79) and randomized benchmark-
ing (78) of single-qubit gates in the dual-rail subspace have re-
cently been experimentally demonstrated that approach 99.98%
gate fidelity when combined with an erasure check, in times
of ∼50–100 ns per gate. This is on par with single-qubit
gates in transmons (103). Unlike a transmon qubit, there is
no inherent speed limit set by the finite anharmonicity of the
energy spectrum (104, 105), which increases leakage out of the
computational space as we decrease gate times. It is also observed
that the beamsplitter interaction does not induce any additional

leakage errors out of the dual-rail subspace, aside from the
expected (and detectable) decay to the |00〉 state set by the bare
cavity single-photon decay rates.

Using a parametric beamsplitter coupler allows our cavity
modes to have large detunings, with vanishingly small swapping
rates between the cavities in the absence of the pumps. Moreover,
any static coupling between the cavities (within or between
dual-rail qubits) simply leads to a renormalization of the
cavity frequencies via mode hybridization, and is automatically
compensated by calibrating to the dressed values that are observed
in an experiment.

The ease of arbitrary single-qubit rotations in the dual-
rail encoding is a huge advantage compared to other error-
correctable bosonic codes such as GKP (39), Binomial (48), or
4-legged cats (17, 44). While universal control of a harmonic
oscillator via a transmon ancilla has been shown in many
frameworks (74, 75, 106), these approaches are comparatively
slow to execute, require numerical optimization, and, most
importantly, are highly susceptible to ancilla transmon errors.

D. Erasure Conversion. A keystone of the proposed dual-rail
scheme is that we can perform QND detection of leakage out
of the logical subspace caused by loss or gain of a photon
in the cavities. For QEC protocols, the knowledge about the
exact location of the error enables us to convert these otherwise
pernicious leakage events into erasure errors, which are much
easier to correct than Pauli errors. Therefore, we refer to this
leakage detection scheme as the erasure check.

Our erasure check is based on measuring the joint photon-
number parity of the two cavities in a single dual-rail qubit. The
dual-rail subspace has odd joint-parity but gain or loss of a photon
changes this to even. Hence, QND joint-parity measurements
allow us to perform erasure checks without destroying the logical
states. Our specific scheme for measuring joint-parity is an
extension of the well-established parity measurement scheme
for an individual cavity (45, 92) and relies on the dispersive
interaction to a single transmon ancilla as shown in Fig. 3.

Fig. 3. An example of hardware to implement one dual-rail cavity qubit (Fig. 1), shown here as 3D stub cavities, which have already demonstrated (70) single-
photon decay times beyond 1 ms, even in the presence of additional nonlinear modes, and have intrinsically low pure dephasing rates reaching at least tens
of milliseconds (42, 73, 74). The beamsplitter interaction between the cavities, which is sufficient to implement arbitrary single-qubit rotations in the dual-rail
subspace, can be realized with one of several choices of parametrically driven three-wave or four-wave mixing elements (violet), as recently demonstrated
in refs. 78 and 79, respectively, without degrading the intrinsic coherence of the cavities. For the non-Gaussian operation, a transmon ancilla is capacitively
coupled to one of the stub cavities and is operated in the g-f-manifold to allow for ancilla decay detection with a dedicated readout resonator. A key ingredient
for the operation of the dual-rail qubit is the detection of physical errors in the quantum hardware, allowing us to convert leakage events into erasure errors.
Such an erasure check is implemented by mapping the joint photon-number parity on the state of the ancilla. The ancilla starting in the ground state |g〉 is
initialized in the |+X 〉 state with a �/2 pulse. While photon-number parity measurements in a single cavity have been already demonstrated, we can measure
the joint-parity by activating the beamsplitter interaction between the cavities at the same time. The second �/2 pulse maps the odd joint-parity states on
the ground state |g〉 of the ancilla and the even states on |f 〉. A decay of the ancilla during the operation is flagged by the final state |e〉. More details on the
implementation of these composite operations are found in ref. 90.
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Remarkably, by combining a beamsplitter interaction between
the two dual-rail cavities with manipulations of a transmon
coupled to only one cavity, there are simple procedures (90)
for measuring joint properties of the dual-rail qubit, without
requiring precise matching of fabrication parameters. For the
joint-parity erasure check, we perform a Ramsey sequence on the
transmon with a wait time T = 2�/�gf between the transmon
�/2 pulses. During this time, the dispersive interaction between
the transmon and one of the cavities maps photon-number
information to the ancilla state, which is then measured at the
end of the sequence. By also activating a beamsplitter interaction
during the wait time, excitations swap back and forth between
the cavities, allowing the ancilla to measure properties of both
cavity states.

We find that for a particular beamsplitter strength gbs =
√

3�gf /2 and detuning Δ = �gf /2 from resonance, we measure
the joint-parity information of both cavities, which return to
their initial states at the end of the sequence (up to a deterministic
cavity phase shift that is easily tracked in software). In experiment,
matching these conditions is easily achieved by adjusting the
amplitude and detuning of microwave drives applied to the
parametric coupler. These conditions are derived in SI Appendix,
Section E and explored further in Tsunoda et al. (90). In contrast
to the joint-parity measurement implemented in ref. 107, our
method allows us to reserve the |e〉 level to detect transmon
decay events and only requires the ancilla to be coupled to one
cavity.

The purpose of the erasure check is to convert cavity leakage
errors to erasure errors. However, the erasure check itself is
error prone. Of particular concern are transmon decay errors
that happen with probability ∼10−2 during the check. Left
undetected, these errors induce cavity dephasing—equivalent to
a logical Pauli error on our dual-rail qubit. To combat this, we
operate the transmon in the g-f-manifold and perform three-state
readout (91, 108–111, 120, 122, 124) that distinguishes among
the states |g〉 , |e〉 and |f 〉. Measuring |e〉now flags transmon decay

events which are also converted to qubit erasures. Measuring |f 〉
signals that we have leaked out of the dual-rail subspace.

With this modification, the cost associated with each erasure
check is an additional erasure probability on the ∼10−2 level
and additional Pauli errors on the ∼10−4 level, due to second-
order errors in the transmon. Since the construction of the
erasure check is transparent to transmon dephasing (112), we
also see that transmon dephasing errors increase the erasure
probability at the ∼10−2 level (Table 2) by randomizing the
even/odd measurement outcomes, hence representing a false-
positive leakage detection event. When a qubit passes the erasure
check despite being in a leakage state, we suffer from a false
negative leakage detection event similar to a dark count in
quantum optics. These errors will go on to cause Pauli errors
in subsequent gate operations until they are most likely detected
in the next round of leakage detection. These errors are still
effectively second-order since they require both photon loss and
a failed erasure conversion in-between rounds.

E. Two-Qubit Gates. Next, we describe how entangling gates
between dual-rail qubits can be constructed so that both cavity
and transmon errors can also be detected and converted to
erasures.

The key insight is that one needs access to only a single cavity
of a dual-rail qubit to realize the logical Z operator of the dual-
rail. By driving a beamsplitter interaction between a pair of
cavities, one from each of the two dual-rail qubits (Fig. 4), a
single transmon can effectively act as a control on both dual-rail
qubits. Specifically, our proposed two-qubit entangling gate is
the ZZ(�) gate, which can be written as


1

ei�
ei�

1

 , [1]

Table 2. Physical error events in the quantum hardware during the single and two-qubit operations give rise to
erasure and Pauli errors in the logical encoding
Error process Erasure errors Pauli errors

Single-photon loss �̄Tgate 10−3 - -
No-jump backaction - -

(
1
4Δ�Tgate

)2
10−6

Cavity dephasing - - 'Tgate 10−4

Ancilla decay Γef1 Tgate 10−2 Γef1 Γge1 T2
gate 10−4

Undetected ancilla decay - - �geΓ1,ef Tgate 10−4

Ancilla dephasing Γgf' Tgate 10−2
(
Γgf' Tgate

)2
10−4

Photon loss + ancilla dephasing - - �̄Γgf' T2
gate 10−5

Undetected ancilla dephasing - - �gfΓ
gf
' Tgate 10−6

Measurement infidelity �gf 10−4 - -
Photon loss + meas. infid. - - �gf�̄Tgate 10−7

The probability of such events is determined by their rate of occurrence and the time interval considered, typically the two-qubit gate duration. For the cavity dual-rail qubit, the duration
of quantum operations involving the ancilla Tgate ∝ �−1

gf is inversely proportional to the strength of the dispersive interaction between the cavity and the ancilla, and therefore typically
on the order of Tgate ≈ 1 µs. Erasure errors are caused by single-photon loss events in the cavities happening at an average rate �̄ in the cavity system as well as decay and dephasing
events in the ancilla and the finite measurement infidelity �ij for distinguishing the ancilla states i and j. In general, the measurement infidelities to distinguish different transmon pointer
states are not identical (91), which is why we consider two separate infidelities �ge = 10−2 and �gf = 10−4 . A difference in the single-photon decay rates Δ� = �b − �a causes a no-jump
backaction slowly polarizing the dual-rail toward the cavity with the longer lifetime, but, in contrast to the pure dephasing at rate ' = ',a + ',b , contributes only to second-order to
the Pauli error rate. By construction of the gates, ancilla decay events during the gate cause a backaction on the cavity system, giving rise to bit flip and phase flip errors at approximately
similar rates in the case that they are undetected. For the calculation of the error probabilities, we assume �a = (0.5 ms)−1 , �b = (1 ms)−1 , ',a = (20 ms)−1 , ',b = (20 ms)−1 ,
Γge1 = (100 µs)−1 , Γef1 = (100 µs)−1 , Γgf' = (100 µs)−1 . Notably, because heating events are rare in the cavities and the ancilla, we are not considering them here, but heating is also
detected in most cases.
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Fig. 4. Hardware implementation of two cavity dual-rail qubits based on 3D
superconducting cavities. The two-qubit entangling gate can be realized by
a ZZ(�) gate performed between the central rails only, for which only one
additional coupler is required. For the proposed architecture, the ZZ(�) gate
can be implemented with the same building blocks as the erasure check and
is part of a larger family of error-detectable bosonic gates (90). Crucially for
our architecture, transmon errors during the gate are detectable and mapped
to flag states (|e〉: transmon decay, |f 〉: transmon dephasing), allowing for the
conversion of these physical errors into erasure errors. With local rotations
on the dual-rail qubits, the ZZ(� = �

2 ) can be transformed into a CNOT or a
CZ gate (113, 114).

acting on the two-qubit logical subspace. When � = �/2, this is
locally equivalent to a CNOT or CZ gate (113, 114). A ZZ(�)
gate acting on the subspace {|00〉 , |01〉 , |10〉 , |11〉} as if each
cavity were encoded in the Fock {|0〉 , |1〉} code will also realize
the ZZ(�) for the dual-rail code, provided each of these cavities
belongs to a different dual-rail qubit.

Our motivation for the ZZ(�) gate implementation is that it
can be performed with the exact same hardware required for the
erasure checks discussed in the previous section. Though other
gate implementations are possible with an ancilla dispersively
coupled to both cavities, with this approach, we only need to
modify the control pulse sequence (see SI Appendix, Section F
for derivation).

Similar to the error detection of the erasure check, it is of vital
importance to detect transmon errors that happen during the
gate in order to preserve the error hierarchy. The construction
presented in Fig. 4 ensures that first-order transmon errors are
detected when we measure the transmon at the end of the
gate, erasing both dual-rail qubits if the transmon is not in |g〉.
Once again, this operation is designed such that Pauli errors are
only introduced from second-order hardware errors, when two
decoherence events happen during a single gate. The expected
error scalings for the ZZ(�) gate associated with (detectable)
first-order errors and second-order errors are shown in Table 2.

Photon loss during the gate is detectable via separate era-
sure checks on the two dual-rail qubits after each gate, but

modifications can also be made to the ZZ(�) gate pulse sequence
to simultaneously perform an erasure check (SI Appendix,
Section J) in which the transmon can be mapped to the |f 〉
level if one of the input dual-rail qubits was in a leakage state
outside the logical subspace. Master equation simulations with
various decoherence mechanisms and higher-order nonidealities
in the system Hamiltonian are explored in detail in ref. 90 and
suggest ∼10−2 erasure probability and ∼10−4 Pauli errors per
two-qubit gate, which makes the proposed gate the ideal building
block for scalable QEC codes that correct for both Pauli and
erasure errors (68).

2. Discussion
A. Reviewing the Error Hierarchy. The principal feature of the
proposed dual-rail qubit with superconducting cavities is its
strong error hierarchy that persists throughout each operation.
The error hierarchy is visualized for feasible coherence times
in Fig. 5, ranging from conservative to optimistic hardware
performance. Erasure errors result from first-order hardware
errors and are predicted to occur with probability ∼1% per
two-qubit gate. Pauli errors arise to first-order only from cavity
dephasing, which is naturally suppressed in superconducting
cavities, and from second-order hardware errors that are similarly
rare, occurring with probability 0.01% per two-qubit gate.

Mitigating and containing leakage errors is an active field
of research in superconducting quantum processors in general

Fig. 5. Error hierarchy in the dual-rail encoding with superconducting
cavities during operations. This is a visualization of the most important
errors presented in Table 2. The most likely errors in the system are energy
relaxation and pure dephasing in the ancilla transmon, followed by single-
photon loss in the cavities. All of these errors can be converted into erasure
errors to first order (yellow), leaving a significantly smaller, second-order floor
of residual Pauli errors (blue) and leakage errors (dark red). The remaining
first-order Pauli error is pure dephasing in the cavities, which is intrinsically
low in superconducting cavities, especially when compared to all other error
rates. For all physical error types, we give a range for the error probability per
1 µs based on error rates typically found in the literature, from conservative
(high error rate) to optimistic (low error rate). The values discussed in the main
text are based on modest expectations for all components indicated by the
colored lines. Remaining Pauli errors due to the transmons are estimated
by squaring the transmon error rates, and we assume a 99% conversion
efficiency for detecting single-photon loss, expected mainly due to transmon
dephasing during joint-parity measurements. We also highlight the approxi-
mate thresholds for erasure and Pauli errors in a surface code architecture,
perasure

th = 5% and pPauli
th = 1%, respectively, with vertical dashed lines,

demonstrating that today’s modest hardware is already expected to be well
below threshold using our proposed dual-rail encoding.
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(63, 115). Even with finite erasure conversion efficiency, missed
photon loss errors into the ground state are still detected with high
probability in later rounds of erasure conversion, meaning a con-
stant, small fraction (∼10−5 in equilibrium if we assume 10−3

probability of leakage and 99% erasure conversion efficiency) of
dual-rail qubits remain in |00〉. Attempts to perform entangling
gates with a qubit in |00〉 result in an identity operation instead.
At worst, these leaked states act as a source of Pauli errors on
surrounding unleaked qubits whenever we attempt an entangling
gate, until they are eventually detected and reset by reinitialization
into the dual-rail subspace. Importantly, the fraction of leaked
qubits is not expected to grow in time. All other forms of leakage
are expected to be extremely rare but in principle can also be
detected with the appropriate transmon measurements.

These properties make dual-rail qubits immediately desirable
for general quantum computing applications. For NISQ-era
algorithms (14), we can run short-depth circuits with postse-
lection, abandoning a circuit run if any erasures are detected,
resulting in very low SPAM errors and high effective gate fidelity.
The yield of successful circuit attempts decreases exponentially
with circuit depth, but for the runs we keep, only very low Pauli
error probabilities will remain. With 1% erasure probability, we
expect to run circuits with up to ∼100 two-qubit gates before
the success probability becomes impractically low. We emphasize
that dual-rail qubit Pauli errors scale quadratically with ancilla
transmon lifetimes when operating the transmon in the g-f-
manifold, whereas Pauli errors in a transmon-only architecture
scale linearly. Thus, we expect dual-rail qubit gate fidelities to
improve faster than transmon qubit gate fidelities as transmon
coherences continue to improve, while the transmon remains the
dominant error source.

B. Scalability. Perhaps the most exciting use of dual-rail cavity
qubits is as the “physical qubits” used to encode the logical qubits
of a topological fault-tolerant error-correcting code such as the
surface code. Many QEC codes can tolerate erasure errors much
better than Pauli errors (52), which is reflected in their respective
error thresholds (55, 56, 116). While the exact threshold is highly
dependent on the order of gate operations and frequency of error
detection, for simplicity, we envision performing error detection
(via joint-parity measurements) after every two-qubitZZ(�) gate.
A general version of this noise model was previously studied for
a neutral atoms platform (68), where the threshold for erasure
errors was about 5 times higher than for Pauli errors, even with
finite detection efficiency. However, error detection after every
two-qubit gate may not be the best strategy for the dual-rail
encoding but will likely depend on the hardware parameters and
relative cost of performing error detection.

We are also aware of the seemingly higher erasure thresholds
that exist in measurement-based error correction schemes (55).
However, the obtained thresholds highly depend on the underly-
ing error model and are actually similar to gate-based approaches
under more realistic scenarios (117). In general, a fair comparison
with gate-based approaches based on only the thresholds requires
detailed accounting of the number of steps needed to prepare
and measure the resource states, as well as detailed knowledge
of circuit-level noise, and is therefore beyond the scope of
this manuscript. Undoubtedly, a measurement-based approach
requires more physical qubits, an overhead which could otherwise
be used to increase the code distance or number of logical qubits
in a gate-based approach.

Since a surface code of distance d can tolerate up to d − 1
erasure errors per error correction cycle but only (d − 1)/2 Pauli

errors, erasure errors not only have higher thresholds but scale
better with increasing code distance. To put this into perspective,
for a fixed distance d = 11, a surface code with only erasure
errors at ∼1% per two-qubit gate will have roughly the same
performance as the same surface code with only Pauli errors
at ∼0.05% per gate, resulting in logical error rates ∼10−8 per
cycle. In general, when both Pauli and erasures are present, we
need to ensure that both error rates are substantially below their
thresholds (68).

Despite tremendous efforts in realizing transmon-based
surface codes, reaching physical error rates far below the Pauli
threshold is still a major outstanding challenge (15, 64, 118). We
believe our approach offers a compelling alternative, whereby
error detection opens a shortcut to achieving error rates far

= Cavity in a dual-rail ancilla qubit

= Physical qubit unit cell

= Cavity in a dual-rail data qubit

Legend:

Possible surface code implementation

Fig. 6. Dual-rail cavity qubits forming the physical qubits in a lattice-based
quantum error correction code. A single unit cell in the bulk of the lattice is
outlined in black and composed of two superconducting cavities (circles), a
single ancilla transmon (green) with readout (gray), and three beamsplitter
couplers (purple). Within a surface code, the nominally identical dual-rail
qubits may play the role of either data qubits (white cavities), which store
the quantum information, or measurement qubits (gray cavities), which are
used to perform stabilizer measurements during rounds of error correction.
Nearest-neighbor connectivity between cavities is sufficient to build a 2D
square lattice of dual-rail physical qubits since entangling gates only require
one cavity from each dual-rail qubit to interact together (Fig. 4).
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below the relevant thresholds, without the need to drastically
increase coherence times.

The favorable scaling of erasure errors with distance indicates
that detecting first-order hardware errors and flagging them
as erasures is almost as good as fully correcting them at the
hardware level. Both approaches scale the same with code
distance, d , and differ only by a prefactor that characterizes the
respective overheads. Rather than correcting quantum errors at
the hardware level, we now error detect at the hardware level and
reset the erased qubits, a simpler task overall.

Finally, scaling up with a 3D cavity dual-rail architecture
has the potential to greatly suppress unwanted cross-talk and
package modes in a multiqubit processor as well as correlated
errors between the physical qubits. A conceptual illustration of
a 2D square lattice of dual-rail qubits required to implement a
topological quantum error correction code is shown in Fig. 6.
The fact that we can interact with a dual-rail qubit through
either one of the cavities means we can reduce the co-ordination
number for each cavity mode in lattice-based QEC codes, while
maintaining nearest-neighbor connectivity among the dual-rail
qubits. The unit cell of our lattice consists of a dual-rail qubit,
comprising two superconducting cavity modes, a transmon with
readout and a switchable beamsplitter coupler between the cavity
modes, and two additional beamsplitter couplers to interface with
neighboring unit cells. In comparison, a transmon-based surface
code may have unit cells consisting of a single transmon and two
coupling elements.

In general, increasing the code distance of a surface code
exponentially suppresses the logical error rate, provided physical
error rates remain well below threshold when increasing the
number of hardware components. Alternatively, one can focus
on reducing the physical error rate further below threshold,
which gives a similar exponential improvement. In the dual-
rail encoding, we are willing to increase the complexity of our
physical qubit in return for significantly lower physical error
rates, which now also reduce quadratically with improvements
in transmon coherence times (90). When we then scale up to
larger code distances, this likely results in far fewer hardware
components to reach a target logical error rate and allows an
additional margin for sources of errors associated with scaling up
any qubit architecture.

3. Conclusion
We have introduced the dual-rail cavity qubit for circuit-QED,
which leverages the intrinsic noise bias of microwave cavities and
the dual-rail code to make a fully error-detected logical qubit.
In this paradigm, we now detect and convert the dominant first-
order hardware errors to erasure errors, leaving a small undetected
background of second-order errors which become Pauli errors.
We expect erasures per gate at the ∼1% level and Pauli errors at
the∼0.01% level for typical present-day coherence times, making
both values well below their respective thresholds of ∼5% and
∼1%, respectively. Furthermore, all leakage out of the logical
subspace can in principle be detected. Most importantly, this
strong hierarchy of errors can be maintained while performing
single and two-qubit gates, thereby relaxing the requirements for

quantum error correction, and the realization of a fault-tolerant
quantum computer. Each dual-rail qubit can play the role of a
physical qubit in a surface code, where erasures are significantly
easier to correct than Pauli errors, having both a higher threshold
and superior scaling with code distance.

Our results suggest that the dual-rail code is the most efficient
bosonic encoding for microwave cavities, benefiting greatly
from straightforward single-qubit gates, measurement, and state
preparation while incurring minimal photon number overhead
relative to other bosonic codes. Realizing all logical operations
is imminently achievable, with all hardware requirements al-
ready demonstrated. With today’s typical coherence times, we
anticipate being significantly below the effective threshold for
a surface code with erasure and Pauli errors present. Since
this approach makes all physical errors second-order at the
hardware level, we also predict that the performance of dual-
rail qubits will improve more rapidly than conventional schemes
as coherence times improve further. Finally, this paradigm can
find immediate use in implementing near-term short-depth
circuits with postselection to improve the utility of today’s NISQ
applications.

4. Materials and Methods

For the simulation results in Fig. 2, we model transmon readout by considering
two dominant sources of readout error. This is decay of the transmon during the
readout pulse and the finite separation of the transmon’s pointer states with
the full error model detailed in SI Appendix, Section A. Further details on how
Lindblad master equation simulations were used to model the entire logical
readout protocol can be found in SI Appendix, Section B. We can also adjust the
measurement decoding scheme to either favor low erasure rates or low logical
assignment errors.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix. The simulation code used to generate the data
in figures 2 and 7 has been deposited to Github (https://github.com/james-
teoh/PNASDualRailPaperCode2023) (126).
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