
Continuous Quantum Nondemolition Measurement of the Transverse Component
of a Qubit

U. Vool,* S. Shankar, S. O. Mundhada, N. Ofek, A. Narla, K. Sliwa, E. Zalys-Geller,
Y. Liu, L. Frunzio, R. J. Schoelkopf, S. M. Girvin, and M. H. Devoret

Department of Applied Physics and Physics, Yale University, New Haven, Connecticut 06520, USA
(Received 23 May 2016; published 19 September 2016)

Quantum jumps of a qubit are usually observed between its energy eigenstates, also known as its
longitudinal pseudospin component. Is it possible, instead, to observe quantum jumps between the
transverse superpositions of these eigenstates? We answer positively by presenting the first continuous
quantum nondemolition measurement of the transverse component of an individual qubit. In a circuit QED
system irradiated by two pump tones, we engineer an effective Hamiltonian whose eigenstates are the
transverse qubit states, and a dispersive measurement of the corresponding operator. Such transverse
component measurements are a useful tool in the driven-dissipative operation engineering toolbox, which
is central to quantum simulation and quantum error correction.
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A qubit is traditionally described in the computational
basis, formed by its energy (longitudinal) eigenstates, the
ground state jgi, and the excited state jei. It is possible to
continuously monitor [1–4] the longitudinal component of
the qubit, namely, the operator jeihej − jgihgj, which
corresponds to σz in the Pauli matrix basis [5]. However,
no experiment has yet continuously monitored the trans-
verse component of an individual qubit, i.e. the operator
jgihej þ jeihgj, equivalent to σx, even though in the seminal
field of magnetic resonance, it is the transverse component
of an ensemble of spins which is the most common
measurement [6,7]. The difficulty of continuous measure-
ment of σx arises because it does not commute with the
static Hamiltonian (∝ σz), and hence the projected states
evolve during the measurement process. To overcome this
difficulty, we would like our measurement axis to evolve
according to the Hamiltonian, and appear as a σx meas-
urement in the rotating frame in which the static
Hamiltonian has been suppressed. Of course, it is possible
to stroboscopically measure any component of the pseu-
dospin in the Larmor frame, but in this Letter we are
focusing on continuous, rather than discrete projective
measurements of σx.
Why would one want to perform a continuous σx

measurement of a qubit? One direct application is to probe
decoherence mechanisms with higher frequency and time
resolution than usual stroboscopic methods [8–11]. More
fundamentally, however, we would like to master the
methods by which we impose not only a given field
belonging to the Hilbert space of the system (here σx
rather than σz), but also to implement the dissipation
conjugate to that field and the measurement of its asso-
ciated fluctuations. This mastery is particularly timely in
view of recent progress in quantum control and bath
engineering [12–24] that allow us to synthesize desired

Hamiltonian and open-system operations. Moreover, such
techniques are at the heart of quantum error correction
[25–29].
In this Letter, we implement a quantum nondemolition

(QND) measurement of the transverse component of a
superconducting artificial atom, embedded in a traditional
circuit-QED setup [30]. Using pump tones, we engineer a
new effective qubit in the transverse basis, dispersively
coupled to a cavity mode. This new Hamiltonian commutes
with the desired measurement operator σx. Thus, with the
help of a quantum-limited amplifier [31–33], we perform
continuous, projective measurements and observe quantum
jumps [4] between the eigenstates of the effective qubit,
which are the transverse superpositions of the original qubit
eigenstates.
Our system consists of a transmon qubit [34] with

frequency ωq coupled to a 3D superconducting cavity
[35] with frequency ωc [see Fig. 1(a)]. We apply two pump
tones to the system, a sideband tone detuned from the
cavity frequency by Δc, and a Rabi tone at the qubit
frequency [see Fig. 1(b)—the additional readout tone is a
probe that will be described later]. Treating the transmon
qubit as a two-level system and within the dispersive
approximation, we can write the Hamiltonian for our
system:

H=ℏ ¼ ωca†aþ
ωq

2
σz þ

χ

2
a†aσz

þ ΩR cosðωqtÞσx þ ϵsb cosðωsbtÞðaþ a†Þ ð1Þ

where a is the cavity lowering (annihilation) operator and
σz is the energy operator of the qubit, modeled here as a
two-level system. χ is the dispersive shift between the qubit
and cavity, ΩR is the amplitude of the Rabi drive in
frequency units (Rabi frequency), and ϵsb is the amplitude
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of the sideband drive at frequency ωsb ¼ ωc − Δc. By
moving to a rotated and displaced frame (see [36] for
details), we can approximate our system by the time-
independent Hamiltonian:

HJC=ℏ ¼ Δcd†d þ
ΩR

2
σx þ

χ

2
ða�dσþx þ ad†σ−x Þ; ð2Þ

where we introduce the displaced cavity lowering operator
d ¼ a − a and the steady state amplitude of the cavity
a ¼ ½ð−ϵsbÞ=ðΔc − iκ=2Þ�, where κ is the cavity decay rate
[see Fig. 1(b)]. Notice the qubit now has an energy splitting
in the σx basis given by ΩR and we have introduced the
raising (lowering) operators σ�x ¼ ðσz ∓ iσyÞ=2 between
the eigenstates of σx, which obey σz ¼ σþx þ σ−x .
This Hamiltonian resembles the Jaynes-Cummings

[12,39] (JC) Hamiltonian ωeff
c a†aþ ðωeff

q =2Þσz þ geff
ðaσþ þ a†σ−Þ, where the effective cavity is the displaced
cavity, the effective atom is the σx qubit and the coupling
between them is geff ¼ χjaj=2. Thus, we have created an
effective JC Hamiltonian where both the frequencies and
the coupling term are completely tunable in situ by varying
the amplitudes and frequencies of the Rabi and sideband
pumps (see also Ref. [[40]] for a different method to
generate an effective JC Hamiltonian).
Since the parameters are completely tunable, we can

operate in either the strong (geff > κ) or weak (geff < κ)
coupling regime, and also in the resonant (jΩR − Δcj ≪ geff )
or dispersive (jΩR − Δcj ≫ geff ) regime. In the resonant
regime, the scheme becomes identical to that used in

Ref. [17] to cool a superconducting qubit to an eigenstate
of σx. This process can be interpreted as a sideband cooling
[41–43] schemewhere a red-detuned drive cools the effective
qubit, utilizing cavity dissipation. In our JC picture, the fast
decay rate (κ) of the cavity simply takes the system to its
ground state, in which the qubit is in j−i—an eigenstate
of σx.
This Letter will instead focus on the dispersive regime.

In the limit jΩR − Δcj ≫ χjaj=2, the interaction becomes
dispersive and we can diagonalize the system [30,36,44] to
obtain the Hamiltonian:

Hdisp=ℏ ¼ Δcd†d þ
ΩR þ ζ=2

2
σx þ

ζ

2
d†dσx; ð3Þ

where ζ ≃ g2eff=ðΩR − ΔcÞ is a dispersive shift between the
cavity and the σx qubit. Note that unlike the resonant
sideband cooling regime, the existence of the dispersive
shift has no optomechanical analog [45] as it relies on the
nonlinearity of the system. Another novelty of Eq. (3) is
that ζ is tunable in situ. The absence of a frequency
matching condition in this regime means that fine-tuning
of the pump tones is not required. Thus, we can perform a
continuous QND measurement of the σx component of the
qubit using traditional dispersive readout protocols [30].
This is done by applying a readout tone at Δc in the
effective frame, or at ωc in the lab frame [see Fig. 1(b)].
Our experimental setup consists of a transmon qubit at

frequency ωq=2π ¼ 4.9 GHz coupled to a 3D aluminum
cavity with frequency ωc=2π ¼ 7.48 GHz. The cavity has
two coupling pins, a weakly coupled input pin with quality
factor Qin ≃ 5 × 105 and strongly coupled output port with
Qout ≃ 1900, and thus a total decay rate κ=2π ¼ 4 MHz.
The qubit has a decay time T1 ¼ 90 μs, a coherence time of
T2R ¼ 40 μs, and in thermal equilibrium it has an excited
state population of 12%. The dispersive coupling between
the qubit and cavity is χ=2π ¼ −3.2 MHz. All drives were
applied at the input port and the signal from the output port
was amplified by a Josephson parametric converter (JPC),
a nearly quantum-limited amplifier [32,46], before being
demodulated to extract I, Q quadrature measurement
outcomes.
We applied a cavity sideband tone with Δc=2π ¼

15 MHz such that the cavity steady state population was
nsb ¼ jaj2 ¼ 12 photons, which set geff=2π ¼ χjaj=4π ¼
5.5 MHz. We also applied a resonant readout tone on the
cavity such that n ¼ 0.9 photons. The histograms in Fig. 2
correspond to a 1 s long readout pulse demodulated every
400 ns. In Fig. 2(a) the Rabi tone was off and our
measurement projects the system to eigenstates of σz,
the top (bottom) distributions corresponding to the ground
(excited) states of the qubit. As we turn up the Rabi tone,
our measurement no longer commutes with the system
Hamiltonian and a “competition” takes place between the
measurement and Rabi drive, sometimes called the
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FIG. 1. (a) Schematic of the experiment setup. A 3D transmon
qubit-cavity system is continuously driven by three tones termed
as sideband (red), readout (blue), and Rabi (green). The readout
tone is transmitted through the output port, amplified by a
Josephson parametric converter amplifier and demodulated at
room temperature to give I, Q signals. (b) Frequency landscape.
Our system consists of a qubit at frequency ωq and cavity with
qubit-state-dependent frequency ωc � χ=2 and linewidth κ. The
qubit frequency correspondingly depends on the number of
photons in the cavity, changing by χ for every photon. We apply
a strong sideband tone (red) detuned from the cavity frequency by
Δc and a strong Rabi tone (green) at the qubit frequency. Readout
is performed by applying a weak readout tone (blue) at the cavity
resonance frequency ωc to read out the system.
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quantum Zeno effect [47,48]. When the Rabi frequency is
below our measurement rate [48] Γm=2π ¼ 2.8 MHz we
can still observe two distinct states [Fig. 2(b)], but as it gets
much stronger, the measurement can no longer distinguish
them [Fig. 2(c)].
However, as the Rabi frequency increases beyond Δc,

two distinct distributions reappear [Figs. 2(d) and 2(e)].
Figure 2(d) shows the formation of two distributions, with
most of the population in the bottom one and a faint top
distribution. As the Rabi frequency increases even further,
the bimodality of the histogram becomes more marked and
the two subpopulations become more equal [Fig. 2(e)]. We
understand this behavior as follows: when the system in
Eq. (2) is still close to the resonant regime geff ∼ jΩR − Δcj
not quite in the dispersive limit, cavity dissipation cools the
system to j−i ¼ ðjgi − jeiÞ= ffiffiffi

2
p

, analogous to the Purcell
effect [17,36,49,50]. Figure 2(d) shows this effect, with the
bottom distribution corresponding to the “ground state” j−i
and the faint top distribution corresponding to jþi ¼
ðjgi þ jeiÞ= ffiffiffi

2
p

. As the Rabi frequency increases, the
coupling becomes more dispersive (geff ≪ jΩR − Δcj)
and the cooling effect weakens, as shown by the relative
populations in Fig. 2(e). The dispersive coupling parameter
ζ can be extracted from these measurements and agrees
with our theoretical prediction [36]. Notice that as we
increased the Rabi frequency, a faint distribution appeared
near the center of the figure. This distribution corresponds
to the second excited (jfi) state of the qubit, which has an
8% population in Fig. 2(e).
To prove that this measurement projects the qubit to the

eigenstates of σx, we prepared a well-defined state before
performing our measurement. We prepared the ground state
jgi by standard σz dispersive measurement, applied a pulse
to prepare a state on the Bloch sphere, and then turned on
the Rabi tone with ΩR=2π ¼ 70 MHz and the readout tone
(the sideband tone is applied throughout the experiment to
maintain the same qubit frame—since the presence of
this tone causes a Stark shift of the qubit frequency). In

Fig. 3(a) [3(b)], we prepared the system in j−i (jþi) and
observed 90% (85%) population in the bottom (top)
distribution, limited by the state lifetime and the quality
of our pulses [36]. In Figs. 3(c) and 3(d), we prepared the
qubit in jgi and jii ¼ ðjgi þ ijeiÞ= ffiffiffi

2
p

, respectively, and
observed a nearly 50∶50 population in both distributions.
The separation between the two states is 5.4σ, such that the
infidelity due to the noise in the measurement chain is only
about 1%.
The characterization of the measurement (in particular,

its fidelity) is further examined by rotating the qubit about
the three main axes of the Bloch sphere [Figs. 3(e)–(g)]. For
each state we measure the expectation value hσxi. The
dashed red lines correspond to the expected result of an
ideal measurement of hσxi. The solid red lines are given by
a simulation of the open qubit-cavity system to model
state preparation errors, along with a scaling of 88% and a
shift of 2% due to measurement imperfection [36].
In Figs. 3(e)–(f), we observed the expected sinusoidal
behavior as we project onto eigenstates of σx. Figure 3(g)
shows the axis perpendicular to σx and so should have
a constant expectation hσxi ¼ 0. We observed a 0.2
deviation from this distribution, leaning towards j−i
(jþi) for negative (positive) angles. This deviation, also
captured by our theoretical prediction, is an artifact of the
state preparation, albeit an interesting one as it is also an
effect of the σx coupling. During the preparation pulse for
states on the σy − σz plane, there is a Rabi drive along the σx
axis, and so with the help of the sideband tone the system is
cooled to its lower eigenstate—which changes depending
on the direction of the pulse. Figure 3(e) shows good
agreement between the data and the theoretical prediction.
In Figs. 3(f) and 3(g), the discrepancy can be attributed to a
slight nonlinearity in the relation between the amplitude of
the preparation pulse and the Bloch sphere angle. From
these experiments, we conclude that the average fidelity
of our σx measurement is 88%, which agrees with our
theoretical prediction [36].
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FIG. 2. Histograms of I,Qmeasurements in the presence of the readout, sideband, and Rabi drives for various indicated values ofΩR.
For each ΩR, a 1 s continuous trace was recorded and integrated in 400 ns chunks to give an I, Q value, in units of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

photon
p

in the
integrated chunk. The sideband and readout drive powers resulted in a steady state population of n̄sb ¼ 12 and n̄ ¼ 0.9 photons in the
cavity respectively. The two Gaussian distributions corresponding to the eigenstates of σz are visible in (a) and disappear as ΩR is
increased. For large values of ΩR two new distributions appear, corresponding to the eigenstates of σx. The faint distribution near the
center in (e) corresponds to the second excited state of the qubit (jfi).

PRL 117, 133601 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

23 SEPTEMBER 2016

133601-3



Since our measurement is continuous, and is expected to
be QND, we should be able to track the state of the effective
σx qubit in real time. Evidence for the QND nature of our
measurement is obtained from the observed quantum jumps
between the states of our effective qubit. In Fig. 4, we show
a cut from the 1 s jump trace histogrammed in Fig. 2(e),

where we have defined an angle ψ around the circumcenter
of the j−i, jþi and jfi distributions (see inset). The dashed
orange line corresponds to a two-point filter estimating the
state of the qubit. The average time between jumps from
jþi to j−i is T jump ¼ 4 μs, limited by the dephasing
induced by the sideband tone [36]. This induced T jump

limits the fidelity of our measurement, as the probability to
stay in the same state during the Tm ¼ 400 ns integration
length is e−Tm=T jump ¼ 0.9. We can also observe jumps to the
qubit jfi state, which occur from both j−i and jþi due to
the Rabi drive. In a future experiment, the dephasing
induced by the photon shot noise of the sideband [51]
could be reduced by increasing the strength of the sideband
tone and its detuning from the cavity frequency (see
Supplemental Material [36]). We could thus observe the
intrinsic quantum jumps of the effective qubit due to the
inherent dephasing noise of the bare transmon, which
corresponds to the effective dissipation of our σx qubit.
Measuring the time correlations of quantum jumps [52]
would then give access to the spectral density of qubit
dephasing, potentially faster than traditional methods [9]
and including both the negative and positive frequency
components [51].
In conclusion, we have presented a method to synthesize

a tunable effective JC Hamiltonian between a cavity and an
effective qubit whose eigenstates are transverse super-
positions of the bare qubit. We have used this technique
in the dispersive regime to observe quantum jumps between
the qubit eigenstates of σx in the rotating frame. In addition
to the direct application described in the previous para-
graph, our experiment demonstrates a unique and simple
example of the ability to engineer an effective Hamiltonian
and measurement by the addition of a constant pump tone.
Such new effective quantum operations are at the heart of
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the Bloch sphere surface in the σx − σy plane (e), σx − σz plane
(f), and σy − σz plane (g). The dashed red lines in (e)–(g) show the
ideal expectation value hσxi, while the solid red lines show a
theoretical prediction based on a simulation of the cavity-qubit
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quantum simulation and necessary for quantum error
correction. Furthermore, our effective JC Hamiltonian
could itself be tuned to reach the ultrastrong coupling
regime (geff=ωeff

c ≈ 0.1) and the deep-strong coupling
regime (geff > ωeff

c ;ωeff
q ) [53] which has recently been

experimentally attained [54,55]. In addition, the potential
sensitivity of the effect demonstrated in this paper to the
effective detuning Δc −ΩR could be useful for rf voltage
metrology. The measurement of eigenstates of σx could
also be interesting for a fundamental study of competing
measurements of noncommuting variables. Recent work
[56] has shown a protocol to measure two noncommuting
Pauli operators of a qubit simultaneously. The protocol
described here measures the remaining operator, and a
combination of both experiments would allow us to
measure all three Pauli operators of the qubit simultane-
ously with varying measurement strengths, potentially
leading to novel quantum state monitoring [57].
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