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We propose to encode a quantum bit of information in a superposition of coherent states of an oscillator,

with four different phases. Our encoding in a single cavity mode, together with a protection protocol,

significantly reduces the error rate due to photon loss. This protection is ensured by an efficient quantum

error correction scheme employing the nonlinearity provided by a single physical qubit coupled to the

cavity. We describe in detail how to implement these operations in a circuit quantum electrodynamics

system. This proposal directly addresses the task of building a hardware-efficient quantum memory and

can lead to important shortcuts in quantum computing architectures.
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Long lived coherence is a prerequisite for quantum
computation. A promising software solution to extend the
coherence time of a quantum bit of information is quantum
error correction (QEC) [1,2]. In the field of circuit quantum
electrodynamics, the last decade has seen impressive
improvements in the coherence times of qubits and cav-
ities, thus reaching the quality threshold needed for QEC
to be effective [3]. The usual approach for the realization
of QEC is to use many qubits to obtain a larger Hilbert
space of the qubit register. In this Hilbert space of larger
dimension, one can then redundantly encode the quantum
information in a manner that makes QEC tractable: differ-
ent error channels lead to distinguishable syndromes. There
are two major drawbacks of using multiqubit registers.
The first one is fundamental: with each added qubit, several
new decoherence channels are added. This multiplies the
number of possible errors and requires measuring more error
syndromes. The second is practical: it still seems extremely
challenging to build a register of more than on the order of
10 qubits.

In this Letter, we take an orthogonal direction which
constitutes a complete change of paradigm. Our approach
is to use a cavity mode, namely, a harmonic oscillator, as a
protected quantum memory, hence replacing the multiqubit
register by a single cavity mode. The latter is an infinite
dimensional system and provides a vast Hilbert space to
redundantly encode quantum information. The power of this
idea lies in the fact that the dominant decoherence channel
in a cavity is photon damping, and no more channels are
added if we increase the number of photons we insert in the
cavity. Hence, only a single error syndrome needs to be
measured to identify if an error has occurred or not. This key
property of the harmonic oscillator is a direct consequence
of its linearity. This, on the other hand, comes at a high

price: such a linear system is not easily controllable and
using classical drives, one can only prepare coherent states
in the cavity. However, resonantly coupling a qubit to a
cavity has led to the preparation of arbitrary states of the
cavity [4]. Moreover, it is known that dispersively coupling
a qubit to a cavity aids the manipulation of the cavity state
[5,6], and we have recently shown that it leads to a very
strong controllability over its Hilbert space: we can prepare
any superposition of quasiorthogonal coherent states [7].
Making use of the three properties of controllability, a single
decoherence channel, and minimal hardware, we can realize
a protected quantum memory with currently available de-
vices. Moreover, we provide a detailed sequence of opera-
tions which encode the quantum information in the cavity,
protect it, and decode it back to a qubit. We also provide a
simple extension of our scheme which protects against
multiple jumps in the cavity.
In our scheme (see Fig. 1), the logical qubit is encoded in

a multicomponent superposition of coherent states in the
cavity mode [8]. This simple cavity-qubit system is the
standard building block of both circuit and cavity quantum
electrodynamics (QED) experiments [9]. A cavity mode is
thus a powerful piece of hardware for storing and protect-
ing quantum information [10–12].
An arbitrary qubit state cgjgi þ cejei (we denote jgi and

jei the ground and excited states) is mapped into a multi-

component coherent state jc ð0Þ
� i ¼ cgjCþ� i þ cejCþi�i, where

jC�� i ¼ N ðj�i � j � �iÞ;
jC�i�i ¼ N ðji�i � j � i�iÞ:

N (� 1=
ffiffiffi
2

p
) is a normalizing factor, and j�i denotes a

coherent state of complex amplitude �, chosen such that
j�i, j � �i, ji�i, and j � i�i are quasiorthogonal, i.e.,
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jh�ji�ij2 � 1 (note that for � ¼ 2, jh�ji�ij2 < 10�3). An
important contribution of this Letter is to propose a detailed
sequence of operations which deterministically and effi-
ciently realizes the unitary operation

Uencodeðcgjgi þ cejeiÞ � j0i ¼ jgi � ðcgjCþ� i þ cejCþi�iÞ
þOðe�j�j2Þ 8 cg; ce:

The error termOðe�j�j2Þ is due to the fact that the two states
jCþ� i and jCþi�i are not exactly orthogonal. However, this
error term decreases exponentially with photon number
j�j2 and can rapidly be neglected compared to the effi-
ciency of our gate. Similarly, we perform the inverse
operation Udecode, mapping back the quantum state of the
cavity to the physical qubit. Before presenting the scheme
which performs the above unitary operations, let us show
how this encoding protects against photon loss.

Together with jc ð0Þ
� i, we introduce jc ð1Þ

� i ¼ cgjC�� i þ
icejC�i�i, jc ð2Þ

� i¼cgjCþ� i�cejCþi�i, and jc ð3Þ
� i ¼ cgjC�� i �

icejC�i�i. The logical 0, jCþ� i, and the logical 1, jCþi�i, have
the three following remarkable properties. First, the states

jc ðnÞ
� i evolve after a quantum jump due to a photon loss, to

ajc ðnÞ
� i= k ajc ðnÞ

� i k¼ jc ½ðnþ1Þmod4�
� i, where a is the anni-

hilation operator. Therefore, the set fjc ðnÞ
� ig is closed under

the action of a. Second, in the absence of jumps during a

time interval t, jc ðnÞ
� i deterministically evolves to

jc ðnÞ
�e��t=2i, where � is the cavity decay rate. Third, defining

the parity operator � ¼ expði�ayaÞ, we have

hc ðnÞ
� j�jc ðnÞ

� i ¼ ð�1Þn. The parity operator acts therefore
as a quantum jump indicator. Now, suppose we have a
quantum non demolition parity measurement, and that
we have counted c jumps during a time t, the initial state

has evolved to jc ðcmod4Þ
�e��t=2 i. Using similar operations to those

for Uencode, we obtain a unitary transformation, indepen-

dent of cg and ce, which maps jc ðcmod4Þ
�e��t=2 i back to jc ð0Þ

� i,
therefore undoing the effect of decoherence caused by
random quantum jumps and repumping the decayed energy
back into the cavity.
Such a measurement based QEC (MBQEC) [13] (see the

Supplemental Material [14]) requires fast and reliable
measurements which would necessitate employing quan-
tum limited amplifiers. Here, we introduce an autonomous
QEC (AQEC) scheme, avoiding the need of such resour-
ces. Instead, it requires the availability of a rapid, high
fidelity qubit reset. Depending on the experimental setting,
either one method or the other could be preferred.
AQEC [15–17] is realized by using an auxiliary quantum

system that we take here to be the same coupled physical
qubit, which is used to manipulate the cavity state.
The idea consists in finding a unitary operation Ucorrect

such that

Ucorrect: jgi � jC�
�e��t=2i ! 1

ffiffiffi
2

p ðjgi � jeiÞ � jCþ� i;

jgi � jC�
i�e��t=2i ! 1

ffiffiffi
2

p ðjgi � jeiÞ � jCþi�i;
(1)

neglecting terms of order e�j�j2 due to the nonorthogonality
of the coherent states. This unitary operation transfers the
entropy of the quantum system to be protected to the aux-
iliary one. Now, resetting the state of the auxiliary system,
we can evacuate the entropy, restoring the initial full state.
More precisely, we encode the qubit state cgjgi þ cejei

in the state jc ð0Þ
� i and, in a stroboscopic manner, perform

the above unitary transformation followed by the qubit
reset. Assuming that at most one quantum jump can hap-
pen between two correction operations separated by time
Tw, the state before the correction is given either by

jc ð0Þ
�e��Tw=2i or jc ð1Þ

�e��Tw=2i. After the correction operation,

we have restored the initial state jc ð0Þ
� i.

The operations involved in the encoding, decoding, and
correction rely on three unitary transformations. The first
one D� displaces the cavity state by a complex amplitude
� regardless of the qubit state. Second, the conditional

cavity phase shift � (respectively,
ffiffiffiffiffi
�

p
) transforms states

of the form je; �i to je;��i (respectively, je; i�i) and
leaves jg;�i unchanged. Third, a conditional qubit rotation
X0
�;� rotates the qubit state by e�=2ðei�jeihgj�e�i�jgihejÞ only if

FIG. 1 (color online). Our AQEC scheme is composed of
three operations: encoding, correcting, and decoding. The joint
cavity-qubit state is represented by a generalized Fresnel dia-
gram. Fresnel plane positions carry the description of the cavity
mode, while colors carry the description of the qubit. Our
protocol only requires that we represent superpositions of
coherent states entangled with the qubit degrees of freedom.
A circle whose center is positioned at � in the diagram
corresponds to a coherent state component of amplitude �.
For example, the diagram in frame 2 represents the state
cgjCþ

� i þ cejCþ
i�i ¼ N ðcgjg; �i þ cgjg; ��i þ cejg; i�i þ

cejg;�i�iÞ, where N � 1=
ffiffiffi
2

p
is a normalization factor. Each

component of this state corresponds to a circle whose color
refers to whether the qubit is in jgi (blue areas) or jei (red
areas). The rim of each circle indicates whether the prefactor
is cg (single line) or ce (double line). Finally, the fraction of

the colored disk represents the total weight jN cg;ej2 of each

coherent component. Here, quarter filled circles correspond to
jN cg;ej2 ¼ 1=4. Initially (frame 1), the qubit is in cgjgi þ
cejei and the cavity is in vacuum. The plus (respectively,
minus) sign in the 2 and 3 diagrams indicates whether the
logical qubit is encoded in an even (respectively, odd) cavity
state. A jump from a plus to a minus sign is induced by a photon
loss error, which we aim to correct.
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the cavity is in the vacuum state j0i. See Fig. 2 for a
detailed illustration of how combining these operations
leads to the encoding gate. Note that for some rotations,
� takes the value 2 �n in order to compensate the phase
accumulated due to the previous displacement [see

Ref. [18], Eq. (3.50)]. A circuit representation of the
sequence of operations for the encoding and the decoding
gates is given in the Supplemental Material [14]. We have
already successfully implemented, in our laboratory, a
sequence of operations similar to this encoding operation,
and the experimental results will be presented elsewhere
[19]. The correction operation also requires a qubit reset
that forces the qubit state to jgi independently of the cavity
state. See Fig. 3 for a detailed illustration of the correction
operation. In the proposed scheme, we have introduced the
qubit reset in the middle, in contrast with what is suggested
in Eq. (1). We find the resulting sequence to be more
efficient.
We now quantify the performance of our AQEC scheme.

Let �ðnÞ
� denote the projector onto the state jc ðnÞ

� i. The
effect of the waiting time Tw between two corrections
may be modeled by a Kraus operator

Kw: �
ð0Þ
� ! p0�

ð0Þ
~� þ p1�

ð1Þ
~� þ p2�

ð2Þ
~� þ p3�

ð3Þ
~� ;

where ~� ¼ �e��Tw=2. For a Poisson process with a jump
rate �jump, the probability of having k jumps during a time

interval Tw is given by expð��jumpTwÞ�k
jumpT

k
w=k!. We

denote as pk the probability of having k (mod 4) jumps
during the waiting time Tw. In the limit where 	jump �
�jumpTw ¼ �Tw �n � 1, we have p0 � 1� 	jump þ
	2jump=2, p1 � 	jump � 	2jump, and p2 þ p3 � 	2jump=2.

FIG. 2 (color online). Sequence of operations which generate
Uencode. See the caption of Fig. 1 for an explanation of the
diagram notation. The symbol given in the kth frame corre-
sponds to the operation performed to go from frame k� 1 to k.
The curved arrow corresponds to the rotation of the excited state
component of the state. We denote 
 ¼ �ð�1þ iÞ and �n ¼
j�j2. The frames are ordered from left to right and top to bottom.

FIG. 3 (color online). (a)–(c) Full correcting sequence obtained by concatenating the three sequences of pulses. (a) The entropy is
transferred from the cavity to the qubit. (b) First, the qubit is reset to its ground state and then energy is repumped into the coherent
component to compensate the deterministic decay due to damping during the waiting time Tw between two correction sequences.
(c) The cavity state is mapped back onto the initial cavity logical 0 and logical 1. See the caption of Fig. 1 for an explanation of the
diagram notation. Here, we denote �0 ¼ e��Tw=2� the damped amplitude after the waiting time Tw, �n

0 ¼ j�0j2, and 
0 ¼ �0ði� 1Þ.
In order to compensate the damping during Tw, during the repumping step, we take 
0

d ¼ ð
0 � 
Þ=2. In the last frame of (a), the error

is encoded in the phase of the qubit superposition and is not represented in this diagram. After qubit reset [first frame of (b)], this phase
information is erased.
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The correction step consists of the joint unitary operation
on the cavity-qubit system followed by the qubit reset. We
model the effect of this operation by the Kraus operator

Kc, mapping both jc ð0Þ
�e��Tw=2i and jc ð1Þ

�e��Tw=2i to jc ð0Þ
� i.

After N correction cycles and waiting times (each one
taking a time Tc þ Tw), we obtain a fidelity at time tN ¼
NðTc þ TwÞ: FAQECðtNÞ ¼ Tr½�ð0Þ

� ðKcKwÞN�ð0Þ
� �.

We denote ð1� 	correctÞ as the fidelity of the correction
operation, taking into account various imperfections and
particularly finite coherence times and finite pulse lengths.
Also, 	wait ¼ 	2jump=2 denotes the probability of having

two or more jumps during the waiting time between two
correction steps. We have FAQECðtNÞ � ½ð1� 	correctÞð1�
	waitÞ�N . Assuming Tc � Tw, we obtain an effective decay

rate �AQEC
eff � ½	correct þ ð�Tw �nÞ2=2�=Tw. The latter is

maximal for Tw ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	correct

p
=� �n, which would lead to

�AQEC
eff ¼ � �n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	correct

p
: (2)

This is an improvement by a factor of 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	correct

p
with

respect to the decay rate � �n of jc ð0Þ
� i in the absence of

correction. Indeed, considering an architecture represented
in Fig. 4 and the parameters introduced in Sec. 1 of the
Supplemental Material [14] leads to an improvement of
about 1 order of magnitude. We even find an improvement
of a factor of 	2 with respect to the lifetime of a single
photon in the cavity. This proves that this scheme can be
more effective than simply encoding the qubit state in the 0
and 1 Fock states of a cavity using a swap operation

[20,21]. Notice that while �AQEC
eff increases linearly with

�n, the error due to the nonorthogonality of the code word
decreases exponentially with �n. Hence, a compromise
between these two effects is reached for small values of �n.

Here, we show how we could perform our AQEC in
practice (see Fig. 4 for a possible implementation of this
proposal). We place ourselves in the strong dispersive
regime, where both the qubit and the resonator transition

frequencies split into well-resolved spectral lines indexed
by the number of excitations in the qubit and the resonator
[22]. The resonator frequency !r splits into two well-
resolved lines !g

r and !e
r , corresponding to the cavity’s

frequency when the qubit is in the ground (jgi) or the
excited (jei) state. Through the same mechanism, the qubit
frequency!q splits into f!n

qgn¼0;1;2;..., corresponding to the

qubit frequency when the cavity is in the photon number
state jni. Recent experiments have shown dispersive shifts
that are more than 3 orders of magnitude larger than the
qubit and cavity linewidths [23].
The Hamiltonian of such a dispersively coupled qubit-

cavity system is well approximated by

H0 ¼ !q

�z

2
þ!ca

ya� �
�z

2
aya;

where !q and !c are, respectively, the qubit and cavity

frequencies, � is the dispersive coupling, and �z ¼ jei

hej � jgihgj. This Hamiltonian may be written in an
appropriate rotating frame as H ¼ ��jeihejaya. This
dispersive coupling is called strong when � � �; 1=T2,
where T2 is the qubit dephasing time.
As detailed in Ref. [7], the strong dispersive cavity-qubit

coupling allows us to efficiently perform conditional qubit
rotations, unconditional cavity displacements, and condi-
tional cavity phase shifts. Long selective qubit pulses with
carrier frequency!0

q can rotate the qubit state conditioned on

the cavity being in the vacuum state. Short unselective pulses
on the cavity will displace it regardless of the qubit state, and
simply waiting for a time �=� [respectively, �=ð2�Þ] real-
izes the conditional cavity phase shift� [respectively,

ffiffiffiffiffi
�

p
].

Finally, the qubit reset could be done by rapidly tuning (e.g.,
with a flux bias line) the qubit frequency to bring it into
resonance with a low-Q cavity mode [16]. This operation
needs to be fast compared to� to avoid reentanglement of the
qubit to the cavity mode. Another possibility, avoiding fast
frequency tuning, is to perform a dynamical cooling cycle, as
proposed in Ref. [24].
We have shown that it is possible to protect a logical

qubit against relaxation by encoding it in a single cavity
coupled to a single physical qubit and driving them with
simple control pulses. No control over the qubit frequency
or the cavity-qubit coupling is necessary, as long as this
coupling is in the strong dispersive regime. Our theoretical
prediction of the lifetime improvement is confirmed by
numerical simulations of the proposed protocol (see
Sec. 1 of the Supplemental Material [14]). Furthermore,
we have already successfully prepared, in our laboratory,
the stateN ðjCþ

� i þ jC�
� iÞ, using a sequence of operations

similar to Uencode [19]. Additional control of the qubit
frequency in real time could lead to simpler and faster
operations with higher fidelities [25].
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FIG. 4 (color online). Diagram of our proposal to store a
quantum bit of information in a single cavity mode. The infor-
mation is encoded in a superposition of cat states, represented by
the I-Q diagram. The cross symbolizes a superconducting qubit.
The wavy line represents the readout resonator which measures
and resets the ancilla qubit state. This hardware-efficient
quantum memory could significantly reduce the complexity of
quantum computing architectures.
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