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A single high-Q harmonic oscillator with a fixed ‘dispersive’ coupling to an ancillary qubit provides

a remarkably hardware-efficient platform for a wide range of quantum technologies, capable of

acting as a dark matter detector, a simulator of quantum chemistry or a quantum memory with a

lifetime longer than its underlying components. The strength of this platform lies in the linearity

and favorable decoherence rates of the high-Q oscillator mode. The question then arises: how

can we scale this oscillator-based platform to practically useful sizes without compromising a)

the speed of operations or b) the properties that make oscillators an attractive platform in the

first place? The addition of a tunable oscillator-oscillator coupling, equivalent to an optical

beamsplitter, has extended the power of this platform to enable multi-mode entanglement, a

key element for quantum computation, but until now, implementations have been limited to

low interaction strengths and introduced unwanted oscillator nonlinearity. Inspired by advances

in parametric amplification, we show how a three-wave mixing element solves this challenge by

acting as a switch, with beamsplitter interaction strengths exceeding those of the dispersive

coupling when turned on, and the ability to fully decouple the modes when turned off. We

then demonstrate how this regime unlocks a powerful new toolbox of high-fidelity multimode

operations which are the analogs of established single-mode control techniques. In particular,

we show how these techniques can be leveraged to perform a mid-circuit erasure check, the vital

building block for a newly-proposed quantum computer made out of superconducting cavity

dual-rail qubits.
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Chapter 1

Introduction

The power of quantum computers to tackle certain challenging problems more efficiently than

their classical counterparts relies on their use of superposition and entanglement, properties

that are not accessible to a classical computer. A neat way to demonstrate the effect of the

first of these, superposition, is by using a pair of beamsplitters, in a version of Young’s famous

double-slit experiment (Young, 1804). This setup, known as a Mach-Zehnder interferometer

(Mach, 1892; Zehnder, 1891), is shown in Fig. 1.1(a). By shining a laser onto one face of a

50/50 beamsplitter, the beam is divided into two, with half of the light continuing onwards and

the other half being reflected. We can then use mirrors to recombine this light in a second

50/50 beamsplitter, such that it emerges out of its two different faces, which we monitor. This

setup can reveal two seemingly contradictory observations:

1. By altering the length of one of the two paths connecting the beamsplitters, the intensity

of outgoing light displays constructive and destructive interference, with the intensity of

light emerging from each face oscillating as a function of the relative path difference

(Fig. 1.1(b)). This interference observation is natural if one treats light as a wave.

2. By decreasing the intensity of the light source, the intensity of the emerging light can

be made to decrease until eventually light is detected in discrete bursts (Fig. 1.1(c)).

This discrete-burst observation is natural if one treats light as consisting of particles, or

1
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Figure 1.1: Mach-Zehnder interferometer. (a) A schematic of the interferometer, in which
a coherent beam of light is split by a 50/50 beamsplitter before being recombined in another
beamsplitter, whose outputs are monitored with photon detectors A and B. One path of the
interferometer contains an optical phase shifter which can add an additional phase δϕ relative
to the other path. (b) The averaged probability of measuring a photon at detector A or B as
a function of the phase shift, δϕ. For concreteness, |α|2 ≪ 1 describes the average photon
number (per spatiotemporal mode) in the in-going beam. (c) An example (simulated) detector
trace across the full range of δϕ. Even as the light arrives in individual bursts, the long-time
averaged statistics will show constructive and destructive interference.

photons, of light.

Surprisingly, both of these effects can be observed in the same experiment (although not in a

single shot). While the individual photons may appear one-by-one, over time their averaged

statistics will build up to show the interference patterns in Fig. 1.1(b).

The resolution to this particle-wave problem is that both can be viewed as valid comple-

mentary descriptions: we can treat the light as composed of individual particles, but their

probability amplitudes of traveling along each path of the interferometer can be described by

a superposition, i.e. a linear combination of both paths, possessing a relative phase just as

a wave would. In this picture, interference effects in the measured destinations of individual

photons become possible. While the description of light as a wave possessing a phase had long

been discussed (Shapiro, 1989), what underpinned the first quantum revolution of the early 20th



3

century was the understanding that matter (at sufficiently small action scales) also obeyed the

same wave-particle duality (De Broglie, 1923). The same interference effects first seen in light

have subsequently been observed in systems of increasingly large mass, with electrons (Davisson

and Germer, 1927), atoms (Estermann and Stern, 1930), molecules (Arndt et al., 1999), and

now too, in electromagnetic circuits (Bertet et al., 2001).

Whereas the first quantum revolution provided a unified description of these wave-like and

particle-like properties, the second quantum revolution (Dowling and Milburn, 2003) of the

late 20th and early 21st centuries has established that with sufficient control over these super-

positions, we may be able to perform useful tasks. Of particular interest is the prospect of

performing quantum computation (Nielsen and Chuang, 2010), where information is stored in

the superposition states of a large quantum system (typically imagined as an array of quantum

bits) and manipulated such that interference effects lead to a final measurement outcome that

encodes the result of the computation. Shor’s 1994 algorithm for efficient prime factorization

(Shor, 1994) remains the foremost example (among several prominent ones (Grover, 1996; Har-

row et al., 2009)) of a quantum computer providing a theoretical advantage in an area where

even the world’s most powerful classical computers are inadequate. However, in order to per-

form useful computation, control over quantum superpositions is not by itself sufficient – we

specifically require the ability to generate entanglement (Josza and Linden, 2003), a property

of multipartite quantum systems where the state of their constituent parts cannot be described

independently of one another.

While the example of the Mach-Zehnder interferometer showed the ability to control the

superposition state of outgoing photons by carefully controlling the phase shift δϕ, these linear

optical components alone (i.e. beamsplitters, phase shifters and mirrors) cannot generate en-

tanglement (Kok et al., 2007). In order to do so, we require some non-linear component (Lloyd,

1992)1. A modified version of our Mach-Zehnder apparatus (Fig. 1.2) however, forms the basis

of one of the earliest proposals for constructing a ‘simple’ quantum computer (Chuang and

Yamamoto, 1995). In this proposal, information is encoded in which of two paths a photon

1This non-linear component can also come in the form of single-photon sources and detectors, such as in the
KLM protocol (Knill et al., 2001).
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takes, which is hence named a ‘dual-rail’ qubit (quantum bit). Combining the aforementioned

beamsplitters with a ‘Kerr’ nonlinear medium (Boyd, 2008; Kerr, 1875), which takes the place of

the phase shifter, changing the phase of light in one rail conditioned on the presence of a photon

in another, allows adjacent qubits to interact with one another (Milburn, 1989), which in turn

allows for the generation of quantum entanglement. Adding also the ability to generate and

detect single photons provides the control necessary for a ‘universal’ quantum computer, capable

of performing any quantum computation. A handful of optical elements therefore provides a

blueprint for enabling quantum advantage over classical methods.

The catch though, with this and with all other proposals, is that while we are manipulating

the quantum system, so too is its environment. Qubits, unlike their classical counterparts, are

inherently analog systems and are therefore subject to noise which can degrade the fidelity of

a computation and whose effect accumulates over time (Nielsen and Chuang, 2010). Quantum

computers are therefore always in a race against the clock – operations must be completed

faster than noise can accumulate, and the speed limit for these operations is set by the strength

of the nonlinear interaction (i.e. how fast the photon-number-dependent phase accumulates).

Unfortunately for this particular proposal, a source of strong, low-loss, optical nonlinearity has

remained elusive (O’Brien, 2007).

As established earlier however, the quantum mechanical principles from which quantum

technologies derive their power do not just apply in the optical domain. A leading approach

is to instead build quantum computers out of superconducting microwave circuits, where a

strong dissipationless source of Kerr nonlinearity does exist, in the form of the Josephson junc-

tion (Josephson, 1962). The superconducting analog of the nonlinear optical processor is based

on bosonic superconducting qubits (Joshi et al., 2021) where, rather than storing information in

propagating optical photons (at ∼ 200 THz), we store it in standing-wave microwave photons in

a resonator (at ∼ 5 GHz). These oscillators are by themselves purely linear, but coupling them

to Josephson junction-based circuits (typically a ‘transmon’ circuit; Koch et al., 2007) provides

them with the requisite nonlinearity to perform universal control of their state (Heeres et al.,

2015; Krastanov et al., 2015). Long-lived superconducting resonators coupled to nonlinear cir-
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Kerr
medium

Dual-Rail
A

Dual-Rail
B

Figure 1.2: Dual-rail CNOT gate based on optical cSWAP. Two dual-rail qubits, each con-
sisting of a single photon whose path along one of two fibers encodes 1 bit of information (Chuang
and Yamamoto, 1995). The replacement of the phase shifter in the Mach-Zehnder interferom-
eter with a Kerr medium (Kerr, 1875), which shifts the phase conditioned on the presence of
a photon in the adjacent rail, forms a cSWAP (or Fredkin) gate for optical states, exchanging
the states in the blue (B) rails, conditioned on the presence of a photon in the lower orange (A)
rail (Milburn, 1989). When applied to dual-rail qubits, this serves as a CNOT gate, flipping the
state of qubit B, conditioned on the state of qubit A.

cuits (where the nonlinear interaction strength greatly exceeds the dissipation rate) have been

used to generate non-classical states of light including Fock (Hofheinz et al., 2008), Schrödinger-

cat (Kirchmair et al., 2013), cubic-phase (Eriksson et al., 2024) and Gottesman-Kitaev-Preskill

(GKP) (Campagne-Ibarcq et al., 2020) states, which in turn have enabled searches for dark

matter (Backes et al., 2021; Brubaker et al., 2017; Dixit et al., 2021), and demonstrations of

‘beyond-breakeven’ quantum error correction (Brock et al., 2024; Ni et al., 2023; Ofek et al.,

2016; Sivak et al., 2023).

These proof-of-principle experiments demonstrate the power of bosonic superconducting

circuits to be competitive in the race against the clock. However, the power of quantum control

scales with the size of system (related to the number of different states we can access) (Cross

et al., 2019). In order to extend these achievements to practically useful system sizes, we need

a means of controlling multiple resonators, while also isolating them from each other when

desired. In other words, we need a switch. A powerful way to do so comes from looking to our
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original Mach-Zehnder interferometer for inspiration. The work of Zakka-Bajjani et al. (2011)

showed that the microwave analog of a beamsplitter, which in this case swaps photons between

a pair of resonator modes, can be generated by taking a similar Kerr-nonlinear transmon circuit2,

capacitively coupling it to both resonators, and applying strong microwave drives to it. This

same idea was subsequently extended to beamsplitter interactions between standing-wave and

propagating microwave photons (Flurin et al., 2015; Pfaff et al., 2017), between photons in

long- and short-lived resonators (Sirois et al., 2015), and crucially, between photons in pairs of

long-lived resonators (Gao et al., 2018).

Access to beamsplitters in the microwave domain allows us to imagine a multi-purpose system

comprising a network of microwave resonators connected by tunable beamsplitters, with the

required nonlinearity provided by Kerr nonlinear circuits coupled to individual resonators (Teoh

et al., 2023). Such a network provides a framework for a wide class of powerful operations

based on their optical analogs. By themselves, beamsplitters provide a highly-efficient way of

routing quantum information around a network to emulate circuit topologies more complex

than the underlying physical substrate. Combining the beamsplitter with a Kerr nonlinearity

coupled to a single mode unlocks more powerful operations, such as the controlled-SWAP, a

key enabling operation for quantum random access memory (qRAM) (Hann, 2021; Weiss et al.,

2024) and exponential-SWAP (Gao et al., 2019), a gate that entangles qubits in two resonators

independently of the choice of encoding (Lau and Plenio, 2016). As we shall see later in this

thesis, this network also provides all the necessary operations (single- and two-qubit gates, as

well as measurements) for a quantum computer consisting of microwave dual-rail qubits (Teoh

et al., 2023), a promising platform for hardware-efficient error-corrected quantum computing.

In choosing a quantum computing platform, a quantum engineer must pick their poison.

In the case of the nonlinear optics approach, the challenge is presented by developing a strong

Kerr nonlinearity. In bosonic systems, it is rather the beamsplitter that presents the greater

2For completeness, in this particular experiment, the specific circuit was a superconducting quantum inter-
ference device, or SQUID, where the microwave drives modulated the magnetic flux through a central loop in
the SQUID. In the Gao et al. (2018) experiment implementing a beamsplitter between long-lived resonators, the
coupling element was a standard transmon circuit where the microwave drives modulated the charge in the circuit.
Both ideas will be discussed in more detail in Chapter 3.
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technical challenge. As mentioned before, operating a quantum computer is a race against the

clock, and these beamsplitters based on Kerr-nonlinear transmon couplers are relatively slow,

operating an order of magnitude slower than single-resonator operations. Further increasing the

strength of the microwave drive to increase the speed does so at the cost of increased noise,

thereby negating any benefit. As such, while the addition of a microwave beamsplitter enables

a powerful set of operations, its relatively slow speed limits their practical utility.

This thesis sets out to resolve this issue, replacing the existing Kerr-nonlinear coupling circuit

used to generate the beamsplitter interaction with a Kerr-free circuit, inspired by the success

of a similar approach in improving the dynamic range of parametric amplifiers (Frattini, 2021).

This could provide bosonic networks with not just a switch, but a ‘good’ switch – one with

an order-of-magnitude higher beamsplitter rate and the ability to completely isolate nodes from

each other when desired. This has the power to unlock a new regime in which the beamsplitter

interaction strength matches that of the nonlinear ‘dispersive’ interaction - a regime in which

we can devise new high-fidelity multi-mode schemes, paving the way to large-scale quantum

technologies based on many bosonic modes.

1.1 Outline of this thesis

The overarching theme of this thesis is the interplay between two elements of oscillator control:

the dispersive shift (mediated by a Kerr nonlinearity) and the tunable beamsplitter. In particular,

it concerns how we can engineer a beamsplitter interaction whose strength is comparable to

that of the dispersive interaction and, since this interaction strength sets the timescale for other

operations, the new capabilities that are enabled in this regime. Chapter 2 begins by introducing

these two main characters, their physical origins, and the existing toolbox of operations they

enable. The single-oscillator dispersive operations demonstrated in that chapter will be especially

relevant for later chapters where I, one-by-one, generate the two-oscillator analogs of these

operations via the simultaneous application of a strong beamsplitter interaction. While many

of the lessons contained in this thesis apply to any system composed of long-lived harmonic
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oscillators and nonlinear elements, in that chapter I will also introduce the particular experimental

platform used, namely 3D superconducting cavities and transmon qubits.

In Chapter 3, I will hone in on the underlying factors that have limited the speed and

noise performance of tunable microwave beamsplitters based on Kerr-nonlinear couplers, and

propose a solution based on a Kerr-free nonlinear element called the SNAIL (superconducting

nonlinear asymmetric inductive element) (Frattini et al., 2017). The SNAIL has its origins

as a means of increasing the dynamic range of parametric amplifiers (Frattini et al., 2018;

Sivak et al., 2019, 2020), and so I discuss the similarities and differences between this problem

and the problem of improving beamsplitters between high-Q oscillators. This also provides an

opportunity to compare the merits of this solution to other more recent approaches using, for

example, magnetic-flux-pumped superconducting circuits (Lu et al., 2023).

In Chapter 4, I will put these ideas into practice, showing how a system of two microwave

resonators coupled by a SNAIL can enable beamsplitter rates in excess of typical dispersive

shifts, without introducing additional noise or any always-on nonlinear coupling between the

resonators. I describe the considerations when engineering a device to achieve this, paying

particular attention to the delivery of magnetic flux, the delivery of a strong charge drive, and

the circuit parameters of the SNAIL. I will also lay out the techniques used to characterize the

properties of the SNAIL element itself, as well as the performance of the tunable beamsplitter.

The remaining chapters describe the power that can be derived from combining disper-

sive and beamsplitter interactions, both in theory and experiment. In Chapter 5, I will con-

sider operations where the beamsplitter and dispersive terms are used alternately, including a

new technique for performing a fast controlled-SWAP, whereby the state of a nonlinear ancilla

controls whether or not two resonator states are exchanged, and an error-detected measure-

ment of the joint-photon-number parity in two oscillators. These results provide experimental

evidence for the utility of the operator Bloch sphere model (Tsunoda et al., 2023) in con-

structing operations where the beamsplitter and dispersive interactions strengths are on par

with each other. This model, based on the Schwinger angular momentum description of two

coupled modes (Schwinger, 1952), extends ideas used in the context quantum optical beam-
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splitters (Campos et al., 1989) to the regime of superconducting circuits.

In Chapter 6 I will then introduce a complementary framework for understanding operations

where the beamsplitter and dispersive terms are applied simultaneously, which we call the joint-

photon number-splitting regime. We will see how the spectrum of a nonlinear ancilla coupled

to an oscillator can be modified in the presence of a strong beamsplitter such that it depends

only on the combined photon number in the two coupled oscillators. By mapping the physics of

these coupled oscillators onto that of a single spin, I obtain an intuitive model for constructing

multi-cavity operations that generalizes to large photon numbers in the oscillators.

Chapter 7 ties all of these previous pieces together by applying this joint-photon number-

splitting regime to demonstrate an essential operation for a dual-rail qubit consisting of 3D

superconducting cavities (Teoh et al., 2023), namely a mid-circuit erasure check – a way of

catching events where a photon is lost from either one of the rails without disturbing the

quantum state. Crucially, we will do so with a circuit layout that extends readily to a large

surface code (Kitaev, 2003) of dual-rail qubits.

Finally, in Chapter 8 I will discuss next steps, focusing in particular on the questions that

remain for scaling up dual-rail qubits, possible approaches for further improving beamsplitter per-

formance and the potential scope of capabilities enabled by the beamsplitter-coupled microwave

resonators.
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Chapter 2

Elements of high-Q oscillator control

In the introduction, I described the possibility of manipulating quantum information in large net-

works of long-lived linear oscillators, whether as a computer operating on encoded qubits (Joshi

et al., 2021), as a binary tree enabling quantum random access memory (qRAM) (Hann, 2021;

Naik et al., 2017; Weiss et al., 2024), or as an analog simulator of quantum chemistry (Hu

et al., 2018; Katz and Monroe, 2023; Owens et al., 2018; Wang et al., 2020). One can con-

struct a network capable of these applications using just two types of Hamiltonian interaction:

a tunable beamsplitter interaction between linear oscillators, and a static dispersive interaction

that couples linear oscillators to nonlinear ancillary oscillators. Fig. 2.1 shows an example of an

oscillator network, as well as a minimal unit-cell in which a central linear oscillator participates

in both Hamiltonian interactions. The Hamiltonian of this unit cell, consisting of two linear

oscillators (Alice and Bob, described by lowering operators â and b̂) and a nonlinear oscillator

(truncated to its lowest two energy levels, |g⟩ and |e⟩), can ideally be written as:

Ĥχbs = Ĥbs + Ĥdisp, (2.1)

11
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where

Ĥbs

ℏ
=
gbs(t)

2
â†b̂+

g∗bs(t)

2
b̂†â, (2.2)

Ĥdisp

ℏ
= χb̂†b̂ |e⟩ ⟨e| . (2.3)

This unit cell provides a platform for probing the competition between these two Hamiltonian

terms, particularly in the regime where the magnitude of the beamsplitter interaction (gbs(t))

becomes comparable to that of the dispersive interaction (χ), and will form the basis of the

experiments in this thesis.

static
dispersive coupling

tunable
beamsplitter coupling

|g⟩
|e⟩

|f⟩

. .
 .

Alice Bob Nonlinear
ancilla

Figure 2.1: Building blocks of a quantum information processor based on a bosonic
network. (a) Section of a possible 2D tiling of linear oscillators (orange and blue) linked by
tunable beamsplitter interactions, with every other oscillator coupled to a nonlinear oscillator
(black) via a dispersive interaction. (b) The minimal unit cell of this tiling, consisting of just
two linear oscillators (Alice and Bob) and a nonlinear oscillator, whose lowest two energy levels
(green) form an ancillary qubit.

The goal of this chapter is to review the capabilities afforded by this unit cell, in the existing
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regime where gbs ≪ χ. In particular, I shall describe:

1. key properties of the linear and nonlinear superconducting oscillators,

2. how this informs their respective roles, and

3. the toolbox of operations enabled by the combined Hamiltonian, Ĥ.

Not only will this provide context for what is and isn’t possible in the gbs ≪ χ regime, but

the description of established single-oscillator control techniques will lay the groundwork for

developing analogous multi-oscillator techniques when gbs ≳ χ.

2.1 A hybrid discrete-continuous variable system

The network we have been describing is an example of a hybrid oscillator-qubit system (Liu

et al., 2024) consisting both of elements described by continuous-variable (in the case of linear

oscillators) and by discrete-variable (in the case of ancillary qubits) quantum degrees of freedom.

Here I will very briefly review some key properties of the former, allowing us to more formally

motivate the requirements for the beamsplitter and dispersive couplings.

In the context of superconducting circuits, a linear oscillator may be represented as an LC

circuit, whose Hamiltonian,

Ĥosc =
Φ̂2

2L
+
Q̂2

2C
= ℏωa

(
â†â+

1

2

)
(2.4)

can be expressed in terms of two continuous-valued conjugate variables: the branch flux across

the inductor, Φ̂ = ΦZPF

(
â+ â†

)
, and the charge on the capacitor, Q̂ = −iQZPF

(
â− â†

)
, where

ΦZPF = (ℏ2L/4C)1/4 and QZPF = (ℏ2C/4L)1/4 represent the zero-point fluctuations of each

variable when the oscillator is in its ground state (Vool and Devoret, 2017), and ωa = 1/
√
LC

is the resonance frequency of the oscillator. These conjugate variables are non-commuting,

satisfying
[
Φ̂, Q̂

]
= 2iΦZPFQZPF = iℏ. Alternatively, we can normalize these quantities by their
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zero-point fluctuations (×
√
2) to obtain the dimensionless flux and charge ‘quadratures’:

ϕ̂ ≡ Φ̂√
2ΦZPF

=
â+ â†√

2
, (2.5)

q̂ ≡ Q̂√
2QZPF

= −i â− â†√
2
, (2.6)

which instead satisfy
[
ϕ̂, q̂
]
= i, where ϕ̂ and q̂ can be interpreted as the real and imaginary

components of the â operator (×
√
2)1 (Leonhardt, 1997).

The state of this oscillator is described by its density matrix, ρ̂. While there are many

bases in which we could represent ρ̂, an especially useful way of describing it is via the Wigner

quasiprobability distribution (or ‘Wigner function’) (Wigner, 1932), a real-valued function in

2-dimensional phase space, spanned by the real continuous variables ϕ and q:

W (ϕ, q) =
1

2π

∫ ∞

−∞

〈
ϕ− ϕ′

2

∣∣∣∣ ρ̂ ∣∣∣∣ϕ+
ϕ′

2

〉
eiqϕ

′
dϕ′. (2.7)

This function is analogous to a probability distribution in classical phase space, with the marginals

providing the probability distributions along ϕ,

∫ ∞

−∞
W (ϕ, q)dq = |ψ(ϕ)|2. (2.8)

and along q,

∫ ∞

−∞
W (ϕ, q)dϕ = |ψ(q)|2. (2.9)

Following from the roles of ϕ̂ and q̂ as real and imaginary components of â, we will often see the

Wigner function written as a function of a single complex quantity α ≡ (ϕ+ iq)/
√
2 (Cahill and

Glauber, 1969). The Wigner function will be used throughout this thesis as a way of visualizing

the evolution of oscillator states, with several features that can be used to gain intuition (see

1Why the factors of
√
2? This is a convention that allows us to write the commutation relation in its current

form. One is free to remove or change the factor of
√
2 but note that then [ϕ̂, q̂] ̸= i.
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Figure 2.2: Example Wigner function of a vacuum state. The Wigner function of an oscil-
lator vacuum state appears as a symmetric 2-dimensional Gaussian centered at the origin, with
standard deviations σRe α = σIm α = 1/2. Displacements (effected by driving the oscillator’s
charge degree of freedom) translate the Wigner function, while phase space rotations (effected
by idling for some duration) rotate it about the origin of phase space.

the excellent book by Leonhardt (1997) for a complete list).

As an example of this intuition, a coherent state |α0⟩ appears as a symmetric 2-dimensional

Gaussian distribution centered at α = α0,

W|α0⟩(α) =
1

π
exp

(
−2|α− α0|2

)
(2.10)

with equal standard deviations along the Re(α) and Im(α) axes, σRe(α) =
ϕZPF√

2
= 1

2 and σIm(α) =

qZPF√
2

= 1
2 set by the Heisenberg uncertainty relation (Heisenberg, 1927). Applying a charge

drive to the LC oscillator (Ĥdrive ∝ q̂) effects a displacement unitary D(δα) |α0⟩ = |α0 + δα⟩,

which can simply be viewed as a translation of the Wigner function by δα. Similarly, idling

(Ĥ = ℏωaâ
†â) for some duration t enacts the unitary e−iωatâ†â |α0⟩ =

∣∣α0e
−iωat

〉
, corresponding

to a ‘phase space rotation’ of the entire Wigner function about the origin, by an angle ωat.

Both displacements and phase space rotations belong to the class of Gaussian operations,

so-called because they map Gaussian states, whose Wigner function is a multivariate Gaussian

distribution2, to other Gaussian states (Weedbrook et al., 2012). These states, which include

2The Wigner quasiprobability distribution can be extended to two (or more) oscillators, where we refer to it
as the ‘joint Wigner distribution’ of the pair (or set) of modes, as we will use later in the thesis.
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coherent states (σRe α = σIm α = 1/2), thermal states (σRe α = σIm α > 1/2) and squeezed

states (σRe α < σIm α, or for any other pair of perpendicular axes in phase space), can be

completely described with a small number of coordinates. For example, a single-mode Gaussian

state can be completely specified by its center location, the axis along which the Gaussian

is squeezed (if any) and the standard deviations parallel and perpendicular to this axis. The

evolution under a Gaussian operation can therefore be efficiently classically calculated using

linear algebra – all one needs to do is keep track of these few coordinates.

Gaussian operations are generated by Hamiltonians containing terms with at most two raising

and lowering operators, with the full set consisting of displacements (â + â†), phase space

rotations (â†â), squeezing ((â)2 + (â†)2), beamsplitters (â†b̂ + b̂†â), and two-mode-squeezing

(âb̂+â†b̂†). To perform tasks that are not simulable classically, we therefore cannot rely on linear

continuous-variable systems alone. In fact, it turns out that adding just a single non-Gaussian

operation acting on a single mode is sufficient to achieve universal multi-mode control (Lloyd

and Braunstein, 1999), which can be obtained by engineering a nonlinear Hamiltonian term

containing at least 3 raising or lowering operators. In superconducting circuits, this is most

typically introduced via a 4th-order, or Kerr, nonlinearity in the form of a transmon circuit (Koch

et al., 2007; Schreier et al., 2008).

2.1.1 Transmons as a source of Kerr nonlinearity

Replacing the linear inductor in the LC oscillator with a nonlinear inductor in the form of a

Josephson junction modifies the circuit Hamiltonian to the following,

Ĥ =

(
Q̂−Qofs

)2
2C

− (Φ0/2π)
2

LJ
cos

(
2π

Φ̂

Φ0

)
, (2.11)

where LJ is the Josephson inductance of the junction and Φ0 ≡ h
2e is the magnetic flux quantum.

This replacement introduces an ‘island’ in the circuit with no completely superconducting path

to ground (see Fig. 2.3(b)), and the energy of charges on this island can be affected by changes

in the electric field of its environment. This is accounted for by introducing an offset charge
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Qofs. In making the switch from a linear to a nonlinear inductor, the flux variable is now

continuous but periodic, whereas the charge variable is discrete and can take on only integer

values. Therefore, the continuous-variables Wigner function picture cannot capture the physics

of this circuit in its full generality. To reflect the underlying physics of the Josephson junction,

the Hamiltonian of the circuit is more typically written in terms of a discrete number of Cooper

pairs on the junction ‘island’, N̂ = Q̂
2e , and the continuous superconducting phase drop across

the junction, φ̂ = 2π Φ̂
Φ0

, as:

Ĥ = 4EC

(
N̂ −Nofs

)2
− EJ cos φ̂, (2.12)

where the prefactors are the charging energy, EC ≡ e2

2C , and the Josephson energy, EJ ≡

(Φ0/2π)
2/LJ.

What defines this circuit as a transmon (as opposed to a generic Cooper pair box cir-

cuit (Bouchiat et al., 1998)) is the large ratio EJ/EC ≫ 1, achieved by using a large shunting

capacitance C. As predicted by Koch et al. (2007) and shown by Schreier et al. (2008), the

fluctuations in the transmon eigenfrequencies as a function of the environment-controlled Nofs

(i.e., charge noise fluctuations) are exponentially suppressed as we increase this ratio, allowing

us to neglect the role of Nofs in the Hamiltonian. In this regime, the zero-point fluctua-

tions of the phase coordinate are small relative to the periodicity of the Josephson potential,

φZPF =
(
2EC
EJ

) 1
4 ≪ 2π, allowing us to perform a Taylor series expansion about the minimum

Û(φ̂) = −EJ cos φ̂ = EJ
φ̂2

2!
− EJ

φ̂4

4!
+ . . . (2.13)

In this limit, we recover the harmonic oscillator description, allowing us to once more write

the Hamiltonian in terms of two continuous degrees of freedom, N̂ = −iNZPF(â − â†) and
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φ̂ = φZPF(â+ â†), or equivalently, in terms of raising and lowering operators:

Ĥ = 4ECN̂
2 +

EJ

2
φ̂2 − EJ

24
φ̂4 + . . . (2.14)

= ℏωaâ
†â+ ℏg4

(
â+ â†

)4
+ . . . (2.15)

where ℏωa =
√
8EJEC and the 4th order nonlinearity ℏg4 = −EJφ

4
ZPF/4! = −EC/12.

We can simplify this nonlinear Hamiltonian by performing a rotating-frame transformation,

Ĥ → ÛĤÛ †+ iℏ ˙̂
UÛ †, where Û = e−iωatâ†â (see Appendix A of Reinhold (2019)) to move into

the ‘interaction picture’:

Ĥ
ℏ

= g4
(
âeiωat + âe−iωat

)4
+ . . . . (2.16)

From this viewpoint, we can see that terms in this expansion that do not conserve energy (i.e.

which do not preserve the excitation number in the oscillator) will have an exponential prefactor

rotating at a rate ωa or greater. Since the dynamics of interest will occur on timescales much

longer than 2π/ωa, the effect of these non-energy-conserving terms will approximately average

to zero. This ‘rotating-wave approximation’ (RWA) (Walls and Milburn, 2008) allows us to

rewrite the Hamiltonian as that of a Kerr nonlinear oscillator

Ĥ
ℏ

≈ Ka

2
â†â†ââ, (2.17)

where the Kerr nonlinearity (or ‘anharmonicity’), Ka = 12g4 = −EC, can be interpreted (up

to corrections due to higher orders in the Taylor expansion of the potential) as the difference

between adjacent energy level transitions, e.g. ((E2 − E1) − (E1 − E0))/ℏ. As evidence that

this Kerr nonlinearity permits non-Gaussian operations, we can see that lifting the frequency

degeneracy of these transitions allows a microwave drive with a frequency bandwidth σf ≪ |Ka|

to selectively address the |0⟩ → |1⟩ transition. Rather than displacing the oscillator state from

vacuum to produce a coherent state, as we saw for a purely linear oscillator, we can now prepare

the non-Gaussian Fock |1⟩ state.

Truncating the Hilbert space of the nonlinear oscillator to these lowest two energy levels (now
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referred to as |g⟩ and |e⟩, as shown in Fig. 2.1b) reduces this continuous variable system to a

discrete-variable system, with a density matrix ρ̂ that can be represented as a 2× 2 complex-

valued matrix. This truncation provides a natural way of encoding a single qubit of information,

with ‘logical’ 0 and 1 represented by |0⟩L ≡ |g⟩ and |1⟩L ≡ |e⟩, respectively. Depending on the

circumstance, both the oscillator-like and the qubit-like representation of nonlinear Josephson-

junction-based circuits will be used throughout the thesis. To date, the most popular approach

for constructing a superconducting quantum computer exclusively encodes information in these

transmon qubits (see Acharya et al. (2024) and Kim et al. (2023) for some recent, high-profile

examples). However, this is not the only way of using the Kerr nonlinearity to process quantum

information.

2.1.2 Encoding information in 3D cavities

An alternative approach is to store the information in linear oscillators and only use the nonlinear

degrees of freedom to manipulate this information. This approach adds complexity to the

processor design but storing information in a linear resonator provides two significant advantages

that can be leveraged:

1. they experience low, highly-biased intrinsic noise, and

2. they provide access to many quantum states in a single physical device.

The first advantage relates to the challenge of engineering a nonlinear resonator relative to

a linear one, with more constraints imposed on its fabrication. Engineering a sufficiently strong

nonlinearity requires a large current density (and therefore energy density) near the Josephson

junction, making the nonlinear mode more prone to energy relaxation through loss channels in

this region (Wang et al., 2015). Furthermore, depending on the choice of materials used for

the junction (e.g. Al/AlOx/Al, as is typically used), one may be restricted to using particular

substrate materials or to using particular chemical processing techniques that do not damage the

junction. While there has been considerable progress in recent years to reduce loss in nonlinear

superconducting circuits while working within these constraints (Ganjam et al., 2024; Place
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Figure 2.3: Three representations of a 3D cavity resonator coupled to a transmon qubit.
(a) Illustration of physical implementation of a 3D cavity (blue) consisting of a superconducting
coaxial stub (Reagor et al., 2016), whose fundamental mode has a wavelength 4× the length of
the stub. The electric field distribution of this mode (shown in white) decays exponentially with
distance above the post so that the energy participation in the lossy seam is minimal. The interior
of the cavity (light blue) is vacuum. Into this cavity, one inserts a substrate (teal) supporting a
3D transmon (Paik et al., 2011) (black), consisting of a Josephson junction (not shown) shunted
by a superconducting capacitor. (b) Electrical circuit schematic with the fundamental cavity
mode represented by a harmonic LC oscillator, capacitively coupled to a transmon, where the
inductor is replaced by a Josephson junction (with Josephson inductance LJ). The thicker black
line indicates the superconducting ‘island’ of the transmon formed by the introduction of the
junction. (c) Quantum optics picture, showing the potentials of the linear (blue) and nonlinear
(black) modes and the energy eigenvalues of the lowest eigenstates (horizontal lines). In the
cavity, these are (approximately) equally spaced, whereas in the transmon, each transition has
a different energy difference. The lowest two levels of the nonlinear mode form a qubit.

et al., 2021), the design of linear resonators provides much more flexibility.

A design for a linear superconducting oscillator that successfully exploits this flexibility is the

3D stub cavity (Reagor et al., 2016), consisting of a coaxial section shorted at one end and made

entirely of a superconductor such as high-purity aluminum, forming a distributed λ/4 microwave

resonator (Pozar, 2012) (Fig. 2.3(a)). This design minimizes the mode participation (defined

as the fraction of the mode’s stored energy) in lossier regions or degrees of freedom, including

in the oxide layer on the surface of the superconductor. It does so by conversely maximizing

the mode participation in the vacuum, which (at least to the level currently observable in

experiment) is completely dissipationless. Crucially, since the electric field decays exponentially

away from the top of the stub, the mode participation in the ‘seam’ between the body and lid of

the cavity can be made negligible, suppressing current flowing across this lossy interface. The
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suppression of these different loss channels permits single photon lifetimes T1 > 1 ms (Reagor

et al., 2016; Rosenblum et al., 2018), a few times higher than for transmon qubits (Place et al.,

2021). Recent work has extended this even further to T1 > 10 ms by making use of aggressive

chemical processing techniques (e.g. hot hydrofluoric acid etching to remove lossy dielectric

oxide layers) that are incompatible with transmon fabrication (Oriani et al., 2024), and as high

as T1 > 25 ms by modifying the 3D cavity design to even further maximize mode participation

in the vacuum (Milul et al., 2023). In fact, even when part of the resonator is hosted on a

dielectric substrate, as opposed to purely constructed out of bulk superconductors and vacuum,

the greater design flexibility allows for T1 > 1 ms (Ganjam et al., 2024). Importantly, all of

these quoted values are for cavities integrated with a transmon qubit to allow for non-Gaussian

control – when the ancillary transmon is removed however, cavity lifetimes can be in excess of

2 s (Romanenko et al., 2020).

While this demonstrates the possibility of lower energy relaxation rates in linear supercon-

ducting resonators, the more powerful feature is that their intrinsic dephasing rates are yet much

higher. Dephasing noise results from fluctuations in the mode frequency. For a transmon, we

have already discussed how charge noise can be suppressed, but critical current noise (i.e. fluc-

tuations in EJ) (Van Harlingen et al., 2004) and nonlinear coupling to two-level systems (TLSs

– presumed to originate from spin defects near the junction) (Gao et al., 2008; de Leon et al.,

2021; Lisenfeld et al., 2016; Martinis et al., 2005; Müller et al., 2019) are both microscopic

factors that can modulate the qubit frequency and degrade the pure dephasing time, Tϕ, of

the resonator. (The pure dephasing time can be related to the measured coherence time T2 of

a resonator, via 1
Tϕ

= 1
T2

− 1
2T1

). However, for distributed cavity resonators, the frequency is

primarily set by the macroscopic dimensions of the device, such as the length of the stub in the

case of the 3D coaxial stub cavity. Since the relative fluctuations in these macroscopic dimen-

sions are negligible, so too is the mode dephasing. 3D linear resonators routinely demonstrate

T2 ≈ 2T1, indicating a strong intrinsic noise bias Tϕ ≫ T1 (Rosenblum et al., 2018). The word

intrinsic should be emphasized, since once the linear oscillator is coupled to a nonlinear element,

we introduce an extrinsic source of dephasing which is typically dominant. Nonetheless, as we
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shall see, one can design nonlinear control sequences to protect against these types of errors.

The second useful feature of linear oscillators is that the user does not need to limit their

attention to the lowest two energy levels but has access to the larger Hilbert space. This can

be leveraged to either encode more than one bit of information in a single resonator or, more

commonly, encode a single bit of information with more redundancy in order to implement error

correction at the individual physical qubit level (Girvin, 2023). Qubit encodings that make use

of the larger Hilbert space of a linear mode are known as ‘bosonic codes’ (Cai et al., 2021).

Control schemes for bosonic codes typically make use of the fact that oscillator is linear, with

equally-spaced energy levels. Therefore, it is often vital (especially so as the photon number

in the encoded states grows larger) that the oscillator remain as linear as possible to avoid

distorting the encoded logical states, with a resulting drop in fidelity (Kirchmair et al., 2013;

Vlastakis et al., 2015).

Bosonic codes: some case studies

Many different bosonic encodings have been proposed (Gottesman et al., 2001; Michael et al.,

2016; Mirrahimi et al., 2014; Puri et al., 2017; Teoh et al., 2023), most of which exploit one or

both of a) the low nonlinearity of the oscillator modes and b) their strong bias towards relaxation

errors over dephasing errors. One encoding that makes use of both of these properties is the

smallest member of the family of binomial codes (Michael et al., 2016), often referred to as

the ‘kitten code.’ Here, information is encoded in superpositions of different photon number

(‘Fock’) states |n⟩ of an oscillator, with the two logical codewords defined as:

|0⟩L ≡ |0⟩+ |4⟩√
2

, |1⟩L ≡ |2⟩ , (2.18)

both of which contain an even number of photons. All superpositions of these states therefore

also contain an even number of photons. On timescales short compared to the lifetime of

oscillator, t ≪ T1, energy relaxation can be modeled as single-photon loss, described by a

Kraus ‘jump operator’ Eloss ≈
√
κt â, where κ = 1/T1. Applying this jump operator to our
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logical states (and normalizing them) maps them onto error states possessing an odd number

of photons:

|0⟩E ≡
â |0⟩L√

L⟨0| â†â |0⟩L
= |3⟩ , |1⟩E ≡

â |1⟩L√
L⟨1| â†â |1⟩L

= |1⟩ . (2.19)

As a result, a measurement of the photon number parity (n mod 2) can distinguish between

logical states and error states so that, in the event of an ‘odd’ measurement outcome, the

application of an appropriate recovery operation (a unitary that maps |3⟩ → (|0⟩+ |4⟩)/
√
2 and

|1⟩ → |2⟩) restores the initial quantum state. Crucially though, a measurement that only probes

the photon number parity cannot distinguish between different logical states or between different

error states. The normalization factors in Eq. 2.19 tell us about the relative sensitivities of each

state to loss errors. The fact that L⟨0| â†â |0⟩L = L⟨1| â†â |1⟩L tells us that errors are equally

likely from each logical state so that the act of detection itself does not inform us about the

initial state. This is crucial to avoid the measurement distorting the encoded logical information.

For concreteness, the Knill-Laflamme conditions (Knill et al., 2000) succinctly provide nec-

essary and sufficient criteria to determine whether a set of errors {El} (where E0 = I to account

for ‘no-jump’ events) is correctable, requiring

L⟨i| E
†
l El′ |j⟩L = αll′δij , (2.20)

where αll′ is a Hermitian matrix. While I will not go into detail deriving these conditions here,

the original reference does so excellently. One can verify that the error set {I, Eloss} satisfies

these conditions for the kitten code.

Cavity dephasing errors on the other hand, can be modeled at very short times t (assuming

that the noise is Markovian) by the jump operator Edephasing ≈
√
γϕt â

†â, where γϕ = 1/Tϕ.

These errors map the logical states to

|0⟩(dephasing)E ≡
â†â |0⟩L√

L⟨0| â†ââ†â |0⟩L
= |4⟩ , |1⟩(dephasing)E ≡

â†â |1⟩L√
L⟨1| â†ââ†â |1⟩L

= |2⟩ . (2.21)
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Unfortunately, unlike for single photon loss, there does not exist a measurement that can both

detect whether a dephasing error has occurred without also being able to distinguish between

the different error states. Even the error set excluding single photon loss, {I, Edephasing}, does

not satisfy Eq. 2.20. One way to see this is that L⟨0| â†ââ†â |0⟩L ̸= L⟨1| â†ââ†â |1⟩L, with

dephasing errors more likely to occur when in |0⟩L than in |1⟩L. As such, dephasing errors are

uncorrectable for this code. The intrinsic protection that 3D cavities offer against dephasing is

therefore critical to preserving the stored quantum information. The kitten code makes use of

both the noise bias of 3D cavities (to ensure a single dominant error type) and their linearity (to

provide access to energy levels higher than |1⟩, without distortion). Other bosonic codes that

fall in the same category include the Gottesman-Kitaev-Preskill (GKP) code, listed in Table 2.1.

Codes that only require the larger Hilbert space include larger binomial codes, such as

|0⟩L ≡ |0⟩+
√
3 |6⟩

2
, |1⟩L ≡

√
3 |3⟩+ |9⟩

2
, (2.22)

as well as the dissipatively-stabilized four-component cat code (Mirrahimi et al., 2014), which

can actively correct against both photon loss and dephasing errors. This highlights the benefit of

being able to access a larger Hilbert space to redundantly encode information, however the trade-

off is that this also places more stringent requirements on the linearity of the oscillator mode.

Codes that only require the beneficial noise structure include the dual-rail encoding (Chuang

and Yamamoto, 1995; Teoh et al., 2023) mentioned in Chapter 1. This encoding only uses the

two lowest-lying energy levels in each of two oscillators to define a single logical qubit:

|0⟩L ≡ |0⟩A |1⟩B |1⟩L ≡ |1⟩A |0⟩B (2.23)

Here, the action of single photon loss in either cavity takes both states to a common vacuum

state:

b̂ |0⟩L = â |1⟩L = |0⟩A |0⟩B (2.24)

In this case, measurements of the combined photon number in both oscillators are what distin-



2.1. A HYBRID DISCRETE-CONTINUOUS VARIABLE SYSTEM 25

Encoding Low nonlinearity required? Intrinsic Tϕ ≫ T1 noise bias
required?

GKP Yes Yes

4-component cat Yes Yes

Binomial (Kitten) Yes Yes

Binomial (Larger) Yes No

Dissipative cat Yes No

Dual-rail No Yes

Kerr cat No∗ No

Table 2.1: Requirements for bosonic encodings. The properties leveraged in order to obtain
an advantage over discrete variable (DV) systems for GKP (Gottesman et al., 2001), Bino-
mial (Michael et al., 2016), Cavity Dual-Rail (Teoh et al., 2023), Kerr Cat (Puri et al., 2017), (2-
and 4-Component) Dissipative Cat (Mirrahimi et al., 2014) and 4-Component (non-Stabilized)
Cat qubits (Ofek et al., 2016). It should be noted that the degree to which the oscillator is
required to be linear varies substantially between encodings. Whereas unwanted Kerr nonlin-
earity is particularly costly for GKP codes, dissipative cat qubits can achieve substantial error
suppression even with moderate Kerr (Putterman et al., 2024).

guishes between logical and error states, without distinguishing logical states from one another.

Unlike in the kitten code however, the two error states are not distinguishable and so in the

event of an error, the initial quantum state is not recoverable. Nonetheless, the ability to detect

(if not correct) errors in an efficient way, without perturbing the quantum state, can still be

of great value. When the qubit itself forms part of a larger, redundantly-encoded memory, this

error-detection information can be used to much more efficiently pinpoint where errors have

occurred in the larger system. Such a qubit is known as an erasure qubit (Grassl et al., 1997;

Kubica et al., 2023) and the measurement that enables this, the mid-circuit erasure check, will

be the focus of Chapter 7.

Once more, however, cavity dephasing errors are more problematic, leading to undetectable

errors within the logical subspace (e.g. mapping (|0⟩L + |1⟩L)/
√
2 → (|0⟩L − |1⟩L)/

√
2). The

dual-rail encoding thus requires the cavities to possess single photon loss as the dominant error

channel but places no requirements on the linearity of the oscillator. This is exemplified by the

fact that one can also encode dual-rail qubits in a pair of strongly coupled transmons (Kubica

et al., 2023; Levine et al., 2024), which also exhibits noise that is biased against dephasing.

Bosonic qubits encoded in 3D cavities thus leverage these two key properties (linearity and
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noise bias) to either detect or correct errors, such that encoded information is less prone to noise

than the underlying hardware. In Table 2.1 we categorize several popular bosonic codes by the

requirements they make of the linearity and intrinsic noise bias of the oscillator3. So far we have

only considered oscillators in isolation but now we must turn our attention to the interactions

required to couple these oscillators to other modes and to manipulate this stored information. In

designing a general-purpose bosonic processor, it is vital that these interactions are engineered

in a way that preserves both the linearity and noise bias that give bosonic codes their value.

2.2 Dispersive control

The workhorse of single-oscillator control in circuit-QED is the ‘dispersive’ interaction between

the linear oscillator and a nonlinear ancillary transmon, engineered by weakly coupling the two

modes via a mutual capacitance C̃. To derive the form of this interaction, we can use the

description of a transmon as a weakly nonlinear oscillator, starting with the Hamiltonian of two

completely linear modes, before later introducing the Kerr nonlinearity as a perturbation. In this

framework, the capacitive coupling between the ’bare’ oscillator (B̂) and transmon (T̂ ) modes

generates the following interaction:

Ĥlin = ℏωBB̂
†B̂ + ℏωT T̂

†T̂ + Ĥcoupling, (2.25)

3The potential exception to the statement that bosonic codes rely either on high linearity or high intrinsic
noise bias is the Kerr-cat qubit (Puri et al., 2017) which, while using many levels of an oscillator to encode its
information, does not place stringent requirements on the underlying hardware to possess an error bias (since it
is designed to protect against dephasing errors) or a high degree of linearity (relying on a Kerr nonlinearity to
generate the noise protection). Nonetheless, the size of the Kerr nonlinearity relative to the drive strength does
eventually limit the number of photons in the cat state, and therefore the noise suppression that can be achieved.
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where

Ĥcoupling =
Q̂(B)Q̂(T )

2C̃
, (2.26)

= −
Q

(B)
ZPFQ

(T )
ZPF

2C̃

(
B̂† − B̂

)(
T̂ † − T̂

)
, (2.27)

≡ −ℏg
(
B̂† − B̂

)(
T̂ † − T̂

)
. (2.28)

In the regime that the two mode frequencies are close together, |∆| = |ωB −ωT | ≪ |ωB +ωT |,

we may apply the rotating-wave approximation (RWA) and neglect terms in Eq. 2.28 that do not

preserve photon number. The resulting Hamiltonian, consisting of a bilinear coupling between

the two ‘bare’ modes, may be expressed in the following matrix form

Ĥlin

ℏ
≈
(
B̂† T̂ †

)ωB g

g ωT


B̂
T̂

 . (2.29)

Diagonalizing this matrix provides us with the ‘dressed’ modes (corresponding to the classical

normal modes of the system), allowing the Hamiltonian to be written in the form

Ĥlin

ℏ
≈ ωbb̂

†b̂+ ωtt̂
†t̂. (2.30)

In the regime that the coupling is weak (g ≪ ∆), the two dressed modes largely preserve the

character of the bare modes:

ωb ≈ ωB +
g2

∆
b̂ ≈ B̂ +

g

∆
T̂ (2.31)

ωt ≈ ωT − g2

∆
t̂ ≈ T̂ − g

∆
B̂. (2.32)
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We can similarly invert these expressions to obtain the bare modes in terms of the new dressed

modes:

B̂ ≈ b̂− g

∆
t̂ (2.33)

T̂ ≈ t̂+
g

∆
b̂. (2.34)

We will often refer to the ratio (g/∆) as the participation p of a coupled oscillator mode in a

bare nonlinear mode.

To the Hamiltonian describing the two coupled linear modes, we can add in the term

from Eq. 2.17 that captures the intrinsic Kerr nonlinearity of the (bare) transmon mode,

ĤKerr = ℏKT
2 T̂ †T̂ †T̂ T̂ . Provided that |∆| ≫ |KT |, we can treat ĤKerr as a perturbation

to the Hamiltonian. Therefore we can write ĤKerr in terms of the dressed modes and keep only

the terms within the RWA to obtain (in a frame rotating at ωb and at ωt),

ĤKerr

ℏ
≈ Kt

2
t̂†t̂†t̂t̂+ χb̂†b̂t̂†t̂︸ ︷︷ ︸

Ĥdisp/ℏ

+
Kb

2
b̂†b̂†b̂b̂. (2.35)

The first and last terms represent the Kerr nonlinearity of the dressed modes, with the inherited

nonlinearity in the oscillator-like mode given by Kb ≈
( g
∆

)4
KT . The second term is the cross-

Kerr or dispersive interaction that we have been seeking, with χ ≈ 2
( g
∆

)2
KT , and can be

interpreted as a shift of the ancilla (angular) frequency by χ per photon in the oscillator. If we

truncate the transmon Hilbert space to its lowest |g⟩ and |e⟩ energy levels, we recover the form

of the dispersive Hamiltonian from Eq. 2.3, Ĥdisp = ℏχb̂†b̂ |e⟩ ⟨e|.

When performing microwave spectroscopy of the ancilla qubit to determine its dressed fre-

quency, the linewidth of the observed resonance is approximately set by max(1/T ancilla
2 , 1/Tp),

where Tp is the pulse duration of the spectroscopy tone and T ancilla
2 is the coherence time of

the ancilla qubit. As a result, in the ‘strong’ dispersive coupling limit, where |χ| ≫ 1/T ancilla
2 ,

a spectroscopy pulse Tp > 1/|χ| allows us to resolve peaks associated with different photon

number states in the oscillator. This photon number split spectrum provides the basis for
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photon-number-dependent gates and measurements of the oscillator mode with pulses on the

ancilla.

Combining the dispersive coupling Hamiltonian Hdisp with the ability to readout the state

of the ancilla (Mallet et al., 2009) provides us with a toolbox of operations for manipulating

and measuring oscillator states (Reinhold, 2019; Vlastakis, 2015). In particular, the photon-

number-selective measurement (Ch. 2.2.1), the photon-number-parity measurement (Ch. 2.2.1)

and the SNAP gate (Ch. 2.2.2) form a set of photon-number-selective single-cavity operations

(Fig. 2.4), whose two-cavity analogs will be developed in Chapters 5 and 6 of this thesis.

2.2.1 Quantum non-demolition oscillator measurements

Photon-number-selective measurements

As illustrated in Fig. 2.4(c) and (f), driving the ancilla at a frequency ωp = ωt+Nmeasχ, with a

pulse duration Tp ≫ 1/|χ|, excites the ancilla if and only if the photon number in the oscillator

N = Nmeas (Johnson et al., 2010). This photon-number-selective drive is described by the

Hamiltonian

ĤNmeas

ℏ
=

(
ϵe−iϕ

2
|g⟩ ⟨e|+ ϵeiϕ

2
|e⟩ ⟨g|

)
⊗ |Nmeas⟩ ⟨Nmeas| , (2.36)

where ϵ and ϕ are its amplitude and phase, so that after time t, we enact a photon-number-

selective ancilla qubit rotation, Rϕ(ϵt), by angle ϵt about an axis (cosϕ, sinϕ, 0) on the Bloch

sphere (Nielsen and Chuang, 2010). When ϵt = π and (say) ϕ = 0, this enacts the unitary:

ÛNmeas =
(
Î− |Nmeas⟩ ⟨Nmeas|

)
⊗ Î+ (2.37)

|Nmeas⟩ ⟨Nmeas| ⊗ X̂π. (2.38)

where X̂π = |g⟩ ⟨e| + |e⟩ ⟨g|, and which, when the ancilla is initialized in |g⟩, maps the ‘is

N = Nmeas?’ information onto the ancilla state. Subsequently performing a projective mea-

surement of the ancilla allows us to probe the observable Ô = |Nmeas⟩ ⟨Nmeas| of the oscillator.

Importantly, since Ô commutes with both the system Hamiltonian (Ĥdisp) and the measurement
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Figure 2.4: A toolbox of dispersive single-mode control operations. (a) The toolbox con-
tains a joint-parity measurement, which excites an ancilla qubit only if the photon number is
even, a photon-number-selective measurement, which excites the ancilla only if the photon num-
ber matches a specific Nmeas, and a photon-number-selective phase (or ‘SNAP’), which applies
an arbitrary phase conditioned on the oscillator photon number. (b-d) The pulse sequences for
each operation. The short pulses in black possess a frequency bandwidth much wider than |χ|
and so are unconditional on the photon number, whereas the long pulses in color possess a
narrow frequency bandwidth much less than |χ| and so perform photon-number-selective opera-
tions. In the case of SNAP, a comb of photon-number-selective pulses is applied. In principle, a
comb of pulses could be used to measure a subset of photon numbers too. The relative vertical
amplitude of the pulses is not to scale. (e-f) The qubit state trajectories for each operation.
In the parity measurement, the qubit state is dependent on the oscillator photon number parity
(blue for even; red for odd). In the SNAP gate, the qubit trajectory encloses an arbitrary solid
angle conditioned on the oscillator photon number.
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Hamiltonian (ĤNmeas), repeated measurements of the same observable will yield the same eigen-

value. This quantum non-demolition (QND) property (Braginsky and Khalili, 1996), which

ensures that the measurement outcome accurately describes the post-measurement state, is

important whenever we wish to perform feedback conditioned on a measurement, such as in

quantum error correction.

Parity measurements

A single measurement of the two-level ancilla can only return 1 bit of information, but by

modifying the pulse sequence we can alter the 1-bit ‘yes/no’ question queried of the oscillator.

For example, a frequency comb consisting of components at different values of Niχ can be used

to ask if the photon number N belongs to the set {Ni} (Teoh, 2023). Another key example of

this idea is the photon number parity measurement, which asks whether N is even or odd (Sun

et al., 2014).

In the time domain, this sequence (Fig. 2.4(b)) consists of two very short ϵt = π/2 pulses on

the ancilla separated by a delay of Twait = π/|χ|. These short pulses, for which 1/Tp ≫ |χ|, are

too broad in frequency to distinguish the oscillator photon number and so enact an unconditional

π/2 rotation of the ancilla state, independent of N . The qubit state trajectories for this sequence

are shown in Fig. 2.4(e). The first π/2 pulse puts the ancilla in the state (|g⟩ + |e⟩)/
√
2,

the unitary evolution under Ĥdisp imparts a rotation ein̂π|e⟩⟨e| such that the transmon lies in

(|g⟩ + |e⟩)/
√
2 for even and (|g⟩ − |e⟩)/

√
2 for odd photon numbers, and the final π/2 pulse

maps the ancilla state onto either |g⟩ or |e⟩ so that a projective measurement of the ancilla state

determines the photon number parity, P̂ = (−1)N̂ . Since the parity observable also commutes

with both Ĥdisp and the measurement Hamiltonian (Ĥmeas ∝ |g⟩ ⟨e|+ |e⟩ ⟨g|), its measurement

is also QND.

The time duration of the parity sequence (π/|χ|) represents the fastest that one can distin-

guish between adjacent photon numbers, but shorter sequences can be used to measure states

spaced further apart. For example, by halving Twait, we can instead probe the ‘four-parity’ (i.e.
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N mod 4), P̂4 = (−1)N̂/2 (Curtis et al., 2021) 4. These generalized photon number parity

measurements P̂n have particular importance as they serve as error syndrome measurements for

a broad class of bosonic codes known as rotation-symmetric codes (Grimsmo et al., 2020), of

which cat codes (Cochrane et al., 1999; Mirrahimi et al., 2014; Puri et al., 2017) and binomial

codes (Michael et al., 2016) are prominent examples.

2.2.2 SNAP gates

The photon number splitting regime also provides a powerful way to perform gates on the oscil-

lator state. The selective number arbitrary phase (SNAP) gate (Heeres et al., 2015; Krastanov

et al., 2015) relies on the ability to perform photon-number-selective ancilla pulses to produce

a different unitary evolution of the ancilla associated with each photon number state in the

oscillator, Û =
∑

n |n⟩ ⟨n| ⊗ Ûn. At the end of the sequence, we require the oscillator and

ancilla states to be disentangled so that noise on the ancilla cannot subsequently propagate to

the stored logical information. Therefore all of these state-dependent trajectories should return

the ancilla to |g⟩, implementing the identity operator, up to some phase factor eiθn . Crucially, θn

has a path-dependent component (the geometric, or Berry phase (Berry, 1984)) that depends

on the solid angle enclosed by the path of the ancilla and so by engineering the photon-number-

dependent trajectories on the ancilla Bloch sphere, we can impart an arbitrary phase to each

photon-number manifold of the oscillator

ÛSNAP =
∑
n

|n⟩ ⟨n| eiθn . (2.39)

A convenient choice of pulse sequence (Fig. 2.4(d)) consists of an unconditional π-pulse fol-

lowed by photon-number selective π-pulses with a different drive phase, ϕn for each frequency

component. The ‘slice’ formed by these trajectories (see purple trajectory in Fig. 2.4(g)) en-

closes a photon-number-dependent solid angle, Ωn, that can be related to the acquired phase

via θn = Ωn/2.

4Note that the state must already have definite, known 2-parity in order for this measurement to work. A
single measurement of the ancilla qubit can still only extract 1 bit of information.
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SNAP gates provide a parameterizable non-Gaussian operation which, when complemented

with Gaussian oscillator displacements, enable universal control of an oscillator state (Krastanov

et al., 2015). Sequences that alternate between these two operations can approximate any

unitary to arbitrary precision, and have been used to generate Fock states (Heeres et al., 2015),

as well as perform recovery operations for 4-component cat qubits (Ofek et al., 2016).

2.2.3 Ancilla fault-tolerance

As established earlier, one of the two key motivations for processing information in linear oscil-

lators is the favorable noise that they experience, with longer relaxation times and a large noise

bias Tϕ ≫ T1. While the ancillary degree of freedom provides the necessary control, it is vital

that it does so without compromising either noise property. In particular, it is important that

errors on the ancilla do not propagate to the oscillator state. The ability to tolerate n of these

errors is known as nth-order ‘hardware’ fault-tolerance. In advance of considering fault-tolerant

multi-mode schemes later in this thesis, it is necessary to briefly review the main single-mode

techniques here.

Parity measurement

Both relaxation and dephasing errors on the ancilla are problematic. As an example of the

former, we can consider the effect of an ancilla relaxation error during the parity measurement.

Since the jump operator that describes it, Eancilla
loss =

√
κancillat |g⟩ ⟨e| does not commute with

Ĥdisp,
[
|g⟩ ⟨e| , b̂†b̂ |e⟩ ⟨e|

]
̸= 0, the effect of an error on the final state depends on the (unknown)
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time terr at which the error occurred. The parity map sequence then proceeds as follows:

|g⟩ |ψ⟩
Ŷπ/2−−−→

[
|g⟩+ |e⟩√

2

]
|ψ⟩ (2.40)

evolve for terr−−−−−−−−→ |g⟩√
2
|ψ⟩+ |e⟩√

2
eiχterrâ

†â |ψ⟩ (2.41)

|g⟩⟨e|−−−→|g⟩ eiχterrâ†â |ψ⟩ (2.42)

evolve for π
|χ|−terr

−−−−−−−−−−−→|g⟩ eiχterrâ†â |ψ⟩ (2.43)

Ŷπ/2−−−→
[
|g⟩+ |e⟩√

2

]
eiχterrâ

†â |ψ⟩ (2.44)

This highlights two problems. Firstly, there is a 50% chance of an incorrect measurement

outcome as the ancilla ends in an equal superposition independently of the initial oscillator state,

and secondly, the oscillator state acquires an unknown rotation in phase space, corresponding

to a dephasing error.

The impact of a single ancilla relaxation error can be mitigated by using a ‘three-level’ ancilla,

using the |g⟩ and |f⟩ levels of the transmon as the ancilla qubit (Ma et al., 2020; Rosenblum

et al., 2018). In this case, ancilla relaxation of the form |e⟩ ⟨f | leaves the ancilla in |e⟩ where

it remains unaffected by the final Ŷπ/2 pulse. The |f⟩ level has its own dispersive coupling to

the oscillator χf b̂
†b̂ |f⟩ ⟨f |, where in general χf ̸= χe. In this case, the final ancilla-oscillator

state prior to measurement is |e⟩ ⊗ ei(χf terr+χe(π/|χ|−terr))b̂†b̂ |ψ⟩. The first problem has therefore

been resolved - the ancilla state will deterministically be found in |e⟩, which acts as a flag state

indicating that an error has occurred. This permits error detection.

However, the second issue still persists, with the oscillator acquiring an unknown phase space

rotation - an error that cannot be corrected. This can be resolved by matching the dispersive

shifts χe = χf = χ (so-called χ-matching), so that the jump operator does commute with the

system Hamiltonian: [E , Ĥ] =
[
|e⟩ ⟨f | , â†â (|e⟩ ⟨e|+ |f⟩ ⟨f |)

]
= 0. This ‘error-transparency’

condition (Kapit, 2018) ensures that the oscillator deterministically acquires a phase eiπâ
†â,

regardless of terr. On detecting an error, this phase can be corrected by performing a phase

rotation (or more straightforwardly by an update in the phase of the oscillator drive ‘in software’),
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before resetting the ancilla and repeating the measurement. Since this scheme can correct for

a single ancilla relaxation error, it ensures 1st-order fault tolerance.

Implementing this fault-tolerance comes at the expense of some extra technical complexity.

Firstly, since the |g⟩ → |f⟩ transition is ‘forbidden’ via a single-photon drive on a transmon

(⟨g| Q̂ |f⟩ ≈ 0), either a two-photon Raman transition (Kumar et al., 2016) or two successive

|g⟩ → |e⟩ and |e⟩ → |f⟩ pulses are required. Secondly, the transmon readout must be able to

separately distinguish the |g⟩, |e⟩ and |f⟩ states, leading to a reduction in the signal-to-noise

ratio (SNR) given the same readout hardware. Finally, χ-matching requires the application

of a parametric drive on the transmon ancilla (Rosenblum et al., 2018). As we shall shortly

see, applying parametric drives to a transmon without inducing errors or unwanted Hamiltonian

terms is a notable challenge.

Protecting against ancilla dephasing requires significantly less complexity. The jump oper-

ators describing dephasing, proportional to |g⟩ ⟨g|, |e⟩ ⟨e| and |f⟩ ⟨f |, all commute with Hdisp,

whether or not a three-level ancilla or χ-matching is employed. This ensures that the parity

operation is error-transparent to ancilla dephasing, so that an error at any time can be treated

the same as an error happening at the very end of the delay period. An ancilla phase-flip at

this point in the sequence results in an incorrect measurement outcome but has no immediate

impact on the oscillator state. Nonetheless, unflagged incorrect measurement outcomes can

have knock-on impacts when the results are used to decide which subsequent operations to

perform on the oscillator. To correct this to 1st-order, we can repeat the measurement 3 times

and majority vote, since the measurement is QND. If we are only interested in detecting the

error, measuring twice and flagging events where the two results disagree is sufficient.

SNAP

The error transparency condition, while a sufficient condition for ancilla fault tolerance, is not

a necessary one, as highlighted by the fault-tolerant implementation of SNAP (Reinhold et al.,

2020). Just as for the parity measurement, the SNAP Hamiltonian is error transparent to ancilla

relaxation from |f⟩ when using a three-level ancilla. Ancilla dephasing errors, on the other hand,
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do not commute with the always-on microwave drives, [|f⟩ ⟨f | , |g⟩ ⟨f |+ |f⟩ ⟨g|] ̸= 0.

However, while this clearly violates error-transparency, this condition is in fact sufficient but

not necessary. More generally, the scheme must (and does) satisfy path-independence (Ma et al.,

2020). This states that depending on the final state of the ancilla (which we can measure), the

unitary enacted should always be the same, regardless of whether (and when) any errors occurred.

A key factor that enables this is that the amplitude of the microwave comb addressing each

photon number peak is equal, with the Hamiltonian in each photon-number subspace differing

only by the phase of the drive. This ensures that for any photon number in the oscillator, the

ancilla has the same probability of being found in |f⟩, and so dephasing errors are not able to

distinguish between different oscillator states. The constraint that the amplitude of the drive be

equal on each photon number peak highlights why the photon-number-selective measurement

(e.g. is N = 0?), with a drive applied to just a single photon-number-subspace cannot be made

1st-order fault-tolerant to ancilla dephasing errors.

2.2.4 What sets the size of χ?

Besides stipulating that the coupling must be dispersive (g ≪ ∆), we have not until now

discussed what the value of χ should be - an important quantity for defining the transition

between the gbs ≪ |χ| and gbs ≳ |χ| regimes. The optimal choice will depend on the competition

between increased speed and increased degradation of the linearity or noise bias.

A stronger coupling χ allows for separation between the number-split peaks using a shorter

ancilla pulse which, all else being equal, should result in higher-fidelity operations. However,

stronger coupling also compromises the linearity of the oscillator mode. As seen in Eq. 2.35

the dispersive Hamiltonian is accompanied by an inherited Kerr nonlinearity in the oscillator

Kb ≈ (g/∆)4KT ≈ χ2/(4KT ). Similarly, stronger coupling also results in inherited relaxation

in the oscillator mode. In the dressed basis (see Eq. 2.34), the jump operator for relaxation on



2.2. DISPERSIVE CONTROL 37

the bare transmon mode is transformed as

√
κT t T̂ ≈

√
κT t

(
t̂+

g

∆
b̂
)

=
√
κT t t̂+

√( g
∆

)2
κT t b̂, (2.45)

with an inherited relaxation rate 1/T inherited
1 =

( g
∆

)2 × 1/T ancilla
1 = χ

2KT
× 1/T ancilla

1 that scales

linearly with the magnitude of χ (given a fixed transmon nonlinearity KT ).

The degree to which transmon dephasing leads to inherited dephasing in the oscillator

depends on the spectrum of the noise, making a general rule less easy to come by. In the case

that the dephasing noise on the transmon is Markovian, with a white spectrum, S[ω] = constant,

we can use the same technique to find the dressed jump operator for ancilla dephasing:

√
γTϕ t T̂

†T̂ ≈
√
γTϕ t

(
t̂† +

g

∆
b̂†
)(

t̂+
g

∆
b̂
)

=
√
γTϕ t t̂

†t̂+

√( g
∆

)2
γTϕ t

(
t̂†b̂+ b̂†t̂

)
+

√( g
∆

)4
γTϕ t b̂

†b̂, (2.46)

with the final term yielding an inherited dephasing rate 1/T inherited
ϕ ≈

( g
∆

)4 × 1/T ancilla
ϕ =(

χ
2KT

)2
× 1/T ancilla

ϕ that scales quadratically with χ. Interestingly, the central terms also lead

to additional inherited decay, since photons from the long-lived oscillator mode are exchanged

into the lossier transmon mode. Following Milul et al. (2023), this modifies the expression for

inherited decay to 1/T inherited
1 =

( g
∆

)2 × 1/T ancilla
2 = χ

2KT
× 1/T ancilla

2 .

Typically a more important source of transmon-induced dephasing is photon shot noise

due to thermal fluctuations in the transmon population. This imparts a dephasing rate of

γϕ =
n̄κtχ

2

κ2t + χ2
, (2.47)

where n̄ is the average thermal population in the transmon (Gambetta et al., 2006). In the

strong dispersive regime (|χ| ≫ κt), this reduces to γϕ = n̄κt (in other words, 1/T inherited
ϕ =

n̄ × 1/T ancilla
1 ) . Unlike the dephasing inherited directly from the transmon mode, this sort of
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dephasing can be mitigated either passively (by ensuring that the transmon is well-thermalized

in the dilution refrigerator) or actively (by continuously monitoring the ancilla state to ensure it

remains in |g⟩) (Goldblatt et al., 2024).

Given that the tolerable degree of nonlinearity and decoherence is application-specific, so too

is the value of χ. For example, in GKP experiments (Eickbusch et al., 2022), the large photon

numbers in the codewords impose a tight constraint on the Kerr nonlinearity Kb ≲ 2π × 1 Hz.

Likewise, in experiments designed to detect an intrinsic single-photon lifetime in the cavity that

is m times larger than the transmon T ancilla
2 , one requires (g/∆)2 ≪ 1/m. For example, in a

recent experiment by Milul et al. (2023), a cavity lifetime T1 = 25.6 ms was measured using an

ancilla with T ancilla
2 = 80 µs (i.e. m = 320), by ensuring that (g/∆)2 = 1.6 × 10−4 ≈ 1/6000

leading to a dispersive shift of only |χ|/2π = 43 kHz.

On the other hand, for bosonic encodings with modest photon number (e.g., binomial or

dual-rail), a dispersive shift χ/2π ≈ −1 MHz is typical. With usual parameters, T ancilla
1 =

T ancilla
2E ≈ 100 µs, n̄ ≈ 10−3 and Kt/2π ≈ 200 MHz, this ensures that 1/T inherited

1 ≈ 40 ms,

1/T inherited
ϕ ≈ 100 ms and Kb/2π ≈ 1.25 kHz. While the tools developed in this thesis are

not specific to any particular encoding, we will use this latter χ/2π = −1 MHz value as our

benchmark.

2.3 Parametric beamsplitter control

The dispersive coupling provides us with non-Gaussian single-mode control. To extend this

to non-Gaussian control over a network of many oscillators, we can supplement the dispersive

coupling with a Gaussian multi-mode interaction – the time-dependent equivalent of the photonic

beamsplitter, Ĥbs, described by Eq. 2.2.

This engineered beamsplitter interaction is an example of a ‘parametric’ process which is

generated by coupling both linear oscillators to a nonlinear coupler mode and applying off-

resonant microwave drives whose amplitude and phase determine gbs(t). The defining ‘para-

metric’ feature is that the coupler is not excited out of its ground state (Boyd, 2008), with
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the Hamiltonian containing no terms explicitly describing the coupler degrees of freedom. This

feature is extremely attractive as there is no opportunity for ‘jump errors’ due to decoherence in

the coupler to propagate to the pristine oscillator modes, obviating the need for fault-tolerant

control schemes5.

Prior implementations of this interaction, for which a detailed derivation will be provided

in Chapter 3, used a transmon as a Kerr nonlinear coupler. Just as in the field of nonlinear

optics, the application of two drives, whose frequencies obey |ω1−ω2| = |ωa−ωb| generates the

desired beamsplitter Hamiltonian via a four-wave mixing interaction (Boyd, 2008). As we shall

see, the use of a Kerr nonlinear coupler is by no means the only (or optimal) way of achieving

this interaction, with beamsplitter amplitudes until now limited to gbs ≲ 100 kHz ≪ χ (Gao

et al., 2018).

The time-dependent beamsplitter drive in Eq. 2.2 may be parameterized as gbs(t) = gbse
i(∆t+φ),

with gbs and φ as a real-valued amplitude and phase, and ∆ as a frequency detuning from the

resonance condition (e.g. in the case of four-wave mixing, ∆ = (ω2−ω1)− (ωb−ωa), assuming

ω2 > ω1 and ωb > ωa). Applying a rotating-frame transformation to the beamsplitter Hamilto-

nian (Eq. 2.2) then allows us to interpret the drive detuning as a frequency shift of one of the

oscillators6,

Ĥbs

ℏ
=
gbs
2

(
eiφâ†b̂+ e−iφb̂†â

)
−∆b̂†b̂. (2.48)

Applying a resonant (∆ = 0) drive allows us to emulate the optical beamsplitter from

Chapter 1. For a single-photon dual-rail input state |0, 1⟩ and a drive phase φ = 0, this enacts

5One caveat to this is when the coupler mode has a non-negligible thermal occupation, n̄. While the ground
state cannot suffer from relaxation (â) or dephasing (â†â), it can suffer from heating (â†), at the (small) rate

n̄/T
(ancilla)
1 .
6Note that the factor of 1/2 in the definition of the beamsplitter Hamiltonian matches the convention in

Tsunoda et al. (2023) but differs from that in Gao et al. (2018), Chapman et al. (2023) and Lu et al. (2023).
This choice will greatly simplify the notation when combining the beamsplitter and dispersive Hamiltonians in
Chapter 5 and places the beamsplitter Hamiltonian on equal footing with the transmon Rabi drive in Eq. 2.36.
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the unitary evolution:

Ûbs(t) |0, 1⟩ = exp

(
−igbst

2

(
â†b̂+ âb̂†

))
|0, 1⟩ (2.49)

= cos

(
gbst

2

)
|0, 1⟩+ i sin

(
gbst

2

)
|1, 0⟩ . (2.50)

After time tbs =
π

2gbs
, this enacts the equivalent of the 50/50 beamsplitter, yielding the state

(|0, 1⟩ + i |1, 0⟩)/
√
2 and after tSWAP = 2tbs =

π
gbs

, we enact a SWAP operation, exchanging

the two oscillator states, |0, 1⟩ → i |1, 0⟩.

Modulating the phase φ allows us to control the phase of the superposition generated,

allowing us to reach any state on the dual-rail qubit. Furthermore, while seemingly trivial,

having native access to a SWAP operation allows us to efficiently reorganize the topology of a

circuit (Kivlichan et al., 2018), without requiring three successive CNOT gates (as is the case

for qubits).

2.4 Combined beamsplitter and dispersive operations

Having discussed the capabilities afforded by the dispersive and beamsplitter interactions by

themselves, we can now turn to the combined Hamiltonian of Eq. 2.1, shown in Fig. 2.1, and

described by the Hamiltonian

Ĥχbs

ℏ
=
gbs
2

(
eiφâ†b̂+ e−iφâb̂†

)
−∆′b̂†b̂ (2.51)

where ∆′ = ∆− χ |e⟩ ⟨e| is a qubit-state-dependent detuning from the beamsplitter resonance.

2.4.1 Controlled SWAP

A straightforward and practically useful combined dispersive-beamsplitter operation is the con-

trolled SWAP, or Fredkin gate (Fredkin and Toffoli, 1982; Milburn, 1989), which exchanges
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arbitrary quantum states in two oscillator modes, conditioned on the state of a control qubit:

ˆcSWAP ≡ |g⟩ ⟨g| ⊗ Î+ |e⟩ ⟨e| ⊗ ˆSWAP. (2.52)

As discussed in the introduction, this operation provides a building block for conditionally routing

quantum states through a network to access quantum or classical information stored in quantum

Random Access Memory (Hann et al., 2021; Weiss et al., 2024).

In fact, when considering the effect of the dispersively-coupled qubit, the SWAP operation

described in Ch. 2.3, with ∆ = 0, is already a controlled-SWAP, as was demonstrated by

Gao et al. (2019). Exciting the qubit to |e⟩ shifts Bob’s oscillator frequency, and in turn the

resonance frequency for the beamsplitter drive, by χ. In the gbs ≪ χ regime, the beamsplitter

drive is therefore far off-resonant and has (almost) no impact on the oscillator states. While this

sequence performs a SWAP conditioned on the transmon |g⟩ state, it can be made conditional

on the |e⟩ state instead by choosing a beamsplitter drive detuning ∆ = χ.

The fidelity under this approach is severely limited, however. For an arbitrary control state,

the shorter-lived transmon must remain in a superposition for the duration of the slow beam-

splitter pulse. We can estimate the infidelity due to transmon errors alone as

(1−F)ancilla ≈
π

gbs
× 1

T ancilla
2

≫ π

χT ancilla
2

≈ 1%. (2.53)

An alternative approach that yields higher fidelity (under certain conditions) is to use the

microwave analog of the photonic controlled-SWAP (1.2), which is shown in Fig. 2.5(b). Here,

microwave-activated 50/50 beamsplitter gates take the place of physical beamsplitters and the

cross-Kerr nonlinearity between the transmon and one of the oscillators enacts a controlled-

phase shift. A key difference in the microwave case, however, is that the cross-Kerr nonlinearity

is always on by default. An important implication of this, as we have already seen, is that the

50/50 beamsplitter is conditional on the qubit state. As a result, this state must be known

before the start of every beamsplitter pulse. Provided this, we can perform transmon pulses to

keep it in |g⟩ during the beamsplitter pulse – in effect turning off the Kerr nonlinearity for its
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duration.

2.4.2 SWAP-test

An important operation in which the qubit does start in a known state is the SWAP-test, which

measures the overlap between quantum states in two modes, a key primitive for proposals in

quantum fingerprinting (Buhrman et al., 2001) and state purification (Barenco et al., 1997;

Childs et al., 2024). The pulse sequence (shown in Fig.2.5(c)) consists of a cSWAP sandwiched

between two qubit rotations, followed by a qubit readout. To see how the SWAP-test works, we

can consider its action on a generic pure state |Ψ⟩ = |ψ⟩ |ϕ⟩ up until the final measurement:

Ŷ−π
2
cSWAP Ŷπ

2
|g⟩ |ψ⟩ |ϕ⟩ = Ŷ−π

2
cSWAP

(
|g⟩+ |e⟩√

2

)
|ψ⟩ |ϕ⟩

= X̂−π
2

|g⟩ |ψ⟩ |ϕ⟩+ |e⟩ |ϕ⟩ |ψ⟩√
2

= |g⟩ |ψ⟩ |ϕ⟩+ |ϕ⟩ |ψ⟩
2

+ |e⟩ |ψ⟩ |ϕ⟩ − |ϕ⟩ |ψ⟩
2

≡
|g⟩ |Ψ⟩sym + |e⟩ |Ψ⟩anti-sym√

2
. (2.54)

The probability of measuring the ancilla in |g⟩ is given by

Pg =
sym⟨Ψ|Ψ⟩sym

2

=
1

2
+

|⟨ψ|ϕ⟩|2

2
, (2.55)

and therefore provides a measure of the state overlap. If the two states are identical, then

Pg = 1. Furthermore, the state after measuring |g⟩ is projected into a symmetric superposition

of the two initial oscillator states. This provides a means of state purification, producing a

single less-noisy state from two noisier copies, since the desired (noise-free) component of the

two states lives in |Ψ⟩sym, whereas noise (if uncorrelated between the two oscillators) is evenly

divided between |Ψ⟩sym and |Ψ⟩anti-sym (Barenco et al., 1997; Childs et al., 2024; O’Brien et al.,

2023).
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Since the ancilla starts in a known state, |g⟩, the theoretical gate sequence can be decom-

posed into the form shown in Fig. 2.5(c), removing the need for unconditional beamsplitters (Gao

et al., 2019). The final active reset of the ancilla and 50/50 beamsplitter (inside the dotted

box) are only required if one wants to use the state after measurement.

2.4.3 Exponential SWAP

The same cSWAP construction forms an integral part of an entangling gate between bosonic

modes, known as the exponential SWAP, or eSWAP (Gao et al., 2019):

eSWAP (θ) = exp (iθSWAP) = cos (θ) Î+ i sin (θ)SWAP (2.56)

This operation is particularly versatile as it entangles two qubits, each encoded in a individual

bosonic mode, independently of the choice of encoding. Furthermore, the code-agnostic nature

of both the eSWAP and the SWAP-test has been leveraged in a proposal for universal quantum

computation with arbitrary multi-mode bosonic encodings (Lau and Plenio, 2016).

This sequence makes use of an important tool called the ‘exponentiation gadget’ (Nielsen

and Chuang, 2010) that can be used to generate exponentials of involutory operators (i.e.

those that square to the identity, Â2 = Î) from their ancilla-controlled versions. This gadget is

shown in Fig. 2.5(a), into which the photonics-inspired cSWAP construction can be inserted (see

Fig. 2.5(d)). Similarly to the case of SWAP-test, the ancilla state is (barring any errors) known

throughout the sequence, which can therefore be reorganized to generate a practically-realizable

series of gates.

The controlled SWAP on an arbitrary state was subject to both relatively slow operating

speeds, set by gbs, and relatively high decoherence rates, set by the transmon decoherence,

therefore yielding a high infidelity (see Eq. 2.53). However, for both the SWAP-test and the

eSWAP, the infidelity is now only set by the sum of the infidelities of an individual SWAP (which

is slow but only subject to relatively low cavity decoherence rates) and a single-mode dispersive

operation (which is faster but sensitive to transmon decoherence). Nonetheless, the limitation
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Figure 2.5: Combined beamsplitter and dispersive operations. (a) ‘Exponentiation gadget’
for generating exponentials of involutory operators from their ancilla-controlled counterparts.
(b) Photonics-inspired construction of controlled-SWAP gate. (c) Basic SWAP-test circuit on
the left, and broken down into its constituent parts on the right, using the construction from
(b). Active feedback to reset the ancilla to |g⟩ prior to performing the final 50/50 beamsplitter
is only required if one wants to preserve the post-SWAP-test state. (d) Construction of eSWAP,
with reordering of constituent gates to minimize errors and ensure ancilla is in |g⟩ during the
50/50 beamsplitter operations.

on the beamsplitter speed sets a harsh speed limit on multi-cavity operations (Toperation ≫ 1 µs).

The hopeful goal is that we can achieve the best of both worlds: with access to a fast

beamsplitter that can achieve gbs > |χ|, as well as fault-tolerant schemes to protect against

ancilla decoherence, we can achieve fast, high-fidelity, multi-cavity, non-Gaussian operations. I

will start addressing the first of these points in the next chapter.



Chapter 3

Designing a three-wave mixing

beamsplitter for linear oscillators

We have established that

1. combining beamsplitters and dispersive interactions allows us to perform multi-mode non-

Gaussian control of bosonic modes, and

2. a general purpose bosonic processor requires operations that preserve the pristine unitary

dynamics of the oscillators (introducing no unwanted nonlinear terms) while also avoiding

any extra non-unitary decoherence.

Previous beamsplitter implementations using Kerr-based transmon couplers have been limited

to gbs ≪ |χ| ≈ 2π × 1 MHz before the added noise becomes dominant, a regime in which the

beamsplitter operations set a bound on the multimode gate fidelity. Finding a coupling element

that allows for gbs ≳ |χ| will therefore unlock high-fidelity multimode non-Gaussian operations.

In this chapter, I explain what underlies the limitations of the transmon approach and show

theoretically how another charge-driven dipole element, the SNAIL (Frattini et al., 2017) (initially

used for quantum limited amplifiers (Frattini et al., 2018; Sivak et al., 2019), but recently also

to mediate interactions between transmons (Zhou et al., 2023)) can overcome this. I will then

provide some guidelines for how to specifically optimize a SNAIL for high-fidelity operations on

45
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high-Q linear oscillators.

3.1 Deriving a beamsplitter from a charge-driven dipole

Before we can understand the pros and cons of different couplers, we must first understand how

the beamsplitter Hamiltonian emerges from a generic charge-driven dipole element (describing

both the transmon and its replacement, the SNAIL). In particular, we will consider the case

where the coupler potential Û(φ) can be written as a function of a single phase variable φ and

where the shunting capacitance is sufficiently large that the zero-point phase fluctuations in this

variable are small, φZPF ≪ 1. This allows us to Taylor expand Û(φ) around its minimum φmin

and write the coupler Hamiltonian as that of a weakly anharmonic oscillator (with corresponding

annihilation operator Ĉ) centered at this point, to which we can add the two linear modes (Â

and B̂) to which it will couple:

Ĥbare

ℏ
= ωAÂ

†Â+ ωBB̂
†B̂ + ωCĈ

†Ĉ︸ ︷︷ ︸
Ĥ0/ℏ

+
∞∑
n=3

gn

(
Ĉ + Ĉ†

)n
︸ ︷︷ ︸

Ĥnl/ℏ

, (3.1)

where ωA, ωB and ωC are the bare frequencies of the three modes.

When we then introduce a capacitive coupling between the coupler and each of the two linear

oscillators, which ideally have no direct mutual coupling between them, it yields a Hamiltonian

term

Ĥcoupling

ℏ
= −ga

(
Â− Â†

)(
Ĉ − Ĉ†

)
− gb

(
B̂ − B̂†

)(
Ĉ − Ĉ†

)
. (3.2)

When |∆a| ≡ |ωA − ωC | ≪ |ωA + ωC | and |∆b| ≡ |ωB − ωC | ≪ |ωB + ωC |, we may keep only

the slowly-rotating terms in the RWA:

Ĥ(RWA)
coupling

ℏ
= ga

(
Â†Ĉ + Ĉ†Â

)
+ gb

(
B̂†Ĉ + Ĉ†B̂

)
. (3.3)

Just as when we were deriving the dispersive interaction in Chapter 2, we can then suggestively
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write the linear part of the Hamiltonian as a matrix,

Ĥlin

ℏ
=

Ĥ0

ℏ
+

Ĥ(RWA)
coupling

ℏ
=

(
Â† B̂† Ĉ†

)
ωA 0 ga

0 ωB gb

ga gb ωC



Â

B̂

Ĉ

 (3.4)

which can be diagonalized to give us the dressed mode operators (â, b̂ and ĉ) in terms of

their bare counterparts, as well as their eigenfrequencies (ωa, ωb and ωc). In this situation, we

typically wish to remain in the dispersive limit (ga ≪ |∆a|, gb ≪ |∆b|) so that the cavities

do not inherit too much of the nonlinearity or noise of the Josephson-junction-based coupling

element, in which case

Â ≈ â− paĉ, (3.5)

B̂ ≈ b̂− pbĉ, (3.6)

Ĉ ≈ ĉ+ paâ+ pbb̂, (3.7)

and

ωa ≈ ωA + p2a∆a, (3.8)

ωb ≈ ωB + p2b∆b, (3.9)

ωc ≈ ωC − p2a∆a − p2b∆b, (3.10)

where pa = ga/∆a and pb = gb/∆b.

We then also add 1 or more drives to the coupler mode, each with an amplitude ϵi and a

frequency ωi. Provided that the pumps are ‘stiff’ such that the interaction does not alter ϵi,

and that |ωi − ωc| ≪ |ωi + ωc|, they can be expressed as classical drives of the form

Ĥdrive

ℏ
=
∑
i

ϵi

(
ĉeiωit + ĉ†e−iωit

)
. (3.11)
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Following the prescription in Reinhold (2019), we can write out the full Hamiltonian as

Ĥ
ℏ

=
Ĥlin

ℏ
+

Ĥdrive

ℏ
+

Ĥnl

ℏ
(3.12)

= ωaâ
†â+ ωbb̂

†b̂+ ωcĉ
†ĉ+

∑
i

ϵi

(
ĉeiωit + ĉ†e−iωit

)
+ Ĥnl

(
â, â†, b̂, b̂†, ĉ, ĉ†

)
/ℏ, (3.13)

and perform a series of unitary transformations, Ĥ → ÛĤÛ † + iℏ ˙̂
UÛ † to remove everything

but the nonlinear coupler Hamiltonian. The first transformation, Û = e−i(ωaâ†â+ωbb̂
†b̂+ωcĉ†ĉ)t,

moves us into a frame co-rotating at the three mode frequencies:

Ĥ
ℏ

=
∑
i

ϵi

(
ĉei∆it + ĉ†e−i∆it

)
+ Ĥnl

(
eiωatâ, e−iωatâ†, eiωbtb̂, e−iωbtb̂†, eiωctĉ, e−iωctĉ†

)
/ℏ,

(3.14)

where ∆i ≡ ωi − ωc is the detuning of each drive from the coupler resonance frequency.

Subsequently, we can move into a ‘displaced’ frame via a series of unitaries

Ûi = exp
(
ξie

−i∆itĉ† − ξ∗i e
i∆itĉ

)
, (3.15)

with ξi ≡ ϵi
∆i

to remove the drive terms:

Ĥ = Ĥnl

(
e−iωatâ, eiωatâ†, e−iωbtb̂, eiωbtb̂†, e−iωctĉ+

∑
i

e−iωitξi, e
iωctĉ† +

∑
i

eiωitξ∗i

)
.

(3.16)

The overall effect of coupling this nonlinear element to two linear oscillators (Eq. 3.2) and

introducing multiple charge drives (Eq. 3.11) is therefore to leave us with the nonlinear Taylor-

expanded coupler Hamiltonian Ĥnl in Eq. 3.1, in terms of a transformed coupler mode operator:

Ĉ → Ĉ ′ ≡ e−iωctĉ+ pae
−iωatâ+ pbe

−iωbtb̂+
∑
i

e−iωitξi. (3.17)

The key to obtaining a beamsplitter (or other parametric terms) is to look for terms whose

phase prefactors are slowly-rotating and so cannot be removed via the RWA. When expanding

the generic nonlinear Hamiltonian in Eq. 3.1, we obtain all products of three or more of the
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mode operators and drive amplitudes ξi in Ĉ ′. Provided that the coupler possesses an nth-

order nonlinearity, gn, we can obtain a beamsplitter term proportional to â†b̂ by applying n− 2

microwave drives that satisfy the frequency-matching condition

∑
i

siωi = |ωb − ωa|, (3.18)

where the sign si ∈ {+1,−1}.

With a transmon coupler, for which we can approximate the nonlinear Hamiltonian as that

of a Kerr nonlinear oscillator (see Eq. 2.15),

Ĥ(4)

ℏ
= g4

(
Ĉ ′ + Ĉ ′†

)4
, (3.19)

applying 2 microwave drives such that |ω2 − ω1| = |ωb − ωa| generates a Hamiltonian term

24ℏg4papbξ1ξ∗2 â†b̂, where the prefactor of 24 = 4! counts the multiplicity of this term in the

expansion. By comparing this term to beamsplitter term in Eq. 2.2, we can obtain the drive-

dependent beamsplitter rate,

g
(4)
bs (t) = 48g4papb|ξ1(t)||ξ2(t)|ei(ϕ1(t)−ϕ2(t)), (3.20)

where ξi(t) = |ξi(t)|eiϕi(t). If one of the drives is kept fixed, the amplitude |ξi| and phase ϕi

of the other drive controls the amplitude and phase of gbs. This is the approach taken in Gao

et al. (2018).

Alternatively, we can choose the drive frequencies such that |ω1+ω2| = |ωb−ωa| to obtain

the same g
(4)
bs (t) = 48g4papbξ1(t)ξ2(t), where the phase of g

(4)
bs now depends on the sum, rather

than the difference, of the drive phases. There is no requirement that the two drives be different

in frequency and so a (single) monochromatic drive at ω1 = ω2 = |ωb − ωa|/2 will also suffice.

Both of these are examples of ‘four-wave-mixing’ processes, analogous to the four-wave-mixing

nonlinear processes that are present in an optical Kerr medium with a χ(3) nonlinearity (Boyd,

2008).
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3.2 Limitations of a transmon-based coupler

The challenge with the four-wave mixing approach is that many other non-beamsplitter terms

also emerge from the coupler Hamiltonian

Ĥ(4)

ℏ
=
gbsâ

†b̂+ g∗bsâb̂
†

2
+

Ĥ(4)
Stark

ℏ
+

Ĥ(4)
Kerr

ℏ
+

Ĥ(4)
disp

ℏ
+ . . . , (3.21)

where the blocks in red group together similar problematic terms, which will be described

one-by-one in the following sections. Ĥ(4)
Stark contains drive-induced frequency shifts of the

modes, Ĥ(4)
Kerr contains induced self-Kerr and cross-Kerr nonlinear terms in the previously-linear

oscillators, Ĥ(4)
disp contains coupler-state-dependent frequency shifts of the linear oscillators, and

the remaining non-beamsplitter terms are indicated by the ellipsis. While some of the problematic

terms affect operations coupling qubits (see the discussion in Zhou (2024)), several are unique

to, or more problematic for, multiphoton bosonic states (Zhang et al., 2019).

Unwanted multiphoton transitions

Whereas most terms emerging from the expansion of Eq. 3.19 will not be resonant (i.e. slowly-

rotating) for a given choice of mode and drive frequencies, an unwanted resonant term can

lead to unitary and non-unitary dynamics, both of which could be harmful. As an example of

the former, a resonant ξ1ξ
∗
2(â

†)2 term (when ω1 + ω2 = 2ωa) will lead to squeezing of the â

mode, distorting the stored state. As an example of the latter, a resonant ξ1â(l̂
†)2 term (when

ω1 = 2ωl − ωa) will exchange one photon in the long-lived Alice mode for two photons in a

lossy mode, l̂ (e.g., a low-Q mode in the drive line.) These photons are then rapidly dissipated,

so this interaction can be viewed as an enhancement of the Alice loss rate.

It is therefore vital to keep track of and avoid all unwanted transitions. However, there are

a number of factors that complicate this for a transmon. When using four-wave mixing, the

expansion of Eq. 3.19 yields all permutations of four elements picked from the two microwave

drives (ξ1 and ξ2) and the three system modes (â, b̂ and ĉ), as well as all of their complex
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conjugates. This results in a large number of transitions to keep track of, with (2× 5)4 = 104

possible Hamiltonian terms. When the weaker terms at higher order in the Taylor expansion

of the transmon potential are included, this number increases significantly further. On top of

this, as described in Xiao et al. (2023), there are also ‘cascaded processes’ where the output

photon(s) from one mixing process act as the input for a secondary mixing process. There are

therefore a forest of frequencies to avoid.

Stark shifts

More importantly, this ‘forest’ of frequencies is also moving. Regardless of the choice of the

system frequencies, certain terms are always resonant – those in which operators always appear

alongside their conjugate. In particular, this includes a Stark shift, or drive-power-dependent

frequency shift, of all the mode frequencies:

Ĥ(4)
Stark

ℏ
= ∆

(a,4)
Starkâ

†â+∆
(b,4)
Starkb̂

†b̂+∆
(c,4)
Starkĉ

†ĉ (3.22)

≈ 24g4
(
|ξ1|2 + |ξ2|2

) (
p2aâ

†â+ p2b b̂
†b̂+ ĉ†ĉ

)
(3.23)

While the shifts of the cavity frequencies, suppressed by a factor p2i , are relatively small, the shift

of the coupler frequency can be significant. As the beamsplitter drive amplitude is ramped up,

this presents a chance for the coupler frequency to become resonant with an unwanted transition.

We can relate the magnitude of the transmon Stark shift (Eq. 3.23) to the beamsplitter rate

(Eq. 3.20):

∆
(c,4)
Stark∣∣∣g(4)bs

∣∣∣ =
|ξ1|2 + |ξ2|2

2|ξ1||ξ2|
1

papb
≥ 1

papb
≳ 400. (3.24)

To achieve gbs ≳ |χ| ≈ 2π× 1 MHz, there is therefore a large region of frequency-space (> 400

MHz) that must be clear of frequency collisions. In the experiments of Gao et al. (2018), where

the drive and mode frequencies were closely spaced, this combination of Stark shift and an

unwanted ξ1â(ĉ
†)2 resonance limited gbs < 2π×80 kHz before drive-photon assisted absorption

of cavity photons degraded the single-photon lifetime to limit the operation fidelity.
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Inherited Kerr terms

The Stark shift is not the only always-resonant term that causes problems though! The four-wave

mixing interaction also gives rise to static Kerr terms in the linear oscillator modes1:

Ĥ(4)
Kerr

ℏ
=
K

(4)
a

2
â†â†ââ+

K
(4)
b

2
b̂†b̂†b̂b̂+ χ

(4)
ab â

†âb̂†b̂ (3.25)

≈
(
12g4p

4
a

2

)
â†â†ââ+

(
12g4p

4
b

2

)
b̂†b̂†b̂b̂+

(
24g4p

2
ap

2
b

)
â†âb̂†b̂ (3.26)

The first two ‘self’-Kerr terms, K
(4)
a and K

(4)
b , we already saw in Chapter 2 as a byproduct of

the dispersive interaction. The coupler transmon therefore provides an extra contribution to the

nonlinearity of the linear modes on top of what a coupled ancilla transmon would provide. The

cross-Kerr term is especially problematic though, and can be viewed as an always-on ZZ coupling

between the modes, applying a phase update to one of the modes dependent on the photon

number in the other, even when idling. Residual ZZ couplings between conventional qubits

have proven to be an important contribution to two-qubit error rates, necessitating the use of

tunable couplers to mediate operations between transmon qubits (Stehlik et al., 2021; Yan et al.,

2018) and between fluxonium qubits (Ding et al., 2023). Moving to encoded multiphoton states

in oscillators, this problem becomes more acute, with the strength of the entangling coupling

scaling with the product of the photon number in each mode.

Oscillator-coupler dispersive shift

Finally, we also acquire a conventional dispersive coupling term between the coupler mode and

each of the linear modes

Ĥ(4)
disp

ℏ
= χ(4)

ac â
†âĉ†ĉ+ χ

(4)
bc b̂

†b̂ĉ†ĉ (3.27)

≈
(
24g4p

2
a

)
â†âĉ†ĉ+

(
24g4p

2
b

)
b̂†b̂ĉ†ĉ. (3.28)

1The coupler itself will also retain its Kerr nonlinearity, Kc ≈ 12g4, with its resonance frequency shifted more
and more when excited to states |e⟩ and higher. Since we do not explicitly intend to access these coupler states,
this term is not per se as problematic as others, although these shifted frequencies do add to the ‘forest’ of
multiphoton resonance frequencies we wish to avoid.
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When idling, any heating of the coupler mode due to its finite temperature can therefore prop-

agate to correlated dephasing of both oscillator modes. Furthermore, when the coupler is

driven, these terms will shift the beamsplitter resonance condition (Eq. 3.18) by an amount

χDR = χac −χbc (labelled this way because it represents the frequency shift of a dual rail (DR)

qubit encoded in the two oscillators). Unless χDR ≪ gbs, this shift will ensure the beamsplitter is

off-resonance and photons stop exchanging, leading to a SWAP-like error in the bosonic modes.

Importantly, even at zero temperature, relaxation and dephasing of the coupler mode can lead

to hopping between states when driven, an effect known as ‘quantum heating’ (Zhang et al.,

2019).

Crucially, for a Kerr coupler, both the term we want (the beamsplitter) and the terms we

do not want depend on the same parameter, g4. It is therefore not possible for us to suppress

the problematic terms by reducing the g4 nonlinearity without simultaneously suppressing gbs.

3.3 Three-wave mixing in the abstract

The challenges presented are not unique to beamsplitters between bosonic modes. The problem

of multiphoton resonances in strongly driven Kerr oscillators, for example, has been well-studied

in the context of both fast transmon readout (Cohen et al., 2023; Khezri et al., 2023; Sank

et al., 2016; Shillito et al., 2022; Xiao et al., 2023) and Kerr cat qubits (Frattini et al., 2024;

Venkatraman et al., 2022), informing the optimal choice of mode frequencies.

Three-wave mixing in amplifiers

Similarly, producing a strong parametric interaction without spurious Kerr terms is central to

developing quantum-limited parametric amplifiers with large dynamic range, where one wants

to generate a strong squeezing interaction ∝ (ĉ2 + (ĉ†)2) for as large an input field amplitude

as possible. A charge-driven single-junction or a DC SQUID can act as a Josephson parametric

amplifier (JPA), generating the desired squeezing via a four-wave-mixing interaction (ω1+ω2 ≈

2ωc) (Yurke et al., 1989), but also generates a Stark shift that limits the maximum input
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amplitude that can be used before the mode is shifted off resonance (Kochetov and Fedorov,

2015).

An alternative, more successful approach, is to modulate the external flux through the loop

of the (DC SQUID-based) JPA with a monochromatic drive to achieve the same squeezing inter-

action via a three-wave mixing interaction (ωp ≈ 2ωc) (Yamamoto et al., 2008). Similarly, the

Josephson parametric converter (JPC)(Bergeal et al., 2010a,b) provides a quadrupolar multi-

mode circuit mediating a charge-driven three-wave mixing interaction. Nonetheless, while these

circuits use a different degree of nonlinearity to generate the gain, the 4th-order nonlinearity still

remains, with the Stark shift limiting the achievable dynamic range (Liu et al., 2017).

One solution leveraged by both the SNAIL parametric amplifier (SPA; Frattini et al. (2018))

and the Josephson array mode parametric amplifier (JAMPA; Sivak et al. (2020)), and which will

inspire the solution to our beamsplitter problem, is to use a charge-driven element2 described by

a single phase degree of freedom φ, that enables three-wave-mixing interactions via a non-zero

g3 while also suppressing gn>4. In this case, to first order in perturbation theory, there will be

no always-on RWA terms (since this requires an even-order nonlinearity) and so no Stark shift.

In practice, when considering the g3 term up to second order in perturbation theory, it generates

both an anharmonicity (frequency shift per coupler excitation)

K(3)
c ≈ 12

(
g4 − 5

g23
ωc

)
, (3.29)

and a Stark shift (frequency shift per normalized drive power) 3

∆
(c,3)
Stark ≈ 24|ξ|2

(
g4 −

9g23
2ωc

)
. (3.30)

Nonetheless, with sufficient control over g3 and g4, we can get one or the other of these terms

to completely cancel, allowing us to decouple the term we want from those we do not.

2Other solutions to the beamsplitter problem based on flux-driven elements have also recently been devel-
oped (Lu et al., 2023; Maiti et al., 2024). These flux-driven approaches will be discussed and compared to our
charge-driven solution in Ch. 3.6.

3The reader should beware that the form of the drive in Eq. 3.11 is not valid for an SPA since the drive is
very off-resonant. Correcting for this will change the expression for ξ.
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Three-wave mixing beamsplitter

The same idea may be applied to the beamsplitter, where a single drive at ωp = |ωb − ωa|

generates a beamsplitter, with a rate approximated at low drive amplitudes as

g
(3)
bs (t) ≈ 12g3papbξ(t). (3.31)

With only a single drive and a lower-order three-wave mixing expansion Ĥ(3)/ℏ = g3(Ĉ
′+ Ĉ ′†)3,

this yields ‘only’ (2× 4)3 = 216 possible terms, much fewer than with 4-wave mixing.

Besides just αc and ∆
(c)
Stark of the coupler mode (whose expressions are still given by Eq. 3.29

and Eq. 3.30), we are now also able to suppress the 4th-order terms in themultimode Hamiltonian

by setting g4 ≈ 0. However, it is again important to include the second-order-perturbation

corrections due to the required g3 nonlinearity. We find an oscillator self-Kerr:

K
(3)
j ≈ p4j

(
12g4 − 18g23

(
2ωc

4ω2
j − ω2

c

+
4

ωc

))
+K

(t)
j , (3.32)

where K
(t)
j is the fixed additional contribution to mode j (= a or b) from a coupled transmon

ancilla (as discussed in Ch. 2), an always-on ZZ-like cross-Kerr:

χ
(3)
ab ≈ p2ap

2
b

(
24g4 + 36

g23
ω̃

)
(3.33)

where

ω̃ ≡
(

1

ωa − ωb − ωc
+

1

−ωa + ωb − ωc
+

1

ωa + ωb − ωc
+

1

−ωa − ωb − ωc

)−1

, (3.34)

and dispersive shifts between the coupler and the individual oscillators

χ
(3)
jc = 24p2j

(
g4 +

6g23ωc

ω2
j − 4ω2

c

)
. (3.35)

These corrections indicate that setting g3 ̸= 0 and g4 = 0 is not exactly the condition
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required to remove all unwanted terms. We have however broken the linear relationship between

the desired and undesired terms, and so by tuning g3 and g4 in tandem we should be able to

achieve large gbs while suppressing particular spurious terms. We should note though that the

g3 enters with a different prefactor in each term. As we shall see, tuning g3 and g4 will therefore

not precisely null all terms simultaneously for a generic choice of mode frequencies, although

it does present the opportunity to switch between different operating points that optimize for

different properties.

3.4 SNAIL as a three-wave-mixer

The SNAIL element that permits the required 3rd order nonlinear potential (shown in Fig. 3.1(b))

consists of a single small junction with Josephson energy αEJ in parallel with M > 1 larger

shunting junctions (EJ), enclosing a loop through which an external magnetic field Φext may be

applied. In order to optimize this circuit for use as a coupler, we must know how the different

circuit parameters affect the different orders of the Taylor expansion in Eq. 3.1. We therefore

briefly follow Frattini (2021) to relate these parameters.

In the usual regime where the junction capacitances are small and the resulting self-resonance

frequencies very high, we can express the SNAIL potential in terms of a single degree of freedom,

the phase drop φ̂s across the entire element, which is divided across each junction equally:

ÛSNAIL (φ̂s) = −αEJ cos φ̂s −MEJ cos
φext − φ̂s

M
= EJ

∑
n=2

cn
n!

(φ̂s − φmin)
n , (3.36)

where φext = 2π× Φext
Φ0

. In the final equality, we expand the potential about its minimum φmin,

which satisfies the transcendental equation

α sinφmin + sin
φmin − φext

M
= 0 (3.37)

Generally φmin must be found numerically but φmin = 0 at φext = 2nπ with n ∈ Z and φmin = π
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Figure 3.1: SNAIL coupler circuit (a) Circuit element representation of experimental setup
containing a SNAIL coupler (green) capacitively coupled to two superconducting cavities, Alice
(orange) and Bob (blue), with coupling strengths ga and gb, respectively. Each cavity is capac-
itively coupled to a transmon ancilla, although Bob’s will be predominantly used. The coupler
circuit contains a capacitor with charging energy EC, in parallel with a linear inductance (energy
EL) and N arrayed SNAIL elements. In our experiment, N = 1. (b) SNAIL element, consisting
of M large junctions (Josephson energy EJ) in parallel with 1 small junction (αEJ). In our
experiment, M = 3. The loop formed by these junctions is threaded by a magnetic flux Φext.
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c n

Figure 3.2: Nonlinear coefficients of an individual SNAIL. (a) Example potential USNAIL(φs)
for a single SNAIL withM = 3 shunting junctions and a junction ratio α = 0.15, as a function of
the superconducting phase across the whole element φs (grey). The external flux φext is chosen
so c4 = 0. Taylor expansion around φmin is overlaid up to c2 (green) and up to c3 (purple).
(b) Nonlinear coefficients cn for α = 0.15. (c) Nonlinear coefficients cn for α = 0.30 ≈ 1/M ,
showing large values and sharper variations close to φext = π.

at φext = (2n+ 1)π. The Taylor coefficients cn = 1
EJ

dnU
dφ̂n

s

∣∣
φs=φmin

can then be found:

c2 = +α cosφmin +
1

M
cos

φmin − φext

M
c3 = −α sinφmin −

1

M2
sin

φmin − φext

M
(3.38)

c4 = −α cosφmin −
1

M3
cos

φmin − φext

M
c5 = +α sinφmin +

1

M4
sin

φmin − φext

M
(3.39)

These coefficients are shown in Fig. 3.2(b-c) for M = 3, with α = 0.15 and α = 0.30. These

highlight a few general properties:

• Odd cn are antisymmetric about φext = mπ and vanish at these points,

• Even cn are symmetric about φext = mπ,

• For α > 1/Mn−1, even cn pass through 0 for some φext.

• For fixed α, odd cn have the same shape, multiplied by a scale factor that alternates sign.

Generally speaking, we can consider an array of N of these SNAIL elements in series, along

with a series linear (or ‘geometric’) inductance L (with associated energy EL =
φ2
0

2L), and a

large shunting capacitance C (with associated energy EC = e2

2C ). A key insight of Frattini et al.
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(2018) was that introducing a linear inductance, such that the phase drop across the entire

coupler φ is divided between the linear and Josephson inductances, does not simply apply a

scale factor to the cn but changes their flux dependence. Perhaps surprisingly, the minimum

of the potential with respect to φ remains φmin. The Taylor coefficients c̃n of the expansion

around this point,

Û(φ̂) = EJ

∑
n=2

c̃n
n!

(φ̂− φmin)
n (3.40)

can be related to the Taylor coefficients for a single SNAIL element cn via

c̃2 =
p

N
c2 c̃3 =

p3

N2
c3 (3.41)

c̃4 =
p4

N3

(
c4 −

3c23
c2

(1− p)

)
c̃5 =

p5

N4

(
c5 −

10c4c3
c2

(1− p) +
15c33
c22

(1− p)2
)
, (3.42)

where p = NLs/(L + NLs) is the nonlinear inductive participation, or the fraction of the

inductance coming from the junctions, NLs = NLJ/c2. We can relate the c̃n to the nonlinear

coefficients in Eq. 3.1 via

ℏgn =
EJ c̃n (φZPF)

n

n!
, (3.43)

where

φZPF =

(
2EC

c̃2EJ

) 1
4

, (3.44)

and to the ‘bare’ coupler frequency in Eq. 3.1 via

ωC =
√

8ECEJc̃2. (3.45)

Importantly, the measured frequency (excluding any dressing with other modes) will also be

Lamb shifted by the g3 and g4 terms in the Hamiltonian,

ω
(meas)
C ≈ ωC + 12g4 −

30g23
ωC︸ ︷︷ ︸

ω
(Lamb)
C

(3.46)

The capacitively shunted SNAIL (from now on referred to just as SNAIL) therefore provides
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a flux-tunable circuit with operating points where g3 (controlling gbs) is large but where g4

(contributing to unwanted terms) can at the same time be made positive, negative or zero.

What might limit gbs?

Knowing how the nonlinear parameters relate to the physical parameters of the SNAIL, we can

ask, provided that we do not run into any multiphoton transitions, what could limit the gbs

we can achieve, or lead to a nonlinear relationship between drive amplitude and the desired

interaction?

One set of unavoidable terms constitute higher-order corrections to the beamsplitter rate

Ĥcorr

ℏ
=
∑
m=2

g
(2m+1)
bs â†b̂+

(
g
(2m+1)
bs

)∗
âb̂† (3.47)

where

g
(2m+1)
bs =

2(2m+ 1)!

m!(m− 1)!
g2m+1papb|ξ|2ξ. (3.48)

In particular, the lowest order correction g
(5)
bs = 120g5papb|ξ|2ξ contributes either negatively or

positively (depending on the sign of g5 relative to g3
4) with an amplitude that scales as the

drive amplitude cubed. The point at which the linear and cubic contributions become equal can

be thought of as a 3rd-order intercept point (IP3), which occurs at

|ξ|IP3 =

√
|g3|

10|g5|
=

√
2|c̃3|

|c̃5|φ2
ZPF

≈

√
2|c3|N2

p2|c5|φ2
ZPF

≈
√
2N

pφZPF
(3.49)

where in the second-to-last equality, we have assumed that p ≈ 1. This provides a crude

approximation for the critical drive amplitude |ξ|crit, similar to that provided in Frattini (2021).

If we substitute this value into Eq. 3.31, we can very roughly approximate the maximum possible

scale of gbs as

gIP3
bs ≡ 12g3papb|ξ|IP3 ≈

√
2ωcp

∣∣∣∣c3c2
∣∣∣∣ papb, (3.50)

a value that is independent of N , and where |c3/c2| = O(1). Note that this expression is likely

4When p = 1, g3 and g5 always have opposite sign, but when p ̸= 1 this need not be the case.
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an overestimate of the maximum gbs since it extrapolates the linear contribution out to the

point (|ξ|IP3) where it has been completely overcome by the cubic contribution.

3.5 Optimizing a SNAIL circuit for high-Q bosonic modes

In the context of parametric amplification, Frattini (2021) provides clear guidelines for optimiz-

ing the choice of the different circuit parameters to maximize the strength of the parametric

interaction, among them:

• Minimize linear inductance L to keep p as close to 1 as possible,

• Array N SNAILs to dilute the nonlinearity and commensurately pump harder,

• Impedance-match the pump port for optimal pump delivery at the pump frequency while

protecting against leakage at the signal frequency.

While these guidelines remain mostly valid for beamsplitting, there are some new considerations

when the coupled modes must remain highly coherent.

Optimizing N : Arraying

Besides using three- rather than four-wave mixing, a key technique for engineering high dynamic-

range standing-wave amplifiers is to array the nonlinear elements, whether they are SQUIDs (Eich-

ler and Wallraff, 2014; Planat et al., 2019; Winkel et al., 2020) or SNAILs (Frattini et al., 2018;

Sivak et al., 2020). From the perspective of achieving a linear relationship between drive ampli-

tude and the desired Hamiltonian interaction, our ideal coupler is as pure as possible a g3, with

successively higher gn much smaller than those before it. Looking at Eq. 3.43, and noting that

(away from special flux points) |cn| = O(1) ∀ n

gn+1

gn
∝ φZPF

N
, (3.51)

provided that p ≈ 1.
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One way of suppressing the higher-order nonlinearities is to increase EJ/EC while keeping

their product fixed so that φZPF reduces and ω stays the same. Physically, this corresponds to

increasing the shunt capacitance and decreasing the inductance of the junctions, and is a good

strategy provided that we can keep p ≈ 1. Alternatively, we can go from a single SNAIL to an

array of N SNAILs while simultaneously changing the junction sizes such that EJ → NEJ in

order to keep both ωC and φZPF fixed. This approach (again, provided that p ≈ 1) reduces

unwanted terms proportional to g4 by a factor of N2 (and those proportional to g5 by N
3) while

only reducing g3 by a factor of N . In order to achieve the same beamsplitter rate however, one

must simultaneously increase the pump amplitude by a factor of N (or the power by a factor of

N2).

Unlike in an amplifier however, the presence of high-Q oscillator modes coupled to the SNAIL

makes it more challenging to drive the coupler more strongly without either a) Purcell-limiting the

oscillator modes (Purcell, 1946; Reed et al., 2010), or b) delivering too high an active heat load to

the mixing chamber of the dilution refrigerator. As we shall see in Chapter 4, engineering a good

on-chip pump port filter is therefore key to achieving a high-fidelity beamsplitter. Nonetheless,

increasing the pump power presents the separate issue that while the SNAIL gn are reduced,

the g4 of the ancilla transmons remains high. Higher pump powers therefore make crosstalk to

these modes more likely.

In initial experimental attempts, a device with an N = 3 array was used to suppress the

g4 nonlinearity by a factor of 9. However, due to a weak spurious coupling between the pump

port and the ancilla transmon, the required 9-fold increase in pump power caused significant

frequency shifts of the ancilla mode. Switching to an unarrayed device with N = 1 mitigated

this issue. In conclusion, while there is a theoretical benefit to arraying, one needs to take special

care of microwave hygiene to be able to access this benefit.

Optimizing the number of SNAIL shunt junctions, M

As in the SPA, the choice of M is primarily guided by fabrication considerations. The ratio

|c3/c5| = M2/(M2 + 1), which we would ideally like to be as large as possible, depends
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incredibly weakly on M , with only a 20% difference between M = 2 and the M → ∞ limit.

Since α < 1/M , for larger M , the ratio between the two junction inductances needs to be

made increasingly small. Since both the small and large junctions are fabricated in the same

run, they will be made with the same critical current density. As a result, increasingly small α

requires increasingly extreme ratios in the overlap areas of the small and large junctions, making

fabrication challenging below α ≲ 0.05. Meanwhile, angle evaporation puts a constraint on the

symmetry of the device, requiring an odd M . One possible reason to avoid large M is that each

extra junction in the array introduces a new high-frequency mode in the spectrum to which we

might lose energy. We therefore choose the smallest odd number of junctions greater than 1 5,

M = 3.

Optimizing α

Another important parameter to choose is the ratio of junction sizes, α. This value must remain

below 1/M for the coupler potential to contain a single minimum, and avoid the hysteretic

behavior of the C-shunt flux qubit (Yan et al., 2016). As α → 1/M , the SNAIL behaves

similarly to a symmetric SQUID, with a steeper frequency response with respect to flux, as well

as stronger nonlinearities (see Fig. 3.2).

In the context of qubit readout, amplifiers need to provide low-Kerr and large gain at a very

specific frequency, the readout resonator frequency, which may be difficult to predict precisely in

advance. This encourages the use of a relatively small α ≈ 1/M2 to smooth out the variation

in SNAIL parameters with frequency. Couplers for beamsplitting however, do not need to park

at a very specific frequency to produce the required interaction. This provides more flexibility

in the choice of α.

Provided that we are at the flux point where g4 ≈ 0, one way of increasing the value of

gbs for the same pump amplitude |ξ| and oscillator participations pa and pb is to use a larger α

to increase g3. One important drawback is that the corresponding steeper frequency response

|dωC/dφext| makes the coupler mode more sensitive to flux noise, which will in turn be inherited

5M = 1 corresponds to a DC SQUID which does not possess a 3rd-order nonlinearity.
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|g3|

dωC

dφext

Figure 3.3: Dependence of SNAIL properties on α. Simulated variation of SNAIL frequency
sensitivity to external magnetic flux |dωC/dφext| and third order nonlinearity |g3|, as a function

of α at the Kerr-free point K
(3)
c = 0. Circuit parameters N = 1, M = 3, EC/h = 0.177 MHz

and EL/h = 64 GHz are chosen to match device in Chapter 4, with exception of EJ, which is
varied to ensure ωC = 2π × 4.5 GHz at the Kerr-free point. Both values are plotted relative to
their value at α = 0.15 and highlight a worsening trade-off between nonlinearity and flux noise
as α→ 1/M .

by the cavity modes and start to compromise their intrinsic noise bias.

To see how these two effects trade off against each other, we can compare |g3| and

|dωC/dφext| at the Kerr-free point (K
(3)
c = 0), as a function of α for the circuit parame-

ters used in the device described in Chapter 4 (EC/h = 0.177 MHz, EL/h = 64 GHz, N = 1

and M = 3) . The value of EJ is adjusted to ensure that ωC/2π = 4.5 GHz for each choice

of α. This choice also ensures φZPF is fixed for all α. The values in Fig. 3.3 show a roughly

1 : 1 trade-off until α = 0.15, after which the flux noise increases substantially more rapidly

than |g3|.

Based on this, the optimal choice of α will depend on the duty cycle. If the duty cycle

is low, and we care a lot about maximizing the cavity Tϕ while idling then minimizing the

sensitivity to flux noise encourages a low α ≈ 0.05. If instead, we care more about the fidelity

while the beamsplitter is activated, then the roughly even tradeoff between |g3| ∝ 1/tbs and

|dωC/dφext| ∝ 1/Tϕ up to α = 0.15 should result in similar infidelities due to flux noise

dephasing during the beamsplitter in this range. Choosing α = 0.15, as we do, ensures the
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fastest possible gbs in this range.

Optimizing p

As in amplifiers, maximizing p so that the majority of the inductance is Josephson inductance

is ideal. One design challenge (as we shall see in Chapter 4) is that we would like a strong

capacitive coupling between the coupler and each of the cavity modes but the cavities themselves

are physically separated in the package. One way of coupling to two physically separated modes

is to use long leads between the SNAIL’s junctions and its capacitor pads. However, these can

introduce a large amount of geometric inductance Lgeom ∼ µ0l, where l is the length of the

leads. It is therefore paramount to keep the two cavities located as close together as possible.

A double-post cavity (Gertler et al., 2023; Koottandavida et al., 2024), where the fields of the

two dressed modes overlap is one way of satisfying this. However, for the same reason, coupling

an ancilla transmon to these modes without inducing a significant χab is difficult.

Optimizing pa and pb

Increasing the participation of the oscillator modes in the coupler allows for higher beamsplitter

rates for the same coupler nonlinearity and drive amplitude. However, if the participation is too

great, it can also limit the coherence of the oscillator modes. When discussing the optimal value

of dispersive shift χ for an ancilla transmon (Ch. 2.2.4), we found that the linear oscillator mode

inherits decay from the coupled mode as κinheritedi ≈ p2iκc, where i = a or b. We also found

that for the case of white noise, the inherited dephasing was proportional to p4i . However, since

the coupler is a flux-tunable device, its dephasing noise is likely dominated by 1/f flux noise,

for which γcϕ ∝ |dωc/dφext| (Krantz et al., 2019). We can relate the dephasing experienced by

the coupler to the inherited dephasing of the oscillators by comparing the relative sensitivities

of the mode frequencies to fluctuations in the external flux,

γi, inheritedϕ =

∣∣∣∣dωi

dωc

∣∣∣∣ γcϕ ≈ p2i γ
c
ϕ, (3.52)
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where Eq. 3.8 and Eq. 3.9 were used to relate the frequency fluctuations. In order to preserve

the low-dephasing noise bias of the oscillator modes, we require

γi, inheritedϕ ≪ κintrinsici + κinheritedi (3.53)

→ γi, inheritedϕ ≪ κintrinsici (3.54)

→ p2i ≪
κintrinsici

γcϕ
, (3.55)

where in going from Eq. 3.53 to Eq. 3.54, we have used T1,c ≳ Tϕ,c. For typical values of

Tϕ,c ≈ 20 µs and T1,i ≈ 1 ms, this encourages p2i ≪ 0.02 and so we opt for p2i ≈ 0.0025

(corresponding to gi
∆i

≈ 1
20).

Optimizing frequency stack

In a three-wave mixing beamsplitter, the choice of oscillator frequencies immediately determines

the required pump frequency, ωp = |ωb − ωa| (unlike in four-wave mixing). One benefit of

choosing a small ωp is that multiphoton processes involving the lossy modes above the waveguide

cutoff frequencies (ωwg/2π ≈ 20 GHz) of the tunnels in the 3D package require many pump

photons. These processes rely on a high-order nonlinearity, whose strength is suppressed.

On the other hand, a challenge of a very small ωp (≪ 3 GHz) is that the drive is strongly

detuned from the SNAIL mode resonance ωc, whose frequency (as well as those of the cavities)

should be kept sufficiently high to ensure that its residual Bose-Einstein thermal population

pth ≲ 1%. While we might expect the mode temperatures to be thermalized to the mixing

chamber stage at 10 mK, in practice, state-of-the-art 3D cavity mode temperatures are around

35 mK (Chou et al., 2024; Milul et al., 2023), requiring mode frequencies that satisfy ω/2π ≳ 3

GHz. The SNAIL mode provides a resonant embedding structure around the driven Josephson

nonlinearity so that driving near its resonant frequency allows for a large normalized drive am-

plitude |ξ| for the same applied field |ϵ|. This can be seen from the approximate expression for

the normalized drive amplitude, ξ ≈ ϵ/(ωp − ωc). A strongly-detuned drive therefore makes

the job of filtering the drive more challenging, although recent work driving a SNAIL through a
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low-pass filter has shown this is indeed possible (Zhou et al., 2023).

In order to satisfy these requirements, we choose cavity frequencies ωa/2π ≈ 3 GHz and

ωb/2π ≈ 7 GHz, to give a drive frequency ωp/2π ≈ 4 GHz, near which we can place the SNAIL

frequency. This ensures that at least 5 drive photons are required to drive a multiphoton process

involving the waveguide modes. Both of the ancilla frequencies ωanc/2π ≈ 5.4 GHz are then

chosen to avoid intermodulation products of the oscillator frequencies.

3.6 Comparison to flux-pumped approaches

Before we conclude this chapter, it is important to note that a flux-pumped approach to gener-

ating a clean beamsplitter interaction, inspired by the flux-pumped JPA, is possible.

While we heard earlier that the JPA suffers from 4th-order nonlinear terms, many can be

removed by enforcing a symmetry in the drive field such that the SQUID is perfectly differentially

driven (i.e. θ1 = −θ2, where the θi refer to the phase across each junction in the SQUID due

to the drive) (Lu et al., 2023). When two such purely-differential drives (ϕ1(t) and ϕ2(t))

are applied, only terms proportional to (ϕ1(t) + ϕ2(t))
n
(
pa(â+ â†) + pb(b̂+ b̂†) + ĉ+ ĉ†

)m
,

where n and m are both even, are permitted, suppressing up to half of the possible multiphoton

resonances compared to a charge-driven transmon. Nonetheless, the permitted terms still include

a Stark shift, as well as inherited oscillator self- and cross-Kerr interactions. Despite this, Lu

et al. (2023) showed that with fewer multiphoton resonances, one can tolerate a significant

Stark shift while achieving gbs/2π ≈ 4.32 MHz with very high-fidelity operations (F = 99.96%)

on single-photon states6. However, the inherited nonlinearities of the cavity modes makes this

approach suitable only for codes with low photon numbers, such as the dual-rail encoding.

Similarly, bisecting the SQUID loop with a linear inductance and threading one half of the

loop with a DC external flux of φext = 0 and the other with φext = π produces the asym-

metrically threaded SQUID (ATS). When driven with a differential AC flux ϕ1(t), this permits

ϕn1 (t)
(
pa(â+ â†) + ĉ+ ĉ†

)m
, where n and m are both odd (Lescanne et al., 2020). While not

6The maximum beamsplitter rate achieved in this experiment was as high as gbs/2π ≈ 11 MHz, although the
operating fidelity decreased beyond 4.32 MHz.
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useful for beamsplitters, this has been extensively used in the context of dissipative cat qubits to

generate a clean two-photon dissipation term â2ĉ†, which transfers photons two-at-a-time from

the pristine â mode into the lossy ĉ coupler mode, without introducing static Kerr nonlinearities

(provided the two SQUID junctions have the same EJ). It has since been proposed to adapt this

circuit to operate with a symmetrically-threaded flux (such that the DC flux through both halves

of the loop is φext = π), in order to generate ϕn1 (t)
(
pa(â+ â†) + pb(b̂+ b̂†) + ĉ+ ĉ†

)m
, where

n is odd andm is even (Maiti et al., 2024). This symmetrically-threaded SQUID (STS), or linear

inductive coupler (LINC), should permit a three-wave-mixing beamsplitter without Stark shifts

or other Kerr terms to leading order. Nonetheless, these flux-pumped approaches require the

delivery of highly-differential AC flux into a 3D superconducting package, where charge drives

can be more straightforwardly engineered.

In conclusion, while charge-driven SNAILs do not present the only way of generating a clean

beamsplitter interaction, they can do so while suppressing Stark shifts and Kerr terms without

the need for highly-controlled AC flux delivery.



Chapter 4

Demonstrating a high on-off ratio

microwave beamsplitter

The promise of a SNAIL-based coupler can be summarized as offering a high-fidelity, high on-off

ratio beamsplitter, satisfying

χab ≪ τ−1
bs ≪ gbs, (4.1)

where τbs captures the decoherence timescale of the oscillators when the beamsplitter is ap-

plied. The equivalent representative timescale for operations is the time to perform a 50/50

beamsplitter, tbs = π/2gbs. The inequality above points to two figures of merit for beamsplitter

performance: the number of operations that can be performed in a coherence time, τbs/tbs,

and the on-off ratio, gbs/χab, which compares the beamsplitter rate to the strongest always-on

interaction between the oscillators. Having looked at the theory, it is now our job to make it

work in practice.

We will begin (in Ch. 4.1) by discussing the experimental hardware required to make this

possible, with a focus on the two main technical challenges: delivering DC flux and a strong

charge-drive to the SNAIL coupler. We will then discuss how we characterize the properties

of the static system Hamiltonian (Ch. 4.2), before turning our attention to characterizing the

beamsplitter operation itself (Ch. 4.3).

69
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4.1 Engineering a high-Q package for a charge-driven SNAIL

The superconducting package designed and fabricated for the experiments in this thesis (shown

in Fig. 4.1) integrates design ideas from various applications in cQED. The package, which

implements the circuit schematic in Fig. 3.1, is a modification of the ‘Y-mon’ coupler (Gao,

2018) used to mediate beamsplitters with a transmon coupler. It is constructed from a block of

99.999% purity aluminum, out of which are machined two 3D λ/4 stub cavities (see Ch. 2.1.2),

whose fundamental modes will play the roles of ‘Alice’ and ‘Bob’ . To provide dispersive control

of each of these cavity modes, we machine an elliptical tunnel into the side of each cavity,

in which we suspend a ‘standard’ sapphire cavity control chip (Axline, 2018; Reinhold, 2019),

and for beamsplitter control, another elliptical tunnel1 intersecting both cavities houses a chip

supporting the coupling element. In the original ’Y-mon’ this (transmon) coupling element and

its capacitor pads form a ’Y’ shape, hence its name.

Switching from a transmon to a SNAIL coupler introduces two engineering questions:

• How can we deliver a DC flux bias φext in a superconducting enclosure?

• How can we deliver a strong off-resonant charge-drive ξ?

Furthermore, can these questions be answered without compromising the pristine cavity modes?

To do so we integrate two new structures: a DC flux transformer (Mundhada, 2019), and a

buffer mode, respectively. While adding these structures, we also remove the readout resonator

previously used to probe the coupler state, since the SNAIL’s vanishing dispersive shift near the

Kerr-free point disallows standard dispersive readout. However as we shall see in Ch. 4.2 this

does not prevent us from characterizing the coupler properties.

Before discussing these new structures however, I will briefly summarize the elements that

mediate the dispersive control, highlighting areas that might differ from usual implementations.

1An ellipse whose major axis lies along with the width of the chip allows for a smaller cross-sectional tunnel
area for a given chip width. This results in a smaller ’perforation’ of the cavity walls and less distortion of the
cavity fields. This is especially true for the wide central tunnel housing the coupler chip. It should be noted that
an elliptical tunnel is, however, more challenging to machine that a circular one.
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Figure 4.1: Schematic of experimental package with outer walls removed. (a) Top-down
and (b) isometric view of the experimental package design. The stubs of Alice and Bob post
cavities are shown in solid orange and blue, respectively, surrounded by vacuum (grey). Inserted
into each cavity is a sapphire dispersive control chip (teal) onto which Al transmon, readout
resonator and Purcell filter are patterned. The central chip hosts the SNAIL at its center, a flux
transformer and magnet coil above, and a buffer mode and drive pin below. The coupling pins
on the readout resonators and Purcell filters are omitted for clarity. In the isometric view, the
vacuum inside the cavities is shaded orange or blue to match the stub. The capacitors pads of
the SNAIL and of the ancilla transmon are inserted further into the cavity on Alice’s side than
on Bob’s, since for a lower cavity frequency, a larger capacitance is required to obtain the same
linear coupling strength, g.

4.1.1 Dispersive control hardware

Each dispersive control chip supports, from nearest the cavity to furthest: a 3D Al/AlOx/Al

transmon (Paik et al., 2011), a meandered Al stripline readout resonator, and a similarly me-

andered Al stripline Purcell filter. The Purcell filter sits beneath a terminated 50 Ω coaxial

transmission line, whose outer conductor is formed by the walls of a cylindrical tunnel machined

into the aluminum package and whose inner conductor is a non-magnetic cylindrical coupling

pin. The length of this pin can be varied to control the loss rate κPurcell to the (overcoupled)

transmission line, down which the readout signals are sent and received.

The Purcell filter (Reed et al. (2010); see Axline (2018) for a detailed description of this

implementation) has a frequency ωPurcell close to that of the readout resonator, ωr,a (or ωr,b),

but far from those of the ancilla transmon, ωt,a (ωt,b), or the cavity, ωa (ωb). As a result, it acts

as a single-pole filter (Pozar, 2012), passing readout signals at ωr,a (ωr,b)), while suppressing loss
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from the high-Q modes down the transmission lines due to the inverse Purcell effect (Houck et al.,

2008). The inclusion of such a Purcell filter allows us, in principle, to achieve χtr ≈ κr ≈ 2π×1

MHz, where χtr is the dispersive shift between the ancilla transmon and its readout resonator,

and κr is the loss rate of the readout resonator, without limiting the lifetimes of the high-Q

modes. Achieving χtr ≈ κr with both values as large as possible maximizes the rate at which the

transmon state can be read out (Gambetta et al., 2006), an important parameter to optimize

for single- and multi-mode measurements, as in Ch. 7.

Separate transmission lines are used to provide the Rabi drive on the transmon and the

displacement drive on the cavity, and are designed to be substantially undercoupled (Qint ≪

Qcoupling) so as not to significantly suppress the lifetimes of these modes below their intrinsic

values. Meanwhile, the cavity coupling pin is inserted into the side of the post cavity near

the top of the stub, where the electric field of the oscillator mode is strongest. The transmon

coupling pin is located above the readout resonator, at an electric field antinode of the transmon

mode. This allows us to drive the transmon while keeping the pin as far as possible from the

cavity mode to avoid limiting its relaxation time.

HFSS finite-element simulations, in concert with pyEPR (Minev et al., 2021), are used to val-

idate these linear (the loss rates of the modes and their frequencies) and nonlinear (the dispersive

shifts) circuit parameters, respectively. The dispersive shifts χat and χbt between the transmon

and the cavity are designed to be 2π × 1 MHz, following the discussion in Ch. 2.2.4. Given

a fixed transmon Kerr nonlinearity Kt/2π ≈ 180 MHz (independently optimized to suppress

charge noise while allowing fast gates) and the frequency stack chosen in Ch. 3.5, we optimize

these dispersive shifts by varying the capacitive coupling between the two modes, thereby vary-

ing their linear coupling gbt (or gat). While this is straightforward for Bob at ωb/2π ≈ 7 GHz,

achieving a sufficiently large gat to the Alice mode at ωa ≈ 3 GHz is made challenging by its

low frequency. For two oscillators with frequencies ωa and ωt and characteristic impedances Za

and Zt, weakly coupled via a capacitance Ccoupling, the linear coupling can be approximated as

gat ≈
√
ZaZt

2
ωaωtCcoupling. (4.2)
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Therefore, assuming fixed impedances, achieving gat = gbt requires a Ccoupling which is ωb/ωa ≈

7/3 times larger for Alice than for Bob. To do so, we insert the Alice control chip much further

into the cavity, increasing the overlap between the capacitor pad of the transmon mode and

the electric field of the cavity mode. One implication of this is that there is a direct dispersive

coupling between Alice’s transmon and the SNAIL, which is significantly larger than the coupling

between Bob’s transmon and the SNAIL. This will play a role in the characterization of the SNAIL

frequency in Ch. 4.2.1.

The control chips themselves are held on only one end (furthest from the cavity) by a

Beryllium-Copper (BeCu) leaf spring which is compressed between two halves of an aluminum

clamp. Whereas the Al clamp is stiff and contracts as the temperature is decreased, the BeCu

clip is flexible at room temperature while maintaining a high mechanical strength at 20mK. This

prevents the chip from cracking due to the thermal-cycle-induced stresses.

4.1.2 Flux delivery

In planar superconducting circuits, such as those containing flux-tunable transmons, DC flux

is typically applied via a coplanar waveguide (CPW) loop, whose ends are connected to a DC

current source, and which is inductively coupled on-chip to the loop of the transmon or other

circuit (DiCarlo et al., 2009). A similar approach in 3D cavities, where the ground plane is not

located on-chip but rather is formed by the outer walls of the enclosure, is challenging as this

requires making a reliable galvanic connection between the replaceable sapphire chip and the

outer walls.

In situations where the modes are not very high-Q and only a global field is required, this can

be remedied by moving the loop off chip. This can be done by wrapping a current-carrying wire

around a spool attached to the outside of the package, above the location of the loop (Grimm

et al., 2020). This requires the package (or at least the part near the spool) to be made of

copper (or another normal metal) since a superconducting package will expel magnetic fields.

However, the use of normal metal incurs conductor losses which limit the lifetimes of the modes.

Applying a DC flux to a circuit inside a superconducting package without a galvanic con-
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nection to ground, and without limiting the coherences of the modes is therefore desirable. The

solution used here is a DC flux transformer, proposed in Mundhada (2019), and reminiscent

of earlier work by Zimmerman (1971). It consists of a closed on-chip superconducting loop

which passes near the SNAIL at one end and at the other passes underneath an aperture which

connects to a coil wound around a copper spool. The current in this coil produces a DC mag-

netic flux through the transformer loop, inducing a supercurrent, which in turn induces a DC

magnetic flux through the inductively coupled SNAIL loop. This circuit acts like a regular AC

transformer, but by using a superconductor, can do so at DC. The design still requires punc-

turing the superconducting enclosure but can do so while keeping the aperture (containing the

lossy magnet coil and its bobbin) far from the SNAIL and cavity modes. The high-Q modes

also maintain a low participation in the normal metal spool around which the wire is wound,

limiting the contribution from conductor loss.

Guided by the recommendations in Mundhada (2019), we can optimize the various de-

sign parameters. A primary consideration is to ensure sufficient flux through the SNAIL loop

ΦSNAIL > Φ0 for a coil current Icoil that is sufficiently low to avoid heating the mixing chamber

stage of the dilution refrigerator. With care taken to ensure good thermalization of the joint

between the superconducting wire used below 4K and the normal wire used above 4K, one can

achieve Icoil > 200 mA without any change in fridge temperature (see Appendix A of Chapman

et al. (2023) for details). Maximizing the delivered flux can then be broken down into two

components: maximizing the amount of flux threaded through the transformer loop for a given

coil current and, given a certain flux in the transformer loop, maximizing the amount of flux

threaded through the SNAIL loop.

The first component can be increased by maximizing the area of the loop beneath the coil

and the number of turns of the wire around the coil. We wind ∼ 500 turns, although a higher

number could be used provided a sufficiently large spool (and dedication of time). The second

component is set by the relative ratio of the transformer-SNAIL mutual inductance Mts and the



4.1. ENGINEERING A HIGH-Q PACKAGE FOR A CHARGE-DRIVEN SNAIL 75

Figure 4.2: SNAIL with flux transformer loop. (a) Schematic showing the SNAIL and its
flux transformer, with the yellow showing areas with aluminum and the olive indicating the
sapphire substrate on which it sits. (b) Optical image of a real device with the same layout
as the one used in Chapman et al. (2023), fabricated and imaged by Benjamin Chapman, in
the vicinity of the SNAIL junctions. The structures on the right are the SNAIL, with its single
small junction and three large shunting junctions. Thin leads extend vertically before widening
out and eventually connecting to large capacitor pads. The structure on the left is the flux
transformer, with a trace width of 10 µm in the narrow portion near the SNAIL and 100 µm for
the rest of the loop.

transformer self-inductance Lt, since

ΦSNAIL =MtsItransformer =Mts
Φtransformer

Lt
→ ΦSNAIL

Φtransformer
=
Mts

Lt
. (4.3)

The ideal strategy from this perspective is to have a wide trace width far from the SNAIL loop

(in order to suppress the overall loop inductance) and a narrow trace width near the SNAIL
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loop (in order to boost the mutual inductance). The lower limit on the SNAIL-end trace width

is set by requiring that the critical current through it is not exceeded, prompting a choice of

10 µm. Meanwhile, the coil-end trace width (chosen to be 100 µm) should not be so large that

the capacitive coupling between the arms of the transformer reduces the frequency of resonant

modes hosted by the transformer structure into the range of the high-Q cavity modes, the

highest-frequency of which is at 7 GHz in our system. We can further increase Mts by reducing

the distance between the transformer loop and the SNAIL loop. Balancing this effect with

the proximity effect of a nearby transformer loop interfering with the fabrication of the SNAIL

junctions, we opt for a gap of 20 µm. Lt can also be further reduced by minimizing the overall

length of the loop, however this is a weak effect.

We can simulate Icoil/ΦSNAIL using a magnetostatics solver (e.g. ANSYS Maxwell), breaking

the problem up into its two components. Calculating Φtransformer/Icoil can be done by treating

the magnet coil windings as a superconducting annulus containing a current equal to the current

per wire times the number of wire turns and then simulating the net magnetic flux through the

transformer loop. Calculating ΦSNAIL/Φtransformer (equivalently Mts/Lt) can instead be done by

fixing a current in the transformer loop and measuring the ratio of the magnetic flux through

the SNAIL loop to the flux through the transformer loop. For the nominal design, with 500 wire

turns on the coil, we find Φtransformer/Icoil = 139 Φ0/mA and ΦSNAIL/Φtransformer = 3.3× 10−5,

giving us Icoil/ΦSNAIL = 218 mA/Φ0. This allows us to reach half-flux well within our allowable

current range. However, simulations also show that Φtransformer/Icoil is (in particular) sensitive

to changes in the chip position relative to the bottom of the magnet coil. For this particular

device, the measured Icoil/ΦSNAIL = 39mA/Φ0 is explainable by a shift in the chip position by

1 mm.

Another important concern when it comes to the length of the flux transformer is ensuring

the common and differential electromagnetic modes of the transformer remain at a higher

frequency than high-Q modes in the system, encouraging a short transformer length. This

prevents these modes from hybridizing with the transformer (and inheriting its conductor loss),

and helps minimize their participation in multiphoton processes. This should be done while
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Figure 4.3: Electric field distributions of resonant modes in Flux transformer. Schematic
showing out-of-plane electric field magnitude of the lowest-frequency resonant modes of the flux
transformer, labeled ’differential’ and ’common’, respectively.

keeping the mode participations in the spool low. In practice, a lower limit on the length is

set by the smallest distance the magnet coil can be placed from the SNAIL, which sits directly

between the cavities, without intersecting the cavities. In our system, this is ∼ 8 mm, which

gives simulated resonant mode frequencies of 8.3 GHz (differential) and 9.3 GHz (common),

with their electric field distributions sketched in Fig. 4.3. The differential mode couples more

strongly to the SNAIL mode owing to the orientation of its electric field relative to the SNAIL

dipole.

A final important consideration is that of light-tightness. The entry of infrared photons into

the superconducting package contributes to both the generation of non-equilibrium quasiparticles

and their photon-assisted tunneling across Josephson junctions (Diamond et al., 2022), leading

to increased energy relaxation in the transmon and SNAIL modes (Catelani et al., 2011), and

so must be mitigated. Allowing the superconducting leads of the magnetic coil to leave the

package can introduce a small opening through which infrared radiation can enter. We manage

this by applying a layer of double-sided copper tape underneath the copper spool, between it

and the aperture into the coupler tunnel, which blocks light but admits magnetic fields. It is

beneficial to have the barrier be as thin as possible, to keep the coil as close to the chip as

possible without the barrier introducing conductor losses.
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The final design of the flux transformer next to the SNAIL coupler (both a zoomed-out

schematic, as well as a zoomed-in optical image) is shown in Fig. 4.2. This setup produces a

single flux quantum, Φ0, through the SNAIL loop for ∼ 40 mA of current, comfortably within the

limit for refrigerator heating, as verified by the periodicity of the mode frequencies in Ch. 4.2.

Importantly, the calibration between applied current and φext remains stable over cooldowns

lasting several months, even when regularly adjusting the flux bias point (although we have

been cautious to ramp the bias current at a low rate of 10−5 A/s to avoid trapping flux.) In

these experiments, a very small bias current I0 < 1 mA (the exact value varied per cooldown)

was required to thread exactly no flux through the SNAIL loop, indicating the presence of a

small residual magnetic field in the superconducting package when cooling down through Tc.

4.1.3 Pump delivery

To achieve as large as possible gbs, it is necessary to obtain |ξ| approaching |ξ|IP3 (Eq. 3.49),

but one wants to do so without Purcell limiting the high-Q modes (including the SNAIL and

transmon modes) due to their capacitive coupling to the input drive pin. Reducing this capacitive

coupling by retracting the coupling pin also reduces its coupling to the SNAIL mode at ωp,

thereby requiring more pump power to achieve the same |ξ|. A lower bound on this coupling

strength is therefore set by the point at which the required pump power dissipates enough heat

in the microwave attenuators at the base of the refrigerator to meaningfully heat the package

modes.

Balancing the desire to couple strongly at one frequency, while reducing the coupling at

the frequencies of one or many high-Q modes is also key to qubit readout, motivating the

introduction of the Purcell filter discussed in Ch. 4.1.1. Inspired by this, we introduce a ‘buffer

mode’ consisting of a λ/2 stripline resonator (seen in Fig. 4.1) with a resonance frequency near

the desired drive frequency for beamsplitting, ωbuffer ≈ ωb − ωa ≈ 4 GHz, located between the

input port and the SNAIL. This structure acts as a bandpass filter at ωb − ωa, allowing the

beamsplitter drive through while suppressing relaxation at the mode frequencies.

The design of the filter is meandered, with a hooked end so that the electric field excitation
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of the buffer mode aligns with the dipole moment of the SNAIL mode2. The meander is

located further from Alice’s cavity than Bob’s, as the smaller frequency detuning between the

buffer mode frequency and Alice’s resonant frequency makes it more sensitive to Purcell decay.

The SNAIL drive pin is not located at an antinode of the buffer mode (where it would achieve

maximum coupling to the SNAIL) but nearer a node of the cavity fields, to minimize the coupling

to these modes.

With these considerations accounted for, an HFSS eigenmode simulation of the system with

the input port as the only source of dissipation predicts that the Purcell limit on the cavity

lifetimes is in excess of 5.3 ms and 2.3 ms for Alice and Bob, respectively, above the expected

intrinsic lifetimes. This validates that for this choice of coupling pin length, the beamsplitter

drive port should not Purcell limit the cavity modes.

To predict what applied drive amplitude at room temperature is required to achieve a certain

value of the Hamiltonian parameter |ξ|, we can perform an HFSS driven modal simulation and

extract the impedance matrix Z of the system as a two-port network, with the port 1 being the

input port and port 2 being defined across the SNAIL junctions. The entries of Z can then be

related to the |ξ| via:

|ξ| =
∣∣∣∣ Z21

Z11 +RS

∣∣∣∣ √
PRSΦ

ZPF
c

ℏωpLs(ωp − ωc)
, (4.4)

where RS is the source impedance of the generator, P is the RMS power delivered to the input

port, Ls is the SNAIL inductance defined in the previous chapter, and ΦZPF
c is the zero point

phase fluctuations of the coupler mode. This last parameter is not provided to us directly by

HFSS, but can be obtained with further processing, for example with pyEPR (Minev et al.,

2021). A derivation of this formula is given in Appendix B.

Using a value P = 100 pW at the input port of the package (a value within the limits

imposed by the ∼ 25dB attenuation at base - see Fig. 4.5), we use Eq. 4.4 to predict |ξ| as a

function of ωp when the SNAIL flux is at φext/2π = 0.35 (see Fig. 4.4). The feature at ∼ 4

2The SNAIL itself is aligned perpendicular to the length of the chip to align with the cavity mode electric field.
By aligning the SNAIL dipole with a slight angle (as in Grimm et al. (2020)) the buffer mode could be designed
without a meander, but at the cost of requiring larger SNAIL pads or further insertion into the cavities to achieve
the same ga and gb.
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Alice BobSNAILBuffer(a) (b)

Figure 4.4: Predicted and measured drive amplitude |ξ|. (a) Predicted |ξ| from Eq. 4.4
(green) as a function of pump frquency, with resonances corresponding to system modes labeled.
The SNAIL frequency tunes from 4.4 GHz to 6 GHz with external flux. The dashed grey box
around the beamsplitter drive frequency is shown in (b). Blue dots show measured |ξ| values
extracted from Stark shift and estimation of cold attenuation in fridge. Data lines up with
predicted values when shifted in 14.3 MHz in frequency and by a factor of 2.84 in power (blue

dashed line). Vertical dotted gray line shows resonant beamsplitter frequency (ω
(0)
b −ω

(0)
a )/2π.

Figure modified with permission from Chapman et al. (2023).

GHz is the buffer mode resonance, which permits |ξ| > 1 over a window of 40 MHz near the

desired pump frequency. In Ch. 4.3, we will discuss a method to extract |ξ| experimentally from

the Stark shift of the coupler frequency. Using this technique, we can obtain measured values

(blue dots) which, up to a frequency shift of 14.3 MHz and a factor of 2.84 in power, match

the predicted ones. These shifts are likely to due to our uncertainty in the attenuation between

our room-temperature setup and the package when cold, and the precise location of the coupler

chip (relative to the pin / cavities) after mounting.

The curve also highlights another advantage over relying on driving close to the SNAIL

resonance frequency, which is that the frequency of the buffer mode resonance is independent

of flux, allowing us to drive the SNAIL over the entire range of external flux values.
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4.1.4 Wiring and mounting

The wiring diagram for the system is shown in Fig. 4.5. The Alice and Bob output lines are

equipped with quantum-limited amplifiers – a JAMPA (Sivak et al., 2020) and SPA (Frattini

et al., 2018), respectively – enabling single-shot readout of the transmon state. Importantly, the

local oscillator (LO) for the beamsplitter drive is synthesized by mixing together the LO for the

Alice and Bob cavity drives using an image-reject mixer. Furthermore, the frequency at which

the beamsplitter drive is single-sideband-modulated is set equal to the difference between those

for Alice and Bob, ω
(bs)
SSB = ω

(b)
SSB − ω

(a)
SSB. These conditions ensure that states originating in one

cavity acquire the correct phase when swapped into the other, even if the phase of one cavity’s

microwave generator drifts relative to the other. In order to nonetheless minimize this drift, we

source the LOs from two channels on the same SignalCore SC5510A generator. Following the

mixer, the beamsplitter line is heavily bandpass filtered around ωb−ωa to remove intermodulation

products which, at either the frequency of a system mode or an unwanted mixing process in the

coupler, could degrade the beamsplitter performance.

The package is mounted inside a light-tight Cryoperm magnetic shield at the mixing chamber

stage of a Bluefors XLD400sl dilution refrigerator, with the DC and microwave lines entering

the shield via light-tight feedthroughs. The package itself is machined with large #10 thru

holes, allowing us to strongly clamp it to a gold-plated copper bracket, to maximize the thermal

conductance at this interface and ensure the package is well-thermalized to the mixing chamber

of the fridge (Richardson and Smith, 1988). Furthermore, to ensure that the input microwave

lines do not contribute to the temperatures of the system modes, the attenuators and infrared

filters at the mixing chamber stage (see Fig. 4.5) are clamped to purpose-built copper brackets

(inspired by those in Krinner et al. (2019)). This keeps these dissipative elements as close as

possible to the mixing-chamber temperature to minimize the Johnson-Nyquist noise they inject

into the lines. It also helps (particularly for the strong parametric drive line) to transfer heat

away from these elements when strong drives are applied. Finally, the package is wrapped in a

layer each of Eccosorb HR and Eccosorb LS-30 foam, which absorbs stray infrared photons in

the magnetic shield that may generate quasiparticles in the superconducting devices.
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Figure 4.5: Wiring diagram. Experimental package is shown in gray, containing Alice (orange)
and Bob (blue) cavities, transmon ancilla qubits, readout resonators (green), as well as a SNAIL
coupler, a buffer mode (purple) and a flux transformer (pink). Purcell filters are omitted from
the diagram for clarity. Figure reproduced with permission from Chapman et al. (2023).
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4.1.5 System parameters

Integrating a flux transformer and buffer mode has allowed us to achieve stable DC flux bias

with reasonable currents and a strong drive without heating the experimental setup. However,

before looking at the SNAIL properties or confirming that we can generate the beamsplitter

interaction, it is necessary to briefly discuss the coherence and thermal populations, obtained

using standard methods (Geerlings et al., 2013; Vlastakis, 2015). These values are shown in

Table 4.1.

The oscillators demonstrate the necessary large error bias Tϕ ≫ T1, despite the introduction

of the control hardware. However, while Alice’s relaxation time is reasonable, Bob’s is lower

than typical for high-purity Al cavities. The bare lifetimes of the cavities, measured to be 2.3

ms and 460 µs, respectively, before the chips were inserted, do not explain the discrepancy. An

obvious question to ask is whether the new features are responsible. However, HFSS simulations

including Purcell loss from all the system ports, as well as conductor loss due to participation

in the magnet coil, suggest a limit on T1 no lower than 2.66 ms and 810 µs. Furthermore, as

we shall see in Ch. 4.2.3, the SNAIL mode itself, which is significantly more strongly coupled

to both the buffer mode and the flux transformer has coherences in line with typical tunable

transmons (Acharya et al., 2024).

One clue to the lower-than-expected coherence is that large variations in cavity T1 are

observed when seemingly-unrelated changes are made to the experimental package from one

cooldown to the next, such as changes to readout coupling pin lengths or the re-insertion of

a chip. For example a modest increase in the length of Bob’s readout pin length to obtain a

larger κr and so a faster readout duration coincided with a decrease in Alice’s T1 to 347± 2 µs.

Another cooldown in which all control chips were inserted saw Bob’s cavity T1 at 265± 27 µs.

The difficulty of predicting this behavior points to unexpected package modes as a possible

culprit.

While understanding the cause of this discrepancy is an important matter for future work,

we will see that it does not prevent us from improving on previous transmon-based beamsplitter

implementations by over an order of magnitude.
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Alice Bob

Transmon e −→ g relaxation time T1q 127.2± 1.9 µs 57.1± 0.6 µs

Transmon T2 T2q 114.4± 2.9 µs 56.8± 1.5 µs

Transmon dephasing time Tϕq 208± 10 µs 113± 6 µs

Oscillator relaxation time T1c 482± 16 µs 91± 4 µs

Oscillator dephasing time Tϕc 2010± 220 µs 840± 200 µs

Transmon thermal |e⟩ population Pe 0.70± 0.14 % 1.02± 0.20 %

Cavity thermal occupation nthermal 0.96± 0.19 % 0.11± 0.02 %

Table 4.1: Measured system coherences and thermal populations. Values as in Chapman
et al. (2023). This table is reproduced in Appendix A, along with the system parameters for all
other experiments in this thesis.

4.2 Characterizing the static Hamiltonian

Before turning on the beamsplitter, the dispersive cavity control and the flux tunability of the

SNAIL allows us to probe the Hamiltonian’s idling properties. In Chapter 3, we made predictions

based on the SNAIL’s nonlinear parameters gn. Here, we provide a way to extract the gn from

just the (linear) frequency of the SNAIL mode, and compare the resulting estimates of the

nonlinear properties to experiment.

4.2.1 Extracting gn from the SNAIL frequency

Despite the lack of readout resonator coupled to the SNAIL, we are able to probe its frequency

using the ancilla transmons. In principle, we can use a three-tone-spectroscopy sequence (shown

in Fig. 4.6(b)) consisting of three consecutive microwave pulses: one on the SNAIL, one long

(i.e. narrow-bandwidth) displacement pulse on Bob’s cavity at ωb, and finally a long π-pulse on

Bob’s ancilla at ωbt, followed by a readout of the ancilla state. If the first spectroscopy tone

is resonant with the SNAIL, it will be excited to |e⟩. This shifts Bob’s cavity frequency by χbc

so that the second tone is off-resonant, leaving the cavity in |0⟩. The final pulse on the ancilla

is therefore resonant, exciting it to |e⟩, before its state is then read out. Following the same

procedure when the initial spectroscopy tone is off-resonant from the SNAIL frequency, instead

leaves the ancilla in |g⟩. Sweeping the frequency of the spectroscopy tone and monitoring the

ancilla state therefore allows us to determine the SNAIL frequency.
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This procedure suffers from a ‘dead-spot’ when |χbc| < 1/T2,c ≈ 2π × 50 kHz. However,

for typical parameters, this excludes a small fraction of external flux values. Furthermore, if

Alice’s cavity is also equipped with an ancilla, it may also be used and since, generally, χac and

χbc vanish at different points, it will be typically be possible to cover the full range using both

ancillas.

In our experiment, the small residual direct dispersive coupling χtac between the SNAIL

and Alice’s transmon (see Fig. 4.6(a)) is in fact sufficient to perform the two-tone spectroscopy

sequence shown in Fig. 4.6(c), removing the need for a cavity pulse. Since χtac is predominantly

derived from the nonlinearity of the ancilla transmon, there is no ‘dead-spot’ as we sweep φext.

While practically convenient in this case, one generally wants to avoid a large spurious coupling

as it may compromise the photon-number selective cavity readout, mistaking a thermal photon

in the SNAIL for one in the cavity.

Using the two-tone spectroscopy method, we can measure the SNAIL frequency from φext =

0 to φext = π, as shown in Fig. 4.6(d). The expression for ωc(φext) in Eq. 3.46 can be

used to fit this curve and extract the SNAIL circuit parameters. However, one constraint

must be applied to find a unique solution. Given that N and M are known, the coupler

frequency (barring the small Lamb shift just for the sake of this explanation) can be written as

ℏωc(φext) =
√
8EJECc̃2(p, α;φext), where p and α determine the shape of the curve as φext

is varied, and EJ and EC are scale factors. Changing EJ → βEJ, EL → βEL, EC → EC/β

for some β therefore gives exactly the same frequency dependence with flux. The necessary

constraint is provided by using the measured room-temperature resistance RT
N of the SNAIL

array to fix its low-temperature kinetic inductance. This can be done using a combination of the

Ambegaokar-Baratoff relation (Ambegaokar and Baratoff, 1963) between the low-temperature

kinetic inductance, LK, and the low-temperature normal state resistance, R0
N :

LK =
ℏ
π∆

R0
N , (4.5)

where ∆ is the superconducting gap of thin-film aluminum, and the relation between the room-
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temperature and low-temperature resistance from Gloos et al. (2000). This gives a combined

relation for our devices given by

LK = N × LJ

α+ 1/M
≈ 1.27× 10−12RT

N . (4.6)

Given N = 1, M = 3 and R0
N = 2.98 kΩ, the fit to Eq. 3.46 (shown as a solid line in

Fig. 4.6(d)) yields EJ/h = 90.0 ± 0.3 GHz, EL/h = 64 ± 2 GHz, EC/h = 177 ± 2 MHz,

and α = 0.147± 0.001. From these circuit parameters, we may extract the predicted nonlinear

Hamiltonian parameters, gn, from Eq. 3.43, as shown in Fig. 4.6(e).

4.2.2 Measuring the coupler Kerr nonlinearity

We may test the validity of the fit by comparing the predicted expression for the Kerr nonlinearity

of the coupler, Kc, from Eq. 3.29 to experiment. Two methods can be used to do so.

Once the coupler frequency ωc and pulse amplitude required to perform a |g⟩ → |e⟩ π-

pulse are known, we can modify the 2-tone (or 3-tone) spectroscopy sequence. We do so by

inserting a SNAIL |g⟩ → |e⟩ π-pulse before and after the spectroscopy pulse. If the spectroscopy

tone is resonant with the |e⟩ → |f⟩ transition frequency ω
|e⟩→|f⟩
c , the SNAIL is left in the |f⟩

state, which we can map onto the transmon state. Meanwhile, if the spectroscopy tone is off-

resonant, the second π-pulse returns the SNAIL to |g⟩. We can then find the nonlinearity via

Kc = ω
|e⟩→|f⟩
c − ωc. One consideration with this method is that the duration of the SNAIL π-

pulses must remain much smaller than Kc in order to perform a π-pulse and not a displacement.

In the close vicinity of the Kerr-free point, another, more technically-straightforward ap-

proach is to modify the 2-tone (or 3-tone) spectroscopy sequence so that both the frequency

and amplitude of the pulse are varied. When Kc is small, we can see not only the oscilla-

tions associated with the single-photon |g⟩ → |e⟩ transition, but also those associated with the

two-photon |g⟩ → |f⟩ transition at ω
|g⟩→|f⟩
c /2 and more generally, the n-photon |0⟩ → |n⟩

transitions). For small n, the spacing between these transitions corresponds to K/2, as is nicely

shown for an arrayed SNAIL (different to the one used in the following experiments) for which
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Figure 4.6: Extracting gn from SNAIL spectroscopy. (a) Circuit diagram of an ancilla trans-
mon (black), cavity (orange) and SNAIL (green), showing their mutual capacitances, including a
weak direct coupling between the SNAIL and ancilla. These result in dispersive shifts χ between
each pair of modes. (b) 3-tone spectroscopy sequence using frequency-selective microwave
pulses on the SNAIL, cavity and ancilla, in turn, before an ancilla readout. (c) Alternative
2-tone spectroscopy sequence, which leverages the direct SNAIL-ancilla coupling χtac, using
frequency-selective pulses on the SNAIL and ancilla only. (d) Measured SNAIL frequency as
a function of external flux φext using 2-tone method (circles) and fit to Eq. 3.46 (solid line).
The small region of missing data is where the SNAIL is resonant with Alice’s ancilla and the
two modes hybridize. (e) Extracted nonlinear parameters gn from fit, as well as estimated Kerr
nonlinearity (solid lines). Measured Kerr nonlinearity shown in circles. Subfigures (d) and (e)
modified with permission from Chapman et al. (2023).
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Figure 4.7: Multiphoton transitions in low-Kerr SNAIL. Spectroscopy of an arrayed SNAIL
(different to the one used in the following experiments) while sweeping the drive amplitude.
Besides the |g⟩ → |e⟩ (f0→1) transition, one can see n-photon |0⟩ → |n⟩ transitions at f0→n/n,
each separated by Kc/2, which for this device is KC/2π = −1.0 MHz. The data shown were
taken together with Benjamin Chapman.

many of these transitions can be observed at once in Fig. 4.7. This approach has previously

been used to characterize the Kerr nonlinearity of cavity modes in the regime where the Kerr

nonlinearity is too strong to use the method in Ch. 4.2.5 (Vlastakis, 2015).

The results are shown in Fig. 4.6(e), showing reasonable agreement with the estimated value,

lending credibility to both the perturbative expression in Eq. 3.29 and the extracted gn. Based

on the extracted values, one can see a clear deviation from 12g4, the perturbative expression

when considering only the 4th-order nonlinearity.

4.2.3 Measuring SNAIL coherences

Armed with both a means of exciting and measuring the SNAIL, we can apply standard trans-

mon coherence measurements to the coupler mode. One caveat is that as the anharmonicity

approaches zero, the duration of the excitation pulse must increase to ensure that the SNAIL
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stays within its {|g⟩ , |e⟩} manifold. This allows us to extract the T1, Tϕ (Ramsey) and TϕE

(echo), shown in Fig. 4.8(a).

The measured coherences are state-of-the-art for SNAILs and are on par with typical coher-

ences for tunable transmons in the field (Acharya et al., 2024), with a T1 that is relatively steady

across flux between 50 and 100 µs. The T2 is around 3 µs, due to 1/f flux noise in the SNAIL

loop. The dephasing rate from flux noise is expected to scale linearly with the gradient of ωc

with respect to external flux (shown in Fig. 4.8(b)) and indeed it appears to follow this trend,

with an increase in T2 at the half-flux point (φext = π). Furthermore, the T2E is substantially

higher, as one expects for 1/f noise.

(a) (b)

Figure 4.8: SNAIL coupler coherences. (a) SNAIL coupler T1, Tϕ and TϕE times, showing
little variation with φext of T1 and an increase in Tϕ and TϕE at the half-flux (φext = π) sweet-
spot. (b) Gradient of SNAIL frequency ωc with external magnetic flux Φext. One expects SNAIL
dephasing due to flux noise to be proportional to this value. Figure modified with permission
from Chapman et al. (2023).

4.2.4 Extracting the linear couplings ga and gb

So far we have just characterized the properties of the coupler itself but we would also like to

characterize the self-Kerr and cross-Kerr terms, in particular χab, which determines our ‘off’-

performance. These properties depend on the participations pa and pb, or equivalently given

that the detunings ∆a(φext) and ∆b(φext) are known, the linear couplings ga and gb.
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(a) (b)

Figure 4.9: Fitting linear coupling strengths. Parametric plot of Alice (a) and Bob (b) cavity
frequency as a function of the measured coupler frequency. Lines show fits to Eqs. 4.7 and 4.8
from which we extract linear coupling strengths, ga/2π = 75.6±0.2 MHz and gb/2π = 134.9±
0.1 MHz, and bare mode frequencies, ωA/2π = 2976.018(16) MHz and ωB/2π = 6915.945(17)
MHz. Figure modified with permission from Chapman et al. (2023).

These can be extracted by looking at the frequency shift of the oscillators as φext is varied.

We can approximate the inherited frequency shifts (assuming a fixed ga and gb, as well as the

rotating-wave approximation) using Eqs. 3.8-3.10. Since the frequency shift due to the dressing

is much smaller than the mode detuning, we can approximate the measured oscillator frequencies

as a parametric function of the measured couple frequency as:

ωa(ωc) ≈ ωA +
g2a

ωA − ωc
, (4.7)

ωb(ωc) ≈ ωB +
g2b

ωB − ωc
. (4.8)

These expressions can be used to fit the measured frequencies while varying φext in Fig. 4.9

to extract the fixed parameters – the bare mode frequencies, ωA/2π = 2976.018(16) MHz

and ωB/2π = 6915.945(17) MHz, and the linear couplings, ga/2π = 75.6 ± 0.2 MHz and

gb/2π = 134.9± 0.1 MHz. We find ga < gb despite the SNAIL chip being further inserted into

the Alice cavity, due to its lower frequency, highlighting the challenge of coupling strongly to a

low frequency mode (Eq. 4.2).
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4.2.5 Characterizing the self- and cross-Kerrs

The inherited self- and cross-Kerr terms in the oscillators tend to be weak and so to obtain a

more sensitive measurement, we can populate the cavities with a large, calibrated number of

photons to amplify their effect.

The self-Kerr of the oscillators (shown in Fig. 4.10(a)) are extracted using an interferometric

method (Chou, 2018), applying a pair of detuned displacements (with detuning δ and amplitude

αd) separated by a variable delay t and monitoring the final vacuum state population P0(t).

During the delay, the displaced state will rotate in phase space at a frequency that depends

weakly on the mean photon number |αd|2, acquiring a total phase space rotation ϕK = (δ +

K/2|αd|2)t. When ϕK = (2n + 1)π where n is an integer, the second displacement (which

has the same phase as the first) returns the center of the coherent state to the origin (vacuum

state). These oscillations can be fit to

P0(t) = A0 exp
[
−2|αd|2 (1 + cosϕK)

]
+ C (4.9)

where A0 and C capture imperfections in the cavity population measurement, to extract K.

This expression neglects the distortion caused by different photon number components rotating

at different rates, however provided that the relative rotation accumulated across the spread of

photon numbers is small (|αd|Kt≪ 1), this effect can be ignored.

The cavity-coupler dispersive shifts χac and χbc (shown in Fig. 4.10(b)) are instead obtained

via a spectroscopic method – prepending the 2-tone SNAIL spectroscopy sequence with a cali-

brated displacement αd on the oscillator. Dividing the shift in the fitted SNAIL frequency from

spectroscopy by the oscillator photon number |αd|2 gives the desired dispersive shift.

The cross-Kerr χab sets the on-off ratio and so we would like to measure it to as low as

value as possible. Both spectroscopic and interferometric methods can be used, both of which

involve populating one cavity with an increasingly large, calibrated number of photons |αd|2 and

measuring the frequency shift of the other. The interferometric method (Fig. 4.11(a)) determines

this frequency using the same Ramsey sequence used to obtain the self-Kerr, but with a fixed
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(a) (b) (c)

Figure 4.10: Extracted nonlinear multi-mode Hamiltonian terms. (a) Measured oscillator
self-Kerr in Alice (orange) and Bob (blue) as external flux through the SNAIL loop is varied.
Solid lines show prediction from Eq. 3.32. (b) Measured coupler-oscillator dispersive shift on
Alice (orange) and Bob (blue). Solid lines show prediction from Eq. 3.35. (c) Measured cavity-
cavity cross-Kerr, and prediction from Eq. 3.33 (solid line). Figure modified with permission
from Chapman et al. (2023).

unit displacement, while the spectroscopic method (Fig. 4.11(b)) uses cavity spectroscopy. The

interferometric approach can also be fit to Eq. 4.9 but with ϕK replaced by ϕχab
= (δ +

χab|αd|2)t. The results of the spectroscopic and interferometric methods, measuring with each

cavity, are shown to have good agreement with each other (Fig. 4.11(e)). The model in Eq. 4.9

ignores the effect of cavity decay, however the fact that the measurements taken with Alice

and with Bob agree, despite the differences in their photon loss rates, suggests that this is an

acceptable assumption to make. As the examples in Fig. 4.11(c-d) show, there exists a flux

point where χab is measured to vanish (up to the ∼ 10 Hz resolution of our measurement).

This confirms a key advantage of a SNAIL tunable coupler – that the ZZ interaction between

the two oscillators can be made to turned off, even when the stored photon numbers are very

large.

For all of these quantities, the perturbative approximations using the gn from the fitted

SNAIL spectrum provide a good prediction, capturing, for example, the fact that in this device,

the inherited negative self-Kerr from the transmon ancillas overcomes the positive contribution

from the SNAIL coupler at φext = π, such that neitherKa orKb pass through zero (Fig. 4.10(a)).
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Figure 4.11: Two methods for extracting χab. (a-b) Methods for determining χab by popu-
lating one cavity with |αd|2 photons and measuring the frequency of the other. The frequency
measurement can be performed with an interferometric Ramsey-like method (a), or by perform-
ing spectroscopy (b). The results of these measurements at χab ≈ 0 for the two methods are
shown in in (c) and (d). (e) The four different meaurement results using the interferometric
(circles) and spectroscopic (squares) methods, while measuring Alice (orange) and Bob (blue)
mode frequency. These methods agree well with one another, and capture a resonance near
φext/2π ≈ 0.4. Figure reproduced with permission from Chapman et al. (2023).

It should be emphasized that by slightly reducing the anharmonicity of the transmon ancilla,

or its coupling to the cavity, both quantities could be made to vanish. We can also see the

limitations of the perturbative approach by noting the resonance in χab at φext/2π ≈ 0.40.

Capturing these beyond-perturbative effects is the subject of future work.

4.3 Characterizing the beamsplitter performance

4.3.1 Characterizing beamsplitter speed

Having established that we are able to turn off the static interaction between the cavities, we

must now verify that the SNAIL coupler mediates a fast beamsplitter between them when driven.

The performance in the single-photon manifold of the two cavities can be characterized by ini-
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tializing a single photon in Alice, |ψ⟩AB = |1⟩A |0⟩B, applying a fixed-amplitude microwave

drive to the SNAIL whose duration t and frequency ω is varied, and then simultaneously mea-

suring whether each cavity contains 0 photons. Provided there is no heating, we can infer

from a negative measurement outcome that n = 1. At flux points where g3 ̸= 0, plotting

the probability of finding a photon in Bob, Pb = P01 reveals a chevron pattern centered on

ω∆=0 =
(
ω0
b − ω0

a

)
+
(
∆

(b)
Stark −∆

(a)
Stark

)
, where ω0

a and ω0
b denote the oscillator frequencies

when the beamsplitter drive is off:

P01/10 = A

[
cos2

(
Ωt

2
+ ϕ

)
+

(
ω − ω∆=0

Ω

)2

sin2
(
Ωt

2
+ ϕ

)]
+ c, (4.10)

where the detuned oscillation rate is given by

Ω =

√
g2bs + (ω − ω∆=0)

2, (4.11)

ϕ represents the phase offset acquired while the beamsplitter drive is turned up to its maximum

amplitude, and A and c capture imperfections in the photon-number selective measurement.

Fig. 4.12(a) shows an example of such data overlaid with its fit to Eq. 4.10, from which we can

extract both gbs and ω∆=0
3.

To compare the resulting gbs to the expression in Eq. 3.31, we must calibrate the normalized

drive amplitude per unit applied power, |ξ|/
√
Papplied, which we obtain by measuring the Stark

shift of the coupler frequency ∆
(c)
Stark. At low drive powers, ∆

(c)
Stark scales linearly with Papplied,

and so we can fit to find their ratio (Fig. 4.12(c) shows this calibration for φext/2π = 0.35).

The expressions for the Stark shift and the coupler’s Kerr nonlinearity are closely related (see

Eqs. 3.29 and 3.30), and so we can approximate |ξ| by

|ξ|√
Papplied

≈

√
∆

(c)
Stark/Papplied

2Kc
. (4.12)

3While the difference in the oscillator Starks shifts is small, and can be made to vanish at certain values of
φext, it is nonetheless important to track if one wants to perform high-fidelity beamsplitter operations.
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While this approximation is imperfect very close to the Kerr-free point, the deviation is less than

3% for φext/2π < 0.36.

(a) (c)

(b) (d)

Pb

Figure 4.12: Extracting gbs at short times. (a) Probability of measuring a photon in Bob,
pb, after initializing in |ψ⟩AB = |0⟩A |1⟩B and applying a beamsplitter drive for a variable
time and frequency ω. Overlaid contours show a fit to Eq. 4.10 to capture gbs and ω∆=0.
(b) Fitted chevron center frequency (relative to resonance condition at |ξ| → 0) as |ξ| is
increased. (c) Calibration of normalized amplitude ξ as a function of applied power Papplied

by measuring coupler Stark shift, ∆Stark. Right axis shows Stark shift in dimensionless units.
(d) Fitted beamsplitter rate gbs versus normalized drive amplitude |ξ|. Right axis shows the
on-off ratio, comparing this to the always-on χab interaction between the oscillators. Dashed
line shows lowest-order linear RWA approximation to gbs from Eq. 3.31, while solid line includes
higher-order RWA corrections due to g5 and higher (Eq. 3.48). Subfigure (d) reproduced with
permission from Chapman et al. (2023).

Fig. 4.12(d) shows the extracted gbs as a function of |ξ| at φext/2π = 0.35, showing a linear

increase at low |ξ|, in accordance with Eq. 3.31, and a deviation at higher amplitudes which will

be discussed in more detail in Ch. 4.3.4. The maximum gbs > 2π × 2 MHz ≫ |χab|, even away

from the χab-free point, strongly satisfying the requirement for a high-on-off-ratio coupler. This
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value is also well in excess of the value achievable with a transmon coupler, corresponding to a

time per 50/50 beamsplitter operation tbs < 125 ns. Most importantly, this puts us in a regime

where gbs > |χ|, unlocking new multimode non-Gaussian operations, as we will explore in the

remaining chapters of this thesis. However, in order for this increased speed to be valuable,

we must also confirm that the coherence of the oscillators is not significantly degraded by the

beamsplitter drive.

4.3.2 Characterizing driven decoherence

A qualitative inspection of the population oscillations at short times (see Fig. 4.13) indicates that

some imperfections are present. As the normalized drive amplitude is increased, other features

besides the expected ‘chevrons’ appear, especially once gbs starts to decrease with |ξ|. This

includes a high-population streak at a drive frequency of approximately ω = ω0
b − ω0

a + 2π × 1

MHz that becomes noticeable at increasingly short drive times, and a low-population region at

drive frequencies below resonance that becomes problematic over an increasingly wide range

of frequencies. (We should note that effects that populate or de-populate the measurement

transmon or readout resonator may also cause distortions in the observed data.)

(ω-(ωb-ωa)) / 2π [MHz]

Ti
m

e 
[n

s]

|ξ|=1.46 |ξ|=1.76 |ξ|=2.28 |ξ|=2.52 |ξ|=2.63 Pb

Figure 4.13: Beamsplitter ‘chevrons’ at large drive amplitudes. A selection of individual
datasets used to extract gbs in Fig. 4.12(d), showing oscillations of the population in the Bob
oscillator when driving the coupler at a frequency ω for a variable duration, having initializing the
oscillators in |1⟩A |0⟩B. The middle dataset at |ξ| = 2.28 is the one for which gbs is maximized.

To more quantitatively characterize decoherence induced by the beamsplitter, we can look
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at resonant (ωp = ω∆=0) oscillations in the single-photon manifold over much longer timescales,

where the expected behavior is

P01/10 =
1

2
e−t/τ

(
1± e−t/τϕ cos (gbst+ ϕ)

)
+O

(
κa − κb
gbs

)
, (4.13)

where τ captures the driven average relaxation rate of the oscillators, and τϕ captures the

driven dephasing rate. From these values, we can obtain an overall timescale for errors on a

single-photon state of τbs = 1/τ + 1/2τϕ (Lu et al., 2023).

To reduce the aquisition time required to capture both the fine individual oscillations and

the timescale for decoherence, we acquire the data in 41 short windows, each containing 21

points in a duration twindow ≈ 6tbs, spread over 3τbs. A snapshot of these data are shown for

φext/2π = 0.32 and |ξ| = 1.83 in Fig. 4.14(a), showcasing that the oscillations retain coherence

even after 1000tbs. Zooming out to the full dataset in Fig. 4.14(b), we cannot make out

individual oscillations on the timescale of decoherence, hence the desire to take data in short

windows. Within each of these windows, twindow ≪ τbs, we can capture the mean and amplitude

of the oscillations, which are plotted in Fig. 4.14(c, d), respectively. From the exponential fits

to the mean, which decays on a timescale τ , and the amplitude, which decays on a timescale

(1/τ + 1/τϕ)
−1, we can extract both τ and τϕ, across a range of φext. Since this can be

performed on both the P10 and P01 data separately, their agreement to within error bar provides

a sanity check4.

The extracted relaxation rate (Fig. 4.14(e)) decreases very little, barely deviating from the

unpumped average oscillator T1 (given by the solid horizontal line), even as gbs/2π approaches

2 MHz. The driven dephasing times, while visibly deviating from the unpumped value, remain

relatively constant as gbs is increased, and much longer than the relaxation time, τϕ ≫ τ , with

single-photon loss still the dominant error.

4Since the SPAM errors may differ on each oscillator, the P01 and P10 data are normalized according to the
measured SPAM error. The full description of this method, devised by Jacob Curtis, may be found in App. G of
Chapman et al. (2023)
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Figure 4.14: Extracting τbs at long times. (a-b) Probability of measuring the state |0⟩A |1⟩B
(blue) or |1⟩A |0⟩B (orange) after initializing in|0⟩A |1⟩B and applying a resonant beamsplitter
for time t. Solid blue and orange lines show fits to Eq. while black lines shows the fitted
envelope of the oscillations. Zoomed-in oscillations in (a) highlight that coherence is preserved,
even after t = 1000tbs, where tbs is the timescale for a 50:50 beamsplitter. Data is acquired
in separated windows of finely-sampled points. (c-d) The mean (c) and amplitude (d) of fitted
oscillations within each window, extracted from the P01 (blue) and P10 (orange) data. Dashed
lines show exponential fits. (e-f) The extracted driven relaxation timescale τ (e) and driven
dephasing timescale τϕ (f) as a function of normalized drive amplitude, at φext/2π = 0.324.
Figures modified with permission from Chapman et al. (2023).

4.3.3 Figures of merit

These measurements provide the two figures of merit, τbs/tbs and gbs/χab, which are plotted

across a range of external fluxes φext in Fig. 4.15. The coherence of the beamsplitter oscillations

remains high across a wide range of φext, even when g4 ̸= 0. This highlights the benefit of a
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Figure 4.15: Beamsplitter figures of merit. Left axis: driven coherence time τbs compared
to the time for one 50/50 beamsplitter, maximized over drive amplitudes |ξ| across a range of
external fluxes φext. Right axis: on-off ratio gbs/χab across a range of φext, at the value of |ξ|
that maximizes τbs/tbs. Figure modified with permission from Chapman et al. (2023).

three-wave-mixing approach where the Hamiltonian parameter governing the desired interaction

(g3) can be made large relative to the one governing the undesired interactions (g4). Meanwhile,

the on-off ratio exceeds 103 across the range, and can be measured in excess of 105, limited by

the sensitivity of the measurement. The plot indicates that different operating points may be

desirable for different applications. For applications that are very sensitive to Kerr terms, such

as for GKP qubits (Gottesman et al., 2001), the χab-free point may be optimal. Meanwhile,

for applications that are only minimally sensitive to this, such as in a dual-rail qubit (Teoh

et al., 2023) where χab is only (weakly) felt during two-qubit gates, the point that optimizes

beamsplitter coherence is likely better.

4.3.4 Interpreting the turnaround in gbs

We saw that in Fig. 4.14, coherence times did not continue to decrease, even as gbs/2π ap-

proached 2 MHz. This indicates that the ultimate limitation on τbs/tbs may actually set by

the turnaround in gbs. In Ch. 3.4, we discussed the fact that higher-order nonlinearities, in
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particular g5, can contribute negatively to gbs at large |ξ|. However, the predicted gbs including

these corrections5 from Eq. 3.47, plotted as the solid line in Fig. 4.12(d) does not capture the

sharpness of the turnaround, predicting a slightly higher maximum gbs. (Using the extracted

values for g3 and g5, the ‘IP3’ point from Eq. 3.49, at which the g5 contribution to gbs becomes

equal to the g3 contribution, is expected to come at |ξ|IP3 = 3.2 at this flux point.)

The likely culprit in this case is, as in the case of the transmon coupler, a 4th-order mul-

tiphoton process. As |ξ| is increased, the coupler frequency Stark shifts downwards until

2ωp = ωa + (ω0
c + ∆

(c)
Stark), leading to a ξ2â†ĉ† process. Given that ωp = ωb − ωa, there

is simultaneously also a 5-wave-mixing process, ξ3b̂†ĉ†. Based on our predictions for gn and

our expression for ∆
(c)
Stark, we can predict that these processes become resonant at |ξ| = 2.4,

around the value at which the turnaround is seen. Understanding exactly how these (and other

resonances) affect the beamsplitter interaction is the subject of ongoing work (Baskov, 2024).

The likely impact of this transition on the beamsplitter performance points to more careful

consideration of the frequency stack. An effort to account for all possible 4-wave-mixing pro-

cesses is done in Zhou (2024), but a systematic approach along the lines of Xiao et al. (2023)

may more easily allow us to capture higher-order effects. Nonetheless, even with these possible

multiphoton transitions, |ξ| does approach close to |ξ|IP3, with limited room to keep driving

harder. Looking at Eq. 3.50, we can see that increasing gbs beyond this point (for a fixed

coupler frequency ωc) would require increases in p, pa, pb or |c3/c2| (perhaps by increasing the

junction asymmetry α closer to 1/M). While the first could be safely achieved by reducing the

geometric inductance of the coupler leads (in our device, p ≈ 0.75 at the Kerr-free point), the

other changes would require greater care to avoid the cavities inheriting decoherence from the

coupler.

5Higher-order nonlnearities gn>5 are numerically extracted from NINA (Nonlinear Inductive Network Analyzer)
tool (Miano et al., 2023), rather than from analytical expressions.



Chapter 5

Ancilla dependent (and independent)

parametric control

Now that we have access to a strong beamsplitter interaction between high-Q oscillators which

preserves the coherence and linearity of these modes, it is time to revisit combined operations

making use of both the beamsplitter and dispersive Hamiltonians. In the previous chapter, we

engineered gbs ≫ 1/τbs, enabling high-fidelity multi-mode Gaussian operations. In the process,

another important threshold was reached, namely gbs ≈ χ≫ 1/T ancilla
2 - a regime in which high-

fidelity multi-mode non-Gaussian operations become possible. Previous combined beamsplitter-

dispersive operations (see Sec. 2.4) required that the nonlinear ancilla remained in |g⟩ when

the beamsplitter drive was applied, to minimize the impact of transmon errors during the slow

beamsplitter interactions. Now that parametric control can be as fast as dispersive control, we

are no longer subject to this constraint, and can expand the toolbox to include high-fidelity

subroutines where the ancilla may be in any state during the beamsplitter operation.

The main goal of this chapter is to demonstrate a framework for designing and calibrating

combined operations consisting of alternating applications of ancilla and beamsplitter drives,

somewhat like the combination of SNAP and displacement pulses in single-oscillator control, in

the gbs ≈ χ regime. In doing so, I will demonstrate a key example where the higher-fidelity

beamsplitter offers a substantial increase in performance - an improved cSWAP, a key element

101
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Figure 5.1: Oscillator SWAPs in different gbs/χ regimes. Simulated probability PA of
finding a photon in Alice’s oscillator after initializing a photon in Bob’s oscillator and applying
a beamsplitter drive at a detuning ∆. In the top (bottom) row, the ancilla is initialized in |g⟩
(|e⟩). From left to right, the columns show gbs/|χ| = 0.1, 2, and 1/

√
3. The horizontal dotted

lines indicate the time to do 1 SWAP, and the vertical lines indicate the detuning used for a
cSWAP gate (∆ = χ, assuming a negative value for χ).

for qRAM. This demonstration (Ch. 5.3) also provides a way to evaluate the performance of

the SNAIL-enabled beamsplitter beyond single-photon states, where protecting against Kerr

nonlinear starts to be important. I will then demonstrate how this same framework unlocks new

capabilities including an unconditional SWAP (Ch. 5.4) and a measurement of the joint-photon

number parity of two modes (Ch. 5.5).

5.1 Revisiting cSWAP

While the gbs ≈ |χ| regime offers higher performance, it also requires increased care when

designing pulse sequences. To see this, we can compare the method for cSWAP introduced in

Sec. 2.4, in both the gbs ≪ χ and gbs ≈ χ regimes. As a reminder, the scheme works by applying

a beamsplitter with a detuning ∆ = χ, so that the oscillators undergo resonant SWAPs when

the ancilla is in |e⟩. Fig. 5.1 shows the time dependence of oscillator photon populations when

they are initialized in |0, 1⟩. In the left-most panels of Fig. 5.1, when gbs ≪ χ and the transmon

is in |g⟩, the applied beamsplitter drive is far-detuned, enacting the identity regardless of the
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exact choice of gbs (up to a coherent error O((gbs/χ)
2)). However in the gbs ≈ χ regime (i.e.

the right-most panel of Fig. 5.1), the beamsplitter drive is no longer selective on the transmon

state and excitations are exchanged between the two oscillators even with the ancilla in |g⟩. In

this regime, it is therefore important to separately consider the evolution of the oscillator states

for the |g⟩, |e⟩ (and |f⟩!) states.

In the particular example of cSWAP, we can actually find a solution by looking at these

single-photon oscillations. By driving at ∆ = χ for a duration tSWAP = π/gbs, we perform a

SWAP if the ancilla is in |e⟩. At the same time, if the ancilla is in |g⟩, the oscillators undergo

off-resonant SWAPs with a smaller contrast, at a rate of
√
g2bs + χ2 (see Eq. 4.11.) This can

be seen from the fainter off-central white bands in the chevrons in Fig. 5.1, where the white

indicates that photons have been partially exchanged and the deep blue indicates that photons

have returned to the oscillator in which they were initialized. The trick is to choose gbs such that

at ∆ = χ and t = π/gbs, with the ancilla in |g⟩, the oscillators undergo exactly two off-resonant

SWAPs. This ensures that states are fully swapped when in |e⟩ (deep red in Fig. 5.1) and return

where they began when in |g⟩ (up to a phase space rotation; the deep blue in Fig. 5.1.) The

condition that satisfies this can be found by setting

π

gbs
=

2π√
g2bs + χ2

(5.1)

→ gcSWAP
bs =

|χ|√
3
≈ 0.58 |χ| (5.2)

This condition is shown in the rightmost column of Fig. 5.1, where a cSWAP is enacted at a

time tcSWAP = π/gbs =
√
3π/|χ|.

While it is possible to guess at a solution from the single-photon oscillations in this case,

constructing gates on general multi-oscillator multi-photon states is more challenging than, say,

gates on a two-level system where the Bloch sphere provides a useful visual representation of

state trajectories. We also lack an intuitive understanding for how phases accumulate during

the evolution of a gate. To provide a language for understanding the operations demonstrated

in this chapter, I will briefly introduce the notation of the operator Bloch sphere, presented in
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Tsunoda et al. (2023), on which I was a co-author, which is in turn inspired by ideas from

beamsplitters in quantum optics (Campos et al., 1989; Yurke et al., 1986).

5.2 The operator Bloch sphere

The operator Bloch sphere formalism makes use of the Jordan-Schwinger map between angu-

lar momentum operators and photon-number-preserving bilinear combinations of creation and

annihilation operators of two oscillator modes (Jordan, 1935; Schwinger, 1952):

L̂X ≡ â†b̂+ âb̂†

2
, L̂Y ≡ â†b̂− âb̂†

2i
, L̂Z ≡ â†â− b̂†b̂

2
, (5.3)

or more compactly in terms of a two-vector of the mode operators,

L̂i =

(
â† b̂†

)
σi
2

â
b̂

 , (5.4)

where σi are the usual Pauli matrices. We can find an angular momentum quantum number, l,

via

L̂2 =
∑
i

L̂2
i =

N̂

2

(
N̂

2
+ 1

)
, (5.5)

where the total photon number in both oscillators, N̂ = â†â + b̂†b̂, is a conserved quantity.

Since the eigenvalues of the L̂2 operator are l(l + 1), we can see that the angular momentum

quantum number is equivalent to half the total photon number, l = N/2 1.

Their insight was that these new operators satisfy the same SU(2) commutation relations

as regular angular momentum operators, [L̂i, L̂j ] = iϵijkL̂k, allowing insights from one area of

quantum mechanics to be ported over to another. Schwinger initially used these operators to

more efficiently describe rotations of quantum angular momenta using the better-understood

language of quantum harmonic oscillators. We will instead use the map in the reverse direction.

In the beamsplitter Hamiltonian, mode operators only appear as the photon-number-preserving

1To maintain consistency with Schwinger’s original notation, I will use ℏ = 1 throughout.
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bilinear combinations in Eq. 5.3:

Ĥbs =
gbs
2

(
eiφâ†b̂+ e−iφâb̂†

)
−∆′b̂†b̂, (5.6)

and so it can be re-expressed as

Ĥbs = −N̂∆′

2
+ Ω⃗ · ˆ⃗L, (5.7)

where

Ω⃗ =


gbs cosφ

−gbs sinφ

∆′

 . (5.8)

For the case of l = 1/2 (equivalently our two oscillators containing N = 1 total photon), this

Hamiltonian is exactly that of a Rabi driven qubit where the drive detuning is conditional on

the state of an ancilla. This gives us hope that we can compactly represent the dispersive-

beamsplitter dynamics on a Bloch sphere. However, for states with N > 1, the angular mo-

mentum state vector is higher dimensional than d = 2 and so cannot be represented on a

Bloch sphere. Furthermore, for many multiphoton encodings such as for Schrödinger cat states,

the total photon number in the two oscillators (and therefore the total angular momentum) is

not even a ‘good’ quantum number. In these cases, what is the object that we can represent

compactly on a Bloch sphere?

The answer is that rather than considering states in the Schrödinger picture, we should

instead consider the evolution of mode operators in the Heisenberg picture. As seen in Eq. 5.4,

the Schwinger angular momentum operators can be expressed as 2× 2 Pauli matrices in a basis

defined by the mode operators. Assuming for now that the gbs, φ and ∆ are kept fixed, the

time-independent Heisenberg evolution can be expressed as

â(t)
b̂(t)

 = eiĤbst

â
b̂

 e−iĤbst = e−i∆
′

2
tRn̂(Ωt)

â
b̂

 , (5.9)
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where Rn̂(θ) = exp
{
−iθn̂ · 1

2 σ⃗
}
represents a rotation on a Bloch sphere by θ about an axis

n̂. As in the Rabi case, the angular frequency Ω =
∣∣∣Ω⃗∣∣∣ = √

g2bs +∆′2 and axis of rotation

n̂ = Ω⃗/Ω can be extracted from the prefactors in front of the angular momentum operators in

the Hamiltonian.

Ωg

gbs

a

b

Δ’ =
0

χ

ag(t)

ae(t)

Ω

a

b

a-ib

(a) (b)

2

a(t)

Ωe

Figure 5.2: Operator Bloch sphere trajectories. Trajectories of the mode operator â in the
Heisenberg picture for (a) 50:50 beamsplitter and (b) controlled-SWAP. The vectors indicate
the axis of rotation, set by gbs and ∆′ (here we assume φ = 0). For the controlled-SWAP, the
trajectories are conditional on the ancilla state being in |g⟩ (red) or |e⟩ (blue).

This compact expression provides a powerful way to describe the action of the beamsplitter

Hamiltonian. If we visualize a Bloch sphere with the Schrödinger (zero time) operators â

and b̂ at the North and South poles respectively, the Heisenberg operators â(t) and b̂(t) can

be represented as a point on this sphere, whose trajectory is determined by the beamsplitter

parameters2. For example, any trajectory that takes the operators from one pole to the other

is a SWAP, up to a phase space rotation. As another simple example (shown in Fig. 5.2(a)),

applying a beamsplitter drive with ∆ = φ = 0 for a duration tbs = π/(2gbs) enacts a π/2

2While in the calculations above we considered these parameters to be time-independent, they can in principle
vary in time.
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rotation around the X axis. This 50/50 beamsplitter thus transforms the mode operators as

â(tbs)
b̂(tbs)

 =
1√
2

 1 −i

−i 1


â
b̂

 =
1√
2

â− ib̂

b̂− iâ

 (5.10)

This language is commonly used in quantum optics when describing the action of beamsplitters

and phase shifters (Ou et al., 1987). However, in that case one does not typically consider a

continuous and in principle time-dependent beamsplitter evolution, especially occurring simul-

taneously with a phase shifter.

The effect of the dispersive Hamiltonian enters as an ancilla-state-dependent value of ∆′ =

∆ − χ |e⟩ ⟨e|, where ∆ is the drive detuning when the transmon is in |g⟩ and is fixed by the

experimental parameters. The combined system Hamiltonian is block-diagonal in the ancilla

subspace:

Ĥχbs = Ĥg |g⟩ ⟨g|+ Ĥe |e⟩ ⟨e| ,

= Ĥbs(gbs, φ,∆) |g⟩ ⟨g|+ Ĥbs(gbs, φ,∆− χ) |e⟩ ⟨e| , (5.11)

allowing us us to visualize two different trajectories on the operator Bloch sphere, one for each

ancilla state (or more if we are using the |f⟩ or higher level of the ancilla).

Returning to the case of cSWAP, the parameter Ω⃗ that determines the trajectory for each

ancilla state is

Ω⃗g = χ


1√
3

0

−1

 , Ω⃗e = χ


1√
3

0

0

 , (5.12)

with these trajectories shown in Fig. 5.2(b). Indeed for this choice of gbs and ∆ the operators are

exchanged when the transmon is in |e⟩ and return to their original positions when the transmon

is in |g⟩.

An important distinction between the operator Bloch sphere and the qubit Bloch sphere is
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the treatment of the global phases, such as the one imparted by the first ‘identity’ term in the

Hamiltonian in Eq. 5.7. Whereas for a qubit, such a term imparts a global phase on the state

with no physical impact, on the operator Bloch sphere, the phase is applied to the operators

in the Heisenberg picture â, b̂ → âe−iϕ/2, b̂e−iϕ/2. Returning to the Schrödinger picture, this

corresponds to a phase space rotation of both modes, exp
(
iϕ(â†â+ b̂†b̂)/2

)
which, as we shall

see, is measurable.

A powerful general rule is that the phase ϕ is equal to the solid angle enclosed by the

trajectory on the operator Bloch sphere. For the case of a single-enclosed closed loop on the

Bloch sphere with fixed beamsplitter parameters, this phase is equal to

ϕ = 2π (1− cos θ) = 2π

(
1− ∆′

Ω

)
, (5.13)

where θ is the angle the rotation axis n̂ makes with the Z-axis. Applied to the case of cSWAP,

we can quickly find ancilla-state dependent phases ϕg = 2π−
√
3π and ϕe = 2π. These phases

are not something we could have obtained just by looking at the single-photon trajectories in

Fig. 5.1, and they are important! While it is straightforward to keep track of global phase space

rotations “in software”, ancilla-state dependent phases will leave the ancilla and oscillator states

entangled. Correcting for these phases requires a gate “in hardware”.

5.3 Generating multimode entanglement with a fast cSWAP

This new fast cSWAP can be used to generate a “cat-in-two-boxes state” (Wang et al., 2016)

- an entangled Bell state of two single-oscillator cat qubits encoded in the basis |0⟩L ≡ |+α⟩,

|1⟩L ≡ |−α⟩3:

∣∣Ψ+
〉
≡

|0⟩L |1⟩L + |1⟩L |0⟩L
N

(5.14)

=
|+α⟩ |−α⟩+ |−α⟩ |+α⟩

N
, (5.15)

3The two ‘basis’ (coherent) states have finite overlap for small |α| and so this basis is only quasi-orthonormal
as |α| becomes large.
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where N ≈
√
2. As discussed in Ch. 1, entanglement generation is not possible with beam-

splitters alone. However, when combined with dispersive control, we can generate multi-mode

entanglement, and access to a better beamsplitter allows us to achieve this entanglement with

much higher fidelity. Furthermore, for α =
√
2, this state contains on average 4 photons be-

tween the two oscillators, providing a way to evaluate the performance of the beamsplitter on

multiphoton states. In particular, compared to the single-photon analysis in Ch. 4, this exposes

the state to Kerr nonlinear terms in the Hamiltonian and multiphoton transitions involving higher

photon numbers.

We generate the Bell state using the circuit shown in Fig. 5.5(a), where the two oscillators are

initialized in coherent states with opposite phase and the cSWAP is used to perform a two-mode

SWAP-test measurement. As we saw in Ch. 2.4, the SWAP-test circuit can be used measure

the similarity of two bosonic states, but also to project onto their symmetric and antisymmetric

subspaces:

ˆSWAP-test |g⟩ |α⟩ |−α⟩ = |g⟩√
2

|α⟩ |−α⟩+ |−α⟩ |α⟩
N

+
|e⟩√
2

|α⟩ |−α⟩ − |−α⟩ |α⟩
N

(5.16)

=
|g⟩ |Ψ+⟩+ |e⟩ |Ψ−⟩√

2
(5.17)

By post-selecting on shots where the ancilla is measured in |g⟩, we can obtain the Bell state

|Ψ+⟩.

The experimental hardware contains a transmon coupled to each cavity, giving us a choice

about which to use as the control qubit. Typically, the primary consideration would be the

expected infidelity due to transmon errors. In the fast gbs regime, the speed of operations is set

by χ and in the regime where T
(cavity)
2 /2|α|2 ≫ T

(transmon)
2 , errors are dominated by transmon

errors. In this picture, the transmon to choose is the one that minimizes 1/|χ|T transmon
2 , which

in our case would be Alice’s. However, in this system, with 2|α|2 = 4, the cavity relaxation is

already comparable to the transmon decoherence, resulting in a larger penalty (in terms of cavity

relaxation) for Alice’s slower χ. On a more practical level, unlike Bob’s transmon, Alice’s has

a non-negligible coupling to the beamsplitter drive port, owing to its greater insertion into its
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cavity (see Ch. 4.1.1). This results in a significant Stark shift of Alice’s transmon frequency when

the beamsplitter drive is applied, complicating the operation of the cSWAP. So, primarily for

ease-of-use, Bob’s transmon plays the role of the control qubit for the subsequent experiments.

The external flux through the SNAIL, φext/2π = 0.32, is chosen to be the one for which

the greatest beamsplitter fidelity was seen in Fig. 4.15. Note that this is not the χab-free point,

but one of a wide range of operating points where the on-off ratio > 2000. This performance

should therefore be representative of how well the cSWAP can work over a range of SNAIL flux

points (and therefore frequencies) where χab is significantly suppressed relative to a transmon

coupler but not necessarily exactly zero.

5.3.1 Calibration of a fast cSWAP

Calibrating the high-fidelity cSWAP starts by tuning up the beamsplitter amplitude gbs, drive

frequency ωd and pulse duration tcSWAP. The calculations that lead to the ideal parameters,

gbs = |χ|/
√
3, ωp = ω0

b − ω0
a + χ and tcSWAP =

√
3π/|χ|, ignore three practically complicating

factors that must be accounted for:

1. Cavity Stark shifts. As we saw in Fig. 4.12, increasing gbs shifts the relative frequency

difference between the cavities, ωb − ωa, and so ωp needs to shift to ensure that ∆ = χ,

and the beamsplitter is resonant when the control qubit is in |e⟩.

2. Finite bandwidth. The implementation of the buffer mode (see Ch 4.1.3) enables a large

gmax
bs , but also imposes a bandwidth constraint on the beamsplitter pulses. The origin of

this constraint is that the buffer mode resonance lies ∼ 20 MHz detuned from ωb−ωa, and

so if the bandwidth is not much smaller than 20 MHz, the beamsplitter drive populates the

buffer mode with a large number of photons. Since the buffer mode is relatively weakly

coupled to the beamsplitter drive port, it has a T1 ≈ 5 µs, emptying these photons slowly.

While it does so, its non-negligible dispersive shift to other system modes results in shot

noise induced dephasing. In practice, ramping gbs to its maximum value in t
(bs)
ramp ≥ 80 ns

avoids this. While this particular bandwidth-constraint is specific to the system hardware
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used here, any pump port filter will impose a finite bandwidth, requiring a ramp up to the

maximum gbs. During this rise time however, when gbs < gmax
bs , the exchange of cavity

states will proceed more slowly and so gmax
bs and tcSWAP need to be adjusted to account

for this.

3. State-dependent gbs. In our system, the beamsplitter rate gbs depends to a noticeable

degree on the state of the control qubit. When Bob’s qubit is used as the control, the

same room temperature pump amplitude achieves approximately 5% higher gbs when the

qubit is in |e⟩ and approximately 10% higher gbs when the qubit is in |f⟩, relative to when

the qubit is in |g⟩. The opposite effect is seen when Alice’s qubit is used (a decrease in

gbs with increasing qubit energy level). This is consistent with a decrease (increase) in the

beamsplitter resonance frequency with increasing energy level in Bob’s (Alice’s) control

qubit, bringing it closer (further) from the buffer mode resonance. As can be seen from

Fig. 4.4(b), |ξ| changes steeply with frequency at our operating point, with a relative

gradient of −5.2% per MHz. This requires an adjustment of parameters to ensure the |g⟩

and |e⟩ curves complete their desired trajectories at the same time.

We can account for these factors using an iterative approach. Given an initial guess of gbs,

performing the single-photon oscillation experiment from Fig. 4.12 with the control in |e⟩ allows

us to extract (from the center frequency of the chevrons) the drive frequency ωp that maximizes

the contrast of single-photon oscillations. With this choice of gbs and ωp set, we can measure

single-photon oscillations with the control initialized in |g⟩ or in |e⟩ (see Fig. 5.3(a)). These

oscillations can be thought of as vertical linecuts of the colorplots in Fig. 5.1. Ideally, in the

time that a single SWAP is completed with the control in |e⟩, we should see a full period of

oscillation with the control in |g⟩. If we observe over- (or under-) rotation with the control in

|g⟩, this indicates that gbs should be increased (decreased). Upon updating gbs, the process

then repeats (finding a new ωp for this gbs) until the desired cSWAP operation is observed, as

in Fig. 5.3(b).

With gbs and ωp fixed, the cSWAP is now calibrated up to phase space rotations on each
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0/1
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Figure 5.3: Single-photon oscillations under cSWAP. (a) Pulse sequence, starting with a
single photon in Alice, applying a flat-top beamsplitter pulse with maximum amplitude gbs ≈√
3/2 × |χ|, detuning ∆ = |χ| and variable duration (including 92 ns ramps), t, followed by a

simultaneous photon number measurement of both oscillators. This sequence can be repeated
with the control in |g⟩ or in |e⟩. When gbs and drive frequency ωp are set correctly, the oscillations
appear as in (b). When the control is in |g⟩ the single photon returns to Alice in the same time
that it takes for it to SWAP to Bob when the control is in |e⟩. The lack of full contrast in |e⟩
is due to errors in preparing |1⟩A |0⟩B. Figure modified with permission from Chapman et al.
(2023).

cavity. Besides the phase we expect from the ideal unitary evolution, the experimental setup

can introduce some additional phases. The beamsplitter drive can have a phase offset relative

to the difference in the phases of the cavity drives (either by deliberating applying a phase offset

to the generated microwave signal or because of mismatched electrical lengths), which results in

an additional phase space rotation when states swap from one cavity to the other. Furthermore,

the cavity frequencies experience a Stark shift when the beamsplitter is applied, by differing

amounts on each oscillator.

In general, the unitary (up to this point) is described by four rotation angles,

Û =
(
ei(ϕa,g â†â+ϕb,g b̂

†b̂) |g⟩ ⟨g|+ ei(ϕa,eâ†â+ϕb,eb̂
†b̂) |e⟩ ⟨e|

)
cSWAP (5.18)

=
(
ei(ϕa,g â†â+ϕb,g b̂

†b̂)ei((ϕa,e−ϕa,g)â†â+(ϕb,e−ϕb,g)b̂
†b̂)|e⟩⟨e|

)
cSWAP, (5.19)

where in the final line we have re-written this as a control-state-independent and a control-

state-dependent phase on each oscillator.
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Figure 5.4: Verifying cSWAP on multiphoton states with Wigner tomography. Single-
oscillator Wigner tomography results after initializing in D(

√
2) |1⟩⊗D(−

√
2) |0⟩ (left column)

and after performing a cSWAP with the control qubit in |g⟩, |e⟩ or a superposition (|g⟩+|e⟩)/
√
2.

The states are neither exchanged or rotated when the control is in |g⟩, and are swapped without
rotation with the control in |e⟩. For a superposition control state, the Wigner function shows a
50:50 mixed state of the final states in the central two columns. Figure modified with permission
from Chapman et al. (2023).

All four phases can be obtained by preparing the oscillator in the state |ψinit⟩ = D(α) |1⟩ ⊗

D(−α) |0⟩, with the transmon either in |ψc⟩ = |g⟩ or in |ψc⟩ = |e⟩, performing Û and then

performing Wigner tomography on both cavities. This choice of initial state is both sensitive to

phase space rotations and clearly distinguishes between the states initialized in Alice and Bob

via the negativity of the Wigner function. The resulting states are given by

Û (|ψinit⟩ ⊗ |g⟩) = D(αeiϕa,g) |1⟩ ⊗D(−αeiϕb,g) |0⟩ ⊗ |g⟩ (5.20)

Û (|ψinit⟩ ⊗ |e⟩) = D(−αeiϕa,e) |0⟩ ⊗D(αeiϕb,e) |1⟩ ⊗ |e⟩ (5.21)

From the four tomograms, we can fit to find the center of the displaced state. The angle this

makes with the x-axis tells us the value of each phase.

Two of these phases, ϕa,g and ϕb,g, (which make up the control-state-independent part of

Eq. 5.19) can be corrected “in software” by rotating the axes along which the displacements

for the Wigner tomography are performed. The remaining two must be corrected in hardware,

which we can do by adding delays tpre and tpost before and after the beamsplitter pulse. These
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delays make use of the always-on dispersive interaction Ĥdisp = ℏχb̂†b̂ |e⟩ ⟨e| to add phase space

rotations conditional on the control being in |e⟩. The pre-delay adds a rotation by an angle χtpre

to the state initialized in Bob and ending in Alice after the SWAP. Choosing tpre = (ϕa,e−ϕa,g)/χ

therefore corrects the control-state-dependent phase on Alice. Similarly, choosing a post-delay

tpost = (ϕb,e − ϕb,g)/χ fixes the control-state-dependent phase on Bob. The total duration of

the cSWAP, including these delays is therefore 1.3 µs, limited by the value of |χ|.

Fig. 5.4 shows these tomograms after correcting for the phases, with the states exchanged

only if the control is in |e⟩ and without any additional phase space rotation. A final check is

shown in the right-most column where the control is prepared in a superposition state. These

last Wigner functions in each cavity both show mixed states that are a 50/50 mixture of the two

initial states. Critically, we see no visible distortion of the displaced states (as we would expect

from a large Kerr nonlinearity, for example) and we see that they lie directly opposite each

other on the x-axis, indicating that we have successfully removed any control-state-dependent

rotations. This verifies the calibrations but does not yet demonstrate entanglement between the

two modes.

5.3.2 Probing multi-mode entanglement

Evaluating whether we have truly generated multimode entanglement requires not just local

measurements but joint measurements of the two cavities. This can be revealed by measuring

the joint Wigner function (Cahill and Glauber, 1969; Wang et al., 2016), which requires a

measurement of the joint photon number parity in the two oscillators, or equivalently the product

of the local parity in each oscillator4, P̂A ⊗ P̂B ≡ eiπâ
†â ⊗ eiπb̂

†b̂:

WJ(βA, βB) = ⟨D̂(βA, βB)P̂AP̂BD̂
†(βA, βB)⟩, (5.22)

where βA and βB are the quadratures for Alice and Bob, respectively. We can measure the

simultaneous local parity by performing a single-shot parity measurement of each oscillator and

4This definition, which takes values between −1 and 1, discards the factor of 1/π used in the single-mode
Wigner function (Eq. 2.7).
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multiplying the results together shot-by-shot5 While local measurements collapse the entangle-

ment between the oscillators, this is permissible here since we are not interested in utilizing the

post-measurement state.

Since βA and βB are both complex, the joint Wigner function is a 4-dimensional object

that is hard to visualize. However, evidence of entanglement can be seen in 2-dimensional slices

along the Im(βA) = Im(βB) = 0 (real-real) plane and the Re(βA) = Re(βB) = 0 (imaginary-

imaginary) plane. Interference fringes along the diagonals of the measured slices in Fig. 5.5(b,

c) indicate the generation of an entangled non-Gaussian state, and match qualitatively with the

ideal plots in Fig. 5.5(f, g).

In principle, joint Wigner tomography allows an experimentalist to reconstruct the full den-

sity matrix of two oscillators (Leibfried et al., 1996), for example using a maximum likelihood

estimation (MLE) algorithm (Chou et al., 2018; Heeres et al., 2015) or machine learning tech-

niques (Ahmed et al., 2021) to account for SPAM errors. This in turn provides a way to compute

the fidelity to an arbitrary two-oscillator state. This approach is extremely costly however, re-

quiring n4 well-averaged measurements, where n is the number of points along each dimension.

For a reasonable resolution (n ≈ 30 and > 100 shots per measurement), this would take about

a week to obtain. This continuous-variable representation of the density matrix is rich with

detail but is extremely overcomplete if we are only interested in the evolution within our logical

subspace or the logical fidelity. The density matrix in the logical basis of the two encoded

qubits only contains 24 = 16 entries, which can be efficiently extracted by sampling the joint

Wigner function at 16 specific points, a method known as direct fidelity estimation, proposed

in (Flammia and Liu, 2011; da Silva et al., 2011) and demonstrated for cat states in (Vlastakis

et al., 2015; Wang et al., 2016). For a single-mode, large-α, encoded two-legged cat, the logical

5Transmon relaxation errors can bias the results of the Wigner tomography, leading to an overall offset.
To combat this, the results are symmetrized – averaging over all four combinations of mapping even or odd
photon number parity in each oscillator to the transmon state |e⟩, following the same approach in single-oscillator
tomography (Burkhart et al., 2021).
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Figure 5.5: Characterizing fidelity of Bell state. (a) Pulse sequence used to prepare the Bell
state |Ψ+⟩ (SWAP-test) and perform joint Wigner tomography by simultaneously measuring
photon number parity P̂ on each cavity. (b-c) Re-Re and Im-Im 2D slices of measured joint
Wigner function, displaying interference fringes. (d-g) Joint Wigner function slices for ideal |Ψ+⟩
state, with dots indicating locations at which to extract two-mode Pauli expectation values in
the coherent state basis {|+α⟩ , |−α⟩}. Gray dots indicate four different locations that must
be measured to extract II and ZZ. (h) Extracted two-mode Pauli expectation values (red),
ideal values (solid black) and predicted values from error budget including SPAM errors (dotted
black). The Y Y bar has been boosted by a factor of eπ

2/16|α|2 = 1/0.73 to account for the
effects of finite-α when extracting the Pauli values using this method (see Appendix C.) Figure
modified with permission from Chapman et al. (2023).

expectation values can be extracted from

⟨I⟩ ≈W (+α) +W (−α) , ⟨X⟩ ≈W (0) , (5.23)

⟨Y ⟩ ≈W

(
jπ

8α

)
, ⟨Z⟩ ≈W (+α)−W (−α) . (5.24)
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The two-mode logical expectation operations are then constructed by linear combinations of

these points on the two oscillators, so for example

⟨IX⟩ ≈WJ (+α, 0) +WJ (−α, 0) . (5.25)

The full set of sampled two-oscillator points are overlaid on the joint Wigner function of a

simulated cat-in-two-boxes state in Fig. 5.5(d-g). Appendix C lists the Wigner measurements

taken for each two-mode expectation value, along with expressions describing the corrections

due to the finite α of the cat state.

Performing these measurements on our prepared state yields the expectation values of all

16 two-mode Pauli operators (see red bars in Fig. 5.5(h)). For a Bell-state, simultaneous

measurements of the same Pauli operator on each qubit (i.e. II, XX, Y Y and ZZ) should

give perfectly correlated or anti-correlated results, whereas measuring different Pauli operators

on each should yield uncorrelated results. The ideal values for a state with α =
√
2 are

shown in solid black rectangles. Note that the Y Y bar has been re-normalized by a factor of

eπ
2/16|α|2 = 1/0.73. This difference is due to the fact that the cat state basis {|+α⟩ , |−α⟩}

is only completely orthogonal in the limit α ≫ 1. As a result, for this finite-sized cat, even

an ideal decoherence-free state would yield at most ⟨Y Y ⟩ = 0.73. Meanwhile values obtained

from an error budget composed from independently obtained system coherences (see App. N

of Chapman et al. (2023) for more details) are given by the smaller dashed rectangles. These

predictions give a good qualitative agreement with the heights of the measured (red) bars,

suggesting that the operation is very close to coherence-limited.

The Bell fidelity can be efficiently extracted from only four of these points, F = (⟨II⟩ +

⟨XX⟩ + ⟨Y Y ⟩ − ⟨ZZ⟩)/4, from which we obtain a fidelity F = (74.1 ± 0.4)%, without nor-

malizing for SPAM errors or finite-α (when applying the finite-α correction factor this fidelity

increases to Fcorrected = (78.6 ± 0.4)%.) This number exceeds the value (50%) that can be

obtained from a ‘classical’ unentangled state ρ(A) ⊗ ρ(B), and is close to the error-budget value

of F = 75.9% ± 0.2% – or Fcorrected = (81.0 ± 0.3)%. However, this also predicts that the
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Figure 5.6: Repeated cSWAP to extract fidelity. (a) Pulse sequence incorporating odd N
number of consecutive cSWAP. A single pre-delay tpre and post-delay tpost are include for each
N , and so they depend on N . Sampling the Wigner function at different points allows for
efficient fidelity extraction. (b) Fidelity for N rounds of cSWAP versus total elapsed time. Solid
line shows exponential fit. Figure modified with permission from Chapman et al. (2023).

vast majority of the infidelity comes not from errors during the cSWAP itself (4.2%±0.1%) but

from measurement errors during the SWAP-test readout and during the Wigner tomography of

each cavity.

To validate the claim that the cSWAP itself is not the limiting factor, with a fidelity much

higher than suggested by this single-round Bell fidelity, we can amplify its errors by replacing

the single cSWAP with an odd number N of cSWAPs, making use of the fact that ˆcSWAP
2
= Î

(see Fig. 5.6). Rather than adding a delay before and after every single beamsplitter pulse, we

can simplify the sequence by adding a single delay before and after the train of beamsplitter

pulses, which can be calibrated in the same way as for a single cSWAP. One note to make is

that since the delay lengths obtained are not constant as a function of N , the total sequence

duration is not linear in N (as can be seen from the top x-axis of Fig. 5.6(b)). This figure

shows the reduction in the state fidelity with N and from the exponential decay of this curve

as a function of sequence length, we can extract a SPAM-corrected fidelity for a single cSWAP

of 1 − FcSWAP = 4.5% ± 0.2%, consistent with the error budget value of 4.2% ± 0.1%, which

finds transmon and cavity errors almost equally responsible. This highlights the large increase in

cSWAP fidelity that can only be made possible through access to a faster beamsplitter interaction
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– with the previous generation of couplers, tcSWAP ≈ 10 µs and T
(transmon)
2 ≈ 30 µs, and so

even setting aside cavity errors, this would contribute an infidelity per cSWAP on the order of

1−FcSWAP ≈ 33%.

More importantly, it highlights our ability to execute gates combining beamsplitter and

dispersive interactions in the gbs ≈ |χ| regime where the operator Bloch sphere formalism

becomes useful, and to do so very close to the coherence limit. This sets the stage for performing

other useful operations which rely on the operator Bloch sphere picture.

5.4 Unconditional SWAP using dynamical decoupling

A high-fidelity conditional SWAP provides a non-Gaussian resource that can be used to generate

entanglement but it can also be very valuable to have a SWAP (or beamsplitter) that is uncon-

ditional on the state of the transmon. We already saw how the photonics-inspired construction

of the cSWAP in Ch. 2.4 relied on beamsplitters that are implicitly control-state-independent –

however in our (superconducting) system, the Kerr nonlinearity is always ‘on’. More generally,

an unconditional SWAP (uSWAP) allows you to construct sub-circuits in which the control input

state may be unknown.

5.4.1 Demonstrating a uSWAP

The uSWAP construction relies on a form of dynamical decoupling, an idea which has been

extensively used to both filter out low-frequency noise but also to suppress the effect of crosstalk

between adjacent qubits in larger processors when performing simultaneous operations (Tripathi

et al., 2022). It is possible to engineer dynamical decoupling in this bosonic system by driving

the beamsplitter at a ‘symmetric’ detuning of ∆ = χ/2 and breaking up the sequence with echo

pulses on the ancilla (Tsunoda et al., 2023). For the simplest case of an unconditional SWAP

with a single echo, the pulse sequence and the control-state-dependent Bloch sphere trajectories

are shown in Fig. 5.7(a, b). Unlike the conditional SWAP presented earlier, the unconditional

SWAP can be engineered with any value of gbs. Taking the case of a single echo, provided that
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Figure 5.7: Unconditional SWAP. (a) Pulse sequence for the transmon and beamsplitter
drives (not to scale). The beamsplitter pulse is interrupted halfway by a transmon π-pulse
which ‘echoes’ out the dependence on the transmon state. The final π-pulse, to return the
transmon to its initial state, must occur after the final delay to allow phases to be corrected on
both oscillators. (b) Control-state-dependent trajectories of the mode operators. If the control
is initialized in |g⟩, the mode operator follows the blue curve (about the blue axis, n̂g) until it
reaches the equator of the Bloch sphere. At this point, the π-pulse flips the control to |e⟩, and
the trajectory then follows the red line (about the red axis, n̂e) until it completes its journey
to the South Pole. (c) Local Wigner tomography of both oscillators for different control states
|ψc⟩ after initializing the oscillators in D(

√
2) |1⟩ ⊗D(−

√
2) |0⟩. These show the states being

exchanged, independent of the control state, even if it starts in a superposition.

gbs > |χ|/4, the initial trajectory of the mode operators will intersect the equator of the Bloch

sphere. Performing an Xπ pulse on the qubit at this point exchanges the rotation axes, n̂g

and n̂e, such that the mode operators end up at the opposite pole. For values of gbs < |χ|/4,

we can break the sequence up with more and more echoes to achieve the desired unitary. The

unconditional 50/50 beamsplitter (uBS) can be constructed in an analogous way, flipping the

qubit state partway through the sequence, so that the trajectories both end on the equator

independent of the initial control qubit state.
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We can experimentally verify that this sequence dynamically decouples the beamsplitter from

the ancilla state for a uSWAP with a single echo and gbs = |χ|/4. We do so by repeating the

single-cavity tomography experiment used to characterize the cSWAP, as shown in Fig 5.7(c).

As desired, the cavity states are exchanged independently of the transmon state. In particular,

when the transmon is in a superposition state, |ψc⟩ = (|g⟩ + |e⟩)/
√
2, the cavity states are

swapped despite taking a superposition of paths on the Bloch sphere to do so. Just as in the

case of the cSWAP, delays still need to be inserted before and after the pulses. Even though

the mode operators reach the same point on the operator Bloch sphere regardless of ancilla

state, these two trajectories enclose a different geometric phase and therefore impart some

control-state-dependent phase.

A useful advantage of increasing the number of echo pulses is that the two concatenated

trajectories lie increasingly close together. This reduces the difference between the control-state-

dependent phase rotations and therefore minimizes the length of delays required to disentangle

the transmon and cavity states. In the large N limit, the two trajectories are identical, and

enclose an identical solid angle.

5.4.2 Re-revisiting cSWAP

The flexibility of the choice of gbs in the unconditional beamsplitter enables a faster alternative

to the cSWAP. While the cSWAP demonstrated earlier in this chapter is already an order of

magnitude faster than its prior iteration, the value of gbs required is substantially less than

the maximum value available to us. With a fast unconditional beamsplitter, it is possible to

revisit the photonics-inspired cSWAP approach introduced in Ch. 2.4, consisting of a 50/50

beamsplitter, a parity-map and another 50/50 beamsplitter (see Fig. 5.8(a)). Fig. 5.8(b) shows

the duration of this new cSWAP (including delays) as a function of gbs, assuming that the delay

times can be made short by introducing sufficient echo pulses during the uBS pulses. What it

shows is that for gbs/|χ| > 1.37, the photonics-inspired approach using uSWAP has a shorter

total duration and is therefore likely to be higher-fidelity. In the regime where gbs ≫ |χ|, the

duration of the sequence is rate-limited by |χ| and saturates at π/|χ| (the duration of the phase
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Figure 5.8: Photonics-inspired cSWAP with using an unselective beamsplitter. (a) Pulse
sequence for the ‘photonics-inspired’ cSWAP, enabled by an unselective 50:50 beamsplitter
(uBS). By applying pulses on the control qubit during the beamsplitter drive (indicated by the
oscillating line), its unitary is made independent of the control state. (b) Comparison of the
duration of this photonics-inspired cSWAP (with its flexibility in choice of gbs) and the continuous
cSWAP demonstrated in this chapter. The horizontal lines indicate the minimum possible
duration of each sequence. The circle showing the cSWAP demonstrated in this chapter is
above this line due to the addition of pre- and post-delays to correct for control-state-dependent
phases. In principle, with sufficient echo pulses during the uBS, the phase correction required for
the photonics-inspired approach can be made arbitrarily small. Figure modified with permission
from Chapman et al. (2023).

shift element).

5.5 Beamsplitter-enabled joint parity measurement

To finish the chapter, I will show a final (but very important) operation that only becomes possi-

ble when gbs ≈ |χ| and which also relies on this operator Bloch sphere picture: a measurement of

joint photon number parity in two oscillators ĴP = (−1)â
†â+b̂†b̂. In the context of joint-Wigner

tomography, we already saw that we could measure this operator by performing simultaneous

measurements of the single-oscillator parity, P̂A = (−1)â
†â and P̂B = (−1)b̂

†b̂, and multiplying

the outcomes shot-by-shot. However, by collapsing the individual oscillator wavefunctions, this

measurement destroys the entanglement between the two modes. This collapse is permissible

in the context of tomography, where the post-measurement state is inconsequential, but not in

the context of error correction. As we discovered in Ch. 2.1.2, an example of where a joint-
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Figure 5.9: Beamsplitter-enabled joint-parity measurement. The application of a beamsplit-
ter drive with a particular amplitude and detuning transforms (a) the usual parity measurement
sequence into (b) a measurement of the joint photon number parity in two oscillators. (c) The
trajectories of the Alice mode operator on the operator Bloch sphere, conditioned on the ancilla
state, during the beamsplitter portion of the joint parity measurement sequence.

parity measurement can be extremely useful is in detecting erasure errors in a dual-rail code

(something we will explore further in Chapter 7). In this case, it is vital to preserve multi-mode

entanglement after the measurement.

One approach to engineering a mid-circuit (i.e. one that preserves entanglement) joint parity

measurement is to capacitively couple a transmon ancilla to both oscillators (in a ‘Y-mon’

configuration) and apply a four-wave-mixing parametric drive to the transmon to match the

dispersive shift to each mode, χa = χb (Wang et al., 2016). This approach to modulating χ

via a microwave drive is the same used to match χge = χgf to correct for transmon relaxation

errors in Chapter 2.

Instead, the joint parity (JP) measurement can be constructed using an ancilla transmon

statically coupled to only one of the oscillator modes. By reducing the number of elements

statically coupled to another, compared to in a Y-mon approach, one benefits from transmon

errors not being able to simultaneously propagate to multiple cavities and from a minimization

of crosstalk between these modes. Furthermore, by not having a transmon situated between the
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two cavities, it frees up space for us to use a dedicated SNAIL coupler to mediate high-fidelity

beamsplitter interactions between these modes.

Activating a beamsplitter drive during the wait time of the usual single-oscillator parity mea-

surement scheme transforms it into a joint parity measurement of two oscillators (Fig. 5.9). In

a sense, the beamsplitter drive plays the role of the χ-matching drive. This joint parity scheme

makes use of the ancilla-state-dependent phase space rotation acquired during a beamsplitter

trajectory, which can alternatively be viewed as a joint-photon-number-dependent phase on the

ancilla. To find constant beamsplitter parameters that (ideally) enable a joint-parity measure-

ment, we can apply two constraints:

1. Oscillator states should return to where they began. In other words, the mode operators

â(t) and b̂(t) must complete a closed trajectory on the Bloch sphere, independently of the

ancilla state. This can be achieved by fixing Ωg = Ωe = Ω and evolving for Tp = 2π/Ω.

The constraint on Ω requires that ∆ = χ/2.

2. The ancilla |e⟩ state should acquire a phase per total photon, relative to the |g⟩ state,

of π. (This can equivalently be thought of as a phase space rotation on the cavity by π

radians, conditioned on the ancilla |e⟩ state.) Using Eq. 5.13 for the enclosed solid angle

of a loop, we can calculate the phase difference per photon

|ϕe − ϕg| =
π|χ|
Ω

= π (5.26)

Ω = |χ| (5.27)

→ gbs =

√
3

2
|χ| (5.28)

The resulting ideal mode operator trajectories can be seen in Fig. 5.9(c).

This sequence is very similar to the cSWAP sequence, and indeed the calibration (shown in

Fig. 5.10) can be performed in a similar manner:

1. Given an initial guess for gbs and the beamsplitter pulse frequency ωp, initialize the cavities

in |0⟩A |1⟩B with the transmon in either |g⟩ or |e⟩, play the beamsplitter for a variable
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Figure 5.10: Calibrating a joint-parity map. (a) Probability of measuring the two-oscillator
state |1⟩A |0⟩B after time t of applying a beamsplitter drive with a detuning ∆ ≈ χ/2, having
initialized the oscillators in |0⟩A |1⟩B. The traces show the single-photon oscillations conditioned
on the transmon state |g⟩ (blue) or |e⟩ (red), which complete a full period at the same time
t ≈ 2π/|χ|. (b) Local Wigner tomography of each oscillator after initializing a coherent state
and performing a joint-parity map with the transmon in either |g⟩ (left column) or |e⟩ (right
column). Black lines indicate the angle each state makes with the origin. Both Alice and Bob’s
coherent states are rotated by π conditioned on the control state. In Bob, this is finetuned
by adjusting the length of a delay after the beamsplitter pulse. There remains a control-state-
independent phase space rotation on each cavity that can be corrected in software.

time and then measure the population of each cavity. Adjust ωp until the two oscillations

proceed at the same rate Ωg = Ωe and return to their initial state at the same time, Tp

(Fig. 5.10(a)).

2. Prepare a coherent state in Alice (the cavity without the control qubit coupled to it),

perform the beamsplitter pulse with the control in |g⟩ and |e⟩, and measure the angle the

coherent state makes with the origin. Note that this technically does not require full 2D

Wigner tomography, just the 1D line of points at a distance |α| from the origin. Ideally,

the angle the final coherent state makes when the control is in |e⟩ is different from the

angle when the control is in |g⟩ by π. If not, it implies that the geometric phase enclosed

by the loop on the Bloch sphere (see Fig. 5.9) is incorrect. The size of this loop can be

changed by adjusting gbs and returning to step 1 (Fig. 5.10(b)).

3. Once the ancilla-state-dependent phase acquired by the coherent state in Alice is π, we

can repeat the procedure for Bob. If the phase is not correct, we cannot adjust gbs, since
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this would undo the calibration on Alice’s side. However, we can add a delay to apply

an |e⟩-state-dependent phase space rotation to Bob – this is not possible for Alice since

the state both starts and ends in Alice for both control states. Adding this phase will

make the full duration of the sequence equal to 2nπ/|χ| where n ∈ Z. The need for

this delay originates in the finite bandwidth of the ramp-up. An alternative approach that

avoids adding delays is to optimize the beamsplitter pulse shape using OCT, as proposed

in Tsunoda et al. (2023) (Fig. 5.10(b)).

This validates both of the criteria established when finding the operating parameters.

Finally, we can separately verify that the joint-parity-map, when sandwiched between two

transmon π/2 pulses as in Fig. 5.9(b), enacts a joint-parity measurement on the two-cavity

states, |0, 0⟩, |0, 1⟩, |1, 0⟩ and |1, 1⟩. We do so while sweeping the phase θ of the second

transmon π/2-pulse in Fig. 5.11(a). The oscillations in the probability of measuring the transmon

in |e⟩ with θ (see Fig. 5.11(b)) are out-of-phase for states with opposite joint photon number

parity. At θ = 0 and θ = π, the odd and even joint parity states are mapped onto one bit

of information in the transmon, with the freedom to map either odd or even states to the less

error-prone |g⟩ state. This sequence can also act as a form of calibration. The zero phase

offset of the |0, 0⟩ oscillation confirms that the transmon frequency is well-calibrated, while any

left-right movement in the other curves can be used to indicate that the state-dependent phase

shift is not yet perfectly calibrated. In our case, the reduction in the contrast can be attributed

to state-preparation errors (made worse for higher Fock states), as well as ancilla errors during

the readout and the joint-parity map itself.

Ancilla error-detectability

We started the chapter by noting that faster beamsplitters enable gbs ≫ 1/T ancilla
2 and we have

since seen that this enables higher-fidelity operations such as cSWAP where ancilla decoherence

is a limiting factor. However, as we saw for single cavities, bosonic encodings are often only

worthwhile if the ancilla does not degrade the oscillator coherence. The tools used to make the

single-oscillator parity measurement fault-tolerant can be readily extended to the multi-oscillator
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Figure 5.11: Testing a joint-parity measurement on Fock states. (a) Pulse sequence where
Fock states |nA, nB⟩ are initialized in the two oscillators and the joint-parity measurement
sequence is performed, including a delay tdelay to remove the ancilla-state-dependent phase,
with the phase θ of the final π/2 pulse varied. (b) The probability of measuring the transmon in
|e⟩, Pe, oscillates with θ but does so out of phase for states with opposite joint photon number.
Operating at θ = 0 or θ = π both perform a joint-parity measurement, with either even or odd
states mapped to |e⟩.

joint-parity measurement. While full error-correctability is possible, I will briefly describe how

to achieve the less-stringent error-detectability, which will be more relevant when discussing the

erasure check in Chapter 7, as outlined in Tsunoda et al. (2023).

First-order protection against ancilla decay is achieved by using a three-level |g⟩-|f⟩ ancilla

and replacing the Y ge
±π/2 pulses with Y gf

±π/2. Ancilla relaxation during the sequence leaves the

ancilla in |e⟩ which serves as a flag state and is unaffected by the transmon pulses. Without

χ-matching drives on the ancilla (where here χ-matching refers to ensuring that χge = χgf )

ancilla decay will result in a change of the axis about which the mode operators precess, at an

unknown time during the sequence. This is an unrecoverable error that can in principle leave

the mode operators anywhere on the operator Bloch sphere. However, measuring the ancilla in

|e⟩ indicates that that the error has occurred, providing an opportunity to either post-select out

the shot, or to reset the oscillators to a known state and treat the event as an erasure (as will

be discussed in more detail in Ch. 7).

First-order fault-tolerance to ancilla dephasing relies on the adhering to the ‘equal-latitude’

condition which here means that the latitude of the ancilla state on its Bloch sphere should

be independent of the joint photon number in the oscillators. This condition is already met
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for the joint-parity measurement as the ancilla stays on the equator until the very end of the

measurement. As a result, ancilla dephasing has no impact on the oscillator states. However,

it can still result in an incorrect measurement outcome. If this measurement outcome informs

subsequent operations on the oscillators, this may still be an issue, but since the measurement

is QND, repeating it twice provides more certain information about the true value. Here, ancilla

dephasing would result in two measurements that disagree (provided there is no change in

the true joint photon number between the two measurements), a result that can be used to

post-select data or erase qubits (as for ancilla relaxation).

These same principles have also been used to devise an ancilla-error-detected entangling

ZZ(θ) gate for two dual-rail qubits (consisting of four cavities), constructed by inserting the

joint-parity-map into the exponentiation gadget of Ch. 2.4.3 (Tsunoda et al., 2023). By using a

three-level ancilla and measuring the ancilla state at the of the sequence, both ancilla dephasing

and ancilla relaxation can be detected and converted to erasure errors. This goes to show

complete reliance of the cavity dual-rail encoding (Teoh et al., 2023) on access to a fast, high-

fidelity beamsplitter, forming the basis for the single-qubit gate, two-qubit gate and mid-circuit

erasure check.

Chapter summary

In this chapter, we have seen how the mode operator Bloch sphere language introduced in Tsun-

oda et al. (2023) allows us to construct operations combining the dispersive and beamsplitter

interactions in the gbs ≈ |χ| regime. These have included both higher-fidelity alternatives to

previously implemented operations, in the case of cSWAP, as well as newly accessible operations

in the case of uSWAP and the mid-circuit joint-parity measurement. While these operations

use beamsplitter and ancilla pulses at different times, in the following chapter we will consider

the case where they are applied simultaneously, further building out the toolbox of operations

enabled in this regime.



Chapter 6

The joint-photon number-splitting

regime

The previous chapter showed how the parity measurement for a single oscillator (see Sec. 2.2.1)

can be extended to a joint-parity measurement for two oscillators by applying a beamsplitter

drive during the pulse sequence. This begs the question of whether there is a deeper analogy

here – can we generally extend techniques based on dispersive photon number splitting in a single

oscillator to two (or more) oscillators, and can we make any statements about the conditions

(e.g. on the frequency and amplitude of gbs(t)) under which such an analogy will hold?

In this chapter I will show that indeed there is a deeper connection, revealed by the existence

of a joint-photon number splitting regime when gbs becomes comparable in magnitude to χ -

a regime in which the spectrum of the nonlinear ancilla depends on the joint-photon number

in the coupled oscillators. This regime will provide a complementary way of engineering high-

fidelity multi-oscillator control using a combination of static dispersive coupling and tunable

beamsplitter coupling (Fig. 6.1(a)). Whereas in the previous chapter, these two Hamiltonian

terms were only activated one at a time, here we will consider the simultaneous application of

drives on the transmon and the beamsplitter.

In the case of single-cavity control, we saw how there were two ways to obtain universal

control of the cavity state: one based on alternating between SNAP drives on the transmon and

129
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displacements drives on the cavity, and another based on simultaneous drives on both modes

whose forms were obtained via optimal control theory (OCT). The simultaneously-applied control

sequences considered in this chapter are therefore similar in vein to this latter class of OCT

pulses. However, unlike in the single-cavity case, we retain a notion of interpretability that can

be leveraged when designing and troubleshooting pulse sequences. (The application of OCT to

the combination of beamsplitter and dispersive interactions, without any attempt at preserving

interpretability, may nonetheless be a useful way to obtain new multi-cavity operations.)

6.1 Observing joint-photon number-splitting

We can demonstrate the emergence of the joint-photon number-splitting regime by probing

how the usual photon number-split spectrum (Gambetta et al., 2006; Schuster et al., 2007) is

modified in the presence of an increasingly strong beamsplitter drive. Fig. 6.1(b) shows the pulse

sequence used to obtain this spectrum, initializing the oscillators in states of well-defined total

photon number N̂ , then performing a flat-top beamsplitter pulse simultaneous with a 14.8 µs

long chopped-Gaussian transmon pulse (defined in Eq. 6.27), followed by a transmon readout.

As in the joint-parity measurement, we initially set ∆ = χ/2, a ‘symmetric’ choice that ensures

that the beamsplitter drive is equally detuned from resonance when the ancilla is in |g⟩ or in

|e⟩. Later in the chapter we will investigate what happens for more generic choices of detuning.

Since N is a conserved quantity under the beamsplitter Hamiltonian, and the average oscillator

lifetime T̄1 greatly exceeds the pulse duration Tp, we may separately investigate behavior for

different values of N . The resulting spectra for different initial states with N = 0, 1 and 2 are

shown in Fig. 6.1(c).

These spectra demonstrate the emergence of a joint-photon-number-splitting regime when

gbs becomes comparable to |χ|. With the beamsplitter drive turned off (gbs = 0), linecuts show

an ancilla spectrum with number-resolved peaks, each shifted by χ per photon in mode b̂ but

independent of the photon number in mode â. This is the usual photon number split spectrum.

However, at the largest values of gbs
1, where gbs/|χ| = 1.92, we observe a single dominant

1The operating flux point φext/2π = 0.334 was chosen to maximize the range of gbs/χ over which measure-
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Figure 6.1: Ancilla spectroscopy in the presence of a beamsplitter drive. (a) System
schematic consisting of two linear oscillators coupled via a tuneable beamsplitter coupling and
a nonlinear ancilla coupled to one of the linear modes with a static dispersive coupling. The
two linear modes contain a total of N photons. (b) Spectroscopy pulse sequence, in which the
beamsplitter amplitude gbs is varied. (c) Measured ancilla spectra in the presence of a variable
gbs for states with fixed total photon number N . The colorplots show data for initial states

|0, 0⟩ (N = 0), |0,1⟩+|1,0⟩√
2

(N = 1) and |0,2⟩+
√
2|1,1⟩+|2,0⟩
2 (N = 2). Predicted transitions (dashed

white lines) are labeled by the change in the angular momentum projection quantum number
δm (described in Ch. 6.2). Linecuts to the left (right) of each colorplot show spectra for all
two-oscillator Fock states in each N -photon manifold at the lowest (highest) value of |gbs/χ|.
Figure

transition for each constant-N subspace, at a transmon frequency detuning of δω = Nχ/2.

We can interpret these spectra as the dispersive shift being ’shared’ between the two oscillators

as photons are swapped rapidly between them. The linecuts at gbs ≳ |χ| demonstrate the

ability to excite the ancilla conditioned on the joint oscillator population N̂ , without learning

the individual oscillator populations, despite the ancilla only being coupled to one of the modes.

ments could be taken. This required a flux point where the maximum gbs achievable was large, but also where
no unwanted transitions were activated as the normalized pump amplitude ξ was increased to reach this value.
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The hardware developed in this thesis is key to enabling high-fidelity operations in the joint-

photon number-splitting regime. The requirement that gbs ≈ |χ| must go hand-in-hand with a

pulse duration that is both long with respect to 2/|χ| (to spectrally resolve number-split features)

and short with respect to T ancilla
2 (to ensure high fidelity). Taken together, this requires that

gbs ≈ |χ| ≳ 1

Tp
≫ 1

T ancilla
2

≳ 2π × 3 kHz (6.1)

While we can intuit the behavior at the two extremes of |gbs/χ|, the transition between

these regimes displays a much richer spectrum. Understanding this spectrum better will allow

us to answer some practical questions: What is the origin of the ‘satellite’ peaks either side of

the central peaks in the right linecuts? Are these problematic to performing joint operations?

Can we engineer joint operations at lower values of gbs? And what are the tradeoffs in doing so?

In the following section, I lay out a simple model (similar to the one developed for alternating

beamsplitter and ancilla pulses) to help answer these questions.

6.2 Interpreting the spectrum

As in Chapter 5, Schwinger’s mapping between bosonic raising and lowering operators and

angular momentum operators (Schwinger, 1952) can provide a useful framework for interpreting

the observed physics, which scales well even as the combined photon number N becomes large.

The combined beamsplitter and dispersive Hamiltonian (see Eq. 5.11) is now supplemented by

an ancilla spectroscopy drive:

Ĥ = Ĥχbs + Ĥspec, (6.2)

where

Ĥspec

ℏ
=
ϵ

2

(
eiϕ |e⟩ ⟨g|+ e−iϕ |g⟩ ⟨e|

)
− δω |e⟩ ⟨e| , (6.3)

where ϵ, ϕ and δω are the amplitude, phase and detuning of this drive. In the spectroscopy data

shown, the strength of the spectroscopy drive |ϵ| is kept small relative to min (gbs, χ) (by using
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a long, frequency-selective pulse) and so Ĥspec can be treated as a perturbation. This leaves

us with an unperturbed Hamiltonian that is the same ancilla-state-dependent Hamiltonian as

in Eq. 5.7. We can write this out explicitly, conditioned on each ancilla state, in terms of the

Schwinger angular momentum operators:

Ĥ(g) =
−N̂∆

2
+ Ωg

(
n̂g · ⃗̂L

)
(6.4)

Ĥ(e) =
−N̂ (∆− χ)

2
+ Ωe

(
n̂e · ⃗̂L

)
(6.5)

Previously, we discovered that looking at the evolution of operators in the Heisenberg picture

was a convenient way of compactly describing the dynamics of bosonic states. However, since

we are after the frequencies and matrix elements of transitions seen in our spectra, in this case

it is more practical to consider the eigenstates in the Schrödinger picture.

6.2.1 Eigenstates and eigenenergies

In the language of angular momenta, the energy eigenstates of the Hamiltonians in Eq. 6.4

and 6.5 are simultaneous eigenstates of two commuting observables: the angular momentum

squared, L̂2, with eigenvalues l(l + 1) ≡ N
2

(
N
2 + 1

)
, and the angular momentum projection

along the n̂ axis, n̂ · ⃗̂L, with eigenvalues m = −l,−(l− 1), . . . ,+l ≡ −N
2 ,−

(
N
2 − 1

)
, . . . ,+N

2 .

The unit vectors n̂g and n̂e (determined by the choice of gbs, φ and ∆) therefore determine

the ancilla-state-dependent quantization axes along which the eigenstates are aligned. The

eigenenergies of these states (labelled by the total photon number, ancilla state and projection

along the quantization axis) can be read off as

E
(g)
N,mg

= −N∆

2
+mg

√
g2bs +∆2, (6.6)

E
(e)
N,me

= −N (∆− χ)

2
+me

√
g2bs + (∆− χ)2. (6.7)

Since N̂ is a conserved quantity, transitions cannot change its value. If we focus our attention

on the N = 1 subspace and apply a ‘symmetric’ detuning ∆ = χ/2, these expressions simplify
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to

E(g) = −χ
4
± |χ|

4

√
1 +

(
2gbs
χ

)2

(6.8)

E(e) = +
χ

4
± |χ|

4

√
1 +

(
2gbs
χ

)2

, (6.9)

which are plotted in Fig. 6.2(a). The eigenenergies display a low-field splitting by χ/2 and a

high-field splitting by gbs, analogous to a Zeeman effect on a magnetic spin-1/2 when a strong

transverse magnetic field is applied. Within each constant-N subspace, we can obtain the

allowed transition frequencies from the differences between the eigenenergies when the ancilla

is in |g⟩ and when then ancilla is in |e⟩:

ωN,mg→me =
Nχ

2
+me

√
g2bs + (∆− χ)2 −mg

√
g2bs +∆2. (6.10)

For a general choice of ∆ this leads to (N + 1)2 unique transition frequencies in the spectra.

However, our intuition had been that a ‘symmetric’ detuning ∆ = χ/2 would mark a special

point and indeed it does. At this choice of the beamsplitter detuning, Ωg = Ωe ≡ Ω and the

expression for the transition frequencies simplifies considerably:

ωN,δm =
Nχ

2
+ δmΩ =

Nχ

2
+ δm

√
g2bs +

(χ
2

)2
, (6.11)

where there are now only 2N+1 transition frequencies, indexed by δm ≡ me−mg = −N, . . . , N .

These predicted transition frequencies, plotted as white dashed lines in Fig. 6.1(c), agree very

well with our measured spectroscopy data (in the regime that |ϵ| ≪ min (gbs, χ)). The smaller

peaks either side of the central peak in the joint-photon number-splitting regime are transitions

for which δm ̸= 0. We can also verify the expressions for the more numerous non-degenerate

transition frequencies when we have a non-symmetric ∆, as shown in Fig. 6.3.

We can try to describe the off-central δm ̸= 0 transitions in the more familiar language of

quantum optics, where we can say that the normal modes of the two coupled oscillators are
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Figure 6.2: Energy levels and transition matrix elements in N = 1 manifold. (a) Energy
level diagram shows two oscillator states (labeled by their eigenvalue m) for each of the two
ancilla states, |g⟩ (solid lines) and |e⟩ (dashed lines). At low |gbs/χ|, the energy levels are split
by χ and transitions with δm = ±1 (orange) are strongest. At high fields, the levels are split
by gbs and the transitions with δm = 0 (pink) are strongest. (b) Measured transition matrix
elements for transitions with δm = −1 and δm = 0, relative to the transition matrix element
for δm = −1 at gbs = 0. Expected value from theory is shown as dashed grey line and are the
same for δm = ±1. (c-d) Example power-Rabi oscillations used to extract transition matrix
elements. (e-f) Geometric picture of angular momentum description. Each cone represents the
state with projection m along the quantization axis n̂ but undetermined projection along the
other two axes. The sphere has radius

√
l(l + 1) =

√
3/2. As gbs/|χ| is increased, n̂g and n̂e

become more aligned, with smaller δθ. Figure modified from de Graaf et al. (2025).
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Figure 6.3: Spectroscopy for non-symmetric detuning ∆ ̸= χ/2. Measured transition fre-
quencies for combined photon number in both cavities N = 1 and a non-symmetric beamsplitter
detuning ∆ = χ. Method used is the same as for Fig. 6.1. Dashed lines show predicted transi-
tion frequencies from Eq. 6.10. Figure modified from de Graaf et al. (2025).

different depending on the state of the ancilla. In the large gbs/|χ| limit, these normal modes are

approximately the symmetric and antisymmetric combinations of the uncoupled cavity modes.

However, since the approximately-symmetric mode when the ancilla is in |g⟩ is not completely

orthogonal to the approximately antisymmetric mode when the ancilla is in |e⟩ (and vice-versa),

exciting the ancilla can also lead to a change in the oscillator state. However, in order to conserve

energy when it does so, the excitation drive needs to make up the frequency difference between

photons living in the symmetric and antisymmetric modes, with a detuning which increases with

increasing coupling strength gbs.

6.2.2 Transition matrix elements

While these expressions accurately capture the frequencies of these transitions, it does not

capture their relative prominence. For example, why is it that only the δm = 0 appear bright in

the joint-photon-number-splitting regime? This requires us to know how the matrix elements of

the these transitions vary with gbs. This is also crucial to being able to construct high-fidelity

operations with simultaneous beamsplitter and ancilla drives.

The transition matrix elements under the action of the spectroscopy Hamiltonian Ĥspec in
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Eq. 6.3 are given by

MN,mg→me = ⟨N,mg; g| ⟨g|
(
ϵeiϕ

2
|g⟩ ⟨e|+ ϵe−iϕ

2
|e⟩ ⟨g|

)
|e⟩ |N,me; e⟩ (6.12)

=
ϵeiϕ

2
⟨N,mg; g|N,me; e⟩ , (6.13)

and are therefore proportional to the state overlap between the initial and final states. The

overlap between two angular momentum eigenstates with angular momentum quantum number

l = N/2, and projections mg and me along two different axes separated by an angle δθ, is given

by the Wigner (small) d-matrix (Wigner, 1931):

⟨N,mg; g|N,me; e⟩ = dN/2
mg ,me

(δθ). (6.14)

For this system, the angle between n̂g and n̂e is given by

δθ = arctan

(
∆

gbs

)
− arctan

(
∆− χ

gbs

)
. (6.15)

For the case shown in Fig. 6.2(a), where N = 1 and ∆ = χ/2, this angle difference is δθ =

2arctan(χ/2gbs). This therefore yields a transition matrix element for the degenerate central

δm = 0 transitions of

|Mδm=0| =
ϵ

2

∣∣∣∣d 1
2
1
2
, 1
2

(δθ)

∣∣∣∣ = ϵ

2

∣∣∣∣d 1
2

− 1
2
,− 1

2

(δθ)

∣∣∣∣
=
ϵ

2
cos

(
δθ

2

)
=
ϵ

2

gbs√
g2bs +

(χ
2

)2 , (6.16)
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and for the off-central δm = ±1 transitions of

|Mδm=±1| =
ϵ

2

∣∣∣∣d 1
2
1
2
,− 1

2

(δθ)

∣∣∣∣ = ϵ

2

∣∣∣∣d 1
2

− 1
2
, 1
2

(δθ)

∣∣∣∣
=
ϵ

2
sin

(
δθ

2

)
=
ϵ

2

∣∣χ
2

∣∣√
g2bs +

(χ
2

)2 . (6.17)

We can compare our predicted expressions to experiment by measuring the ancilla drive

amplitude ϵπ required to perform an ancilla π-pulse, which is inversely proportional to the

transition matrix element, for different transitions, over a range of gbs/|χ| values. The δm = −1

transition is chosen over the δm = +1 transition, since it is further from other transitions,

allowing for a cleaner measurement, but should have the same value.

The experimental sequence consists of a power Rabi experiment, in which we initialize the

system in |g⟩ (|0, 1⟩+ i |1, 0⟩) /
√
2, apply a Tp = 14.8 µs Gaussian transmon pulse with variable

amplitude ϵ, and measuring the transmon state. Example data is shown in Fig. 6.2(c, d).

Fitting these amplitude-oscillations to a sinusoid lets us obtain ϵπ. To obviate the need for an

absolute calibration of the delivered drive amplitude, all measured transition matrix elements

are normalized to the value at gbs = 0 for δm = −1. This measurement requires the transmon

drive frequency to be well-calibrated as the matrix element will be underestimated if the drive

is off-resonance. However, the measurement is not sensitive to SPAM errors, which only affect

the amplitude (not the periodicity) of oscillations.

The extracted transition matrix elements for N = 1 are shown in Fig. 6.2(b), agreeing well

with the predicted values. The reader will notice that the data for the δm = 0 transition does

not continue all the way to gbs = 0. As the transition matrix element decreases towards zero,

an increasingly large ϵ is required to resolve periodicity of the oscillations or, in other words,

the product ϵπTp gets larger and larger. The ability to increase Tp is limited by decoherence on

the ancilla as it approaches T
(ancilla)
2 , and so ϵ must be increased. However, at the point that ϵ

approaches χ, the ancilla drive can no longer be treated as a perturbation to the Hamiltonian
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and the spectrum is modified, with the central transition branching into two separate peaks.

In this example, we can see how at gbs/|χ| = 0 only the δm = ±1 transitions are allowed

and at gbs ≫ |χ| the opposite is the case, and only the δm = 0 transitions are allowed. In

this latter regime, the strong beamsplitter drive polarizes the direction of the ancilla-state-

dependent “angular momentum” (n̂g and n̂e) along the x-axis, reducing the angle, δθ, between

the respective quantization axes (see Fig. 6.2(e-f)). This ensures that eigenstates associated with

the ancilla in |g⟩ or in |e⟩, with the same value of m (or equivalently the dressed eigenmodes),

have ever-increasing overlap. At large gbs we will therefore only see the δm = 0 peaks in the

spectrum, which are separated by χ/2 per total photon in the combined oscillators, providing

mathematical backing for our earlier intuition that the dispersive shift gets ‘shared’ between the

two oscillators in the presence of a strong beamsplitter drive.

6.3 Considerations for joint-photon number measurements

The joint-photon number-splitting spectrum shows that we can excite the ancilla conditioned on

the joint photon number in the two oscillators with an ancilla pulse whose duration Tp ≳ 2π/|χ|.

However, before jumping to a practical realization, there are a few theoretical considerations we

have to bear in mind:

• Is the transition rate the same for all states within each photon-number manifold?

• What gbs is required to avoid unwanted transitions?

• Is the two-oscillator state preserved after the measurement?

6.3.1 Transition rates for N > 1

We can evaluate the first question by considering the Wigner d-matrix elements for the δm = 0

(joint-photon-number-split) transitions. The d-matrix is symmetric under negation of both

indices,

|dN/2
mg ,me

(θ)| = |dN/2
−mg ,−me

(θ)|, (6.18)
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and under exchange of indices

|dN/2
mg ,me

(θ)| = |dN/2
me,mg

(θ)|, (6.19)

However, there is in general no constraint that matrix elements with the same difference between

indices, δm, have the same value. For δm = 0, the closed form expression is

dN/2
m,m(δθ) = cos2m

(
δθ

2

)
P

(0,2m)
N/2−m (cos δθ) , (6.20)

where P
(a,b)
n (x) is the Jacobi polynomial. For N ≤ 3 these are:

d00,0(δθ) = 1,

d
1
2
1
2
, 1
2

(δθ) = cos

(
δθ

2

)
,

d10,0(δθ) = cos (δθ) , d11,1(δθ) = cos2
(
δθ

2

)
,

d
3
2
1
2
, 1
2

(δθ) = cos

(
δθ

2

)
3 cos(δθ)− 1

2
, d

3
2
3
2
, 3
2

= cos3
(
δθ

2

)
, (6.21)

which are plotted in Fig. 6.4.

These expressions show that forN > 1, the ancilla Rabi rate is different for different oscillator

states with the same total photon number. This makes it significantly more challenging to

perform joint-photon number selective measurements for N > 1 - a simple pulse on the ancilla

will not perform a π-pulse for all states in the manifold. One possible solution is to increase gbs

further since in the limit that gbs ≫ |χ|, the expressions converge to 1 for all m. However, for

the gbs we currently have available (see vertical line in Fig. 6.4), the error due to this difference

is still substantial for N > 1. A better solution for N > 1 may be to eschew interpretability

and turn to optimal control pulses. For the remainder of this chapter however, I will consider

the cases N ≤ 1.
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d0
0→0

d1
0→0

d1
1→1

d3
3/2→3/2

/2

d3
1/2→1/2

/2

d1
1/2→1/2

/2

Figure 6.4: Theoretical matrix elements for (joint-photon-number-split) δm = 0 transi-
tions. Wigner d-matrix entries (proportional to transition matrix elements) for transitions with
total photon number, N = 0 (black), N = 1 (green), N = 2 (gold) and N = 3 (purple). Transi-
tions are shown for which mg → me is equal to N/2 → N/2 (solid lines) or N/2−1 → N/2−1
(dashed lines), indicating a deviation between the two. Vertical dotted grey line shows the
maximum operating available in this device (|gbs/χ| = 1.92). Note that changing the sign of
both mg and me does not change the magnitude of the matrix element.

6.3.2 Ensuring photon number selectivity

Let us consider a pulse sequence where the beamsplitter drive is ramped instantaneously, such

that gbs/|χ| is constant throughout the pulse. This allows us to use the spectra in Fig. 6.5

as a guide. A long, highly-frequency selective pulse (like the one used to obtain the data) at

δω = Nmeasχ/2 will excite the ancilla if the two oscillators have total photon numberN = Nmeas.

Depending on the highest total photon number we might expect to see in the two oscillators,

Nmax, we will need to choose gbs so that the N = Nmeas transition is sufficiently far detuned

from other transitions with N ≤ Nmax. For example, if I want to ask “is N = 0?” and my

possible input states have N ≤ 2, then gbs should be chosen to avoid the region where the

(N = 2, δm = +1) transition intersects the desired (N = 0, δm = 0) transition. More precisely,
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N
0
1
2

+2

+1

0

‒1

‒2

δm(a) (b)

Figure 6.5: Predicted transition frequencies up to N = 2.(a) Predicted transition frequencies
for N = 0 (black), N = 1 (green) and N = 2 (gold). At |gbs/χ| =

√
3/2, all even (odd) N

transitions lie at even (odd) multiples of |χ|/2, as indicated by the filled (open) blue circles. (b)
A wider-scale view of the same plot, showing the grouping of transition frequencies by δm at
large |gbs/χ|.

we would like these unwanted transitions to be at least |χ|/2 away – further away than the

nearest expected δm = 0 transition. For general N , the value of gbs to exceed to avoid any

further overlaps with unwanted transitions can be obtained from Eq. 6.11:

ωNmax,+1 > ωNmeas,0 −
χ

2
(6.22)

Nmaxχ

2
+

√
g2bs +

(χ
2

)2
>
Nmeasχ

2
− χ

2
(6.23)

→ gbs >
|χ|
2

√
(Nmax −Nmeas + 1)2 − 1 (6.24)

6.3.3 Preserving oscillator states

A key feature of a non-destructive measurement is that eigenstates of the measured observable

are preserved. For example, when I non-destructively measure “is N = 0?”, then states with

N = 0 and states with N ̸= 0 should be preserved after the measurement. In the context of
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error-correction, this allows me to check for errors without perturbing the logical information.

Therefore, beyond ensuring that the ancilla is excited conditioned on N , I also need to choose an

ancilla pulse shape that ensures states return to where they began. This is particularly an issue

because the beamsplitter Hamiltonian continuously exchanges photons between the oscillators.

When the ancilla remains in |g⟩ throughout the measurement (i.e., when N ̸= Nmeas and the

ancilla pulse is long, Tp ≫ 2/|χ|) the oscillator state evolution can be straightforwardly computed

using the operator Bloch sphere picture, undergoing oscillations at a rate Ω =
√
g2bs + (χ/2)2.

This means that oscillator states are returned to their initial states when we satisfy

ΩTp =

√
g2bs +

(χ
2

)2
Tp = 2nbsπ for nbs ∈ Z+. (6.25)

However, for an oscillator state with N = Nmeas, the ancilla continuously transitions from

|g⟩ to |e⟩ during the pulse, and so we cannot compute two individual ancilla-state-dependent

trajectories.

One case where the situation simplifies considerably however, is when Nmeas = 0, since

the state |0, 0⟩ is invariant under the Hamiltonian. As a means of measuring the joint photon

number in two oscillators, the joint-photon-number-splitting approach is therefore best suited

to measurements that ask “is N = 0?”. This is exactly the question we will seek to answer in

Chapter 7 when constructing an erasure check for dual-rail qubits. In this case, Eq. 6.25 is valid

(in the limit Tp ≫ 2/|χ|) and the amplitude of the ancilla π-pulse can be constrained via

∫ Tp

0
ϵ(t)dt = π. (6.26)

As such, for a given pulse shape and duration, there is a single ϵ and a discrete range of gbs

values that satisfy a joint photon number selective measurement. In practice, the finite duration

of the ancilla pulse will slightly modify the values of gbs required, whose experimental calibration

will be discussed in detail in Chapter 7.
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6.4 State trajectories for different pulse shapes

With the considerations of the previous section in mind, we can take a look at how both the

oscillator and ancilla state trajectories evolve for the specific example of a measurement used to

distinguish between N = 0 and N = 1 states, as will be relevant for the erasure check. We will

do so for both a longer chopped Gaussian ancilla pulse shape, as well as a shorter square ancilla

pulse shape.

6.4.1 Gaussian pulses

For a chopped Gaussian pulse of the form

ϵ(t) = A

[
exp

(
−
(t− nchopσ)

2

2σ2

)
− exp

(
−
n2chop
2

)]
for 0 ≤ t ≤ Tp, (6.27)

where σ is the RMS width of the pulse and the pulse duration Tp = 2nchopσ, we can say as

a rough guide that we would like the N = 1 transition at δω = χ/2 to be at least 5 pulse

linewidths detuned from the drive on the N = 0 transition. Given a time-bandwidth product

σ × σf = 1/2, where σf is the frequency bandwidth of the pulse, this corresponds to enforcing

5σf ≤ |χ|
2

(6.28)

→ σ ≥ 5

|χ|
, (6.29)

or equivalently, for nchop = 2, Tp ≥ 20
|χ| =

10
π × 2π

|χ| .

If we saturate this bound, then Eq. 6.25 becomes

∣∣∣∣gbsχ
∣∣∣∣ =

√(nbsπ
10

)2
−
(
1

2

)2

. (6.30)

If we separately enforce the constraint on the beamsplitter amplitude from Eq. 6.24, which for

Nmax = 1 and N = 0 says that |gbs/χ| ≥
√
3/2, we require nbs ≥ 4. In this particular case,

nbs = 4 yields gbs ≈ 1.15|χ|.
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The evolution of the ancilla and oscillator states for this choice of Gaussian pulse are shown

for Fock states with N ≤ Nmax = 1 in Fig. 6.6. These curves indicate both that the joint photon

number information is mapped onto the ancilla state, and that the oscillator states return to

their original states (perhaps up to a correctable phase).

(a)

(b)

(c)

(d)

(e)

(f )

gbs(t) gbs(t)

ε(t)
ε(t)

|0,0⟩

|0,1⟩
|1,0⟩

Figure 6.6: Simulated state trajectories for N = 0 selective measurement. (a) Illustration
of beamsplitter and ancilla pulse amplitudes for a chopped Gaussian ancilla pulse shape. (b)
Simulated ancilla excited state probability Pe during the pulse sequence for cavity input states
|nA, nB⟩, showing that the sequence performs a joint photon number measurement. (c) Prob-
ability of oscillators being in the same state in which they began during the pulse sequence,
showing that they return to their initial states at the end. (d-f) Same plots but for a shorter
square ancilla pulse shape, showing greater deviation from the ancilla |g⟩ state for states with
N = 1.
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6.4.2 Square pulses

So far we have considered relatively long chopped Gaussian pulses that have a narrow linewidth

around the N = 0 transition. However, as we only need to distinguish between N = 0 and

N = 1, a shorter square pulse shape of the form

ϵ(t) = ϵ for 0 ≤ t ≤ Tp (6.31)

is also possible. The constraint on the pulse duration Tp is that in the time the ancilla performs

a π-pulse when N = 0, it must perform nϵ 2π-pulses when N = 1, detuned by χ/2,

√
ϵ2 cos2

(
δθ

2

)
+
(χ
2

)2
= 2nϵϵ (6.32)√(

π

Tp

)2

cos2
(
δθ

2

)
+
(χ
2

)2
=

2nϵπ

Tp
, (6.33)

where

cos2
(
δθ

2

)
=

g2bs

g2bs +
(χ
2

)2 (6.34)

is the correction to the matrix element from Eq. 6.16, and where in the second line I have used

Eq. 6.26. When combining this with Eq. 6.25, we obtain the approximations

Tp ≈ 2π

|χ|
√

4n2ϵ − 1

[
1− 1

4n2bs

]− 1
2

(6.35)

gbs ≈ |χ|

√
n2bs − n2ϵ
4n2ϵ − 1

. (6.36)

These expressions are slightly more precise than those in de Graaf et al. (2025) since they

include the correction to the transition matrix element but they should still not be considered

exact since a) the δm ̸= 0 transitions are still ignored and b) Eq. 6.25 approximates that the

ancilla remains in |g⟩ when N = 1, which is only exactly true for very long pulses. As we

will discuss in Chapter 7 when tuning up these pulses experimentally, a Schrödinger equation

simulation can be used to quickly finetune gbs and Tp near these points.
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For the shortest choice of pulse duration (for nϵ = 1), the smallest non-zero beamsplitter

amplitude occurs for nbs = 2, corresponding to gbs/|χ| ≈ 1, which satisfies the constraint

on gbs for avoiding running into unwanted transitions (Eq. 6.24). This gives a pulse duration

Tp ≈ 1.8 × 2π/|χ|. The ancilla and oscillator state trajectories during this pulse are shown

alongside those for the Gaussian pulse in Fig. 6.6. As we can see, this also effectively enacts the

desired measurement while returning the oscillator states to where they began. There is therefore

flexibility in what pulse shape we use to enact the joint photon number selective measurement,

something we will employ experimentally in Chapter 7.

6.5 Reinterpreting Joint Parity

In this chapter and the previous one, we have seen frameworks to understand operations where

the beamsplitter and ancilla drives alternate (operator Bloch sphere model) and where these

drives occur simultaneously (joint-photon number-splitting spectrum). The two models are not

completely disjoint, however, as we can see by reinterpreting the joint parity measurement in

this new framework.

At |gbs/χ| =
√
3/2, the expression for the transition frequencies (Eq. 6.11) simplifies to

ω
gbs/|χ|=

√
3/2

N,δm =

(
N

2
+ δm

)
χ. (6.37)

For states with N even (odd), the transition frequencies lie at integer (half-integer) multiples

of χ. The two ancilla π/2-pulses, if assumed to be instantaneous, can be expressed in the time

domain as

f(t) ∝ δ

(
t− π

|χ|

)
+ δ

(
t+

π

|χ|

)
(6.38)

and in the frequency domain as

F (ω) ∝ cos

(
πω

|χ|

)
. (6.39)

As such, all the transition frequencies for even (odd) total photon number in the two oscillators

lie at antinodes (nodes) of the pulse frequency spectrum, as can be seen in Fig. 6.5. This



6.6. JOINT-PHOTON NUMBER-SELECTIVE CONTROL 148

therefore excites the ancilla if and only if N is even, as desired.

While we are able to deduce that this sequence measures joint parity, it is not clear from

this framework how the oscillator states are transformed by the measurement, something that

is more naturally expressed in the operator Bloch sphere model.

6.6 Joint-photon number-selective control

Just as ancilla π-pulses conditioned on the photon number in a single oscillator enabled SNAP in

Ch.2.2.2, joint-photon number-selective pulses also allow us to engineer a ‘SNAP-like’ entangling

gate on two oscillators. By choosing the phases of two back-to-back ancilla π-pulses, so that

they enclose a geometric phase on the Bloch sphere of the ancilla, we can choose how much

phase to apply to a single joint-photon number manifold. As was discussed in Ch. 6.3, the pulses

we can most straightforwardly engineer are those conditioned on N = 0 (a manifold containing

only a single state, |0⟩A |0⟩B). In this case, the unitary we can apply is

Û(θ) = eiθ |0⟩A |0⟩B ⟨0|A ⟨0|B . (6.40)

In the case of Fock-encoded qubits in both oscillators, where we encode |0⟩L ≡ |0⟩ and

|1⟩L ≡ |1⟩, this unitary acts as a logical CPHASE(θ) entangling gate on the two encoded

qubits, up to single-qubit rotations and a global phase:

CPHASE(θ) = e−iθ
[(
eiθ|1⟩L⟨1|L

)
A
⊗
(
eiθ|1⟩L⟨1|L

)
B

]
Û(θ). (6.41)

As an extension, when these two oscillators each play the role of half of a dual-rail qubit (as in

Fig. 6.7(a)), where |0⟩L = |0⟩A |1⟩B and |1⟩L = |1⟩A |0⟩B, a CPHASE(θ) on these two central

oscillators also acts as a CPHASE(θ) on the encoded dual-rail qubits.

We can demonstrate the operation on Fock qubits in our two-cavity system, using the pulse

sequence shown in Fig. 6.7(b), where the joint-photon-number selective ancilla π-pulses are

implemented using two chopped Gaussian pulses with the same frequency detuning δω = 0,
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Figure 6.7: Implementation of a beamsplitter-enabled CPHASE(θ) gate on Fock qubits.
(a) Illustration of two adjacent dual-rail cavity qubits, with beamsplitter couplings enabled by
SNAILs. The orange and blue circles represent λ/4 post cavities viewed from above. The
experimental setup used here (within the dashed lines) can be used to operate a gate between
these two hypothetical encoded dual-rail qubits. (b) Pulse sequence used for the CPHASE(θ)
gate, with the two ancilla pulses applied with a phase differing by ϕ. (c) Simulated ancilla Bloch
sphere trajectories during the pulse sequence in (b), conditioned on the photon number in each
cavity. The finite duration of the ancilla pulses mean it is very slightly excited out of the ground
state for non-|0, 0⟩ states. (d) Ramsey sequence used to probe the phase acquired by Bob’s
oscillator, conditioned on the logical state in Alice. Optimal control theory (OCT) pulses are
used to map a superposition state from the ancilla onto Bob’s oscillator, and to map the final
Bob superposition back onto the ancilla at the end. The initial and final π/2-pulses differ by
a phase φ. (e) Results of Ramsey experiment to probe the phase acquired by Bob’s oscillator
during the CPHASE(θ) gate with θ = π/2 (red) and θ = π (blue, CZ), when Alice oscillator
state is initialized in |0⟩ (connected squares) and in |1⟩ (connected dots). Figure reproduced
from de Graaf et al. (2025).

but with a phase difference ϕ. The beamsplitter amplitude gbs ≈ 1.6|χ| (shown as a triangle in

Fig. 6.1(c)) is chosen to avoid transmon transitions in either the N = 1 or N = 2 joint-photon-

number manifolds. This is required since |1, 1⟩ (with joint photon number N = 2) is a valid

input state.

The simulated ancilla Bloch sphere trajectories during this pulse sequence, conditioned on

the two-cavity state, are shown for the case θ = π (a CZ gate) in Fig. 6.7(c). The two large



6.6. JOINT-PHOTON NUMBER-SELECTIVE CONTROL 150

semicircles of the |0⟩A |0⟩B trajectory make an angle π − ϕ at their intersection, imparting a

geometric phase on the state. Owing to the finite duration of the ancilla π-pulses, the ancilla is

very slightly excited out of its ground state during the sequence for non-|0⟩A |0⟩B cavity states

(although it does return to |g⟩). Unlike in the idealized case of Eq. 6.40, the states |0⟩A |1⟩B,

|1⟩A |0⟩B and |1⟩A |1⟩B do therefore acquire some geometric phase. However, these phases

can be straightforwardly corrected via local rotations on each oscillator to obtain the desired

CPHASE(θ) operation.

We can verify the operation of the CPHASE(θ) using the circuit shown in Fig. 6.7(d), where

the phase acquired by Bob’s oscillator, conditioned on the state in Alice’s oscillator, is measured

using a Ramsey sequence. First, we prepare either |0⟩L |+⟩L or |1⟩L |+⟩L in the oscillators, where

|+⟩L = (|0⟩L+ |1⟩L)/
√
2. This logical superposition state in Bob is initialized by first preparing

a (|g⟩+ |e⟩)/
√
2 superposition in the ancilla before using an ‘encode’ OCT pulse which maps the

ancilla state onto the oscillator (Heeres et al., 2015). Next, we apply the CPHASE(θ) using the

sequence in Fig. 6.7(b), before reading out the ancilla state to verify that it has returned to |g⟩.

Post-selecting on measuring |g⟩ catches some of the ancilla errors that occur during or before

the CPHASE(θ), and is required to ensure the subsequent measurement is accurate. Finally,

we measure the phase of the superposition state in Bob’s oscillator by applying a ‘decode’ OCT

pulse, which maps the state back onto the ancilla, before measuring the phase of the ancilla

superposition by applying a π/2-pulse with a variable phase φ and reading out its state.

The results of this experiment (shown in Fig. 6.7(e) for θ = π/2 (red) and θ = π (blue))

show our ability to apply a tunable phase on Bob, conditioned on the logical state in Alice.

The phase offset of the oscillations in the ancilla population, Pe, encode the final phase of

Bob’s superposition. When Alice is initialized in |1⟩, the phase oscillations are independent of θ,

indicating that the phase on Bob is independent of θ. However, when Alice is initialized in |0⟩,

we are able to change the phase on Bob, as evidenced by the leftwards shift of the oscillations.

Comparing the two blue (or red) curves shows that a phase of θ = π (or π/2) is imparted to

Bob, conditioned on the state of Alice, hence demonstrating a CZ (or CPHASE(θ/2)) gate. The

loss in measurement contrast is predominantly set by transmon SPAM errors and cavity photon



6.6. JOINT-PHOTON NUMBER-SELECTIVE CONTROL 151

loss during the OCT ’encode’ and ’decode’ pulses.

In evaluating the utility of this protocol for error-correction, we are less interested in SPAM

errors than the impact of transmon errors during the CPHASE itself. Just as we did for the

joint-parity measurement, we can look to the tricks of Ch. 2.2.3 for ways to flag these errors.

Replacing the |g⟩-|e⟩ ancilla with a |g⟩-|f⟩ ancilla allows us to catch relaxation errors, as usual.

However, key to the fault-tolerant SNAP protocol was the ‘equal-latitude’ condition – the fact

that the ancilla was equally likely to be found in |e⟩ for any oscillator state. This condition

is violated for this version of joint-SNAP, as can be seen from the trajectories in Fig. 6.7(c),

and so makes the protocol vulnerable to transmon dephasing errors. Performing simultaneous

joint-photon-number-selective pulses on multiple number peaks would fix this issue but, as seen

in Ch. 6.3, is currently technically challenging.

A similar ‘SNAP-like’ two-mode gate acting on the N = 0 manifold can also be achieved

using a ‘Y-mon’ architecture where a transmon ancilla has a static dispersive coupling to both

oscillator modes (Xu et al., 2020). The similarity between these two approaches highlights how

a strong tunable beamsplitter can dynamically generate a dispersive coupling between an ancilla

and two oscillator modes, with matched χs, despite the ancilla being only statically coupled to

one mode.

6.6.1 Completing a two-mode analog of the dispersive toolbox

In Chapter 2, we introduced a toolbox of single-oscillator measurements and gates enabled by

photon-number-splitting – the regime in which the dispersive shift greatly exceeds the ancilla

decoherence rate, χ ≫ 1/T ancilla
2 , and individual oscillator photon number peaks could be

resolved in spectroscopy. This (partial) toolbox included the parity measurement, photon number

selective measurement, and the SNAP gate. In this chapter, we have shown that there is an

analogous joint-photon-number-splitting regime when gbs ≈ |χ| ≫ 1/T ancilla
2 and spectroscopy

reveals peaks corresponding to a fixed total photon number in two oscillators. In this regime,

the two-oscillator analogs of our dispersive toolbox can be found by taking the regular single-

oscillator sequences, doubling their duration and simultaneously applying a beamsplitter drive
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with a detuning ∆ = χ/2 throughout. This mapping is summarized in Fig. 6.8.

In the next chapter, we will compare how useful the two measurements in this toolbox are

at performing a mid-circuit erasure check - a key element of the dual-rail cavity qubit (Teoh

et al., 2023).



6.6. JOINT-PHOTON NUMBER-SELECTIVE CONTROL 153

|0⟩

|1⟩

|2⟩

|3⟩

.  .
  .

|0⟩

|1⟩

|2⟩

|3⟩

.  .
  .

eiθ0|0⟩

|1⟩

|2⟩

|3⟩

.  .
  .

eiθ2

eiθ1

eiθ3

parity
measurement

photon number
measurement

photon-number-
dependent phase

χ

photon 
number-splitting

|0,0⟩

|1,0⟩ |0,1⟩

|2,0⟩ |1,1⟩ |0,2⟩

|3,0⟩ |2,1⟩ |1,2⟩ |0,3⟩

.  .
  .

.  .
  .

|0,0⟩

|1,0⟩ |0,1⟩

|2,0⟩ |1,1⟩ |0,2⟩

|3,0⟩ |2,1⟩ |1,2⟩ |0,3⟩

.  .
  .

.  .
  .

|0,0⟩

|1,0⟩ |0,1⟩

|2,0⟩ |1,1⟩ |0,2⟩

|3,0⟩ |2,1⟩ |1,2⟩ |0,3⟩

.  .
  .

.  .
  .

eiθ0

joint parity
measurement

joint photon number
measurement

joint-photon-number-
dependent phase

gbs ≈ χ

joint-photon 
number-splitting

Figure 6.8: Mapping between single-oscillator and multi-oscillator control techniques.
Top row: partial toolbox of single-oscillator measurements and controls enabled by a dispersively
coupled ancilla in the ‘photon number-splitting’ regime. Bottom row: multi-oscillator analogs of
the single-oscillator techniques enabled by applying a strong beamsplitter interaction (gbs ≈ χ)
during the operation. These operations act on manifolds of states with the same joint photon
number N . As we have seen, the multi-oscillator versions of the photon number measurement
and SNAP gate are most straightforwardly implemented on the N = 0 manifold.



Chapter 7

A hardware-efficient erasure check for

dual-rail qubits

The thrust of this thesis has been to provide tools for Gaussian and non-Gaussian operations

on pairs of bosonic modes, with a view to creating a network of these modes connected by

beamsplitters. In this culminating chapter, I will showcase an application that crucially relies

on these elements, namely mid-circuit erasure detection (MCED) – a vital operation for the

dual-rail bosonic code.

I will start by providing the salient details regarding the role of the erasure check in the

cavity dual-rail encoding (Teoh et al., 2023). Authoritative sources on the dual-rail code can be

found in Kubica et al. (2023) and the thesis by Teoh (2023), which covers the theory in more

substantial detail. The brief summary here will allow us to evaluate the ideal method to use for

the erasure check before diving into the experimental implementation.

7.1 The role of an erasure check

The threshold theorem (Knill et al., 1998), which lies at the heart of quantum error correction,

states that if physical error rates pphysical fall below some threshold pthreshold (determined by

the error-correction scheme employed) then one can achieve arbitrarily low logical error rates by

154
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increasing the number of qubits used to encode the information (quantified by the code distance,

d) (Nielsen and Chuang, 2010). This statement can be summarized by the following heuristic:

plogical ∝
(
pphysical
pthreshold

) d+1
2

. (7.1)

This expression motivates the search for higher-fidelity operations (reducing pphysical substantially

below pthreshold) and large code distances d (or equivalently the number of physical qubits used to

encode a single logical qubit). For circuit-level unbiased noise on qubits encoded in a 2D surface

code (Bravyi and Kitaev, 1998; Kitaev, 2003), pthreshold ≈ 1% (Fowler et al., 2012; Wang et al.,

2010), depending on the choice of decoder and noise model. This value lies slightly above state-

of-the-art error rates for superconducting qubits, with exciting recent work demonstrating that

it is possible to suppress plogical with increasing d for a system of 101 physical qubits (Acharya

et al., 2024)1.

While this effort puts the onus on reducing pphysical, a parallel effort is focused on increasing

pthreshold. This requires the noise to possess some structure or bias, so that it introduces less

entropy to the system per error. Schrödinger cat qubits (Cochrane et al., 1999; Guillaud and

Mirrahimi, 2019; Mirrahimi et al., 2014; Puri et al., 2017), with their strong bias towards

phase-flips (Z-type errors) over bit-flips (X-type errors), are a classic example of this. Besides

having biased noise, it is also necessary to adapt the error correction scheme to make use of

this information. Whereas the traditional square 2D surface code devotes equal resources to

correcting X- and Z-type errors, modified surface codes (Tuckett et al., 2018, 2020, 2019), such

as the XZZX code (Bonilla Ataides et al., 2021; Xu et al., 2022), can be designed to tolerate

more of the dominant error type while tolerating fewer of the rarer error type, thereby yielding a

higher overall error threshold. In the infinite-noise-bias limit, the XZZX code becomes a classical

repetition code, where the 2D code collapses to a 1D line, only correcting for one type of Pauli

error at all. This yields a code-capacity threshold of 50% (Girvin, 2023).

1These experiments were performed on up to a d = 7 system where 72 = 49 ‘data‘ qubits stored the logical
information, 72−1 = 48 ‘measure’ qubits detected errors on the data qubits, and an additional 4 ‘leakage removal’
qubits were used to mitigate leakage out of the |g⟩ − |e⟩ manifold.
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Erasure qubits (Grassl et al., 1997; Kubica et al., 2023) provide another form of noise

structure that can be exploited, as their noise is dominated by detectable leakage errors to

known states outside of the logical subspace of the encoded qubit. Detecting these leakage

errors and subsequently resetting the qubit to any state on the logical Bloch sphere converts

these errors to erasure errors. This generates, with some probability, a Pauli error (since we

have no way of knowing if we reset the qubit to the correct state) but also flags the specific

physical qubit on which the erasure qubit occurred and the time-step at which it occurred. The

operation which detects leakage errors in a way that does not perturb un-leaked states is known

as mid-circuit erasure detection (MCED), or an erasure check.

In the context of the surface code, the most cautious approach is to perform MCEDs after

every two-qubit gate2. In this case, at the end of each error-correction cycle (consisting of

four rounds of two-qubit gates and MCEDs and a single round of stabilizer measurements), the

decoder used to determine which correcting operations to perform on the surface code qubits

has access to the results of all the usual syndrome measurements plus the time and location of

all erasure errors. This extra information makes the job of decoding to find the correct recovery

operation much easier. This is reflected in a higher pthreshold (Barrett and Stace, 2010; Delfosse

and Zémor, 2020; Kang et al., 2023; Stace et al., 2009), with for example pthreshold = 4.15%

found for circuit-level noise with an erasure fraction, Re = perasure/(perasure+pPauli) = 98% (Wu

et al., 2022). Systems where the erasures themselves are biased, coming predominantly from

one of the qubit states, present the opportunity to reach even higher thresholds (Sahay et al.,

2023).

Not only is pthreshold increased, but for a code where erasures are the only form of error, and

we have perfect detection, the heuristic for the logical error rate from Eq. 7.1 now scales as

plogical ∝
(
perasure
pthreshold

)d

, (7.2)

2Optimizing the frequency of MCEDs is the subject of a recent work by Gu et al. (2024). They find that
checking after every two-qubit gate is optimal for large erasure bias, but that with moderate bias and measurement
errors, checking after every other gate performs better.
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where the exponent is asymptotically twice as large for the same code distance. Erasure qubits

therefore promise much faster suppression of logical errors compared to a qubit with unbiased

Pauli errors occurring at the same rate, at the cost of adding the hardware for erasure detection.

A form of erasure detection that does not introduce extra hardware beyond what is required for

existing qubit operations would therefore be hugely valuable.

As discussed in Chapter 2, a dual-rail qubit encoded in cavities (Teoh et al., 2023) is a type

of erasure qubit as it transforms cavities’ intrinsic noise bias towards relaxation (over dephasing)

into a logical noise bias towards leakage errors to the shared |0, 0⟩ state (over Pauli errors within

the dual-rail code space). An erasure check, which detects whether the cavities are in |0, 0⟩, is

therefore critical to turn a bad, ‘leaky’ qubit into a good erasure qubit. Furthermore, it must be

a mid-circuit (as opposed to end-of-line) erasure check so that the logical state of the encoded

qubit is preserved in the (hopefully likely) event of no leakage.

7.2 MCED failure mechanisms and their implications

In practice, any MCED will be imperfect and introduce its own errors. These can compromise

the advantages of having an erasure qubit in the first place. Different measurement schemes will

be subject to different error mechanisms and so knowing how they impact the job of quantum

error correction is crucial to evaluating their relative performance.

The four types of error an MCED can suffer are

• False negatives: an erasure is not flagged when the qubit is in the leakage space,

• False positives: an erasure is flagged when the qubit remains in the code space,

• Leakage: the qubit suffers a leakage error during the MCED,

• Pauli errors: the qubit suffers a Pauli error during the MCED, without flagging an erasure.

These are illustrated in Fig. 7.1.
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Figure 7.1: Types of errors during an MCED. Ideally, the MCED correctly distinguishes
between leakage states (“erasure”) and code states (“no erasure”) without induced any extra
errors (solid grey lines). Failure mechanisms (dashed grey lines) include leakage to |0, 0⟩ during
the measurement (with probability p

(MCED)
leakage ), Pauli errors on code states when no erasure is

flagged (p
(MCED)
Pauli ), false negatives that fail to catch leakage states (pFN), and false positives

that flag erasures when the dual-rail remained in a code state (pFP).

False negatives

A false negative error allows a leakage state to survive for more than one MCED, so that it

is acted on by the subsequent two-qubit gate. In the context of transmon qubits, undetected

leakage to states above |e⟩ has proven to be especially problematic as a single error can propagate

to multiple correlated errors on adjacent qubits when a two-qubit gate is performed (Varbanov

et al., 2020). In this case, the exact leakage state is unknown and so it can be hard to predict

the action of a two-qubit gate on a leaked qubit.

In the dual-rail case, since leakage is predominantly to |0, 0⟩, the propagation of errors is

substantially easier to model. For the ZZ(θ) gate proposed in Tsunoda et al. (2023), leakage

on one qubit leads to Pauli errors corresponding to rotations along a single axis (e.g. either I or

X errors). Not only does this provide a model for leakage propagation, but also a remarkably

simple one. Under the assumption that missed leakage errors do not happen consecutively (i.e.

missed leakage errors are caught at the subsequent MCED – a valid assumption when these

events are relatively rare), this can be modeled simply as an increase in the Pauli error rate, a
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corresponding decrease in the erasure fraction Re and therefore as a decrease in pthreshold (Chang

et al., 2024).

One way to understand the relatively low sensitivity towards false negative errors is to recog-

nize that the frequency of missed leakage errors is the product of the false negative probability

and the (necessarily small) probability of having a leakage state as input to the MCED in the

first place,

pmiss = pFN × pleakage. (7.3)

Given that missed leakage errors (in this two-qubit gate model) only induce Pauli errors half

of the time, pmiss/2 sets the likelihood of suffering a false-negative-induced Pauli error at each

MCED. Provided that this number is less than the existing Pauli error rate in the system, we

can say that the false negative rate is not performance-limiting. This target can be expressed

as

pFN < 2× pPauli
pleakage

. (7.4)

For state-of-the-art cavities, with a typical physical noise bias γϕ/κ ≈ 10%, we expect to see

the same logical noise bias, pPauli/pleakage ≈ 10%. This results in a target for the false negative

rate, pFN < 20%, that is very lenient.

False positives

The impact of false positives depends on the type of (post-erasure-detection) qubit reset that

is available. If the reset is performed via a unitary that maps |0, 0⟩ to somewhere on the Bloch

sphere, it is impossible to also map every logical state to a point on the Bloch sphere. In the

event of a false positive error, the qubit starts in a logical state and the subsequent reset must

have some probability of causing a leakage error, which can in principle be engineered to always

be to |0, 0⟩. In this case, the undetected leakage state can in turn cause Pauli errors in the same

way that missed leakages do. However, unlike for missed leakages there is no small pre-factor

since P (no leakage) ≈ 1. For a unitary reset, we therefore require pFP ≲ pPauli to retain a Pauli

error rate that is set by the intrinsic cavity decoherence – a tight constraint.
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Alternatively, if we have access to an unconditional reset that maps all logical states and |0, 0⟩

to somewhere on the Bloch sphere, then in the event of a false positive, the erasure conversion is

nonetheless performed correctly and it simply adds to the overall erasure rate. Ensuring that this

additional contribution does not dominate sets the approximate (and significantly more relaxed)

constraint that

pFP < pleakage. (7.5)

An unconditional reset, since it is non-unitary, requires some form of dissipation or measurement.

Reset of a dual-rail erasure qubit (unitary or unconditional) has not yet been experimentally

demonstrated. For the purposes of this chapter, I will optimize the MCED assuming access to

an unconditional reset, but the measurement scheme could be adapted to penalize false positives

more severely, as would be necessary with a unitary reset.

Leakage

This category describes all leakage to the ground state during the MCED, including leakage

due to the intrinsic relaxation rate of the cavities, and need not imply any enhancement of

cavity decoherence during the measurement. Since leakage sets the bulk of the physical errors

in Eq. 7.2, they should ideally be kept small relative to the threshold value,

p
(MCED)
leakage ≪ pthreshold (7.6)

.

Pauli errors

The rate of Pauli errors occurring during the MCED, p
(MCED)
Pauli , can be broken down into

two sources: underlying cavity errors during the course of the measurement, with probabil-

ity p
(intrinsic)
Pauli , and transmon errors which are not flagged as erasures, with probability p

(transmon)
Pauli .

The combined error rate must be kept to a level that preserves the hierarchy of rates (p
(MCED)
Pauli ≪
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p
(MCED)
leakage ) that gives the erasure qubit its benefit. Satisfying

p
(transmon)
Pauli ≲ p

(intrinsic)
Pauli (7.7)

ensures that the erasure fraction Re is not significantly compromised relative to its idling value,

which in turn keeps pthreshold as close as possible to its theoretical maximum value3.

Synthesis

Ultimately, while I have provided guides for each of these four quantities, they cannot be opti-

mized independently. A holistic optimization should minimize the quantity of interest for error

correction,

pphysical
pthreshold

=
pleakage + pFP + pPauli
pthreshold(Re, pFN)

≈
pleakage + pFP

pthreshold (Re, pFN)
, (7.8)

where in the final approximation we have used the fact that pPauli ≪ pleakage. A key takeaway

is that false negatives are much less harmful than false positives. For example, if we use

pleakage = 1% and pPauli = 0.1%, a false positive rate pFP = 1% doubles the fraction above,

whereas a false negative rate pFN = 1% yields a negligible additional Pauli error probability

pmiss
2 = 5× 10−5, with a corresponding negligible impact on the threshold and therefore on the

figure-of-merit.

7.3 Choosing a measurement scheme

In our multimode control toolbox (Fig. 6.8) there are two schemes that both enact a mid-circuit

measurement that distinguishes the leakage state |0, 0⟩ from the code space: the error-detected

joint photon number parity measurement (see Ch. 5) and the joint photon number measurement

(see Ch. 6) – specifically for joint photon number N = 0. With the lessons from the previous

section, we can evaluate which approach is better suited to the task.

3One caveat is that, per Wu et al. (2022) and Chang et al. (2024), it appears there is very little increase in either
pthreshold or the effective code distance deff (i.e. the exponent in Eqs. 7.1) beyond Re > 0.99. Therefore, if the

intrinsic bias is extremely large, e.g. Re ≥ 0.999, it would be fine to tolerate 100×pleakage ≳ p
(transmon)
Pauli > p

(intrinsic)
Pauli .
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7.3.1 Assessing the suitability of a joint-parity measurement

The fully error-detected joint-parity measurement (see Ch. 5.5), using a three-level ancilla and

two rounds of measurements, has the advantage that all transmon errors (both dephasing and

relaxation) can be detected to first order and distinguished from one another. Thus, ancilla

errors can be converted to erasures by resetting the ancilla to |g⟩. This ensures that Pauli errors

induced by transmon decoherence and false negative errors are both suppressed to first order,

with a residual error rate that scales quadratically with the transmon error rate. This yields

increasingly large reductions in these error rates with reductions in transmon decoherence.

This protection comes at the cost of a large number of false positives due to each flagged

ancilla error4. Not only do all ancilla errors lead to false positives, but the decay and dephasing

rates for a |g⟩ − |f⟩ transmon are typically higher than for a |g⟩ − |e⟩ transmon. These two

qubits are sensitive to noise at different frequencies (Schoelkopf et al., 2003), but as a rough

guide we can assume the same scaling seen in a linear oscillator, where 1/T f→e
1 = 2/T e→g

1 and

1/T gf
ϕ = 4/T ge

ϕ . While χgf ≈ 2χge, in principle allowing the mapping to proceed twice as fast,

this would also require a two-fold increase in gbs, to a level inaccessible in this experiment. For

a fairer comparison, I have therefore simulated for the same χge = χgf , under the assumption

that whatever scheme is chosen, one is able to adjust χ to use the same gbs in both cases.

If we take these assumptions, along with the transmon decoherence rates in Table A.2, we

can perform a Lindblad master equation simulation (using QuTip (Johansson et al., 2013), as

we do for all Lindblad master equation simulations in this thesis) of an idealized joint-parity

measurement (with infinitely-short ramp times, no delays required to account for ancilla-state-

dependent phases and no readout errors). The resulting induced Pauli error rate due to transmon

decoherence alone p
(transmon)
Pauli = 0.010% is around an order of magnitude lower than the expected

background due to idling errors, p
(intrinsic)
Pauli . However, the false positive rate, pFP = 10.8%, is

high and would require substantial improvements to transmon coherence to bring much below

the level of pthreshold.

4The term ‘false positive’ is a bit of a misnomer here since the measurement is able to distinguish between
erasures due to ancilla errors and those due to leakage. However, they are still extra erasures not due to leakage
errors and so, in the context of the preceding analysis, should be considered part of pFP.
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One way to reduce pFP is to compromise on error-detectability of ancilla dephasing errors

and perform just a single joint parity measurement. This halves pFP (as well as p
(MCED)
Pauli and

p
(MCED)
leakage ) and does so at the expense of a higher pFN, to which we have seen we are much less

sensitive. Provided that the resulting false negative rate satisfies Eq. 7.4, this is therefore a

good trade-off to make. The simulated values for this single-round scheme are shown in the

rightmost column of Table 7.1.

We can additionally consider compromising on error-detectability of ancilla relaxation errors

and revert to using the |g⟩−|e⟩ manifold. This more than halves pFP but sacrifices the first-order

protection against transmon-induced Pauli errors, with a significant increase in p
(transmon)
Pauli . How-

ever, if this remains less than p
(intrinsic)
Pauli (per Eq. 7.7), this could present a tolerable way to reduce

the overall erasure rate. We should note that while the simulations employ an infinite-bandwidth

instantaneously-ramped beamsplitter pulse, bandwidth constraints (discussed in Ch. 5.3.1) ne-

cessitate the use of either OCT pulse shaping of gbs (to ensure the joint parity map completes in

2π/|χ| with the correct acquired phases) or delays (which double the duration of the joint-parity

map to 4π/|χ|).

Having considered the different possibilities with a joint parity measurement, can a joint

photon number measurement do better?

7.3.2 Evaluating joint photon number selective measurements

What the joint photon number selective (JPNS) measurement can exploit, that none of the joint

parity schemes do, is the asymmetry between our sensitivity to false positive and false negative

errors. During the joint-parity map, the ancilla state lies on the equator of its Bloch sphere

throughout, yielding false negatives and false positives in equal amounts5. However, a JPNS

measurement only excites the ancilla out of |g⟩ when N = 0, an already rare event. Since a

transmon in |g⟩ is immune to relaxation and dephasing errors, the result is a bias towards fewer

false positives and more false negatives, as desired.

The strength of this bias is set by the shape of the transmon pulse. The longer (and

5During the readout portion of the measurement this is not the case, with the ancilla in |e⟩ for leakage states
and |g⟩ for non-leaked states. This leads to a bias towards false negatives during the readout portion.



7.3. CHOOSING A MEASUREMENT SCHEME 164

Joint-photon-number Joint-parity
|g⟩ − |e⟩ |g⟩ − |f⟩ |g⟩ − |e⟩ |g⟩ − |f⟩

pFP 0.61% 2.92% 1.40% 5.43%

p
(transmon)
Pauli 0.16% 0.10% 0.23% 0.0048%

Table 7.1: Simulated MCED error rates due to transmon decoherence. Simulated false
positive and induced Pauli error rates for two MCED schemes due to transmon relaxation and
dephasing only, using the experimentally obtained system coherences. Both schemes are com-
pared using a |g⟩ − |e⟩ and a |g⟩ − |f⟩ transmon ancilla, where I keep χ fixed in each case.
Both schemes use just a single measurement round – for two rounds, simply double the num-
bers above. Finite bandwidth and ancilla heating are not considered for the purposes of this
simulation. For the joint-photon-number measurement scheme, a square transmon pulse shape
of duration Tp = 1.7 µs is used.

smoother) the transmon pulse, the narrower its frequency linewidth relative to |χ/2|, the sep-

aration between the N = 0 and N = 1 peaks in the joint-photon-number splitting regime

(see Fig. 6.5). This results in the ancilla state deviating less from |g⟩ during the pulse for a

non-leaked input state (with N = 1), as we saw in Ch. 6.4. At the same time, for a leakage

state input |0, 0⟩, a longer π-pulse provides more opportunity for ancilla errors to induce false

negative errors. In order to evaluate the suitability of a joint-photon number measurement, it is

therefore worth considering different pulse shapes.

It is not immediately obvious that reducing the deviation from |g⟩ while also extending the

duration of the pulse leads to lower false positive rates. To verify this, we can simulate pFP for

joint photon number measurements using square transmon pulses of varying duration Tp. We

measure the probability of finding the ancilla in |e⟩, given that it was initialized in |ψ⟩L ⊗ |g⟩,

averaged over all six cardinal states on the dual-rail Bloch sphere |ψ⟩L. For each choice of

Tp, we can measure pFP while sweeping either the transmon dephasing rate Γϕ,t or transmon

relaxation rate Γ1,t (with no other sources of decoherence). The slopes of these lines (shown in

Fig. 7.2(a, c) for pulse duration Tp = 1.8× 2π/|χ|) show the (linear) susceptibility to each kind

of transmon decoherence. Comparing these values across a range of pulse durations confirms

that the number of false positive errors due transmon dephasing or relaxation errors decreases

with increasing pulse length. The black dashed line in Fig. 7.2(b, d) show a 1/x and 1/x3 fit

(respectively) to the final three points, suggesting approximate relationships (for square-shaped
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Figure 7.2: Simulated false positive rate due to ancilla errors during joint photon number
measurement. (a) Simulated false positive rate pFP as a function of transmon dephasing rate
Γϕ,t (normalized to 2π/|χ|) when only transmon dephasing is included as a collapse operator,
for a square transmon pulse of duration Tp = 1.8 µs. Dashed line shows a quadratic fit whose
slope captures the linear susceptibility to transmon dephasing errors. (b) Fitted susceptibility to
transmon dephasing errors, as a function of Tp, showing a decrease with longer pulse lengths.
Dashed line shows an inverse linear fit to the final three points. (c-d) Same analysis performed
for transmon relaxation errors, where the dashed line in (d) is now an inverse cubic fit. Figure
reproduced with permission from de Graaf et al. (2025).

pulses, at least) of the form

pdephasingFP ∝
Γϕ,t

χ
(Tpχ)

−1 prelaxationFP ∝ Γ1,t

χ
(Tpχ)

−3 . (7.9)

Provided that gbs ≳ |χ|, the choice of gbs has a negligible impact on the erasure rate.

An additional vital consideration is how transmon errors propagate to Pauli errors on the dual-

rail qubit. This scheme does not use a three-level ancilla, nor is the latitude of the transmon state

on the Bloch sphere independent of the dual-rail state (c.f. fault-tolerant SNAP in Ch. 2.2.2),

and so it is not first-order fault-tolerant to either transmon relaxation or dephasing – transmon-

induced Pauli errors will scale linearly with ancilla decoherence rates, e.g. p
transmon)
Pauli = a× Γ1,t

where a is some prefactor. Nonetheless, the fact that the transmon state remains close to

the ground state (for dual-rail logical state inputs) means that this prefactor a can be greatly

suppressed. From the same simulations used to probe pFP, we can also extract p
(transmon)
Pauli ,

post-selected on the transmon being in |g⟩ (indicating no erasure), as shown in Fig. 7.3. As

can be seen in Fig. 7.3(b, e), the susceptibility to transmon relaxation and dephasing rates now
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Figure 7.3: Simulated Pauli error rate due to ancilla errors during joint photon number
measurement. (a) Simulated Pauli error rate pPauli as a function of transmon dephasing rate
Γϕ,t (normalized to 2π/|χ|) when only transmon dephasing is included as a collapse operator,
for a square transmon pulse of duration Tp = 1.8 µs and using a beamsplitter rate gbs = 1.6|χ|.
Dashed line shows a quadratic fit whose slope captures the linear susceptibility to transmon
dephasing errors. (b) Fitted susceptibility to transmon dephasing errors for pulses with varying
|gbs/χ| and varying Tp (indicated by the colors), showing a decrease with larger gbs and larger
Tp. Dashed lines show fits to A× (gbs/χ)

−4 where the offset A is a free parameter. (c) Fitted
offset A for each pulse duration Tp, with an inverse cubic fit to the last three points shown in
black. (d-f) Same analysis performed for transmon relaxation errors, except the fit in (e) is to
A × (gbs/χ)

−2 and the fit in (f) is to an inverse function. Figure reproduced with permission
from de Graaf et al. (2025).

reduces both with increasing Tp and with increasing gbs. Fits to these susceptibilities suggest

approximate relationships (for square-shaped pulses, at least) of the form

pdephasingPauli ∝
Γϕ,t

χ

(
gbs
χ

)−4

(Tpχ)
−3 ∝

(Γϕ,tTp)

(gbsTp)
4 , (7.10)

prelaxationPauli ∝ Γ1,t

χ

(
gbs
χ

)−2

(Tpχ)
−1 ∝ (Γ1,tTp)

(gbsTp)
2 . (7.11)

.

These expressions highlight the benefit of moving to larger gbs, if this can be done without



7.3. CHOOSING A MEASUREMENT SCHEME 167

introducing more decoherence. The reason for this is that as gbs × Tp (related to the number

of beamsplitter oscillations within the pulse) increases, the closer the ancilla trajectories for the

input states |0, 1⟩ and |1, 0⟩ become (see Fig. 6.6). This means that ancilla errors are ‘less able’

to distinguish between the logical states and so propagate to Pauli errors on the dual-rail qubit.

The expressions also highlight the flexibility that the JPNS measurement has to trade-off

our sensitivity to false positive and false negative errors. Switching from a shorter JP scheme to

a longer JPNS scheme allows us to reduce pFP at the expense of greater pFN, and increasing Tp

for the JPNS measurement allows us to further reduce pFP. The ideal point to stop increasing

Tp is once Eq. 7.5 and Eq. 7.7 are satisfied (i.e. pFP < pleakage and p
(transmon)
Pauli < p

(intrinsic)
Pauli )

since beyond this point the intrinsic decoherence of the dual-rail qubit will lead to increasing

pphysical with increasing Tp. Reaching this point (while satisfying Eq. 7.4 for the false negative

rate) ensures that the erasure fraction Re of the MCED is given by its underlying value and not

by ancilla relaxation or dephasing. This therefore guides the ideal duration. In the experimental

system used here, the difference between the ancilla decoherence rate and the measured oscillator

decoherence rates is on the lower end for typical cavity systems. This encourages a shorter square

pulse, since the relative penalty for increasing Tp is greater. (For systems where this gap is on

the higher end, a longer Gaussian pulse might be more appropriate).

The simulated values for a short square pulse (m = 2, n = 1, in the language introduced

in Sec. 6.4) are shown alongside those for a Gaussian pulse in Table 7.1. The |g⟩ − |e⟩ values

immediately stand out as attractive, beating the JP scheme in the |g⟩ − |e⟩ manifold and

providing pFP and p
(transmon)
Pauli below their expected background values. Compared to this, the

JPNS scheme in the |g⟩− |f⟩ is unattractive since it accrues substantial extra false positives for

little gain in the Pauli error rate.

The conclusion is that in the context of quantum error correction, a JPNS measure-

ment should be able to outperform a JP measurement as a mid-circuit erasure check,

offering a lower pphysical/pthreshold. This is therefore the scheme that will be used in the rest of

the chapter. However, there are three main caveats that one should bear in mind:

• Dual-rail heating. Unlike the joint-parity measurement, the joint-photon number mea-
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surement, as described, is unable to reliably catch heating to the N = 2 manifold. While

heating is incredibly rare (less than every 100 ms in a typical dual-rail system), we know

that long-term undetected leakage can be very harmful. This is also true of other im-

plementations of mid-circuit erasure checks (Koottandavida et al., 2024), which I will

discuss later in the chapter. While less straightforward to implement than an “is N = 0?”

measurement, a simultaneous “is N = 2?” measurement could be used to catch heating.

One simplifying factor is that we need not preserve oscillator states in the N = 2 mani-

fold. Alternatively, we could imagine interspersing JPNS erasure checks with occasional,

more-costly JP erasure checks that also serve as leakage reduction units.

• Dual-rail reset Performing a two-round MCED (whether JP or JPNS, with a two- or

three-level ancilla) ensures that the error syndrome for a leakage state input is distinct

from all syndromes for a code state input with a single transmon error. This permits the

use of a unitary reset whereby a single photon is loaded into one of the cavities, without

having to worry if there is still a photon in the other cavity, in which case the reset

excites the dual-rail to the N = 2 leakage space. Switching to a lower-error rate single-

round MCED requires the use of an unconditional reset which is likely more challenging

to implement. If the unconditional reset is especially challenging to implement, pivoting

to a two-round MCED may minimize the overall error rate.

• Non-error-correction contexts. In the context of short-depth circuits where post-

selection rather than error-correction is employed and there is great benefit in having lower

Pauli error rates, an ancilla-error-detected JP measurement may be a better approach.

7.4 Tuning-up a mid-circuit erasure check

In Ch. 6.4, we discussed the ideal case of an N = 0-selective joint photon number measurement

with infinitely fast ramps. Here I will describe the method used to tune-up the pulses in practice,

parts of which are reproduced with permission from (de Graaf et al., 2025).

The first practical change needed is the introduction of ramps on both the beamsplitter drive
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(for the reasons laid out in Ch. 5.3.1) and on the ancilla pulse (in order to prevent coherent

errors from driving the |e⟩ → |f⟩ transition). In both cases, a cosine-ramp is used, taking the

form

gbs(t) =



gbs
2

(
1− cos

(
π t
tbsramp

))
, 0 < t < tbsramp,

gbs, tbsramp ≤ t ≤ Tp − tbsramp,

gbs
2

(
1 + cos

(
π
t−Tp+tbsramp

tbsramp

))
, Tp − tbsramp < t < Tp,

(7.12)

ϵ(t) =



ϵ
2

(
1− cos

(
π
t−tt0
ttramp

))
, tt0 < t < tt0 + ttramp,

ϵ, tt0 + ttramp ≤ t ≤ Tp − tt0 − ttramp,

ϵ
2

(
1 + cos

(
π(t−Tp+tt0+ttramp)

ttramp

))
, Tp − tt0 − ttramp < t < Tp − tt0,

(7.13)

where tbsramp and ttramp are the duration of the beamsplitter and transmon ramps, respectively,

Tp is the full duration of the pulse, and tt0 = tbsramp/2− ttramp/2 marks the start of the transmon

pulse relative to the start of the beamsplitter drive. Setting ttramp = 24 ns ≪ 1/|αt| ensures

no coherent errors due to the transmon |e⟩ → |f⟩ transition. An important consideration,

discovered from optimizing in simulation for zero false-positive errors and Pauli errors in the

absence of decoherence, is that the center (in time) of both the transmon pulse ramps and the

beamsplitter pulse ramps should be aligned – ramping up the beamsplitter drive to gbs first and

then ramping up the transmon pulse leads unavoidably to false positive errors. This is illustrated

in Fig. 7.5(a).

The tune-up procedure consists of the following steps:

1. As in Fig. 4.12, calibrate the following quantities as a function of DAC amplitude:

• beamsplitter amplitude gbs,

• beamsplitter detuning ω∆=χ/2,

• ancilla resonance frequency ωancilla.

Both the difference between the cavity frequencies, and the ancilla resonance frequency
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can be Stark shifted in the presence of the strong beamsplitter drive, and so must be

tracked.

2. Identify the maximum beamsplitter amplitude gmax
bs that can be accessed without intro-

ducing significantly more errors than when idling. Above certain drive amplitudes, one

may see enhanced photon loss, dephasing or heating.

3. Find an initial starting point for the operating parameters: Tp, gbs, ϵ, the beamsplitter drive

frequency ω, and the detuning of the ancilla drive from its undriven resonance frequency

δω. The expressions in Eqs. 6.35-6.36 for the case of infinite pulse bandwidth provide

a reasonable starting point for Tp and gbs, while Eq. 6.26 is exact for a resonant ancilla

pulse.

A more precise starting point can be obtained by performing a Schrödinger equation

simulation which includes the ramp times as well as Stark shifts (i.e., how the ancilla

resonance frequency and ω∆=χ/2 change with pump amplitude) and running gradient

descent optimization using the infidelity of the state transfers

|0, 0, g⟩ → |0, 0, e⟩ , (7.14)

|0, 1, g⟩ → |0, 1, g⟩ , (7.15)

|1, 0, g⟩ → |1, 0, g⟩ (7.16)

as a cost function.

4. Starting with the parameters found above, fine-tune the ancilla drive amplitude ϵ and

detuning δω experimentally by initializing the cavities in |0, 0⟩ and performing the erasure

check. Choose the parameters that maximize the probability of exciting the transmon,

thereby minimizing false negatives. Since the |0, 0⟩ state is unaffected by the beamsplitter

drive, this calibration depends very weakly on changes in gbs in the following step (only

to the extent that the beamsplitter drive Stark shifts ωancilla.)

5. With Tp and ϵ fixed, perform the following experiment while sweeping the values of gbs
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and ω:

(a) Initialize the system in |0, 1, g⟩ or |1, 0, g⟩,

(b) Perform N successive erasure checks,

(c) Perform an erasure-detected logical measurement.

From this single experiment, we obtain three key metrics to maximize:

• Probability of passing N checks when initializing in |0, 1, g⟩,

• Probability of passing N checks when initializing in |1, 0, g⟩,

• Probability of returning to |0, 1, g⟩ when initializing in |0, 1, g⟩, (or equivalently the

probability of returning to |1, 0, g⟩ when initializing in |1, 0, g⟩.

The first two tell us about pFP while the last metric tells us about p
(MCED)
Pauli due to coherent

over-/under-rotation errors. With the optimal choice of Tp, there should be a point in

(gbs, ωdrive) space that maximizes all three, thereby minimizing both false positives and

coherent Pauli errors.

6. If there is no optimal choice for gbs and ωdrive, Tp must be adjusted. If the operating points

that minimized pFP lie at a lower gbs than is required to ensure the dual-rail cavity states

return to where they began, the pulse duration Tp can be increased (and vice-versa). The

previous step can then be repeated.

We can probe whether the pulse duration is set correctly via a spectroscopy experiment.

This involves preparing the cavities in |0, 0⟩, |0, 1⟩ and |1, 0⟩, and performing a single

erasure check with a variable detuning δω on the ancilla pulse. We also post-select on the

total photon number in the two cavities remaining the same after the check to remove

the effect of photon loss or gain. Fig. 7.4 shows the result for the parameters optimized in

this experiment, with the maximum of the |0, 0⟩ peak lining up with the minimum of the

|0, 1⟩ and |1, 0⟩ traces. The frequency at which they line up (indicated with the dashed

vertical line) is the ancilla frequency detuning used for the check.
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Figure 7.4: Square Pulse Spectroscopy. Probability of erasure check reading out |e⟩ as a
function of transmon pulse detuning during the check when initializing the dual-rail qubit in
|0, 0⟩ (black), |0, 1⟩ (blue) or |1, 0⟩ (orange) state. The results are post-selected on the total
photon number in the oscillators remaining the same after the check. Figure reproduced with
permission from (de Graaf et al., 2025)

The slight gap between the peaks of the |0, 1⟩ and |1, 0⟩ curves is expected, even at

∆ = χ/2, and is due to the condition ϵ≪ Ω no longer being strictly met. The assumption

of treating the ancilla drive as a perturbation that causes transitions between eigenstates

with the ancilla in |g⟩ and eigenstates with the ancilla in |e⟩ therefore starts to break down.

If the extrema are not aligned at zero detuning, increasing (decreasing) the duration of the

square pulse allows us to narrow (widen) the spectrum of the curves such that they align.

Doing so will then require re-optimizing gbs and ωdrive in this iterative tune-up scheme.

7. Finally, double-check the calibration of ϵ and δω now that gbs and ωdrive have been

adjusted.

Besides looking in the frequency domain, we can also measure the ancilla trajectories in

the time domain, as we sweep the duration of the applied drive, as shown in Fig. 7.5(b). In

agreement with the simulated plots from Fig. 6.6, we see the ancilla state remain relatively close

to the ground state during its evolution, when initializing in a dual-rail code state.
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Figure 7.5: Measured transmon trajectories for different oscillator states. (a) Pulse se-
quence used to enact the MCED, consisting of cosine-ramped pulses on both the beamsplitter
and transmon, with the centers of the ramps aligned in time. To obtain the trajectories, the flat
portion of both pulses are swept together, with t describing the flat duration of the beamsplitter
pulse. (b) Measured trajectories showing that the leakage state |0, 0⟩ is mapped to the transmon
|e⟩ state, indicating an erasure, whereas the dual-rail states |0, 1⟩ and |1, 0⟩ are mapped to |g⟩
and pass the check. The gap between the |0, 0⟩ curve and 1 at the longest time shown (the
actual pulse duration) is the false negative rate, pFN. Sub-figure (b) modified with permission
from de Graaf et al. (2025).

7.5 Evaluating performance

Having argued that the joint photon number measurement can provide the best MCED in our

system and calibrated it, we can now evaluate how well it performs with respect to the errors

shown in Fig. 7.1.

False negative rate

The false negative rate can be straightforwardly obtained by initializing the cavities in |0, 0⟩,

performing a single MCED and then performing a final destructive end-of-line measurement of

the two-cavity state. Post-selected on finding the cavities in |0, 0⟩6, the probability of measuring

the transmon in |e⟩ gives us the false negative rate pFN = 3.7 ± 0.2%, well below the ∼ 20%

level from Eq. 7.4 at which false negatives start to contribute meaningfully to the Pauli error

rate. To be more precise about this statement, simulations performed by Kathleen Chang (see

6This allows us to separate out the effect of dual-rail heating which occurs incredibly rarely.
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App. F of (de Graaf et al., 2025) for more details), assuming an erasure fraction Re = 0.9 and

an MCED after every two-qubit gate, display an error threshold pthreshold = 3.71± 0.02% with

this pFN, as compared to pthreshold = 3.79 ± 0.02% with perfect erasure detection. This very

small reduction further justifies the decision to opt for a scheme that incurs an increased share

of false negative errors.

False positive and induced leakage rates

We can evaluate the types of error affecting states within the dual-rail code space by preparing

the six cardinal states on the dual-rail Bloch sphere (|±X⟩ , |±Y ⟩ and |±Z⟩), performing 4 ≤

n ≤ 44 successive MCEDs and then measuring the logical dual-rail operators X̂L, ŶL and ẐL

using photon-number-selective measurements on each cavity (see Fig. 7.6(a)). Importantly,

these (destructive) measurements also allow us to distinguish leakage to the |0, 0⟩ state. As in

the case of the cSWAP (see Ch. 5), repeating the measurement acts as a lever arm to more

precisely extract the error rates. The echo YL pulse inserted halfway through the sequence

(whose role will be described when discussing Pauli errors) does not affect either the rate of

leakage or false positive errors.

The overall erasure rate induced per check, pMCED
erasure = p

(MCED)
leakage + pFP, is extracted from

the probability of passing n successive MCEDs, unconditioned on the final measured state of

the cavities, as shown in Fig. 7.6(b). The exponential decay of the success probability yields

p
(MCED)
erasure = 2.92(1)%. To separate out p

(MCED)
leakage , we can separately look at the probability of

finding the cavities in |0, 0⟩, unconditioned on the results of the MCEDs. The exponential decay

of the probability of remaining in the dual-rail code space gives p
(MCED)
leakage = 2.41± 0.02%. This

value is consistent with the one obtained when replacing each MCED with a delay of the same

duration, p
(intrinsic)
leakage = 2.43±0.02%, indicating that the leakage rate is purely due to the intrinsic

cavity errors. Meanwhile, we can extract pFP = p
(MCED)
erasure −p(MCED)

leakage = 0.51±0.02%, slightly below

the value simulated for infinite bandwidth pulses in Table 7.1. We have thus satisfied one of our

goals, of achieving an erasure rate set predominantly by the underlying cavity relaxation, with

far fewer false positive errors than for a joint-parity measurement scheme while also maintaining
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Figure 7.6: Characterizing errors in dual-rail code space. (a) Experimental sequence consists
of initializing cavities in dual-rail code states, performing n successive MCEDs and measuring
X̂L, ŶL and ẐL on the final state. This final (destructive) measurement can also distinguish
leakage to |0, 0⟩, as in Chou et al. (2024) An echo pulse is inserted halfway to subtract the
effect of no-jump backaction arising from post-selecting out leakage in the presence of a large
difference in the cavity lifetimes, which leads to a degradation of dual-rail coherence over long
timescales (but negligible over the course of a single MCED). (b) From the exponential decay
in the probability of passing n successive MCEDs (independent of the final state, and averaged

over all input states and measurement axes), we obtain P
(induced)
erasure per check (purple). Similarly

looking at the probability of measuring |0, 0⟩ at the end (independent of the MCED outcomes),

we obtain p
(induced)
leakage (pink). This is consistent with the same data when idling for the same

duration (grey). The difference between p
(induced)
erasure and p

(induced)
leakage tells us the false positive rate,

pFP, indicating that the erasure rate is dominated by intrinsic cavity errors. (c) The decay in
the measured state fidelity, post-selected on passing n MCEDs (or after n delays of the same
duration) shows us a Pauli error rate that is mostly given by intrinsic cavity errors. Figure
reproduced with permission from de Graaf et al. (2025).
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±X̂L outcomes, post-selected on passing n successive MCEDs, after initializing in |±X⟩L,
following sequence in Fig. 7.6(b-c) Same analysis for |±Y ⟩L and |±Z⟩L. Figure reproduced
with permission from de Graaf et al. (2025).

a false negative rate sufficiently low to have a negligible impact on pthreshold.

Intrinsic and induced Pauli error rates

The results of the tomography experiment also allow us to extract the induced Pauli error rate,

by looking at the probability of remaining in the initialized state at the end of the sequence,

post-selected on passing all of the MCEDs. Looking at the fidelity over many MCEDs allows

us to obtain a good estimate of the single-round MCED fidelity, however one effect that can

complicate this is no-jump backaction. Post-selecting out leakage events when the loss rate

from each cavity is different (as is particularly the case here) deterministically biases the dual-

rail state towards one pole of the Bloch sphere. This reduces the fidelity at long times but its

effect is quadratically suppressed at the short times relevant for a single MCED (Teoh et al.,

2023). In order to remove this effect (for both the idling and MCED data), a single echo pulse is

inserted into the QPT sequence, so that cavity photons initialized in each cavity now experience

the same time-averaged loss rate over the entire pulse sequence. We should note that while

this echo may also remove some of the intrinsic low-frequency dephasing noise on the dual-rail

qubit, dephasing due to transmon errors should be unaffected.

These results are shown in Fig. 7.7, alongside the results when idling for the same duration
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as each MCED, with linear fits showing the reduction in the state fidelity per MCED, for the

|±X⟩L, |±Y ⟩L or |±Z⟩L states7. From the state infidelity averaged over the six cardinal states,

we can extract an induced Pauli error rate after n MCEDs (or idling for the same duration) via

p
(MCED)
Pauli = p(MCED)

x + p(MCED)
y + p(MCED)

z =
3

2
(1− F̄ ), (7.17)

which is shown as function of n in Fig. 7.6(c). From the exponential decay, we find p
(MCED)
Pauli =

0.31 ± 0.01% per MCED, and p
(intrinsic)
Pauli = 0.20 ± 0.01% when idling, and so p

(induced)
Pauli =

0.12± 0.01% captures the excess of Pauli errors beyond those due to the intrinsic decoherence

of the dual-rail qubit. This excess, expected to be due to transmon decoherence, is comparable

to the value simulated for infinite bandwidth pulses in Table 7.1 and less than the value due to

intrinsic dual-rail errors.

Taken together, these results show the ability of this MCED to effectively protect against

transmon decoherence despite not meeting the standard definition of ancilla fault-tolerance.

Both p
(MCED)
erasure and p

(MCED)
Pauli are predominantly set by intrinsic cavity decoherence rates and so

the erasure fraction Re is the same as for the idling dual-rail qubit. Combined with a low pFN,

this means ancilla errors during the MCED do not compromise pthreshold, so that it is still well

above the value for a typical (non-erasure) qubit. Nonetheless, pphysical = 3.23± 0.01% during

the MCED itself is too high to currently enable useful quantum error correction since we must

also add to this the errors from the two-qubit gate, which are likely higher. A question we would

therefore like to answer is how low pphysical could be made if the hardware were brought up to

the state-of-the-art for coherences.

7.6 How good could it get?

We can predict the performance using Lindblad master equation simulations with transmon

coherences T1 = Tϕ = 200 µs and cavity coherences T1,A = T1,B = 1000 µs (Ganjam et al.,

7While the idling dual-rail qubit has a bias against bit-flip errors (since this requires simultaneous relaxation
on one cavity and heating on another), applying the beamsplitter drive during the MCED provides significantly
less biased errors, although it should be emphasized that this bias is not a useful one for dual-rail qubits.
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2024; Oriani et al., 2024; Place et al., 2021). This can be done assuming the same dispersive

shift χ and readout duration τreadout, along with pulse parameters (with no ramp times assumed)

gbs/2π = 1.038 MHz and Tp = 1.699 µs, the closest ideal simulated parameters to those used

in experiment. Dual-rail dephasing, being harder to simulate without a careful characterization

of the noise sources responsible, has not been included.

These simulations predict p
(MCED)
leakage = 0.334% and pFP = 0.164%, offering a lower pphysical

substantially below pthreshold while maintaining an erasure rate that is dominated by intrinsic

cavity relaxation rates. Meanwhile the simulated p
(transmon)
Pauli = 0.035% is not limiting until

the dual-rail dephasing time reaches 10 ms. One factor (besides transmon errors) that starts to

become important at this scale is shot-noise dephasing of the dual-rail qubit due to photons in the

readout resonator during the MCED, given by the usual Eq. 2.47, where the measured linewidth

of the readout resonator κr/2π = 1.77 MHz. The dispersive shift between Bob’s cavity and the

readout resonator, χb,rb , can be estimated (assuming no direct capacitive coupling between the

two) using

χb,rb ≈
χb,tbχb

αt
≈ 2π × 2.5 kHz. (7.18)

Given an average photon number in the readout resonator of n̄ ≈ 10 for a duration of 1 µs,

we obtain pPauli = Γϕ/2 = 0.01% per check. Some form of cloaking (Lledó et al., 2023), to

prevent the cavity from interacting with the readout photons, or dynamical decoupling (Ezzell

et al., 2023), would therefore be necessary to continue improving beyond this point.

Besides improving the mode coherences, the other big benefit will come from reducing the

duration of the MCED. The mapping of the joint photon number onto the transmon state is

limited by the magnitude of χ. We saw in Ch. 2.2.4 that increasing χ/2π > 1 MHz can lead

to unwanted nonlinearity in the cavities, as well as increased dephasing (including thermal shot

noise-induced dephasing due to transmon heating). The dual-rail encoding, with on average 1/2

photon per oscillator is much less sensitive to inherited Kerr nonlinearities than other bosonic

encodings, only feeling the effects during two-qubit gates, where two photons may briefly occupy

a single oscillator at a time. Provided the transmon can be kept cold (to limit shot noise
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dephasing), increasing χ to reduce Tp may therefore be a good strategy. However, gbs would

need to also be increased commensurately. Meanwhile, reducing τreadout requires either increased

n̄ (requiring care to avoid measurement induced state transitions, or MIST, when doing so (Sank

et al., 2016))) or simultaneous increases in the readout linewidth κr (requiring improved Purcell

filtering to avoid compromising the cavity or transmon lifetimes) and χb,rb . Increasing n̄ and

χb,rb both come with increased shot noise induced dephasing of Bob’s cavity, placing a bigger

onus on the cloaking and dynamical decoupling techniques mentioned earlier.

7.7 Comparison to double-post architecture

The dual-rail architecture considered here, with an ancilla statically coupled to just one of the

two oscillators, is not the only possibility. MCEDs have recently been demonstrated using a

double-post cavity (Koottandavida et al., 2024), where the two normal modes comprising the

dual-rail qubit are common and differential excitations at the two posts. A transmon inserted

into the side of this cavity has a static dispersive coupling to both modes, just as in a ‘Y-mon’

architecture, with a frequency spectrum that distinguishes the leakage state |0, 0⟩ from the dual-

rail code states. An MCED therefore only requires a frequency-selective transmon pulse, making

it both easier to calibrate and (in principle) possible to operate simultaneously with single-qubit

gates. However, the integration of a coupler to enable high-fidelity beamsplitter operations

between two modes in the same cavity (for single-qubit gates) or two modes in different cavities

(for two-qubit gates) has yet to be demonstrated in this architecture. Since the two modes

within a dual-rail qubit occupy the same physical space, a coupler bridging between two double-

post cavities would both mediate single-qubit and two-qubit gates (see Fig. 7.8). However, this

also makes this hardware significantly more prone to crosstalk. As identified in Chapters 3 and

4, avoiding unwanted multiphoton transitions is key to enabling a high-fidelity beamsplitter. A

single coupler statically coupled to four cavity modes must therefore take account of multiphoton

transitions involving any of their mode frequencies. Furthermore, each of these cavity modes

is in turn coupled to three other couplers and a transmon, which can participate in the coupler
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(a) (b)

Figure 7.8: Cavity dual-rail architectures. (a) Dual-rail layout presented in this work, with
concentric circles representing single-mode cavities, coupled to SNAIL couplers for beamsplitters
and transmons for nonlinear ancillas. (b) Layout for dual-rail architecture with double-post
cavities, where ellipse containing two circles represents a multimode double-post cavity. Double-
post architecture allows for fewer couplers and simpler MCED calibration, at the expense of
significantly more crosstalk between modes.

Hamiltonian, even if to a weaker degree. The single-post cavity therefore offers better isolation

of the different modes but must incorporate more control complexity in the MCED as a result.



Chapter 8

Conclusions and Outlook

8.1 Summary of results

We started this thesis with a vision for extending the successes of quantum operations on

individual linear oscillators to a network of linear oscillators via the addition of a ‘good’ microwave

switch. What we have seen is that by adapting the Kerr-free nonlinear SNAIL element devised

for parametric amplification to a high-Q environment, it can indeed serve as such a switch. Not

only does it provide for the first time a two-mode beamsplitter rate gbs that exceeds the typical

rate of the dispersive coupling |χ| used to control a single mode, it can do so while maintaining

high levels of coherence and linearity in the pristine oscillators. This new regime where gbs > |χ|

has unlocked higher fidelity versions of existing multi-mode schemes, in the case of cSWAP,

and new schemes entirely, in the form of non-local joint-parity (JP) and joint-photon-number-

selective (JPNS) measurements. In particular, this regime has provided all of the tools necessary

for a surface code of cavity dual-rail qubits, a potential platform for hardware-efficient fault-

tolerant quantum computation. The JPNS measurement is able to perform a mid-circuit erasure

check, the essential ingredient for this new code, detecting photon loss in a pair of oscillators

while remaining blind to the photon number in either oscillator individually, only minimally

perturbing the encoded logical information. Not only do we achieve error rates approaching the

threshold for this code, but remarkably do so with a nonlinear ancilla only statically coupled

181
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to one of the two oscillators, showcasing the ability of a high-fidelity beamsplitter to generate

non-nearest-neighbor interactions in a minimally-connected network with very low crosstalk.

8.2 Possible next steps

When demonstrating a fast cSWAP on cat states with average total photon number of 4, we

saw that even away from the operating point where the cavity-cavity cross-Kerr χab completely

vanished, the SNAIL induced sufficiently low Kerr nonlinearities that the fidelity was instead lim-

ited by the mode coherences. Meanwhile, the mid-circuit erasure detection of a single dual-rail

qubit made use of the increased beamsplitter speed gbs but was insensitive to Kerr terms in the

Hamiltonian. An exciting next step therefore, would be to showcase the SNAIL beamsplitter on

bosonic states with a much larger photon number, where the ability to minimize Kerr nonlinear

terms can be leveraged to a greater extent. Beyond-breakeven error correction has been demon-

strated in many-photon GKP qubits (Sivak et al., 2023) and qudits (Brock et al., 2024), but

performing logical gates would require Gaussian operations, including beamsplitters, with low

self-Kerrs, Ka and Kb, and cross-Kerr, χab (Noh et al., 2022). In this context it is worth asking

what we could do to suppress these terms as far as possible, based on what we have learned

here? How could a future SNAIL-oscillator system be modified to allow for as high a photon

number as possible while retaining the ability to do fast beamsplitters limited by intrinsic cavity

decoherence?

In Ch. 4, we achieved χab = 0 but saw that Ka and Kb were prevented from passing

through zero by the coupled measurement transmon. In principle, with a more weakly-coupled

transmon, Ka and Kb could be nulled by an offsetting contribution from the SNAIL. Indeed, the

introduction of echoed conditional displacement (ECD) (Eickbusch et al., 2022) and conditional

not displacement (CNOD) (Diringer et al., 2024) techniques allow for fast oscillator control

despite a much weaker static transmon coupling. Nonetheless, Ka, Kb and χab are unlikely

to be completely nulled at the same flux point, which may in turn not be the same flux point

that maximizes gbs. Introducing an extra flux loop to the SNAIL to turn it into a gradiometric
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SNAIL (Miano et al., 2022) would allow in-situ independent control of g3 and g4, which could

ease this challenge. A recent alternative to directly coupling a transmon has been to use the

SNAIL itself to provide the single-oscillator control, either by using using it to engineer a non-

Gaussian trisqueezing drive (Eriksson et al., 2024) or by using it as a Kerr-cat qubit ancilla (Ding

et al., 2024). Another alternative would be to use the SNAIL, or another Kerr-free coupler, to

mediate a tunable parametric dispersive coupling to the nonlinear transmon ancilla (Maiti et al.,

2024). All of these alternative approaches have SNAILs (or similar Kerr-free couplers) as the

only element statically coupled to the oscillator.

In order to push the limits of how low the Kerr can be suppressed while maintaining a

large gbs (even when not operating precisely at the Kerr-free point), it would be incredibly

valuable to use a large array of SNAILs, as in an SPA, and apply a much stronger beamsplitter

strength |ξ|. As discovered here, even with a single-pole on-chip filter, driving the beamsplitter

via a capacitively coupled off-chip pin only partially shields the drive from other system modes.

The recent development of drive lines that feed directly onto the chip in a 3D package open

the door to applying more sophisticated multipole filter design (as in, for example, Putterman

et al. (2022)) to isolate strongly coupled drive lines from crosstalk and Purcell loss. Besides

hardware updates, applying Floquet analysis to further understand the limits on gbs and optimize

the frequency stack to avoid multiphoton transitions would greatly help extend the utility of a

SNAIL coupler across a wider range of flux operating points.

Another very important consideration when extending to large photon numbers will be un-

derstanding what limit the SNAIL coupler places on the dephasing inherited by the cavity modes.

A dual-rail qubit provides a useful way of probing this inherited dephasing, since usual qubit noise

spectroscopy techniques (Bylander et al., 2011; Yan et al., 2013) can be used while post-selecting

out photon loss to |0, 0⟩ and, as in the work of Goldblatt et al. (2024) with a single-cavity, also

post-selecting out transmon errors. One theoretical consideration is to establish how events such

as leakage and seepage back into the code space affect the noise spectroscopy dynamics but

thankfully with occasional mid-circuit measurements (more frequently than every T1) it should

be possible to make seepage negligible. Noise spectroscopy would also provide a way to assess
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the viability of an interesting operating point where the SNAIL participation in each dual-rail

mode is equal, pa = pb. At this bias point, both heating of the SNAIL mode and flux noise

in the SNAIL loop (to 1st order) lead to symmetric changes in the oscillator mode frequencies,

such that the dual-rail qubit frequency (ωb − ωa) is unaffected, providing protection against

inherited dephasing.

The existence of several interesting operating points for a SNAIL coupler (its φext = nπ

flux sweet spots, the dual-rail flux sweet spot, Ka = 0, Kb = 0, ∆Stark = 0 and χab = 0,

maximum gbs, to name a few) highlights the utility of incorporating fast flux control, so that

one can optimize the SNAIL for different parts of a quantum circuit – sitting at one operating

point when performing beamsplitters and another when idling, for example. There is also the

question of how to optimize couplers for different parts of a scaled-up multi-coupler system. The

SNAIL offers highly valuable Kerr suppression, but recent SQUID-based couplers have offered

the highest beamsplitter fidelities to date, showing 99.92% fidelity at the expense of signficant

induced Kerr. In the context of dual-rail qubits, where single qubit gates can be performed

without any need to suppress Kerr but where cross-Kerr leads to ZZ errors between adjacent

qubits, a heterogeneous architecture may be ideal, with SQUID couplers connecting cavities

within a dual-rail and SNAIL couplers connecting cavities in adjacent dual-rail qubits.

These considerations could be applied to a proof-of-principle quantum random access mem-

ory (qRAM) (Liu et al., 2023), which has been studied using both Fock-encoded and dual-rail-

encoded qubits (Weiss et al., 2024), and is a vital component for quantum algorithms such as

Grover’s algorithm (Grover, 1996). One key demonstration that is now accessible is to extend

the fast transmon-controlled cSWAP shown in this thesis to a cSWAP controlled on the state

of an encoded bosonic qubit, which can be achieved using a combination of SWAPs and ZZ(θ)

gates based on the joint-parity map shown in Chapter 5. Combining this with a dual-rail mid-

circuit erasure detection (MCED) scheme has been shown to allow for substantially higher query

fidelity, where an efficient scheme with a low total erasure rate (as shown in Chapter 7) greatly

increases the depth of qRAM circuit that can be developed.

Whereas in the context of qRAM, the MCED is used to post-select out data, a key next step
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for dual-rail qubits in the context of the surface code is to demonstrate qubit reset conditioned

on the MCED outcome, to turn leakage detection into erasure conversion. The joint-photon-

number-based MCED shown in this thesis demonstrated far fewer erasures than the initially-

proposed scheme consisting of two consecutive joint-parity measurements with a |g⟩−|f⟩ trans-

mon. However unlike this initial scheme, it does not uniquely identify each error syndrome and

so requires an unconditional (rather than unitary) system reset. One possible approach within

the existing architecture is to do so via a combination of sideband drives to transfer cavity

population into the transmons and active reset of these transmons. Another avenue that could

leverage the SNAIL’s strength as a beamsplitter is to SWAP cavity states into a lossy buffer

mode, similarly to how two-photon dissipation in dissipative cat qubits is generated by using

a parametric interaction between the storage mode and a lossy buffer (Lescanne et al., 2020;

Putterman et al., 2024; Touzard et al., 2018). The ability to incorporate fast flux may then also

be useful if there is a SNAIL bias point where it becomes resonant with the lossy mode, thereby

hastening the evacuation of photons out of the system (Reed et al., 2010).

The final piece of the dual-rail architecture that would be needed before scaling up is demon-

stration of the two-qubit gate. The ZZ(θ) gate of Tsunoda et al. (2023), based on the joint-

parity measurement demonstrated here, provides a way of doing so while detecting all ancilla

errors to first order. However, just as in the case of the measurement, the price paid is a rela-

tively large number of erasures. With improvements in transmon coherences to state-of-the-art

levels, the ZZ(θ) is a viable route, but an interesting question to pursue is whether, inspired

by the MCED presented here, there are alternative gate schemes that are less costly. The

CPHASE gate discussed in Ch. 6, the most direct analogy to the MCED, indeed reduces the

ancilla-induced erasures but is not able to prevent all ancilla dephasing errors from propagating

to dual-rail Pauli errors. Another approach that obviates the need to handle ancilla errors at all

is to use an induced χab within a dual-rail qubit as the requisite nonlinearity for the entangling

gate. A heterogeneous system with large χab within dual-rails and χab = 0 between dual-rails

allows for state-dependent phases to accrue when rails are swapped between adjacent dual-rails

without ever needing to excite the ancilla – requiring very simple controls while also suppressing
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idling ZZ errors. Figuring out how to generate a sufficiently large χab to complete the gate

in a short time without inducing any other unwanted nonlinearities that compromise the beam-

splitter performance is an interesting problem, but the access we now have to many different

kinds of high-fidelity couplers and different coupler operating points makes a much wider range

of entangling operations possible.

As this outlook shows, high-speed and high-fidelity beamsplitter operations find use in all

areas of bosonic quantum information processing. The ability to engineer them and to combine

them with a strong source of nonlinearity in the Josephson junction realizes the requirements of

Chuang and Yamamoto (1995) for building a ’simple quantum computer.’ What those authors

perhaps did not foresee is that it would finally be made possible in a completely different

frequency domain (microwave rather than optical) and hardware platform (standing rather than

propagating modes). As the field of quantum information processing progresses, we can be

hopeful that such cross-pollination of ideas between different sub-fields continues to inspire

future research directions.
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Ahmed, S., C. Sánchez Muñoz, F. Nori, and A. F. Kockum (2021), Phys. Rev. Res. 3, 033278.

Ambegaokar, V., and A. Baratoff (1963), Phys. Rev. Lett. 10, 486.

Arndt, M., O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, and A. Zeilinger (1999),
Nature 401 (6754), 680.

Axline, C. J. (2018), Building Blocks for Modular Circuit QED Quantum Computing, Ph.D.
thesis (Yale University).

Backes, K. M., D. A. Palken, S. A. Kenany, B. M. Brubaker, S. B. Cahn, A. Droster, G. C.
Hilton, S. Ghosh, H. Jackson, S. K. Lamoreaux, A. F. Leder, K. W. Lehnert, S. M. Lewis,
M. Malnou, R. H. Maruyama, N. M. Rapidis, M. Simanovskaia, S. Singh, D. H. Speller,
I. Urdinaran, L. R. Vale, E. C. van Assendelft, K. van Bibber, and H. Wang (2021), Nature
590 (7845), 238.

Barenco, A., A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, and C. Macchiavello (1997),
SIAM Journal on Computing 26 (5), 1541.

Barrett, S. D., and T. M. Stace (2010), Phys. Rev. Lett. 105, 200502.

Baskov, R. (2024), In Preparation.

Bergeal, N., F. Schackert, M. Metcalfe, R. Vijay, V. E. Manucharyan, L. Frunzio, D. E. Prober,
R. J. Schoelkopf, S. M. Girvin, and M. H. Devoret (2010a), Nature 465 (7294), 64.

Bergeal, N., R. Vijay, V. E. Manucharyan, I. Siddiqi, R. J. Schoelkopf, S. M. Girvin, and M. H.
Devoret (2010b), Nature Physics 6 (4), 296.

Berry, M. V. (1984), Proceedings of the Royal Society A 392, 45.

Bertet, P., S. Osnaghi, A. Rauschenbeutel, G. Nogues, A. Auffeves, M. Brune, J. M. Raimond,
and S. Haroche (2001), Nature 411 (6834), 166.

Bonilla Ataides, J. P., D. K. Tuckett, S. D. Bartlett, S. T. Flammia, and B. J. Brown (2021),
Nature Communications 12 (1), 2172.

187

https://arxiv.org/abs/2408.13687
https://arxiv.org/abs/2408.13687
http://arxiv.org/abs/2408.13687
http://dx.doi.org/10.1103/PhysRevResearch.3.033278
http://dx.doi.org/10.1103/PhysRevLett.10.486
http://dx.doi.org/10.1038/44348
http://dx.doi.org/10.1038/s41586-021-03226-7
http://dx.doi.org/10.1038/s41586-021-03226-7
http://dx.doi.org/10.1137/S0097539796302452
http://dx.doi.org/10.1103/PhysRevLett.105.200502
http://dx.doi.org/10.1038/nature09035
http://dx.doi.org/10.1038/nphys1516
http://dx.doi.org/10.1038/35075517
http://dx.doi.org/10.1038/s41467-021-22274-1


BIBLIOGRAPHY 188

Bouchiat, V., D. Vion, P. Joyez, D. Esteve, and M. H. Devoret (1998), Physica Scripta
1998 (T76), 165.

Boyd, R. W. (2008), Nonlinear Optics, Third Edition, 3rd ed. (Academic Press, Inc., USA).

Braginsky, V. B., and F. Y. Khalili (1996), Rev. Mod. Phys. 68, 1.

Bravyi, S. B., and A. Y. Kitaev (1998), “Quantum codes on a lattice with boundary,”
arXiv:quant-ph/9811052 [quant-ph] .

Brock, B. L., S. Singh, A. Eickbusch, V. V. Sivak, A. Z. Ding, L. Frunzio, S. M. Girvin, and M. H.
Devoret (2024), “Quantum error correction of qudits beyond break-even,” arXiv:2409.15065
[quant-ph] .

Brubaker, B. M., L. Zhong, Y. V. Gurevich, S. B. Cahn, S. K. Lamoreaux, M. Simanovskaia,
J. R. Root, S. M. Lewis, S. Al Kenany, K. M. Backes, I. Urdinaran, N. M. Rapidis, T. M.
Shokair, K. A. van Bibber, D. A. Palken, M. Malnou, W. F. Kindel, M. A. Anil, K. W. Lehnert,
and G. Carosi (2017), Phys. Rev. Lett. 118, 061302.

Buhrman, H., R. Cleve, J. Watrous, and R. de Wolf (2001), Physical Review Letters 87 (16),
10.1103/physrevlett.87.167902.

Burkhart, L. D., J. D. Teoh, Y. Zhang, C. J. Axline, L. Frunzio, M. Devoret, L. Jiang, S. Girvin,
and R. Schoelkopf (2021), PRX Quantum 2, 030321.

Bylander, J., S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D. G. Cory, Y. Nakamura,
J.-S. Tsai, and W. D. Oliver (2011), Nature Physics 7 (7), 565.

Cahill, K. E., and R. J. Glauber (1969), Phys. Rev. 177, 1882.

Cai, W., Y. Ma, W. Wang, C.-L. Zou, and L. Sun (2021), Fundamental Research 1 (1), 50.

Campagne-Ibarcq, P., A. Eickbusch, S. Touzard, E. Zalys-Geller, N. E. Frattini, V. V. Sivak,
P. Reinhold, S. Puri, S. Shankar, R. J. Schoelkopf, L. Frunzio, M. Mirrahimi, and M. H.
Devoret (2020), Nature 584 (7821), 368.

Campos, R. A., B. E. A. Saleh, and M. C. Teich (1989), Phys. Rev. A 40, 1371.

Catelani, G., R. J. Schoelkopf, M. H. Devoret, and L. I. Glazman (2011), Phys. Rev. B 84,
064517.

Chang, K., S. Singh, J. Claes, K. Sahay, J. Teoh, and S. Puri (2024), “Surface code with
imperfect erasure checks,” arXiv:2408.00842 [quant-ph] .

Chapman, B. J., S. J. de Graaf, S. H. Xue, Y. Zhang, J. Teoh, J. C. Curtis, T. Tsunoda,
A. Eickbusch, A. P. Read, A. Koottandavida, S. O. Mundhada, L. Frunzio, M. Devoret,
S. Girvin, and R. Schoelkopf (2023), PRX Quantum 4, 020355.

Childs, A. M., H. Fu, D. Leung, Z. Li, M. Ozols, and V. Vyas (2024), “Streaming quantum
state purification,” arXiv:2309.16387 [quant-ph] .

http://dx.doi.org/10.1238/Physica.Topical.076a00165
http://dx.doi.org/10.1238/Physica.Topical.076a00165
http://dx.doi.org/10.1103/RevModPhys.68.1
https://arxiv.org/abs/quant-ph/9811052
https://arxiv.org/abs/quant-ph/9811052
http://arxiv.org/abs/quant-ph/9811052
https://arxiv.org/abs/2409.15065
http://arxiv.org/abs/2409.15065
http://arxiv.org/abs/2409.15065
http://dx.doi.org/10.1103/PhysRevLett.118.061302
http://dx.doi.org/10.1103/physrevlett.87.167902
http://dx.doi.org/10.1103/physrevlett.87.167902
http://dx.doi.org/10.1103/PRXQuantum.2.030321
http://dx.doi.org/10.1103/PhysRev.177.1882
http://dx.doi.org/https://doi.org/10.1016/j.fmre.2020.12.006
http://dx.doi.org/10.1038/s41586-020-2603-3
http://dx.doi.org/10.1103/PhysRevA.40.1371
http://dx.doi.org/10.1103/PhysRevB.84.064517
http://dx.doi.org/10.1103/PhysRevB.84.064517
https://arxiv.org/abs/2408.00842
https://arxiv.org/abs/2408.00842
http://arxiv.org/abs/2408.00842
http://dx.doi.org/10.1103/PRXQuantum.4.020355
https://arxiv.org/abs/2309.16387
https://arxiv.org/abs/2309.16387
http://arxiv.org/abs/2309.16387


BIBLIOGRAPHY 189

Chou, K. (2018), Teleported operations between logical qubits in circuit quantum electrody-
namics, Ph.D. thesis (Yale University).

Chou, K. S., J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y. Gao, L. Frunzio,
M. H. Devoret, L. Jiang, and R. J. Schoelkopf (2018), Nature 561 (7723), 368.

Chou, K. S., T. Shemma, H. McCarrick, T.-C. Chien, J. D. Teoh, P. Winkel, A. Anderson,
J. Chen, J. C. Curtis, S. J. de Graaf, J. W. O. Garmon, B. Gudlewski, W. D. Kalfus, T. Keen,
N. Khedkar, C. U. Lei, G. Liu, P. Lu, Y. Lu, A. Maiti, L. Mastalli-Kelly, N. Mehta, S. O.
Mundhada, A. Narla, T. Noh, T. Tsunoda, S. H. Xue, J. O. Yuan, L. Frunzio, J. Aumentado,
S. Puri, S. M. Girvin, S. H. Moseley, and R. J. Schoelkopf (2024), Nature Physics 20 (9),
1454.

Chuang, I. L., and Y. Yamamoto (1995), Phys. Rev. A 52, 3489.

Cochrane, P. T., G. J. Milburn, and W. J. Munro (1999), Phys. Rev. A 59, 2631.

Cohen, J., A. Petrescu, R. Shillito, and A. Blais (2023), PRX Quantum 4, 020312.

Cross, A. W., L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta (2019), Physical
Review A 100 (3), 10.1103/physreva.100.032328.

Curtis, J. C., C. T. Hann, S. S. Elder, C. S. Wang, L. Frunzio, L. Jiang, and R. J. Schoelkopf
(2021), Phys. Rev. A 103, 023705.

Davisson, C., and L. H. Germer (1927), Nature 119 (2998), 558.

De Broglie, L. (1923), Nature 112 (2815), 540.

Delfosse, N., and G. Zémor (2020), Phys. Rev. Res. 2, 033042.

Diamond, S., V. Fatemi, M. Hays, H. Nho, P. D. Kurilovich, T. Connolly, V. R. Joshi, K. Serniak,
L. Frunzio, L. I. Glazman, and M. H. Devoret (2022), PRX Quantum 3, 040304.

DiCarlo, L., J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer,
A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf (2009), Nature 460 (7252), 240.

Ding, A. Z., B. L. Brock, A. Eickbusch, A. Koottandavida, N. E. Frattini, R. G. Cortinas, V. R.
Joshi, S. J. de Graaf, B. J. Chapman, S. Ganjam, L. Frunzio, R. J. Schoelkopf, and M. H.
Devoret (2024), “Quantum control of an oscillator with a kerr-cat qubit,” arXiv:2407.10940
[quant-ph] .

Ding, L., M. Hays, Y. Sung, B. Kannan, J. An, A. Di Paolo, A. H. Karamlou, T. M. Hazard,
K. Azar, D. K. Kim, B. M. Niedzielski, A. Melville, M. E. Schwartz, J. L. Yoder, T. P. Orlando,
S. Gustavsson, J. A. Grover, K. Serniak, and W. D. Oliver (2023), Phys. Rev. X 13, 031035.

Diringer, A. A., E. Blumenthal, A. Grinberg, L. Jiang, and S. Hacohen-Gourgy (2024), Phys.
Rev. X 14, 011055.

Dixit, A. V., S. Chakram, K. He, A. Agrawal, R. K. Naik, D. I. Schuster, and A. Chou (2021),
Phys. Rev. Lett. 126, 141302.

http://dx.doi.org/10.1038/s41586-018-0470-y
http://dx.doi.org/10.1038/s41567-024-02539-4
http://dx.doi.org/10.1038/s41567-024-02539-4
http://dx.doi.org/10.1103/PhysRevA.52.3489
http://dx.doi.org/10.1103/PhysRevA.59.2631
http://dx.doi.org/10.1103/PRXQuantum.4.020312
http://dx.doi.org/10.1103/physreva.100.032328
http://dx.doi.org/10.1103/physreva.100.032328
http://dx.doi.org/10.1103/PhysRevA.103.023705
http://dx.doi.org/10.1038/119558a0
http://dx.doi.org/10.1103/PhysRevResearch.2.033042
http://dx.doi.org/10.1103/PRXQuantum.3.040304
https://arxiv.org/abs/2407.10940
http://arxiv.org/abs/2407.10940
http://arxiv.org/abs/2407.10940
http://dx.doi.org/10.1103/PhysRevX.13.031035
http://dx.doi.org/10.1103/PhysRevX.14.011055
http://dx.doi.org/10.1103/PhysRevX.14.011055
http://dx.doi.org/10.1103/PhysRevLett.126.141302


BIBLIOGRAPHY 190

Dowling, J. P., and G. Milburn (2003), Phil. Trans. R. Soc. A. 361, 1655.

Eichler, C., and A. Wallraff (2014), EPJ Quantum Technology 1 (1), 2.

Eickbusch, A., V. Sivak, A. Z. Ding, S. S. Elder, S. R. Jha, J. Venkatraman, B. Royer, S. M.
Girvin, R. J. Schoelkopf, and M. H. Devoret (2022), Nature Physics 18 (12), 1464.

Eriksson, A. M., T. Sépulcre, M. Kervinen, T. Hillmann, M. Kudra, S. Dupouy, Y. Lu,
M. Khanahmadi, J. Yang, C. Castillo-Moreno, P. Delsing, and S. Gasparinetti (2024), Nature
Communications 15 (1), 2512.

Estermann, I., and O. Stern (1930), Zeitschrift für Physik 61 (1), 95.

Ezzell, N., B. Pokharel, L. Tewala, G. Quiroz, and D. A. Lidar (2023), Phys. Rev. Appl. 20,
064027.

Flammia, S. T., and Y.-K. Liu (2011), Phys. Rev. Lett. 106, 230501.

Flurin, E., N. Roch, J. D. Pillet, F. Mallet, and B. Huard (2015), Phys. Rev. Lett. 114, 090503.

Fowler, A. G., M. Mariantoni, J. M. Martinis, and A. N. Cleland (2012), Phys. Rev. A 86,
032324.

Frattini, N. (2021), Three-wave Mixing in Superconducting Circuits: Stabilizing Cats with
SNAILs, Ph.D. thesis (Yale University).
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Appendix A

Experimental system parameters

Here I list the relevant system parameters for the different experiments in this thesis, along with

explanations where parameters have changed.

Beamsplitter and SNAIL characterization

The parameters measured contemporaneously with the experiments in Chapter 4 are shown in

Table A.1, when the SNAIL is at a flux point φext/2π = 0.35. At this point, the SNAIL excited

state population was measured to be Pe = 2.42± 0.47%.

Alice Bob
Transmon e −→ g relaxation time T1q 127.2± 1.9 µs 57.1± 0.6 µs

Transmon T2 T2q 114.4± 2.9 µs 56.8± 1.5 µs

Transmon dephasing time Tϕq 208± 10 µs 113± 6 µs

Transmon thermal |e⟩ population Pe 0.70± 0.14 % 1.02± 0.20 %

Transmon readout duration τRO 2.1 µs 2.1 µs

Transmon anharmonicity αt/2π −181.3 MHz −184.3 MHz

Transmon-oscillator dispersive shift χ/2π −0.766 MHz −1.104 MHz

Oscillator relaxation time T1c 482± 16 µs 91± 4 µs

Oscillator dephasing time Tϕc 2010± 220 µs 840± 200 µs

Oscillator thermal occupation nthermal 0.96± 0.19 % 0.11± 0.02 %

Table A.1: Measured experimental parameters for beamsplitter and SNAIL characteri-
zation. Values as in Chapman et al. (2023).
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cSWAP characterization

The characterization of the single cSWAP in Figures 5.3, 5.4 and 5.5 was performed with

the same parameters as in Table A.1. Between those experiments and the repeated cSWAP

experiment in Fig. 5.6, some of the coherences drifted. On re-measuring, the coherence times

which changed by more than one standard deviation were T
(Alice)
1q = 112 ± 8 µs, T

(Bob)
1q =

45.6± 9 µs, T
(Alice)
2q = 97± 10 µs and T

(Alice)
ϕc = 1510± 90 µs.

Erasure check

The parameters measured simultaneously with the erasure check data are shown in Table A.2,

at a slightly different external flux of φext/2π = 0.334. The measured SNAIL parameters at this

point were ωc/2π = 5.192 GHz, T1 = 69± 2 µs, T2R = 3.0± 0.2 µs, T2E = 14.4± 0.6 µs and

Pe = 4.1± 0.6 %.

In between the cSWAP experiment and the erasure check experiments, one change made

was an increase in the coupling pin length to increase the linewidth of Bob’s readout resonator

from κr/2π = 0.89± 0.05 MHz to κr/2π = 1.77± 0.04 MHz. This was done to achieve faster

single-shot transmon readout, with the goal of fewer false negative and idling errors. The most

notable change as a result of this was a reduction in Alice’s oscillator T1c, a mode that finite

element simulations suggested should have been extremely undercoupled to this port.

Alice Bob
Transmon e −→ g relaxation time T1q 123.4± 0.9 µs 42.4± 0.4 µs

Transmon T2 (Ramsey) T2q 31.6± 0.9 µs 33.1± 0.9 µs

Transmon T2 (Echo) T2Eq 40.5± 0.7 µs 63.2± 0.8 µs

Transmon thermal |e⟩ population Pe 0.23± 0.06 % 0.52± 0.07 %

Transmon readout duration τRO 1.648 µs 1.648 µs

Transmon-oscillator dispersive shift χ/2π −0.777 MHz −1.066 MHz

Oscillator relaxation time T1c 347± 2 µs 108.5± 0.6 µs

Oscillator dephasing time Tϕc 1210± 170 µs 690± 120 µs

Oscillator thermal occupation nthermal 3.82± 0.10 % 0.53± 0.03 %

Table A.2: Measured experimental parameters for erasure check characterization. Values
as in de Graaf et al. (2025).



Appendix B

Extracting normalized drive amplitude

|ξ| from the impedance of the coupler

embedding matrix Z

The derivation is reproduced with permission from Chapman et al. (2023).

The normalized pump amplitude ξ that we can deliver for a given input power can be

calculated from the impedance matrix of the embedding network of the SNAIL. Fig. B.1(a) shows

a simplified schematic of the microwave drive on the SNAIL coupler. A microwave generator

sourcing a voltage VS generates a voltage V1 at the coupling pin inside the experimental package,

which in turn generates a voltage V2 across the SNAIL. Their ratio is determined by the properties

of the embedding network of the SNAIL.

If we consider just the linear part of the circuit, we can treat the entire package including

the SNAIL itself as an impedance matrix Z, as shown in Fig. B.1(b). This can be used to relate

the voltage across the SNAIL to the current delivered from the source,

Z21 =
V2
I1
. (B.1)

Meanwhile, the impedance presented to the source by the package is Z11 (Fig. B.1(c)).
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RS

VS

RS

VS

port 1 port 2

(b) (c)

(a)

V1

V2

RSVS

Z
Z11

Figure B.1: Network picture of SNAIL embedding network. (a) A microwave source with
a voltage VS and a resistance RS connected via a transmission line to the drive pin of the
package. It generates a voltage V1 at the drive pin (port 1) and a voltage V2 across the SNAIL
(port 2). (b) The same circuit with the package, including the SNAIL itself, expressed as a
two-port network with an impedance matrix Z. (c) When port 2 is open-circuited, we can treat
the package as an impedance Z11 in series with the microwave source.. Figure modified with
permission from Chapman et al. (2023).

Current conservation indicates that the source voltage VS is related to the current I1 by

VS = (RS + Z11) I1. (B.2)

We can eliminate I1 from the equations to obtain

V2
VS

=
Z21

RS + Z11
. (B.3)

Microwave generators typically display the RMS power they would deliver to a matched load,

P =
|VRMS|2

2RS
=

|VS |2

4RS
, (B.4)

allowing us to reach an expression for V2 in terms of source power

|V2| =
∣∣∣∣ Z21

Z11 +RS

∣∣∣∣√4PRS . (B.5)
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Assuming a monochromatic source at ωp, the current passing through the SNAIL can be

found by dividing V2 by the impedance of the SNAIL at the pump frequency, iωpLs,

I(t) = Re

(
V2

iωpLs
eiωpt

)
. (B.6)

This couples to the flux of the coupler mode in the Hamiltonian

Ĥd = I(t)Φ̂ = Re

(
V2

iωpLs
eiωpt

)
ΦZPF
c

(
ĉ+ ĉ†

)
. (B.7)

By comparing this to Eq., we can write

|ϵ| = ΦZPF
c |V2|
2ℏωpLs

. (B.8)

From here, we can use the expression for ξ from Eq. to finally get

|ξ| =
∣∣∣∣ Z21

Z11 +RS

∣∣∣∣ √
PRSΦ

ZPF
c

ℏωpLs (ωp − ωc)
. (B.9)



Appendix C

Logical state tomography of cat

states with finite α

In Ch. 5.3.2, we discussed a method (initially described in (Vlastakis et al., 2015; Wang et al.,

2016)) for performing logical state tomography of encoded cat states by probing only a handful

of values in the Wigner tomogram of the oscillator mode(s). The relationships between the two,

provided in Eq. 5.24, are exact in the limit |α| → ∞, however in practice, the use of a finite

|α| will result in some corrections. Here, I provide the exact expectation values we would obtain

when acting on single-mode cat states and two-mode cat-in-two-boxes states.

C.1 Single-mode cat states

For an ideal finite-α single-mode cat state

∣∣C+
α

〉
=

|α⟩+ |−α⟩√
2
(
1 + e−2|α|2

) , (C.1)
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the values extracted from Wigner tomography would yield

⟨I⟩ ≈W (+α) +W (−α) = 1 + 2e−2|α|2 + e−8|α|2

1 + e−2|α|2 (C.2)

⟨X⟩ ≈W (0) = 1 (C.3)

⟨Y ⟩ ≈W

(
jπ

8α

)
=
e−2|α|2e

− π2

32|α|2

1 + e−2|α|2 (C.4)

⟨Z⟩ ≈W (+α)−W (−α) = 0 (C.5)

C.2 Two-mode cat states

For an ideal finite-α cat-in-two-boxes state

∣∣Ψ+
〉
=

|α,−α⟩+ |−α, α⟩√
2
(
1 + e−4|α|2

) , (C.6)

the values extracted from Wigner tomography yield

⟨II⟩ ≈W (+α,+α) +W (+α,−α) +W (−α,+α) +W (−α,−α)

=
1 + 4e−4|α|2 + 2e−8|α|2 + e−16|α|2

1 + e−4|α|2 (C.7)

⟨IX⟩ ≈W (+α, 0) +W (−α, 0) =
e−2|α|2

(
3 + e−8|α|2

)
1 + e−4|α|2 (C.8)

⟨IY ⟩ ≈W

(
+α,

jπ

8α

)
+W

(
−α, jπ

8α

)
=
e−2|α|2e

− π2

32|α|2 (1 + e−8|α|2)

1 + e−4|α|2 (C.9)

⟨IZ⟩ ≈W (+α,+α)−W (+α,−α) +W (−α,+α)−W (−α,−α) = 0 (C.10)
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⟨XI⟩ ≈W (0,+α) +W (0,−α) =
e−2|α|2

(
3 + e−8|α|2

)
1 + e−4|α|2 (C.11)

⟨ZI⟩ ≈W (+α,+α) +W (+α,−α)−W (−α,+α),−W (−α,−α) = 0 (C.12)

⟨ZX⟩ ≈W (+α, 0)−W (−α, 0) = 0 (C.13)

⟨ZY ⟩ ≈W (+α,
jπ

8α
)−W (−α, jπ

8α
) = 0 (C.14)

⟨ZZ⟩ ≈W (+α,+α)−W (+α,−α)−W (−α,+α) +W (−α,−α) (C.15)

=
2e−8|α|2 − e−16|α|2 − 1

1 + e−4|α|2 (C.16)

For |α| ≫ 1, the measured values for II, XX, Y Y and ZZ tend to +1, +1, +1 and −1,

respectively, while all the off-diagonal elements tend to 0. These are the values one expects for

an ideal Bell state.

In Chapter 5, we consider a cat-in-two-boxes state with |α| =
√
2. For an ideal (i.e. without

any distortion or decoherence) cat-in-two-boxes state of this size, the diagonal elements would be

measured to be +1.0010, +1.0000, +0.7346 and −0.9997, respectively. The Y Y measurement

(unlike the others) suffers markedly from the finite-α effects at this size, and so we must correct

for this. Indeed, for the error between the measured Y Y value and +1 to drop below ϵ requires

a cat with |α|2 ≈ π2/16ϵ photons.
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