
npj | quantum information Article
Published in partnership with The University of New South Wales

https://doi.org/10.1038/s41534-024-00944-4

Amid-circuit erasure check on a dual-rail
cavity qubit using the joint-photon
number-splitting regime of circuit QED
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Quantumcontrol of a linear oscillator using a static dispersive coupling to a nonlinear ancilla underpins
a wide variety of experiments in circuit QED. Extending this control to more than one oscillator while
minimizing the required connectivity to the ancilla would enable hardware-efficient multi-mode
entanglement and measurements. We show that the spectrum of an ancilla statically coupled to a
single mode can be made to depend on the joint photon number in two modes by applying a strong
parametric beamsplitter coupling between them. This ‘joint-photon number-splitting’ regime extends
single-oscillator techniques to two-oscillator control, which we use to realize a hardware-efficient
erasure check for a dual-rail qubit encoded in two superconducting cavities. This scheme leverages
the high-fidelity beamsplitter coupling already required for single- and two-qubit gates while
permittingminimal crosstalk between circuit elements. Furthermore, the flexibility to choose the pulse
shape allows us to limit the susceptibility to different error channels. We use this scheme to detect
leakage errors with a missed erasure fraction of (9.0 ± 0.5) × 10−4 while incurring an erasure rate of
2.92 ± 0.01% and a Pauli error rate of 0.31 ± 0.01%, both of which are dominated by cavity errors.

Controlling the state of an oscillator is a powerful resource, enabling the
implementation of hardware-efficient error-correcting codes for quantum
computing1–7, simulations of bosonic systems8–12, and the generation of
metrologically useful states for quantum-enhanced sensing13–15. In circuit
quantum electrodynamics (cQED)16,17, where these oscillators take the form
of standing modes in microwave resonators, most of the techniques
developed for single-oscillator control18–25 rely ona static dispersive coupling
between the oscillator and a nonlinear ancilla qubit26.

Moving beyond the control of a single linear mode affords new cap-
abilities, including the generation of multi-mode entanglement27–29 and
measurements of joint properties of multiple modes30–33. In the context of
quantum error correction, it both enables gates between qubits encoded in
individual modes34,35, as well as implementations of natively multi-mode
error correcting codes, such as the pair-cat36, Chuang–Leung–Yamamoto
(CLY)37, or dual-rail codes38. This may be done by complementing the
dispersive control with tunable beamsplitter interactions39, which swap
states between oscillators, allowing the nonlinear ancilla to interact with
each oscillator in turn.

Recent progress in generating stronger tunable beamsplitter interac-
tions between high-Q cavities without compromising their long coherence
times or introducing unwanted nonlinearity40,41 provides access to a regime
where the inter-oscillator coupling strength exceeds the typical coupling
strength to the nonlinear ancilla. This presents the opportunity to treat the
coupled oscillators collectively. Thus a single ancilla, statically coupled to
only one of the modes, can be used to measure either joint or individual
properties of the combined system. Such operations include the recently
proposed joint-parity measurement or erasure check of a dual-rail cavity
qubit42,43.

In this article, we observe a new regime that emerges in the presence of
an increasingly strong beamsplitter drive between two bosonic modes,
which is an analog of dispersive number splitting26, but for the total exci-
tation number, N, shared between two modes. In this regime, the eigen-
modes of the combined multi-mode system become the symmetric and
anti-symmetric combinations of the bare resonator modes, thereby
matching the dispersive coupling strength between each eigenmode and the
nonlinear ancilla.Wefinda rangeof operatingpoints that arenowaccessible
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where we can measure the total photon number in the coupled oscillators,
without measuring the photon number in either cavity.

An important example of an operation enabled in this regime is amid-
circuit erasure check33,44, an essential ingredient for a dual-rail qubit38

spanned by the single excitation manifold ∣0; 1i and ∣1; 0i of two super-
conducting cavity modes. Erasure qubits33,43–51 rely on detecting dominant
leakage errors and resetting these states back into the codespace. Since the
time and location of these (erasure) errors are known, erasure qubits yield
high thresholds when embedded in a higher-level error-correcting
code48,52,53. The dual-rail cavity qubit is a prototypical example of this as its
errors are dominated by detectable leakage to ∣0; 0i, withPauli errors within
the codespace much less likely43.

We implement aminimally invasive erasure check by only exciting the
less-coherent ancilla transmon when the dual-rail qubit has already leaked
from the codespace. This limits theprobability of declaring an erasure due to
errors in the measurement itself to 2.92 ± 0.01% per check, of which only
0.51 ± 0.02% are false positives due to transmon errors. With a missed-
erasure probability of only (9.0 ± 0.5) × 10−4, dual-rail logical states are also
well-preserved, with a Pauli error rate of 0.31 ± 0.01%, of which only
0.12 ± 0.01% is induced by transmon decoherence. As in the previous
demonstrationofmid-circuit erasuredetection for adual-rail cavity qubit by
Koottandavida et al.33, this scheme engineers an ancilla spectrum that dis-
tinguishes between computational states and the joint vacuum state, ∣0; 0i.
However, it does not use a separate “χ-matching” drive23 but makes use of
the tunable beamsplitter in a unit cell already containing all the hardware
required for single- and two-qubit gates. Importantly, in this architecture,
theonlyoscillator–oscillator coupling is ahigh-fidelity beamsplitter between
adjacent modes, providing a way to minimize crosstalk as well as ZZ errors
during two-qubit gates. Realizing such a high-performance and minimally

invasivemid-circuit erasure check is a crucial capability for improving error
correction48 via erasure conversion.

In the following sections, we begin by describing the emergence of
parametrically activated joint-photon number-splitting, before showing its
application in a dual-rail erasure check. An extension of this technique to a
two-qubit gate is described in Appendix B.

Results
Spectroscopic observation of joint-photon number-splitting
Combining two common elements of oscillator control, a tunable beams-
plitter interaction between two oscillators and a fixed dispersive interaction
betweena single oscillator andanancillaryqubit, enablesmeasurements and
control conditioned on the total photon number of the system, via an
extension of the strong dispersive regimeof circuitQED26. TheHamiltonian
of this system in the interaction picture is

Ĥ
_
¼ gbsðtÞ

2
eiφâb̂

y þ e�iφâyb̂
� �

� Δb̂
y
b̂þ χb̂

y
b̂∣ei eh ∣; ð1Þ

where the oscillator Alice and Bob modes are represented by lowering
operators â and b̂, and ∣ei is the excited state of the ancillary qubit (see Fig.
1a). The ancilla is coupled to only one of the modes with a dispersive
interaction strength χ that is fixed, whereas the amplitude gbs, phase φ and
frequencydetuningΔof the beamsplitter drive are all controllable in time. In
order to perform joint-photon-number-selective operations, we will
specifically consider the case where Δ = χ/2. Since the Bob oscillator
frequency shifts by χ when the ancilla is in ∣ei, this special operating point
ensures the beamsplitter drive is equally detuned from resonance when the
ancilla is in ∣g

�
or in ∣ei. With this choice of detuning (and with the drive

Fig. 1 | Ancilla spectroscopy in the presence of a beamsplitter drive. a System
schematic showing two oscillators coupled by a tunable beamsplitter interaction and
an ancilla qubit statically coupled to one oscillator via a fixed dispersive interaction.
b Pulse sequence used for spectroscopy experiment. c Transmon spectra in the
presence of increasing beamsplitter drive amplitude for input oscillator states with
fixed total photon number N. Colorplots show initial states ∣0; 0i (N = 0), ∣0;1iþ∣1;0iffiffi

2
p

(N = 1), and ∣0;2iþ ffiffi
2

p
∣1;1iþ∣2;0i
2 (N = 2). Predicted transitions (dashed white lines) are

labeled by δm, the change in the photon number difference between the symmetric
and anti-symmetric eigenmodes of the coupled oscillators (see Eq. (6)). Faint lines

corresponding to transitions in the (N−1)-photonmanifoldmay be seen in theN = 1
and N = 2 spectra due to photon loss during the spectroscopy pulse. Left (right)
panels show spectra for all initial two-oscillator Fock states in each N-photon
manifold at the lowest (highest) value of ∣gbs/χ∣ shown in the colorplots. Red arrows
in the right panels of the N = 1 and N = 2 spectra show the central transition fre-
quency moving by δω =Nχ/2 in the joint-photon number-splitting regime. The
yellow square (triangle) in the N = 1 (N = 2) panel indicates operating point for the
erasure check (CPHASE gate described in Appendix B).
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phase set to φ = 0), the Hamiltonian in Eq. (1) simplifies to

Ĥ
_
¼ gbsðtÞ

2
âb̂

y þ âyb̂
� �

� χb̂
y
b̂
σ̂z
2
; ð2Þ

where σ̂z ¼ ∣g
�
g

�
∣� ∣ei eh ∣.

ThisHamiltonian is realizedwith apair of superconductingmicrowave
stub cavities as the oscillators54 and a fixed-frequency transmon as the
ancilla. Theuse of a SNAILcoupler40,55–57 situatedbetween the cavities allows
us to engineer a microwave-activated beamsplitter interaction with ampli-
tude up to gbs/2π = 2.05MHz, higher than that of the dispersive coupling χ/
2π =−1.07MHz, while preserving the coherence and linearity of the cav-
ity modes.

The dispersive term (activated by intentionally exciting the ancilla out
of its ground state) and the beamsplitter term are often used alternately:
either narrow-bandwidth pulses on the ancilla enact photon-number-
selective operations on a singlemode or a beamsplitter routes states between
modes28. However, when both terms are activated simultaneously and
gbs ~ ∣χ∣, the number-split spectrum of the ancilla is modified to depend on
the joint photon number in both oscillators.

The emergence of joint-photon number-splitting is revealed by
probing the transmon spectrum in the presence of a variable-amplitude
beamsplitter drive, as illustrated in Fig. 1b. Because the Hamiltonian con-
serves the total oscillator photon number N and the average cavity T1 is
much longer than the pulse duration Tp, the dynamics may be considered
separately for different values ofN. Figure 1c shows the resulting spectra for
different initial states with N = 0, 1 and 2. In the absence of a coupling
between the cavities (gbs = 0) the transmon spectrum displays the familiar
photon number-splitting regime, with transitions separated in frequency by
χ per photon in the Bobmode but independent of the photonnumber in the
uncoupled Alice mode. This can be seen from the linecuts at gbs = 0 (in the
left panels of Fig. 1c) when initializing the cavities in different two-oscillator
Fock states. However, in the presence of a strong beamsplitter drive,
gbs � jχj� �

we enter the joint-photon number-splitting regime. Here, the
transmon spectrum exhibits 2N+ 1 prominent transition lines, with a
dominant central transition emerging at large values of gbs, when the
spectroscopy tone is detuned from the bare transmon resonance by an
amount δω =Nχ/2.

We can compare these features to analytical predictions obtained by
considering the normal modes of the coupled oscillators. When the
amplitude of the spectroscopy pulse is small relative to max gbs; jχj

� �
, its

effect may be treated as a perturbation to the Hamiltonian in Eq. (2), which
is block-diagonal with respect to the ancilla subspace:

Ĥ ¼ Ĥg ∣g
�
g

�
∣þ Ĥe∣ei eh ∣: ð3Þ

Diagonalizing Ĥg and Ĥe allows us to find new eigenmodes conditioned on
the state of the ancilla:

Σ̂g ¼ â cos θð Þ þ b̂ sin θð Þ Σ̂e ¼ b̂ cos θð Þ þ â sin θð Þ
Δ̂g ¼ b̂ cos θð Þ � â sin θð Þ Δ̂e ¼ â cos θð Þ � b̂ sin θð Þ

ð4Þ

where the mixing angle θ ¼ arctanð2gbs=χÞ=2. In the gbs≫ χ limit, the Σ̂i
and Δ̂i modes tend to symmetric (Σ̂ ¼ ðâþ b̂Þ= ffiffiffi

2
p

) and antisymmetric
(Δ̂ ¼ ðâ� b̂Þ= ffiffiffi

2
p

) combinations of the bare oscillator modes. In terms of
these operators, the ancilla-state-dependentHamiltoniansmaybewrittenas

Ĥg

_ ¼ � χ
2

Σ̂
y
g Σ̂gþΔ̂

y
g Δ̂g

2

	 

þΩ

Σ̂
y
g Σ̂g�Δ̂

y
g Δ̂g

2

	 

;

Ĥe
_ ¼ þ χ

2
Σ̂
y
e Σ̂eþΔ̂

y
e Δ̂e

2

	 

þΩ Σ̂

y
e Σ̂e�Δ̂

y
e Δ̂e

2

	 

;

ð5Þ

whereΩ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2bs þ ðχ=2Þ2

q
: (We have ignored the dependence of χ on the

frequency detuning between the ancilla mode and the cavity modes. In

principle, if gbs became large enough to be comparable to this detuning, then
the symmetric andantisymmetricmodeswouldhavemeaningfully different
detunings to the transmon and sowould not havematcheddispersive shifts.
In our system, where the frequency detuning is ~2 GHz, and gbs/2π is at
most 2MHz, this is not a concern.)

For a particular ancilla state, the oscillator eigenstates are then defined
by two quantities: half the total photon number in the twomodes,N/2, and
half the difference in the photon number occupation of the symmetric and
antisymmetric modes, described by the operator,

m̂i �
Σ̂
y
i Σ̂i � Δ̂

y
i Δ̂i

2
; ð6Þ

for i∈ {g, e}, which can take values mi =−N/2, …, N/2. For a fixed total
photon numberN, the ancilla energy levels display an (N+ 1)-fold splitting
by an amount Ω, as illustrated in Fig. 2 for the case N = 1.

The energy difference between each possible pair of Ĥg and Ĥe
eigenstates allows us to accurately predict the 2N+ 1 unique transitions
observed in the spectra:

δωδm ¼ N
2
χ þ δmΩ; ð7Þ

labeled by δm≡me−mg =−N,…,N. These frequencies are shown as white
dashed lines in Fig. 1c and show good agreement with the observed spectra.
Faint features corresponding to transitions in theN−1photonmanifold can
also be seen due to photon loss during the spectroscopy pulse. The sym-
metric beamsplitter detuning conditionΔ = χ/2 provides a unique operating
point where each transition frequency has a degeneracy (N+ 1)−∣δm∣. (We
note that the spectrum forN=1 is reminiscent of theMollow triplet58,59 seen
when probing the frequency of strongly-driven two-level-system. Here, we
are instead probing the frequency of a two-level-system that is dispersively
coupled to the strongly drivenmode. In Appendix E, we show how shifting

Fig. 2 | Energy level diagram in the presence of beamsplitter drive. Energy level
diagram when N = 1 photons are shared between the two oscillators. The transmon
state is labeled by ∣g

�
or ∣ei and the two-oscillator state is labeled by its value of m,

which describes the relative photon number occupation of the symmetric and
antisymmetric modes of the two oscillators (see Eq. (6)). The ∣g

�
and ∣ei levels,

separated by ωð0Þ
ge in the absence of any coupling to the oscillators, are now split by

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2bs þ ðχ=2Þ2

q
. Vertical arrows indicate possible transitions for which

δm≡me−mg = 0 (pink) and δm = ±1 (orange). Arrow thicknesses illustrate the
strength of transition matrix elements at low and high beamsplitter amplitudes.
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away from this detuning breaks the degeneracies between these transitions,
yielding (N+ 1)2 unique frequencies.)

Furthermore, the strength of each transition is proportional to the
overlapbetweenthe initial (Ĥg) andfinal (Ĥe) oscillator eigenstates.As gbs is
increased relative to ∣χ∣, the ancilla-state-dependent eigenmodes approach
one another, with Σ̂g ! Σ̂e, Δ̂g ! �Δ̂e and, consequently, m̂g ! m̂e. The
overlap between initial andfinal states satisfyingmg =me therefore increases
towards 1. As a result, off-central transitions with δm ≠ 0 become sup-
pressed in favor of transitions with δm = 0, as can be seen from their
changing brightness in Fig. 1c. The magnitude of the transition matrix
elements is also indicated by the thickness of the arrows in Fig. 2. In
Appendix D, we show that the measured transition matrix elements agree
very well with analytical predictions. While compact analytical expressions
for thesematrix elements can be derived in this normalmodes picture, they
are more readily obtained by considering the Schwinger representation of
two coupled oscillators as a single spin with s =N/260. This alternative
interpretation, in which the beamsplitter drive applies a Zeeman shift to the
spin, is discussed in detail in Appendix A.

The predictions of both the transition frequencies and their matrix
elements explain the emergence of a joint-photon number-splitting regime
when gbs≳ ∣χ∣, where the qubit spectrum depends on the total photon
number in both oscillators. This ismost clear in the linecuts of the spectra at
the largest values of gbs/∣χ∣ in Fig. 1, where independent of which state is
initialized in the oscillators, we see a single dominant transition frequency at
δω =Nχ/2 for each value of N. In this regime, the system consists of a
symmetric andantisymmetricmode, eachwith adispersive shift of χ/2 to the
ancilla

Ĥ
_

�!gbs≫jχj þ gbs
2

� χ

2
σ̂z
2

	 

Σ̂
y
Σ̂þ � gbs

2
� χ

2
σ̂z
2

	 

Δ̂
y
Δ̂: ð8Þ

Photons in Alice and Bob are thus indistinguishable from the perspective of
the qubit when the beamsplitter interaction is stronger than the dispersive
shift. The extent to which the qubit can still distinguish the two oscillators

can be seen in themuch smaller satellite peaks at δm = ±Ω, which would be
further suppressed at higher beamsplitter amplitudes.

In the following section, we show how understanding these joint-
photon number-split spectra provides a way to extend established single-
oscillator control techniques to operations on multiple oscillators.

Mid-circuit erasure check of a dual-rail qubit
We use the ∣gbs∣ ≳ ∣χ∣ regime to construct a mid-circuit erasure check for a
dual-rail qubit encoded in two superconducting cavities. The basis states for
this encoding are ∣0L

� � ∣1; 0i and ∣1L
� � ∣0; 1i and their dominant error

channel is photon loss to the common ∣0; 0i leakage state, whichwe hope to
detect (see Fig. 3a). Detecting these leakage errors (in order to convert them
to erasures) while preserving logical information in states that have not
suffered such an error is an essential task in this architecture.

A key requirement of the erasure check is that it does not introduce
additional errors. Firstly, since the check may be performed multiple times
per roundof syndromemeasurements, erasure errors during the checkmust
beminimized for the code tooperatebelow the error-correction thresholdof
the higher-level code, such as the surface code61–63. Secondly, Pauli errors
must remain much less likely than erasure errors to preserve the bias that
enables a high threshold48. Both of these criteria require a way of limiting
errors induced by the less-coherent ancilla transmon.

A powerful and established technique for measuring bosonic modes
while preventing the ancilla from polluting the logical state is to use a three-
level ancilla and toapply amicrowavedrive to ensure that thedispersive shift
is unchanged when the ancilla is in ∣ei or in ∣f

�
(often known as χ-

matching)23. This erasure check, however, bypasses the need for χ-matching
drives since it only needs to catch events when the logical information has
already been lost.

The modification of the transmon spectrum in the presence of a
beamsplitter drive allows us to perform an erasure check with low sus-
ceptibility to transmon errors. In the number-splitting regime for a single
oscillator, a narrow-bandwidth pulse on the ancilla enables an π-pulse
conditioned on zero photons in the oscillator. Likewise, the joint-photon

Fig. 3 | Characterizing a dual-rail mid-circuit erasure check. a Logical code space
of a dual-rail encoded qubit indicating decay to the leakage state ∣0; 0i, whichwe seek
to detect and convert to erasure errors. Black arrows show the ideal mapping pro-
cesses while gray arrows indicate misassignment processes that lead to false negative
(FN) errors and erasure errors, respectively. Wemeasure a false negative probability
of pFN = 3.7(2)% and a total erasure error rate of perasure ¼ 2:92ð1Þ% per erasure
check. Green (red) flag indicates an erasure check reporting “no erasure” ("erasure
detected''). b Pulse sequence used to implement the erasure check, consisting of
simultaneous flat-top pulses on both the transmon and the beamsplitter drive, fol-
lowed by transmon readout. cMeasured transmon trajectories during the erasure

check for logical and leakage states. d Pulse sequence used to measure state fidelity
after n repeated erasure checks (or n periods of idling for the duration of an erasure
check) on the encoded dual-rail qubit. A single echo pulse (a cavity SWAP opera-
tion) is performed halfway through the sequence in order to suppress the effect of
no-jump backaction resulting fromdifferent cavity decay rates. e Success probability
for passing n consecutive checks (purple), and probability of remaining in logical
subspace (1−p00) after n checks, unconditioned on erasure check results, with (gray)
and without (pink) the beamsplitter pump applied. f Total Pauli error rate when
performing erasure checks (purple) or idling (gray). Lines show linear fits.
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number-splitting regime allows us to excite the transmon if and only if there
are zero total photons in two oscillators (i.e. when the dual-rail qubit has
leaked to ∣0; 0i).

For transmon pulses selective on N = 0, we do not require gbs≫ χ but
only that the N = 0 transition is sufficiently detuned from all other transi-
tions, we would like to avoid. In the context of the dual-rail encoding, these
are the transitions in the N = 1 manifold (corresponding to the logical
subspace). For beamsplitter drive amplitudes gbs=jχj≥

ffiffiffi
3

p
=2, the nearest

transition we wish to avoid is the central (N = 1, δm = 0) transition which is
detuned from our desiredN = 0 resonance by an amount ∣χ∣/2 (see Fig. 1c).
This establishes a wide range of values for gbs/∣χ∣ that can enact an erasure
check and allows for amore flexible implementation than the erasure check
proposed in42,43, based onmeasuring the joint photon number parity, where
∣gbs/χ∣ is fixed. This allows us to both avoid specific values of gbs at which
multiphoton transitions degrade the cavity coherences64 and increase gbs to
suppress transmon-inducedPauli errors bymaking the twooscillatorsmore
indistinguishable from the perspective of the qubit (see Appendix J).

More crucially, unlike with the joint-parity approach, we have the
flexibility to use a variety of pulse shapes on the transmon drive to perform
the erasure check while trading off susceptibility to different error sources
(see Appendix K for a detailed comparison of the two approaches). For
example, a long, highly frequency-selective Gaussian pulse will limit
transmon excitationwhen in theN = 1manifold, reducing false positive and
Pauli errors due to transmon decoherence, at the expense of more idling
errors during the check. Tominimize the combined rate of transmon errors
and idling errors,we use a shorter square pulsewith a durationTp = 1.820 μs
while applying a beamsplitter drive with amplitude ∣gbs/χ∣ = 1.04 (as indi-
cated by the square symbol in Fig. 1c). These values of gbs and Tp are
calibrated to ensure thatwhen starting in the dual-rail logical subspace, both
the transmon and oscillators return to their initial states at the end of the
sequence,while avoiding the slightdegradation in cavity coherence athigher
gbs

40 (see Fig. 3b, c; for detailed calibration procedures, see Appendix F).
While this scheme places no special requirement on the adiabaticity of the
beamsplitter drive ramp, we use a 120 ns cosine-shaped ramp to stay well
within the bandwidth limit imposed by the on-chip Purcell filter through
which the beamsplitter drive is applied. We align the center of this ramp in
time with the center of the 24 ns cosine ramp on the transmon pulse, which
we find from simulation ensures optimal performance.

The trajectories of the transmon state for different input oscillator
states in Fig. 3c showcase the operation of the erasure check: while the
transmon ends in ∣ei when the oscillators are in ∣0; 0i (thus flagging an
erasure), it returns to ∣g

�
for input states ∣0; 1i and ∣1; 0i. The relatively

small area under the ∣0; 1i and ∣1; 0i curves indicates that the transmon is
less likely to be excited in these cases and so transmon decay and dephasing
errors are less likely to induce false positives or logical Pauli errors. Mean-
while the relatively small difference between the ∣0; 1i and ∣1; 0i curves
indicates the limited extent to which transmon dephasing errors allow the
environment to distinguish between different logical states, thereby indu-
cing Pauli errors when they occur65.

We test the fraction of leakage errors caught by the check by preparing
∣0; 0i and performing a single mid-circuit erasure check followed by
destructive photon-number-selective measurements of each cavity44.When
post-selecting on the final state remaining in ∣0; 0i, we find a false negative
probability (i.e. the probability of not flagging an erasure conditioned on a
leakage state input, as illustrated in Fig. 3a) pFN = 3.7 ± 0.2%, consistentwith
results of master equation simulations using the physical transmon error
rates in our system. While the false negative probability is sensitive to
transmon decoherence, in the operation of an error-correcting code the
actual probability of missing an erasure ðpmiss ¼ perasure × pFN � 10�3Þ is
also multiplied by the very small probability that an erasure has been suf-
fered since the previous check.We find that this false negative probability is
still admissible for high fault-tolerant thresholds in the surface code. In fact,
when performing erasure checks after every two-qubit gates, the surface
code threshold (per step consisting of a gate plus an erasure check)with such
a level of false negatives is pth = 3.71 ± 0.02%, as compared to

pth = 3.79 ± 0.02% if the false negative probability were 0. This indicates that
the threshold isminimally affected by the observed false negative probability
and remains well in excess of the 1%Pauli noise threshold. In both cases, we
have assumed that 90% of errors are erasures. For more details on these
simulations, refer to Appendix G. As such, an increase in pFN, which has a
very small impact on pth, is less costly than an equivalent increase in pFP,
which adds to the overall physical error rate that should be kept small with
respect to pth. This informs the design of the erasure check where the
transmon is excited if and only if N = 0.

A single experiment is used to evaluate the performance of the mid-
circuit erasure check when acting on the code space, in terms of both the
erasure error rate and the Pauli error rate induced by the check. This
tomography sequence, shown in Fig. 3d, consists of preparing the six dual-
rail cardinal states ∣±Xi; ∣±Yi, and ∣±Zi, repeating the erasure check n
times and then measuring the logical operators X̂L; ŶL and ẐL using
photon-number-selective readout of each cavity (see Appendix H). To
separate the contribution from idling errors, we perform the same sequence
but replace each erasure check with a delay of the same duration. Beams-
plitter pulses are used to enact single-qubit gates on the dual-rail qubit,
allowing us toprepare states on the equator of the Bloch sphere andperform
logical measurements. An echo pulse is added to remove the effect of no-
jump back-action at long times. When the decay rate in each cavity is
different (as is especially the case here, withT1,a = 347 μs and T1,b = 109 μs),
post-selecting on no photon loss leads to a deterministic polarization
towards one pole of the Bloch sphere and results in an approximately-
Gaussian envelope on both the idling and erasure check data on a timescale
set by the difference in the T1 times43. Introducing the echo therefore allows
us to better resolve errors induced by the check itself.

The erasure rate is extracted by looking at the success probability (i.e.
the likelihood of passing n successive checks) as a function of n, averaged
over all input states (see Fig. 3e). The slope of the exponential decay shows a
total erasure rate per check perasure ¼ 2:92 ± 0:01%. To determine what
fraction of these flagged events are ‘intrinsic’ erasures due to photon loss to
∣0; 0i, as opposed to false positive events predominantly due to transmon
errors, we may instead ignore the results of the mid-circuit checks and only
askhowoften the end-of-linemeasurement yields ∣0; 0i. This gives a photon
loss rate of 2.41 ± 0.02% per check, consistent with the value obtained when
idling for the same duration, 2.43 ± 0.02%, indicating that the erasure check
does not induce additional photon loss in the cavities. This value is the
‘intrinsic’ erasure rate, fromwhichwe infer that the remaining 0.51 ± 0.02%
of erasures are falsepositive errors.That themajority of detectederasures are
due to photon loss in the high-Q cavities, rather than transmon errors,
shows the ability of the scheme to tolerate decoherence in the transmon
ancilla. Furthermore, the flexibility to choose different transmon pulse
shapes allows us to trade-off between ‘intrinsic erasures’ due to cavity
relaxation (suppressed with a shorter pulse) and false positives due to
transmon decoherence (suppressed with a longer, more selective pulse),
whichwe can therefore tailor tominimize the total erasure rate. In principle,
a shorter-duration joint-parity measurement42 would be optimal when the
oscillator decoherence is comparable to that of the transmon, however it is
expected that the oscillator should always be significantly longer-lived (see
Appendix K). This flexibility, not present in the joint-parity-based
approach, also allows us to trade a reduction in the false positive prob-
ability (pFP = 0.51%) for an increase in the less-costly false negative prob-
ability (pFN = 3.7%).

To verify that this mid-circuit erasure check preserves the logical qubit
state, we probe the fidelity of all 6 dual-rail cardinal states conditioned on
passing n successive erasure checks. Fitting the slope of the post-selected
Pauli error probabilities (obtained from the average state fidelity; see
Appendix I) as a function of measurement rounds n allows us to precisely
resolve the error rate for a single round (Fig. 3f). We find that the logical
information is well-preserved during the course of the measurement, with
an overall Pauli error per check pPauli = 0.31 ± 0.01%, compared to
0.20 ± 0.01% when idling. This indicates that background cavity errors
dominate, with transmon-induced Pauli errors contributing at most the
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remaining 0.12 ± 0.01%, highlighting the robustness of the scheme against
transmon decoherence. We note that while the echo pulse used to mitigate
against no-jump backaction will also reduce the effect of low-frequency
dephasing noise on the intrinsic error rate, errors induced by transmon
decoherence should not be affected.

Taken together, these results demonstrate the efficacy of a flexible
hardware-efficient mid-circuit erasure check, making use of only the
beamsplitter interaction (used for gates) and dispersive transmon coupling
to a single mode (used for state preparation). This check preserves a large
ratio of the erasure error rate to the Pauli error rate, with both quantities
remaining dominated by ‘intrinsic’ errors associatedwith the hardware, and
has a false negative probability that only negligibly reduces pth from its value
with perfect detection.With improvement of themode coherences closer to
state-of-the-art values66–68, we expect this scheme to yield significantly
below-threshold performance. Indeed, with the same χ, gbs, and readout
duration τRO but with a transmonT1 andTϕ of 200 μs and an average cavity
T1 of 1000 μs, we predict from master equation simulations a total erasure
rate perasure ¼ 0:49% and a transmon-induced Pauli error rate of 0.035%, at
which point shot-noise dephasing from photons in the readout resonator
starts playing a larger role (see Appendix L). Increasing χ and reducing τRO
to reduce the checkdurationprovides anotherway to improveperformance.
Separately, we could leverage the flexibility of this scheme to increase gbs,
since this helps reducePauli errors from transmondephasing bymaking the
dual-rail logical states more indistinguishable during the check65 (see
Appendix J).

Discussion
These results show that a strong beamsplitter drive, when paired with dis-
persive coupling to a singlemode, offers a versatile means ofmeasuring and
controlling multiple oscillators. The tunable beamsplitter allows for
switching between single-cavity operations (accessible when gbs = 0) and
their equivalent multi-cavity operations on the total photon number
(accessible when gbs≳ χ). As an important example of this, we have
demonstrated how photon-number selective measurements can be exten-
ded to joint-photon-number selectivemeasurements to enable amid-circuit
erasure check for dual-rail qubits. Further examples of this principle include
the extension of the “selective number arbitrary phase” (SNAP) gate to a
joint-SNAP-like gate selective on the photon number in two cavities,
enabling a tunable CPHASE(θ) gate for two dual-rail qubits (see Appen-
dix B).

The mid-circuit erasure check for dual-rail qubits enabled by joint-
photon-number selective measurements represents a new, hardware-
efficient way of performing the essential ingredient for an error-
correcting surface code with dual-rail cavity qubits. As compared to
previous work using an ancillary transmon statically coupled to both
modes of a double-post cavity33, this check is integrated with all the
hardware needed for dual-rail single- and two-qubit gates, in a unit cell
where oscillator–oscillator interactions are solely mediated via high
on–off ratio coupler between individual pairs of modes. Since the cou-
pling element mediating this beamsplitter can null any residual ZZ
interaction between cavities40, we can minimize crosstalk and enable
higher-fidelity two-qubit gates. Meanwhile, as compared to a joint-
parity check, which asks whether the joint photon number is even, this
check, which asks whether the joint photon number is zero, leverages
two important features of erasure errors: that they are rare and that the
state need not be preserved once an erasure is detected. Therefore, by
only minimally exciting the ancilla when in the dual-rail code space, it
ensures that the contribution of transmon-induced erasures and Pauli
errors is subdominant at the cost of a negligible decrease in the predicted
value of pth due to the higher false negative probability. One caveat is that
this check does not catch rare but damaging heating events (similarly
damaging to leakage errors in conventional transmon qubit archi-
tectures). However, this could be mitigated with the addition of a joint-
photon-number-selective pulse acting on the N = 2 manifold to form a
combined erasure check and leakage reduction unit69–74.

Improvement of themode coherences to state-of-the-art values should
enable performance substantially below the erasure threshold for the surface
code. With high-fidelity state preparation, logical erasure-detected mea-
surements, single-qubit gates and hardware-efficient mid-circuit erasure
checks demonstrated, key next steps will include a fully error-detectable
two-qubit gate, as well as fast qubit reset to turn leakage detection into
erasure conversion.

Methods
Device
The device used for this experimentwas previously used inChapman et al.40

and includes two superconducting λ/4 post cavities machined from
99.999%-purity Aluminum as the two oscillators. Into each of these cavities,
we insert an EFG sapphire chip supporting a transmon qubit, a readout
resonator, andaPurcellfilter. These are used toprepare and readout states in
the two oscillators. The transmon coupled to Bob’s cavity is used to deter-
mine the spectrum in Fig. 1 and to perform the erasure check in Fig. 3.
Detailed characterization of system parameters is shown in Supplementary
Table II and discussed in Appendix N.

To provide the beamsplitter interaction between these cavities, we
add a capacitively shunted superconducting nonlinear asymmetric
inductive element (SNAIL)56, a superconducting loop with three
nominally identical Josephson junctions (each with Josephson energy
EJ/h = 90.0 ± 0.3 GHz) in series on one arm of the loop and a single
junction (with Josephson energy α = 0.147 ± 0.001 times smaller) on the
other. The capacitive shunt is implemented by adding leads to the two
ends of the SNAIL connecting to large capacitor pads. This gives the
SNAIL a charging energy EC/h = 177 ± 2 MHz, while the leads also
contribute a series linear inductance with energy EL/h = 64 ± 2 GHz.
This circuit is patterned onto a sapphire chip which is inserted into a
tunnel that intersects both cavities, thereby generating a linear coupling
between the SNAIL mode and each of the oscillator modes. Passing a
DC magnetic flux through the SNAIL loop (delivered via a super-
conducting flux transformer) modifies the potential of the SNAIL,
allowing us to generate a third-order nonlinearity. By applying a single
microwave drive that couples to the charge operator of the SNAIL
mode, at a frequency equal to the difference between the two cavity
frequencies, we can generate the beamsplitter interaction via a three-
wave-mixing process. The frequency detuning from this resonance
condition is the detuning Δ indicated in Eq. (1), and the amplitude and
phase of the drive determine gbs and φ.

Any magnetic flux biasΦext besides a half-integer multiple ofΦ0 gives
the SNAIL a third-order nonlinearity, and at low drive powers, the mag-
nitude of this nonlinearity determines the ratio between the applied drive
amplitude and gbs. However, aswas seenpreviously

40, at larger drive powers,
this linear relationshipbreaksdown, and there exists amaximumvalueof gbs
at each Φext. The flux bias used in this experiment (Φext = 0.334Φ0) was
chosen to give the highest maximum value of gbs while avoiding any
unwanted resonances at any value of gbs as it is increased to this maximum
value. This, therefore, provides access to thewidest range of values for ∣gbs/χ∣.
Appendix C provides details on how we measure and calibrate the value
of gbs.

The aluminum package is mounted to the mixing chamber plate of a
Bluefors XLD400sl dilution refrigerator, at a temperature of 8mK.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The code used to perform simulations is available from the corresponding
author upon reasonable request.
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