Ann. Phys. (Leipzig) 16, No. 10-11, 767-779 (2007) / DOI 10.1002/andp.200710261

Circuit-QED: How strong can the coupling between a Josephson
junction atom and a transmission line resonator be?

Michel Devoret!>*, Steven Girvin!, and Robert Schoelkopf!

! Applied Physics Department, Yale University, New Haven, CT 06520-8284, USA
2 College de France, 75231 Paris cedex 05, France

Received 11 August 2007, accepted 14 August 2007
Published online 10 October 2007

Key words Superconductivity, Josephson effect, mesoscopic physics
PACS 03.67.Lx, 73.23.Hk, 32.80.-t

This article is dedicated to Hermann Grabert on the occasion of his 60th birthday.

After reviewing the limitation by the fine structure constant o of the dimensionless coupling constant of an
hydrogenic atom with a mode of the electromagnetic field in a cavity, we show that the situation presents itself
differently for an artificial Josephson atom coupled to a transmission line resonator. Whereas the coupling
constant for the case where such an atom is placed inside the dielectric of the resonator is proportional to
al/?, the coupling of the Josephson atom when it is placed in series with the conducting elements of the
resonator is proportional to a~1/? and can reach values greater than 1.

(© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The field of quantum-mechanical Josephson junction circuits, of which Hermann Grabert has been one of
the pioneers, does not have yet a universally adopted name: if we refer to Tony Leggett’s original proposal
of testing the validity of Quantum Mechanics at the macroscopic scale using these systems, we might
call it Macroscopic Quantum Mechanics. Others might call this domain Mesoscopic Superconductivity
to stress its relationship with the group of mesoscopic transport phenomena involving devices containing
many atoms but only few quanta of excitations above the ground state. Recently, experiments performed
at Yale on versions of such circuits incorporating microwave transmission lines have been described using
the term Circuit Quantum Electrodynamics (circuit-QED), which refer to close similarities with the field
of Cavity Quantum Electrodynamics (cavity-QED) belonging to Quantum Optics. One of us (M.D.) has
also lately been using the term Quantum Radio-Electricity as a tongue-in-cheek reminder that we are often
simply retracing the steps already taken many decades ago by radio engineers, but with circuit elements
that now obey, at the level of collective variables like voltages and currents, quantum mechanics instead of
classical laws. Sometimes, quantum mechanics just puts a slight twist on the usual behavior of the circuit.
However, in certain circumstances, new effects which have no classical counterpart arise. Arriving at a clear
understanding of these specific features of quantum circuits by using the minimum quantum formalism
is the challenge of this domain. Also, the large flexibility of circuit designs offers new opportunities for
experiments which in the future may help us understand better the core structure of Quantum Mechanics.
By shedding light on very subtle quantum effects while at the same time always being willing to examine
in detail the crude experimentalist models built with simple circuit elements, Hermann Grabert has set an
example going in this direction.

Unlike natural atoms, Josephson circuits behaving as artificial atoms can be coupled to the electromag-
netic field with arbitrarily large strength. How does this occur? Answering this question is the purpose of
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(S
& " Fig.1  Schematic view of a Rydberg atom placed in-
side a Fabry-Perot cavity. The mirrors are parallel and
square for simplicity. A circular Rydberg state is con-
sidered. The radius of the semi-classical electron orbit
w is denoted 7,.

these notes. For their compatibility with recently published literature and in recognition of the scientific
culture of Hermann which largely encompasses quantum optics, we will follow most of the cavity- and
circuit-QED notations.

2 Review of the magnitude of the coupling between an atom
and the electromagnetic field

Let us for simplicity — and direct relevance to most quantum optics experiments — consider an hydrogenic
atom such as Rubidium or Cesium. We also make the additional hypothesis that the atom is excited in a
circular Rydberg state: n = [+1 = |m|+1 > 1, where n, [ and m are the usual principal (or radial), orbital
and magnetic quantum number of atomic physics, respectively. This hypothesis does not actually restrict
much the generality of our argument, but reduces all calculations to the bare minimum. The arguments
developed in this section follow almost verbatim those found in the book by Haroche and Raimond [1], a
basic graduate text on quantum physics, which also describes in detail the beautiful experiments performed
on these circular Rydberg atoms. The arguments can be transposed qualitatively to the more usual states of
atomic physics by taking the limit n — 1.

For such electronic Rydberg states, we can adopt a semi-classical point of view and define an electron
angular velocity w,, around the circular orbit of radius 7,, (the actual shape of the wavefunction is a doughnut,
see Fig. 1). Quantum mechanics “a 1la Bohr” imposes a first relationship between these two quantities and
we can write

n
MewnTn = pp = hk, = hf . (1)
We thus get
hn
Wy, = - 2
mer2 @

Here m. is the electron mass (we assume that the mass of the core is infinite). Another equation is obtained
by following the usual treatment of the Kepler problem, i.e. by equating the centrifugal force and the
centripetal force to which the electron is submitted:
2
. €
mawﬁr,, =— 3)

Amreor2
dmegr?

This yields
h2n? e?

= . “)

mer3 ~ dmegr2

More rigorously, when we fix [ = n — 1 and m = [, we have a reduced Hamiltonian for the operator p
corresponding to the radial distance between the nucleus and the electron. This reduced Hamiltonian reads
ﬁf) n(n—1)h e?

H.q = =— .
red 2me 2me p? dmedp

(5)
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Minimizing this Hamiltonian with respect to j treated as a classical number and taking n(n — 1) ~ n?
we go back to Eq. (4). The full quantum treatment shows that the width of the doughnut scales like nl/?,
Finally, we get:

= aon’ (6)
where the Bohr radius is

4ﬁ€0h2
i %)

ag =
mee

Likewise, we obtain the energy of the state

1 o e? Ry
E, = Emewéri — Treor, =—2 )
where the Rydberg characteristic energy is given by
4
M€
Ry=—-——=-—. 9
V= s ®

In order to make the two microscopic constants of atomic physics, the Bohr radius and the Rydberg more
meaningful, we use

= ZvacC (10)

g|~

where Zy,. >~ 3772 and c are the impedance of the vacuum and speed of light, and we introduce the fine
structure constant

L 1
=~ — an
2Rk 137
where Ry is the impedance quantum of mesoscopic physics
h
Ri = — ~258kQ. (12)
€
‘With these constants, we can rewrite the Bohr radius and the Rydberg energy as
2
Ry = %mncg
(13)
1 n
ag=——.
@ MeC

If we now compute the transition frequency |E,, — E,, 1| /h from dE,, /On, we naturally come back to the
angular velocity of the electron on its semi-classical orbit, as expected:

Ry
3’

Note the Kepler scaling between the radius and period of the orbit in which % disappears, as we could
have anticipated from above

2Ry \7* 1
Tn = Qo h 273

Wn

- o2 s
— \dregme D23

Wn

wp, =2

(14)

(15)
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We now turn to the electric dipole moment of the transition n — n % 1 between circular states:

ery eagn?

d, = = — (16)
which follows simply from the projection of the circular motion of the electron around its orbit.
If we now apply the classical Larmor formula
222
e T
= — 17
"7 6megcd an

for the power P, of the radiation emitted from a dipole, which we take of the form ex (t) = d,, cos (w,t),
we can find the spontaneous emission rate

B

m?l
4 Ry

Fnan—l =
(18)
Ry 5 _5
—-—an
3 h
Remarkably, the same result can be found by a totally different path in which we apply Fermi’s Golden
Rule:

) . ;
Thosn1 = % Z |(Va(:. n|€ - d|p,n — 1)}26 (Ep — hwy,)
» 1 pllmlon states p (19)

dhwy

- 3mheoc3

In this last expression, Eis the electric field, d = e7 the dipole moment of the atom and |p) denotes a
generic 1-photon propagating state with given energy £, polarisation and wave vector direction. If we now
compute the quality factor of the transition corresponding to spontaneous emission, we find

9.2
Wn, —0, = 3n®
— L =Q,=

5 3"
Fysn—1 2a

(20)

The well-known conclusion we can draw from this formula in which the mass of the electron disappears
is very general: the sharpness of atomic lines is directly linked to the fact that we live in a world where o
is a small number.

Let us now go through a further step and calculate the coupling energy between the atom, which we treat
as just a system with two levels (n,n — 1), and one specific mode of the electromagnetic field confined
by a Fabry-Perot cavity in which the atom is now placed. In contrast with the case of the atom in free
space in which the propagating photon modes form a continuum, in the case of the atom in a cavity, the
electromagnetic modes are discrete standing waves. We take the mode frequency of interest to be very near
the atomic transition frequency.

It will be sufficient, for the sake of our discussion, to consider a mode consisting of a plane wave bouncing
back and forth between two parallel square mirrors with width w separated by a length L (see Fig. 1). We
will ignore diffraction effects due to the mirror edges. Again, the result will lead to a conclusion whose
validity extends beyond this particular case.

We remind the reader that the Hamiltonian of an hydrogenic atom in a time-varying electromagnetic
field is given to an excellent approximation by

1 2 2 e?
WL (pred) - en
2me dmeg|7|
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where A is the vector potential of the time-varying part of the electromagnetic field in the Coulomb gauge
(V- A = 0). Relativistic, spin and core effects are absent from this 0-th order description.
The coupling Hamiltonian between atom and field is thus

Ho— A 22)

me

This last relation can be canonically transformed into
H.=er € (23)

which is the basis of our Fermi Golden Rule expression written above.
We can compute the value of the matrix element of the electric field £ operator corresponding to a
one-photon transition using the closure relation:

Z<vac|§\]\"ph>(Nph|§|vac> = (vac|€?|vac) . (24)

Npn

On the other hand, since photon modes are harmonic oscillators

(vac|€ | Ny,) = (vac|€|1) when Ny, = 1 .
|E | Non) =
0 otherwise .
Therefore
g - 1/2
‘(\rac\ﬁ \1>| = (<Va(’|52|\r'a(-))
(26)

— gvac

Tms*

Here is a quick shortcut for computing the r.m.s. fluctuations of the electric field in the ground state
(it works correctly for harmonic modes and should not hastily be generalized to non-linear ones). The
instantaneous Poynting vector corresponding to a propagating plane wave is given by

1

P(t)] = — €@ @7n

Its average over one period is given by

1 _
Prms = Z_grzma . (28)
vac
On the other hand, treating the vacuum state as a half-photon bouncing between two mirrors (this photon
corresponds qualitatively to the zero-point energy), the energy flux in one direction can be computed semi-
classically

hw, 1
plob.ldir _ iy (29)
ms 4L /c w?
Taking into account the standing wave character of the mode, we find
vac __
e (30)
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Introducing the mode volume

Y = Lw? A1)
and its dimensionless version
” Lw?
V=" (32)
(A/2)
where
Ao 2me (33)
Wn

we arrive at
- r_uQ 1
(acle] 1) = 722 Zach— .
¢ Vv

The dimensionless coupling constant between the atom and the field mode, defined as the ratio of the
vacuum Rabi frequency and the Larmor frequency,

d,, (vac|€| 1)

(34)

g=2 35
g T, (35)
is thus proportional to d,,w,, and given by
3/2
2 Ry 1
i=(2) eV Zmch— . (36)
T h2en ﬂ
Using
aoRy = ahc (37)
we arrive at our second important result
. a’? 1
g= = - (38)
n VY

We thus find that, due to the weakness of the fine structure constant, a discrete mode of a cavity is also
always weakly coupled to the atom. In actual cavity-QED experiments, § is of order 10,

However, a remarkable fact arises: the algebraic dependences of g and ),, on n and «v are such that when
we compute one of the figures-of-merit of cavity-QED, namely the ratio of the coupling frequency to the
decay rate of the excited level due to spontaneous emission, we find

3/2

gQn = a” n% . (39)

)%

a number which, unlike § and 1/Q,,, can be made much larger than 1 with appropriate experimental
conditions. This last expression justifies the efforts by the various groups working in cavity-QED to go to
small mode volumes and explains the focus on large principal numbers n by the Haroche group. Note that
the number §Q.., describing the effect of photon losses in the cavity is the other important figure-of-merit
which needs to be greater than unity for coherent vacuum Rabi oscillations between the cavity and the atom
(strong coupling regime of cavity-QED).

We now turn to Josephson circuits, for which we will try to match, as closely as possible, the line of
reasoning we have followed in this section to arrive at the relative strength of the atom-field coupling
constants.
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a) Qext b) Qext

14 1

5 5 Ey(®) ( 5
Fig. 2 (a) The split Cooper pair box consists of two

junctions forming a loop and coupled to an external cir-
2 2 cuit providing a charge bias. No dc current is allowed
; ; to flow through the junctions, which behave as single
adjustable Josephson element (cross) in parallel with a

capacitance (b).

3 The Josephson junction atom

The tunnel junction circuit which is on par with the Rydberg atom is a circuit often referred to as the split
Cooper pair box. It consists of two small Josephson junctions in parallel, forming a loop through which is
threaded a constant flux ® (see Fig. 2a). The inductance of the loop is very small compared to the effective
inductance of the two junctions and they behave therefore as a single Josephson junction with adjustable
Josephson energy £ (®) = E ol cos( 7 ®)] (see Fig. 2b). The device is biased by an external circuit which
only imposes time fluctuations of the charge having flown through the device, but no dc current.

The Hamiltonian of this split Cooper pair box can be written as

& e
H = Fep (\ - %) — By (®)cos(d) . 40)
€

The parameter Ecp = (2€)?/2C; is the charging energy in which Cj is the total capacitance of the
two junctions. The phase operator 0 corresponds to the difference between the phase of the condensates
of the superconducting electrodes separated by the junctions. It is conjugate to the number operator N
corresponding to the total number of Cooper pairs having flown through the tunnel barrier between the
two electrodes. Because 6 is an angle taking its values on a compact 1-d space, the commutation relation
between 0 and N should be written as

e Ne i = N —1 @1
rather than the somewhat ill-defined relation
[0,N]=i. (42)

The charge operator (;)ext corresponds to the charge coupled by the external circuit into the device. Its role
is similar to that of the vector potential Ain Eq. (21). It should be possible to draw an analogy between the
reduced Hamiltonian of the circular Rydberg atom Eq. (5), supplemented with the correct electromagnetic
term, and the Cooper pair box Hamiltonian Eq. (40). In this analogy, the role of the principal quantum
number n of Rydberg atoms is played here by the ratio E 7/ Ecp. As we will see in more details below, the
larger this ratio, the stronger the quantum fluctuations of the charge on the junction capacitance.

Let us examine how a particular biasing circuit modifies the Hamiltonian described by Eq. (40). Suppose
we insert our Cooper pair box in a circuit consisting of a capacitance C' in series with an inductance L (see
Fig. 3). Applying the rules of quantum circuit theory [2], we find that the total Hamiltonian of the circuit
reads

" a A 2
H, (I)gxt gxt E y{/ Qext E (9 43
= 2 ¥ N——=——1] —Ejcos(0). 8
w= 57+ 5e T Ee 56 7 cos(6) (43)
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C:
d Fig. 3  Cooper pair box biased with a LC circuit. A flux through the inductance

linearly varying in time can be used to impose a charge bias on the Cooper pair box.

The generalized flux and charge variables i)ext and (;)ext are the operators corresponding to the time
integral of the voltage across the external capacitor and the current flowing through the external inductor,
respectively. They are canonically conjugate, obeying

[Dexts Qext] = i “4)

If we now suppose that the inductance L is so small that the energy %/ VLCis bigger than any other energy
in the problem, we can treat N and 6 as slow variables and @ and Qex; as fast variables. In the spirit of
the Born-Oppenheimer approximation, we can replace Qext by its average value Qexc computed by treating
Nasa parameter. We find

Qext 2e o Qext
—— | N - = 0. 4
C C; 2e 3
Hence
A ¢ 9. N
Qext = TCJZ@Z\ s (46)

At the end of this calculation, we find that the Hamiltonian of the Cooper pair box is renormalized by
the presence of the external circuit

. 2 A
Hyen = Elyp (\ — Nq) — E5(¢) cos(9) 1)

where Efp = (2¢)?/2Cs, is the usual charging energy including the total capacitance Csx; = C' + Cj. In
this last formula, we have also included the constant charge offset N, = C'U/2e produced by an additional
voltage source U which would be in series with L and C'. Note that it would have been easier to neglect from
the start the inductance L, incorporate directly the external capacitance C'in the capacitance of the junction
since the two elements are now in parallel, and then write the quantum Hamiltonian of the modified circuit.
This procedure works also for the more useful case when a series voltage source is inserted in the external
circuit. We are witnessing here a commonly encountered circumstance in quantum circuits: ordinary circuit
theory manipulations done before introducing non-commuting operators can often provide shortcuts to
complex quantum mechanical calculations.

4 Energies and matrix elements of the Josephson atom

‘We will consider for simplicity the “transmon” case where £; > Ecp which is also of interest for super-
conducting qubits [3], but our expressions can easily be generalized. For large E;/Ecp the fluctuations in
0 are small and we can Taylor expand the cosine function to obtain

A 2 A A
v T Qext 3 02 1 94
H_bcp(J\fy +b‘]57]i‘]ﬂ. (48)
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Introducing
i, ) d,
= () o ()’
1 [ Bs\Y, (2Bt “
b= g (aas) o (%) ]
which obey
[b, bq -1 (50)
we can write [3]
1yt _ ) ) 4
H = Reogib1h — (%) <” : b) %‘ B (1) 1)

where

hwo1 = /2EcpE . (52)

The states of the Josephson atom in the transmon regime are thus close to harmonic oscillator states. The

relative anharmonicity is given by
3/2
Ecp
. 53
( Ey ) } oY

Wiz — wot | Ecp
TR o)
wo1 32b_] *

We can write the coupling between the Cooper pair box and the external circuit as

H,=—2eN -V (54)

where the operator Vext = Qext /C; represents the voltage developed by the external charge Qext on the
junction capacitance C;. We see from this equation that 2eN plays for the Cooper pair box the role of the
dipole moment for the atom: the Josephson atom can be viewed crudely as a particle with charge 2e going
back-and-forth between two capacitor plates across which the external circuit induces a voltage Vext. The
value of this analog of the dipole moment is

o= (22}
)<0|2(,J\|1>|_<ECP> e (55)

This equation justifies why the ratio £y / Ecp can be viewed as playing a role analogous to that of principal
quantum number 7.

5 Transmission line cavities

Unlike the Fabry-Perot cavities of quantum optics which are essentially three-dimensional, the transmission
line cavities of circuit-QED are one-dimensional. As pointed out by two of us (S. G. and R. S.), the resulting
determining advantage is a very reduced mode volume [4]. Here we will consider coplanar waveguide (CPW)
transmission lines, which consist of a central wire running in the slot defined by two ground half-planes
(Fig. 4a). They correspond to recent experiments performed on the quantum coherent coupling between
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T

¢ # C/2 L C/2 #

a=
o=

c)

Fig.4 (a) Coplanar waveguide transmission line resonator viewed from top. Grey areas are superconducting
films. Dotted lines represent spatial variations of electric field between the center conductor and the ground
planes for a \/2 resonance. The system is a microwave analog of a Fabry-Perot resonator, the role of the
mirrors being played here by the cuts in the center conductor. (b) Circuit schematic of transmission line
resonator showing the “mirror” capacitances. The parameters Z. and v are the impedance and propagation
velocity of transmission line. (c) Discrete element model of resonator for frequencies in the vicinity of a
A/2 = 7 /wo resonance.

superconducting qubits and cavities [S]. Other transmission lines such as microstriplines and coplanar
microstriplines [6], can be used, but we will not deal with them here. Interrupting the central wire of the
CPW by two in-plane capacitors makes a 1-d Fabry-Perot, the value of the capacitance determining the
transmission coefficient of the “mirrors™ .

It is convenient to model this distributed resonator with discrete elements. In general, if we deal with
modes up to order m, we will need of order of m pairs of inductors and capacitors. Consider a A/2 1-d
cavity resonating at frequency wy. The electric field between central and ground conductors is maximum
at each end, while the current is maximal in the middle of the line (Fig. 4). We can model this cavity with
one inductor L along its length and two capacitors C'/2 at each end. The values of these elements should
be taken such

=wo
(56)
= e

3
Qls Q

where Z. is the characteristic impedance of the CPW line, usually close to 50 €2. The “mirror” coupling
capacitances C.. are such that
2C,
C

— Qe <7

where Q. is the “loaded” quality factor of the cavity (we neglect the internal losses of the resonator, which
in practice is made negligible with superconducting films).

Let us now compute the voltage V" at the end of the resonator and the current [ inside the resonator. For
an electric harmonic oscillator, we have in the ground state

1 Ao 1 c o hwo
0|H|0) = — (0|Q~|0) + —(0]®°|0) = —— . 58
(OHI0) = 5 (010%10) + 5 01#%10) = ™ )
(© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org

9SUIIT SUOWIWO) dAReaL) d|qedtjdde ay) Aq pausanob aie sapdille YO ‘asn Jo sajni 1oy Aleaqr auljuQ AS[IM UO (SUOIIPUOI-pue-suLId}/wodAdjImAseiqiauljuo//:sd1y)
SUORIPUOD pue swJd) 3y 33S ‘[#202/60/2L] uo Ateiqi] auluo Asim “Aisianiun ojeA Ag ‘60LL-0L6LS 2002 dpue/z00L 0L/10p/wodAs|imAleigijpuljuo//:sdyiy woly papeojumoq ‘LL-0L ‘2002 '688€L2SL



Ann. Phys. (Leipzig) 16. No. 10-11 (2007) 771

Therefore, using the equipartition theorem,

A hwoC k1
(0lQ?0) = 20 =37
hwol  h ( &5
corn  hwol b
(0]9*)0) = 5 = 2Z(,.
‘We can transform these expressions and get
A Ry
0|¢ =g
(OIQIL) = ey/ 77
(60)

- h | Z.

The voltage V is obtained from ﬁ’wo and we get, accounting for the division over the two capacitors C'/2

~ hu}o ZC
OV = 22 Tr e
(61)
1 hw
— Lo [ Ze
8T e Zvac
The current / is obtained from Qwo and we get
. Ry
0[7]1) = e
(O = ewoyf 27,
(62)

_ Y [ Zwe i
= 8—Trew0 7. « .

6 Coupling schemes and associated dimensionless constants

We can couple the Josephson atom with the cavity in two different ways: a) we can place it in the gap
between the central conductor and the ground plane, using the field maximum at each end of the resonator
(equivalently we can use a A cavity resonance and place our atom in the middle, as was done in the original
circuit-QED experiment) or b) we can insert it in the central conductor of the cavity, half-way between the
capacitors.

Coupling scheme (a) can be modeled by the circuit depicted in Fig. 5a where we introduce the capacitance
Oy in series with the split Cooper pair box. We then find that

5 c, 5
(0 Vexe 1) = 7J(V(0|V\l). (63)
3

Cy+

Combining this last equation with Egs. (54), (55) and (61), the associated dimensionless coupling constant

is thus
1
} 1 2B\ [Z. ¢, . ,
== _Yo_ 12, 64
9=\ 5 (b@) Zvae Cy 4 G o4

We find here a situation similar to the coupling of an atom to a cavity mode: this dimensionless constant
involves a positive power of the fine structure constant. Also, note that

(65)
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L
C; Ce
1 Nt
g
a) 2 T 2 T %cj
E,
C. Lz G L2 C, Fig.5 Two different schemes for coupling a Joseph-
o—p l— son junction atom to a cavity resonator. (a) The junc-
tion is placed in the insulating gap of the transmission
b) E; line and couples to its electric field. (b) The junction

C/2 C/2
T T interrupts the central conductor of the resonator and is
coupled to its current.

Nevertheless, because of the one-dimensional nature of the cavity « enters only through its square root
rather than as o*/2 as in Eq. (38) and the condition g Q... for strong coupling to the cavity can therefore
be reached without going to extremely large Q... In practise, we have §; ~ 1072,

Coupling scheme (b) can be modeled by the circuit depicted on Fig. 5b. The Cooper pair box now
directly couples to the Q operator of the resonator and thus Vet = Q/Cj. Using Egs. (54), (55) and (62),
the associated dimensionless constant is now given by

.
oo L (2B\* [Zae 1 €/Cs
IN=2\ 87 Eep 7. VEwE;

1
_ L ECP 4 Zvac 071/2 )
81 2E_7 Zc

We now find the even more favorable result that o enters with a negative power. Taking as an example the
realistic values Z. = 50 and Ecp/2FE; = 100, we arrive at the dimensionless coupling gj” ~ 20. It is
therefore possible to reach the ultra-strong coupling regime of cavity-QED [7]. The passage from coupling
scheme (a) to coupling scheme (b) is a sort of duality transformation which interchanges the electric and
magnetic field. In coupling scheme (a) the transmon couples to the electric field of the resonator like in
usual cavity-QED experiment whereas in the “in-line” coupling scheme (b) the Josephson atom couples to
the current, or in other words, to the magnetic field of the resonator. To our knowledge the consequences
of this strong coupling have not yet been explored experimentally, although this junction-cavity in-line
configuration has been used in the weak coupling regime for the Cavity Bifurcation Amplifier [8]. One
immediate application of the strong coupling regime would be to make a simpler “in-line” transmon based
on a CPW.

(66)

7 Conclusion

We have discussed comparatively the coupling to an electromagnetic cavity of a circular Rydberg atom, on
one hand, and a Josephson junction atom, i.e. the Cooper pair box, on the other hand. It is possible with the
latter to turn the smallness of the fine structure constant into an advantage when it comes to reaching ultra-
strong coupling conditions. These conditions could be useful for making hybrid superconducting qubits
which would store quantum information mostly into high-Q superconducting resonating cavities.
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