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Deterministic protocol for mapping a qubit to coherent state superpositions in a cavity
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We propose and analyze a quantum gate that transfers an arbitrary state of a qubit into a superposition of two
quasiorthogonal coherent states of a cavity mode (qcMAP), with opposite phases. This qcMAP gate is based
on conditional qubit and cavity operations exploiting the energy-level dispersive shifts in the regime where they
are much stronger than the cavity and qubit linewidths. The generation of multicomponent superpositions of
quasiorthogonal coherent states, nonlocal entangled states of two resonators, and multiqubit Greenberger-Horne-

Zeilinger states can be efficiently achieved by this gate.
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I. INTRODUCTION

In the field of quantum Josephson circuits, microwave res-
onators are extremely useful for performing readouts, coupling
multiple qubits, and protecting against decoherence [1-3]. In
addition, using an oscillator as a memory to store a qubit
state has been explored both theoretically and experimentally
(see, e.g., Refs. [4—6]). The recent improvement in coherence
times of microwave resonators with respect to superconducting
qubits [7,8] makes it particularly interesting to use a cavity as
a quantum memory in this context.

In this article we propose and analyze a gate between a
qubit and a cavity (qcMAP) which maps the qubit state onto
a superposition of two quasiorthogonal coherent states with
opposite phases. This gate provides access to the large Hilbert
space of the cavity, so that one can encode the information
of a multiqubit system on a single-cavity mode and decode it
back on the qubits. In particular, this gate can be employed
to efficiently prepare any superposition of quasiorthogonal
coherent states (SQOCS) [9,10]. Furthermore, we show that
this scheme can be easily adapted to prepare entangled states
of two resonators [11], which would maximally violate Bell’s
inequality.

This qcMAP gate, combined with the previously demon-
strated capabilities of circuit QED, yields a very powerful
quantum manipulation toolbox and opens a new paradigm
for working with the coherent states of an oscillator. The
new approach we introduce in this paper, in comparison
with previous ones, is characterized by three advantages.
First, we require only a minimal setup with fixed qubit-cavity
couplings and frequencies, maximizing coherence. Second, we
can directly prepare superpositions of coherent states without
the lengthy procedure of synthesizing them from Fock states
one by one [12]. Hence, the time to prepare a SQOCS using
the qcMAP gate does not increase with the amplitudes of the
coherent components, but scales only linearly with the number
of coherent components. Large SQOCS could therefore be
generated with high fidelities to explore the decoherence of
highly nonclassical states [13,14]. Finally, our scheme is fully
deterministic and reversible, allowing it to serve as a basis for
more complicated tasks such as quantum error correction [15].
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II. THE qcMAP GATE

We place ourselves in the strong dispersive regime, where
both the qubit and resonator transition frequencies split
into well-resolved spectral lines indexed by the number of
excitations in the qubit and the resonator [16]. The resonator
frequency w, splits into two well-resolved lines, ¥ and ?,
corresponding to the cavity’s frequency when the qubit is in
the ground (|g)) or the excited (|e)) state. Through the same
mechanism, the qubit frequency w, splits into {“’Z Jn=0.1.2....
corresponding to the qubit frequency when the cavity is in
the photon number state |n). Recent experiments have shown
dispersive shifts that are about three orders of magnitude larger
than the qubit and cavity linewidths [3].

The qcMAP gate relies on two operations which we detail
in the following: the conditional cavity displacement, which
we denote by DE, and the conditional qubit rotation, which we
denote by X! [see Fig. 1(a)]. An unconditional displacement
D,, is obtained by applying a very short pulse, which displaces
acoherent state by o regardless of the qubit state. A conditional
displacement Dy can be realized in the strong dispersive
limit: with a selective pulse of duration T 2 1/xqr (Xgr
being the dispersive shift of the cavity frequency when the
qubit is excited), we may displace the cavity by a complex
amplitude « only if the qubit is in the ground state. For a
coherent state |8), we have Dj|e,8) = |e,) and Dg|g,B) =
e@F' ="M/ g B + &). Such a conditional displacement was
first proposed in [17] as part of a nondeterministic scheme
to prepare a two-component superposition of coherent states.
In [18], this nondeterministic preparation followed by high-
fidelity measurements and real-time feedback was used to
perform various quantum gates. More recently, the conditional
displacement was combined with unconditional qubit rotations
to render the preparation deterministic [11]. The unconditional
qubit rotations would necessitate decoupling the qubit from the
cavity and hence require real-time frequency tuning. For the
deterministic qcMAP gate with no real-time qubit frequency
tuning, we combine this displacement with a conditional qubit
rotation, XV . The conditional rotations X} are simply achieved
by applying a selective pulse at a)2, performing a rotation of
angle 6 of the qubit state conditioned on the cavity being
in its vacuum state. Such selective qubit rotations have been
experimentally demonstrated in [19].
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FIG. 1. (Color online) (a) The qcMAP gate comprises a condi-
tional displacement of the cavity mode D5, and a conditional rotation
of the qubit XY, mapping the qubit state to a superposition of two
coherent states with opposite phases in the cavity. (b) Fidelity (blue)
and gate time (green) of the qcM AP gate as a function of the dispersive
coupling X, for two values, 3.5 (solid line) and 7 (dashed line), of
1 = |a|?. Increasing Xqr decreases the gate time, however it also
increases the cavity self-Kerr x,,, which reduces the fidelity. This
effect is more important for large coherent states, which explains the
more important fidelity drop for 7 = 7 photons. For 7 = 3.5 photons,
fidelities larger than 99% are obtained for g, smaller than 5 MHz,
with a gate time of 2170 ns, much shorter than achievable coherence
times.

In order to map the state of the qubit to the cavity
mode, we construct the qcMAP gate as follows. Starting
from a qubit in c,|g) + c.le) and a cavity in |0), the first
conditional displacement Dj, entangles the qubit and the
cavity, creating the state c,|g,2a) + c.|e,0). We choose 2|c|
to be large enough so that the nonorthogonality of the two
coherent states |(2|0)|> = e#"" is negligible (of order 10~6
for i = |a|* = 3.5). The conditional 7 pulse X can then
disentangle the qubit from the cavity leaving the qubit in |g)
and the cavity in cg|2a) + c.|0). Finally, the unconditional
displacement D_,, centers the superposition at the origin.

The qcMAP gate is well adapted to quantum-information
processing with a transmon qubit [20] coupled to a microwave
resonator. The Hamiltonian is well approximated by [21]

Xrr

H
7= w:ala+ w,bib — T(afa)2 - %(bfb)2

— erafabTb.

Here a and b are, respectively, the dressed mode operators
of the resonator and the qubit (|g) and |e) are the first two
eigenstates of bTb), o, and w, are their frequencies, xq is
the dispersive qubit-resonator coupling, and x,, and x,, the
anharmonicities. Indeed, due to the coupling to a nonlinear
medium (the qubit), the cavity also inherits a Kerr effect
that leads to the anharmonicity x,, = X§I/4qu [21]. This
nonlinearity can distort coherent states and sets a limit on
the fidelity of the gate.
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While the unconditional cavity displacement D, can be
performed rapidly using a short pulse, the conditional cavity
displacements D5 and qubit rotations Xg necessitate long
pulses allowing one to selectively address the corresponding
spectral line. In the qcMAP gate, X? transforms |e,0) to |g,0)
while leaving |g,2¢) unchanged. To this end, we apply a
pulse with the carrier frequency a)(q) and shape it such that

it does not overlap with the spectral lines a)g(z wg — N Xqr)
corresponding to the qubit frequencies when the cavity is in
|2cr). Indeed, ideally a conditional qubit rotation should act
as the identity whenever the cavity is in any photon number
state other than the vacuum. However, here we only need it
to leave the qubit state unchanged when the cavity is in the
state |2a). Defining 77 = («|a'aja) = |a|?, the pulse length
needs to be longer than a certain multiple of 1/4ii . Here
we take a Gaussian pulse of standard deviation o; = 5/471 xq
and total length 60; resulting in a 7-pulse time of 15/27 yq,
(&70 ns for 1 = 3.5 and x4/2m = 5 MHz) for 99% fidelity.
For the D§ operation, using a Gaussian pulse to selectively
address f without driving w¢ = @f — xq (the spectral lines
are separated by x4 and not 4ii xq;) would require a relatively
long time of ~ 30/ x,. However, as detailed in Appendix A,
D¢ can be performed using two unconditional displacements
and a waiting time between them [11]; the whole operation
time is significantly reduced to 7 /x4 (=100 ns). The total
gate time is Tgue A 152;)2(’1” (TGae = 170 ns).

There is a compromi;e between decreasing the gate time
with larger coupling strengths and increasing the undesirable
effect of the cavity self-Kerr. The Kerr effect leads to a phase
collapse of a coherent state with the mean photon number 77 on
a time scale of Teoliapse = ﬁ ([22], Sec. 7.2) (see also [23]).

This phase collapse can be considered as an extra dephasing
of the cavity and reduces the gate fidelity.

In Fig. 1(b), we compute the fidelity and time of the
qcMAP gate in the presence of the cavity self-Kerr but
without any decoherence. We take x,,/2m = 300 MHz and
vary xqr. The fidelity F of the gate {f is defined as F =
min, ., [(c}(g.al + cl(g. — aU(cslg.0) + cele.0)*. The
gate fidelity and the gate time decrease with increasing yq;.
The decrease in fidelity is slightly worse for higher 7 since
the coherent state becomes more exposed to the cavity’s
nonlinearity. The maximum fidelity of ~99.5% is set by the
fidelity of the conditional  pulse which can be arbitrarily
improved using longer pulses (at the expense of longer gate
times). In the presence of decoherence, one should increase
the coupling strength (and therefore decrease the gate time)
up to values that make the phase collapse due to the cavity
self-Kerr comparable to other dephasing times.

III. APPLICATIONS OF THE qcMAP GATE

A. Preparation of arbitrary superpositions of quasiorthogonal
coherent states

One can tailor any SQOCS by applying a sequence of
qcMAP gates (see [10] for another method based on the
dynamical quantum Zeno effect, and see [24] for a nondeter-
ministic scheme). The protocols to generate two-, three-, and
4-component SQOCS are given in Figs. 2(a)-2(c). The master
equation simulation of these preparation protocols leads to the
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FIG. 2. (Color) (a—c) Operations to prepare a two-component (a), three-component (b), and four-component (c) SQOCS. |C%) denotes a
superposition of coherent states |o¢;) + - - - + |a,). In panels (b) and (¢), ) = oy, 2 = 2 — a1, B3 = a3 — @2, and O3 = 2arccos(1/\/§). In
addition, in panel (c), B4 = a4 — a3 and 64 = 2 arccos(1/2). (d—1) Wigner functions of the prepared states in the presence of decoherence and the
cavity self-Kerr. The upper figures correspond to 7i = 3.5 photons in each coherent component and the lower ones correspond to 7 photons. We
define the fidelity of the prepared state pyrp to the target [Cy) as Forep(ICF)) = (C | Pprep | C ). We get Firep (IC5)) = 97.8% (respectively, 97.2%)
for i1 = 3.5 (respectively, i = 7) for a preparation time T, = 170 ns (respectively, 135 ns). Similarly, Fje,(IC5)) = 96.2% (respectively,
95.7%) and Ty, (IC5)) = 320 ns (respectively, 225 ns); Forep(IC5)) = 91.9% (respectively, 91.5%) and Tyep(IC5)) = 460 ns (respectively, 355
ns). Note the insensitivity of the preparation fidelity to the size of the coherent components. Due to the cavity self-Kerr, the components that

are created earlier are deformed more than those created later.

Wigner functions shown in Figs. 2(d)-2(i). The corresponding
parameters are xq/2m =5 MHz, x,,/2m =300 MHz, and
Xrr/2m = 20 kHz. The qubit relaxation and dephasing times
are T\ = T, =20 us, and the cavity decay time is T,y =
100 ps. Recent experiments with transmon qubits coupled to
three-dimensional resonators [3,25] indicate that such parame-
ters are realistic. More details on the preparation scheme can be
found in Appendix A. In particular, one notes the insensitivity
of the fidelity to the size of the coherent components. The
ability to prepare multicomponent SQOCS also implies that
the qcMAP gate can be used to store multiqubit states in the
resonator.

B. Entanglement of two spatially separated cavity modes

The qcMAP gate can also be used on a qubit coupled to
two spatially separated cavities [26] to prepare nonlocal meso-
scopic superposition states of the form |—«a, — o) + |o, ).
Such highly nonclassical states achieve a maximum violation
of Bell’s inequality as soon as |a|> ~ 2 [[22], Sec. 7.6]. The
preparation scheme is sketched in Fig. 3. As in the single-mode
case, the sequence duration is set by the length of the selective
operations. The two conditional displacements are performed
simultaneously and their time is given by max(1r/ x4, ,7/ Xgr,)
(x4r, and x4, being the dispersive coupling between the qubit
and cavity modes). The conditional 7 pulse is performed in a
time of order 15/27(x,,, + X4r,)- Therefore, the preparation
time for a nonlocal superposition is even shorter than that
for the single-mode case. However, in addition to the cavity
self-Kerr effects x,, and x,,,, we also have a cross-Kerr

term, X,.]rza{alagaz, between the two modes (x;,,,, is given by

2/\/ XF|V| szrz [21])'

We simulate this scheme taking x,./2m =5 MHz,
Xgr. /2w =4 MHz, x,,,/2m =20 kHz, x,,,, /27 = 20 kHz,
Xrorn/2m =13 kHz, and x,,/27 =300 MHz and taking
coherence times of 7 = T, = 20 us for the qubit and T,y =
100 ws for the two cavities. The entangled state |o,or) +
|—a, — a) with ||*> = 1.5 is prepared with a fidelity of ~96%
in 190 ns. By calculating the two-mode Wigner function at four
points, as explained in [27-29], we retrieved a Bell signal of
2.5, largely violating Bell’s inequality (maximum possible Bell

signal is Zﬁ).

Cavity 1: |())

Qubit: |g>— ¢ > ‘Q> ® |’¢}\L>

Cavity 2: | 0)

FIG. 3. Protocol for preparing a nonlocal entangled state between
two cavities that are dispersively coupled to a single qubit. Two
simultaneous conditional displacements lead to a tripartite entan-
glement, preparing the state |g,2«a,2a) + |e,0,0). A 7 pulse on
the qubit, conditioned on both cavities being in vacuum, will then
disentangle the qubit from the cavities leaving them in an entangled
state |YnL) = (| — @, — @) + |o,&))/ N, where N is a normalization
constant. We obtain a fidelity of ~96% in 190 ns, leading to a Bell
signal of 2.5.
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FIG. 4. (Color online) (a) The qcMAP gate can be used to map
a single-qubit state c,|g) + c.|e) to a GHZ-type state |GHZ) =
Colgg---g) +clee---e) for an arbitrary number of qubits. The
conditional rotations of qubits can be done in parallel and therefore
the total preparation time does not increase with the number of
qubits 7, (it actually slightly decreases with n, since the conditional
displacement D*$* can be performed faster). (b) Gate fidelity
(blue) and time (green) as a function of the dispersive coupling
strength for three (solid lines) and five qubits (dashed lines); we
take the same dispersive shifts xq for all qubits (not a necessary
assumption) and |«|*> = 3.5. Like in Fig. 1, the simulation does not
include decoherence but takes into account the cavity self-Kerr. For
larger n,, the cavity self-Kerr increases which leads to a drop in
gate fidelity, particularly for high dispersive coupling strengths. We
obtain fidelities in excess of 99% (respectively, 98%) for n, =3
(respectively, n, = 5) with a gate time of 400 ns.

C. Multiqubit gates

We have shown that the qcMAP gate generates highly
nonclassical cavity field states, making it a promising tool to
store multiqubit states in the cavity [4,30,31]. An extension of
the qcMAP gate uses the cavity as a bus to perform multiqubit
gates. As shown in Fig. 4(a), starting from state ¢, |g) + c. |e)
for one qubit, we use the qcMAP gate to map this state
to a multiqubit entangled state ¢, [gg--- g) + colee---e). A
first conditional displacement D5, prepares ¢, [2a,8g - -+ g) +
c. |0,eg - - - g). The time for this operation is & / x;. Applying,
in parallel, a conditional 7 pulse X° on ng — 1 qubits, we
prepare an (n, + 1)-body entangled state c, [2a,8¢ --- g) +
c.|0,ee---e). The time for this operation is fixed by the
minimum dispersive coupling strength. Next, we perform a
the qubits which are left in ¢z [gg--- g) + ¢, |ee- - - e), while
the cavity is in vacuum. This conditional displacement can be
performed in a very short time, ~m/(x1 + - + Xa,), Which
decreases with the number of qubits. Such an operation can be
compared to the joint readout of qubits in the strong dispersive
regime [32,33] where, by driving the cavity at a frequency
corresponding to a particular joint state of qubits, one can
measure its population with a high fidelity.

PHYSICAL REVIEW A 87, 042315 (2013)

In Fig. 4(b), we plot the gate time and fidelity as a function
of the dispersive coupling .. A limiting effect on the fidelity is
the cavity self-Kerr which increases additively with the number
of qubits. Despite this effect, for xq/27w = 3MHz, we prepare
a five-qubit Greenberger-Horne-Zeilinger (GHZ) state with
an ~97.5% fidelity in 300 ns. Furthermore, this gate can be
performed between any subset of qubits coupled to the bus and
does not require any qubit tunability or employment of higher
excited states.

Such an application of a cavity mode as a bus to perform
multiqubit gates can be compared to the scheme proposed in
[34] and some further work following this paper which is well
summarized in [35]. In these works, conditional displacements
are concatenated to obtain such gates in near-deterministic
ways. However, similarly to [11], they require the ability to
couple and decouple qubits from the cavity at will.

IV. CONCLUSION

In conclusion, we have introduced the qcMAP gate which
maps a qubit state to a superposition of two coherent states
in a cavity. The qcMAP gate is then used to prepare two-,
three-, and four-component SQOCS, as well as a nonlocal
mesoscopic field state superposition in two cavity modes.
Using this gate, the resonator could be used as a quantum
“disk drive” to store multiqubit states in a multicomponent
SQOCS. A SQOCS of maximum photon number 7, for which
the maximum nonorthogonality of two coherent components
is e, could store a register of A log,(ii/m) qubits. The
effective decay rate of such a state would be 7ix where « is the
decay rate of one photon. Using the qcMAP gate, the cavity can
also be used as a bus to perform a multiqubit gate, preparing,
in particular, GHZ states. Finally, any multiqubit gate can be
performed by concatenating such qcMAP gates.

ACKNOWLEDGMENTS

This work was partially supported by the French “Agence
Nationale de la Recherche” under Project EPOQ2 (No. ANR-
09-JCJC-0070) and the Army Research Office (ARO) under
Project No. ARO-W911NF-09-1-0514, and the NSF DMR-
1004406. Z.L. acknowledges support from the Fondation
Sciences Mathématiques de Paris.

APPENDIX A: SEQUENCE OF OPERATIONS WHICH
PREPARES THE TWO-, THREE-, AND
FOUR-COMPONENT SQOCS

In this section, we describe in detail the D5 operation
and provide the full sequence of steps that prepares the two-,
three-, and four-component superposition of quasiorthogonal
coherent states with performances announced in this article.

While the conditional qubit rotation XJ is performed
through long enough pulses ensuring a selective addressing
of spectral lines (see main text), the conditional cavity
displacement Dj is composed of two short unconditional
displacements separated by a waiting time. This reduces the D§
operation time from ~30/ x¢ to &7 / x4.. We consider the rotat-
ing frame of the Hamiltonian w,a'a + w,b'b — % (b'b)*. We
perform the first unconditional displacement Dy of the cavity
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through a very short pulse that displaces the cavity regardless

of the qubit state. We wait for time Ty, and apply a second

unconditional displacement, D_ g,z - Neglecting the cavity

self-Kerr, this sequence of operations leads to the following

unitary evolution:

; i
U= D—ﬁe"erTwauequrTWanll ab bDﬁ

— e—i\ﬂ\z sin(erTwan)lg) (gl ® Dﬂ_ﬁe"erTwait

+le)(e] @ e e,

FIG. 5. (Color) Detailed se-
quence to prepare a superposition
of two (a), three (b), and four (c)
quasiorthogonal coherent states.
Each frame is the Fresnel dia-
gram of the field in the resonator.
The two dotted lines represent
two orthogonal quadratures and
intersect at 0. The frames are
ordered from left to right and
top to bottom. A circle of cen-
ter « in the diagram refers to
a coherent state of amplitude «.
The fraction of the circle colored
in blue (red) corresponds to the
population of the qubit which is
in the ground state (excited state).
For example, frame 3 in panel (a)
corresponds to state %(lg,a) +
le, — a)). In particular we repre-
sent iz |g.o) with the right circle
(+a), with a qubit in |g) (blue
color) and a 50% population (half
full). Fast (here considered in-
stantaneous) displacements, D,,,
transform any coherent state |o)
to |a + y) regardless of the qubit
state. The Fresnel diagram is in a
rotating frame which leaves states
of the form |g,«0) unchanged,
while [¥(0)) = |e,«) evolves as
| (1)) = |e,aei*a). The selective
pulse X)) rotates the qubit state
when the resonator is in the zero
photon state |0). Graphically, this
corresponds to changing a fraction
of the color of a circle centered
at 0. In panels (b) and (c), 65 =
2arccos(l/«/§), and in panel (c)
64 = 2arccos(1/2). A symbol in
each frame n gives the operation
performed to go from frame n — 1
to frame n.

Taking o = B — Be/*aTwit we have

U|g,0) = e IPFsnbaTinig o) Ule,0) = |e,0).

Up to a phase term of ¢~ sitaTwi) that we can take into
account in future qubit pulses, this is precisely the conditional
displacement. In particular, as shown in [11], taking Ty.i =
77/ Xqr» Wwe have a conditional displacement of o = 2 in a time

of 7w/ xqr-
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In Fig. 5, we provide the complete sequence of operations
which generates superpositions of two, three, and four qua-
siorthogonal coherent components.

APPENDIX B: FIRST-ORDER EFFECT OF THE CAVITY
SELF-KERR

Let us finish by a simple computation showing the first-
order effects of the cavity self-Kerr. Considering a short time
7 such that € = x,,7/2 < 1, we can show that the first-order
contribution of the cavity self-Kerr is simply an extra determin-
istic phase accumulation of the cavity’s coherent states that we
can take into account in future cavity displacements and qubit
rotations. Indeed, the distortion of the coherent states happens
only as a second-order term with respect to €. Consider a
coherent state, |a), of average photon number 7i = |a|>. We
define [) = €/“@'9”|or) and we search for a coherent state of

PHYSICAL REVIEW A 87, 042315 (2013)

amplitude o, and global phase ¢.: €% |a.), which is close
to |) for small . We have (Yclaly) = ae€e™™ D =
(aelaloee) for o = ae’€e™ D = @it 1 O(€2). In or-
der to find ¢., we compute

eI ([ ) = e (@i CIHDaaHE ) |4y 4 0(e?)

= e (1 —iei?) + O(e?).

Taking ¢, = —eii?, we get e % (a.|Y.) = 1 + O(e€?). There-
fore, as a first-order approximation for the effect of the cavity
self-Kerr, we have

. > . -2 . -1
et)(,.,r((ﬂa) /2|a> ~ o i T /2|61X"’T(n+7)0(>.

In the simulations of this article, we took into account this
extra coherent state rotation for the following displacements.
The overall phases were corrected by adequately choosing the
subsequent qubit pulse phases.
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