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Quantum computation presents a powerful new paradigm for 
information processing. A robust universal quantum computer 
can be realized with any well controlled quantum system, but a 
successful platform will ultimately require the combination of 
highly coherent, error-correctable quantum elements with at least 
one entangling operation between them1,2. Quantum information 
stored in a continuous-variable system—for example, a harmonic 
oscillator—can take advantage of hardware-efficient quantum 
error correction protocols that encode information in the large 
available Hilbert space of each element3–5. However, such encoded 
states typically have no controllable direct couplings, making 
deterministic entangling operations between them particularly 
challenging. Here we develop an efficient implementation of 
the exponential-SWAP operation6 and present its experimental 
realization between bosonic qubits stored in two superconducting 
microwave cavities. This engineered operation is analogous to the 
exchange interaction between discrete spin systems, but acts within 
any encoded subspace of the continuous-variable modes. Based on 
a control rotation, the operation produces a coherent superposition 
of identity and SWAP operations between arbitrary states of two 
harmonic oscillator modes and can be used to enact a deterministic 
entangling gate within quantum error correction codes. These 
results provide a valuable building block for universal quantum 
computation using bosonic modes.

Continuous-variable elements are becoming increasingly prominent 
components for the realization of robust universal quantum computa-
tion. Such systems offer the advantage of more compact information 
storage and hardware-efficient quantum error correction protocols. 
Within the circuit quantum electrodynamics (cQED) framework, 
multiphoton states of superconducting cavities are used to encode 
continuous-variable quantum information. In particular, three- 
dimensional (3D) microwave cavities coupled to transmon ancillae 
have demonstrated long intrinsic lifetimes7, universal state control8, 
and, importantly, have a single dominant error mechanism—single 
photon loss—that has been successfully mitigated through the use 
of quantum error correction codes9. Furthermore, there are many 
available bosonic codes4,10–13, such that the choice of encoding can be  
optimized for specific applications and local error models. However, 
up to now, this required developing tailored entangling operations for 
each encoding14,15. A deterministic, codeword-independent entangling 
gate would be a powerful tool for connecting quantum memories that 
each harness the strength and flexibility of bosonic encodings in cQED.

A generalized two-mode entangling operation can be enacted by per-
forming a quantum superposition of the identity and SWAP gates. A 
quantum Fredkin gate (or controlled-SWAP operation) enacts such a 
superposition controlled on the state of a third quantum mode16, how-
ever it inevitably results in tripartite entanglement of the target modes 
with the control mode. Instead, the exponential-SWAP (eSWAP) oper-
ation θ θ θ θ= = +U i I i( ) exp( SWAP) cos( ) sin( ) SWAPE C C C C , where I is 
the identity operation, the SWAP gate fully exchanges the states of the 
two cavities and θC is the ancilla rotation (control) angle that provides 

full tunability of the operation, directly enacts the superposition of gates 
while leaving the ancillary mode unentangled6,17. This operation is anal-
ogous to the exchange operation between two spins, where an interac-
tion splits the symmetric and antisymmetric eigenstates and results in 
a dynamical exchange of the spin states in time18–20. The exchange oper-
ation provides an entangling gate for spins at particular interaction times 
and is the cornerstone of many schemes for universal quantum compu-
tation21,22. Similarly, at θC = π/4, the eSWAP operation is essentially the 

iSWAP and deterministically entangles two bosonic modes, regardless 
of their encoding. This powerful feature allows quantum information 
processing with different bosonic codewords on the same hardware, 
making the eSWAP operation a valuable building block for universal 
quantum computation with bosonic modes6.

Here, we devise an efficient circuit to implement the eSWAP opera-
tion in the 3D cQED architecture (detailed in Supplementary 
Information) and report the direct realization of the operation between 
two superconducting cavity modes controlled by a transmon ancilla. 
The original eSWAP protocol utilizes two quantum Fredkin gates6, 
which are severely limited by ancilla decoherence. We implement a 
deterministic Fredkin gate in the same system, highlighting its vulner-
ability to the transmon decoherence that is reduced in our optimized 
eSWAP protocol. Using this operation, we demonstrate deterministic 
entanglement of the two cavity modes using Fock- and coherent-state 
encodings with a fidelity F ≈ 0.75, without correcting for any state 
preparation and measurement (SPAM) errors. We then show full  
control over the unitary operation by varying the parameter θC. In  
particular, we highlight its action at the three primary settings of 
θ = π/ π/{0, 4, 2}C , corresponding to the identity, entangling and full-
SWAP operations, respectively. Finally, we perform full quantum pro-
cess tomography (QPT) for these three operations, extracting a lower 
bound on the process fidelity of F ≈ 0.85 for the {0,1} Fock encoding 
and F ≈ 0.60 for the level-1 binomial encoding (Methods). Our results 
demonstrate the versatility of these operations as generalized entan-
gling gates for universal quantum computation with bosonic modes.

Our system is designed to implement the eSWAP operation between 
states stored in two long-lived (milliseconds) bosonic quantum mem-
ories. In our system, two superconducting microwave cavities, Alice 
(orange) and Bob (blue), are dispersively coupled to a total of three 
transmons, as shown in Fig. 1a. The two transmons qA and qB, each 
coupled to a single cavity with strength χa and χb, respectively, are used 
for universal control and state-tomography of individual cavities8,23. A 
third, ‘Y’-shaped transmon, qC, dispersively couples to both Alice and 
Bob24. The nonlinearity of its single Josephson junction enables four-
wave mixing, which is used to enact a frequency-converting bilinear 
coupling with strength ∣ ∣g  of the form / = | | +ϕ ϕ−H ħ g ab a b(e e )i i

BS
† † , 

where a a( )†  and b b( )†  are the annihilation (creation) operators for 
Alice and Bob, respectively, in the presence of two microwave drives 
with relative phase ϕ (Supplementary Information). Recent work has 
shown that this engineered coupling can be used to realize a robust 
beamsplitter and SWAP operation between two stationary bosonic 
modes25.

1Department of Physics, Yale University, New Haven, CT, USA. 2Department of Applied Physics, Yale University, New Haven, CT, USA. 3Yale Quantum Institute, Yale University, New Haven, CT, USA. 
4These authors contributed equally: Yvonne Y. Gao, Brian J. Lester. *e-mail: yvonne_yuan_gao@imre.a-star.edu.sg; brianjlester@gmail.com; robert.schoelkopf@yale.edu

2 8  F e B r U A r Y  2 0 1 9  |  V O L  5 6 6  |  N A t U r e  |  5 0 9



LetterreSeArCH

Using this driven coupling, we realize a deterministic quantum 
Fredkin gate16, where the states of Alice and Bob are swapped condi-
tioned on the state of qB. Such a controlled-SWAP operation has only 
recently been demonstrated (non-deterministically) in linear optics 
experiments26,27. In our system, HBS requires the satisfaction of the fre-
quency-matching condition ω ω ω ω| − | = | − |b a 2 1, where ωa and ωb are 
the frequencies of the cavities and ω1 and ω2 are those of the drives. 
When either Alice or Bob is dispersively coupled to a transmon ancilla 
with ∣ ∣ ∣ ∣χ > ga,b , this process is intrinsically dependent on the state of 
the ancilla. We exploit this feature to perform a Fredkin gate on a selected 
set of initial states in the {0,1} Fock encoding (Extended Data Fig. 2). We 
estimate the quality of the operation to be ≥0.68, uncorrected for SPAM 
errors. A major source of imperfection is the transmon decoherence 
(T2 ≈ 30 µs) because qB must remain in a coherent superposition during 
the entirety of the operation. We emphasize that implementing an 
eSWAP using two Fredkin gates and an ancillary control rotation, as 
proposed in ref. 6, would impose a strict limit to its performance.

Our implementation of the eSWAP operation ameliorates this pen-
alty by minimizing both the total gate time and the duration over which 
the transmon is in a superposition. This is achieved by first decompos-
ing the Fredkin gate into two 50:50 beamsplitters (BS) and a controlled 
phase shift (CPS) operation as shown in Fig. 1b. Because =U U IBS

†
BS , 

we eliminate two of the BS operations and reduce the total gate time 
(Supplementary Information). Additionally, we may commute the 
remaining two BS operations with the transmon rotations such that the 
final implementation, shown in Fig. 1c, keeps the ancilla in the ground 
state during the relatively slow BS operations. The CPS gates are real-
ized using the dispersive coupling between qB and Bob, which imparts 
a π-phase to each photon in Bob when qB is excited for a period of 
~π/χb. Therefore, we have effectively reduced the susceptibility to 
transmon relaxation, T1, and dephasing, T2, errors during the operation 
from γ + +O t t t[ ( )]t BS CPS rot  to γ +O t t[ ( )]t CPS rot , where γt is the trans-
mon decoherence rate and tBS (~5 µs), tCPS (~0.5 µs) and trot (~50 ns) 
are the duration of the BS, CPS and transmon rotations, respectively. 
Furthermore, this implementation has the potential to be made tolerant 
of these errors by using higher levels of the transmon (S.M.G. and L.J.; 
manuscript in preparation).

The most useful feature of the eSWAP operation is the ability to 
entangle two bosonic modes regardless of their encoding. We demon-
strate this by enacting the operation θ = π/U ( 4)E C  on the input state 

Ψ = | ⊗ |0 3in A B
. We then perform Wigner tomography, omitting the 

normalization constant π/2, on Alice and Bob individually23 to char-
acterize their states before and after the operation (Fig. 2a, b). We 
observe that the initial (separable) state in each cavity has well-defined 
individual parity with ⟨ ⟩ ≈ + .P 0 94A  and ⟨ ⟩ ≈ − . .P 0 9B  This indicates 
an odd joint parity with ⟨ ⟩ ≈ − .P 0 85AB . We expect the final state  
after the operation to be a two-mode maximally entangled state 
Ψ = | ⊗ | + | ⊗ |i( 0 3 3 0 )out

1
2 A B A B

. The measured single-cavity 
Wigner functions suggest that the final states do not have a well-defined 
individual parity. This is an indication that after the operation, the joint 
cavity state is no longer separable and the independent measurements 
of each mode erases the coherence between them. Indeed, the meas-
ured Wigner functions of Alice, WA, and Bob, WB, show good agree-
ment with the ideal case of a statistical mixture of ∣ ⟩0  and ∣ ⟩3 .

In order to characterize the two-mode entangled state after the oper-
ation, we must consider the normalized joint Wigner function WAB of 
Alice and Bob. We extract WAB via shot-to-shot correlation of the  
photon number parity measurements of Alice and Bob after a displace-
ment of β1 and β2, respectively (Methods)24. We present WAB on the 
Re[β1]–Re[β2] and Re[β2]–Im[β1] planes in Fig. 2c, d, respectively. Our 
data (left panels of Fig. 2c, d) show excellent agreement with the ideal 
(right panels of Fig. 2c, d) for Ψout. The strong negativity at the origin 
indicates the preservation of negative joint parity by the entangling  
operation. The measured joint parity, ⟨ ⟩ ≈ − .P 0 75AB  (uncorrected for 
SPAM errors) also provides a lower bound on the quality of the entan-
gling operation (Methods).

Next, we highlight the codeword-independence of the eSWAP  
operation by investigating its action on Alice and Bob in the coherent 
state basis. To do so, we prepare the cavities in Ψ α α∝ | − ⊗ |in A B

 
(with α = 1.41) and perform the eSWAP operation. In particular, we 
choose to focus on three primary instances, namely, the identity 
(θC = 0), entangling (θ = π/4C ), and full SWAP θ = π/( 2)C  operations. 
We expect that, for this choice of basis states, the Re–Re plane contains 
two positively valued Gaussian features that reveal the probability  
distribution of the coherent-state components. Correspondingly, the 
Im–Im plane contains interference fringes that indicate the quantum 
coherence, which is only present if the two cavity modes are entangled. 
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Fig. 1 | Sketch (not to scale) of device architecture and experimental 
protocol. a, The 3D cQED system used to realize the quantum Fredkin gate 
and eSWAP operations between two bosonic modes, Alice and Bob, and 
three transmon ancillae, qA, qB and qC. b, Decomposition of the Fredkin 
gate into two 50:50 beamsplitters (BS) and a controlled phase shift (CPS). 
The CPS is realized using the dispersive coupling between one of the  
cavity modes and a transmon ancilla, as described by the unitary 

= | | ⊗ + | | ⊗ πU g g I e e ei n
CPS , where n is the photon number operator.  

c, Simplified circuit to realize the eSWAP unitary UE(θC) between two bosonic  
modes controlled by an ancillary transmon, qB. The protocol consists of two 
BS operations separated by two Hadamard gates (H), two CPSs, and an 
ancilla rotation along the x axis, Xθ (see Supplementary Information).
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Fig. 2 | Deterministic entanglement in Fock encoding. a, The measured 
(left) and ideal (right) single Wigner functions of Alice (WA; top) and Bob 
(WB; bottom) after preparing ∣ ⟩ ∣ ⟩⊗0 3A B. b, Left, the measured WA (top) 
and WB (bottom) after θ = π/U ( 4);E C  right, the calculated ideal Wigner 
functions for a statistical mixture of ∣ ⟩0  (top in a) and  ∣ ⟩3  (bottom in a).  
c, d, Left panels: the measured joint Wigner function (WAB) after the 
operation θ = π/U ( 4)E C  on Re–Re (c) and Re–Im (d) planes. Right panels: 
the ideal WAB on the same planes for the maximally entangled state 

∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩⊗ + ⊗i( 0 3 3 0 )1
2 A B A B . Negativity at the origin indicates odd joint 

parity, which is preserved by the operation. Colour scale at lower right 
shows the value of the displaced parity.
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When θC = 0, we observe that the population remains in the initial 
code-space, as shown by the location of the positively valued Gaussian 
features at Re[β1] = −α and Re[β2] = +α. Conversely, when θ = π/2C , 
we see the coherent states are exchanged with Re[β1] = +α and 
Re[β2] = −α. The absence of fringes in the Im–Im plane in both cases 
indicates that these operations do not result in any entanglement. 
Finally, we highlight that for the entangling operation, θ = π/4C , we 
observe an equal weight of each of the two coherent state components 
in the Re–Re plane. Further, we see the appearance of fringes in the 
Im–Im plane, which indicates the coherence between the two modes 
and signifies that we have generated a two-mode entangled cat state. 
Our results show excellent agreement with the ideal calculated joint 
Wigner functions, taking into account the self-Kerr nonlinearities of 
Alice and Bob (as discussed further in Supplementary Information).

The state of Alice and Bob can be considered as a pair of continuous- 
variable qubits encoded in the coherent state basis and can be fully charac-
terized by measuring their two-qubit Pauli operators (correlators), each of 
which corresponds to one of the standard Pauli operators (I, X, Y, Z) applied 
to each qubit. Using the technique described in ref. 24, we do so efficiently 
by probing PAB at 16 selected points of the phase space. The encoded two-
qubit tomography after identity, entangling and SWAP are shown in Fig. 3b. 
For the case of identity and SWAP, we find exclusively single-qubit Pauli 
operators. In contrast, for the entangling case, only two-qubit operators are 
present, indicating strong non-classical correlations between the two 
modes. Based on this, we can evaluate a direct estimate of the fidelity to the 

maximally entangled state28 Ψ α α α α= | − | + | | −i( )AB
1
2 A B A B

 of 
⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩+ + + ≈II XY YZ ZZ( ) 74%1

4
. Additionally, we use the 

re con structed logical density matrix (in the coherent state basis) to 
extract an average concurrence of C ≈ 0.65 for θ = ±π/4C , providing 
further verification of deterministic entanglement generated by the 
eSWAP operation.

Next, we demonstrate the full tunability of the eSWAP operation by 
probing a selected set of two-qubit Pauli operators as a function of θC 
(Fig. 3c). The measurement outcomes corresponding to ⟨ ⟩ ⟨ ⟩II ZZ,  
show no dependence of θC, indicating the preservation of photon num-
bers at all angles. Oscillations of ⟨ ⟩ ⟨ ⟩IZ ZI,  are anti-correlated, con-
sistent with the transfer of population between the modes. Finally,⟨ ⟩XY  
and ⟨ ⟩YX , which indicate two-qubit correlations, are exactly π/4 out 
of phase with ⟨ ⟩IZ  and ⟨ ⟩ZI  and show maximum contrast at θ = π/4C , 
where the single-qubit operators vanish. This is in good agreement with 
the expected signature of eSWAP and shows our ability to tune the 
operation via a single ancilla rotation, in analogy to varying the inter-
action time in an exchange gate.

Finally, we perform full QPT to obtain a quantitative analysis of our 
engineered operation. This is accomplished by applying the operation 
to 16 input states that together span the chosen code space and recon-
struct the density matrices of the resulting states from their joint 
Wigner functions. We then construct the process matrices in the  
Pauli transfer representation29 RE(θC), which capture the action of  
the operation on any given set of input and output Pauli vectors, 
Pin,out:Pout = RE(θC)Pin. The measured and ideal RE(θC) for Alice and 
Bob in the {0,1} Fock encoding are shown in Fig. 4a–c for the angles 
θ = π/ π/{0, 4, 2}C , respectively. Our results show good qualitative  
agreement with the expected processes. From this, we can calculate a 
process fidelity of FE = (84 ± 2)% averaged over the three control angles, 
without correcting for SPAM errors. To estimate the non-idealities  
due to imperfect state preparation and measurement, we perform the 
same procedure for the process consisting of only the encoding and 
measurement. This yields a process fidelity of FSPAM = (88 ± 2)%,  
suggesting that the measured FE is probably limited by SPAM errors for 
this encoding. Additionally, we extract the concurrence when 
θ = ±π/4C  as another quantitative measure of the entanglement  
created in the Fock encoding. This yields an average concurrence of 
C ≈ 0.66 for the orthogonal input states ∣ ⟩ ∣ ⟩⊗0 1A B and ∣ ⟩ ∣ ⟩⊗1 0A B, 
providing conclusive evidence of entanglement that is consistent with 
the uncorrected process fidelity computed above.

A crucial advantage of the eSWAP operation is its compatibility with 
error-correctable multi-photon encodings. To verify this capability, we 
perform QPT for the same three gates with both Alice and Bob encoded 
in the binomial basis12. The resulting process matrices again show good 
qualitative agreement with the expectation and we obtain an average 
FE ≈ 60% with an FSPAM = (77 ± 2)% (Methods). This indicates that 
our current implementation of eSWAP is more susceptible to errors 
when large photon number states are present in the cavity modes. We 
attribute this to three potential sources, namely, enhanced photon loss 
rate during the parametrically driven beamsplitter operations, self-Kerr 
nonlinearities of each mode, and the magnified susceptibility to small 
imperfections in the CPS gates. In general, the primary limitations arise 
from the strong parametric drives used to engineer the beamsplitter. It 
is possible to mitigate the associated imperfections by developing more 
sophisticated mixing elements. A detailed error budget is presented 
in Supplementary Information.

We have presented an efficient circuit for the eSWAP operation that 
can be adapted to any harmonic oscillator degrees of freedom coupled to 
nonlinear ancillae. We have demonstrated an experimental realization of 
the eSWAP between two bosonic modes in cQED and shown the deter-
ministic entanglement of the state of two cavities encoded in Fock- and 
coherent-state bases. Together with single-mode gates, this provides a uni-
versal gate set on error-correctable qubits encoded in multi-photon states 
of cavities. Moreover, we may increase the number of cavities to imple-
ment the four-mode eSWAP gate, which will enable quantum information 
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Fig. 3 | Characterization of eSWAP unitary in coherent state encoding.  
a, The joint Wigner measurements in the Re–Re (left) and Im–Im (right) 
planes after θ = π/ π/U ( 0, 4, 2)E C , respectively. For θC = 0 (identity; top 
row) and θ = π/2C  (SWAP; bottom row), a single positively valued Gaussian 
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interference fringes are present in the Im–Im plane, indicating deterministic 
entanglement creation. The additional features with non-zero displaced 
joint parity (within the dashed lines) in the Re–Re plane between the two 
main peaks can be accounted for by the self-Kerr nonlinearity of Alice and 
Bob. Measured values at the origin, which remain zero for all three 
operations, indicate the preservation of joint parity. The colour scale shows 
the value of the measured joint parity. b, The measured (solid bars) two-qubit 
Pauli operators for each of the processes. They show good agreement with the 
expected outcomes (transparent bars) for α ≈ 1.41. The ideal Pauli operators 
contain non-unity values for ⟨ ⟩XY  and ⟨ ⟩YX  due to non-orthogonality of 
the basis states at this chosen α. c, The expectation values of selected Pauli 
operators (see key) as we continuously vary the control angle, θC.
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processing with different bosonic encodings on the same hardware6. Our 
results also highlight the codeword-independent nature of the eSWAP 
operation. This enables us to exploit the strength of various bosonic 
encoding schemes within the same system and optimize the complexity 
for different local error models. The eSWAP operation provides both a 
key primitive for universal quantum computation using bosonic modes 
in cQED, as well as a powerful tool for the future implementation of quan-
tum principal component analysis30 and quantum machine learning31.
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Fig. 4 | Quantum process tomography. a, The experimentally 
reconstructed (left) and ideal (right) quantum process tomography (QPT) 
of UE(0) in the {0,1} Fock encoding. We represent the quantum process in 
the Pauli transfer representation (Methods). With all SPAM errors 
included, we obtain F0 ≈ 86%. b, The reconstructed (left) and ideal (right) 
QPT of  θ = π/U ( 4)E C  with ≈π/F 84%4 . c, The reconstructed (left) and ideal 
(right) QPT of  θ = π/U ( 2)E C  with ≈π/F 83%2 . The colour scale shows the 
values for each element in the reconstructed process matrices.
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MEthodS
Device architecture and system parameters. Our cQED system includes two 
three-dimensional (3D) superconducting microwave cavities, Alice and Bob, three 
transmon-type devices, and three quasiplanar readout resonators. All components 
are housed in a single block of high-purity (4N) aluminium in the structure shown 
in Extended Data Fig.1, which is chemically etched after machining to improve 
the surface quality. Alice and Bob act as quantum memories that are capable of 
coherently storing quantum information in bosonic states. They are formed by 3D 
coaxial transmission lines that are short-circuited at one end and open-circuited at 
the other by virtue of a narrow circular waveguide7. The resonance frequencies of 
the cavities’ fundamental modes are determined by the lengths of the transmission 
lines (4.8 mm and 5.6 mm, respectively, for Alice and Bob).

An elliptical tunnel is machined between Alice and Bob, allowing the insertion 
of a chip containing a ‘Y’-shaped transmon ancilla, qC, and its readout resona-
tor into the cavities. Two additional tunnels are machined on either side of Alice 
and Bob to allow the incorporation of additional transmons, qA and qB, together 
with their respective readout channels. The superconducting transmons are fab-
ricated on sapphire substrates using electron-beam lithography and a standard 
shadow-mask evaporation of Al/AlOx/Al Josephson junctions. During the same 
fabrication process, a separate strip of the tri-layer film is also deposited. Together 
with the wall of the tunnel, it forms a hybrid planar-3D λ/2 stripline resonator that 
is capacitively coupled to the transmon. This design combines the advantages of 
both precise, lithographic control of the critical dimensions and the low surface/
radiation loss of 3D structures32. The chip containing these structures is inserted 
into the tunnel such that the transmon antenna(s) protrudes into the cavities to 
give the desired capacitive coupling to Alice and Bob. Each mode is coupled to the 
fridge input/output lines via standard SMA couplers.

This cQED system has eight bosonic modes: the two 3D cavities, three readout 
resonator and three transmon ancillae. Here we omit the readout modes for sim-
plicity as they do not participate in the operation and are only involved during the 
file readout process. We label the two memories as modes A and B, while the three 
transmon modes are denoted by numerical subscripts with j = 1, 2, 3 corresponding 
to qA, qB, and qC, respectively. The transmons can be understood as LC oscillators 
with much larger anharmonicity compared with the other modes and they interact 
with the harmonic oscillator modes via standard dispersive coupling. Here, we also 
neglect the small residual dispersive coupling (<100 Hz) between Alice and qB, 
as well as that between Bob and qB. The cavity/resonator modes are modelled as 
near-harmonic oscillators with weak nonlinearity inherited from coupling to the 
Josephson junction. The system Hamiltonian can then be written in the following 
form up to the fourth order in the coupling of the memories to the transmons:
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The first two rows represent the excitation energy of the memory and transmon 
modes. The next row contains  the second order terms representing the dispersive 
interactions (χ’s) between the transmons and memories they couple to. The last 
row is the fourth order terms, including the self-Kerr energies (for example, KA, KB) 
of the resonators and the cross-Kerr interactions between any pairs of resonators 
(for example, KAB). The parameters of all relevant components are summarized 
in Extended Data Table 1.

This system is an extension of the devices used in refs 24,25. An additional ancilla 
with an independent readout resonator couples to each cavity in order to provide 
fast, independent cavity manipulations and tomography. In this case, qB also serves 
as the ancillary mode that controls the eSWAP operation angle. Crucially, the 
incorporation of the additional ancilla and readout modes enable us to perform 
simultaneous readout of each memory and obtain the joint Wigner tomography 
without involving additional levels in qC. This does not only remove the stringent 
parameter constraint on qC, as described in ref. 24, but also allows us to optimize 
the design of qC solely as the mixing element to enact the frequency-converting 
bilinear coupling between Alice and Bob25. This plays an important part in ensur-
ing that the beamsplitter (BS) operations can be performed over a short duration 
without introducing non-idealities to the memory states significantly. We also 
characterize the coherence of each component in the system using standard cQED 
measurements. The results are summarized in Extended Data Table 2.
Joint Wigner tomography and state reconstruction. We characterize the collec-
tive state of Alice and Bob by probing their joint Wigner function, which, after 

rescaling by π2/4, is equal to the expectation value of their displaced joint photon 
number parity, ⟨ ⟩β βP ( , )J 1 2 , in a four-dimensional phase space spanned by the 
complex numbers β1 and β2. In ref. 24, measurements of the joint parity, and thus, 
the scaled joint Wigner function, WAB, were performed using the ‘Y’-shaped trans-
mon, qC, that dispersively couples to both Alice and Bob. This relies on using 
multiple-levels of qC to achieve an effective matched coupling strength to each 
cavity mode, which requires a relatively stringent set of system parameters.

In our system, the availability of the two ancilla, qA and qB, and their independ-
ent single-shot readout enables a simpler joint Wigner measurement. We simulta-
neously map the parity of Alice and Bob to their respective ancilla and perform joint 
single-shot readout on qA and qB. This yields the individual displaced parity PA(β1) 
and PB(β2). We then extract the joint displaced parity PAB(β1,β2) = PA(β1)PB(β2) by 
multiplying the two individual measurement outcomes in each run of the experi-
ment. From this, we obtain the four-dimensional two-mode Wigner function 

⟨ ⟩β β=W P ( , )AB AB 1 2 , which fully characterizes the joint state of Alice and Bob up 
to the cutoff number of photons, Ncutoff, which is chosen based on specific encoding. 
From this, we can reconstruct the density matrix ρAB in the restricted Hilbert space 
using standard techniques24.

We do not constrain the trace of the extracted density matrix to be unity to avoid 
making any a priori assumptions about the different sources of imperfection. 
Failures of the state preparation, tomography and the operation will all manifest as 
a reduced trace and final state fidelity. For the {0,1} Fock state encoding, we obtain 
an average state fidelity across the 16 basis states of ~85% with the operation and 
~88% without. This provides an estimate of the reduction in state fidelity purely 
due to the state preparation and measurement imperfections. Additionally, we can 
infer the non-idealities due to the joint Wigner tomography by considering the 
state ∣ ⟩ ∣ ⟩0 0A B. This yields a state fidelity of ~90%, consistent with the maximum 
contrast of the individual parity measurements of Alice (~0.95) and Bob (~0.95). 
This is limited by the readout errors (~2%), ancilla decoherence (~2%) and imper-
fections in the transmon rotation pulses (~1%).

Similar analysis is done for the binomial encoding, which has an average photon 
number =n 2 in each mode. It yields an average fidelity of ~80% for the initial 
states without the eSWAP operations. This degradation is primarily due to the 
longer optimal control theory (OCT) pulses ¯ χ/ ≈ µn( 1 s)a,b  required to prepare 
the initial states8, which would fail if the transmon dephases. Therefore, this process 
is limited by the T2 of qA and qB, which are relatively low in this particular sample 
compared to typical transmons. This can be improved in future implementations 
with better shielding, vibration isolation, and more robust package designs.
Realization of a quantum control-SWAP (Fredkin) gate. We can perform a full 
SWAP operation between two bosonic modes using the parametrically driven 
bilinear coupling as discussed in ref. 25. This engineered coupling is only resonant 
when the drives satisfy the frequency-matching conditions of the four-wave- 
mixing process. Here, this is given by ω2 − ω1 = ωb − ωa, where ω1 and ω2 are the 
frequencies of the two drives and ωa and ωb are the frequencies of Alice and Bob, 
respectively. In our setup, Bob is dispersively coupled to qB, with strength χb. When 
∣ ∣ ∣ ∣χ � gb , where g is the bilinear coupling coefficient, the four-wave-mixing  
process can be tuned in and out of resonance by the state of qB.

To verify that this condition is sufficiently satisfied, we perform a spectroscopy 
experiment with qB initialized in ∣ ⟩ ∣ ⟩ ⟨ ∣+ = + /g e( ) 2  and the cavities in 
∣ ⟩ ∣ ⟩⊗0 1A B. We then selectively excited qB conditioned on Bob being in vacuum 
as a function of the frequency and duration of one of the two drives with that of the 
other fixed as a chosen set of drive amplitudes. The results of this calibration exper-
iment are shown in Extended Data Fig. 2a, where the colour bar corresponds to the 
probability of qB being measured in ∣ ⟩e  after the final transmon rotation pulse. This 
provides an indication for the successful exchange of the single excitation between 
Alice and Bob, and hence, acts as a meter for whether the resonance condition for 
the bilinear coupling is satisfied. We observe that the SWAP operation is enacted at 
the frequencies ω and ω + χ′, which are well-separated compared to the spectral 
width of the resonance. We exploit this feature to realize the controlled-SWAP 
operation between Alice and Bob, using qB as the control mode. More specifically, 
we choose to position the drive frequency at ω, such that the bilinear coupling is 
resonant when qB is in ∣ ⟩e . The resulting operation is described by:

= | | ⊗ + | | ⊗g g I e ecSWAP SWAP (2)

This is a three-mode controlled-SWAP operation, also known as the quantum 
Fredkin gate16. Other protocols for the implementation of such an operation have 
been proposed in the context of quantum optics33,34. In contrast to the probabilis-
tic nature of these protocols, our realization of the quantum Fredkin gate is fully 
deterministic. It produces a three-mode entangled state between Alice, Bob and 
qB when qB is initialized in a superposition state ∣ ⟩+ . We characterize the action 
of this operation on a set of four initial states by implementing conditional state 
tomography. This is an extension of the method used in ref. 35. We perform a first 
measurement to detect the state of qB along one of its basis vectors {X,Y,Z}. 
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Subsequently, we perform a joint Wigner measurement24 of Alice and Bob to 
extract their joint density matrix, ρAB. Finally, we construct the full three-mode 
density matrix, ρ, using a method described in ref. 2:

ρ
ρ ρ
ρ ρ=







 (3)1 2

3 4

where each of the constituent parts is given by the correlated transmon and cavity 
density matrices, with

ρ = | |E g g( ) (4)1

ρ = | |E e e( ) (5)4

ρ ρ ρ= | + + | − | − − | − − + /E Ei i( ) ( ) (1 )( ) 2 (6)2 1 4

ρ ρ ρ= | + + | + | − − | − + + /E Ei i( ) ( ) (1 )( ) 2 (7)3 1 4

where | |E k k( ) corresponds to the extracted ρAB after projecting into the transmon 
state ∣k . Using this technique, we obtain the density matrices shown in Extended 
Data Fig. 2b for the initial states ∣ ⟩ ∣ ⟩ ∣ ⟩⊗ ⊗g 0 1 , ∣ ⟩ ∣ ⟩ ∣ ⟩⊗ ⊗e 0 1 , ∣ ⟩ ∣ ⟩ ∣ ⟩+ ⊗ ⊗0 1  
and ∣ ⟩ ∣ ⟩ ∣ ⟩− ⊗ ⊗0 1 , respectively. They are in good qualitative agreement with the 
expected density matrices, with an average overlap with ρideal of (68 ± 5)%, without 
correcting for any SPAM errors. In particular, the bottom two plots show clear 
evidence of entanglement between the three modes with phases consistent with 
that of the initial superposition of qB.

To the best of our knowledge, this is the first experimental realization of a deter-
ministic quantum Fredkin gate in cQED. It is a valuable tool for the implementation 
of universal quantum computation36, quantum cyptography37 and measurement34.
Process χ-matrix analysis. In the main text and the analysis in the following 
section, we have chosen to represent the quantum process using the Pauli-transfer 
matrix representation R. This is a convenient choice for the representation of a 
general quantum process because it is a single real-valued matrix containing com-
plete information29. However, another common representation is to reconstruct 
the state transfer matrix38 χ. For general quantum processes, χ is a matrix of com-
plex numbers, which is an over-complete representation of the process. Regardless, 
following the procedure described in ref. 38, we have analysed the same process 
data to construct χ matrices for each operation. The reconstructed χ matrices for 
the Fock encoding are shown in Extended Data Fig. 3. We obtain an average pro-
cess fidelity F = tr(χiχm) of the identity operation for state preparation (and no 
other operations) of F ≈ 0.85. The process fidelities for the eSWAP operation are 
0.88, 0.82 and 0.82, for the operational angles θC = 0, π/4 and π/2, respectively. 
These are consistent with the analysis based on the Pauli-transfer matrices. Because 
both process representations are complete, we choose to focus our analysis on R 
representation for convenience.

The differences in the fidelity calculated using the χ representation and the 
R representation of the process is probably due to the combination of statistical 
uncertainty and the difference in how errors propagate in the different representa-
tions. As one example, the identity process in the χ representation is a complex 
matrix with only one entry, whereas in the R representation it is a diagonal matrix. 
This difference could lead to increased sensitivity to statistical fluctuations in the 
case of the χ representation (by weighting only a single element very heavily and 
removing the effects of all other entries).
Quantum error correction codes. We perform QPT, using same protocol 
described in the main text, on the three primary eSWAP operations with Alice and 
Bob encoded in the level-1 binomial code basis states12. We show the extracted 
Pauli transfer matrices for θC = 0, π/4 and π/2 in Extended Data Fig. 4 left, mid-
dle and right, respectively. They show good qualitative agreement with the ideal 
processes but suffer a sizable reduction in contrast. We estimate the process fidel-
ity by performing an overlap calculation of the measured RE(θ) with the ideal cases. 

This yields ≈ . ≈ .π/F F0 7, 0 580 4  and ≈ .π/F 0 652 , with a fidelity of encoding of 
≈ .F 0 77SPAM .

Our results demonstrate that the eSWAP operation is indeed compatible with 
multi-photon quantum error correction (QEC) codes. Such bosonic encodings 
capitalize on the large available Hilbert space of a single harmonic oscillator to 
enable hardware efficient QEC, which has recently been successfully demonstrated 
for both the cat code9 and binomial code39. The Gottesman, Kitaev and Preskill 
(GKP)4 encoding is a more well-known example of continuous-variable bosonic 
encodings, but its creation is experimentally challenging. Such a state has only 
very recently been demonstrated for the first time using trapped ions40. Therefore, 
although the GKP encoding is perfectly compatible with the eSWAP operation 
implemented here, the demonstration of its action on such states is beyond the 
scope of this work. Additionally, several protocols have demonstrated the genera-
tion of entanglement between bosonic modes, which could potentially be extended 
to utilize error-correctable codeword states41–43.

While our implementation of the code-independent entangling operation is a 
crucial primitive for realizing universal quantum computation using such 
error-corrected bosonic qubits, its fidelity deteriorates in the presence of large 
photon numbers in Alice and Bob. This is due to enhanced incoherent loss chan-
nels, such as photon jump and dephasing, as well as coherent errors, such as the 
self-Kerr nonlinearities of the cavity modes (a detailed error budget is present 
in Supplementary Information). According to the analysis done in ref. 13, the per-
formances of the cat, binomial and GKP codes are comparable in mitigating the 
incoherent errors for a given mean photon occupation number ≈n 2code , with the 
GKP code having a slight advantage at low error rates. However, for the same ncode, 
the GKP encoding is geometrically (that is, thermally) distributed and thus has a 
much larger tail in Fock space. This makes it more susceptible to the coherent 
errors arising from the self-Kerr of each cavity mode which are not accounted for 
by the current QEC protocols. Therefore, the choice of continuous-variable encod-
ings must be based on the specific local error models and system parameters. This 
again highlights the importance of the code-independent nature of the entangling 
operation, which provides flexibility to optimize and change encodings on the fly.
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Extended Data Fig. 1 | Top view of the 3D double-cavity cQED system. 
The centre transmon ancilla (qC) provides nonlinear coupling between the 
modes of Alice (orange) and Bob (blue). The package accommodates two 
additional transmon ancillae, qA and qB, which are each coupled to one of 

the cavities Alice and Bob, respectively. Each transmon ancilla is measured 
via a neighbouring readout resonator (RA, RB, RC). The RF drives (ω1, ω2) 
are coupled to the system through the drive port of qC. See Methods for 
details.
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Extended Data Fig. 2 | A quantum Fredkin gate. a, The resonance 
condition for a parametrically driven SWAP operation measured as a 
function of one of the drive frequencies and the drive duration with the 
ancillary transmon initialized in | + | /g e( ) 2. The colour scale shows 
the probability for the ancilla to be excited (Pe) after a rotation that follows 
the parametric drive. b, The reconstructed three-mode density matrix after 
the Fredkin gate for the initial states ∣ ⟩ ∣ ⟩ ∣ ⟩⊗ ⊗g 0 1 (upper left), 
∣ ⟩ ∣ ⟩ ∣ ⟩⊗ ⊗e 0 1 (upper right), ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩+ ⊗ ⊗g e( ) 0 11

2
(bottom left)  

and ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩− ⊗ ⊗g e( ) 0 11
2

(bottom right). The colour scale shows the 
real value of each element in the reconstructed density matrices.
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Extended Data Fig. 3 | The quantum process matrix for Fock encoding. 
The real (left) and imaginary (right) components of the complex process 
matrix χ are shown for the input (a), the identity operation (b), SWAP (c)  
and SWAP (d). For each operation, we show the measured (top) and ideal 

(bottom) matrices for comparison. Each of the measured process matrices 
are calculated without correction for SPAM errors. The colour scale shows 
the value for each (real or imaginary) component of the respective process 
matrices.



LetterreSeArCH

Extended Data Fig. 4 | QPT for binomial code. Left to right: the process 
matrix in the Pauli transfer representation for U (0)E , π/U ( 4)E  and π/U ( 2)E  
acting on Alice and Bob, encoded in the binomial basis. From these 

results, we obtain a process fidelity of 0.70, 0.58 and 0.65 for the three 
operations without correction for SPAM errors. The colour scale shows the 
value for each element of the respective process matrices.
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Extended data table 1 | hamiltonian parameters of all cQEd components

Values that are within parentheses are estimated/simulated parameters. Some nonlinear couplings, such as χ between qA and Bob, are omitted because they are too small to be simulated or  
measured. The frequencies and couplings to the readout resonators (RA, RB and RC) are included for reference. The Hamiltonian is given in Methods (equation (1)).



LetterreSeArCH

Extended data table 2 | Coherence properties of the system

The device exhibits some fluctuations in its coherence times, but typical measured values for the relaxation (T1), dephasing (T2 and T2e), and equilibrium excited state fraction (Pe) are given for each 
element in the system, when applicable. The coherence properties of Alice and Bob during the time of this experiment are inferior compared to those of the same device several thermal cycles ago 
(T1 ≈ 1 ms). This is probably a result of the degradation of its surface quality (through oxidation and thermal expansion/contraction cycles). We believe that the quality factors can be improved by 
chemically treating the surface of the cavities.


