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Any useful quantum computer must be robust to errors on the individual qubits. This

means a quantum algorithm can still reliably give the correct answer despite the qubits

suffering from decoherence. Quantum error correction provides a means for achieving

this, by encoding logical qubits redundantly in many additional physical qubits and/or

additional energy levels. In the presence of errors the logical information is still

preserved, but this remains a monumentally difficult task to achieve in practice. But

what can we do with quantum error detection? Rather than trying to recover from

a quantum error we instead reset qubits that are known to have suffered errors. If

we know exactly when and which qubit suffered an error, this becomes an erasure,

which is significantly easier to correct than Pauli errors. For erasure qubits to be

viable, we must be able to detect errors that happen not just while idling as for a

quantum memory, but during every operation needed to run a quantum computer. In

this thesis we describe a way to realize the necessary error-detected operations in the

qubit platform of bosonic circuit quantum electrodynamics. We choose to encode our

qubits in 3D superconducting microwave cavity modes, and introduce the dual-rail

cavity qubit, in which the dominant hardware errors can all be detected as erasure

errors. With this new approach, practical quantum error correction is expected to

be within reach for currently available experimental hardware and coherence times.

Finally, we also investigate how to use error detection to circumvent loss errors in

links that connect qubit modules together, experimentally realizing high-fidelity state

transfer between modules.
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CHAPTER 1

Introduction

Over the past four decades the field of quantum computing has grown from a the-

oretical curiosity [Feynman, 1982] into one of the juggernauts of modern research,

spanning across multiple fields of physics, engineering, and computer science.

Why try and build a quantum computer? We know enough about quantum me-

chanics to simulate any quantum system on regular ‘classical’ computers after all,

but quantum computers can make use of quantum interference to solve certain niche

problems dramatically faster than any classical computer ever could. This is best

exemplified with Shor’s algorithm [Shor, 1994], which efficiently solves the prime

factorization problem on a hypothetical quantum computer. It is an incredibly im-

portant discovery, because it is an existence proof that quantum computers can solve

problems which:

1
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(a) Have nothing to do with quantum mechanics.

(b) Have a provable, dramatic speedup over the best known classical algorithms.

(c) Have real-world consequences — widely used encryption protocols such as RSA

would no longer be computationally secure.

To get an idea for how dramatic the speedup can be, cracking 2048-bit RSA on a

classical computer will take an estimated 300 trillion years. For a quantum computer

with on order ∼ 10, 000 logical qubits this can take just a single day [Gidney and

Ekerå, 2021]. The search for more useful algorithms is itself a very active field of

research which now ponders uses in quantum chemistry, material science, machine

learning and many more. Naturally, a lot of these potential applications revolve

around the simulation of quantum systems.

What we will be concerned with is how to make a quantum computer. We want

this quantum computer to be universal, meaning it can run any possible quantum

algorithm (the quantum equivalent of a universal Turing machine), and we need it

to be fault-tolerant, meaning that it must reliably produce the correct answer, even

if the underlying components are faulty and prone to errors. The difficulty is not

just making and controlling a large number of qubits but that the qubits themselves

have high error rates. Correcting these errors is notoriously hard, and quantum error

correction is arguably the largest unsolved challenge in quantum computing. Why is

this the case?

Unlike a transistor, which can perform many trillions of logic gates without suf-

fering from any errors, qubits are much more fragile. It is very easy for unwanted

interactions with a qubit’s surrounding environment to decohere its quantum super-

position. The kind of qubits we focus on in this thesis are superconducting qubits,

specifically ones made from microwave resonators cooled down to ∼10mK — all in an

effort to shield them from noise in the environment. Typically, our qubit states only
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last for a millisecond at most before they suffer from an error, limiting us to ∼ 1000

gates on a qubit. The other difficulty is that qubits can suffer from two types of

error — bit flips and phase flips. (There is another, called leakage which will be very

important later.) Bit flips are the same as for a classical bit. A 0 changes to a 1 or

vice versa without us knowing. Quantum bits can also suffer from phase flips as well,

which disturbs the superposition. We also are not allowed by the laws of quantum

mechanics to make copies of the qubit states for extra redundancy by the ‘no-cloning’

theorem [Wootters and Zurek, 1982]. Finally, correcting for qubit errors is difficult

because we cannot directly measure the qubits without collapsing the superposition.

Despite these added difficulties, quantum error correction works in theory [Shor,

1995]. It has been shown that once the error-per-operation of the qubits gets below

a particular value, known as the threshold [Aharonov and Ben-Or, 1997], then in

principle we can reduce the error rate of a logical qubit as much as we want, by

using more and more ‘physical’ qubits to make up each logical qubit. This trade-off

means we could tolerate, say 0.1% error rates in each of our physical qubits, but now

would now need 1, 000 physical qubits per logical qubit! That’s ∼ 10 million qubits

to implement Shor’s algorithm!

The march towards more and more qubits has been steady over the years. It is

important to remember that we must maintain qubit error rates significantly below

the threshold while increasing the number of qubits in a device. This year IBM

announced a chip with 433 transmon qubits and Rydberg atom systems can now

routinely reach ∼ 100-qubit devices [Singh et al., 2022]. However, no equivalent of

Moore’s law has been shown for qubits and miniaturization is far from guaranteed like

it was for transistors. To make more powerful processors, we could definitely benefit

from a modular approach where we network smaller qubit processors together.

The central aim of this thesis is to apply the paradigm of error detection to

superconducting qubits, specifically a variation known as bosonic circuit quantum
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electrodynamics in which we encode the qubits in harmonic oscillators. We will show

how this can make the task of large-scale error correction easier and we do this in

two main ways. Firstly, by using error detection to realize a type of qubit called an

erasure qubit, quantum error correction becomes easier. The most common errors

are no longer bit flips or phase flips but a different error known as an erasure — an

unknown error at a known qubit and at a known time. Practically, this means we can

now tolerate ∼ 1% error rates, which are now within reach for the devices we have

today. Secondly, will be by using error detection to make communication between

modules better, even when the inter-module links are very lossy. At some point we

will hit a limit to the number of qubits we can reliably make in one module. Then,

we must join modules together if we want more qubits. The links tend to be the most

error-prone part of the entire system but with error-detection, we will show how we

can efficiently circumvent these errors.

The new paradigm of error detection stems from the previous paradigm of ‘hardware-

efficient error correction.’ Previously, the idea was to correct for the dominant qubit

errors as they happened, without the need for additional physical qubits. Then, when

we scale up, we already start with physical qubit error rates that are orders of magni-

tude below the threshold, giving us more insurance that we stay below the threshold

as we add more physical qubits, as well as reducing the number of physical qubits

needed per logical qubit.

The difference between correcting and detecting errors in physical qubits is illus-

trated by Fig. 1.1. Hardware efficient error-correction requries building in redundancy

without adding more components. This is most often achieved by using additional

energy levels in a harmonic oscillator to encode the qubit, as well as additional levels

in any ancilliary systems used to control the qubit. In addition, some operations need

to be repeated several times until they are successful.

The paradigm of error detection argues that hardware-efficient error correction
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is often more trouble than it is worth, and in practical implementations the benefit

is not justified by the increase in hardware complexity. Instead of detecting and

then correcting hardware errors to fully recover the qubit, we stop at the detection

step and then let our control software know the qubit had an error. We make no

effort to fix the error and instead reinitialize the qubit in a fresh new state. Error-

detection still requires some redundancy to be built into our hardware but it is far

more lenient. Moreover, we can achieve the same benefits promised by hardware-

efficient error correction – large-scale error correction still becomes easier in the same

way.

We will find this seemingly innocuous change in perspective has far reaching con-

sequences in how we design our qubits, their gates and network them together; in

many cases greatly simplifying the requirements for their experimental realization.

or ?

Recovery

Error correc�on

or ?

Error detec�on

{Error states}

reset

Figure 1.1: The subtle difference between error correction and error detection for
a qubit. In both cases, we initially begin in the computational space (green) and
suffer an error which takes us to the error space (red) and perform a measurement
that tells us whether we are in the computational space or error space. (Left) For
error correction, the qubit information is still preserved within the error space, and
a recovery operation takes us back to the original qubit state – it is as though the
error never occurred! (Right) Error detection is subtly different. Upon detecting we
are in the error space, we make no attempt to recover the qubit information. Instead
we elect to reset the qubit back into the computational space in a new state. Error
detection is always easier than error correction, and this has far-reaching consequences
throughout this thesis.
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1.1 Overview of the Thesis

Chapters 2-4 contain mostly an in-depth review on error correction and bosonic

circuit-QED. New results are presented in chapters 5-7 and summarized in Fig. 1.2.

Chapter 2 begins with a review of qubits in general and their error processes.

[Nielsen and Chuang, 2010] is an indispensible reference. After discussing how errors

are modelled and simulated we then detail the set of gates and measurements needed

to run a quantum computer. Briefly we touch on the concept of entanglement and

quantum teleportation which will be highly relevant for chapter 7.

Chapter 3 introduces methods for quantum error correction beginning with the

3-qubit repetition code which elucidates most features of a quantum error-correcting

code. The concept of erasures and leakage errors are also explained and we show

how error detection enables leakage errors to be converted to erasures. Two kinds

of practical error-correcting codes are then reviewed. First is the surface code which

is currently the most promising large-scale error correcting code and is adept at

correcting for erasures. Second are bosonic codes, specifically the ones designed to

detect/correct for photon loss. We end this chapter with formal discussion of hardware

fault-tolerance, which ensures errors during a gate are still correctable/detectable after

the gate. This is summarized by the ‘error-closure’ condition, a new result obtained

in [Tsunoda et al., 2022] and builds on the work of [Rosenblum et al., 2018b] and [Ma

et al., 2020].

Chapter 4 is a first look at the physical hardware we will be using for our qubits.

3D microwave cavities, transmons, coaxial cable links and most recently beamsplitter

couplers make up these building blocks. The chapter begins with a quick reference

section for their general properties such as their Hamiltonians, typical couplings and

coherences. We devote some time to formalize conventions for the beamsplitter inter-

action which will be important in the proceeding chapters and describe some cavity

control techniques which are relevant for Chapter 7.
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Chapter 5 details the work in [Tsunoda et al., 2022], on which I am co-first author.

We build on the work of [Rosenblum et al., 2018b] and [Reinhold et al., 2020] to extend

hardware fault-tolerant control of bosonic qubits to two-qubit entangling operations.

We show proposals for a new error-corrected ZZ measurement and an error-detected

ZZ(θ) gate for a variety of bosonic codes. These gates form the bedrock of important

operations in chapter 6. Crucially, the dominant hardware errors can be detected after

these operations. The remaining errors, which go undetected and hence contribute

to the overall error rate, are predicted to approach ∼ 0.01%.

Chapter 6 is the dual-rail chapter and presents the work from [Teoh et al., 2022].

Inspired by the proposal [Wu et al., 2022] in Rydberg atoms, we show how to realize

erasure qubits with new hardware that we call dual-rail cavity qubits. As well as

showing how to detect errors in idle dual-rail qubits, we give recipes for how to

implement and error-detect every required gate and measurement. This proposal

joins a recent wave of proposals for realizing erasure qubits in many different possible

qubit platforms [Kubica et al., 2022, Scholl et al., 2023]. Of particular use may be

Sec. 6.9, the ‘dual-rail glossary’ which defines many new terms we have introduced

to describe and quantify the performance of dual-rail cavity qubits. Sec. 6.10 is the

‘Frequently Asked Questions’ that aims to answer some common questions I have

encountered (or anticipate) regarding this work.

Chapter 7 switches gears to quantum networks for modular quantum computing.

First is a review of quantum communication scheme in microwave links. Many differ-

ent schemes have been proposed and demonstrated over the years. Here, we describe

the physics of communication through a microwave channel in a unified way and re-

veal what dictates the fundamental limits to the fidelity of quantum state transfer.

The rest of the chapter focuses on the work in [Teoh et al., 2023], the main experimen-

tal result of this thesis. Here we show how we can use interference effects unique to

microwave links to teleport states between modules with high fidelity, even when the
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links themselves are very lossy. We coin this the ‘Dark Mode Measurement’ scheme.

Lastly, in chapter 8 I give my outlook on the future of the new work presented

in chapters 5-7 and what I see as the main challenges and opportunities facing error-

detected qubits in general.

Cavity

Photon loss

Transmon energy relaxa�on
Transmon dephasing

Link

Photon loss

Cavity

Photon loss

Readout error

Design to 

detect errors

Dispersive

Coupling

Beamspli�er
Coupling

Circuit-QED building blocks

era
su

re
 qubits

loss-robust links

Figure 1.2: The new results of this thesis presented in chapters 5-7 take the well-
established (and recently improved) building blocks of circuit-Quantum Electrody-
namics and combines them in new ways that detect dominant hardware errors. In
chapters 5 and 6 we explore how to realize erasure qubits, where error-detection can
be performed in all required operations for quantum computing. In chapter 7 we
see how error-detection can be used to circumvent link photon loss when networking
quantum modules together, by far the dominant error in this system.



CHAPTER 2

Qubits and Their Errors

2.1 Qubits and Their Errors

2.1.1 What is a qubit?

A qubit is the fundamental building block of quantum information and a quantum

computer. They comprise a superposition of two orthogonal quantum states, which

we denote as |0⟩ and |1⟩. For an isolated qubit state, its wave function can be written

as

|ψ⟩ = c0 |0⟩+ c1 |1⟩ , (2.1)

where c0 and c1 are complex numbers that satisfy |c0|2 + |c1|2 = 1 to ensure |ψ⟩ is

normalized. It is helpful to visualize these qubit states on the surface of the Bloch

Sphere as shown in Fig. 2.1.

9
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Figure 2.1: The Bloch sphere for a general qubit. Blue circles indicate the six cardinal
states {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |+i⟩ , |−i⟩}

In the Bloch sphere representation, we can see a clear geometric mapping between

the position of the state on the Bloch sphere if we rewrite our qubit state as

|ψ⟩ = cos

(

θ

2

)

|0⟩+ sin

(

θ

2

)

eiϕ |1⟩ (2.2)

θ is the polar angle and ϕ is the azimuthal angle. Perhaps confusingly, orthogonal

qubit states are antipodal on the Bloch sphere!

Isolated qubit states are ‘pure’ and are confined to the surface of the Bloch sphere.

When a qubit interacts with uncontrolled degrees of freedom in its environment, this

results in the phenomenon of decoherence, the central challenge to realizing a useful

quantum computer.

The composite state consisting of the qubit subspace and the environment subspace

remains a pure state, but we represent our lack of knowledge concerning the environ-

ment’s state by tracing over the environment subspace and writing our qubit state as

a mixed state. In the density matrix formalism, the state of the qubit can then be
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written more generally as

ρL =
∑

i

pi |ψi⟩ ⟨ψi| (2.3)

where pi represents the classical probability of being in the pure state |ψi⟩, parametrized

by θi and ϕi in Eq. 2.1. All such mixed states can be represented as (single) points

in the interior of the Bloch sphere.

We can write down the density matrix for a general qubit state as

ρinit =









ρ00 ρ01

ρ10 ρ11









(2.4)

Where ρ00 and ρ11 are called the ‘populations’ and the off diagonal terms, which satisfy

ρ10 = ρ∗01 are called the ‘coherences’. For a completely mixed state, the coherences

are zero.

At the center of the Bloch Sphere lies the maximally mixed state,

ρmixed =
1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1| (2.5)

Noise processes in the environment that uniformly take qubits to this state are called

‘depolarizing noise’. This is often a good description of what would happen if one

were to attempt a long-depth algorithm on noisy qubits. Even though the physical

error processes are not depolarizing noise, after performing many gates on our qubits,

the overall effect of these errors is well-approximated by depolarizing noise.
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2.1.2 Pauli error channels

Physical error processes that take our pure qubit states to mixed ones are mathemat-

ically described by linear maps known as error channels. For an initially pure qubit

state ρinit = |ψL⟩ ⟨ψL|, this is written in the Kraus operator formalism as

ρfinal = E(ρinit)

=
∑

i

ÊiρinitÊ
†
i

(2.6)

where Êi are the so-called Kraus operators that must satisfy the following complete-

ness relation to conserve probability.

∑

i

Ê†
i Êi = 1, (2.7)

A Pauli channel is a special case where

ρfinal = Epauli(ρinit)

= (1− px − py − pz)ρinit + pxXρinitX + pyY ρinitY + pzZρinitZ,

(2.8)

where px, py, pz are probabilities and X, Y, Z are Pauli operators acting on the qubit

space. Explicitly, the Kraus operators for this channel can be written as

Ê0 =
√

1− px − py − pz1

Ê1 =
√
pxX

Ê2 =
√
pyY

Ê3 =
√
pzZ

(2.9)

Specific decoherence mechanisms such as energy relaxation and dephasing (See

chapter 8 of [Nielsen and Chuang, 2010]) are well-approximated by a Pauli error
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channel under what is known as the Pauli Twirling Approximation (PTA) [Geller

and Zhou, 2013]. For the case px = py = pz = p, the error channel describes ‘depolar-

ization noise’. The ability to accurately model physical qubit errors as Pauli errors or

more frequently, just depolarizing noise is a key assumption made when analyzing the

performance of quantum error correcting codes, often because it is easy to simulate,

and one we will challenge extensively in Chapter 6. Depolarization error models are

often assumed because the action of many gates on the qubits transforms X-type

errors into Z-type errors and vice-versa, quickly destroying any bias or structure in

the noise. It has been shown that by designing hardware-specific gates that are bias-

preserving, the task of quantum error correction is significantly easier compared to

the case of simple depolarizing noise. [Puri et al., 2020,Guillaud and Mirrahimi, 2019]

Depolarizing noise is modelled by using Monte-Carlo simulations to draw Pauli error

operators uniformly with probability p from the set of Pauli operators {X, Y, Z} and

applying them to the qubit state. This can be extended to errors on two qubits by

using the set {1, X, Y, Z}⊗2 (and excluding 11 which is not an error) and so on and

so forth for ensembles of N qubits.

We will now briefly review the two physical error mechanisms that cause the

majority of errors in qubits.

2.1.3 T1 energy relaxation

Energy relaxation refers to the fact that the two computational levels |0⟩ and |1⟩ are

non-degenerate in energy with |1⟩ often denoting the state with higher energy and |0⟩

often the ground state of the system. We denote the difference between these energy

levels as ℏω01. When left to thermalize with its environment, the equilibrium state of
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the qubit will be the thermal state

ρtherm = (1− ntherm) |0⟩ ⟨0|+ ntherm |1⟩ ⟨1| (2.10)

Where ntherm =

(

e
ℏω01

kBTeff + 1

)−1

for effective qubit temperature, Teff. In the limit of

zero temperature, the equilibrium state is the ground state and any other qubit states

will decay towards the ground state via the amplitude damping channel.

We can define this phenomenological error channel, via the Kraus operator Ê1 =

√
p |0⟩ ⟨1| which models decay through spontaneous emission of a photon, from |1⟩ to

|0⟩ with probability p within some given time frame. The abrupt, inherently random

‘jump’ evolution is usually the picture we have in our heads when we think about

quantum errors. However, from Eq. 2.7, we need another Kraus operator to form a

complete Kraus map:

Ê0 = |0⟩ ⟨0|+
√

1− p |1⟩ ⟨1|

Ê1 =
√
p |0⟩ ⟨1|

(2.11)

We can also write this channel in the basis of Pauli operators where it takes the form

Ê0 =
1 +

√
1− p

2
1+

1−√
1− p

2
Z

Ê1 =
√
p

(

X − iY

2

) (2.12)

which are linear combinations of Pauli operators. The physical interpretation of

Ê1 and Ê0 tells us something interesting, that most error channels also include a

continuous evolution that causes decoherence, called the no-jump backaction. Suppose

we start in the superposition state |+⟩ such that

ρinit =
1

2

(

1 1

1 1

)

(2.13)
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Note that the probability of the jump error occurring is included in the definition of

the Kraus operators. The interpretation of Ê1 is that the jump error |0⟩ ⟨1| occurs

with probability p ⟨1|ρinit|1⟩. The probability depends both on p and the probability

we are in the |1⟩ state to begin with.

The other Kraus operator, Ê0 is not identity and polarizes our state towards the

|0⟩ state. This can be understood as a Bayesian update that occurs because the

environment is weakly measuring the state of the qubit. If no jump errors have hap-

pened, we know we are more likely to have begun in the state |0⟩. This polarizes any

quantum superposition towards |0⟩ and so we sometimes refer to this error as a polar-

ization error. It is a non-unitary evolution that results in decoherence, even though

no emission of energy occurs! Since Ê0 it can be written as a linear combination of

the identity operator and a Z operator, this is a dephasing-type error channel.

Starting from |+⟩, no-jump backaction alone leaves us in the state

|ψno-jump⟩ =
1√
2

|0⟩+√
1− p |1⟩

√

1− p
2

(2.14)

Where now we have renormalized the state, corresponding to the scenario where

we ‘post-select’ out all jump errors. The channel that describes post-selected no-jump

backaction cannot be described as a linear map due to this renormalization. It can

be written as

Enl)(p) =
Ê0ρÊ

†
0

||(Ê0ρÊ
†
0||

(2.15)

where ||ρ|| is the norm of ρ. We can calculate the square of the overlap (the fidelity)

of this state with the initial state to find the error associated with no-jump backaction

| ⟨+|ψno-jump⟩ |2 = 1− p2

16
+O(p4)... (2.16)

As we can see, no-jump backaction is quite a small error for small p, and takes a
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quadratic scaling with a 1/16 prefactor. This is good news for us! Most of the time

we will instead be focusing on how to correct/detect the jump errors instead. As we

move away from the equator and further towards the poles of the Bloch sphere, no-

jump backaction becomes an increasingly smaller source of infidelity (the prefactor

decreases but the quadratic scaling is maintained). For the pole states, no-jump

backaction vanishes completely. As p becomes large i.e.,for longer times, no-jump

backaction is no longer negligible. A trick that completely nullifies no-jump backaction

at long times is to apply unitaries to the qubit that ensure every initial state spends

equal amounts of time in the |0⟩ and |1⟩ state. This can be achieved for example by

periodically applying X gates. No-jump backaction does not only occur in two level

systems, but in any qubit where the decay rates of each codeword are different.

Energy decay is often an exponential process, and the rate of spontaneous decay

can be denoted as Γ↓. Similarly, the rate of heating from |0⟩ to |1⟩ can be denoted as

Γ↑ and is relevant for realistic systems at non-zero temperature. We can also rewrite

the equillibrium hermal population in terms of these rates as

ntherm =
Γ↑

Γ↓ + Γ↑
= e

− ℏω01
kBTeff . (2.17)

Physically, these rates are determined by the noise spectral density of the environ-

ment which couples to the qubit mode. (See [Schuster, 2007,Schoelkopf et al., 2003]

for further reading) whereby the value of the noise spectral density at +ω01 (−ω01)

sets Γ↓ (Γ↑).

The energy relaxation time, T1, is what is measured in experiment and is defined

as T1 = 1/(Γ↓ +Γ↑). It is the characteristic timescale over which the qubit relaxes to

its thermal equilibrium state. The fraction of initial energy remaining decreases as

e−t/T1 towards its equillibrium value where T1 is defined to be the energy relaxation

time. Thus it is convenient to replace p by 1− e−t/T1 . With this substitution we can
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write the state of an arbitrary qubit (at zero temperature) as

ρT1
=











1− ρ11e
−Γ↓t ρ01e

−Γ↓t/2

ρ∗01e
−Γ↓t/2 ρ11e

−Γ↓t











(2.18)

2.1.4 Tφ dephasing and T2

Another error that is a major source of qubit decoherence is the dephasing error.

Physically, this arises from fluctuations in ω01, the frequency spacing between our

qubit levels. Once again, this is highly dependent on the noise environment seen by

the qubit. One way to model this error model is to assume ‘white noise’ or a constant

noise spectrum where the qubit frequency, ω01 fluctuates about its average value as

a Gaussian noise process with standard deviation 1/Tϕ. It is important to realize

the limitations of this noise model. Often we find the noise spectrum predominantly

contains ‘low frequency’ noise, where fluctuations in the qubit’s frequency are slower

than the unitary dynamics of interest. If this is the case, we can ‘echo out’ and

mitigate some of the decoherence caused by the dephasing noise through dynamical

decoupling sequences [Pokharel et al., 2018]. The main culprit for low frequency

noise is 1/f noise, attributed to uncontrolled two-level systems interacting with our

qubit (See [Burnett et al., 2014,Paladino et al., 2014]).

Under ‘white noise’ dephasing, the qubit state gradually loses all phase coherence

between |0⟩ or |1⟩ but does not lose any energy. As such, we can write its state as

ρTφ
=











1− ρ11 ρ01e
−t/Tφ

ρ∗01e
−t/Tφ ρ11











(2.19)

We may choose the Kraus operator that describes dephasing to be the jump

operator, Ê1 =
√
p (|0⟩ ⟨0| − |1⟩ ⟨1|) which then constrains Ê0 =

√
1− p1. This is
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one way to see that no-jump backaction is absent for the dephasing error channel,

since Ê0 ∝ 1. (Normalizing the no-jump trajectory removes the
√
1− p prefactor.)

We can describe the evolution of a qubit state under both dephasing and relaxation

channels as

ρT1
=











1− ρ11e
−t/T1 ρ01e

−t/T2

ρ∗01e
−t/T2 ρ11e

−t/T1











(2.20)

where we have introduced T2, also sometimes called the transverse decoherence time,

the timescale of the decay of the coherences of our density matrix. It is defined by

the formula

1

T2
=

1

2T1
+

1

Tϕ
(2.21)

The ‘pure’ dephasing time, Tϕ is rarely measured directly but instead extracted from

separate measurements of T1 and T2. When Tϕ ≫ T1 we are said to be ‘T1 limited’.

In this regime T2 ≈ 2T1 and there are larger uncertainties in our estimate of Tϕ.

2.1.5 The Lindblad master equation

The Kraus map formalism is useful when our error channel can be described by

a discrete set of Kraus operators. However, more often we wish to simulate the

continuous evolution of an open quantum system, with error processes that occur at

a characteristic rate in time, rather than known probabilities. For this we use the

Lindblad master equation, given by the differential equation

ρ̇ = − i

ℏ
[H, ρ] +

∑

i

κi

(

ĉiρĉ
†
i −

1

2

(

ĉ†i ĉiρ+ ρĉ†i ĉi

)

)

(2.22)
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Where the first term is the usual unitary evolution 1 (the von Neumann equation)

and the second term with the summation (the dissipation superoperator) gives rise to

decoherence under the set of collapse operators, {ĉi} which each describe a different

jump error associated with an error process at rate κi. Within the dissipation super-

operator, we can further subdivide into terms of the form ĉiρĉ
†
i represent the action

of quantum jump errors, whereas the remaining terms describe no-jump backaction

and ensures ρ remains normalized. (By using the cyclic property of the trace one can

prove the Lindblad master equation always preserves the norm of ρ).

The Lindblad Master Equation models both the dynamics and decoherence of

quantum systems with several independent error processes. As an example, to model

qubit relaxation and dephasing during system dynamics we can choose the set of

collapse (i.e., jump) operators

ĉ0 = |0⟩ ⟨1| , ĉ1 = |1⟩ ⟨0| , ĉ2 = |0⟩ ⟨0| − |1⟩ ⟨1| , (2.23)

with rates

κ0 = Γ↓, κ1 = Γ↑, κ2 = 1/Tϕ (2.24)

The collapse operator formalism makes it particularly convenient to sprinkle in

additional errors one by one, and examine the effects of specific errors on system

dynamics in isolation. It is also very powerful, in the sense that it is extensible

far beyond single-qubit systems. It is also valid for errors in quantum harmonic

oscillators, and composite systems. It is used extensively throughout this thesis to

model error processes in cQED systems. However, it is important to remember that

the Lindblad Master equation contains underlying assumptions and should be used

only when the following conditions are met:

1. note the minus sign in front of the commutator term, which is opposite to the Heisenberg
operator evolution
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• We can define a set of independent ‘collapse’ operators to describe each jump

error, which are independent with well-defined error rates. A constant ‘white-

noise’ spectral density is assumed. (Otherwise, the Bloch-Redfield master equa-

tion may be more appropriate).
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• Each noise channel is Markovian - the environment does not ‘remember’ any

previous interactions with the system

• We cannot obtain the quantities of interest from simpler models such as the

quantum Langevin equation.

Solving this differential equation means we can now introduce the notion of order

to the jump errors. Suppose we had some collapse operator ĉ with error rate κ. After

some evolution for small finite time, δt, the system experiences the jump evolution

associated with ĉ with probability κδt. This is a ‘first-order’ jump error. The system

also experiences the ‘second order’ jump error2, ĉ2 with a much smaller probability

(κδt)2 and so on for higher order jump errors.

2.1.6 The fidelity metric

How do we quantify the effects of errors on our states? Throughout the thesis, we

use the metric of state fidelity and state-transfer fidelity (as opposed to other metrics

such as process fidelity, channel fidelity). For two pure states, one ideal and the other

imperfect, this is defined as the square of their overlap

F = | ⟨ψideal|ψimperfect⟩ |2. (2.25)

If our imperfect state is the result of an error channel then it can only be written as

a density matrix and then we calculate the Fidelity to the ideal error-free pure state

as

F = ⟨ψideal|ρimperfect|ψideal⟩ . (2.26)

When defining a gate fidelity for gate Ûgate, we consider the gate application as an

error-prone channel, Egate and opt to use the average state-transfer fidelity metric.

2. If it can; e.g. if a qubit decays to |0⟩, it cannot experience the decay jump operator again.
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This is given for a single qubit gate as

Fgate =
1

6

∑

i∈{|cardinal⟩}
⟨i|Ûgate Egate (|i⟩ ⟨i|) Û †

gate|i⟩ (2.27)

Where {|cardinal⟩} is the set of 6 cardinal states {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |+i⟩ , |−i⟩} we

average over and Egate (|i⟩ ⟨i|) is the density matrix obtained after acting the error-

prone gate on cardinal state |i⟩. We can extend this to two-qubit gates by averaging

over the 36 cardinal states from the set {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |+i⟩ , |−i⟩}⊗2.

2.2 Gates, Measurements and Computation

So far we have only discussed qubits as two-level systems in which we can encode

quantum information, and which can interact with uncontrolled degrees of freedom

in the environment to cause decoherence. How do we do something useful with sev-

eral qubits? Generally speaking, there are two ways to desirably control our qubits.

The first are gates, desired unitary dynamics on our qubits within the computational

subspace. The second are strong measurements on the qubits, from which we obtain

useful classical measurement outcomes. Gate-based quantum algorithms are struc-

tured by first initializing individual qubits in the computational space, performing

unitary evolution which is often broken down into single-qubit and two-qubit gate

compilations and then finally reading out qubits in their logical basis to obtain a

useful result. Of course, other variations exist where some of the qubits may be

measured-out midway through the algorithm and the outcomes fed forward to condi-

tionally change future gates and measurements.

In contrast to gate-based computation is the paradigm of measurement-based

quantum computation. The initial proposal involved first creating a many-body

entangled state between all the qubits and then performing the computation by

performing projective measurements on the qubits. (A one-way quantum computer
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[Raussendorf and Briegel, 2001]). Most quantum error correction approaches require

frequent mid-circuit measurements to correct for errors, but follow a gate-based ap-

proach to algorithms. The subset of the qubits that are frequently measured out and

reinitialized are called the ancilla qubits. The data qubits store the logical quantum

information and will only be measured at the end of the computation to obtain the

result of the algorithm (or midway through if the algorithm requires).

2.2.1 Single qubit gates

The simplest gates are single qubit gates. In general, these are arbitrary unitaries

acting on qubits, corresponding to rotations on the qubit Bloch sphere by any angle

and around any axis. It is helpful to define the Pauli operators, X, Y, Z which are

themselves single qubit gates.

X = |0⟩ ⟨1|+ |1⟩ ⟨0| =





0 1

1 0





Y = i |0⟩ ⟨1| − i |1⟩ ⟨0| =





0 −i
i 0





Z = |0⟩ ⟨0| − |1⟩ ⟨1| =





1 0

0 −1





(2.28)

Together with the identity operator, these matrices form a basis for all 2×2 matrices.

From these Pauli operators we can define rotations by arbitrary angles about the

x, y, z axes of the Bloch sphere. We denote this by notation of the form

Ô(θ) = ei
θ
2
Ô, (2.29)
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for any operator, Ô that satisfies Ô2 = 1 (i.e.,Ô is Hermitian). For example, arbitrary

rotations about the X axis can be denoted as

X(θ) = e−i θ
2
X . (2.30)

The ability to perform rotations by any angle about two different axes of the Bloch

sphere is sufficient to construct any single-qubit unitary. In other words, we have

universal control of our qubit. However, it is also of interest to consider discrete sets

of single qubit gates that are also universal. One such set is {H, T} where H is the

Hadamard gate and T (≡ Z(π/4)) is the gate , defined as

H =
1√
2





1 1

1 1





T =





1 0

0 eiπ/4





(2.31)

This small set of discrete rotations forms a universal set of gates for a single qubit.

An arbitrary rotation can be implemented by repeated applications of H and T gates.

Moreover, by the Solovay-Kitaev theorem, it does not take many gate applications to

efficiently approximate an arbitrary gate unitary. Why would this be preferable over a

continuous, parameterizable universal gate set such as {X(θ), Z(θ)}? At first glance,

a continuous gate set seems like it would always be better, since only three gates

at most (See Euler angles) are needed for an arbitrary rotation. However, there are

often scenarios, particularly in error correction contexts where we do not have access

to continuous rotations at the logical level and instead we must realize a discrete gate

set. In general, a discrete universal gate set that contains more building blocks e.g.

{X,Z,X(π/2), Z(π/2), T} (where Z(π/2) = S is sometimes called the phase gate),
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will be able to perform an arbitrary rotation in fewer gate steps.

2.2.2 Entangling gates

The notion of unitaries extends to arbitrary numbers of qubits. Broadly speaking, the

goal of quantum computation is to realize universal and fault-tolerant computation.

Here universal refers the ability to perform any desired unitary on the computational

space of an N -qubit system with no errors. Fortunately, we can decompose any

unitary into a sequence of interleaved single-qubit and two-qubit gates. We do not

need N -qubit gates!

Before we introduce the two-qubit gates we must first lay out the notation for two

qubit states. When these states are separable (no entanglement), we may write the

state as

|ψ⟩ = |ψ⟩1 ⊗ |ψ⟩2 (2.32)

and similarly for the unitaries acting on the system. Writing the state as a column

vector is sufficient to describe any two-qubit state, including entangled ones

|ψ⟩ = c0 |00⟩+ c1 |01⟩+ c2 |10⟩+ c3 |11⟩ =

















c0

c1

c2

c3

















. (2.33)

We can write a general two-qubit gate as a 4× 4 matrix. The most famous two-qubit

gate is the CNOT gate, defined as

CNOT =













1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0













= (2.34)
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In words, this gate flips the state of the second qubit (the target qubit) if and only if

the control qubit is in the |1⟩ state and is also known as a CX gate. The CNOT gate

is maximally entangling. Only one application is needed to generate a maximally

entangled state3 from initially separable states, e.g.

CNOT (|+⟩1 ⊗ |0⟩2) =
1√
2
(|00⟩+ |11⟩) . (2.35)

Other maximally entangling gates are the CZ gate and the ZZ(π/2) gate, defined

here as

CZ =













1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1













=

ZZ(π/2) =











1 0 0 0

0 i 0 0

0 0 i 0

0 0 0 1











= ZZ(π/2)

(2.36)

These gates are said to be locally equivalent. By applying single qubit rotations

before and/or after the gates we can transform one entangling gate to another, e.g.

H H
= (2.37)

The CNOT and its local equivalents are powerful gates, because when combined

with universal single qubit gates they form a universal gate set for a system of N

qubits. A commonly example of such a gate set is {CNOT, H, T}.
3. A state is maximally entangled if its reduced density matrix is a maximally mixed state when

we take the partial trace over either qubit 1 or qubit 2’s subspace. A maximally entangled state also
has unity concurrence [Wootters, 1998].
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Gates such as the SWAP gate, defined as

SWAP =











1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1











= SWAP = (2.38)

are not entangling whatsoever whereas the eSWAP(θ) gate [Gao et al., 2019] is max-

imally entangling4 at θ = π/2 for which this gate takes the form

eSWAP(π/2) =

















1 0 0 0

0 1√
2

i√
2

0

0 i√
2

1√
2

0

0 0 0 1

















= eSWAP(π/2) (2.39)

We also define the parametrized versions of these gates as

4. We are redefining θ → θ/2 compared to the definition in [Gao et al., 2019]
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CPHASE(θ) =













1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiθ













ZZ(θ) =











1 0 0 0

0 eiθ/2 0 0

0 0 eiθ/2 0

0 0 0 1











eSWAP(θ) =

















1 0 0 0

0 cos(θ/2) i sin(θ/2) 0

0 i sin(θ/2) cos(θ/2) 0

0 0 0 1

















(2.40)

2.2.3 Three-qubit gates

For simplicity of experimental implementation and compilation, we do not perform

N -qubit unitaries directly but instead decompose them into interleaved single-qubit

and two-qubit gates. However, there are some three-qubit gates of interest. The

Toffoli gate or CCNOT gate written as

CCNOT =





















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0





















= (2.41)

In words, this gate flips the third qubit (the target qubit) only if both control qubits

are in the |1⟩ state. This gate is of interest because {CCNOT, H} also forms a
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universal gate set. In large scale quantum error correction, a fault-tolerant Toffoli

gate (or CCZ gate) can have advantages over the T gate [Litinski, 2019b].

The other three-qubit gate we will introduce is the quantum Fredkin gate or

controlled-SWAP gate. The Fredkin gate is universal for classical computation (but

the quantum version is not universal). This gate is useful in the implementation of

a quantum Random Access Memory (qRAM) [Giovannetti et al., 2008,Hann et al.,

2019] and can reduce the number of two-qubit gates needed to implement quantum

algorithms. It is defined as

CSWAP =





















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1





















= (2.42)

2.2.4 Excitation preserving gates

An important subset of two-qubit gates are excitation preserving (EP) gates. These

gates are of interest because we will see they are much easier to implement on certain

cQED hardware and in some encodings, such as the dual-rail code, every gate needed

for quantum computation can be excitation preserving (at the hardware level). EP

gates by themselves also find use in quantum simulation circuits [Google AI Quantum

et al., 2020]. The most general excitation preserving gate can be parameterized by four

angles: ϕ1, ϕ2, ϕ3, θ and decomposed into a eSWAP(θ) gate followed by an arbitrary

phase gate on the two-qubit system

UEP =

















1 0 0 0

0 eiϕ1 0 0

0 0 eiϕ2 0

0 0 0 eiϕ3

































1 0 0 0

0 cos(θ/2) i sin(θ/2) 0

0 i sin(θ/2) cos(θ/2) 0

0 0 0 1

















(2.43)



2.2. Gates, Measurements and Computation 30

Which can alternately be parameterized by a different set of angles and the gate

circuit

Z(θ1)

ZZ(θ3) eSWAP(θ4)

Z(θ2)

(2.44)

With the alternative parameterization

ϕ1 = (θ2 + θ3)/2

ϕ2 = (θ1 + θ3)/2

ϕ3 = (θ1 + θ2)/2

ϕ4 = θ

2.2.5 The Clifford group

Which gates are needed in a quantum computer? The most basic gates are the Pauli

group, {1, X, Y, Z}. With the addition of the Hadamard and CNOT gate we form

the Clifford group, {1, X, Y, Z,H,CNOT}. Elements of the Clifford group acting

(by conjugation) on the Pauli operators can only transform them into other Pauli

operators. An example in the single-qubit case is HXH† = Z and for the two-qubit

case CNOT (X1 ⊗ 12)CNOT
† = X1 ⊗X2.

The Gottesman-Knill theorem [Nielsen and Chuang, 2010] states that a quantum

algorithm using only the Clifford group can be simulated efficiently on a classical

computer. It is only when we add to this group a gate which is outside the Clifford

group (a non-Clifford gate) that we can perform quantum computation with a clear

edge over classical computers. The most common choice for this non-Clifford gate is

the T gate or Toffoli gate, but a qubit rotation about any axis by an angle that is not

an integer multiple of π/2 would also suffice.
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2.2.6 Projective measurements

The last stop in our discussion of desired logical operations is a mathematical de-

scription of projective measurements. We will discuss their physical implementation

briefly in Chapter 4. The kind of measurement we perform on individual qubits is

a strong, binary-valued projective measurement in our basis of choice. Suppose we

measure a single-qubit in the z basis (also called a Z measurement). With probability

|c0|2 we obtain the the outcome, 0, a classical signal that tells us the qubit is in the |0⟩

state. Evolution proceeds as if we applied the projector |0⟩ ⟨0| to our qubit state (and

then normalized the state). Similarly, with probability |c1|2 we obtain the outcome

signal 1 and apply the projector |1⟩ ⟨1| to our state.

This measurement is an example of a Quantum Non-Demolition (QND) measure-

ment. The qubit state perturbed by the minimum amount required to obtain the

measurement outcome, i.e., only the measurement projector has effectively been ap-

plied to the state. This is in contrast to a destructive measurement which we define

to encompass all non-QND measurements. For example, we (or the environment)

learn excessive information about the qubit state or the qubit may end up in a non-

computational state (i.e. ‘destroyed’) after the measurement. The latter is often the

case with fluorescence readout in neutral atoms, trapped ions and phase qubits [Mar-

tinis, 2009].

2.2.7 End-of-the-line vs mid-circuit measurements

There are two contexts in which we perform projective measurements on qubits. The

first is an ‘End-Of-The-Line’ (EOTL) measurement. As the name suggests, this is the

last operation we will perform on the qubit before it is either discarded or re-initialized

in a fresh state. The goal of the measurement is to extract information about the

state of the qubit prior to the measurement, usually a measurement in its logical

basis. EOTL measurements do not have to be QND. We only care about how well
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we can extract the information (the measurement fidelity). EOTL measurements can

still benefit from QND measurements, as we can repeat the measurement many times

and majority vote on the outcomes to suppress measurement errors, but QNDness is

not a strict requirement.

An EOTL measurement may be the last time we ever use that particular qubit in

the quantum circuit we are executing. Or, the qubit may be reinitialized which is the

case if, for example, the qubit is an ancilla qubit used for a stabilizer measurement

(see 3.2).

The other kind of measurement is a mid-circuit measurement. We will use the

same qubit for gates/measurements later on so we want to preserve its state. These

measurements are required to be QND, at least on the computational space and are

denoted by continuing the quantum wire after the measurement. Circuits for EOTL

and mid-circuit measurements are shown in the figure below.

Figure 2.2: (Top) End-of-the-Line measurement on a single qubit. (Bottom) Mid-
circuit measurement on a single qubit, presumed to be QND on states in the compu-
tational space.
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2.2.8 Changing the measurement basis

The measurement basis is usually fixed by the hardware implementation but we can

measure in other bases by performing additional single-qubit gates. For example, we

can measure in the x basis by performing a Y (π/2) or Hadamard gate prior to a Z

measurement as shown below.

Z

H
Z

We can extend this type of measurement to more than one qubit and uncover

an interesting observation. QND measurements on multiple qubits are also capable

of generating entangled states and have the same computational power as a CNOT

gate. As an example we introduce the ZZ measurement, a binary valued measurement

where we obtain outcome 0 if the two-qubit state is in |00⟩ or |11⟩. The corresponding

projector applied to the two-qubit state is |00⟩ ⟨00|+ |11⟩ ⟨11|, where phase coherence

between these two states is preserved. Obtaining outcome 1 signals we are in the

{|01⟩ , |10⟩} manifold of states, with corresponding measurement projector |01⟩ ⟨01|+

|10⟩ ⟨10|.

If we begin in the separable state |+⟩1 ⊗ |+⟩2 then the ZZ measurement will

always project us into a Bell state. Half the time we will obtain outcome 0 and the

Bell state (|00⟩ + |11⟩)/
√
2. The other possibility is we obtain outcome 1 and the

different Bell state (|01⟩+ |10⟩)/
√
2. This measurement is also referred to as a ‘joint

parity measurement’. If we define the joint parity to be (i + j)mod2 for two-qubit

state |ij⟩ then outcome 0 signifies ‘even’ joint parity and outcome 1 signifies ‘odd’.

The circuit below in Fig. 2.2.8 shows how two QND ZZ measurements, Hadamard
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gates and classical feedforward may be used to deterministically implement a logical

CNOT gate between two qubits [Beenakker et al., 2004,Litinski and Oppen, 2018].

Note that in this circuit, we require a third auxilliary qubit.

|c⟩

m1

Zm2

|+⟩ H

m2

H

m3

|t⟩ H H Xm1+m3

Figure 2.3: Performing a CNOT gate with ZZ measurements and feedforward. CNOT
gate is ultimatley performed between the top-qubit (control) and the bottom-rail
qubit (target). m1 is the classical outcome (0 or 1) from the first ZZ measurement,
m2 is the outcome of the second ZZ measurement and m3 is the outcome when we
measure out the middle-rail auxillary qubit in its z basis. These three measurement
outcomes are used to conditionally apply Z Pauli corrections to the control qubit
and X Pauli corrections to the target. The gate is deterministic, but the three
measurement outcomes are random.

The two-qubit measurement known as a Bell measurement will be of particular

importance in chapter 7 for the quantum teleportation protocol. Unlike the ZZ mea-

surement, this measurement gives four different outcomes, corresponding to projecting

into one of the four different Bell states defined below:

|Φ+⟩ =
1√
2
(|00⟩+ |11⟩)

|Φ−⟩ =
1√
2
(|00⟩ − |11⟩)

|Ψ+⟩ =
1√
2
(|01⟩+ |10⟩)

|Ψ−⟩ =
1√
2
(|01⟩ − |10⟩) .

(2.45)

Such a measurement may be performed non-destructively by performing a QND ZZ

measurement followed by a QND XX measurement, since these operators commute.
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See the following circuits:

ZZ XX

ZZ H ZZ H

H H

Figure 2.4: Circuits to perform a Bell measurement with non-destructive joint mea-
surements. Two classical bits are extracted to project us into one of the four Bell
states. These measurements are QND. If we began in a Bell state, we would measure
which Bell state we are in and remain in that same Bell state.

Destructive Bell measurements are more common for quantum teleportation and

‘fusion’ measurements [Bartolucci et al., 2023] found in measurement-based quantum

computing. Possible circuits are shown below.

ZZ

X

X

X

Z

Figure 2.5: Circuits for destructive Bell measurements. At the end of the circuit, the
qubits are no longer in a Bell state, but we still perform the Bell measurement. (which
is equivalent to performing a QND Bell measurement to extract the two bits, then
destroying the states). Destructive measurements are typically easier to realize than
QND ones. In the bottom circuit, we could reconstruct the Bell state with subsequent
CNOT gates. In the top two circuits, we have measured three bits of information
and so the Bell states are impossible to recover.
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2.3 Entanglement

2.3.1 Correlations in entangled states

Entangled states are quantum states with correlations not allowed by classical sys-

tems. Pretty much any useful quantum information task such as computation or

communication relies on the ability to generate high-fidelity entanglement between

qubits. The archetypal entangled state are two-qubit states known as Bell states

defined in the previous section. These are examples of maximally-entangled states,

showing the strongest non-local correlations allowed by quantum mechanics and no

local correlations.

What do we mean by correlations? This is inherently tied to quantum measure-

ments. A local correlation would be the expectation value of a Pauli operator for one

qubit for example. The ⟨Z⟩ value can be measured by preparing N identical copies

of a qubit state and measuring it in the z basis. The expectation value is then given

by

⟨Z⟩ = lim
N→∞

# outcome 0s −# outcome 1s

N
(2.46)

We can measure the other single qubit correlators, ⟨X⟩ , ⟨Y ⟩ by repeatedly measur-

ing copies in the x or y bases. The correlator ⟨1⟩ refers to the probability we measure

the qubit to be in its computational subspace (when there exists the possibility of

leakage errors) and we obtain this by adding the two outcomes when relevant.

If we prepare a qubit in |0⟩, we would obtain ⟨Z⟩ = 1, ⟨X⟩ = 0, ⟨Y ⟩ = 0. i.e.,there

is a maximally strong correlation when we measure in the z basis and no correlation

in the other bases. For the maximally mixed single-qubit state, all three of these

correlations are zero. From the expectation values (also known as the Stokes param-

eters), ⟨1⟩ , ⟨X⟩ , ⟨Y ⟩ , ⟨Z⟩ it is possible to reconstruct the full qubit density matrix
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as

ρrecon =
1

2
(⟨1⟩1+ ⟨X⟩X + ⟨Y ⟩Y + ⟨Z⟩Z) = 1

2

∑

i=0,1,
2,3

⟨σi⟩ σi (2.47)

Where σi is a Pauli matrix from the set {1, X, Y, Z}. Things become more interesting

when we look at the correlations in a two-qubit system. In the Pauli basis, there are

now 16 correlations we can measure, which form the set {1, X, Y, Z}⊗2. These can

be subdivided into two-qubit correlators such as Z1 ⊗ Z2 or X1 ⊗ Y2, single qubit

correlators such as 11 ⊗ Z2 or X1 ⊗ 11 and the correlator 11 ⊗ 12 which gives the

probability we are in the computational space of the two-qubit system.

Single qubit correlators are measured as before in Eq. 2.48 for the respective

qubits, ignoring the measurement outcome of the other qubit. To measure a two-qubit

correlation, such as ⟨X1Y2⟩, we must measure qubit 1 in its x basis and qubit 2 in

its y basis simultaneously to obtain four possible measurement outcomes, denoted by

(01, 02), (11, 12), (01, 12) and (11, 02). The first two measurements are correlated whilst

the second two measurements are anti-correlated. We can measure the expectation

value for general two-qubit correlator ⟨σiσj⟩ for i, j = 1, 2, 3 with the procedure

⟨σiσj⟩ = lim
N→∞

#(01, 02) + # (11, 12)−#(01, 12)−#(11, 02)

N
(2.48)

The system has some degree of entanglement if the correlations cannot be reproduced

by a classical state. The hallmark of a Bell state, is zero local correlations and perfect

non-local correlations that persist throughout any joint measurement basis.

This last point is important. We can consider a classical state such as

ρclassical =
1

2
|00⟩ ⟨00|+ 1

2
|11⟩ ⟨11| (2.49)

which can be thought of classically as the output of a machine that produces |00⟩ or

|11⟩ depending on the output of a coin toss. This state also has no local correlations
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and ⟨Z1Z2⟩ = +1 (when we measure one qubit to be in |0⟩ or |1⟩, we always find the

other qubit in the same state). But unlike a Bell state, the non-local correlations do

not persist throughout different measurement bases, i.e.,⟨X1X2⟩ = ⟨Y1Y2⟩ = 0.

For the Bell state |Φ+⟩ we find the only non-zero correlations are ⟨1112⟩ =

⟨X1X2⟩ = ⟨Y1Y2⟩ = ⟨Z1Z2⟩ = +1. For the Bell state |Ψ−⟩ we observe the mea-

surements are maximally anti-correlated (⟨X1X2⟩ = ⟨Y1Y2⟩ = ⟨Z1Z2⟩ = −1).

2.3.2 Measurements with an ancilla qubit

Entanglement provides a pathway to performing QND measurements on one ‘data

qubit’ via an extra ‘ancilla qubit’ whose purpose is to extract quantum information

non-destructively from the data qubits, and to assist in performing gates on the data

qubits. When used in ‘measurement mode’ the general approach is to entangle the

data qubit observables with states of the ancilla qubit, and then measure the state of

the ancilla qubit. Even if the ancilla measurement is destructive, this still amounts

to a non-destructive measurement of the data qubit. It is also useful when we are

unable to measure the data qubit directly, but able to entangle it with an ancilla,

which is a situation frequently encountered when the data qubit is a bosonic mode,

and the ancilla a two-level system.

Suppose we wish to measure some binary-valued discrete operator B̂, which can

take two values. This can be a Pauli operator or an observable such as the photon

number parity in a bosonic mode, which can only be even or odd. The general circuit

as shown below requires first preparing the ancilla in |+⟩, entangling with the data

qubit via a control-B unitary and finally measuring the ancilla in the x basis.

The state of the system just prior to the measurement can be written as

|ψ⟩1,2 =
(

1+ B̂

2

)

|ψ⟩1 |+⟩2 +
(

1− B̂

2

)

|ψ⟩1 |−⟩2 (2.50)
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|ψ⟩1 B

|+⟩2
X

B

|+⟩2
X

Figure 2.6: ‘Ramsey-like’ measurement circuit for performing QND measurements
of B̂ with an ancilla qubit. The operator B̂ may be acting on one (top) or several
(bottom) different qubits. For this circuit to work, operator B̂ must also satisify
B̂2 = 1.

With probability p± we measure |±⟩2, corresponding to outcome ±1 and apply pro-

jector Π̂± =
(

1± B̂
)

/2 to |ψ⟩1. The probabilities are given by

p± = ⟨ψ|Π̂±|ψ⟩1 (2.51)

2.4 Quantum Teleportation

2.4.1 The protocol

Entangled states and specifically Bell states are commonly used as resource states for

quantum information protocols. Quantum teleportation is a fundamental example

of this, and shows that if two remote stations, Alice and Bob, share an entangled

Bell state and a classical communication channel, then this can be used as a resource

for Alice to transmit an unknown qubit state to Bob. The quantum teleportation
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protocol was first put forth by [Bennett et al., 1993]

|Φ+⟩2,3

|ψ⟩1
X

Z

X Z |ψ⟩3

(2.52)

Suppose Alice wants to send a qubit to Bob, which is some arbitrary state5 in

qubit 1 given by |ψ⟩1 = c0 |0⟩1+ c1 |1⟩1 First, Alice and Bob must prepare a Bell state

(also called a Bell pair or EPR pair [Einstein et al., 1935,BELL, 1966]) between qubit

2 at Alice, and qubit 3 at Bob which we suppose is |Φ+⟩2,3. Alice then performs a Bell

measurement between her qubits and obtains two classical bits of information which

we denote asm1 andm2. (since there are four measurement outcomes see 2.2.6). Alice

then sends these outcomes via a perfect classical channel to Bob. Bob then performs

the gate X on his qubit if m1 = 1 and/or gate Z on his qubit if m2 = 1. As soon

as Alice performs her Bell measurement, Bob’s qubit is unentangled with qubit 2.

After these ‘Pauli corrections’ the state of Bob’s qubit is then |ψ⟩3 = c0 |0⟩3 + c1 |1⟩3.

In other words, Alice’s qubit has been ‘teleported’ to Bob. Note that this does not

violate the no-cloning theorem, since qubit 1 no longer contains any information about

the original qubit state.

There are a few extra classifiers for the type of teleportation we can perform. The

teleportation is deterministic if the Bell measurement always gives a valid outcome

which Bob then uses. In some platforms, particularly optics, the Bell measurement

may only give a valid outcome say 50% of the time [Braunstein and Mann, 1995].

For example, it may give outcomes (1,0) and (0,1) conclusively, but give a ‘failed’

outcome because, for platform-specific reasons, it is unable to work for Bell states

5. We can use any of the four Bell states in Eq. 2.45 and change the Pauli corrections accordingly.
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|Ψ±⟩. This means on average half the time we successfully teleport the qubit, and

half the time qubit 1 is lost.

The other classifier concerns whether we actively perform the Pauli corrections,

or track them ‘in software’. We distinguish these two cases as active vs passive

teleportation. Tracking Pauli corrections is common in error correction contexts, since

actively performing the Pauli gates can introduce more errors. With this strategy,

we use the information of the Pauli corrections to update which gates we perform

next, or which basis to measure our qubits in. One interesting consequence of ‘in

software’ tracking is that we may perform subsequent operations on qubit 3 before

Alice has completed her Bell measurement. Eventually however, we must use the

outcomes of Alice’s Bell measurement to actively change the gates and measurements

we perform on Bob’s side, particularly for non-Clifford gates such as T gates. Overall,

deterministic and active teleportation is the protocol that is most closely equivalent

to ideal quantum state transfer [Pirandola et al., 2015].

2.4.2 Use in quantum communication

Quantum teleportation is vital to quantum communication protocols. The quantum

communication problem concerns how to transfer quantum information such as qubit

states between Alice and Bob when they are separated by some appreciable distance.

Over these distances, energy losses and noise in the links or communication channel

mean we are almost certainly doomed if we try and send our qubit state directly

through the link. However, quantum teleportation says that all we need is a Bell

state between Alice and Bob and a classical communication channel and then we can

teleport our qubit. Although we may be almost certainly doomed if we try and create

a Bell state between Alice and Bob via the lossy link, there is a subtle difference. We

can attempt to create this Bell state several times, and we can perform non-destructive

measurements that verify which attempts are successful, even if each attempt is very
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unlikely to succeed. This approach is known as ‘heralding’ or ‘repeat until success’.

We might be waiting around for a while, but as soon as we get lucky and herald a

Bell state, we can then teleport our qubit state. With this approach, the inefficiencies

of our link greatly reduce our qubit data transfer rate, but we do not compromise

transfer fidelity unlike in a direct approach. This approach is so ubiquitous, that it is

often presumed to be the only way to send qubits over a long distance network and

has been demonstrated in a plethora of experiments in different qubit platforms that

either use fiber optics or free space as the communication medium [Pirandola et al.,

2015,Xia et al., 2017].

There is another problem with this approach which is that energy remaining tends

to decrease exponentially with distance. Eventually, the losses may be so great that

the probability of heralding even a single Bell state becomes astronomically low. The

solution to this is the quantum repeater [Briegel et al., 1998]. Suppose the losses

between Alice and Bob are too large to herald a Bell state but we have another

station at the halfway point, which we call Charlie. The losses are still large between

Alice and Charlie, and Charlie and Bob but not so large that we cannot herald two

Bell states between Alice and Charlie and Charlie and Bob. By using a protocol

known as entanglement swapping, Charlie can perform a Bell measurement on their

two qubits (one from each Bell pair) and classically communicate the outcomes to

Alice. Once Alice is aware of these outcomes, Alice’s qubit is now entangled with Bob

and not with Charlie’s anymore [Hermans et al., 2022]. Quantum teleportation can

then proceed as normal. The key advantage of this quantum repeater protocol is that

it scales favorably with distance, and does not suffer from the exponential decrease

in successfully heralding Bell states.

Quantum teleportation can only be as good as the Bell state prepared between Al-

ice and Bob. If we can only create noisy Bell states then the entanglement distillation

protocol can get round this [Bennett et al., 1996]. The approach is to instead prepare
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many noisy Bell state pairs between Alice and Bob and then use local operations

such as Bell measurements to end up with one remaining two-qubit state which has

a much higher fidelity with a perfect Bell state. The entangled pairs are distillable if

their fidelity with a Bell state is > 50%.

All together, these different strategies can be combined to achieve ever-better qubit

transfer fidelity in the presence of faulty components. These can be summarised as

the following

1. If we cannot send the qubit directly through the link (on-demand deterministic

state transfer [Cirac et al., 1997]) because losses are too high, use quantum

teleportation.

2. If it takes too long to herald a Bell state, use the quantum repeater protocol

and entanglement swapping.

3. If the Bell states we herald are not high enough fidelity, prepare many copies

and use the entanglement distillation protocol.

It is important to bear in mind that each time we adopt one of these protocols to

make up for some imperfection in our system we are making a trade-off. By adopting

teleportation we sacrifice the qubit transfer data rate, and the wait time between each

qubit transfer is now inherently probablistic. Our qubit state transfer (QST) fidelity

will always be limited by the fidelity of our Bell state and our Bell measurement.

With the repeater protocol, the number of Bell states we need to prepare and the

number of Bell measurements scales linearly with the number of intermediate nodes

between Alice and Bob. Finally, the entanglement distillation protocol can overcome

the limitation of noisy Bell states but again requires a larger number of entangled pairs

to be generated per each qubit transfer. In all these workarounds the fidelity of our

local Bell measurements is still sets the ‘bottom line’ of our QST fidelity. On-demand

deterministic state transfer is the most direct method of quantum communication,
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with the minimum operation overhead but maximum susceptibility to errors in the

communication channel.

The preceding discussion has implicitly assumed optical links, where quantum

information is sent via photonic wavepackets. In Chapter 7, we show that these

assumptions are not valid for all kinds of quantum communication channels, especially

when the channel can be treated as a single standing wave mode.

2.4.3 Gate teleportation

First outlined in [Gottesman and Chuang, 1999], gate teleportation is based on the

previous state teleportation circuit, but allows us to also perform a gate on qubit 3.

The modification to the circuit is simple and shown below.

|Φ+⟩2,3

|ψ⟩1
X

Z

U X Z U |ψ⟩3

prep

(2.53)

By performing gate unitary U on qubit 3 after the Bell pair creation but before

Alice’s Bell measurement, the final qubit 3 state (after Pauli corrections) will be

|ψ⟩3 = U (c0 |0⟩+ c1 |1⟩). But why would we ever want to do this? What advantages

does this provide over just performing U directly on qubit 3 after the whole telepor-

tation sequence? Again, the benefit comes from being able to try multiple times until

success. Suppose we can ‘herald’ the success of unitary U just as we herald successful

Bell state generation (i.e.,U is an error-detected gate). We now only proceed with the

Bell measurement and teleportation if both the Bell state is heralded successfully and

the gate is performed successfully (everything on qubits 2 and 3 before the dashed

line counts as ‘preparation’). Otherwise, we keep qubit 1 idle and try again. Now
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when U fails, we do not have to throw away qubit 1, we only need to retry the Bell

state production and the gate. This style of gate teleportation can be extended to

two-qubit gates such as CNOT gates [Chou et al., 2018] although this requires more

complex entangled states and more Bell measurements.

We will also examine gate teleportation as a flexible tool for indirectly implement-

ing gate unitaries when we have limited control on some of our qubits. For this we

will use the following circuit.

|ψ⟩1 Ô Ô

|+⟩2 X(θ)

Z

Figure 2.7: ‘Teleporting’ the gate Ô(θ) onto qubit 1. When we measure outcome 1
on qubit 2, we must conditionally apply another Ô gate.

This circuit has been used to perform teleported gates on GKP qubits [Flühmann

et al., 2019,Campagne-Ibarcq et al., 2020]. Here we are interested in this circuit for a

very hardware-specific context that forms the basis of the gates introduced in Chapter

6. We are interested in the case where qubit 1 and qubit 2 are ‘different species’ of

qubits (such as qubit 1 being a bosonic mode and qubit 2 a two-level system). We

can perform arbitrary qubit rotations on qubit 2 but not on qubit 1. On qubit 1

we can only perform Pauli gates and control Pauli gates with qubit 2 acting as the

control. We can use gate teleportation techniques and feedback to perform rotations

of the form Ô(θ) on qubit 1. At the end of this circuit, if we measure qubit 2 to

be in |0⟩ (50% probability), we will have performed gate Ô(θ) on qubit 1. But if we

measure |1⟩ we will have performed Ô(θ + π) instead. Fortunately we are allowed

to use feedforward to conditionally apply the Pauli gate Ô to qubit 1, so overall we

perform the desired gate.
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2.4.4 Measurement-free gate teleportation

A drawback of this approach is the required measurement and feedforward. If the

measurement has an error this directly causes an error on the data qubit(s). This is

circumvented with the ‘measurement-free’ teleportation circuit below:

|ψ⟩1 Ô Ô

|+⟩2 X(θ) |+⟩2
(2.54)

At the end of the sequence, qubit 2 returns to its original state, |+⟩ and has

been disentangled with the rest of the qubits whilst the gate Ô(θ) is deterministically

applied to qubit 1 as desired. This protocol can be extended to multiple qubits as

shown in the circuit below:

Ô Ô

|+⟩ X(θ) |+⟩

(2.55)

The general circuit is also called the ‘exponentiation gadget’ and can be extended

to Pauli-like operators (Ô† = Ô) that act on multiple qubits. At first glance, this

circuit seems a little strange—why would you not be able to do Ô(θ) directly on qubit

1?

It turns out this is often the case with bosonically encoded qubits where it can be

significantly easier to do control-Pauli operations controlled by an ancilla qubit and

perform the rotation by angle θ on the ancilla rather than the bosonic mode. In fact,

amongst bosonic codes, this construction is becoming more ubiquitous. It forms the

foundation of both the eSWAP gate [Gao et al., 2019] and ZZ(θ) gates that form the

bulk of Chapter 5.



CHAPTER 3

Quantum Error Correction and

Detection

3.1 Quantum Error Correction Fundamentals

Quantum error correction (QEC) is arguably the central challenge that must be over-

come to realize a useful quantum computer. Quantum algorithms must still reliably

give a useful output even when the underlying qubits and gate operations are noisy.

QEC is significantly harder than classical error correction. The no-cloning theorem

forbids us from simply making ‘backups’ of our qubits and we cannot directly mea-

sure the logical information in our qubits without altering them via our projective

measurements.

47
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3.1.1 Knill-Laflamme conditions

Instead we must use a larger space of states, which have an inbuilt redundancy to

errors. One subspace, known as the logical subspace (or computational subspace),

encodes qubit information and decoherence mechanisms take us to an orthogonal

space, known as the error subspace. All QEC protocols must realize a channel that

takes us from the error subspace back to the logical subspace whilst preserving the

quantum information (i.e., without disturbing or gaining knowledge of the logical

qubit state). These requirements are formalized as the Knill-Laflamme conditions

[Knill and Laflamme, 1997].

Suppose our qubit state undergoes an error given by channel

ρ→
∑

i

ÊiρÊ
†
i (3.1)

Where {Êi} form the set of error processes. The Knill-Laflamme conditions can be

written as

⟨0L|Ê†
i Êj|0L⟩ = ⟨1L|Ê†

i Êj|1L⟩

⟨0L|Ê†
i Êj|1L⟩ = ⟨1L|Ê†

i Êj|0L⟩ = 0

(3.2)

In words, this means our error processes must preserve the orthogonality of our

codewords once they have been transported to our error space, and that the rate at

which a given error process takes us to the error space is the same for all codewords.

If these conditions are satisfied, then there exists a linear map that takes us back

to ρ, our initial qubit state and it is as though the error never happened. This is

the bare-bones theory—it does not tell us how best to implement the error correction

step or whether our error correction itself will introduce more errors!

Next we discuss two main strategies for realizing error correction: with stabilizer

codes and with bosonic QEC. In the first approach, our logical codewords reside
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in the larger Hilbert space formed by an ensemble of many ‘physical qubits’. Many

physical qubits are needed to realize each logical qubit. With bosonic error correction,

we instead encode redundantly in the larger Hilbert space of a quantum harmonic

oscillator. The two approaches may be complementary. Bosonic error correction may

be employed to make better physical qubits at the ‘hardware’ level, and then many

physical bosonic qubits can be assembled to form one logical qubit.

3.1.2 The 3-qubit repetition code

We can illustrate many of the core underlying concepts of practical error correction

with the repetition code [Girvin, 2023], the simplest quantum error correcting code.

A logical qubit in this code is comprised of three physical qubits as

|ψL⟩ = c0 |0L⟩+ c1 |1L⟩ = c0 |000⟩+ c1 |111⟩ (3.3)

This is designed to correct for a single bit flip error that can occur on any of our three

physical qubits so {Êi} = {1, X1, X2, X3}.

Suppose the error X1 has occurred. Our state is now

|ψE1
⟩ = c0 |100⟩+ c1 |011⟩ (3.4)

We must detect the occurrence of this error, without destroying the qubit information

encoded in c0 and c1. We can do this through use of an additional ancilla qubit and

a QND measurement called a stabilizer measurement. We non-destructively measure

the stabilizer X1X2 by using the circuit in Fig. 2.6 and setting B = X1X2. Obtaining

outcome −1 tells us the first two qubits are in the subspace {|01⟩1,2 , |10⟩1,2} but not

whether we are in |01⟩1,2 or |10⟩1,2, and so we preserve the superposition. If we obtain

outcome +1, we know neither of these qubits suffered a bit flip error (assuming two

errors did not occur!).
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With the single stabilizer measurement result of -1, we know that either the first

qubit or the second qubit had a bit flip, but we still don’t know which one. We must

perform a different stabilizer measurement, this time setting B = X2X3 to make this

unambigious. If we obtain outcome +1 (−1), we know it was qubit 1 (2) that had the

error, and apply the correction unitary X1 (X2). With these two measurements, we

can obtain 4 different measurement outcomes which unambiguously tell us whether

to apply 1, X1, X2, X3 to correct for the presence (or absence) of a bit flip error.

What happens if we do not have a discrete bit flip error but a continuous one

such as X1(θ) by some unknown angle θ ? Although this error (and realistic errors)

is analog (θ can take any continuous value) the stabilizer measurements always give

discrete outcomes. By this we mean X1(θ) = cos(θ/2)11 + i sin(θ/2)X1, is a su-

perposition of error and no-error. The act of performing the stabilizer measurement

collapses this superposition, so if we measure −1, which happens with probability

sin2 θ, we definitely had a bit flip error and should correct for it! Conversely, if we

measure +1, the act of measuring has ‘collapsed away’ the error and we do not need

to correct for anything.

Now we suppose the bit flip errors all arise from the same error channel on each

qubit where a bit flip happens with probability p on each qubit independently. How

much has our error correction helped reduce the logical error probability? Without

any error correction and a single qubit, our error rate would be p. When we encode

in three data qubits, our error is now 3p(1− p)2 ≈ 3p. Before doing error correction,

we are now roughly three times more likely to suffer an error! This is a property of

all error correction schemes, which we term the error correction overhead. The

extra redundancy required for error correction increases our susceptibility to errors

happening in the first place! The hardware overhead refers to the increase in the

number of physical qubits per logical qubit, and the increased number/complexity of

operations we must perform to implement error correction. After correcting for all
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single qubit errors, there is a chance two or three errors occur, which are uncorrectable

errors. This happens with probability 3p2(1 − p) + p3 ≈ 3p2, which sets the logical

error rate of the code, pL. We can only correct a single bit flip. We will mistake two

bit flip errors on X1 and X2 for a bit flip on X3 and so after the error correction we

will have a logical bit flip error. If two bit flips occur, it is possible to detect this as an

error from our stabilizer measurements, but we cannot correct this error, since both a

single bit flip error and double bit flip error can give the same stabilizer measurement

outcomes (and it is ambiguous what we should do to correct the error.)

Overall, our error correction helps if 3p2(1− p)+ p3 < p which is true for p < 1/2.

We call p = 1/2 the breakeven point, when the quantum error correction becomes

beneficial, in spite of its overhead. In practice, we want to be well-past the breakeven

point, because we eventually want our error correction to reduce our logical error

rate by orders of magnitude compared to the physical error rate. For this reason, the

scaling of the logical error rate with the physical error rate is incredibly important.

In this case, the logical error rate scales ∼ O(p2). Decreasing p by a factor of 10

leads to a hundredfold reduction in the logical error rate! For codes such as the

surface code, this improvement can be even more dramatic. We can also define the

error correction gain,Λ = p/pL. When Λ > 1 we are beyond the breakeven point

and our error correction is beneficial1. For the repetition code, Λ ≈ 1
3p

for p < 1.

This factor of 1/3 arises from the fact that using three physical qubits to encode one

logical qubit increases the error rate by a factor of three.

It is also helpful to introduce the stabilizer formalism. We can succinctly summa-

rize the bit flip repetition code as a three (data) qubit code stabilized by the Pauli

operators X1X2 and X2X3. (We could also swap out one of the stabilizers for X1X3)

There is one more important aspect we have swept under the rug. So far we have

1. We can also define breakeven for a quantum memory in a similar way, as the ratio of the
coherence time of the logical qubit information to the physical lifetime of modes in the system,
see [Ofek et al., 2016,Ni et al., 2023,Sivak et al., 2023].
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assumed our ancilla qubit, all the stabilizer measurements and correction unitaries

are perfect and error-free. In a realistic system these would be just as error prone

as the data qubits. So how do we correct for errors in them as well? We must

redundantly store information in the ancilla qubit, and check them for errors, which

in turn requires more physical qubits and more gates to make a robust ancilla. We

are starting to accumulate a lot of physical qubits and a lot of overhead!

3.1.3 Fault tolerance

We are also beginning to touch upon the concept of fault-tolerance. A rather

nebulous concept that seems to mean something a little different to everyone. In

spirit, fault tolerance means we are completely ‘water-tight’ to errors. Any errors

that occur in any error-prone part of the system can be corrected and do not affect

the output of whatever computation we are trying to run. Here we go through the

various meanings of fault tolerance in more specific contexts:

• A fault-tolerant quantum computer. A quantum computer where the logi-

cal error rate (per gate) has been made low enough (presumably through QEC)

to run useful algorithms. This error rate is often quoted somewhere between

10−10–10−18

• Fault-tolerant QEC. In the context of performing many rounds of repeated

QEC, errors introduced/missed from a previous round or between rounds can

still be corrected in subsequent rounds of QEC. Overall this means the chances

an error slips through all our rounds of QEC is low enough to perform a useful

computation.

• Fault-tolerant encoding. When we do not assume unrealistically that some

parts of our QEC procedure are error-free. That our chosen quantum error

correction code fully consider errors that can occur in state preparation, gates,
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ancillas, measurements, error correction unitaries and design our error correc-

tion to account for all error possibilities. (The repetiton code we introduced

earlier is not fault tolerant in this sense)

• Hardware Fault Tolerance (HFT). The ability to tolerate specific jump

errors occurring during gate unitaries and measurements on physical qubits.

Tolerate means to detect/correct these errors as they occur, without needing

excessive amounts of hardware and operations to do so. The goal of Chapter 5

is to extend this to two-qubit gates and measurements.

3.1.4 Correcting for Pauli errors

The bit-flip repetition code only corrects for a single X error 2 but we have seen most

qubit errors can be modelled as Pauli errors—either an X or a Z error (or both since

Y = iXZ) can occur. What encodings can deal with Pauli errors? We can modify

the repetition code with codewords

|ψL⟩ = c0 |+++⟩+ c1 |− − −⟩ (3.5)

which corrects for a single Z or phase-flip error but not any bit-flip errors. We can

then use the process of concatenation. By replacing each physical qubit in the

phase-flip code with three physical qubits encoded in the bit-flip code, we end up

with a 9-qubit code known as the Shor code [Shor, 1995]:

|ψL⟩ =
c0

2
√
2
(|000⟩+ |111⟩)⊗3 +

c1

2
√
2
(|000⟩ − |111⟩)⊗3 (3.6)

2. The bit-flip code can only correct for amplitude damping errors if we also physically implement
Pauli twirling.
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This is not the most qubit-efficient encoding to protect against a single Pauli error.

The 5-qubit ‘perfect’ code [Laflamme et al., 1996] achieves this with the stabilizers

S1 = 11 X2 Z3 Z4 X5

S2 =X1 Z2 Z3 X4 15

S3 = Z1 Z2 X3 14 X5

S4 = Z1 X2 13 X4 Z5

Code distance quantifies the number of (Pauli) errors we can correct for. A

distance d code corrects for up to (d − 1)/2 Pauli errors and can detect (but not

correct) d−1 Pauli errors. The 5-qubit perfect code is an example of a distance d = 3

code.

3.1.5 Erasure errors

There is an entirely different class of error known as erasure errors. An erasure

error on a physical qubit occurs when we are able to determine where and when a

physical qubit had an error, but we are not necessarily sure what happened to its

quantum information. The qubit may have suffered a Pauli error, leakage error or

even be physically destroyed! The key difference is that we (the agent trying to run a

quantum computer) know that something happened to the information in the physical

qubit, but we don’t know what.

These errors are almost like classical errors, and as such they are much easier to

correct. Any code designed to correct for Pauli errors could also be used to correct

for erasure errors without any modification of the hardware or gates. However, It is

always easier to correct erasure errors than to correct than Pauli errors, because we

can take advantage of the fact that we know the location of the error–there is less

entropy in the noise. Other than the knowledge of the location of the erasure, no

extra modification to the hardware or gates is required to correct for erasures.

For the error to be classified as erasure, we must also be able to reset that qubit
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back into the computational space3 after the error has been detected. Any stabilizer

code designed for Pauli errors can always correct double the number of erasure errors

[Grassl et al., 1997], essentially doubling the code distance by allowing us to tolerate

up to d−1 erasure errors. A d = 3 code will have logical error rate due to Pauli errors

that scales as ∼ (pPauli)2 but the same code would be susceptible to erasure errors at

rate ∼ (perasure)3. The reason behind this is the removal of ambiguity in interpreting

stabilizer measurements. Given a set of stabilizer measurement outcomes, what is

the most likely physical errors on the qubits that gave us these outcomes? This is

known as the decoding problem. In the bit-flip repetition code, we saw a single bit

flip errors and two bit flip errors both gave the same error syndrome, and we assumed

a single bit flip error since this was more likely. With erasure errors, we know exactly

which and how many qubits had an error, allowing us to distinguish between and

correct both of these cases.

Erasure errors must also satisfy their own version of the Knill-Laflamme conditions

[Grassl et al., 1997]. For a set of Kraus operators, {Ê ′
i} that describe the erasure

channel, they must satisfy

⟨0L|Ê ′
i|0L⟩ = ⟨1L|Ê ′

i|1L⟩

⟨0L|Ê ′
i|1L⟩ = ⟨1L|Ê ′

i|0L⟩ = 0

(3.7)

In words, this states that erasure error processes should take our logical codewords out

of the computational state to an error space that is orthogonal to our computational

space, and with the same rate for each codeword4. The difference compared with error

correction is that we do not need to preserve orthogonality in the error space. Usually

this is required so that stabilizer measurements outcomes unambiguously tell us what

3. which may even be a mixed state!

4. This prevents a no-jump backaction error.
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unitary we should apply to correct the error. Now, with error detection, we relax this

requirement – stabilizer measurements by themselves are allowed to be ambiguous

(and we will now use the additional knowledge of the erasure location to ultimately

remove this ambiguity). If we compare this to the Knill-Laflamme conditions:

⟨0L|Ê†
i Êj|0L⟩ = ⟨1L|Ê†

i Êj|1L⟩

⟨0L|Ê†
i Êj|1L⟩ = ⟨1L|Ê†

i Êj|0L⟩ = 0

For any error correcting code that corrects for t errors in {Êi}, the same code can

detect 2t errors in the set {Ê ′
i} = {Ê†

i Êj} which is always twice as large as {Êi}. If we

then have some additional method of determining which qubit suffered an unknown

error from {Ê ′
i} (i.e., error-detection on each physical qubit), then this becomes a

fully error-correctable erasure error.

The smallest stabilizer code that can correct for a single erasure on any physical

qubit is the 4-qubit erasure code with stabilizers. With two stabilizers and four

S1 = Z1 Z2 Z3 Z4

S2 =X1X2X3X4

physical qubits, we have enough degrees of freedom to encode two logical qubits with

codewords whilst still being able to correct a single erasure error on any qubit. The

four codewords are

|0L0L⟩ = (|0000⟩+ |1111⟩)/
√
2

|0L1L⟩ = (|1001⟩+ |0110⟩)/
√
2

|1L0L⟩ = (|1100⟩+ |0011⟩)/
√
2

|1L1L⟩ = (|1010⟩+ |0101⟩)/
√
2.

(3.8)

The procedure for correcting an erasure is to reset the erased qubit back into the

codespace and then to remeasure the stabilizers S1 and S2, applying Pauli updates
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as needed. We walk through this procedure explicitly in Appendix A.

Because of the highly favorable scaling of erasure errors, it is worth investigating

specific systems where erasure errors can naturally arise as the dominant error source

and how to engineer our hardware and measurements such that erasure errors rather

than Pauli errors are our dominant error channel. There are two main strategies to

achieving this. The first is to error detect processes (to first-order) that are known to

produce Pauli errors through use of a flag ancilla qubit or similar measurement, the

second is to engineer our systems so our error processes predominantly cause leakage

errors, which can then be efficiently detected and converted to erasure errors. We

now describe the latter approach.

3.1.6 Leakage errors

Leakage errors take a physical qubit from its computational manifold {|0⟩L , |1⟩L}, to

states outside of the computational manifold, {|Leakage⟩}. These errors are usually

the most damaging to a quantum error correction code and their occurrence is often

hardware specific. For example, if |0⟩L and |1⟩L are both metastable states with a

common ground state, then the energy relaxation channel now predominantly results

in leakage to the ground state, which at first looks much more damaging compared to

Pauli errors. However, a detected leakage error followed by qubit reset can be treated

as an erasure error in a process known as erasure conversion.

The most benign type of leakage error is when qubits in leakage states do not inter-

act at all with the qubits that remain in the computational subspace. Any attempts

to interact with leakage qubits e.g. via a CNOT gate result in identity operations

being applied to the non-leaked qubits. As the computation progresses, these leaked

qubits act as a permanent, fixed source of Pauli errors on the surrounding non-leaked

qubits whenever we try to perform an entangling gate. Leakage results in a permanent

reduction in code distance, since within a round of error correction, the non-leaked
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qubits that neighbour leaked ones will always suffer from Pauli errors. Code distance

can only be restored by resetting the leaked qubits back to the codespace (and mea-

suring stabilizers to re-entangle them with the rest of the physical qubits). This is

the best case scenario since, depending on the exact hardware implementation, at-

tempting entangling gates with a leaked qubit can result in the propagation of leakage

errors to the surrounding qubits!

For a long enough computation, leakage errors reduce the effectiveness of our

quantum error correction until the logical error rate is too large to run useful al-

gorithms. Other error processes, may eventually take us from the leakage manifold

back to the computational manifold are referred to as ‘Seepage’ errors [Wood and

Gambetta, 2018]. Detecting leakage errors and converting them to erasure errors is

one way to handle leakage as we will discuss later. The other way is to greatly in-

crease the seepage rate, essentially by engineering a dissipative processes that takes

us back to the computational subspace before leakage errors become disastrous. Ef-

fectively, this converts leakage errors to Pauli errors and the operations required to do

this are referred to as‘Leakage Reduction Units’ (LRUs) [Aliferis and Terhal, 2006].

This strategy (and also the erasure conversion strategy) ensures that only a con-

stant, small fraction of qubits are in leakage states rather than steadily growing in

time [Miao et al., 2022]. It is important to keep this fraction small, such that the

Pauli error rate due to leakage errors is comparable or less than the Pauli error rate

due to other physical error processes.

3.1.7 Erasure conversion

From a QEC standpoint, it is more advantageous to handle leakage errors by con-

verting them to erasure errors instead. This approach has been recently proposed

for many different qubit platforms [Wu et al., 2022, Kang et al., 2023, Scholl et al.,

2023,Kubica et al., 2022,Teoh et al., 2022]. The key difference is that we perform a
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measurement which tells us exactly which qubits have leaked before resetting them to

the codespace. This additional knowledge is what allows us to remove the ambiguity

in decoding future stabilizer measurements. Overall, the procedure has converted

leakage errors to erasure errors.

We now walk through this process for the two contexts in which we convert leakage

errors to erasure errors in a stabilizer code. Most often, what we want to do is a mid-

circuit measurement, whereby we will still use the qubit afterwards in the event that

no leakage error is detected. Any detection of the leakage error must be highly QND

on states in the computational space; i.e., if the qubit has not leaked, we don’t want

the detection process to induce additional errors on the qubit! We call a detection

procedure that satisfies this requirement a mid-circuit erasure detection5. If the

detection flags a leakage has occurred, then we have successfully performed erasure

conversion, because the leakage error channel can now be treated as an erasure

channel and the leakage error can now be called an erasure error. But to be able to

correct the erasure error in the stabilizer code, we must do two more steps. First,

we must reset the leaked qubit back into the computational space, and secondly, we

must inform our decoder as to which qubit suffered the erasure error and use this

information when interpreting the subsequent stabilizer measurement outcomes.

The other context in which we can detect leakage errors is when we are performing

an EOTL logical measurement on a qubit. This can occur at the very end of the

computation on the data qubits, or during a computation regularly when measuring

the ancilla qubits that measure the stabilizers.

As well as determining, e.g., if the state was in |0L⟩ or |1L⟩, we can also do a

measurement that checks if the qubit has leaked. We call this an EOTL erasure

detection. These are easier to perform, since they do not need to be QND on the

5. Erasure detection and leakage detection are almost used synonymously. Although a slight
misnomer (erasures are by definition detected), erasure detection refers to leakage detection in the
context of trying to convert leakage into erasure errors.
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computational states. This can be achieved, for example, by a three-state readout

that distinguishes between |0L⟩ , |1L⟩ and |Leakage⟩. If the physical qubit is reused

again in the computation, it must be reset back into the computational space. All

these definitions are a little confusing, so we summarize them in Table 3.1.

Measurement name Erasure Conversion
Logical measurement

w/ erasure detection

Type of erasure detection Mid-circuit EOTL

Measurement circuit
{|leakage⟩} or codespace? |0⟩ or |1⟩ or {|leakage⟩}?

How to then

correct erasure?

Reset to codespace if leaked

and inform decoder

Inform decoder if leaked,

reinitialize to known state

if reusing qubit later

Table 3.1: Procedure for correcting erasure errors. There are two different types of
erasure detection measurements: Mid-circuit and EOTL. Each has a slightly different
procedure to correct erasure errors. Realizing mid-circuit erasure detection is the
most useful for correcting erasure errors.

If we know the history of the qubit’s interaction with other qubits just before an

erasure is detected then we may have to reset multiple ‘tainted’ qubits back to the

codespace. This is pertinent when performing erasure detection after two-qubit gates.

The two-qubit gates are often the most error-prone operations (in this case, our

dominant errors are presumed to be detectable leakage errors). In the most conserva-

tive case we perform mid-circuit erasure detection after every two-qubit gate. In this

scenario, if leakage is detected on any one of the two qubits, we must reset both, so

leakage errors only affect at most two physical qubits before they are reset. In this

case, leakage has resulted in erasure errors on two physical qubits. After resetting

them both to the codespace and using the erasure information in our decoder, we

have successfully corrected the erasure error.

We can define other metrics such as the erasure conversion efficiency [Wu et al.,
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2022] which tells us the probability our measurement successfully flags a qubit as

having leaked, given that it is in fact in the leakage state. What happens if this

efficiency is less than 100%? Let us suppose that instead it is 98%, a reasonable

value to assume given experimental measurement fidelities. There is a 2% chance

the leakage is missed on the leakage detection measurement, but a 98% chance it is

detected on the second one and so the chances of a leakage error sneaking through

undetected decreases exponentially with the number of measurements. Overall, this

results in a small, constant fraction of leaked qubits that have not yet been detected

and in the meantime are a source of Pauli errors. If we denote the erasure conversion

efficiency as ηconv, and the probability a physical qubit undergoes erasure during each

two qubit gate as perasure, then the fraction of leaked qubits (assuming leakage does

not spread), pleak, is given by the geometric series

pleak = perasure
(

(1− ηconv) + (1− ηconv)
2 + (1− ηconv)

3 + ...
)

(3.9)

Where the nth term of the series gives the probability a leaked qubit has survived

n rounds undetected, which decreases exponentially. For ηconv close to 1, we can

approximate

pleak ≈ perasure(1− ηconv) (3.10)

We can also define the ‘false positive’ rate of erasure conversion, which is the

probability we incorrectly flag a qubit as having leaked when it is in fact in the

computational subspace. For each erasure detection step we say the probability of

this occuring is perasure
false . Ideally we want this probability to be somewhat small, since

it sets the erasure rate in the absence of any actual leakage errors and instead due to

our faulty measurement. But as we shall see next, codes such as the surface code are

highly tolerant of erasure errors.
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3.2 The Surface Code

So you want to build a fault-tolerant quantum computer? As of this writing, the

surface code [Bravyi and Kitaev, 1998] is probably your best bet. In a distance d

surface code, a d × d grid of data qubits is interspersed with a d × d grid of ancilla

qubits as shown in Fig. 3.1 for a total of 2d2−1 physical qubits per logical qubit. The

encoding rate of this code is not very high, especially when compared to classical error

correcting codes. We need O(d2) physical qubits to encode just one logical qubit!

The surface code is divided up into plaquettes - 4 data qubits with an ancilla at

the center. The sole purpose of the ancilla is to measure stabilizers on its surrounding

data qubits. The outcomes of the stabilizer measurements are decoded to correct for

Pauli errors. There are two types of plaquettes (unless we are using the XZZX

variation [Bonilla Ataides et al., 2021], in which case all plaquettes are identical)

that alternate in a checkerboard pattern. The layout of the surface code is shown in

Fig. 3.1.
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Figure 3.1: Physical qubit layout for the d = 5 (rotated) surface code. White circles
are data qubits, black circles are ancilla qubits, for a total of 49 physical qubits per
logical qubit. (Left) Traditional surface code. Ancillas in the blue (red) plaquette
measure ZZZZ (XXXX) stabilizers, except at the boundary where they measure
weight two stabilizers. (Right) XZZX surface code. All plaquettes are identical and
each ancilla measures its respective XZZX stabilizer. Also shown are examples of
the CX and CZ gates needed for the stabilizer measurement circuits.

Next we describe the circuits needed to measure stabilizers in variations of the

circuit code. In the traditional surface code, we must measure both XXXX and

ZZZZ stabilizers, which creates two different kinds of plaquettes. These are measured

with the following circuits:
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a |+⟩
X

d1

d2

d3

d4

Figure 3.2: Ancilla qubits, a, at the center of X-type plaquettes measure the stabilizer
XXXX on the four surrounding data qubits, di=1,2,3,4.

a |0⟩
Z

d1

d2

d3

d4

Figure 3.3: Ancilla qubits at the center of Z-type plaquettes measure the stabilizer
ZZZZ using a slightly different circuit with the control and target of the CNOT
reversed

a |+⟩
X

d1

d2

d3

d4

Figure 3.4: For the XZZX surface code, the same stabilizer is measured on each
plaquette and we only need one circuit which uses both CZ and CX gates.
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The order of CZ and CX gates must be preserved in these circuits, as they are

performed simultaneously with every ancilla qubit in the surface code. These weight-

4 stabilizer measurements are the only operations needed to create and preserve a

quantum memory in the surface code. The particularly nice properties of the surface

code is that one only needs nearest-neighbour connectivity in a square lattice. All

stabilizer measurements are local, and the distance of the surface code is extended by

repeating the pattern of data and ancilla qubits to make a grid of larger size.

For computation, all Clifford gates in the surface code can be performed transver-

sally via lattice surgery [Horsman et al., 2012, Litinski, 2019a] which makes their

implementation fault tolerant. If we can stabilize a surface code memory, we have all

the ingredients for fault-tolerant Clifford gates as well. The non-Clifford gate is more

tricky. The Eastin-Knill theorem [Eastin and Knill, 2009] states that for a given

quantum error correction code, it is impossible to perform a universal set of gates

transversally (which garauntees they are fault-tolerant). In the case of the 2D surface

code, it is the T gate that cannot be implemented transversally. The most popular

workaround to implement T gates with error rates comparable to the other gates is to

non-fault tolerantly prepare many logical |T ⟩ states and use ‘magic state distillation’

to reduce their errors followed by magic state injection to implement T gates. [Knill,

2005]. This procedure is expected to take up most of the computational time of a

working quantum computer! At the physical qubit level, the only additional hardware

operation is to perform a T -gate on (a small fraction of) the physical qubits6.

The last thing we need is at the classical level: a real-time decoder. Each round

of stabilizer measurements produces many classical outcomes that need to be pro-

cessed to deduce the most likely Pauli errors that led to the observed outcomes. This

amounts to solving a hard graph matching problem, ideally before the next round

6. An alternative to magic state distillation is to use 3D surface codes for which the Eastin-Knill
theorem does not apply. The just-in-time decoding scheme can achieve this by simulating a 3D
surface code with a 2D qubit lattice
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of error correction and definitely before any non-Clifford gates (See the ‘Backlog

problem’ [Terhal, 2015]). The space of possible outcomes is so large that lookup

tables quickly become unusable and we must use algorithms such as union find and

Minimum-Weight-Perfect-Matching (MWPM) [Battistel et al., 2023].

3.2.1 Fault tolerance and the threshold theorem

The surface code is particularly promising because there exists a threshold for this

code. Formally, this means as we concatenate our code with itself to increase the

code distance, the logical error rate pL → 0, provided the physical qubit error rate is

below a critical value, known as the threshold [Aharonov and Ben-Or, 1997], which

we denote by pth. We can define the Pauli error rate, pPauli (defined either per gate

or per EC cycle7) and find that as we increase code distance, the logical error rate

scales as

pL ∼= A

(

pPauli

pth

)
d+1

2

(3.11)

where A is a prefactor that scales weakly with distance and gives the error rate when

pPauli = pth. This prefactor is usually determined from Monte Carlo simulations. For

the surface code, A ≈ 0.03 and it is important that this formula only holds when we

are well below the threshold and at large code distance. Additionally, only Pauli errors

and a depolarizing noise channel is assumed throughout all operations, including

ancilla qubit measurement and reset. Numerically, under this noise model pth ≈ 1%

per gate. The threshold characterizes the overhead of quantum error correction with

the surface code. We see it is much smaller than the 50% threshold for classical error

correction! But achieving error rates below this threshold does not seem impossible

in real systems. pL decreases exponentially with code distance, so achieving pPauli

7. We also group ancilla measurement and reinitialization errors in the per gate errors. With four
entangling gates per cycle, the per-cycle error is usually ×4 the per-gate error.
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significantly below threshold is important as it greatly reduces the code distance

needed to realize a target pL, and in turn the number of physical qubits per logical

qubit. (Note: if we are close to threshold, we would not see any improvement at all

if we increase code distance!)

We can plug some numbers in for context. For pL = 10−14, necessary for Shor’s

algorithm [Gidney and Ekerå, 2021], with pPauli = 0.1%, we would need d = 27

or 1,457 physical qubits per logical qubit (and some additional qubits for lattice

surgery). That’s a large overhead! And because we need hundreds to thousands of

logical qubits to perform useful algorithms, the estimated number of physical qubits

required can stretch into the millions [Gidney and Ekerå, 2021]! Suppose we are a bit

more optimistic, and say pPauli = 0.01%, we would then need d = 13 or 337 physical

qubits – about 4× fewer physical qubits per logical qubits. A factor of 4 is a big

deal. With the same number of physical qubits we could make 4 times the number of

logical qubits, which increases our Hilbert space (and hence our computing power) by

24. With leading industry devices surpassing the 400-qubit mark8, it may be possible

to realize a single logical qubit, provided sufficiently low Pauli error rates can be

achieved on such a device, the most daunting task.

3.2.2 Error hierarchy and structured noise

As noted by [Fowler et al., 2012] in their comprehensive study on the surface code,

even when only Pauli errors are considered, the surface code has a strong hierarchy of

errors. By this, we mean the logical error rate is more sensitive to some Pauli errors

than others, depending on when they occur during the stabilization circuits. We can

subdivide the Pauli errors into different classes, and each error class has a different

per-gate threshold. We show values obtained from their simulations in our first error

hierarchy example.

8. See IBM’s ‘Osprey’ processor.



3.2. The Surface Code 68

Considering each error class in isolation, errors that occur on data qubits during

idling (during ancilla measurement and reset) were found to have a 4.3% threshold.

Ancilla measurement and reset errors were found to have a 12% threshold (close to

50% per cycle!), and finally the most damaging Pauli errors were during the two-qubit

entangling gates, with only a 1.25% threshold.

How can we make use of such an error hierarchy? If uniformly reducing the

Pauli error rates across all classes is not an option, then we should instead focus our

efforts on reducing the error rates of the class that has the smallest threshold. In this

example, achieving < 1% CNOT gate errors would be much more important than

achieving < 1% ancilla readout, since we can suppress the effect of readout error by

majority voting through multiple rounds of stabilizer measurements. In essence, we

are engineering our physical error rates to ‘match’ the error hierarchy.

The error hierarchy should be thought of as a qualitative guide to improving

errors. Consider two error classes (1) and (2). If p
(1)
th ≈ 5p

(2)
th then we should focus

our efforts on reducing errors such that pPauli
(1) ≈ 5pPauli

(2) in order for each error to

contribute similarly to the overall logical error rate pL. We can stick to the rule of

thumb
pPauli
(1)

p
(1)
th

=
pPauli
(2)

p
(2)
th

≪ 1 (3.12)

However, we want both error classes to be well below their respective isolated error

thresholds, to ensure we are below threshold when we consider both error classes

simultaneously as we would for a real system. No simple rule of thumb exists for

estimating the overall threshold from isolated thresholds, e.g. pth ̸= p
(1)
th + p

(2)
th

3.2.3 Erasure errors in the surface code

The surface code is much more resilient to erasure errors than Pauli errors. The

isolated per-cycle threshold to data qubit erasures is 50%. For erasures on both data
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and ancilla qubits, the per-cycle threshold is ≈ 24.9%, set by the bond percolation

threshold of a cubic lattice [Stace et al., 2009]. When we consider a more hardware-

accurate erasure model, e.g., erasure checks after every two-qubit entangling gate,

erasing both qubits, we find a per-gate threshold of 5.13%, roughly 5× higher than the

Pauli error threshold. This value was obtained by [Wu et al., 2022], and importantly,

they found this threshold only drops to ≈ 4% when finite erasure conversion efficiency

(98%) and simultaneous Pauli errors (≈ 10−4) per gate were considered. Once an

erasure has been detected, we let the decoder ‘know’ by setting edge weights with

erased qubits to zero when performing the decoding step. The favorable scaling and

thresholds of a surface code with erasure and Pauli errors is shown in Fig. 3.5, with

simulations by Yue Wu.

The higher threshold is convenient, but arguably the main benefit comes from the

favorable scaling with code distance. The surface code tolerates up to d − 1 erasure

errors in a round of stabilization, double the number of Pauli errors, and so

pL ∼= A

(

perasure

perasure
th

)d

(3.13)

To put this into perspective, with only erasure errors with 0.1% erasure error per

gate, we can reach ∼ 10−14 error rates with d = 8 or 127 qubits, more than a factor

of 10 fewer physical qubits!9

What may be more realistic to aim for is 1% erasure error rates and 0.01% Pauli

error rates. With this error model, d = 18 (647 qubits) would be needed to reach

10−14. Whilst the reduction in the number of qubits is not quite as dramatic, in the

next section we show how this is achievable through error-detection at the hardware

level.

What does it mean to align our error rates with the error hierarchy? This is slightly

9. with erasure errors, the code distance can be even.
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Figure 3.5: Logical error in a surface code with both Pauli and erasure errors, x
axis in percent. Simulations by Yue Wu. For a fixed Pauli rate of 10−4 per gate
(see [Wu et al., 2022] for the detailed error model). We find a threshold perasure ≈ 5%
and A ≈ 0.08. This model assumes ηconv = 1 and mid-circuit erasure detection is
performed after every two-qubit gate in an XZZX surface code. At perasure = 1%, the
error correction gain is Λ ≈ 20 when we increase the distance from d → d + 2. The
value of Λ is hard to predict at larger code distances since it is set by both erasure
and Pauli errors. At larger code distances, erasure errors become increasingly less
relevant for the overall error rate, causing Λ to increase. Currently, predicting Λ vs
code distance can be found only via numerical simulations. When estimating the
distance required to reach a particular error rate, we make the assumption Λ = 20
and is constant vs distance which seems to give a lower bound.
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different than with the Pauli error classes we examined earlier, because erasure errors

effectively double the code distance. Instead, (assuming the prefactors A are equal)

we should aim for

pPauli

pPauli
th

=

(

perasure

perasure
th

)2

≪ 1 (3.14)

For example, if our Pauli error rate is 100× below threshold, our erasure rate can be

just 10× below threshold.

Figure 3.6 shows a multitude of different error classes including measurement,

erasure and pauli errors and their respective threshold. This is not a direct comparison

between classes, since the exact threshold depends on the specifics of the error model,

but serves as a qualitative guide to illustrate the hierarchy of errors in the surface

code.

3.2.4 Error detection enables the erasure error hierarchy

How can we engineer an error hierarchy like this in a physical system? And are such

low Pauli rates physically realistic? The optimal hierarchy of erasures naturally arises

when we attempt to detect (not correct!) Pauli errors at the hardware level. A striking

new insight from this strategy is that we can now tolerate ∼ 1% hardware error rates

in our system and still achieve surface code performance well below threshold.

Consider a set of qubit hardware that suffers from (first-order) jump errors at

rate pphys. These jump errors traditionally set our Pauli error rate per gate i.e.

pPauli = pphys. The strategy is to engineer our gates and physical qubits such that all

first-order jump errors can be detected after each gate or measurement operation, and

converted into erasure errors at rate perasure = pphys per gate. The Pauli error rate is

then set by the much smaller remaining undetected second order (and higher) jump

errors at rate O((pphys)2) per gate, assuming perfect erasure conversion efficiency.

Error detection naturally gives us a hierarchy of erasure and Pauli errors that is
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Figure 3.6: Resilience of the surface code to different error classes. In blue we show
thresholds (per-gate unless noted) as determined from the different error models in
[Fowler et al., 2012,Sahay et al., 2023,Wu et al., 2022,Wang et al., 2011,Darmawan
et al., 2021] where each class of error was considered in isolation. In orange we show
the physical error rate required to be a factor of 25 below threshold (factor of 5 below
threshold for the first three errors since pL ∝ pd). The chosen physical error rates are
used to highlight the susceptibility to different error classes in a speculative surface
code. We observe that the surface code (as expected for any error correcting code)
is more resilient to structured noise (measurements, erasures, biased-Paulis) and the
least resilient to unstructured noise, e.g., Pauli errors/depolarizing noise, which is
reflected in the thresholds. BCX refers to bias-preserving control-X gates and Biased
Paulis are where all Pauli errors are Z errors but gates are not bias-preserving.
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aligned to the hierarchy of errors in the surface code and any other stabilizer code.

To achieve this our erasure error detection operation must be extremely good

with respect to its ‘half QND-ness’. If no error occurred, we do not want our error

detection to introduce Pauli errors at a rate greater than O
(

(pphys)2
)

, otherwise the

act of error detection will limit the Pauli error rate!. The erasure detection also needs

to have high efficiency (how many erasures do we miss?) and low false positive rates

(how many good qubits do we erase?) since both of these set the minimum erasure

rate.

This is the main motivation behind why we should be engineering error-detected

gates at the hardware level rather than fully error corrected ones. Ironically, by

forgoing full error correction at the hardware level, the task of error correction at the

logical level now looks much easier!

For the surface code specifically, after error detection and erasure conversion we

can expect

perasure
L =

(

pphys

perasure
th

)d

pPauli
L =

(

O((pphys)2)

pPauli
th

)
d+1

2

pL ∝ (pphys)d

(3.15)

Compare this to a physical qubit where we have error corrected all jump errors

to first-order, which would suffer from just Pauli errors at reduced rate O((pphys)2)

per gate. The logical error rate in this surface code would also scale as pL ∝ (pphys)d.

Up to a constant of proportionality (which is similar or even smaller for the error-

detected case!), the logical error rate is the same. Due to the relaxed Knill-Laflamme

conditions for erasure errors, we generally expect error detection of jump errors at

the hardware level to always be easier to implement than full error correction.
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3.3 Bosonic Quantum Error Correction

Bosonic QEC is a Hardware way to achieve the redundancy required for quantum

error correction or detection at the hardware-level. Rather than increasing the size of

our Hilbert space through additional physical qubits, we can use more levels within

a single physical qubit. The premise of bosonic error correction is to use Quantum

Harmonic Oscillators (QHO) in place of two-level systems10 as our physical qubit.

QHOs have an infinite number of energy levels! (at least in theory.) Qubit infor-

mation is encoded in a subspace of the QHO, the computational subspace and error

processes take us to another subspace within the oscillator, which we can use as our

orthogonal error subspace. Correcting or detecting errors brings the qubit back to

the computational subspace. In this sense, bosonic QEC is very similar to standard

error correction with stabilizer codes.

This approach to error correction/detection is often presented as being hardware

efficient—we can perform the first layer of error correction without needing to intro-

duce more physical qubits. Moreover, the error channels in a QHO can be incredibly

simple and are often well-described by the photon loss channel. The collapse operator

is the annihilation operator â that characterizes energy loss processes in all the energy

levels at rate κ = 1/T1. For the case when the QHO is a microwave cavity mode,

there are very few sources of intrinsic dephasing11.

But one should always feel a bit uneasy when encoding qubits in an oscillator.

True QHOs are purely linear systems, and so the thought of using them as qubits

seems almost paradoxical [Nielsen and Chuang, 2010]. A consequence of the equal

spacing between energy levels is that Gaussian control (the easiest to engineer in

practice) by itself is not enough to prepare quantum states in QHOs or perform

10. Not to be conflated with TLS systems that cause 1/f noise in transmons!

11. A cavity can inherit dephasing errors from many sources such as energy jumps in a dispersively
coupled transmon.
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quantum error correction12. The typical example to illustrate this is a displacement

drive with Hamiltonian Ĥd = ϵd(t)â+ ϵd(t)
∗â†, which can only create displaced states

of the form |α(t)⟩ in a QHO. By contrast, the same drive applied to a two-level system

can perform universal single qubit gates.

The importance of this trade-off cannot be understated. For what we gain in

Hardware error correction and a simplified error channel we risk losing entirely in our

lack of quantum control over the states in our bosonic modes.

3.3.1 Quantum control of bosonic modes

The paradigm that reconciles these opposing requirements is to introduce ‘weak’ non-

linearity into QHO by weakly coupling a QHO to a highly non-linear system such as

a two-level system. We refer to this two level system as the ‘control ancilla’. Two

resources arise that now allow quantum control of a QHO through ‘classical’ control

drives. The first is that the QHO is no longer an exact harmonic oscillator and

inherits a weak anharmonicty that perturbs the equal spacing between energy levels,

but its error channel remains well-described by photon loss, â. (This is true when the

QHO’s loss rate is larger than its anharmonicity, and the environment is unable to tell

which energy level of the cavity omitted the photon.) The second is that the coupling

Hamiltonian between the QHO and control ancilla is also itself non-linear, and we

can achieve quantum control by manipulating the control ancilla [Krastanov et al.,

2015,Heeres et al., 2017]. Unlike ancillas that measure stabilizers, which are qubit-

like, the control ancilla exists solely as an auxillary system that broadens our control

of a QHO. In order to maximize the speed of our operations, it is more common to use

this non-linear coupling for quantum control, rather than the inherited anharmonicity.

However, the non-linear coupling will also be weaker than the non-linearity of the

12. In GKP codes, we can perform all Clifford gates with Gaussian operations, but not state
preparation, stabilization and non-Clifford operations.
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control ancilla, and so we can manipulate states in the ancilla faster than states in

the QHO. When designing operations on QHOs with a control ancilla, a question we

should always keep in the back of our minds is, ‘why not just use the control ancilla

as the physical qubit instead? ’ In Chapter 6, we show that we have good prospects

to overcome this ‘gate time’ overhead with the dual-rail encoding.

3.3.2 Propagation of ancilla errors

The non-linear coupling between a QHO and control ancilla is the bridge that allows

quantum control, enabling the state preparation, measurements and unitaries needed

for bosonic QEC and gates. However, this bridge also allows jump errors in the

control ancilla to propagate onto the QHO as Pauli errors (or worse!), threatening to

undermine all of our error correction efforts. Solutions to this problem rely on the

fact that the control ancilla is not a qubit. This means we can engineer redundancy

to protect from errors without needing to satisfy the full Knill-Laflamme conditions.

We will see later that the 0-2 encoding makes a bad bosonic QEC code but is a viable

subspace for a (three-level) control ancilla.

The way to prevent the propagation of these errors is through use of a ‘noise-

biased’ ancilla. Although non-trivial to realize, this is based on the observation that

the non-linear coupling always takes the form

Hnl = f(â, â†)Ôq̂ (3.16)

An example of this is the dispersive interaction for which

Hnl = χaqâ
†âq̂†q̂ ≡ −χaq

2
â†âẐq (3.17)

for control ancilla mode, q̂. Errors of the form Ôq̂ acting on our ancilla do not

propagate onto the bosonic mode, because they commute with Hnl i.e. ([Hnl, Ôq̂] = 0)



3.3. Bosonic Quantum Error Correction 77

and are ‘error transparent’. For the dispersive interaction example, a noise-biased

ancilla which only suffers from Ẑq errors during the control Hamiltonian but not X̂q

errors will not propagate any errors to the bosonic mode. We can achieve this either by

engineering an ancilla with true noise bias [Puri et al., 2019], or through use of a three-

level ancilla [Rosenblum et al., 2018b,Reinhold et al., 2020]. The purpose of Hardware

Fault-Tolerance (HFT) is to design operations with a control ancilla that prevents

the propagation of these errors and to ensure they remain detectable/correctable after

the operation.

In summary, current bosonic QEC realizations are in a constant state of tension.

The introduction of ancillas for control means we are not quite as hardware-efficient

anymore, and we are now susceptible to a larger set of errors. In fact, the control an-

cilla errors often occur at a higher rate than the bosonic errors we are trying to correct

for! Control ancillas are by no means trivial and require a noise-bias to be engineered

either directly or through redundant levels in the ancilla mode. The exact implemen-

tation is the subject of HFT. We will see that with this hybrid system, achieving full

bosonic error correction is not impossible, but incredibly difficult. However, error-

detection of both control ancilla and bosonic errors is much easier to realize. We now

discuss bosonic error channels and specific bosonic error correction schemes in more

detail.

3.3.3 The photon loss channel for a bosonic mode

The photon loss channel is often the dominant error channel and is described by

collapse operator â with rate κa. Evolution under the photon loss channel is readily

calculated from the Lindblad master equation but it is also intuitive to examine the

Kraus map for this error [Michael et al., 2016]. For time interval δt we find

Ên =

√

(1− e−κδt)n

n!
e−

κδt

2
â†âân (3.18)
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for n = 0, 1, 2, 3.... This formalism lets us order our error channel by the number of

photon jumps. n = 0 corresponds to no photon loss, but the system still experiences

no-jump backaction. This amounts to weak measurement of the photon number,

which polarizes a superposition of Fock states towards states with lower photon num-

ber. To see how this arises consider the Kraus operator Ê0 = e−
κδt

2
â†â acting on the

state |ψ⟩ = c0 |0⟩ + c1 |1⟩. We find Ê0 |ψ⟩ ∝ c0 |0⟩ + c1e
−κδt

2 |1⟩, which decreases the

amplitude of the |1⟩ state relative to the |0⟩ state, polarizing us towards vacuum.

Ê1 is the Kraus operator for single photon loss, which occurs with probability

nκδt for small δt for Fock state |n⟩ in the QHO. Double photon loss is a less likely,

second-order error13 and occurs with probability ≈ n(n − 1)(κδt)2/2 for Fock state

|n⟩ and n ≥ 2. Discrete variable (DV) bosonic QEC codes are designed to correct

for a discrete number of photon loss events. Continuous variable (CV) encodings are

bosonic codes that can correct for continuous errors such as small displacements of

an oscillator [Gottesman et al., 2001]. We do not discuss CV encodings much here

but, as with all bosonic error correction, a non-linear control resource is required

and CV encodings suffer from the same control ancilla limitations as DV encodings

[Campagne-Ibarcq et al., 2020,Sivak et al., 2023].

The overhead of the bosonic QEC is similar to the overhead of a stabilizer en-

coding. Rather than having more physical qubits which results in the probability of

a single error that scales linearly with the number of physical qubits, encoding in

higher levels of an oscillator for the required redundancy to photon loss means the

probability of a photon loss is greater, because the nth level of the QHO has decay

rate nκ. We call this the n̄ overhead since the average decay rate is linear in the

average number of photons n̄ in the encoding.

For the simplest 0-1 encoding, n̄ = 0.5. The smallest code that can exactly correct

for single photon loss in a bosonic mode is the Kitten code, with n̄ = 2, a factor of 4

13. second order in (κδt)2
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overhead. The n̄ overhead (and increasing control complexity) makes it impractical

to increase the code distance (in this context the number of photon jumps we can

correct for) within a single oscillator indefinitely, which requires increasing n̄. Instead,

the approach is to perform some degree of bosonic QEC that reduces our Pauli error

rate due to photon loss to O((κδt)2) and then concatenate with a stabilizer code such

as the surface code to achieve fault tolerant computation.

The procedure for correcting jump errors in DV bosonic codes is to first perform a

QND measurement that tells us whether the jump error occurred. This is the bosonic

version of a stabilizer measurement. Conditioned on this outcome, we perform the

appropriate unitary that either corrects for the jump error or the no-jump error. This

whole procedure can be made ‘autonomous’ [Gertler et al., 2021, Li et al., 2023] by

applying conditional correction unitaries followed by reset of the control ancilla, which

is ultimately a dissipative process. (Entropy must be evacuated from the system one

way or another–either by measurement or engineered dissipation!)

Just as we saw for two-level qubits, the system may have a non-zero temperature.

In the case of a bosonic mode, ntherm ̸= 0 results in photon loss described by collapse

operator â at rate κ↓ and photon gain described by collapse operator â† at rate κ↑.

Once again we find (for ntherm ≪ 1):

ntherm =
κ↑

κ↓ + κ↑
= κ↑T1 (3.19)

bosonic codes designed to correct for single photon loss are not able to correct (but

can detect) single photon gain. Since ntherm < 1% is typical in the microwave cavities

we consider, single photon gain occurs at a similar rate to double photon loss and

occurs at a similar rate to ‘second-order’ error processes.
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3.3.4 Dephasing in a bosonic mode

The other bosonic error to consider is dephasing described by collapse operator â†â =

n̂ where n̂ is the number operator. Dephasing has a strong ‘lever-arm’ effect in a

bosonic mode [Eickbusch et al., 2022]. Under this error channel the superposition

(|0⟩ + |2⟩)/
√
2 will dephase four times faster than the superposition (|0⟩ + |1⟩)/

√
2,

which can be seen by considering the jump evolution in the Lindblad master equation,

given by κn̂ρn̂, hence the n2 dependence of the dephasing rate. Fortunately, the

bosonic modes found in cQED platforms in the form of microwave cavities are rather

unique in the sense that their intrinsic dephasing error is so far immeasurably small

[Rosenblum et al., 2018b,Sivak et al., 2023]. We say that microwave cavities have a

‘natural’ noise-bias, since the dominant error channel is photon loss. Such dephasing

mechanisms would need to alter the capacitance or inductance of the oscillator, which

involves changing the relative dimensions of the metallic conductors that make up the

resonator.

The same cannot be said for bosonic motional degrees of freedom found in trapped

ion or neutral atom platforms where laser/trap stability sets the dephasing rate.

In microwave cavities, any dephasing errors are instead inherited from non-linear

elements coupled to our system (e.g. energy jumps in a dispersively coupled control

ancilla) and so should not be modelled as white-noise dephasing but rather as low

frequency noise.

We now give an overview of specific DV bosonic codes for error correction and

detection.
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3.3.5 Cat codes

2-legged cat code

Cat codes are formed from superpositions of coherent states [Cochrane et al., 1999,

Mirrahimi et al., 2014]. It is the quantum version of classical phase-keying codes. A

coherent state can be written in the Fock basis as

|α⟩ = e−
|α|2

2

∞
∑

n=0

αn

√
n!

|n⟩ (3.20)

The simplest is the 2-legged cat code with codewords

|0L⟩ =
|α⟩+ |−α⟩

√

2(1 + e−2|α|2)

|1L⟩ =
|α⟩ − |−α⟩

√

2(1− e−2|α|2)

(3.21)

parameterized by α. In the limit α → ∞, n̄ = |α|2 for both codewords. Deviations

from this scale as e−2|α|2 and at α = 2 this deviations are on the 10−4 level. From the

Knill-Laflamme conditions, we are unable to correct photon loss errors via e.g., photon

number parity measurements – |0L⟩ contains an even number of photons whereas |1L⟩

contains an odd number of photons. In principle, we can correct for cavity dephasing

errors of the form eiθn̂ for θ ∈ {−π/2, π/2}. In practice this is achieved by stabilizing

a meta-potential in the oscillator (through dissipative [Mirrahimi et al., 2014] or

Hamiltonian processes [Puri et al., 2017,Grimm et al., 2020]), with minima centered

at α and −α in the oscillator’s phase space. This stabilized bosonic qubit shows

a strong noise-bias and may itself be useful as a noise-biased control ancilla [Puri

et al., 2019]. Without stabilization, no-jump backaction causes loss of energy and

α → αe−κt, altering the definition of the codewords.
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4-legged cat code (4-Cat code)

The 4-Cat code is defined from superpositions of four coherent states:

|0L⟩ = |Cα
0 ⟩ =

|α⟩+ |iα⟩+ |−α⟩+ |−iα⟩
N0

|1L⟩ = |Cα
2 ⟩ =

|α⟩ − |iα⟩+ |−α⟩ − |−iα⟩
N2

(3.22)

with normalization factors N2 and N0. Both the |0L⟩ and |1L⟩ codewords contain

an even number of photons. The codewords are distinguishable by their 4-parity (or

superparity). By this we mean nmod4 = 0 for the photon number distribution of

|0L⟩ and nmod4 = 2 for |1L⟩. A single photon loss takes us to the error space

|0E⟩ ∝ â |Cα
0 ⟩ = |Cα

3 ⟩ =
|α⟩+ i |iα⟩ − |−α⟩ − i |−iα⟩

N3

|1E⟩ ∝ â |Cα
2 ⟩ = |Cα

1 ⟩ =
|α⟩ − i |iα⟩ − |−α⟩+ i |−iα⟩

N1

(3.23)

These codewords all have odd photon number parity. As such, a QND photon number

parity measurement can detect single photon loss events. Double photon loss â2

results in an uncorrectable X error on the original codewords. Explicitly, this means

â |0E⟩ ∝ |1L⟩ and â |1E⟩ ∝ |0L⟩.

A convenient property of the four-legged cat code is that the error space is also

a valid error correcting code, with the same error correcting properties. Similar

to our initial codewords, the error codewords are distinguishable by their 4-parity.

nmod4 = 3 for |0E⟩ and nmod4 = 1 for |1E⟩. Rather than performing a correction

unitary, after detecting photon loss we can instead update the definition of our logical

basis from {|0L⟩ , |1L⟩} to {|0E⟩ , |1E⟩}. This holds true for subsequent photon jumps.

We can correct for single photon loss jumps by tracking them with repeated QND

photon number parity measurements, provided we perform these measurements faster

than the rate of photon jumps (i.e., intervals shorter than T1/n̄). Further subtleties

regarding the choice of α in the 4-Cat code are discussed in Appendix B.
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3.3.6 The kitten code

The kitten code achieves similar benefits to the 4-legged cat code, without as large a

n̄ overhead. It is the lowest order Binomial code [Michael et al., 2016] defined with

codewords

|0L⟩ =
|0⟩+ |4⟩√

2

|1L⟩ = |2⟩
(3.24)

and is able to correct for a single photon loss error, which takes codewords to the

error states

|0E⟩ = |3⟩

|1E⟩ = |1⟩
(3.25)

Like the 4-legged cat code, single photon loss is detected through QND photon

number parity measurements but unlike the 4-legged cat code, the error states do not

form a good new basis since ∆n̄ = 2 ̸= 0. Upon detecting odd parity or even, we

should actively apply the correction unitaries14

ÛE =

( |0⟩+ |4⟩√
2

)

⟨3|+ |2⟩ ⟨1|+ h.c.

ÛL = e2κδt(|4⟩⟨0|−|0⟩⟨4|)
(3.26)

No-jump backaction is also rather annoying for the Kitten code. Although a

second-order effect, when we do not detect any photon jumps, the |1L⟩ codeword po-

larizes towards the vacuum state |0⟩. This is the rare case where no-jump backaction

can be corrected (to first-order in δt) with a unitary operation, in this case, a rotation

14. Technically, these do not have to be unitaries, as long as they are linear maps that take the
error states back to the initial codewords
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in the {|0⟩ , |4⟩} manifold of the cavity. The ÛL unitary must be implemented with

high fidelity since any errors here will result in a first-order error on the logical qubit.

By contrast, any errors during the ÛE unitary will be second order on the logical

qubit, since we require both a photon loss error and a correction unitary error to oc-

cur. The related two-mode [Chuang et al., 1997] version of this code does not suffer

from no-jump backaction when the loss rates of both modes are equal. The complex-

ity of the correction unitaries and state preparation means one must use numerically

optimized pulses to implement this code, which are themselves prone to propagating

ancilla errors to the bosonic mode.

3.3.7 The dual-rail code

The dual-rail (DR) code is defined with two modes per physical qubit, with codewords

|0DR⟩ = |01⟩ = |0⟩1 |1⟩2

|1DR⟩ = |10⟩ = |1⟩1 |0⟩2 .
(3.27)

The two modes may be bosonic or two-level systems. This code has been used exten-

sively in linear quantum optics for more than two decades [Chuang and Yamamoto,

1995,Knill et al., 2001]. In this context, and for the case we are interested in with

microwave cavities, the loss channel is now photon loss in either bosonic mode, with

collapse operators â1 and â2 and rates κ1 and κ2, and with negligible dephasing er-

rors. In the case κ1 = κ2, the error channels satisfy the Knill-Laflamme conditions

for erasure error and both error channels take both codewords with equal probability

to the ground state |00⟩, a leakage state.

We cannot error-correct photon loss in a dual-rail qubit. The goal is instead

to convert all photon loss errors to erasure errors and then concatenate physical

dual-rail qubits with a stabilizer code to correct the erasure errors. Detection of

the leakage error followed by reset back into the dual-rail codespace allows us to
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realize erasure conversion. This requires performing a binary measurement described

by projectors Π̂DR = |0DR⟩ ⟨0DR| + |1DR⟩ ⟨1DR| and Π̂Leakage = |00⟩ ⟨00|. The Half-

QND requirement necessitates that the measurement is QND when we obtain the

Π̂DR outcome. Implementing the dual-rail encoding in cQED with superconducting

cavities [Teoh et al., 2022] is the main focus of Chapter 6.

When κ1 − κ2 = ∆κ ̸= 0, this encoding is susceptible to no-jump backaction. If

κ1 > κ2, for short times, this polarizes codewords towards the |0DR⟩ state at rate

O((∆κδt)2) and can be mitigated e.g. by periodically applying X gates as we saw for

the qubit case.

The strength of the dual-rail code lies in its simplicity. Compared to other bosonic

codes, the unitary operations required for state preparation, readout, leakage detec-

tion and gates are much easier to engineer, largely in part to its simple codewords and

gates that are excitation preserving. (There is always a single photon in one mode or

the other.)

3.3.8 The 0-2 code and biased erasures

An error-detecting code with

|0L⟩ = |0⟩

|1L⟩ = |2⟩
(3.28)

Photon loss is described by collapse operator â. Single photon loss takes us to the

leakage error state |1⟩ whereas double photon loss is a second order error that takes

|1L⟩ to |0L⟩. At first glance, the 0-2 code has advantages over the dual-rail code. Only

one mode rather than two is needed per physical qubit, making this encoding more

hardware efficient. first-order photon loss in this code is an example of a ‘biased-

erasure’ error—only one of the codewords (|2⟩) can decay to the leakage state. When

we detect |1⟩, we know the state must have previously been |2⟩.
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Biased erasures are even easier to correct than normal erasures [Sahay et al., 2023].

To illustrate this, we can fully correct a biased erasure error by concatenating with

the 2-bit phase flip detection code such that

|0L⟩ = |++⟩ = 1

2
(|0⟩1 + |2⟩1)(|0⟩2 + |2⟩2)

|1L⟩ = |−−⟩ = 1

2
(|0⟩1 − |2⟩1)(|0⟩2 − |2⟩2)

(3.29)

A general qubit will be in the state

|ψL⟩ = c0 |++⟩+ c1 |−−⟩ (3.30)

After a photon loss event, we will detect one of the modes to be in |1⟩. Suppose this

is mode 1, then we will be in the state

|ψL⟩ = c0 |1⟩1 |+⟩2 − c1 |1⟩1 |−⟩2 (3.31)

If the loss is detected in mode 2 we will be in mode

|ψL⟩ = c0 |+⟩1 |1⟩2 − c1 |−⟩1 |1⟩2 (3.32)

where we see the qubit information (i.e. the coefficients) is preserved in either case.

Extending further to the 3-bit phase flip code allows the correction of single biased

erasure and a single phase flip error, which still requires fewer physical qubits than

the 5-bit perfect code.

Biased erasures typically arise when only one of the codewords can decay to the

leakage state, but this is not strictly necessary. For an erasure to be ‘biased’ we must

gain information as to which codeword decayed to the leakage state. When photon

loss decay happens in the dual-rail code, the environment knows which cavity had the

photon loss (the photon’s energy must be absorbed somewhere) but with the standard
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leakage detection measurement this information is lost.

A side-by-side comparison shows the 0-2 encoding is more hardware efficient than

the DR code. To correct for a single photon loss error we require two physical 0-

2 qubits and two bosonic modes. In comparison, the dual-rail code requires four

physical DR qubits and eight bosonic modes!

The 0-2 encoding does have some major drawbacks:

• Gates must be performed in the {|0⟩ , |2⟩} manifold and are not excitation

preserving, making implementation difficult in a bosonic mode.

• No-jump backaction is more pronounced, ∆n̄ = 2 and so ∆κ = 2κ. This is

a consequence of not exactly satisfying the Knill-Laflamme conditions for the

erasure channel.(Can be mitigated with X gates)

• Double photon loss is a possible error and results in a logical error (a Pauli error

if we concatenate with a stabilizer code.)

Control in the {|0⟩ , |2⟩} is easier in more anharmonic systems, such as three-

level transmons. However, systems with sufficiently strong anharmonicity often have

non-negligible dephasing errors that need to be corrected. These states are used in

three-level control ancilla as well, where the ability to detect decay to |1⟩ allows us

to error-detect control ancilla errors.

3.3.9 The 0-1 code

This code is also called the Fock encoding or single-rail encoding and has the lowest

possible n̄ overhead with n̄ = 0.5 but no way to detect photon loss at the hardware

level. The codewords are

|0L⟩ = |0⟩

|1L⟩ = |1⟩
(3.33)
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This is the code we compare other codes against in breakeven quantum memory

experiments, since for the amplitude damping channel, this encoding has the minimal

number of photons and hence the slowest possible decay rate. Arguably the simplest

code with one mode per physical qubit, when the mode is bosonic, single qubit gates

can be surprisingly hard to implement due to the linearity of the bosonic mode which

makes it difficult to confine manipualtion to the {|0⟩ , |1⟩} manifold. In this respect,

the DR encoding is advantageous.

3.3.10 Wigner functions

The Wigner function can be thought of as the ‘phase space portrait’ of a bosonic

state. The Wigner function is a quasi-probability function defined for a pure or

mixed bosonic state that has the property:

|ψx(x)|2 =
∫ ∞

−∞
W (x, p)dp (3.34)

|ψp(p)|2 =
∫ ∞

−∞
W (x, p)dx (3.35)

Where ψx(x) is the representation of the QHO state in the x basis and ψp(p) is the

representation of the QHO state in the p basis. Often we divide the coordinates x

and p by their respective zero-point energy fluctuations for the QHO such that x and

p become dimensionless coordinates which we refer to as the I and Q quadratures

respectively. The argument of the Wigner function can be replaced by β, a complex

scalar.

The Wigner function is also something that can be measured directly in exper-

iment and is vital for performing state tomography on a QHO. This is achieved by

measuring the expectation value of the ‘displaced parity operator’, i.e.,

W (β) =
2

π
Tr
(

D̂βρD̂
†
βP̂
)

, (3.36)
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where P̂ = eiπâ
†â is the photon number parity operator. In an experiment this

means displacing the QHO by amplitude β, measuring the photon number parity and

averaging the results for many repeated copies of the state in order to measure a

single point of the Wigner function at W (β). We then repeat the procedure scanning

over different values of β to form a 2D ‘portrait’ of the state that can quantatively

analyzed. The Wigner function contains complete information about the state of

the QHO and from this data we can reconstruct the full density matrix. In Fig. 3.7

and 3.8 we show the simulated Wigner functions for various bosonic codes where

properties like rotational symmetry become apparent.

Wigner functions are also helpful to illustrate what we mean by ‘classical’, ‘Gaus-

sian’ and ‘quantum’ control. We define ‘classical’ control to mean control that trans-

forms coherent states into other coherent states, i.e., displacements, rotations and

beamsplitter couplings. We define Gaussian control to be unitaries that transform a

state with a 2D Gaussian Wigner function into other states which also have a (dif-

ferent) 2D Gaussian Wigner function. This includes all of classical control but also

single-mode and two-mode squeezing. Gaussian control on Gaussian states by itself

is not sufficient for universal quantum computing.

Lastly, quantum control refers to an unitaries that can create negativity in the

state’s Wigner function, if we started from an only positive Wigner function. The

amount of coherence in a superposition of states appears as ‘fringes’ in the Wigner

function, which are sub-Planckian (<1
2
) in width and contain negative regions. If

decoherence leaves us in a completely mixed state, we will no longer observe any

negative regions and the fringes will have faded out. Visually inspecting Wigner

functions can thus give us a quick ‘diagnosis’ of the QHO state and are a helpful

visual aid as well as a means for more quantitative analysis.
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2-legged Cat Code

Kitten Code

Figure 3.7: Wigner functions for the cardinal states of the Kitten code, and the 2-
legged cat code with α = 2. Color bar and axes shown in the |1L⟩ Kitten state only.
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Even

Odd

4-legged Cat Code

Figure 3.8: Wigner functions for the cardinal states of the 4-legged cat code at α =√
1.5π ≈ 2.171, an example of a ‘magic’ α for even codewords (See Appendix B). A

single photon loss events takes us from the even photon number codespace (top) to
the odd photon number codespace (bottom). An additional photon loss takes us back
to the even photon number codespace but with a logical bit-flip, XL.
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3.4 Hardware Fault-Tolerance

So far our discussion of bosonic QEC has been confined to memory operations, where

the goal is to preserve the quantum information in an idle qubit for as long as possible.

For universal quantum computation, we must be able to perform a universal gate set

on the qubits. This is true for bosonically encoded qubits as well where not only

must we find a way to engineer the gates themselves, we must also ensure they are

fault-tolerant (at the hardware level). Performing gates and measurements on our

bosonic qubits should not introduce errors that cannot be corrected in subsequent

bosonic QEC operations, and the bosonic QEC operations themselves should also

not introduce uncorrectable errors.

Depending on the choice of encoding, gates and/or measurements on bosonic

qubits require engineering highly non-linear, photon number-specific interactions where

using a control ancilla is unavoidable. Unfortunately, errors that propagate from the

control ancilla to the bosonic mode(s) are not usually correctable through the stan-

dard bosonic QEC, which is designed to correct only for ‘natural’ errors in the bosonic

mode such as photon loss. bosonic QEC also tells us which measurements and uni-

taries we need to realize, but not how to realize them fault tolerantly in a given set

of hardware. This is the goal of ‘Hardware Fault-Tolerance’ (HFT).

We need to handle errors that occur in the control ancilla as well as errors that

occur in the bosonic mode. Moreover, gate unitaries are physically realized by en-

acting a control Hamiltonian for a set amount of time. Jump errors can occur at

any time during the continuous evolution and we must ensure we can still correct for

these errors after the operation, even though the jumps happened at an unknown

time during the operation (denoted by Tjump).

The scope of a HFT operation revolves around implementing a desired unitary

with a control Hamiltonian, Ĥc that acts on both the bosonic qubit and control

ancilla, denoted by modes â and q̂ respectively. This unitary may act on the bosonic
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qubit, e.g.
(
Ûgate ⊗ 1q

)
such as in the case of a gate, or on the composite bosonic

qubit-control ancilla system, e.g.
(
1a ⊗ 1q + Ûgate ⊗ X̂q

)
as for a measurement where

we want to map information from the bosonic qubit onto the control ancilla using the

circuit in Eq. 2.6 with B̂ = Ûgate. The desired unitary can be further classified as a

unitary that performs a logical gate or measurement on a bosonic qubit, or a unitary

that performs a gate or measurement for bosonic QEC purposes. Both are needed

for computation with bosonic qubits.

It is helpful to also define a finite set of hardware errors, {ϵ̂}hardware that we wish to

be fault-tolerant to. This set usually contains only the dominant first-order hardware

errors such as single-photon loss, and a single decay or dephasing jump in the control

ancilla. We also do not typically consider no-jump backaction, or other second-order

jump errors. On the timescales we consider, where gate operations are much faster

than decoherence times, these errors scale as (∼ (κTgate)
2).

All operations on bosonic qubits that require a control ancilla must satisfy HFT,

even when we wish to convert hardware errors to erasure errors. The conditions are

more relaxed since the operation must preserve the error-detectability rather than

the error-correctability of errors that happened during the unitary evolution. (Jump

errors from {ϵ̂}hardware that occur during the evolution must be error-detectable after

the gate). We now discuss the HFT criteria for realizing gates on bosonic qubits.

3.4.1 Path independence

When performing an error-corrected gate on a bosonic qubit of the form
(
Ûgate ⊗ 1q

)
,

the hardware implementation must be path independence to satisfy HFT. The concept

of path independence is that ultimately we perform the desired unitary on the bosonic

mode, regardless of the errors that happen during the application of the control

Hamiltonian required for its implementation. The occurrence of errors takes us on

a different ‘path’, but ultimately all paths converge and the same desired unitary is
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performed on the bosonic qubit regardless of which path we took. This is illustrated

diagrammatically in Fig. 3.9. An example of a control Hamiltonian for which we can

satisfy path independence is

Ĥc/ℏ = Ω
(
Ûgate |f⟩ ⟨g|+ Û †

gate |g⟩ ⟨f |
)

(3.37)

which is the general case of the Hamiltonian used to perform the fault-tolerant gate

in [Reinhold et al., 2020] where |g⟩ , |e⟩ , |f⟩ are the first three levels of the control an-

cilla. The set of hardware errors we want to be fault-tolerant to is {â, |f⟩ ⟨f | , |e⟩ ⟨f |},

corresponding physically to single photon loss, ancilla dephasing and ancilla decay.

We presume the bosonic qubit can correct for single photon loss. The path inde-

pendence diagram is shown for this specific case in Fig. 3.10 but we can also see

why the dynamics are path independent by considering the unitary generated by this

Hamiltonian.

This unitary is given by

Ûc = e−iĤct/ℏ = cos(Ωt)1− i sin(Ωt)
(
Ûgate |f⟩ ⟨g|+ Û †

gate |g⟩ ⟨f |
)
. (3.38)

In the absence of errors, after time Ωt = π/2 we will have implemented Ûgate if

the ancilla begins in state |g⟩ (and ends in |f⟩). If we stop the evolution at some

intermediate time, we can probablistically perform the gate. Measuring the ancilla

to be in |f⟩ after applying Ĥc for some non-zero time always ‘heralds’ successful

implementation of Ûgate. Similarly, measuring |g⟩ means we have performed identity

and must attempt the gate again. Transmon dephasing midway through the gate

results in the same effect – after time Ωt = π/2 there is now a probability we measure

|g⟩ at the end of the gate, which also indicates we performed 1 and must try again

to implement the gate. Transmon decay from |f⟩ to |e⟩ has the effect of turning off

the dynamics at some unknown time. However, if we measure the transmon in |e⟩ at
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Figure 3.9: Path independence for an error-corrected gate. The control Hamiltonian
takes the initial state to the final state in the absence of errors. Errors, ϵ̂i happen at
unknown time tjump during the evolution and take us on different paths. At the end of
the gate we end up in the space of correctable errors (Error closure). This space can
be subdivided into errors where we applied the gate Ûgate, and suffered jump errors
(light green background) and states where 1 was applied to the bosonic qubit and a
jump error occurred (light blue background). Examples of final states that fall into
one of these two categories are shown on the far right, which include superpositions
and products of jump errors. After performing a syndrome measurement, we know
which jump errors happened and whether Ûgate or 1 was applied. If we were in a

superposition of different errors and/or a superposition of doing Ûgate and 1, this

superposition is collapsed by the measurement. If Ûgate was applied, we correct for
the jump errors (using a separate operation that must also satisfy path independence
or is otherwise presumed to be error-free) as shown by the green arrows and end up
in the desired final state. If 1 was applied, we must correct the jump errors (blue
arrows) and attempt the gate again, repeating as necessary until we reach the final
state. Failing the second attempt is a second-order error and so we only at most
two gate attempts to ensure hardware errors are suppressed to second order. Also
shown in green is the subset of error-correctable errors which are the error-transparent
error. These jump errors commute with the control Hamiltonian and so it is as if we
performed Ûgate perfectly and then applied the jump error.
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Figure 3.10: Path independence for a specific control Hamiltonian. The decay error
|e⟩ ⟨f | is error transparent. If we detect |e⟩ after the gate attempt, we know Ûgate was
applied successfully. If |f⟩ ⟨f | occurred then after the gate we are in a superposition
of having applied 1 with the ancilla remaining in |g⟩ and having applied Ûgate with
the ancilla now in |f⟩. Measuring the ancilla collapses the superposition allowing
us to correct this error accordingly. If we measure |g⟩, try again. If |f⟩, we were
successful. The complex coefficients c0 and c1 depend on tjump, which is unknown to
us, but this only affects our gate success probability and not our ability to correct
this error. Single photon loss, â has the same effect as ancilla dephasing, with the
same superposition after the gate, with an additional â operator. Correcting this
error is the same as for dephasing, but we must also correct for single photon loss.
In this implementation, the control ancilla measurement is presumed perfect. Ancilla
measurement error results in a first-order error since we will do the wrong correction
step!

the end of the gate, this also indicates we have performed Ûgate successfully (since we

must reach |f⟩ in order to decay to |e⟩).

Path independence does not apply to error-detected gates, which is one of the

key reasons why the latter are easier to realize. Instead, independent of when the

jump error happens, all ‘error paths’ must lead us to the space of error states which

can be error-detected with measurements after the gate. This difference is shown in

Fig. 3.11. These diagrams serve as a useful way to track the effects of jump errors,

but what is the mathematical formalism which tells us whether path independence

or its error-detected equivalent can be satisfied?
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Figure 3.11: Error paths for an error-detectable gate. The conditions for a jump
error during the gate attempt to still be error-detectable after the gate are more
relaxed compared to the path independence conditions. Now it is acceptable to have
performed an unknown unitary Û(tjump), whose exact form depends on tjump and is
thus unknown. So long as we can still detect the jump error, we can reset the qubit
to convert this error into an erasure error. Examples of final states in the error space
that remain error detectable (orange) are shown at the bottom of the figure. Just as
we saw with path-independence, jump errors that happen during the evolution may
look like a superposition of jump error and no error after the gate attempt.
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3.4.2 Error transparency

Error transparency is a stricter than necessary condition that ensures path indepen-

dence. Formally, we are error-transparent to jump error ϵ̂i if [Ĥc, ϵ̂i] = 0. The desired

unitary is generated by

Ûgate ⊗ 1q = e−iĤcτ (3.39)

by applying Ĥc for gate time τ . If error transparency is satisfied then the effect of

the jump error occurring at unknown time tjump is given by

e−iĤc(τ−tjump)ϵ̂ie
−iĤcτ = ϵ̂ie

−iĤcτ = ϵ̂iUgate (3.40)

All we need is to be able to detect and correct for jump error ϵ̂i to satisfy path

independence.

3.4.3 Extension to error closure

The error closure condition we derive here is more general than error transparency

and asks ‘what conditions do errors in {ϵ̂}hardware need to satisfy so they remain error-

correctable after the gate?’ The set of errors we can correct is usually larger than just

the set of individual hardware jump operators, {ϵ̂}hardware. For example, if we can

correct for individual hardware jump operators, ϵ̂i and ϵ̂j, then we can also correct

for arbitrary superpositions of these errors such as ciϵ̂i + cj ϵ̂j or products such as ϵ̂iϵ̂j

(but not (ϵ̂i)
2). We call this larger set of correctable errors {ϵ̂}corr. A set of hardware

jump errors, {ϵ̂}hardware satisfies error closure if any error, ϵ̂ during the gate evolution

results in a correctable error after the unitary. i.e.

e−iĤc(τ−tjump)ϵ̂e−iĤctjump = ϵ̂corrÛgate (3.41)



3.4. Hardware Fault-Tolerance 99

for ϵ̂corr ∈ {ϵ̂}corr. Note that errors of the form ϵ̂iÛ
†
gate are also in {ϵ̂}corr, provided we

can distinguish them from their ϵ̂i counterpart. We call these errors ‘try again’ errors.

Detecting this error signifies that the gate ‘failed’ and we did the identity operation

instead of Ûgate. After correcting the jump error, we should attempt the gate again

until we no longer detect a ‘try again’ error.

We now derive the minimal conditions that ensure this is the case, the error

closure conditions. First we generate a new set of errors {ϵ̂}ext from every possible

commutator between Ĥc and the elements of {ϵ̂}hardware:

[Ĥc, ϵ̂hardware] = ϵ̂ext, (3.42)

as well as linear combinations of these commutators. Error closure is satisfied if:

1. ϵ̂ext ∈ {ϵ̂}corr,

2. [Ĥc, ϵ̂ext] ∈ {ϵ̂}ext.

These conditions state that the errors generated by Eq. 3.42 must form a closed set of

correctable errors and ensure that hardware errors during the gate remain correctable

errors after the gate. We now sketch the proof.

Jump evolution for a hardware error ϵ̂i occurring at time T − t during the gate

evolution can be written as

e−iĤctϵ̂ie
−iĤc(τ−t) = e−iĤctϵ̂ie

iĤcte−iĤcτ . (3.43)

The condition for hardware errors to be correctable is:

e−iĤctϵ̂ie
iĤct ∈ {ϵ̂}corr, (3.44)

∀ϵ̂i ∈ {ϵ̂}hardware, (3.45)

∀t ∈ [0, τ ]. (3.46)
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Our error closure conditions ensure this is satisfied. From the Baker–Campbell–Hausdorff

(BCH) theorem, we may write:

e−iĤctϵ̂ie
iĤct = (3.47)

ϵ̂i + i[Ĥc, ϵ̂i]t− [Ĥc, [Ĥc, ϵ̂i]]
t2

2!
− i[Ĥc, [Ĥc, [Ĥc, ϵ̂i]]]

t3

3!
+ ... (3.48)

The error closure conditions ensure the nested commutation relations only produce

errors that are in {ϵ̂}corr and hence the entire Taylor series is also in {ϵ̂}corr since it is a

superposition of correctable errors. If Ĥ(1)
c and Ĥ(2)

c both satisfy error closure then so

does Ĥ(1)
c + Ĥ(2)

c . Note that satisfying the error transparency condition automatically

satisfies the error closure conditions. The error closure conditions may be trivially

reformulated for error detected unitaries by replacing the set of errors we can correct

for, {ϵ̂}corr with the set of errors we can detect for {ϵ̂}det.



CHAPTER 4

The Circuit Quantum

Electrodynamics Toolkit

Circuit Quantum Electrodynamics (cQED) is a relatively new field derived from the

much older field of Cavity Quantum Electrodynamics (CQED) where quantized states

of an atom interact with a quantized light field. Traditionally, CQED uses atoms

interacting with photons in optical frequency cavities. cQED realizes the same light-

matter interactions where superconducting circuits play the role of ‘artificial atoms’

which interact with individual photons in microwave frequency cavities. What sets

cQED apart from CQED is the ease in realizing strong coupling1. The strength of

the light-matter coupling can far exceed the decoherence rates of the cavities and

artificial atoms, giving us access to a unique suite of Hamiltonians and controllable

couplings that form the cQED toolkit.

This suite of tools is well-suited for quantum information processing. The goal of

this chapter is to introduce and highlight the parts of the cQED toolkit we have chosen

1. Why is this the case? The effective electric dipole moment of an artificial atom is huge compared
to a real atom. See [Devoret et al., 2007]

101
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to use for our experiments (and proposed experiments) in the rest of this thesis. We

have elected to store quantum information in microwave cavities and used transmon

‘artificial atoms’ as our control ancillas. Moreover, we have zeroed in on a particular

subset of Hamiltonians and control techniques to design operations and protocols that

can be easily error-detected. The work in Chapter 5 and Chapter 6 relies on being

able to distill our cQED systems and control techniques down to simple Hamiltonians

and error processes, enabling us to design gate operations that effectively detect the

dominant errors. These are the same tools we have at our disposal in Chapter 7, with

a different set of constraints when designing error-detected operations for a quantum

communication problem.

We begin by summarizing the hardware, the Hamiltonians and dominant error

processes we wish to error-detect. This serves as a reference guide for subsequent

chapters. The rest of the chapter briefly describes the origins and properties of

these building blocks, and why we have chosen them for their particular roles in

our error-detected schemes. For a more rigorous introduction to cQED I recommend

"A Quantum Engineer’s Guide to Superconducting Qubits" [Krantz et al., 2019]. For

an overview of control with bosonic qubits in microwave cavities, see [Gao et al.,

2021].
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4.0.1 The cQED toolkit: a quick reference

Hardware:

Microwave cavities - Our QHOs in which we encode quantum information. Each

oscillator mode is denoted by â or b̂ etc.

Transmon control ancillas - the system which we manipulate to perform quantum

operations on the QHOs, via the dispersive interaction. We consider up to the

first four levels |g⟩ , |e⟩ , |f⟩ , |h⟩. The transmon, denoted by mode operator q̂,

is the main source of non-linearity for quantum control and is an anharmonic

oscillator ωge ̸= ωef

Readout resonators - A QHO dispersively coupled to the transmon and used

only for measuring the state of the transmon, performing a strong projective

measurement that collapses the transmon into |g⟩ , |e⟩ , |f⟩ ... etc.

Non-linear cavity coupling elements - Non-linear systems that exist solely to

actuate parametric couplings between cavity modes. We will only focus on the

beamsplitter coupling.

Drive ports - ports that allow us to couple microwave drives to the above elements,

for the purpose of actuating couplings, control Hamiltonians or readout.

Coaxial cable resonators - a QHO used for quantum communication between (in

this case) microwave cavities by serving as a communication bus
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Static Hamiltonians:

Bare cavity Hamiltonian

Ĥa/ℏ = ωaâ
†â (4.1)

where ωa is the angular frequency of the cavity (1-10 GHz). Note we have

omitted the ℏωa/2 zero-point energy term.

Bare transmon Hamiltonian

Ĥq/ℏ = ωq q̂
†q̂ +

αq

2
q̂†q̂†q̂ q̂ (4.2)

where ωq is the frequency of the transmon g-e transition (1-10 GHz) αq is the

anharmonicity of the transmon (100-300 MHz)

Ideal cavity-transmon dispersive interaction

Ĥχ/ℏ = χgeâ
†â |e⟩ ⟨e|+ χgf â

†â |f⟩ ⟨f | (4.3)

where χge is the dispersive shift in the g-e manifold and χgf is the dispersive

shift in the g-f manifold. (0.5-5 MHz)

Cavity-transmon dispersive interaction in the g-e manifold

Ĥdisp/ℏ = χgeâ
†â |e⟩ ⟨e|+ K

2
â†â†ââ+ χ′

geâ
†â†ââ |e⟩ ⟨e| (4.4)

Where K is the self-Kerr of the cavity, the anharmonicity ‘inherited’ from the

transmon control ancilla. χ′
ge is a higher-order non-linear coupling that can

be thought of as the change in cavity self-Kerr when the transmon is in |e⟩.

(K,χ′ ∼1-20 kHz) A similar Hamiltonian exists for the g-f manifold.
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Control Hamiltonians:

Cavity displacement drive

Ĥϵa = ϵa(t)â+ ϵ∗a(t)â
† (4.5)

Written on resonance in the ‘drive frame’, detuning this drive by ∆a from the

resonance condition results in the additional term ∆aâ
†â. ϵa(t) is the complex

classical drive amplitude which we vary in time e.g. turning it on or off. The

fact that this amplitude is complex indicates we have phase control.

Transmon (charge) drive

Ĥϵq = ϵq(t) |g⟩ ⟨e|+ ϵ∗q(t) |e⟩ ⟨g| (4.6)

Where ϵq(t) is again a complex ‘classical’ drive field that couples to the trans-

mon, causing transitions in the g-emanifold (Replace |g⟩ ⟨e| → |g⟩ ⟨f | for control

in the g-f manifold)

Parametric beamsplitter interaction

ĤBS = gBS(t)â
†b̂+ g∗BS(t)â b̂

† (4.7)

By driving a non-linear coupling element, we can actuate the (bilinear) beam-

splitter coupling between two QHOs. The classical drive amplitude gBS(t) is

analogous to ϵ(t)
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Hardware error processes

Transmon Relaxation

Collapse operator, ĉi Rate, κi κ−1
i Typical Lifetime Values

|g⟩ ⟨e| Γge
↓ 10-500 µs ≈ T q

1

|e⟩ ⟨f | Γef
↓ ≈ 2Γge

↓ = T q
1 /2

|e⟩ ⟨g| Γge
↑ = nthermΓ

ge
↓ T q

1 /ntherm

|f⟩ ⟨e| Γef
↑ ≈ 2Γge

↑ 2T q
1 /ntherm

Where T q
1 is the relaxation time of the transmon. We do not list all possi-

ble collapse operators, only the dominant error channels when operating the

transmon in the g-e or g-f manifold.

Transmon Dephasing

Collapse operator, ĉi Rate, κi κ−1
i Typical Lifetime Values

|g⟩ ⟨g| − |e⟩ ⟨e| Γge
ϕ /2

(
Γge
ϕ

)−1
=10-1000 µs = T q

ϕ

|g⟩ ⟨g| − |f⟩ ⟨f | Γgf
ϕ ≈ 4Γge

ϕ ≈ T q
ϕ/4

Note the factor of 1/2 between the dephasing rate Γge
ϕ and the rate for the

dephasing collapse operator κgeϕ = Γge
ϕ /2
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Cavity Decoherence

Collapse operator, ĉi Rate, κi κ−1
i Typical Lifetime Values

â Γa
↓ 0.5-10 ms = T a

1

â† Γa
↑ T a

1 /ntherm

â†â 2Γa
ϕ

(
Γa
ϕ

)−1
= T a

ϕ > 10 ms

Again note factor of 2 in the relation between the dephasing time, T a
ϕ =

(
Γa
ϕ

)−1

and the rate for the collapse operator â†â. This operator represents white noise

‘intrinsic’ dephasing in a microwave cavity and is thought to be extremely small.

cQED hardware summary

The diagram below in Fig. 4.1 summarizes the cQED building blocks used in this

thesis

Figure 4.1: The cQED hardware necessary for the error detected gates in Chapter
5 and a dual-rail qubit in 6. Two cavities (orange and pink) are coupled together
via a switchable parametric beamsplitter coupler (purple). The pink cavity also has
a transmon control ancilla and readout resonator for transmon readout. Microwave
drives (resonant) and pumps (off-resonant) can be applied to each of the five modes
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4.1 Microwave Cavities

Microwave cavities are our go-to QHOs. As shown by Fig. 4.2 They are essentially

just quantized LC oscillators with frequency fa = 1/
√
LC with frequencies typically

chosen to be in the range 1-10 GHz (what we define to be the microwave regime) in

order to couple sufficiently to our transmon qubits.

Figure 4.2: LC lumped element circuit model for a microwave cavity. A 3D geometry
may support many standing wave modes, but each one can effectively be modelled
as an LC oscillator with the inductance and capacitance determined only by the
geometry and any dielectric material present

The Hamiltonian for a ‘bare’ microwave cavity is given by

Ĥa = ℏωa

(
â†â+

1

2

)
(4.8)

where ωa = 2πfa is the angular frequency of the cavity mode. For a formal treatment

on how to quantize an LC oscillator, see [Vool and Devoret, 2017]. Often we represent

the mode of a bosonic cavity as a QHO with a quadratic energy potential shown in

Fig. 4.3.

Microwave cavities form the simplest part of the cQED toolkit and have the best

coherence times and often negligible dephasing. Using superconducting metals (most

commonly 99.999% 5N purity Aluminum but Tantalum and Niobium can also be
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Figure 4.3: The energy levels of a QHO are evenly spaced by ℏωa

used) ensures low dissipation and long T1 times. A dilution refrigerator at 10-20

mK is required to ensure ntherm is small (<1%). The thermal population at low

temperature is given by

ntherm = e
− ℏωa

kBTeff (4.9)

One must be careful to ensure the cavity and the hardware that houses it is well

thermalized to the baseplate of the dilution refrigerator. It is not uncommon to infer

Teff ≈ 100 mK! This also sets a limit on how low frequency we can make our cavities,

as this will increase ntherm for a given effective temperature. It is also helpful to define

the Quality factor for a cavity as

Q =
ωa

κa
= 2πfaT

a
1 (4.10)

Where fa is the frequency of the cavity (the thing with units GHz! Don’t forget

the 2π !) This dimensionless number is useful for comparing the loss rates between

different cavities independent of their frequency. A Q of say 1 million means the

cavity can undergo 1 million oscillations before its energy has dropped to 1/e of the

initial energy.
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4.1.1 3D cavities

The highest Q microwave cavities are known as 3D cavities. These are essentially

just a hollow box machined into one chunk of solid conductor such as 5N aluminum.

These cavities are still well-described by the lumped element LC oscillator model,

except now the capacitance and inductance is distributed over a 3D structure (but

can easily be calculated from finite-element simulations).

3D cavities also usually require a ‘lid’ on one side which creates a seam 2. Care

needs to be taken in where this seam is placed as it can be a source of energy loss.

These cavities are fairly bulky, with dimensions on the order of centimetres (set by the

typical wavelength of microwave light in vacuum in the 1-10GHz range). The reason

for high Q in these cavities is that the dielectric is mostly vacuum and the geometries

can be designed to reduce loss from other known mechanisms such as dielectric loss in

the few nm thick metal oxide layer that forms on the metal-air interface. (Chemical

etching is known to improve the Q but exactly why this works is still uncertain3.)

Many 3D cavity geometries have been explored over the years including rectan-

gular, ellipsoidal, panflute and coaxial stub cavities [Reagor et al., 2013]. We chose

to focus solely on the coaxial stub cavity (sometimes called a post cavity). A cavity

can have many modes, only some of which may be useful as a controllable QHO.

We use the fundamental or λ/4 mode of the coaxial stub cavity, shown in Fig. 4.4.

By choosing the dimensions such that the upper section functions as a circular wave

guide with a cutoff frequency above the frequency of the λ/4, placing the lid at the

end of this wave guide results in negligible seam loss.

Apart from the relative ease in machining, the main advantage of stub cavities is

that we can easily couple transmons and other non-linear coupling elements to the λ/4

2. This can be circumvented with the ‘panflute’ architecture see [Chakram et al., 2021]

3. Possible reasons include removing surface contaminants, reducing surface roughness, removing
defects from CNC machining...
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mode, without spoiling the coherence times of the cavity mode (T a
1 ∼ 1 ms [Reagor

et al., 2016]). This is achieved as shown below in Fig. 4.10 where the transmon or

other coupling element has an antenna that juts out into the cavity field, slightly

below the top of the post and gives a static capacitive coupling on the order of 10-50

MHz (The further it pokes in, the larger the coupling).

4.1.2 Stripline resonators

The other style of microwave cavity we are interested in is the stripline resonator4.

This consists of an inner conductor, patterned (often meandered) on a dielectric sub-

strate usually made of sapphire (or silicon). These materials have a higher dielectric

constant, typically εr = 10-12. This combined with the ability to meander the res-

onator make stripline resonators much more compact than 3D stub cavities. By

suspending the sapphire chip within a tunnel made of another superconductor (such

as Aluminum), we realize another coaxial geometry, this time with an open at both

ends. The chip must be held in place on one end by use of a clamp, where the seam

is also located.

The fundamental mode is the λ/2 mode and the tunnel functions as the ground

plane. Since the mode consists of a ‘2D’ on-chip inner conductor and 3D tunnel-like

outer conductor, this is often referred to as a quasi-2D resonator. True 2D cQED

architectures have a ground plane on one side of the chip (or similar).

These cavities can conveniently be patterned on the same chip as other elements

such as transmons or couplers but tend to have lower T1 times due to the increased

number of interfaces and higher participation of the mode in the (more lossy) sub-

strate. Stripline resonators are ubiquitous in their use as readout resonators for

transmons and other artificial atoms, where high Q is not a requirement (in fact,

lowering the Q is desirable for fast readout!). Recent material developments where

4. resonator and cavity are synonymous
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the stripline resonator is patterned with tantalum [Place et al., 2021] rather than

aluminum [Axline et al., 2016] can increase T1 to be comparable with stub cavities

with lifetimes of 1 ms.

Coaxial cable resonators

The last instance of a microwave cavity of interest to us is formed from a microwave

coaxial (coax) cable. These are commercially available and used to route microwave

signals to and from our quantum devices. A length of coax terminated by an open (or

a short) at both ends functions as a λ/2 resonator, just like a stripline resonator. The

cable can host a number of standing wave mode harmonics, spaced evenly in frequency

by ∆FSR, called the Free Spectral Range. The Free Spectral Range is determined by

the length of the cable, L and speed of light in the cable, c as ∆FSR = c
2L

.

For sections of coaxial cable between 0.01-10m, there exists standing wave modes

we can couple to in the desirable 1-10 GHz window, and ∆FSR is sufficiently large

such that we can couple to individual standing wave modes, rather than a continuum.

When the cable is made out of superconductor, such as Niobium Titanium, its

Q factor can be large: ∼10,000-100,000. Q factors of order ∼ 1M have recently

been reported in all-Aluminum cables [Niu et al., 2023]. Although these resonators

have lower Quality factors than 3D cavities, they are convenient for linking 3D cav-

ities together across separate modules, and we may easily couple to them at E-field

antinodes, e.g., by placing transmon pad antennae near the ends of the cable.

It is important that the outer conductor of these cables shares a common ground

with the 3D cavities and transmons. Contact resistance between the outer coductor

and common ground is thought to limit Q factors rather than the Teflon dielectric

that fills the space between the inner and outer conductor.

The three types of microwave cavity we have introduced are summarized in Fig.

4.4 below.
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Figure 4.4: The three types of microwave cavities of interest in this thesis. (Top row)
2D projections showing ground planes (Bottom row) 3D geometry showing the E-
field profile for the cavity mode(s). (Left) 3D stub cavity showing the E-field profile
for the λ/4 mode. (Middle) on-chip stripline resonator suspended in a cylindrical
metal tunnel (typically Aluminum), showing the λ/2 fundamental mode. (Right)
Coaxial cable resonator showing the λ/2 and λ fundamental (blue) and first harmonic
(orange). The exposed inner conductor allows capacitive coupling to other modes of
interest. Both ends of the cable are terminated as an ‘open’ by slotting them into
metal tunnels as indicated in the top projection.

4.1.3 The natural noise-bias of microwave cavities

A property of microwave cavities we will exploit heavily in Chapters 5 and 6 is their

frequency stability. By this, we mean it is hard to change the frequency of cav-

ity modes once the package has been assembled. This results in negligible intrinsic

dephasing and a large natural noise-bias (dominant error channel is photon loss).

In fact, the intrinsic dephasing time of 3D microwave cavities is one of the highest

coherence times measured in the cQED platform.

Why are microwave cavities so robust to dephasing noise? In short, it is very hard

for the environment to change the length of the inner conductor, which is largely

what sets ωa. For example, a cryogen-free dilution refrigerator is not terribly good

at damping vibrations [Olivieri et al., 2017] (in part due to the pulse tubes) and the

entire cavity may suffer from mechanical vibrations at frequencies up to a few kHz.

However, the whole cavity is vibrating and so this does not alter ωa, especially if the
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inner conductor and outer conductor are machined from the same block of metal as

with a stub cavity.

One source of dephasing we may encounter is from the so-called ‘diving board

mode’ which is more prominent in stripline resonators. If the chip is not clamped

securely (or not clamped at both ends), or if the chip is excessively long then me-

chanical vibrations may cause the chip to wobble like a diving board. Changes in the

distance between the inner conductor and tunnel walls of the outer conductor only

weakly affect the cavity frequency.

A curiosity observed in microwave cavities is the increase in Q with the number

of photons in the resonator. This is attributed to TLS defects (the same which are

responsible for 1/f noise) which become saturated at high photon numbers but act as

an additional source of loss at low photon numbers. Since we typically operate our

cavities where n̄ < 10, we must characterize our cavities at low photon numbers.

4.2 Transmons

The source of non-linearity in the cQED toolkit is the Josephson junction (J.J.), and

one of the simplest ‘artificial atoms’ that can be made from a Josephson junction is

the transmon. The transmon will be the system we use as our control ancilla. The

other use in this thesis for Josephson junctions is in non-linear couplers5, elements

designed to actuate parametric coupling between other modes in our systems.

Why do we use Josephson junctions as our source of non-linearity? And what

does it mean for a mode to be non-linear?

A non-linear mode has an anharmonic, i.e., not evenly spaced energy spectrum

which allows us to manipulate its quantum states via classical drives. Josephson

junctions are tunnel junctions consisting of two superconductor separated by a thin

5. which may also themselves be transmons
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barrier of insulating metal oxide. The Josephson junction is unique in the sense

that it functions as a non-linear, lossless circuit element. This is best exemplified

by the Josephson relations [Josephson, 1962] which show the junction’s unique I-V

characteristics.

I = Ic sin(ϕ)

V =
ℏ

2e

dϕ

dt

(4.11)

Where Ic is the critical current of the junction set by both the width of the tunnel

barrier (typically few nm) and the choice of superconducting material. ϕ is the

superconducting phase difference across the junction.

4.2.1 The transmon regime

The transmon is derived from the ‘Cooper-pair box’, and is formed by shunting a

single Josephson junction with a large capacitance [Koch et al., 2007] as shown by

the circuit in Fig. 4.5. Its Hamiltonian is given by:

Figure 4.5: Circuit diagram for a transmon. The Josephson junction can be modelled
as a non-linear inductance with L = LJ/ cos(ϕ). Where LJ is the Josephson induc-
tance LJ = 2πΦ0/Ic. The top half of the circuit is colored dark green to show the
‘superconducting island’.
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ĤTransmon = 4Ecn̂
2
c − EJ cos(ϕ̂) (4.12)

Where Ec is the charging energy, given by Ec = e2/2CΣ, where CΣ is the total ca-

pacitance of the circuit. EJ is the Josephson energy, related to the critical current

as EJ = IcΦ0/2π where Φ0 = h/2e is the magnetic flux quantum. n̂c is the num-

ber of Cooper pairs on the superconducting island (the top half of Fig. 4.5). This

Hamiltonian is analogous to a quantum pendulum.

In a superconductor, ideally the only mobile charge carriers are Cooper pairs.

The first term in this Hamiltonian is the capacitive contribution to the energy i.e.

the charging energy to add Cooper pairs to the island which takes this same form

for an LC oscillator as well. The second term is the energy cost for a Cooper pair to

tunnel through the barrier of the Josephson junction.

A transmon must satisfy the ‘transmon regime’, for which EJ/Ec ≳ 50. By engi-

neering a large shunting capacitance, we can reduce Ec to reach the transmon regime.

We can engineer Ec easily from the geometry of the antenna pads either side of the

junction. The transmons we consider are quasi-2D. They are patterned on sapphire

chips suspended in Aluminum tunnels. The total effective lumped element capaci-

tance is determined from all the capacitances in the distributed 3D geometry. Ec is

largely set by the distance between the transmon antenna pads and their dimensions,

but also their capacitance to the outer tunnel which functions as the ground plane

(and the junction capacitance). EJ (10-50 GHz) is set only by the barrier width

controlled in fabrication.

We opt to use transmons as our control ancillas because they are naturally insen-

sitive to both charge and flux noise. The other reason is that it is easy to engineer

a dispersive coupling and QND readout. Without any flux loops in the circuit, the

(fixed frequency) transmon is insensitive to flux noise. The main benefit of the trans-

mon regime is that, as we increase the EJ/Ec ratio, the charge dispersion (which
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dictates our sensitivity to charge noise) decreases exponentially whilst the anhar-

monicity (which dictates the speed of control) only decreases as a weak power law.

Compared to other artificial atoms, such as Fluxonium, the transmon is remarkably

linear! However the remaining non-linearity, αq that sets the ‘quantum speed limit’

for our quantum control6 is still sufficiently fast to perform transmon gate unitaries

on the order ∼10 ns.

We carefully change basis (see [Girvin, 2014]) to the ladder operators q̂ and q̂† to

arrive at the Transmon Hamiltonian

Ĥq/ℏ = ωq q̂
†q̂ − EJ

ℏ
cosnl

(
φq(q̂ + q̂†)

)
(4.13)

Where ωq = ωge is the frequency of the g-e transition, given by ℏωq =
√
8EcEJ − Ec

and φq = (2Ec/EJ)
1/4, the zero-point fluctuations of the phase across the junction

and cosnl is the 4th order and higher terms of the cosine (we do this so the cosine

terms don’t keep renormalizing our mode frequencies) i.e.

cosnl(x) =
x4

4!
− x6

6!
+
x8

8!
− ... (4.14)

This Hamiltonian keeps the ‘full cosine’ of the transmon. We can instead truncate

the Hamiltonian, keeping only the 4th order non-linearity to arrive at the Hamiltonian

Ĥq/ℏ = ωq q̂
†q̂ +

αq

2
q̂†q̂†q̂ q̂ (4.15)

which is a quantum Duffing oscillator. The anharmonicity, αq = −Ec is set only

by the charging energy. The anharmonicity gives the difference in frequency spacing

between the levels. i.e. ωef = ωge + αq, ωfh = ωef + αq. As a consequence of the

cosine potential, the anharmonicty is always negative and results in the higher trans-

6. if we use pulses much faster than 1/αq, our transmon behaves like a QHO and the individual
levels are no longer addressable
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Figure 4.6: The ‘cosine potential’ for a transmon showing the lowest four energy
states and frequency spacing. The anharmonicity, αq = −Ec is always negative for a
transmon.

mon states bunching closer together in energy. The different transmon transitions

are susceptible to noise at different parts of the noise spectrum, which can lead to

unexpected decoherence rates. For example, in a QHO we expect the decay rate from

|2⟩ to |1⟩ to be exactly double the decay rate from |1⟩ to |0⟩. However, we often

find experimentally that Γef
↓ ̸= 2Γge

↓ , due to differing noise spectral densities at ωge

and ωef . The same goes for dephasing in the g-e and g-f manifolds and the exact

dephasing rate ratios are highly device dependent. (Although assuming the rates we

would expect for a QHO is still a good rule of thumb [Peterer et al., 2015]).

The energy spectrum or first four energy levels, |g⟩ , |e⟩ , |f⟩ , |h⟩ of the transmon

is shown in Fig. 4.6

4.2.2 Transmon decoherence

The T1 and T2 coherence times of a transmon are bounded by the coherence times

of stripline resonators, and so it is safe to say that microwave cavities will always

have coherence times better than what can be achieved in transmons. (For the best

transmon design, we could skip the Jospehson junction fabrication step to realize a

stripline resonator which is just as good.)

As well as being sensitive to the usual sources of loss in a stripline resonator, such
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as dielectric loss in the substrate, the presence of the junction tunnel barrier means

transmons are susceptible to more noise sources, such as charge noise, quasiparticle

tunnelling and photon-induced dephasing. Whilst T q
ϕ > T q

1 is typical in a transmon,

they do not exhibit the strong natural noise bias found in stripline resonators.

Improvements in materials, reducing sources of noise and suppressing sensitivity

to noise sources have all contributed to the steady rise in transmon coherence times

over the past 15 years. One of the most recent developments, the use of tantalum

antenna pads [Place et al., 2021] (which allow more aggressive cleaning) have resulted

in state-of-the-art T1 times around 300-500 µs and dephasing times up to 1 ms.

4.2.3 Controlling transmons

The transmon is controlled by capacitively coupling a drive pin (attached to a mi-

crowave transmission line) to the transmon antenna. This is known as ‘charge driving’

and results in the Hamiltonian

Ĥ/ℏ = ωq q̂
†q̂ +

αq

2
q̂†q̂†q̂ q̂ + ϵq(t)q̂ + ϵ∗q(t)q̂

† (4.16)

Where we have assumed the stiff pump approximation (the drive field is large enough

so it can be considered a ‘classical’ rather than as a quantum variable. Removing a

photon from the drive has a negligible effect on the drive amplitude.) By chosing this

drive to be on resonance with the ωge transition i.e. ϵq(t) → ϵq(t)e
−iωqt where we can

rewrite Eq. 4.16 in the rotating frame of the transmon as

Ĥ/ℏ =
αq

2
q̂†q̂†q̂ q̂ + ϵq(t)q̂ + ϵ∗q(t)q̂

†. (4.17)
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If the bandwidth of the ϵq(t) is smaller than the anharmonicty αq then in the frame

of the drive, the Hamiltonian becomes

Ĥϵq = ϵq(t) |g⟩ ⟨e|+ ϵ∗q(t) |e⟩ ⟨g| (4.18)

where we only address the g-e manifold. By changing the phase of the drive, we can

rotate the transmon in its g-e Bloch sphere about any equatorial axis. By tuning

our drive frequency to ωef , on resonance with the e-f level, we can perform the

same control in the e-f manifold. However, things are a little different if we tune on

resonance with ωgf = ωge+ωef . There is no matrix element between |g⟩ and |f⟩, this

is a forbidden transition. However, if the transmon absorbs two drive photons then

it is possible to drive this transition, via a virtual transmon level detuned from the

|e⟩ level by αq/2.

The need for a virtual intermediate level means control in the g-f manifold, nec-

essary for chapters 6 and 5 is inevitably slower than control in the g-e manifold. It

takes 50-100 ns to perform a π-pulse in the g-f manifold using this method whereas

π pulses in the g-e manifold can be as fast as 4 ns.

In practice, it is difficult to implement a drive that only addresses a particular

manifold of the transmon. As we shorten the pulses for g-e control, the presence of

the |f⟩ level first causes an additional phase shift to our g-e rotations and then causes

a leakage error at shorter pulses. Leakage results in unwanted population transfer

to the |f⟩ state due to the large bandwidth of the pulse. It is mitigated by DRAG

pulses [Motzoi et al., 2009] or by using numerical optimized pulses for the Hamiltonian

in Eq. 4.17 which allow us to get close to the 1/αq speed limit. DRAG and similar

pulses may also be employed for control in the g-f manifold, where the goal is to

minimize leakage to the |e⟩ level (and higher levels).

Control in the g-f manifold may also be achieved with two drive frequencies ω1



4.3. The Dispersive Coupling 121

Figure 4.7: Two schemes for directly driving |g⟩ ↔ |f⟩ transitions in a transmon.
The virtual intermediate level is shown as a dashed line. (Left) driving with a single
pump at frequency ω = ωge + αq/2. Two pump photons must be absorbed to excite
the transmon from |g⟩ to |f⟩. The virtual level is detuned from the |e⟩ level by αq/2.
(Right) Two-photon driving with two drives at frequencies ω1 and ω2. Detuning from
the virtual level can be varied and is given by ωge − ω1

and ω2 which satisfy ω1 + ω2 = ωge + ωef . This is similar to the drive scheme we

introduced earlier, except the virtual level is detuned from the |e⟩ level by ωge − ω1,

a detuning that can be controlled by our choice of drive frequencies. The bandwidth

of our drive must be smaller than this detuning to avoid directly populating the |e⟩

level. An advantage of this approach is we can set the amplitude of one drive to be

constant and the amplitude of the other to change the angle of rotation. Unlike the

first approach, this approach does not have a strong quadratic dependence on drive

power. The degenerate case when ω1 = ω2 recovers the first approach. Both possible

drive schemes are shown in Fig. 4.7 For the purpose of chapters 6 and 5 we assume

we can engineer the Hamiltonian

Ĥgf = ϵgf (t) |g⟩ ⟨f |+ ϵ∗gf (t) |f⟩ ⟨g| (4.19)

where leakage to |e⟩ is a detectable error but still rare (<1% per π-pulse)

4.3 The Dispersive Coupling

The dispersive coupling is the primary non-linear resource we use for controlling

bosonic qubits via an ancilla transmon, and also used in transmon readout. It will
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be utilized extensively throughout the rest of this thesis.

To derive the dispersive Hamiltonian we begin with the Jaynes-Cummings Hamil-

tonian:

ĤJC/ℏ = ωaâ
†â+ ωq q̂

†q̂ +
αq

2
q̂†q̂†q̂ q̂ + gc

(
â†q̂ + âq̂†

)
(4.20)

where we have truncated the transmon’s cosine term at 4th order in q̂ and gc is the

static capacitive (vacuum Rabi) coupling between a microwave cavity mode, â and

transmon mode q̂. Typically ωa/2π is 1-10 GHz, ωq/2π is 3-6 GHz, αq/2π is 100-300

MHz and gc is 10-50 MHz. This is the central Hamiltonian of both CQED and cQED.

In cQED, gc far exceeds the decoherence rates of the cavity and transmon (strong-

coupling) and we reach the dispersive interaction in the strong-dispersive limit.

To reach this limit, we chose our mode frequencies such that ∆ = |ωa − ωq| ≫ gc.

Taking the Schrieffer-Wolff (S-W) transformation and the rotating wave approxima-

tion (RWA) and keeping up to 4th order terms we arrive at the dispersive Hamiltonian:

Ĥdisp/ℏ = ωaâ
†â+ ωq q̂

†q̂ +
αq

2
q̂†q̂†q̂ q̂ + χâ†â q̂†q̂ +

K

2
â†â†â â (4.21)

Where χ = 2g2
c
αq

∆(∆+αq)
is the strength of the dispersive interaction. When ∆ ≫ αq we can

write χ ≈ 2
(
gc
∆

)2
αq and K ≈

(
gc
∆

)4
αq is the self-Kerr inherited by the cavity. One

subtlety with this transformation is that we have actually changed our mode basis

from the ‘bare modes’ to the ‘dressed modes’ (approximately, â→ â+
(
gc
∆

)
q̂, q̂ → q̂−

(
gc
∆

)
â) This weak hybridization slightly perturbs the mode frequencies and transmon

anharmonicity and results in the dressed cavity mode becoming slightly anharmonic

and inheriting a self-Kerr term.

The parameter
(
gc
∆

)
quantifies the entire dispersive interaction. It sets the cavity-

transmon mode hybridization, and relative strengths of the wanted and unwanted

terms. The strength of the dispersive interaction scales as χ ∼
(
gc
∆

)2
αq. Higher-order

corrections to this Hamiltonian are usually undesired such as cavity self-Kerr, cavity-
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cavity cross-Kerr, and χ′ terms7 and all scale ∼
(
gc
∆

)4
αq. We see that as

(
gc
∆

)
→ 0,

these unwanted terms vanish faster than the desired dispersive interaction. However,

we want χ, which sets the speed of our quantum control of the cavity to still be faster

than the decoherence rates of our system! For this reason, we typically work with
(
gc
∆

)
∼ 0.05-0.1, with the hierarchy of non-linearities αq/2π ≈ 200 MHz, χ/2π ≈ 0.5-2

MHz, K/2π ≈ 5-20 kHz.

It is convenient to write the dispersive Hamiltonian for the first three transmon

levels, since these are usually the only levels we plan to use. This Hamiltonian is

Ĥdisp/ℏ = χgeâ
†â |e⟩ ⟨e|+ χ′

geâ
†â†ââ |e⟩ ⟨e|+ K

2
â†â†ââ

+ χgf â
†â |f⟩ ⟨f |+ χ′

gf â
†â†ââ |f⟩ ⟨f |

(4.22)

Often we find in experiments χgf ≈ 2χge but rarely exactly due to higher order cor-

rections. By aiming for a ωq −ωa ≈ αq we can get naturally close to the ‘χ-matching’

regime where χgf = χge without needing additional Hamiltonian engineering. We

touch on this later in Chapter 5. All proposed and existing error-corrected opera-

tions with a transmon ancilla have required χ-matching.

Note how the dispersive interaction is necessarily always smaller than αq. This

has important consequences when we chose to encode our qubit in a cavity instead of

a transmon. By opting to use the dispersive interaction rather than the transmon’s

anharmonicity as our main resource for cavity control we naturally incur a ‘time

overhead’ of
(

∆
gc

)2

∼ 100 in the gate operation speed. This unavoidable slowdown

means our cavity error rates had better be good! And if we do nothing to protect

ourselves from transmon ancilla errors propagating onto the bosonic qubit, our gates

will have error rates ×100 worse than (single qubit) transmon gates! The spirit behind

the work in Chapter 6 is to find the simplest-to-engineer system for which encoding

7. χ′ is a 6th order term that comes from keeping higher orders in the cosine expansion before the

S-W transformation, it results in the extra term χ
′
q̂
†
q̂ â

†
â
†
â â
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a qubit in a cavity (or rather pair of cavities) is clearly advantageous compared to

encoding the qubit in a transmon.

4.3.1 χ-matching

To date, decay in the control transmon ancilla has been error-corrected only by op-

erating in the g-f manifold and engineering χ-matching. We briefly mention how

χ-matching is engineered but refer the reader to [Rosenblum et al., 2018b] for a com-

prehensive guide. If we first rewrite the dispersive Hamiltonian in a different frame

as

Ĥdisp/ℏ = χgâ
†â |g⟩ ⟨g|+ χeâ

†â |e⟩ ⟨e|+ χf â
†â |f⟩ ⟨f | (4.23)

Where χge = χe − χg and χgf = χf − χg. The goal of χ-matching is to achieve

χe = χf , which can be done by applying a strong off-resonant pump to the transmon

close to the |e, n⟩ ↔ |h, n− 1⟩ sideband transition, which excites the transmon from

|e⟩ to |h⟩ whilst removing a photon from the cavity and vice versa. This shifts the

value of χe such that

χe → χe +
g2p
4∆p

(4.24)

Where gp is the Rabi rate of the sideband transition if the pump were on resonance

and ∆p is the detuning of the pump from resonance (and we can change its sign).

This technique comes with the following drawbacks

1. Applying a strong, off resonant pump to the transmon can ‘heat’ the transmon

out of its ground state, an uncorrectable error

2. If gp is not strong enough χ-matching can only be achieved for a fairly small

n < 5 number of photons in the cavity

3. As with any pump applied to a transmon, we run the risk of unwanted frequency

collisions/multiphoton processes [Xiao et al., 2023] which tends to get worse as
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gp increases.

χ-matching is only required for error-correction of transmon decay. It is not

required for error-detection, which allows us to circumvent these limitations.

4.4 Transmon Readout

The dispersive interaction is vital for QND readout of the state of a transmon qubit.

The electrical circuit that models the transmon-readout resonator system that is

ubiquitously used for readout is shown in Fig 4.8.

Figure 4.8: Electrical circuit for a transmon capacitively coupled to a readout res-
onator, also showing coupled transmission lines for delivering pulses to the transmon
mode (green) and for displacing the readout resonator (grey). The value of the cou-
pling capacitor between the transmon and readout resonator is characterized by gr,
which gives the rate of vacuum-Rabi oscillations if ωq = ωr, typically gr = 10-50 MHz
and can be found/designed from finite element simulations. When |ωr − ωq| ≫ gr,
we are in the dispersive regime. The length of the drive pins (see Fig. 4.9) sets the
value of the other coupling capacitances. The transmission lines that carry pulses
present a lossy 50 Ω environment. For the transmon drive, we must ensure a large
capacitance, so the presence of the drive port does not degrade transmon T1. For
the readout drive, we want a smaller capacitance (we want to be overcoupled to the
readout resonator) which ensures fast readout.

In this context a QND readout means when we measure the transmon outcome

to be i, for i = g, e, f, ... it was as if the projector |i⟩ ⟨i| was applied to the transmon
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state and no other information was gained. The transmon state should be perturbed

as little as possible by our measurement. e.g. if the transmon was in |e⟩ before the

measurement, it should remain in |e⟩ afterwards. We can quantify the QNDness as

QNDness = (P (|g⟩after | |g⟩before) + P (|e⟩after | |e⟩before)) /2 (4.25)

We also want the measurement to be high fidelity, with readout fidelity defined as

Freadout = (P (declare g| |g⟩before) + P (declare e| |e⟩before)) /2 (4.26)

These metrics can be trivially extended to include readout of the |f⟩ level.

We pattern the transmon and a stripline resonator, which functions as the readout

resonator on the same chip such that there is a dispersive interaction between the

transmon and readout resonator mode. How can we use the dispersive interaction,

χ = â†â q̂†q̂, to perform QND readout? The dispersive interaction is reciprocal. We

can either view it as a shift in the transmon frequency by χ per photon, or a shift in

the resonator frequency by χ per excitation in the transmon. Taking the first point of

view makes it clear that (a distribution) of photons in the readout resonator dephases

the transmon. The second point of view makes dispersive readout more intuitive. If

the transmon is in |g⟩, the readout resonator is at frequency ωr. If the transmon is

in |e⟩, the readout resonator shifts to ωr + χge. (And if the transmon is in |f⟩, the

readout resonator shifts to ωr + χgf and so on...) Thus QND readout is achievable

by probing the frequency of the readout resonator.

To do this (in reflection), we displace the readout resonator mode with an external

drive field at a frequency near ωr. The readout resonator is over-coupled to its drive

pin such that photons leak out of the resonator at rate κr and back into the drive line

where the signal can be boosted through several stages of amplification (starting with

a quantum-limited amplifier for optimal Signal-to-Noise ratio) until we can record
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the phase shift from the time-integrated output signal. By using a quantum-limited

amplifier which only adds half a photon of noise at the first stage we are able to

reliably achieve single-shot readout routinely in experiments. This means our overall

SNR is good enough to determine the state of the transmon without needing to

average many experimental shots.

The important thing to know is that this measurement is not instantaneous. It

takes time 1/κr for the readout resonator to ring-up to a steady (coherent) state with

average photon number n̄ = 10-50. Each photon weakly measures the state of the

transmon due to the dispersive shift, and gradually this forms a strong projective

measurement.

The measurement rate is give by

Γr =
4χ2κr

4χ2 + κ2r
n̄, (4.27)

where the measurement rate is maximized for κr = 2χ. We typically choose χ ∼1

MHz, which is small enough to prevent the resonator from Purcell-limiting the trans-

mon. (Purcell filters on the readout resonator also help with this.) We also aim for

κr ≈ χ. At first glance, it seems as though we can arbitrarily increase the mea-

surement rate by displacing the readout to larger n̄. This is true up to a point. At

excessively large n̄ (> 50?) we see a drop in T q
1 which degrades Freadout and QNDness

despite reading out quickly. This effect is known as T1 vs. n̄, thought to be caused

by unavoidable multiphoton transitions between the readout resonator and the trans-

mon [Xiao et al., 2023,Shillito et al., 2022]. This sets a limit on typical readout times

at 0.5-2 µs.

This time is important because it largely quantifies the ‘time cost’ of performing

a QND measurement. These measurements can be responsible for most of the ‘idling

time’ when running a quantum circuit with frequent mid-circuit measurements. Dur-
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ing the measurement, other parts of the system (Microwave cavities, transmons etc.)

will be accumulating errors.

Certain errors, such as decay of the transmon during readout reduce both the

QNDness and Freadout. Other errors, e.g. poor SNR only reduce Freadout. Whilst

transmon decay during the readout usually limits QNDness and Freadout to 98-99.5%,

the SNR is often much better than this, with overall errors below 10−4. One trick to

boost readout fidelity when trying to distinguish between |e⟩ and |f⟩ is to play an e-f

π-pulse to shelve the population in |e⟩ to |f⟩. Provided we have good SNR between

the g and not g outcomes (e or f), we will still declare the correct measurement

outcome when a single decay error occurs during readout, requiring two decays to

make it likely we declare the wrong outcome [Elder et al., 2020].

We must be careful to minimize the number of residual thermal photons in the

readout resonator, as these will cause dephasing at rate

Γr
ϕ =

4χ2κr
4χ2 + κ2r

nr
therm (4.28)

This is the same physics that occurs during dispersive readout, except now unwanted

photons in the readout are weakly ‘measuring’ the transmon all the time!

Below in Fig. 4.9 we the quasi-2D cQED implementation of a controllable trans-

mon with transmon readout.
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Figure 4.9: Quasi-2D cQED implementation of a transmon and readout resonator on
the same chip. Two coupling ports are shown, one for the transmon drives (green)
used for transmon control and another for the readout resonator pulses (grey) for
readout of the transmon state. In practice, these may be the same physical port. A
Purcell filter is typically used as well but is not shown. (Top) simplified 2D projection.
(Bottom) 3D geometry with meandered readout resonator.

4.5 Cavity control

4.5.1 Displacement drives

We may displace a cavity via microwave drives near the cavity’s resonant frequency.

Just as with transmon control for quasi-2D transmons, we place a coupling pin at

the end of the transmission line to capacitively couple to the E field of the cavity

mode. The general strategy with drive pins is to couple weakly to the field and use

strong drive powers. This ensures our drives are in the stiff-pump approximation and

prevents our drive-pin from limiting the lifetime of the mode we are trying to couple

to via the Purcell effect (Purcell-limiting). (Essentially, we get a high on-off ratio,
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and our drives can be treated as classical variables.) The Hamiltonian for cavity

displacement drive ϵa(t) on resonance is given by

Ĥϵa = ϵa(t)â+ ϵ∗a(t)â
† (4.29)

This drive is only capable of displacing the initial vacuum state of the cavity to

coherent states of the form |α(t)⟩. These states are often referred to as ‘classical’. (The

only thing ‘quantum’ about them is that they still obey the Heisenberg uncertainty

relation.)

4.5.2 Universal control via the dispersive interaction

To create more interesting ‘quantum’ states in the cavities, we usually make use of

the non-linearities afforded by the dispersive coupling to the transmon. A popular

Hamiltonian for cavity control via a transmon ancilla is

Ĥc = χgeâ
†â |e⟩ ⟨e|+ ϵa(t)â+ ϵ∗a(t)â

† + ϵq(t) |g⟩ ⟨e|+ ϵ∗q(t) |e⟩ ⟨g| (4.30)

which includes the static dispersive interaction and drives on the cavity and transmon

mode near the ωa and ωge frequencies respectively. This Hamiltonian is capable of

universal control. Any unitary may be generated on the joint Hilbert space of the

cavity and g-e manifold of the transmon, and thus we can achieve quantum control.

Finding the controls for the drives, ϵa(t) and ϵq(t) that generates these unitaries

is not trivial though and requires numerical optimization techniques. Moreover, this

Hamiltonian (for the most general controls) does not have any inbuilt fault-tolerance

to ancilla transmon or cavity errors. There is no guarantee that transmon errors will

not propagate onto the cavity or vice versa. The cQED hardware used to realize this

control Hamiltonian is illustrated in Fig. 4.10 and the corresponding electrical circuit

in Fig. 4.11
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Figure 4.10: The ‘Swiss army knife’ of microwave cavity control. A transmon (with
its own readout resonator) is dispersively coupled to a 3D stub cavity mode. The
three drive ports used for pulse delivery to their respective modes.

Figure 4.11: Electrical circuit for a transmon dispersively coupled to both a 3D
cavity mode and a readout resonator, showing control lines for quantum control and
transmon readout.
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4.5.3 Photon-number preserving unitaries

We can examine the special case of this Hamiltonian where ϵa(t) = 0. Any uni-

taries generated by this Hamiltonian will be excitation-conserving on the cavity. The

transmon only interacts with the cavity via the dispersive interaction, which does

not change the photon number. There are two broad classes of unitary we can gen-

erate when ϵa(t) = 0. The first are unitaries that leave the cavity and transmon

disentangled at the end. These unitaries must take the form.

ÛSNAP =
N∑

n=0

eiϕn |n⟩ ⟨n|a ⊗ Ûq (4.31)

These are called Selective-Number Arbitrary-Phase (SNAP) gates because we can

engineer them to impart arbitrary phases on each number state |n⟩ in the cavity. We

usually choose Ûq = 1q or Ûq = |e⟩ ⟨g|+ |g⟩ ⟨e| = Xq.

To see how to construct ϵq(t) without resorting to numerical optimization we can

make use of the phenomena of ‘photon number splitting’. Suppose we play a π-pulse

on the transmon at the ωge frequency but chose a long duration/small bandwidth pulse

such that Tpulse > 1/χ. We can use the example of a ‘4σ’ π-pulse, truncated Gaussian

pulse envelope for the ϵq(t) drive. We can write the time-dependent Hamiltonian as.

H(t)/ℏ = χgeâ
†â |e⟩ ⟨e|+ Ae−

(t−2σ)2

2σ2 (|g⟩ ⟨e|+ |e⟩ ⟨g|) (4.32)

Where σ is the time width of the pulse (with bandwidth 1/σ) and A is the normalized

drive strength calibrated such that the area under the pulse is π after applying the

pulse for time Tpulse = 4σ (and the pulse flips the transmon). We call such a pulse a

‘selective’ π-pulse since it enacts the unitary.

Û = |0⟩ ⟨0|a ⊗Xq +
N∑

n=1

|n⟩ ⟨n|a ⊗ 1q (4.33)
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If the transmon begins in |g⟩, we only excite the transmon to |e⟩ if the cavity is in |0⟩.

If we then measure the transmon, this amounts to a QND measurement of whether

the cavity is in |0⟩ or not.

4.5.4 Frequency combs for parity measurements

By detuning our pulse to frequency ωge + nχ, we only excite the transmon if the

cavity is in state |n⟩. By playing a simultaneous frequency comb of selective pulses

at frequencies ωge + nsχ for ns ∈ {ns}, we realize the unitary.

Û =
N∑

n∈{ns}
|n⟩ ⟨n|a ⊗Xq +

N∑

m/∈{ns}
|m⟩ ⟨m|a ⊗ 1q (4.34)

Which is realized by enacting the following Hamiltonian for time Tpulse = 4σ

H(t)/ℏ = χgeâ
†â |e⟩ ⟨e|+ A

N∑

n∈{ns}
e−inχte−

(t−2σ)2

2σ2 |g⟩ ⟨e|+ h.c. (4.35)

Where h.c. is the Hermitian conjugate. Now, measuring the transmon is a QND

measurement of whether the cavity is in the manifold {|ns⟩}. If we choose {ns} =

{0, 2, 4, 6, 8...}, this amounts to a QND photon number parity measurement of the

cavity.8

We must be careful in our choice of σ. Too long and the long duration of the

pulse means we are more susceptible to decoherence in the transmon and cavity. Too

short and we are no longer ‘selective’ enough and there is a larger probability the

transmon is excited when n /∈ {ns}. Setting σ = π/χ is usually sufficient to avoid

the ‘teeth’ of the frequency comb from overlapping whilst not being excessively slow.

Numerical optimized pulses with the constraint ϵa(t) = 0 can account for the teeth

8. we could also have chosen {ns} = {1, 3, 5, 7, 9...} and then the measurement outcomes are
flipped
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Figure 4.12: Example of a frequency comb on the transmon that implements a parity
mapping unitary. The qubit will be excited to |e⟩ if the number of photons in the
cavity is even and n < 14. This pulse is used in Chapter 7 to measure photon number
parity. DAC amplitude is essentially an arbitrary unit. We see the time domain
waveform of a frequency comb also appears as a comb with spacing ≈ π/χge between
the ‘teeth’.

of the frequency comb overlapping and can generate pulses shorter than 4π/χ in

duration to realize unitaries as in Eq. 4.34.

In the limit N → ∞ and for constant pulse envelopes with duration Tpulse = π/χ,

ϵq(t) converges to the usual parity sequence:

(unselective) π
2

pulse —wait π
χ
—(unselective) π

2
pulse

Although as we shall see in Chapter 7, there are some advantages to constructing

parity measurements via a frequency comb. An example of an analytically generated

frequency comb for a parity measurement is shown in Fig 4.12.

4.5.5 SNAP gates

The frequency comb can be used to generate a SNAP gate by playing selective π-

pulses for {ns} = {0, 1, 2, 3, 4...} but with varying phases such that we enact the

Hamiltonian



4.5. Cavity control 135

HSNAP(t)/ℏ = χgeâ
†â |e⟩ ⟨e|+ A

N∑

n=0,1,2...

eiϕne−inχte−
(t−2σ)2

2σ2 |g⟩ ⟨e|+ h.c. (4.36)

Which generates the SNAP unitary in Eq. 4.31. SNAP gates are useful for imple-

menting logical gates on a variety of bosonic codes. For the family of codes that are

rotationally symmetric, i.e. ZL = ei
π
m
â†â for positive integer integer m (this includes

cat codes and the kitten code with m = 2), the logical gate ZL(θ) can be written as

ZL(θ) = cos

(
θ

2

)
1+ i sin

(
θ

2

)
ei

π
m
â†â (4.37)

A bosonic code with m-fold rotational symmetry, will only have support on the

number states |n′⟩ where n′ = n×m for integer n. E.g. two-fold rotationally symmet-

ric states only have support on even photon number states i.e. {|0⟩ , |2⟩ , |4⟩ ...} Our

SNAP pulse to the ZL(θ) gate thus only needs frequencies at ωge − n′χ with phases

ϕn′ = (−1)n
′ × θ

2
(4.38)

Interleaved SNAP and cavity displacements operations can generate any unitary

on the cavity’s Hilbert space but in general such constructions are not fault-tolerant

to transmon or photon loss errors.

In the limit where σ > 1/χ, we can write this Hamiltonian as

HSNAP/ℏ =
∑

n

eiϕn |n⟩ ⟨n| ⊗ |g⟩ ⟨e|+ h.c. = ÛSNAP |g⟩ ⟨e|+ Û †
SNAP |e⟩ ⟨g| (4.39)

This Hamiltonian takes the form of Eq. 3.37 in Chapter 3 when we discussed

path independence. This means the SNAP gate is fault tolerant at the hardware

level to both transmon dephasing errors and photon loss errors during the gate. If we

measure the transmon in |e⟩ at the end of the gate, we did ÛSNAP, otherwise we did 1.
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(And we should error-correct any photon loss errors if we detect any after the gate).

Performing selective π-pulses in the g-f manifold and χ-matching are necessary to

error-correct transmon decay to first-order. (i.e. |e⟩ ⟨f |).

We may combine SNAP gates and photon-number measurements into a single

operation using a frequency comb of the form

H(t)/ℏ = χgeâ
†â |e⟩ ⟨e|+ A

N∑

n∈{ns}
eiϕne−inχte−

(t−2σ)2

2σ2 |g⟩ ⟨e|+ h.c. (4.40)

which enacts the unitary

Û =
N∑

n∈{ns}
eiϕn |n⟩ ⟨n|a ⊗Xq +

N∑

m/∈{ns}
|m⟩ ⟨m|a ⊗ 1q (4.41)

4.5.6 Optimal control theory pulses

The other paradigm we introduce for achieving control of a single cavity mode are

optimal control theory pulses. Starting from the same control Hamiltonian in Eq. 4.30,

we numerically optimize the pulses for the control drives, ϵq(t) and ϵa(t) to implement

a desired unitary on the cavity-transmon Hilbert space.

Because 4.30 is a universal control, in principle we can realize any valid unitary,

making this a very powerful tool. The pulse shape to implement a desired unitary

can be found via the GRAPE algorithm (GRadient Ascent Pulse Engineering [Heeres

et al., 2017]) and, given suitable constraints on the time, amplitude and bandwidth of

the pulse, this can find the pulse shapes to implement any valid unitary. Such pulses

are referred to as OCT pulses.

Rather than specify the full unitary, we instead satisfy the state transfer we wish

to achieve. (Making sure that a valid unitary exists to perform the state transfer!)

Broadly, there are three types of unitaries for which OCT pulses are routinely used.

These are:
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• State Preparation. e.g. preparing a single photon state in the cavity

|0⟩ ⊗ |g⟩ → |1⟩ ⊗ |g⟩ (4.42)

• Logical gates on a bosonic qubit encoded in the cavity (If we allow ϵa(t) ̸= 0,

these no-longer have to be excitation preserving). E.g. the X gate for the

Binomial code

|2⟩ ⊗ |g⟩ → |0⟩+ |4⟩√
2

⊗ |g⟩

|0⟩+ |4⟩√
2

⊗ |g⟩ → |2⟩ ⊗ |g⟩
(4.43)

• Mapping states of the cavity to the transmon for measurement (after we could

readout the transmon state) e.g. reading out |±α⟩

|α⟩ ⊗ |g⟩ → |0⟩ ⊗ |g⟩

|−α⟩ ⊗ |g⟩ → |0⟩ ⊗ |e⟩
(4.44)

The length of the pulse is predetermined at the start of the optimization. The quan-

tum speed limit of the pulse is again qualitatively set by ∼ 1/χ. If the pulse duration

is too short, GRAPE will never find a pulse that performs the state transfer to high

fidelity. For further reading on the GRAPE algorithm and OCT pulses, see [Heeres

et al., 2017,Reinhold, 2019]. In Fig. 4.13 we show two examples of OCT pulses used

in Chapter 7.

There are three main disadvantages of OCT pulses. The first is that the pulse

waveforms are highly counter-intuitive. A lot of the pulse shapes look random. OCT

pulses can perform complex unitaries on the cavities quickly (much quicker than the

SNAP + displacement constructions), but we rarely understand why they work.

The second is that OCT pulses must be custom-generated for every physical sys-
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Figure 4.13: Example OCT pulse waveforms. Pulses are centered around ωge or ωa

depending on the mode being driven. (Top) OCT SNAP pulse optimized to perform
the state transfer |α⟩⊗ |g⟩ → (|α⟩+ i |−α⟩)/

√
2⊗|g⟩ for α =

√
2. OCT SNAP pulses

fair better (shorter duration, higher fidelity) than analytical SNAP pulse waveforms
since OCT does not need to assume a comb of infinitely selective π-pulses. Only drives
on the transmon are needed since the cavity photon number distribution is unchanged.
(Bottom) OCT pulse to achieve the state transfer |0⟩⊗|g⟩ → (|α⟩+|−α⟩)/

√
N+

α ⊗|g⟩.
Although the pulse ‘does the job’ its waveform is not at all intuitive. Changing
the photon number distribution of the cavity requires simultaneous drives on the
transmon and cavity modes. These pulses are generally not HFT to any jump errors
in the transmon or cavity.
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tem. An OCT pulse will only work for the specific values of the control Hamiltonian

we use to optimize it (in particular, the value of χ, K and χ′. This is because OCT

pulses are not parameterizable in terms of these system variables, unlike SNAP pulses.

Thirdly and arguably most importantly is that OCT pulses are not inherently

hardware fault-tolerant (HFT). Neither of the three dominant hardware errors (trans-

mon dephasing, transmon decay and photon loss) are correctable or even detectable

after an OCT pulse. In general, the coherence-limited fidelity of an OCT pulse will be

∼ T q
2 /Tpulse. In Chapter 5 we explore in more detail why standard GRAPE does not

produce pulses that are HFT, and how the optimization constraints can be modified

to improve on this.

4.6 Controllable Beamsplitter Interactions

4.6.1 Realizing a parametric beamsplitter

The last ‘tool’ in the cQED toolkit we will introduce is a controllable parameteric

beamsplitter interaction between two bosonic modes â and b̂. This is described by

the Hamiltonian

ĤBS =
gBS(t)

2
â†b̂+

g∗BS(t)

2
â b̂† (4.45)

Where gBS(t) denoted the strength of the beamsplitter interaction. This interaction

represents a bilinear coupling between the two bosonic cavity modes. This Hamil-

tonian looks similar to the vacuum-Rabi coupling term in the Jaynes-Cummings.

However, the advantage of a parametric coupling is its tunability. We cannot turn

off gc in the Jaynes-Cummings Hamiltonian, it is static. However, with a parametric

beamsplitter interaction we can control its phase and amplitude in time.

The key to being able to engineer a beamsplitter interaction is that the (dressed)

cavity modes â and b̂ should participate in the same non-linear element. By driving
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the phase across one (or more) Josephson junction with off-resonant classical drive

tones (or a single tone depending on the element) we can activate parametric processes

that are otherwise off-resonant under the RWA. This is typically achieved via 4-wave

or 3-wave mixing. 4-wave mixing relies on a 4th order non-linearity (e.g., from a

transmon or SQUID coupler) and the beamsplitter process is actuated when two off-

resonant drives at frequencies ωx and ωy, which we now refer to as the pumps, satisfy

the frequency matching condition

|ωy − ωx| = |ωa − ωb| (4.46)

where the frequency difference between the pumps must match the frequency differ-

ence between the cavities. In a 3-wave mixing element, such as a SNAIL we can use

a 3rd order non-linearity instead and a single pump at frequency

ωx = |ωa − ωb| (4.47)

Recent advances in coupler design have resulted in the advent of extremely high-

fidelity parametric beamsplitter interactions, with very low errors during beamsplitter

operations (99.98% fidelity has been demonstrated! [Lu et al., 2023]). The works in

chapters 5 and 6 presume near-perfect beamsplitters as a starting point. We will not

discuss in detail the operation of these next-gen beamsplitter couplers. Instead, we

elucidate the general physics principles by showing how 4-wave mixing in a transmon

(called the transmon coupler) can generate a parametric beamsplitter interaction.

We begin with the static Hamiltonian in the dressed mode basis for two cavity

modes â and b̂ dispersively coupled to the same transmon and add two terms for the

(constant) pump tones applied off resonantly that displace the transmon mode:
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H/ℏ = ωaâ
†â+ ωbb̂

†b̂+ ωq q̂
†q̂

− EJ

ℏ
cosnl

(
φq(q̂ + q̂†) + φa(â+ â†) + φb(b̂+ b̂†)

)

+ ϵxe
−iωxtq̂ + ϵye

−iωytq̂ + h.c.

(4.48)

Where now φq ≈ (2Ec/EJ)
1/4 since we are in the dressed mode basis and now we

have additional terms φa and φb because the dressed cavity modes now participate in

the Josephson junction. These values are determined by how much each bare cavity

mode hybridizes with the bare transmon mode i.e. φa ≈ ga
∆a
φq and φb ≈ gb

∆b
φb

To see how a resonance condition arises in this Hamiltonian we must first go to

the rotating frame for each of the dressed modes, and then the displaced frame of the

drives. In this frame the Hamiltonian takes the form

H = −EJ cosnl

(
φq(q̂e

−iωqt + q̂†eiωqt + ξxe
−iωxt + ξ∗xe

iωxt + ξye
−iωyt + ξ∗ye

iωyt)

+φa(âe
−iωat + â†eiωat) + φb(b̂e

−iωbt + b̂†eiωbt)
) (4.49)

Where we have rewritten the pump terms as dimensionless pump strengths9

ξi =
ϵi

ωq − ωi

(4.51)

We can truncate the cosine at 4th order such that

H(4) = −EJ

24

(
φq(q̂e

−iωqt + q̂†eiωqt + ξxe
−iωxt + ξ∗xe

iωxt + ξye
−iωyt + ξ∗ye

iωyt)

+φa(âe
−iωat + â†eiωat) + φb(b̂e

−iωbt + b̂†eiωbt)
)4

(4.52)

9. This formula breaks down when ωq ≈ ωi and needs to be modified to be

ξi =
ϵi

iκq/2 + ωq − ωi

(4.50)

where κq = 1/T q
1
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Writing out this expansion produces many terms, but most are fast rotating terms

i.e. they are rotating at fast frequencies and so are effectively off-resonant, and do

not contribute significantly to the dynamics of interest.

The term of interest for the beamsplitter interaction is given by

ĤBS = −EJφ
2
qφaφbξxξ

∗
y âb̂

†e−i(ωa−ωb−ωx+ωy)t + h.c. (4.53)

This term is usually off resonance, unless the frequency matching condition |ωa−ωb| =

|ωy − ωx| is satisfied. In this case, the Hamiltonian takes the form of the resonant

beamsplitter interaction.

ĤBS = −EJφ
2
qφaφb

(
ξxξ

∗
y âb̂

† + ξ∗xξyâ
†b̂
)

=
ℏgBS

2
âb̂† +

ℏg∗BS

2
â†b̂

(4.54)

The parametric beamsplitter interaction takes the form

ĤBS

ℏ
=
gBS(t)

2
âb̂† +

gBS(t)
∗

2
â†b̂ (4.55)

Which can be achieved by either varying pump x or pump y in time i.e. ξx → ξx(t) or

ξy → ξy(t). Note how we only need to modulate one of the two pumps to modulate

the amplitude and phase of gBS(t).

What sets the strength of gBS? There is a maximum amount of ‘phase’ that can

be driven across the junction by our parameteric pumps. If the total phase across the

junction exceeds π then the state of the transmon mode will no-longer be confined to

a single well of the cosine potential. A good indicator for when we are approaching

this limit is when the total stark shift is of the order of the transmon’s anharmonicity.

For two pumps of equal (normalized) pump strength, this occurs when

|ξx|2 + |ξy|2 = 0.5 (4.56)
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or when ξx = ξy = 0.5. We can predict how fast the beamsplitter rate will be

by writing gBS in terms of the dispersive shifts between each cavity mode and the

transmon:

gBS

2
= EJφ

2
qφaφbξxξ

∗
y =

√
χaqχbqξxξ

∗
y (4.57)

Choosing typical values χaq = χbq = 2π × 2 MHz gives a maximum gBS ∼ 2π × 1

MHz, which will be important throughout this thesis as it sets the timescale for

interactions between cavity modes. Next-gen beamsplitter couplers can reach values

of gBS ∼ 2π × 10 MHz [Lu et al., 2023,Chapman et al., 2022].

There are other terms that are always resonant, even when the pumps are off.

Examples of such terms are the self-Kerr terms

Hself-Kerr = −EJ

4
φ4
q q̂

†q̂†q̂ q̂ − EJ

4
φ4
aâ

†â†â â− EJ

4
φ4
b b̂

†b̂†b̂ b̂

=
ℏαq

2
q̂†q̂†q̂ q̂ +

ℏKa

2
â†â†â â+

ℏKb

2
b̂†b̂†b̂ b̂

(4.58)

and cross-Kerr terms

Hcross-Kerr = −EJφ
2
qφ

2
aq̂

†q̂ â†â− EJφ
2
qφ

2
b q̂

†q̂ b̂†b̂− EJφ
2
aφ

2
b â

†â b̂†b̂

= ℏχaq q̂
†q̂ â†â+ ℏχbq q̂

†q̂ b̂†b̂+ ℏχabâ
†â b̂†b̂

(4.59)

Where χaq and χbq are the dispersive shifts and χab is the often unwanted Cross-Kerr

term between the cavities.

Some terms are always resonant whenever the pump strengths are non-zero. These

are Stark shift terms that cause the mode frequency to shift with total pump power:

HStark =− EJφ
4
q(|ξx|2 + |ξy|2)q̂†q̂

− EJφ
2
qφ

2
a(|ξx|2 + |ξy|2)â†â

− EJφ
2
qφ

2
b(|ξx|2 + |ξy|2)b̂†b̂

(4.60)

The Stark shift on mode q̂ is always significantly larger than the Stark shifts on the
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bosonic modes. These Stark shifts also shift the resonance condition for the beam

splitter interaction at different pump strengths and thus often needs to be calibrated

in experiment whenever the pump amplitudes are changed.

The Stark shift is in some ways both a blessing and a curse. It gives us an

easy way to find ξi directly in experiment, by measuring the frequency shift on the

transmon mode (and dividing by the transmon’s anharmonicity which is also measur-

able). However, the Stark shift can prove quite a nuisance. The mode frequencies of

the system shift depending on the amplitude of the pumps, which makes predicting

the exact beamsplitter resonance condition difficult. In practice we must retune the

beamsplitter resonance condition whenever we change the pump amplitudes.

Even more nefarious is the problem of frequency collisions during pump ‘ring

up’. When we activate a beamsplitter interaction, we must ‘ring up’ the pumps

from zero amplitude to their constant amplitude somewhat gradually (in around 50

ns, otherwise the large pump bandwidth is also problematic). During this time, the

transmon mode gradually shifts down in frequency due to the Stark shift term, often

by ∼ 100 MHz. It is very easy to activate unwanted parametric resonances, if only

for a short time. The unwanted dynamics that occur when we ‘cross’ one of these

spurious resonances can significantly reduce the fidelity of our beamsplitter operations

and/or the size of gBS we can engineer. An advantage of couplers 3-wave mixing based

on 3-wave mixing such as the SNAIL is that the Stark shift can be made negligible.

Sometimes we are interested in a more accurate model of the system that goes

beyond 4th order and RWA approximations. These dynamics can be found through

Floquet simulations, which can study more complex effects such as decoherence in-

herited by the modes when the parametric resonance is activated. For more reading

see [Zhang et al., 2019].

Expanding the cosine reveals a hierarchy of rates for wanted and unwanted terms

in our cavity-transmon system, set by the all-important
(
gc
∆

)
parameter. This can be
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summarised succinctly in the table below

Symbol Rate Typical value (×2π) Use

αq ∼ αq 200 MHz Rotations of control ancilla

χaq, χbq, gBS ∼
(
gc
∆

)2
αq 0.5-5 MHz Quantum control of cavities

Cavity-cavity interactions

,

Ka, Kb, χab ∼
(
gc
∆

)4
αq 1-20 kHz Unwanted cavity non-linearities

Table 4.1: Hierarchy of Hamiltonian rates for control of bosonic modes in cQED

4.6.2 Evolution from a parametric beamsplitter interaction

There are two possible conventions for defining the beamsplitter rate, gBS. For theo-

retical analysis, we adopt the convention

ĤBS =
gBS

2
â†b̂+

gBS

2
â b̂† (4.61)

which is chosen such that a π-pulse e.g. applying ĤBS for time T = π/gBS enacts a

SWAP operation. The experimentalist definition, used in Chapter 7 and [Lu et al.,

2023,Chapman et al., 2022,Gao et al., 2018] is instead

ĤBS = gBSâ
†b̂+ gBSâ b̂

† (4.62)

Taking the theorist’s definition, if we instead apply this Hamiltonian for half the

time, T = π/2gBS we realize the mode transformations (in the Heisenberg picture)

â→ â+ ib̂√
2

b̂→ b̂+ iâ√
2

(4.63)



4.6. Controllable Beamsplitter Interactions 146

which are the same mode transformations as for a 50-50 beamsplitter in quantum op-

tics, hence the name beamsplitter interaction. Realizing these mode transformations

via a parametric process rather than passing light through a physical beamsplitter

gives us more capabilities.

By adjusting the phase of one of the pumps, we can control the phase of the

beamsplitter transformation, e.g., applying

ĤBS =
gBS

2
eiϕâ†b̂+

g∗BS

2
e−iϕâ b̂† (4.64)

for time T = π/2gBS realizes the mode transformations.

â→ â+ ieiϕb̂√
2

b̂→ b̂+ ieiϕâ√
2

(4.65)

Moreover, this transformation is not implemented instantaneously, but continuously.

Writing the evolution of the mode operators in the Heisenberg picture is a convenient

way to track evolution in a state-independent way. These mode transformations at

time t during the evolution (for constant, complex gBSe
iϕ) are given by

â(t) → eiĤBStâ(0)e−iĤBSt = cos

(
gBSt

2

)
â+ i sin

(
gBSt

2

)
eiϕb̂

b̂(t) → eiĤBStb̂(0)e−iĤBSt = cos

(
gBSt

2

)
b̂+ i sin

(
gBSt

2

)
eiϕâ

(4.66)

We designate the beamsplitter unitary

ÛBS(t) = e−iĤBSt (4.67)
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For t = π/2gBS and ϕ = 0 this takes the form

Û50-50
BS = ei

π
4 (â†b̂+b̂†â) (4.68)

and for the choice of phase ϕ = π/2 this takes the form.

Û ′50-50
BS = e

π
4 (â†b̂−b̂†â) (4.69)

Going back to the Schrödinger picture, the evolution of states in the cavity modes is

given by

|ψ(t)⟩a,b = ÛBS(t) |ψ(0)⟩a,b (4.70)

Another useful feature of a parametric beamsplitter Hamiltonian (which is not

possible to realize with an optical beamsplitter) is that we may detune one of the

pumps from resonance to realize the Hamiltonian

ĤBS(t)/ℏ =
gBS

2
eiϕâ†b̂+

g∗BS

2
e−iϕâ b̂† +∆â†â (4.71)

for constant, complex gBS with a fixed detuning, ∆ from the resonance condition.

The sign of ∆ may be positive or negative depending on whether our pump frequency

is above or below its resonance condition frequency. The mode we choose to pick

up this detuning is arbitrary. In a different rotating frame, we could write this same

Hamiltonian as

ĤBS(t)/ℏ =
gBS

2
eiϕâ†b̂+

g∗BS

2
e−iϕâ b̂† −∆b̂†b̂ (4.72)



CHAPTER 5

Error Detected Gates

This chapter summarizes and contextualizes the work presented in [Tsunoda et al.,

2022], on which I am co-first author. The broad goal is to find a way to realize

two-qubit entangling gates on discrete-variable (DV) bosonic codewords designed to

correct for single photon loss. The implementation must be experimentally feasible

and satisfy Hardware Fault-tolerance (HFT). We must still be able to correct single

photon loss that occurs before/during the gate as well as first-order control ancilla

errors (decay and dephasing).

Ultimately, we find two solutions to this problem. One is to realize two-qubit gates

via a measurement-based approach, which requires a QND HFT ZZ measurement.

However, this solution is not entirely complete since we would also need an HFT

Hadamard gate (which presents a major problem in and of itself for discrete variable

bosonic codewords). We show that a fully-error corrected ZZ measurement is possible

but requires physically performing a long string of measurements in time to ensure

all first-order errors can be caught and corrected, which introduces a substantial

overhead.

148
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We then show that error-detected two-qubit gates are much easier to realize and

satisfy HFT. Whilst error-detection is not the same as error-correction, in Chapter 3

we saw how error-detection at the hardware level gives a path for realizing erasure

qubits. When we concatenate erasure qubits to form a larger error-correction code,

we saw they have much the same benefit as if we had error-corrected the dominant

hardware errors instead.

This approach naturally leads one to ask: why don’t we use error-detectable

operations with error-detectable bosonic codes? (Rather than error-correctable ones

like the Kitten code or 4-legged cat). This leads us to Chapter 6, where we build

up an entire set of error-detectable operations for the dual-rail code, an encoding in

which loss errors can only be detected but not corrected. Two crucial operations in

Chapter 6: the mid-circuit erasure detection and the entangling gate will be based

on the gates we present in this chapter.

5.1 Searching for an error-correctable two-qubit gate

For bosonic QEC to be viable with a control ancilla, we must be able to perform

all operations1 for universal quantum computing whilst satisfying HFT. In our case,

this means being able to correct the dominant first-order errors on the control an-

cilla: transmon decay and dephasing, as well as the bosonic error the bosonic code

is designed to correct for. We will focus on bosonic codes designed to correct for

discrete photon loss events, the so-called rotationally-symmetric bosonic codes. We

will further restrict our bosonic codes to those designed to correct for a single photon

loss event (such as the Kitten and 4-legged cat code.)

We will also use a three-level ancilla, which effectively functions as a noise-biased

ancilla by reserving the |e⟩ level to detect and correct for a single decay event in

1. State preparation, readout, single-qubit, two-qubit gates, error correction operations.
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the transmon. This forms the set of Hardware errors {ϵ̂}hardware = {|e⟩ ⟨f | , |g⟩ ⟨g| −

|f⟩ ⟨f | , â} we wish to correct.

We have seen previously how engineering the general Hamiltonian

ĤHFT = Ûgate |f⟩ ⟨g|+ Û †
gate |g⟩ ⟨f | (5.1)

realizes Ûgate on the bosonic mode in a path-independent manner, allowing us to

correct for the hardware errors in {ϵ̂}hardware after the gate has been attempted. In

order to correct for transmon decay events, it is important that ĤHFT |e⟩ = 0 so that

we do not incurr any unwanted, time-dependent evolution after a transmon decay

event has occurred.

Engineering such a Hamiltonian is difficult; remember our error model assumes

the only source of errors are jump errors from {ϵ̂}hardware and that otherwise the

ĤHFT Hamiltonian is implemented perfectly. We are not robust to unwanted terms

or interactions that arise when trying to engineer this Hamiltonian.

The SNAP unitary construction only approximately engineers this Hamiltonian, in

the regime where χ-matching is achieved (either χge = χgf or χge = 0 are satisfactory)

and in the limit of long selective π-pulses, where the nth frequency in the frequency

comb only acts on the space |n⟩ ⟨n| ⊗ (|g⟩ ⟨g|+ |f⟩ ⟨f |). SNAP unitaries are capable

of performing Z(θ) gates with HFT on rotationally symmetric bosonic codes, but can

we find an extension of this construction to two-qubit gates? We shall find this is in

principle possible but comes with a daunting set of experimental challenges.

5.1.1 Two-mode SNAP gates

The first natural thought may be to engineer this Hamiltonian as a two-mode SNAP

unitary, which can be realized by dispersively coupling a transmon to two cavity

modes. Such a transmon is often called a ‘Y-mon’ owing to its Y-shaped antenna



5.1. Searching for an error-correctable two-qubit gate 151

geometry. As shown in Fig. 5.1, a Y-mon transmon needs to couple to three cavity

modes, the two modes that store bosonic qubits and its readout resonator.

Figure 5.1: Y-mon transmon for coupling two cavities together. By driving only the
transmon mode, it is possible, in theory to perform an HFT two-mode SNAP gate.
In practice, χ-matching conditions make this difficult.

The Hamiltonian needed for a two-mode SNAP unitary is written as

Ĥ2-mode = χge
aqâ

†â |e⟩ ⟨e|+ χge
bq b̂

†b̂ |e⟩ ⟨e|+ χgf
aq â

†â |f⟩ ⟨f |+ χgf
bq b̂

†b̂ |f⟩ ⟨f |

+ ϵq(t)q̂ + ϵ∗q(t)q̂
† +

αq

2
q̂†q̂†q̂ q̂

(5.2)

Where the subscripts now denote which modes the dispersive interaction acts on

and the superscripts indicate the manifold of the transmon. The shift in the transmon

transition frequency now depends on the number of photons in both modes, e.g., the

frequency of the g-e transition is given by ωge+χ
ge
aqna+χ

ge
bqnb for na photons in mode

a and nb photons in mode b.

In order to perform a two-mode SNAP gate, we want these frequencies to be

uniquely addressable for each joint number state |na⟩a⊗|nb⟩b = |na, nb⟩. Herein lies a

problem. No matter our choice of χge
aq and χge

bq , sooner or later we will find two different

joint number states which have the same frequency shift and are indistinguishable.

Ideally we want our χs to be incommensurate2, such that these frequency overlaps

2. The optimal ratio of χge
aq to χge

bq may be the golden ratio to avoid these overlaps



5.1. Searching for an error-correctable two-qubit gate 152

occur at high photon number states that are not used in our bosonic codewords.

If we take the example of two bosonic qubits in the kitten code, then all possible

joint-photon number states are |0, 0⟩ , |0, 2⟩ , |2, 0⟩ , |2, 2⟩ , |4, 2⟩ , |2, 4⟩ , |4, 4⟩ , |0, 4⟩ , |4, 0⟩.

We must engineer our χs such that all 9 of these states have distinct frequencies. The

minimum frequency spacing sets how selective our π-pulses must be (and in turn the

length of our 2-mode SNAP gate).

What happens if we instead try to engineer χge
aq = χge

bq through χ-matching? If this

were the case we cannot distinguish for example the states |2, 2⟩ , |0, 4⟩ , |4, 0⟩ in the

frequency comb. Whilst it is not possible to perform an arbitrary SNAP unitary, we

can still perform SNAP unitaries that implement logical two-qubit entangling gates

on this code. This is because it is still possible to engineer a subset of SNAP gates

where one SNAP unitary is applied to the manifold {|0L, 0L⟩ , |1L, 1L⟩} and another

to the {|0L, 1L⟩ , |1L, 0L⟩} manifold of the Kitten code. For example, if we acquire

a phase of π/2 on joint-number states |2, 2⟩ , |0, 4⟩ , |4, 0⟩ , |4, 4⟩ , |0, 0⟩ and a phase

of 0 on the joint-number states |0, 2⟩ , |2, 0⟩ , |4, 2⟩ , |2, 4⟩ (all of which is possible to

engineer when χge
aq = χge

bq), then we will have performed the ZZ(π/2) entangling gate

on the Binomial code.

Now, to make the two-mode SNAP gate fault tolerant to transmon decay we

must use the g-f manifold which necessitates even more χ-matching. Overall, it is

possible to engineer a two-mode SNAP gate with the same HFT properties as the one-

mode SNAP gate, but many different χ-matching conditions must be simultaneously

satisfied which would be incredibly difficult to engineer in practice. Valid χ-matching

conditions that allow us to perform, say the ZZ(π/2) gate are shown in Table 5.1.
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χs commensurate? yes (equal) yes (all equal) no no

χ-matching conditions
χgf
aq = χgf

bq

χge
aq = χge

bq = 0

χgf
aq = χgf

bq

= χge
aq = χge

bq

χgf
aq ̸= χgf

bq

χge
aq = χge

bq = 0

χgf
aq ̸= χgf

bq

χge
aq = χgf

aq

χge
bq = χgf

bq

Table 5.1: Four of the allowed χ-matching conditions for two-mode SNAP with a
three-level transmon as the control ancilla.

5.1.2 Is eSWAP Hardware Fault-Tolerant?

Can other easier-to-realize two-qubit gate constructions satisfy HFT and be error-

corrected instead? One prominent two-qubit entangling gate for bosonic qubits is the

eSWAP(θ) gate that was realized in [Gao et al., 2019]. When θ = π/2 it is capable of

generating Bell states even when the bosonic modes are in different encodings. But

how does this gate fare against errors? The cQED construction of the eSWAP gate

uses the exponentiation gadget as shown in Fig. 5.2, which is known to only be able to

detect errors rather than correct them. Specifically, when we use the exponentiation

gadget to implement gate Ô(θ) for Ô2 = 1, we widen our error set. If our hardware

jump error was originally ϵ̂i, then using the exponentiation gadget means we would

now experience errors from the set {ϵ̂i, ϵ̂iÔ} (and superpositions of these errors) after

the gate. Generally it is not possible to correct for errors of the form c0ϵ̂i1+ c1ϵ̂iÔ at

the hardware level (we can detect ϵ̂i but not correct since we don’t know whether 1

or Ô was applied to the bosonic mode.)

For our eSWAP gate example (with Ô = SWAP), suppose we wish to correct

for photon loss on either cavity â or b̂ during the gate. At the end of the gate, we

can detect this error by looking for photon loss in both cavities via photon number

parity measurements. However, upon detecting a photon loss, it is not possible to

correct this error, since there is no way of knowing whether to apply 1 or SWAP

to the cavities to correct the error. This is the first example of a wider family of

error-detectable (and excitation-preserving) two-qubit gates, with the other being

the ZZ(θ) gate.
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Figure 5.2: Gate construction for eSWAP. This is essentially the exponentiation gad-
get to implement the gate P̂ (θ) on cavity mode â where P̂ is the parity operator. By
sandwiching this operation between two 50-50 beamsplitter unitaries, we ultimately
perform the eSWAP(θ) gate on both cavity modes â and b̂. The eSWAP(θ) gate thus
inherits all the fault-tolerant properties of an exponentiation gadget. In particular, it
is good at detecting first-order jump errors but not correcting them. The transmon
ancilla starts and ends in |g⟩ when no errors occur and can be measured at the end
to detect ancilla errors during the gate sequence.

5.1.3 Constructing eSWAP as an exponential gadget

For completeness, we show explicitly how the eSWAP unitary is realized from the

circuit in Fig. 5.2 The starting point is an exponentiation gadget on a single bosonic

cavity, where Ô = eiπâ
†â = P̂ where P̂ is the parity operator. The parity operator

represents a 180◦ rotation of the cavity’s phase space and has the property P̂ |n⟩ =

(−1)n |n⟩, i.e., eigenvalue +1 if n =even, -1 if n =odd. To perform the exponentiation

gadget, we must realize the control-parity unitary,

cP = |g⟩ ⟨g|+ eiπâ
†â |e⟩ ⟨e| (5.3)

Fortunately, this is almost trivial to realize with the dispersive interaction. If the

control ancilla is dispersively coupled to a cavity mode via the Hamiltonian

Ĥχ = χgeâ
†â |e⟩ ⟨e| (5.4)
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evolution for time T = π/χge generates the control-parity unitary. Embedding this

in the exponentiation gadget shown in Eq. 2.54 realizes the P̂ (θ) gate

P̂ (θ) = cos

(
θ

2

)
1+ i sin

(
θ

2

)
P̂

= cos

(
θ

2

)
1+ i sin

(
θ

2

)
eiπâ

†â

(5.5)

So far, this gate only acts on one bosonic mode. eSWAP acts on two bosonic modes.

By sandwiching the P̂ (θ) gate between a 50-50 beamsplitter and inverse 50-50 beam-

splitter, we realize the eSWAP unitary

eSWAP(θ) =
(
Û ′

BS
50-50

)†
P̂ (θ)

(
Û ′

BS
50-50

)

= cos

(
θ

2

)
1+ i sin

(
θ

2

)
e
iπ

(
â†−b̂†√

2

)(
â−b̂√

2

) (5.6)

Where we have made use of the mode transformations â → (â − b̂)/
√
2, â† →

(â† − b̂†)/
√
2 for this particular 50-50 beamsplitter convention. Is the operator in the

second term in fact the SWAP operator?

We can see this could indeed be the SWAP operator by rewriting

Û ′ = e
iπ

(
â†−b̂†√

2

)(
â−b̂√

2

)

= ei
π
2 (â†â+b̂†b̂)e−iπ

2 (â†b̂+âb̂†) (5.7)

and we verify its action is indeed to SWAP the bosonic modes by confirming

Û ′â Û ′† = b̂

Û ′b̂ Û ′† = â

(5.8)

which means this gate construction does in fact realize the eSWAP unitary.
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5.1.4 Measurements are easier to error-correct?

The key to realizing an HFT two-qubit gate might be to build one out of measurements

instead. From Fig. 2.3 QND ZZ measurements and Hadamard gates are sufficient to

realize deterministic CNOT gates.

First, we begin by arguing why measurements of operators satisfy HFT more easily

than logical gates on a bosonic qubit. Let us briefly summarize the requirements for

a gate to be error correctable to a set of Hardware jump errros, {ϵ̂}hardware

1. We must engineer the Hamiltonian ĤHFT = Ûgate |f⟩ ⟨g|+ Û †
gate |g⟩ ⟨f | very well

2. We must realize three-state QND readout of the control ancilla, to distinguish

between the states |g⟩ , |e⟩ , |f⟩ with high-fidelity. Any readout misassignment

errors will result in us performing the wrong recovery operation and so result

in an error on the bosonic qubit.

Compare this to the requirements for a measurement on the bosonic qubit to be

Hardware Fault-tolerant:

1. If any errors from {ϵ̂}hardware occur during the measurement procedure, they

must be QND on the bosonic qubit.

2. We must be able to repeat the measurement multiple times. Any readout mis-

assignment errors can be mitigating by majority voting on a repeated set of

measurements. Errors from {ϵ̂}hardware may result in a particular measurement

giving the wrong outcome, but this can always be suppressed to an nth order

error if we are able repeat the measurement 2n− 1 times in a row.

The way majority voting works is very similar to a repetition code. We illustrate

this with the simple example of three-round majority voting. Suppose we wish to

measure binary-valued operator B̂ on a bosonic mode (or modes) using the circuit

from Fig. 2.6. We label the classical outcome of this measurement to be 0i or 1i for
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the ith round of measurement. We also suppose the measurement is entirely QND

on the bosonic mode. An error from {ϵ̂}hardware occurs with probability p during

the measurement, and in our example flips the measurement outcomes causing a

measurement error. In one round of measurement, with probability p we declare the

wrong outcome (and when we feed forward this outcome to future computations this

causes an error on the bosonic qubit).

If we instead perform three rounds of measurement then we obtain strings of

outcomes (01, 02, 03) or (11, 12, 13) if no errors (or three errors if we are really unlucky)

occur but also mixed strings of outcomes such as (01, 12, 03), where we can majority

vote to still declare the correct outcome when a single measurement is faulty. The

probability we decalre the wrong outcome is 3p2 + p3, just as we saw for the 3-

bit repetition code and the error on our bosonic qubit is now suppressed to second

order. We summarize these outcomes in Table 5.2. Repeating the measurement

Declare 0 Declare 1

(01, 02, 03) (11, 12, 13)

(11, 02, 03) (01, 12, 13)

(01, 12, 03) (11, 02, 13)

(01, 02, 13) (11, 12, 03)

Table 5.2: 3 round majority voting with a QND measurement

several times comes with its own trade-offs. There is a linear time overhead which

can be inconvenient if these are mid-circuit measurements. We also cannot repeat

the measurement an infinite number of times. Eventually (on the timescale of cavity

decoherence) the value of B̂ we are trying to measure will actually change, e.g., if we

keep repeating parity measurements, eventually we will see the parity value switch due

to a photon jump! This sets the timescale on which we can obtain useful information

from the outcomes of our repeated measurements.
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5.1.5 Errors in photon number parity measurement

We now go through an example of a useful measurement which is QND to jump errors

from {ϵ̂}hardware. This is the HFT photon number parity measurement realized with

the construction in Fig. 5.3 and its QNDness (to cavity photon number) was studied

in [Sun et al., 2014]. The photon number parity measurement (parity measurement

for short) is useful as the error syndrome measurement for single photon loss in

the kitten code/4-legged cat code. (Although these codes are also somewhat robust

in the Knill-Laflamme sense to cavity dephasing as well, parity measurements only

detect photon loss events.) We study the parity measurement in detail, since the

ZZ measurements we introduce later are effectively a two-qubit extension of this

measurement operation and are used to construct both error-correctable HFT ZZ

measurements and the error-detectable HFT ZZ(θ) gates.

+1 

�1 

+1 

�1 

wait

Figure 5.3: Gate construction (top) and pulse sequence (bottom) for a standard parity
measurement. The two transmon pulses are assumed to be ‘unselective’, performing
the same rotation on the transmon regardless of the cavity state. Here +1 designates
the even photon number parity outcome and -1 designates odd photon number parity.
By inverting the phase of the final π/2-pulse, we can invert these outcomes.

The control-parity unitaries are realized with wait time T = π/χge, just as they



5.1. Searching for an error-correctable two-qubit gate 159

were for the eSWAP construction. No matter what happens in the control ancilla, the

measurement will be QND on the cavity photon number. This is because the ancilla

only interacts with the cavity via the dispersive interaction. Even in the presence of

errors, this interaction cannot change cavity photon number. The only error that can

be imparted on the cavity mode via the dispersive interaction must act on the cavity

phase, since it cannot act on cavity photon number. We walk through the example

of an HFT parity measurement to show how such a measurement can be made QND

to {ϵ̂}hardware.

To begin, we consider the non-HFT parity measurement given by the same circuit

construction but in the g-e manifold of the transmon. Our first-order Hardware error

set is {ϵ̂}hardware = {â, |g⟩ ⟨e| , |g⟩ ⟨g|−|e⟩ ⟨e|} For now, we focus on errors that happen

during the longest part of the measurement, the T = π/χge wait time in the control-

parity unitary.

Transmon Dephasing

First we examine transmon dephasing at unknown time T − t for t ∈ [0, T ] (we

choose this convention to simplify the maths slightly). This is the easiest case since

it commutes with the dispersive interaction such that

e−iĤχt(|g⟩ ⟨g| − |e⟩ ⟨e|)e−iĤχ(T−t)

=(|g⟩ ⟨g| − |e⟩ ⟨e|)e−iĤχT = (|g⟩ ⟨g| − |e⟩ ⟨e|)cP
(5.9)

The dispersive Hamiltonian is error-transparent to dephasing. The end result is that

it is as if we did the correct cP unitary, and then applied jump (|g⟩ ⟨g| − |e⟩ ⟨e|).

Ultimately, this results in a flipped measurement outcome (0i ↔ 1i) and is QND on

the cavity. As a result, this error can be suppressed easily by majority voting.
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Cavity photon loss

The next error we consider is photon loss in the cavity. This error is rather peculiar,

since it is the error we are usually trying to detect with a parity measurement anyways!

What we are interested in is the effect of photon loss during the measurement itself.

QND in this case means photon loss during the wait time does not dephase the

cavity and can be detected in a subsequent parity measurement, although it may

scramble this measurement outcome. The analysis follows the same steps as transmon

dephasing.

e−iĤχtâe−iĤχ(T−t) = e−iĤχtâeiĤχte−iĤχT

=â
(
|g⟩ ⟨g|+ e−iχget |e⟩ ⟨e|

)
cP

(5.10)

We see that a photon loss in the cavity also dephases the transmon, rotating it

by unknown angle θ = −χget about its Z axis. (The time of the photon loss is

unknown). The overall result is that there is a chance the measurement will give the

wrong outcome. Other than the photon loss operator, â, the error is completely QND

on the cavity state. This means we can detect the photon loss error with subsequent

parity measurements—unless of course we suffer another photon loss! (but this is a

second order error). Overall, with repeated measurements, we are HFT to photon

loss during the parity measurement.

Transmon decay

Now transmon decay is the worst error. It is the only one in {ϵ̂}hardware that is

non-QND on the cavity mode. With the same analysis we now find

e−iĤχt |g⟩ ⟨e| e−iĤχ(T−t) = |g⟩ ⟨e| e−iĤχ(T−t) = |g⟩ ⟨e| e−iχ(T−t)â†â (5.11)
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Before the last Hadamard gate (or π/2 pulse, they are equivalent in this construc-

tion), the transmon will always be in its ground state, meaning, that after the last

Hadamard, we measure |g⟩ or |e⟩ with equal probability and our measurement doesn’t

contain any information about the cavity photon number. This error can be sup-

pressed with majority voting. The disastrous error is the fact we have performed

unitary e−iχ(T−t)â†â on the cavity mode, which is a rotation in the cavity’s phase

space by unknown angle θ = −χ(T − t). Since t ∈ [0, π/χge], it follows θ ∈ [0, π] with

an approximately uniform distribution. This is a large angle (or ‘complete’) dephas-

ing and is usually impossible to recover from. In fact, the only difference between

the non-HFT and HFT parity measurement is that we can mitigate the effects of

transmon decay.

5.1.6 The Hardware Fault-tolerant parity measurement

In the HFT-parity measurement [Rosenblum et al., 2018b], the only difference is that

we have a way to correct for first-order transmon decay by using a three-level ancilla

and engineering the χ-matched Hamiltonian

Ĥ′
χ = χ(|e⟩ ⟨e|+ |f⟩ ⟨f |)â†â (5.12)

Now if we redo our analysis for the decay jump operator |e⟩ ⟨f | we find

e−iĤ′
χt |e⟩ ⟨f | e−iĤ′

χ(T−t) = e−iχtâ†â |e⟩ ⟨f | e−iχ(T−t)â†â = |e⟩ ⟨f | eiπâ†â (5.13)

Now, independent of the time of the decay, we always do unitary eiπâ
†â on the cavity

mode and this error is corrected by first reading out |e⟩ on the transmon (the final

Hadamard or π/2-pulse only acts on the g-f manifold, and we cannot end up in |e⟩

unless we were in |f⟩ before, garaunteeing the dispersive coupling was on during the
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entire wait time) and then updating the cavity phase by π which can be done in

software (by updating phases of future operations by π). The gate construction is

shown below in Fig. 5.4

+1 

�1 

Figure 5.4: Gate construction for an HFT parity measurement. Transmon ancilla is
operated in its g-f manifold. Three-state readout of the ancilla allows us to detect
and correct for a single transmon decay during the gate. Upon reading out |e⟩, we
should update the cavity phase by π



5.1. Searching for an error-correctable two-qubit gate 163

5.1.7 Z measurements

For encodings such as the 0-1 encoding or dual-rail encoding, measuring the photon

number parity of either cavity mode that comprises the dual-rail qubit amounts to

a measurement of the dual-rail qubit in the Z basis. The same construction can be

used for a Z basis in any bosonic code where ZL = ei
π
n
â†â for some integer n. We

must adjust the wait time such that T = π/nχ but otherwise the HFT properties

carry on over to this Z logical measurement with one exception.

Consider an odd photon number parity 2-fold rotationally symmetric bosonic code,

i.e., when

|0L⟩ =
N∑

n=0

cn |4n+ 1⟩ (5.14)

|1L⟩ =
M∑

m=0

cm |4m+ 3⟩ (5.15)

In this case, ei
π
n
â†â = iZL. This factor of i is important! If we don’t update the phase

properly in the final transmon rotation (e.g., change the Hadamard rotation axis to

ŷ+ẑ√
2

instead of x̂+ẑ√
2

) then we will obtain random measurement outcomes! For a code

like the Kitten code or 4-legged cat code we do not know when we end up in this

scenario if we suffer from a single photon loss. For this reason it is essential that we

interleave Z measurements with parity measurements in order to track single photon

loss and ensure we can trust the Z measurement outcomes.

If we use the wrong phase for some reason, rather than the entire gate construction

realizing the unitary

1+ ZL

2
⊗ 1q +

1− ZL

2
⊗Xq (5.16)
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acting on initial state |ψa⟩ ⊗ |g⟩, we instead unknowingly realize the unitary

1+ iZL√
2

⊗ 1q +
1− iZL√

2
⊗Xq (5.17)

The backaction on the cavity state at first glance looks bad. We were trying to

do a Z measurement, but due to an unnoticed single-photon loss event we are now

randomly applying the gates ZL(±π/2) without knowing it! This error is actually

benign, if we can eventually catch this photon loss error, e.g., with subsequent parity

measurements. Then we know not to trust the prior Z measurements, to update the

phase and to trust the next set of Z measurements. And because ZL(±π/2) does not

change ⟨ZL⟩, this measurement will still ultimately be QND and we will not dephase

the cavity state.

5.2 The Hardware Fault-Tolerant ZZ measurement

We now show how we can extend the error-correction properties of the HFT parity

measurement to a QND ZZ measurement on bosonic codewords. This enables CNOT

in Fig. 2.3 and is in principle valid for any rotationally symmetric bosonic codeword

for which ZL = ei
π
n
â†â for n = 1, 2, 4, 6... A ZZ measurement is very different from

a ZZ gate. A ZZ gate on two bosonic is merely two Z gates, i.e., ZZ = Za ⊗ Zb

and is not entangling. A ZZ measurement is entangling (it can be used to make Bell

states from separable states). The ZZ measurement we wish to implement is QND.

For initial state |ψab⟩ we obtain outcome ±1 with probability

p±1 =

〈
ψab

∣∣∣∣
1± ZZ

2

∣∣∣∣ψab

〉
(5.18)

and end up in final state
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|ψ(±1)
ab ⟩ = 1

√
p±1

1± ZZ

2
|ψab⟩ (5.19)

From the general circuit for QND measurements of binary valued operator, B̂, we can

realize a QND ZZ measurement if we can realize the ancilla-controlled unitary cZZ.

From our HFT parity measurement, we can make this error-correctable if we operate

in the g-f manifold of the transmon. Then at the end of this circuit, measuring

the transmon in |g⟩ (|f⟩) gives us outcome +1 (−1). Thus in order to realize an

error-correctable HFT ZZ measurement, we must realize the unitary

cZZL = |g⟩ ⟨g|+ ZZL (|e⟩ ⟨e|+ |f⟩ ⟨f |)

= |g⟩ ⟨g|+ ei
π
n(â†â+b̂†b̂) (|e⟩ ⟨e|+ |f⟩ ⟨f |)

(5.20)

We now show how such a unitary (or rather an equivalent unitary) is surprisingly easy

to construct by combining the parametric beamsplitter with the dispersive interaction

simultaneously.

5.2.1 Adding a parametric beamsplitter interaction

When extending our control Hamiltonian, we must be careful to still satisfy error

closure. We show that the parametric beamsplitter interaction is particularly adept

at this. In this scenario, our bosonic code is designed to correct for single photon loss

so {ϵ̂}hardware = {â, b̂}. The set of correctable errors (via HFT parity measurements +

recovery unitaries) after the gate is larger, given by {ϵ̂}corr = {â, b̂, âb̂, c0â+c1b̂+c2âb̂}

We briefly summarize the conditions for error closure for a given control Hamil-

tonian, Ĥ0, {ϵ̂}hardware and {ϵ̂}corr

1. Generate a new set of errors, {ϵ̂}ext by commuting errors from {ϵ̂}hardware with

Ĥ0

[Ĥ0, ϵ̂hardware] = ϵ̂ext (5.21)
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2. Check {ϵ̂}ext is indeed a closed set of errors by commuting errors from this set

with Ĥ0 and checking

[Ĥ0, ϵ̂ext] ∈ {ϵ̂}ext (5.22)

3. check that {ϵ̂}ext is a subset of {ϵ̂}corr

{ϵ̂}ext ⊆ {ϵ̂}corr (5.23)

We now walk through this example for photon loss during a parametric beamsplitter.

For this purpose, we can set Ĥ0 = â†b̂+ âb̂† and these results will hold for any phase

or amplitude of gBS.

We take commutators and see we do indeed generate the closed set of errors

{ϵ̂}ext = {â, b̂}

[â†b̂+ âb̂†, â] = −b̂, (5.24)

[â†b̂+ âb̂†, b̂] = −â, (5.25)

What this tells us is that photon loss errors that happen during the beamsplitter

evolution can be corrected after the gate. We can actually check this is indeed the

case with the SWAP gate, which is realized with the Hamiltonian

ĤBS/ℏ =
gBS

2

(
â†b̂+ âb̂†

)
(5.26)

applied for time TSWAP = π/gBS Suppose we suffer from a photon loss event â at

intermediate time tjump = TSWAP − t.

Going through the usual jump-error analysis we find

e−iĤBStâeiĤBSte−iĤBSTSWAP =

(
cos

(
gBSt

2

)
â+ i sin

(
gBSt

2

)
b̂

)
SWAP (5.27)
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So photon loss during the SWAP gate is equivalent to applying the SWAP gate

perfectly, and then applying a jump error of the form c0â+ c1b̂, which is a correctable

error! The unknown time of photon loss is now imprinted on the probability we detect

cavity â or cavity b̂ to have a photon loss (the earlier it happens, the more likely we

detect photon loss in cavity â). When we check for a photon loss error via HFT parity

measurements, we collapse this superposition. Given that photon loss happens during

the SWAP operation, we are garaunteed to detect a photon loss in either cavity a or

b but this is uncertain until we measure. We then correct for the photon loss error

the appropriate cavity just as we would for a photon loss error during idling.

Note that not all error-correctable errors satisfy error closure. For instance, for

two cavities each using a single-mode bosonic encoding, loss in both cavities âb̂ is

correctable if it happens whilst the qubits are idling, but if it happens during the

implementation of the SWAP gate itself, it results in an uncorrectable error. To

quickly see why, we can calculate

[
â†b̂+ âb̂†, âb̂

]
= −b̂2 − â2 (5.28)

In other words, photon loss âb̂ during the gate can look like double photon loss, e.g.,

â2 or b̂2 after the gate! An uncorrectable error! Interestingly, there are surprisingly

few cavity-cavity Hamiltonians that describe cavity-cavity interactions that have this

error closure property. We show this in Table 5.3 below

What error closure tells us is that for bosonic codes designed to correct for photon

loss we should only use Hamiltonians derived from beamsplitter couplings to couple

qubits together. For Hamiltonians on a single cavity we can use rotations and dis-

placements but should steer clear of squeezing since this can convert photon loss into

a heating event.

We can redo this analysis for another set of {ϵ̂}hardware and {ϵ̂}corr. For instance,



5.2. The Hardware Fault-Tolerant ZZ measurement 168

Name Ĥ0 [Ĥ0, a] Ĥ0 and {a, b} satisfy error closure?

Rotation a†a a ✓

Displacement a+ a† 1 ✓

Beamsplitter ab† + a†b b ✓

Two-mode squeezing a†b† + ab b† ✗

Squeezing a†
2
+ a2 2a† ✗

optomechanical coupling a†a(b+ b†) a(b+ b†) ✗

(a+ a†)b†b b†b ✗

Cross-Kerr a†ab†b ab†b ✗

Table 5.3: Error closure for candidate Hamiltonians for bosonic codes de-
signed to protect from single photon loss. For bosonic codes designed to correct
against single photon loss, we can evaluate the commutator [Ĥ0, â] to see if the Hamil-
tonian could satisfy error closure. We find only the lowest order Hamiltonians make
good candidates for constructing gates. In the table, if Ĥ0 is a good candidate, so is
Ĥ0 ⊗ σ̂gf

z

in the GKP code small displacement errors are correctable. Suitable control Hamil-

tonians must convert small displacement errors during the gate to small displacement

errors after the gate. The number of control Hamiltonians that satisfy these error-

closure conditions is still quite small, although single and two mode squeezing are

now allowed (and rotations are no longer allowed!).

5.2.2 Why not just SWAP?

Given that SWAP gates generated via beamsplitter interactions satisfy error closure

to photon loss, one can presume it is easy to engineer an HFT cZZL unitary with

the circuit in Fig. 5.5. Swaps are used to ensure that the transmon ancilla state is

entangled with (and measures) both cavities before readout at the end.

However, we run into a problem. Most of the time, the transmon ancilla is on

the equator of the g-f Bloch sphere throughout the measurement. The dispersive

interaction is static, we cannot turn it off (easily). When we activate the parametric
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Figure 5.5: Realizing cZZL would be easy if you had instantaneously fast SWAPs!
In practice, we would need to realize a SWAP that is independent of the transmon
ancilla state.

beamsplitter to realize the SWAP gate, if we are in the ground state, our beamsplitter

will be on resonance and we will apply the Hamiltonian

ĤBS/ℏ =
gBS

2

(
â†b̂+ âb̂†

)
, (5.29)

but if we are in the |f⟩ state it is as though our beamsplitter is detuned from resonance

by χgf ! Since typically gBS ∼ χ and it is hard to engineer gBS ≫ χ we find ourselves

in trouble. What we would need is an unconditional beamsplitter, one that is on-

resonance regardless of the state of the transmon ancilla.

5.2.3 Evolution under a detuned beamsplitter interaction

The Eureka moment is that the same ‘problem’ we are trying to fix — a static

dispersive interaction that cannot be turned off during a parametric beamsplitter

interaction, can also be used to realize a cZZL unitary! What’s even better, is that

we will see this realization is HFT and is in fact even shorter than our original

proposed gate construction with the SWAPs in Fig. 5.5! To show how to engineer

cZZL, it is helpful to first consider general evolution under a detuned beamsplitter

Hamiltonian given by

Ĥ∆/ℏ =
gBS

2

(
â†b̂+ âb̂†

)
+∆â†â (5.30)
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Where we have chosen the convention where cavity mode â is the mode that is detuned

from resonance. We examine the dynamics of this Hamiltonian in the Heisenberg

picture, and see how the cavity mode operators transform according to

â(t) = U †
∆âU∆ (5.31)

b̂(t) = U †
∆b̂U∆ (5.32)

where U∆ = e−iĤ∆t/ℏ from which we find the rather long-winded analytical expressions

â(t) = e−
i∆t
2

((
cos

(
Ωt

2

)
− i∆

Ω
sin

(
Ωt

2

))
â− igbs

Ω
sin

(
Ωt

2

)
b̂

)
(5.33)

b̂(t) = e−
i∆t
2

((
cos

(
Ωt

2

)
+
i∆

Ω
sin

(
Ωt

2

))
b̂− igbs

Ω
sin

(
Ωt

2

)
â

)
(5.34)

where

Ω =
√
g2bs +∆2

At time t = 2π
Ω

, we find the cavity operators first ’return’ to their original value

with an additional phase shift:

â

(
t =

2π

Ω

)
= −e− i∆π

Ω â (5.35)

b̂

(
t =

2π

Ω

)
= −e− i∆π

Ω b̂ (5.36)

This is not a global phase shift! It corresponds to a measurable rotation of both

cavity modes corresponding to the unitary

U∆

(
2π

Ω

)
= eiϕ(a

†a+b†b), (5.37)

where ϕ = π(1− ∆
Ω
)

Now consider a control Hamiltonian consisting a parametric beamsplitter and a
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Beamspli�er
Coupling

Dispersive
Coupling

 Cavity  Transmon Ancilla Cavity  

Figure 5.6: cQED hardware and interactions needed to realize an HFT cZZL unitary.
Only a parametric beamsplitter coupling between the two cavities and a dispersively
coupled transmon ancilla is required. The dispersively coupling only needs to be to one
of the cavities. The |e⟩ level of the transmon is reserved only for detecting/correcting
first-order transmon decay

χ-matched dispersive interaction between cavity â and a control transmon.

Ĥ/ℏ =
gBS

2

(
â†b̂+ âb̂†

)
+
χ

2
â†â (|g⟩ ⟨g| − |e⟩ ⟨e| − |f⟩ ⟨f |) (5.38)

We engineer this Hamiltonian if we detune our beamsplitter pumps to satisfy |ω1 −

ω2| = |ωa + χ/2 − ωb|. The cQED Hardware needed for this control Hamiltonian is

shown in Fig. 5.6

If the control transmon is in |g⟩, it is as if ∆ = +χ/2 in the detuned beamsplitter

dynamics. If the transmon is in |f⟩ or |e⟩, it is as though ∆ = −χ/2. (And to make

things a bit more confusing χ is always negative!) This means, after applying the

Hamiltonian for time t = 2π/Ω, we have implemented the unitary

Û = eiϕ+(a†a+b†b) |g⟩ ⟨g|+ eiϕ−(a†a+b†b) (|e⟩ ⟨e|+ |f⟩ ⟨f |) (5.39)
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Where ϕ± = π(1∓ χ
2Ω
). This is almost the unitary we are after! We can re-factor this

unitary as

Û = eiϕ+(a†a+b†b)
(
|g⟩ ⟨g|+ ei

πχ

Ω
(a†a+b†b) (|e⟩ ⟨e|+ |f⟩ ⟨f |)

)
(5.40)

Which can be decomposed into a control unitary followed by an unconditional rotation

of both cavities by angle ϕ+. This unconditional rotation is not simply a global phase

but can be easily compensated by updating the phase on subsequent cavity pulses.

Now we just need to find the amplitude gBS for our parametric beamsplitter inter-

action such that the control unitary is cZZL for our n-fold symmetric bosonic code.

For this we require

π

n
=
πχ

Ω
(5.41)

Which is solved for

gBS =

√
n2 − 1

4
|χ| (5.42)

and applying the Hamiltonian for time

T =
2π

Ω
=

2π

nχ
(5.43)

Equations 5.42 and 5.43 give the conditions for the fastest possible cZZL unitaries

under this Hamiltonian. However, there are other ‘operating points’ that also realize

cZZL which may be more experimentally convenient, e.g., if we cannot reach a suf-

ficient gBS amplitude to satisfy Eq. 5.42, what should we do? One compromise is to

go around the loop ‘m’ number of times to consecutively build up the required phase

shift, acquiring phase π
nm

on each loop. This means we can engineer cZZL no matter

how slow gBS is, at the cost of an increase in total gate time.

Another degree of freedom we can use to find more valid operating points is to

notice the required total phase shift is not π/n, but instead (2k − 1)π/n for positive
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integer k = 1, 2, ...n (we restrict k ≤ n to avoid repeated values). We are taking

advantage of the fact ei
2kπ
n

â†â = 1L on the bosonic codewords.

This gives us the more general set of conditions to realize cZZL unitaries pa-

rameterized by positive integers (n,m, k) where k ≤ n, n is the n-fold rotational

symmetry of the bosonic codeword, m is the number of orbits we complete and k

is our choice of phase difference. We also introduce the parameter r = Ω/|χ| for

notational convenience.

r =
nm

2km− 1
(5.44)

T =
2πm

rχ
=

2π

χ

2km− 1

n
(5.45)

gBS =

√
r2 − 1

4
|χ| (5.46)

As well as implementing cZZL, we also implement an additional ‘unconditional’ ro-

tation on both cavities which must be tracked ‘in software’, given by

Ûu = eiϕu(a†a+b†b) (5.47)

Where

ϕu = mπ

(
1− 1

2r

)
(5.48)

We give examples cZZL operating points in Table 5.4. The naming of different

cZZL unitaries relates to their physical control operators. For instance, the parity

operator is P̂ = eiπâ
†â, the joint parity operator is ĴP = eiπ(a

†a+b†b) and the control-

joint parity operator (in the g-e manifold) would be cJP = |g⟩ ⟨g| + ĴP |e⟩ ⟨e|. The

convention continues for the ‘4-parity’ operator, given by 4̂P = ei
π
2
â†â.

In practice, realizing cZZL seems remarkably easy! All we need to do is tune the

amplitude of gBS to one of the valid operating points with detuning χ/2 from the

usual resonance condition. After applying a constant value of gBS for the appropriate
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duration, we will performed the cZZL unitary. In Sec. 5.2.5, we will show this unitary

satisfies error closure and is therefore HFT.

cZZL name (n,m, k) r gBS Duration ϕu

Control joint-parity (1, 1, 1) 1
√
3
2

|χ| 2π
χ

π
2

Control joint 4-parity (2, 1, 1) 2
√
15
2

|χ| π
χ

3π
4

(Fast)

Control joint 4-parity (2, 1, 2) 2
3

√
7
6

|χ| 3π
χ

π
4

(Slow)

Control-joint parity (1, 2, 1) 2
3

√
7
6

|χ| 6π
χ

3π
2

(2 loops)

General (n,m, k) nm
2km−1

√
r2 − 1

4
|χ| 2πm

rχ
mπ

(
1− 1

2r

)

Table 5.4: Operating points for realizing HFT cZZL for an n-fold symmetric bosonic
encoding.

So far our analysis of the dynamics has been analytical evolution in the Heisenberg

picture. However, it is possible to map these dynamics to a new kind of ‘Bloch sphere’

which allows us to use our intuition from the qubit Bloch sphere to explore all possible

dynamics generated from Ĥc and to design new control unitaries.

5.2.4 The Operator Bloch Sphere

The dynamics of the detuned beamsplitter are reminiscent of a detuned Rabi drive on

a two-level qubit. In fact they are completely analogous, and we can derive a ‘Bloch

Sphere’ for the cavity mode operators.
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First we rewrite our detuned beamsplitter Hamiltonian as

ĤBS/ℏ =
gBS(t)

2

(
eiφ(t)â†b̂+ e−iφ(t)âb̂†

)
+∆(t)â†â, (5.49)

Inspired by Schwinger’s angular momentum formalism of bosonic operators [Schwinger,

2001], we rewrite ĤBS with the ‘angular momentum operators’ L̂I = 1
2
(â†â + b̂†b̂),

L̂X = 1
2
(â†b̂ + âb̂†), L̂Y = 1

2i
(â†b̂ − âb̂†) and L̂Z = 1

2
(â†â − b̂†b̂), which allows us to

rewrite ĤBS as the parameterized Hamiltonian

ĤBS(gBS, φ,∆)/ℏ = gBS

(
cosφL̂X − sinφL̂Y

)
+∆

(
L̂Z + L̂I

)
.

For now we consider static (gBS, φ,∆) but this Bloch Sphere picture holds even when

these vary in time. We call these angular momentum operators since they obey the

commutation relations [L̂X , L̂Y ] = iL̂Z up to cyclic permutations of X, Y, Z. This is

the same commutation relation obeyed by the Pauli operators, i.e., [X̂, Ŷ ] = iẐ. To

make the analogy with a qubit Bloch sphere more explicit, a detuned constant Rabi

drive on a qubit has the Hamiltonian

ĤRabi = gRabi

(
cosφX̂ − sinφŶ

)
+∆Ẑ. (5.50)

Evolution under the detuned beamsplitter Hamiltonian corresponds to rotation about

a fixed axis of a Bloch sphere. To see how this arises we transform the mode operators

via the unitary operator Û = exp (−iĤBSt/ℏ),




â(t)

b̂(t)




=




Û âÛ †

Û b̂Û †




= e−i∆
2
tRn⃗(Ωt)




â

b̂



, (5.51)
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Figure 5.7: Applying the beamsplitter interaction, causes the bosonic operators to
evolve in time in the Heisenberg picture. The new modes are linear combinations
of the original mode operators â and b̂ and this time evolution can be represented
geometrically by the trajectories shown in blue. The evolution of b̂(t) is always the
‘mirror image’ of â(t). Trajectories orbit the precession vector n⃗, which is fully deter-
mined by Hamiltonian parameters: gBS and ∆ set the polar angle, θ, whereas φ sets
the azimuthal angle.

where Rn⃗(Ωt) = (cos Ωt

2
I− i sin Ωt

2
n⃗ · σ⃗) is a symplectic matrix in SU(2), which can be

interpreted as a rotation around a precession vector n⃗ = [sin θ cosφ,− sin θ sinφ, cos θ]

at rate Ω. The polar angle of the precession vector is determined by the ratio of the

coupling strength gBS to Ω such that cos θ = ∆/Ω and sin θ = gBS/Ω. Analogous to

state evolution on a qubit Bloch sphere, we plot the mode transformations at each

point in time to form trajectories on the Operator Bloch Sphere (OBS) as shown in

Fig. 5.7.

Here, the north pole represents the initial mode operator â and the solid arrow

represents the trajectory of the transformed mode operator â(t). Similarly, the south

pole represents the initial mode operator b̂ and the dashed arrow represents the trajec-
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Figure 5.8: When an ancilla is dispersively coupled to one of the bosonic modes, the
precession vector n⃗ becomes dependent on the ancilla state, yielding distinct vectors
n⃗g and n⃗f . Furthermore, if the ancilla is in a superposition of |g⟩ and |f⟩, the bosonic

modes will be in a superposition of the two trajectories shown in the figure. The b̂(t)
trajectories are antipodal to the â(t) trajectories and are not shown on this Bloch
sphere.

tory of the transformed mode operator b̂(t). The trajectory can be fully controlled by

modulating the complex amplitude of the beamsplitter interaction. The trajectories

for â(t) and b̂(t) are antipodal to one another, a consequence of the unitary nature of

the mode transformations. For simplicity we show only the trajectory of â(t) moving

forwards. The end points of the trajectories indicate the final mode transformations

of the original â, b̂ operators.

When our detuning ∆ becomes ancilla state dependent, so do our precession vec-

tors (their z components will differ) and trajectories on the OBS. This is shown in

Fig. 5.8 The geometric phase enclosed (the solid angle) by a trajectory has a physical

meaning. On a qubit Bloch sphere enclosing solid angle ϕ results in a global phase

shift, eiφ on the qubit state which is typically ignored. However, enclosing phase ϕ

on the OBS corresponds to the unitary R̂φ = ei
φ

2
(â†â+b̂†b̂), generated by the L̂I term
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in our Hamiltonian. The direction (clockwise or anticlockwise) in which we traverse

a loop on the OBS dictates the sign of ϕ. With this knowledge we can now make

sense of the cZZL trajectories plotted on the OBS in Fig. 5.9 Having found how to

implement the cZZL unitary, we can either use it as in Fig. 2.6 to perform a QND

ZZ measurement, or in Eq. 2.54 to realize the ZZ(θ) entangling gate. The rest of

this chapter will be mostly spent analyzing the Hardware Fault-tolerance properties

of both approaches.

5.2.5 A QND ZZ measurement and its Hardware Fault-Tolerance

The following gate construction in Fig. 5.10 performs a QND ZZ measurement. What

we are interested in is checking whether this measurement construction is HFT. We

first check that our general control Hamiltonian, Ĥc satisfies error closure.

Ĥc =
gBS

2

(
â†b̂+ âb̂†

)
+

χ

2
â†â (|g⟩ ⟨g| − |e⟩ ⟨e| − |f⟩ ⟨f |) (5.52)

The set of hardware errors is {ϵ̂}hardware = {â, b̂, |e⟩ ⟨f | , |g⟩ ⟨g| − |f⟩ ⟨f |}. For conve-

nience we define σ̂gf
z = |g⟩ ⟨g| − |f⟩ ⟨f |. The set of correctable errors is

{ϵ̂}corr = {â, b̂, σ̂gf
z , âσ̂gf

z , b̂σ̂gf
z , âb̂, âb̂σ̂gf

z , |e⟩ ⟨f | , â |e⟩ ⟨f | , b̂ |e⟩ ⟨f | , âb̂ |e⟩ ⟨f |}. By tak-

ing the commutation relations we start finding elements of {ϵ̂}ext.

[
Ĥc, â

]
= −

g

2
b̂−

χ

2
âσ̂gf

z , (5.53)

[
Ĥc, b̂

]
= −

g

2
â, (5.54)

[
Ĥc, σ̂

gf
z

]
= 0 (5.55)

[
Ĥc, |e⟩ ⟨f |

]
= 0 (5.56)

So far, {ϵ̂}ext consists of our original hardware errors and one additional error type,

âσ̂gf
z (ancilla dephasing due to cavity photon loss). To find all elements in {ϵ̂}ext, we
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Control-Joint Parity

Control-Joint 4-Parity

(Slow)

Control-Joint 4-Parity

(Fast)

Figure 5.9: Operator Bloch Sphere trajectories for cavity mode operator â(t) for
various cZZL operating points. We show trajectories conditioned on the ancilla being
in the |g⟩ and |f⟩ state. The |e⟩ state trajectory is omitted. If χge = χgf , â(t)|e⟩ =
â(t)|f⟩
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Figure 5.10: QND measurement of the ZZ operator via a transmon ancilla. We use
the g-f manifold of the ancilla. The two Hadamard gates (which may be replaced
with Xπ

2
or Yπ

2
gates) act only on the g-f manifold and do not affect the |e⟩ level.

need to calculate the next order of commutators, [Ĥc, [Ĥc, ϵ̂]] which adds one more

element to {ϵ̂}ext = {ϵ̂}hardware ∪ {âσ̂gf
z , b̂σ̂

gf
z }. Recalculating the commutators at

higher orders does not populate {ϵ̂}ext with any more error-types and since {ϵ̂}ext ⊂

{ϵ̂}corr we satisfy error closure.

Satisfying the error-closure condition tells us mathematically, everything should

be sound, but what are the physical consequences of each type of hardware error

occurring during the ZZ measurement?

Transmon Dephasing

The effects of transmon ancilla errors are almost identical to that of the HFT parity

measurement. Transmon dephasing, σ̂gf
z is error transparent, and so only inverts

the measurement outcomes but is otherwise completely QND on both the bosonic

qubits. The ‘bad’ measurement outcome can only be corrected by repeating the

measurement at least three times and majority voting. Dephasing during the short

transmon ancilla rotations is unlikely but still possible, and results in a measurement

error but is otherwise QND.

Transmon Decay

With χ-matching, Transmon decay, |e⟩ ⟨f | is error transparent to first-order. When

we detect the transmon ancilla in |e⟩ at the end of the measurement, we know we
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will have performed the unitary R̂φ = ei
φ

2
(â†â+b̂†b̂) on the cavities (depending on our

operating point) and need to attempt the measurement again. Transmon decay that

happens during the transmon rotations is also correctable.

Photon loss

As with an HFT parity measurement, photon loss during the unitary dephases the

transmon ancilla, resulting in a random measurement outcome. To correct for this er-

ror, we must employ additional HFT parity measurements after the ZZ measurement

and then any recovery unitaries.

Another subtlety present in the ZZ measurement is that undetected single photon

loss prior to a ZZ measurement results in random measurement outcomes for the

same reason discussed for the Z measurements in Sec.5.1.7.

For this purpose it is helpful to define two ‘modes of operation’ for a ZZ measure-

ment as in Fig 5.11. The first is for when we believe both bosonic qubits have the

same parity (both even or both odd) and the second for when we believe the parities

even, odd or odd, even. If we are unable to properly track single photon loss then

we may end up using the wrong mode of operation, and the ZZ measurements will

give us 50-50 random outcomes. In each case, the physical unitary we perform is the

same, but whether it is cZZL or ciZZL depends on the joint parity of the cavities.

5.2.6 How to error-correct a ZZ measurement (is it worth it?)

So far we have arrived at a scheme that satisfies HFT for a QND ZZ measurement for

bosonic qubits. HFT in this case states that the measurement is error-correctable,

i.e., it can be error-corrected but how would one actually perform error correction in

practice?

We can show how by presuming we are in the 4-legged cat code, where detecting

single photon loss is equivalent to correcting it through an update of the logical basis
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Figure 5.11: Two modes of operation for ZZ measurements. By default, we use the
gate circuit shown in the top row. If we suspect a single photon loss has occurred in
one of the modes, we use the construction in the bottom row. Physically, these gate
constructions are identical except the phase of the last π/2 pulse has been changed
by 90◦. We have also replaced the Hadamard gates with π/2 transmon rotations to
match what is typically done in experiments. The iZZ measurement will measure
the iZZ logical operator if the joint parity is even, and the ZZ logical operator if the
joint parity is odd.

(and for now we ignore the effects of no-jump backaction). How would one perform

a QND ZZ measurement? Such a measurement must tolerate one of the errors from

{ϵ̂}hardware occurring at any time during the whole measurement procedure. This

means we must a) still obtain the correct ZZ measurement b) be QND on the cavity

states.

A single error-corrected QND ZZ measurement will on average require around

six different measurements of the cavities. The large number of measurements arise

because we have a ‘who watches the watchman?’ conundrum. Each measurement we

introduce to check the other measurements for faults is itself faulty! Fortunately, we

can devise strings of measurements as shown in Fig. 5.12 that are finite in length that

all check each other for (first-order) errors sufficiently, but these measurement chains

can get rather long and incur substantial overhead (we still correct the first-order

errors in {ϵ̂}hardware but the probability of second-order errors increases).

The rationale behind these measurement strings is the following: the outcome of



5.2. The Hardware Fault-Tolerant ZZ measurement 183

(1)

P

ZZ ZZ

P

P P

(2)

P

ZZ ZZ ZZ

P

P P

(3)

P

ZZ ZZ ZZ

P

P P

(4)

P

ZZ ZZ

P

iZZ iZZ

P

P P P

(5)

P

ZZ ZZ

P

iZZ iZZ

P

P P P

Figure 5.12: Circuits (1-5) to perform an error-corrected QND ZZ measurement. Such
an operation has the same ‘entangling power’ as a CNOT gate. Key: Red: readout
misassigment error due to readout error, transmon dephasing or cavity photon loss.
Orange — wrong type of ZZ measurement performed because of a previous readout
error. White: error-free measurement. Green: ZZ outcome info used to sway majority
vote in the correct direction.
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the first two parity measurements tells us the type of ZZ measurement to perform

(ZZ or iZZ). If the wrong type of ZZ measurement is selected, e.g., due to an error

in the first set of parity measurements, then we obtain random outcomes. Book-

ending the string of ZZ measurements with parity measurements ensures no photon

loss occurred during the ZZ measurements, which would scramble the measurement

outcomes. Measurement sequences are adaptive. Most of the time, only two ZZ mea-

surements are needed to obtain a majority vote, but sometimes three are required if

there is a measurement error. A set of ZZ measurements must be ‘validated’ by the

two sets of book-ended parity measurements agreeing. If not, we perform the other

type of ZZ measurement. We can see we are accumulating a lot of measurements!

In words, we describe the algorithm for an error-corrected ZZ measurement:

1. For any measurement, if |e⟩ is detected, repeat the measurement until |g⟩ or |f⟩

is obtained

2. Perform two HFT parity measurements on cavities â and b̂. If (even,even) or

(odd,odd) outcomes are obtained, proceed with ZZ measurements, if (even,odd)

or (odd,even) are obtained, proceed with iZZ measurements.

3. Perform repeated HFT ZZ or HFT iZZ measurements. If the first two out-

comes agree (row 1 Fig. 5.12) of , proceed to the next step, otherwise, repeat

once more for a total of three measurement outcomes (rows 2 and 3 of Fig. 5.12).

4. Perform HFT parity measurements on the cavities again. If the parity mea-

surements agree with the first set, we have finished. Majority vote on the string

of ZZ measurements, and correct any photon loss errors in the cavity if needed

(e.g., if we detected (odd,even) and we are using the kitten code, correct photon

loss in cavity â). If however the second set of parity measurements disagree, we

must continue measuring ZZ info.
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5. Perform two more ZZ measurements. If we performed ZZ in the first set, now

we perform iZZ and vice versa. If there is disagreement in the first two results,

repeat up to three times.

6. Perform a third and final set of parity measurements on both cavities. If this

set agrees with the second set of parity measurements, use the last set of ZZ

measurements to majority vote (row 4 of Fig. 5.12). If the third set agrees with

the first set of parity measurements, use the first set of ZZ measurements for

the majority vote (row 5 of Fig. 5.12).

In undertaking the accounting for what is needed for an error-corrected ZZ mea-

surement (which could then be used in an error-corrected CNOT gate), we have seen

various overheads appear at the hardware level that are not just an increase in the

number of physical qubit modes. Remember if without error correction our error-rate

per operation is p2, and with error correction our error rate is Ap2 because we are

only sensitive to second order hardware errors, then A is the number that quanti-

fies the overhead. These overheads are in an increase in the average photon number

per qubit, the number of measurements per error-corrected logical measurements and

the increased time taken to perform error-corrected logical measurement sequences.

These overheads increase our susceptibility to second order hardware errors, to the

point where our error correction does not give us any tangible benefit compared to,

e.g., the 0-1 encoding without any HFT or encoding the qubits in the transmons

instead.

This is the main motivation behind the error-detection approach. Rather than

correcting errors at the hardware level, we will detect them. This greatly reduces the

difficulty in physical implementation and reduces the hardware overhead. The task

of correcting the hardware errors is off-loaded to the next layer of error-correction in

the form of erasure errors.
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Figure 5.13: Gate construction for realizing an error-detected ZZ(θ) gate for 2-fold
rotationally symmetric bosonic qubits. We detect first-order ancilla decay if we read-
out |e⟩, first-order ancilla dephasing if we readout |f⟩ and single photon loss errors
from the two QND HFT parity measurements performed after the gate. Once errors
are detected, the logical qubit information cannot be recovered. The gate angle θ is
parameterized by the intermediate ancilla rotation angle about the X axis.

5.3 The Error-Detected ZZ(θ) Gate

We now move on to the main result of this chapter, a scheme to realize a Hardware

fault-tolerant, error-detected ZZ(θ) gate for rotationally-symmetric bosonic code-

words.

The first thing we note when we set off down this path of error-detection is that

χ-matching is no longer needed. Removing χ-matching means we are no longer error-

transparent to |e⟩ ⟨f | but we can still detect this error. Upon detecting |e⟩ we will

know we will have performed some unknown detuned beamsplitter unitary that in

general takes us out of the codespace but preserves the total number of excitations

in the system. As such, it is safest to say we have detected a leakage error and must

completely reinitialize the affected qubits.

With the relaxed requirements of error-detection we can use the exponentiation

gadget with the cZZL unitary to realize the error-detectable ZZ(θ) gate with the

gate construction shown in Fig. 5.13. Unlike the error-corrected ZZ measurement,

which required multiple repeated measurements, the total sequence of gates here is

much shorter. What we are not showing are the steps needed to reset the qubits back
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into the codespace which would be needed if this error-detected gate were used in an

erasure qubit. This reset would be hardware and encoding specific.

At θ = π/2 this gate is locally equivalent to a CNOT. With very little hardware

modification, we have transferred from an error-correctable ZZ measurement that

looked rather tedious to actually error-correct to an error-detected ZZ(π/2) gate

which looks much simpler to experimentally realize!

5.3.1 Why is the exponentiation gadget only error-detectable?

We show briefly why such a gate construction is fundamentally only error-detectable

and not correctable. For this we switch back to the more general gate sequence and

replace cZZL with the more general control unitary Ûc and the sequence realizes the

gate Ô(θ).

The loss of error-correctabiliy can be traced to the two Ûc unitaries either side

of the X(θ) transmon rotation. Errors from {ϵ̂}hardware that happen anywhere in the

gate sequence will always be flagged at the end through three-state transmon readout

and/or HFT parity measurements on the cavities. However, the unitary that was

performed is now dependent on whether the jump error happened during the first Ûc

or second Ûc, information known by the environment but lost to us. We can illustrate

this with σ̂gf
z , a transmon dephasing jump. The gate construction can be written out

as the sequence of unitaries

e−iπ
4
ŶgfÛce

−i θ
2
X̂gfÛce

iπ
4
Ŷgf . (5.57)

which are applied sequentially from right to left on our initial states and includes

the π/2 transmon pulses. First we consider dephasing that occurs during the first Ûc
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unitary (which can be commuted through because it is error-transparent) and find

e−iπ
4
ŶgfÛce

−i θ
2
X̂gfÛcσ̂

gf
z e

iπ
4
Ŷgf (5.58)

= e−iπ
4
ŶgfÛce

−i θ
2
X̂gfÛce

iπ
4
Ŷgf σ̂gf

x (5.59)

= Ô(θ)σ̂gf
x (5.60)

= σ̂gf
x Ô(−θ). (5.61)

Dephasing that occurs during the second Ûc instead results in the overall gate

unitary σ̂gf
x Ô(θ). The ancilla ends in |f⟩ and the correct gate unitary Ô(θ) is applied.

From these two scenarios, if the ancilla is observed to be in |f⟩ it is unknown whether

the unitary Ô(−θ) or the unitary Ô(θ) was applied, this error is only detectable. Just

because we used error-transparent building blocks does not guarantee the full gate

construction will be error-transparent! Photon loss errors also cause dephasing on the

ancilla and thus is also only an error-detectable error. Once we detect photon loss via

HFT parity measurements after the gate, we don’t know if Ô(θ) or Ô(−θ) was applied.

Finally, even with χ-matching |e⟩ ⟨f | is also only a detectable error. Upon detecting

|e⟩, we are again unsure of whether the decay happened during the first or second Ûc

unitaries. Without χ-matching, transmon decay becomes a detectable leakage error

(applying a detuned beamsplitter Hamiltonian for unknown time will in general take

us out of the codespace). However, we can detect these leakages with high probability

by measuring the transmon in |e⟩ followed by qubit resets. In summary, gates made

from the exponentiation gadget are really bad at correcting hardware jump errors,

but they are very adept at detecting them!

5.3.2 Checking it works: master equation simulations

Now we must test how well our ZZ(θ) gate works, at least in simulation. We wish

to verify that the gate a) fails at rate ∼ p where p is the probability of an error from
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{ϵ̂}hardware occurring during the gate and b) has a strongly suppressed gate error

∼ p2 on attempts where no errors are flagged. We define the error-prone channel that

implements our gate as Egate(ρ) and the (perfect) measurement projector that detects

no errors for the kitten code to be

M̂pass = |g⟩ ⟨g| ⊗
(
1+ P

2

)

a

⊗
(
1+ P

2

)

b

(5.62)

and for the dual-rail code

M̂pass = |g⟩ ⟨g| ⊗
(
Π̂L

)
(5.63)

where Π̂L is the projector onto the dual-rail logical subspace (which acts on 4 cavity

modes.)

In words, we declare a successful gate attempt after measuring the transmon in

|g⟩ and no photon loss in either cavity from the parity measurements. In chapter 6 we

consider the effects of imperfect error-detection measurements but for now we model

them as perfect.

We also define the measurement projector for which we detect errors to be

M̂fail = 1q ⊗ 1a ⊗ 1b − M̂pass (5.64)

Overall gate performance can be quantified with two useful metrics: the average

gate failure probability pfail defined as

pfail =
1

36

∑

k

Pk(declare failure) =
1

36

∑

k

Tr
(
M̂failEgate(ρk)M̂

†
fail

)
(5.65)

Where Pk is the probability we declare failure for the kth cardinal state. The cardinal

states are defined as |ψk⟩ = |g⟩ ⊗ |ψ⟩a ⊗ |ϕ⟩b ∀ |ψ⟩ , |ϕ⟩ ∈ {|0L⟩ , |1L⟩ , |±+L⟩ , |±iL⟩}

for the logical bosonic codewords, of which there are 36 in total.

Similar we can define εpass to be the average state transfer infidelity of the gate
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given that no errors were detected, defined as

εpass =
1

36

∑

k

1− ⟨ψk|U †
gate

M̂passEgate(ρk)M̂
†
pass

Tr
(
M̂passEgate(ρk)M̂

†
pass

)Ugate|ψk⟩ (5.66)

where Ugate is the perfect ZZ(θ) gate unitary. In words this says εpass is the average

state transfer fidelity of the gate, given that it passed with no errors detected.

To perform master equation simulations we use the Hamiltonian

ĤχBS = Ĥχ + ĤBS(t) + ĤT(t). (5.67)

For the dispersively coupling in the static Hamiltonaian we use

Ĥχ/ℏ = −â†â
(χgf

2
|g⟩ ⟨g|

+(
χgf

2
− χge) |e⟩ ⟨ge|

−χgf

2
|f⟩ ⟨f |

)
,

(5.68)

where we choose χe/2π = −0.5 MHz, χgf/2π = −1 MHz, i.e., no χ-matching and we

are working in the frame where our beamsplitter drive is detuned from resonance by

χgf/2

The time-dependent beamsplitter and transmon drives are piecewise-constant

throughout the gate sequence and constant when realizing each unitary in the gate

construction. This allows us to neglect the effects of any particular choice of pulse

shape, since we wish to highlight how the overall protocol fidelity scales with various

error rates. Furthermore, because the beamsplitter and transmon pulses are never

simultaneous, we can define distinct time-independent Hamiltonians corresponding
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to beamsplitter operations and transmon operations:

ĤBS/ℏ =
gBS

2

(
â†b̂+ âb̂†

)

ĤT/ℏ = ϵxσ̂
gf
x + ϵyσ̂

gf
y ,

(5.69)

where ϵx and ϵy are the drive strengths of the two control quadratures coupled to the

g-f manifold Pauli operators σ̂gf
x = |f⟩⟨g| + |g⟩⟨f | and σ̂gf

y = i|f⟩⟨g| − i|g⟩⟨f |. For

each of the 5 gates that make up the gate sequence, we pick constant values for gBS, ϵx

and ϵy. During transmon operations, for now we neglect the dispersive coupling, as

this can also be compensated for with appropriate pulse shaping.

We then use this Hamiltonian in the Lindblad master equation:

dρ

dt
= −i

[
Ĥ, ρ

]
+ ΓT

1D[t̂]ρ+ ΓT
φD[t̂†t̂]ρ+ ΓC

1 D[â]ρ, (5.70)

where t̂ = |g⟩⟨e| +
√
2|e⟩⟨f | is the annihilation operator for the transmon mode and

D[L̂]ρ = L̂ρL̂†− 1
2
L̂†L̂ρ− 1

2
ρL̂†L̂ is the usual Lindblad dissipator superoperator where

ΓT
1 = 1/T

|g⟩⟨e|
1 ,ΓT

φ = 1/T
|e⟩⟨e|
φ ,ΓC

1 = 1/T loss
1 , where T loss

1 is the T1 relaxation time of

the cavity.

The Lindblad equation can also be expressed in terms of a Liouvillian L̂ as

dρ

dt
= −iL̂ρ, (5.71)

where L̂ρ =
[
Ĥ, ρ

]
+ iΓT

1D[t̂]ρ + iΓT
φD[t̂†t̂]ρ + iΓC

1 D[â]ρ. The collapse operator for

dephasing also includes dephasing of the |f⟩ level, which is expected to dephase at

rate 4/T
|e⟩⟨e|
φ , four times faster than the |e⟩ level although this is not exact because

transmons are anharmonic. Because the transmon and beamsplitter drives are either

enabled or disabled for each of the five steps in a given protocol, we can express the
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final state density matrix after the whole sequence described in Fig. 5.13 as

ρf = ÛT3
ÛB2

ÛT2
ÛB1

ÛT1
ρi = Egate(ρ

i) (5.72)

where each Ûj = e−iL̂jt is the (generally non-unitary) propagator under the time-

independent Liouvillian corresponding to a transmon pulse ÛT or beamsplitter pulse

ÛB in the presence of errors.

Now that we have a way to simulate the gate channel with errors, we can calculate

pfail and εpass as a function of coherence times in the transmon ancilla and cavity

lifetimes as shown in Fig. 5.14 for the ZZ(π/2) gate. (No intrinsic cavity dephasing

is modelled but the cavities still undergo dephasing due to transmon decay errors).

All ZZ(θ) gate simulations were performed by William Kalfus using the QuTiP

python library.

Gate failure, pfail results from a first-order jump error from {ϵ̂}hardware happening

during the gate, and therefore this probability scales linearly with decoherence rate.

Since we can detect these errors because the ZZ(θ) is HFT, εpass is only limited by

double jump errors (second-order errors) and hence scales quadratically, allowing us

to reach extremely low error-detected gate infidelities with typical cQED coherence

times.

Whether we can actually reach these coherence times in experiment depends on

how well our error-model actually captures the limiting experimental errors, and how

well we can engineer the required Hamiltonian. For instance, we have assumed perfect

parametric beamsplitter interactions. We can see readout errors do not pose too much

of a problem by replacing our ‘pass’ projector to be

M̂pass = (1−ηge−ηgf ) |g⟩ ⟨g|+ηge |e⟩ ⟨e|+ηgf |f⟩ ⟨f |⊗
(
1+ P

2

)

a

⊗
(
1+ P

2

)

b

(5.73)

Where ηge is the probability of reading out state g given that the transmon is actually
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Figure 5.14: Verifying Hardware Fault-tolerance in the simulated ZZL(
π
2
) gate construction, with εpass below

0.01%. Numerical simulation of error-detected ZZL(
π
2
) gate on two logical qubits in both the binomial encoding (top row) and

the dual-rail encoding (bottom row) under three separate error channels—ancilla decay, ancilla dephasing, and photon loss in
the bosonic modes. Here we plot pfail (red circles) and εpass (blue markers) vs coherence time. We also calculate εpass in the
presence of 1% (blue squares) and 5%(blue triangle) ancilla readout errors. Numerical fits to illustrate these scalings are shown
by the blue and red dashed lines. No photon loss data is shown for dual-rail since with perfect error-detection, this error is
always detected.
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in |e⟩ and ηgf is the probability of reading out state g given that the transmon is

actually in |f⟩. This is a simple error model shows that readout missassignment error

is also a second order error—we need two errors to go wrong to affect εpass, an ancilla

error followed by a readout assignment error. In Fig. 5.14 we analyze the cases where

ηge = 0.01 and ηge = 0.05 to model 1% and 5% readout errors. In all cases we also

assume ηgf = η2ge, since misassigning |f⟩ to g is usually only possible due to double

transmon decay events during readout.

5.3.3 Error scaling

The simulation results shown in Fig. 5.14 show that gate failure scales linearly whilst

error-detected gate infidelity scales quadratically, with each hardware decoherence

rate considered. The fits take the form An

(
τgate
Tcoh

)n

. For each of our error channels

we find A2 < A1. How can this be? The ratio A2

A1

quantifies the likelihood we suffer

a second error, given an error has already occurred. We find this number can be less

than 1? How can this be?

We begin with the case of photon loss. The probability of a single photon loss

occurring determines A1. For the binomial code, there are an average of 2 photons

in each bosonic mode for a total of 4 photons. Hence A1 ≈ 4 for the gate failure

probability. Similarly, for the dual-rail code A1 ≈ 2. Double photon loss in the kitten

code sets A2 for the error-detected gate infidelity. The probability of double photon

loss is 1
2

(
n̄τgate
Tcoh

)2

, where the factor of 1/2 comes from the fact that photon loss must

occur sequentially in a given time window. Half of the time, double photon loss results

in the detectable error âb̂. Overall, this means that A2 =
1
4
n̄2 ≈ 1

For the gate failure probability resulting from ancilla errors, A1 ≈ 1. A single

ancilla error results in a failed gate. The values of A2 for ancilla errors require

more detailed analysis. For ancilla dephasing, if two σz errors occur within the same

ancilla-controlled unitary, they cancel each other out. Only if they occur in different
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ancilla-controlled unitaries do they cause a gate error and hence we pick up a factor

of 1/2. When this error happens, the applied gate is ZZL(−π/2) which causes an

error on half of the cardinal states, yielding another factor of 1/2. Overall, this makes

A2 ≈ 1/4 for ancilla dephasing.

Finally, A2 for ancilla decay is the most involved to calculate. Double decay errors

require decay to |e⟩, then to |g⟩. The |g⟩ ⟨e| decay rate is presumed to be half the

|e⟩ ⟨f | decay rate, yielding an initial factor of 1/2. Decay to |e⟩ must happen before

decay to |g⟩ in the same time window, giving the next factor of 1/2. Most of the time,

double decay to |g⟩ will leave the system in a random ancilla state in the gf -manifold

due to the ancilla rotations in the sequence, and hence double decays are detected

as |f⟩ at the end of the sequence half of the time. Finally, we assume that when

double decay happens, the bosonic modes may be outside of the codespace, but still

have some overlap with the target states. This quantity is difficult to calculate. We

define it as Aleak < 1. Overall, this means that A1 = Aleak/8 < 1/8 for double ancilla

decay errors. In general, these combinatoric factors help further suppress the effects

of second-order ancilla errors.

These initial simulations are encouraging, and set a lower-bound on how low εpass

can be from these gates at the cost of a percent-level pfail. If used in an erasure code,

pfail would bound the erasure rate and εpass would bound the Pauli error rate (from

below). We can continue to refine our error-model and Hamiltonian modelling to see

what realistic experimental imperfections can impact gate performance.

5.3.4 Kerr and χ′

We know the pure dispersive interaction is only an approximation, with known higher-

order corrections. The next-highest-order terms are the self-Kerr and cross-Kerr be-

tween bosonic modes, as well as higher-order corrections to the dispersive interaction

itself. Although these are typically a factor of 100–1000 weaker than χ, set by
(
gc
∆

)2
,
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they present a source of coherent error unaccounted for in the proposed gate de-

sign. Here we quantify their effects on gate performance for realistic experimental

parameters.

The higher-order corrections are modelled with the Hamiltonian

ĤNL/ℏ =
Ka

2
â†â†ââ+

Kb

2
b̂†b̂†b̂b̂ (5.74)

+
(
χ′
gf |f⟩ ⟨f |+ χ′

ge |e⟩ ⟨e|
)
â†â†ââ (5.75)

+ χabâ
†âb̂†b̂, (5.76)

where Ka, Kb are the self-Kerrs of each bosonic mode, χ′
ge, χ

′
gf are higher-order cor-

rections to the dispersive interaction, and χab is the cross-Kerr between the bosonic

modes, which may result from both modes participating in the nonlinear element

used to actuate the beamsplitter coupling.

What is the expected error on εpass induced by these terms? We can write the

rates associated with these corrections as K̃ ∼ (Ka, Kb, χ
′
gf , χab). As a rough approx-

imation, these terms add a state-dependent detuning to the bosonic modes of order

∼ n̄K̃, where n̄ is the average photon number in the modes. From our intuition for

single qubit gates on a Bloch sphere, this detuning will cause the state to miss its

target by a small distance proportional to ∼ n̄K̃, which includes the possibility of

leakage out of the logical codespace. Since fidelity is quadratic in the state overlap,

our ancilla-controlled unitaries should only be quadratically sensitive to this detuning,

with an infidelity expected to scale as ∼ (n̄K̃τgate)
2 ∼

(
n̄K̃
χgf

)2

∼ n̄2
(
gc
∆

)4
.

When designing a device for experiment, we can control χgf through the geometry

of the device. Increasing this parameter causes τgate to decrease linearly but K̃ to

increase quadratically. As such, reducing χgf will always reduce the gate error from

ĤNL. On the other hand, reducing χgf will always increase the errors due to deco-
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Figure 5.15: Effects of Kerr and χ′ pfail (red circles) and εpass (blue circles) for three sets of coherence times as functions of
χgf . We investigate both the kitten code and dual-rail code and find optimal values of χgf ∼ 1 MHz for realistic (left column)
and optimistic (middle column) coherence times.
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herence by increasing τgate. These competing effects mean there is an optimal value

of χgf to engineer.

Simulations (performed by William Kalfus) displayed in Fig. 5.3.4 highlight the

competition between nonlinearity and decoherence. From typical values we measure

in experiment [Reinhold et al., 2020], we assume an initial operating point where

χ′
gf/2π = 2 kHz, χ′

ge/2π = 1.125 kHz and Ka/2π = Kb/2π = 2 kHz when χgf/2π =

−1MHz, and that these quantities scale quadratically if we were to vary χgf . We

also assume χab/2π = 100Hz for all χgf , chosen to reflect values attainable in modern

hardware. For the transmon pulse we again neglect the dispersive interaction and its

higher-order corrections.

The rightmost column shows that in the absence of decoherence, the error associ-

ated with nonlinearity scales quadratically in χgf as expected. The leftmost and cen-

ter columns highlight that when decoherence is introduced, the benefits of a weaker

coupling to the nonlinear ancilla are overridden by the increased incoherent error

experienced by the slower gate. This leads to an optimum which may be found for

different bosonic codes and decoherence rates. For the codes and parameters explored

here, we find the optimal χgf to be ∼ 1 MHz and observe persistent error-detected

gate infidelities ∼ 0.1% and below.

This simulations show that designing a HFT two-qubit gate can have big implica-

tions for reducing hardware error rates without needing to improve coherence times.

In the context of an erasure qubit, εpass represents the residual Pauli error when no

errors are detected. These simulations suggest we can achieve εpass ≲ 0.1%, far be-

low the Pauli threshold of ∼ 1% for circuit-level noise in a surface code. Even more

impressive is we can be below threshold when our hardware error rate is at the level

of ∼ 1% per gate!

The other requirement is that pfail, which would set the erasure rate per gate must

also be sufficiently below the erasure threshold of ∼ 5% for Yue Wu’s circuit-level
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noise model for erasure errors [Wu et al., 2022]. Our simulations show we can reach

pfail < 5%, εpass ≪ 1% for the dual-rail encoding which makes it a promising candidate

for an erasure qubit, especially since the two-qubit entangling gate is often a highly

error-prone operation in cQED.

Experimental implementation should be imminent, especially given that all these

building blocks (dispersive interaction, g-f control and parametric beamsplitters)

have all been experimentally realized individually to extremely high fidelity. [Wallraff

et al., 2004,Rosenblum et al., 2018b,Lu et al., 2023,Chapman et al., 2022]

5.3.5 Realistic pulse shaping

The last ‘added realism’ we will investigate for ZZ(θ) gates is the effect of exper-

imentally realistic pulse shaping. This addresses the practical constraint of finite

pulse bandwidth.We find pulse shaping can fix two unwanted effects that arise from

finite pulse bandwidth: unwanted dynamics during the gradual ramp-up of our beam-

splitter amplitude, gBS and unwanted dynamics during the short but finite-duration

transmon rotations. These unwanted dynamics are due to the ‘always-on’ nature

of the dispersive interaction between the transmon and cavity mode in the cQED

systems we consider. Crucially, we show that simple pulse shaping solutions do not

dramatically increase the duration or complexity of the gate. The full pulse sequence

example is illustrated in Fig. 5.16.

To engineer our example pulse, we split the ZZL(θ) gate into 5 parts which are in-

dividually optimized: 3 ancilla rotations and 2 identical cZZL unitaries. For simplic-

ity, we examine the ZZL(π/2) gate in the 0-1 encoding. We use optimal control pulses

found with GRadient Ascent Pulse Engineering (GRAPE) and simple pulse detunings

to compose our example pulse sequence. By analyzing the subsequent dynamics with

QuTiP master equation simulations we verify we can perform the gate with coherent

errors ∼ 0.01% and with expected error-detected gate infidelities ∼ 0.01%, showing
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Figure 5.16: Example of pulse shaping for a ZZ(π/2) gate in the 0-1 encoding. (a)
Pulse for the beamsplitter drive. Dashed line indicates the beamsplitter strength
required if we were to use rectangular (instantaneous ramp-up) pulses. (b) Pulse
shaping for the three ancilla rotations during the ZZ(π/2) gate. All pulses closely
resemble Gaussian 3π/2 pulses. (c) Latitude of the transmon on its g-f Bloch sphere,
showing that we respect the equal latitude condition for the four different possible
cavity states.
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how we can overcome finite-bandwidth effects without compromising the key benefits

of our gate.

Transmon rotations within the g-f manifold are expected to take 50–100 ns with

current hardware, since we must be careful to avoid unwanted leakage to the |e⟩

level (although this error is also detectable). We use GRAPE to find pulse ϵd(t) =

ϵx(t) + iϵy(t) with the Hamiltonian

H = ϵd(t) |f⟩ ⟨g|+ ϵ∗d(t) |g⟩ ⟨f |+
χ

2
(|g⟩ ⟨g| − |f⟩ ⟨f |) â†â,

working with the constraint that the transmon reaches the equator state (|g⟩ +

|f⟩)/
√
2 = |+⟩gf after 100 ns, regardless of whether there are one or zero photons in

cavity mode â. Future work can also explicitly model the transmon’s anharmonic-

ity in the Hamiltonian to minimize leakage to |e⟩ in the pulse. Here we assume our

transmon drive can directly drive transitions in the g-f manifold.

We find our numerically optimized pulses closely resemble Gaussian 3π/2 pulses

(rather than a π/2 pulses) to reach |+⟩gf . A similar pulse is also found for the final

transmon rotation, which takes |+⟩gf to |g⟩. For the intermediate transmon rotation,

we use a detuned Gaussian pulse of duration 40 ns, also with an amplitude close to

what would be required for a 3π/2 pulse. We chose the detuning and phase such that

the transmon state stays as close as possible to the equator plane of the g-f Bloch

sphere.

In order to preserve error-detection to transmon dephasing errors, we should ad-

here to what we call the equal latitude condition as closely as possible throughout the

gate. That is, the latitude of the transmon on its |g⟩-|f⟩ Bloch sphere should remain

independent of the state in the cavities at all times during the gate. We can see in

Fig 5.16 c. this is mostly the case for our numerically optimized pulse, except for the

intermediate transmon rotation where there is a slight deviation. Whilst we can no
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longer error-detect 100% of transmon dephasing events during this rotation, as far as

we can tell, this does not noticeably limit our error-detected gate fidelity in this par-

ticular pulse. Future pulse optimization efforts can take this equal latitude condition

into account in the cost function, which seems to be a more general requirement for

being able to detect ancilla dephasing errors.

Pulses for the cZZL unitary are found from the Hamiltonian

H =
1

2

(
g(t)a†b+ g∗(t)ab†

)
+
χ

2
a†a (|g⟩ ⟨g| − |f⟩ ⟨f |) ,

with the constraint g(0) = g(2π/χ) = 0. The solutions we find generally require gmax

slightly larger than
√
3
2
χ.

The total gate duration for χ/2π = 2 MHz is 1240 ns, which is close to the

4π/χ =1000 ns limit for the fastest gate time possible with our construction. The

actual unitary we implement is ZZL(π/2)Z1(θ1) where the additional single-qubit Z

rotation is an artifact of the static dispersive interaction. For this particular pulse,

θ1 = 0.03, an almost negligible effect. In the absence of decoherence, we obtain an

average gate infidelity of 0.015% and average failure probability of 0.039% (both due

to coherent control errors).

We expect to be only quadratically sensitive to pulse shaping errors. When we

model pulse amplitude error by increasing all pulse amplitudes by 0.5%, we obtain an

average gate infidelity of 0.030% and average failure probability of 0.065%. Similarly,

when we detune all pulses by +10 kHz, we obtain an average gate infidelity of 0.030%

and average failure probability of 1.8%, mainly from detuned ancilla pulses.

When we set T
|g⟩⟨e|
1 = 100 µs, T

|e⟩⟨e|
φ = 100 µs, T loss

1 = ∞ we find an average gate

failure probability of 2.4% and an average error-detected gate infidelity of 0.019%,

demonstrating that we maintain low error rates. (Including photon loss, we estimate

an additional 0.2% failure probability if we were to use this pulse sequence for the
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Dual-Rail encoding with T loss
1 =1 ms per cavity).

5.4 Pole-to-Pole: other useful trajectories on the Op-

erator Bloch Sphere

Unlike a qubit Bloch sphere, we must be careful to only take trajectories that leave us

back in the codespace. For this to be the case, the trajectory must end at one of the

poles. At intermediate times, the evolution takes us out of the codespace but thanks

to HFT, we can detect for errors that happen whilst we are out of the codespace

after the gate, once we are back in the codespace (or the photon loss error space).

This means there are only two types of trajectories. Ones where we end at the same

pole we started from (performing R̂φ for geometric phase ϕ enclosed, or trajectories

where we end at the opposite pole corresponding to a R̂φSWAP unitary applied to

the cavities.

With the constraint that the cavities must return back to the codespace, this

means we can only engineer entangling unitaries of the form ZZ(θ) with the control

unitary cZZL or eSWAP(θ) via the control unitary cSWAP, or combinations of

the two. This is not too surprising since our Hamiltonian restricts us to excitation-

preserving two-qubit gates anyways. One curiosity is that the OBS gives us several

ways to realize the cSWAP control unitary, where one trajectory returns to the initial

pole and the other returns to the opposite pole as shown in Fig. 5.17. The geometric

phase enclosed along the paths are different so this does not do cSWAP exactly but

rather the unitary

R̂φg
|g⟩ ⟨g|+ R̂φf

SWAP |f⟩ ⟨f | (5.77)

Where unwanted Rφ control unitaries must be mitigated, e.g., by adding delays before

and after the control untiary.
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SWAP

uSWAP

Figure 5.17: Trajectories on the operator Bloch sphere for cSWAP and unconditional
SWAP (uSWAP) unitaries. The geometric phase enclosed by the trajectories is
different, resulting in additional unwanted unitaries of the form |g⟩ ⟨g|+R̂φf−φg

|f⟩ ⟨f |
which can be nulled by adding delays before and after the unitary.
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The other trajectory of interest is what we call the ‘unconditional SWAP’ where

the cavity states are swapped regardless of the state in the transmon. We can almost

achieve this with trajectories on the Bloch sphere as shown in Fig. 5.17 which can

be engineered by detuning the parametric beamsplitter by χgf/2 and ensuring gBS ≥

χgf/2. Once the trajectories reach the equator of the OBS we perform a π-pulse in

the g-f manifold to effective reverse the detunings. Similarly, this does not implement

a true unconditional SWAP unitary but rather the unitary

R̂φg
SWAP |g⟩ ⟨g|+ R̂φf

SWAP |f⟩ ⟨f | (5.78)

=R̂φg
(SWAP |g⟩ ⟨g|+ R̂φf−φg

SWAP |f⟩ ⟨f |) (5.79)

Again, the unwanted conditional rotations must be undone by adding delays before

and after the unitary and using the dispersive interaction, or by finding trajectories

such that R̂φf−φg
= 1L.

Another way to perform unconditional SWAP is to detune our beamsplitter cou-

pling by χ/2 as usual, and set gBS = |χ|/2 such that the polar angle of both precession

vectors is 45◦. After applying this Hamiltonian for time t =
√
2π/χ, both trajectories

reach the equator (and are antipodal). If we then flip the sign of the beamsplitter

drive, such that gBS = −|χ|/2 then after the same duration both trajectories will

reach the southpole at the same time. The area between these trajectories on the

OBS is 2π steradians. This trajectory is shown in Fig. 5.18.

Since the parametric beamsplitter interaction on the Operator Bloch Sphere is

analogous to a Rabi drive on the qubit Bloch Sphere, any pulse shaping techniques

(such as composite pulses) are also transferable.
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uSWAP

Figure 5.18: Trajectories for an unconditional SWAP. This time, we flip the sign of
gBS rather than χ at the halfway point in the sequence. The conditional trajectory is
shown by blue (red) circles for transmon state |g⟩ (|f⟩)

5.4.1 A family of excitation-preserving two-qubit gates

As we explored back in Sec. 2.2.4, Z(θ), ZZ(θ) and eSWAP(θ) can construct any

excitation-preserving gate. In this chapter, we have shown each of these constituent

gates can be HFT when error-detected and realized with the dispersive Hamiltonian

and a parametric beamsplitter (which themselves are also excitation-preserving). It

then follows we can realize any excitation-preserving gate on rotationally symmetric

bosonic codewords with this HFT error-detection property. Below we list recipes for

constructing some more well-known gates from these building blocks:

CPHASE(θ)=

Z(− θ
2
)

ZZ(θ)

Z(− θ
2
)

iSWAP(θ)= ZZ(−θ) eSWAP(2θ)
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fSim(θ, ϕ)=

Z
(

−φ

2

)

ZZ
(

−θ + φ

2

)

eSWAP(2θ)

Z
(

−φ

2

)

where fSim is the fermionic simulation gate. (See [Google AI Quantum et al., 2020])

Are excitation-preserving gates sufficient to perform universal computation? Yes! But

we must use a multimode encoding. The dual-rail code is the simplest multimode

encoding for which all logical gate operations are excitation-preserving.

5.5 Conclusions

We began this chapter with the goal of finding an easy-to-engineer two-qubit entan-

gling gate for some common bosonic qubits (the rotationally symmetric ones designed

to correct for single photon loss). Most of the time on a quantum processor will be

spent doing gates, rather than idling so it is important that this gate be able to correct

for bosonic errors (i.e., photon loss) that occur before, after or during the gate.

This turned out to be non-trivial! There are only a few Hamiltonians we can

engineer (namely linear and bilinear couplings as shown in Tab. 5.3 ) that preserve

this property! We also need a control-ancilla (we opt for a transmon) to give us

the non-linearity required for these gates3, but now we are even more susceptible to

ancilla errors which corrupt our bosonic qubits!

The property we want our two-qubit gates to have is hardware fault-tolerance

(HFT). That is, the dominant errors in the ancilla and cavities may occur during the

gate, but are still correctable after the gate. Moreover, as we saw with eSWAP, just

because our building blocks are HFT does not gaurantee the overall gate construction

is HFT.

3. For the GKP code, we can realize all Clifford gates with Gaussian operations which do not

require a control-ancilla
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We have found two easy-to-implement solutions to this problem that use only

the dispersive interaction and a parametric beamsplitter interaction with hardware

in Fig 5.6. Both are based on being able to engineer the cZZL unitary and control

an ancilla transmon in its g-f manifold. The first solution is an error-corrected QND

ZZ measurement which in principle has the same ‘entangling power’ as a CNOT gate

but in practice requires many repeated measurements to check for errors. The second

solution is not to do error-correction, but error-detection, which allows us to use the

exponentiaton gadget with cZZL to realize a ZZ(θ) gate. For θ = π/2 this gate is

locally equivalent to a CNOT.

The fact that hardware jump errors may be detected but not corrected is not as

limiting as we might think. We do not have to postselect out attempts that detect

errors, instead we can flag these as erasure errors and fully correct them in the next

layer of the code. In fact, the error scaling ends up being the same as the case where

we fully corrected these errors at the hardware level!

If we are now only detecting errors at the hardware level, it makes more sense to

use a bosonic code that is designed to detect single photon loss rather than correct for

it. Our choice of code for this is the dual-rail encoding. This will in fact make our lives

a lot simpler! Having such simple codewords will vastly simplify the set of operations

needed for full quantum computing. We now move onto the next chapter, where

we lay out a new architecture for quantum computing based entirely on the dual-

rail code for microwave cavities, where the goal is now to detect dominant hardware

errors, convert them to erasure errors and correct them in the next level of encoding

which will be the surface code.



CHAPTER 6

The Dual-rail Code with

Superconducting Cavities

6.1 Error-detection Enables Erasure Qubits

So far we have considered ways to realize hardware-fault tolerance in bosonic qubits in

cQED. What we have found is error-detection of hardware errors is significantly easier

than error-correction at the hardware-level, but provides much of the same benefits

thanks to the possibility of using the physical qubits as erasure qubits. We saw back

in Chapter 3 that if one can detect ‘first-order’ hardware errors and treat them as

erasures, to leave a residual set of ‘second-order’ hardware errors that contribute to

the Pauli noise, then our erasure qubit will have close to the optimal ratio of erasure

to Pauli errors for a stabilizer code designed to correct for both Pauli and erasure

errors.

Ultimately, what we want for practical error correction (with say a surface code

or similar large-scale error correction code with a threshold) is for error rates on the

physical qubits to be far-below their respective error thresholds. Erasure qubits pro-

209
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vide a path to achieving this with a lot less stringent demands on the hardware error

rates, the rate at which jump errors occur due to physical processes. In particular,

1% level hardware errors are now acceptable. In cQED experiments, achieving 1%

error rates in all operations (gates, measurements and error-detection itself) is immi-

nently doable, with logical measurement recently demonstrated [Chou et al., 2023].

Achieving 0.1% error rates to be sufficiently below threshold for a standard surface

code (without erasure qubits) in all operations has been achieved for gates [Sung

et al., 2021] on small scale processors but not state preparation and readout (and

gate fidelity degrades in larger scale systems [Acharya et al., 2023].)

The dual-rail code with superconducting cavities is then the simplest way we can

think of for realizing an erasure qubit in cQED. The dominant hardware jump errors

are detected and treated as erasures to first-order, and ‘double-jump’ errors and much

rarer hardware errors set the Pauli error rate. The dual-rail architecture we propose

here provides recipes to combine the well-established building blocks of cQED in

new ways to realize all operations needed for a good erasure qubit. These building

blocks are transmons, dispersive coupling of transmons to microwave cavity modes

and single-shot dispersive readout of the transmon. Aside from the recent realization

of high-fidelity beamsplitters, there is nothing fundamentally new in the hardware.

Rather, we are combining the building blocks we all know and love in a new way,

within the paradigm of error-detection and erasure qubits.

It is no accident that the development of dual-rail cavity qubits coincided with the

advent of high-fidelity cavity-cavity beamsplitter operations [Lu et al., 2023,Chapman

et al., 2022]. Bosonic encodings such as GKP or cat qubits rely on parametric beam-

splitter operations or related processes to do entangling gates. From an experimental

perspective, the dual-rail encoding is attractive because it only requires a beamsplit-

ter interaction for single qubit gates, and a beamsplitter interaction combined with a

cavity-transmon dispersive interaction for entangling gates.
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In this architecture we must delicately balance how we deal with hardware errors

in not just the transmon ancilla but also the cavities, in all operations! In the previous

chapter we already solved this problem with an HFT error-detectable cZZL which can

be used for both dual-rail entangling gate and mid-circuit erasure detection, arguably

the most difficult parts of realizing an erasure qubit. As we unveil our architecture we

will also detail schemes for state preparation, logical readout and single-qubit gates

and take into account as many known experimental errors and imperfections as we

can to make our proposal as water-tight as possible.

Compared to other bosonic codes, the dual-rail code is remarkably simple and

has been largely overlooked until recently in cQED, because it was largely assumed

that one had to correct bosonic errors such as photon loss at the hardware level,

before concatenation. The concept of the erasure qubit alleviates this requirement,

allowing one to detect errors at the hardware level and correct them at the level of

the stabilizer code instead by treating them as erased physical qubits.

6.2 Engineering the Error Hierarchy

The concept of erasure qubits has seen a renaissance at the time of this writing in

several qubit platforms. In neutral atoms/trapped ion platforms, erasure qubits are

attractive because leakage errors during two-qubit gates can be the largest source of

error, but converted to erasures if mid-circuit erasure conversion can be performed

[Wu et al., 2022, Ma et al., 2023, Kang et al., 2023]. What sets cQED dual-rail

proposals apart is that most aspects of the system can be specifically engineered to

have detectable errors. In our case, the choice of bosonic codewords, the exact way the

control ancillas interact with the cavities, and the choice of parametric interactions

all ensures that the dominant first-order hardware errors are easily detectable via

standard transmon measurements, and remaining errors contribute to a much smaller
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Pauli error rate (and an even smaller leakage rate). We call this engineering the error

hierarchy. Whilst an idle qubit may naturally exhibit a strong hierarchy of errors, it

is not something that tends to occur by default in qubit operations and care needs to

be taken when designing every operation to ensure we preserve the error hierarchy.

One way to think about what this means is to imagine there are three relevant

‘error hierarchies’. The first is the Optimum error hierarchy. Any stabilizer code

can correct for double the number of erasure errors per round as Pauli errors, and it

can correct for simultaneous erasure and Pauli errors (assuming both are well below

their relevant thresholds. Thresholds can only really be numerically computed by

holding one error rate fixed and varying the other). In the optimum error hierarchy

we have

pErasure > pPauli > pLeakage (6.1)

p > p2
pPauli

th

(pErasure

th )
2 > 0 (6.2)

p > 4p2 > 0 (6.3)

Where the last line is when we assume the erasure model in [Wu et al., 2022] and

p is the characteristic probability of a hardware jump error happening during an

operation. All the optimum error hierarchy says is this is the ideal ratio of erasure

to Pauli errors for both to contribute equally to the total logical error rate (assuming

both are far-below threshold and large code distance).

Next we have the Idling error hierarchy. This is the hierarchy of error rates

when we do no operations on our physical qubits, except those needed to preserve

the qubit information as a quantum memory. For an erasure qubit, this just means

we perform mid-circuit erasure detection and no other operations. This sets a lower

bound for how good the Operational error hierarchy can be.

The operational error hierarchy is ultimately the one we care about and the one we
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compare with the optimum error hierarchy. These are the average error rates whilst

doing single-qubit gates, two-qubit gates, physical qubit state preparation and readout

— everything else needed to run a quantum computer. Our choice of physical qubit

sets the idling error hierarchy, and our design of the gate/measurment operations

sets the operational error hierarchy, which is inevitably worse than the idling error

hierarchy but still aims to adhere closely to the optimum error hierarchy.

If the operational error hiearchy does not match the optimum error hierarchy but

error rates are still below threshold for our noise-model, this is still quite a good

spot to be in! What this means is that either the erasure rate or the Pauli rate will

become the limiting error rate at large code distances and the other error type will

become negligible, e.g., if pErasure = 2% and pPauli = 0.001% then both could be below

threshold in a surface code, but the logical error rate will quickly be dominated by

the erasure errors as we scale to larger code distances.

6.3 Dual-rail in Microwave Cavities

Why do we choose to encode our information in microwave cavities? Three arguments

are often given. For a bare cavity:

• Dominant error channel is single photon loss, dephasing is negligible

• Long T1 times, exceeding the best J.J.-based qubits by 10× or more

• They have a large Hilbert space in which we can redundantly encode information

The dual-rail cavity qubit benefits greatly from the first two points. (As we have seen

in Chapter 5, the last point is often more of a hindrance!). Two cavity modes (Alice

and Bob) are required to realize the dual-rail qubits with a single photon shared

between them. The |0L⟩ and |1L⟩ states are defined with the photon residing in Alice
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or Bob as |0⟩
L
= |01⟩ and |1⟩

L
= |10⟩. We can quickly see why this makes a good

erasure qubit.

Under only photon loss, we can decay to the leakage state |00⟩. We call this a

cavity decay error in a dual-rail qubit. To very good approximation, this is the

only error that can occur in an idle dual-rail cavity qubit. It is not desirable to

stay in this leakage state for long. Although it is a rather inert state, we saw in

Sec 3.1.6 of Chapter 3 how damaging leakage errors can be if they are allowed to

accumulate. For this to be converted to an erasure error, we must use mid-circuit

erasure detection which distinguishes between the leakage space {|00⟩} and the dual-

rail codespace {|01⟩ , |10⟩}, without destroying the coherence of superpositions of

states in the codespace! Later in Sec. 6.5.5 we give ways of realizing the mid-circuit

erasure detection, e.g., via the QND joint-parity measurements introduced in Sec 5.2

of Chapter 5.

The dual-rail cavity qubit has multiple hardware components - two supercon-

ducting cavities (Alice and Bob), a single parametric coupler, and a single transmon

ancilla with its own dispersive readout, as shown in Fig. 6.1.

6.4 Expected Idling Error Hierarchy

To estimate the physical error rate of the proposed dual-rail cavity qubit during idling

time, and the logical errors in the encoded qubit they can cause, we assume typical

performances achievable for the individual components today. We also assume that

our qubits will not be idle for more than ∼1 µs

By construction, the idling error hierarchy shown in Tab. 6.1 is well-aligned to

the optimal error hierarchy of an erasure qubit: the dominant error is photon loss

out of the computational space caused by the average cavity relaxation at rate κ̄ =

(κa+κb)/2, which, by measuring the joint photon number parity, can be converted into
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Beamspli�er
Coupling

Dispersive
Coupling

 Cavity B Transmon Ancilla Cavity A

Figure 6.1: cQED hardware needed to operate one dual-rail cavity qubit. The para-
metric beamsplitter interaction is shown in purple whilst a transmon ancilla operated
in its g-f manifold is shown in green.

erasure errors. During the idling time, phase flip events are predominantly caused by

heating events in the transmon, where n̄th,A is the average thermal ancilla population

and Γ1,A the energy relaxation rate. We also presume a phenomenological intrinsic

cavity dephasing rate of 10ms although the actual rate is thought to be much lower

for typical 3D microwave cavities.

By measuring the transmon via dispersive readout and ensuring it remains in its

ground state we can detect ancilla heating events, at least to first-order. Changes in

population in the |01⟩ ↔ |10⟩ states are a consequence of the no-jump backaction,

a second-order effect, in the event that there is a finite difference ∆κ = κb − κa be-

tween the single-photon decay rates of the cavities, or by the unlikely combination of

a cavity decay and heating event, resulting in extremely low rates. Leakage events

in the cavities are in principle always detectable by performing the appropriate mea-

surements of the cavity populations; if not by joint-parity measurements then by the
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Error process Scaling
Probability

in 1 µs

Erasure

noise bias

Effective

lifetime
Error type

cavity photon loss κ̄t 10−3 1 1ms Leakage*

cavity heating n̄thκ̄t 10−5 102 100ms Leakage*

cavity dephasing γϕt 10−4 101 10ms Phase flip

ancilla heating n̄th,AΓ1,At 10−4 101 10ms Phase flip*

no-jump backaction
(

1
4
∆κt

)2
10−6 103 1 s Phase flip

cavity photon loss + heating n̄th (κ̄t)
2 10−8 105 100 s Bit flip

cavity heating ×2 3 (n̄thκ̄t)
2 10−9 106 ∼ 1 h Leakage

*=can convert to erasure error via mid-circuit measurements.

Table 6.1: The expected idling error hierarchy for a dual-rail cavity qubit.

appropriate set of number-selective π-pulses or similar. However, joint-parity mea-

surements alone should be sufficient to discern the vast majority of leakage events to

|00⟩, the most common leakage state and |11⟩, the next most common leakage state

(already rare with probability 10−5 per µs.)

For the calculation of the error probabilities, we assume single-photon decay rates

of κa = (1.5ms)−1 and κb = (0.5ms)−1 for the cavities where we have chosen ∆κ ∼ κ̄

to examine the ‘worse case scenario’ for no-jump backaction, Γ1,A = (100 µs)−1 for

the ancilla transmon, pure dephasing rates γϕ,a = γϕ,b = (20ms)−1, and a thermal

population n̄th = n̄th,A = 0.01 for both the cavities and transmon ancillas. We define

the erasure noise bias to refer specifically to erasure errors happening much more

frequently than all other types of errors such as Pauli and leakage errors. The erasure

noise bias is quantified for each error process by comparing to the cavity photon loss

error rate, the dominant source of erasure errors in the system when idling.

Some of the idling coherence times in Tab. 6.1. have been measured or bounded

by recent experimental work by [Chou et al., 2023], on which I am a co-author.
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6.4.1 No-jump backaction

No-jump backaction is a curious error in an idle dual-rail qubit. Although it is pro-

jected to be a small error at short times, and completely correctable by regularly

applying SWAP operations to the cavity to echo-out the error, it is interesting from

a theoretical perspective and is relevant for the long-time dynamics of an idling dual-

rail qubit. This polarization error channel can be written with only 1 and Z Pauli

operators making it a dephasing channel. Unlike ‘pure’ dephasing due to, e.g., fluc-

tuations in a mode’s frequency which only act to destroy the coherence in a superpo-

sition, no-jump backaction affects the state populations in |0L⟩ and |1L⟩, increasing

the probability of being in the less lossy cavity.

Within the short time interval δt we can model decay in a dual-rail cavity qubit

with the set of Kraus operators

Ê0 =
√

1− p |01⟩ ⟨01|+
√

1− q |10⟩ ⟨10|

Ê1 =
√
p |00⟩ ⟨01|

Ê2 =
√
q |00⟩ ⟨10|

(6.4)

Where p is the probability of photon loss in cavity Bob with probability p = κbδt

and q is the probability of photon loss in cavity Alice with probability q = κaδt. The

Kraus operator Ê0 represents no-jump backaction and can be written in the form of

a dephasing channel as

Ê0 =

√
1− p

2
(1+ ZL) +

√
1− q

2
(1− ZL) (6.5)

Where ZL = |01⟩ ⟨01| − |10⟩ ⟨10| is the logical Z operator for the dual-rail cavity

qubit and 1L = |01⟩ ⟨01| + |10⟩ ⟨10| is the projector onto the dual-rail codespace.

Alternatively, we can rewrite this channel for any idling time t by combining the
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no-jump backaction for two cavities as

Ê0 = e−
1

2(κaa
†a+κbb

†b)t (6.6)

When projected onto the dual-rail codespace this becomes

Ê0 = e
∆κt

4
ZL (6.7)

where ∆κ = κa − κb. The sign of ∆κ dictates which cavity we polarize our state

populations towards.

6.5 Operating One Dual-rail Cavity Qubit

The hardware shown in Fig. 6.1 is capable of all operations needed for one dual-rail

cavity qubit. This includes state preparation, readout, single qubit gates and mid-

circuit erasure detection. The dual-rail Bloch sphere and control spaces are shown in

Fig. 6.2

6.5.1 State preparation

Preparing a state in the logical Z basis is simply a matter of loading a single photon

into one of the two cavities. This may be done via optimal control pulses [Heeres

et al., 2017] or cavity-transmon sideband drives [Wallraff et al., 2007, Premaratne

et al., 2017,Rosenblum et al., 2018a,Elder et al., 2020]. We can tolerate some errors

better than others during state preparation. For instance, if the primary error during

state preparation is unknowingly preparing |00⟩ then this is an example of an inert

leakage error which will be quickly detected in our mid-circuit erasure detection.

However, if we use OCT pulses, we may populate higher states of the cavity and

errors during OCT may leave us in harder to detect odd-parity leakage states such as
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Leakage states

Logical subspace

Leakage 

states

Figure 6.2: (Top) Codespace and control manifold for a dual-rail cavity qubit. The
dual-rail qubit is operated within the {|01⟩ , |10⟩} subspace of the cavities. The trans-
mon ancilla is operated in its g-f manifold (except for dual-rail logical measurements.)
All other states are (detectable) leakage states. The most common leakage states are
|00⟩ due to cavity decay and |e⟩ in the transmon due to transmon decay. (Bottom)
The dual-rail Bloch sphere with the logical state represented by the blue vector. With
only a parametric beamsplitter interaction (purple) we can perform arbitrary rota-
tions in this Bloch sphere.
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|30⟩.

Regardless of our method of state preparation, we can always verify if our state

preparation was successful by measuring if the cavity contains one photon (through

selective π-pulses or photon number parity measurements and transmon readout).

Single photon states cannot be dephased and the main error we incur from this check

is a higher probability of preparing |00⟩ due to undetected cavity decay during the

verification measurement itself. With current state of the art, it should be doable

to prepare single photon states with > 99% fidelity, with the dominant error being

decay to |00⟩.

6.5.2 Logical measurement with in-built erasure detection

Logical measurement of a dual-rail cavity qubit was recently demonstrated in [Chou

et al., 2023]. The measurement scheme is similar to what we present in this section

and this work confirms that low SPAM errors and logical assignment errors are indeed

possible with these qubits.

Logical measurement in the Z basis of a dual-rail cavity qubit (or the physical

qubit measurement if we are concatenating with an outer stabilizer code) is a bit

different than usual logical measurement. Since we are using an erasure qubit, we

can assign three possible outcomes from the measurement: ‘0’, ‘1’ or ‘erasure’. The

type of erasure detection we do here is ‘end-of-the-line’ (EOTL) erasure detection,

and we do not worry about whether our erasure detection dephases the states in the

dual-rail codespace, since we are performing a logical measurement in the Z basis

which dephases the dual-rail qubit anyways.

We walk through a scheme whereby repeated photon number measurements on

each cavity in the dual-rail qubit are used to perform a logical measurement with in-

built erasure detection. The circuit for this measurement is shown in Fig. 6.3 along

with the interpretation of the assigned measurement outcomes.
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- correct outcome

- incorrect outcome causes erasure

- incorrect outcome causes Pauli error
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Figure 6.3: The table shows the three most likely input states |01⟩, |10⟩ and |00⟩
together with their input probability, where p is the probability of a cavity decay
event prior to the measurement, leaving the system in |00⟩. We set p = 1% which
is the erasure probability due to photon loss in the cavities after approximately ten
two-qubit gates. Depending on the input state, the outcome of the measurement is
either correctly assigned to the actual input state (green ticks), incorrectly flagged as
an erasure (orange), or incorrectly assigned to the logical states (red cross) resulting
in a Pauli error. The circuit shows one way of performing this measurement with
nrounds of repeated parity measurements on each cavity.
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Declared Outcome

|0⟩L |1⟩L Erasure

1R (e,g) (g,e) (g,g),(e,e)

2R
(e,g,-,-)

(g,g,e,g),(e,e,e,g)

(g,e,-,-)

(g,g,g,e),(e,e,g,e)

(g,g,g,g),(e,e,e,e)

(g,g,e,e),(e,e,g,g)

2R∗ (e,g,e,g) (g,e,g,e) all other strings

3R (ẽ, g̃) (g̃, ẽ) (g̃, g̃),(ẽ, ẽ)

Table 6.2: Outcome binning for different logical measurement strategies. 1R — 1-
round measurement, 2R—2-round measurement favoring less erasure, 2R∗—2-round
measurement (strict), 3R—3-round measurement with majority voting. Outcomes
are listed chronologically left to right with two outcomes per measurement round.
‘-’ denotes the value can be either g or e, g̃ = {(g, g, g), (g, g, e), (g, e, g), (e, g, g, )},
the majority vote in favor of g (for measurements on the same cavity). ẽ =
{(e, e, e), (e, e, g), (e, g, e), (g, e, e, )}, majority vote in favor of e .

One round of measurement constitutes a parity measurement on both cavities.

This can be achieved with the hardware in Fig. 6.1 by using SWAP operations in be-

tween subsequent parity measurements. We also do not need to use the g-f manifold

of the transmon in this measurement. The important feature is that the mapping

|0g⟩ → |0g⟩ , |1g⟩ → |1e⟩ is realizable with the measurement. We label the transmon

measurement outcomes with the string format (a, b) for 1-round measurements, and

(a1, b1, a2, b2) for 2-round measurements, (a1, b1, a2, b2, a3, b3) for 3-round measure-

ments etc.. This is an example of a simple measurement decoder, in which we take

the raw string of measured transmon outcomes and assign one of three outcomes

based on a lookup table as shown in Tab. 6.2. By changing the number of rounds

and our decoding ‘strategy’ we can tune our measurement to trade-off lower logical

assignment error rates for higher probabilities of declaring erasure and vice versa.

A single round of measurement is already expected to be sufficient to reach the

target error hierarchy of 1% erasure probability and 0.01% Pauli error per operation.

The dominant cause of declaring erasure is not expected to be photon loss, but rather

transmon errors and readout errors. These errors can be suppressed exponentially
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by increasing nrounds, which works until the measurement takes so long that cavity

decay |00⟩ eventually sets the probability of declaring erasure. In other words, we

expect a higher false erasure assignment error with the single round strategy but a

shorter duration logical measurement. Transmon readout fidelity can also be boosted

by means of a ‘shelving’ pulse [Elder et al., 2020] that transfers population from |e⟩

to |f⟩ prior to readout. When performing a string of repeated transmon readout

operations we can either reset the transmon to |g⟩ between each operation or not.

Without reset, we need to update the lookup table for the measurement decoder to

assign alternating strings of outcomes to the presence of a photon in the cavity [Sun

et al., 2014].

6.5.3 Simulating logical measurement

Modelling transmon readout

Logical measurement is one aspect of the proposal we can readily simulate with QuTiP

master equation simulations. For this, we need a model for errors that occur during

transmon readout. We consider decay of the transmon during the readout and readout

misassignment due to the finite signal-to-noise ratio (SNR) of the readout signal. For

numerical simulations of logical measurement, we model transmon readout in the g-e

manifold as follows: First we calculate the (unnormalized) density matrices for the

cavities, ρcg and ρce that would result from perfect transmon measurement. We obtain

these from

ρg = |g⟩ ⟨g| ρ |g⟩ ⟨g|

ρe = |e⟩ ⟨e| ρ |e⟩ ⟨e| ,

where ρ is the combined state of the transmon and cavities before the measurement.

We obtain ρcg (ρce) by tracing over the ancilla state in ρg (ρe). Given a particular
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transmon measurement outcome, M = {g, e}, we model the state of the system to be

ρM=g =

(

(1− Po)ρ
c
g +

Pd

2
ρce

)

⊗ |g⟩ ⟨g|+ Poρ
c
e ⊗ |e⟩ ⟨e| (6.8)

ρM=e = (1− Po − Pd)ρ
c
e ⊗ |e⟩ ⟨e|+

(

Pd

2
ρce + Poρ

c
g

)

⊗ |g⟩ ⟨g| . (6.9)

We set Pd = 0.01 to model a 1% chance of transmon decay at a random time dur-

ing the readout. When this happens, half the time we will record the transmon in

|g⟩ and half the time we record |e⟩. The overlap error Po = 10−4 is the probabil-

ity of misassigning |g⟩ as |e⟩ and vice versa due to noise in our readout signal and

is representitive of current state-of-the-art transmon readout [Walter et al., 2017].

Additionally, cavity decay during the readout is modelled by including a 1 µs idle

time for a typical readout duration. This model can easily be extended to include

the |f⟩ level but is not necessary for logical readout simulations. Another advantage

when using a three-level transmon for the erasure check and entangling gate is that

transmon decay from |f⟩ to |e⟩ during transmon readout will be flagged as erasure

whereas two decay errors are necessary to cause a Pauli error.

Master equation simulations

Here we describe how the QuTiP Lindblad master equation simulations were per-

formed to estimate logical measurement fidelity for a dual-rail cavity qubit under

realistic hardware coherence times listed in Tab. 6.3. For each round of measurement

we first prepare the cavities in either |01⟩ , |10⟩ or |00⟩ and the transmon in |g⟩. We

then perform the standard parity mapping sequence, π/2 — wait time π/χ — π/2,

in order to map parity information to the state of the transmon. We then simulate

imperfect transmon measurement according to the readout model. For M = e out-

comes, we perform a perfect transmon π-pulse to reset the transmon. We then apply
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Collapse operator Coherence time

|g⟩ ⟨e| 100 µs

|e⟩ ⟨e| 100 µs

a, b 1 ms

a†, b† 100 ms

|e⟩ ⟨g| 10 ms

Table 6.3: Collapse operators and corresponding decoherence times used in Linblad
master equation simulations for logical measurement. In all simulations, χge/2π =
−2 MHz. Cavity dephasing is not included since this does not affect logical readout.

a perfect SWAP between the cavity modes and repeat the whole parity measure-

ment sequence once more to obtain another transmon measurement outcome. The

measurement round is concluded by another perfect SWAP operation to return the

states to their initial cavities.

In one round of measurement we may obtain one of four outcomes (g,g), (g,e), (e,g) or

(e,e). We store the probability and density matrix for each of these outcomes. Every

time we increase the number of measurement rounds, the total number of outcomes

and stored density matrices grows by a factor of four. We group all possible outcome

strings into three bins: declare |0⟩
L
, declare |1⟩

L
or declare erasure. By summing the

probabilities of each of the outcomes in a given bin, we calculate the probability of

declaring a logical outcome for a given input state.

The results of this simulated logical measurement, for the four decoding strategies in

Tab. 6.2 are shown in Fig. 6.4. Even with a single round of measurement and imper-

fect readout, we should be able to achieve ∼ 10−4 logical assignment error and ∼ 1%

erasure errors, even though most of these erasures are false erasure assignements due

to transmon and readout errors. This is why 3-round majority voting decreases both

the additional erasure error and the Pauli error due to logical misassignment errors.

Although we incur a factor of three increase in the probability of a cavity decay event
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Figure 6.4: Comparison of 4 possible dual-rail logical measurement schemes listed in
Tab. 6.2 for p = 0.01. The horizontal grey bars indicate the logical measurement
performance if transmon readout were perfect. By changing our strategy, we can
minimize additional erasure errors from the measurement or Pauli error. By majority
voting, we can in principle reach exceedingly low Pauli rates. The additional erasure
rate is the fraction of events we declare erasure, due to the measurement process
itself either by cavity decay or readout errors. (The input states begin in the dual-
rail codespace.)

due to a longer measurement process, this is greatly outweighed by the suppression

of transmon and readout errors in the repeated rounds.

6.5.4 Single qubit gates

Single-qubit gates in the dual-rail subspace are realized by a parametric beamsplit-

ter interactions using a dedicated coupling element [Lu et al., 2023,Chapman et al.,

2022]. The combination of beamsplitter strength and duration, which are controlled

by microwave pump signals in an experiment, define the polar angle of the rota-

tion, while arbitrary rotations around the Z-axis can be implemented in software by

changing the phase of the pump(s). This parameterizable control is in many ways

analogous to typical use of RF signals for transmon single qubit gates via Rabi drives.



6.5. Operating One Dual-rail Cavity Qubit 227

A SWAP gate between the cavities is equivalent to a π-pulse and a 50-50 beamsplitter

corresponds to a π/2-pulse. Changing the pump phase changes the equatorial axis we

rotate around on the Bloch sphere. Techniques for suppressing control errors, such

as composite pulses, can be directly transferred to our beamsplitter control [Brown

et al., 2004,Alway and Jones, 2007]. Moreover, we can also make use of dynamical

decoupling [Bylander et al., 2011,Yan et al., 2013] to further enhance the dephasing

time of our dual-rail qubit and mitigate cross-talk between neighbouring dual-rail

qubits.

High speed beamsplitters [Chapman et al., 2022] and randomized benchmarking [Lu

et al., 2023] of single qubit gates in the dual-rail subspace have recently been exper-

imentally demonstrated that approach 99.98% fidelity when combined with end-of-

the-line erasure detection, in times of ∼ 50−100 ns per gate. This is on par with single

qubit gates in transmons [Chow et al., 2010, Sung et al., 2021]. Unlike a transmon

qubit, there is no inherent speed limit set by the finite anharmonicity of the energy

spectrum [Motzoi et al., 2009,Gambetta et al., 2011], which would increase the leak-

age out of the computational space as we decrease gate times. It is also observed that

the beamsplitter interaction does not induce any additional leakage errors out of the

dual-rail subspace, aside from the expected (and detectable) decay to the |00⟩ state

set by the bare cavity single-photon decay rates.

Using a parametric beamsplitter coupler allows our cavity modes to have large de-

tunings, with vanishingly small swapping rates between the cavities in the absence

of the pumps. Moreover, any static coupling between the cavities (within or between

dual-rail qubits) simply leads to a renormalization of the cavity frequencies via mode

hybridization, and these hybridized modes are the modes we use in any experiment.

The ease of arbitrary single-qubit rotations in the dual-rail encoding is a huge advan-
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tage compared to other bosonic encodings.

6.5.5 Mid-circuit erasure detection

Mid-circuit erasure detection refers to error detection measurements that occur in the

middle of a gate sequence, e.g., during a stabilizer measurement circuit. Unike EOTL

erasure detection, mid-circuit erasure detection must preserve coherence in the dual-

rail subspace in the event that no error has occurred, making their implementation

more demanding. Any backaction from the measurement on the dual-rail subspace

will contribute to the Pauli error rate.

When this measurement is done to detect leakage errors, we call this erasure

conversion. We can now treat the leakage error as if it were an erasure channel and

we can correct for the erasure error using the outer stabilizer code. How often should

we perform mid-circuit erasure detection? The error model studied by [Wu et al.,

2022] considers mid-circuit erasure detection sandwiched between every two-qubit

entangling gate. This means we only need to erase two qubits (one data and one

ancilla) when an erasure is declared on one of the qubits. One thing we also worry

about are the errors introduced by the mid-circuit measurement itself. If we measure

this frequently then most of the erasure and Pauli errors in the system may be induced

by the measurement itself, rather than by the errors during the gates we wished to

address.

We discuss two proposed methods for implementing the mid-circuit measurement

which checks for cavity decay (and heating) error, primarily in the form of decay to

the |00⟩ leakage state.

Joint-parity measurements

This approach is based on the observation that the dual-rail codewords have odd total

photon number whilst the four most common leakage states {|00⟩ , |11⟩ , |20⟩ , |02⟩}
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Figure 6.5: The circuit for a joint-parity measurement, now used for mid-circuit
erasure detection in the dual-rail code. The phase of the last π/2 pulse is no longer
flipped, such that we now map odd joint parity to |g⟩

all have even total photon number. Thus a QND joint-photon number parity measure-

ment can be used to distinguish between this set of leakage state and the codespace

with a single measurement, ideally without affecting the coherence of states within

the dual-rail codespace.

We used the same approach in Sec. 5.2 of Chapter 5 to realize a QND and hard-

ware fault tolerant ZZ measurement for the 0-1 encoding. For this, we engineer the

controlled joint-parity unitary by combining the dispersive interaction with a para-

metric beamsplitter interaction applied for the appropriate duration of time. (First

row of Tab. 5.4.)

We use the same circuit, now in a different context, to realize mid-circuit erasure

detection as shown in Fig. 6.5 In the absence of all transmon ancilla errors, if we

detect |g⟩, then we are still in the dual-rail codespace. If we detect |f⟩, we are in |00⟩

or |11⟩ and we declare an erasure error (and perform erasure conversion).

It is important that the joint-parity measurement conforms to the error hierarchy

when we introduce transmon errors as well. As we saw from its Hardware Fault

Tolerance (HFT) properties, first-order transmon decay and dephasing events can

be detected and contribute to the overall erasure rate, whilst double-jump errors

involving the transmon are needed for these errors to pass through undetected by

our measurement and contribute to the Pauli and/or leakage error rates. A less than
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ideal consequence of using transmon ancillas this way is that the erasure rate tends

to be set by the rate of first-order transmon errors, rather than the rate of cavity

decay. Similarly, the Pauli error rate will be set by double-jump errors involving the

transmon rather than the vanishingly small double-jump errors involving the cavity.

This is the main reason why the operational error hierarchy is expected to be much

worse than the idling error hierarchy.

Nonetheless, given that transmon jump errors are expected to occur with probabil-

ity ∼ 1% per gate and double jump errors with probability ∼ 0.01% per gate, this still

places us far below threshold for both erasure and Pauli error rates. These scalings

are only possible because of the HFT properties specific to our control joint-parity

implementation.

In the specific case of a joint-parity measurement, transmon decay events to first-

order lead us to measure |e⟩ at the end of the sequence. With high likelihood, the

pair of cavities that make up the dual-rail qubit still contain a single photon1, but

the unknown time of the decay event constitutes complete dephasing of the dual-rail

qubit. We thus do not need to reset the dual-rail qubit back into the codespace, since

it should already be in some unkown state within the codespace. So when we measure

|e⟩ we should reset the transmon ancilla to |g⟩ and remeasure stabilizers within the

outer code to correct this erasure error. This form of erasure error is different from

erasure conversion. The |e⟩ state of the transmon ancilla is being used as a flag state

to tell us when a dephasing error (a.k.a. a Z error) occurs on the dual-rail qubit due

to transmon decay.

Transmon dephasing events cause us to readout |f⟩ instead of |g⟩ and vice-versa;

they invert the measurement outcomes. Since transmon hardware errors are expected

to occur roughly ten times more frequently than cavity decay errors, most of the times

we measure |f⟩ will not be due to actual leakage events in the dual-rail cavities but

1. Both the parametric beamsplitter and dispersive interaction conserve total photon number.
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rather dephasing events in the transmon ancilla, which contribute to false erasure

assignements and make up most of the fraction of events we declare as erasures. We

can mitigate this error by performing two or three joint-parity measurements in a row

and majority voting to decide if we declare an erasure outcome or not. These same

dephasing events in the transmon ancilla can cause us to miss leakage errors. This is

a double-jump error (cavity leakage + transmon dephasing) and so is expected to be

rare at the 10−5 level per gate.

Y-mon

An alternate scheme for mid-circuit erasure detection can be implemented with the

‘Y-mon’ hardware in Fig. 5.1. This requires a transmon dispersively coupled to both

cavities in the dual-rail qubit and the ability to readout this transmon. The idea is to

play a selective π-pulse at the transmon ωge frequency. This technique shares more

similarity with the fluorescence measurements used for mid-circuit measurements in

neutral atoms — we only see a signal if the qubit is in a leakage state, in this case we

record |e⟩ only if the cavities are in the state |00⟩. Unlike the joint-parity measure-

ment, this measurement only excites the transmon ancilla out of the ground state if

the cavity is in |00⟩ and as such, we should be robust to transmon errors if the cavities

are still within the dual-rail codespace. If we are in a leakage state, then we are now

susceptible to transmon errors such as decay and dephasing, but these cannot further

corrupt the cavity state since we are already in |00⟩. At worst, these can result in

leakage detection errors and are unlikely since they are all double-jump errors. Also,

for this reason we can get away with using the g-e manifold of the transmon rather

than the g-f manifold.

The drawback of this approach is an increase in hardware requirements: each

dual-rail cavity qubit needs an ancilla transmon dispersively coupled to both cavities,

as well as the ability to perform parametric beamsplitter interactions. This could
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in principle be achieved with the same non-linear element functioning as the coupler

and the ancilla. (The important thing is the element needs a dispersive shift to both

cavities, it does not have to be a transmon). However, hardware for an additional

readout would certainly be required. A dispersively coupled element also introduces

a source of cavity dephasing via unwanted heating, although this in principle can also

be detected. If the element is χ-matched to both cavities, then heating backaction

only causes common dephasing in the dual-rail subspace, and does not present any

source of error other than false erasure assignments, which are a relatively minor

error.

6.6 Entangling Gates

Likely the hardest operation to implement is the two-qubit entangling gate. Fortu-

nately, in a dual-rail qubit, we do not need all four cavity modes to interact to perform

a two-qubit operation. It suffices for a cavity in one dual-rail qubit to interact with

another cavity in the other dual-rail qubit. If we label the cavity modes as (â1, b̂1)

for dual-rail qubit 1 and (â2, b̂2) for dual-rail qubit 2 then only modes, e.g., b̂1 and â2

need to directly interact.

One proposal for dual-rail entangling gates is to realize ZZ(θ) gates. The proce-

dure is the exact same as in Sec. 5.3 of Chapter 5 for the 0-1 encoding for the cQED

hardware shown in Fig. 6.6. By treating modes b̂1 and â2 as if they were in the

0-1 encoding and performing the corresponding ZZ(θ), we end up realizing the same

ZZ(θ) for the two dual-rail qubits, even though â1 and b̂2 never interacted! This im-

plementation is particularly hardware efficient with only one additional beamsplitter

coupler required to perform the gate. A more detailed circuit showing the control

joint-parity unitaries in an exponentiation gadget is shown in Fig. 6.7. In a stabilizer

measurement code, we would almost exclusively use the ZZ(θ) gate at θ = π/2, for



6.6. Entangling Gates 233

Q1

Q2

Figure 6.6: The two-qubit entangling gate can be realized by a ZZ(θ) gate performed
between the central rails only, for which only an additional beamsplitter coupler is
required.
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Figure 6.7: With control joint-parity unitaries that now act between rails of two dual-
rail qubits, we can do the ZZ(θ) entangling gate for two dual-rail qubits. A successful
gate is signalled by measuring the transmon in |g⟩ after the gate.
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which this gate is locally equivalent to a CZ gate. Once again, owing to our HFT gate

construction, we have desirable error detection properties. Transmon errors during

the gate result in uncorrectable unknown backaction on the cavities and as such, these

errors can be detected and converted to erasure errors as well. This erasure detection

is ‘built-in’ to the measurement. We just need to measure the transmon state after

the measurement.

Transmon phase flips result in us measuring |f⟩ after the gate. This is unrecov-

erable since we do not know whether 1L ⊗ 1L or ZL ⊗ ZL has been applied to the

two dual-rail qubits. (See Sec. 5.3.1 of Chapter 5). Once again, a single transmon

decay event during the measurement leaves us in |e⟩ however this time, we may have

evolved outside the two-qubit dual-rail codespace and need a more involved reset

protocol to reset both dual-rail qubits back into the codespace. We can see why

in Fig. 6.8, which shows how photon number population evolves during the control

joint-parity unitary. With equal probabilities, the four cavity modes (â1, b̂1, â2, b̂2)

may be in the states {|1001⟩ , |1010⟩ , |1010⟩ , |0110⟩}. If we start in any state other

than |1001⟩, then transmon decay during the ZZ(θ) can leave us in the leakage states

{|1100⟩ , |0011⟩ , |0200⟩ , |0020⟩} which requires a more involved reset protocol. Like

the joint-parity measurement, the errors in this gate are expected to be transmon-

limited in the same way but still well below threshold.

6.6.1 With in-built erasure detection

A modified version of the ZZ(θ) dual-rail gate sequence shown in Fig. 6.9 has the

capability to map the dominant cavity leakage states to the |f⟩ state at the end of

the gate. In particular, we will detect the leakage states where one of the dual-rail

cavity qubits has leaked to |00⟩ and the other remains in the dual-rail codespace. We

would still measure |g⟩ if both dual-rail qubits had lost their photons. This has the

potential to remove the need for dedicated mid-circuit erasure detection operations.
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Figure 6.8: State populations of two cavities during the control joint-parity unitary.
(Top) Population dynamics if the cavities are prepared in |11⟩. (Bottom) Popula-
tion dynamics if the cavities are prepared in |01⟩. The case where we prepare |10⟩ is
symmetric and not shown, if we prepare |00⟩ we remain in this state throughout the
operation.
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Figure 6.9: Variation of the ZZ(θ) gate construction to detect cavity decay events
that occurred prior to the gate.

The idea is to perform the first control joint-parity unitary on cavity modes (b̂1, â2)

and the second on (â1, b̂2). Without additional hardware, this can be realized by

performing swaps within each dual-rail qubit halfway through the gate sequence.

This construction has the additional property that if the total number of photons

amongst all four cavities is odd, we will also readout |f⟩ at the end of the sequence.

Using the hardware in Fig. 6.6, these SWAP operations must be unconditional on the

state of the transmon dispersively coupled to mode â2, which is possible to achieve

as was discussed in Sec. 5.4 of Chapter 5, but takes a longer duration to cancel out

the unwanted effects of the dispersive interaction. Whilst we can detect cavity decay

events prior to the gate, they will be detected on average only half the time if they

occur during the ZZ(θ), by dephasing the transmon ancilla (and randomizing the

measured transmon state between |g⟩ and |f⟩). However, these decay events will be

then be detected with high probability in the next entangling gate, since the total

number of photons in the four cavities will likely still be odd when we start the next

entangling gate.
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6.7 Operational Error Hierarchy

Having gone through the required operations for dual-rail cavity qubits we can now

estimate what the error hierarchy would be during operations, shown in Tab. 6.4.

Since operation times are set by ∼ 1/χ, we often take Tgate = 1 µs.

Error process Erasure errors Pauli errors

Single-photon loss κ̄Tgate 10−3 - -

no-jump backaction - -
(

1
4
∆κTgate

)2
10−7

cavity dephasing - - γϕTgate 10−4

ancilla decay Γef
1 Tgate 10−2 Γef

1 Γge
1 T

2
gate 10−4

undetected ancilla decay - - ηgeΓ1,efTgate 10−4

ancilla dephasing Γgf
ϕ Tgate 10−2

(

Γgf
ϕ Tgate

)2
10−4

photon loss + ancilla dephasing - - κ̄Γgf
ϕ T

2
gate 10−5

undetected ancilla dephasing - - ηgfΓ
gf
ϕ Tgate 10−6

measurement infidelity ηgf 10−4 - -

photon loss + msmt. infid. - - ηgf κ̄Tgate 10−7

Table 6.4: Operational error hierarchy for dual-rail cavity qubits.

Erasure errors are caused both by single-photon loss events in the cavities hap-

pening at an average rate κ̄ in the cavity system, but more frequently due to decay

and dephasing events in the transmon ancilla and the finite measurement infidelity ηij

for distinguishing the ancilla states i and j. In general, the measurement infidelities

to distinguish different pairs of states are not identical [Elder et al., 2020], which is

why we consider two separate infidelities ηge = 10−2 and ηgf = 10−4. A difference

in the single-photon decay rates ∆κ = κb − κa causes a no-jump backaction slowly

polarizing the dual-rail towards the cavity with the longer lifetime contributes only

to second-order to the Pauli error rate. The pure dephasing of the cavities at rate

γϕ = γϕ,a + γϕ,b is included to represent some upper limit to the intrinsic cavity de-

phasing time. For the calculation of the error probabilities we assume κa = (0.5ms)−1,

κb = (1ms)−1, γϕ,a = (20ms)−1, γϕ,b = (20ms)−1, Γge
1 = (100 µs)−1, Γef

1 = (100 µs)−1,
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Figure 6.10: Graphical depiction of the operational error hierarchy. For modest
coherence times and above, the erasure errors and Pauli errors are well below their
respective thresholds.

Γgf
ϕ = (100 µs)−1.

We can represent the operational error hierarchy visually as shown in Fig. 6.10.

Here, we only show the dominant sources of erasure, Pauli and leakage errors which

are cavity photon loss and transmon errors for the erasures, transmon double-jump

errors and cavity dephasing for the Paulis and undetected cavity photon loss for the

leakage errors. On the plot we also mark the thresholds for our error model for erasure

and Pauli errors. For each error mechanism we also include conservative, modest and

optimistic error rates and a 99% conversion efficiency. These choices of error rates

are shown in Tab. 6.5. By plotting these three coherence times, we can see that

error-detected physical qubits such as ours greatly benefit from any improvements in

coherence time or equivalently shortening of the gate times. If we were to double

our coherence times, the erasure errors halve and the Pauli error rates are reduced

by a factor of four. Ultimately the logical error rate of the outer code would drop
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Coherence time Conservative Modest Optimistic

T ef
1 20 µs 75 µs 200 µs

T gf
ϕ 50 µs 100 µs 500 µs

T cav
1 200 µs 500 µs 2 ms

T cav
ϕ 5 ms 20 ms ??

Table 6.5: Conservative, modest and optimistic coherence times for the four dominant
types of error when operating dual-rail cavity qubits

by approximately
(

1
2

)d
. For comparison, without error detection the Pauli error rate

would half and the logical error rate would drop by
(

1
2

)
d

2 . The importance of the

scaling in the exponent cannot be overstated, at large code distances we can benefit

from increased coherence times exponentially faster with error-detected qubits vs

non-error detected qubits.

6.8 Scaling Up

For erasure qubits to be useful, we must concatenate them with an outer stabilizer

code. The surface code is a natural choice as we saw in Sec. 3.2.3 of Chapter 3 because

it is adept at handling both erasures and Pauli errors simultaneously and has been

shown to have high thresholds to both Pauli and erasure errors (compared with other

large-scale stabilizer codes such as color codes.) One hypothetical cQED hardware

layout for tiling dual-rail cavity qubits is shown in Fig. 6.11. With this layout, the

transmons are arranged in such a way that we can perform joint-parity measurements

on each dual-rail qubit as well as ZZ(θ) gates between each dual-rail ancilla qubit and

its four surrounding data qubits. This is just one possible layout. One modification

is to rearrange the transmon ancilla qubits such that only the dual-rail ancilla qubits

are coupled to transmons in a bid to improve the idling errors in the dual-rail data

qubits, although mid-circuit erasure detection via joint-parity measurements would

then require additional SWAP operations.
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= Physical qubit unit cell

= Cavity in a dual-rail ancilla qubit

= Cavity in a dual-rail data qubit

Legend:

Figure 6.11: Example cQED hardware used for tiling dual-rail qubits together. Al-
though the cavities are connected in a hexagonal lattice, this reperesents a square
lattice of data qubits with ancilla qubits at the centre of each plaquette as needed for
a surface code. In this case, the physical qubit unit cell is identical for ancilla and
data qubits.
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6.8.1 The physical qubit unit cell

Many different qubit platforms eventually aim to implement large-scale quantum error

correction using an outer stabilizer code such as the surface code (or the cluster state

equivalent in linear optics). Comparing across different platforms is non-trivial but

one thing we can compare is the physical unit cell. This is the set of hardware we must

‘tile’ for large scale error correction. The unit cell includes not just a physical qubit,

but also the required connections needed to tile it. A possible unit cell is outlined in

Fig. 6.11 and consists of a single transmon (with readout), two cavity modes and a

beamsplitter coupler for the dual-rail qubit, and two additional beamsplitter couplers

to connect to neighbouring dual-rail qubits.

We can compare this to the unit cell of a transmon-based surface code, such as

the one presented in [Acharya et al., 2023], where the unit cell consists of a single

transmon and two couplers needed for the two-qubit gates. In this sense, the number

of nonlinear elements per unit cell is similar in both cases (four vs three) but dual-rail

cavity qubits require the two additional cavity modes.

Although the unit cell may be more complicated, if it can achieve a much lower

physical error rate, then the total number of hardware components per logical qubit

can be less. We can do some rough accounting by taking 10−14 to be a target logical

error rate as taken in [Gidney and Ekerå, 2021]. Suppose for the sake of argument

a transmon surface code can reach 0.1% error rates in all operations, then we would

require d = 27 or 1,457 physical qubits per logical qubit, or 4,371 nonlinear elements.

How many nonlinear elements and cavity modes would be needed for a dual-rail

cavity qubit? If we assume 1% erasure errors and 0.01% Pauli errors and the error

scalings in Fig. 3.5 then we would require d = 19 or 721 physical qubits per logical

qubit. This would then require a total of 2,884 nonlinear elements and 1,442 cavity

modes for a total of 4,326 — coincidentally similar to our estimated number of modes

for a transmon based approach.
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All of this is to say that the hardware overhead in terms of the number of modes

(not the physical footprint of the modes!) on the order of a few-thousand for current

estimated dual-rail error rates, and this is not dissimilar from the number of modes

needed in any platform targeting a 0.1% physical error rate. What is more important

for us is whether we can reliably achieve the physical error rates required for below

threshold operation, which is the main benefit of going down the erasure qubit route

(rather than hardware efficiency).

6.8.2 Comparison to transmon-based approaches

From our analysis of the dual-rail unit cell, it is apparent that each dual-rail qubit

will likely require one transmon control ancilla on average. Transmon errors are also

expected to be the dominant errors in the system. We can then ask the following

question:

Given that we have 2d2 − 1 transmons, is it better to correct their errors with an

all-transmon-based surface code? or a dual-rail based surface code? Both implemen-

tations will have the same code distance, d. Answering this question depends on many

specifics of the hardware implementation but we can make the following high-level

observations.

We can define the ‘clock speed’ of the surface code to be the time to perform a

complete cycle of stabilizer measurements. This is set by both the gate time and

the time to measure the ancilla qubits. In a transmon-based surface code, this is

usually limit by the transmon readout time which is typically longer than transmon

gate times, which are set by the transmon anharmonicity. For the dual-rail surface

code, the gate time is typically longer, set by the strength of the transmon-cavity

dispersive interaction. The ancilla qubit measurement time is also set by transmon

readout times. Overall, we expect the clock speed of a dual-rail surface code to be

around ∼ 10 µs whereas the clock speed of a transmon-based surface code has been
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shown to be ∼1 µs [Acharya et al., 2023]. As such, we expect transmon errors to be

×10 more frequent in a dual-rail based surface code.

Nevertheless, there are good reasons to believe a dual-rail based surface code can

out-perform a transmon-based one. This is primarily because the transmons in a dual-

rail surface code are used exclusively as control ancillas - they do not need to store

any qubit information as they do with a transmon-based surface code. And as such,

we do not need to worry about preserving any physical qubit information when we

detect errors in the transmons. In comparison to a transmon-based surface code where

transmon errors can only be detected and corrected through stabilizer measurements,

in a dual-rail surface code, we detect transmon errors instead by measuring them

directly and using the |e⟩ and |f⟩ states as flag states for transmon errors that are

ultimately converted to erasure errors. By using transmons not as qubits but instead

as control ancillas we can evacuate the entropy due to transmon errors more efficiently.

The dual-rail encoding with its extra cavities and couplers can be thought of as the

scaffolding required to relegate transmons to control ancillas whilst still being able to

encode and control qubits in the system.

6.8.3 Higher-order nonlinearities and cross-talk

A nice feature of the dual-rail code is that it is largely unsusceptible to unwanted

higher order Hamiltonian terms such as self-Kerr, cross-Kerr and χ′. This is because

there is only one photon in a dual-rail qubit. There are however a few exceptions

where these terms may have a noticeable effect which involve wanted (and unwanted)

interactions between neighbouring dual-rail qubits. The Cross-Kerr interaction be-

tween two adjacent cavities each in different dual-rail qubits is analagous to ZZ-

crosstalk in transmon qubits. It essentially presents as an unwanted ZZ interaction

that slowly implements a ZZ(θ) gate when we want the dual-rail qubits to be idle.

Like ZZ-crosstalk, this effect can be mitigated with dynamical decoupling techniques.
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During the ZZ(θ) gates, we are susceptible to all three of these effects since the two

interacting cavities can be in the states {|11⟩ , |02⟩ , |20⟩} and the transmon ancilla is

in a superposition. The contributions to the gate fidelity scale as (K ′Tgate)
2 for K ′ ∼

K, χab, χ
′ and can be largely calibrated out by adjusting the angle θ of the middle

transmon ancilla rotations and performing additional Z rotations Z1(θ1), Z2(θ2) after

the entangling gate.

Crosstalk such as ZZ crosstalk can be damaging for a stabilizer code, since it can

be a source of correlated errors. Aside from small cross-Kerr couplings, we expect

other sources of cross-talk to be small if we use a 3D microwave cavity architecture.

This is because the cavity modes can be detuned from each other by as much as

several GHz and are only coupled to each other indirectly through couplers in tunnels

that also function as waveguides above cutoff. We also do not need to worry about

unwanted package modes that plague 2D cQED systems on a single, large chip (The

3D cavity is the package mode!). We also do not expect any ‘global’ noise sources

that affect all the physical qubits like has been observed for dephasing noise in neu-

tral atoms platforms [Singh et al., 2023]. Also worth noting is that we expect our

architecture with 3D cavities to be naturally robust to cosmic rays, which are known

to affect multi-qubit processors [McEwen et al., 2022]. Although rare, a single cosmic

ray event can corrupt multiple J.J.–based qubits on the same chip.

6.8.4 4-qubit erasure code

What is the minimum hardware we would need to realize a 4-qubit erasure code with

dual-rail cavity qubits? This can be achieved with four data qubits and one ancilla

qubit which can measure stabilizers on each of the four data qubits. A potential

cQED hardware layout is shown in Fig. 6.12 To correct for erasures in this code we

need to both be able to measure the stabilizers ZZZZ and XXXX and perform

mid-circuit erasure detection for cavity leakage. This code can correct for a single
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Figure 6.12: Potential cQED hardware for realizing a 4-qubit erasure code.

cavity leakage event during a round of stabilizer measurements but not cavity decay

in two cavities or any dual-rail dephasing errors.

How would we operate such a code in practice? First we would use the transmons

to prepare a single photon in each of the dual-rail data qubits. Then we would measure

the stabilizers ZZZZ and XXXX using the circuits in Figs. 3.2 and 3.3 compiled

for native ZZ(π/2) gates with the central dual-rail ancilla qubits to project us into

the codespace. Then, in intervals of δt we perform mid-circuit erasure detection,

e.g., via joint parity measurements on each dual-rail data qubit. If we detect any of

the four surrounding transmons to be in a state other than |g⟩ after the joint-parity

measurement we declare erasure on that qubit and reset that dual-rail cavity qubit,

e.g., by Q-switching (temporarily increasing the loss rate of the cavity by swapping

photons to an additional lossy mode, quickly resetting the state to vacuum) and

repreparing a photon. To correct the erasure we remeasure the two stabilizers again

and update the Pauli frame as necessary.
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We can estimate what it would take for this code to reach breakeven as a memory

compared to say the 0-1 encoding in a single cavity, the usual benchmark for memory

breakeven experiments with bosonic qubits. The total number of photons is four, a

factor of 8 overhead in n̄. The probability of double photon loss in short time window

δt is 1
2
(4κδt)(3κδt) = 6(κδt)2. The probability of any of the four dual-rail qubits

dephasing is 4γφδt. We reach breakeven when the logical error rate of our 4-qubit

code is less than the error rate of the 0-1 code, due to single photon loss which is

satisfied when

6(κδt)2 + 4γφδt <
1

2
κδt (6.10)

Taking κ−1 = 1ms and γ−1
φ = 1ms this requires δt ≈ 17 µs and corresponds to a logical

error rate of 1% per stabilizer cycle. It is important to remember this is a back-of-the-

envelope calculation that assumes perfect mid-circuit erasure detection and stabilizer

measurements. Although not expected to be a practically useful encoding, the 4-qubit

erasure code would serve as a useful intermediary on the way to realizing a d = 3

surface code as it requires the same hardware capabilities but can be tested on a

smaller-scale system.
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6.9 The Dual-rail Glossary

Dual-rail cavity qubit:

A dual-rail qubit where two superconducting microwave cavity modes are used

to encode a qubit in the dual-rail subspace. May be two separate cavities are

two modes of a multimode cavity.

Logical dual-rail qubit:

If a dual-rail qubit is the highest level of the encoding, it is the logical qubit

too.

Logical state:

Any state in the dual-rail codespace.

Physical dual-rail qubit:

When concatenating with an outer stabilizer code, e.g., the surface code, dual-

rail qubits make up the physical qubits.

Logical measurement (of a dual-rail qubit):

The sequence of operations that performs a logical Z measurement, which usu-

ally has end-of-the-line erasure detection built-in to the measurement. Used to

determine if the dual-rail is in |01⟩ or |10⟩ or if it is assigned an erasure outcome.

Natively measurements are in the Z basis.

Assigned outcome:

The outcome we declare from a logical measurement, e.g., ‘0’, ‘1’ or ‘erasure’.

Logical assignment error:

when we declare ‘0’ when we should have declared ‘1’ and vice versa.

Erasure detection:

The act of detecting an error on a particular qubit (or qubits), which can then
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be treated as an erasure error. The qubit may have suffered from a leakage or

Pauli error.

Erasure fraction:

The fraction of outcomes assigned erasure when averaging over many erasure

detection measurements.

End-of-the-line (EOTL) erasure detection:

Detecting erasure in a dual-rail qubt while performing a logical Z measurement,

or during the last measurement on the dual-rail qubit before reset. Does not

need to preserve coherence in the dual-rail subspace!

Mid-circuit erasure detection:

Detecting errors in such a way that coherence of the dual-rail qubit is preserved

if no error occurred, a property necessary for erasure conversion.

Erasure conversion:

The act of detecting a leakage error, via mid-circuit measurements, such that

the leakage error channel may now be modelled as an erasure channel.

Correcting for erasure errors:

After erasure detection (either EOTL or midcircuit depending on the context),

we reset the dual-rail qubit to the codespace and measure the stabilizers and

decode in the outer stabilization code.

Leakage error:

Errors that take us out of the dual-rail codespace.

Decay error:

A single photon loss error in a dual-rail qubit, which usually leaves us in |00⟩.
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Leakage detection:

A measurement that tells us if we have leaked out of the dual-rail codespace.

If measurement is part of the procedure for correcting an erasure error it is an

example of erasure detection.

Leakage detection error:

Given that we have leaked out of the codespace, the probability a leakage de-

tection measurement does not flag this leakage. (This is the ‘false negative’ rate

that in part sets the total fraction of leaked qubits.)

False erasure assignment:

When we assign a state with no error as an erasure, the false positive rate

associated with an erasure detection.

Readout error:

An error that occurs during the dispersive readout of a transmon, typically

contributes to the false positive/negative rate.

Transmon error:

A phase-flip or decay error in a transmon.

Double-jump error:

An error that is described by two jump errors from {ϵ̂}hardware. We also typically

include readout misassignment as a jump error.

No-jump backaction:

A type of dephasing error that polarizes a dual-rail photon towards the less-lossy

cavity mode. Occurs whenever cavity loss rates are unequal.

Dual-rail dephasing:

Dephasing within the dual-rail subspace which destroys coherence in superpo-

sitions of the codewords.
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Common dephasing:

Dephasing noise experienced equally by both cavity modes, such that it does

not cause dephasing on the dual-rail subspace.

Complete dephasing:

A type of cavity dephasing that is an unknown rotation in phase space, i.e.,

eiθâ
†â where angle θ is unknown and uniformly distributed for θ ∈ [0, 2π]. This

error is the backaction on the cavity when a dispersively coupled element such

as an ancilla transmon undergoes a decay or heating event.

Post-selection:

Removing experimental shots from data analysis.

Nonlinear element:

Devices that contain at least one J.J., transmon (ancilla and couplers).

Intrinsic cavity dephasing:

Dephasing in a bare cavity mode in the absence of coupled non-linear elements.

Extrinsic cavity dephasing:

Dephasing in a cavity that are caused by the coupled nonlinear elements.

Beamsplitter:

A parametric beamsplitter interaction, used to perform single qubit gates. Also

used in the ZZ(θ) entangling gate.

ZZ crosstalk:

ZZ crosstalk between two dual-rail qubits, due to cross-Kerr between the two

neighbouring cavities (each cavity belonging to a separate dual-rail qubit).

Analogous to ZZ crosstalk in, e.g., transmon qubits.
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Data dual-rail qubit:

A dual-rail qubit that stores logical information within the outer stabilizer code.

Ancilla dual-rail qubit:

A dual-rail qubit used to measure stabilizers within the outer stabilizer code.
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6.10 The Dual-rail FAQ

1. Do erasures errors only help with the surface code? How does it work

for other codes?

Having erasures as the dominant error channel at the physical qubit level helps

for any stabilizer code, not just the surface code. This could be a color code

or Bacon-Shor code etc. The general property is that any stabilizer code that

can correct for N Pauli errors can correct for 2N erasure errors [Grassl et al.,

1997]. For codes with a threshold, the threshold tends to be higher for erasure

errors than Pauli errors.

2. Don’t jumps in the transmon/couplers ruin the ‘intrinsic’ noise bias

of the cavities?

It is undoubtedly true that unwanted energy jumps in dispersively coupled

modes dephase the cavity modes. And this is large angle dephasing — once a

jump happens, the cavity is completely dephased (see glossary). The idea is that

most jumps are detectable by regularly measuring these modes, or otherwise

unlikely because the modes are cold and well-initialized in their ground state.

Undetectable errors manifest from double jump errors, e.g., a transmon heating

even followed quickly by a transmon decay event and are expected to be rare,

contributing to the background rate of Pauli errors.

3. Why not do dual-rail with transmons?

dual-rail has been proposed in transmons [Kubica et al., 2022] and has recently

been experimentally demonstrated [Levine et al., 2023]. The key difference

here is that transmons do not intrinsically have a low dephasing errors and

this must be engineered for dual-rail to be viable. This is possible by tuning

two transmons on resonance and using the new energy eigenstates |ge⟩ ± |eg⟩

to define the codewords. The energy splitting and hence Tφ of the dual-rail
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subspace is only quadratically sensitive to shifts in either transmon’s frequency.

It is worth noting that this approach to dual-rail could work for any pair of

two-level systems tuned on resonance with each other.

4. Why not do dual-rail with Fluxonium?

Why not? We would need to operate the fluxoniums at the ‘sweet spot’, where

the Tφ time is long compared to its T1 time. High fidelity two-qubit gates could

be implemented with transmon couplers (See the FTF scheme [Ding et al.,

2023]). As with any erasure qubit, the main questions are: can we do good

mid-circuit erasure detection? And is the dominant error during entangling

gates an erasure error?

5. The cavity modes participate in the Josephson junctions (if only

weakly), do the cavities inherit dephasing?

They inherit some dephasing, expected to be Γcav
φ ≈

(
gc
∆

)2
ΓJ
φ where ΓJ

φ is the

dephasing rate of the junction mode. If the junction mode only suffers from

1/f -type noise then this relation is Γcav
φ ≈

(
gc
∆

)4
ΓJ
φ. Given that transmon Tφs

can be as long as 1ms, we do not expect this to limit our cavity dephasing

rate — more likely unwanted jumps in the transmon state will be the dominant

source of cavity dephasing!

6. How many error hierarchies are there? Is it the same as noise-bias?

The error hierarchy refers to the ratios between different types of error a phys-

ical qubit can experience. Since some types of error are much easier to correct

than others, it can be advantageous to realize a hierarchy of error rates. The

main error hierarchy we consider is erasure>Pauli>leakage. The term Noise-

bias was introduced to quantify physical qubits on which one type of Pauli error

(e.g., Z) occurs much more frequently than the other two. Under this definition,

noise-bias is a specific example of a desirable error hierarchy.
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We consider three error hierarchies: The optimal error hierarchy, which

is determined by the choice of outer stabilizer code and the error model. This

is the ratio of error rates for each type of error such that each error contributes

‘equally’ to the overall logical error rate. The idling error hierarchy is the er-

ror hierarchy we achieve when performing no operations on the physical qubits.

The operational error hierarchy is the error hierarchy we realize during all

required operations.

7. Do we expect any noise-bias in the sense that Z errors occur more

often than X errors?

Most sources of error are either leakage to |00⟩ or dephasing of the individual

microwave cavities, which constitutes dephasing of the dual-rail qubit. The

dominant Pauli errors are expected to be Z errors. The XZZX surface code

can take advantage of this, even without the need for bias-preserving gates. The

set of gates we present here do not preserve this noise bias.

8. Do I care about no-jump back-action in a dual-rail qubit?

No-jump backaction arises whenever the two cavity modes of a dual-rail qubit

have different loss rates where ∆κ = |κ1 − κ2|. No-jump backaction is small

for short times, polarizing at rate (∆κt)2/16. At long times we can compensate

this effect by ensuring the photon spends equal time in both cavities, regardless

of the qubit state, e.g., by regularly performing SWAPs.

9. How often do we have to do erasure detection measurements?

In the main error model, erasure detection is performed after every entangling

gate on the two qubits that participated in the gate. This is an ongoing area

of research — can we move all erasure detection to the end of the stabilizer

measurement cycle? Can we build-in error detection into the entangling gate?
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10. If the cavities have a natural noise bias, why not use the XZZX surface

code for biased Pauli noise?

Microwave cavities have an excellent noise bias when idling, but bias-preserving

gates have not been realized for dual-rail cavity qubits, e.g., single qubit gates

via beamsplitters such as Hadamards transform Z errors to X errors and vice

versa, and so are not bias preserving.

11. Why the XZZX surface code? Why not concatenate with something

else?

We like the XZZX surface because the ancilla dual-rail qubit is always used

as the control in the required CZ or CX gates, which is better suited for our

native ZZ(π/2) gates (fewer beamsplitter gates needed on the ancilla dual-rail

qubit). It also benefits from a slightly higher threshold when there is biased

Pauli noise but no bias-preseving gates [Puri et al., 2020]. Concatenation with

codes other than the surface code has not yet been explored in detail for erasure

qubits.

12. Is this the same dual-rail code from optics? How is it different?

The dual-rail cavity qubit does share some similarities with the dual-rail code

from linear quantum optics. Two photonic modes are used to encode the dual-

rail qubit. In our case, these modes are standing modes in cavities at microwave

frequencies. For the linear optics case, the two modes are propagating modes

at optical frequencies, e.g., two different polarizations or two different spatial

modes in an optical fibre or waveguide. The other similarities are that photon

loss is the main source of error which forms an erasure error in both platforms,

and single photon sources and single photon detection constitutes state prepara-

tion and measurement. We use parameteric beamsplitter interactions in place

of actual beamsplitters and phase shifters used for the single qubit gates in
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dual-rail optical qubits.

The most significant difference is that the main source of nonlinearity in the

optics case is single photon and detection while in circuit QED we can use the

dispersive interaction to do direct entangling gates between dual-rail qubits —

something that is not typically considered in optics. This has big implications.

Optical dual-rail schemes propose measurement-based quantum computation

and probabilistic state generation because of this.

13. Why not a measurement-based scheme like they do with the dual-rail

code in optics? KLM protocol?

As shown by the KLM protocol, universal quantum computing is possible with

just single photon sources, single photon detection and linear optics operations

(beamsplitters and phase shifters). We could do the same thing with dual-rail

cavity qubits, and these operations can be made very robust to transmon ancilla

errors. However, we incur a significant overhead in two major ways.

Firstly, in a measurement based scheme we generally need more dual-rail phys-

ical qubits per logical qubit, by roughly a factor of 4 (for 4-star resource states

investigated in [Bartolucci et al., 2023]. We need double the number of physical

qubits in a given layer compared to a surface code lattice, and then we need at

least two layers to physically exist in our hardware). A factor of 4 is a big deal!

For context, with four times the number of physical qubits, we could double our

code distance, resulting in many orders of magnitude reduction in the logical

error rates. Alternatively, if we have satisfactory error correction, with four

times the number of physical qubits, we could quadruple the total number of

logical qubits!
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Secondly, we also need Bell measurements for measurement-based computation.

These can be realized in linear optics with just beamsplitters and single pho-

ton detection but are probabilistic — the simplest Bell measurements only work

50% of the time! The other half of the time the outcome is inconclusive [Browne

and Rudolph, 2005]. In linear optics, this can be boosted by introducing more

modes [Grice, 2011] but increases the hardware overhead. In circuit-QED we

can also perform deterministic Bell measurements on dual-rail cavity qubits by

using QND ZZ measurements from chapter 5.2 in the Bell measurement circuit

in 2.4. But now we are starting to use a transmon control ancilla which pushes

us towards a gate-based implementation.

14. Does the dual-rail have biased erasure errors?

Not in its current form. Biased erasures arise when we also know which state

the physical qubit was in before the erasure error. When leakage to |00⟩ occurs

via photon loss, the environment knows which cavity lost the photon (and so

measures the dual-rail qubit in the Z basis) but this information is lost to us

when we detect the cavity in |00⟩. Related encodings such as the 0-2 encoding

or 2-photon dual rail |0⟩L = |02⟩ , |1⟩L = |20⟩ can convert single photon loss to

a biased erasure error but are more complicated encodings in general. Biased

erasures benefit from roughly double the threshold of regular erasure errors

[Sahay et al., 2023]. When we detect errors in the ancilla transmon, they do

not generally tell us information about the dual-rail qubit other than it has

dephased or is in a leakage state, so these are also not biased erasures.

15. Why not use the 0-2 encoding and reduce the number of cavities?

We need extremely good single qubit gates (at the 99.99% level). This is achiev-

able with parametric beamsplitter interactions. For the 0-2 encoding, we would

need Rabi-oscillations between |0⟩ ↔ |2⟩ cavity states, which appears harder to
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engineer to high fidelity.

16. I’m confused, what are the logical qubits? the data qubits? the an-

cilla qubits?

When we are talking about dual-rail qubits as the highest level of the encoding,

i.e., no concatentation with a stabilizer code/surface code, then dual-rail qubits

are the logical qubits. If we are concatenating, then dual-rail qubits are the

physical qubits and many physical qubits comprise the logical qubit in the next

level of the encoding. In this scenario, data qubits refer to physical qubits that

encode part of the logical information. Ancilla qubits refer to physical qubits

are used solely to extract information from the data qubits, usually in the form

of stabilizer measurements.

17. I’m confused how you actually correct erasure errors in the stabilizer

code, can you go through it again?

Reset the affected qubit(s) back to the codespace, remeasure the usual stabilizers

of the code, use the knowledge of which physical qubits had the erasures in the

decoding step. See Appendix A for an example with the 4-qubit erasure code.

18. How do you do the non-Clifford gate?

The parametric beamsplitter interaction is analogous to a qubit Rabi drive,

and can readily implement arbitrary rotations on the dual-rail Bloch sphere,

including T gates at the physical qubit level which could then be used in a

magic state factory.

19. How fast does the reset need to be? How do you reset? The timescale

of both dual-rail measurement and gate operations are ∼ 1
χ
. So ideally we want

to reset back into the codespace on this timescale. Reset is an open problem for

dual-rail cavity qubits. If we are sure we are in |00⟩, then reset is fairly simple,
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requiring us to reprepare one of the cavities in |1⟩ which can be achieved via

sideband loading and SWAP operations. Reset from other leakage states such

as |20⟩ or |11⟩ is less straightforward and may require Qswitching the cavities

to a lossy mode, or more detailed measurement-based reset.

20. How bad is it if we fail to detect a dual-rail qubit in |00⟩?

This would represent an ‘inert’ leakage error during the second round of stabi-

lizer measurements where it would be detected with high probability. Whenever

we try to do an entangling gate with an ‘inert’ leakage qubit, we generally incur

Pauli errors on the un-leaked qubits — it is as though the entangling gate never

occurred. Once we detect leakage, we can backtrack to reconstruct what errors

happened on the un-leaked qubit to mitigate some of the effects of leakage er-

rors. When our native entangling gates are ZZ(π/2), inert leakage presents a

source of Z error on the un-leaked qubits. General treatment of leakage errors

in the surface code can be found in [Fowler, 2013]

21. Does transmon readout dephase the cavity?

Transmon readout can dephase the cavity in two ways. First, if the transmon

is in an excited state, then it may decay during readout. This happens with a

higher probability than when we are not reading out due to the ‘T1 vs n̄’ effect.

When the jump happens, the cavity mode completely dephases. Most of the

time, this error is detected — we require two decay errors (double jump errors)

to end up in |g⟩. Most of the time, we also expect to readout the transmon

in |g⟩ for joint parity measurements (with the appropriate choice of phase in

the final transmon π/2 pulse) and ZZ(θ) gates, so undetected jump errors

are generally second-order. Secondly, there exists a small cross-Kerr [Reinhold

et al., 2020] between the readout resonator and the cavity. If the readout

resonator is populated with photons, this can dephase the cavity. This error
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can be mitigated (at least when reading out |g⟩) by reducing κr < χr and

playing our readout pulse close to ωr + χr such that the readout resonator is

only populated with a large number of photons if the transmon is (unexpectedly)

in |e⟩ or |f⟩ due to an error.

22. What happens if the transmon gets stuck in higher levels?

As observed in [Elder et al., 2020] and [Sivak et al., 2023], when performing

many repeated measurements of the transmon, there is a chance we get ‘stuck’

in states higher than the |f⟩ level, and we must wait until the transmon decays

to the |f⟩ level or lower until it is usable again. How do we cope with this error?

First we must identify when this happens, and then we can omit all entangling

gates involving this transmon from our rounds of stabilizer measurements. This

is analogous to a ‘fabrication error’ that is considered in [Auger et al., 2017]

and [Nagayama et al., 2017], although eventually the transmon will fix itself. In

a surface code, or related codes [Aasen et al., 2023], we can temporarily extend

the size of our plaquettes to avoid using the faulty transmon.

23. Hey there are a lot of bosonic codes out there, GKP, 4-cats, stabilized

cats... what makes you think dual-rail is the best?

Because it’s the simplest bosonic qubit to operate. (Gates are even simpler than

the 0-1 encoding!)

24. How good do my cavity T1 times need to be? What about the trans-

mons? We have been benchmarking our proposed dual-rail architecture assum-

ing cavity lifetimes ∼1ms and transmon coherence times ∼100 µs. First and

foremost, the dual-rail code is designed to detect errors in the transmon control

ancilla. Cavity errors are much rarer but it is important that we can detect

those as well to make sure most cavities remain in the dual-rail codespace. We

estimate cavity lifetimes on the order ∼1ms are sufficient. The longer the cavity



6.10. The Dual-rail FAQ 261

T1, the lower the probability of leakage to |00⟩ which is important for keeping

the fraction of ‘inert’ leaked dual-rail qubits small and for low idling errors.

25. What about noise in the coupler?

The effect of noise in the coupler is highly dependent on the choice of coupler. In

general, if noise from the environment can activate the parametric beamsplitter

interaction this will be a source of bit-flip errors. The cavity modes can inherit

dephasing from the coupler mode as it would from say a transmon. This is still

an area of investigation. It has been shown that at least for single-qubit gates,

noise in the coupler does not matter on the 10−4 level per gate [Lu et al., 2023].

This kind of performance is also required for the entangling gate.

26. Are erasure errors always leakage errors?

No. One of the most frequent errors, ancilla transmon dephasing during two

qubit gates is detectable (and mapped to the |f⟩ state of the transmon), and

tells us a dephasing error of the form ZZ has occurred on the two dual-rail

qubits that participated in the gate. This is a Pauli-type error!

27. If most of the erasure errors are due to transmon errors, isn’t that a

bit annoying?

Yes, but this allows us to use the non-linearity (the dispersive interaction) to do

the entangling gates. We think it would be more annoying to do a measurement-

based approach!

28. So I don’t need χ-matching but do I still need a three-level ancilla?

A three-level ancilla is being used here solely to detect decay from |f⟩ to |e⟩

which results in an erasure error. It is a hardware-efficient way of detecting

transmon decay errors. χ-matching is not needed in any operation but is still

beneficial in principle. χ-matching reduces the probability of leaking into the

states |11⟩ , |20⟩ , |02⟩ during joint-parity measurements and ZZ(θ) gates.
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29. How do you do gates in a dual-rail surface code?

The native single-qubit gates are arbitrary rotations about an axis on the equa-

tor (e.g., X or Y axis) of the dual-rail Bloch sphere. This is analogous to an

on-resonance Rabi drive for a qubit and is achieved via a parametric beam-

splitter interaction. The native entangling gate we have proposed here is the

ZZ(θ) gate. We can make use of the parameterization this gate affords but for

universality, ZZ(π/2) suffices. The entangling gate may be realized in other

ways, e.g., two-mode SNAP. In general, these are expected to make use of the

dispersive interaction between a cavity and an ancilla transmon.

30. 1 transmon, 3 couplers and 2 cavities per physical qubit doesn’t seem

very hardware efficient to me!

The primary focus of the dual-rail architecture is to make it easier to achieve

below-threshold operation, and by aiming to be further below threshold than

other approaches (×100 rather than ×10 for Pauli errors), the total number of

hardware elements per outer code logical qubit is reduced. For comparison, a

transmon architecture may use 1 transmon and 2 couplers per physical qubit,

so the total number of J.J.-based elements is similar.

31. Hey, I’m confused about the noise-model you’ve been using, can you

run through it again?

Yue Wu’s error model is described in [Wu et al., 2022] and shows that it is

possible to run a surface code with both erasure and Pauli errors, provided

we have a strong error hierarchy. It is an error model originally designed for

Rydberg atom entangling gates, but is fairly general for other platforms. Here

we point out which aspects are not experimentally realistic:

• Leakage detection is presumed instantaneous and occurs after every entan-

gling gate.
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• Undetected leakage errors are instantly converted to Pauli errors on the

two qubits that participated in the entangling gate, rather than persisting

as leakage errors.

• Reset of an erased qubit is perfect and instantaneous.

6.11 Conclusions

Erasure qubits present a whole new paradigm that is only recently being studied for

specific hardware platforms, and carries great potential for simplifying practical error

correction. The core idea is that we can design our hardware such that the most

likely errors are the ones that are the easiest to correct in the outer layers of our error

correcting code. This is the motivation behind engineering an error hierarchy and for

our case, the three types of errors in our hierarchy are erasures, Paulis and leakage

errors.

To this end, we have introduced the dual-rail cavity qubit. Especially pertinent in

the cQED platform is the ability to design all operations and choose an encoding such

that the qubit has the ideal properties needed for an erasure qubit, while remaining

relatively simple to realize. We have provided recipes for hardware implementation

of all the key operations that should be imminently realizable with today’s hardware.

These are:

• State preparation and readout of dual-rail cavity qubits

• Single qubit gates (parametric beamsplitter interaction)

• Two-qubit gates (ZZ(θ))

• mid-circuit erasure detection (via joint parity or Y-mon measurements)

• dual-rail reset (cavity measurements and photon loading via sidebands)
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Each building block has been designed so it conforms closely to the optimal error hi-

erarchy, with erasure errors set by cavity decay and transmon ancilla errors at the 1%

per gate level, Pauli errors by double jump errors in the transmon ancilla/transmon

readout at 0.01% per gate level and a low background of undetected leakage at the

0.001% level per gate. With these building blocks, it should be possible to realize a

good erasure qubit by concatenating with a surface code such as the XZZX surface

code. The set of operations we introduce are by no means final, and can likely be

further optimized. Rather they are an example of a complete set of operations that

adhere to the desired error hierarchy.

Future work will likely focus on optimizing dual-rail cavity qubits for specific use

in circuits that measure stabilizers — the circuit in Fig. 3.4 and we could further

design operations to respect the different classes of error in the surface code. For

example, the surface code is relatively robust to stabilizer measurement errors and

this could be factored in to the design of operations.

The concept of dual-rail cavity qubits is still in its infancy, and while we have outlined

one way to realize them, this is not set in stone. Major hardware changes could involve

replacing all 3D cavity modes with on-chip stripline resonators, and using multimode

cavities to make the footprint of these qubits more compact. Other areas to inves-

tigate are the many possible ways of implementing entangling gates other than via

ZZ(θ) gates, and the many possibilities for what to use as the ancilla physical qubit.

Here the prospect exists for a ‘mixed species’ code, where the ancilla physical qubits

are different from the hardware used for the data qubits. In our case, the data qubits

would be dual-rail cavity qubits but really, a whole range of cQED devices could be

used to measure the stabilizers, provided they rarely cause undetectable backaction

on the data qubits when hardware errors occur.
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What is equally pressing is the development of accurate, hardware-specific error mod-

els and decoders dedicated to dual-rail cavity qubits. Certain details, such as ‘inert’

leakage errors, reset errors, and accurate circuit level noise (Z errors are the most

common Pauli error) are not yet accounted for in surface code simulations for these

codes. This knowledge is needed to tell us precisely what error rates we need to target

in operations and what kind of logical qubit errors we could expect in a real surface

code. A framework where we can make changes at the hardware level and observe

their direct effect on the surface code logical error rate would be a powerful design tool.

For near-term characterization, dual-rail cavity qubits and erasure qubits in gen-

eral present new challenges. Techniques such as randomimized benchmarking (RB)

and interleaved randomized benchmarking (IRB) work well when we want to char-

acterize gate fidelities with a single number, by measuring out to long times after

the application of thousands of gates. With erasure qubits, we now also need to

characterize pfail and εpass for all the gate operations. εpass, the gate fidelity when no

errors are detected is challenging because randomized benchmarking techniques will

be less effective. This is because double-jump errors are expected to limit fidelities at

long times, leading to RB dynamics that cannot be described by a simple exponential

decay. We will be most interested in ‘short time’ fidelities, where the errors here

represent the errors we would experience in a round of stabilizer measurements in say

a surface code. To extract these numbers we will instead need to rely on the high-

fidelity SPAM expected for dual-rail qubits and careful characterization of systematic

errors such as measurement bias. Full process tomography for the entangling gates

may also be useful for constructing accurate error models for our circuit-level noise.

It is likely that a whole suit of tools will need to be developed to characterize the

relevant coherence times and relevant operation fidelities in dual-rail cavity qubits.



CHAPTER 7

Error Detection for Quantum

Networks

Now we move onto the final major part of this thesis, where we apply the principles

of error detection to the problem of quantum communication. In general, the goal

of quantum communication is to transfer quantum information across some appre-

ciable distance, via a communication channel. Ultimately, the goal is to send qubits

from point A to point B with a high rate of data transfer and a high fidelity. The

use context does not have to be quantum computing but could for example be for

quantum cryptography instead (See BB84 protocol [Bennett and Brassard, 2014]).

Quantum communication complements quantum computing in the sense that multi-

ple (hypothetical) quantum computers can be networked together [Kimble, 2008] over

long distances with quantum communication protocols to build a quantum network

where logical qubits are exchanged between nodes in the network.

This quantum internet is a long way away from reality! In the meantime, we

will be primarily interested in using quantum communication to ease the task of

building a quantum computer, through the paradigm of modularity. It is no secret
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that multi-qubit processors are harder to build and are more error-prone than few-

qubit processors. This is due to fabrication reliability, crosstalk and wiring issues. The

principle of modularity says we should build and independently test small-scale qubit

processors, and then network them together with quantum communication techniques

to build a more powerful processor [Jiang et al., 2007]. The challenge of building a

monolithic processor is now replaced with the challenge of building good quantum

communication links between modules - which we hope is easier!

Most quantum industry players have some sense of modularity built into their road

maps [Bravyi et al., 2022,Gold et al., 2021]. It is probably unreasonable (though per-

haps with CMOS-based qubits) to build 20 million physical qubits in a single device.

The first step however is just to link modules together over short distances, much less

than 1m. Here the problem is still a quantum communication problem but the context

and scales are quite different from what the phrase quantum communication usually

invokes — fiber optic channels and free-space (sometimes outer space!) transmission

of qubits over 10s or 100s of km.

For microwave frequency platforms, the quantum communication schemes devel-

oped for optics are not the optimum (although we often find optical quantum com-

munication proposals are sometimes first implemented in superconducting qubits!).

One thing we will rigorously explore are the consequences of being able to treat our

communication channel not as a continuum of modes, but a single standing wave

mode. The experiment we will discuss hinges heavily on this fact.

What are the figures of merit for quantum communication? We have already

mentioned the fidelity and rate of qubit transfer. In a computing context, we want

both to be high. Ideally the fidelity of the communication should be similar to the

fidelity of the local gate operations on the physical qubits, so we do not further

complicate the task of quantum error correction. The rate of qubit transfer should be

similar to the rate local gates are performed, otherwise we reduce the ‘clock speed’ of
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our quantum processor and incur more errors from idling.

We often focus on qubit transfer as the goal of quantum communication in a

modularity setting but this is not strictly necessary. We may for instance perform

an entangling gate directly across the network between two distant qubits and that

would also suffice for quantum computing. We simplify the task to qubit transfer

because this enables all the other quantum processing we could possibly want to do

across our network (e.g., we could transfer the qubit from module A to module B,

perform the entangling gate locally with qubits in module B and then transfer back).

Other important metrics are the success probability. In quantum communica-

tion, this can sometimes be shockingly low, often requiring thousands or millions of

attempts until a qubit is transferred successfully. The trick to get away with low

success rates is to instead try many times to herald entanglement and then teleport

the qubit state, as was discussed in Sec. 2.4.2 of Chapter 2. We do pay a penalty, in

the form of a reduced and probabilistic transfer rate. The average transfer rate will

be the rate of attempts multiplied by the success probability of attempts, but we will

be waiting around an uncertain amount of time for each qubit transfer. This does not

seem ideal for a modular quantum computer where we might occasionally be waiting

a long time until we can proceed with the next gate in the circuit. However, this can

be mitigated by parallelizing the heralding of entangled states with multiple links,

such that with high probability there is always an entangled state ready to teleport

a qubit ‘on-demand’.

This is where error-detection fits in. Error-detection allows us to reduce rate of

transfer in exchange for increasing the fidelity of qubit transfer. Depending on the

communication context, this can be a worthwhile trade-off. Quantum communication

has more leniency for success probability than quantum computing. For instance, if

I detect an error half the time on average while trying to send an entangled state

then this reduces my average transfer rate by a factor of 2. In a quantum computing
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context, detecting an error in a gate 50% of the time is much too high to do anything

useful like high-depth circuits or erasure qubits.

The main challenge to the modularity approach is that the links themselves tend

to be the most lossy and error-prone parts of the system, and so quickly set the

bottleneck of our modular processor’s performance. Although optical fibre can have

attenuation lengths of 10s of km and similarly for microwave superconducting coaxial

cable, this is still the major source of loss compared to the physical qubits themselves

in both platforms.

The problem our experiment tackles will be centimeter-meter scale communica-

tion between superconducting cavity modules such as those introduced in Chapter

4. Over this length scale (and for our experimentally available coupling strengths),

our communication channel ought to be treated as a single standing wave mode. We

will also be interested in the regime where the loss in our communication channel

is significantly greater than our coupling rate. At first glance, it looks like we can

never succeed in sending anything through this channel, although this is certainly the

regime most easiest to realize in experiment!

We will show that by combining three main ingredients: a standing wave mode

link, bosonic cat qubits and error-detection via heralding, it is in fact possible to

herald Bell states with a remarkably high success probability ∼ 50% per attempt,

and such Bell states should be practically free of all errors due to loss in the link!

Our scheme is, to our knowledge, the first example of a quantum communication

scheme where the heralding relies specifically on interference effects in a standing

wave mode link. To better understand the context and use cases for this scheme, it

is helpful to first review the ‘standard’ regimes of quantum communication that have

been implemented in various qubit platforms.
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7.1 Regimes of Quantum Communication

We simplify the problem of quantum communication to focus on qubit transfer be-

tween two nodes, Alice and Bob. The qubit to be transfered may be a two-level

system or a bosonic qubit. We also take our communication channel to be a section

of fibre or microwave transmission line/coax/waveguide of distance L, which naturally

supports multiple standing wave modes that can be excited by coupling to them and

serve as the medium for the transfer of energy from node 1 to node 2. These standing

wave modes are spaced in frequency by ∆FSR, the Free Spectral Range where

∆FSR =
c

2L
(7.1)

Where c is the group velocity in the channel, typically the speed of light (or a signif-

icant fraction of) in a photonic link or the speed of sound in a phononic link.

We presume all our couplings between the qubit and the link to be beamsplitter

couplings of the form

Ĥcomm =
∑

j

g1,j(t)â
†
1b̂j + g2,j(t)â

†
2b̂j + h.c.+

∑

j

∆j b̂
†
j b̂j (7.2)

Where

∆j = j∆FSR (7.3)

For the jth harmonic where we designate j = 1 to be the fundamental mode. Impor-

tantly, we can vary the couplings g1,j(t) and g2,j(t) in time. We need to be able to

turn our communication on and off! At the very least we need to be able to set both

couplings to zero in the ‘off’ state.

When we couple resonantly to a single standing wave mode in the link, b̂ our
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Hamiltonian becomes

Ĥdisc =g1(t)â
†
1b̂+ g2(t)â

†
2b̂+ h.c. (7.4)

Finally there is the characteristic loss rate, κ of the link. For the discrete case,

this is the loss rate of the standing wave mode we couple to. For the continuum

case, this is the typical loss rate of the modes within the frequency bandwidth of the

wavepacket we excite which is typically taken to be a constant.

These three parameters, g, κ and ∆FSR largely govern the physical regime of our

quantum communication and which quantum communication protocols are suitable.

As shown later in Fig. 7.1, we can re-express these terms in the time and spatial

domains, where they correspond to different physical aspects of our communication

protocol.

An important figure of merit for any deterministic state transfer scheme is the

energy transfer efficiency, η or more conveniently the energy transfer inefficiency η̄ =

1− η. Simply put, this is the probability that a single photon from node 1 does not

make it to node 2 at the end of the protocol or in other words, the fraction of energy

lost during the state transfer. For a two-level qubit this sets an upper bound ∼ η on

the transfer fidelity. For a bosonic qubit, this sets an upper bound on the average

energy transfer but not the fidelity, since we may encode in a bosonic code designed

to correct for photon loss (which also corrects for loss that happens in the link since

all the link modes are bosonic and we are assuming beamsplitter couplings). For

example, by error-correcting loss in the link using a code designed for single-photon

loss [Burkhart et al., 2021], we now have a infidelity ∼ η̄2.

There is a fundamental limit to how large η̄ can be. We call this limit the ‘single

pass loss’ and it is set by

η̄ =
κL

c
=

κ

2∆FSR

(7.5)
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Simply put, the fastest possible time we can transfer energy through the link is given

by the speed of light/sound in the link and the distance traversed. During this time

we experience energy loss at rate κ. Often we find adiabatic schemes that use discrete

modes appear perfect, until we consider the effects of other, off-resonance modes in

the link. Although the effect of these modes is typically small, we always end up

recovering the single pass loss as the upper bound on how well an adiabatic scheme

could theoretically perform.

Before we move on to describe briefly some of the many qubit transfer protocols

that have been realized, we first present a mini-glossary that explains the various

terms used to qualify a particular scheme

Continuum vs Discrete

Whether the communication channel can be treated as a continuum of (bosonic)

modes or a single standing wave mode. At optical frequencies in the THz regime,

optical communication links are always treated as a continuum of modes. This

is also often the case for phononic microwave links due to their much slower

wavespeed, which is given by the speed of sound rather than the speed of light.

In these links the coupling strength g is larger than ∆FSR. In microwave photonic

links which operate at frequencies of only a few GHz, over distances of up to 10s

of metres, the link can be well-treated as a single standing wave mode, since

we typically can only engineer g<∆FSR. There are some exceptions to this,

either by engineering g>∆FSR with certain couplers [Zhong et al., 2019], or

alternatively, we can set ∆FSR to zero by introducing lossy directional elements,

although there is arguably little benefit in doing so since η̄ will still be limited

by κ/g and the circulator presents an additional source of loss.

Deterministic vs Probabilistic

Deterministic or ‘on-demand’ communication means the communication proto-

col succeeds 100% of the time. Probabilistic means that success is not guar-
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anteed on each attempt, but is instead heralded by some measured signal that

tells us if a particular attempt was successful. For this reason, probabilistic

schemes often generate entanglement first for teleportation.

Direct transfer vs Teleported

Determinstic schemes usually opt for direct state transfer, where a qubit is liter-

ally transported through the communication channel and received on the other

side. Teleported schemes must first generate an entangled pair between the two

nodes, and then perform local Bell measurements and classically comunicate

the results to teleport the qubit state.

Microwave vs Optical

Microwave schemes use microwave links made out of coaxial transmission line or

waveguides (photonic or phononic) and typically interface with superconducting

qubits (or other qubits with accessible transitions in the microwave regime which

we can couple to a microwave link). Optical schemes work at optical frequencies

and use fiber optics, optical waveguides or free space as the communication link.

Adiabatic

Adiabatic schemes are sometimes used for discrete mode communication. By

changing parameters slowly compared to g, we can achieve state transfer with

inefficencies η̄ < κ/g whilst incurring a penalty in an increase in the overall

transfer time.

Intra-fridge vs Inter-fridge

For superconducting qubits (or other qubit platforms that require dilution

refridgerators), intra-fridge communication refers to communication within a

fridge, e.g., when building a modular quantum processor by joining chips/modules

together over the scale of a few cm at most. Inter-fridge communication is link-
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ing processors between fridges and requires either microwave-to-optical trans-

duction [Lauk et al., 2020] or a long cryogenic link [Magnard et al., 2020]

Directional vs Bidirectional

A directional scheme can only transfer from node 1 to node 2 but not the other

way around, without significant hardware changes. This is the case when we

insert circulators into microwave links. Here we define bidirectional to mean we

can transfer a qubit from node 1 to node 2 or from node 2 to node 1, without

making any hardware changes. We might need to still change the details of

the protocol, e.g., the exact pulse shaping if pitching and catching wavepackets.

Schemes that are the ‘most’ bidirectional implement a SWAP gate between the

qubits at node 1 and node 2.

7.2 Examples of Deterministic State Transfer Schemes

The generalized framework for analyzing deterministic qubit transfer protocols is

shown in Fig. 7.1 We first describe the continuum protocols, since these were first

developed for optics. Note that with many of these transfer schemes, the underlying

physics principles are classical. They are compatible with quantum information pro-

cessing because they preserve qubit coherence if the state we are trying to transfer is

in a quantum superposition.

7.2.1 Pitch and catch

Owing to low fiber coupling efficiencies and photon collection efficiency, optical pro-

tocols typically rely on heralding and are probabilistic. There is however a determin-

istic protocol that we will call ‘Pitch and Catch’ which is based off of the proposals

in [Cirac et al., 1997] in cavity QED and then adapted for microwaves in [Korotkov,

2011]. This scheme is also referred to as the CZKM scheme after the authors in [Cirac
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Figure 7.1: General properties and limiting factors for discrete and continuous deter-
ministic quantum communication schemes. We can analyze the physics of a scheme
in the frequency, time or spatial domain.

et al., 1997]. If we were to engineer a constant beamsplitter coupling g between a

qubit and some intermediary mode that has a strong coupling to the continuum of

modes on the communication channel, then the qubit state would ultimately ‘leak

out’ into the channel as a wavepacket with an exponentially decaying envelope. It

turns out this wavepacket cannot be perfectly absorbed with only a constant coupling

at the receiver node, due to its discontinuous envelope. The ‘Pitch and Catch’ scheme

states that if we can instead modulate the amplitude of the beamsplitter couplings

g1(t) and g2(t) in time then we can shape the envelope of the wavepacket. By choosing

g1(t) such that the envelope of the wavepacket is time symmetric1, then in theory it

can be perfectly absorbed at node 2 with a g2(t) that satisfies g1(t) = g2(τ − t) where

τ is the small delay that accounts for the time of flight of the wavepacket through the

link.

1. Strictly the envelope does not need not to be time symmetric, so long as the catch pulse is the

time reverse of the pitch pulse.
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Aside from technical difficulties such as experimental pulse shaping errors and

efficiencies in coupling to the link, the energy transfer efficiency of this scheme is

limited by the single pass loss, i.e., η̄ = κ/2∆FSR

With a circulator

Because it is easier to engineer the necessary couplings to the communication chan-

nel, this scheme was first realized not in optics but in microwaves [Kurpiers et al.,

2018, Axline et al., 2018, Campagne-Ibarcq et al., 2018]. Herein lies an experimen-

tal challenge: it is hard to engineer g > ∆FSR unless we use an impractically long

microwave link that would struggle to fit inside a single dilution refrigerator. The ex-

perimental solution was to add a circulator/isolator, which acts like a one-way valve

for microwave signals, effectively setting the ∆FSR to zero and attenuating the signal

typically by a few decibels.

A curious side effect is the time to release the wavepacket is now longer than the

time-of-flight through the system, and so the overal transfer time is set by 1/g, not

1/∆FSR as we would expect for the optical case. This also means the energy transfer

efficiency is limited by η̄ ∼ κ/g, plus the loss from the circulator.

Despite its shortcomings, this scheme remains popular for microwave communica-

tion, which aside from a few exceptions still requires a circulator, even when traversing

distances of up to 30 m. An advantage of this scheme is that it can truly be described

as remote. The protocol does not change significantly if we extend the length of our

link to arbitrarily long distances, aside from an increase in the energy loss due to a

longer time of flight. From a practical perspective, loss in the link is typically one

of the main limits on the transfer fidelity, but inefficiencies due to the ‘pitching’ and

’catching’ of the wavepacket also contribute to the transfer infidelity.
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Time-binned

The pitch and catch protocol can be modified with a Time-binned protocol. Usually,

if the qubit at node 1 is in |1L⟩ we pitch the wavepacket and if it is in |0L⟩ we do not.

With time-binning, we always pitch a wavepacket but the time delay at which we

pitch the wavepacket is dependent on the qubit state. The catch procedure at node

2 is sensitive to the time at which the wavepacket arrives. In addition, we can then

use a ‘witness’ at node 2 which detects if a wavepacket arrives, but knows nothing

about the time of arrival. This allows us to error-detect the transfer. Success is

only declared if the wavepacket arrives. As a heralded protocol, this scheme has the

potential to overcome all loss in the link, where loss acts only to reduce the success

probability. This scheme has also been realized in superconducting qubits [Kurpiers

et al., 2019,Zalys-Geller, 2022].

7.2.2 The quantum bus

The quantum bus is the name we give to any scheme that uses on-resonant couplings

to a single standing wave mode in the communication channel, which we call the bus

mode. These schemes can all be described by the Hamiltonian in Eq. 7.4 and this

was the first way superconducting qubits were coupled together, albeit on the same

chip [Majer et al., 2007]. As long as this Hamiltonian is a valid model for our system,

we can use these schemes for qubit transfer over appreciable distances. For a typical

coupling rate on the order of g/2π ∼ 0.1-1MHz, this corresponds to link lengths up

to 10-100 m to satisfy g < ∆FSR.

With our knowledge of beamsplitters from Chapter 4, a simple way we can engineer

a (directional) qubit transfer is to first turn on only g1(t) at constant amplitude g0/2

for time t = π/g0, which initiates a SWAP between â1, the mode used to store the

qubit in node 1 to the bus mode b̂. We then set g1(t) = 0 and g2(t) = g0/2. After

time t = π/g0 we will have swapped the state to node 2, completing our transfer.
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The total time of the transfer is t = 2π/g0 giving us an energy transfer inefficiency

of η̄ = 2πκb/g0, where κb is the loss rate of the bus mode. This scheme can generate

entanglement if using the 0-1 encoding by performing a 50-50 beamsplitter or ‘half

swap’ with g1(t) followed by a full swap with g2(t).

We can improve on this scheme in what has been called the ‘hybrid’ scheme [Wang

and Clerk, 2012] whereby we set g1 = g2 = g0/2 during the full duration of the

transfer, with the Hamiltonian

Ĥc =
g0
2
(â†1 + â†2)b̂+ h.c. (7.6)

After time t =
√
2π/g0 = τSWAP , we will have implemented a SWAP gate

between modes â1 and â2 with a much improved energy transfer inefficiency of η̄ =

1√
32
(2πκb/g0). These improvements come from the faster transfer time and the fact

that we can begin ‘unloading’ our state from the bus mode from the other side as soon

as we start ‘loading’ by turning on both couplings simultaneously, which reduces the

average photon number of the bus mode (full details worked out in [Burkhart et al.,

2021]. This improvement comes from the fact that our transfer is now faster and the

population of the bus mode is reduced (see Fig. 7.2).

This is another popular scheme for microwave communication and forgoes both

the circulator and complicated pulse shaping needed for the Pitch and Catch pro-

tocol. The highest fidelity microwave communication in a modular superconducting

processor uses this scheme.

A variation of the hybrid scheme can also be used to generate deterministic en-

tanglement. We instead detune both our couplings from resonance by ∆BS to realize

the Hamiltonian

Ĥ =
g0
2
(â†1 + â†2)b̂+ h.c.+∆BS b̂

†b̂ (7.7)

where we choose ∆BS = g0

√
2
3
. After time t =

√
3
4
τSWAP, we will have enacted
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a 50-50 beamsplitter between â1 and â2. The reasons these particular values work

are discussed in [Burkhart et al., 2021]. By tuning our beamsplitter couplings from

resonance we can find points in time where the bus mode is empty and a beamsplitter

transformation is enacted between modes â1 and â2. A 50-50 beamsplitter is sufficient

to generate entanglement provided we start with the appropriate input states. By

preparing a single photon in one or both of the qubits, we can use this beamsplitter

to generate a Bell state in the 0-1 or 0-2 encoding.

In Figs. 7.2 and 7.3 we compare the state transfer dynamics for various states.

Note, that since we are describing state transfer between different modes, the overall

transfer operation is state independent. In these QuTiP simulations we always begin

in the initial state |1⟩a1 ⊗ |0⟩a2 ⊗ |0⟩b and set g0/2π =1MHz for a fair comparison.

The dynamics we plot are also reminiscent of the evolution of the mode operators,

â1(t), â2(t) and b̂(t).

7.2.3 Adiabatic schemes

We define an adiabatic scheme for discrete transfer to be qubit transfer when the

bus mode can be adiabatically eliminated from the dynamics. If some condition for

adiabaticity is reached (in a limiting case) then the population of the bus mode tends

to zero at all times during the protocol, and hence we are no longer sensitive to loss

from the bus mode. Invariably these schemes come with an ‘adiabatic slowdown’ and

it is impossible to transfer better than the single pass loss limit.

STIRAP

STIRAP stands for STimulated Raman Adiabatic Passage. Originally developed for

state transfer between energy levels in various quantum systems, this approach works

equally well for distinct quantum modes in a quantum communication context. We

use on-resonance couplings but the ‘counter-intuitive’ pulse sequence. To transfer
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Time

Hybrid

SWAP-SWAP

Figure 7.2: QuTiP simulations of population dynamics during schemes for on-
resonance deterministic state transfer. (Top) The Swap-Swap scheme. The qubit
at node 1 is first swapped to the bus mode, and then to node 2. (Bottom) The
‘hybrid’ scheme where g1 = g2 =

g0
2

for the entire protocol, which performs a SWAP
operation on modes â1 and â2
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from node 1 to node 2, we must first turn on g2(t) = g0 and set g1(t) = 0. This is

not intuitive at all! We then slowly ramp down g2(t) → 0 and ramp up g1(t) → g0.

If we do this slowly enough then at the end of the pulse sequence we will have

performed a directional transfer from node 1 to node 2. We are making use of the

adiabatic approximation: if the Hamiltonian changes slowly enough, we will remain

in the eigenstate we started in, even if that eigenstate is slowly being redefined. The

same applies to the eigenmodes of a multimode Hamiltonian which is our case. The

instantaneous eigenmode of this system (sometimes called the ‘dark mode’) is

âd = cos θâ1 − sin θâ2 (7.8)

where tan θ = g1/g2. By starting with g2 = g0 and g1 = 0, we begin in eigenmode â1

which becomes â2 at the end of the sequence. This was experimentally demonstrated

in superconducting qubits on a single chip in [Chang et al., 2020].

Formally, the condition for adiabaticity is

θ̇(t) ≪ g0 (7.9)

which states the eigenmodes of the Hamiltonian must change slowly with respect to

g0.

Virtual Raman transitions

Virtual Raman transitions were also developed for state transfer within a single quan-

tum mode but the same principle also extends to multimode systems. This time, we

detune both couplings from resonance by ∆V R to engineer the Hamiltonian

Ĥ =
g0
2
(â†1 + â†2)b̂+ h.c.+∆V Rb̂

†b̂ (7.10)
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The key difference with Eq. 7.7 is that we now choose ∆V R ≫ g0. In this limit, it

is as if we are doing a parametric beamsplitter interaction directly between modes

â1 and â2 at the reduced effective beamsplitter rate gBS = g20/2∆V R. At the same

time, the population of the bus mode is reduced to sinusoidal oscillations at frequency

∆V R and amplitude g0/∆V R with suppressed average population 1
2
(g0/∆V R)

2. When

we calculate the energy transfer inefficiency, we find these two effects do not cancel

out! Overall, we find the fraction of the energy lost is η̄ = πκb/∆V R, which decreases

as we increase ∆V R, meaning this scheme can be advantageous if we are willing to

increase the overall transfer time. We can also realize an arbitrary angle beamsplitter

transformation with this approach.

In an elegant way we can recover the single pass loss limit by noticing that there

is a maximum detuning from a mode. If we detune by ∆V R > ∆FSR/2 then we will be

closer to being on resonance with the adjacent harmonic! At this maximum detuning

∆V R = ∆FSR/2 we calculate the energy loss in the bus to be exactly the single pass

loss! (See [Leung et al., 2019], the same goes for STIRAP too — see [Vogell et al.,

2017])
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Time

Virtual Raman

STIRAP

Figure 7.3: Simulated population dynamics for the two adiabatic transfer protocols.
Here we have chosen parameters so we are not entirely in the adiabatic regime, to
hint at the bus population dynamics. (Top) Virtual Raman scheme where we set
g1 = g2 = g0/2 and set ∆V R = 5g0 with g0/2π =1MHz for a fair comparison with the
on-resonance schemes. Dynamics approximate a parametric beamsplitter interaction
between â1 and â2 (Bottom) STIRAP for state transfer between modes. We chose
a simple pulse shape where g1(t) = g0

t
tramp

where the beamsplitter amplitude linearly

increases in time tramp = 5 µs to its maximum value g0. Similarly, g2(t) = g0(1 −
t/tramp), linearly ramps down. The condition for adiabaticity for this pulse is tramp ≫
1/g0.
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7.3 The Crossover from Discrete to Continuum

All the deterministic state transfer schemes we described can be modelled with the

Hamiltonian in Eq. 7.2, even in the continuum limit (although this is not the most

efficient way to simulate these dynamics.). This model is useful for investigating

dynamics due to our imperfect assumption that we can only couple to exactly one

mode in the link when implementing a discrete qubit transfer scheme, e.g., we can

see the effects of off-resonant coupling to the other modes.

We use this model to examine the crossover from the discrete mode to the con-

tinuum of modes regime if we were to increase g0, keeping all other parameters fixed.

In this model we assume only one node couples with the link with a static, always

on coupling, to simplify the dynamics. We consider the first seven harmonics of the

link, denoted by b̂j for j = 0, 1, 2, 3, 4, 5, 6 and our beamsplitter coupling is initially

on-resonance only with the j = 3 harmonic. This gives us the Hamiltonian

Ĥ = g0
∑

j

(−1)j+1
(
â1b̂

†
j + â†1b̂j

)
+
∑

j

(j − 3)∆FSRb̂
†
j b̂j (7.11)

Note the alternation of the signs in the coupling to the jth harmonic. For the link

we consider, the parity of each harmonic alternates between even (cosine) and odd

(sine) as we increment j. In Fig. 7.4 we plot the dynamics of this Hamiltonian when

we initially prepare mode â1 in |1⟩, for various ratios of g0/∆FSR and observe an

abrupt crossover with an intermediate regime with messy dynamics and properties

of both discrete and continuous dynamics. From the population of the jth harmonic,

nbj(t) = ⟨b̂†j b̂j(t)⟩, we can construct the spatial energy density distribution for the

electric field, u(x, t) in our link using the equation

u(x, t) =
2

L
cos2 ((j + 1)∆FSRt) cos

2(kx) (7.12)
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Figure 7.4: Simulating the crossover from a discrete mode to a continuum of modes.
Here we fix ∆FSR/2π =100 kHz, corresponding to a link length of ≈500m. Top row
- population of the qubit at node 1, Bottom row, electrical energy density in the
link as a function of position along the link and time. Left column - in the discrete
mode regime we mostly realize a parametric beamsplitter interaction between qubit
1 and the ‘bus’ mode, with distortion due to off-resonant couplings. At the halfway
point, we have excited mainly the j = 3 harmonic only and swapped the qubit into
the bus mode. At longer times we swap the energy from the bus mode back into
the qubit. Right column - when g approaches ∆FSR we begin launching wavepackets
which travel down the link and reflect off the other end, travel back towards the start
and are partially reabsorbed (since we never turn off g). Here we see the wavepackets
travel much faster, at the speed of light in the link. Dynamics become messy since
we never ‘turn off’ g and no pulse shaping is used. Middle column - intermediate
regime. Dynamics are messy here and not useful for communication. We observe
energy distributions in the link reminiscent of both cases.

Where k = (j+1)π/L is the wavevector for the jth harmonic and L is the link length.

We are also assuming ‘open’ terminations at either end of the link. This allows us to

track the position of wavepackets in the link, particularly in the continuous regime

where we observe ping-pong dynamics (as experimentally observed in [Zhong et al.,

2019]) In our experiment, we are firmly in the single mode regime with g/∆FSR ∼ 10−4
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7.4 Heralded Schemes

Qubit platforms such as photonics, trapped ions, neutral atoms, and NV centers often

couple to an optical fiber for long distance quantum communication. Traditionally,

the energy transfer efficiency is low. Sometimes this is due to energy absorption in the

fiber itself, although the attenuation length can be 10s of km for ‘telecom wavelength’

photons close to 1500 nm in wavelength. Unlike microwave platforms, the coupling

efficiency to the fiber link is also low, due to the need to collect photons which may

be emitted in all directions in 3D space (we can boost this by emitting photons into

a photonic waveguide) and couple these photons into an optical fiber.

Heralded schemes overcome the fidelity limitation imposed by deterministic qubit

transfer — a high single pass loss due to coupling inefficiencies (and often fiber ab-

sorption too). The goal in heralded schemes is to first herald an entangled state, and

then use this as a resource for something else, e.g., qubit teleportation. Heralding

relies on a measurement, typically a Bell measurement and the act of measuring is

integral to producing the entangled state — even if there were no errors, the scheme

could not produce entanglement without this measurement. We briefly walk through

how this is typically achieved in optics, before we subvert the idea of heralding when

we apply it to a microwave link.

We first prepare two qubits at nodes 1 and 2 in the product state (|0⟩ + |1⟩)1 ⊗

(|0⟩+ |1⟩)2 where we are omitting normalization factors for brevity. We then engineer

our systems so each qubit emits a photon, with a polarization that depends on the

state of the qubit, e.g.,

(|0V ⟩+ |1H⟩)1 ⊗ (|0V ⟩+ |1H⟩)2 (7.13)

We now have two local Bell states. The idea is to perform a destructive Bell mea-

surement on the photons, in order to entangle the qubits with each other. This is an
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Figure 7.5: Typical setup for heralding entanglement in an optical quantum network.
Here an optical fiber typically functions as the communication channel and the pro-
tocol begins by launching propagating wavepackets into the fiber from either end,
where each wavepacket is entangled with the state of the qubit at each node. The
wavepackets meet at some intermediate point along the link where a Bell measure-
ment is performed, typically by interfering them on a beamsplitter and measuring
them with photodetectors shown in grey. A particular measurement outcome heralds
entanglement.

example of entanglement swapping.

As shown in Fig. 7.5, this can be achieved by sending both photons down an

optical fiber and interfering them on an actual beamsplitter. There are variations on

how this measurement is specifically implemented [Browne and Rudolph, 2005] but

this beamsplitter can essentially act as a which-path information eraser, e.g., if we

detect a photon of a particular polarization, we have no idea which qubit it came

from. A certain pattern of clicks on the photodetectors heralds successful entangle-

ment, leaving the qubits in a known Bell state. By ensuring a signal that is unlikely

due to environmental noise (e.g., dark counts), such as two simultaneous clicks on

two photodetectors, the entanglement fidelity between the qubits can be high fidelity,

with entanglement fidelities in excess of 90% reported in trapped ion and NV cen-

ter platforms [Hensen et al., 2015, Stephenson et al., 2020], even when the success

probability per attempt is small. (∼ 10−4 or below.)
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7.5 Review of Previous Experiments

In Tab. 7.1 we summarize the experimental implementations of these various com-

munication schemes over the years, restricting ourselves to microwave links between

superconducting qubits. To compare both deterministic and probabilistic schemes we

use the metric of entanglement fidelity — the fidelity of the Bell state these schemes

can prepare between two nodes. In addition, we also compare them based on their

success probability, energy transfer efficiency and repetition rate.
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Work Coupling
to link
(MHz)

Link loss
rate

(MHz)

Physical link Channel
type

Name
of

scheme

Transfer
efficiency

η

Success
prob

Scheme
duration

Bell state
fidelity

F
Narla (2016) - - copper coax cable,

180◦ hybrid,
w/ circulators

Continuum ‘optical’
heralding

- 0.004 2.5 µs 57± 1%

Kurpiers (2018) 10.5 - 0.8 m NbTi Coax
w/circulator

Continuum CZKM 0.675 1.0 180 ns 78.9± 0.1%

Campagne-
Ibarcq (2018)

< 0.7 - 1 m NbTi Coax
w/circulator

Continuum CZKM 0.7 1.0 2.5 µs 73%

Axline (2018) < 0.4 - 0.6 m NbTi Coax
w/circulator

Continuum CZKM 0.74 0.78
(1.0)

6 µs 77± 2%

(61± 2%)
Kurpiers (2019) 5.6 - 0.9 m NbTi Coax

w/isolator
Continuum CZKM

Time-Binned
0.72 0.615 480 ns 87%

Leung, Lu (2019) 1.3 0.29 1 m copper Coax
hybridized w/on-
chip resonators

Single mode Half-swap,
swap

0.61 1.0 265 ns 79.3± 0.3%

Burkhart (2020) 0.56 0.1 6.6 cm NbTi Coax Single mode Detuned
beamsplitter

0.84 0.79
(1.0)

520 ns 94± 1%

(88± 1%)
Magnard (2020) 20 - 5 m WR90 Al

waveguide
w/circulator+

0.8 m copper Coax

Continuum CZKM 0.675 1.0 311 ns 79.5%

Zalys-Geller
thesis (2021)

< 0.2 - 1 m NbTi Coax
w/circulator

Continuum CZKM
Time-Binned

0.64 0.27 3 µs 89± 1%

Zhong (2021) 2.9,6.1 0.34 1 m NbTi Coax
(wirebond)

Single mode ST/2 0.881 1.0 62.8 ns 90.8± 1.2%

Liu, Zhong (2023) 5 0.006 25 cm Al Coax
(wirebond)

Single mode Half-swap,
swap

0.99 1.0 25 ns 98.9± 0.6%

Storz (2023) 20 - 30 m WR90 Al
waveguide

w/circulator+
0.8 m copper Coax

Continuum CZKM 0.669 1.0 107 ns 80.4%

Teoh (2023) 0.16 0.6 6.7 cm NbTi Coax Single mode Dark Mode
Msmt

- 0.35 4.8 µs 92± 1%

Table 7.1: Comparison of deterministic and probabilistic entanglement generation experiments in superconducting qubits across
a quantum network. For our scheme (bottom row) we take the scheme duration to be 4.8 µs for comparison, which excludes the
time for state preparation.
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7.6 Qubit Transfer in the ‘Impossible’ Regime

Is it possible to transfer a qubit in the regime g < κ < ∆FSR? In a way, this is the

easiest regime to realize in an intrafridge microwave link. The link is lossy and the

coupling rate is small. However, since η̄ ∼ κ/g > 1, it seems that at first glance, all

the energy will be lost in the link, and we will not be able to transfer any energy from

node 1 to node 2 and we must resort to a slower adiabatic scheme or a heralded scheme

with a vanishingly small success rate that scales as e−κ/g. The goal of our experiment

is to show that it is in fact possible to transfer a qubit in this regime without an

adiabatic slowdown, by developing a new heralded scheme + teleportation. Even if

we are not in the κ > g limit, this scheme is still able to get around the η̄ = κ/g

‘fidelity barrier’ that non-adiabatic deterministic schemes face. The price we pay is

that our scheme to generate entanglement will succeed with at most 50% probability

per attempt

To build some intuition, it is helpful to first consider the case where we try to

transfer a single photon with the hybdrid scheme in the case where κb > g0. Something

curious happens in the system — we do not decay to vacuum but instead reach a

steady state which contains half the initial energy. Using the notation |n1⟩1⊗ |n2⟩2⊗

|nb⟩b = |n1, n2, nb⟩, this state can be written as

ρsteady =
1

2
|0, 0, 0⟩ ⟨0, 0, 0|+ 1

2

( |1, 0, 0⟩ − |0, 1, 0⟩√
2

)(⟨1, 0, 0| − ⟨0, 1, 0|√
2

)
(7.14)

which curiously is a 50-50 incoherent mixture of vacuum and a Bell state, so we can in

fact retain up to half the energy if we arrange our couplings right, even though κ/g >

1. If we had some way of distinguishing between these states, we could obtain a Bell

state with 50% probability. However, in this case, there are no local measurements

that can achieve this — we would have to do some non-local measurement between

node 1 and node 2, but if we can do this, then we could just use this measurement
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instead to make our entangled state! This state has a 50% fidelity to a Bell state, and

so it has no useful entanglement. Nonetheless it is instructive to see why we reach

this steady state.

We can rewrite the Hamiltonian from Eq. 7.6 as

Ĥc = gBS (â1 + â2) b̂
† + h.c. =

√
2gBS(âbb̂

† + â†bb̂) (7.15)

Where we have redefined gBS to the ‘experimentalist’ definition, where gBS = g0/2

where we define the bright mode to be âb = (â1 + â2)/
√
2 which couples to the bus

and the ‘dark mode’ âd = (â1 − â2)/
√
2, which does not.

We define ‘bright states’ to be excitations of the bright mode, i.e., they can be

written as

|ψ⟩bright =
∑

n

cn

(
â†b

)n

|vac⟩ (7.16)

for scalar coefficients cn and similarly for ‘dark states.’

Dissipation on the bus mode given by the collapse operator b̂ at rate κb for evo-

lution under the Lindblad master equation. Only the bright state feels the effects of

this dissipation.

We can now rewrite our initial single photon state as a superposition of a bright

and dark state.

|ψinit⟩ = |1, 0, 0⟩ = |1, 0, 0⟩+ |0, 1, 0⟩√
2

+
|1, 0, 0⟩ − |0, 1, 0⟩√

2
(7.17)

In the steady state, the bright state has decayed to vacuum and the dark state remains

unaffected by the dissipation, leaving us in the state in Eq. 7.14.
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7.6.1 Classical bright and dark states

It is possible to find a local measurement that can distinguish between vacuum and a

dark state but to do this, we must prepare our bright and dark states within a larger

Hilbert space. We can examine what happens when we prepare coherent states, which

have a small overlap with the vacuum state provided α is large enough2. ‘Classical’

bright states take the form is |β, β, 0⟩ we call this a classical state because it is

classically analogous to two harmonic oscillators displaced in phase with the same

amplitude. It is a bright state of the Hamiltonian since we can write this state as

|β, β, 0⟩ = D̂âb(
√
2β) |vac⟩ (7.18)

Where D̂âj(α) is the displacement operator acting on mode âj with a displacement

α.

Under the evolution of the Lindblad master equation, we will eventually lose all

the energy in the bus mode and reach the vacuum state (See Fig. 7.8). This is true

for any value of β. We can also prepare the corresponding dark state

|β,−β, 0⟩ = D̂âd

(√
2β

)
|vac⟩ (7.19)

Regardless of our choice of β, this state never participates in the dynamics of Eq. 7.6,

and it never loses any energy to the bus mode.

So far all that we have discussed is a classical interference effect that arises in

coupled harmonic oscillators. The classical analog for this system is three coupled

pendulums as shown in Fig. 7.6 , where only the middle pendulum is lossy.

2. The overlap, | ⟨α|0⟩ |2 = e−|α|2 decreases exponentially to zero as |α|2 increases
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Dark State

Bright State

Figure 7.6: A classical pendulum analog for our system. Three coupled pendulums
coupled together by elastic links (purple). Bright states correspond to the left and
right pendulums displaced in phase. They excite the middle pendulum which has a
lossy pivot shown in red, where eventually all the energy in the system is dissipated.
The dark state is the left and right pendulum displaced in antiphase. The forces on
the central pendulum from the purple links always cancels out so it never moves and
no energy is dissipated in the system.

7.6.2 The Dark Mode Measurement scheme

By combining this classical interference effect with an initial state that is a quantum

superposition of these bright and dark coherent states, we can reach a steady state

from which we can herald a Bell state with local measurements with a 50% success

probability. We call our scheme the ‘Dark mode measurement’ (DMM) scheme since

ultimately we are performing a measurement which distinguishes between dark modes

and bright modes of the system.

The scheme is simple to explain for the lossless case, where κb = 0. We start with

two local ‘cat states’ in qubit 1 and qubit 2, which are now taken to be bosonic modes

(cavity qubits). The initial state is

(|α⟩+ |−α⟩)1 ⊗ (|α⟩+ |−α⟩)2 ⊗ |0⟩b = |α, α, 0⟩+ |−α,−α, 0⟩+ |α,−α, 0⟩+ |−α, α, 0⟩

(7.20)
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Where we have omitted the normalization factors. After applying the Hamiltonian

Ĥc for time tSWAP = π/2
√
2gBS we end up with the state

|0, 0,
√
2α⟩+ |0, 0,−

√
2α⟩+ |α,−α, 0⟩+ |−α, α, 0⟩ (7.21)

Unlike the state in Eq. 7.14, this state is a pure state (no dissipation yet) but crucially,

we can now distinguish the dark state from vacuum by local measurements. We can

perform a QND measurement that tells us whether one of the qubits is in vacuum or

not, which can be achieved with a number-selective π-pulse on a dispersively coupled

transmon ancilla. We call this measurement the ‘vacuum check’. 50% of the time, we

find the qubits to not be in vacuum and project into the state

|Ψ2cat
+ ⟩ ≈ 1√

2
|α,−α, 0⟩+ |−α, α, 0⟩ (7.22)

which is a Bell state in the two-legged cat code provided α ≫ 0. This Bell state is also

sometimes referred to as the ‘cat in two boxes’ state [Wang et al., 2016], although

now these boxes can live in separate modules connected by a link. When we obtain

the other outcome, we know the cavities are both empty and have transferred all their

energy to the bus mode. Before retrying the scheme, we must be sure the bus mode

is in vacuum.

The fact that this scheme only succeeds 50% of the time in the lossless case is

reminiscent of some heralded entangling schemes in optics, where the Bell measure-

ments can only succeed at most 50% of the time as well. Unlike continuum schemes

in optics, there is no inteference of wavepackets in the middle of the link, the in-

terference happens immediately due to the standing wave nature of our microwave

link. Dissipation in the bus mode is not strictly necessary for this scheme to work,

although it is helpful for bus reset in between attempts.
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7.6.3 The DMM scheme is robust to bus loss

The remarkable feature of this scheme is that it proceeds in more or less the same

way even when there is significant energy loss in the bus. Regardless of the value of

κb, the dark modes are always static under Ĥc and hence loss in the bus does not

degrade entanglement fidelity. If anything, a larger κb helps to quickly reset the bus

mode after the failed attempts. However, tSWAP may become prohibitively long if we

are in the regime where κb ≫ gBS.

We can ask the question how long does it take for a bright mode to reach vacuum

in the cavities? We must apply Ĥc for this time before proceeding with the vacuum

check measurement. This time depends on the ratio of gBS to κb. As shown in Fig. 7.8,

the functional form of the decay depends on whether we are in the ‘underdamped’

regime, where gBS > κb, the overdamped regime where gBS < κb or the critically

damped regime where gBS = κb/4
√
2 which is when the energy decays to vacuum the

fastest.

We can perform the vacuum check before all the energy has decayed if we started

in a bright state. Instead, we only require the cavities to reach vacuum. In the under-

damped regime this happens in time tSWAP, which is the shortest possible duration

for the DMM scheme and is independent of κb. If we are in the critically damped or

overdamped regime, we will reach the steady state

ρsteady =
1

2
|000⟩ ⟨000|+ 1

2
|Ψ2cat

+ ⟩ ⟨Ψ2cat
+ | (7.23)

from which we can succeed in creating the pure Bell state |Ψ2cat
+ ⟩ with 50% probability

using the same vacuum check measurement. The DMM scheme is summarized in

Fig. 7.7

The decay of bright states can again be analyzed in the Heisenberg picture for the



7.6. Qubit Transfer in the ‘Impossible’ Regime 296

Static

Decays
Restart

Fails
vacuum

check

Passes
vacuum

check

bright

dark Bell state

Figure 7.7: The Dark Mode Measurement (DMM) scheme for a lossy bus. We start
off with a superposition of bright and dark coherent states that initially have no
entanglement. After turning on our couplings to the bus for long enough, the bright
state decays to the vacuum but the dark states are untouched. We can perform a
QND measurement called the vacuum check that determines if the cavities are in
vacuum or not. We declare success (with up to 50% probability) if we detect the
cavities are not in vacuum. We have chosen our initial states carefully such that the
dark states are also a Bell state. Thus, when we pass the vacuum check we herald a
Bell state.

three field operators âd(t), âb(t) and b̂(t)

ȧd(t) = 0

ȧb(t) = i
√
2 gBS b(t)

ḃ(t) = −i
√
2 gBS ab(t)−

κb
2
b(t)

(7.24)

We numerically solve for the dynamics in Fig. 7.8.

7.6.4 Fundamental loss limits to the DMM scheme

At first glance, it appears the DMM scheme is completely robust to bus loss, but is

this actually true? Since this is a heralded scheme no single pass loss limit applies

but we can we identify two limitations that affect any experimental implementation,

even if our cavities were completely error-free.

The first is the fact that any physical link must support multiple standing wave

modes and it is impossible to only couple to one of these modes. We rewrite Eq. 7.15

to include the first two adjacent harmonics b̂n and b̂m, neglecting other harmonics
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Figure 7.8: The DMM scheme in different bus loss regimes. The ratio of κb to gBS

determines how long we must apply until we can perform the vacuum check, and
also how long we must wait for the bus mode to reset between failed attempts. We
generate dynamics from Eq. 7.24 with initial conditions ad(0) = 0, ab(0) = 1, b(0) = 0.
We fix gBS/2π =160 kHz, the value we will use in the experiment and set κb to
be 160 kHz (underdamped), 2000 kHz (overdamped), 905 kHz (critically damped) or
600 kHz, as used in the experiment where we wait time tdump = 2 µs until the vacuum
check. Dashed lines are expressions for the energy decay rate of the bright mode,
given by the analytical solutions to Eq. 7.24. Critical damping exhibits the fastest
energy decay from the system. The shortest wait time, tSWAP, is achieved in the
underdamped regime.
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which are further off-resonance.

Ĥc =
√
2gBS

(
âbb̂

† + âdb̂
†
n + âdb̂

†
m + h.c.

)
+∆FSR

(
b̂†nb̂n − b̂†mb̂m

)
(7.25)

Although the dark mode, âd does not couple to the mode b̂ at all, it does couple to

the adjacent harmonics albeit off-resonantly since they are detuned by ±∆FSR. This

coupling happens because the parity of each consecutive harmonic alternates signs.

The limit on η̄ due to this effect will scale as the time of the protocol, which is at

minimum tSWAP, the loss rate in these adjacent harmonics which we take to also be

κb and the population in these modes, which scales as
(

gBS

∆FSR

)2

due to the off-resonant

coupling. From this we find

η̄ ∼ κb
gBS

(
gBS

∆FSR

)2

∼
(
gBS

∆FSR

)(
κb

∆FSR

)
(7.26)

which is a factor
(

gBS

∆FSR

)
smaller than the single pass loss limit. For our experimental

parameters, we will expect this contribution to be negligble at the 10−6 level.

Is this still true in the large loss limit? Do we do better than adiabatic schemes?

Energy now decays from the system at the slower rate 8g2BS/κb. Suppose we had

to wait 8 time constants3 until performing the vacuum check, giving our scheme a

duration ∼ κb/g
2
BS. This would set

η̄ ∼ κ2b
g2BS

(
gBS

∆FSR

)2

∼
(

κb
∆FSR

)2

(7.27)

which still beats the single pass loss!

We can simulate the effects of off-resonant couplings with Eq. 7.11 in the regime

where ∆FSR and gBS are within an order of magnitude of each other to magnify this

effect. The energy distribution along the link shows small perturbations due to these

3. Chosen to simplify the maths.
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off-resonant couplings as shown in Fig. 7.9

The other effect we consider is the Purcell limit of the cable on the cavity qubits.

In the dressed mode basis, the mode we label the cavity mode (at each node) will

have a small participation in the bus mode, mediated by the coupler. In the case

where the coupler is dispersively coupled to both a cavity mode and the bus mode,

as is the case for our experiment, we will experience an additional loss rate on each

cavity mode given by

κPurcell
cav =

χait

αt

χbt

αt

κb (7.28)

Where αt is the anharmonicity of our transmon couplers, χait is the dispersive coupling

between the transmon and the ith cavity and χbt is the dispersive coupling between

the bus mode and the transmon. For our couplers, χ/αt ∼ 0.01 and results in a

minimum η̄ of

η̄ =
κPurcell

cav

gBS

(7.29)

For our experimental parameters, we estimate this to contribute at the 10−4 level,

larger than the off-resonant coupling contribution but still too small to be measurable.

However, they illustrate that the intrinsic limit to the DMM scheme is small enough

such that in reality, it is the local errors in the cavities that limits the scheme.

This includes things such as SPAM errors, photon loss in the cavities, errors in

engineering gBS coupling and in performing the vacuum check. The important thing

to note is that we do not run into the κ/g barrier that typically limits deterministic

qubit transfer schemes in microwaves. The rest of the chapter will be concerned with

the details of experimental implementation of the DMM scheme, and how the Bell

state can then be used to transfer a qubit via teleportation.
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Figure 7.9: The effect coupling to off-resonant harmonics in the DMM scheme. Here
we take ∆FSR/2π =100 kHz and gBS/2π =10 kHz to intentionally exagerate these
effects. We initially prepare a single excitation in the bright or dark mode and model
seven harmonic modes with the Hamiltonian in 7.11. We observe in the left column
that the bright state more or less fully swaps to the bus mode in time tSWAP, with the
off-resonant couplings limiting the fraction of energy transferred. In the right column
we observe faster dynamics and are able to excite the off-resonant modes in the bus,
which would result in a loss of energy in the system. Note the different energy density
scales for the bright and dark modes. At the bottom we plot the slices to show the
E-field amplitude at points in time where the link contains the most energy. This
shows how even if we start in a ‘dark state’ off-resonant couplings mean we can excite
anti-symmetric modes in the link.
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7.7 Making the Scheme Experimentally-friendly

One modification we make to the scheme to make our lives as experimentalists a little

easier is to reduce the value of α. This is for three reasons. Firstly, the probability

of photon loss in either of the cavities is

ploss = 2|α|2κδt (7.30)

for cavity loss rate κ and short time interval δt. If we lose a single photon from either

cavity, even if we began in the dark state, we will end up in the error state

|Ψ2cat
− ⟩ ≈ 1√

2
|α,−α, 0⟩ − |−α, α, 0⟩ (7.31)

which is the wrong Bell state. Reducing α reduces our susceptibility to this loss,

essentially just by reducing the average number of photons in the system. The second

reason is related to the self-Kerr of the cavities. We will control each cavity with its

own dispersively coupled transmon and so we can expect self-Kerrs in the 1-10 kHz

regime. This unwanted unitary evolution distorts our initial bright and dark states

so they are not entirely bright or dark anymore. This happens at quite a slow rate,

of order K|α|2δt for typical cavity self-Kerr, K but can still be a source of error in

our protocol.

Thirdly, we observe that the transmon couplers we use to engineer gBS via a four-

wave mixing process suffer from more anomalous heating when there are more photons

in the cavities. This is thought to be due to unwanted multi-photon resonances [Xiao

et al., 2023] which become harder to avoid with more photons in the system.

The DMM scheme can be modified to work at arbitrarily small α, and can produce

perfect Bell states, provided we carefully update our logical qubit basis. But, as we

decrease α, the success probability of the scheme also decreases towards zero. This
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is because our dark states will now have a significant overlap with vacuum, which

reduces the overall success probability of our scheme to

psuccess =
1

2

(
1− 2| ⟨0|α⟩ |2 + | ⟨0|α⟩ |4

)
=

1

2

(
1− 2e−|α|2 + e−2|α|2

)
, (7.32)

where we have used the formula P (A∪B) = P (A)+P (B)−P (A∩B) and we perform

the vacuum check on both cavities (to reduce the effects of readout error).

The other consequence is that when we ‘pass’ the vacuum check the remaining

dark state will have the vacuum ‘subtracted’ from it. If our target dark state would

be |dark⟩, then after passing the vacuum check we end up in the state

|dark′⟩ ∝ Π̂0̄0̄ |dark⟩ , (7.33)

where Π̂0̄0̄ is the ‘not zero’ projector

Π̂0̄0̄ = (1− |0⟩ ⟨0|)1 ⊗ (1− |0⟩ ⟨0|)2 ⊗ 1b. (7.34)

At first glance, removing vacuum would seem to reduce our entanglement fidelity,

since it reduces our overlap with the target state, |Ψ2cat
+ ⟩. However, by redefining the

basis of our bosonic encoding, we can show |dark′⟩ is a perfect Bell state in this basis.

The modified basis is

|+⟩L ∝ (1− |0⟩ ⟨0|) (|α⟩+ |−α⟩)

|−⟩L ∝ |α⟩ − |−α⟩
(7.35)

where the |−⟩L state is unchanged from the usual two-legged cat code but we subtract

vacuum from the state |+⟩L. It is easy to check these states are orthogonal since |+⟩L
contains only even photon numbers whilst |−⟩L contains only odd. In Fig. 7.10. we

show the Bloch sphere for the modified basis.
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Cat Code 

without Vacuum State
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Figure 7.10: Modifying the bosonic code basis for small α. On the left we show
the logical Bloch sphere with Wigner functions for the standard two-legged code and
compare it to the Bloch sphere on the right which is for the modified basis. Here
we set α =

√
2. Note we now define this Bloch sphere such that the cat states with

well-defined parity now lie on the equator.

Now we show how we end up in a perfect Bell state if our target state was initially

the dark state

|dark⟩ ∝ |α⟩1 |−α⟩2 − |−α⟩1 |α⟩2 (7.36)

which we can rewrite as

|dark⟩ ∝ (|α⟩+ |−α⟩)1 (|α⟩ − |−α⟩)2 (7.37)

− (|α⟩ − |−α⟩)1 (|α⟩+ |−α⟩)2 (7.38)

If we use the standard definition of the cat code

|±⟩cat =
|α⟩ ± |−α⟩√

N±
, (7.39)
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where N± = 2(1± e−2|α|2), then our initial dark state can be rewritten exactly as

|dark⟩ =
|+⟩cat,1 |−⟩cat,2 − |−⟩cat,1 |+⟩cat,2√

2
. (7.40)

It then follows that after applying the projector, Π̂0̄0̄ to this state we end up in the

final dark state

|dark′⟩ =
|+⟩L,1 |−⟩L,2 − |−⟩L,1 |+⟩L,2√

2
(7.41)

which is indeed a perfect Bell state in the new basis. This is not true for all target

dark states. For instance, if our target dark state were instead

|dark⟩ ∝ |α⟩1 |−α⟩2 + |−α⟩1 |α⟩2 , (7.42)

which has a subtle sign flip in the superposition then

|dark⟩ ≈
|+⟩cat,1 |+⟩cat,2 − |−⟩cat,1 |−⟩cat,2√

2
, (7.43)

is only an approximate Bell state, owing to N+ ̸= N−. This cannot be fixed by a

simple change of basis. In the experiment we will prepare the initial state

(|α⟩+ i |−α⟩)1 ⊗ (|α⟩ − i |−α⟩)2 ⊗ |0⟩b (7.44)

which is another possible starting state which gives us the same desired dark state

as in Eq. 7.36. Experimentally, we are willing to trade the success probability of our

scheme in order to work with smaller α entangled states, which ultimately leads to

higher entanglement fidelities.

What happens as α → 0? Although the success probability drops dramatically to

psuccess → |α|4/2, the modified basis DMM scheme still produces perfect entanglement

even as α → 0, provided that there is non-zero population in the |2⟩ state initially.
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(The DMM scheme does not work for two-level systems, but it does for some three-

level systems.) In this limit, |+⟩L → |2⟩ and |−⟩L → |1⟩ which begins to be apparent

if one squints at the Wigner functions in Fig. 7.10.

7.8 cQED Hardware for the DMM Scheme

Now we can finally get stuck into a real experiment! The minimalist diagram for the

cQED hardware we use is shown in Fig. 7.11 and 7.13 and consists of two modules

joined together by a short, 6.7 cm long Niobium Titanium (NbTi) superconducting

coaxial cable with a Teflon dielectric. (SC-086/50-NbTi-NbTi From Coax Co, Ltd.,

Japan).

Each module consists of a 3D stub cavity where the bosonic qubit is encoded in

the λ/4 fundamental mode. Additionally, a single chip contains both a transmon

and readout resonator. The transmon is dispersively coupled to the cavity mode and

serves a multitude of purposes.

Firstly, it provides the requisite non-linearity via the dispersive coupling with the

cavity which enables the preparation of cat states in the cavity mode. Secondly, by

applying two off-resonant microwave pump tones we can actuate tunable beamsplitter

couplings between the cavity and the bus mode via a four-wave mixing process [Zhang

et al., 2019,Gao et al., 2018,Burkhart et al., 2021] to engineer the Hamiltonian Ĥc.

Thirdly, number selective π-pulses applied to the transmon suffice as vacuum check

measurement and finally, the transmons can be used to perform two-qubit quantum

state tomography to measure the Bell-state fidelity and transfer fidelity.

These modules are the same as physical modules used in [Burkhart et al., 2021].

The cavities remain the same but the chips and cable are new. The cavities, which we

refer to as cavity 1 and cavity 2 are etched 99.999% purity Aluminum stub cavities

with lifetimes of 385 µs and 520 µs respectively, two orders of magnitude longer than
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Figure 7.11: Minimalist layout of the cQED hardware needed for the DMM scheme.
The hardware must be capable of four main tasks: preparation of cat states, actuating
the Hamiltonian Ĥc, performing the vacuum check measurement and joint-cavity
tomography to verify entanglement. (Top) cavity modules consist of a 3D stub
cavity (pink or orange), a transmon (green) and a readout resonator (grey). With
4-wave mixing, we can actuate parametric beamsplitter couplings (purple), g1 and g2
between each cavities and a cable harmonic we designate the bus mode. (Bottom)
Energy level diagram for the three coupled bosonic modes.
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the duration of our DMM scheme. This ensures errors due to cavity photon loss

during the scheme is small (at the few percent level). Their mode frequencies are

6509MHz and 6487MHz respectively and no direct coupling between the cavities is

observed either when idling the system or when applying microwave drives.

Each transmon has its own readout resonator and purcell filter resonator (both

meandered) fabricated on the same chip. Each transmon has a ‘standard’ dispersive

readout where single shot readout of the transmon state can be achieved within 1.5 µs.

The cable is modified in two ways. Firstly, we strip back the outer conductor and

dielectric by around 8mm such that only the inner conductor protrudes far into the

tunnel. The capacitive coupling between the inner conductor and the transmon pads

allows us to engineer a dispersive coupling between the standing modes of the cable

and the transmon mode. The outer conductor is bolted into the outer conductor of

the package with a single brass screw (See [Burkhart et al., 2021]) tipped with indium

in an attempt reduce the joint-resistance. It is thought that this joint resistance is

what currently limits the T1 times of the the cable harmonics. This simple clamping

technique is easily reversible — helpful for exchanging parts in a modular device.

We use the 3λ/2 harmonic of the cable as our bus mode, with a frequency of

5658MHz. The loss rate of these superconducting cable modes is typically ∼100 kHz

with Quality factors between 10,000 – 100,000 having been reported [Kurpiers et al.,

2017,Burkhart et al., 2021]. Recently, Quality factors on the order of 1 million have

been reported in Al-Al coaxial cable [Niu et al., 2023], although requires careful

engineering to minimize joint resistance.

7.8.1 Purcell filter for the bus mode

For purely technical reasons, we must do some more engineering to further increase

the loss rate of the bus mode. The reason for this stems from our design choice

to minimize hardware components and use a single transmon in each module to
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do four different tasks. Three of these tasks could be in principle outsourced to

another transmon, in the currently unused chip tunnel (See Fig. 7.13). These are

state preparation, the vacuum check and cavity tomography. For all these tasks, we

ideally want a high coherence transmon to maximize the fidelity of the vacuum check

and minimize SPAM errors. The fourth task, engineering the beamsplitter coupling,

would have its own dedicated coupling element.

One subtlety of having each transmon be dispersively coupled to its cavity mode

and the bus mode is that we must wait for any bright states to fully decay to vacuum in

both the cavities and the bus mode — we do not want to operate in the underdamped

regime of Fig. 7.8. After time tSWAP, the cavities will be empty but the bus mode will

not, and our selective π-pulse will fail to excite the transmon to |e⟩. Waiting for the

bus mode to decay to vacuum increases the duration of our scheme, which increases

our susceptibility to Kerr and photon loss in the cavities. Instead, we opt to increase

the loss rate of the bus mode, aiming for the critical damping regime.

Now, the simplest thing would seem to be to use a more lossy material for the

cable, such as copper which typically has a Q factor of around 5,000. However, this

has a detrimental effect on the transmon (and possibly the cavity) via the inverse

Purcell effect. We would observe a drop in the transmon T1 which cause problems for

all three tasks.

Instead our solution is a little contrived but does the job. We increase the loss

rate of the bus mode by creating a 3D Purcell filter (to my knowledge the first of

its kind) which functions to increase the loss rate of the bus mode, but protects the

transmon from the Purcell effect. This functions in the exact same way as a Purcell

filter for the readout resonator [Reed et al., 2010], except now instead of the readout

resonator mode it is the bus mode.

We need to create another lossy mode, which we call the Purcell mode, that is

strongly coupled to the bus mode with a small detuning. We make this Purcell mode
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out of a 6061 Al stub cavity that has its center ‘stub’ galvanically coupled to a 50Ω

terminated copper coax cable. This stub is also made of copper and is what we

typically use for the ‘drive pins’. The construction of this Purcell filter is shown in

Fig. 7.12

front view end view

SMA connector

Copper center pin

Seam

Kapton tape

Te�on tuning screw

6061 Al

NbTi coaxial cable

coupling 

window

Figure 7.12: Design of a 3D Purcell filter for the bus mode. A window is drilled
through the outer conductor to expose the inner conductor. The Purcell filter mode
is the λ/4 mode of a microwave stub cavity resonator, which capacitively couples to
the bus mode at an E-field anti-node. The frequency of this mode is set by the length
of the copper center pin but can be fine-tuned via the Teflon tuning screw. The copper
center pin directly protrudes from an SMA flange connector, meaning the purcell filter
mode is galvanically coupled to the 50Ω copper coax transmission line. However, the
copper pin passes through a narrow tunnel in between the stub cavity and the SMA
flange. The sudden change in tunnel width creates an impedance mismatch that
boosts the Quality factor of the Purcell filter mode. Kapton tape prevents the copper
center pin from shorting with the 6061 Aluminum housing.

Despite the galvanic coupling to ground, the large impedance mismatch means

that the λ/4 mode of this stub cavity has a quality factor of Q = 170 ± 10 when

measured at room temperature on a VNA. By adjusting the Teflon tuning screw we

decrease the frequency of this mode by increasing the mode participation in the Teflon,

which has εr ≈ 1.7. This lets us tune the frequency of this mode to ωfilter =5688MHz,

30MHz above the bus mode frequency (although we cannot measure the Purcell mode

frequency at cryogenic temperatures and it likely increases slightly due to the Teflon

shrinking in size).
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Figure 7.13: A more detailed look at the cQED hardware used in the DMM experi-
ment. Each module contains two tunnels (white) in which chips can be placed (only
one is used) and each module has two drive lines. One drive line is used exclusively to
displace the cavity mode. The other is used to displace the readout resonator, drive
the transmon qubit and deliver the pumps for four-wave mixing processes. Trans-
mons are shown in green with a grey readout resonator The readout Purcell filters
are omitted. The cable’s purcell filter is also shown, along with the brass screw clamp-
ing system. Dotted lines indicate ports drilled into the package.

Overall, we are able to reduce the loss rate of our bus mode to κb/2π = 600± 10

kHz, which makes it easier to realize gBS close to the critical damping regime. The

complication of the Purcell filter can be avoided by using two transmons per module

instead, where one is a dedicated coupling transmon, a la [Burkhart et al., 2021].

7.8.2 Detailed cQED hardware

In Fig. 7.13 we show the detailed cQED hardware for the DMM scheme. In Tab. 7.8.2,

we show all the measured values of the relevant mode frequencies, static couplings

and coherence times used in the experiment.
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Mode Parameter Frequency (MHz)
Cavity 1 ωa1/2π 6509
Cavity 2 ωa2/2π 6487
Bus mode ωb/2π 5658
Bus purcell filter ωfilter/2π 5688
Transmon 1 ωt1/2π 5358
Transmon 2 ωt2/2π 4759
Pump x1 ωx1

/2π 5425.0
Pump y1 ωy1/2π 6271.76
Pump x2 ωx2

/2π 4950.381
Pump y2 ωy2/2π 5775.11
Readout resonator 1 ωRO1 7981
Readout resonator 2 ωRO2 7895

Coupling Parameter Frequency (MHz)
Cavity 1 - Transmon 1 dispersive χa1t1 -3.75
Cavity 2 - Transmon 1 dispersive χa2t2 -2.2
Bus mode - Transmon 1 dispersive χbt1 -2.1
Bus mode - Transmon 2 dispersive χbt2 -2.5
Cavity 1 self-Kerr K1 -0.023
Cavity 2 self-Kerr K2 -0.007
Cavity 1 - Transmon 1 chi′ χ′

a1t1
+0.017

Cavity 2 - Transmon 2 chi′ χ′

a2t2
+0.004

Transmon 1 anharmonicty αt1 -182
Transmon 2 anharmonicty αt2 -187
Transmon 1 - Transmon 2 dispersive χt1t2 0.05

Mode T1 or T2 (µs) κ (kHz) Quality Factor
Bus mode 0.27 600± 10 9400
Purcell filter mode 170± 10
Cavity 1 (T1) 385± 5
Cavity 1 (TR

2
) 235± 10

Cavity 2 (T1) 520± 15
Cavity 2 (TR

2
) 240± 10

Transmon 1 (T1) 31± 4
Transmon 1 (TR

2
) 27± 1

Transmon 1 (TE
2

) 34± 1
Transmon 2 (T1) 52± 1
Transmon 2 (TR

2
) 21± 1

Transmon 2 (TE
2

) 36± 1
Readout resonator 1 360± 5
Readout resonator 2 730± 5

Table 7.2: Experimental parameters used for the DMM scheme
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7.8.3 Tuning up simultaneous parametric beamsplitters

Being able to engineer the Hamiltonian Ĥc is crucial for the DMM scheme to work.

To actuate Ĥc, we tune g1 = g2 = 160± 5 kHz in-situ but the tune-up process is non-

trivial! When activating a beamsplitter process via four-wave mixing, we must satisfy

the frequency matching condition |ωai − ωb| = |ωy,i − ωx,i|. We find the engineered

beamsplitter is the ‘cleanest’ (lowest transmon heating, few spurious parametric reso-

nances) when one of the pumps, pump x is placed around 100MHz to 200MHz above

the transmon ωge frequency and the other pump, pump y is placed around 900MHz

to 1000MHz above. In system 1, pump x1 is designated the ‘strong pump’, since it

induces the most stark shift on transmon 1. In system 2, both pumps induce similar

amounts of start shift on transmon 2. When we actuate both beamsplitters simulta-

neously, the frequency matching conditions change for both beamsplitter processes,

since every pump tone induces a stark shift on the bus mode.

The first step in tune-up is to separately tune up the g1 and g2 beamsplitter

processes and to match their beamsplitter rates as closely as possible. This is achieved

by preparing a coherent state, applying the beamsplitter for a variable time and then

measuring the probability the cavity is in the vacuum state via selective π-pulses

on the transmon. By fitting the time dynamics, we can tune both g1 and g2 to be

close to 160 kHz, although since we are in the slightly overdamped regime, the lack

of oscillations gives an uncertainty of ∼5 kHz. These pump conditions are also used

to Q-switch cavity states to the bus mode to reset them to vacuum at the end of

an experimental shot, by first Q-switching cavity 1 to the bus mode for 4 µs, waiting

5 µs, and then Q-switching cavity 2 to the bus mode for another 4 µs.

After g1 and g2 have been tuned up individually, we must tune them up simulta-

neously. This mostly amounts to sweeping the pump y frequencies, ωy1 and ωy2 until

both processes are on resonance when activated simultaneously. This callibration

procedure is shown in Fig. 7.14.
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Figure 7.14: Pump calibration to account for stark shift. We sweep the difference
in the pump frequencies, ∆i = ωyi − ωxi

by sweeping the value of ωyi . We choose
to sweep ωyi because this pump is far detuned from the transmon and so this does
not drastically change the normalized pump amplitude. To perform this calibration
we prepare the coherent state |α⟩

1
|α⟩

2
(here α =

√
2), apply all four pump tones for

2 µs, and then measure the cavity states with selective π-pulses to see if it is in the
vacuum state. When ∆1 is close to zero, but ∆2 is far from zero, we see a vertical
bar showing the g1 process on resonance, but the g2 process off-resonance. The same
thing happens on the right plot but with ∆1 and ∆2 reversed, which gives a horizontal
bar. The ideal pump detunings are found from where the vertical and horizontal bar
intersect. As we approach ∆1 = ∆2 = 0, we see the appearance of fringes, a result
of the cavity dynamics now becoming dependent on the relative phases between both
cavities. This signature also verifies our pumps are phase-locked correctly.
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Next we verify these pump frequencies are close to optimum by looking at time

evolution vs relative cavity phase (See Fig. 7.18) and looking for any asymmetric or

skewed dynamics. The final part of the calibration is a direct optimization of the Bell

state fidelity where we fine tune the pump frequencies and amplitudes.

7.8.4 Pump phase-locking

The four pump tones must be appropriately phase-locked with each other, to ensure

we enact the Ĥc Hamiltonian on each shot with the correct relative phase between

the g1 and g2 beamsplitter tones. Each tone is synthesized by sending an LO tone

through an IQ mixer where it is combined with a single-sideband (SSB) tone from the

FPGA controller. All SSBs remain phase-locked with each other over the course of a

single shot, since they are sourced from the same FPGA controller, but drift apart on

the timescale of seconds, and so their frequencies are reset after every experimental

shot. Note that the two cavity drives at ωa1 and ωa2 must be phase locked with each

other (and hence share the same LO generator) but do not need to be phase locked

with any of the pumps that actuate Ĥc.

We enact Ĥc with fixed relative phase when pump x1 is phase-locked with pump x2,

and pump y1 is phase locked with pump y2, the same phase-locking condition required

in [Burkhart et al., 2021]. This is typically achieved by sourcing both pump x1 and

x2 LO tones from the same signal generator, and using SSB tones to synthesize the

final pump tones. Achieving this phase-locking is more involved than merely sourcing

pump tones from the same LO. The ωge transitions of transmon 1 and transmon

2 are detuned by ∼500MHz. This is by design, since we can have an appreciable

ZZ coupling between the transmons mediated by the bus mode if they are too close

in frequency. With this detuning, we observe a ZZ cross talk of 50 kHz (which is

still quite large!). For phase locking, this means we must phase-lock pump tones

that differ in frequency by ∼500MHz (in order to place each pump at the desired
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Figure 7.15: Wiring diagram for generating pairs of phase-locked pumps. Pump x1
and x2 are phase-locked with each other, as are Pump y1 and y2. There is no phase-
locking between the pairs but this is unimportant for us.

frequency above the transmons.) However, our FPGA controller can only synthesize

SSB tones in the range ±125MHz.

To solve this problem, we use another signal generator, which we call the ‘IF’

generator. We set its frequency to 300MHz, whilst the pump X LO generator is

set to 5200MHz and the pump Y LO generator set to 6000MHz. With the use

of additional mixers, we can generate phase-locked tones at 5200 ± 300MHz and

6000 ± 300MHz. By using four tunable narrow-band cavity filters, we can pick off

just one of these tones to source the IQ mixers. The pump x1 IQ mixer LO is at

5500MHz, the pump x2 IQ mixer LO is at 4900MHz, the pump y1 IQ mixer LO is

at 6300MHz and the pump y2 IQ mixer LO is at 5700MHz. This solution, drawn in

Fig. 7.15 is very general and can be used to produce phase-locked sets of pump tones

when their frequencies are inconvenient.

7.8.5 Measuring loss in the bus mode

The bus mode is lossy with a T1 decay close to 300 ns. How do we measure this loss

rate accurately when most operations in our system take on order of ∼1 µs?
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Figure 7.16: Measuring κb in-situ.

Previously, this has been measured by swapping an excitation back and forth be-

tween one of the cavities and the bus mode by turning on just one of the beamsplitter

processes [Burkhart et al., 2021]. In the critical coupling regime, we must opt for

another approach. Instead we prepare transmon 2 in |e⟩ and then actuate a sideband

transition with the bus mode. This is another four-wave mixing process with the

matching condition |ωt2 − ωb| = |ωy,2 − ωx,2|. Since the transmon mode participates

much more strongly in the J.J. than a cavity mode, with the same pump strengths

we can engineer the Hamiltonian

Ĥt = gt

(
t̂†b̂+ t̂b̂†

)
(7.45)

with gt ≫ gBS by roughly an order of magnitude in our case. With these oscillat-

ing dynamics, as shown in Fig. 7.16, it is easy to extract both κb and gt from an

exponentially decaying sinusoidal fit.
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7.8.6 Kerr-cancellation

We measure the self-Kerrs of the cavities to be K1/2π =−23 kHz and K2/2π =−7 kHz

respectively, distorting the dark states with inconvenient unitary dynamics during the

5.6 µs duration of the measurement. Most of the time, we can compensate for the

effects of Kerr by further modifying our logical basis. However, it is convenient to

cancel out the effects of Kerr. We observe that the pumps used to actuate hfc also

happen to suppress the self-Kerr in the cavities. Most unwanted Kerr evolution occurs

after Ĥc, during the vacuum check.

The most direct way of doing this is to apply an additional pump tone to cancel

or change the sign of the self-Kerr in the cavity. This can be achieved by applying a

blue-detuned pump to the transmon at ωge+60MHz during the selective π-pulse, as

used for the data in Fig. 7.23. Alternatively, we can undo the effects of Kerr with a

SNAP gate combined with a selective π-pulse that implements the unitary which is

used in the teleportation data in Fig. 7.29.

|0⟩ ⟨0| ⊗ |e⟩ ⟨g|+ Û †
Kerr,1 (1− |0⟩ ⟨0|)⊗ |g⟩ ⟨g| . (7.46)

7.9 Observing Bright and Dark State Dynamics

We begin by first checking that we observe the expected dynamics of the ‘classical’

bright and dark states |α, α, 0⟩ and |α,−α, 0⟩. This experiment requires actuating

the Hamiltonian Ĥc and performing a vacuum check measurement. If this works as

expected then we can use the same settings to generate entanglements merely by

preparing cat states instead of coherent states.

Cavities are initially displaced via the cavity drives to the coherent states |α, αeiφ⟩

where the phase, φ, is swept, where α = 1.414 ≈
√
2. This is the value of α for which

we will measure the highest Bell state fidelity. We apply the coupling Hamiltonian, Ĥc



7.9. Observing Bright and Dark State Dynamics 318

Pumps

Cavity 1

Cavity 2
n=0?

n=0?
or ?

Transmon

Figure 7.17: Pulse sequence for characterizing the DMM scheme with classical bright
and dark states. Initially the cavities are displaced to the state |α, αeiφ⟩

for variable pump time t, and then perform the vacuum check. These are implemented

via number selective π-pulses on each transmon, followed by standard transmon read-

out from which we obtain four possible outcomes (g, g), (g, e), (e, g), (e, e). The pulse

sequence is shown in Fig.7.17

We only pass the vacuum check if we obtain the outcome (g, g), where we then

presume we are in a dark state. All of outcomes, denoted by (gg), fail, and we

presume we started in a bright state which has since decayed to vacuum. Measuring

both cavities is not strictly necessary but makes us robust to first-order transmon

measurement errors — we require two errors to incorrectly declare a dark state.

These errors are around 5% for each transmon and arise from transmon decoherence

during the selective π-pulse, transmon decay during the readout and readout overlap

error (in the histograms). In this experiment, we plot p(gg) as a function of pump

time and φ as shown in Fig. 7.18

What is the figure of merit for the vacuum check? How well can we distiguish

dark states from bright states? The success probability of our scheme will be

psuccess =
1

2
p(gg|dark) (7.47)

Because of the finite overlap with vacuum at α =
√
2, we expect this to be limited

to 0.374 which is close to what we will measure. Applying the pumps to actuate Ĥc

further reduces this probability by a few percent, not because these pumps induce
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P

Pump time

P

Figure 7.18: (Top) Dynamics of |α, eiφα⟩ under , for α = 1.414. We identify a
particular phase, φd for which we have prepared the dark state, where no dynamics
should occur. At phase φb = φd−π we have the bright state, which decays to vacuum
quickly within 2 µs. (Bottom) Line cuts of the above plot, along with the dynamics
when all pumps are off (red circles).
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additional photon loss on the cavities, but rather because they heat the transmons

out of their ground state, and so we may then record (g, e) or (e, g) after the vacuum

check. For this reason it is important to make sure we can engineer our required gBS

with minimal pump strength (in terms of its Stark shift on the transmon). How-

ever, our scheme is naturally robust to pump heating, due to the double transmon

measurement. Ultimately transmon heating from the pumps should only reduce the

success probability, and not the Bell state fidelity.

The figure of merit we care about for the Bell state fidelity is the ‘false positive

rate’: the probability we declare success when we actually started in a bright state.

This is defined as

FDMM =
p(gg|bright)

p(gg|dark) + p(gg|bright)
. (7.48)

Where FDMM is the fidelity of the dark mode measurement, which represents an upper

bound on how well we would expect this scheme to work in the absence of SPAM

errors. From this experiment, we find FDMM = 2.1%, a far cry from the fundamental

limits of this scheme! Is this because of transmon decoherence during the vacuum

check? We know this cannot be the whole picture. This is because we can record

the probability an individual transmon reads out |g⟩ when we prepare a bright state,

which we find to be 5% and 7% respectively. From this we would expect 0.5% for

the dark mode measurement fidelity, if each transmon outcome is independent of the

other. The missing 1.5% must then be due to correlated errors between the transmon

outcomes, where a single error mechanism causes both transmons to readout g instead

of e. At the moment, the source of these correlated errors is unknown.

Improvements to FDMM in any future implementations could result from using

‘cleaner’ parametric beamsplitter processes [Chapman et al., 2022, Lu et al., 2023]

and having a dedicated coupling element and a separate transmon ancilla in each

module.
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7.9.1 High-fidelity cat state preparation

The ‘only’ modification needed to create entanglement is that we must run the same

experiment but starting with a cat state in each cavity. Displaced states are trivial

to prepare to high fidelity in a cavity mode but what is the best way to prepare

cats? We tried OCT pulses for even, odd and parity-less cats which take the form

|α⟩ ± i |−α⟩ which do not have a well-defined photon number parity. Parityless cats

are the easiest to prepare with an estimated state fidelity ∼ 99% via the following

protocol.

First we use simple displacement pulses to prepare |α⟩ in both cavities. We then

apply an OCT pulse to each transmon that functions similarly to a SNAP pulse. For

example, the unitary that takes |α⟩ → |α⟩± i |−α⟩ can be written as a SNAP unitary,

i.e., is of the form

ÛSNAP =
∞∑

n=0

eiθn |n⟩ ⟨n| , (7.49)

where θn = π/4 for n = even and θn = −π/4 for n = odd. Whilst we can construct

this SNAP pulse by hand, we find OCT pulses that are constrained to only drive the

transmon perform better, since effects such as the finite selectivity of π-pulses are

automatically accounted for. As for a regular SNAP pulse, the OCT pulse leaves the

transmon back in its ground state at the end of the pulse. If we were initialize in

|−α⟩ instead, this same OCT pulse would prepare the state ∝ |α⟩ − i |α⟩.

When we implement these ‘OCT-SNAP’ pulses in experiment, we see visible dis-

tortions in the Wigner functions, typically in the fringes or ‘whiskers’ of the cat. We

attribute this to frequency dispersion in our control lines which distorts our OCT

pulse. This means the actual state we prepare is of the form.

|ψ̃⟩ = Ũ(|α⟩ ± |−α⟩)/
√
2, (7.50)

where Ũ is an unwanted SNAP unitary, also of the form Ũ =
∑∞

n=0 e
iθ̃n |n⟩ ⟨n| where
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Figure 7.19: Correcting for pulse distortions in the control lines during cat state
preparation. Visually from the measured Wigner functions we see these states are
initially distorted (top row). In the bottom row once we have tuned up the corrected
OCT pulse, we see less distortion, especially for cavity 1.

θ̃n are unwanted phase distortions due to the unknown transfer function of the con-

trol lines4. However, since we can reconstruct the density matrix from the Wigner

function, we can find the values of θ̃n from the density matrix. To correct for this

effect, we simply ask our OCT optimization to create a pulse that implements the

unitary Ũ †ÛSNAP instead, using the previous pulse as the seed waveform. We find

visually this improves the appearance of the fringes and increases state fidelity by

1–2%. Fig. 7.19. shows the Wigner functions of the prepared cat states before and

after this correction.

4. Maybe this technique could be used to calibrate dispersion in the control lines in general?
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Pumps

n=0?

n=0?

vacuum

check

Figure 7.20: Pulse sequence for entanglement generation. We declare success when
we measure (g, g) in the vacuum check. The duration of the scheme, including step
preparation to the end of the vacuum check measurement is 5.6 µs

7.9.2 Procedure for entanglement generation

The pulse sequence for generating entanglement with the DMM scheme is show in

Fig. 7.20 State preparation achieved by displacing the cavities to |α,−α⟩ and then

applying the respective OCT SNAP pulses to each transmon. We then apply Ĥc

for 2 µs so the bright states decay in the bus. It takes an additional 48 µs to ‘ring

up’ the four pumps used for g1 and g2. We add a phase offset of φb to one of these

pumps, which is chosen to define the bright states of our system as |α, α⟩ on every

attempt. Pump ‘ring-down’ takes the same duration. We then perform the vacuum

check with simultaneous selective π-pulses on the transmons centered at the ωge fre-

quency. These are Gaussian pulses with duration 4σ = 800 (1200) ns for transmon

1 (2). Immediately after measuring the transmons in (g, g), we proceed with joint-

cavity tomography. Otherwise we attempt the experiment again after performing the

following reset protocol.

7.9.3 System reset

We use a reset protocol that is a simpler version of the feedback cooling scheme

in [Burkhart et al., 2021]. To reset the system, we first ensure the cavities are empty

(we may have been in a dark state but declared failure due to readout error, and need



7.10. Wigner Functions and Parity Measurements 324

to empty the cavities). We Qswitch each cavity by actuating g1 and g2 sequentially.

This ensures that the cavities lose their energy to the bus regardless of the cavity

state. We apply g1 for 5 µs, wait 2 µs and then repeat with g2. We then use selective

π-pulses to confirm the cavities are indeed in vacuum, restarting the entire protocol if

required. Finally, we use feedback cooling on the transmons by repeating dispersive

readout. If the transmon is not in its ground state, we apply a π-pulse and repeat

the measurement. The cooling sequence terminates once we measure both transmons

to be in the ground state.

Feedback cooling also helps cool the transmons to their ground state. We find their

thermal populations to be quite high: 4% (6%) for transmon 1 (2). After cooling, we

measure 0.9% (0.5%) to be the probability the transmon is not in the ground state.

Our scheme will not work if the transmons are not in their ground state, adversely

effecting the state preparation, Ĥc and joint-tomography. Thankfully, this will be a

source of error that is well-detected by default in our vacuum check measurement.

7.10 Wigner Functions and Parity Measurements

Measuring a single cavity’s Wigner function is not enough to verify entanglement by

itself, but it is incredibly useful in calibrating the experiment and can be incorporated

into joint-cavity tomography which can verify entanglement.

7.10.1 Measuring Wigner functions

Whether or not we can measure the Wigner function well largely hinges upon whether

we can implement a good parity measurement. At large values of β or γ, our parity

measurement will invariably get worse. The averaged parity will invariably decrease

with the size of the displacement, resulting in a dimming or ‘vignetting’ towards the

edges of the measured Wigner function. This effect is especially pronounced when
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using the π/2-wait π/χ - π/2 pulse sequence to measure parity. The issue is that due

to the dispersive interaction and the finite bandwidth of the π/2 pulses. At higher

photon numbers, our π/2 pulses are effectively off-resonant, and so they rotate the

transmon by some angle less than π/2. Ultimately this biases our parity measurement

towards recording the g outcome, regardless of what the averaged parity should be.

We can partially mitigate this effect by detuning our π/2 pulses to be centered around

frequency ωge − |β|2χ, but this is only a partial correction since there is a spread of

photon numbers in the cavity.

Symmetrizing a single-mode Wigner function involves measuring the photon num-

ber parity in two ways: first by mapping even photon number of the |g⟩ state, and

then by mapping to the |e⟩ state instead, which is typically achieved by inverting the

amplitude of the last π/2 pulse. We denote these two averaged Wigner functions as

W g and W e respectively. Taking the ‘symmetrized’ Wigner function as

W (β) =
W e(β)−W g(β)

2
(7.51)

removes ‘vignetting’ but it does not remove all systematic errors. The ‘contrast’ of

the Wigner function can be dependent on β, although this contrast reduction depends

not only on β,χ and the pulse bandwidth but also the state being measured. A good

rule of thumb is not to trust the fidelity extracted from a Wigner function to below

1% precision, due to systematic effects such as these.

7.10.2 Frequency combs for parity measurements

One alternate way of implementing a parity measurement is to replace the standard

pulse sequence with a comb of selective π-pulses. This pulse sequence is slightly

longer, which gives a larger reduction in contrast but we expect this contrast to

be more uniform over a wider range of cavity photon numbers up to the maximum
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frequency in the comb.

In Fig. 4.12 we find this approach is particularly useful when measuring the Wigner

function of cavity 1, which has a larger than desired value of χa1t1 . A comb is con-

structed by playing simultaneous selective π-pulses at frequencies ωn = χn+χ′(n2−n)

for even n up to a maximum of n = 14. In all measured Wigner functions, we opt to

use the frequency comb rather than the standard parity pulse sequence5.

7.10.3 Fine-tuning pump parameters with joint parity

We use the averaged joint parity to fine tune the pump calibration. The target

dark state is always expected to have a well-defined joint parity: odd in our case.

This is also a good proxy for the entanglement fidelity (although we need to verify

correlations in phase and cavity photon number to verify entanglement). We finely

adjust the pump frequencies ωy1 and ωy2 (sensitive to 10 kHz changes), as well as the

pump y2 DAC amplitude (sensitive to 2% changes) to minimize the joint parity.

We must repeat this pump tuneup procedure whenever we change the value of α

we use for our entangled state generation. Typically, these adjustments are of order

10 kHz and are thought to be as a result of cavity self-Kerr, meaning the resonance

condition is slightly dependent on the average number of photons in the cavities.

7.11 Joint-cavity Tomography

How do we verify entanglement? We must perform quantum state tomography on

both of the cavities. Here we outline how this may be done either by measuring

the Joint Wigner function, or by ‘decoding’ one of the cavities onto the state of its

transmon. To extract a Bell state fidelity, we opt for the latter approach.

5. In the limit of large n, it can be shown that the frequency comb and the standard pulse sequence

with instant π/2 pulses are mathematically the same pulse sequence!
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Figure 7.21: Improving parity measurements with combs of selective π-pulses. (Top)
Example pulse constructed from a comb of eight selective Gaussian π-pulses with
σ =200 ns and 4σ duration. Each Gaussian is centered around frequency ωn =
χn + χ′(n2 − n) for n = {0, 2, 4, 6, 8, 10, 12, 14}. (Bottom) Measured 1D slices of
the Wigner function of the vacuum state, for different parity measurement implemen-
tations. For a parity measurement that works well for larger photon numbers, we
expect P(|e⟩) = 0.5 for large β. Mainly due to finite pulse bandwidth, we observe a
drop off towards P(|e⟩) = 0 as β increases, regardless of which way we are mapping
the parity to the transmon state. We see for cavity 1 that using a frequency comb
instead results in a (steeper) drop-off that appears at almost twice the value of β
(around β = 3 rather than β = 1.5). For cavity 2, we observe similar performance
for both the frequency comb and the standard parity sequence.
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7.11.1 Joint Wigner functions

One approach commonly used is measuring the Joint Wigner function, defined by

extending Eq. 3.36 to two bosonic modes.

WJ(β, γ) =

(
2

π

)2

Tr
(
D̂βD̂γρD̂

†
βD

†
γ ĴP

)
(7.52)

This gives us a clear way to measure the Joint Wigner function, which constitutes a

complete tomography of the two-cavity system. We must displace cavity 1 by β and

cavity 2 by γ. Crucially, ĴP can be measured from two local parity measurements

on either cavity (e.g., if on one experimental shot we measure cavity 1 to have odd

parity and cavity 2 to have odd parity, we declare even joint parity).

The main drawback of measuring the Joint Wigner is that this 4D function can

take an extremely long time to measure completely. For reference, measuring a

single cavity’s Wigner function with a 51 × 51 grid of points for β to cover area

Re(β), Im(β) ∈ [−2.5, 2.5] takes a few hours. Measuring the Joint Wigner function

over the full 4D space would take several months!

There are a few solutions to this that sample more efficiently but we tend to be

more susceptible to transmon readout errors with these approaches – transmon errors

during the parity measurement tend to reduce the ‘contrast’ of a Wigner functon,

provided they result in unbiased errors. If we are confident our errors are unbiased

(e.g., by symmetrizing the Wigner function), and if we are sure the reduction in

contrast does not depend on α (See [Sivak et al., 2023] for when this is the case), then

we can use the fact that all Wigner functions should be normalized to correct these

errors. This works well for single-mode measured Wigner functions but not sparsely

sampled Joint Wigner functions.

We can instead take 2D ‘slices’ of the Joint Wigner function to qualitatively ex-

amine if we indeed have entanglement, e.g., we can take points on a 2D grid where we
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fix Im(β), Im(γ) = 0 (The Re-Re slice). and another slice when Re(β),Re = 0 (The

Im-Im slice). These measured slices are shown in Fig. 7.22 and show clear features

that can only be explained by an entangled state, but are not sufficient to reliably ex-

tract a Bell state fidelity. Slices of the Joint Wigner function were also used in [Wang

et al., 2016] for the cat-in-two-boxes state within a single module, and indeed our

slices share many of the same qualitative features.

7.11.2 Symmetrizing Joint Wigner functions

When measuring the Joint Wigner function from two local parity measurements,

there are now four ways we can configure the two parity measurements, by choos-

ing whether we map even parity to g or e. We denote these configurations as

W g1,g2(β, γ),W g1,e2(β, γ),W e1,g2(β, γ) and W e1,e2(β, γ). The Joint Wigner function

is ‘properly symmetrized’ when we take

WJ(β, γ) =
W g1,g2

J (β, γ)−W e1,e2
J (β, γ)−W e1,g2

J (β, γ) +W g1,e2
J (β, γ)

4
(7.53)

7.11.3 OCT decode + a measured Wigner function

Characterizing entanglement in two-level systems is much easier, since the Hilbert

space is smaller and it is easy to measure in different logical bases. We can do this in

our system too with the help of OCT pulses.

The idea is to implement ‘decode’ pulses, which transfer the logical state of the

cavity onto its transmon, i.e.,

|0L⟩a ⊗ |g⟩ → |vac⟩a ⊗ |g⟩ (7.54)

|1L⟩a ⊗ |g⟩ → |vac⟩a ⊗ |e⟩ (7.55)

Where |0L⟩ , |1L⟩ are the logical basis of the cavities, the modified basis from Sec. 7.7,
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Figure 7.22: 2D slices of the Joint Wigner function for the DMM scheme at α = 1.6,
showing the signatures of entanglement. On the left we fix β and γ displacements
to be real-valued. The principal features of this plot are correlations visible around
(β, γ) = (1.6,−1.6) and (β, γ) = (−1.6, 1.6), which verifies we are confined to the
{|±α,∓α⟩} manifold. The negative joint parity centered around the origin verifies
we are in an entangled state. Fainter features are artifacts from removing |0⟩ from
our final state via the vacuum check and are expected. On the right we fix β and γ
to be imaginary, and see interference fringes, another signature of entanglement.
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plus any Kerr evolution on the cavity which can be determined by measuring its

Wigner function.

Naturally, with dispersive readout, we measure the transmon in its Z basis but

we can readout the transmon (and hence the cavities) in any basis by applying the

appropriate transmon rotation pulse before the measurement.

This technique certainly speeds up the measurement time: we only need to mea-

sure at 36 different pulse settings compared to 514 with Joint Wigner! However, the

OCT decode pulses themselves are error prone, each one introducing a 2% error. In

the experiment, we compromise between Joint Wigners and OCT decode by decoding

cavity 2 onto transmon 2 (which has the better coherence time) whilst simultaneously

measuring cavity 1’s Wigner function. This is the same procedure used in [Burkhart

et al., 2021]. The data processing is more involved to extract a Bell state fidelity, since

we must process a mixture of measured single cavity Wigner functions and transmon

2 measurements, but it significantly reduces the SPAM error and provides a very

striking confirmation of entanglement, where correlations in different bases becomes

clearly apparent.

7.12 Extracting Bell State Fidelity

What do the tomography results look like and how do we extract a Bell state fidelity

from them? With the aforementioned procedure for joint-cavity tomography, we

expect a total of six separate (symmetrized) measured Wigner functions for cavity

1, because there are six possible outcomes from the logical measurement of cavity 2
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(two outcomes, three different bases). The target Bell state takes the form

1√
2
(|0⟩ |1⟩ − |1⟩ |0⟩) (7.56)

=
1√
2
(|+⟩ |−⟩ − |−⟩ |+⟩) (7.57)

=
1√
2
(|+i⟩ |−i⟩ − |−i⟩ |+i⟩) (7.58)

(7.59)

For this particular Bell state, the anti-correlation persists through each of the three

measurement bases. We denote the six outcomes of cavity 2’s measurement as

{|+z⟩ , |−z⟩ , |±x⟩ , |±y⟩} which corresponds to the state of cavity 2 having been

{|1L⟩ , |0L⟩ , |±L⟩ , |±iL⟩}. These six measured Wigner functions are shown for α =

1.414 in Fig. 7.23

The method we will use to extract a Bell state fidelity is the same as the method

used in [Burkhart et al., 2021]. The goal is to reconstruct the expectation values of

all sixteen joint Pauli correlations, ⟨σi,1⟩ σj.2 as mentioned way back in Sec. 2.3.1 of

Chapter 2.

The first step is to reconstruct cavity 1’s density matrix for each measured Wigner

function. Whilst it is possible to directly invert the Wigner function to obtain a den-

sity matrix, this method is very sensitive to experimental noise. Because of the finite

measurement contrast, this often results in an ‘unphysical’ density matrix with a norm

less than 1. To combat these problems, we use the well-established technique of max-

imum likelihood estimation (MLE) with a convex optimization method described in

Section 5.5. of Kevin Chou’s thesis [Chou, 2018] and used in the following works [Ax-

line et al., 2018,Burkhart et al., 2021]. The optimization returns the closest physical

density matrix (normalized, Hermitian etc.) that most likely produced the Wigner

data. To avoid over-fitting to the noise we average each point in the Wigner func-
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Figure 7.23: Measured Wigner functions of cavity 1, for α = 1.414, conditioned on the
outcome of cavity 2 measurements in each of the three logical bases (outcome indicated
by the inset). The basis is the modified basis with vacuum removed as shown in the
right panel of Fig. 7.10. A Kerr-cancelling pump was applied to transmon 1 during
the vacuum check, which is why no Kerr distortions are apparent. The decode pulse
used for cavity 2 takes into account the Kerr evolution of cavity 2 during the protocol
in the definition of states |0L⟩2 and |1L⟩2
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tion from 10,000 different experimental shots (before post-selection), which reduces

the ‘shot noise’. We also truncate the maximum number state in our reconstructed

density matrix to be Nmax = 10 (increased to Nmax = 13 for α = 1.8, 2).

We test the robustness of the MLE reconstruction procedure by generating simu-

lated Wigner function data, adding in randomly generated shot noise6 and trying to

reconstruct the original state. For this test we used various cat states with α =
√
2.

We find that for Nshots > 1000, the reconstruction error is below 1%, a good rule of

thumb when taking Wigner data. We estimate a < 0.3% reconstruction error due

to shot noise. Most of the uncertainty in the reconstructed density matrix comes

from systematic errors from measuring the Wigner function, which are much harder

to characterize. For this reason, we quote an uncertainty of 1% in fidelities extracted

from measured Wigner functions, which was also done in [Burkhart et al., 2021,Eick-

busch et al., 2022].

We can calculate the Joint Pauli correlators, also called the ’Pauli bars’ from these

six reconstructed density matrices, designated ρ(1)j and the probabilities for obtain the

different measurement outcomes on cavity 2 denoted by p(2)±i where p(2)+i + p
(2)
−i = 1. In

both cases, i, j = {1, x, y, z}.

When j ̸= 1, the Pauli bar is given by

⟨σiσj⟩ = p
(2)
+jTr

(
ρ
(1)
+jσ

(1)
i

)
− p

(2)
−jTr

(
ρ
(1)
−jσ

(1)
i

)
(7.60)

When j = 1 we use

⟨σiσI⟩ = p
(2)
+jTr

(
ρ
(1)
+jσ

(1)
i

)
+ p

(2)
−jTr

(
ρ
(1)
−jσ

(1)
i

)
(7.61)

For this case it does not matter which basis, j we use to calculate these Pauli bars,

any would suffice. We calculate these Pauli bars by averaging which basis we choose

6. Which follows a Binomial distribution not a Gaussian!
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Figure 7.24: Reconstructed Pauli bars for α = 1.414, where the highest Bell state
fidelity is obtained at 92± 1%

to calculate these Pauli bars. (We could obtain them from either of the three bases.

We choose to average over all three.)

We can calculate terms such as Tr
(
ρ
(1)
+jσ

(1)
i

)
from our reconstructed density matrix

and σ(1)
i .

The form of σ(1)
i is the only part of the reconstruction process which is parameter-

ized. Changes in our definition of the logical basis for cavity 1 will change the set of

σ
(1)
i operators, which is ultimately used to find the best basis for cavity 1 in the pres-

ence of Kerr, rotation offsets, etc. (The logical basis for cavity 2 is fixed by our choice

of OCT decode pulses, and we must calibrate the Kerr, α and the rotation angle

separately from measured Wigner functions of cavity 2). We show the reconstructed

Pauli bars in Fig. 7.24 for α =
√
2.

Having the expected Pauli bars is enough to reconstruct the full two-qubit density

matrix in the logical subspace, by using the equation

ρrecon =
1

2

∑

i,j=0,1,
2,3

⟨σi, σj⟩ σiσj (7.62)



7.12. Extracting Bell State Fidelity 336

which is the two-qubit version of Eq. 7.62. As we saw with the Wigner function,

whilst we can directly invert this equation, there is no guarantee the resulting density

matrix is physical due to measurement errors, and so we can use Maximum Like-

lihood Estimation again to find the closest physical two-qubit density matrix, ρfinal

which best matches the set of Pauli bars. This time, we remove the constraint that

the reconstructed density must be normalize since our logical qubits are within the

subspace of bosonic modes, and we can suffer leakage out of the codespace, e.g., to

the vacuum state |0⟩. Finally, from this density matrix we can quote the Bell state

fidelity as

FBell = ⟨Ψ−|ρfinal|Ψ−⟩ (7.63)

For our target Bell state, the only non-zero Pauli bars should be ⟨1112⟩ = 1

and ⟨X1X2⟩ = ⟨Y1Y2⟩ = ⟨Z1Z2⟩ = −1 and we see qualitatively we are close to this

scenario.

We numerically optimize the definition of cavity 1’s logical basis to maximize

the Bell state fidelity. This basis is parameterized by three parameters: αbasis, θK , θr

which respectfully account for shrinking α due to the amplitude damping back-action

associated with cavity photon loss, Kerr distortion during the time of the protocol

and any mis-calibration of drive phases that leads to a cavity rotation offset. The

logical basis is defined from these parameters as:

|+⟩L ∝ eiθr â
†âe

i

2
θK â†â†ââΠ̂0̄(|αbasis⟩+ |−αbasis⟩)

|−⟩L ∝ eiθr â
†âe

i

2
θK â†â†ââ(|αbasis⟩ − |−αbasis⟩).

(7.64)

When we quote a Bell state fidelity we also quote the logical basis parameters for

cavity 1. (Cavity 2 has been decoded onto transmon 2 so really we are measuring

the Bell state fidelity between cavity 1 and transmon 2 as a lower bound for the Bell

state fidelity between the cavities prior to tomography.)
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We obtain FBell = 92 ± 1% for α = 1.414 with the Kerr cancelling pump on, the

highest Bell state fidelity we achieve, with a success probability of 0.349.

Examining the Pauli bars tells us that the main source of error appears to be

photon loss. The ⟨1112⟩ bar is very close to 1, indicating our choice of basis is

correct. The ⟨Z1Z2⟩ bar is also very close to -1, indicating that our scheme is very

good at distinguishing between bright and dark states. The main source of error is

apparent from the ⟨X1X2⟩ and ⟨Y1Y2⟩ Pauli bars. (The extra Pauli bars at XY and

YX look bad but actually contribute less than 0.1% to the entanglement infidelity.)

These both suggest that photon loss, which reduces the contrast of the fringes of the

cats when measuring in the x or y basis is responsible for most of the error. We can

check if this is as expected by making an error budget outlined below.

7.12.1 Error budget

We identify three dominant error sources that contribute to this infidelity. The largest

contribution is from photon loss in the cavity modes, a local error. We can estimate

this from the time of the protocol (from the initial cavity displacements until state

tomography). This time is 5.6 µs (800 ns OCT SNAP pulse + 2092 ns pumps +

1200 ns selective π-pulses + 1500ns transmon readout = 5592 ns = tprotocol). During

this time, a single photon loss event in either cavity would take us to the state

(|α⟩ |−α⟩ + |−α⟩ |α⟩)/
√
2, which orthogonal to our desired entangled state. The

probability of this occurring is given by

ploss = |α|2tprotocol

(
1

T1,a1
+

1

T1,a2

)
≈ 5%, (7.65)

if we assume the cavity lifetimes remain unchanged throughout the protocol.

The next dominant source of error is a SPAM-type error that comes from our OCT
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decode pulse used for mapping the logical state from cavity 2 onto transmon 2.

We estimate this error to be pdecode = 1.7%, estimated with the same method used

in [Burkhart et al., 2021] by creating an ‘encode’ OCT pulse.

The last error we suspect is the ‘false positive’ rate of the vacuum check. This is

defined to be

FDMM =
p(gg|bright)

p(gg|dark) + p(gg|bright)
(7.66)

We can measure the numerator and denominator directly from Fig. ?? when we take

a line-cut at 2 µs. We find p(gg|bright) = 1% and p(gg|dark) = 70%, close to the

theoretical value of 1 − 2e−|α|2 + e−2|α|2 ≈ 73% from the overlap with vacuum. The

3% difference is due to transmons being excited out of their ground states due to

rethermalization and additional heating induced by the pump tones. This gives

FDMM = 2.1%.

Our total error budget is therefore

ploss + pdecode + FDMM = 9%, (7.67)

in fairly good agreement with our measured fidelity at α =
√
2.

This error model also informs us why we should expect an optimum value of α

that maximizes the entanglement fidelity. At larger values of α, pfalse positive saturates

to 1% whereas ploss continues to increase quadratically. At smaller values of α, the

success probability, set by p(gg|dark), drops rapidly, causing pfalse positive to increase

rapidly as well.
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Figure 7.25: Measured Bell state fidelities and success probabilities for varying values
of α. Solid blue line indicates expected Bell state fidelity from Eq. 7.67 Solid orange
line is the success probability from Eq. 7.32. The fidelity error model does not account
for the drop in fidelity observed at α = 1.2, 1.0. An unknown process leads to higher
than expected population of the vacuum state in cavity 1.

7.12.2 Bell state fidelities for different values of α

We repeat the DMM protocol for different values of α, which is achieved simply

by adjusting the size of the initial cavity displacements and leaving the rest of the

scheme unchanged. In Fig. 7.25 we show both the Bell state fidelity and success

probability for the values α = 1.0, 1.2, 1.414, 1.6, 1.8, 2.0, with no Kerr cancellation

pump applied in all cases. The measured scheme success probability closely follows

the theoretical upper limit, with an extra 2-3% additional failure probability due

to imperfect preparation of the transmons in their ground state and heating of the

transmons out of the ground state when the pumps are applied.

The measured Bell state fidelity is well-described by our model at most values of

α, with the predicted drop-off at large α observed due to the increased probability

of single photon loss in the cavities. At low values of α, we see a drop in measured
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Basis

parameters

α = 1.0 α = 1.2 α = 1.414 α = 1.414

Kerr-cancelled

α = 1.6 α = 1.8 α = 2.0

αbasis 0.938 1.125 1.331 1.344 1.508 1.706 1.904

θK 0.467 0.473 0.493 0.001 0.502 0.502 0.502

θr 0.001 0.010 -0.749 0.009 0.119 -0.012 -0.014

Success

probability

0.1772 0.263 0.347 0.349 0.400 0.442 0.472

Bell state

fidelity

79.0% 89.5% 91.3% 92.3% 90.8% 88.6% 85.6%

Table 7.3: DMM scheme performance for different values of α.

Bell state fidelity that is not explained by the error model used to calculate the

error-budget. Our reconstructed Wigner functions (and measurements of the cavity

number population through transmon spectroscopy) suggest this is due to extra cavity

population in the |0⟩ state, but the exact mechanism for this is not yet known. This

is not something we observe at values of α > 1.4.

In Fig. 7.26 we show the measured Wigner functions (without Kerr correction)

and Pauli bars. We see that the Wigner functions for α = 1.0 look more noisy, due

to a much lower success probability (and hence less shots averaged over which adds

to a higher uncertainty in FBell). We also see less Kerr distortion, due to the small n̄.

For α = 2.0, this Kerr distortion is much more pronounced, but is compensated by

updating the definition of cavity 1’s logical basis.

In Tab. 7.3 we list the optimized logical basis parameters for cavity 1 (using the

Nelder-Mead method), the success probability and the Bell state fidelity for all values

of α used for the scheme. The value of α in the optimized basis is lower than the

initial value of α, due to no-jump backaction in the ∼5 µs duration of the scheme.

The value of θK is very similar for the different values of α, as expected since the

cavity self-Kerrs, K1 and K2, do not change with α.
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Figure 7.26: Measured Wigner functions of cavity 1 conditioned on cavity 2’s logical
measurement outcome and the reconstructed Pauli bars, for different values of α.
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7.13 State Transfer via Teleportation

We can go one step further than entanglement generation, by using this Bell state

as a resource in a quantum teleportation procedure. This is where the strength of

quantum teleportation as a means of quantum state transfer becomes significant. In

our modular network we have been confronted by a lossy link. We have developed

a probabilistic scheme to generate a high-fidelity Bell state. Now we will use it to

deterministically teleport a quantum state from one module to the other, avoiding

the loss in the link as we do so.7

For this extension of the scheme we need a few more ingredients. Firstly, we need

another quantum mode in which we prepare the qubit state we wish to teleport. For

this we use the transmon in module 2 (which has better coherence than the transmon

in module 1). After passing the vacuum check which heralds the Bell state, both

transmons are in their ground state and so it is easy to initialize transmon 2 in an

arbitrary qubit state c0 |g⟩+ c1 |e⟩ with a single π-pulse.

As we saw from the ‘textbook’ quantum teleportation protocol discussed in Sec. 2.4.1

of Chapter 2, also what is needed is a Bell measurement between transmon 2 and cav-

ity 2. The teleportation circuit we are implementing on our hardware is illustrated in

Fig. 7.27. Ultimately we teleport the qubit state from transmon 2 to cavity 1, chang-

ing the logical basis as we do so. The state transfer fidelity is the bounded by the

fidelity of our Bell state and the fidelity of our Bell measurement. We now describe

how the Bell measurement can be implemented to high fidelity in our system.

7.13.1 Bell measurements in a module

In this realization of a Bell measurement, we first perform a CNOT gate between

cavity 2 and transmon 2 and then measure transmon 2 in its X basis (m1) and cavity

7. What remains probabilistic is how long we need to wait before the Bell state is successfully

generated.
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Bell state

Cavity 1

Cavity 2

Transmon 2

Bell measurement

Wigner

Figure 7.27: Circuit for quantum teleportation from transmon 2 to cavity 1.

Cavity 2

Transmon 2 g or e? reset g or e?

OCT pulse 

Figure 7.28: Circuit for implementing a Bell measurement between transmon 2 and
cavity 2.

2 in its Z basis (m2), no joint measurements are required.

Our strategy is to use the dispersive interaction to do the CNOT gate, measure

transmon 2 in its X basis, then decode the logical state from cavity 2 onto the trans-

mon and perform another transmon measurement. These two bits of information tell

us the Pauli frame updates we need to apply to cavity 1, completing the teleportation.

This is summarized by the circuit in Fig. 7.28. To see how this circuit works, it is

helpful to consider what happens if cavity 2 is encoded in the cat code at large α,

instead of our modified basis. The desired Bell measurement amounts to performing
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a destructive measurement that distinguishes between the following four states:

|ψ1⟩ ∝ |α⟩2 |g⟩2 + |−α⟩2 |e⟩2

|ψ2⟩ ∝ |α⟩2 |g⟩2 − |−α⟩2 |e⟩2

|ψ3⟩ ∝ |α⟩2 |e⟩2 + |−α⟩2 |g⟩2

|ψ4⟩ ∝ |α⟩2 |e⟩2 − |−α⟩2 |g⟩2

(7.68)

The value of m1 distinguishes between states {|ψ1⟩ , |ψ3⟩} and {|ψ2⟩ , |ψ4⟩} whereas

the value of m2 distinguishes between states {|ψ1⟩ , |ψ2⟩} and {|ψ3⟩ , |ψ4⟩}. Once we

know (m1,m2), we know which state, |ψi = 1, 2, 3, 4⟩ we started in, completing our

Bell measurement. The CNOT gate is performed simply by waiting time π/χa2t2 .

Similar to a parity measurement sequence, this causes the states evolve as

|ψ1⟩ ∝ |α⟩2 |g⟩2 + |−α⟩2 |e⟩2 → |α⟩2 (|g⟩+ |e⟩)2

|ψ2⟩ ∝ |α⟩2 |g⟩2 − |−α⟩2 |e⟩2 → |α⟩2 (|g⟩ − |e⟩)2

|ψ3⟩ ∝ |α⟩2 |e⟩2 + |−α⟩2 |g⟩2 → |−α⟩2 (|g⟩+ |e⟩)2

|ψ4⟩ ∝ |α⟩2 |e⟩2 − |−α⟩2 |g⟩2 → |−α⟩2 (|g⟩ − |e⟩)2

(7.69)

We can see that we measure m1 by measuring the transmon in the |±⟩ basis after this

wait time, which is achieved by a π/2 pulse about the Y axis followed by standard

dispersive readout. We then conditionally reset the transmon to |g⟩ if we measured

|e⟩ and measure cavity 2 in the |±α⟩ basis by using an OCT pulse to map these

cavity states to the states of the transmon before another transmon readout. After

successfully heralding a Bell state, the sequence takes an additional 6 µs to complete

the local Bell measurement and teleport the state. To avoid idling errors during the

rather long Bell measurement sequence, we begin measuring the Wigner function of

cavity 1 as soon as the Bell state is heralded succesfully (making this teleportation

passive.) We take ∼ 2, 800 shots for each point in the Wigner function. (A 51 × 51
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grid.) In our experiment, we also have to use the modified cavity 2 logical basis

to define the OCT decode pulse (similar to the one used to measure entanglement

fidelity but also compensating for additional Kerr evolution during the CNOT gate).

7.13.2 Average teleported state transfer fidelity

Average state transfer fidelity in the context of qubit transfer is defined to be the

fidelity of the final transferred qubit to its initial state, averaged over randomly chosen

qubit states. Fortunately, we do not need to average over all possible qubit states,

but instead averaging over ‘cardinal’ states will suffice. As discussed in [Axline et al.,

2018], a convenient choice of cardinal states is {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |+i⟩ , |−i⟩}. In

our case, it suffices to average over the four states {|0⟩ , |1⟩ , |+⟩ |+i⟩}, provided we

define our average to be

Favg
QST =

F |0⟩
QST + F |1⟩

QST + 2F |+⟩
QST + 2F |+i⟩

QST

6
(7.70)

Determining the state transfer fidelities for the teleportation channel has the added

complication that we need to average over the four different possible Bell state out-

comes, which each have roughly 25% probability of occurring.

What is the correct order of the averaging, and how should we optimize the logical

basis properly? First we note that we are allowed to chose one logical basis for cavity

1 for each measurement outcome but we must fix this logical basis across the qubit

states being transferred. We denote the basis we are using with the subscript L00 for

measurement outcome (0, 0) etc. The state transfer fidelity averaged over all the Bell

state outcomes is then given by
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F |ψ⟩
QST = P(0, 0) ⟨ψL00 |ρmeas

00 |ψL00⟩

+ P(0, 1) ⟨ψL01 |XL01ρ
meas
01 XL01 |ψL01⟩

+ P(1, 0) ⟨ψL10 |ZL10ρ
meas
10 ZL10 |ψL10⟩

+ P(1, 1) ⟨ψL11 |YL11ρ
meas
11 YL11 |ψL11⟩ (7.71)

Where P(m1,m2) is the probability of obtaining Bell measurement outcome (m1,m2)

for the given state, |ψL(m1,m2)
⟩ is the state we were trying to transfer, given cavity 1’s

logical basis for measurement outcome (m1,m2), XL(m1,m2)
is the X logical Pauli oper-

ator on cavity 1 for the appropriate basis (and similar for the other Pauli operators),

and ρmeas
(m1,m2)

is the reconstructed density matrix from the measured Wigner function

when we try to transfer state |ψ⟩ and obtain Bell measurement outcome (m1,m2).

From equations 7.71 and 7.70 we directly calculate the overall teleported aver-

age state transfer fidelity, reported in Tab. 7.4, with the measured Wigner functions

in Fig. 7.30 and Fig. 7.29 for two teleportation configurations from which we quote

FQST = 89± 1% and 90± 1% respectively, indicating our Bell measurement con-

tributes a ∼ 2% error to the teleportation protocol and is still mostly limited by the

Bell state fidelity. In both cases we begin with the Bell state for α = 1.414. We find

fidelity is persistently around 1% lower for all transferred states when we compensate

for Kerr-distortion in cavity 1, since this pulse makes us slightly more susceptible to

errors in transmon 1.

We can notice some trends from Tab. 7.4. Firstly, whenever we measure m1 = 1

(transmon 2 in |e⟩ in the first measurement) we obtain a lower transfer fidelity. This

is likely due to errors in transmon 2 reset, due to transmon decay, which makes it

more probable that m2 is measured incorrectly resulting in an error. Transferring |1⟩

also has a lower fidelity than |0⟩ because initially transmon 2 is in |e⟩ which has a
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Kerr
correction?

Metric State
prepared

Outcome (m1,m2)

(0,0) (0,1) (1,0) (1,1) Average

No Fidelity |0⟩ 0.9561 0.9644 0.9506 0.9142 0.9463
|1⟩ 0.9000 0.9142 0.9206 0.9011 0.9090
|+⟩ 0.8915 0.8881 0.990 0.9190 0.9094
|+i⟩ 0.8991 0.8673 0.8693 0.8527 0.8721

Favg
QST 90± 1%

Probability |0⟩ 0.2485 0.2493 0.2516 0.2506
|1⟩ 0.2508 0.2509 0.2496 0.2487
|+⟩ 0.2491 0.2501 0.2521 0.2487
|+i⟩ 0.2494 0.2497 0.2507 0.2501

Yes Fidelity |0⟩ 0.9443 0.9681 0.9387 0.8981 0.9372
|1⟩ 0.8724 0.8990 0.8985 0.9102 0.0.8950
|+⟩ 0.8915 0.8881 0.9274 0.9079 0.8998
|+i⟩ 0.8598 0.8608 0.8749 0.8472 0.8607

Favg
QST 89± 1%

Probability |0⟩ 0.2483 0.2495 0.2514 0.2507
|1⟩ 0.2509 0.2506 0.2500 0.2485
|+⟩ 0.2491 0.2501 0.2521 0.2486
|+i⟩ 0.2494 0.2498 0.2508 0.2500

Table 7.4: Teleportation fidelities for each cardinal state and the probability of ob-
taining each outcome.

probability of decaying during the CNOT gate.

In the first configuration, we cancel out the Kerr in cavity 1 by applying a SNAP

pulse simultaneously during the vacuum check (See Eq. 7.49). This makes it easy

to see the qualitative features of cavity 1’s Wigner functions after the teleportation,

without the Kerr distortions but degrades the teleportation fidelity by around 1%,

since we are prone to decoherence in transmon 1 during this pulse. In the second

configuration, we omit the SNAP pulse.

The type of teleportation we do is deterministic and ‘passive’. This means that

rather than actively applying the Pauli corrections to cavity 1, which are conditioned

on the random measurement outcomes (m1,m2), we instead track this in software.
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Basis Bell measurement outcome (m1,m2)
Parameters no Kerr-compensation Kerr-compensation

(0, 0) (0, 1) (1, 0) (1, 1) (0, 0) (0, 1) (1, 0) (1, 1)
αbasis 1.319 1.327 1.319 1.321 1.317 1.325 1.317 1.313
θK 0.515 0.509 0.474 0.471 -0.058 -0.072 -0.138 -0.129
θr -0.012 0.000 0.113 0.123 0.198 0.226 0.381 0.366

Table 7.5: Optimized logical basis for cavity 1, for both teleportation configurations
and for a given Bell measurement outcome. θK takes on a slightly lower value if
m1 = 1, due to Kerr evolution during the extra wait time needed for transmon 2
reset.

This also means the required update is very obvious from the measured Wigner func-

tions, conditioned on each of the four possible (m1,m2) outcomes. This also means

we do not have to wait for the Bell measurement to be completed before measuring

the Wigner function of cavity 1. Instead, we measure it immediately proceeding suc-

cessful heralding. This corresponds to the use case where we track the Pauli frame

in software. We can proceed with the next step in our quantum algorithm provided

this step does not need to know which ‘Pauli frame’ we are in. There are scenarios

where we must update the Pauli frame in real time, which means actively applying

Pauli operations to our qubits, e.g., before non-Clifford gates in a surface code.
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Outcomes

(0,0) (0,1) (1,0) (1,1)

States 

prepared

Pauli 

Correction

Figure 7.29: Measured Wigner functions after teleporting to cavity 1, with a Kerr
cancellation pulse applied. Each row corresponds to a different cardinal state initially
prepared in transmon 2. Each row corresponds to obtaining one of the four Bell state
outcomes, (m1,m2). Beneath each column we specify the Pauli correction required
to ‘complete’ the teleportation. For ideal teleportation, applying the logical Pauli
operator to each state should recover the leftmost column.
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Outcomes
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Figure 7.30: Measured Wigner functions after teleporting to cavity 1, without a Kerr
cancellation pulse applied. This configuration results in a slightly improved FQST.
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7.14 Conclusions

How should we interpret the experimental success in implementing the DMM scheme?

At first glance, this seems like a specialized solution to a curiously hard and niche

quantum communication problem; state transfer in the regime g < κ < ∆FSR. We

point out this problem will likely become increasingly relevant as intrafridge mi-

crowave links become more commonplace, especially as qubit architectures move be-

yond a single module or chip that contains all the qubits.

Previous recent works [Burkhart et al., 2021,Zhong et al., 2019,Zhou et al., 2021]

have shown that using a single-standing wave mode for inter-module quantum commu-

nication with superconducting qubits is a more natural choice than adapting schemes

from quatum optics designed for ‘flying’ wavepackets. However, these schemes are still

confronted with the usual fidelity ‘bottleneck’ when the link is lossy, set by η̄ ∼ κ/g.

Before the DMM scheme, the only way around this would be to resort to an adiabatic

scheme — and the more lossy the bus mode, the longer the required scheme dura-

tion to mitigate this loss. The usual engineer’s solution would be to just maximize g

and minimize the bus loss κ and indeed, this approach has seen remarkable success

recently [Zhou et al., 2021].

The DMM scheme can be thought of a clear existence proof that we may overcome

the ‘κ/g′ limit quite dramatically, without needing to resort to adiabatic schemes, if

instead one is willing to use the trick of heralding from quantum optics. Using the

paradigm of heralding for single-mode communication channels is a regime seldom

explored in quantum communication, with this experiment being the first of its kind

to our knowledge. But it solves the quantum communication problem in a regime we

often find ourselves as experimentalists, when we wish our link had less loss. What

is unique about the DMM scheme is how little the loss of the bus mode impacts the

scheme (at least in the critically coupled and underdamped regime). In an optics

scheme, we would at least expect κ to directly set the success probability but in the
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DMM it remains 50% for any value of κ, thanks to the physics of a single-mode link

which admits convenient interference effects. In the under-damped regime, the loss

of the bus mode only affects the time to reset the scheme in the event that we are

not successful in generating entanglement. In the overdamped regime, the scheme

duration now scales as κ/g2 but we are still not susceptible to loss of the bus mode.

Interestingly, we are affected by loss in the bus mode due to the fact that a single-mode

link is only an approximation, albeit a very good one for this experiment!

It is true that the DMM scheme requires some other specialist tools from bosonic

QEC. It seems to only work well for the 2-legged cat code (and the modified basis)

and requires QND ‘vacuum check’ measurements. Nevertheless, we presume other

schemes exist and are yet to be found for the ‘heralded single-mode link’ regime of

quantum communication.

How could the DMM scheme be improved in the future? At the moment, we are

limited by ‘local loss’, that is, sources of error in the modules themselves rather than in

the link. Many complications of the scheme can be circumvented by using a dedicated

beamsplitter coupling element and a separate ancilla transmon in each module, the

approach taken in [Burkhart et al., 2021]. This would allow us to operate in the

‘underdamped’ instead of ‘critically damped’ regime. With next-gen beamsplitter

couplers [Lu et al., 2023,Chapman et al., 2022], we may only have to apply Ĥc for

a few hundred nanoseconds and most of the scheme duration would be cat state

preparation and the vacuum check measurement!

Can the scheme be made deterministic? Here we briefly mention the adiabatic

but deterministic version of the DMM scheme, which has since been proposed by

others [Zapletal et al., 2022,Zhou et al., 2021]. In this version, we activate Ĥc whilst

also applying driven-dissipative stabilization of local cat states in each cavity. Local

stabilization stabilizers the manifold of states {|α, α⟩ , |−α, α⟩ , |α,−α⟩ , |−α,−α⟩}

and turning on Ĥc makes the states {|α, α⟩ , |−α,−α⟩} ‘unstable’ causing them to
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decay to vacuum. All these processes (local stabilization, Ĥc and loss in the bus

mode) also conserve the joint parity of the two cavities and so if we begin in the

vacuum state (which has even joint parity) with Ĥc activated, and slowly ramp up

local cat stabilization in each cavity, we will stabilize the unique entangled state

|Ψ2cat
+ ⟩ = 1√

2
(|α,−α⟩+ |−α, α⟩), which is the only state within the manifold that has

even joint parity.

For this scheme to work one must adhere to several rate hierarchies. Firstly, the

bus mode must be ‘adiabatically eliminated’ such that it can be approximated as

being in its vacuum state at all times. For this we need κb ≳ g0. We also need the

rate of local stabilization, κ2cat < g0 and to ramp up this stabilization slowly. This

scheme was in fact the one we originally envisioned implementing in our hardware

(hence empty tunnels in each module) but there are two major drawbacks that make

experimental implementation difficult. Firstly, the number of pumps in the system

to realize local cat stabilization and Ĥc simultaneously requires a total of eight pump

tones which is nontrivial to implement. Secondly, respecting adiabaticity conditions

results in a a scheme duration predicted to be 10-20 µs for our achievable g0 rates,

during which we are susceptible to single photon loss in both cavities. These schemes

are the ‘automated versions’ of the DMM scheme and may be revisited in the future if

faster beamsplitter rates (paired with a sufficiently lossy bus) can shorten the scheme

duration. The DMM scheme takes a similar amount of time to ‘deterministically’

generate entanglement, requiring, e.g., 4 attempts on average to have a > 90% success

rate.

What is the prognosis for near-term inter-module links? The DMM scheme is

rather specialized to the two-legged cat code and its inherently probabilistic nature

(even if its success probability is much higher than most optics realizations) is still

inconvenient when used to link quantum processing together — syncing up gate op-

erations becomes tedious when some steps take an unknown amount of time. In the
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near-term, there is still more mileage that can be gained from improving the κ/g ra-

tio, especially with the advent of faster beamsplitter couplers and low loss Al coaxial

cable with carefully engineered joints to minimize resistance. Schemes such as the

virtual Raman scheme and STIRAP become increasingly viable as we increase gBS.

Furthermore, from Chapter 6 we know that photon loss errors can merely be classed

as erasure errors within the dual-rail code, for which we have a much higher error

tolerance. Error-detected state transfer with these new qubits and mid-circuit erasure

detection would be able to flag the vast majority of photon loss errors as erasures.

Finally, we will touch on one scenario where the DMM scheme may be useful.

This is when our link has some additional desirable property, but also comes with

a considerable amount of link loss. The cable may be particularly flexible, with the

ability to support many separate links in parallel (i.e., a ribbon cable) or it may

include on-chip elements such as a router which boost connectivity beyond two-nodes

but presents an additional source of loss. So long as the link can be modelled well as

a single standing wave mode, and we can actuate couplings to the two bosonic modes

of interest, the DMM scheme is viable.



CHAPTER 8

Outlook

We end this thesis with some of my speculative thoughts on the future of the work

presented. At the core of this thesis is a new paradigm shift to orient around error-

detection rather than error-correction at the small scale, which by all accounts should

ease the task of quantum error correction at the large scale. It will naturally take a

while to fully appreciate and discover how this changes and simplifies the hardware

we now need to realize as experimentalists.

The proposed operations conform to the error-hierarchy as best they can, but they

are not immutable. The requirement of error-detection offers a surprising amount of

freedom in designing operations, which are now characterized by many metrics beyond

just a single number for the fidelity. The best way for performing the two-qubit gate,

mid-circuit erasure detection, and state preparation may look quite different than the

initial set of operations we have presented.

355
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The real test will of course lie in experimental realization. The proposed operations

were designed to account for as many known errors as possible, and early implemen-

tations of the dual-rail proposal suggest our assumptions are not so far detatched

from reality. The spectre of transmon errors continues to haunt even dual-rail qubits

and this is something that will have to be extensively managed through every opera-

tion. Nevertheless, I am confident each of the basic building blocks of error-detected

operations, at least for dual-rail cavity qubits, will be demonstrated by the end of

this year. The source of this optimism lies with the fact that little of the underlying

hardware is novel. Aside from high-fidelity beamsplitter interactions, the rest of the

required hardware has existed for close to a decade already and is well-studied.

Further down the line is the challenge of scaling up to large numbers of error-

detected qubits. Dual-rail qubits are undoubtedly less hardware-efficient than pre-

vious approaches with bosonic qubits with one qubit per cavity mode, but I would

still claim they are hardware-efficient compared to, e.g., an all-transmon architecture.

Compared to this architecture, the number of modes per physical qubit has roughly

doubled, but we are rewarded by efficiently correcting all first-order hardware errors

by converting them to erasure errors. This is a good trade-off that I would claim is

still hardware-efficient. Making the ∼ 50 dual-rail cavity qubits needed to demon-

strate practical error correction with a surface code will be a monumental challenge,

but is no more difficult than the challenge of scaling any 3D-microwave cavity archi-

tecture, with the potential of minutarization with coaxial line architectures [Axline

et al., 2016].

The area I believe urgently requires more attention (without needing to actually

make anything) is how to implement large-scale error correction with dual-rail cavity

qubits, and erasure qubits in general. There are several twists in the circuit-level

error models that are seldom considered in analysis of the surface code (or similar

stabilizer codes).
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Some of the questions I would be interested to know the answers to are:

• What happens if I miss a leakage error but detect it later?

• What happens if ancilla physical qubit readout errors are the dominant error

• What happens with ‘inert’ leakage errors, when leaked qubits no longer interact

with any other qubits. Can we detect them from stabilizer measurements alone?

• What happens if a detected error has affected multiple data qubits?

• Can we perform erasure detection at the end of a stabilizer measurement se-

quence?

Answering these questions involves not only simulating these kinds of errors, but

developing new decoders tailored to these specific error models. The co-design of

large-scale dual-rail hardware with tailored decoders is not something I expect to be

easy, but is necessary if we are to take full advantage of the structured noise in these

new qubits. Ultimately, we need to run the numbers. Given everything we know

about the proposed building blocks, their duration, their errors, what is the circuit

we run to measure stabilizers and detect errors? And what would the logical error

rate be?

The next big milestone for error correction would be what I am calling Clifford

Gate Break-even. (maybe CGB for short?) This is when the gate fidelity of logical

Clifford gates is better than the fidelity of physical qubit Clifford gates. We delib-

erately omit non-Clifford gates from our definition since these are not expected to

be implemented fault-tolerantly. To date, CGB has not been achieved in any device,

which really speaks as to how difficult quantum error correction is. And the real

goal is to go far beyond break-even to suppress logical gate errors by many orders of

magnitude.
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Beyond break-even has been conclusively demonstrated in bosonic qubits for a

memory operation but CGB is much harder. In the surface code, the operations

needed to preserve a quantum memory are also practically the same operations needed

to also perform Clifford gates (through lattice surgery). Thus, memory break-even in

a surface code also implies CGB should be possible in the same hardware. Because

erasure qubits allow hardware errors at the 1% level and can still be well below

threshold, I predict an erasure qubit architecture1 will be the first to reach CGB. The

task of building a quantum computer would still be far than over! We need to go far

beyond break-even, ideally with an error-correction gain ∼ 1012, and then we would

have succeeded in realizing just one logical qubit.

Where does modularity fit into all this? It is hard to imagine building a large-

scale superconducing qubit processor without some degree of modularity built-in. The

work of Chapter 7 has shown there is more to this problem than meets the eye, and

it is indeed possible to circumvent loss in a microwave setting with heralding, just as

it is possible in an optics setting. But the work of Chapter 6 also implies that loss

errors in the link could be converted to erasure errors as well. Perhaps there is more

leniency than we thought in how good our inter-module links need to be.

I like to view quantum error correction as an immense problem that can be tackled

from two ends: by advancing theory and by advancing the experimental hardware.

Often the largest advancements are made by taking some aspect from the theory

side and applying it to the hardware, and vice versa. Error detection motivating the

development of erasure qubits is a nice example of this – who knows what else can

be found?

1. Or at least a qubit platform with highly structured noise.
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APPENDIX A

Correcting for erasure errors in the

4-qubit erasure code

We show how to fully correct an erasure error in the 4-qubit erasure code. We define

a logical qubit with the codewords

|0L⟩ = 1√
2
(|0000⟩+ |1111⟩) (A.1)

|1L⟩ = 1√
2
(|1001⟩+ |0110⟩) (A.2)

(A.3)

with the stabilizers

S1 = Z1Z2Z3Z4 (A.4)

S2 = X1X2X3X4 (A.5)

(A.6)
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We are also able to encode and correct another logical qubit in the manifold

{ 1√
2
(|0011⟩+ |1100⟩) , 1√

2
(|0101⟩+ |1010⟩)}. The procedure we will show to correct

an erasure will preserve this qubit as well, but in this example (and to simplify the

maths) we leave this manifold unused.

Our initial qubit state is |ψL⟩ = c0 |0L⟩+ c1 |1L⟩. Our initial state is then

|ψL⟩ = c0
1√
2
(|0000⟩+ |1111⟩) + c1

1√
2
(|1001⟩+ |0110⟩) (A.7)

It will be useful later to write out the full density matrix for this state

ρL =
1

2
(c0 |0000⟩+ c0 |1111⟩+ c1 |1001⟩+ c1 |0110⟩)

(c∗0 ⟨0000|+ c∗0 ⟨1111|+ c∗1 ⟨1001|+ c∗1 ⟨0110|)

=
|c0|2
2

(|0000⟩ ⟨0000|+ |1111⟩ ⟨0000|+ |0000⟩ ⟨1111|+ |1111⟩ ⟨1111|)

+
|c1|2
2

(|1001⟩ ⟨1001|+ |0110⟩ ⟨1001|+ |1001⟩ ⟨0110|+ |0110⟩ ⟨0110|)

+
c0c

∗
1

2
(|0000⟩ ⟨1001|+ |0000⟩ ⟨0110|+ |1111⟩ ⟨1001|+ |1111⟩ ⟨0110|)

+
c1c

∗
0

2
(|1001⟩ ⟨0000|+ |0110⟩ ⟨0000|+ |1001⟩ ⟨1111|+ |0110⟩ ⟨1111|)

Our goal is to preserve the logical qubit state up to a Pauli frame update in the

event that a single qubit undergoes an erasure error. Erasures are known errors,

without loss of generality, let us suppose physical qubit 1 undergoes an erasure error.

The error can be anything we want, as long as it only affects qubit 1 and we know

that it has happened. We represent the most generic error by tracing out qubit 1:
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ρreduced = ⟨01|ρL|01⟩+ ⟨11|ρL|11⟩

= |c0|2(|000⟩ ⟨000|+ |111⟩ ⟨111|) + |c1|2(|110⟩ ⟨110|+ |001⟩ ⟨001|)

+ c0c
∗
1(|000⟩ ⟨110|+ |111⟩ ⟨001|) + c1c

∗
0(|110⟩ ⟨000|+ |001⟩ ⟨111|)

Now we reset qubit 1 to the codespace. In this example we use the mixed state

P0 |0⟩ ⟨0|+ P1 |1⟩ ⟨1| where P0, P1 are positive and P0 + P1 = 1.

The state is now

ρ = P0 |0⟩ ⟨0|+ P1 |1⟩ ⟨1| ⊗ ρreduced (A.8)

By measuring the stabilizers S1 and S2 we re-entangle qubit 1 with the other qubits

and restore |ψL⟩ up to a Pauli frame update.

Let us consider the state after we measure S1 and we obtain the outcome S1 = +1

(with 50% probability). This means we only ‘keep’ the terms which have an even

number of 1s and 0s in the kets. Now we are in the state

ρ = P0

(
|c0|2 |0000⟩ ⟨0000|+ c0c

∗
1 |0000⟩ ⟨0110|+ c1c

∗
0 |0110⟩ ⟨0000|+ |c1|2 |0110⟩ ⟨0110|

)

(A.9)

= P1

(
|c0|2 |1111⟩ ⟨1111|+ c0c

∗
1 |1111⟩ ⟨1001|+ c1c

∗
0 |1001⟩ ⟨1111|+ |c1|2 |1001⟩ ⟨1001|

)

(A.10)

This density matrix only contains eight terms and we need to get to sixteen to

restore |ψL⟩. Next we measure S2 which increases the number of terms. If we obtain

outcome S2 = +1 then it is as though we applied the projector (1 + S2)/2 to our
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states. E.g.

(
1+XXXX

2

)
|0000⟩ ⟨0110|

(
1+XXXX

2

)

=
1

4
(|0000⟩ ⟨0110|+ |1111⟩ ⟨1001|+ |0000⟩ ⟨1001|+ |1111⟩ ⟨0110|)

If we do this for each term in Eq. A.9 and collect like terms we end up with the final

density matrix

|c0|2
2

(P0 + P1)(|0000⟩+ |1111⟩)(⟨0000|+ ⟨1111|)

+
|c1|2
2

(P0 + P1)(|0110⟩+ |1001⟩)(⟨0110|+ ⟨1001|)

+
c0c

∗
1

2
(P0 + P1)(|0000⟩ ⟨0110|+ |0000⟩ ⟨1001|+ |1111⟩ ⟨0110|+ |1111⟩ ⟨1001|)

+
c1c

∗
0

2
(P0 + P1)(|0110⟩ ⟨0000|+ |1001⟩ ⟨0000|+ |0110⟩ ⟨1111|+ |1001⟩ ⟨1111|)

=ρL

and we have corrected the erasure error and recovered our initial state. If we ob-

tained the stabilizer outcomes m1,m2 = −1,+1 our final state would be Z1 |ψL⟩.If we

obtained the stabilizer outcomes m1,m2 = +1,−1 our final state would be X1 |ψL⟩.

In general, if physical qubit i undergoes erasure then after we reinitialize and re-

measure the stabilizers, the qubits will be in state Z
( 1−m1

2
)

i X
( 1−m2

2
)

i |ψL⟩. We call

Z
( 1−m1

2
)

i X
( 1−m2

2
)

i the ‘Pauli frame update’ which can be tracked in software. This

procedure generalizes to any stabilizer code used for the erasure channel. The reason

why a stabilizer code can tolerate twice as many erasure errors as Pauli errors is

because we know exactly which qubits require a Pauli-frame update after measuring

the stabilizers. Without this knowledge (i.e., in the case of Pauli errors) we end up

in scenarios where our stabilizer measurements tell us an error has occurred, but it is

ambigious as to which physical qubits we should apply the frame update to.



APPENDIX B

Magic values of α in the 4-legged cat

code

The 4-legged cat code is made from superpositions of 4 coherent states instead of

2. Many unwanted effects that are noticeable at smaller values of α are bounded by

e−|α|2 , rather than e−2|α|2 as with the two-legged cat code. Although they both are

suppressed exponentially with α, the extra factor of two means 4-legged cats become

‘ideal’ codewords at α ≈ 3 rather than α ≈ 2, giving this code a large n̄ overhead.

Correcting for no-jump backaction is non-trivial in the four-legged cat code, as it

results in the gradually loss of energy in the system. In theory, this can be counter-

acted by stabilizing the manifold of four coherent states {|α⟩ , |iα⟩ , |−α⟩ , |−iα⟩}. In

practice, this is incredibly difficult to achieve with engineered dissipation [Mirrahimi

et al., 2014] or Hamiltonians. Stabilization via ‘telecorrection’ [Hastrup and Ander-

sen, 2022] is an alternative way of re-inflating cat states which may alleviate the

demanding Hamiltonian engineering, but requires Bell states and Bell measurements

in the cat-code basis.

The 4-legged cat code only satisfies the Knill-Laflamme conditions for error cor-

364



365

rection exactly in the limit of large α (typically α > 3), in which N0, N1, N2, N3 → 2.

At smaller values of α, the value of n̄ is different for each codeword, and so no-jump

backaction results not just in the usual reduction in α → αe−κt but also in polariza-

tion towards the codeword with the smaller n̄. This rate of polarization depends on

both the average number of photons in both the codewords, n̄avg and the difference

in n̄ in each codeword, which we call ∆n̄. At short times, the logical error due to

polariation is O((∆n̄κδt)2).

For certain values of α which are not in the large α limit, we can exactly satisfy

∆n̄ = 0 [Li et al., 2017]. These values of α are termed ‘magic αs’ and are found

by solving either N0 = N2 for even codewords or N1 = N3 for odd codewords. The

transcendental equations that give the first set of magic αs are

tan
(
|αeven|2

)
= − tanh

(
|αeven|2

)

cot
(
|αodd|2

)
= tanh

(
|αodd|2

) (B.1)

with solutions αeven ≈ 1.538, 2.345, 2.939, ... and αodd ≈ 0.968, 1.982, 2.659

Of course, no-jump backaction continuously shrinks the value of α, and values in

the set of {αeven} is unfortunately not close {αodd} at small values of α and so parity

jumps, despite being trackable, still move us away from magic values of α.

We can define another set of ‘magic αs’ for which the |±L⟩ codewords are exactly

two-legged cats. i.e.

|+L⟩ ∝ |α⟩+ |−α⟩

|−L⟩ ∝ |iα⟩+ |−iα⟩
(B.2)

This is desirable since four ({|0⟩ , |1⟩ , |+⟩ , |−⟩}) out of the six cardinal states can

be prepared by first preparing coherent states such as |α⟩ or |iα⟩ and then perform-

ing QND photon number measurements. For example, |±⟩ can be prepared from
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QND photon number parity measurements exactly when α′
even =

√
(n+ 1/2)π =

1.253, 2.171, 2.802... for integer n and for odd codewords when

α′
odd =

√
nπ = 1.772, 2.507, 2.802...

To summarise, the 4-legged cat code is adept at tracking photon jumps but no-

jump backaction and subtle effects at small α complicate its use as a fully error-

correcting code. Many of these effects can be alleviated at α ≈ 3 or greater, but

this results in a large n̄ overhead (n̄ ≈ 9 vs n̄ = 0.5 for the 01 encoding.) and more

demands on its physical implementation.
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