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Bulk acoustic resonators support robust, long-lived mechanical modes, capable of

coupling to various quantum systems. In separate works, such devices have achieved

strong coupling to both superconducting qubits, via piezoelectricity, and optical cav-

ities, via Brillouin interactions.

In this thesis, we discuss piezoelectric and Brillouin interactions between phonons

and microwave/optical photons, as well as microwave and bulk acoustic resonators

that enable the interactions. Based on the understanding of these elements, we then

present a novel hybrid microwave/optical platform that exploits resonantly enhanced

Brillouin interactions and piezoelectric couplings to efficiently access phonons within

a variety of bulk crystalline materials (quartz, CaF2, Si, etc) using tunable microwave

and optical cavities.

The high optical sensitivity and ability to apply large resonant microwave field

in this system offer a new tool for probing anomalous electromechanical couplings,

which we demonstrate by investigating (nominally-centrosymmetric) CaF2 and re-

vealing parasitic piezoelectricity of 83 am/V. Additionally, we attempt to probe elec-

tromechanical response in Si, where we are able to provide an upper bound to its

parasitic piezoelectricity.

We further show how this device functions as a bidirectional electro-opto-mechanical

transducer using a piezoelectric crystal, x-cut quartz, with transduction efficiency ex-

ceeding 10−8 and lay out a feasible path towards unity conversion efficiency. Such

studies are important topics for emerging quantum technologies and highlight the



versatility of the new hybrid platform introduced in this thesis.
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Chapter 1

Introduction

Mechanical resonators, in many different forms ranging from macroscopic to micro-

scopic, are well-studied systems with a wide spectrum of applications from gravita-

tional wave detection [1, 2] to consumer electronics to quantum applications. In par-

ticular, demonstrations of reaching the ground state of mechanical motion in micro-

mechanical resonators [3–5], in addition to the emergence of quantum computing, have

fueled many on-going efforts for using mechanical resonators as a quantum resource.

One example is an emerging subfield of circuit quantum acousto-dynamics (cir-

cuit QAD) [6] that studies hybrid systems with a mechanical resonator coupled to

a superconducting qubit. In these systems, strong piezoelectric coupling between a

mechanical resonator and a superconducting qubit has been shown, along with the

creation of quantum states of mechanical motion and full quantum tomography of

these states [7–9].

Another approach in using mechanical resonators as a quantum resource is to

use them as a long-lived quantum memory element [10, 11]. Extremely long phonon

lifetimes of over a second (Q-factor over 1010) have been demonstrated in both op-

tomechanical crystal (OMC) and nanostring-based acoustic resonators [12,13]. Addi-

tionally, the slower speed of sound compared to that of light results in acoustic devices
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that are more compact and scalable compared to their electromagnetic counterparts,

which is a favorable trait for quantum memory devices.

Finally, the transduction of quantum information between the microwave and

optical domain is a vital piece of technology in realizing a quantum network [14].

Mechanical vibrations are versatile in coupling to a variety of systems, which allows

acoustic systems to efficiently mediate the conversion between optical and microwave

domains. From this perspective, a wide range of mechanical resonator-based trans-

ducers are being explored.

One such system uses a mechanical membrane coupled through radiation pressure

to a superconducting microwave resonator and a Fabry-Pérot optical cavity [15–17].

This system achieved the highest transduction efficiency (47%) for classical signals,

with respectable added noise (3.2 photons), and even demonstrated integration with

a superconducting qubit. Most effort in this design is put into working around a

small transduction bandwidth and lowering the added noise, both a result of a low

mechanical frequency (∼MHz) of the membrane.

Another notable candidate for a phonon-based transducer is OMC-based de-

vices [18–20]. Piezoelectric interaction between microwave and mechanical elements

is combined with the well-studied OMC, leading to a direct conversion between mi-

crowave photons and phonons at GHz frequency which then detunes the optical field

through photoelasticity and radiation pressure. With this transducer design, one can

achieve low (< 1 photons) added noise due to the high mechanical frequency, and inte-

gration with superconducting qubits has been demonstrated. As OMCs are fabricated

on-chip, they are usually made on the same chip as the microwave element (qubits),

resulting in a scalable approach. However, this inevitably leads to complicated fab-

rication steps with low reliability and limited tunability of device parameters post-

fabrication. Sufficient isolation of superconducting elements from the optical field,

and efficient coupling in and out of the chip are additional challenges OMC-based
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designs have to overcome.

Other phonon-mediated approaches utilize thin film acoustic resonators [21, 22]

and bulk acoustic resonators [23]. Although it is out of the scope of this dissertation,

it is important to note that many other paths towards transduction, besides phonon-

mediated transduction, are being explored such as making use of magnons, rare-earth

ions, and direct electro-optical (EO) coupling [24–26].

However, integrating acoustics with quantum circuits also comes with challenges.

In order to fully harness the benefits of acoustics in quantum applications as listed

so far in the introduction, the mechanical element has to be highly coherent, couple

only to intended modes, and have features that are well understood. In reality, when

a qubit is coupled to an acoustic element, there often exist unintended couplings

to lossy acoustic modes or to a continuum of modes, resulting in acoustic radiation

poisoning qubit lifetime. As a result, in devices integrating superconducting qubits

with acoustic elements through piezoelectricity, qubit lifetimes can be up to two

orders of magnitude lower than that of typical transmons [7, 8, 27–31]. There are

works trying to understand these phenomena through coupling to a bath of lossy

acoustic modes [32] and through observing qubit response in relation to controlled

modifications of the acoustic density of states within substrates [33].

Even in superconducting qubits without coupling to an acoustic element, loss

channel through acoustic radiation is potentially an important factor in understanding

the fundamental limits of qubit lifetimes. Inversion symmetry of a crystal can be

broken at the surface [34], defect sites [35], and under external stress [36,37], leading to

piezoelectricity in non-piezoelectric materials. Several studies are done to understand

the effects of such anomalous piezoelectricity in qubits [34, 38]. Moreover, the true

nature of dielectric loss isn’t fully understood. The energy lost due to dielectric loss is

dissipated in the form of thermal radiation, which is equivalent to phonon radiation.

Thus, exploring the unintended coupling between microwave and acoustics, possibly
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due to anomalous piezoelectricity, may give us a hint towards understanding the

nature of dielectric loss [39].

Anomalous piezoelectricity that can result in unintended electromechanical cou-

plings is likely to be very weak, hence detecting such an effect may require an ex-

tremely sensitive phonon spectroscopy tool more sensitive than conventional means

of piezo-detection. Mechanical resonators in the past have been utilized in sensitive

sensing of forces [40], masses [41], and even a single electron spin [42]. In our im-

plementation of phonon-sensing, we will harness the strong optomechanical coupling

enabled through Brillouin scattering.

Brillouin interaction is a great candidate for sensitive phonon spectroscopy. It

is a phase-matched optomechanical three-wave mixing process in a bulk medium,

where an optical pump photon scatters off of an acoustic phonon through photoe-

lasticity [43, 44]. Brillouin scattering has been used in applications such as optical

amplifiers [45] and lasers [46], and has been demonstrated in a wide range of media,

including liquids [47,48], gases [49], crystalline materials [50], fibers [51], and on-chip

devices [45,46]. Since photoelastic coupling is ubiquitous, Brillouin scattering should

theoretically be observable in all crystals. It is well established in high-overtone bulk

acoustic resonators (HBAR) [52,53], which include bare wafers, making it highly com-

patible with the type of material required for qubit fabrications. Brillouin scattering

in HBARs (any piece of wafer one wants to characterize can be considered an HBAR)

also experiences minimal laser heating in the mechanical modes for transparent me-

dia due to the large volume-to-surface ratio and good thermal anchoring [54, 55]. A

phase-matching condition that Brillouin interaction requires typically sets the acous-

tic frequency and the optical frequency shift in the microwave range, making it a

natural interface between the microwave and optical domains. When combined with

cavity-optomechanics, Brillouin interactions have been shown to be very sensitive

to phonons [54, 55] by reaching high optomechanical cooperativities through optical
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pump-induced parametric enhancement.

Brillouin optomechanical systems with HBARs are also good candidates for microwave-

to-optical transduction. Several of the requirements for efficient transduction such as

strong optomechanical coupling [54, 55] and strong electromechanical coupling to a

superconducting qubit [7] have recently been demonstrated in systems incorporat-

ing an HBAR. Long acoustic lifetime [56], good thermal properties, efficient exter-

nal optical couplings [54, 55], good optical mode matching [52], and ease of fabrica-

tion of HBARs [53] are additional advantages of such a system. However, combining

electromechanical coupling with Brillouin optomechanical coupling has not yet been

demonstrated.

1.1 Outline of this thesis

In this dissertation, we will present a novel piezo-Brillouin design simultaneously inte-

grating piezoelectric and Brillouin interaction in a resonantly enhanced configuration

constituted of a variety of bulk crystalline materials and tunable optical/microwave

cavities. This platform paves the way for the use of Brillouin interaction and long-

lived phonons for efficient microwave-to-optical transduction and sensitive material

spectroscopy.

• In Chapter 2, we start by introducing Brillouin scattering theory in the context

of coherent phonons, as we are mostly interested in working with relatively

long-lived phonons at cryogenic temperatures. Using Hamiltonian formalism,

we analyze the optomechanical coupling rate. Then we show how we measure

this coupling rate in systems with an optical single-pass configuration and with a

resonantly enhanced configuration utilizing an optical cavity. For the latter case,

we perform an optomechanically induced transparency (OMIT) measurement.

• In Chapter 3, we lay out the framework for the piezoelectric effect in our systems.
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We begin with deriving the piezoelectric coupling rate using a Hamiltonian

framework. In particular, we discuss how the distribution of piezoelectricity

- either throughout the bulk or concentrated on the surface - influences the

coupling properties. In order to achieve coherent piezoelectric couplings between

microwave photons and acoustic phonons, we consider coupling a 3D microwave

cavity to an HBAR. We provide several design choices for 3D microwave cavities

used. Furthermore, we discuss the situation where a superconducting qubit is

made on a piezoelectric substrate, which leads to a piezoelectrically induced

spontaneous radiation of a qubit. We provide a model based on Fermi’s golden

rule, through which piezo-limited qubit lifetime can be approximated.

• In Chapter 4, we focus on HBARs. We summarize the loss mechanisms in acous-

tic systems that are of relevance to our devices. Then, we describe the fabrication

process of our on-chip HBAR devices based on prior works [53], and describe

several notable observations. A list of some of the quartz and Si devices made

along the course of this work is provided, along with a discussion about some

of our findings that allowed further improvements of the devices.

• In Chapter 5, we introduce a novel hybrid cavity platform for piezo-Brillouin op-

eration. This is a type of hybrid microwave/acoustic/optical cavity system that

simultaneously harnesses HBAR-mediated optomechanical and piezoelectric in-

teractions through a fully resonant operation. We walk through the experimental

apparatus and characterize each of the elements. We also provide a theoretical

background, called a state space model, for understanding the hybrid system.

This work is based on reference [57].

• In Chapter 6, we demonstrate an application of our piezo-Brillouin platform

as a highly sensitive piezo-sensor. With the ability to conduct precision spec-

troscopy of GHz phonons with single-quanta sensitivity, we present a detection
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of anomalous piezoelectricity in CaF2, which is beyond the detection limit of

some of the other conventional piezo-detection schemes. We also show an inter-

mediary result in Si, providing a bound in possible anomalous piezoelectricity.

The development of such a material characterization tool is of importance in

material science as it allows further evaluation of substrate purity, solid-state

defects, and surface properties. Moreover, in relation to quantum technologies,

it can provide insight into the fundamental limits of qubit lifetimes and explain

the possible origins of dielectric loss. This work is based on reference [57].

• In Chapter 7, we explore the hybrid piezo-Brillouin platform from the perspec-

tive of quantum transduction, which is a key quantum information technology

enabling quantum network/internet. Several properties of our hybrid system, in-

cluding high (∼ 0.5) microwave and optical coupling efficiencies, optomechanical

cooperativity exceeding 1, a wide frequency tuning range as a result of its mod-

ular design, and robust thermal properties, are key advantages when adapting

the system into a quantum transducer. We demonstrate a transduction effi-

ciency of our hybrid system comparable to other piezo-optomechanical systems,

with a feasible optimization path towards unity efficiency. This work is based

on reference [57].
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Chapter 2

Brillouin scattering theory

2.1 Introduction

After the initial discussion of inelastic light scattering by Lord Rayleigh, Larmor, and

Raman [58–60], Brillouin scattering was first proposed theoretically by Brillouin in

1922 [43] and separately by Mandelstam in 1926 [61]. Then it was experimentally

verified in organic liquids in 1930 [47]. During this time, spontaneous Brillouin scat-

tering was observed, which is an interaction where incident light scatters off thermal

phonons.

The invention of the ruby laser in 1960 [44] providing a bright, coherent light

source, was a remarkable feat enabling numerous scientific experiments that were

previously impossible. Studies in Brillouin scattering also benefited from this inven-

tion, such as the first experimental demonstration of stimulated Brillouin scattering

(SBS) in quartz and sapphire by Chiao, Townes, and Stoiche in 1964 [50]. Further

discoveries of SBS in liquids [48] and gas [49] soon followed. Unlike spontaneous Bril-

louin scattering, SBS occurs when incident lasers electrostrictively drive phonons,

which then scatter light to a shifted frequency.

Immediately after optical fibers were developed, it was noticed that SBS can set

8



a limit to the optical power handling capabilities of optical fibers. The longer the

light travels in fiber, the stronger the light-sound interaction, leading to a depletion

of the optical signal and a massive back reflection. Indeed, SBS in fibers was soon

observed [51], and so were the limits in optical power handling of optical fibers [62,63].

Suppressing SBS in optical fibers is an active area of research still in these days [64,65].

Brillouin interaction has also been explored in integrated circuits [66]. Optical

components utilizing Brillouin-active integrated photonic circuits include lasers [46],

amplifiers [45], notch filters [67], acousto-optic modulators, isolators [68], and many

more. More of the history and insightful perspectives of Brillouin scattering can be

found in Ref. [69], and applications in Ref. [66, 70]

Brillouin scattering is a type of inelastic scattering of light, where optical waves

photoelastically scatter off acoustic waves in a medium, Doppler-shifting the frequen-

cies of the optical waves. In other words, it is a three-wave mixing process between

optical and acoustic waves. It is analogous to another type of inelastic light scat-

tering, Raman scattering, where light scatters off optical phonons. The difference is

that Brillouin scattering results in a frequency shift in the order of 10s of GHz, while

Raman scattering results in that of 10s of THz.

Conventionally, applications of Brillouin scattering are based on SBS. In SBS,

one provides a pump and a probe light to drive acoustic waves, which then scatter

the pump light into the probe light, thus resulting in a stimulated process. For our

purposes, we will instead consider a spontaneous process. This is a process in which

there is no optical probe. In the absence of an optical probe, phonons are no longer

driven optically. Instead, we will allow another mechanism, such as electromechanical

coupling, to drive phonons in the system. In this chapter, we will explain the Brillouin

optomechanical process through which we read out phonons from our system, whereas

the electromechanical process that drives phonons will be introduced in the following

chapter.
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Figure 2.1: Sketch of Brillouin scattering (a) In an acoustic medium, a strain field
creates a refractive index modulation through a photoelastic effect. Propagation of
this pattern acts as a moving Bragg mirror, Doppler shifting the incident pump light
field. Illustrated in the figure is a Stokes process, where the pump light is scattered into
a lower-frequency light. (b) Power spectrum of the scattered signal has a characteristic
Lorentzian lineshape with linewidth Γ at frequency Ω detuned from the pump.

2.2 Brillouin frequency

Throughout the thesis, we focus on optomechanical Brillouin interaction between

standing wave phonons and photons. To get a basic understanding of phase match-

ing and energy conservation considerations that determine the frequency where the

optomechanical coupling occurs, it is useful to step back and view the interactions

as a continuous system with traveling wave phonons. Additionally, we only consider

backward Brillouin scattering that involves counter-propagating waves to maximize

the optomechanical interaction length. As Brillouin scattering is a phase-matching

interaction, it occurs around a set frequency determined by the material properties

of the system in consideration. This frequency is called Brillouin frequency.

In an acoustic medium, strain fields (acoustic waves) can create a periodic vari-

ation in the refractive index of the material through photoelasticity. This acts as a

Bragg mirror to the incoming light field, propagating at the acoustic velocity of the

medium in forward and backward directions. The frequency of the reflected light is

then Doppler-shifted, given as,

∆ω = ±2vm
c/n

ω0, (2.1)
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Figure 2.2: Phase matching and energy conservation conditions for Bril-
louin scattering. Illustrations of (a) Stokes scattering and (b) anti-Stokes scatter-
ing. Within each of the boxes, the top left figure is a particle analogy where (Stokes
process) pump photon is annihilated to create a Stokes photon and a phonon or (anti-
Stokes process) pump photon absorbs a phonon to create an anti-Stokes photon. The
top right figure shows the energy conservation condition. The bottom figure describes
optical and acoustic linear dispersion diagrams and the corresponding phase-matching
conditions.

where ω0 is the initial light frequency, vm is the acoustic velocity, and n is the refractive

index of the medium. Redshift of light (∆ω with a negative sign) occurs when light

scatters off a sound wave propagating in the same direction as the light, while blueshift

(∆ω with a positive sign) occurs when light scatters off a sound wave propagating in

the opposite direction. The former is referred to as a Stokes process, and the latter an

anti-Stokes process. See figure 2.1(a) for a simplified illustration of the Stokes process

occurring inside an acoustic medium.

Alternatively, Brillouin scattering can also be understood as a phase-matched

three-wave mixing process between optical photons and acoustic phonons (figure 2.2).

A forward propagating optical pump photon with frequency ωp and wavevector kp

can scatter into a forward propagating phonon (Ωs, qs) and a backward propagating

Stokes photon (ωs, ks). In the case of the anti-Stokes process, a forward propagating

11



optical pump photon absorbs a backward propagating phonon (Ωas, qas) and becomes

a backward propagating anti-Stokes photon (ωas, kas). Both processes have to satisfy

energy conservation and phase-matching requirements. For the Stokes process, such

requirements are,

ℏωp = ℏΩs + ℏωs

kp = qs − ks,

(2.2)

Meanwhile, the phase matching and energy conservation requirements in the anti-

Stokes process are,

ℏωp + ℏΩas = ℏωas

kp − qas = −kas.
(2.3)

Note that the phase-matching condition implies that the acoustic wavelength should

approximately match half of the optical wavelength in the medium. Combining the

phase-matching and energy conservation conditions with the assumed linear disper-

sion relation ω = (c/n)k (Ω = vmq) of optical (acoustic) waves, we can obtain the

required frequencies of phonons for Stokes process where c/n≫ vm,

ωp

c/n
=

Ωs

vm
− ωp − Ωs

c/n
(2.4)

Ωs =
2ωp

c/n
vm

+ 1
∼ 2ωpvm

c/n
, (2.5)

while for anti-Stokes process, where c/n≫ vm,

ωp

c/n
− Ωas

vm
= −ωp + Ωas

c/n
(2.6)

Ωas =
2ωp

c/n
vm

− 1
∼ 2ωpvm

c/n
. (2.7)

The frequency given in equations 2.1, 2.5 and 2.7 is the same (ω0 = ωp), and is

defined as Brillouin frequency (ΩB). Note that the ±1 in the denominator of equations
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2.5 and 2.7 can play a role in distinguishing Stokes and anti-Stokes process through

dispersive symmetry breaking [52]. Typically in a crystal, the Brillouin frequency is

in the range of 10∼50 GHz.

2.3 Brillouin scattering from standing wave phonons

At room temperature, acoustic phonons have low spatial coherence in the range of

Brillouin frequency previously discussed (see chapter 4 for discussions on sources of

dissipation). In this case, phonons in a heavily damped medium can be represented

as traveling waves. At low temperatures on the other hand, phonons in crystalline

substrates can have extremely long lifetimes with appropriate designs and optical

acoustic mode engineering [12, 13, 56]. In the optomechanical systems we study, it is

advantageous to harness this long acoustic coherence, as it significantly extends the

optomechanical interaction length. With long coherences, phonons reflect from the

boundaries of a mm-scale resonator, creating well-defined and discrete macroscopic

phonon modes. In the limit where a mechanical response is no longer local, we have to

treat phonon modes as standing wave cavity modes, leading to a non-conventional ex-

pression for the interaction. In particular, we need to characterize the optomechanical

coupling rate and cooperativity.

In this section, we first consider the integration of an optical cavity with an acous-

tic cavity with standing wave phonon modes to further enhance the Brillouin optome-

chanical response. We treat the system from the perspective of cavity optomechanics

to characterize the coupling properties. Then, we make appropriate modifications to

understand the single-pass case, where there is no optical cavity, making the light

field pass through the crystal and interact with the acoustic field only once.
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Figure 2.3: Sketch of cavity optomechanics with Brillouin interaction At low
temperatures, phonons form standing wave modes inside a bulk acoustic medium.
Note that the figure illustrates the case shown in section 2.3, where anti-Stokes inter-
action is considered, thus the scattered signal (blue) is blue-shifted from the pump
(red). (a) The interaction between acoustic modes and light can be enhanced by
placing an optical cavity around the acoustic substrate. In the figure, we consider a
Fabry-Pérot optical cavity with dielectric mirrors. The pump enters from the left side
and both the pump and the scattered signal exit from both sides of the optical cav-
ity. (b) Illustration for the single-pass case without an optical cavity. Due to the low
reflection of light at the dielectric surface, we can assume that the light only makes a
single pass through the substrate, hence achieving lower interaction compared to the
case in (a).

2.3.1 Cavity optomechanical coupling rate

Here, we derive the Brillouin optomechanical coupling rate, closely following prior

studies [52, 54]. Specifically, we consider a phase-matched photoelastic coupling be-

tween optical Fabry-Pérot modes and longitudinal bulk acoustic resonances (see figure

2.3a). The electric field profile of the j-th optical cavity mode is given by

Ej(r, z, t) = Ej,0e
−r2/r2optsin(kjz)(aj(t) + a†j(t)) (2.8)

where Ej,0 is the zero-point field, ropt is the optical mode waist, kj is j-th optical

wavevector, aj is the annihilation operator for j-th optical mode, and sin term is from

the boundary condition. Note that for simplicity, this model neglects modifications
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of the optical field due to the combined vacuum/dielectric composition of the cavity.

Full modeling of the optical mode profile, in the presence of this dielectric interface,

is possible through use of a transfer matrix model [54]. The zero-point field, Ej,0, can

be obtained from the normalization of electromagnetic fields in the ground state,

∫
ϵ0ϵrE

2
j

2
dV +

∫
B2
j

2µ0µr
dV =

ℏωj
2
, (2.9)

where Bj is the magnetic field profile of the j-th optical cavity mode, ωj is the j-th

optical cavity mode frequency, ϵ0 (ϵr) is vacuum (relative) permittivity, and µ0 (µr)

is vacuum (relative) permeability. Since the energy is equally distributed between

electric and magnetic fields, we have,

∫
ϵ0ϵrE

2
j

2
dV =

ℏωj
4
. (2.10)

Substituting electric field profile (Ej) from equation 2.8,

ϵ0ϵrE
2
j,0

2

∫
e−2r2/r2optdA

∫
sin2(kjz)dz

=
ϵ0ϵrE

2
j,0

2

(
πr2opt
2

)(
Lopt

2

)
=

ℏωj
4
,

(2.11)

where Lopt is optical cavity length. Thus, we obtain the zero-point field, Ej,0,

Ej,0 =

√
2ℏωj

ϵ0ϵrπr2optLopt

=

√
2ℏωj

ϵ0ϵrAoptLopt

, (2.12)

where Aopt = πr2opt is optical mode area.

As for the acoustic modes of an HBAR, we can write the displacement of the i-th
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longitudinal mode,

Ui(r, z, t) = Ui,0e
−r2/r2mcos(qiz)(bi(t) + b†i (t)), (2.13)

where Ui,0 is the zero-point displacement, rm is the acoustic mode waist, qi is i-th

acoustic wavevector, bi is the annihilation operator for i-th acoustic mode, and cos

term is from the boundary condition of strain fields. We assume that the crystal begins

precisely at z = 0 (i.e. coincident with the mirror). The zero-point displacement, Ui,0,

can be obtained from the normalization of acoustic energy in the ground state,

1

2

∫ (
ρU̇i

2
+ ρv2m

(
∂Ui
∂z

)2
)
dV =

ℏΩm

2
, (2.14)

where ρ is the crystal density and Ωm is the ith acoustic mode frequency (note that

index i is omitted for simplicity). Assuming energy is equally distributed between the

kinetic energy and the potential energy, let us re-write the relation in terms of the

potential energy,

1

2

∫
ρv2m

(
∂Ui
∂z

)2

dV =
ℏΩm

4
. (2.15)

From equation 2.13, above relation becomes,

1

2
ρv2mq

2
iU

2
i,0

∫
e−2r2/r2mdA

∫
sin2(qiz)dz

=
1

2
ρv2mq

2
iU

2
i,0

(
πr2m
2

)(
Lm

2

)
=

ℏΩm

4
,

(2.16)

where Lm is the acoustic cavity length (crystal thickness). Solving for the zero-point

displacement, we get,

Ui,0 =

√
2ℏ

ρΩmπr2mLm

=

√
2ℏ

ρΩmAmLm

, (2.17)
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where Am = πr2m is acoustic mode area.

Assuming we are using a flat-flat (as opposed to plano-convex) crystal for the

acoustic resonator, our acoustic mode waist is not independently determined by the

crystal geometry, but rather defined by the optical mode waist. Specifically, rm =

ropt/
√
2, so that Am = Aopt/2.

The photoelastic interaction Hamiltonian is given by

Hint =
1

2
ϵ0ϵ

2
rp13

∫ (
∂Ui
∂z

)
EjEj+1dV, (2.18)

where p13 is the relevant photoelastic constant. In anticipation of the phase-matching

requirement from light and acoustic fields having parallel wavevectors, we will con-

sider intermodal coupling involving the j and j + 1 optical modes with wavevec-

tors/frequencies which satisfy qi = kj+1 + kj ≈ 2kj and Ωm = ωj+1 − ωj. This yields

the Brillouin phase-matching condition from before (qi = 2nωj/c). Plugging in the

appropriate mode definitions from equations 2.8 and 2.13, and making the rotating

wave approximation, the interaction Hamiltonian becomes,

Hint =
1

2
ϵ0ϵ

2
rp13

∫
dV qiUi,0Ej+1,0Ej,0e

− r2

r2m e
− r2

r2opt e
− r2

r2opt

sin(qiz)sin(kj+1z)sin(kjz)(a
†
j+1ajbi +H.C.).

(2.19)

Although we have assumed that the crystal begins precisely at z = 0 (i.e. coincident

with the mirror), in reality, the longitudinal component of this overlap integral will

depend sensitively on the position of the acoustic standing wave within the optical

standing wave. Additionally, we are neglecting the transverse spatial variation in both

optical and acoustic modes inside the crystal, treating them as uniform Gaussian

modes over the interaction length of a chip. These approximations, as well as the

choice to neglect optical field redistribution due to the dielectric interface, constitute

the main sources of uncertainty in predicting the cavity optomechanical coupling rate.
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However, as shown in [54], the approach we take here offers a good estimate of the

maximum possible coupling rate.

The interaction Hamiltonian can be alternatively written in terms of the single-

photon coupling rate, gom,0, as follows,

Hint = ℏgom,0(a†j+1ajbi +H.C.). (2.20)

Combining Equation 2.19 and 2.20, we obtain the single-photon coupling rate in the

presence of an optical cavity,

ℏgom,0 =
1

2
ϵ0ϵ

2
rp13

∫
dV qiUi,0Ej+1,0Ej,0e

− r2

r2m e
− r2

r2opt e
− r2

r2opt

sin(qiz)sin(kj+1z)sin(kjz),

(2.21)

gom,0 =
ω2
jn

3p13

2c

√
ℏ

ΩmρAmLm

Lm

Lopt

, (2.22)

where optomechanical mode-matching condition (rm = ropt/
√
2) and parallel opti-

cal/acoustic wavevectors are assumed to maximize the coupling rate. Note that gom,0

is given within the acoustic substrate (0 < z < Lm) and becomes 0 outside of the

range.

Within an optical cavity, it is conventional to consider the cavity-enhanced cou-

pling rate with a strong optical pump, provided the pump laser can be approximated

as a pure coherent state. This is a well-established method to boost the coupling rate

in systems, as long as the systems can handle high optical pump power and the added

thermal noise is negligible. Referring back to the interaction Hamiltonian (equation

2.20), the expression can be linearized around a strong pump (j-th optical mode is

the pump mode). Assuming that our optical pump is a perfect coherent state, we can

replace aj with α, where α has a magnitude
√
Np, Np being the inter-cavity pump
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photon number.

Hint = ℏgom,0a†j+1ajbi

≈ ℏ
√
Npgom,0a

†
j+1bi

= ℏgoma†j+1bi

(2.23)

gom =
√
Npgom,0, (2.24)

where gom is the photon number-enhanced optomechanical coupling rate.

Another important metric in optomechanical interactions is the optomechanical

cooperativity (Com) [71]. It compares the optomechanical coupling rate to the dissi-

pation rates of photons and phonons, and it is given as,

Com =
4g2om
κoptΓ

, (2.25)

where κopt (Γ) is the dissipation rate of optical (acoustic) mode. Similarly, single-

photon optomechanical cooperativity is expressed using single-photon optomechanical

coupling rate (Com,0 =
4g2om,0

κoptΓ
= Com

N
).

2.3.2 Single-pass optomechanical coupling rate

When we want to study phonon modes of acoustic resonators (e.g. for acoustic mode

or material spectroscopy), it is useful to eliminate the complexity associated with the

optical resonator. In this case, which we hereafter label as single-pass or free-space

configuration, we might like to shine a laser beam through an acoustic resonator and

observe the Brillouin scattering to characterize the phonon modes.

The Brillouin optomechanical coupling rate in the cavity optomechanics case

(equation 2.22) can be modified to understand the single-pass case, where Brillouin

optomechanical coupling occurs between traveling light waves and acoustic cavity

modes (see figure 2.3b). Here, the effective optical cavity becomes the crystal, result-
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ing in Lopt = Lm, and the corresponding coupling rate,

g′om,0 =
ω2
jn

3p13

2c

√
ℏ

ΩmρAmLm

. (2.26)

Compared to equation 2.22, filling-factor term ( Lm

Lopt
= 1) is removed.

Free-space cooperativity of an optomechanical system with an acoustic cavity and

without an optical cavity is defined in reference [52] as,

Csp
om =

Pp

ℏωp

Lm

vg,p

Lm

vg,s

g′2om,0
Γ

, (2.27)

where Pp is the optical pump power and vg,p (vg,s) is the group velocity of the pump

(signal) light. Introducing group delay (τ = Lmn/c), and single-pass photon number

(N ′
p = PpLm/(ℏωpvg,p)), the single-pass cooperativity can be re-written in a simpler

form,

Csp
om =

g′2om
Γτ−1

, (2.28)

where g′om =
√
N ′

pg
′
om,0.

2.4 Measurement of optomechanical coupling

2.4.1 Optomechanically induced transparancy (OMIT)

In cavity optomechanics, OMIT provides a convenient way of characterizing the op-

tomechanical coupling rate and cooperativity [72]. OMIT is valuable since it allows

the identification of optomechanical coupling rate and cooperativity by analytically

solving a simple power dependant response with a minimum of fitting parameters.

In our system, we have a Fabry-Pérot optical cavity with an HBAR between the

mirrors. We first choose a pair of optical modes with mode spacing matching the

Brillouin frequency of the HBAR crystal. We then send the pump/probe light into

20



Figure 2.4: Optomechanically induced transparency (OMIT) in an optical
Fabry-Pérot / HBAR system (a) Illustration of a setup with an optical Fabry-
Pérot combined with an HBAR. The optical Fabry-Pérot cavity consists of two mirrors
(mirror 1 and mirror 2). The pump tone and probe tone injected into the system are
indicated as shaded red and blue. Driven phonon modes are shown as shaded green.
(b) (From left to right) The transmission spectrum of pump mode at ωp and probe
mode at ωs of an optical cavity are shown in red and blue. In the presence of driven
phonons at Ωm = ωs − ωp, the pump is scattered into a sideband indicated in green.
The probe mode interferes with this sideband, resulting in an OMIT response in
purple.

the pair of optical modes, which electrostrictively drive phonons inside the HBAR.

The driven phonons photoelastically scatter the optical pump, creating a sideband

near the probe mode. This photoelastically-driven motional sideband optically inter-

feres with the probe mode, modifying the spectral feature of the detected probe spec-

trum (see figure 2.4). Note that OMIT, characterized by a spectral dip in the detected

spectrum, is observed in the anti-Stokes scattering process, whereas optomechanically

induced amplification (OMIA), characterized by a sharp spectral peak, is observed in

the Stokes process.

In order to understand the spectral features of OMIT, we will start from the

Hamiltonian of an optomechanical system, given as,

H = ℏωpa
†
pap + ℏωsa

†
sas + ℏΩmb

†b+ ℏgom,0(a†pasb† + apa
†
sb), (2.29)
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where ap is the annihilation operator for optical pump mode, as is the annihilation

operator for optical probe (signal) mode, b is the annihilation operator for acoustic

mode, and ωs is the frequency of optical probe (signal) mode. By rotating in the frame

of H0 = ℏωpa
†
pap+ℏωpa

†
sas and by linearizing around an undepleted pump, we obtain

an effective Hamiltonian,

Heff = ℏ∆opta
†a+ ℏΩmb

†b+ ℏgom(ab† + a†b), (2.30)

where ∆opt = ωs − ωp and a = as for convenience. The Heisenberg equations of

motions from this Hamiltonian are,

ȧ = (−i∆opt −
κopt
2

)a− igomb+
√
κopt,cain

ḃ = (−iΩm − Γ

2
)b− igoma,

(2.31)

where κopt,c is the optical cavity coupling rate and ain is the external input field

(Pin/ℏωs = ⟨a†inain⟩). Solving the equations of motions in the frequency domain,

a(Ω) =
−√

κopt,cain

i(Ω−∆opt)− κopt
2

+ g2om
(i(Ω−Ωm)−Γ

2
)

. (2.32)

Note that Ω is the probe light frequency in the rotating frame (Ω = ωl − ωp) and

ωl is the frequency of a tunable laser used as the probe, generated by frequency

modulating the pump light at Ω. This frequency, Ω, also corresponds to that of

phonons interacting with optical photons, as the phonons are driven via the beat

tone between pump and probe light with frequency Ω = ωl−ωp. Combining equation

2.32 with the input-output formulism (aout = −√
κopt,ca), we obtain the response of

the output field (aout),

aout(Ω) =
κopt,cain

i(Ω−∆opt)− κopt
2

+ g2om
(i(Ω−Ωm)−Γ

2
)

(2.33)
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In an OMIT measurement, we detect the power of transmitted signal light through

heterodyne detection. The power spectrum at the detector is,

Pout(Ω) = ℏ⟨a†outaout⟩ =

∣∣∣∣∣∣ κopt,c

i(Ω−∆opt)− κopt
2

+ g2om
(i(Ω−Ωm)−Γ

2
)

∣∣∣∣∣∣
2

Pin (2.34)

The characteristic dip of OMIT measured at the center of the spectrum (Ω = Ωm =

∆opt) can be compared to the peak spectral response when there is no optomechanical

coupling (gom = 0) to give insight to the cooperativity of the system.

Pout

Pout(gom = 0)
=

 κopt
2

κopt
2

+ g2om
(Γ
2
)

2

=

(
1 +

4g2om
Γκopt

)−2

= (1 + Com)
−2.

(2.35)

Such a relation is also clear in figure 2.5 where we plot the OMIT spectral response

from equation 2.34 while varying the value of optomechanical cooperativity.

2.4.2 Measurement in single-pass configuration

Measurement of optomechanical coupling rate in single-pass configuration is done

by directly detecting the scattered optical response. Unlike in cavity optomechanics,

the lack of an optical cavity prevents us from describing the system in terms of

optical cavity modes and performing OMIT measurements. Here, we assume that the

optical reflections from the crystal surfaces are negligible. In order to characterize the

scattered optical response, we consider the Hamiltonian of a system where a phonon
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Figure 2.5: Simulated OMIT spectrum OMIT spectrum is simulated following
equation 2.34. Parameters are set to be Γ/2π = 500 kHz and κopt/2π = 2 MHz.
Optomechanical cooperativity (Com) is varied between 0.01 ∼ 10. As we reach higher
cooperativity, we observe a deeper characteristic dip at the center and optical mode
splitting. This also indicates hybridization between optical and mechanical modes in
the strong coupling regime.

mode couples to a continuum of pump and signal optical modes in k-space [52,73,74].

H =

∫
ℏωp(k)a

†
p,kap,kdk +

∫
ℏωs(k)a

†
s,kas,kdk + ℏΩmb

†b

+

(∫
ℏg′om,0ap,ka

†
s,k′b

dkdk′

2π
+H.C.

)
,

(2.36)

where ap,k (as,k) is the annihilation operator for optical pump (signal) photon with

wavevector k. Note that unlike the mode operators (ap) previously in cavity optome-

chanics description which were adimensional, operators ap,k and as,k have units of
√
Length.

In reality, coupling between phonons and a continuum of traveling-wave optical

fields across a bulk crystal with moderate thickness (several orders of magnitude

larger than the acoustic wavelength) results in a non-negligible spatial variation in

optical field amplitudes and optomechanical coupling rate, making it more intuitive

to consider the Hamiltonian in real space with mode envelope operators. For example,
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signal field amplitude gets larger along the axis of propagation due to pump scattering.

To express the Hamiltonian in terms of real space mode envelope operator, we can use

the fact that operators in k-space are Fourier-transformed envelope field operators,

ap(s),k =
1√
2π

∫
Ap(s)(z)e

−i(k−kp(s))zdz, (2.37)

where Ap (Ap) is the envelope field operator for the optical pump (signal). Taylor

expanding the dispersion relation of optical frequencies in k-space, we can write,

ωp(s)(k) = ω(kp(s)) + (k − kp(s))
∂ω(k)

∂k

∣∣∣
k=kp(s)

.... (2.38)

As optical group velocity is given as, vopt =
∂ω(k)
∂k

∣∣
k=kp

= −∂ω(k)
∂k

∣∣
k=ks

, this equation

can be simplified when there is negligible group velocity dispersion,

ωp(k) = ωp + (k − kp)vopt

ωs(k) = ωs − (k − ks)vopt.

(2.39)

ωp = ω(kp) Substituting equations 2.37 and 2.39 into 2.36, the Hamiltonian becomes,

H = ℏ
∫
A†

p(z)(ωp − ivopt∂z)Ap(z)dz + ℏ
∫
A†

s(z)(ωs + ivopt∂z)As(z)dz

+ ℏg′om,0
(∫

Ap(z)A
†
s(z)bdz +H.C.

)
,

(2.40)

assuming pump light, signal light, and acoustic modes are phase-matched. For con-

venience, we modify the expression as,

H = ℏ
∫
A†

p(z)ω̂pAp(z)dz + ℏ
∫
A†

s(z)ω̂sAs(z)dz

+ ℏg′om,0
(∫

Ap(z)A
†
s(z)bdz +H.C.

)
,

(2.41)
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where spatial operators are simplified as ω̂p = (ωp − ivopt∂z) and ω̂s = (ωs + ivopt∂z).

From the Hamiltonian and the commutation relation of the envelope operators ([Aγ(z), A
†
γ′(z

′)] =

δγγ′δ(z − z′) where {γ, γ′} = {p,s}), we can obtain the equations of motion,

ḃ =

(
−iΩm − Γ

2

)
b− ig′om,0

∫
dzA†

pAs

Ȧp = −iω̂pAp − ig′om,0Asb
†

Ȧs = −iω̂sAs − ig′om,0Apb.

(2.42)

In the rotating frame, Ap(s)(t) = Āp(s)(t)e
−iωp(s)t and b(t) = b̄(t)e−iΩmt,

˙̄b = −Γ

2
b̄(t)− ig′om,0

∫
dzĀ†

pĀs

˙̄Ap = −vopt∂zĀp − ig′om,0Āsb̄
†

˙̄As = vopt∂zĀs − ig′om,0Āpb̄.

(2.43)

We can solve the equation of motion for Ās assuming an undepleted pump (Āp is a

constant) and at a steady state in time.

vopt∂zĀs = ig′om,0Āpb̄

vopt(Ās(z)− Ās(Lm)) = ig′om,0Āpb̄(z − Lm)

voptĀs(z) = ig′om,0Āpb̄(z − Lm),

(2.44)

where Ās(Lm) = 0 since there is no medium to reflect off from at the end of the

substrate. The signal resulting from scattering throughout the whole medium corre-

sponds to that at z = 0, and this is the signal whose power we end up measuring

through the detector.

Ās(0) = −i
g′om,0
vopt

Āpb̄Lm (2.45)

Ps(0) =
g′2om,0
v2opt

PpnmL
2
m = GPpnm (2.46)
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For simplification, we define a scattered signal power per pump power per phonon in

the crystal G =
(
g′om,0Lm

vopt

)2
.
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Chapter 3

Piezoelectric coupling to BAW

modes

3.1 Introduction

Piezoelectricity is a linear electromechanical interaction between mechanical motion

and electric field in crystals with no inversion symmetry. It is a well-understood

phenomenon that is widely used in industries and research as motors, actuators,

sensors, and many other applications.

In the context of circuit QAD, piezoelectricity is one of the most utilized inter-

actions to couple a microwave element, such as a qubit, to a mechanical element,

such as an acoustic resonator. Many of the the implementations of quantum acoustic

devices [7–9, 31] and piezo-optomechanical microwave-to-optical transducers [18–22]

are based on piezoelectric interaction. In particular, strong piezoelectric couplings

have been demonstrated between a superconducting qubit and a mechanical res-

onator [7–9,31].

The ability to even reach strong coupling in quantum systems, however, can be

a detriment in the context of qubit lifetimes [7, 8, 27–31], if there exists a chance of
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an unintended coupling or couplings to unwanted lossy acoustic modes. Anomalous

piezoelectricity, leading to an unintended electromechanical coupling, can occur at the

surface [34], defect sites [35], and under external stress [36, 37] of non-piezoelectric

materials, as a result of local disturbances in inversion symmetry. Several studies on

anomalous piezoelectricity [34,38], and on controlled couplings to a variety of acoustic

density of states [32, 33] have been done. However, there is more to be explored to

fully harness the benefits of piezoelectricity while sufficiently avoiding its drawbacks

in quantum acoustic systems.

In this chapter, we present a simple electromechanical system that piezoelectri-

cally couples a 3D microwave cavity with an HBAR. Then, we discuss the effects of

anomalous piezoelectricity in qubit lifetimes and find how small parasitic piezoelec-

tricity can lead to noticeable qubit decoherence, potentially becoming a bottleneck in

future qubit developments. Combining the design with Brillouin optomechanical inter-

action from the previous chapter allows a sensitive readout of piezoelectrically-driven

phonons through parametrically-enhanced strong optomechanical coupling. Such an

approach not only allows us to create a novel piezo-optomechanical (piezo-Brillouin)

device that mediates coupling between microwave and optical domain but also pro-

vides us with a sensitive platform that can potentially detect anomalous piezoelec-

tricity in crystals.

3.2 Piezoelectric coupling rate to BAW

A simple illustration of piezoelectric coupling between a microwave circuit and a BAR

is shown in figure 3.1. The electromechanical interaction Hamiltonian of a cavity

electromechanical system can be expressed as a product between piezo-induced stress
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Figure 3.1: Sketch of an acoustic resonator coupled to a microwave circuit.
A bulk acoustic resonator is placed between the capacitor of an LC microwave cir-
cuit. The electric field between the capacitor pads piezoelectrically couples to the
bulk acoustic modes of the acoustic resonator. For simplicity, coupling to only the
longitudinal acoustic mode is illustrated in the figure.

field (σ(r̄) = c · d · E(r̄)) and strain field in the substrate (s(r̄)), approximated as,

Hint =

∫
σ(r̄) · s(r̄)dV, (3.1)

where c is the stiffness tensor and d is the piezoelectric tensor. In our system, we chose

the coupling to occur predominantly between the z-directional electric fields and z-

directional longitudinal strain fields through microwave cavity design and material

properties. Thus, we consider longitudinal strain fields (s(r̄) = Sz(r̄)) of an acoustic

resonator interacting with an electric field of a microwave resonator along the z-

axis (σ(r̄) = c33d33Ez(r̄), c33 and d33 are relevant stiffness and piezoelectric tensor

elements), resulting in,

Hint = c33d33

∫
Ez(r̄)Sz(r̄)dV . (3.2)

Quantizing the electric (Ez(r̄) = Ēz(r̄)(c+c
†)) and strain fields (Sz(r̄) = S̄z(r̄)(b+b

†))

with microwave mode (c) and acoustic mode (b) annihilation operators, the interaction

Hamiltonian leads to the expression for electromechanical coupling rate,

gem =
c33d33
ℏ

∫
pz

Ēz(r̄)S̄z(r̄)dV , (3.3)
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where
∫
pz
dV is a volume integral across the piezoelectric substrate.

The acoustic strain field is assumed to be a standing wave in the longitudinal

direction and a Gaussian shape in the transverse direction with mode waist (i.e. in

the case of a stable plano-convex resonator) proportional to the probing optical mode

waist [54] (rm = ropt/
√
2), resulting in an expression,

S̄z(r̄) = S0e
− r2

r2m sin

(
2πz

λm

)
ẑ, (3.4)

where λm is the acoustic wavelength and S0 is the zero-point strain. Using the rela-

tion between strain and displacement (S̄z(r̄) =
∂Uz

∂z
), and the expression for stiffness

constant (vm =
√

c33
ρ
, where vm is the acoustic velocity in the longitudinal direction

along z-direction), we can recall equation 2.14 to normalize the strain field such that

the zero-point strain is, S0 =
√

2ℏΩm

c33LmAm
.

Most of the microwave resonators we consider for our design (further elaborated in

section 3.4) have microwave modes that are spatially larger than the acoustic modes,

such that the electric field parallel to the phonon propagation (z-direction) within

the microwave/acoustic mode overlap volume can be treated as uniform,

Ēz(r̄) ≈ E0ẑ, (3.5)

where E0 is the zero-point electric field strength within the overlapping mode volume.

Following equation 2.9, we can approximate the zero-point field, E0 ≈
√

ℏΩµ

2ϵ0ϵrVµ
, where

Ωµ is the microwave mode frequency and Vµ is the microwave mode volume. In our

experiment, we obtain the electric field of the system through Ansys HFSS (3D high-

frequency simulation software). It is convenient, when using the simulation software,

to output the electric field values of the microwave mode when the E-field is at its

maximum and H-field is zero. This results in a simulated field amplitude of, in terms

of zero-point field, Esim =
√
2E0.
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Combining equations (3.3), (3.5) and (3.4), we obtain the electromechanical cou-

pling rate,

gem =
1

ℏ
c33d33s0E0

∫
pz

e
− r2

r2m sin

(
2πz

λm

)
dV

= d33Esim
λm
π

√
Ωc33Am

2ℏLm

sin2

(
πtpz
λm

)
,

(3.6)

where tpz is the piezoelectric substrate thickness.

There are three distinct cases of piezoelectric coupling that one should consider.

Firstly, piezoelectricity can be distributed evenly throughout the entire bulk of the

acoustic substrate. In this case, acoustic modes with an even longitudinal index (tpz =

nλm
2

with even n) will have zero coupling rate (sin2
(
πtpz
λm

)
= 0), while the odd index

modes (tpz = nλm
2
with odd n) will have maximal coupling (sin2

(
πtpz
λm

)
= 1). Secondly,

substrates may have surface piezoelectricity only on one side of the substrate. In this

case, piezoelectricity is concentrated within a thin surface layer on one surface with

thickness tpz (tpz ≪ λm), while the bulk remains non-piezoelectric, resulting in a

simplification of the sin term in the coupling rate expression as sin2
(
πtpz
λm

)
=
(
πtpz
λm

)2
.

Lastly, there is the case for surface piezoelectricity on both sides of the substrate. Here,

the modulation of zero and non-zero coupling rate for even and odd indexed acoustic

modes appears as in the bulk piezoelectricity case, while the non-zero coupling rate

is proportional to t2pz as in the single-sided surface piezoelectricity case. One should

keep these observations in mind since they will be important in understanding the

measurement responses later on in the dissertaion.

Another aspect of gem is that it has a factor of 1/
√
Lm. Although we are integrating

along the full length of the substrate, the sin term in the expression results in values

equivalent to integrating along an effective piezoelectric thickness of tpz < λm/2.

Hence the factor, 1/
√
Lm, from strain normalization term remains throughout the

expression of gem. Such dependency of gem in substrate thickness suggests that using

thinner substrate is advantageous in achieving larger gem, hinting at ways our system
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can be improved.

3.3 Number of piezoelectrically-driven phonons

Now that we have an expression for the piezoelectric coupling rate, gem, we can solve

the number of piezoelectrically driven phonons in terms of the coupling rate and the

microwave photon number. The interaction Hamiltonian of a microwave cavity mode

and an acoustic cavity mode coupled through piezoelectricity is,

Hint = ℏgem(c†b+ cb†). (3.7)

Corresponding Heisenberg equations of motion are given as,

ċ = −igemb−
κµ
2
c+

√
κµ,ccin

ḃ = −igemc−
Γ

2
b,

(3.8)

where κµ (κµ,c) is the microwave cavity dissipation rate (external coupling rate), c

is the annihilation operator for microwave mode, and cin is the external microwave

input field (Pin/ℏΩµ = ⟨c†incin⟩). Solving the equations of motion in steady state, we

get the expression for piezoelectrically-driven phonons,

nm =

(
gem

2g2em
κµ

+ Γ
2

)2

nµ

∼
(
2gem
Γ

)2

nµ,

(3.9)

where nµ is the microwave photon number that can be separately characterized, and

assuming g2em/κµ ≪ Γ, which is a realistic assumption (see chapter 5-7).
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3.4 3D microwave cavity designs for piezoelectric

coupling

In our design, we realize piezoelectric coupling between a 3D microwave cavity and

an HBAR. The HBAR, with mm-scale dimensions, is placed inside the microwave

cavity, which has cm-scale dimensions (see figure 3.2).

Although there are several alternative ways to couple to an HBAR [7, 23, 33], we

choose to use a 3D microwave cavity. 3D designs grant us intuitive ways to tune the

resonances through geometrical modifications. Since the microwave cavity is physi-

cally separate from other elements of the system, unlike certain 2D devices where

most of the elements have to be fabricated on a single chip, we can easily integrate

our device with other elements such as a Fabry-Pérot optical cavity. Such a modular

nature of the design allows for a variety of piezo-optomechanical devices that can be

used as transducers, sensors, etc. Moreover, 3D microwave devices are already used

in conjunction with quantum technologies [75, 76], and have the potential to reach

extremely high-quality factors (Q-factors) if needed [77]. Additionally, modes of a 3D

microwave cavity are well understood and are easy to simulate using commercial soft-

ware such as HFSS and COMSOL. And lastly, it is often straightforward to prepare

3D microwave cavities through conventional machining. Compared to other 2D mi-

crowave cavities, our approach does not involve the need for complicated fabrication

steps, thus it is not limited by fabrication techniques.

We consider a few different 3D microwave cavity designs, each with its own

strengths and drawbacks. First, we consider a simple rectangular cavity, shown in

figure 3.2a. Assuming an HBAR is placed at the center, we can use the TE110 and

TE130 modes (depending on the target frequency) to piezoelectrically couple mechan-

ical modes to microwave modes. Such a design is convenient to machine and easy to

access optically by adding cylindrical through-holes with waveguide cutoff frequencies

34



a.
R
ec
ta
n
gu

la
r
ca
v
it
y

b
.
R
e-
en
tr
an

t
ca
v
it
y

c.
C
oa
x
ia
l
ca
v
it
y

E
0
=

0.
00
05

V
/m

E
0
=

0.
00
7
V
/m

E
0
=

0.
00
3
V
/m

F
ig
u
re

3.
2:

M
ic
ro
w
a
v
e

ca
v
it
y

d
e
si
g
n
s
fo
r
p
ie
zo

e
le
ct
ri
c

co
u
p
li
n
g

(F
ro
m

to
p
to

b
ot
to
m
)
C
ro
ss
-s
ec
ti
on

al
sk
et
ch
,
H
F
S
S

si
m
u
la
ti
on

,
an

d
av
er
ag
e
E
-fi
el
d
al
on

g
th
e
m
ic
ro
w
av
e/
ac
ou

st
ic

m
o
d
e
ov
er
la
p
re
gi
on

.
T
h
e
cr
os
s-
se
ct
io
n
al

sk
et
ch

in
cl
u
d
es

E
-fi
el
d
,

m
ic
ro
w
av
e
ca
v
it
y,

an
d
ac
ou

st
ic

ca
v
it
ie
s.

H
F
S
S
si
m
u
la
ti
on

in
cl
u
d
es

E
-fi
el
d
st
re
n
gt
h
sh
ow

n
in

th
e
co
lo
r
p
lo
t.

A
ll
ca
v
it
y
d
es
ig
n
s

h
av
e
re
so
n
an

ce
fr
eq
u
en
cy

ar
ou

n
d
10
.5

G
H
z
an

d
E
-fi
el
d
co
rr
es
p
on

d
in
g
to

m
o
d
e
en
er
gy

of
ℏω

µ
=

1.
1
×

10
−
2
4
J
∼

7µ
eV

.
E
-fi
el
d

va
lu
es

ar
e
ta
ke
n
w
h
er
e
th
e
ac
ou

st
ic

su
b
st
ra
te

is
ex
p
ec
te
d
to

b
e
p
la
ce
d
.
(i
.e
.
at

th
e
ce
n
te
r
fo
r
a.
,
an

d
∼

50
0
u
m

ab
ov
e
th
e
p
in

fo
r
b
.
an

d
c.
)
a.

F
ig
u
re

fo
r
a
re
ct
an

gu
la
r
m
ic
ro
w
av
e
ca
v
it
y.

T
E
11
0
m
o
d
e
is

il
lu
st
ra
te
d
.
N
ot
e
th
at

h
ig
h
er

or
d
er

m
o
d
e
(T

E
13
0)

ca
n
al
so

b
e
u
se
d
fo
r
p
ie
zo
el
ec
tr
ic

co
u
p
li
n
g
at

a
h
ig
h
er

fr
eq
u
en
cy
.
b
.
F
ig
u
re

fo
r
a
re
-e
n
tr
an

t
ca
v
it
y.

H
F
S
S
si
m
u
la
ti
on

in
d
ic
at
es

a
h
ig
h
ly

co
n
ce
n
tr
at
ed

E
-fi
el
d
b
et
w
ee
n
th
e
ce
n
te
r
p
in

an
d
th
e
to
p
li
d
.
c.

F
ig
u
re

fo
r
a
q
u
ar
te
r-
w
av
el
en
gt
h
co
ax

ia
l
st
u
b
ca
v
it
y.

T
h
e

fu
n
d
am

en
ta
l
T
E
M

m
o
d
e
of

th
e
d
es
ig
n
is
u
se
d
.
T
h
e
ce
n
te
r
p
in

h
as

a
ro
u
n
d
d
es
ig
n
to

m
in
im

iz
e
th
e
ed
ge

eff
ec
t.

35



much higher than the cavity resonance frequency. However, rectangular cavities can

have multiple spurious modes nearby the mode of interest due to their exact geometry,

especially when using higher-order modes, requiring extra care when characterizing

and tuning the target mode. Moreover, it is challenging to achieve wide (> 500 MHz)

frequency tunability as it leads to mode distortion. As an alternative, we can use a

re-entrant cavity, as shown in figure 3.2b. The electric field of a re-entrant cavity is

concentrated between the center pin and the lid which behave like a parallel plate

capacitor. Hence, re-entrant cavities tend to have stronger electric field and piezo-

electric coupling, compared to other types of cavities, as shown by the value of E0

in figure 3.2. Also, the resonance frequency is well isolated from other responses in

frequency space. However, limited tunability (< 200 MHz) and practical challenges

in making optical light accessible are some of the problems with the design. The last

option we consider is a quarter-wavelength coaxial stub cavity, shown in figure 3.2c.

Coaxial cavities are common resources for quantum technologies [76], that can reach

beyond a Q-factor of Qµ > 107 [77]. Since the microwave field is concentrated around

the quarter-wavelength central post (TEM mode), the resonance frequency can be

easily adjusted by changing the post length. If seam loss through a moving post is a

concern, one can instead insert a dielectric rod to tune the resonance frequency [78].

Additionally, the fundamental resonance frequency is well isolated from higher-order

modes in frequency space. Challenges in using a coaxial cavity include a potential

machining challenge if the design requires a hole through the central pin for optical

access.

3.5 Relation to qubit lifetimes

Piezoelectric coupling, integrated with quantum circuits, can be a valuable resource

enabling the control of quantum acoustics, but it also has the potential to harm the
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coherence of the quantum circuits. This has already been observed in many studies

incorporating superconducting qubits with piezoelectricity [7, 8, 27–33], where the

qubit lifetimes are up to two orders of magnitude shorter compared to conventional

transmons. Besides, if there exists anomalous piezoelectricity in qubit substrates [34],

it can directly lead to incoherent couplings to an acoustic continuum, setting an

intrinsic limit to qubit lifetimes [38].

To understand the decoherence mechanisms in a qubit that is piezoelectrically

coupled to an acoustic continuum (or equivalently, experiences acoustic spontaneous

emission), there are several assumptions we make. For simplicity, we consider piezo-

electric coupling that occurs from the capacitor pads of a qubit. Since the dimensions

of the capacitor pads (∼100um) are typically much larger than acoustic wavelengths

(∼1um), we can assume that the acoustic waves are predominantly emitted in the

z-direction (perpendicular to the capacitor pads). Also, we assume that we are only

coupling to longitudinal acoustic waves, which is valid in materials such as x-cut

quartz with d33 piezoelectric tensor component much greater than the shear coupling

component (d36). For a further study that includes shear waves, see reference [33].

The calculation of a qubit decay rate from piezoelectricity can be done through

Fermi’s golden rule,

γem = 2π
∑
k̄

|gem
(
k̄
)
|2δ(ω(k̄)− ω), (3.10)

where γem is the decay rate. The piezoelectric coupling rate gem
(
k̄
)
in the expression

is different from equation 3.6 since we are now assuming couplings to a continuum of

plane wave longitudinal acoustic modes rather than a standing wave acoustic cavity

mode. A plane-wave acoustic mode with wave vector k̄ is,

sk̄(x̄) = S0e
−ik̄·x̄k̂, (3.11)

where S0 is the zero-point field. Combining this with interaction Hamiltonian (equa-
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tion 3.1) and piezo-induced stress field (σ(x̄) = cp ·d · Ē(x̄)), we can get an expression

for the piezoelectric coupling rate with wave vector k̄,

gem
(
k̄
)
=

1

ℏ

∫ (
cp · d · Ē(x̄)

)
·
(
S0e

−ik̄·x̄k̂
)
dV

=
S0

ℏ

∫
X(x̄)e−ik̄·x̄dV

= (
√
2π)3

S0

ℏ
X̃(k̄),

(3.12)

where X(x̄) = cp · d · Ē(x̄) · k̂ and X̃(k̄) is the 3D Fourier transform of X(x̄) (X̃(k̄) =

F(X(x̄))). Since we are assuming that the dominant component of the strain field

is in longitudinal z-direction, X(x̄) = c33d33Ez(x̄). From the same reason, zero-point

field S0 =
√

ℏΩm

2c33Vm
can be obtained following equation 2.14. Using Fermi’s golden

rule (equation 3.10) and converting a discrete sum to an integral, we get the following

equation,

γem = 2πVm
S2
0

ℏ2

∫
X̃2(k̄)δ(ω(k̄)− ω)d3k. (3.13)

3.5.1 Analytical approach: Rectangular pad example

Typically, the design of a qubit involves metallic pads that provide capacitance to the

qubit. Let’s assume that a qubit generates a uniform electric field over a rectangular

region with side lengths a and b, defined by the dimensions of the capacitor pads. Note

that this is a much-simplified picture. In reality, there are electric fields concentrated

around the edges and the junctions (edge effect). Also, assume that the thickness of

the piezoelectric layer is tpz. Then, the z-directional component of the electric field

can be expressed as,

Ez(x̄) = E0
kz
k
rect

(x
a

)
rect

(y
b

)
rect

(
z

tpz

)
. (3.14)
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Figure 3.3: Sketch of different sources of piezoelectric coupling Drawn in
orange are capacitor pads, between which there is a Josephson junction forming a
transmon qubit. Light blue is the substrate and grey shade is the piezoelectric layer
region. Indicated in green is the acoustic radiation and blue is the electric field be-
tween the capacitor pads. a. Maximal piezoelectric coupling between the qubit and
the acoustic substrate is achieved when there exists bulk piezoelectricity across the
substrate. b. The qubit can piezoelectrically couple to the substrate if there is a thin
piezoelectric layer (tpz ≪ λm). However, the coupling strength, in this case, is much
weaker than that in a.

Combining this with equation 3.13, we get the following expression,

γem = 2πVm
S2
0c

2
33d

2
33

ℏ2

∫
F2

(
E0
kz
k
rect

(x
a

)
rect

(y
b

)
rect

(
z

tpz

))
δ(ω(k̄)− ω)d3k

=
λmE

2
0c33d

2
33ab

πℏ
sin2

(
πtpz
λm

)
,

(3.15)

where a≫ tpz, b≫ tpz, and kz ∼ k. Given realistic numbers, a and b are around 100

∼ 500 um and tpz < 1 um. Estimating γem at a = 500 um, b = 250 um, E0 = 0.1 V/m

(from simulation), c33 = 496 GPa (material property of sapphire), and λm = 1.9 um

(at 6 GHz), we get γem ∝ d233sin
2(πtpz

λm
).

Qubit T1 lifetime limited by piezoelectricity can be calculated in two separate

cases (See figure 3.3). First is when the coupling is maximal (sin2(πtpz
λm

) = 1). This

occurs when the thickness of the piezoelectric layer is odd integer multiples of half

wavelength, or when the piezoelectricity originates from the bulk of the substrate.

Maximal piezoelectric coupling condition assuming d33 = 1 pm/V gives γem/2π ∼ 550

kHz, which corresponds to T1 = 290 ns. In order to have a reasonably long lifetime of

T1 > 1 ms (γem/2π < 160 Hz), it requires a very small piezoelectric constant, d33 < 17

fm/V. Another case we should consider is when piezoelectricity is concentrated within
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a thin layer on the surface of a substrate. Simplifying the expression for the qubit

loss rate for tpz ≪ λm, we have γem ∝ d233(
πtpz
λm

)2. Assuming piezoelectricity of d33 =

1 pm/V only exists within a few atomic layers (∼ 1 nm), γem/2π becomes 1.6 Hz,

corresponding to T1 ∼ 100 ms. Note that in this model only a very thin layer is needed

(≳ 10 nm) to limit qubit T1 below 1 ms.

3.5.2 Utilizing simulation data for edge fields

There are several assumptions that we made in the calculation of γem in the previous

section that can be further improved. One such assumption is incorporating the edge

fields of the electric field profile. The value of E0 = 0.1 V/m from earlier is chosen by

observing the Maxwell electromagnetic field simulation of 500 um by 250 um capacitor

pads of a transmon. We took the value of the electric field right below the center of

the capacitor pad. However, as shown in figure 3.4(b-c), the simulation predicts edge

fields that are more than an order of magnitude larger than the E0 value used.

As an alternative way of calculating γem, we can directly import the electric field

simulation data from the software. Shown in figure 3.4c is a zoomed-in electric field

profile data within 1 um around the edge. Due to meshing limitations, we chose to

work with a 2D cross-section of a 500 um wide, 250 um long, and 80 nm high capacitor.

It is clear from the figure that we are indeed observing an edge effect. In order to take

the edge fields into account, we revisit equation 3.13. Since we are considering coupling

to longitudinal acoustic modes along z-direction, X(x̄) = c33d33Ez(x̄) assumption still

holds as in the previous section, resulting in,

γem = 2πVm
S2
0c

2
33d

2
33

ℏ2

∫
Ẽ2
z (k̄)δ(ω(k̄)− ω)d3k. (3.16)

Ẽz(k̄) can be directly obtained through Fourier transforming the electric field profile

(in figure 3.4b) within a tpz thick piezoelectric layer (Ẽz(k̄) = F(Ez(x̄)rect(z/tpz))),
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Figure 3.4: Simulation data of Ez electric field near the edge of the capacitor
a. Simulation in Maxwell software. The yellow region corresponds to the metallic
capacitor pad, blue to the sapphire substrate, and white to the vacuum. The figure
shown here is zoomed in to be visually clear. The simulated metal pad has a height
of 80 nm and a width of 500 um. The simulation is simplified into 2D instead of 3D
due to meshing constraints. b. Colorplot of Ez field profile in the substrate. z = 0
um is defined at the metal-substrate interface, and z increases along the substrate
depth. x = 0 is defined at the tip of the metal pad (metal-vacuum interface), where
left or negative x is the metal side. We see the electric field peaking at (x, z) = (0,0),
which is a clear indication of an edge effect. c. 2D cross-sectional view of Ez profile
at multiple positions inside the substrate. Here, we again see the edge field effect.

which we then integrate over k̄ satisfying |k̄| = ω/vm to get the value inside the inte-

gral. Note that the rect(z/tpz) term in the electric field that gets Fourier transformed

gives rise to a sin(πtpz/λm) term. From this, we observe a relation between T1, d33,

and tpz,

T1 =
1

γem
∝ 1

d233sin
2
(
πtpz
λm

) . (3.17)

Similar to the previous section, we can divide the result into two different cases -

when tpz = nλm/2 for odd n and when tpz ≪ λm. In the former case of maximal piezo-

electric coupling, or bulk piezoelectricity, having d33 = 1 pm/V gives an extremely
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Method Piezo assumption tpz d33 Qubit T1

Analytic Bulk n/a 1 pm/V 290 ns
Analytic Bulk n/a 17 fm/V 1 ms
Analytic Surface 1 nm 1 pm/V 100 ms
Analytic Surface 10 nm 1 pm/V 1 ms
Simulation Bulk n/a 1 pm/V 100 ns
Simulation Bulk n/a 10 fm/V 1 ms
Simulation Surface 1 nm 1 pm/V 100 ms
Simulation Surface 9 nm 1 pm/V 1 ms

Table 3.1: Summary of qubit lifetimes for a range of piezoelectricity as-
sumptions Using approaches given in section 3.5.1 and 3.5.2, we summarize the
piezo-limited qubit T1 for a range of piezoelectric assumptions.

short T1 of ∼ 100 ns. Under bulk piezoelectricity assumption, even piezoelectricity as

small as 10 fm/V limits qubit T1 to 1 ms. In the latter case of thin piezoelectricity,

simulation with d33 = 1 pm/V and tpz = 1 nm predicts T1 ∼ 100 ms. Simulating for

a relatively thin piezoelectric layer of tpz = 9 nm, while keeping the piezo constant

as d33 = 1 pm/V, results in T1 = 1 ms. The summary of piezo-limited qubit lifetimes

using analytical and simulation approaches is shown in table 3.1.

From the analysis in the previous paragraphs, it turns out that a very thin surface

piezoelectric layer or a very weak bulk piezoelectricity can both limit the qubit life-

time. It only requires a moderate piezoelectric material with a thickness of ∼ 9 nm to

limit the qubit T1 to 1 ms. On the other hand, a very weak bulk piezoelectricity of 10

fm/V can likewise limit qubit T1 to 1 ms. There is a study predicting surface piezo-

electricity on sapphire, a widely used non-piezoelectric substrate for a qubit, from

surface relaxation [34]. In fact, the study claims that the resulting surface piezoelec-

tricity of sapphire may be comparable in strength to that of a typical bulk crystalline

piezoelectric material. Moreover, there are many studies reporting anomalous piezo-

electricity in non-piezoelectric bulk crystals [35–37]. The current upper limit in the

state-of-the-art qubit lifetime is T1 ∼ 0.3 ms [79], and there are many ongoing efforts

trying to find what is fundamentally limiting the qubit lifetime, from quasiparticles
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to dielectric loss. Understanding and identifying anomalous piezoelectricity may help

us get closer to understanding this fundamental limit since even a very weak piezo-

electric source can limit the qubit lifetime to within an order of magnitude of the

current limit.
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Chapter 4

High-overtone bulk acoustic

resonator (HBAR)

4.1 Introduction

Acoustic resonators with long-lived modes have played an important technologi-

cal role, in applications ranging from precision metrology [80], to tests of funda-

mental physics [81], and to efficient quantum transducers [14]. For quantum ap-

plications, acoustic devices offer the promise of flexibly linking disparate quantum

systems, through a wide variety of coupling pathways [82]. Mechanical resonators

have achieved quantum-coherent coupling to systems ranging from optical and mi-

crowave cavities, to solid state defect centers, atomic ensembles, and superconducting

qubits [3–5, 31, 83–85]. These advances relied on high quality-factor (Q) mechanical

resonators, building on phononic engineering and low material dissipation at cryogenic

temperatures [12, 13].

There are several aspects to consider while designing an acoustic cavity. In our

design, we seek to utilize the strong optomechanical coupling at GHz frequencies pro-

vided through Brillouin interaction. As mentioned in chapter 2, Brillouin interaction
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is a bulk process that is present in practically every bulk medium due to the ubiq-

uitous nature of photoelasticity. Hence, our acoustic system should be applicable to

a variety of crystal media, operate at GHz frequencies, be compatible with cryogenic

temperatures, and have a long lifetime. Additionally, ease and reliability of fabrication

are nice bonus qualities to have.

Among mechanical systems, high-overtone bulk acoustic resonators (HBARs),

where high-frequency elastic standing waves are formed between polished surfaces

of a crystalline substrate, offer a promising platform that satisfies the aforemen-

tioned requirements while achieving high acoustic Q-factors [56]. By design, these

modes live primarily in the bulk, avoiding the loss typically associated with surface

imperfections. Moreover, acoustic loss from phonon-phonon scattering plummets at

cryogenic temperatures [56,86,87], offering an ideal environment for long-lived acous-

tic modes. Recent advancement in fabrication allows for chip-scale fabrications of

such HBAR devices in a variety of materials, including quartz, silicon, sapphire, and

calcium fluoride (CaF2) [53]. It is also important to note that strong Brillouin op-

tomechanical coupling between a Fabry-Pérot cavity and an HBAR [55], and strong

piezo-electromechanical coupling between a superconducting qubit and an HBAR [7]

have recently been demonstrated, making it appealing to explore a combined system

of HBAR-mediated piezo-Brillouin system, which has not yet been built.

4.2 Loss mechanisms in HBAR

To begin with, it is informative to walk through the loss mechanisms that affect

acoustic resonators. There are many factors that can lead to acoustic decoherence,

such as thermal phonons, impurities, surface roughness, etc, which are well understood

through various studies [88, 89]. Here, we explore the mechanisms for some of the

notable loss channels that we consider in the design of our HBAR.
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4.2.1 Phonon-phonon scattering

Phonon-phonon scattering is a dampening process between phonon modes and ther-

mal phonons. This process occurs when thermal phonons present in a substrate lead

to instantaneous local heating and cooling of resonant modes. Thermal phonons as

a response react to maintain thermal equilibrium in such conditions, drawing energy

from existing phonon modes. Here we consider two regimes in phonon-phonon scat-

tering that are relevant to our system at low temperatures, known as the Akhiezer

regime and the Landau-Rumer regime [88–90].

Akhiezer regime

We consider the Akhiezer regime when the frequency of the strain wave is at a much

lower frequency than the thermal phonon lifetime, meaning that the thermal phonon

lifetime is much shorter than the single oscillation of injected phonons, or the re-

laxation of thermal phonons is faster than the oscillation frequency of the strain

wave. This condition is often described in terms of thermal phonon lifetime (τth) as,

Ωmτth ≪ 1.

Interactions between acoustic phonons and thermal phonons can be described as

follows. First, when strain fields exist in an acoustic substrate, the substrate under-

goes temporal dilatation (dilatation is strain-induced volume change), which not only

changes its volume but also its elastic constant. This leads to a shift in the normal

mode frequency of the substrate, which is equivalent to a temporal fluctuation of

mode temperature. As the modes are occupied by thermal phonons, mode tempera-

ture fluctuation drives a diffusive motion of thermal phonons in an attempt to restore

thermal equilibrium, removing energy from the existing strain wave in the process. In

this process, restoration of thermal equilibrium can occur only if the redistribution

of thermal phonons, which is roughly equivalent to the thermal phonon lifetime, is

faster than the strain field. Hence comes the condition Ωmτth ≪ 1.
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To understand the rate at which strain field decays from phonon-phonon interac-

tion, we start from Zener’s model of anelastic solids [91], which provides a generalized

version of Hook’s stress-strain relation including rate terms.

σ + τs
dσ

dt
= ¯̄cR

(
s+ τσ

ds

dt

)
, (4.1)

where ¯̄cR is the relaxed elastic modulus (or equivalently, Young’s modulus or stiffness

constant) and τσ (τs) is the time constant correlated with stress (strain) variation.

Relaxed modulus is defined as the stress-strain relation that is slow in time, while the

modulus acting on fast oscillating stress and strain is called the unrelaxed modulus.

Considering time harmonic stress (σ = σ0e
iΩt) and strain (s = s0e

iΩt) at frequency Ω,

we can express the relaxed and unrelaxed moduli in terms of other variables. With

low frequency assumption (Ω ≪ 1/τσ, 1/τs), equation 4.1 gives σ0 = ¯̄cRs0, consistent

with our definition of relaxed modulus. Meanwhile with high frequency assumption

(Ω ≫ 1/τσ, 1/τs), we obtain σ0 = ¯̄cUs0 = (¯̄cRτσ/τs)s0, giving the unrelaxed modulus

¯̄cU = ¯̄cRτσ/τs.

Solving equation 4.1 in the generic case in terms of frequency-dependent elastic

modulus provides us with both the real part and the imaginary part of the elastic

modulus, where the imaginary part represents the loss rate of the strain field.

σ0e
iΩt + τs

d

dt
σ0e

iΩt = ¯̄cR

(
s0e

iΩt + τσ
d

dt
s0e

iΩt

)
σ0 = ¯̄ceff(Ω)

(
1 + i

Ωτ̄∆

1 + Ω2τ̄ 2

)
s0,

(4.2)

where ¯̄ceff(Ω) = ¯̄cR
1+Ω2τστs
1+Ω2τ2s

, τ̄ =
√
τστs, and ∆ is given as, ∆¯̄cR = ¯̄cU − ¯̄cR. A quality

factor (Q) of the strain field can be defined from the ratio between the real part and

the imaginary part of the strain in the above expression,

1

Q
=

Ωτ̄∆

1 + Ω2τ̄ 2
. (4.3)
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To properly express acoustic loss rate due to thermal phonons, we can rearrange

equation 4.3 as,

1

Q
=

|¯̄cU − ¯̄cR|
|¯̄cR|

Ωτth
1 + Ω2τ 2th

, (4.4)

where mean relaxation time τ̄ is replaced with τth, the difference between the unre-

laxed and relaxed modulus is given as [92], |¯̄cU − ¯̄cR| = γ2cVT , γ is the Gruneisen

parameter, cV is the volumetric specific heat capacity, and T is the absolute tempera-

ture. Also, the thermal relaxation time, τth, is given in reference [93] as τth = 3κ/cVv
2
m,

where κ is the thermal conductivity. Hence, the acoustic quality factor and dissipation

rate in Akhiezer regime at phonon frequency Ωm and temperature T can be written

as,

QAkhiezer =
ρv2m
γ2cVT

1 + Ω2
mτ

2
th

Ωmτth
=

Ωm

ΓAkhiezer

. (4.5)

More thorough derivation and further discussions of the Akhiezer regime can be found

in literature, such as reference [88].

Landau-Rumer regime

When the oscillation frequency of a strain wave is faster than the relaxation of thermal

phonons, the acoustic system is in the Landau-Rumer regime. This means that in

the presence of normal mode temperature fluctuations due to strain fields, thermal

phonons cannot diffuse fast enough to retain thermal equilibrium. The condition can

be described in terms of thermal phonon lifetime as, Ωmτth > 1, and it is generally

satisfied at high acoustic frequencies or at low temperatures.

In such a regime, Landau and Rumer described the scattering process as a three-

phonon process between incoming phonon and thermal phonon satisfying energy and

momentum conservation [90, 94]. This lead to the corresponding quality factor ex-

pression,

QLR =
120ρv5mℏ3

π2γ2k4B

1

T 4
=

Ωm

ΓLR

, (4.6)
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where kB is the Boltzmann constant. Note that, this expression is specific to cubic

and isotropic materials. In trigonal crystals, the temperature dependence becomes

∝ T−6.5 [86]. Compared to the expression from the Akhiezer regime (equation 4.5),

the expression for the Landau-Rumer regime (equation 4.6) has a strong temper-

ature dependence. Many acoustic devices to date leverage this strong temperature

dependence of acoustic Q and the low-temperature condition required for an acoustic

system to be in the Landau-Rumer regime to design high Q acoustic devices operating

in cryogenic conditions.

4.2.2 Impurity scattering

Scattering of phonons from crystal impurities or point defects is another source of

phonon loss. This type of loss can be caused by any element that contributes to the

variation in atomic mass of the crystal, such as impurities in the substrate, dopant

ions, and even mass variations in isotopes [88].

In order to obtain the rate of phonon loss, we should treat the variations in atomic

mass within the crystal lattice structure as perturbations from which phonons scatter

off. The Hamiltonian of such a system can be written as,

H = H0 +∆H, (4.7)

where ∆H is the perturbative term from impurities. For a perfect crystal, Hamiltonian

H0 is,

H0 =
∑ p2

2M
+Hint, (4.8)

where p is the atomic momentum operator and M is the atomic mass. Here, the first

term is the kinetic energy term and the second term is the interaction potential term

between atoms independent of local atomic mass. Replacing crystal atomic mass (M)

with the atomic mass of impurities (M −∆M) in the H0 Hamiltonian, we obtain the
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perturbative term from atomic mass variation,

∆H ≈ ∆M

M

p2

2M
. (4.9)

To solve the phonon scattering rate, we apply the perturbation Hamiltonian to Fermi’s

golden rule,

Γi→f =
2π

ℏ
|⟨f |∆H |i⟩|2 δ(Ef − Ei), (4.10)

that describes the scattering fate from the initial state i to the final state f . We desire

to calculate the scattering rate of a single phonon. Hence, we set the initial state as

a single phonon state, and the final state as a state that is in thermal equilibrium

with the substrate at temperature T , whose occupation follows the Bose-Einstein

distribution. Decomposing the momentum operator in ∆H in terms of normal mode

momenta, we find the impurity scattering rate for a single phonon,

Γimpurity =
1

4πnv3m

(nd

n

)(∆M

M

)2
Ω4

m

1− e
− ℏΩm

kBT

=
Ωm

Qimpurity

, (4.11)

where n (nd) here is the atomic density (defect density). See reference [88] for a more

detailed derivation.

4.2.3 Two-level systems

Defect sites in solids can affect phonon coherence by not only directly scattering

phonons but also generating two-level systems (TLS) that can interact with phonons

to induce dissipation [95–97]. TLS is a system with two states (often denoted as the

ground state and the excited state) that can exist in superposition. Defect sites of

a crystal can lead to TLS generation if two local arrangements of atoms arse nearly

degenerate in energy, effectively possessing a quantized energy spectrum. These defect

states can be phonon-active, meaning that they can exchange energy with phonons.
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Although phonon-active TLSs are mostly studied in the context of amorphous media,

they also exist in crystalline substrates and are suspected as one of the limiting factors

of acoustic lifetimes in highest Q acoustic devices [12, 56]. Effects of TLS usually

become prominent at low temperatures (ℏΩ ≫ kBT ) and are suppressed at high

temperatures (ℏΩ ≪ kBT ). This is because TLSs are mostly in their ground states

at low temperatures, allowing for phonon absorption and subsequent dissipation to

occur. Meanwhile, at high temperatures, TLSs are mostly saturated, or in excited

states, not allowing for such phonon absorption processes.

In this section, we first work out the excited state lifetime of a TLS. Then, we

consider acoustic dissipation from resonant TLS coupling in the weak and strong

acoustic field regimes, followed by acoustic loss from the relaxation absorption process.

TLS excited state lifetime

TLS in a crystal can be thought of as a tunneling state of a double well potential with

asymmetry ∆ and tunneling strength ∆0, such that the energy splitting between the

excited state and the ground state is ETLS =
√

∆2 +∆2
0. An excited state of a TLS

can decay into its ground state, releasing energy into a phonon bath. The Hamiltonian

of a corresponding TLS-phonon coupled system is given as following [95,96],

H = ℏΩ
(
b†b+

1

2

)
+

1

2
(ETLS +D · s(x̄))σz +M · s(x̄)σx, (4.12)

where longitudinal coupling potential is D = 2 ∆
ETLS

, transverse coupling potential is

M = ∆0

ETLS
γ, and deformation potential constant is γ = 1

2
∂∆
∂s
. Using Fermi’s golden

rule (or time-dependent perturbation theory), we can write the TLS transition rate,

ΓTLS
e→g =

2π

ℏ
|⟨g|Hint |e⟩|2 g(ETLS)nB(ETLS), (4.13)
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where the Debye density of phonon states is g(ETLS) = ETLS/2π
2ℏ3v3m, the Bose

distribution nB(ETLS) = 1/(eETLS/kBT −1), and the interaction term is |⟨g|Hint |e⟩|2 =

|M · s(x̄)|2. In thermal equilibrium at temperature T, the rate at which the TLS

excited state transitions into the ground state should be equal to the process in the

other direction, giving the relation between TLS occupation probability (pTLS
e for

excited state and pTLS
g for ground state occupation probability) and TLS transition

rate, pTLS
e ΓTLS

e→g = pTLS
g ΓTLS

g→e. From this, we get the TLS relaxation rate (ΓTLS
m ), at

which the initial state of TLS deviates,

ΓTLS
m = ΓTLS

e→g

(
1 + e

ETLS
kBT

)
. (4.14)

Combining this expression with equation 4.13, we obtain the phonon-induced TLS

relaxation rate of,

ΓTLS
m =

γ2∆2
0ETLS

2πρℏ4v5m
coth

(
ETLS

2kBT

)
(4.15)

Resonant TLS damping in weak acoustic fields

We now reverse roles such that TLS is a dissipative channel phonons decay into. We

first consider the regime of weak acoustic fields, where the mean free time between

TLS-phonon interactions is much longer compared to the TLS excited state lifetime.

Here, TLSs attenuate acoustic waves through resonant absorption, meaning that TLSs

in the ground state absorb phonon to be resonantly excited into their excited state.

This type of interaction is mediated via the σx term in the Hamiltonian (equation

4.12). (Note that the σz term is discussed in the later section on relaxation absorption.)

For weak acoustic fields, the phonon damping rate from TLS resonant absorption

can be obtained through Fermi’s golden rule,

Γweak
TLS =

2π

ℏ
|⟨e, nm − 1|Hint |g, nm⟩|2 P (pTLS

g − pTLS
e ), (4.16)
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where P is the TLS density of states, the interaction term is |⟨e, nm − 1|Hint |g, nm⟩|2 =

|M · s(x̄)|2, and the difference between the TLS occupation probabilities is pTLS
g −

pTLS
e = tanh

(
ETLS

2kBT

)
. Solving the above equation, we end up with an expression for

phonon dissipation rate due to TLS damping in weak acoustic fields, given as,

Γweak
TLS =

πγ2PΩ

ρv2m
tanh

(
ℏΩ

2kBT

)
, (4.17)

where the TLS transition energy is set equal to the phonon energy (ETLS = ℏΩ).

Note that the decay rate is maximized at low temperature (ℏΩ ≫ kBT ) and sup-

pressed at high temperature (ℏΩ ≪ kBT ). This is because, at low temperatures,

TLSs are found mostly in their ground state, resulting in the resonant absorption

term (pTLS
g ∼ 1, pTLS

e ∼ 0) to dominate. On the other hand, stimulated emission

from TLS that coherently amplifies the acoustic field can occur at high temperatures,

which suppresses the resonant absorption process and subsequently minimizes the

decay rate.

Resonant TLS damping in strong acoustic fields

In the regime of strong acoustic fields, we can no longer use the perturbation theory

approach to calculate the dissipation rate. Instead, we solve the Heisenberg equation

of motion to obtain the TLS-induced phonon dissipation rate at high acoustic fields,

which gives an expression similar to the weak acoustic field case with an addition of

an acoustic intensity ratio term [95,96],

Γstrong
TLS ≈ πγ2PΩ

ρv2m
tanh

(
ℏΩ

2kBT

)
1√

1 + J/Jc
, (4.18)

where J is the acoustic intensity and Jc (Jc ≈ ρℏ2v3/2γ2TTLS
1 TTLS

2 ) is the critical

intensity defining the strong/weak acoustic field regimes.
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Relaxation absorption

Another mechanism through which TLS can induce phonon decoherence is relaxation

absorption. This is a process in which TLS’s energy splitting experiences a modula-

tion due to a time-dependent strain field, resulting in TLS constantly absorbing and

releasing energy into the phonon bath environment. Recalling the TLS-phonon Hamil-

tonian (equation 4.12), the process is represented in the σz term (1
2
(ETLS+D · s(x̄))),

and the corresponding phonon decay rate is given as [95,96],

Γrelax
TLS =

π3

24

Pγ2

ρ2v2mℏ4

(∑
pol

γ2

v5m

)
k3BT

3, (4.19)

where
∑

pol represents a sum over all strain field polarizations.

4.2.4 Diffraction

Besides the type of phonon decoherences originating internally within substrates, con-

sequently being heavily dependent on material properties, there are other mechanisms

through which phonons can lose energy, such as through geometrical properties and

surface properties of the substrate.

The design of an HBAR closely follows that of an optical Fabry-Pérot cavity

with Hermite-Gaussian-like acoustic mode profiles driven via Gaussian optical beams

[7, 53–56]. Consequently, an HBAR has to satisfy stability criteria, similar to that of

an optical Fabry-Pérot cavity, to produce stable cavity modes. This is given as,

0 ≤ g1g2 ≤ 1, (4.20)

where g1 (g2) is the stability parameter of the front (back) surface of an HBAR. The

acoustic stability parameter that takes into account the anisotropy of elastic constants
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is given as [53],

g1(2) = 1− Lm

χR1(2)

, (4.21)

χ =
v2l (v

2
l − v2t )

v2l v
2
t − v4t + γ41

, (4.22)

where χ is the anisotropy constant, R is the radius of curvature of the surface, vl =√
c11/ρ is longitudinal acoustic velocity, vt =

√
c44/ρ is transverse acoustic velocity,

and γ1 =
√

(c12 + c44)/ρ. Combining equations 4.20 and 4.21, we get the condition

0 ≤ (1 − Lm/χR1)(1 − Lm/χR2) ≤ 1, for a stable HBAR. Typically, an HBAR is

made from a plano-convex geometry, where one side of a crystal is flat (g2 = 1) and

the other side is convex (g1 = 1− Lm/χR1), giving a simplified condition,

0 ≤ 1− Lm/χR1 ≤ 1. (4.23)

Mode waist radius of Gaussian acoustic wave can also be expressed in terms of the

stability parameters as [53],

w0 =
Lmλm
χπ

√
g1g2(1− g1g2)

(g1 + g2 − 2g1g2)2
. (4.24)

When we consider the diffractive loss of an HBAR, it is conventional to imagine

an HBAR with a flat-flat geometry, where both sides of the crystal have no curvature

(R1, R2 = ∞). In this type of HBARs, acoustic mode waists are not well defined due

to unity stability parameters (g1, g2 = 1) and the modes are unstable. The diffraction

of acoustic beams makes them walk off from their initial mode profile, resulting in

dissipation.

Gaussian beam propagation

There are a couple of different approaches we can take to calculate the diffractive loss

in a flat-flat HBAR. The first method is to observe the Gaussian wave propagation
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along the crystal and compare it with its initial profile. The expression for Gaussian

beam propagation of acoustic displacement field along z-direction is given as [53],

u(r, z) = u0
w0

w(z)
e
− r2

w(z)2 e
−i

(
kz+k r2

2R(z)
−ψ(z)

)
, (4.25)

where w(z) is the beam waist radius at position z, R(z) is the radius of curvature

of the beamfronts at z, and ψ(z) is the acoustic Gouy phase. We can calculate the

overlap of the displacement field at the initial position (z = 0) and at z through the

expression [54],

|η(z)|2 =
|
∫
u(r, z) · u(r, 0)dA|2

|
∫
u(r, 0) · u(r, 0)dA|2

, (4.26)

where the denominator is for normalization. The relation between beam waist and

the Rayleigh length zR is,

w(z)

w0

=

√
1 +

(
z

zR

)2

, (4.27)

where the acoustic Rayleigh length is given as,

zR =
πw2

0

λm
χ. (4.28)

Putting together equations 4.28, 4.27, and 4.26, we can simplify the overlap described

in equation 4.26 as,

|η(z)|2 = 4
1 +

(
z
zR

)2
(
2 +

(
z
zR

)2)2 . (4.29)

We can define a distance at which propagating phonons lose energy to, or have mode

overlap of, e−1 of their initial value. Let’s call it an acoustic coherence (attenuation)

length Λ, analogous to the optical coherence length. Setting |η(Λ)|2 from equation

4.29 equal to e−1, we obtain the acoustic coherence length and the corresponding
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decoherence rate,

Λ = 2.785zR

Γdiffract =
vm
Λ

=
vm

2.785zR
.

(4.30)

However, note that equation 4.29 is not exponential in x, thus one has to be cautious

in using Γdiffract from equation 4.30 and treat it as an estimate.

Bessel mode decomposition and time evolution

An alternative approach in calculating diffractive loss in a flat-flat HBAR involves

decomposing the initial phonon mode into Bessel modes and observing their time

evolution [54]. Since the acoustic mode waist is not well defined in a flat-flat HBAR,

here we assume that the initial acoustic displacement profile at time t = 0 follows the

Gaussian profile of optical electrostrictive drive from Brillouin scattering,

um(r, z, t = 0) = u0e
− 2r2

r2opt cos

(
mπ

Lm

z

)
, (4.31)

where ropt is the optical beam waist radius andm is the overtone number in longitudi-

nal direction. The initial acoustic profile can then be decomposed into the eigenmodes

of the acoustic cavity and put through a time evolution, shown as,

u(r, z, t) =
∑
m,n

cm,num,n(r, z)e
−iωm,nt, (4.32)

where n is the transverse mode number, coefficient cm,ns are determined by the initial

profile, and um,n(r, z)s are the eigenmodes with corresponding frequency ωm,n. For a

cylindrical HBAR, the acoustic modes of the cavity can be written in terms of the

Bessel functions,

um,n(r, z) = βm,n cos

(
mπ

Lm

z

)
J0

(
j0,nr

rc

)
, (4.33)
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where βm,n is the normalization constant, J0 is the zeroth order Bessel function of

the first kind, j0,n is the nth root of J0, and rc is the radius of the cylindrical crystal

substrate. Also, the frequency ωm,n of an acoustic mode um,n(r, z) is,

ωm,n =

√(
mπ

Lm

)2

v2l +

(
j0,n
rc

)2

v2t . (4.34)

To analyze the acoustic energy dissipated from the initial state as the acoustic modes

evolve in time, we can calculate the overlap of time-evolved acoustic modes at time t

with their initial state [54],

|η(t)|2 =
|
∫
u(r, z, t) · u(r, z, 0)dV |2

|
∫
u(r, z, 0) · u(r, z, 0)dV |2

=
|
∑

n |cm,n|2eiωm,nt|2

|
∑

n |cm,n|2|2
.

(4.35)

With |η(t)|2, the acoustic coherence time (τ ′diffract) and dissipation rate (Γ′
diffract) from

diffraction can be obtained from solving,

|η(τ ′diffract)|2 = e−1, (4.36)

and subsequently from Γ′
diffract = 1/τ ′diffract.

4.2.5 Anchoring loss

When placing an HBAR in an experimental setup, there is also a practical concern

that we need to take into account. As an acoustic device is clamped in place, direct

mechanical couplings between phonon modes and lossy outside environment at the

clamping points can lead to anchoring loss or clamping loss [53].

Similar to the previous section on diffraction, the main mode of interest in a plano-

convex HBAR is its fundamental Gaussian mode, whose displacement profile along
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z-direction is described as,

un(r, z) = u0e
− r2

r2m cos

(
mπ

Lm

z

)
, (4.37)

where rm is acoustic mode waist radius (equivalent to w0 from section 4.2.4) and m

is the overtone number in longitudinal direction. Assuming that all of the acoustic

energy that exists outside a certain distance ranchor away from the center of the plano-

convex HBAR is lost during a single round-trip, we can calculate the fraction of the

energy loss in a single round-trip,

Elost

Etot

=

∫
Vout

|un(r, z)|2dV∫
Vtot

|un(r, z)|2dV
= e

− 2r2anchor
r2m . (4.38)

Equating the remaining energy, R = 1−Elost/Etot, with e
−Γanchort, where t = 2Lm/vm

is the round-trip time, we can obtain the acoustic loss rate and the corresponding

acoustic Q from anchoring at distance ranchor,

Γanchor = −vm ln(R)

2Lm

=
Ωm

Qanchor

. (4.39)

Note that this is a simplistic model that does not take into account the additional

stress exerted at the anchoring points and the deformation of acoustic modes that

subsequently follows. These can contribute to acoustic loss even further.

4.2.6 Surface roughness

In an optical Fabry-Pérot cavity, rough mirrors with low reflectivities can limit the

cavity lifetime. Likewise in an HBAR, which is analogous to an acoustic Fabry-Pérot

cavity, roughness on the surface of a crystal can lead to acoustic loss. Assuming a

Gaussian distribution of surface roughness, phonon reflectivity from a surface can be

59



expressed as [56],

R = e−8π2σ2/λ2m , (4.40)

where σ is the surface roughness variance. Equating the product of reflectivities from

both surfaces of a crystal to the phonon loss after one round-trip (e−ΓroughtRT =

e−8π2(σ2
1+σ

2
2)/λ

2
m), and assuming both surfaces of the crystal have identical roughness

(σ1 = σ2), we obtain the phonon decay rate from surface roughness.

Γrough =
Ω2

mσ
2

vmLm

=
Ωm

Qrough

. (4.41)

4.2.7 Deposition layer on crystal

When designing an HBAR, it is sometimes necessary to have a deposited layer on top

of the device depending on its purpose. For instance, a layer of metal electrodes can

be deposited for direct electromechanical coupling to the device [98]. Additionally,

the integration of a multi-layer dielectric mirror coating with high reflectivity may be

an appealing way to realize optomechanical coupling.

Assuming that the interface loss is negligible, mechanical devices with thin layer

coating have quality factor given as [98–100],

Q−1
composite = Q−1

s + ηQ−1
c , (4.42)

where η is the energy participation ratio (η = Ec/Es) and subscript s(c) indicates

the value for the substrate (coating layer). For an isotropic substrate with Poissons’s

ratio much lower than unity and for thin films (tc ≪ ts), this energy participation

ratio can be simplified to η = 3tcYc/tsYs [98–100], where Y is Young’s modulus of a

material. Also note that for multi-layer coating, Yc is taken as the weighted average

of Young’s modulus of deposited materials, Yc ≈
∑

i tc,iYc,i∑
j tc,j

.
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4.3 Identification of acoustic dissipation

Now that we have laid out the theoretical background for possible sources of acoustic

dissipation, we discuss how it is observed experimentally. Experimental implementa-

tion of phonon characterization is detailed in section 5.2.3. To give an overview of

the method, the Brillouin interaction (introduced in chapter 2) is used to probe the

acoustic properties of materials. As illustrated in figure 2.3(b), optical light is sent

into a BAR to probe the phonon modes. In addition to the pump light, a counter-

propagating probe light is also provided to electrostrictively drive the phonons [52],

which is an inverse process of photoelasticity. Detecting the scattered light from

phonons, we observe the phonon spectrum following figure 2.1(b) and figure 4.2,

from which we can record the phonon mode frequency, Ωm, and dissipation, Γ.

In this section, we apply the dissipation models established in the previous section

to analytically predict the loss rates in relevant acoustic materials (i.e. x-cut quartz

and Si) and device designs (i.e. plano-convex and flat-flat geometry) for our experi-

ment. In the following section 4.4, we further discuss the fabrication and preparation

of HBAR acoustic devices.

4.3.1 Loss value calculations on relevant materials

Plano-convex geometry

Using the material constant values at room temperature, we find the acoustic dissipa-

tion from phonon-phonon scattering, which is in the Akhiezer regime, to be well over

1 MHz at the Brillouin-active frequencies of x-cut quartz and Si. Even without any

other sources of dissipation, this is already a major factor limiting the accessibility

to high-Q HBARs at room temperatures.

At cryogenic temperatures (< 10 K), on the other hand, thermal relaxation time

(τth) becomes greatly enhanced, thus bringing both x-cut quartz and Si well into the
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Landau-Rumer regime (Ωmτth > 1). Solving equation 4.6, we obtain substantially

lower dissipation rates of 190 Hz for x-cut quartz and 5 Hz for Si. This opens up

the utilization of high-Q HBARs at cryogenic temperatures and motivates further

investigation into additional sources of loss that may affect total acoustic dissipation.

TLS effects, on the other hand, are suppressed (ℏΩ ≪ kBT ) at the temperature

and frequency range we operate (10 ∼ 50 GHz, 5 ∼ 10 K).

The quartz substrates we use in our experiment are from MTI, graded as opti-

cal grade single-crystal with 99.99% purity. Since the vendor does not specify the

impurities in the substrate, we have to make an assumption about the composition

of impurities. Nominally, impurities in quartz consist of iron, aluminum, potassium,

calcium, and sodium. Although iron is known to be the most common impurity in

quartz, we assume sodium to be the only impurity here since it gives the largest nd

and ∆M , resulting in a more conservative value for Γimpurity. Additionally, we assume

that the crystal purity is 99.9% to be conservative. Solving for Γimpurity following

equation 4.11, we obtain Γimpurity = 2 Hz at 10 K.

For Si, we use float-zone, high resistivity, N-type Si of R > 10000 Ω as high re-

sistivity is correlated to high purity. We consider impurity loss contribution from Si

isotope with 29 atomic mass, which occurs at a rate of 4.67% in nature, phosphorous

with concentration calculated from the resistivity value, oxygen, and carbon with con-

centration observed through x-ray diffraction analysis (XRD). Combined, impurities

in Si give a loss rate of ∼ 1.2 Hz at 10 K.

In both quartz and Si, we can calculate the clipping loss from equation 4.39 for

our common design parameters (provided in section 4.4) of ∼ 50 µm acoustic mode

waist with device size of ∼ 500 µm radius. Assuming full dissipation of acoustic waves

outside of the device diameter, the clipping loss for a perfect plano-convex resonator

turns out to be minimal (< 1 Hz).

We believe that a dominant contributor to acoustic loss at cryogenic temperatures
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turns out to be surface roughness loss. Several of the high-Q HBAR studies have

reported that their devices’ Q-factors are limited by surface roughness [53, 56]. For

the device parameters used for our design and a reasonable roughness of 1 nm which

we often observe in our devices through AFM and Zygo measurements, we expect

surface roughness induced loss from equation 4.41 is 300 Hz for quartz and 1 kHz for

Si, which is indeed the highest loss contribution of all the factors we have considered

so far. With adequate process and careful optimization, we can reduce the surface

roughness to a sub-Å level [101].

Flat-flat geometry

Diffraction loss becomes relevant only for a flat-flat HBAR geometry. Using the model

presented in section 4.2.4, we get a dissipation rate in the range of 10 to 100 kHz.

However, other detrimental factors, such as the instability of the acoustic modes

in flat-flat geometry and the bunching of higher-order transverse modes, can further

contribute to an effective broadening of the acoustic linewidth. Indeed, later in chapter

6 and 7, we observe the linewidth of a flat-flat HBAR to be in the range of 300

- 500 kHz, which we attribute to diffractive loss. In order to avoid this, we have

previously developed a technique of fabricating a plano-convex HBAR with flexible

design parameters, forming a stable resonator and completely avoiding the diffractive

loss [53].

4.4 On-chip HBAR devices

HBARs support longitudinal acoustic standing waves between the two faces of a

crystalline substrate, forming Fabry-Pérot-like acoustic modes. As the mode pre-

dominantly lives in the bulk, they have greatly reduced surface interactions, which

allows suppression of surface-originating acoustic loss and robustness thermal prop-
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Figure 4.1: On-chip HBAR fabrication (a-c) Procedures for on-chip HBAR fabri-
cation. After the initial cleaning and conditioning of a substrate wafer, circular resist
patterns are developed. Then, dome-like structures are formed by carefully controlled
and monitored vapor reflow of the resist. Reactive ion etch (RIE) transfers this pat-
tern onto the substrate, resulting in an on-chip plano-convex HBAR. (d) Picture of a
set of four HBAR devices made on a 1 mm thick Si wafer. HBARs shown have 1 mm
diameter with 12 µm height.

erties. There are works taking advantage of such properties, where they demonstrate

Q-factors in an HBAR reaching 107 (109) at GHz (MHz) frequencies [53, 56], and

achieve strong optomechanical coupling between an HBAR and a Fabry-Pérot cavity

by linearizing the interaction around a strong optical pump [55].

Previously, designs of such high-Q HBARs were limited to cm-scale dimensions.

Recent work from our group allows on-chip fabrication of high-Q HBARS in the

mm-scale and even µm-scale dimensions [53]. The HBAR devices fabricated for our

experiments are made closely following the method laid out in reference [53] with

minor adaptations. In the subsequent sections, we discuss how HBARs are fabricated

along with some notable observations we made along the way.

4.4.1 Fabrication steps

In order to create plano-convex HBARs, we start by preparing a high-purity substrate

wafer that is thoroughly cleaned through solvent cleaning1, followed by oxygen plasma

ashing2. If necessary, one may choose to replace the solvent clean step with a piranha

1. Ultrasonic clean of a wafer in NMP, acetone, and methanol solution, respectively, for 3 min
each

2. 3 min duration with 150 W RF-power at 300 mTorr pressure
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etch3. Note that we want the wafer surface to be somewhat hydrophilic to promote

adhesion of the photoresist and obtain optimal surface tension characteristics. We

then spin positive photoresist on the wafer, which is exposed and developed using UV

lithography to create cylinder structures on the wafer (see figure 4.1a). Depending

on the height of the final HBAR, this process is compatible with a range of photore-

sists, including AZ series (P4620 and P4330) and Microposit S1800 series (S1818 and

S1813). In order to promote the adhesion of the photoresist structures, the sample is

vapor primed with hexamethyldisilane (HMDS). The sample then undergoes a reflow

process in an upside-down orientation in an enclosed chamber filled with propylene

glycol methyl ether acetate (PGMEA) vapor. As the photoresist structures absorb

the solvent vapor and start to reflow, surface tension results in dome-like structures

to appear by smoothing sharp corners of the photoresist cylinders (see figure 4.1c).

At this stage, note that too much surface tension can lead to the deformation of the

photoresist, losing its initial circular structure, while too little surface tension leads

to the separation and removal of photoresist structures during the reflow process.

Once concave dome structures are fully formed, the sample is hard-baked to remove

any residual solvent. The sample is then put into a dry-etch chamber where it goes

through a reactive ion etching (RIE) process with custom recipes optimized for the

type of substrate material used. Finally, the sample is piranha cleaned after the RIE

to remove any organic contaminants. For surface oxide forming materials such as Si,

an additional oxide stripping step of a short HF dip procedure, also known as sur-

face passivation, is beneficial as it helps achieve a consistent surface termination of

dangling bonds.

3. 10 min submersion of sample in 3:1 mixture of sulfuric acid and hydrogen peroxide at 100°C
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Label Material Linewidth Pre-treatment Post-treatment

XQu01∗ x-quartz 1.3 kHz - Pr
XQu02 x-quartz 410 Hz - Pr
XQu03 x-quartz 9.3 kHz - Pr
Si01-1 Si 150 kHz - -
Si01-2∗∗ Si 6 kHz - Pr, HF
Si01-3† Si 1 MHz - Pr, HF
Si02.1-1 Si 700 kHz - -
Si02.1-2†† Si 2.1 MHz - Pr, HF
Si02.2-1 Si 40 kHz - Pr, HF
Si02.2-2∗∗∗††† Si 45 kHz - Pr, HF
Si03 Si 0.6∼2.5 MHz Furnace, HF Pr, HF
Si04-1 Si 900 kHz - Pr, HF
Si04-2 Si 120 kHz - 2×(RTP, HF), Pr, HF
Si04-3 Si 1 MHz - 4×(RTP, HF), Pr, HF

Table 4.1: Table of selected HBAR devices fabricated In the label column,
devices are named following the order, ’device name - measurement number’. In the
treatment column, Furnace means processed in a horizontal tube furnace, HF means 1
min HF strip of oxide, Pr means piranha cleaned, and RTP means put through rapid
thermal processing. *XQu01 sample is identical to the sample used in section 6.2.1,
figure 6.2. **Si01-2 sample is identical to the sample used in reference [53]. ***Si02.2-
2 sample is identical to the sample used in section 6.2.3, figure 6.5. † Measured after
1 year of room storage. †† Measured after 2 months of room storage. † † † Measured
after 10 months of vacuum storage.

4.4.2 Measurements

For the measurements of acoustic Q of fabricated HBAR devices, we use stimulated

Brillouin scattering measurement described in chapter 5. In table 4.1, we provide a

list of devices made and corresponding acoustic linewidths measured.

Due to the final goal of this dissertation, we focus on making HBAR devices on

x-cut quartz and Si. HBARs made on x-cut quartz consistently had good Q-factors

with correlated linewidths of < 10 kHz. The highest Q device made was the XQu02

device where we observed a linewidth of 410 Hz, consistent with a value limited by

surface roughness of 1.2 nm. We also perform a ring-down measurement with device

XQu03. Results are shown in figure 4.2, where we confirm that we do not observe any

noticeable dephasing in our HBAR devices (Γϕ ≈ 0).
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Figure 4.2:Ring-down measurement on HBAR (a) Frequency response and (b-c)
ring-down measurement done with the HBAR sample XQu03. Microwave tone is used
to piezoelectrically drive the acoustic mode in an optical single-pass configuration (see
section 5.2.3 for details). In order to perform a ring-down measurement, we send in a
microwave pulse instead of a tone and observe the time-dependent decay of acoustic
resonant response at the end of the pulse. In the phase space data, initial starting
points are indicated in purple, and trajectories of time-dependent decay are indicated
in pink.

HBAR devices on Si, on the other hand, had a lot more variability in their

linewidth compared to devices on x-quartz. Beyond the devices listed in table 4.1,

we observed acoustic linewidths varying between 0.6 ∼ 2 MHz in Si-based devices.

We suspect this is due to possible damages and contaminations in the Si devices. In

fact, there are many studies discussing damages that certain fabrication procedures,

such as RIE, can inflict on Si substrates [102–109]. While trying to tackle this issue,

we made several notable observations.

4.4.3 Observation 1: effects of thermal treatments

In an attempt to relax the built-in stress inside a Si substrate that may be affect-

ing the acoustic properties, we explored options for thermally treating the samples.

Thermal treatment can anneal the substrate, relaxing the built-in stress and it leads

to oxidation of the surface, effectively peeling off damaged and contaminated surface

layer.

Firstly, we put Si wafers in a horizontal tube furnace, exposing them to high tem-

peratures (900 ∼ 1000 ◦C) for 4 hours. This results in surface oxide growth of ∼ 1 µm,
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Figure 4.3: Surface damage on Si samples from thermal treatments (a-b)
Optical microscope image of Si sample surface. These samples went through initial
furnace treatment and oxide strip before being fabricated into plano-convex HBARs.
Marks shown are bump features with 2 ∼ 20µm width, 1 ∼ 5µm height, and 10 ∼
100µm length. Directions of the bumps are along y and z crystal axis. (c) AFM image
of Si sample surface that has gone through four cycles of rapid thermal oxidation and
HF strip post-HBAR fabrication (device Si04-3 from table 4.1). Marks shown are pits
with < 100 nm width, ∼ 300 nm depth, and ∼ 250 nm length. Directions of the pits
are along y and z crystal axis.

which we remove by dipping the wafers in HF. Acoustic responses of HBARs made

on Si wafers with such furnace treatment are given in table 4.1, device Si03. Unfor-

tunately, we do not observe any noticeable improvement in the acoustic linewidth.

Monitoring the surfaces of HBAR devices made on furnace-treated Si, we can iden-

tify several defects along the crystal axis of Si (see figure 4.3a-b). Thus, it is highly

likely that our furnace treatment is poorly executed, and more careful study and

optimization are desired to actually benefit from furnace treatments.

Secondly, we also record the effects of thermal treatment post-fabrication of HBARs.

Since RIE-induced damages are mostly accumulated on the surface [104–107], our goal

here is to strip off surfaces of Si through oxidization. After fabrication of an HBAR, we

probe its initial characteristics (Si04-1 in table 4.1). Then, this sample is put through

rapid thermal processing (RTP) and HF strip of oxide. RTP lasts about 5 to 10 min

and it produces ∼ 30 nm of surface oxide layer at a time. After each cycle of RTP

and HF dip, the acoustic property of the device is characterized again. The acous-

tic property of the device improves until the 2nd cycle of the RTP thermal process.
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As shown in device Si04-2 in table 4.1, 2 cycles of thermal process post-fabrication

improves the acoustic linewidth by a factor of ∼ 7.5. However, from the 3rd cycle of

the RTP thermal process, we observe degradation of acoustic linewidth, and at the

4th cycle, we even observe worse acoustic quality than its initial value (device Si04-3,

table 4.1). We believe that this is because our thermal process not only fixes certain

substrate damages but also induces other certain substrate damages. Probing sample

Si04-3 under AFM, we indeed observe accumulated damages on the surface after mul-

tiple rounds of RTP thermal treatment (see figure 4.3c). Hence, thermal treatment

of Si HBAR post-fabrication can improve the acoustic quality of the device, but it

needs further optimization to minimize the additional damage it also induces on the

substrate.

4.4.4 Observation 2: surface passivation

Another observation from the list of samples is the effect of the surface passivation step

in Si. Surface passivation using piranha solution and HF, as laid out in reference [110],

substantially improves the acoustic quality of our devices. This is shown in devices

Si01-1 and Si01-2, where we detect acoustic linewidth improvement from 150 kHz

to 6 kHz, and in devices Si02.1-1 and Si02.2-1, where we detect acoustic linewidth

improvement from 700 kHz to 40 kHz. In both cases, surface passivation results in

over an order of magnitude improvements in acoustic linewidths. Thus, we include

surface passivation as an essential post-fabrication step before making measurements

in Si HBAR devices.

4.4.5 Observation 3: on sample deterioration and storage

The final observation we can make from Si samples is the degradation of acoustic

quality in time, depending on their storage conditions. After the measurement of

device Si01-2, it was stored in room condition for approximately 1 year and then
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re-measured (labeled device Si01-3). We observe a degradation in acoustic linewidth

from 6 kHz to 1 MHz, which is irreversible even after repeating surface passivation

steps. In a separate sample, Si02.1-1 and Si02.1-2, acoustic linewidth experiences an

irreversible degradation from 700 kHz to 2.1 MHz, just after 2 months of room storage.

In this case, the sample has not gone through surface passivation prior to storage. We

speculate that room condition storage leads to the absorption of contaminants into

the Si devices that are irreversible with the methods available to us.

In order to tackle this issue with storage, we attempted to store a device under

a vacuum. A surface passivated sample (Si02.2-1) is stored in vacuum storage for 10

months (Si02.2-2). Characterizing the acoustic properties of the sample before and

after storage, we observe that the sample maintains its acoustic linewidth of ∼ 40

kHz.

Hence, we decide vacuum storage to be our standard protocol for long-term storage

of Si samples to avoid degradation in acoustic qualities. Fortunately, other materials

that we study in this dissertation, such as quartz and CaF2, do not experience such

degradation, so they are free from such storage requirements.
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Chapter 5

A hybrid cavity platform for

simultaneous

electro-optomechanical coupling

5.1 Introduction

Interactions between acoustics and optics have been long studied and are being heavily

utilized, in the field of optomechanics. Optomechanical systems have been used in

many contexts, including that of precision measurements [111, 112], generation of

non-classical mechanical states [4, 113–115]. In particular, through optomechanical

systems, people are able to perform quantum operations on mechanical motions, such

as laser cooling a mechanical state to its quantum ground state [4] and realizing

remote entanglement between mechanical resonators [115].

Similarly, electromechanical system is another field of study that harnesses the

versatile interaction of acoustics with microwaves. Besides the numerous use-cases of

piezo-actuators in everyday life, electromechanics is explored in research including the

tests of fundamental physics [81], quantum ground state cooling [3], single phonon
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control [5], and control of acoustic quantum state through qubits [7, 8]. With long

lifetimes and high compactness (compared to microwave resonators) of acoustic res-

onators, there are also efforts to investigate further applications to quantum memory

elements in quantum computers [11].

Combining optomechanical and electromechanical interactions on a single plat-

form, electro-optomechanical systems allow us to traverse between optical, acoustic,

and microwave regimes with relative ease, opening the door to important opera-

tions such as transduction and precision sensing [14, 24]. In particular, there are

several types of electro-optomechanical devices being developed to realize an effi-

cient microwave-to-optical quantum transducer for quantum computers [15–23]. The

type of platforms includes mechanical membrane [15–17], OMC [18–20], thin film de-

vices [21,22], and BAR devices [23]. With electro-optomechanical transducers, people

have demonstrated record transduction efficiency with 47% [17], low added noise (<

1 photons) [20], and integration with a superconducting qubit [16, 20].

Here, we present a novel electro-optomechanical (piezo-Brillouin) design with

an HBAR that simultaneously integrates piezoelectric and Brillouin interaction in

a resonantly enhanced configuration. With advantages such as long acoustic life-

times [56], good thermal properties, good optical mode matching [52, 54], and well-

established fabrication steps [53], an HBAR is an appealing ingredient for an electro-

optomechanical system. Besides, strong optomechanical coupling [54, 55] and strong

electromechanical coupling [7] to HBARs have been shown in separate works, making

it even more intriguing to come up with experimental designs that take advantage of

HBARs.

In this chapter, we present the ingredients for our piezo-Brillouin device and the

measurement layouts. Then, we provide a theoretical model to predict and understand

the response we would get from the device. We also compare our initial design without

an optical cavity to our later design with optical cavity integration, highlighting the
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high resonant enhancement of signal we can achieve by adding the optical cavity

element to the design.

5.2 Experimental setup

(c)

(a)

(b)

(d)

(e)

Figure 5.1: Assembly of hybrid piezo-Brillouin optomechanical system (a)
Simplified diagram of mode couplings and decay pathways for the optical (red), mi-
crowave (blue), and acoustic (green) modes. (b-d) Cross-section of hybrid cavity as-
semblies showing acoustic resonator (green), microwave cavity (grey), and optical
mirrors (light blue). The cavities are placed in a He-4 flow cryostat between 4∼10
K. Dark blue arrows indicate microwave E-field, red arrows indicate optical light,
black insert into the cavity is the microwave coupling pin, and dark gray block on
the top is the tuning screw for microwave frequency tuning. Rectangular microwave
cavity (b) and re-entrant microwave cavity (c) are used for single-pass measurement,
hence optical cavity is absent in this assembly. Lock-in signal detection is performed
with these devices (details of the experimental schematic in figure 5.6). Coaxial mi-
crowave cavity (d) is used for both single-pass measurements without an optical cav-
ity and resonantly enhanced measurements with an optical cavity. Direct VNA-type
signal detection is done in this device and a simplified experimental schematic is il-
lustrated. Microwave and optical signals can be injected by driving the microwave
cavity or electro-optic modulator (EOM), respectively. Optical signals are detected
in transmission (at photodiode, PD), using the pump light as the heterodyne local
oscillator. Microwave signals can be collected and amplified directly. A detailed ex-
perimental schematic is shown in figure 5.7. (e) Inset showing the overlap between the
microwave/optical/acoustic modes. Dark green wavefronts indicate the longitudinal
acoustic mode of the HBAR. Adapted from Ref. [57].
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Figure 5.2: Example hybrid cavity device Image of a hybrid cavity device image
used in one of the experiments. On the left is the assembled version, the middle is the
bottom piece of the device, and the right is the lid. The body of the device, which
is the microwave cavity part, is made out of oxygen-free high thermal conductivity
(OFHC) copper for better thermalization and reasonable microwave Q. This example
device uses a re-entrant microwave cavity as its microwave element and lacks an
optical cavity. The bulk acoustic substrate is placed between the body and the lid.
It is marked as transparent blue in the image. In reality, the substrate used in this
image is CaF2, which is fully transparent. A small through hole at the center of the
device is to allow optical light to interface with the acoustic substrate. The metallic
connector shown at the lower side of the left image is the microwave coupling pin.
The brass screw on the side of the left image is the frequency tuning screw. The round
top part is for attaching to the cold finger of the He-4 cryostat.

5.2.1 Cavity assembly

Our hybrid platform is designed to achieve simultaneous microwave (piezoelectric)

and optical (Brillouin) coupling to an HBAR device, as illustrated in figure 5.1(a).

An example device is shown in figure 5.2. We explore both options of a single-pass

implementation without resonant enhancement of signal (figure 5.1b-c), and optical

cavity integrated version (figure 5.1d) enabling resonant enhancement of signal. For

practical reasons, signal detection when rectangular and re-entrant microwave cavities

are used is done through a lock-in measurement and when a coaxial cavity is used

is done through direct VNA measurement. This is further elaborated in the later

sections.
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In contrast to integrated nanomechanical devices that have all of the elements

on a single chip, this platform is an assembly of three distinct resonators (acous-

tic, optical, and microwave) that are well mode-matched (figure 5.1e). This modular

design enables independent optimization of each resonator, including quality factors

and mode-matchings, which are discussed in the following sections. The optical and

microwave resonators are designed to be individually tunable with a wide range, al-

lowing resonant coupling to virtually any transparent crystalline material, and fully

taking advantage of the universality of Brillouin optomechanical interaction.

Acoustic cavity (HBAR)

As discussed previously in chapter 4, the platform design centers around the use

of an HBAR, which supports longitudinal elastic standing waves confined between

the opposing surfaces of a crystalline substrate. At modest cryogenic temperatures

(T = 4 ∼ 10 K), these Fabry-Perot-like acoustic modes can achieve quality factors at

GHz (MHz) frequencies in excess of 107 (109), by working with high purity crystals

with smooth surfaces [53,56].

Plano-convex crystals offer stable resonances with the highest mechanical Q, thus

we use plano-convex HBAR fabricated on a chip for certain single-pass designs (figure

5.1b-c). For a resonantly enhanced device (figure 5.1d), however, there is a restriction

in the acoustic cavity geometry due to optical-acoustic mode-matching alignment

imperfections. There are currently efforts in the lab to improve the alignment between

Fabry-Pérot optical cavity modes and plano-convex acoustic cavity modes, which is a

technique highly desired for improving the performance of our piezo-Brillouin system.

For now, we work with flat, unprocessed substrates for the resonantly enhanced setup.

With a simpler flat-flat resonator, acoustic modes experience diffraction loss, but still

reach Q > 104, and there are added benefits such as material flexibility and simplified

assembly. The substrates host a set of longitudinal modes at their Brillouin frequency
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given in equation 2.7 (typically in the range, 10∼50 GHz), spaced by a mechanical

free spectral range, ∆m = vm/2Lm, and with acoustic linewidth (loss rate), Γ.

Microwave cavity

For electromechanical coupling to an HBAR, we rely on resonant piezoelectric in-

teractions with a 3D microwave resonator as shown in figure 5.1(b-d). We require a

microwave resonator with resonant modes that match the acoustic Brillouin frequency

(10∼50 GHz) and have uniform E-fields along z-direction (figure 5.1e), ideally with

high Q-factor and easy tunability. Rectangular, re-entrant, and coaxial stub cavities,

discussed in chapter 3.4, are common resources for quantum technologies, and are

well-suited for this task [75,76].

The type of microwave cavity is chosen based on the goals and characteristics of

the piezo-Brillouin device we want to produce. A rectangular cavity has the advantage

of being easy to machine and being able to easily target high frequencies (above 20

GHz) by using higher-order modes. Thus, we choose to work with a rectangular cavity

for substrates with high Brillouin frequencies. Silicon is an example of such a substrate

with a high Brillouin frequency of ∼37 GHz. However, a rectangular cavity is prone

to forming spurious microwave modes near the mode of interest due to its simplistic

design.

A re-entrant cavity, on the other hand, has a well-localized fundamental microwave

mode, spectrally isolated from spurious modes. Additionally, the E-field of a re-entrant

cavity is highly concentrated (see table 3.2), making it the most favorable design

to maximize the coupling rate (see equation 3.6). Despite the practical machining

challenge that limits the design to a relatively lower range of frequencies (below 15

GHz), we use re-entrant cavities to interface with substrates with moderate Brillouin

frequencies, such as quartz (∼11 GHz) and CaF2 (∼13 GHz).

A coaxial cavity also has resonant modes that are well spectrally isolated with
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minimal spurious modes. With moderate E-field strength (see table 3.2), and with

higher order modes available, it is the most flexible design among the candidates.

Moreover, a coaxial cavity can be made seamless, giving it an edge when we require a

higher Q-factor for improvements further down the road. Coaxial cavities are used to

couple to a range of substrates, including quartz, CaF2, and LiNbO3 (ΩB ∼21 GHz).

The tunability of resonance frequency is a key requirement for the microwave

cavities to effectively couple to acoustic substrates, as we rely on resonant piezoelectric

interaction. Since the microwave cavity designs we are considering are 3-dimensional,

it is fairly straightforward to achieve reasonable frequency tunability by modifying

the cavity geometries. As illustrated in figure 5.1(b-c), rectangular and re-entrant

designs have a tuning screw on the side that tunes the cavity frequency by effectively

altering the cavity length (rectangular cavity) and modifying the cavity inductance

(re-entrant cavity). Typically, this achieves a tuning range of < 500 MHz (≈ ±5%)

for a rectangular cavity and < 200 MHz (≈ ±2%) for a re-entrant cavity. Tuning

of a coaxial cavity resonance frequency is done by changing the length of the center

post, which provides ∼3 GHz of tuning range (≈ ±30%). An alternative way of cavity

frequency tuning includes inserting a low-loss dielectric rod [78].

Here, we work at T = 4∼10 K and choose oxygen-free high thermal conductivity

(OFHC) copper for its thermal conductivity and low electrical resistivity (see fig-

ure 5.2). Although such a design choice comes with a limited Q-factor (conductive

loss limits microwave Q-factor below 2000), it is sufficient to piezoelectrically drive

phonons, as shown in the following chapters. Upgrading the cavity material from

copper to superconducting metal is a promising future direction that the device can

take, as the Q-factor of a coaxial stub cavity can exceed Qµ > 107 [76]. In experi-

ments, we also observe frequency drift of approximately 10∼40 MHz (0.1% ∼ 0.4%)

which corresponds to the thermal contraction of copper between room and cryogenic

temperatures. Additionally, we make a small (1 mm diameter) aperture through the
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Figure 5.3: Example S11 spectrum of a microwave cavity S11 spectrum of a
microwave cavity is plotted based on equation 5.3. In an experiment, we first take
data from VNA, then fit it with the given function. Parameters used in this example
are, Ωµ/2π = 13.4 GHz, κµ/2π = 20 MHz, κµ,c/2π = 10 MHz, and κµ,i/2π = 10 MHz.

microwave cavity to allow for optical access, which has a negligible impact on the

Q-factor of the microwave design.

It is important to quantify the number of circulating microwave photons inside

a microwave cavity, as it directly leads to the number of piezoelectrically driven

phonons following equation 3.9. We use a vector network analyzer (VNA) to take

the reflection (S11) data from microwave cavities. This can be understood using the

equation of motion of microwave photons inside a cavity,

ċ = i(Ω− Ωµ)c−
κµ
2
c+

√
κµ,ccin. (5.1)
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Using input-output relation,

cout =
√
κµ,cc− cin. (5.2)

Combining equations 5.1 and 5.2 in steady state, we get,

S11(Ω) = X
cout
cin

= αei(Ω−Ωµ)β
κµ,c − κµ

2
+ i(Ω− Ωµ)

κµ
2
− i(Ω− Ωµ)

, (5.3)

where X = αei(Ω−Ωµ)β is a fit parameter to take into account VNA calibration imper-

fections and drifts. Example S11 spectrum following equation 5.3 is shown in figure

5.3. The number of circulating photons (nµ) is given by observing the energy in the

cavity,

Eµ = ℏΩµnµ =
1− |S11|2

κµ,i
Pµ, (5.4)

where Pµ is the input microwave power launched into the cavity and κµ,i is the internal

loss of the microwave cavity (κµ = κµ,i + κµ,c).

Optical cavity

Including an optical cavity into this piezo-Brillouin system allows for resonant en-

hancements of both the optical pump and signal fields [116]. As demonstrated in

prior works [54, 55], a Fabry-Pérot cavity is well-suited to this task, with Gaussian

modes that achieve good spatial overlap with highly confined HBAR modes (see Fig.

5.1e). Also, it is simple to put together with other HBAR/microwave cavity compo-

nents, can predict performance based on mirror reflectivities, and has well-established

methods to control/tune its resonance frequencies [54].

Finesse (F) is an important factor in understanding an optical cavity. It represents
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the number of round-trips that a light wave can make before decaying, expressed as,

F =
∆opt

κopt
, (5.5)

where ∆opt is the optical free spectral range. It is related to the cavity Q-factor by,

Q =
Fωopt

∆opt

. (5.6)

In a Fabry-Pérot cavity comprised of mirrors with reflectivities R1 and R2 (figure

5.4a), finesse can be predicted as,

F =
π(R1R2)

1/4

1−
√
R1R2

. (5.7)

In reality, the finesse of our optical cavity deviates from this value to a small degree

due to having a crystal placed between the mirrors and making it a composite optical

cavity figure 5.4(b).

The resonant frequencies of our optical cavity are tuned with a piezo-actuator that

is incorporated into one of the mirrors, enabling precise control of the cavity length.

As we modify the cavity length, however, the optical mode spacing does not simply

follow the conventional expression, ∆opt = c/2Lopt, due to the vacuum/dielectric

composition of our optical cavity. To characterize this uneven optical mode spacing,

we follow the work done in reference [54]. The transmission matrices for a mirror and

for propagation in space are,

Tmir = − i√
T

 −1
√
R

−
√
R 1


Tprop =

eikoptz 0

0 e−ikoptz

 .

(5.8)
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Figure 5.4: Frequency tuning in a composite optical Fabry-Pérot cavity (a)
Optical Fabry-Pérot cavity composed on mirrors with reflectivities R1 and R2. (b)
Optical Fabry-Pérot cavity with dielectric crystal in the middle. Fresnel reflections
at the vacuum/dielectric interface alter the optical mode frequency spacing to be
wavelength-dependent. (c) Simulated optical cavity resonance spectrum as a function
of cavity length variation. Bright green indicates peak spectral response, or reso-
nance. Due to the dielectric substrate in the middle, we see uneven optical mode
spacing (∆opt). The cavity length is modified by shifting one of the mirrors using a
piezo-actuator. We simulate this by modifying L2 by the varied length. (Caption
continued in next page)
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Figure 5.4: (Caption continued from last page) Parameters used are, L1 = 5
mm, L2 = 5 mm, Lm = 500 um, R1 = 0.99, R2 = 0.99, and nsubstrate = 3. (d) Plot
of optical mode spacing versus the lower frequency of the optical mode pair. Change
of mirror position (L2) is indicated as a colorscale from blue to red, as shown in
the colorbar. In this simulation, we achieve ∆opt variation of up to ∼15 GHz, which
is not representative of what is achieved in the experiment due to the difference in
experimental parameters. Note that in both (c) and (d), we see periodicity in ∆opt as
cavity length is varied by approximately half of the optical wavelength (∼1550 nm/2)
.

We can calculate the total transmission matrix by combining the appropriate trans-

mission matrices for our optical system,

Ttot = Tmir1 · TpropVac · TmirSubst · TpropSubst · TmirSubst · TpropVac · Tmir2, (5.9)

where subscript mir1 (mir2) indicates the mirror on the light entry side (exit side) of

the cavity, Vac is vacuum, and Subst is substrate. For inputted light wave across a

range of frequency, we can obtain the transmitted power spectrum by plotting |T21|2.

Optical cavity tuning, achieved by shifting a mirror position through a piezo-actuator

is illustrated in figure 5.4(b) with varying L2. The shift in |T21|2 spectrum as we move

one of the mirror positions is shown in figure 5.4(c). In experiment, we can vary the

piezo actuator length by approximately 500∼1000 nm. For the reasons we list in the

following section, it is also important to record the change in optical mode spacing,

which is shown in figure 5.4(d).

5.2.2 Cavities in frequency space

Since we are using various frequency components spanning microwave to acoustics to

optics, it is important to characterize the system in frequency space to understand

and control the interactions between them (see figure 5.5).

We start by driving a microwave cavity with resonance frequency Ωµ. Driven mi-

crowave photons, following equation 5.4, piezoelectrically drive phonons in an HBAR
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Figure 5.5: Combined spectral responses of the cavities Spectral response of
microwave (blue), optical (red), and acoustic (green) modes, including the Brillouin
phase-matching bandwidth (dashed green). The Stokes and anti-Stokes sideband fre-
quencies are indicated by black dashed lines, symmetrically spaced around the opti-
cal pump (ωp, black arrow). Only the anti-Stokes is resonant with an optical mode
(at ωopt). Non-uniform optical mode spacing is caused by the Fresnel reflections at
the vacuum/dielectric interface of the crystal within the cavity (figure 5.4c-d) [54].
Adapted from Ref. [57].

where their number can be obtained through equation 3.9. As discussed in chapter 4,

we design the HBAR to have low loss by using high purity (optical-grade with purity

> 99.99 %) material, placing it in a cryostat (< 10 K), and fabricating a smooth

(roughness < 1 nm) convex surface. Note that we can still reach a reasonably high

Q without the convex lens fabrication. In this highly coherent phonon regime and

assuming good mode matching between microwave and phonon modes, piezoelectri-

cally driven phonons are sharply peaked at a set of longitudinal modes within the

microwave cavity spectrum. Here, the microwave resonance frequency and the fre-

quency of the primary mechanical mode of interest should be well matched through

microwave cavity tuning (Ωµ = Ωm).

In the presence of an optical pump, phonons photoelastically scatter the pump

through Brillouin interaction (see chapter 2). Brillouin phase-matching condition in

this interaction leads to a sinc2 [(Ω− ΩB)/4∆m] envelope in the phonon spectrum.

Hence, for the interaction to be the most efficient, we choose our mechanical mode

to match the Brillouin frequency (Ωm = ΩB). Brillouin interaction also leads to both
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the Stokes and the anti-Stokes process. In a single-pass configuration (figure 5.1b-c)

without an optical cavity, we place a fiber Bragg grating (FBG) filter at the output

of the system to suppress either the Stokes or the anti-Stokes signal from reaching

the detector.

For our optical cavity geometry, even a modest finesse (F > 1000) results in

optical linewidths that are orders of magnitude less than the mechanical frequency

(i.e. κopt/Ωm < 10−3). In this deeply resolved-sideband regime, it becomes necessary to

use separate resonances to enhance the pump and signal, thus imposing a requirement

that the optical mode spacing closely matches the acoustic frequency (∆opt ≡ Ωm).

Two features of this hybrid system allow us to meet this requirement. First, the Fresnel

reflections at the vacuum/dielectric interface produced by the HBAR cause the optical

mode spacing to be wavelength-dependent (figure 5.4d), effectively suppressing either

the Stokes or the anti-Stokes process depending on the cavity resonance alignment

(figure 5.5). While this coarse frequency-matching was possible in prior works [54,55],

incorporation of a piezo actuator onto one of the mirrors enables more precise control

required in this multiply resonant system.

Hence, observing the microwave/acoustic/optical cavity components in the fre-

quency space highlights the importance of frequency matching of each element. In

order to achieve the strongest interaction, we not only need to pick the mechanical

mode whose frequency well matches the Brillouin frequency (Ωm = ΩB), but also

tune the microwave cavity to maximally drive the mechanical mode (Ωµ = Ωm), and

tune the optical mode spacing to match the acoustic frequency (∆opt = Ωm). High

tunability of our design that allows > 100 MHz and > 1 GHz tuning range in mi-

crowave and optical regimes, respectively, makes it convenient to effectively perform

piezo-Brillouin operations. After walking through the experimental apparatus in the

following section, we provide a model for the combined piezo-Brillouin process in

section 5.3.
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5.2.3 Measurement setup

As briefly introduced previously, we use two different measurement schemes depend-

ing on the hybrid cavity design. These are lock-in measurement that uses a lock-in

amplifier, and direct measurement of optical pump-signal beat tone through a VNA.

We use lock-in measurement primarily for the initial characterization of substrates

and for single-pass experiments. It is a useful tool for the initial characterization of

acoustic modes as it allows both photoelastic and piezoelectric approaches when driv-

ing the acoustic modes. Detection of phonons through photoelasticity or, equivalently,

spontaneous Brillouin scattering (SBS) measurement with lock-in detection [52] is

a convenient choice as a control experiment, revealing the Brillouin frequency and

acoustic features to look for. On the other hand, direct measurement requires high

optomechanical cooperativity to execute similar SBS measurements through OMIT,

making it unfavorable for photoelastically driven phonon measurement in the single-

pass configuration.

On the other hand, direct VNA measurement is mostly used for the resonantly

enhanced scheme. The benefits of this type of measurement include straightforward

implementation, convenient laser locking ability, and built-in phase noise cancella-

tion. However, unlike lock-in detection, this approach lacks a sensitive photoelasti-

cally driven phonon measurement besides OMIT that requires high optomechanical

cooperativity, making it not the most optimal setup for a control experiment in the

single-pass configuration. Thus, we prefer to do direct measurements on substrates

whose acoustic spectrum is already known.

Lock-in measurement

The experimental setup for lock-in measurement is depicted in figure 5.6. There is a

small variation in the apparatus depending on whether phonons are driven through

photoelasticity (figure 5.6a) or through piezoelectricity (figure 5.6b).
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We first describe the process for detecting photoelastically driven phonons (figure

5.6a). Laser with λopt ≈ 1550 nm is split into two arms, which we call the pump arm

and the probe arm. In the pump arm, light is sent through an intensity modulator,

creating sidebands ΩSIG1 frequency apart from the pump tone, then sent into the

hybrid cavity. ΩSIG1 frequency is later being used for lock-in detection, so it is set to

be around ΩSIG1 ≈ 10 MHz, matching the specifications of our lock-in amplifier. In the

probe arm, optical sidebands roughly Brillouin frequency away from the main tone is

generated through a signal generator (SIG2) and sent through a filter to remove the

existing pump tone. This is then sent through an acousto-optic modulator (AOM),

further shifting the tone (ωprobe = ωpump + ΩSIG2 + ΩAOM), before being launched

into the hybrid cavity. Phonons photoelastically generated by the beat note between

pump and probe (Ωm = ωprobe − ωpump) not only scatters the pump tone but also

scatters the sidebands of the pump tone, resulting in a creation of sidebands ΩSIG1

away from the probe. The optical signal collected goes through a filter to suppress the

remaining pump tone that can easily saturate the photodetector. Finally, we perform

a lock-in detection at ΩSIG1 to detect the beat tone between probe tone (at ωprobe)

and scattered sidebands (at ωprobe ± ΩSIG1).

Lock-in detection of piezoelectrically driven phonons is done similarly with minor

modifications (figure 5.6b). The pump light in this case is not frequency modulated

by ΩSIG1, but rather directly launched into the hybrid cavity. Phonons are now driven

piezoelectrically at frequency ΩSIG2+ΩSIG1 through a microwave cavity mode, causing

the pump light to scatter and create signal at ωpump + ΩSIG2 + ΩSIG1. Note that the

use of a single-sideband mixer (SSB) in driving the microwave cavity is done to avoid

crosstalk between microwave components. Instead of being sent into the cavity, light

in the probe arm is now combined with the signal light and used as a local oscillator

(LO), resulting in a beat tone at ΩAOM − ΩSIG1. After sending the light through

a filter to remove the pump tone, lock-in measurement is done at the frequency
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(ΩAOM − ΩSIG1).

A proportional integral derivative controller (PID) loop, shown as a blue shaded

box in figure 5.6, is there to cancel phase-noise in the setup. The hybrid cavity is

attached to the bottom of a He-4 flow cryostat, which is similar to a long beam with

many vibrational modes. These vibrations are picked up by our pump and probe

lights as phase noise. Experimentally, we observe phase noise when the linewidth of an

optomechanical response reaches 1 kHz, setting a lower limit to the detectable acoustic

linewidth. Here, we mitigate the effects of phase noise by setting up a PID loop. Light

reflected from the cavity acquires the same phase noise as the optomechanical signal,

thus the beat tone between this reflected light and a light tone without the phase

noise (transmitted light in the photoelastically driven phonons scheme, and LO light

in the piezoelectrically driven phonons scheme) contains the phase noise. The beat

tone (at ΩSIG2+ΩAOM) is detected with a fast photodetector, then mixed down to an

appropriate frequency (ΩAOM). This is then input to a PID controller, which generates

an error signal to control a voltage-controlled oscillator (VCO) with output at ΩAOM.

The VCO output finally drives the AOM to modulate the probe light, compensating

for the phase noise.

Direct measurement

Direct VNA measurement of phonon response, on the other hand, has several benefits

over the lock-in measurement, such as being straightforward to implement and phase

noise being innately absent due to the identical optical path between LO and signal.

The experimental setup is illustrated in Figure 5.7. Laser with λopt ≈ 1550 nm is

locked to the optical cavity via the Pound-Drever-Hall (PDH) locking technique. The

optical sidebands required for the lock are generated by the signal generator (SIG2)

and the PM. For OMIT measurements, a sideband is generated by an intensity mod-

ulator (IM), which is driven by a microwave signal generator (SIG1) synchronized to
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the readout frequency of a spectrum analyzer. Here, the main optical tone and the

sideband act as the pump and probe, respectively. The beat note between the trans-

mitted pump and probe is measured via a high-speed photodetector and spectrum

analyzer. The readout frequency of the spectrum analyzer can be synchronized to the

frequency of the signal generator, effectively functioning as a scalar network analyzer.

As we later discuss in chapter 7, optical detection of piezoelectrically driven phonons is

equivalent to microwave-to-optical transduction, where the drive tone from the signal

generator directly drives the microwave cavity, piezoelectrically exciting phonons from

which the pump light scatters to achieve electro-optical conversion. Then, it is natural

to consider the transduction in the opposite direction, optical-to-microwave transduc-

tion. Characterization of optical-to-microwave transduction can be performed in our

setup by generating an optical probe from the pump using the intensity modulator,

which enters the hybrid cavity and photoelastically drives phonons. However, instead

of measuring the optical response of the probe (as in OMIT), the spectrum analyzer

directly reads the signal leaving the microwave cavity.

For the OMIT/transduction measurements described, the transmitted pump serves

as a LO for high-frequency heterodyne detection of the signal sideband. In this config-

uration, it is not easy to attenuate the LO power (e.g. to avoid detector saturation)

without also attenuating the signal. Therefore, to achieve the enhanced sensitivity

needed in anomalous piezoelectricity measurements, we modify the circuit (green

shaded box of Figure 5.7), filtering out the transmitted pump and using a separate,

controllable LO derived from the original laser. We also shift the frequency of this new

LO using an AOM to avoid microwave crosstalk in the detection channel. The spec-

trum analyzer frequency can be offset accordingly to accommodate this shift between

drive frequency and heterodyne frequency, resulting in a unique signal frequency to

avoid any potential microwave crosstalk. Using this separate-path LO can reintro-

duce low-frequency phase noise (<1kHz) in the heterodyne beat note, which does not
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currently impact our measurements but needs to be dealt with in the future as we

further improve the setup.

5.3 Theory

5.3.1 Resonant enhancement of signal from optical cavity

Here, we consider the configuration in which one seeks to measure an optical side-

band scattered from a (piezoelectrically-driven) phonon population. In particular, we

analyze the optical power in the scattered sideband on both single-pass and optical

cavity configurations, to illustrate the benefit of the optical cavity.

Signal without optical cavity enhancement

In the absence of an optical cavity, a strong pump scatters off phonons to generate a

Brillouin sideband. Following section 2.4.2, the optical power in this sideband can be

written as

P ′
sig =

(
g′om,0Lm

vo

)2

Ppnm, (5.10)

which is equivalent to equation 2.46.

Signal with optical cavity enhancement

To compare equation 5.10 to the resonantly enhanced signal, we can derive the output

signal power similar to section 2.4.1, but now in terms of phonon number and scattered

signal power per pump power per phonon.

In the case where we do consider an optical cavity, it becomes natural to describe

the optomechanical interaction through coupled equations of motion for the pump
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and signal fields. In the rotating frame, this can be written as,

ȧs = i
√
Npgom,0b−

κopt
2
as

ȧp = −κopt
2
ap +

√
κopt,cain.

(5.11)

A more extensive Hamiltonian approach can be found in the following section on

space model. Here, we assume that there is no optical detuning (the optical signal is

sitting exactly at the optical cavity resonance).

In steady state, we obtain

i
√
Npgom,0b =

κopt
2
as

κopt
2
ap =

√
κopt,cain.

(5.12)

Inter-cavity pump photon number can then be written as

(κopt
2

)2
Np = κopt,c⟨a†inain⟩. (5.13)

From input-output formalism, Equation 5.12, and Equation 5.13, outgoing scattered

signal field (aout) is

aout =
√
κopt,cas

=

(√
κopt,c

κopt

)2

(4igom,0)

√
⟨a†inain⟩b,

(5.14)

and the corresponding scattered signal power in terms of phonon number is

Psig = 16

(
κopt,c
κ2opt

)2

g2om,0Ppnm, (5.15)

where the scattered signal power per pump power per phonon is 16
(
κopt,c
κ2opt

)2
g2om,0.
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Resonant enhancement of signal

Compared to the single-pass interaction, the effect of incorporating an optical res-

onator is to increase the optomechanical cooperativity and Psig by a factor of F2.

Specifically, we can compare equation 5.10 and equation 5.15, where we get a ratio

of,

Psig

P ′
sig

=
16
(
κopt,c
κ2opt

)2
g2om,0Ppnm(

g′om,0Lm

vo

)2
Ppnm

=
16

π2
η2optF2,

(5.16)

where ηopt is the optical coupling efficiency, κopt,c
κopt

. Here, we assume that everything was

kept constant between the single-pass and resonantly enhanced setup, make a realistic

assumption of ηopt ≈ 1
2
, and recall that gom,0 acquires a factor of Lm

Lopt
compared to

the single-pass coupling rate, corresponding to a geometric filling factor between the

acoustic and optical cavities. Thus, we expect ∼ 0.4F2 improvement in signal power

by introducing an optical cavity with a finesse, F .

Similarly, we can compare the cavity optomechanical cooperativity in equation

2.25 and equation 2.28,

Com

C ′
om

=

4g2om
κoptΓ

g′2om
Γ

Lmn
c

=
16

π2
ηoptF2,

(5.17)

which also shows a ∝ F2 increase.

5.3.2 State space model

Besides the signal enhancement we can achieve via resonant operation of cavities, we

can also predict the spectral response of the system by understanding the state space

model [15, 22]. The Hamiltonian describing the system is

H/ℏ = ωpa
†
pap + ωsa

†
sas + Ωmb

†b+ Ωµc
†c+ (gom,0apa

†
sb+ gemb

†c+H.c.), (5.18)
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where ωp (ωs) is the optical wavelength of the pump (signal) mode. In the rotating

frame with H0/ℏ = ωpa
†
pap + ωpa

†
sas, we obtain an effective Hamiltonian

Heff/ℏ = ∆oa
†
sas + Ωmb

†b+ Ωµc
†c+ (gom,0apa

†
sb+ gemb

†c+H.c.), (5.19)

where ∆opt = ωs − ωp is the detuning of optical signal frequency from the optical

pump. In the undepleted pump regime, we can linearize the Hamiltonian about a

strong, coherent pump, giving the expression

Heff/ℏ = ∆opta
†
sas + Ωmb

†b+ Ωµc
†c+ (goma

†
sb+ gemb

†c+H.c.). (5.20)

Recall from chapter 2 that gom =
√
Npgom,0 and Np is the intracavity pump photon

number. The Heisenberg equations of motion for this Hamiltonian and the input-

output relation between the fields are given by the following equations:

ȧ(t) = Aa(t) +Bain(t) (5.21)

aout(t) = BTa(t)− ain(t) (5.22)

a = (a, c, b)T (5.23)

ain = (ain, a
N
in, cin, c

N
in, b

N
in)

T (5.24)

aout = (aout, a
N
out, cout, c

N
out, b

N
out)

T (5.25)

A =


−i∆opt − κopt

2
0 igom

0 −iΩµ − κµ
2

igem

igom igem −iΩm − κm
2

 (5.26)
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B =


√
κopt,c

√
κopt,i 0 0 0

0 0
√
κµ,c

√
κµ,i 0

0 0 0 0
√
Γ

 , (5.27)

where a is a vector for resonator mode operators, ain(out) is a vector of input (output)

fields, and superscript N is the corresponding noise port (aNin(out), b
N
in(out), and c

N
in(out)).

Note that in this analysis, we assume zero noise input.

In the frequency domain, we can reduce the expressions into a scattering matrix,

aout(ω) = S(ω)ain(ω) (5.28)

S(ω) = BT (−iωI − A)−1B − I. (5.29)

Using this scattering matrix, we can obtain various features that we can expect

from our system, including OMIT, microwave-to-optical transduction, and optical-

to-microwave transduction. Since we have previously solved for the OMIT spectrum

in chapter 2, here we mainly focus on the transduction spectrum (η(ω) = |Soe(ω)|2 =

|Seo(ω)|2).

η(ω) =
κopt,c
κopt

κµ,c
κµ

∣∣∣∣α(ω)β(ω)

∣∣∣∣2 (5.30)

α(ω) = −2
√
CemCom (5.31)

β(ω) = Cem

(
1− i(ω −∆opt)

κopt/2

)
+ Com

(
1− i(ω − Ωµ)

κµ/2

)
+

(
1− i(ω −∆opt)

κopt/2

)(
1− i(ω − Ωµ)

κµ/2

)(
1− i(ω − Ωm)

Γ/2

)
.

(5.32)

We observe peak conversion when the optical detuning, microwave mode, and acous-

tic mode are in resonance. Measuring transduction at this resonant frequency (ω =

∆opt = Ωµ = Ωm), we get

η = ηoptηµ
4CemCom

(Cem + Com + 1)2
, (5.33)
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where ηµ is the microwave coupling efficiency, κµ,c

κµ
. This is consistent with the expres-

sion for microwave-to-optical transduction efficiency in prior studies.
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Chapter 6

Precision sensing of piezoelectricity

6.1 Introduction

Mechanical resonators are widely used as sensitive sensors, including the detection

of weak forces [40], small masses [41], and even a single electron spin [42]. In prior

works [54,55], it has been shown that Brillouin optomechanical systems with mechan-

ical resonators can achieve strong coupling, where they reach high enough phonon

sensitivity to detect thermal phonons at cryogenic temperatures. By simultaneously

combining strong optomechanical coupling enabled through Brillouin scattering and

piezoelectric interactions in an HBAR as described in chapter 5, one of our goals is

to create a measurement tool for piezoelectrically driven phonons, sensitive enough

to even detect anomalous piezoelectricity in inversion-symmetric crystals.

There is a strong motivation for this type of study, as parasitic piezoelectricity

may be a relevant loss channel for emerging solid-state quantum technologies. In fact,

in many of the systems combining superconducting qubits with piezoelectricity, peo-

ple have reported qubit lifetimes of up to two orders of magnitude shorter compared

to conventional transmons [7, 8, 27–33]. Even in qubit designs without any inten-

tional electromechanical coupling components, anomalous piezoelectricity in qubit
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substrates, if it exists, can lead to qubit dissipation, setting an intrinsic limit to qubit

lifetimes [34,38]. An example of a dissipation model for a simplistic qubit design can be

found in section 3.5. Anomalous piezoelectricity from nominally non-piezoelectric ma-

terials can originate from subsurface lattice damage, bulk defects/imperfections [35],

built-in stress [36], or even the inherent asymmetry of the lattice boundary [34].

In this chapter, we build upon the hybrid cavity assembly described in chapter

5, and show its usage as a piezo-sensing platform. In particular, we demonstrate

extremely high sensitivity by detecting anomalous piezoelectricity in CaF2, a nomi-

nally non-piezoelectric material, and comparing the results with a more conventional

means of piezo-sensing. This sensitivity, combined with the modular construction of

the system, makes it an appealing tool to investigate electromechanical couplings in

a variety of materials. Additionally, we provide a bound in anomalous piezoelectricity

in Si, based on limited observations.

6.2 Experimental data

6.2.1 Control experiment: x-cut quartz in single-pass (lock-

in) setup

Before attempting to detect anomalous piezoelectricity in a non-piezoelectric material,

we first conduct a control experiment on a known piezoelectric material to validate

the setup described in chapter 5. We choose x-cut quartz for this control experiment.

X-cut quartz is a material with moderate piezoelectricity (2.3 pm/V) and its bulk

acoustic properties are well studied [53,56]. With x-cut quartz, we fabricate a plano-

convex HBAR as laid out in chapter 4. The microwave component used is a re-entrant

microwave cavity (figure 3.2b, 5.1c). The setup used is the lock-in apparatus for single-

pass measurements (figure 5.6).

Characterization of the re-entrant microwave cavity used to piezoelectrically drive
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Figure 6.1: Microwave cavity characterization for single-pass x-cut quartz
experiment S11 spectrum of the microwave cavity (re-entrant design) used for single-
pass x-cut quartz experiment at cryogenic temperature (5 K). Blue is the measured
data and red is the fit based on equation 5.3. The fit values are: Ωµ/2π = 11.35 GHz,
κµ/2π = 8.7 MHz, Qµ = 1300, κµ,c/2π = 4.5 MHz, Qµ,c = 2500, κµ,i/2π = 4.2 MHz,
Qµ,i = 2700.

the phonons in the system is shown in figure 6.1. The cavity is made out of OFHC

copper, is centered around Ωµ/2π = 11.35 GHz, and reaches a loss rate of κµ/2π =

8.7 MHz (κµ,c/2π = 4.5 MHz, κµ,i/2π = 4.2 MHz), which corresponds to a quality

factor of Qµ = 1300 (Qµ,c = 2500, Qµ,i = 2700). Note that the cavity undergoes

contraction at cryogenic temperatures, leading to drifts in the resonance frequency

and the coupling rate. This is accounted for and the cavity is adequately tuned as we

assemble the apparatus at room temperature.

Once the system is set up and brought down to a cryogenic temperature (5 K) with

a He-4 flow cryostat, we initially detect a photoelastic optomechanical response from

the x-cut quartz without any microwave drive, following the measurement scheme in

figure 5.6(a). The result of this measurement is shown in figure 6.2(a-b). By control-

ling the optical pump wavelength, we set the Brillouin frequency to match the mth

longitudinal phonon mode frequency (ΩB = Ωm = 11.3495 GHz). This maximizes

the signals of acoustic resonances within the Brillouin bandwidth. We then confirm

that the features we are observing are indeed phonon responses by comparing the

detected acoustic FSR (∆m = 5.7 MHz) and transverse mode spacing (150 kHz) to

theoretical predictions, both of which well-match. We also intentionally mismatch the

pump and probe light polarizations, and check that the signal goes away. The uneven
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Figure 6.2: Single-pass phonon spectroscopy of x-cut quartz measured with
a lock-in amplifier at 5 K temperature (a) Response from stimulated Bril-
louin scattering, where electrostrictively driven phonons photoelastically scatter the
pump. The Brillouin frequency is set to match the mth longitudinal phonon mode fre-
quency (ΩB = Ωm = 11.3495 GHz), such that the three families of resonances within
the bandwidth are maximized (corresponding to m-1th, mth, and m+1th longitudinal
modes). Phonon mode numbers of the response peaks are indicated as (longitudinal
mode number, transverse mode number). Label ’OPT’ indicates signals from optically
driven phonons. Observed acoustic FSR (∆m) is 5.7 MHz, consistent with substrate
thickness (Lm) of 0.5 mm. Observed acoustic linewidth (Γ) is 1.3 kHz. The center
family of modes (mth longitudinal mode) within the dashed box is zoomed in and
plotted in (b). (Caption continued in next page)
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Figure 6.2: (Caption continued from last page) (b) Finer transverse mode struc-
tures are indicated up to the 5th transverse mode. The uneven distribution of couplings
to higher-order transverse modes mostly originates from fabricated HBAR device im-
perfections, and to a lesser degree from optical alignment. We observe transverse
mode spacing of 150 kHz. (c) Brillouin scatter response from piezoelectric phonons.
Label ’MW’ indicates signals from microwave-driven phonons. Features closely re-
semble those in (a) with identical acoustic FSRs and linewidths. Longitudinal modes
matching with those in (a) are compared with dotted lines. The center family of
modes (mth longitudinal mode) within the dashed box is zoomed in and plotted in
(d). (d) Features closely resemble those in (b) with identical acoustic transverse mode
spacing. Higher-order transverse modes matching with those in (b) are compared with
dotted lines. (m,0)-th acoustic mode, marked with a dashed box, is further zoomed
and shown in (e). (e) The zoomed-in spectrum of (m,0)-th acoustic response with
varying microwave input power. In the legend is the microwave drive power in dBm.
(f) Peak signal amplitudes from (e) are squared and plotted against the microwave
drive power. The color of each datapoint matches that of (e). The dashed black line is
a linear fit, indicating a linear relation between microwave drive power and detected
signal power (slope of 0.99±0.02 when y-axis is plotted in dB).

distribution of couplings to higher-order transverse modes mostly originates from fab-

ricated HBAR device imperfections, and to a lesser degree from optical alignment.

Note that the observed phonon linewidth of 1.3 kHz indicates a surface roughness

limited HBAR, as the linewidth corresponds to a surface roughness of approximately

0.9 nm, consistent with the discussion on surface roughness induced loss in chapter 4.

From the signals in figure 6.2(b), we obtain a single-photon optomechanical coupling

rate of g′om,0/2π = 130 Hz ±50%, which includes the theoretically predicted value

of 158 Hz based on equation 2.26. Minor optical misalignment and pump/probe po-

larization mismatch possibly account for the slightly lower observed optomechanical

coupling rate compared to theory.

Once phonon spectrum and optomechanical coupling are well understood, we

switch to the piezoelectric phonon measurement scheme in figure 5.6(b). Besides the

Brillouin frequency tuning, the microwave cavity is tuned to match the Brillouin-

active phonon frequency (Ωµ ≈ Ωm). The measurement result is shown in figure

6.2(c-d). Compared to the previous optomechanically driven phonons response (figure
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6.2a-b), we observe similar longitudinal and transverse phonon features with identical

longitudinal acoustic FSR, transverse mode spacing, and phonon linewidth. Dotted

black lines in the figure directly compare the results, highlighting the similarities.

Thus, we can conclude that the observed signals are indeed features from phonons

that are electromechanically driven.

To calculate the piezoelectric constant of x-cut quartz from the observed signal, we

first convert the signal to the number of phonons in the system using equation 5.10.

The number of photons circulating in the microwave cavity is given by equation 5.4.

Combining the number of detected phonons and microwave photons, we can extract

the electromechanical coupling rate from equation 3.9. From the data, we obtain an

electromechanical coupling rate of gem/2π = 2.85 kHz (we used the theoretical value of

g′om/2π = 158 Hz for this electromechanical analysis), corresponding to piezoelectric

constant of 0.94 pm/V ±50% from equation 3.6. This closely matches with the liter-

ature value of cryogenic d33 = 0.95 pm/V for x-cut quartz [117], and the discrepancy

is most likely due to an insignificant microwave/acoustic/optical mode mismatch.

To confirm piezoelectricity as the primary source of electromechanical coupling, we

record the phonon spectrum at several microwave drive powers (figure 6.2e-f). Here,

we observe a linear relationship between the peak power and the microwave drive

power as shown by the slope of 0.99 ± 0.02 in figure 6.2(f). This is a clear indicator

of the piezoelectric effect, which is a linear electromechanical interaction.

From the x-cut quartz control experiment, we have validated the proposed piezo-

Brillouin setup by successfully obtaining the optomechanical coupling rate and the

electromechanical coupling rate of the substrate. Hence, we can now test the setup

by probing an example of a non-piezoelectric substrate, CaF2. For detailed parameter

values for the measurements done in this section, see appendix A.
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Figure 6.3: Microwave cavity characterization for single-pass CaF2 experi-
ment S11 spectrum of the microwave cavity (re-entrant design) used for single-pass
CaF2 experiment at cryogenic temperature (6 K). Blue is the measured data and red
is the fit based on equation 5.3. The fit values are: Ωµ/2π = 13.455GHz, κµ/2π = 7.2
MHz, Qµ = 1870, κµ,c/2π = 2.8 MHz, Qµ,c = 4800, κµ,i/2π = 4.4 MHz, Qµ,i = 3060.

6.2.2 Anomalous piezo-measurement 1: CaF2 in single-pass

setup

CaF2 is an inversion symmetric crystal, meaning that it should nominally be non-

piezoelectric. For the purpose of testing our piezo-Brillouin platform, CaF2 has a

couple of advantages over other substrates. First, the Brillouin-active mechanical

frequency for CaF2 is ∼13.3GHz, which we can easily target with minimal changes

in the setup used for x-cut quartz. Additionally, CaF2 has a moderate photoelastic

constant, approximately 60% of that of quartz, meaning that we should be able to

reliably obtain Brillouin scattered signals from CaF2.

The setup of the lock-in detection follows figure 5.6, with hybrid cavity design in

figure 5.1(c). The microwave component used here is a re-entrant microwave cavity

made out of OFHC copper (figure 6.3). It is centered around Ωµ/2π = 13.455 GHz

and reaches a loss rate of κµ/2π = 7.2 MHz (κµ,c/2π = 2.8 MHz, κµ,i/2π = 4.4 MHz),

which corresponds to a quality factor of Qµ = 1870 (Qµ,c = 4800, Qµ,i = 3060).

Similar to the x-cut quartz control experiment, we begin with stimulated Brillouin

scattering measurement using a lock-in detection scheme (figure 5.6a) at cryogenic

temperature (6 K), where we detect the response from photoelastically driven phonons

(figure 6.4a-b). Within the Brillouin bandwidth, we find signals with frequency spac-
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Figure 6.4: Single-pass phonon spectroscopy of CaF2 measured with a lock-in
amplifier at 6 K temperature (a) Response from stimulated Brillouin scattering.
The Brillouin frequency is set to match the mth longitudinal phonon mode frequency
(ΩB = Ωm = 13.457 GHz), such that the three families of resonances within the
bandwidth are maximized (m-1th, mth, and m+1th longitudinal modes). Phonon mode
numbers of the response peaks are indicated as (longitudinal mode number, trans-
verse mode number). Label ’OPT’ indicates signals from optically driven phonons.
Observed acoustic FSR (∆m) is 1.3 MHz, which is consistent with substrate thickness
(Lm) of 3 mm. The observed acoustic linewidth (Γ) is 1.7 kHz. The center family
of modes (mth longitudinal mode) within the dashed box is zoomed in and plotted
in (b). (b) Finer transverse mode structures are indicated up to the 3rd transverse
mode, with transverse mode spacing of 130 kHz. (c) Brillouin scatter response from
piezoelectric phonons. (Caption continued in next page)
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Figure 6.4: (Caption continued from last page) Label ’MW’ indicates signals
from microwave-driven phonons. Features closely resemble those in (a) with identi-
cal acoustic FSRs and linewidths. Longitudinal modes matching with those in (a)
are compared with dotted lines. The center family of modes (mth longitudinal mode)
within the dashed box is zoomed in and plotted in (d). (d) Features closely resemble
those in (b) with identical acoustic transverse mode spacing. Higher-order transverse
modes matching with those in (b) are compared with dotted lines. Due to the sym-
metry existing in microwave mode, we drive every other transverse mode. (m,0)-th
acoustic mode, marked with a dashed box, is further zoomed and shown in (e). (e)
The zoomed-in spectrum of (m,0)-th acoustic response with varying microwave input
power. In the legend is the microwave drive power in dBm. (f) Peak signal ampli-
tudes from (e) are squared and plotted against the microwave drive power. The color
of each datapoint matches that of (e). The dashed black line is a linear fit, indicating
a linear relation between microwave drive power and detected signal power (slope of
1.06±0.03 when y-axis is plotted in dB).

ings matching the predicted values for acoustic FSR (∆m = 1.3 MHz) and transverse

mode spacing (130 kHz). We also check that the signals disappear as we intentionally

mismatch the pump/probe polarizations to confirm that we are indeed detecting a

phonon response. Linewidths of the phonon modes are 1.7 kHz, corresponding to a

reasonable surface roughness of 2.3 nm. Furthermore, the single-photon optomechan-

ical coupling rate obtained from the signal is g′om,0/2π = 26 Hz ±50%, which is close

to the theoretical value of 29 Hz based on equation 2.26. We expect minor optical

misalignment and pump/probe polarization mismatch possibly explain the slightly

lower observed optomechanical coupling rate compared to theory.

Finally, we switch the apparatus to the piezoelectric drive configuration and look

for any phonon response caused by a microwave drive at the Brillouin frequency. The

results are presented in figure 6.4(c-d), where we clearly see microwave-driven motion,

indicating a measurable electro-mechanical coupling. The detected signal only exists

at the Brillouin frequency and has features such as acoustic FSRs and transverse

mode spacings, indicating that it is indeed a mechanical response. This rules out

the possibility that the response is originating from an unexpected electro-optical

coupling. Note that we only observe every other transverse mode. This is because
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the symmetry of microwave drive prohibits coupling to odd transverse modes, which

follows the Hermite-Gaussian bases [53]. This feature is absent in x-cut quartz data

(figure 6.2), since the x-cut quartz device was not as cylindrically symmetric as the

CaF2 device, leading to microwave excitation of odd transverse acoustic modes in

x-cut quartz. As shown in figure 6.4(e-f), we also observe the linear dependence of

signal power to microwave drive power. This means that what drives phonons in our

system is a linear electromechanical coupling. We refer to this coupling as anomalous

piezoelectricity, although the innate mechanisms to such effect are uncertain (e.g.

charged surfaces and crystal defects).

Calculating the coupling rate of the electromechanical interaction as we did in the

previous section on x-cut quartz, we get a small value of gem/2π = 2.8 Hz. Following

equation 3.6, we can correlate the coupling rate with an effective piezoelectric constant

assuming for both bulk and surface piezoelectricity. For bulk piezoelectricity, this

corresponds to a piezoelectric constant of d33 = 1.47 fm/V, which is much weaker

compared to that of nominal piezoelectric materials. On the other hand, we can

assume that the piezoelectricity is concentrated within a 1 nm surface layer. In such

a case, the surface piezoelectric region requires a piezoelectric constant of 43 pm/V,

which is rather unreasonable since such a strong piezoelectricity, if it exists, would

have already been easily detected through other conventional means.

Therefore, our observations of anomalous piezoelectricity in CaF2 indicate an ef-

fective piezoelectric coefficient between 1.47 fm/V and 43 pm/V, depending on how

the phonon emitting sites are distributed, with a heavy bias towards bulk piezoelec-

tricity with a value closer to the lower 1.47 fm/V. For detailed parameter values for

the measurements done in this section, see appendix A.
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6.2.3 Anomalous piezo-measurement 2: Finding bounds in Si

anomalous piezoelectricity

Now that we have demonstrated the detection of anomalous piezoelectricity in CaF2,

a nominally non-piezoelectric material, we are ready to test our primary substrates of

interest, Si. Si is a widely used substrate for integrated circuits and is also commonly

used as a qubit substrate. Although it is an inversion symmetric crystal with no

piezoelectricity, it is of interest to look for the existence of anomalous piezoelectricity

since even weak piezoelectricity can lead to qubit decoherence as discussed in chapter

3.

The Brillouin frequency of Si is ∼ 37.7 GHz. Our single-pass measurement config-

uration (figure 5.6) is minimally modified to operate at such a high frequency. Signal

generator #2 (SIG2) now generates a ∼ 18.8 GHz tone, and we use the second over-

tone generated by the phase modulator (PM) to create a probe/LO tone ∼ 37.7 GHz

away from the pump. A microwave doubler is also added in front of the microwave

cavity such that the ∼ 18.8 GHz tone from SIG2 can be doubled to ∼ 37.7 GHz to

correctly excite Brillouin-active phonons.

Then, we proceed to characterize the cavities and the interactions through the

system. For the microwave component, we use a TE130 mode of an OFHC copper

rectangular cavity (figure 5.1b). Microwave cavity of the system exhibit κµ,i = 144

MHz (Qµ,i = 260) and κµ,c = 70 MHz (Qµ,c = 540). The relatively low Q-factor stems

from the challenge of designing a high-frequency microwave cavity. Due to the reduced

dimensions required to create high-frequency modes, sections contributing to the loss

(such as seam, metal oxide, etc) have higher participation than standard < 10 GHz

designs.

Through all-optical stimulated Brillouin scattering, we identify the acoustic prop-

erties of the system. With a plano-convex HBAR fabricated on a 1 mm thick (Lm)

float-zone high resistivity (R > 10,000 Ω·cm) Si, we observe Γ of 45 kHz (figure 6.5a).
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Figure 6.5: Single-pass phonon spectroscopy of Si measured with a lock-in
amplifier at 10 K temperature (a) Response from stimulated Brillouin scattering
in plano-convex Si HBAR. The Brillouin frequency is set to match the mth longitudi-
nal phonon mode frequency (ΩB = Ωm = 37.764 GHz), such that the three families of
resonances within the bandwidth are maximized (m-1th, mth, and m+1th longitudinal
modes). Phonon mode numbers of the response peaks are indicated as (longitudinal
mode number, transverse mode number). Label ’OPT’ indicates signals from optically
driven phonons. Observed acoustic FSR (∆m) is 4 MHz, which is consistent with sub-
strate thickness (Lm) of 1 mm. The observed acoustic linewidth (Γ) is 45 kHz. (b)
Brillouin scatter response from the same substrate as in (a) when microwave drive
is present. Label ’MW’ indicates microwave driven is on. we do not see any phonon
response here. With the noise floor, we can calculate a bound in anomalous piezoelec-
tricity in Si, which corresponds to d33 = 1.2 fm/V assuming bulk piezoelectricity and
d33 = 6 pm/V assuming surface piezoelectricity (tpz = 1 nm). (c) Brillouin scatter
response from piezoelectric phonons in flat-flat Si HBAR with 150 nm AlN layer. Ob-
served acoustic FSR is 4 MHz, consistent with 1 mm substrate thickness. Observed
acoustic linewidth is ∼ 1.5 MHz. The signal can be converted into a piezoelectric
constant of ∼ 1 pm/V, which is close to the literature value of the AlN piezoelectric
constant, 5.1 pm/V.
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Moreover, the response can be correlated with an optomechanical coupling rate of

g′om/2π = 37 Hz ±50%, close to the theoretically calculated (equation 2.26) 42 kHz.

Switching the setup to allow a microwave drive tone to enter the cavity, we search

for any Brillouin optomechanical response from piezoelectrically driven phonons. Fig-

ure 6.5(b) presents our efforts in searching for such a signal. Unfortunately, (or fortu-

nately from the perspective of a qubit) we did not observe any noticeable signal. To

confirm that the null response of figure 6.5(b) is indeed valid, we made a measurement

with an AlN on Si flat-flat HBAR (figure 6.5c), where a 150 nm piezoelectric AlN

layer drives 37 GHz Brillouin active phonons in Si (AlN film thickness measured using

ellipsometry). Here we obtain an electromechanical coupling rate of gem/2π = 2 kHz,

corresponding to 1 pm/V of piezoelectricity. This lower detected value of piezoelec-

tricity compared to the literature value of 5.1 pm/V is most likely a result of poor

AlN layer quality, as we are able to visibly notice grains on the surface of AlN through

a microscope.

Returning to the anomalous piezoelectricity measurement in Si, we are still able

to calculate an upper bound in Si anomalous piezoelectricity based on the noise

recorded. Using the theoretical value of optomechanical coupling rate (g′om/2π = 42

kHz), we calculate a bound in electromechanical coupling rate, gem/2π = 3.5 Hz,

from the noise. From equation 3.6, this electromechanical coupling rate corresponds

to either a bulk piezoelectric value of 1.2 fm/V or a surface piezoelectric value of

6 pm/V across a 1 nm thin surface. With the literature material properties of Si,

we then follow the work laid out in 3.5.2 to obtain the qubit T1 correlated with the

piezoelectricity values. In the case of bulk piezoelectricity, this results in a qubit T1

bound of 290 ms, whereas the surface (1 nm thick) piezoelectricity case gives a bound

of 4 ms. Note that the surface piezo-limited bound of qubit T1 is only an order of

magnitude higher than the current limit in qubit T1 of ∼ 0.3 ms [79]. With weak

photoelastic properties of Si limiting the piezo-detection sensitivity of the device, we
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Figure 6.6: Microwave cavity characterization for optical cavity-enhanced
CaF2 experiment S11 spectrum of the microwave cavity (coaxial design) used for
optical cavity-enhanced CaF2 experiment at cryogenic temperature (8.7 K). Blue is
the measured data and red is the fit based on equation 5.3. The fit values are: Ωµ/2π
= 13.405 GHz, κµ/2π = 22.4 MHz, Qµ = 600, κµ,c/2π = 10.9 MHz, Qµ,c = 1230,
κµ,i/2π = 11.5 MHz, Qµ,i = 1160.

seek to improve our platform for higher sensitivity such that it can give a high enough

bound in anomalous piezoelectricity limited qubit T1 to not realistically impact any

of the qubit devices in the future. This motivates us to incorporate an optical cavity

to take advantage of resonant enhancement, as discussed in section 5.3.1. For detailed

parameter values for the measurements done in this section, see appendix A.

6.2.4 Anomalous piezo-measurement 3: CaF2 in optical cav-

ity enhanced setup

Resonant enhancement enabled by integrating an optical cavity into the setup allows

for detections with higher sensitivity compared to the single-pass case. With an optical

cavity added to the setup, it is more intuitive and convenient for us to perform direct

measurement of signal, following the apparatus shown in figure 5.7. The design of

the hybrid cavity assembly is shown in figure 5.1(d), where an acoustic substrate is

placed above the pin of a coaxial microwave resonator and between a Fabry-Pérot

optical cavity. We demonstrate the detection of anomalous piezoelectricity in CaF2

to compare with the previous single-pass measurements.

We begin the experiment by characterizing the resonator components of the hybrid
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Figure 6.7: Optical cavity characterization for optical cavity-enhanced CaF2

experiment at 8.7 K temperature (a) The plot of optical mode spacing (2∆opt)
versus the lower frequency of the optical mode pair (green), expected Brillouin fre-
quency of CaF2 (blue), and microwave cavity resonant frequency (red). Optical mode
spacing is obtained between a pair of resonances that are 2 modes apart. The dotted
green line is a guide to the eye highlighting the range at which optical mode spacings
vary. Optical cavity mode spacings can be further fine-tuned using a piezo-actuator
installed between the optical cavity. We choose to operate where the Brillouin fre-
quency, microwave cavity resonance, and optical mode spacings intersect, marked
with a black arrow. (b) The normalized reflection spectrum of the optical cavity.
Pump/signal modes are chosen to be the mode pair indicated with a black arrow
in (a), whose mode spacing 2∆opt matches with the Brillouin spacing and microwave
cavity resonance. Blue is the reflection data and orange is the fit obtained through the
input-output relation of a Fabry-Pérot cavity (See footnote). Fit values are: κopt/2π
= 2.1 MHz, κopt,c/2π = 0.6 MHz, F = 3200.

cavity. First, the coaxial microwave cavity is made out of OFHC copper, and its S11

reflection spectrum at cryogenic temperature (8.7 K) is given in figure 6.6. Note that

it is vital to tune the cavity frequency to match the resonances of other cavities as

explained in section 5.2.2. We change the length of the center pin of the coaxial cavity

to optimize the microwave cavity frequency.
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Then we have the acoustic cavity element - HBAR. Unlike in the previous section,

we use a CaF2 HBAR with flat-flat geometry. This results in an acoustic lifetime

that is diffraction limited. Techniques to integrate a plano-convex HBAR within an

optical cavity are currently being pursued in the lab, but are not implemented in this

experiment. However, if we can reach high detection sensitivity without requiring

plano-convex fabrication, flat-flat geometry has several added benefits such as mate-

rial choice flexibility and simplified assembly. Characterization of acoustic linewidth

is done through OMIT measurement (figure 6.8) which is further discussed in the

following paragraphs.

The last cavity component requiring characterization is the Fabry-Pérot optical

cavity (figure 6.7). It is composed of two mirrors - one flat and one concave - both with

99.9% reflectivities. The expected value of finesse is 3140 from equation 5.7, meanwhile

we obtain F = 3200 from measurement1. As explained in chapter 5, we have to find a

pair of modes with frequency spacing matching the Brillouin frequency. This is readily

achieved through the vacuum/dielectric composition of the optical cavity in addition

to a piezo-actuator controlling the optical cavity length (see figure 5.4). Applying

this to the current experiment, figure 6.8(a) well illustrates this process of finding the

optimal optical cavity mode pair. We also notice from data that shrinkage of cavity

geometry at cryogenic temperature has minimal effect on optical cavity dissipation.

With the microwave/acoustic/optical cavity components in place, we characterize

the optomechanical interaction through OMIT. We have previously introduced ways

to understand an OMIT spectrum in section 2.4.1. We fit the data in figure 6.8, to

equation 2.34, from which we obtain respectable optomechanical cooperativity of Com

= 0.705 and optomechanical coupling rate of gom/2π = 385 kHz at a moderate optical

1. Finesse can be obtained by fitting the reflection and transmission spectrum of a Fabry-Pérot
cavity mode, given via input-output formalism as [55],

R(ω) =
∣∣∣ i(ω−ωopt)−κopt/2+κopt,c

κopt/2−i(ω−ωopt)

∣∣∣2, T (ω) = ∣∣∣ κopt,c

κopt/2−i(ω−ωopt)

∣∣∣2.
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Figure 6.8: OMIT spectrum with CaF2 at 8.7 K temperature Data is shown
in blue and fit is shown in orange. Fit values are: Ωm/2π = 13.354 GHz, 2∆opt/2π
= 13.354 GHz, Γ/2π = 400 kHz, κopt/2π = 2.1 MHz, F = 3200. gom/2π = 385 kHz,
Com = 0.705. This OMIT data is for microwave-driven motion measurement, taken
with Pp (optical pump power) = 23 mW.

Figure 6.9: Spectroscopy of anomalous piezoelectricity in CaF2 (a) Coherent,
cavity-enhanced optical spectroscopy of microwave-driven motion in CaF2 at 8.7K
temperature. The amplitude of driven motion (characterized by displacement and√
nm) is calculated from the detected optical signal. Legend indicates microwave power

launched into the system. (b) Relation between the peak-driven motion and microwave
power. The driven motion is represented in units of phonon number and signal power.
To obtain the driven motion, background noise is subtracted from the peak signal in
(a). The color of each datapoint matches that of the main graph. Black points are not
plotted in (a). The black dashed line is a fit, giving a power relation, nm ∝ P 0.82±0.07

µ .
Adapted from Ref. [57].
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pump power Pp = 23 mW. Additionally, we find acoustic linewidth of Γ/2π = 400

kHz, which corresponds to a diffraction-limited linewidth as expected from a flat-flat

HBAR.

After characterizing the cavity components and the optomechanical coupling, we

apply a microwave drive at the CaF2 Brillouin frequency and look for an optical

response scattered via phonons. The results of this experiment are shown in figure

6.9(a), where we clearly see non-zero microwave-driven motion, indicating a measur-

able electro-mechanical coupling. Optical signals from driven motions are converted

to displacements and phonon numbers through equation 5.15. Similar to the previous

observations from CaF2 single-pass experiment, the detected signal only exists at the

Brillouin frequency, indicating that it is indeed a mechanical response. This rules out

the possibility that the response is coming from another source such as electro-optical

coupling. Looking at the phonon response in relation to input microwave power (figure

6.9b), we notice a power relation of nm ∝ P 0.82±0.07
µ . Although this is fairly close to a

linear relation (nm ∝ Pµ) expected from a piezoelectric response, the minor deviation

can be attributed to unaccounted noises raising the noise floor and contributions from

unaccounted weaker lower order effects since we expect the anomalous piezoelectric

effect to be extremely weak. Subtracting background noise (consisting of shot noise

and detector noise) and thermal noise from the response shown in figure 6.10, we

detect coherent acoustic response corresponding to nm=1.2, or a peak displacement

for our acoustic standing wave of 0.25 am. This corresponds to an extremely small

effective electromechanical coupling rate of gCaF2
em /2π = 0.03 Hz.

This effective piezoelectricity could be attributed to imperfections distributed in

the bulk or concentrated at the surface. If the acoustic response was derived from a

piezoelectric coupling across a thin surface layer of 1 nm, it would correspond to an

effective piezoelectric constant of d33 = 2.44 pm/V (comparable to common piezo-

electric materials). However, such a large piezoelectric coefficient would be inconsis-
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Figure 6.10: Effective thermal phonon occupation in CaF2 at 8.7 K temper-
ature PSD: power spectral density. (a) Amplitude spectral density of spontaneous
(thermal) motion in CaF2 at 8.7 K temperature. The maximum optical pump power
used in the measurement is 30.1 mW, corresponding to cooperativity of Com = 0.914.
The response is fitted with a Lorentzian (dashed black line) with 535 kHz linewidth
and the shaded area under the curve is integrated to obtain an effective thermal occu-
pation of n̄th = 5.64. The peak of the Lorentzian fit indicates the detection sensitivity,
corresponding to 2.13×10−4 phonons/Hz (b) Effective thermal occupation at multiple
optomechanical cooperativities (blue) is fitted with a phonon cooling expression in
equation 6.1 (red). The base thermal phonon number at Com is nth = 10.9. Adapted
from Ref. [57].

tent with other investigations into CaF2 [35], and quantitative interferometric-based

piezo force microscopy (IDS-PFM) [118, 119] measurements conducted on this sam-

ple (which revealed no signal, see section 6.3). Alternatively, if it is derived from a

uniform piezoelectric coupling distributed through the bulk of the crystal [35–37], it

would correspond to a weak effective d33 of 83 am/V, which would be consistent with

the previously mentioned null results from IDS-PFM (given measurement noise floor

of 55 fm/V). To explain this effective bulk property, one might consider an ensemble

of polar defects, which effectively act as piezoelectric emitters. Such a mechanism

could be intrinsically linked to dielectric loss, motivating further study, particularly

in the context of solid-state qubit decoherence.

The fundamental noise floor of this technique is ultimately limited by the thermal

noise of the acoustic resonator, which we can detect in the absence of the microwave

drive (see figure 6.10). The effective thermal motion we detect corresponds to an
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average occupation of nth = 5.64 at Com = 0.914. Since the optomechanical cooper-

ativity of the system is fairly large (Com ∼ O(0.1)), we observe laser cooling of the

thermal population. Fitting the effective thermal phonon data to the expression for

laser-cooled thermal phonon occupancy [4],

n̄th = nth
1

1 + Com

, (6.1)

we obtain a base thermal phonon number of nth = 10.9 at Com = 0 (see figure

6.10b). At the temperature of the cryostat (8.7 K), this value should be equal to

13 (nth = (eℏΩm/kBT − 1)−1). The observed thermal phonon number is slightly lower

than the expected value because of the location of the thermometer. We clamped the

thermometer at the hottest surface of the hybrid cavity to avoid underestimating the

system temperature. As a result, the acoustic substrate is highly likely to be sitting

at a slightly lower temperature than what we read from the thermometer, explaining

the slightly lower thermal occupation than theory. Note that we observe no significant

heating despite > 10mW of input pump power, highlighting the good thermal anchor-

ing and minimal absorption in this bulk platform. On resonance, this thermal-limited

noise floor is 162 zm (i.e. noise floor of 5.12 zm·Hz−1/2 or 0.21 phonons) in the 1kHz

bandwidth of our driven measurement, which corresponds to a piezoelectric coefficient

sensitivity of 7 am/V, or 2.2 am/V at a bandwidth of 100 Hz, in the case of an evenly

distributed bulk piezoelectricity. This compares favorably to existing techniques for

probing piezoelectricity, such as resonant piezoelectric spectroscopy (RPS), resonant

ultrasound spectroscopy (RUS) [35], and PFM [118,119]. Critically, our technique ex-

tends this sensitivity to GHz frequencies and cryogenic temperatures. Applying this

new materials analysis tool to materials like silicon, sapphire, and diamond can be of

immediate relevance to quantum technologies [32, 34,38,39,120].

To conclude, the hybrid piezo-Brillouin platform is a sensitive tool to detect piezo-
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electricity at cryogenic temperatures in GHz frequency regime, especially when the

resonant enhancement of signal is in place. We demonstrate this by observing a linear

electromechanical coupling in CaF2, which is most likely caused by an anomalous

piezoelectric effect. The electromechanical coupling we detect corresponds to an ef-

fective bulk piezoelectric constant of 83 am/V. Notice that this value is different from

the result in section 6.2.2. Since we used different CaF2 substrates from separate

vendors in these experiments, the difference in piezoelectricity implies that there are

variations even within the same type of substrate if they are prepared and processed

differently, further consolidating the anomalous nature of piezoelectricity we are de-

tecting in our demonstrations. For detailed parameter values for the measurements

done in this section, see appendix A.

6.3 Alternative measurement: Piezoresponse Force

Microscopy (PFM)

Piezoresponse Force Microscopy (PFM) is a method of detecting piezoelectricity in ∼

100 nm depth [118,119,121]. The substrate is put under an AC electric field (usually

in the range of ∼100 kHz), which leads to a piezoelectric deformation due to the

converse piezoelectric effect. This deformation is mapped with a probe cantilever

across the substrate. Recently an interferometric displacement sensing approach to

PFM (IDS-PFM) has been developed which allows quantitative determination of

out-of-plane electromechanical responses [118, 119]. This method removes many of

the artifacts that plague traditional PFM, and is made inherently quantitative via

the interferometric readout. Collaborating with Oak Ridge National Lab (ORNL), we

had a chance to perform IDS-PFM measurement on a CaF2 substrate.

We put the same CaF2 that we study in section 6.2.4 under an IDS-PFM as a

way to alternatively detect piezoelectricity (see Figure 6.11). The frequency of the
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Figure 6.11: PFM scan of CaF2 PFM scan is performed across a 50 um×50 um
surface of CaF2. CaF2 used here is the same substrate used in section 6.2.4. (a)
Example measurement at VAC = 20 V. Histogram of detected displacement is shown in
the inset. (b) The average of displacement data is plotted with its standard deviation
at various VAC. The displacement noise floor of ∼2.2 pm is indicated in dashed grey.
Minimal variability in detected displacement indicates piezoelectricity smaller than
the device’s detection sensitivity. Adapted from Ref. [57].

AC field is ∼100 kHz. We measure a white noise floor of ∼70 fm/
√
Hz, which is

equivalent to a displacement noise floor of ∼2.2 pm in an imaging bandwidth of

1kHz. For a 1 V drive amplitude, this yields a minimum detectable piezo-sensitivity

of deff = 2.2 pm/V. Minimum detectable piezo-sensitivity can be lowered by simply

applying a larger drive voltage which was allowable in the case of CaF2, unlike thin

films or materials having low dielectric breakdown potentials. For a maximum applied

voltage of 40 V, this implies a minimal detectable deff of 55 fm/V. From the data,

we barely see any deviation from the ∼2.2 pm background. Even though the data

may appear to have a non-zero slope (14±40 fm/V), it is inconclusive that we detect

any piezoelectricity since all data are within the standard deviation/error bar. We

attribute the smaller but finite slope of 14 fm/V to the influence of electrostatic

forces. At high voltage especially, we can expect non-negligible electrostatic forces

and force gradients to act between the AFM tip and sample, which may lead to a
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small but finite displacement of the tip position, even for the case of IDS-PFM (which

is largely insensitive to cantilever-sample electrostatic effects [118, 119]). We further

note that using softer (3 nN) cantilevers than the one used in Figure 6.11 (∼42 nN)

leads to a clear enlargement of the measured displacement (slope of 290± 80 fm/V)

as would be expected for an electrostatic effect.

Therefore, we observe no detectable piezoelectricity though IDS-PFM, meaning

that parasitic piezoelectricity in CaF2 is smaller than the detection limit of 55 fm/V.

These results indicate the unlikelihood of the parasitic piezoelectricity coming from

an intrinsic surface layer, which requires piezoelectricity to be ≳ 1 pm/V. Instead, it

is more likely that the parasitic piezoelectricity detected in CaF2 is originated from

the bulk of the crystal.

6.4 Outlook/conclusion

In this chapter, we have shown an application of our hybrid piezo-Brillouin platform

as a highly sensitive piezo-sensor. We demonstrate that the device correctly predicts

the piezoelectricity of x-cut quartz and of the damaged layer of AlN.

Extending the investigation to materials that are nominally non-piezoelectric, we

discover anomalous piezoelectricity in CaF2. Especially in the resonantly enhanced de-

tection, we are able to conduct precision spectroscopy of GHz motion with sub-quanta

sensitivity (i.e. a noise floor of 5.12 zm·Hz−1/2), allowing piezo-coefficient sensitivity

of 2.2 am/V (at 100 Hz bandwidth), and spontaneous detection of thermal phonons

at a cryogenic temperature. Depending on the CaF2 substrate, we measure electrome-

chanical couplings ranging from 2.8 Hz to 0.03 Hz, which correspond to minute bulk

piezoelectric strengths of 1.47 fm/V and 83 am/V, respectively, indicating that there

exists variation in anomalous piezoelectricity in separate samples. Comparing the re-

sults with the measurements from IDS-PFM, a well-established piezo measurement
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technique with 55 fm/V sensitivity, that does not show any notable response, high-

lights the strength of our platform.

We then attempt to detect anomalous piezoelectricity in high-purity Si, which is

of interest as it may inform us about possible limitations in qubit lifetimes due to

anomalous piezoelectric coupling. From the measurement, we are able to provide an

upper bound in piezoelectricity, corresponding to a bound in qubit lifetime of 4 ms.

This is only an order of magnitude higher than the current state-of-the-art qubit [79],

motivating us to further the bound by repeating piezoelectricity measurements on Si

with the resonantly enhanced setup in the future.

The development of a novel material characterization tool such as our hybrid

piezo-Brillouin opens the door to further evaluation of substrate purity and surface

treatments, which is of critical importance in quantum technologies. The dual mi-

crowave/optical functionality may also be useful for investigating strain-active solid-

state defects. Specifically, the resonant piezoelectric drive presents a mechanism for

rapidly actuating strain fields, and the optical cavity offers the possibility of Purcell-

enhanced photon collection.
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Chapter 7

Microwave-to-optical transduction

with a bulk acoustic resonator

7.1 Introduction

Recently with the advance of quantum information science, realizing efficient quantum

state conversion is of critical importance for optically linking superconducting quan-

tum devices, and remains an outstanding goal for the field. Electro-optomechanical

devices have been widely studied in the context of microwave-to-optical quantum

transduction. Various forms of mechanical systems, including membranes [15–17],

OMCs [18–20], and thin film acoustic resonators [21,22] have been explored to realize

a electro-optomechanical transducer. Notably, the highest transduction efficiency of

47% among all platforms of microwave-to-optical transduction is achieved in a me-

chanical membrane-based system. Separately in OMC-based systems, added noise of

less than a quantum of photon has been realized.

However, these devices also come with certain limitations. These include the com-

plexity of device fabrication, leading to low yield of devices and limited tunability

of device parameters post-fabrication. Also, most of them are microscopic structures,
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with high surface-to-volume ratios. This inevitably makes the device susceptible to

heating and added thermal noise caused by even a moderate optical pump. Certain

devices rely on the use of a superconductive microwave component, which can be chal-

lenging to control in the presence of optical power. Additionally, efficient coupling of

a transduced optical signal into a fiber can be an issue in chip-based systems.

Several advantages of our piezo-Brillouin hybrid cavity platform make it an ap-

pealing candidate to explore as a microwave-to-optical transducer. Its modular de-

sign allows flexible integration of highly coherent and highly tunable cavities that

can be separately characterized and tuned. Moreover, in an HBAR-based Brillouin

system, we observe strong optomechanical interactions (characterized by coopera-

tivity exceeding unity), even reaching strong coupling [55]. Along with competitive

coupling efficiencies nearing unity and robust thermal properties, these features re-

veal the potential of this hybrid platform for microwave-optical transduction with

quantum applications [6, 14, 26]. In this chapter, we present bidirectional conversion

with transduction efficiency comparable to other developing piezo-optomechanical

platforms [18–20,22,122–124], with feasible improvement paths towards unity trans-

duction.

7.2 Figures of merit

The figures of merit for efficient microwave-to-optical transduction in an electro-

optomechanical platform are determined by the expression derived back in chapter 5

(equation 5.33),

η = ηoptηµ
4CemCom

(Cem + Com + 1)2
. (7.1)

Here, we first see that a system needs to have efficient optical and microwave

couplings, as η ∝ ηopt and η ∝ ηµ. Oftentimes, this can be a major bottleneck

in achieving high transduction efficiency since efficiently interfacing a fiber with the
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Figure 7.1: Microwave-to-optical transduction efficiency across a range of
electromechanical and optomechanical cooperativities (a) A colorplot of
microwave-to-optical transduction efficiency following equation 7.1 assuming ηopt = 1
and ηµ = 1. The black dotted line marks the position of the peak transduction effi-
ciency along both the Cem and Com axes. Linecuts along red dashed lines are indicated
as i, ii, and iii are shown in (b), (c), and (d), respectively. (b) Linecut along Cem =
-40 dB. We observe peak transduction at Com = 0 dB and reduced transduction when
Com > 0 dB. (c) Linecut along Cem = 0 dB. We observe peak transduction at Com =
3 dB. (d) Linecut along Cem = 40 dB. We observe peak transduction at Com = 40 dB.
Note that the transduction efficiency peaks as Com = Cem and decreases afterwards.
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transducer can be challenging. In our platform, we have already achieved ηopt, ηµ ∼ 0.5

in devices presented in chapter 6. In fact, we can readily reach optical and microwave

coupling efficiencies above 0.5 by using an asymmetric optical cavity and by over-

coupling to the microwave cavity.

The electromechanical and optomechanical cooperativities should be considered

in three separate regimes. In the ideal regime, where both Cem ≫ 1 and Com ≫ 1,

we desire Cem and Com to be as high as possible and to be equal to each other (see

figure 7.1d). Similarly, in the regime where both Cem ≪ 1 and Com ≪ 1, we want Cem

and Com to be their maximum possible values. Lastly when Cem ≪ 1 and Com ∼ 1

(Cem ∼ 1 and Com ≪ 1), we need Cem (Com) to be maximal and Com (Com) to be

equal to 1 (see figure 7.1b).

7.3 Experimental data

7.3.1 Cavity characterization

To demonstrate microwave-to-optical transduction using a hybrid electro-optomechanical

setup through piezo-Brillouin interaction, we first need to characterize its compo-

nents. The hybrid cavity design is illustrated in figure 5.1d, where we use a coaxial

microwave cavity, flat-flat x-cut quartz HBAR, and an optical Fabry-Pérot cavity,

while the measurement scheme is described in figure 5.7.

The coaxial microwave cavity is made out of OFHC copper, where the central pin

is adjustable for wide-range frequency tuning. Its S11 reflection spectrum at cryogenic

temperature (9 K) is given in figure 7.2. The seam loss between the copper body and

the brass center pin results in a rather modest microwave Q-factor in this design.

From data, we observe microwave coupling efficiency, ηµ = κµ,c/κµ, of 0.43. In the

future, we eventually want to further over-couple to the microwave cavity to bring

the microwave coupling efficiency even higher.
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Figure 7.2: Microwave cavity characterization for microwave-to-optical
transduction with x-cut quartz S11 spectrum of the microwave cavity (coaxial
design) used for microwave-to-optical transduction with x-cut quartz at cryogenic
temperature (9 K). Blue is the measured data and red is the fit based on equation
5.3. The fit values are: Ωµ/2π = 11.369 GHz, κµ/2π = 17.1 MHz, Qµ = 662, κµ,c/2π
= 7.33 MHz, Qµ,c = 1550, κµ,i/2π = 9.79 MHz, Qµ,i = 1160.

For the acoustic cavity component, we use an HBAR with flat-flat geometry made

out of x-cut quartz. Quartz is a well-understood material that we have previously

used in section 6.2.1 and in other works [52–56]. It is important to note that people

have reported a reduction of piezoelectric properties in x-cut quartz at cryogenic

temperatures (5 K), thus here we follow the reduced piezoelectric constant of ∼ 0.95

pm/V as reported in reference [117] and as measured in section 6.2.1, instead of the

nominal value of 2.3 pm/V. Flat-flat geometry of an HBAR leads to a diffraction-

limited acoustic lifetime in the order of ∼100 kHz. Although this is worse compared

to our best plano-convex devices with Γ < 1 kHz (see chapter 4 and 6), such a wide

linewidth has an advantage in terms of transduction bandwidth. Also, with a cavity-

enhanced coupling rate, we expect our device to readily reach above optomechanical

cooperativity of 1, even with the diffraction-limited acoustic linewidth.

The Fabry-Perot optical cavity used in our platform consists of two dielectric

mirrors with 99.9% reflectivity and a dielectric substrate in the middle. Figures 7.3(b-

c) show normalized reflection measurements for the two optical cavity modes used as

pump and signal mode. We use optical sidebands to calibrate a linear frequency

sweep over the modes, from which we can extract their linewidths. Measurements of

the resonant transmission and reflection are used to extract the relative loss rates
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Figure 7.3: Optical cavity characterization for microwave-to-optical trans-
duction with x-cut quartz at 9 K temperature (a) Optical mode spacing tun-
ability. We find 6 mode pairs (labeled by lower longitudinal mode index N through
N+5) for λopt between 1545.8-1546.3 nm, with spacings from 10.4 GHz to 11.5 GHz.
Vpiezo indicates the voltage applied to a piezo-actuator controlling the optical cavity
length. By increasing Vpiezo (thus changing cavity length), individual mode spacings
can be varied by up to 500 MHz, allowing the mode pairs to match the Brillouin
frequency, ΩB (green dashed line). We choose to operate at Nth optical cavity mode
pair, and at Vpiezo ∼ 110 V piezo-actuator setting, marked with a black arrow. (b-c)
The normalized reflection spectrum of the optical cavity. Pump/signal modes for Nth

optical cavity mode pair indicated with a black arrow in (a). Blue is the reflection
data and orange is the fit. Fit values are: κopt/2π = 2.2 MHz, (coupling rate through
the left port) κopt,cL/2π = 0.7 MHz, (coupling rate through the right port) κopt,cR/2π
= 1.2 MHz, F = 5170. Adapted from Ref. [57].
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through each mirror, as well as the internal loss. Due to the dielectric interface within

the cavity, it is possible to have asymmetric cavity loss rates through the two mirrors,

even though they have nominally identical reflectivities. From the measurement, we

can obtain the coupling efficiency, ηopt = κopt,c/κopt, of 0.53. We consider coupling

through the right port κopt,c = κopt,cR, as it is the port through which optical light

exits.

The non-zero reflection of optical mode at the boundary of the dielectric media

produces an intrinsic modulation of optical mode spacing. We use a broad, calibrated

wavelength scan to identify the mode spacing. For the cavity geometry used here

(11 mm vacuum, 0.5 mm quartz), we find modulation by ± 0.5 GHz around a mean

mode spacing of 10.9 GHz. This variation allows us to find a mode spacing that

approximately matches the Brillouin frequency. Here, we pump the lower-frequency

mode, using the upper-frequency mode to resonantly match the anti-Stokes sideband.

Since the mode spacing variation is larger than the optical cavity linewidth, the other

(Stokes) process is strongly suppressed. In situ fine-tuning of optical cavity mode

spacing at cryogenic temperatures is achieved through the use of a piezo-actuator

that allows translation of one mirror position. With this, we can fine-tune the optical

mode spacing to well match the acoustic mode frequency (∆opt ≈ Ωm). This optical

frequency tuning range is shown in Figure 7.3(a), where we clearly see greater than

10% (> 1 GHz) intrinsic variation, plus fine-tuning via the piezo-actuator voltage (0V

∼ 150V) to match the optical mode spacing with the acoustic mode (green dashed

line).

7.3.2 Optomechanical response: OMIT

Matching of the optical mode spacing to the mechanical frequency enables strong

optomechanical interactions. We lock a laser to the lower frequency (pump) mode

and sweep a sideband over the higher frequency (signal) mode. When ∆opt ̸= Ωm, this
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Figure 7.4: OMIT spectrum of a hybrid cavity with x-cut quartz (a) Normal-
ized OMIT spectra with varying optical pump power. Clear splitting of the optome-
chanical response indicates strong coupling. Linecuts across blue, orange, and green
dashed lines are shown in (b) in the same color. (b) OMIT spectra with fitted coop-
erativities ranging from Com = 7.4 ∼ 0.14. (c) Cooperativity fitted from data in (a)
versus optical pump power. Cooperativity from data (red) agrees well with the the-
oretical value (dotted black), indicating a linear relationship. (d) Normalized OMIT
Spectra, as ∆opt is tuned through ΩB, using the piezo actuator. When ∆opt = ΩB, an
anti-crossing is observed, with a splitting that exceeds the cavity linewidth, indicating
the onset of strong coupling. Adapted from Ref. [57].

swept probe simply shows the optical response of the signal mode. Applying a voltage

to the piezo actuator, we can smoothly vary the optical mode spacing from 11.355

GHz to 11.375 GHz (red dashed line in figure 7.4d), revealing an avoided crossing

when ∆opt = Ωm. This is the result of an optical interference with a photoelastically-

driven motional sideband [72], also known as OMIT. For more details on OMIT, refer

back to section 2.4.1.
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Measurements of OMIT in our device are shown in figure 7.4. From figure 7.4(a),

we observe that this system approaches the optomechanical strong coupling regime

(2gom > κopt,Γ), visible as the emergence of normal-mode splitting [55]. Such strong

coupling can be of value in hybrid quantum systems, for rapid manipulation of intra-

cavity states. Fitting the spectrum across a range of pump powers to equation 2.34, we

can directly extract optomechanical coupling rates and cooperativities of our device

(figure 7.4b). The large visibility in OMIT dip here indicates high optomechanical

cooperativity (Com > 1). The resulting cooperativities scale linearly with intra-cavity

power, as expected from Com ∝ Np ∝ Pp, reaching Com = 7 (gom = 1.4 MHz) at a

pump power of 110 mW (figure 7.4c).

7.3.3 Bi-directional microwave-to-optical transduction

In characterizing our hybrid cavity as a piezo-Brillouin platform, we identify high

coupling efficiencies of ηopt, ηµ ∼ 0.5 and high optomechanical cooperativity of Com >

1. This already satisfies most of the requirements for efficient microwave-to-optical

transduction from the expression of η given in equation 7.1. Hence, in this section

we evaluate the performance of our piezo-Brillouin platform from the perspective of

quantum transduction, quantifying the efficiency with which it converts microwave

photons to optical photons.

In our hybrid cavity, we reach coupling efficiencies of ηµ = 0.43 and ηopt = 0.53.

Higher coupling efficiencies (i.e. over-coupled resonators) are possible by adjusting the

microwave coupling pin and using optical mirrors with imbalanced reflectivities. We

note that the modes of Gaussian optical resonators easily achieve high fiber-coupling

efficiency, which is a key challenge for low-loss integration.
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Figure 7.5: Bi-directional microwave-to-optical transduction spectrum (a)
Measured microwave-to-optical conversion at varying pump power. Cooperativity on
the right axis is calculated from the theory shown in figure 7.4(c). The shifting of
the transduction peak to the left is clearly visible, indicating we are reaching Com >
1. Electro-optic (EO) effect-induced dip on the right side of the transduction peak
(indicated in yellow dashed line) is visible (further discussion in section 7.4). The
dashed line in purple is the cross section along which data in (c-d) are plotted. (b)
Expected transduction spectrum closely following the measurement. Colorscale is set
to be identical to (a). The dashed line in black is the cross section along which black
dashed lines in (c-d) are plotted. (c) Transduction spectra, for both microwave-to-
optical (ηoe, purple, Com = 1.5) and optical-to-microwave (ηeo, orange, Com = 5.5).
The dashed black line is a theoretical prediction of the transduction spectra. The
elevated noise floor in the ηeo is set by the room temperature amplifiers/detectors.
(b) Transduction efficiency at phonon frequency (Ωm/2π = 11.3663GHz) in relation to
the optomechanical cooperativity controlled via optical pump power. Purple dots are
microwave-to-optical data. The orange dot is an optical-to-microwave measurement.
Both data are expected to follow the black dashed theory line. Adapted from Ref. [57].
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Microwave-to-optical transduction

Microwave-to-optical conversion (ηoe) is measured by detecting the number of scat-

tered optical photons exiting the Fabry-Perot cavity per microwave photon entering

through the coupling pin. The measurement data is shown in figure 7.5(a) and (c)

where we clearly see a peak in the response on the resonance (Ωm/2π = 11.366 GHz).

In fact, we even observe splitting of the peak at high pump powers, which indicates

optomechanical mode splitting due to high cooperativities (Com > 1). Additionally,

we observe a significant Fano dip near the transduction peak, indicated in the yellow

dashed line in the figure. This is a result of a residual Pockels-type electro-optic (EO)

coupling in quartz [125], which destructively interferes with the piezo-optomechanical

signal. This Fano shape also results in a slightly higher response on the left side of

the peak. The relative contribution of the EO effect to the piezo-Brillouin interaction

can be reduced by increasing gem or decreasing Γ. Alternatively, this effect could be

intentionally amplified in a device focused on electro-optic interactions. Because of

this EO effect, the state space model discussed in section 5.3.2 does not fully explain

the spectrum in figure 7.5(a). Instead, we use a modified model incorporating the

EO interaction (see section 7.4 for details) to fully explain our spectral response as

illustrated in figure 7.5(b).

Figure 7.5(d) zooms into the response along the resonance, where we verify that

the transduction efficiency scales as predicted with optical cooperativity. The exper-

imental data (purple points) well-describe the theoretical curve (black dashed line)

following Eq. 7.1, assuming Cem = 5.6 × 10−8. In particular, we confirm that the

transduction is maximized for Com = 1, implying that our optomechanical subsystem

is sufficiently strongly coupled to saturate the transduction efficiency. Further in-

creased Com damps the acoustic resonance, reducing the overall efficiency. Note that

the model is well-matched to the data for gem/2π = 347 Hz (Cem = 5.6×10−8), instead

of the simulated gem/2π = 298 Hz (Cem = 4.18× 10−8). This may be attributable to
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a discrepancy between the HFSS-simulated microwave resonator and the assembled

device.

The added noise floor of this transduction would be set by the thermal noise of

the acoustic resonator, with an expected 16 phonons at 9K temperature. Character-

ization of the thermal noise in this quartz system was not carried out, but similar

measurements on CaF2 confirm good thermalization (see chapter 6), consistent with

past works [55].

Thus, we can identify the current performance of this device achieving a maximum

conversion of η = 1.2+1.0
−0.6 × 10−8, with a bandwidth of 500 kHz. The uncertainty here

comes from detector and cable loss calibrations. With coupling efficiencies exceeding

10−1 and optomechanical cooperativity exceeding 1, the performance is currently

limited by low electromechanical cooperativity (Cem = 5.6× 10−8).

Optical-to-microwave transduction

Alternatively, we can repeat the measurement in the opposite direction to character-

ize the optical-to-microwave transduction (ηeo) through our system, where we count

the number of microwave photons out per optical photon in. This detection is done

by injecting an optical sideband into the optical cavity signal mode without any mi-

crowave drive, and directly measuring the microwave output through the coupling

pin. The resulting spectral response is shown in figure 7.5(c). One aspect of ηeo that

immediately stands out is its high noise floor. This noise floor is a combination of

the Johnson noise of the room-temperature microwave detector, microwave amplifier

noise, and detector noise. Since microwave photons have lower energy than optical

photons, these noises are relatively higher when detecting a microwave response com-

pared to detecting an optical response.

Even with limited SNR, demonstration of optical-to-microwave transduction re-

sponse that well matches with theory shows the bi-directionality of our piezo-Brillouin
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device as a transducer between microwave and optical domain. For detailed parameter

values for the measurements done in this section, see appendix A.

7.3.4 Resonant enhancement of electro-optomechanical sig-

nal

Microwave-to-optical transduction with our hybrid cavity can be done in both res-

onant configuration and single-pass configuration. However, we choose to focus on

the fully resonant operation that includes an optical cavity, rather than the single-

pass operation lacking the optical cavity component. This is because we can expect a

significant enhancement of response, following the work done in section 5.3.1. Specif-

ically, the enhancement we expect from the fully resonant operation is given in equa-

tion 5.16, as 16
π2η

2
optF2. In this section, we explicitly show this improvement with our

transduction experimental setup, by comparing the responses in the presence and in

the absence of an optical cavity, while everything else is kept more or less unchanged.

To begin, we measure a wide piezo-Brillouin spectrum spanning across multiple

acoustic FSRs with an x-cut quartz substrate, identical to the response in section

7.3.3 (purple data in figure 7.6). Then we remove the optical cavity in the apparatus

while trying to keep everything else the same and measure the single-pass response

(green data in figure 7.6). In both cases, we do direct measurements (figure 5.6) where

phonon-scattered sideband power at the swept microwave drive frequency is measured

via heterodyne with the optical pump in 1 kHz resolution bandwidth. Here, we focus

on the central, phased-matched peak (Ωm/2π = 11.366 GHz), corresponding to the

mth longitudinal acoustic mode. Comparing the experimental peak responses, we ob-

serve ∼ 57 dB improvement from the single-pass signal to the cavity-enhanced signal,

proportional to the optical cavity finesse squared as expected. The deviation of the

enhancement factor from the expression in equation 5.16 comes from variations in

experimental conditions including optical powers, microwave powers, and microwave
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Figure 7.6: Single-pass and cavity-enhanced piezo-Brillouin spectroscopy
Here, we demonstrate the resonant enhancement of the piezo-Brillouin signal in the
presence of an optical cavity. The spectrum in purple is the data from the resonantly
enhanced configuration of the hybrid cavity with an optical cavity of F ∼ 5000. It
is identical to the response shown in figure 7.5(c). The spectrum in green is the data
from the single-pass configuration of the hybrid cavity without an optical cavity. The
main phonon mode of interest is labeled as the mth longitudinal mode. Both mea-
surements are done through direct measurement following figure 5.7. Predicted peak
amplitudes calculated from theory (equation 5.10 5.15) and known material constants
are shown as black dots To facilitate comparison more easily, the green data has been
shifted down in frequency by 9 FSRs to compensate for a ∼ 0.5% shift of microwave
resonance frequency between cooldowns and between apparatus changes. Adapted
from Ref. [57].

resonances. Note that one side of the Fabry-Pérot optical cavity lives inside the mi-

crowave cavity due to design constraints (see figure 5.1d). Thus, removing this di-

electric mirror inside a microwave cavity results in having to re-adjust the microwave

cavity, leading to imperfections in matching the initial conditions for the comparison

experiments. Taking into account the variation in experimental conditions, we can

theoretically predict the response amplitudes that well-match with the experiment

and confirms the ∼ 57 dB signal enhancement, as shown in the black dots in the

figure.

Observing the broad spectrum of x-cut quartz in the figure, there are several
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prominent features worth pointing out, that are consistent with the underlying cou-

pling mechanisms. On the tails of the central peak, we see the other longitudinal

modes, whose motion coherently interferes to yield Fano lineshapes. The apparent

coupling rates of these modes are suppressed according to the optical phase-matching

condition (sinc2 [(Ω− ΩB)/4∆m]), as well as the piezoelectric mode-overlap (which

suppresses coupling to even-index modes, i.e. m-1th, m+1th, ...). Away from the cen-

tral mode, the piezo-Brillouin spectrum is further suppressed by the optical and mi-

crowave cavity susceptibilities. Also, each of the electro-optomechanical signal peaks

is associated with a Fano lineshape. This is a result of interference with the EO effect

in quartz, which we discuss further in the following section 7.4.

7.4 Modified theory accounting for electro-optic

(EO) effect

In the state space model laid out in section 5.3.2, we only considered the electrome-

chanical and optomechanical interactions in our platform. In reality, the crystal ge-

ometry of x-cut quartz leads to the emergence of Pockels EO effect, with a constant

characterized as r13 = 0.45 pm/V [125].

The expression of EO coupling (Pockels effect) in materials is studied in various

sources [126–129]. The single-photon EO coupling rate between an optical pump,

optical signal, and microwave can be written as:

ℏgeo,0 = ϵ0

∫
eo

dV ϵ1Epϵ1Esr13Eµ

= ϵ0ϵ
2
1r13Ep,0Es,0Eµ,0

∫
eo

dV e
− r2

r2opt e
− r2

r2opt sin(kpz)sin(ksz),

(7.2)

where r13 is the relevant linear electro-optic coefficient component. Electric fields of

optical pump (Ep) and optical signal (Es) have corresponding normalization factors of
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Ep,0 =
√

2ℏωp/ϵ0ϵ1AoptLopt and Es,0 =
√
2ℏωs/ϵ0ϵ1AoptLopt. While microwave (Eµ)

electric field has a zero-point field (Eµ,0) obtained through HFSS, uniform along the

interaction region. Assuming identical optical pump and signal mode profiles in both

transverse and longitudinal directions, the above expression simplifies into,

geo,0 =
1

4
ϵ1r13Esimωp

Lm

Lopt

. (7.3)

EO coefficient in quartz is r13 = 0.45 pm/V from crystal symmetry [125]. The resulting

single photon EO coupling rate in quartz is geo,0/2π = 1.05 mHz. Inside an optical

cavity, this coupling rate is parametrically enhanced by the intercavity photon number

(geo =
√
Npgeo,0), reaching geo/2π = 137 Hz.

Incorporating this EO coupling rate into the state space model, we now have a

full theoretical model to predict our transduction spectrum. The effective Hamiltonian

describing the system, initially given in equation 5.20, now includes the EO coupling

as,

Heff/ℏ = ∆opta
†a+ Ωmb

†b+ Ωµc
†c+ (goma

†b+ gemb
†c+ geoa

†c+H.c.). (7.4)

subsequently, we make the following adjustments to the A matrix, originally given in

equation 5.26,

A =


−i∆opt − κopt

2
igeo igom

igeo −iΩµ − κµ
2

igem

igom igem −iΩm − κm
2

 (7.5)

Based on the changes made, we solve for the transduction expression in equation 5.30

(η(ω) = |Soe(ω)|2 = |Seo(ω)|2), which gives the final expression of,

η = ηoptηµ
4(CemCom + C2

eo)

4CemComCeo + (Cem + Com + Ceo + 1)2
, (7.6)
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Figure 7.7: Theoretical model predicting the transduction spectrum The
transduction spectrum from the experiment is shown in purple (identical to fig-
ure 7.5c). Using a modified state space model accounting for both the piezo-
optomechanical (pOM) effect (shown in green dashed line) and the electro-optic (EO)
effect (shown in dashed red line), we can correctly fit the transduction spectrum
(shown in dashed black line), which includes the Fano feature resulting from the in-
terference between the effects. Fitted values of the coupling rates are gem/2π = 347
Hz (theory value 298 Hz) and geo/2π = 162 Hz (theory value 137 Hz). Adapted from
Ref. [57].

as the microwave-to-optical transduction including electromechanical, optomechani-

cal, and electro-optic interactions. Note that if we assume no EO effect (Ceo = 0), the

expression reduces to the original electro-optomechanical relation given in equation

5.33.

Using the modified state-space model, we can fit the transduction spectrum from

the experiment to our model. In fact, we can even observe individual contributions

from piezoelectric coupling and EO coupling to the net transduction. In Figure 7.7,

transduction from piezoelectricity is in dashed green and that from EO is in dashed

red. The combined net transduction in dashed black can be fitted to the experimental

data in purple, showing good agreement. The optomechanical coupling rate used in

the fit is obtained through OMIT measurement (gom/2π = 643 kHz and Com = 1.48

at Pp = 23.8 mW). The fitted parameters are gem/2π = 347 Hz (theory value is 298

Hz) and geo/2π = 162 Hz (theory value is 137 Hz). Such difference can be attributed
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to a discrepancy between the simulated microwave cavity and the assembled device,

and to the variation in material parameters at cryogenic temperatures.

The apparent interference between piezoelectric and EO effects near the center

peak is because of similar EM and EO cooperativities. In the relatively lossy acoustic

cavity regime that we are operating, we can still reach Com > 1. However, we have

relatively low Cem = 5.6 × 10−8, which is greater than Ceo = 2.8 × 10−9 only by an

order of magnitude. This is also observed in Figure 7.7, where the peak of theoretical

EO transduction and that of theoretical piezo-optomechanical (pOM) transduction

are separated only by ∼ 10 dB. As a result, we observe a Fano interference in the

transduction spectrum where the pOM response crosses through the EO response.

This destructive interference is visible only on one side due to the phase relation

between the pOM and EO interactions - constructive interference occurs on the other

side.

One of the future paths to improve transduction, which is further discussed in

section 7.5, is using an acoustic cavity with a better Q-factor. Integration of a high-Q

HBAR will bring about a significant increase in Cem, while keeping Ceo constant, thus

suppressing the formation of such Fano-like feature in future implementations of this

design.

7.5 Outlook: Towards unity conversion efficiency

Recalling the expression for transduction efficiency in equation 7.1, efficient transduc-

tion requires maximixing the values for ηopt, ηµ, Com, and Cem. In our system, we can

readily reach Com of 1 and ηopt (ηµ) of 0.53 (0.43). Although these are already rela-

tively high values compared to other transducer devices, we can reach unity coupling

efficiencies with ease by adjusting the microwave coupling pin to be over-coupled to

the microwave cavity, and by having asymmetric optical cavity mirrors (i.e. creating
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Suggested improvements gem/2π Cem ηopt(ηµ) η

Current experiment 347 Hz 5.6× 10−8 0.53 (0.43) 1.2× 10−8

Optimized coupling - - ∼1 (∼1) ↑ 4×
efficiencies

X-cut quartz → ↑ 7.3× ↑ 50× - ↑ 50×
Z-cut LiNbO3

Optimized acoustic ↑ 9× ↑ 80× - ↑ 80×
mode geometry
Re-entrant cavity ↑ 3× ↑ 10× - ↑ 10×

Superconducting cavity - ↑ 102× - ↑ 102×
Plano-convex hBAR - ↑ 103× - ↑ 103×
Total improve factors ↑∼ 200× ↑∼ 4 · 109× ↑ 2× (↑ 2×) ↑∼ 108×*
Total improve values ∼68 kHz ∼224 ∼1 (∼1) ∼0.9*

Table 7.1: Electromechanical cooperativity improvements * are calculated as-
suming Com = Cem = 10 is reached. Adapted from Ref. [57].

a single-sided cavity). Also, note that the Gaussian optical cavity mode is well-suited

for achieving high fiber-coupling efficiency, a key challenge for low loss integration of a

transducer. Results from transduced signals in section 7.3.3 point at a low electrome-

chanical cooperativity of Cem = 5.6 × 10−8. In the limit of ηopt ≈ ηµ ≈ 1, Com = 1,

and Cem ≪ 1, expression for transduction simplifies into,

η ≈ Cem

=
4g2em
κµΓ

.
(7.7)

Thus, improving the transduction efficiency boils down to improving Cem up to and

above unity.

Among the approaches that we can take to enhance Cem, one obvious choice is to

achieve stronger gem as it is quadratically related to Cem (Cem ∝ g2em). As laid out in

table 7.1, one way we can improve gem is through choosing a stronger piezoelectric

material (gem ∝ d33), such as LiNbO3 or BaTiO3, instead of quartz. In the case of

Z-cut LiNbO3, piezoelectric tensor component increases from d33 = 2.3 pm/V of x-cut

quartz to d33 = 16.2 pm/V of Z-cut LiNbO3, and stiffness tensor component from
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c33 = 86.6 GPa to c33 = 244 GPa. Even taking into account the impact from the

change in density (ρ = 2650 kg/m3 to ρ = 4630 kg/m3), Brillouin frequency (Ωm =

11.4 GHz to Ωm = 21.0 GHz), and E0 (0.80√
2
× 10−3 V/m to 0.53√

2
× 10−3 V/m) due

to higher relative permittivity, we can expect a higher gem (Cem) by 7.3× (50×).

Moreover, we can use a piezoelectric stack, consisting of alternating piezoelectric and

non-piezoelectric layers with half acoustic wavelength thick, in order to maximize

piezoelectric coupling to the acoustic substrate.

Another factor that influences gem is the acoustic mode geometry. Referring back

to equation 3.6, increasing the acoustic mode waist allows us to achieve better mode

matching between acoustic and microwave modes, while thinner substrate thickness

allows for lower mass acoustic mode (with larger zero-point motion) while maintaining

same acoustic-microwave mode overlap. Reasonable modifications can be made to the

acoustic waist from 50 um to 200 um and to the substrate thickness (Lm) from 500

um to 100 um. This result in a higher gem (Cem) by 9× (80×). Note that reducing

the substrate thickness will decrease the gom, however, it will not deter our ability

to exceed unity optomechanical cooperativity (Com > 1) as the current setup reaches

Com ∼ 10 with relative ease.

Similarly, we can also improve the microwave and acoustic mode-matching by

making modifications to the microwave cavity. In doing so, we will be optimizing E0,

the remaining term in gem. In order to reduce the microwave mode volume and con-

centrate the electric field, we can explore using a smaller coaxial microwave cavity or

different cavity geometries such as a re-entrant cavity and other 2-D designs. Simulat-

ing a re-entrant cavity, we obtain approximately 3× stronger electric field compared

to the coaxial design (0.53√
2
× 10−3 V/m → 1.8√

2
× 10−3 V/m), resulting in a higher gem

(Cem) by 3× (10×).

Besides optimizing gem, we can also improve on other factors in Cem; namely, κµ

and Γ. This demonstration uses a non-superconducting cooper microwave cavity, with
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a modest Q ∼ 103. With superconducting materials, both post and re-entrant cavi-

ties can readily reach Q > 108. Hence, in an ideal circumstance, κµ can be boosted

by > 105×. While co-integrating superconducting resonators with optics is a known

technical challenge [20], this macroscopic, 3D platform may offer increased robustness

of the superconducting resonator [130]. In appendix C, we discuss the measurements

of Qµ,i of a superconducting niobium cavity at ∼ 7 K, when optical light with greater

than 100 mW of power is shined upon. From this measurement, we discover that

the superconducting niobium cavity can still maintain Qµ,i ≈ 106 at 7 K (∼ 103 im-

provement from the copper microwave cavities used for transduction demonstration),

even under 100 mW of optical light, which is higher than the required optical pump

power to reach Com of 1. Note that the measurement with superconducting niobium

cavity is done at 7K, meaning that the microwave performance can be much better

at lower (< 1 K) temperatures. In the table of improvements (table 7.1), we consider

a conservative enhancement in κµ by > 102×.

Diffractive loss in the acoustic cavity can be mitigated via shaping a concave

surface on one side of the cavity through reactive-ion-etching. Doing so will allow the

acoustic cavity to form stable resonances with Q up to ∼ 2.8 × 107 [53] from the

current 2.3 × 104, allowing us a ×103 improvement in Γ at a cost in transduction

bandwidth. Implementation of an acoustic resonator with better Q also allows us to

reach Com > 1 with weaker pump power (e.g. with Qm = 107, Com = 1 only requires

Pp ≈ 1µW), increasing compatibility with mK cryogenic systems.

Together, these improvements highlight a feasible path from the η = 1.2 × 10−8

demonstrated here towards bidirectional transduction with near unity efficiency.

141



7.6 Conclusion

In conclusion, we put together resonant piezoelectric and Brillouin optomechanical

interaction in an HBAR to create a platform for a bi-directional microwave-to-optical

quantum transducer. Several advantages of our resonant piezo-Brillouin platform,

including high coupling efficiencies (ηopt, ηµ ∼ 0.5), the ability to reach high optome-

chanical cooperativities (Com > 1), modular design with wide frequency tunabil-

ity, and robust thermal properties make it an appealing candidate to explore as a

microwave-to-optical transducer.

We demonstrate a transduction efficiency of η = 1.2+1.0
−0.6 × 10−8, comparable to

other developing piezo-optomechanical platforms [18–20, 22, 122–124], with a band-

width of 500 kHz, and a bi-directional operation. We also present a model that ac-

curately predicts the spectral response of transduction. Currently, the performance

of our device is limited by low electromechanical cooperativity (Cem = 5.6 × 10−8).

We provide multiple feasible paths to improve the electromechanical cooperativity,

eventually leading toward unity conversion efficiency.

Within the landscape of transduction platforms, piezo-Brillouin systems presented

in this chapter have a unique set of advantages and constraints and can be improved

over many orders of magnitude. Combining all these highlights the potential of a hy-

brid piezo-Brillouin platform for microwave-optical transduction with quantum ap-

plications [6, 14, 26].
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Chapter 8

Conclusion and outlook

In this dissertation, we present a novel strategy for realizing an electro-optomechanical

platform, by harnessing Brillouin and piezoelectric interactions to simultaneously ac-

cess phonons within bulk acoustic wave resonators. We explore the theoretical back-

ground and experimental implementations of the key ingredients of this design, that

enable optimal simultaneous integration of both electromechanical and optomechan-

ical interactions in a single platform. Furthermore, we demonstrate successful appli-

cations of this system as a precision material spectroscopy tool and a bi-directional

microwave-to-optical quantum transducer.

Expanding on the prior works done [53], we design and fabricate HBARs that

house Gaussian acoustic modes with long lifetimes at cryogenic temperatures (<

10 K). In the process, we discuss observations on sample treatments and storage

conditions that influence the sample performance. It is of interest to further the

study of HBARs to areas of quantum information, where there are efforts to utilize

them as quantum resources [7, 11] and to understand the dynamics of interactions

between a qubit and an HBAR [33].

We exploit resonantly enhanced Brillouin optomechanical interaction between a

Fabry-Pérot optical cavity and an HBAR, which allows optomechanical strong cou-
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pling [55]. Comparing the optomechanical response of a non-resonantly enhanced

signal to that of a resonantly enhanced signal, we analytically and experimentally

achieve a significant improvement (∝ F2) that highlights the strength of such a sys-

tem. Separately, an HBAR is interfaced with a highly tunable microwave cavity via

piezoelectric interaction.

Combining Brillouin optomechanical interactions with piezoelectric electrome-

chanical interactions mediated via an HBAR opens the door to a new type of an

electro-optomechanical platform, which we call as a piezo-Brillouin platform. The

complexity of integrating microwave/acoustic/optical components that other electro-

optomechanical devices suffer from is overcome by a versatile modular design, allowing

precise tuning and characterization of individual components required for a fully res-

onant operation. Along with high optomechanical cooperativity, competitive coupling

efficiencies nearing unity, and robust thermal properties, these properties make our

piezo-Brillouin system appealing for a range of applications.

Applying this work to areas of practical interest, we approach it from the per-

spective of a precision material spectroscopy technique. Its modular assembly allows

efficient access to phonons within a variety of bulk crystalline materials. As a demon-

stration, we present measurements from piezoelectric x-cut quartz, non-piezoelectric

CaF2, and Si. In particular, with sub-quanta phonon sensitivities, we achieve piezo-

detection sensitivity of 2.2 am/V (at 100 Hz bandwidth) in CaF2 and reveal insight

into possible anomalous piezoelectricity in CaF2 of 83 am/V. From measurements on

Si, we are able to provide a bound in anomalous piezoelectricity, which corresponds

to a piezo-limited qubit lifetime of 4 ms based on a model we provide. This is only

an order of magnitude higher than the current state-of-the-art qubit [79], motivating

us to implement further improvements in the future to push this bound to a range

that does not realistically impact qubit performances. Thus, the development of such

a sensitive material characterization tool operating at GHz frequencies and at cryo-
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genic temperatures is of importance in material studies that are critical to quantum

technologies and beyond.

Finally, realizing efficient quantum state conversion is of critical importance for

optically linking superconducting quantum devices, and remains an outstanding goal

for the field. In this work, we describe the performance of our piezo-Brillouin platform

as a microwave-to-optical transducer. Along with a theoretical model to predict the

transduction spectrum, we present a transduction efficiency of η = 1.2+1.0
−0.6 × 10−8,

comparable to other developing piezo-optomechanical platforms, with a bandwidth

of 500 kHz, and a bi-directional operation. Although the current performance of

the device is limited by low electromechanical cooperativity (Cem = 5.6 × 10−8),

we provide several feasible paths and our current efforts towards achieving unity

transduction efficiency. Piezo-Brillouin system has a unique set of advantages and

constraints and can be improved over many orders of magnitude, which highlights its

potential for microwave-optical transduction with quantum applications and merits

further investigation for quantum applications.
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Appendix A

Experimental parameters

A.1 Parameters for x-cut quartz single-pass mea-

surement (section 6.2.1)

Note that all crystal axis indices are assumed to be in the reference frame of the

substrate, x-cut quartz.

Symbol Meaning Value Units

S Lock-in scale factor 100 (2000) V/Vrms

Gtz Photodetector trans-impedance gain 1000 Ω
R Photodetector responsivity 1 A/W
ρ Substrate density 2648 kg/m3

n Index of refraction 1.544 -
p13 Photoelastic constant 0.29 -
c33 Elastic stiffness tensor component 87 GPa
d33 Piezoelectric constant (theory [117]) 0.95 pm/V
ωopt/2π Optical pump frequency 193535.55 GHz
Pp Optical pump power 187 (180) mW
Ps Optical probe (Stokes) power 0 (77.8) mW
PLO Optical LO power at photodetector 1.1 (0.558) mW
ηdet Optical loss through apparatus 0.09 (0.0076) -
Ωm/2π Acoustic mode frequency 11.349 GHz
Lm Acoustic substrate length 0.5 mm
Am Acoustic mode area π × (50)2 µm2

Γ/2π Acoustic dissipation rate 1.3 kHz
Ωµ/2π Microwave cavity resonant frequency 11.35 GHz

146



κµ,i/2π Microwave cavity internal loss rate 4.2 MHz
κµ,c/2π Microwave cavity coupling rate 4.5 MHz
Pµ Input microwave power at cavity -27 dBm
E0 Simulated electric field for single-photon 5.5× 10−3 V/m

excitation
g′om,0/2π Single-photon optomechanical 158 Hz

coupling rate (theory)
g′om,0/2π Single-photon optomechanical 130 Hz

coupling rate (experiment)
G Scattered signal (Stokes) power per pump 6.54×10−18 -

power per phonon
gem/2π Electromechanical coupling rate (experiment) 2.85 kHz
d33 Piezoelectric constant (experiment) 0.94 pm/V

Table A.1: Experimental parameters single-pass measurements on x-cut
quartz Parameters for piezoelectrically driven phonons measurement in x-cut quartz
are given, and in parenthesis are the parameters for optically driven phonons mea-
surements (SBS).

A.2 Parameters for CaF2 single-pass measurement

(section 6.2.2)

Note that all crystal axis indices are assumed to be in the reference frame of the

substrate, x-cut CaF2.

Symbol Meaning Value Units

S Lock-in scale factor 10000 (1000) V/Vrms

Gtz Photodetector trans-impedance gain 1000 Ω
R Photodetector responsivity 1 A/W
ρ Substrate density 3180 kg/m3

n Index of refraction 1.426 -
p13 Photoelastic constant 0.198 -
c33 Elastic stiffness tensor component 165 GPa
d33 Piezoelectric constant (theory) 0 pm/V
ωopt/2π Optical pump frequency 193535.55 GHz
Pp Optical pump power 122.5 (116) mW
Ps Optical probe (Stokes) power 0 (50) mW
PLO Optical LO power at photodetector 0.32 (0.664) mW
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ηdet Optical loss through apparatus 0.076 (0.013) -
Ωm/2π Acoustic mode frequency 13.4574 GHz
Lm Acoustic substrate length 3 mm
Am Acoustic mode area π × (50)2 µm2

Γ/2π Acoustic dissipation rate 1.7 kHz
Ωµ/2π Microwave cavity resonant frequency 13.455 GHz
κµ,i/2π Microwave cavity internal loss rate 4.41 MHz
κµ,c/2π Microwave cavity coupling rate 2.83 MHz
Pµ Input microwave power at cavity 4 dBm
E0 Simulated electric field for single-photon 5.3× 10−3 V/m

excitation
g′om,0/2π Single-photon optomechanical 29 Hz

coupling rate (theory)
g′om,0/2π Single-photon optomechanical 26 Hz

coupling rate (experiment)
G Scattered signal (Stokes) power per pump 6.80× 10−18 -

power per phonon
gem/2π Electromechanical coupling rate (experiment) 2.8 Hz
d33 Bulk piezoelectric constant (experiment) 1.47 fm/V
d33 Surface piezoelectric constant assuming 43 pm/V

1 nm layer (experiment)

Table A.2: Experimental parameters single-pass measurements on CaF2

Parameters for piezoelectrically driven phonons measurement in CaF2 are given, and
in parenthesis are the parameters for optically driven phonons measurements (SBS).

A.3 Parameters for Si single-pass measurement (sec-

tion 6.2.3)

Note that all crystal axis indices are assumed to be in the reference frame of the

substrate, x-cut Si.

Symbol Meaning Value Units

S Lock-in scale factor 50000 (10000) V/Vrms

Gtz Photodetector trans-impedance gain 1000 Ω
R Photodetector responsivity 1 A/W
ρ Substrate density 2328 kg/m3

n Index of refraction 3.45 -
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p13 Photoelastic constant 0.017 -
c33 Elastic stiffness tensor component 165 GPa
d33 Piezoelectric constant (theory) 0 pm/V
ωopt/2π Optical pump frequency 193535.55 GHz
Pp Optical pump power 106.5 (98.4) mW
Ps Optical probe (Stokes) power 0 (20.5) mW
PLO Optical LO power at photodetector 0.96 (0.8) mW
ηdet Optical loss through apparatus 0.14 (0.049) -
Ωm/2π Acoustic mode frequency 37.765 GHz
Lm Acoustic substrate length 1 mm
Am Acoustic mode area π × (50)2 µm2

Γ/2π Acoustic dissipation rate 45 kHz
Ωµ/2π Microwave cavity resonant frequency 37.81 GHz
κµ,i/2π Microwave cavity internal loss rate 144 MHz
κµ,c/2π Microwave cavity coupling rate 70 MHz
Pµ Input microwave power at cavity 9 dBm
E0 Simulated electric field for single-photon 7× 10−3 V/m

excitation
g′om,0/2π Single-photon optomechanical 42.7 Hz

coupling rate (theory)
g′om,0/2π Single-photon optomechanical 37 Hz

coupling rate (experiment)
G Scattered signal (Stokes) power per pump 9.54× 10−18 -

power per phonon
gem/2π Upper bound in electromechanical coupling 3.5 Hz

rate (experiment)
d33 Upper bound in bulk piezoelectric constant 1.2 fm/V

(experiment)
d33 Upper bound in surface piezoelectric 6 pm/V

constant assuming 1 nm layer (experiment)
T1 Bound in piezo-limited qubit lifetime 290 ms

assuming bulk piezoelectricity
T1 Bound in piezo-limited qubit lifetime 4 ms

assuming surface piezoelectricity

Table A.3: Experimental parameters single-pass measurements on Si Pa-
rameters for microwave-driven optical readout measurement in Si are given, and in
parenthesis are the parameters for optically driven phonons measurements (SBS).

Symbol Meaning Value Units

S Lock-in scale factor 30000 V/Vrms

Gtz Photodetector trans-impedance gain 1000 Ω
R Photodetector responsivity 1 A/W
ρ Substrate density 2328 kg/m3

n Index of refraction 3.45 -
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p13 Photoelastic constant 0.017 -
c33 Elastic stiffness tensor component 165 GPa
d33 AlN piezoelectric constant (theory) 5.1 pm/V
vAlN AlN acoustic velocity 10127 m/s
ωopt/2π Optical pump frequency 193535.55 GHz
Pp Optical pump power 5.745 mW
PLO Optical LO power at photodetector 0.96 mW
ηdet Optical loss through apparatus 0.103 -
Ωm/2π Acoustic mode frequency 37.765 GHz
Lm Acoustic substrate length 1 mm
Am Acoustic mode area π × (50)2 µm2

Γ/2π Acoustic dissipation rate 45 kHz
Ωµ/2π Microwave cavity resonant frequency 37.80 GHz
κµ,i/2π Microwave cavity internal loss rate 89 MHz
κµ,c/2π Microwave cavity coupling rate 105 MHz
Pµ Input microwave power at cavity 9 dBm
E0 Simulated electric field for single-photon 7× 10−3 V/m

excitation
g′om,0/2π Single-photon optomechanical 42.7 Hz

coupling rate
G Scattered signal (Stokes) power per pump 9.54× 10−18 -

power per phonon
gem/2π Upper bound in electromechanical coupling 2 kHz

rate (experiment)
d33 Surface piezoelectric constant in 150 nm 1 pm/V

layer (experiment)

Table A.4: Experimental parameters for piezoelectrically driven phonons
measurement on AlN on Si

A.4 Parameters for CaF2 resonantly enhanced mea-

surement (section 6.2.4)

Note that all crystal axis indices are assumed to be in the reference frame of the

substrate, x-cut CaF2.

Symbol Meaning Value Units

Gtz Photodetector trans-impedance gain 500 Ω
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R Photodetector responsivity 0.88 A/W
ρ Substrate density 3180 kg/m3

n Index of refraction 1.426 -
p13 Photoelastic constant 0.198 -
c33 Elastic stiffness tensor component 165 GPa
d33 Piezoelectric constant (theory) 0 pm/V
ωopt/2π Optical pump frequency 192610 GHz
κopt Optical cavity loss rate 2.1 MHz
κopt,cR Optical cavity coupling rate 0.6 MHz

(right mirror, exiting port)
κopt,cL Optical cavity coupling rate 0.93 MHz

(left mirror, entering port)
F Optical cavity finesse 3200 -
Lopt Optical cavity length 22 mm
Pp Optical pump power** 23 (30.1) mW
PLO Optical LO power at photodetector 0.95 mW
ηdet Optical loss through apparatus 0.083 -
Ωm/2π Acoustic mode frequency 13.354 GHz
Lm Acoustic substrate length 0.5 mm
Am Acoustic mode area π × (64)2 µm2

Γ/2π Acoustic dissipation rate 400 kHz
Ωµ/2π Microwave cavity resonant frequency 13.367 GHz
κµ,i/2π Microwave cavity internal loss rate 11.5 MHz
κµ,c/2π Microwave cavity coupling rate 10.9 MHz
Pµ Input microwave power at cavity 4.68 - 20 dBm
E0 Simulated electric field for single-photon 5.1√

2
× 10−4 V/m

excitation
Pcal Detector calibration term* 0.74 dB
ηopt Optical coupling efficiency 0.29 -
ηµ Microwave coupling efficiency 0.49 -
gom/2π Optomechanical coupling rate (from OMIT) 385 kHz
Com Optomechanical cooperativity (from OMIT)** 0.705 (0.914) -
gem/2π Electromechanical coupling rate (experiment) 0.034 Hz
d33 Bulk piezoelectric constant (experiment) 83 am/V
d33 Surface piezoelectric constant assuming 2.44 pm/V

1 nm layer (experiment)

Table A.5: Experimental parameters for piezoelectrically driven phonons
measurement on CaF2 *Detector calibration term includes the responses from a
photodetector, spectrum analyzer, and microwave amplifier. **Values in parenthesis
are the values for spontaneous measurement detecting thermal phonons.
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A.5 Parameters for microwave-to-optical transduc-

tion with x-cut quartz (section 7.3.3)

Note that all crystal axis indices are assumed to be in the reference frame of the

substrate, x-cut quartz.

Symbol Meaning Value Units

Gtz Photodetector trans-impedance gain 500 Ω
R Photodetector responsivity 0.88 A/W
ρ Substrate density 2648 kg/m3

n Index of refraction 1.544 -
p13 Photoelastic constant 0.29 -
c33 Elastic stiffness tensor component 87 GPa
d33 Piezoelectric constant (theory [117]) 0.95 pm/V
r13 Electro-optic coefficient [125] 0.45 pm/V
ωopt/2π Optical pump frequency 194000 GHz
κopt Optical cavity loss rate 2.2 MHz
κopt,cR Optical cavity coupling rate 1.2 MHz

(right mirror, exiting port)
κopt,cL Optical cavity coupling rate 0.7 MHz

(left mirror, entering port)
F Optical cavity finesse 5170 -
Lopt Optical cavity length 11.8 mm
Pp Optical pump power 0.47 - 112 mW
PLO Optical LO power at photodetector** 0.153 mW
ηdet Optical loss through apparatus** 0.01 -
Ωm/2π Acoustic mode frequency 11.366 GHz
Lm Acoustic substrate length 0.5 mm
Am Acoustic mode area π × (50)2 µm2

Γ/2π Acoustic dissipation rate 500 kHz
Ωµ/2π Microwave cavity resonant frequency 11.369 GHz
κµ,i/2π Microwave cavity internal loss rate 9.79 MHz
κµ,c/2π Microwave cavity coupling rate 7.33 MHz
Pµ Input microwave power at cavity 0 dBm
E0 Simulated electric field for single-photon 8√

2
× 10−4 V/m

excitation
Pcal Detector calibration term* 12.75 dB
ηopt Optical coupling efficiency 0.53 -
ηµ Microwave coupling efficiency 0.43 -
gom/2π Optomechanical coupling rate (from OMIT) 86 - 1400 kHz
Com Optomechanical cooperativity (from OMIT) 0.026 - 7.37 -
gem/2π Electromechanical coupling rate (theory) 298 Hz
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gem/2π Electromechanical coupling rate (experiment) 347 Hz
Cem Electromechanical cooperativity (theory) 4.18× 10−8 -
Cem Electromechanical cooperativity (experiment) 5.6× 10−8 -
geo Electro-optic coupling rate (theory) 137 Hz
geo Electro-optic coupling rate (fitted) 162 Hz
Ceo Electro-optic cooperativity (fitted) 2.8× 10−9 -
η Transduction efficiency from experiment 1.2+1.0

−0.6 × 10−8 -

Table A.6: Experimental parameters for microwave-to-optical transduc-
tion on x-cut quartz *Detector calibration term includes the responses from a
photodetector, spectrum analyzer, and microwave amplifier. **Note that the optical
LO power and loss through apparatus vary depending on the optical pump power
used. Here we provide the value for Pp = 23.8 mW, presented in figure 7.5 (c).
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Appendix B

Issues with clamping

Integration of a Fabry-Pérot optical cavity in our piezo-Brillouin platform is done only

with a coaxial microwave cavity in this dissertation. This is because we experience

issues with clamping acoustic substrates in other types of microwave cavities. As

discussed in the main text, we experience a challenge in optimally matching the

optical modes of a Fabry-Pérot cavity and the acoustic modes of an HBAR. As a

result, we choose to work with flat-flat HBARs. The downsides of a flat-flat HBAR

not only include diffraction-limited acoustic linewidth, but also the fragility of its

stability, which improper clamping can easily disturb.

Acoustic responses of flat-flat HBARs when clamped inside different microwave

cavity designs are shown in figure B.1. When a re-entrant cavity is used (figure B.1c),

we clearly observe spurious phonon modes with varying and unpredictable quality,

indicating the formation of unstable modes due to clamping. A COMSOL simula-

tion with simplified clamping conditions at cryogenic temperature (10K) is shown

in the inset of figure B.1(c). Even while assuming idealized clamping conditions, we

observe that there are deformations and built-in stress within the substrate, which

may lead to perturbations in phonon modes within the substrate. As a comparison,

acoustic characterizations of a much more stable plano-convex HBAR inside the same
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Figure B.1: Acoustic responses from flat-flat HBARs clamped under dif-
ferent conditions (a) Phonon signal peak of x-cut quartz flat-flat HBAR inside a
coaxial microwave cavity. We do not observe any spurious peaks and the spectrum
well matches our expectations. Inset shows a COMSOL simulation on an x-cut quartz
substrate at cryogenic temperature (10K) with simplified clamping conditions to vi-
sualize the effects of clamping. The clamping pressure is normalized to 1N/m2. The
surface plot denotes the Von Mises stress in log10 unit. Deformation of the substrate is
exaggerated by a factor of 200. (b) Sketch of a device with a coaxial microwave cavity
integrated with a flat-flat HBAR and an optical Fabry-Pérot cavity. (c) Phonon signal
peak of x-cut quartz flat-flat HBAR inside a re-entrant microwave cavity. Spurious
peaks with narrow linewidths were observed, implying perturbations in phonon modes
mode likely due to clamping. The spectrum here does not match our predictions. Inset
shows a COMSOL simulation on an x-cut quartz substrate at cryogenic temperature
(10K) with simplified clamping conditions to visualize the effects of clamping. The
clamping pressure is normalized to 1N/m2. The surface plot denotes the Von Mises
stress in log10 unit. Deformation of the substrate is exaggerated by a factor of 200.
(d) Sketch of a device with a re-entrant microwave cavity integrated with a flat-flat
HBAR and an optical Fabry-Pérot cavity. Notice that the acoustic substrate has to be
pushed to the lid with beryllium copper clips because we need the acoustic substrate
to be as parallel as possible to the flat mirror on the other side of the lid for optimal
optomechanical mode matching.
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re-entrant cavity with identical clamping yielded predictable responses with narrow

linewidths without spurious modes (figure 6.2 and 6.4).

Using a coaxial microwave cavity, we are able to come up with a design with

an even and symmetrical clamping of the acoustic substrate (figure B.1a) We no

longer see spurious, randomly spaced modes, the signal amplitude well matches to

theory, and the linewidth matches closely to our diffraction-limited acoustic linewidth

estimations.

Hence, although the type of usable microwave cavity is not technically restricted

when using a highly stable, plano-convex HBAR, clamping properties of microwave

cavities do limit us to using a coaxial microwave cavity design when integrating a not

as stable, flat-flat HBAR.
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Appendix C

Superconducting niobium cavity

characterization under optical

illumination

In this dissertation, all microwave cavities are made with OFHC copper. One way

to improve the device performance, as suggested in section 7.5, is to use supercon-

ducting microwave cavities instead of copper cavities. Combining superconducting

elements with optical elements, however, is a known challenge. When a supercon-

ducting material absorbs energy larger than the superconducting gap (> 2∆SC, where

∆SC ≈ 1.764kBTC), Cooper pairs can be broken, generating quasiparticles [131]. This

can lead to poor superconductor performance such as microwave decoherence. A list

of superconducting energy gaps for a few example materials is given below in table C.1

Notice from table C.1 that the superconducting energy gaps are of much lower energy

than optical photons, thus being a major hurdle in integrating a superconducting

component with an optical component.

In order to check how our hybrid cavity devices will perform when using a su-

perconducting microwave cavity, we did a simple experiment of illuminating a su-
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Material TC (K) ∆SC (µeV) 2∆SC (GHz)

Al 1.11 168 80
Ta 4.4 667 300
Nb 9.2 1395 700

NbTiN 14.5 2200 1000

Table C.1: Superconducting energy gaps of example superconducting ma-
terials

perconducting microwave cavity with optical light (figure C.1a). Since our He-4 flow

cryostat can cool down only to 4 K, we chose Nb, a material with relatively high

TC at 9.2 K, as the cavity material. At 6.5 K, which is the coldest temperature we

could reach at the time of the experiment, we observe cavity internal Q-factor > 106.

Note that this is not the peak Q-factor value for a Nb superconducting cavity since

cavity internal-Q usually plateaus at T = 0.1TC. In fact, there is a study showing

superconducting Nb coaxial cavities with similar designs reaching internal Q-factors

greater than 109 [132].

We track the Q-factor of the microwave cavity during cooldown (figure C.1b-c)

to confirm that it has transitioned into a superconducting state. Once it reaches the

coolest state allowed by the cryostat, we start illuminating 1550 nm wavelength laser

at the tip of the coax, where we simulate the current flow density as the highest. The

optical waist of the laser is approximately 70 µm. As light touches the microwave

cavity, we observe a minor shift in Q-factor of 10 ∼ 20% (from 1.1× 106 to 9× 105)

and a shift in cavity temperature of 20 ∼ 200 mK. Plotting the internal microwave

Q in terms of the heated temperature of the cavity, we notice that the drift in Q

matches the drift in temperature (figure C.1b-c), indicating that the shift in Q stems

from cavity heating, while other effects, such as quasiparticle generation, are minimal.

Although the data from laser illumination does closely follow the cooldown data, we

observe that the illumination data is slightly lower in Q compared to the cooldown

data. This is most likely because the temperature inside the cavity is slightly higher
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Figure C.1: Laser illumination experiment on superconducting Nb cavity (a)
Measurement setup for observing the effects of laser illumination on superconducting
Nb microwave cavity. A coaxial Nb microwave cavity is brought down below its critical
temperature, then a laser with 1550 nm wavelength is illuminated at the tip of the
coax. (b) Tracking internal microwave Q-factor as a function of temperature. Blue
data is taken as the cavity is cooled down (no light illumination) and red data is the
measurement when the laser is illuminated. (c) Zoom-in figure from temperature 6.5 K
to 9.5 K, indicated in the dashed box in (b). (d) When 1550 nm laser is illuminated,
we observe a shift in cavity temperature. The heating of cavity temperature as a
function of input optical power is presented.

than the temperature read off from the sensor. The temperature sensor is installed

on the outside wall of the microwave cavity, which is a few cm away from the light

illumination spot. Along with the position of the temperature sensor, poor thermal

conduction properties of a superconductor can lead to a higher local temperature at

the light illumination spot compared to the temperature we read off from the sensor.

In this test, we shinned light up to 150 mW in power. Even then, we observe a

minimal shift in microwave Q, still maintaining Qµ,i > 9× 105. In the current piezo-

Brillouin experiment, it requires ∼ 10 mW of optical pump light to reach Com >
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1. From the test with a Nb cavity, this value corresponds to < 20 mK of heat-

up, and Qµ,i > 106. It is important to note that this is a conservative estimate

since with a more optimal design, we can utilize an asymmetric optical cavity that

minimally leaks optical light (leaking less than <1 %) into the microwave cavity.

Hence, with a superconducting Nb cavity, we can expect microwave Q of ∼ 106 at ∼

6.5 K temperature, even when there is moderate optical light (< 100 mW). Compared

with the current microwave Q of 1000, this is a significant improvement. Frequency

tuning of these kinds of superconducting microwave cavities can be done using a

dielectric rod, similar to the design in [78]. Additionally, combining a superconducting

microwave cavity in our piezo-Brillouin platform can provide ways to independently

characterize the electromechanical cooperativity through electromagnetically induced

transparency (EIT) prior to the all-combined electro-optomechanical experiment.
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